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Abstract

Networked control systems (NCSs) and distributed networked control systems (DNCSs) in-
creasingly appear in the modern process industry due to continuous expansion of system
scales, physical setups and functionalities. Control loops in a NCS are closed through infor-
mation exchange between the spatially distributed controller and system components over a
shared network, while local information in a DNCS is transmitted between different subsys-
tems through a communication network to compensate for plant-wide interaction. However,
the inevitable and time-varying network-induced communication delays degrade the system
control performance and lead to a non-stationary behavior of the closed-loop system, which
pose great challenges in the design of automatic control systems over network. On the other
hand, control performance assessment is an asset-management technology aiming at optimal
control performance and cost effectiveness. The key to control performance assessment is
first to find the limit of control performance and then to estimate this benchmark control
performance from routine operating data. This thesis extends the first step of centralized
control performance assessment techniques to distributed networked control and networked
control cases with random communication delays.

Input and output communication delays between different subsystems are posed as the
controller and observer structure constraints in DNCSs. In order to handle random commu-
nication delays, the limits of control performance in terms of variance for DNCSs is proposed
as a bounded performance region with respect to the range of communication delays. Then,

the same idea is extend to characterize the limits of linear quadratic Gaussian (LQG) control

i



performance for DNCSs with the upper and lower LQG tradeoff curves.
Controller-to-actuator and sensor-to-controller communication delays are both considered
as random values or first order Markov chains in NCSs. A practical linear time-varying (LTV)
minimum variance benchmark is proposed for NCSs by using order of the interactor matrix
(OIM) and relative degree of the interactor matrix (RIM). It is shown that the obtained
benchmark terms can be estimated from routine operating data. Further, an explicit solution
to time-varying model predictive control (MPC) is derived for NCSs, based on which the
limits of control performance for networked model predictive control systems is proposed
as the time-varying MPC performance tradeoff curve. The applicability and effectiveness
of the proposed approaches are illustrated via their applications to different numerical and

chemical process examples.
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Chapter 1

Introduction

1.1 Motivation

NCS has been one of the most attractive topics in both industry and academia due to
continuously expanding physical setups and functionalities in modern industrial processes
2, 3, 4, 5]. A typical NCS consists of spatially distributed controller and system components
(physical plants, actuators, sensors, etc.). Control loops in a NCS are closed through infor-
mation exchange between the spatially distributed controller and system components over a
shared network. The elimination of unnecessary wiring in NCSs reduces overall cost for the
installation of control systems and provides ease in maintenance. In addition, by connect-
ing cyber to physical space through communication network, NCSs are able to fuse global
information and operate systems across long distance [6, 7]. On the other hand, large-scale
processes typically can be decomposed into several operating subsystems that interact with
each other through materials, energy and information networks. Design of automatic control
systems from the distributed and the networked perspectives has gained popularity [8, 9].
In a DNCS, which denotes NCS with a number of spatially distributed subsystems, local
information is transmitted between different subsystems through a communication network

to compensate for plant-wide interaction. Different subsystems efficiently cooperate with



each other through the information exchange to achieve a desired control performance and
to reduce the computation cost. This feature makes DNCS more structurally flexible and
favorable for fault tolerance.

However, the inevitable and time-varying network-induced communication delays degrade
the system control performance and lead to a non-stationary behavior of the closed-loop sys-
tem, which pose great challenges in the design of automatic control systems over network
[10, 11]. Therefore, for better regulation of systems, the design of advanced control algo-
rithms for NCSs and DNCSs has largely preoccupied the control researchers’ efforts; the
authors are referred to [12, 13, 14, 15] for results on distributed networked control and
[16, 17, 18, 19, 20, 21] for results on networked control. Although a variety of control design
techniques have been proposed, the literature is relatively sparse on studies concerned with
control performance assessment of NCSs and DNCSs. Control performance assessment is
an important asset-management technology with a goal towards achieving optimal control
performance [22, 23], in which the limit of control performance for an existing control sys-
tem is determined and used to evaluate the potential for control performance improvement.
Finding the limit of control performance is helpful on maintaining control performance of
a NCS or a DNCS. Comparing with the theoretically best achievable one, the potential for
further control performance improvement indicates the needs for the tuning of controller and
observer or the improvement of communication network topology. In this thesis, for control
performance assessment purpose, the limits of control performance for DNCSs and NCSs

with random communication delays is derived.

1.2 Literature review

In this section, literature review of control performance assessment is first presented. Then,
the main mathematical techniques and concepts employed throughout this thesis is illus-

trated. Starting from the definition of the unitary interactor matrix, the algorithm of the



multivariate minimum variance benchmark is explained. Further, the idea of the LQG trade-

off curve is introduced.

1.2.1 An overview of control performance assessment techniques

The notable work of the minimum variance benchmark for univariate processes laid the
theoretical foundation for control performance assessment [24], where the control objective
was to minimize output variance and the feedback controller-invariant term was proposed
as a benchmark to assess control loop performance. This contribution was significant due to
the fact that only the a prior: knowledge of univariate system time delay is required for the
estimation of the benchmark term from routine operating data. Another related performance
assessment statistic defined as the normalized performance index was proposed in [25]. Then,
the idea of minimum variance benchmark was extend to unstable and non-minimum phase
univariate processes in [26].

The concept of univariate system time delay, which denotes delay between a pair of input
and output, is important in determining univariate minimum variance control. This idea was
extended to multivariate minimum variance control, where delay between a set of inputs and
outputs is termed as the interactor matrix. The interactor matrix was first proposed in
[27] with a lower triangular form. The multivariate minimum variance control law designed
based on this form of the interactor matrix is output-order dependent [28]. Then, the unitary
interactor matrix is proposed in [29] as a special form of the interactor matrix. The unitary
interactor matrix is an all-pass factor, and factorization of such interactor matrix retains
the spectral property of the underlying system and is ideal for the design of multivariate
minimum variance control [1]. By introducing the unitary interactor matrix, the works
of Huang [30] and Harris [31] extended the minimum variance benchmark to multivariate
processes, where the minimum variance control law is shown to be unique.

The algorithm for factoring the lower triangular interactor matrix as proposed in [27]

requires a complete knowledge of the process model. However, a large-scale process typically



consists of thousands of control loops, where process dynamics and disturbances may vary
with time. Identification and on-line update of such a process model are demanding require-
ments. Moreover, control performance assessment should be carried out with disturbing the
running system as less as possible. Thus, factoring the interactor matrix from process model
is not a desirable approach. An algorithm for directly estimating the unitary interactor ma-
trix from closed-loop data was proposed in [32] to promote the use of multivariate minimum
variance control as a benchmark for control performance assessment.

In the work of Huang [30], the minimum variance benchmark for multivariate processes
was introduced by considering system time delays (the unitary interactor matrix) as the most
fundamental performance limitation. Some extensions of this work were proposed to cover
more realistic performance limitations. In [1], the generalized unitary interactor matrix was
proposed to factorize both the non-minimum phase zeros and the infinite zeros from pro-
cess model, based on which the control performance assessment algorithm for multivariate
non-minimum phase processes was provided. User-specified benchmarks were proposed in
[33, 34] to include design specifications of the closed-loop system dynamics. In [35], the mini-
mum feedforward plus feedback control variance was shown estimable from routine operating
data, and can then be used as a benchmark for performance assessment of feedforward plus
feedback controllers.

Although the unitary interactor matrix can be estimated from closed-loop data [32] with
perturbations, the obtained unitary interactor matrix is generally not accurate enough and
not easily understood for practical application. Hence, reducing the complexity of the re-
quirement to develop the interactor matrix is of interest [36]. Ko and Edgar [37] proposed
a method to estimate the multivariate minimum variance benchmark using routine operat-
ing data, which does not require the intermediate interactor matrix. McNabb and Qin [3§]
developed an algorithm for assessing control performance from routine operating data using
subspace projection and state space formulation. Although these attempts reduced the com-

plexity of the a prior: knowledge to some extent, they all require certain information that is



fundamentally equivalent to the interactor matrix. Then, practical solutions to multivariate
feedback control performance assessment were introduced in [39] by using OIM and RIM.
In [40], estimation of the upper and lower bounds of the multivariate minimum variance
benchmark from routine operating data is proposed with known I/0O delay matrix.

So far, various control performance assessment methods exist for stationary systems.
But there are only few results available for assessing control performance in the presence
of non-stationary characteristics in routine operating data. Control performance assessment
techniques developed for processes with time-varying disturbance dynamics were introduced
in [41, 42]. Li and Evans [43] proposed a d-step ahead minimum variance control algorithm
for LTV processes in the form of autoregressive moving average (ARMA) models. Huang
[44] developed a general framework for the minimum variance benchmark of LTV univariate
processes, and the industrial applications of this work were presented in [45].

Minimum variance control provides useful information for control performance assess-
ment, as no other controller can achieve a lower output variance. However, tighter require-
ments on output variance result in stronger disturbance rejection, and typically requires
larger variation in control action (more control effort) [46]. Minimum variance control is
usually not practical for real process operation due to its demand for excessive control ef-
fort and poor robustness. One may be interested in knowing how far away the real system
output variance is from the best achievable system output variance with the same control
effort. Grimble [47] proposed the generalized minimum variance benchmark for univariate
processes by considering control effort penalty, and this work was further extended to mul-
tivariate processes in [48]. Huang [1] proposed the use of the LQG benchmark for control
performance assessment, where the LQG tradeoff curve was introduced to show the limit
of control performance in terms of the best achievable input and output variances. As rec-
ommended in [1], the LQG solution can be achieved with the infinite generalized predictive
control approach, or can be approximated by the generalized predictive control solution with

a finite prediction horizon in practice. However, calculation of the LQG solution relies on a



complete knowledge of the process model. A simpler method for obtaining the LQG bench-
mark based on the Lyapunov equation and subspace matrices was proposed in [49]. Kadali
and Huang [50] proposed a subspace identification based approach to directly estimate the
LQG benchmark from routine operating data. A subspace method for LQG design and
performance assessment of supervisory-regulatory control systems was proposed in [51].

In addition, MPC has been proven as one of the most effective advanced process control
strategies to deal with constraint control problems and economic objectives. The LQG bench-
mark cannot handle the hard constraints and is an unattainable benchmark for commercial
MPC algorithms. Julien, Foley and Cluett [52] pointed out that, unless the actual distur-
bance is a random walk, the best achievable MPC performance will never fall on the LQG
benchmark even if the constraints are inactive. Then, several results for performance assess-
ment of MPC were developed by considering constraints in control problems [53, 54, 55, 56].
Economic performance assessment methods of MPC were proposed in [57, 58] through the
syntheses of variance control objectives and economic objectives using optimization-based
approaches.

However, all of the aforementioned methods are concerned with performance assessment
of centralized control systems. In NCSs and DNCSs, the time-varying network-induced
communication delays degrade the system control performance and lead to a non-stationary
behavior of the closed-loop system. The influence of communication delays on the best
achievable system control performance has been seldom considered in existing control per-

formance assessment methods. This fact motivates the works of this thesis.

1.2.2 Multivariate minimum variance benchmark

The aim of the minimum variance benchmark for multivariate processes is first to design the
benchmark term (output with minimum variance), then estimate this benchmark term from
routine operating data by multivariate time series analysis. In the following, we will adopt

the algorithm developed in [30] to illustrate this procedure. Unless otherwise illustrated, a



standard multivariate process model

Y, =T(¢ U, + N(¢g Hay (1.1)

is used throughout the thesis, where T'(¢~!) and N(q~!) are proper, rational transfer function
matrices in the backshift operator ¢~1; Y;, U; and a, are the output, input and disturbance
vectors of dimensions n,, n, and n,, respectively. For simplification purposes, we make the

following assumptions without loss of generality:

1. T(¢7') and N(g ') are square transfer function matrices and contain no non-minimum

phase zeros except for infinite zeros;
2. a, is white noise with zero mean and unit variance.

Non-minimum phase zeros in N(¢~!) can be factored out by an all pass factor without
affecting the noise spectrum. Further, when E[a;a]| # I, the disturbance model N(¢!) can
always be scaled to satisfy this assumption. For the sake of brevity, in the rest of this thesis,
the backshift operator ¢! is dropped in the expression of all transfer function matrices unless
circumstances necessitate its presence.

The system time delays of multivariate processes 1" can be factored as

T=D7'T (1.2)

where D is called the unitary interactor matrix [59] and can be served as the optimal gen-
eralization of univariate system time delay to the multivariate case. In equation (1.2), D!
contains the infinite zeros of T, and T is an invertible transfer function matrix which only

contains the finite zeros of T



Definition 1 A non-singular polynomial matriz D is defined as the interactor matrix, if
for a proper rational transfer function matrix T, such that

lim DT = lim T =K (1.3)

qg1-0 qg1—0

where K is a full rank constant matriz; T is a delay-free (invertible) transfer function matrix

of T. The matrixz D can be written as
D = Dog® + Dyg® ' + -+ 4 Dy g™ (1.4)

where dg is OIM which is the maximum power of q in D; vy is RIM which is the difference
between the mazximum and the minimum power of q in D; D; (i = 0,---,vs) is coefficient
matriz. If the interactor matriz D satisfies DT (q7')D(q) = I, then this interactor matriz is

further defined as the unitary interactor matriz, thus
D™= Dyg™ " e+ DI 4 D (1.5)

There are three different forms for the interactor matriz D: 1) D = q%1I is a simple interactor
matriz; 2) D = diag(q®!,q%2,- -, q%) is a diagonal interactor matriz; 3) D is a general
interactor matriz otherwise [60)].

In stationary case, it has been shown that multiplying an unitary interactor matrix to

the output does not change its variance, i.e.
E[Y'Y,] = E[Y,"Y] (1.6)

where Y; = ¢~% DY,, which can be called as the interactor filtered output. Multiplying ¢~% D



to both sides of equation (1.1) yields

}775 = q_dSDYt = q_dSTUt + q_dsDNat (1.7)

where using the Diophantine identity:

¢ DN =F+q¢ %R (1.8)

where, F is the polynomial matrix consisting of the first d, terms in ¢~ % DN, and R is the

remaining transfer function matrix in ¢=% DN. Then, Y, can be written as

Y/t = Fat + q_d‘g (TULL + Rat) (19)

Since the two terms on the right hand side of equation (1.9) are independent, as a result

E[Y;"Y] > E[(Fa,)" (Fay)] (1.10)

Thus, for centralized control systems, Y; with minimum variance can be obtained as

Yilmoe= Fa, = Foay + - + Fy,_104-q, 1 (1.11)

where F; (i =0,---,ds — 1) is the iy, coefficient matrix in F'. The corresponding centralized

minimum variance control law is given by

U(t)|mvc: _T_IRF_lfﬂmvc (1.12)

Due to the minimum variance benchmark term is independent of U; as shown in equation
(1.9), the coefficient matrices Fy,---, Fy,—1 can be estimated from the interactor filtered

routine operating data of any stable process output Y; by simple multivariate time series
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Figure 1.1: The LQG tradeoff curve [1].

analysis [30]. Then, the centralized control performance index can be calculated as

ED;”T ﬁ|mvc] . tr(FOTF0+ +F¢£—1Fds*1)

muvc

= TENYTY] tr(var(Y;)) (1.13)

1.2.3 LQG tradeoff curve

In general, variation in a system arises from the disturbance. Tighter requirements on output
variance result in stronger disturbance rejection, and typically requires larger variation in
control action (more control effort) [50, 46]. Due to this tradeoff between output variance
and control effort, one may be interested in knowing how far away the real system output
variance is from the best achievable output variance with the same control effort.

In the control performance assessment based on the LQG benchmark, a tradeoff curve

as shown in Figure 1.1 is used to solve this problem. The tradeoff curve is obtained from
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solving the LQG problem with an objective function defined by

J(w) = EIVTY) + wE[UT U] (1.14)

where w is weighting factor. By varying w, various LQG control solutions of control effort
E[UF'U;] and output variance E[Y,TY;] can be calculated. Then, the tradeoff curve can be
determined from these solutions with the optimal E[U]U,] as the z-axis and E[Y,7Y}] as the
y-axis, respectively.

The whole control region is divided into the achievable region and the non-achievable
region by the obtained LQG tradeoff curve. Any linear controller can only operate in the
achievable region which is above the LQG tradeoff curve. With a given E[UlU;] in real
system, the best achievable value of E[Y,"Y;] can be found from this curve. The difference
between the best achievable E[Y,TY;] and the real E[Y,’Y;] can be used for control perfor-

mance assessment.

1.3 Contributions of this thesis

The main contributions of this thesis are listed below:

1. Proposed the limits of control performance in terms of variance for DNCSs with random

communication delays as a bounded performance region;

2. Proposed the lower and upper LQG tradeoff curves to characterize the limits of LQG
control performance for DNCSs with random communication delays. Investigated and
demonstrated the non-applicability of separation principle in distributed networked

control;

3. Derived an explicit solution to LTV minimum variance control of NCSs with random

communication delays. Developed a practical LTV minimum variance benchmark for

11



NCSs by using OIM and RIM, where the benchmark terms are shown to be estimable

from routine operating data;

4. Derived an explicit solution to time-varying MPC of NCSs with random communica-
tion delays. Proposed the time-varying MPC performance tradeoff curve for control

performance assessment of networked model predictive control systems.

1.4 Organization of this thesis

In Chapter 2, the limits of control performance in terms of variance for DNCSs with ran-
dom communication delays is investigated. With a goal towards the best achievable control
performance, a fixed network topology is designed for DNCSs where each subsystem in the
network can communicate directly with all the other subsystems. Output communication
delays and system time delays serve as the most fundamental performance limitations in
distributed networked control, and are fully considered in the proposed distributed output
feedback controller design. First, an optimization-based solution to minimum variance con-
trol of DNCSs with time-invariant communication delays is developed. The obtained output
with minimum achievable variance is equal to the feedback controller-invariant term plus a
polynomial term with its order equal to the maximum communication delay between differ-
ent subsystems. Then, this result is extend to DNCSs with random communication delays,
where the lower and upper bounds of the minimum achievable output variance are obtained
by considering boundary values of random communication delays. Finally, a numerical case
study is conducted to compare the best achievable performance between centralized control
and distributed networked control in terms of the output variance.

In Chapter 3, the lower and upper LQG tradeoff curves are proposed to characterize the
limits of LQG control performance for DNCSs with random communication delays. As an
alternative to the work in Chapter 2, a distributed LQG control framework is developed

by further considering input communication delays and control effort penalty. The opti-
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mal structures of distributed state feedback controllers and distributed observers are first
presented. Furthermore, a algorithm is proposed for designing distributed controllers and
distributed observers simultaneously, based on which the lower and upper LQG tradeoff
curves can be obtained. State estimation performance and control performance of the pro-
posed algorithm are illustrated via a simulation study, and the non-applicability of separation
principle in distributed networked control is tested.

In Chapter 4, practical solutions to the LTV minimum variance benchmark are developed
for NCSs with random communication delays, where sensor-to-controller communication
delay and controller-to-actuator communication delay are considered as independent random
variables. The interactor matrix estimated from closed-loop data is generally not accurate
enough in practice, especially when there are non-stationary characteristics in closed-loop
data. Hence, the interactor matrix should be avoided when obtaining the control performance
assessment benchmark for NCSs. To begin with, an explicit solution to the LTV minimum
variance benchmark is derived for NCSs with the simple interactor matix. Furthermore, this
result is extended to the development of practical solutions to the LTV minimum variance
benchmark for NCSs with the general interactor matrix, where only OIM and RIM are
assumed to be known as the a priori knowledge. Finally, a direct method is proposed to
estimate the benchmark terms from routine operating data. The theoretical results are
demonstrated through the application to a reactor-separator chemical process.

In Chapter 5, the time-varying MPC performance tradeoff curve is proposed to charac-
terize the limits of control performance for networked model predictive control systems with
random communication delays. Sensor-to-controller communication delay and controller-
to-actuator communication delay are considered as first order Markov chains with known
transition probabilities. In particular, an explicit solution to time-varying MPC of NCSs is
derived by minimizing the expectation of a quadratic cost function over all possible future
communication delays in the prediction horizon. Based on this control design, the time-

varying MPC performance tradeoff curve is presented for control performance assessment of
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networked model predictive control systems. Further, a strategy is provided for obtaining
the time-varying MPC performance tradeoff curve from process model. The effectiveness
of the proposed control design and the use of the time-varying MPC performance tradeoff
curve in control performance assessment are illustrated via a simulation study.

In Chapter 6, the entire thesis is summarized and the future works are presented based
on practical needs for further improvements.

This thesis has been written in a paper-format in accordance with the rules and regula-
tions of the Faculty of Graduate Studies and Research, University of Alberta. Many of the
chapters have appeared or are to appear in archival journals or conference proceedings. In
order to link the different chapters, there is some overlap and redundancy of material. This
has been done to ensure completeness and cohesiveness of the thesis material and help the

reader understand the material easily.
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Chapter 2

Limits of Minimum Variance Control
Performance for DNCSs with

Random Communication Delays!

2.1 Introduction

Nowadays, large-scale processes usually consist of several unit operations (subsystems) which
interact with each other through networks of material, energy and information streams. A
substantial increase of plant scale and complexity leads to high computation cost as well
as reduced fault tolerance for centralized control system. Due to these concerns, the de-
velopment of DNCSs has attracted much attention [5, 8]. In a DNCS, a local controller is
designed for each subsystem, and different local controllers efficiently cooperate in achieving
the desired control objectives. Information of local states, control actions and outputs is
transmitted between different subsystems through the communication network to compen-

sate for plant-wide interaction [9, 61]. In this way, computation cost can be reduced, and

LA shorter version of this chapter has been published in “Guoyang Yan, Jinfeng Liu, and Biao Huang.
Limits of control performance for distributed networked control systems in presence of communication delays.
International Journal of Adaptive Control and Signal Processing. 2018 Sep 32(9): 1282-93”.
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control performance can be guaranteed to a certain degree. Furthermore, because each local
controller works separately, DNCS is more favorable in terms of fault tolerance as well as
maintenance compared to the centralized one.

However, distributed networked control framework poses additional limitations on the
best achievable control performance, where communication delays are the most fundamental
one. In a DNCS, a communication network is needed for data exchange between different
subsystems. Communication delays caused by wireless network, bandwidth limits, or trig-
gered communication are one of the key factors that may affect control performance [14].
Hence, the overall control performance of a DNCS will be subpar compared to the one that
can be achieved in the centralized case.

Motivated by the above discussions, to maintain highly efficient operation performance
of DNCSs, this chapter is concerned with the limits of control performance in terms of
variance for DNCSs with random communication delays. An explicit solution to distributed
minimum variance control has great theoretical and practical value, but it is also equally
difficult to obtain. The main difficulty arises due to the controller structure constraints
caused by communication delays, as this yields a non-convex optimization problem. In
this chapter, (i) communication delays are posed as the controller structure constraints;
(ii) the gap between the minimum achievable output variance under centralized control
and distributed networked control is proven to be a polynomial term with its order equal
to the maximum communication delay between different subsystems. As a special case,
when a DNCS has perfect communication, distributed networked control has the same best
achievable performance as centralized control; (iii) minimum variance control for DNCSs
with time-invariant communication delays is modeled as an optimization problem and solved
using sums of squares programming; (iv) limits of minimum variance control performance for
DNCSs with random communication delays is chosen as a region between the lower and upper
bounds of minimum achievable output variance by selecting communication delays between

all subsystems as the minimum and the maximum values, respectively; (v) a simulated
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example is incorporated to show the results of the proposed work.

2.2 Preliminaries

2.2.1 System description

Consider a discrete-time linear time-invariant (LTT) system:

}/;5 :TUt+Nat (21)

where t indicates current time instant; 7" and N are proper rational transfer function matrices
in the backshift operator ¢~'; Y;, U; and a; are output, input and disturbance vectors of
appropriate dimensions. The whole system is divided into n subsystems. Yj;; and U; are

the output and input vectors of subsystem ¢ with proper dimensions, respectively. Thus,

Y, =[YL,....,YL]T and U, = UL, ..., UL]T.

2.2.2 Modeling of communication network

In this chapter, we consider a distributed networked control framework as shown in Figure
2.1, where a class of discrete-time LTI systems are composed of n interconnected subsystems.
Measurements of the n subsystems are sampled synchronously and periodically at time in-
stant t; which is the starting time of the k' sampling period. Each subsystem controller
is assumed to have direct and immediate access to the measurements of its corresponding
subsystem, and can transmit information of the local measurements to all other subsystem
controllers through a communication network. Further, information is assumed to be trans-
mitted (and received) by subsystem controllers once within each sampling period, and the
exchange of information is subject to random communication delays. The delay of informa-
tion transmission from subsystem j to subsystem ¢ at time instant ¢ is denoted as a positive

integer d;;(t). If at time ¢, controller ¢ receives the latest information of controller j sent
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Figure 2.1: Network topology design for DNCSs with random communication delays.

at time t,_,, then d;;(tx) = ¢. Further, the maximum and the minimum possible values of
d;;(t) for 1 < i,5 < n,i # j are predetermined, denoting as dy,qa; and dp,n, respectively.
In each sampling period, all measurements of a subsystem are transmitted together as one

package.

2.2.3 Controller structure

For many DNCSs, although systems are running distributedly, controllers can be centrally
designed and then applied distributedly in the real-time functioning. In this case, the design
of control law for each subsystem is done with common knowledge of the other subsystems.
Thus, the design problem is more trackable and the global control performance is more
reliable [15].

In this chapter, a distributed output feedback controller is designed in the centralized
way for DNCSs shown in Figure 2.1. Without loss of generality, the controller for each

subsystem is designed based on the available output information from all subsystems. The
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whole controller can be expressed as U; = Q(t)Y;, where

¢ MOQu(t) -+ g WQu,(t)
Qt) = : : : (2.2)

qidnl(t)in(t) qidnn(t)an(t)

is a controller of transfer function matrix in the backshift operator ¢!

at time ¢. In equation
(2.2), Q;;(t) is the (i,7)™ sub block of Q(t), and d;;(t) is the communication delay from
subsystem j to ¢ at time ¢. Normally, d;;(t) = 0 when ¢ = j. The controller of subsystem ¢
is the i* row of Q(t) which can be expressed as

n.j#i

Ui = Qui(t)Yy + Z q_d”(t)Qij(t)th (2.3)
=1

According to equation (2.3), in the controller of subsystem i, the output information of
subsystem j is used up to time ¢ — d;;(¢), and all the information of subsystem j after time
t — d;;(t) is unavailable to subsystem i due to communication delays.

The structure of Q(t) is constrained by communication delays in the outputs at time
t. Thus, the control structure considered in this chapter only depends on the output feed-
back. When a control structure also has input communication delays, further performance
limitation will be expected. A time-varying controller is needed to achieve the theoretical
lower bound of the output variance when there are random communication delays. Fur-
ther, the controller shown in equation (2.2) can be reduced to a time-invariant controller if

communication delays are time-invariant.

2.2.4 Main objective

The main objective of this chapter is to find the theoretically achievable lower bound of
trivar(Y;)] in DNCSs considering two types of communication delays; time-invariant com-

munication delays and random communication delays, respectively. The achievable value of

19



trivar(Y;)] is limited by system time delays when we can design multivariate controller with
full degree of freedom. In DNCSs, such a value will further be limited by the controller struc-
ture constraints caused by communication delays. To distinguish the influence of different

limitations, we denote the minimum output variance under distributed networked control as

min trjvar(Y;)| = Jsysa + Jeom 2.4
mir [var(Yy)] = Jsysd d (2.4)

where )(t) is the controller with structure constraints shown in equation (2.2); Jysq is equal
to the multivariate minimum variance benchmark obtained in centralized control systems,
which is the most fundamental limit of control performance caused by system time delays;
Jeoma 18 the additional term caused by communication delays in DNCSs, and can be served

as the gap of the best achievable control performance between centralized control systems

and DNCSs.

2.3 Limits of distributed minimum variance control per-
formance considering time-invariant communica-
tion delays

In this section, we derive an explicit relationship between the minimum achievable output
variance and the distributed controller which suffers from time-invariant communication de-
lays. The best achievable control performance for DNCSs with time-invariant communication
delays is obtained through optimization-based method. Because communication delays are

time-invariant, the parameter ¢ is dropped from Q(t) and d,;(t) in this section.
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Figure 2.2: Closed-loop system with separation of the interactor matrix.

2.3.1 Problem formulation

Consider the system shown in Figure 2.2:

Y, = D"'TU, + Na,

(2.5)

where D is the unitary interactor matrix of transfer function matrix 7. We assume that dj is

the order of D and v, = ds — 1 for the sake of convenience. For regulatory control U; = QY%

using the Diophantine identity [31]:

Q=X+q"L

(2.6)

where d > 1 is the maximum communication delay among d;; for 1 < 4,5 < n; X is a

polynomial matrix of order d—1, and L is the remaining transfer function matrix. According

to equation (2.2), all the controller structure constraints caused by communication delays

are contained in X, and L can be designed with full degree of freedom.
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Multiplying both sides of equation (2.5) by ¢~% D yields

¢ DY, = ¢ “TU, + ¢ *DNa, (2.7)

where using the Diophantine identity gives

¢ DN =F+q %M+ qTIR (2.8)

Here, F and M are polynomial matrices of order d; — 1 and d — 1, respectively; R is the
remaining transfer function matrix. Substituting equations (2.6), (2.8) and U; = QY; into

equation (2.7), we obtain the following set of equation by rearranging (2.7):

qidSDYHmvd = Fat + Watfds (29)
TXY;‘fdvad = _<M - W)atfds + eat—ds—d (2-1())
TLY, 4. _lmwd = —(R+0)a,_y. g (2.11)

where Y} |4 is the output with minimum achievable variance for DNCSs with time-invariant
communication delays; Fla; is the feedback controller-invariant term for centralized control
systems; Wa;_4, is the additional term in minimum achievable output variance caused by
communication delays; 6 is a transfer function matrix. The equation set (2.9)-(2.11) is

assumed to hold without loss of generality.

Proposition 1. Term W is a polynomial matriz of order d — 1 for all possible values of
communication delays between different subsystems. Zf:_ol tr(WIW,) is served as the gap
between the best achievable control performance under centralized control and distributed

networked control, where W; is the i'" coefficient matriz of W.

Proof:  When equation set (2.9)-(2.11) holds, equation (2.7) holds naturally. From
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equation (2.9), Y;|mea can be solved as

Yi|mod = ¢ DY EF 4+ ¢ %W)ay (2.12)

= (¢“*D'F + D™'W)a,
For the unitary interactor matrix D, we have D~1(q) = DT (¢ !). Therefore,

E=q¢“D7'F (2.13)

— (DOT 4ot Di_lqu—l)(po 44 Fds—lq_d5+1)

where F} is the i" coefficient matrix in F. Owing to causality, any term with a positive

power of ¢ in equation (2.13) must be zero. So, we have
E=Ey+Eq '+ - +E;_qg%™ (2.14)

with By, = 3.0 DT Fyy.

)

Substituting equation (2.12) into (2.10) yields
W=-TXD )" (M+TXE)—q¢ %I -TXD )0 (2.15)
where we define P = (I — TXD~")""(M + TXE). Using the Diophantine identity,
P=B+q¢C (2.16)

where B is a polynomial matrix of order d — 1, and C is the remaining transfer function

matrix. Then, we have

varYy|mea) = var[Fa,) +var[Ba;,_q,] + var[(C — (I = TXD™ ) 0)a,_y _4] (2.17)
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where B only depends on X and generally cannot be zero when there are communication
delays in DNCSs.

To minimize the output variance, we select

0=(1-TXDHC (2.18)

to make the third term on left hand side of equation (2.17) equal to zero. Thus, the minimum

achievable output variance is given by

var[Yilmea) = var[Fa] + var[Wa;_q,] (2.19)

with W = B a polynomial matrix of order d — 1. Further, L is given by

L=—¢*T YR+ 6)(F+q®W)'D (2.20)

in order to satisfy the set of equations (2.9)-(2.11). [
For any given X, W is required to be a polynomial matrix of order d — 1 and this is
ensured by selecting # and L based on equations (2.18) and (2.20), respectively. According

to equation (2.15), W = B can be written in a compact matrix form as:

Wy H 0 o ---0 Wy
Wi H, K o -0 Wi
_ n (2.21)
_Wd—l_ _HJ—l_ _Kd—2 Kg_s 0_ _Wd—l_
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H, M, [, 0 0| Xo 0 0 Ey
H1 M1 Tl Tg 0 X1 X() 0 E1
= - (2.22)
= Mg Tioy Tyo - To| |Xaa Xio Xo| | B
Ko v 0 -~ 0| Xy 0 - 0 DY _,
K| T T, - 0| X1 X, -+ 0 DY _, (229
_KJ—2_ _TJ—Q TJ—3 T TO_ _XJ—Q XJ—3 t Xo_ _Di_gﬂ_

where W; is the i*" coefficient matrix of W; H; and K, are coefficient matrices given in
equations (2.22) and (2.23), respectively. In equations (2.22) and (2.23), T;, M; and X; are
the " coefficient matrices of T, M and X, respectively; E; with i > d, — 1 and D! with

1 < 0 are 0.

Remark 1. If a DNCS has perfect communication (d = 0), in the equation set (2.9)-(2.11),
term W, M, X and 0 will be 0. Then, Q = L = —¢™T 'RE'D is just the minimum
variance controller for centralized control systems [1]. Thus, the best achievable control
performance of a system under distributed networked control and centralized control will be

tdentical if there is no communication delay between all the subsystems.
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2.3.2 Best achievable control performance

According to Section 2.3.1, the distributed controller that provides the best achievable output

variance is obtained by solving the following optimization problem

m)}n trivar(Wai_q,)] (2.24)

st (2.21),(2.22), (2.23)
Xk(Z,]> =0 fOT k < dij -1

where Xj(i,7) is the block in X} with coordinate (7, 7). The equality constraints in the op-
timization problem (2.24) accommodate the controller structure caused by communication
delays, which is shown in equation (2.2). To deal with the proposed non-convex optimiza-
tion problem with equality constraints, several global optimization methods can be used.
Polynomial optimization algorithms are applied here.

Based on the assumption that a; is white noise with zero mean and unit variance, we

have

trivar(Wa_a,)] = tr[Wy Wo + -+ + Wi Wy_4] (2.25)

where each element in X; for ¢ = 0,---,d — 1 is defined as an individual variable, and
the corresponding variables are assigned 0 according to the equality constraint in equation
(2.24). Due to the quadratic form of W; in equation (2.25), the cost function will be a strictly
positive real-valued unconstrained polynomial with order 2d which can be written in the sum
of square form.

Global optimization of this kind of polynomials has been well established in literatures.
It has been shown that the global unconstrained minimization of these polynomials can
be approximated as closely as desired (and often can be obtained exactly) by solving a
finite sequence of convex linear matrix inequality problems. For the theory on polynomial

optimization, the interested reader is referred to [62, 63, 64, 65].
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2.4 Limits of distributed minimum variance control per-
formance considering random communication de-
lays

If a DNCS suffers from random communication delays, based on the controller structure
shown in equation (2.2), a time-varying controller is needed to achieve the theoretical mini-
mum output variance. In order to deal with the plant-wide interaction using a time-varying
distributed controller, each subsystem is required to transmit local information to all the
other subsystems, including current output measurements, communication delays and con-
trol laws. We define

Lty = Vj(tr) _ din(tk) - diulte) (2.26)

Q;(tr) Qii(te) - Qjn(tr)

where V;(;) and Q);(t)) are local communication delays and local control laws, respectively,
in the subsystem j at time instant ¢;. Because of communication delays, at time instant t;,
I;(tx) is unavailable to subsystem ¢ for all j € J with J ={j € Z : d;;(tx) > 1,1 < j < n}.
Thus, there are two main challenges in designing such a distributed time-varying minimum

variance controller:

1. The whole controller structure of ()(¢;) is unavailable to subsystem ¢ due to the absence
of information D;(t;) for j € J, which makes it almost impossible to consider a global
control objective in the time-varying local controller design of subsystem ¢. Although
independent algorithms can be applied in which each local controller optimizes a local
performance index, such a control strategy can be unstable and far from the solution

when considering a global control objective [5].

2. For the system shown in equation (2.1) under output feedback control, the closed-loop

response T, (t;) at time instant ¢, is the relationship between output and disturbance.
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In minimum variance control, the disturbance rejection is realized by compensating the
influence of disturbance using output feedback. If there are random communication
delays in DNCSs, T,;(;) is unavailable to subsystem ¢ due to the absence of information

Q,(tx) for j € J, which makes the local disturbance rejection control law hard to design.

With these concerns, limits of minimum variance control performance for DNCSs with
random communication delays is relaxed from a specific value to a region by proposing the
lower and upper bounds of the minimum output variance. By selecting d;;(t) = dpy, for 1 <
1,7 < n,i# j , the lower bound of the minimum output variance can be obtained by solving
a distributed minimum variance control problem considering time-invariant communication
delays. Correspondingly, the upper bound of the minimum output variance can be obtained
by selecting d;;(t) = dpaq for 1 <i,j <mn,i # j.

A two-step performance assessment strategy is proposed under this framework. The
system that indicates good performance compared to the lower bound of the minimum
output variance is guaranteed to be in a perfect condition; otherwise, the system needs to be
re-evaluated based on the upper bound of the minimum output variance. The system that
indicates poor performance compared to the upper bound of the minimum output variance
needs controller tuning or redesign of the controller. Moreover, different approaches can be
considered, e.g. the use of feedforward control.

The proposed performance assessment strategy has its advantages from an implemen-
tation perspective. When performance assessment is conducted for DNCSs with random
communication delays, the lower and upper bounds of the minimum output variance can
be calculated off-line in advance without considering random communication delays at each

time instant which may lead to a high computational load in application.

Remark 2. The use of bounds based on time-invariant delays may introduce conservativeness
into the results. If we refer to the lower bound of the best achievable control performance, we
get an overestimated result; on the other hand, if we refer to the upper bound, we may get

a conservative performance. In practice, the lower and upper bounds of the best achievable
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performance provide a fundamental reference for controller tuning.

2.5 Simulations

2.5.1 Case of time-invariant communication delays

Consider the following 2 x 2 system adapted from [1]

-1 k12q2 1 —0.6
}/lt q 129 U . a
1-0.4¢g-T 1-0.1¢g T 1t 1-0.5g-T 1-0.5¢ 1T 1t
_ | e L | q (2.27)
0.3~ q- 0.5 1
Yo Usa: A2¢

1-0.1g1  1-0.8¢1 1-0.5¢=1 1-0.5¢1

where the system is divided into 2 univariate subsystems, (Yi;,Us¢) and (Ya, Uy), respec-
tively; k12 controls the extent of interaction between the 2 subsystems. The unitary interactor
matrix D can be factored out as

—0.9578¢ —0.2873¢
D= (2.28)

0.2873¢> —0.9578¢2

The output with minimum variance under centralized control is Y;|mwe= Fa;, where F is

obtained by separating ¢~% DN in the form of equation (2.8) as

—1.1015¢ 0.2874¢~!
F= (2.29)

—0.1916 — 0.0958¢' —1.1302 — 0.5651¢~*

Therefore, the minimum output variance under centralized control is tr{var(Yi|me.) =
trivar(Fa;)] = 2.9383, where disturbance is assumed to have unit variance.
By selecting the interaction index k15 = 1 and communication delays dio = 2,ds; = 1,

we obtain the part of the distributed minimum variance controller that contains structure
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Figure 2.3: Comparison of minimum achievable output variance under centralized control
and distributed networked control with time-invariant communication delays.

constraints caused by communication delays as follows

—0.4521 — 0.0441¢™" 0
X - (2.30)

—0.0011¢"" —0.1262 + 0.0233¢

where the off diagonal elements in X are zero or have time delay which indicate the limitations
on interaction compensation caused by communication delays. The additional term in the

output with minimum variance is

—0.0788 + 0.0490g " —0.1395 + 0.0815¢ !
W— (2.31)

—0.0446 —0.1746
According to equation (2.31), the order of the additional term in Yj; is 1, which is consistent
with the maximum value of dy;—1 for 1 < j < 2, and this conclusion also holds for subsystem
2.

By selecting dis = 2, doy = 1, and dias = 3, doy = 1, respectively, tr{var(Yi|mwaq)] for

30



4.5 ‘ | | |
S R S e S
P ot M
44 o
A J— * * * * * *
4.3+ R ; |
I' -+ dmax‘3
= ,'# d =2
> 421 & -©-centralized| |
= o
© &
>
= 4% |
4 i -
39r |
G © © o Y o o o o o o
3.8 : : ! L ! I I I I
0 1 2 3 4 5 6 7 8 s 10

k12

Figure 2.4: Comparison of minimum achievable output variance under centralized control and
its lower and upper bounds under distributed networked control with random communication
delays.

various ki are compared to determine how the influence of communication delays on best
achievable control performance changes with the extent of interaction between 2 subsystems.
According to Figure 2.3, for each value of kjy, there exists a distributed controller that
closely matches the performance of minimum variance controller in centralized case. The
gaps between Y| e, Yi|mod(2,1) and Y|med(s,1) are caused by communication delays, and larger
communication delays will lead to a larger minimum achievable output variance. Yt|mvd(3,1)
is exactly equal to Y;’mvd(g’l) when k15 = 0, which indicates that communication delay d;
will not affect system control performance if subsystem 1 is not influenced by subsystem 2.
Further, the gap between Y;|muq(2,1) and Yy|meas,1) become larger when k9 increases, which
implies that communication delay di» has greater influence on system control performance

if there is lager interaction from subsystem 2 to subsystem 1.
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2.5.2 Case of random communication delays

Consider another 2 x 2 system adapted from [1]

-1 k12g—2 1 —0.9
}/lt q 129 U . a
1-0.4¢g—T 1-0.3¢ T 1t 1-0.4¢g—T 1-0.3¢ T 1t
_ . ! + I e (2.32)
0.7q— q_ 0.7 1
Yar 1-02¢—1 1-09¢ 1T Uz 1-05¢g-1 1-07¢q 1 A2t

where the system is divided into 2 univariate subsystems, (Y3, Uy¢) and (Ya, Uy), respec-
tively; ki controls the extent of interaction between 2 subsystems. We assume that the
system shown in equation (2.32) is under distributed networked control and suffers from
random communication delays, where d,,., = 3 and d,,;, = 2, respectively. The proposed
lower and upper bounds of the minimum output variance for various k15 are shown in Figure
2.4. The region between line d,,,, = 3 and line d,,;, = 2 can be treated as an alternative for
the minimum variance benchmark value. The proposed two-step performance assessment
strategy can be applied based on the obtained lower and upper bounds of the minimum
output variance.

According to Figure 2.4, the system with performance lies between line d,,;, = 2 and line
dmaz = 3 is guaranteed to be in a perfect condition; the system with output variance larger
but close to the value shown in line d,,,, = 3 has an acceptable performance, but there still
is a potential for performance improvement; the system with output variance much larger
than the value shown in line d,,,, = 3 indicates poor performance, then controller tuning or
redesign of the controller is necessary. Comparing line centralized with line d,,;, = 2 and
dmaz = 3, there is a significant gap between the conventional minimum variance benchmark
and the proposed limits of minimum variance control performance for DNCSs. Although
controller for a DNCS with communication delays is well designed, it is highly likely to show
a poor control performance if the conventional minimum variance benchmark is used as a
criterion. Thus, the best achievable control performance is overly optimistic, and may lead

engineers to search for non-existent distributed controllers. The proposed limits of minimum
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variance control performance can give a more precise estimate on the best achievable control

performance of DNCSs with communication delays.

2.6 Conclusions

In this chapter, we have discussed the limits of control performance for DNCSs, where the
control objective is defined in terms of the output variance. Two scenarios are considered:
DNCSs with time-invariant communication delays and random communication delays. For
the case of time-invariant communication delays, communication delays are posed as the
controller structure constraints and distributed minimum variance control is modeled as an
optimization problem which is solved using sums of squares programming. For the case
of random communication delays, the lower and upper bounds of the minimum output
variance are proposed as an alternative for limits of minimum variance control performance
by selecting communication delays between all subsystems as the minimum possible value
and the maximum possible value, respectively. A simulated example is presented to show

the results of the proposed work.
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Chapter 3

Limits of LQG Control Performance

for DNCSs with Random

Communication Delays?

3.1 Introduction

Limits of minimum variance control performance for DNCSs provides useful information for
control performance assessment, as no other distributed controller can achieve a lower output
variance. However, tighter requirements on output variance result in stronger disturbance
rejection, and typically requires more control effort [46]. Minimum variance control is usually
not practical for real system operation due to its demand for excessive control effort and poor
robustness. Then, one may be interested in knowing how far away the real system output
variance is from the best achievable output variance with the same control effort. In this
chapter, limits of LQG control performance for DNCSs with random communication delays

is proposed as an alternative of the work in Chapter 2, where performance limitations of

2A shorter version of this chapter has been published in “Guoyang Yan, Jinfeng Liu, Yousef Alipouri,
and Biao Huang. Performance assessment of distributed LQG control subject to communication delays.
International Journal of Control. 2020 May 28: 1-23”.
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input communication delays and control effort penalty are further considered. Moreover,
separation principle works on the fact that control actions will not influence state estimation
error. But this condition is not hold in DNCSs with communication delays. In a DNCS,
for each of the subsystems, some information of control actions of the other subsystems
is missing due to the presence of communication delays. These missing information will
lead to additional state estimation error in the local observer. Thus, to take into account
the influence of control actions on state estimation error for DNCSs with communication
delays, exploring algorithms for designing distributed controllers and distributed observers
simultaneously is in need.

In this chapter, (i) the optimal structures of distributed state feedback controllers and
distributed observers are proposed with considering both communication delays in inputs and
communication delays in outputs; (ii) the best achievable control performance of DNCSs in
the framework of LQG is presented where distributed controllers and distributed observers
are designed simultaneously without using separation principle; (iii) the non-applicability of
separation principle is illustrated in distributed networked control with communication de-
lays; (iv) in order to handle random communication delays, the lower and upper LQG tradeoff
curves are proposed to characterize the limits of LQG control performance for DNCSs; (v)

implementation of the resulting control strategy is presented based on a numerical example.

3.2 Preliminaries

3.2.1 System description

In this chapter, we consider a class of discrete-time LTT systems described by the following

state-space model

Z, = CX, + Nay,
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where k indicates current time instant; X, Uy, Z; and a; are the state, input, output and
disturbance vectors of dimensions n,, n,, n, and n,, respectively; A, B, C, M and N are
matrices/vectors of appropriate dimensions. The entire system consists of n subsystems,
with X, Uy and Z;;, being the state, input and output vectors of subsystem 7, respectively.
That is, Xi = [X1g, -+, Xor|Ts Up = [Uik, - - -, Uni|T and Zy, = [Z1g, .., Zo] T

It is assumed that each subsystem has its own observer and controller. The subsystem
observers and controllers communicate and exchange information through a shared commu-
nication network and form a distributed networked control system. A schematic of the entire

system is shown in Figure 3.1. Following assumptions are made without loss of generality:
1. pair (A, B) is controllable, and pair (A, C) is observable.

2. ay, consists of independent unit white noise which satisfies

Elay) =0, Elagai] = 1

where E[-] denotes the expectation of random variables. This assumption can always

be satisfied by properly choosing matrices M and N.

3.2.2 Modeling of communication network

In this chapter, as shown in Figure 3.1, the designed network topology is fixed where each
subsystem can communicate directly with all the other subsystems through a shared com-
munication network. Although such kind of network design is not always applicable in
real system operation, it can provide the theoretically best achievable control performance.
Comparing with the control performance obtained in this case, one can further decide if
improvement on network design is needed.

In the communication network, it is assumed that the measurements of the n subsys-

tems are synchronously and periodically sampled at the beginning of each sampling period.
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Figure 3.1: Network topology design for DNCSs with random communication delays.

The controller and observer of each subsystem have immediate access to its local measure-
ments, and information of local measurements and control actions are transmitted to all the
other subsystems through the shared communication network. The exchange of information
between different subsystems is subject to communication delays. Further, information is
assumed to be transmitted (and received) by subsystems once within each sampling period.
Denote k as the starting time of the k™ sampling period and d;;(k) as the communication
delay from subsystem j to subsystem ¢ at time k. If at time &, controller ¢ receives the latest
information of controller j sent at time k — ¢, then d;;(k) = ¢ with ¢ a positive integer.
Further, communication delays between different subsystems are assumed to be bounded
within a predetermined region [d,in, dmaez]. In each sampling period, all the information of

a subsystem are transmitted together to the other subsystems as one package.

3.3 Objective and proposed approach

In this section, we first propose the optimal structure of distributed state feedback controllers

considering communication delays in states, then we propose the optimal structure of dis-
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tributed observers considering both communication delays in outputs and communication
delays in inputs. Due to the fact that communication delays are typically time-varying and
non-Gaussian, we propose to the lower and upper LQG tradeoff curves to characterize the
best achievable LQG performance of a DNCS. The lower LQG tradeoff curve is obtained by
assuming that the communication delays between all subsystems are equal to d,,;,. That is,
at time k, only control actions and outputs of the other subsystems before time k — d,,;n
are available for each of the subsystem. Similarly, the upper LQG tradeoff curve is obtained
by assuming that the communication delays between all subsystems are equal to d,,q.. At
time k, for each of the subsystem, the distributed LQG problem is solved based on control
actions and outputs of the other subsystems before time k — d,,, With regardless the avail-
able information after time k — d,,,,. Further, the best achievable performance of DNCSs in
the framework of LQG is solved where distributed controllers and distributed observers are

designed simultaneously without using separation principle.

3.3.1 Structure of subsystem controllers

It is well recognized that a state feedback control law U, = F X} can achieve the optimal
control performance for linear systems since the state vector X summarizes all the previous
state information. However, when we consider DNCSs as shown in Figure 3.1, the entire
state information of the current time instant is not available to each subsystem due to
the presence of communication delays. Therefore, the following state feedback controller

structure is proposed for subsystem :
Uy, = FSsz + FZ%szfl + -+ Ficl-lilXik,d+1 + Z Fngk,d (32)
j=1

where communication delays between all subsystems are assumed equal to d. That is, sub-
system ¢ only has access to the states of other subsystems at and before time k — d. Note

that subsystem 7 has access to its own subsystem states at all times. d is chosen as d,,;, and
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dpmaz for calculating the lower and upper LQG tradeoff curves, respectively. FZ‘; is the gain
matrix for the states of subsystem j at time k — ¢q. Based on the fact that the entire state
information of the whole system at time k — d is available, information before time k£ — d
is not used. In equation (3.2), states of subsystem i from time k — d to time k and states
of all the other subsystems at time k — d are used to design the controller. Therefore, the
proposed state feedback controller is designed based on all the useful state information.
Based on the proposed subsystem controller in equation (3.2), the entire system controller

can be described as
U= F°X)+ F'Xp o+ + F7UXG g0 + FOXG (3.3)

where F'1 = diag(F},,---,F2) for ¢ = 0,---,d — 1 are controller gain matrices with block

diagonal structure, and F'¢ is the gain matrix associated with the state Xj_q.

3.3.2 Structure of subsystem observers

According to equation (3.2), at time k, Xj_4 and Xi_gq11, -+, Xix are used in the local
controller of subsystem i. A local state observer needs to be designed for subsystem i to
estimate these states.

First, Xj_4 is estimated. Communication delays between all subsystems are assumed
equal to d (d = dyyin Or d = dpnax). That is, all the control actions and outputs of the system
at and before time k — d are available to each subsystem. Thus, X,_4 can be estimated by

subsystem i (1 = 1,...,n) as follows:
Xt ;= AX{ ;4 BUp_q1 + L8| Z—q — C(AX{_ 4 4 BUp_q_1)] (3.4)

where X¢_, is the estimate of Xj_g. A)A(;éfdfl + BUj,_q-1 is the state prediction term based

on the system model, and L¢[Zy_4 — C(AX}_, | + BUk_4-1)] is the correction term based

on output prediction error. L¢is the gain matrix for the correction term and can be directly
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assigned as the steady state Kalman filter gain for the entire system shown in equation (3.1).
Note that a copy of observer in equation (3.4) is implemented in each of the subsystems.
Then, X;;_gq11 is estimated. X;;_441 is only used in the local controller of subsystems
1. Due to the presence of communication delays, at time k, only local control actions and
outputs after time k — d are available to subsystem ¢. So, only prediction error for local
outputs at time k — d 4 1 is available to update the state prediction. For subsystem i, the

observer for X;;_441 is designed as
Xh g = AX g+ BilUs—a+ L[ Zik—asr — Ci(AX{_y + BU;_g)] (3.5)

where ka_d+1 is the estimate of states of subsystem ¢ at time k — d + 1, A;, B; and C;
are sub matrices in A, B and C' associate with subsystem i, respectively. In equation (3.5),
AZ-X i_q + BiUk_4 is the prediction of local states based on local subsystem model, and
L2y [ Zik—gs1 — Ci(AX{_ ;4 BUr_g)] is the correction term based on local output prediction
error. L7, is the gain matrix for the correction term. Based on the proposed subsystem

observer in equation (3.5), the entire system observer for Xj_441 can be described as
lec]fdJrl = AXlg—d + BUy—q + Li1[Zk—d+1 - C(AX;S_d + BUk:—d)]

where L, = diag(LZ, -+, L%;;) is observer gain matrix with block diagonal structure.
X h_q41 1s not available to subsystem 4 at time k. Thus, when designing the observer for
Xik_quo in subsystem ¢, the state prediction term can only be calculated from X o_q- Also,

only prediction errors for local outputs at time k£ —d+1 and k —d+ 2 are available to update

the predictions due to communication delays. For subsystem i, the observer for X;; 449 is
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designed as

Xl ays = Ai(AX{_; + BUy_y) (3.6)
+ Ly [Zik-a42 — Ci(A*X[_y + ABU_q))]
+ Ljio| Zik—dr1 — Ci(AX,i_d + BUj—4))]

+ Lgl 1 Uik—d+1

where ka_d+2 is the estimate of states of subsystem 7 at time k —d+2. A;(AX¢_,+ BUj_q)
is the two step ahead prediction of local states. L% [Zix—aro — Ci(A2X¢_, — ABU_y))]
and LZ,[Zik—qs1 — Ci(AX¢_;, — BU_q))] are the correction terms based on local output
prediction errors at time k — d + 2 and k — d + 1, respectively. Further, L} Uix_q11 is
designed to compensate for the unavailable control actions at time k — d 4+ 1 from the other
subsystems. L7, L7, and L}, are the corresponding gain matrices need to be designed.

Then, the entire system observer for X;_4.o can be described as

X 4o = AX{_y+ ABUx_q (3.7)
+ Lgl[Zk—d—i-Q - CAQX}?_d — CABUk_d)]
+ L[ Zh—a1 — CAXE 4, — CBU,_g))

+ L1f1 Uk—d+1

where L3, = diag(Liyy, -+, Liy), Liy = diag(Liy,, - -+, L7y,) and LY, = diag(Ljy,y, -+, L)
are the observer gain matrices with block diagonal structure.

Further, based on the same idea, the entire system observer for X;_4.; can be expressed
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as

XP g = AX{_y+ AT 'BU, (3.8)
+ Lzzl [Zk—d-i-i - CAZX}?_d — CAi_lBUk_d)] + .-
+ L[ Zh—ap1 — CAXE , — CBU,_g))

+ L@_1)1Uk—d+i—l + -+ qu(i_1)Uk—d+1

where gain matrices L7, - -+, L5, and L’(Ll.fl)l, cee qu(iq) are restricted to block diagonal struc-

ture.

Remark 3. Note that one subsystem does not have access to the recent control actions of
the rest of the subsystems due to communication delays. At time k, in the proposed observer
design, missing information of control actions of the other subsystems will lead to additional
errors in both state predictions and output predictions in the subsystem i (i = 1,...,n).
These missing information will influence the state estimation accuracy of Xiyp_qi1,- -, Xik-
Separation principle works on the fact that control actions will not influence state estimation
error. But this condition is not hold in DNCSs with communication delays. Thus, distributed
controllers and distributed observers should be designed simultaneously to take into account

the influence of control actions on state estimation error.

3.3.3 Lower and upper LQG tradeoff curves

The best achievable LQG control performance of a DNCS is time-varying due to the fact
that communication delays are typically time-varying and non-Gaussian. Online update
of the best achievable LQG control performance is challenging and time consuming under
distributed networked control. Thus, the time-varying best achievable LQG control perfor-
mance is hard to be used as a practical solution for control performance assessment.

With the above consideration, the lower and upper LQG tradeoff curves are proposed

to characterize the time-varying best achievable LQG control performance of a DNCS. The
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Figure 3.2: The lower and upper LQG tradeoff curves.

lower LQG tradeoff curve is obtained by assuming that communication delays between all
subsystems are equal to d,.;,, and the upper LQG tradeoff curve is obtained by assuming
that communication delays between all subsystems are equal to d,.... For example, the
entire system is assumed to be divided into 2 subsystems with d,,;, = 0 and d,,.. = 1.

It is clear that the lower LQG tradeoff curve is the best case scenario where communi-
cation delays between the 2 subsystems are assumed to be equal to 0 at each time instant.
Then, the controller and the observer for subsystem ¢ (i = 1,2) are given as follows based

on the proposed structure:

X¢=AX{_, + BUp_y + L°[Zy — C(AX{_; + BU,_1)]

where F} is the sub matrices in F° associates with subsystem i. According to the above

equation, calculation of U needs 7, and Uy_;. At time k, Z, is not always available to

43



subsystem ¢ in the real system due to the random communication delays. Thus, the achieved
distributed LQG control in this case is actually not implementable, but this best case scenario
measures the lower bound of the best achievable LQG control performance.

Similarly, the upper LQG tradeoff curve is the worst case scenario where communication
delays between the 2 subsystems are assumed to be equal to 1 at each time instant. Then,

the controller and the observer for subsystem i (i = 1,2) are given as follows:

X¢ = AX{ ,+ BUj_y + L°[Z—y — C(AX]_, + BU_5)]

XP = A X¢ 4 By + Loy [ Zi — Ci(AXE_ | + BUy 1))

where F}' is the sub matrices in F'! associates with subsystem i. According to the above
equation, calculation of U, needs Z;,, Zi_1, Up_1 and Uj_s. At time k, these information is
always available to subsystem 7 in the real system. The achieved distributed LQG control
in this case is implementable, and this worst case scenario measures the upper bound of the
best achievable LQG control performance.

As shown in Figure 3.2, the best achievable LQG control performance of a DNCS with
random communication delays should lie between the proposed lower and upper LQG trade-
off curves. The difference between actual performance and lower bound of the best available
performance provides at most how much can we further improve the control performance.
While, the difference between actual performance and upper bound of the best available
performance shows at least how much is the potential for control performance improvement.
Although the use of bounds may introduce conservativeness into the results, the proposed
lower and upper LQG tradeoff curves provide a fundamental reference for control perfor-

mance assessment.
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3.4 Limits of distributed LQG control performance

In this section, solution to the following LQG control problem is proposed by considering

communication delays:

min  E[Z] Z}] + AE[U} Uy (3.9)
s.t. Xk+1 = AXk + BUk + Mak

Zk:CXk—f-Nak

where A is the weighting factor of LQG objective function. Consider the following system

with a new defined output Z,:

, C 0 N

0 VA 0

!

The LQG control problem shown in equation (3.9) is equivalent to minimizing E[(Z,)" Z,]
which is the Hy norm of system (3.10). The optimal distributed state feedback controllers
considering communication delays are solved first. Then the results are extended to solve
distributed state feedback controllers and distributed observers simultaneously without us-
ing separation principle. Here the solution of the optimal Hs control problem is explicitly
expressed in terms of the solutions of some matrix inequalities according to the well known
result in [66]. Due to the non-applicability of separation principle, distributed controllers
and distributed observers are designed simultaneously. Multiplication of the controller and
the observer optimization parameters lead to complex non-linear conditions in the formu-
lation. Further, block diagonal structures are imposed on the controller and the observer
optimization parameters to satisfy the constraints caused by communication delays. There-

fore, non-linear conditions is unable to reduce through non-linear transformation of variables,
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Figure 3.3: Schematic of the closed-loop system.

and the optimal Hj control problem is formulated as bilinear matrix inequalities (BMIs).
The solution for this BMI problem is proposed by iteratively solving a sequence of lin-
earized problems, which at each step parameters in distributed controllers and distributed
observers are guaranteed to provide a better control performance than the previous ones. An
algorithm is proposed to calculate the stabilizing initial values for controller and observer
parameters used in the iterative algorithm. Finally, a procedure is introduced to calculated

the lower and upper LQG tradeoff curves based on the solution of the LQG control problem.

3.4.1 Distributed state feedback control

Throughout this section it is assumed that the state information is available for feedback.
Moreover, the state information is not corrupted by the disturbance a;. Consider the closed-
loop system shown in Figure 3.3. G is the system model defined in equation (3.10), mea-

surement Y, = Xj, and C' is the integration of distributed state feedback controllers defined
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in equation (3.2) with its state space realization given by

X{y = AXf + B.Y, (3.11)

U, = C.X{ + D.Yj,

where X¢ = [ X |, XI ,,---, XTI JJ¥ is the state of C. The system matrices in C' are given
by
0 0 0 0 I
I 0 0 0 0
A= B. = Ce=|F' F? Fd} D, = lpo} (3.12)
0 0 I 0 0

This feedback structure produces a closed-loop system from ay to Z,;:

Xps1 = Aa Xy + Baay (3.13)

Z,; = C’clyk + Dclak

where X = [X!, X', and the closed-loop system matrices

A+ BD,. BC, M C 0 N
Acl = Bd = Ccl = Dcl = (314)

B. A, 0 VAD, V)C. 0

The symbol H,. denotes the transfer function from the disturbance a; to the output Z;.
The following lemma is a well known result that completely characterizes the Hy norm of a

system [66].

Lemma 1. The inequality ||Hy.||3< p holds if, and only if, there exists a matriz A and
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symmetric matrices P and W such that

trace(W + Dy DY) < u (3.15)

w CyuA
s.t. >0
ACL A+AT—P

P AclA Bcl
AAT A+AT—P 0| >0

BT 0 I

cl
18 feasible.

Nonlinear conditions appear after replacing equation (3.14) and (3.12) into the inequal-
ities of equation (3.15). Owing to the block diagonal structure constraints in the controller
gain matrices caused by communication delays, these nonlinear conditions cannot be re-
duced through nonlinear transformation. To solve the BMI problem shown in (3.15), a

path-following method is introduced [67].
Theorem 1. The path-following method is proceeded as follows:

1. Seti =0, compute a set of stabilizing initial values of FOO ... F¥) pased on Theorem

2.

2. With FO = FO0 ... Fd = Fd0)  compute the Hy norm of the closed-loop system and

corresponding matrices A', P' and W' based on equation (5.15).

3. Define FO = FO0 4 A(FO®) ... Fd = pd@) 4 A(FID) A = A" + A(AY),P = P' +
A(PYY and W = W'+ A(W?), where A(+) denotes the perturbation of (-). The matriz

inequalities in equation (3.15) are linearized by ignoring all the second order terms on
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A(-). The constraints

0.02[1(-)[]2 if 1)l 0

0.2 if NIC)l=0

[AG) 2=

are added so that the perturbations are small and the linear approximation should be

valid.

4. Solve the linearized BMI problem around F°O ... F) A" P and W* using semidef-

wnate program to get the perturbations.
5. Let FOU+D) = pO) L A(FO0) ... pdi+l) — pd@) L A(FI0)) § =i+ 1 and go to step 2.

6. The iteration stops whenever the Hy norm of the closed-loop system cannot be improved

any further.

Remark 4. The LQG tradeoff curve consists of various optimal solutions of E[ULUy] and
E[ZLZ,] with respect to different values of \. For the LQG objective function with a given
value of \, a set of optimal controller parameters obtained based on Lemma 1 and Theorem
1 can be directly used as the initial values of controller parameters for the LQG objective
function with a neighbouring A. Thus, the whole LQG tradeoff curve can be achieved by

solving each LQG control problem step by step.

A stabilizing controller in the form of equation (3.3) should be designed first as the initial
values used in Theorem 1. Due to the presence of structure constraints, F0© ... [d=1(0)
are selected to be 0 to simplify the problem. Thus, controller U, = F¥% X, _, is designed to
stabilize the system, where F4% can be designed with full degree of freedom. The following
Theorem 2 is proposed to design F¥®) and Lemma 2 [68] is first presented which is then

used in the proof.
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Lemma 2. The following statement is true:
(K+ )"HEKA+J)<(1+e)KTHK + (1+e HJ'HJ (3.16)
where symmetric matrix H > 0, K and J are matrices with proper dimension and € is a

positive constant.

Theorem 2. Based on Lyapunov method, the system shown in equation (3.10) with con-
troller Uy, = FXO X, _, is asymptotically stable if there exists a real symmetric matriz H > 0

such that

1+e,

(1+en)ATHA + ( JATHA; — H <0 (3.17)

Em

where Ag = BFY®) and e,, = || Aql|2||All*. The conclusion is in Riccati equation form, and

the solvers for which are well designed.

Proof: Consider the following Lyapunov function

d
V(Xp) = XPHX + > X SXy (3.18)

=1
where symmetric matrix S > 0. Taking forward difference from equation (3.18) gives
AV (Xy) = V(Xi1) = V(Xy) (3.19)
= [AXy + AgXp_g) T HAX, 4+ AgXi—q) — XTHX,

d d
+ ZXg_mSXk—m - Z X7 5X

=1 =1
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Utilizing Lemma 2, inequality on equation (3.19), yields

AV(X) < T+ o) XFATHAX, + (1 + e HX] JATHA X, g — X HXy, (3.20)
+ XISXy, — X S Xy a

=X/ (1+e)ATHA+ S — H| X, + X[ [0+ e HATHA, — S] X} g

Now, select S = (1 +e 1)ATHA,, then

AV(Xy) < XJ(1+e)ATHA+ (1 + e HATHA; — HI X}, = (X, €) (3.21)

Thus, the system is asymptotically stable if there exists a real symmetric matrix H > 0 such

that

(1+e)ATHA+ (1 +e HATHA; — H <0

where € can be selected as any positive constant. A suggested value of € can be selected
based on the following derivation:

Since matrices AT HA and AL H A; are symmetric and positive semidefinite then, we have

O(Xp, ) < XL[(1+ ) Anae(ATHA) + (1 + e D \nae (AT HAG) — Apaa(H)| X (3.22)

= (&) Amaa(H) || X113

where g(g) = (14¢)02,,,(A)+(1+e )02, (Ad) —1, Aoz (+) denotes the maximum eigenvalue

max

value of (+), and 0,4, () denotes the maximum singular value of (-). Maximum of the function

g(g) can be found by taking derivative with respect to e, which yields

=0 (3.23)
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The optimum value for ¢ is

Em = Omaz(Aa) g (A) (3.24)
Therefore, we can conclude
AV (Xk) < o( X, &m) (3.25)
:xful+a@ATHA+«1Z;mngAd—fﬂXk
Now, if the condition (3.17) is satisfied then system (3.10) is asymptotically stable. [

3.4.2 Distributed state feedback control combined with distributed

state estimation

Throughout this section it is assumed that only information of control actions and outputs is
available for feedback. Consider the closed-loop system shown in Figure 3.4. G is the system
model defined in equation (3.10), measurement Y}, = [Z]', UF]T, and C is the integration of
distributed state feedback controllers defined in equation (3.2). £ and O constitute the dis-
tributed observers designed in the previous section. Owing to the presence of communication
delays, C', E and O are designed simultaneously without using separation principle.

Structure of O can be expressed as

XP, ) = AXP + BoYs (3.26)

Y? = C,X¢ + D,Y;
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Figure 3.4: Schematic of the closed-loop system.

where the system matrices in O are given by

0 0 0 0 I
I 0 -+ 00 0

Ay =C, = B,=D, = (3.27)
0 0 I 0 0

is the output of O which provides all the information needed in the distributed observers.

Based on equation (3.8), the structure of observer E can be expressed as

Xfo = AXf 4 BYY (3.28)

Vi = CeXi + DYy

where X¢ | = X, and V¢ = [X¢_ 0, X2 400, -+, XE]T are the state and the output of E,
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respectively. The system matrices in F are given by

Ac=A—-LCA (3.29)
B. =0 0 L 0 0 B-—LCB
I
Ce = A2 — [%,CA — L[3,CA
0
0 L}, 0 0 QY 0 0
D, = e 0 Lz, 0 I LYy 0 Q* 0 0
L Ly 0 L'(Zd71)2 U(Ldfm T Li(d) Llf(dq) 0 Qd 0 0 i
where
Further, the standard state-space expression of E is
Xi1 = AXp + B.YY! (3.31)

Y¢ = CLAX] + (CLB. + D))Y{

Based on equation (3.3), controller C' can be expressed as Uy = D.Y with D, =
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[F? pd-t ... FY. Combining C, E and O, the whole feedback part is defined as F

with Y, as input and U}, as output. Structure of F' can be express as

X[ = A X] + By, (3.32)

Uy = C; X[ + DYy (3.33)
where X ,{ = [X¢7, X¢T)7 is the state of F. The system matrices in F' are given by

40 | B - o
Ay = By = D; = D,(D. + C'B.)D, (3.34)

BECO Ae BeDo

Cr=D.|(D.+C'B.)C, C'A,

Substituting equations (3.9), (3.34) and Y, = [Z]', Ul']" into equation (3.33), yields

(I-D ! VU, = Cs X + D ¢ X, +D N a (3.35)
! k I f k f k )
I 0 0

where D;[0 I]" = 0 can be proved based on simple matrix multiplication. Thus we have

s C N
Uk:Cka —f—Df Xk—I—Df ag
0 0

Then the feedback structure shown in Figure 3.3 produces a closed-loop system from ay

to Zy:

X1 = AuXk + Baay, (3.36)

Z), = CuXy, + Daay,
— T
where X = [X], X ,{ |7 is the closed-loop system state. The system matrices in equation
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(3.36) are given by

A+ BDy BC,
Ay = (3.37)
C 0
I 0
N
BD; + M
0 0 N N
By = D, = Dy +
0 N VA 0 0
By Dy
I 0
C 0 C 0
Ccl = + Df Cf

0 VA 0 VA

Remark 5. The solution to distributed LQG problem considering state feedback control and
state estimation simultaneously can be obtained by minimizing the Hy norm of the system
shown in equation (3.36) following Lemma 1 and Theorem 1. First, a set of stabilizing initial
values of controller gain matrices are calculated based on Theorem 2 where only Xy_q4 ts used
for the initial distributed controllers design. Since information of the entire system at and
before time k — d is available to each subsystem, then initial distributed observer is designed
in each subsystem to estimate Xy_q based on equation (8.4) with gain matriz L¢ selected as
the steady state gain of the Kalman filter designed for the entire system shown in equation
(8.1). Further, the lower and upper LQG tradeoff curves can be obtained following Remark

4 by selecting d;j(k) = dpin and d;j(k) = dpas for all k and 1 <1,j < n,i# j, respectively.

According to the achieved lower and upper LQG tradeoff curves, the system with perfor-

mance lies between the lower and upper LQG tradeoff curves is guaranteed to be in a perfect
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condition; the system with performance above but close to the upper LQG tradeoff curve
has an acceptable performance, but there still is a potential for performance improvement;
the system with performance far above the upper LQG tradeoff curve indicates poor perfor-
mance, then tuning of distributed controllers and distributed observers or improvement on

communication network topology is necessary.

3.5 Simulations

Considering the following 2 x 2 system:

Xikt1 0.914 0.08 Xik 2.091 —0.0744 Utk
_ 4 (3.38)
Xokt1 —0.126 0.917| | X —0.211 —0.0156| [Usz
0.914 0.08 a1
+
—0.126 1.632| |aak
Zlk 1 0 Xlk 1 0 aig
= +
sz 0 1 XQk 0 1 QA9

where the system is divided into 2 univariate subsystems, (X1x, Z1x, Urx) and (Xox, Zog, Usg),
respectively. We assume that the system shown in equation (3.38) is under distributed
networked control and suffers from random communication delays, where d,,;, = 1 and

ez = 2, respectively. In the following, different solutions of the LQG problem

J(\) = E[Zl' Z,) + \E[ULU,] (3.39)

is discussed to illustrate the proposed work.

First, the applicability of separation principle in distributed networked control is tested.
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Considering the case with d = 2, optimal controller is in the form of

Up=F'X, + F' X1 + F?X;,_, (3.40)

where X, Xj_1 and Xj_5 need to be estimated with the proposed observer. For the LQG
problem in equation (3.39) with A\ = 2 and A = 27*, distributed LQG control are designed
without using separation principle based on the proposed algorithm. When A = 2, the

optimal controller parameters are

. |-01600 0 . |-0.2001 0 ,  |—00134 01307
FO = F' = F? = (3.41)
0 0.0735 0 0.0090 0.0080 —0.0264

while, the optimal controller parameters for A = 27# are

—0.2259 0 —0.2504 0 —0.0248 0.1875
0 1.1123 0 0.5087 —0.0171 0.2103

To test the influence of communication delays in control actions on separation principle, the
optimal observer parameters design for A = 2 is applied to both the cases of A = 2 and

A = 274 where the observer parameters are given as

0.5694 0.0007 0.1222 0 0.1747 0
L= Lfl = Lifz = (3.43)
0.0007 0.7693 0 —0.0611 0 —0.0687
Z 1.9154 0 . 0.1715 0
L21 = L11 =
0 0.5170 0 —0.7995

Control actions and state estimation errors for these two cases are shown in Figure 3.5, where
the blue curve represent the case of controller designed for A\ = 2 combined with observer

designed for A = 2 and the red curve represent the case of controller designed for A = 274
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combined with observer designed for A = 2. X, X;._1 and X_5 are estimated in subsystem
i (i =1,2) based on the local observer design in equations (3.6). Theoretically, when there
is no communication delay between different subsystems, the optimal estimation of X;;._;
and Xj_o can be achieved in subsystem ¢ with Y;_1, Uy_o and Yy o, Ui_3 respectively. Thus,
when d = 2, separation principle holds for the estimation of X;,_; and X;_o due to Up_»
and Uy_3 are available to subsystem ¢ at time k. As shown in Figure 3.5, ex,, , and ex,, .,
the state estimation errors of X;._; and X;;_o, respectively, are the same in blue and red
curves. However, in subsystem ¢, the optimal estimation of X} is related to Uy_; which is not
available due to d = 2. Then, missing information of control actions will lead to additional
state estimation error. Due to the smaller weighting coefficient in LQG cost function, control
actions with larger control effort are applied to the system when A\ = 27* comparing with the
case A = 2. With the same observer, larger control effort in red curve leads to larger state
estimation error of Xs;, which proves that separation principle does not hold when there is
communication delays in control actions.

Then, to test performance of the proposed LQG design, the optimal controller parameters
design for A\ = 27* is combined with the optimal observer parameters design for both the

cases of A = 27% and A = 2. The optimal observer parameters for A = 27% are given as

0.5694 0.0007 0.0615 0 0.0878 0
L= Lfl = L‘fg = (3.44)
0.0007 0.7693 0 —0.0573 0 —0.0628
1.9925 0 —0.0352 0
L§1 = L1f1 =
0 1.3360 0 —0.3918

Outputs and designed control actions for these two cases are shown in Figure 3.6, where
the blue curve represent the case of controller designed for A = 27% combined with observer
designed for A = 27 and the red curve represent the case of controller designed for A = 2%
combined with observer designed for A\ = 2. For the blue curve, F[Z] Z;] = 13.3715 and

E[ULU] = 17.0140, then the LQG cost function J(A = 27) .= 14.4348. For the red curve,
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Figure 3.5: Control actions and state estimation errors for two cases: 1) controller designed
for A = 2 combined with observer designed for A = 2; 2) controller designed for A = 274
combined with observer designed for A = 2.

E[ZF'Z,]) = 14.1906 and E[U]U,] = 7.7791, then the LQG cost function J(A = 274)]|,.q=
14.6768. There are larger control effort and better LQG performance in the blue curve.
These results show that control actions are designed more appropriately when designing
controllers and observers simultaneously in DNCSs.

Further, the tradeoff curve of the best achievable LQG control performance is formed
based on the solutions of the LQG problem in equation (4.39) by varying A = 2! from
1 = —7.5 to i = 2 with a step size of 0.5 in 7. The proposed lower and upper LQG tradeoff
curves are shown as the curve d = 1 and d = 2 in Figure 3.6, respectively. The region between
curve d = 1 and d = 2 can be treated as an alternative for the centralized LQG benchmark.
The system with performance lying between curve d = 1 and curve d = 2 may be considered
as a good performance; the system with performance above but close to the curve d = 2
has an acceptable performance, but there still is a potential for performance improvement;

the system with performance far above the curve d = 2 indicates poor performance, then
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Figure 3.6: LQG control performance for two cases: 1) controller designed for A = 274
combined with observer designed for A = 27%; 2) controller designed for A = 27* combined
with observer designed for A = 2.

controller tuning or improvement on communication network topology is helpful. As shown
in Figure 3.7, there is a significant gap between curve centralized and curve d = 1,d = 2
which indicates that the best control performance in the centralized case is non-achievable
for a DNCS with communication delays. Thus, if centralized LQG tradeoff curve is used as
the criterion for performance assessment, although controller for a DNCS is well designed, it
is highly likely to show a poor control performance and may lead engineers to search for the
non-existent distributed controllers. The proposed lower and upper LQG tradeoff curves can
give a more practical estimate on the best achievable control performance when the system
has random communication delays. It is therefore more suitable for control performance
assessment of DNCSs.

For the case of state feedback combined with state estimation, optimal control efforts
for the LQG cost functions with different weighting factors are shown in Figure 3.8. When
A > 2745 control efforts for the case of d = 1 are small, and loss of information of control
actions caused by communication delays does not have a big influence on state estimation
error. Thus, with a goal towards good control performance, control efforts for the case
of d = 1 are larger than the control efforts for the case of centralized control due to the
structure constraints in the controller. When \ < 27*%, control efforts for the case of d = 1

are large, and loss of information of control actions caused by communication delays has a
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Figure 3.7: Comparison of best achievable LQG control performance under state feedback
control combine with state estimation in case of centralized control and distributed networked
control.
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Figure 3.8: Optimal control efforts for the LQG cost function with different weights.
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big influence on state estimation error which will decrease the control performance. Thus,
there is a tradeoff between state feedback control performance and state estimation error
which makes control efforts for the case of d = 1 smaller than the control efforts for the
case of centralized control. It also proves that separation principle is not applicable on the

system with communication delays in control actions.

3.6 Conclusions

This chapter investigates the lower and upper LQG tradeoff curves designed for DNCSs
with random communication delays. By designing the optimal distributed controllers and
distributed observers simultaneously without using separation principle, the best achievable
control performance of a DNCS is presented in the form of the lower and upper LQG tradeoff
curves. The obtained tradeoff curves can be used to evaluate the potential performance
improvement of an existing DNCS that indicates the potential needs on tuning of distributed
controllers and distributed observers or improvement on communication network topology.
Further, separation principle is found non-applicable on DNCSs with communication delays,

and this conclusion is tested through a numerical example.
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Chapter 4

Practical Solutions to LTV Minimum
Variance Benchmark for NCSs with

Random Communication Delays?

4.1 Introduction

The research of NCS has been one of the most attractive areas in both industry and academia
due to continuously expanding physical setups and functionality in modern industrial systems
2, 3]. A typical NCS consists of the spatially distributed controller and system (physical
plants, actuators, sensors, etc.). In a NCS, control loops are closed through information
exchange between system components over a shared network. The elimination of unnecessary
wiring in NCSs reduces overall cost for the installation of control systems and provides ease
in maintenance. In addition, by connecting cyber to physical space through communication
network, NCSs are able to fuse global information and operate systems over long distance |6,

7]. However, in a NCS, network-induced communication delays are inevitable and normally

3A shorter version of this chapter has been published in “Guoyang Yan, Jinfeng Liu, and Biao Huang.
MYV benchmark for networked control systems with random communication delays. IFAC-PapersOnLine,
52(1): 970 C 975, 2019. 12th IFAC Symposium on Dynamics and Control of Process Systems, including
Biosystems DYCOPS 2019”.
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random. Random communication delays will degrade the system control performance and
lead to a non-stationary behavior of the closed-loop system [10, 11].

On the other hand, control performance assessment is a widely used process monitoring
technique aiming at optimal control performance and cost effectiveness. Among the various
control performance assessment approaches, minimum variance benchmark is the most widely
used one [69]. One of the reasons for the successes in the research and the application of
the univariate minimum variance benchmark is that this benchmark can be calculated from
routine operating data and only the a priori knowledge of time delay between a pair of
input and output is required. However, the convenience is lost for multivariate case where
time delay between a set of inputs and outputs is termed as the interactor matrix. Due to
the presence of random communication delays within the closed-loop system, the NCSs are
naturally multivariate and non-stationary. The interactor matrices estimated from closed-
loop data are generally not accurate enough in practice, especially when there are non-
stationary characteristics in closed-loop data. Hence, the elimination of using the interactor
matrix in obtaining the control performance assessment benchmark for NCSs would simplify
the calculation and reduce the uncertainty associated with the estimation of multivariate
performance index from routine operating data.

Motivated by the above discussions, this chapter considers the LTV minimum variance
benchmark designed for NCSs with random communication delays. Sensor-to-controller
communication delay and controller-to-actuator communication delay are considered simul-
taneously. These two communication delays are both modeled as random variables with a
given bounded region. Complete knowledge of the interactor matrix is not needed in this
work. Only OIM and RIM are assumed to be known as the a priori knowledge. These two
variables can be more easily estimated from closed-loop data. Thus, instead of estimating
the true LTV minimum variance benchmark, the best we can do is deriving a bound on the
benchmark control in this case.

The main contributions of this chapter are listed as follows. Firstly, explicit solutions
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Figure 4.1: Schematic of NCSs with random communication delays.

to the true LTV minimum variance benchmark and corresponding LTV minimum variance
control law are derived for NCSs with use of the simple interactor matix (all the control loops
in the multivariate system have same time delay). Secondly, the lower and upper bounds of
the LTV minimum variance benchmark region is proposed as a relaxation of the true LTV
minimum variance benchmark for NCSs with general interactor matix (time delay can be
different among control loops in the multivariate system). Explicit solutions to the lower
and upper bounds of LTV minimum variance control performance are derived. It is shown
that the lower and upper bounds can be calculated from the first few terms in the impulse
response form of the closed-loop model. The upper bound of the proposed benchmark is
proven to be achievable by a practical controller. Further, an explicit and direct method to
estimate closed-loop output under LTV minimum variance control from routine operating

data is proposed.
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4.2 Preliminaries

4.2.1 System description

This chapter mainly concerns with the multivariate NCSs shown in Figure 4.1:

Yy, = Tq % ®U, + Nay, (4.1)

U, = —C(k)q_d“(k)yk

where k indicates current time instant; 7" and N are proper rational transfer function matrices
in the backshift operator ¢~'; Y3, U, and a; are output, input and white-noise vectors of
appropriate dimensions; C'(k) is the LTV output feedback control law to be designed; d., (k)
and dg.(k) are the random controller-to-actuator and sensor-to-controller communication
delays, respectively. Further, d.,(k) and d,.(k) are assumed to be bounded and independent

with each other:

0 S dca(k) S Cica and 0 S dsc<k) S Jsc

where d., and d,. are the upper bounds of d., (k) and d,.(k), respectively.

4.2.2 Illustrative example

To show the drawbacks of applying the conventional minimum variance benchmark on NCSs
with random communication delays, an illustrative example adopt from [1] is presented in
this section. Control performance assessment is conducted on a two interacting-tank process
shown in Figure 4.2. The levels (hy; ho) of the two tanks are the controlled variables, and

the corresponding inlet flow rates (uq;us) are the manipulated variables.
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Figure 4.2: Schematic diagram of the pilot-scale process.

The open-loop model is given as

0.1963¢~1—0.1737¢—2—-0.0112¢g—3  0.0406¢—7—0.0113¢—8+0.0009¢°

1—1.7208¢—140.7272¢—2 1—0.6495¢—140.0482¢—2
T = g+ q [ q "+ [ q (42)
0.0147¢—1—0.0127¢—2+0.02¢—3 0.0406g—2—0.0299¢—3—0.0047¢—*
1-1.3537¢—14+0.3707¢—2 1—1.7849¢—140.7902¢—2

The hypothetical disturbance dynamics are taken as

1
T_ -1 ()
N=|" (4.3)
O 1_1_1
q

An internal model control (IMC) controller is implemented on this process. The optimal
IMC controller is the inverse of the delay-free model T'= DT, where D can be factored out

from T as

—0.9972¢ —0.0748¢
0.0748¢> —0.9972¢>
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To make the IMC controller implementable, a filter

0.1
— 0
— —1
fe 1-0.9q N (4.5)
0 1—0..9q—1

is cascaded to the optimal IMC controller. The final IMC controller is Q* = T f where Q*
is the controller in the IMC framework [70].

Control performance of this IMC controller under both centralized control and networked
control are tested with the conventional minimum variance benchmark. Sensor-to-controller
communication delay d,.(k) and controller-to-actuator communication delay d.,(k) are con-
sidered simultaneously in the networked control. The series of d,.(k) and d, (k) are generated
by values randomly taken from the set {0, - - -, d.} with equal probability. The step-type set-
point tracking performance is of interest in this example. The setpoint levels of the two
tanks are his = 3 and hys = 4, and a random binary dither signal with amplitude of 0.25 is
inserted in the two setpoints. When d. = 4, the generated communication delay sequences
are shown in Figure 4.3, and the closed-loop test of the designed IMC controller under cen-
tralized control and networked control is shown in Figure 4.4 where blue curve and red curve
are centralized control result and networked control result, respectively. According to the
closed-loop test, we can find that the designed IMC controller can achieve setpoint tracking
when there are random communication delays, although its performance is degraded.

Then, control performance assessment results of the designed IMC controller with d. =
{1,---,5} is summarized in Table 4.1. It is easy to find that larger communication delays
will lead to poorer control performance. However, the degradation of control performance
is not only because of that we do not consider communication delays in the design of IMC
controller, but also because of that the presence of communication delays further limits
the best achievable control performance. The conventional minimum variance benchmark
mainly considers the performance limitations caused by the process itself. When applying it

to NCSs with random communication delays, the best achievable control performance can

69






be overly optimistic because the performance limitations caused by communication delays
are not considered. Thus, testing performance of networked control using the conventional
minimum variance control as a benchmark is not appropriate, and may lead engineers to

search for a controller with a better performance that may not exist.

Table 4.1: Control performance assessment results of the pilot-scale process

centralized control d.=1 d.,=2 d.=3 d.=4 d.=5

Ne 0.3008 0.2599 0.2250 0.1897 0.1587 0.0953

Further, there are two important assumptions for using conventional minimum variance
control as the benchmark. The first is that the closed-loop data is stationary. Under station-
ary condition, the process output variance can be directly calculated with routine operating
data, and filtering the process output with the interactor matrix will not change its variance.
The second is that the interactor matrix is known as the a priori knowledge.

In a NCS, the closed-loop system is non-stationary due to the presence of random com-
munication delays, and obtaining the interactor matrix is even harder under non-stationary
condition. On the other hand, d, can be interpreted as the time used for the control actions
having influence on all the outputs; while d, — v, can be interpreted as the time used for the
control actions having influence on at least one of the outputs. Thus, system time delay of
the multivariate process T' can be treated as lower bounded by ds; — vs and upper bounded
by ds, respectively. Therefore, OIM and RIM are useful in control performance assessment.
Further, comparing with the a priori knowledge of the interactor matrix, OIM and RIM can
be obtained more easily. Based on these considerations, in the following sections, design of
a practical LTV control performance benchmark with OIM and RIM is proposed for NCSs

with random communication delays.
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4.3 Control performance assessment of NCSs with ran-
dom communication delay

In this section, first, preliminary knowledge on the calculation of LTV transfer function matri-
ces is introduced. Then, we derive a LTV minimum variance control law Uy, = —C'(k)q~%*)Y},
for NCSs with the simple interactor matrix, such that the control objective function J, =
E[Y,'Y,] is minimized at each time instant. Further, based on this result, solutions of the
upper and lower bounds of the LTV minimum variance benchmark for NCSs with the general
interactor matrix are proposed with the requirement on the a priori knowledge of OIM and
RIM. It is shown that the obtained upper and lower bounds of the LTV minimum variance
benchmark consist of the first few terms in the impulse response form of the closed-loop

transfer function matrix and can be estimated from routine operating data.

4.3.1 Calculation of LTV transfer function matrices

Before proceeding, we need to introduce some basic properties of the calculation of LTV
transfer function matrices. These properties will be used throughout this chapter. The
most fundamental property is that for any LTV transfer function matrix A(k) we have the

following identity [43]:
AGk) = Alk — d)g (4.6)

Then, based on this property, the multiplication of LTV transfer function matrices is

introduced below. Let V(k), W (k) and X (k) be three LTV polynomial matrices in ¢~* with
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order n, m and [, respectively:

V(k) = volk) + v (k)g ' 4 -+ v, (k)g™" (4.7)
W (k) = wo(k) +wi(k)g " + -+ wn(k)g™™

X(k) = zo(k) + a1 (k)g 4 -+ zy(k)g™

According to equation (4.6), the multiplication of two LTV polynomial matrices V' (k) and
W (k) can be conducted as:

VW (k) =3 > uik)a'w;(k)g (4.8)

7=0

S
Il
o

s 0

vi(k)w;(k — i)g~ )
0

I

ﬁ
Il
o

J

and some properties in the multiplication of LTV transfer function matrices can be extended

from equation (4.8) as follows:
o Commutativity law: V (k)W (k) # W (k)V (k)
o Associativity law: [V (k)W (k)] X (k) = V (k)[W (k)X (k)]
o Distributive law: [V (k) + W (k)X (k) = V (k)X (k) + W (k)X (k),

Further, the inverse of an LTV transfer function matrix is elaborated as follows. Define
W L(k) as the left inverse of W (k) and W R(k) as the right inverse of W (k). W L(k) and

W R(k) are both LTV transfer function matrices of ¢~ with

WL(k) = wly(k) + wly (K)g~' + -+ wl, (k)g™™ + - -

WR(k) = wro(k) +wri(k)g '+ +wrp(k)g ™ + - --
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According to the definition of inversion, we have

WL(E)W (k) = I (4.9)

W(KYWR(k) =1 (4.10)

W L(k) and W R(k) can be calculated by equating coefficients of both sides of equations (4.9)
and (4.10), respectively. Then, we can obtain W L(k) = W R(k), that is, the left inverse of
an LTV transfer function matrix is equal to its right inverse. Proofs of the results shown in

this section are provided in Appendix A.1.

4.3.2 LTV minimum variance benchmark for NCSs with the sim-

ple interactor matrix

The interactor matrix D can be one of the three forms discussed in Section 1.2.2. Although
processes with the simple interactor matrices are the simplest ones and are not common in
practice, the results presented in this section are the foundation of solutions to processes
with the general interactor matrices that follow later.

Consider NCSs with random communication delays shown in Figure 4.1. The process
model is assumed to have the simple interactor matrix D = ¢%I. Thus, T = ¢ %T, where
the time used for each of the control actions having influence on each of the outputs is d,.
Output sensor measurements are sent from the sensors to the controller subject to random
communication delay d.(k), while designed control actions are sent from the controller to the
actuators subject to random communication delay d., (k). Then, in the closed-loop system,

the total time used for the designed control actions having influence on the outputs is

dco(k) = ds + dca(k - ds) (411)

and the total time used for the output sensor measurements having influence on the outputs
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through the feedback and forward channels is
dso(k) = ds + deo(k — dy) + dse(k — ds — deo(k — dy)) (4.12)

The following results present the design of LTV minimum variance control for NCSs with
the simple interactor matrix, and the corresponding performance assessment using the LTV
minimum variance control as the benchmark. For a NCS with random communication delays
shown in Figure 4.1, solutions of the LTV minimum variance benchmark are given by the

following steps:

1. The LTV minimum variance control law is given by
C(k) = T'R(k + dea(K") + d) F ' (k — doe(k)) (4.13)
where F(k) and R(k) are solved from a Diophantine identity [1]:
N = F(k) + R(k)q %® (4.14)

where F'(k) is the LTV polynomial matrix that consists of the first ds,(k) terms in the
impulse response form of N, and R(k)g~%°*) is the remaining LTV transfer function
matrix in N. In equation (4.14), coefficient matrices in F'(k) and R(k) are consistent

with those in N, and only the order of F'(k) varies with time.

2. The closed-loop output under the LTV minimum variance control is given by a finite-

order moving average process

Vilmo= F(k)ar = (Fo(k) + Fy(k)g ™ + - + Fu -1 (k)g ™)y (4.15)

where F;(k) (for i = 0,--+,ds(k) — 1) is the iy, coefficient matrix in F'(k). The LTV
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minimum variance benchmark ®,,,,(k) can be calculated as
Do (k) = E[Yi) % Yelmol = Z tr(FT (k)Fy(k)) (4.16)

3. The closed-loop output Yj|actua for the actual process can be modeled by an infinite-

order moving average process

Yk|actual = Gcl(k)ak (417)

= (Fo(k) + Fi(k)g ™" + - + Fu g1 (F)g %@+ 4 Lo(k)g~%® 4 .. gy

where G (k) is the LTV closed-loop transfer function matrix, and L(k) is a LTV trans-
fer function matrix with the iy, coefficient matrix given by L;(k) (for i = 0,---). The
first dyo(k) terms of G4(k)as, constitute the process output under the LTV minimum
variance control as shown in equation (4.15), while the appearance of term L(k)ay is
caused by the implemented non-optimal control law in the real process. The actual

output variance .0 (k) can be calculated as

(I)actual(k) = E[YkTYk] - HGcl(k)Hg (418>

4. Then, the time-varying performance index is given by

(I)mv(k)

nn(k) - (bactual (k)

(4.19)

Derivations for the results shown in this section are provided in Appendix A.2.
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4.3.3 Solutions to LTV minimum variance benchmark for NCSs

with the general interactor matrix

In the practical application, as discussed in the previous sections, the general interactor
matrix is often not available or not easy to interpret even if available due to its complex-
ity. These are the major difficulties for the application of multivariate control performance
assessment algorithms. Extending the proposed LTV minimum variance benchmark to the
NCSs with the general interactor matrix will face the same problem.

Further, the explicit solutions of minimum variance control for the stationary systems can
be obtained based on filtering the systems with the general interactor matrices [1]. While
this good property only holds in the stationary case, NCSs with random communication
delays are naturally multivariate and non-stationary. Explicit solution of control performance
assessment algorithm is desired, as it yields a considerably simple computation procedure in
practical application. Hence, in order to explore an explicit solution of the LTV minimum
variance benchmark for NCSs with the general interactor matrix, a bound on minimum
variance control benchmark is proposed as follows based on OIM and RIM.

Consider NCSs with random communication delays shown in Figure 4.1. The process

model is assumed to have the general interactor matrix

D = Dog® + Dyg™ ! + -+ 4 Dy g™ (4.20)

Thus, T = DT, and d; can be interpreted as the time used for the control actions having
influence on all the outputs, while d, — v, can be interpreted as the time used for the control
actions having influence on at least one of the outputs. The system time delay of process T
can be treated as lower bounded by ds — v4 and upper bounded by dg, respectively.

Thus, in the closed-loop system, the total time used for the designed control actions

having influence on the outputs d.,(k) can be treated as lower bounded by de,(k)|iower and
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upper bounded by deo(k)|upper, respectively, with

dco(k)|lower - ds — Vs + dco(k: - ds + vs) (421)

dco(k)|upper - ds + dco(k - ds)

while the total time used for the output sensor measurements having influence on the out-
puts through the feedback and forward channels d,,(k) can be treated as lower bounded by

dso(k)|iower and upper bounded by ds,(k)|upper, respectively, with

dso(k)’lowm‘ = ds — Us + dca(k - ds + Us) + dsc(k - ds + Vs — dca(k - ds + vs)) (422)

dso(k>|upper = ds + dca(k - ds) + dsc(k - ds - dca(k - ds))

Then, it is natural to extend the conclusion in equation (4.17) to NCSs with the general
interactor matrices. That is, the lower bound of the LTV minimum variance benchmark

consists of the first dg,(k)|jower terms in the impulse response form of G (k)

Yk‘|mv,lower: F(k”lowerak = (FO(k) +ooet Fdso(k)lzower—l(k)q_dso(k)‘low”H)ak (4'23>
where F (k)| iower 1s solved from a Diophantine identity:
Gcl(k) - F(k)|lower+R(k>|lowerq_d30(k)‘l0w” (424)

where F (k)|iower is the LTV polynomial matrix that consists of the first dg,(k)|jower terms
in the impulse response form of Gy(k), and R(k)q~%e®lover is the remaining LTV transfer
function matrix in G(k). While the upper bound of the LTV minimum variance benchmark

consists of the first ds,(k)|upper terms in the impulse response form of G (k)

Yk|mv,wper: F(k”upperak = (FO(k) +oeet Fdso(k) 1(k)q_dso(k)luwer+1)ak (4-25)

lupper—
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where F(k)|upper is solved from a Diophantine identity:

Ga(k) = F (k) upper +Rk) lupperg P errer (4.26)

If this obvious extension of the results proposed in Section 4.3.2 can be served as a mean-
ingful benchmark, this bound on minimum variance control benchmark should satisfy two
conditions: 1) it should contain the theoretical best achievable control performance; 2) it
should be achievable by a physically implementable control. In the following, the use of this
LTV minimum variance benchmark region is analytically justified.

First, we prove that the LTV minimum variance benchmark is lower bounded by Y% |y tower=
F (k)| iowerax. For the system shown in equation (4.1), the closed-loop output under the LTV

control law Uy = —C/(k)q~%<(Y} can be written as

Y, = _Dflqudm(mC(k)q—dsc(k)yk + Nay, (4.27)

According to equation (4.20), define D~! = g=%** D! with

D' = DL+ + Dl + DYq (1.28)

where D, 1 consists of terms with the power of ¢ less than or equal to 0. Thus, D[l is a

proper polynomial matrix. Substituting D~! = ¢~%+*D,"! into equation (4.27), we have

Vi = —q = D g C(k)g~ WY, + Nay, (4.29)

Further, N is divided to two parts based on the Diophantine equation:

N = F(k)lower+ R () liowerg ™~ hover (4.30)

where F'(k)|jower is the LTV polynomial matrix that consists of the first dg,(k)|iower terms
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in the impulse response form of N, and R(k)| towerq~4soMliover {5 the remaining LTV transfer

function matrix in N. From equations (4.6), (4.24) and (4.30), it follows that

F(k>|lowerak + E)(k)|lowerak—dso(k)lzower (4.31)
:F(k> |lowerak + R(k) |lowerak—dso(k)|lower

- DZ_ITC(k - dca(k)|lower)Gcl<k - dso(k>|lower)ak—dso(k)|loww

It is clear that F(k>|lower: F(E)|iowerar and F(k)|jowerar is related to the white noise from
time k — dso(k)|jower+1 to time k which is future noise to the second and third terms on the

right hand side of equation (4.31). Thus,
min E[Y,]Y;] > E[(F(E)iowerar) " (F (k) |iowerar)] (4.32)
The theoretical best achievable control performance is lower bounded by

Yk|mv,lower: F(k)|lowe7"ak = (F0<k) + Fl (k)q_l + -+ Fdso(k)\lowﬂfl(k)q_dso(k)hower—i_l)a'kz
(4.33)

and the lower bound of the LTV minimum variance benchmark ®“¢"(k) can be calculated

as
dSO(k‘)hower*l 5 5
(k)= Y tr(E(k)F(k) (4.34)
i=0
Second, we prove that for any LTV controller U, = —C(k)q~%<®Y; with its closed-

loop model given as equation (4.26), the closed-loop response Y|y upper= F (k) |upperar is
achievable by a physically realizable controller Uy, = —C*(k)g~%<®Y,. Thus, Yi|mov.upper=
F (k)|upperar can provide the measure of the upper bound of the LTV minimum variance

benchmark. For the system shown in equation (4.1), the closed-loop output under the LTV

80



control law Uy = —C(k)g~ %Y} can be written as
Y, = (14 DM Tg e ® O (k) g=4==*)) 1 N g, (4.35)
where D! is equivalent to ¢~ % (g% D~!). Then we have
Vi = (14+q % (¢* D )Tq %W (k)g **) " Nay (4.36)

where the term (quD’l)T is denoted as 7. T is invertible, and its inverse is given by

A ~

T7'=T"Yq%D) (4.37)

where T is invertible according to the assumptions made in Section 1.2.2. Since the highest
power of ¢ in D is d, g~% D is a proper polynomial matrix. Therefore, T' = ¢g~% (quDfl)T =
q_dST which has the same form as the process model with the simple interactor matrix. Then,

for the LTV controllers ¢(k) and c¢*(k) we have

F(K) | upper+ R(E) [upperq™ e Plurrer = (1 4 g4 q~ ) O (k) g~ %®)) "1 N g, (4.38)

F(k)|uppe7“ _ (1 + q_qu_dca(k)C*(k)q_dSC(k)>_1Nak (439)
From equation (4.6), the difference between equations (4.38) and (4.39) provides

T[C*(k - dCO(k)luzﬂper) - C(k - dw(k)’urfperﬂp(k - dSO(k)‘uzoper)‘uzvperqidso(k)'u?p” (4'4())

=1+ O = ) e ) 77) RO e
Solving equation (4.40), we will get

C*(k = deo(F)upper) = C(k = deo(k)lupper) (4.41)

+ T 1+ TC(k = deo(k) upper)a™ 127 ) RO lupper E' (K = dso () upper)lupper
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According to the derivations in equations (A.11-A.14), equation (4.41) can be rewritten as

C*(k) = C(k) + T 1+ TC(k)g ") R(k + dea (k") + di)lupper E' ™ (k = die (k) |upper
(4.42)

where k = k" — de(k"). The closed-loop response Yj, = Gy(k) is stable, so R(Ek)|upper 18
stable too. F Yk — dge(k))|upper is stable and proper by the assumption of N. Finally, T
is proved to be invertible. Therefore, C*(k) as solved from equation (4.42) is a physically

achievable control, and the theoretical best achievable control performance is upper bounded

by Yk"mv,upper: F(k”upperak-

win B[V Vi) < EIE ) upper @) (F (k) peras)] (4.43)

and the upper bound of the LTV minimum variance benchmark ®?¢" (k) can be calculated

as

dso(K)lupper—1

eurr(k)y = Y tr(E (k)E(k) (4.44)

4.3.4 Practical considerations

In control performance assessment, it is important that the designed benchmark is achievable
by a physically implementable control and can be estimated from routine operating data
without artificially perturbing the operation of system. But the existence of controller-to-
actuator communication delay challenges the satisfaction of these two conditions.

In equation (4.42), sensor-to-controller communication delay ds.(k) and controller-to-
actuator communication delay d.,(k”) are compensated in the designed LTV minimum vari-
ance control law by the term F~(k — dye(k))|upper and the term R(k 4 deg (k") + ds)|upper;

respectively. At time k, the term F = (k—dy.(k))|upper is determined by its order dyo(k—dye(k))
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with

dso(k - dsc(k)) = ds + dca<k - dsc<k) - ds) + dsc(lC - dsc(k> - ds - dca(k - dsc(k) - ds))
(4.45)

where dg. (k) is the communication delay from the sensors to the controller, and is known by
the controller at time k. Thus, ds,(k — ds.(k)) is known by the controller at time & since it
is only related to current and past information. While the term R(k + deo (k") + ds) |upper 18

determined by the order of F (k + dea(K") + ds)|upper, which is

dso(k + deo (K") + ds) (4.46)
=ds + deo(k + dca(k”)) + dso(k + dca(k”) — dea(k + dca(k”)))

=dy + deo (k") + dse(k)

where d., (k") = k" — k requires that k” should be known which is the time that the actuators
receive the information sent by the controller at time k. If d., (k") is known by the controller
at time k, the designed benchmark control in equation (4.42) is implementable. Then,
the proposed LTV minimum variance benchmark in equation (4.44) can be used in control
performance assessment of the NCSs. If d (k") is not known by the controller at time k,
the proposed LTV minimum variance benchmark in equation (4.42) is not achievable, and
the best achievable control performance is further degraded.

In this case, the order of the minimum variance term E(k)|ypper cannot be directly chosen
as dso(k)|upper due to the unknown controller-to-actuator communication delay. The lower
and upper bounds of the LTV minimum variance benchmark are proposed as follows to solve

this problem.

1. The lower bound of the LTV minimum variance benchmark can be calculated from
equations (4.33) and (4.34) by assuming d., (k) is known to the controller at time k,

which is the best case for the control of the NCSs with random communication delays.
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The obtained LTV minimum variance control is actually not implementable, but the
lower bound of the LTV minimum variance benchmark provides the maximum that we

can further improve the control performance.

2. The upper bound of the LTV minimum variance benchmark is calculated from equa-
tions (4.42) and (4.44) by assuming d.,(k) = d.,, which is the worst case of the control.
The obtained LTV minimum variance control in this case is implementable. At time
k, the control law is designed with d., (k") = d., by the controller. Then, the control
actions are sent to the actuators from the controller at time k, and can be implemented
by the actuators at time k + d.,, although the control actions may be received by the
actuators before time k +d,,. Further, the upper bound of the LTV minimum variance

benchmark provides the minimum improvement that the controller can achieve.

To calculate the lower and upper bounds of LTV performance index in practice, firstly,
recursive time series analysis algorithm can be used to estimate the LTV ARMA model from
routine operating data [71, 72, 73|. If the closed-loop system is considered not to be rapidly
varying under random communication delays, then moving window based identification of
the LTT ARMA model can be used to approximate the LTV closed-loop model. Consider

the identified LTV ARMA model with order (n,m) as

where

A(k) = ao(k) + ar(k)g ™ + -+ + an(k)g ™" (4.48)

C(k) =colk) +cr(k)gt + -+ cm(k)g™

Then, the LTV closed-loop model G (k) can be calculated recursively by substituting equa-
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tion (4.48) into equation (4.47)
Ga(k) = ag ' (k)[C(k) — a1 (k)Ga(k = 1)g™" =+ = an(k)Ga(k —n)q™"] (4.49)

Then, one can determine how well the current controller is operating using the following

indices

o) i e (B () Fi(k)

D)l — _ 4.50
W lier = ah) [GalRIB Y

Ol — T Oz E" T E )G a9
K)aer = e [

where 7, (k)| iower and 1, (k)|upper are the performance indices calculated based on the lower
and upper bounds of the LTV minimum variance benchmark, respectively. According to
the obtained performance indices, the NCSs with performance lying between 7, (k)|iower
and 7, (k)|upper 1s considered to be in a good condition; the NCSs with performance larger
than and close to 7, (k)|upper 1s considered an acceptable performance, but there still is a
potential for performance improvement; the NCSs with performance larger than and far
from n,,(k)|upper indicates poor performance, and as a result controller tuning or redesign of

the controller will be considered to be necessary.

4.4 Application to a reactor-separator example

In this section, a reactor-separator process as shown in Figure 4.5 is used to illustrate the
proposed method. The process consists of two stirred tank reactors and one separator.
Streams of pure reactant A are added to the two reactors. Reactant A is converted to
product B and side product C' by a first-order reaction and a parallel first-order reaction,

respectively. Then, distillate of the separator is partially redirected to the first reactor. A
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Figure 4.5: Schematic of the reactor-separator process.

dynamic model of this process has been established as following [74, 13]

dflfl - ,oAiHl (Frizao + Frear — Frear) — ke
dfﬁBl - PAiHl (Frepr — Fiop) + kawa — ks
% = pAiHl [Fp1(Tho + ary) + Fr(Ts + ap,) — FiTh]
! Q
_ gp(kall"AlAHA + kpiexp AHp) + pAl—Clle
dfl?Q - ,OAiH2 (Frazao + Fizar — Faaz) — ks as
dfﬁBQ - PAin (Fizp: — Fatpe) + kastar — kp2tps
% = m[}?ﬂ(ﬂo + any,) + FiTy — FyT5)]
! Q
_ gp(kaQQTAQAHA + kpaxpoAHp) + pAg—Ci,Hg
dfifg _ pAiHB [Froxas — (Fr+ Fp)rar — F32.3)
dflfg _ pAiHB (Foxpy — (Fr+ Fp)rgr — Fsxp3)
% - m[FQTz — (Fr+ Fp)T3 — F3T3] + ,oAgQ—Cng
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in which for i =1,2,3

Ea
RT;

Ep
RT;

kai = kaexp(— ) kpi = kpexp(— )

The recycle flow and weight percentages satisfy

QAT A3 QBYB3
FD:001FR TAR — TBR —

T3 T3

Ty = aa%as + aprps + actes Tes = (1 — x43 — xp3)

This process has 9 variables where x 4; is the mass fraction of reactant A in the i, vessel,
xrp; is the mass fraction of product B in the #;, vessel, and T} is the temperature in the iy,
vessel, for i = 1,2,3. We consider that the levels (Hy, Ho, H3), the flow rates of the feed
streams to the first and the second vessels (Fyq, Fys), the flow rates of the effluent streams
of the three vessels (Fi, Fy, F3), and the recycle flow rate (Fr) are maintained at constant
values. The manipulated inputs are chosen as the heating inputs (Q1, @2, Q3) provided
by the jackets to the three vessels, while the controlled outputs are chosen as the product
mass fractions (zp1, 22, rp3) in the three vessels. (T, 1o, T3) are the temperatures of
(Ff1, Fro, Fr), respectively. (arqy,,ar,,ar,) are considered as Guassian disturbances with
mean 0 and variance 10 that affect (T3¢, T2, T3), respectively. Three proportional-integral-
derivative (PID) controllers are designed for @i, @2, Qs to control T4, Ts, T3, respectively,

with the controller given in the form of

1 N;
P+ LT, + D; T

(4.51)

where P; is the proportional gain, I; is the integral gain, D; is the derivative gain and N; is
the filter coefficient in the iy, PID controller, respectively. Further, actuator delays of 0.5s,
1s and 1.5s are added to the control of (J1,Q2 and ()3, respectively. The process model

is linearized around the steady state and then discretized with sampling time 7T = 0.5s.
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Figure 4.6: Sequences of communication delays.
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Appendix A.3.

Control performance of this PID controller under both centralized control and networked
control is tested using the conventional minimum variance and the proposed LTV minimum
variance as the benchmarks, respectively. In networked control, ds.(k) and d., (k) are assumed
to be independent of each other and are assumed to be bounded with 0 < d,.(k), deo (k) < 3.
Then, the series of dy.(k) and d.(k) are generated by randomly taken values in the set
{0,---,3} with equal probability. The simulation is run for 20000 samples, and the results
from samples 7500 to 9000 are presented as follows.

The generated communication delay sequences are shown in Figure 4.6, and the closed-
loop test of the designed PID controller under centralized control and networked control
is shown in Figure 4.7 where blue curve and red curve are centralized control result and
networked control result, respectively. According to the closed-loop test, we can find that
the designed PID controller is applicable to the case when there are random communication
delays, although its performance is degraded.

Based on the simulated closed-loop data under networked control, moving window based
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Figure 4.7: Closed-loop test of the PID controller

identification of LTT ARMA models is conducted to approximate the LTV closed-loop model.
The window size is chosen as 2000 samples, and the window moves forward with a step
size of every 50 samples. In this case, the closed-loop model is considered not to change
very significantly within 50 samples. Then the lower bound and upper bound of the LTV
minimum variance benchmark are calculated from the closed-loop model, and are shown as
the blue curve and red curve in Figure 4.8, respectively. According to equation (4.50), for the
performance of the PID controller under the networked control, the indexes with respect to
the lower bound and upper bounds of the proposed LTV minimum variance benchmark are
shown as the blue curve and red curve in Figure 4.9, respectively. Finally, for the performance
of the PID controller under centralized control, the index with respect to the conventional
minimum variance benchmark is shown as the black curve at the bottom Figure 4.9 [30].
By comparing Figure 4.7 and Figure 4.9, we can find that the obtained LTV minimum
variance indexes can indicate the closed-loop performance effectively. In Figure 4.9, it shows
poorer performance around the 8300, sample and better performance for the rest. These
results are consistent with the closed-loop test shown in Figure 4.7. Further, although the

control performance is degraded under the networked control due to the presence of com-
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munication delays, the obtained LTV minimum variance performance indexes of this PID
controller still show a competitive and even better result comparing with the performance
indexes obtained in the centralized case. Thus, the proposed LTV minimum variance bench-
mark can efficiently take into account the influence of communication delays, and is more

suitable to the control performance assessment of the NCSs.

4.5 Conclusions

In this chapter, practical solutions for the control performance assessment of NCSs with
random communication delays are developed. Analytical expressions for the lower and upper
bounds of the LTV minimum variance benchmark are derived, and the corresponding LTV
minimum variance control laws are provided. It is shown that the proposed benchmark is
achievable by a practical control. The estimation of the proposed benchmark from routine
operating data is illustrated with the a priori knowledge of OIM and RIM. Although it does
not provide a point estimation of the exact minimum variance benchmark, the proposed
benchmark provides an answer on how much potential in terms of minimum and maximum
improvement a controller has by tuning or redesigning. Finally, a reactor-separator process

is introduced to demonstrate the effectiveness of the proposed work.
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Chapter 5

Limits of Control Performance for
Networked Model Predictive Control
Systems with Random

Communication Delays

5.1 Introduction

A number of works on the control of NCSs have been proposed to deal with random commu-
nication delays, among which MPC is of great concern [75]. The essence of MPC is as follows:
at each sampling time, an optimal control problem over a fixed length of prediction horizon
is solved and only the first optimal control move is implemented as the current control law;
at the next sampling time, measurements are used to update the state estimate and the same
procedure is repeated. This feature allows MPC to incorporate inequality constraints and
compensate communication delays, which increases the possibility of its application in the
synthesis and analysis of NCSs [18, 21, 76]. For stationary systems, the LQG solution can be

achieved with the infinite MPC approach, or can be approximated by the MPC solution with
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a finite prediction horizon in practice. Thus, the conventional LQG benchmark can be used
for control performance assessment of model predictive control systems in centralized case, if
performance limitations, such as hard constraints, model mismatch, etc., are not considered.
However, this conclusion does not hold for networked model predictive control systems with
random communication delays, where closed-loop systems are naturally non-stationary.

Motivated by the above discussions, following the idea of conventional LQG tradeoff
curve, this chapter proposes the limits of control performance for networked model pre-
dictive control systems with random communication delays as an alternative of the work
in Chapter 4, where performance limitation of control effort penalty is further considered.
Sensor-to-controller communication delay and controller-to-actuator communication delay
are considered simultaneously. These two kinds of communication delays are both modeled
as first order Markov chains with known transition probabilities.

The main contributions of this chapter are listed as follows. Firstly, an explicit solution to
time-varying MPC of NCSs with random communication delays is derived by minimizing the
expectation of a quadratic cost function over all possible future communication delays in the
prediction horizon. Based on this control design, the time-varying MPC performance tradeoff
curve is presented to characterize the limits of control performance for networked model
predictive control systems. Further, a strategy is provided for obtaining the time-varying
MPC performance tradeoff curve from process model. The obtained MPC performance
tradeoff curve can be used to evaluate how much potential of performance improvement an
existing model predictive controller has by tuning or redesigning it. The effectiveness of the
proposed control design and the use of the time-varying MPC performance tradeoff curve in

control performance assessment are illustrated via a simulation study.
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Figure 5.1: Schematic of NCSs with random communication delays.

5.2 Preliminaries

This chapter is mainly concerned with the NCSs shown in Figure 5.1, in which control loops
are closed through information exchange between different system components over a shared
network. We consider a class of discrete-time LTI process described by a state space model

in the innovation form [77]:

Xt+1 = AXt—{'B‘/;g—{'KCLt (51)

Yt = CXt + ay (52)

where A, B, C are system matrices, and K is the Kalman filter gain; X, V; and Y; are the
state, input and output vectors of dimensions n,, n, and n,, respectively; a; is white noise
of dimension n, with zero mean and unit variance. 7; is random communication delay from
the sensor to the controller, and §; is random communication delay from the controller to the

actuator. 7; and J; are modeled as two independent first order Markov chains with known
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transition probability matrices A, = [A7] and Ay = [A}}], respectively [78]. In the first order
Markov chain, the probabilistic description of current state is only related to its predecessor,
ie.,

A= P(r=jln1=1), ;=P =j|61=1) (5.3)
where )\Z-Tj,)\fj >0,0<7,<7and0<d <.

The buffer is used to receive and store the control signals sent from the controller. The
most recently received control signal will be used by the actuator with the rule of the buffer,
namely, first-in-last-out. Thus, the control input of the plant V; = U;_5,. We assume that o;
is measurable at the plant and 7; is measurable at the controller. Further, output Y}, input

V; and delay information ¢§; are together sent from the sensor to the controller through the

communication network.

5.3 Time-varying MPC performance tradeoff curve for
networked model predictive control systems

In this section, first, formulation of subspace matrices considering random communication
delays is introduced. Then we derive an explicit solution of time-varying MPC for networked
model predictive control systems with random communication delays based on the introduced
subspace formulation. Further, according to the proposed control design, a strategy for

obtaining MPC performance tradeoff curve from process model is provided.

5.3.1 Subspace matrices

Consider the networked control setup shown in Figure 5.1. Output Y;, input V; and delay
information ¢§; are measured at the remote system and sent from the sensor to the controller

together through the communication network, while delay information 7; is measured at the
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controller. Then, due to the presence of communication delays, the available information to
the controller at time ¢ is {Y, ., -+, Yo}, {Vier, -, Vo, {0t—ms 500}, {7, -+, 70} and its
local information {U;_y,---,Up}.

From equations (5.1) and (5.2), by replacing the time subscript ¢ with ¢t — 7

Xt—T,g-f—l - AXt—Tt + B‘/;—Tt + Ka’t—Tt (54>

}/t—Tt - CXt—Tt + a/t—Tt (55)

Combining equations (5.4) and (5.5) yields

Xy ni1=(A—KC)X,_r, + KY,_,, + BV,_,, (5.6)

Based on the regression analysis approach introduced in [79], recursively substituting equa-

tion (5.6) results in

X1 =(A= KOV Xy 1 p + (A= KO M KY, rp11 + BVigi11) (5.7)
+ e + (A - KO)(K}Q—Tt—l + BW—n—l)

+ KY;r, + BV,

Then equation (5.7) can be rewritten in matrix equation form

Xim1 =(A— KOV X, 011 (5.8)
tla-royk o K| o Y]
L | NP i

The short-hand version of equation (5.8) is

Xt-r41 = G Xt rp1- + )Y, + 0V} (5.9)

96



where ¢, = (A — KC)E~! represents error dynamics of a Kalman filter. Due to the stability
of a Kalman filter, ¢, — 0 for L. — oco. Then, for sufficient large L, the estimator equation

for X;_,,+1 converges to

p

X1 = [¢y M = L,W, (5.10)

p

where p denotes the past and stands for the time ¢’ <t — 7. W), is a vector that consists of

past outputs and inputs, in which

‘/tfnJrlfL Ut*Tt*Fl*L*‘St—Tt-H—L

V=] ... |= =, (5.11)

‘/t*‘l't Ut*thlst_T
t

Then, according to equation (5.10), X;_,+1 can be estimated in the controller at time ¢ since
all the information contained in W), is available.

For equation (5.2), we can derive, for time ¢t — 7, + 1
i1 =CXyri1 + a4 r 1 (5.12)
For time ¢t — 7 + 2
Yi rpo =CXy rpo+ a4 740 (5.13)
Substituting the equation (5.1) for time ¢t — 73 + 1 into equation (5.13) yields

Y, rj2=CAXy 1+ OBV, 1+ CKay_rq + Qo (5.14)
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Similarly for time ¢ — 7 + 3, using equations (5.1) and (5.2), we can derive

Yy py3=CA*X, ;.1 +CABV; .1+ CBVi_1,.0 + CAKay_ 7,11 (5.15)

+CKay_rqo + Q4713

Repeating this procedure until time ¢t + N and then assembling the results for time {t — 7, +

1,t =7 +2,---,t+ N}, we can obtain a matrix equation
1/;Jth#»l C
)/:‘, CATt—].
- Xt (5.16)
Yi CA™
Yiin CAHN-L
0 . 0 0 e 0 Vieri1
CA™ 2B 0 0 o 0 V,
_l’_
CA™ B ... CB 0 e 0 Vi1
CA™N=2B ... CAN2B CAN=3 B ... 0| | Viw
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I 0 0 e 0 Qt—rit1

CA™ 2K ... 1 0 - 0 ag
+
CA"K ... CK I 0| am
CATN=2K .. CAN2K CAN3K . T | | aw
Decomposing the matrices in equation (5.16) to two parts with respect to Yy, = [V, 1, -+,
and Yy = [V, -+, VI \], the short-hand version of equation (5.16) can be written as
Yore F]\;e Tt Hj\;e Tt Vire Z]\;e Tt Apre
p _ P | th-rt+1 + P ’ P + P | P (517>
Yf Fﬁﬂn H}V|Tt Vf ZJ]‘V|Tt Af

where f denotes the future and stands for the time ¢’ > t + 1, while pre stands for the time

interval t' € [t — 7+ 1,t]. Then Ape = [a] 1, af]", Ay =[al 4, -+, al y]" and
‘/t—Tt-i-l Ut—Tt+1—5t_7t+1 %+l Ut+1—5t+1
Vore = = , Vi= | oo | = (5.18)
Vi Utf& Vt+N Ut+N75t+N

Defining Vi.e; = [V,],

rre: VT, we further separate Ve to two parts as

Utht+1f5t,7—t+1 Ut
Upre
‘/pref = ) Upre = s ) Uf = ce (519>
Uy
U1 UirN—s,..n
where Uy, consists of the control signals that are generated from the controller in the past,

and Uy consists of the future control signals over the prediction horizon. The dimensions of

Upre and Uy are related to the unknown delay sequence A = {0;—r, 41, -+, 64~ }. Uppe is n0Ot
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completely available in control design since A is unknown, and a strategy on making use of
Upre is proposed in the following section. Then by omitting white noise sequences A,,.. and

Ay, the predictor equation is given by
Yf = Fj‘V|TtXt—Tt+1 + H]]”V|Tt‘/pr€f (520)
Substituting equation (5.10) into equation (5.20), one can obtain

Yf = Fj‘V‘TtLPWP + H}V’n%ref (5'21>
= szi\;[|‘l'th + H}V‘Ttvpmf

where L})|,, and H}|;, vary with 7, at each time instant

e L[|, is subspace matrix corresponding to the past inputs and outputs W, with pre-

diction length N and communication delay 7,

) }V |, is subspace matrix corresponding to the deterministic inputs V,,..; with predic-

tion length N and communication delay 7

5.3.2 Time-varying MPC design

Sensor-to-controller communication delay 7; is measurable by the controller, and its influence
on the predicted outputs Yf is completely considered in the formulation of subspace matrices
LY, and H }V |7,. The influence of controller-to-actuator communication delay d; on the
predicted outputs f/f is reflected in the past inputs V,, and the future inputs Vj,.;. The past
delay information {0, -,0t—r+1-1} in V, is known by the controller, while the future
delay sequence A in V. is unavailable.

To deal with the unknown delay sequence A, a time-varying MPC is designed to minimize
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the expectation of the following quadratic cost function over all possible A

J(w) = E{YfTYf +UT (wI)Uy} (5.22)
5 t+N-1 o
Z Z H AMH{YfTYfﬂLUf(WI)Uf}
Ot— Te+1= =0 5t+N—Ol t—T¢

where reference trajectory is assumed to be zero, F is the expectation operator and w > 0 is

the user defined input weighting parameter. th =0 Z§t+N:0 is the sum of all possible

t+N—-1

combinations of future delay sequence A and [;Z,"

A, .., 18 the probability of each possible

A. Substituting equation (5.21) into equation (5.22) yields

t+N—1
J(w) =W, Ly |5, Ly 1o Wy + (L 1 W) Z Z IT Mo B 1 Virer)  (5.23)
Ot—ry+1=0 O Nn=0 i=t—7¢
5 t+N-1
Z Z LI Mo B 1 Vore) "L W,
Ot—7y+1=0 6t+N_02 t—T¢
t+N—1

+ Z Z H )‘661_,_1 pz:ef |71—;H]]”V|Tt‘/;)ref

[ Te+1= =0 5t+N—DZ t—T¢

t+N—1
+ Z Z H )\5 51+1Uf WI)U
O¢— Te+1= =0 6t+N 0 i=t—7¢

where L)) |,, W, is constant term, Hy'|,, is a coefficient matrix, while V,,.; and Uy are related

to A.

First, defining H}'|,(:, j) as the j” block column of H|;, and Vjz(j) as the j** vector

element of V., we can get

T
H]]fv|7't‘/;77"ef = H}V|Tt(271),~--7H}V‘7—t(i,N+Tt):| |:erjef( ) Vref(N+Tt) (524)

p p

Since all possible A is considered, in equation (5.23), Zi_fﬁlzo e ZEHN:O Vipres contains

all the control signals in the set of {U;,_,,,1_5,---,Uisn}. Analogous to equation (5.24), we
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can rewrite part of the second term on the right hand side of equation (5.23) as

t+N-1
N
Z Z H )\5 5,-+1Hf |Tt‘/;77‘€f (525)
Or— Te+1= =0 Op4N=0 i=t—7¢
T
= [gN T T
|:01 |Tt7 ' 70N+Tt+5|7't:| |:Ut—7't+l—5’ T Ut+N
N
=0 |7—t pref
where Uy = [UL_ | 5+, Ul y]" consists of all the control signals used in cost function

J(w). ©N|7 is the coefficient matrix corresponding to U], with
NHT¢
9;']V|Tt: Z[P(‘/pref( ) Ut—f—z 5— Tt|5t Tt)H)J”V|Tt( )] (526>

J=1

fori=1,---, N+ 7 + 4. In equation (5.26),

P(%ref(j) - Ut+i—5—n|5t—ﬁ) - P((st—Tt-‘rj = .7 + S - 7:|5t—7't) (527>

is the probability for U,,;_5_,, being the j” vector element in V,,.; with the initial delay
state 6,_,. This probability is calculable off-line with given 6,_,, € [0,---,6] and {X}, | i, j €

[0,---,0]} [78]. Then, decomposing equation (5.25) to two parts gives

J
oN|nU Tef—{ o |r @Nm} e (5.28)

UJ

f

where

Ut Tt+1—9 Ut
Upe=| - |, Ui=1]-- (5.29)

Ui Uirn
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U};]Te consists of all the previously designed control signals that are contained in the cost

function J(w), while U7 consists of all the future control signals that are contained in the

cost function J(w). O] |7, and O} |7, are coefficient matrices with respect to Uy and Uy,

pre

respectively.
Second, defining V|, = HY|L HY|,, and UV, (4, j) as the (i, )" block element of U™|,

we can get

N+‘I‘t N+‘I‘t

%T;efo H]]”V|Tt pref — Z Z pref - N‘Tt(i’j)‘/pref(j) (530)

=1 j=1

Similarly, analogous to equation (5.30), we can rewrite the fourth term on the right hand

side of equation (5.23) as

t+N—-1

Z Z H )\5514_1 7th3]” N|Z—;H}V|Tt‘/;7ref (531)

Ot — Te+1= =0 6,5+N 0 i=t—T7¢
N+7i+6 N+7+5

Z Z t+1 Tt Té\i[,j)’Tt Ut+j—Tt—5

where
N+71¢ N+1¢
TN 7= S PWVirer(0) = Unsicsms Virer (@) = Upsy s 00— 0V [ (0. )] - (5.32)
p=1 ¢g=1
for i,j = , N + 7+ 4. In equation (5.32)
P(Vpref<p) - Ut+z‘—5—w Vpref(Q) = Ut+j—5—7t|5t—Tt) (5'33)

=P(0trpip =P+ 0 — 1,0 7 4qg = q+ 0 — jloy7,)

is the probability for U,,; 5, and U, ; 5, being the p" and the ¢" vector elements in
Vpref, respectively, with the initial delay state d;—,,. The calculation of this probability can

also be referred to [78]. Then, rewriting equation (5.31) in matrix equation form and further
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decomposing it to two parts, we can obtain

5 t+N-1
Z Z H )\55L+1 pfefHN|TH]]‘V|Tt‘/pT6f (534>
Ot— Te+1= =0 6t+N 0 i=t—7¢
(Upref)TTN|Tt pref

T{Vl|7—t T |Tt UJ

pre
~|wgor wpr] | 2
To1lm Yool Uf
where T¥|7; is a coefficient matrix with T | asiits (4, 7)™ block element. YT¥|7; is proven
to be a positive semi-definite matrix in the Appendix B.1. Subsequently, TX|7; is a positive
semi-definite matrix and Y |71 = TN |7.

Finally, following the same idea, the fifth term on the right hand side of the equation

(5.23) can be rewritten as

5 5§  t+N-1
S DT T e U (DU (5.35)

5t77—t+1:0 Ot N=0 i=t—7¢

(=9
=21
T
2
>—A

N—6iyn+1

Z H )\562+1 Z Ugrjﬂ(W[)Utﬂﬂ]

5t77—t+1:0 Oey N=0 i=t—7¢
N+1

= Z U£1—1(Qf‘v|n1)Ut+z‘—1

=1

where

N+1¢

QN‘Tt_ w Z pref Ut-‘rz 1’515 Tt)] (536)
fori=1,---,N + 1. In equation (5.36),
P<Vp7“6f( ) Uyi- 1‘5t Tt) = P((St*Tt*Fj =j—n—i+ 1’(515*71) (5'37)
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is the probability for U;;;_1 being the j* vector element in V,,..; with the initial delay &;_,.

Then, the matrix equation form of equation (5.35) is given by

5 t+N-1
Z Z I X...U0f wnu, (5.38)
(5t "'t+1 =0 5t+N O’L t— Tt

—(U)) U}

where QV|,, is a block diagonal matrix with Q|,, as its i*" diagonal element. Due to w > 0,
QON|,, is a positive definite matrix.
Substituting equations (5.28), (5.34) and (5.38) into equation (5.23), we can get

’]( ) WTLN‘TLN’HWP + (Lg|Tth) ( pre|Tt pre + @N’Tth) (539>

Tt W

( pre‘Tt pre + @N|Tth )TLN|T7:

(UJ )TTN‘Tt pre (UJ )TTNthUf (Uf )TTN’Tt pre (Uf )TTN‘Tth

pre pre

(UM, U

where U Jz’ is a vector of future control signals to be designed, while all the other matrices
and vectors are constant and known values, respectively. Taking partial differentiation of

J(w) with respect to U J;] and setting it to zero yields the optimal control law as

W,
Uf = —(Yoaln + Q)" eV |7T LY |, THi|n ; (5.40)

pre

where (Y2 |r; + QV],,)~! always exists, since T|7 > 0 and QV|,,> 0.
In the controller, at each sampling time ¢, the controller design scheme can be stated as

follows:

1. Receive d;_,, from the remote system, measure 7; and generate vectors W, and U;;]re;

2. Calculate the subspace matrices LY|,, and H }V |+, as well as the coefficient matrices
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N, YN|7, and OV 7y
3. Calculate U} in equation (5.40) such that J(w) is minimized;

4. Implement U; which is the first element in U J‘c] .

5.3.3 Time-varying MPC performance tradeoff curve

For centralized model predictive control systems, the conventional LQG tradeoff curve can be
used for its control performance assessment, since an infinite horizon MPC objective function
converges to a LQG objective function in centralized case [80]. However, this conclusion
does not hold for networked model predictive control systems with random communication
delays. In order to find the limits of control performance and to further develop the control
performance assessment technology for networked model predictive control systems, in this
section, the time-varying MPC performance tradeoff curve is proposed following the idea of
conventional LQG tradeoff curve.

The time-varying MPC performance tradeoff curve is obtained from solving the MPC
objective function defined in equation (5.22). By varying w, various solutions of E[UlU;]
and E[Y,'Y;] for the system controlled by benchmark MPC is calculated at each time in-
stant. Then, the time-varying MPC performance tradeoff curve can be determined from
these solutions with E[UU;] as the z-axis and E[Y,'Y;] as the y-axis, respectively. This
time-varying MPC performance tradeoff curve shows the limits of control performance for
networked model predictive control systems. To assess performance of networked model
predictive control systems with the proposed time-varying MPC performance tradeoff curve,
we compare performance of the current controller with the benchmark controller in terms
of both E[Y,7Y;] and E[Ul'U;]. This gives rise to two problems: 1) design benchmark MPC;
2) obtain E[Y;'Y;] and E[UFU;] of the system under current controller and benchmark con-
troller, respectively. The first problem has been solved in the previous sections. In the

conventional LQG benchmark, solution to the second problem can be found in [50] where an
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algorithm for extracting E[Y,TY;] and E[Ul'U;] of the benchmark control system from routine
operating data has been proposed, while E[Y,7Y;] and E[UI'U,] of the current control system
can be calculated from routine operating data directly.

When it comes to NCSs with random communication delays, the second problem becomes
more challenging. The benchmark MPC designed in equation (5.40) is time-varying. Ex-
tracting E[Y,'Y;] and E[U!'U;] for such a benchmark control system from routine operating
data is very difficult. Further, random communication delays will lead to a non-stationary
behavior of the closed-loop system. E[Y,7Y;] and E[UFU,] for the current control system
also change over time, and cannot be calculated from routine operating data directly. In
this chapter, we choose to calculate E[Y,TY;] and E[UI'U;] of the benchmark control system
based on process model instead of from routine operating data. Although it imposes a higher
requirement on the a priori knowledge of process model, it provides us a tractable solution
to the problem.

In spite of the presence of random communication delays, the relationship between time
series Y; and V; still follows the process model shown in equations (5.1) and (5.2). Then
system matrices A, B, C' and the Kalman filter gain K can be identified according to the
work [77]. To obtain E[Y,"Y;] and E[U]'U;] of the benchmark control system, we need to
calculate the closed-loop expressions for input and output of the system at time ¢ in terms
of the disturbance. By assuming zero initial state of the system, from equations (5.8), (5.16)
and (5.40), we can calculate the closed-loop expressions for Y; and U; of the benchmark
control system for different time instants in terms of a; recursively. Without giving a detailed
mathematical derivation, for the benchmark control system, we can express its output and

input as

Yiopt = Gy (t)as (5.41)
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where Y, o,r and Uy o are the output and the input of the benchmark control system at time
t , respectively. Gy, (t) and Gy, (t) are the LTV closed-loop transfer function matrices in

backshift operator ¢~! accordingly. Then, we can get

E[Y, o Yeopt] = |Gy, (D3 (5.42)

E[U o Utopt] = 1Gu,,, ()13

To obtain E[Y,'Y;] and E[UIU,] of the current control system, firstly, recursive time
series analysis algorithm can be used to identify the LTV ARMA models for output and
input of the current control system [71, 72, 73]. Consider the identified LTV ARMA model

of Y; with order (n,m) as
LO)Y: = Q(t)a, (5.43)
where

Lt)=1lo(t) + L(t)g " + -+ 1. (t)g™" (5.44)

Q) =qo(t) + (t)g "+ + gm(t)g™™

Then, the LTV closed-loop model Gy (t) can be calculated recursively by substituting equa-

tion (5.44) into equation (5.43)

Gy (t) =15 ()[Q() = h(OGy (t = 1)g™" =+ = la()Gy (t —n)g™"] (5.45)

Similarly, we can obtain the LTV closed-loop model Gy (t) of U; following the same procedure.
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Then, we have

BV = Gy (®)ll2 (5.46)

E[U/ U] = IGu®)]

Further, in the cost function J(w), we optimize a quadratic term YfTYf + UfT (wI)Uy over
the prediction horizon instead of exactly optimizing E[Y,"Y;] + E[U! (wI)U;]. The obtained
BV

t,opt

Yiopt] and E[UL

toptUtopt] may have large differences among the neighbouring time

instants due to this issue. To avoid the potential rapidly change of the time-varying MPC
performance tradeoff curve and reduce the computation burden in online application, we
recommend to use the average values £ 37 | E[YY, \Yion] and 2377 E[UL, Ui opi]
to determine the curve where r is an user defined parameter.

Then, for time interval ¢’ € [t,t4r], various solutions of E[U}

Uy opt] and E th’j:opt}/t/volnt]
can be calculated by varying w. Afterward, the time-varying MPC performance trade-
off curve for time interval ¢ € [t,t 4+ r] can be determined from these solutions with
S ElUL ot Urtiopt) 8s the z-axis and 2377 | B[V, Vi o] as the y-axis, respectively.
The distance from the current operating point (2 37| F[UL, U], 2 377 E[Y,2,Y,44]) to the

obtained MPC performance tradeoff curve can be used for control performance assessment.

5.4 Simulations

Consider the following state space model which is modified from the example in [77]:

06 06 0 0.808 —1.1472
Xip1=1-06 06 0 |Xe+ |—01741| U+ | —1.5204] as (5.47)
0 0 07 1.3159 ~3.1993

Y, = |—-0.4373 —0.5046 0.0936| X¢+a;
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Figure 5.2: Sequences of communication delays.

We assume that the process shown in equation (5.45) is under the networked control setup
shown in Figure 5.1. 7, and J,; are modeled as two independent first order Markov chains
with known transition probability matrices A, and Ay, respectively. In this simulation, 7
and ¢; are bounded within the set {0, 1,2,3}. The transition probability matrices are given

as A, = Ay = P, with

05 05 0 0

03 04 03 0
P = (5.48)

0.1 0.2 04 0.3

0.1 02 03 04

where a practical constraint of communication delays is considered as d;11 < d; + 1 (1341 <
7; + 1). The communication delay sequences are generated for 1500 samples and the results
are shown in Figure 5.2. The top and the bottom figures are the sequences for sensor-to-
controller and the controller-to-actuator communication delays, respectively.

First, the proposed time-varying MPC is tested for two cases: 1) the transition proba-

bility matrices are known accurately; 2) the a priori knowledge of the transition probability
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matrices is not available. In the first case, the transition probability matrix P shown in equa-
tion (5.46) is used in the controller design; while, in the second case, the following transition

probability matrix P; is used

1/2 1/2 0 0
1/3 1/3 1/3 0

e,
Il

(5.49)
1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

where equal probability is assigned to elements in each raw of the matrix. Here, we choose
w=1and L = N = 30 for the control design proposed in Section 5.3. Then the output
trajectories of these two control cases are shown in Figure 5.3. The top and the middle
figures are the output trajectories for the first case and the second case, respectively. The
bottom figure is the difference of the two output trajectories. Our proposed control design
can restrict the variation of the output in a small region according to the control results.
Also, the proposed control design has a very good robustness to the selection of the transi-
tion probability matrices. As shown in the bottom figure, the outputs with the transition
probability matrices being selected as P and Pj, respectively, are close to each other. This
is because that the proposed control design is conservative. All possible combinations of the
future delay sequences are considered in the cost function, which reduce the requirement on
the accuracy of the a priori knowledge of the transition probability matrices.

Further, by choosing L = N = 30, r = 10, w = 2¢ and varying i from —15 to 9 with a
step size of 1, various optimal control solutions for equation (5.22) are calculated to generate
the time-varying MPC performance tradeoff curves following the procedure introduced in

Section 5.3.3. The following transition probability matrix P, is used to design the current

111



Controller designed with P

500

t
Controller designed with P1

1000

1500

500

t

Difference of two output trajectories

1000

1500

Figure 5.3: Output trajectories for the two control cases.
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There is a large gap between the true transition probability matrix and the one used for the

current controller design. Then, performance of the current controller is assessed based on

the proposed approach. Output and input trajectories for the system under the current con-

troller are shown in Figure 5.4, while the control performance assessment results are shown

in Figure 5.5. The left top figure shows the conventional LQG tradeoff curve designed for

the centralized control systems. The other three figures show the time-varying MPC perfor-

mance tradeoff curves and performance of the current controller for 3 different time intervals,

respectively. Since all possible combinations of the future delay sequences are considered,

the proposed time-varying MPC is more conservative and has smaller E[U!U,] comparing

with the conventional LQG control for centralized case. From the figure we can find that the
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Figure 5.4: Output and input trajectories for current control system.

best achievable E[Y,TY;] for a given E[U! U] in networked model predictive control is larger
than that in the centralized case. Therefore, the benchmark control performance for the cen-
tralized case is not achievable by a networked model predictive control system with random
communication delays. If conventional LQG tradeoff curve is used as the criterion for per-
formance assessment, even if the networked model predictive control system is well designed,
it is highly likely to show a poor control performance and may lead engineers to search for
non-existent networked model predictive controllers. Further, although performance of the
current controller varies with time, the distances from its operating points to the proposed
time-varying MPC performance tradeoff curves for different time intervals are similar. Thus,
the proposed time-varying MPC performance tradeoff curve can give consistent and more
reasonable assessment results for a networked model predictive control system with random

communication delays.
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Figure 5.5: The time-varying MPC performance tradeoff curves for different time intervals.

5.5 Conclusions

In this chapter, a time-varying MPC performance tradeoff curve is designed for control per-
formance assessment of networked model predictive control systems with random communi-
cation delays. Sensor-to-controller communication delay and controller-to-actuator commu-
nication delay are considered simultaneously. These two kinds of communication delays are
both modeled as first order Markov chains with known transition probabilities. An explicit
solution to time-varying MPC is derived, and the time-varying MPC performance tradeoff
curve is proposed based on it. The obtained tradeoff curve can be used to evaluate how much
potential of performance improvement an existing model predictive controller has by tuning

or redesigning it. Finally, A numerical example is provided to demonstrate the effectiveness

of the proposed work.
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Chapter 6

Concluding Remarks and Future
Works

6.1 Concluding remarks

The focus of this thesis is on finding the limits of control performance for DNCSs and NCSs
with random communication delays. A number of distributed networked control and net-
worked control solutions both numerically and analytically have been developed to optimize
variance control objectives. Further, based on the proposed control algorithms, strategies
for obtaining limits of control performance from process models or from routine operating
data are provided for control performance assessment.

Chapter 2 proposes the limits of minimum variance control performance for DNCSs with
random communication delays. A fixed network topology is presented for DNCSs where each
subsystem in the network can communicate directly with all the other subsystems. Output
communication delays and system time delays serve as the most fundamental performance
limitations in distributed networked control, and are fully considered in the proposed dis-
tributed output feedback controllers design. An optimization-based solution to minimum

variance control of DNCSs with time-invariant communication delays is developed. Then,
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this control design is extend to study of the limits of control performance in terms of variance
for DNCSs by considering boundary values of random communication delays.

However, minimum variance control is usually not practical for real process operation
due to its demand for excessive control effort and poor robustness. As an alternative, a
distributed LQG control framework is developed in chapter 3 to further consider input com-
munication delays and control effort penalty. The optimal structures of distributed state
feedback controllers and distributed observers are presented. And the non-applicability of
separation principle in distributed networked control is illustrated. An algorithm is pro-
posed for designing distributed controllers and distributed observers simultaneously, based
on which the lower and upper LQG tradeoff curves can be obtained to characterize the limits
of LQG control performance for DNCSs with random communication delays.

In Chapter 4, a practical LTV minimum variance benchmark is developed for NCSs with
random communication delays, where the a priori knowledge of the interactor matrix is
not required. Sensor-to-controller communication delay and controller-to-actuator commu-
nication delay are modeled as independent random variables. An explicit solution to the
LTV minimum variance benchmark is derived for NCSs with the simple interactor matrix.
Furthermore, this result is extended to the development of a practical LTV minimum vari-
ance benchmark for NCSs with the general interactor matrix by using OIM and RIM. The
proposed benchmark is shown achievable by a physically implementable control and can be
estimated from routine operating data directly.

MPC is widely applied in the synthesis and analysis of NCSs due to its ability to incor-
porate inequality constraints and compensate communication delays. In Chapter 5, a time-
varying MPC performance tradeoff curve is proposed to characterize the limits of control
performance for networked model predictive control systems with random communication
delays. Sensor-to-controller communication delay and controller-to-actuator communication
delay are considered as first order Markov chains with known transition probabilities. An

explicit solution to time-varying MPC of NCSs is derived by minimizing the expectation of
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a quadratic cost function over all possible future communication delays in the prediction
horizon. Based on this control design, the time-varying MPC performance tradeoff curve
is presented for control performance assessment of networked model predictive control sys-
tems. Furthermore, a strategy is provided for obtaining the time-varying MPC performance

tradeoff curve from process model.

6.2 Recommendations for future works

Control performance assessment of DNCSs and NCSs is a relatively new research area. The
results presented in this thesis address some of the fundamental issues under this theory.
As stated in this thesis, investigating limit of control performance is just the first step of
control performance assessment. FEstimation of the benchmark control performance from
routine operating data is necessary for industrial applications. Furthermore, communication
delays and system time delays are the most fundamental limitations on the achievable con-
trol performance for designing automatic control systems over network. Considering more
realistic performance limitations will complicate the problem and pose as stumbling blocks
in applying these ideas. The emphasis in future research must be to develop control per-
formance assessment techniques that are user friendly to industrial application and simple
to understand. Future development in this and related areas should consider the following

problems:

1. Estimation of the benchmark control performance from routine operating data nor-
mally relies on an explicit solution to the control problem. For this purpose, exploring
explicit solutions to distributed minimum variance control and distributed LQG control

has great theoretical and practical value.

2. Controllers and observers of different subsystems are centrally designed and then ap-
plied distributedly in this thesis. Although such a strategy can provide the best achiev-

able control performance, some advantages of distributed networked control may be
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lost in the meantime. Limit of control performance for designing subsystem controllers

and observers distributedly is worthy of further investigation.

. In practice, communication within a DNCS can be restricted to neighbouring subsys-
tems or extensively exist between a majority of subsystems. Development of approaches
for investigating limits of distributed networked control performance under different

kinds of communication network topology is of interest.

. The unitary interactor is an all-pass term, factorization of such a unitary interactor
matrix does not change the spectral property of the underlying system. This property
of the unitary interactor matrix is desirable for minimum variance control of stationary
systems. NCSs are naturally non-stationary due to the presence of random communi-
cation delays. Instead of deriving a bound on the benchmark control of NCSs based
on OIM and RIM, estimating the true LTV minimum variance benchmark using the

unitary interactor matrix would have great industrial appeal.

. Limits of control performance for DNCSs and NCSs with non-minimum phase zeros

should be taken into account.

. Hard constraints should also be taken into account in practice. This would require an

optimization procedure, for which the convex optimization may provide the solution.
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Appendix A

Mathematical Backgrounds and

Derivations of Chapter 4

A.1 Calculation of LTV transfer function matrices

1. Commutativity law

Thus, V (k)W (k) # W (k)V(k), and the multiplication of LTV transfer function matri-

ces does not satisfy commutativity law.
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2. Associativity law

=0 j=0 p=0
n m l

=Y D> wilk)uwy(k =iy (k —i— j)g
=0 7=0 p=0

n m l
= uik)g ™) > Y S wi(k)ay(k — j)g U+
=0 j=0 p=0
n m l
=22 D vilkywy(k = iy (k — i~ j)g
1=0 7=0 p=0

Therefore, [W (k)V (k)| X (k) = V(k)[W (k)X (k)], and the multiplication of LTV trans-

fer function matrices satisfies associativity law.

3. Distributive law

=0 j=m+1 =0
m n !
= Z Z[Uz(k?) + wz(k:)]xp(k; — i)q—(P-H) + Z Z v; (k?)l’p(k} B j)q_(p+j)
=0 p=0 j=m+1 p=0
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J=0 p=0 i=0 p=0
m l n I

— Z [0 (k) + wi (k)] z,p(k —i)g~ @) + Z Zv](k)xp(k: §)g~ @)
=0 p=0 j=m+1 p=0

Then, [V (k) + W (k)] X (k) = V(k)X (k) + W (k)X (k), and the multiplication of LTV

transfer function matrices satisfies distributive law.

. Inversion
Equating coefficients of both sides of equations (4.9) and (4.10), yields

(

wly(k)wy (k) + wly (k)we(k—1) =0
wly(k)wa (k) + wily (k)wy (K — 1) + wla(k)we(k —2) =0

and
(

wo(k)wre(k) =1
wo(k)wry (k) + wy (k)wre(k—1) =0
wo(k)wre(k) + wy(k)wry(k — 1) + wa(k)wre(k —2) =0

&
Solving the above two equation sets yields

p

wly (k) = wri (k) = —wy* (k)w; (k)wy (k — 1)

wro(k) = wy ' (k)

wly (k) = wra(k) = wy ™ (k) [wi (k)wg " (k — Dwi (k — 1) — wa(k)|wy " (k — 2)
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Then, WL(k) = WR(k), the left inverse of an LTV transfer function matrix is equal

to its right inverse.

A.2 Detailed derivations of LTV minimum variance
benchmark for NCSs with the simple interactor
matrix

The LTV minimum variance control law and the corresponding LTV minimum variance
benchmark are derived as follows. For the system shown in equation (4.1), the closed-loop

output under the LTV control law U, = —C(k)q~ %)Y}, can be written as
Ye=(1+ q_dsTq_dm(k)C’(k)q_d“(k))_1Nak (A1)

According to the properties introduced in Section 4.3.1, LTV transfer function matrices can
be treated as matrices in both multiplication and inverse. Thus, we apply the well-known

matrix inverse lemma [81] to equation (A.1) and yields
Vi =[I — ¢ “T(1 4 q W O(k)g bk g=dT) " 1gdee W) O (k) g LB N g, (A.2)
Let us define

M(k;) :q—dsT(I + q_dca(k)C(k?)q_d“(k)q_dsT)_lq_dca(k)o(k)q—dsc(k) (A3)
:T[(I + q—dca(k)C(k)q—dsc(k)q—ds T)qu]—lq—dca(k)c(k)q_dsc(k)
:T[qu (I _I__ q—dsq—dca(k)0<k)q_dsc(k)q_ds qus )] _lq_dca(k)c(k)q_dsc(k)

:T(I + q—dsq—dca (kﬁ)c’(k)q—dsc(k) q—ds qus)—lq—dsq—dca(k)c(k)q—dsc(k)
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From equation (4.6) it follows that

M(k) =T(I + C(k — dy — deg(k — d)) g% eelkde)mdse(bmds=dealk=ds)) ) =1 (A.4)
C(k _ ds _ dca(k _ ds))q—ds—dca(k—ds)—dsc(k—ds—dca(k—ds))

=T(I + C(k = deo (k) g™ T) ' C(k — do(k))q~ "
where we define
Q) = T(I + Clk — duy(k))g~ OV 1C(k — doo(k)) (A.5)

Further, the disturbance transfer function matrix NV is divided to two parts based on the

Diophantine equation:
N = F(k) 4+ R(k)q~%=®) (A.6)

where, F'(k) is the LTV polynomial matrix consisting of the first ds, (k) terms in the impulse
response form of N, and R(k)g~ %) is the remaining LTV transfer function matrix in N.
In equation (A.6), coefficient matrices in F'(k) and R(k) are consistent with those in N, and
only the order of F'(k) varies with time. Substituting equations (A.4)-(A.6) into equation
(A.1) yields

Vi =(I — M(k))(F (k) + R(k)qg*™)ay (A7)
=F(k)ay + R(k)g % ®a, — Q(k)F(k — dyo(k))qg = Way,
_ Q(k)R(k _ dso<k))q—dso(k—dso(k))—dso(k)ak

=F(k)ay + L(k)ay,
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where

Li =R(K)g"® — Q(R)F(k — duo(k))q " — Q(R)R(k — dy(k))q~ ok ok ~deolh
(A.8)

In equation (A.7), F(k) is a LTV polynomial matrix of ¢=! with order d (k) — 1, and
each term in L(k) has at least time delay ds, (k). Thus, F(k)ay is independent of L(k)ag,

and we have

E[Y, Y] = E[(F(k)ar)" (F(k)ar)] + E[(L(k)ar)" (L(k)ar)] (A.9)

> B[(F(k)ay)" (F(k)ay)]

Since F'(k) is independent of the designed LTV control law C(k), the term F(k)ax in the
closed-loop output Y} is feedback controller-invariant. Thus, the term F'(k)ay provides the
most fundamental measure of E[Y,'Y;], and E[Y,!Y;] is minimized when L(k) = 0. So, the

LTV control law C(k) that minimizes E[Y;!Y}] satisfies

R(k)g~"® = Q(R)(F(k — dyo(k))q~ "™ + R(k — dyo(k))q~ ot~y = 0 (A.10)

Substitute equation (A.5), equation (A.10) can be rearranged as

C(k — deo(k)) =T [(F(k — doo(k))q™® + R(k — dyo(k))gebmdeotED=deolB)) (A 11)
(R(k,)q—dso(k))—l _ q—dso(k)]—l
— ~‘1[(F(k: — o (k))g %o ®) 4 gdso®) B(k) g d=o®)
(R(k)q %otk =L — gdeo(k)] L
=T F(k — dgo(k))(R(k)g %W (g=d=*))=1)=1] 1

=T R(k)F " (k — dso(k))
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where T' and F(k) are invertible according to the assumptions made in Section 1.2.2. To
get the LTV control law C(k), substituting equations (4.11) and (4.12) into equation (A.11)

yields

CK —dy — deg(K — dy)) = T R(EVF UK — dy — dea(K' — dy) — dye(k' — dy — dea(K' — dy)))

(A.12)
If we define k" = k' — d,, we can get
C(K" = dea(K")) = T R(EK" + d)F (K" = dea (k") — dae (K" — dea(K"))) (A.13)
Further, defining k = k" — d.,(k"”), we have
C(k) =T R(k + dea(K") + ds) 7 (k = de(k)) (A.14)
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A.3 Parameters of the reactor-separator process

Table A.1: Steady state values, system parameters and controller parameters of the reactor-
separator process

Parameter  Value Units  Parameter  Value Units Parameter Value
H, 29.8 m A 3 m? P 4.944 x 10*
T A1 0.4524  wt(%) Ag 3 m? I 1420
TB1 0.4809  wt(%) Az 1.5 m? D, 6.611 x 10*
T 440.47 K p 1 kg/m? Ny 1.852
H, 30 m Cp 2.5 kJ/kg K Py —210.8
T A9 0.4336  wt(%) T A0 1 wt (%) I —843.2
B2 0.4917  wt(%) Tho 313 K D, 0
T, 438.05 K T 313 K N, 0
Hy 32.7 m ka 0.8 1/s P; —7.533 x 104
T A3 0.2006  wt(%) kp 0.6 1/s I3 —4167
B3 0.6286  wt(%) Es/R 900 K D5 —3.273 x 10°
T 444.13 K Eg/R 1500 K Nj 3.014
Fp 5.4 kg/s AHy -40 kJ/kg
1 1000 kJ/s AHp -55 kJ/kg
Fry 5.04 kg/s oA 3.5 m
Q- 1000 kJ/s ap 1.1 m
Fr 55.4 kg/s ac 0.5 m
Q3 1000 kJ/s
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Appendix B

Detailed Derivations of Chapter 5

B.1 Proof of positive semi-definite matrix

According to equation (5.31), we define

t+N—1

Z Z H )\65z+1 p€EfHN|TH]]‘V|Tt pref

[ Te+1= =0 6t+N 0 i=t—7¢

where [TV ! A5, > 0and HY[T H{Y|,, is a positive semi-definite matrix. Thus, we have

ltTt

VT

orefH ¥ N | H ]{V |7, Vores > 0 for any possible V)., and subsequently we can obtain M > 0 for

any possible V,,.r. Then, in equation (5.34)

M = (U, mf)TTNm >0

j2 pref —

for any possible U” sref- Thus, T¥|7; is proven to be a positive semi-definite matrix.
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