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Abstract

Networked control systems (NCSs) and distributed networked control systems (DNCSs) in-

creasingly appear in the modern process industry due to continuous expansion of system

scales, physical setups and functionalities. Control loops in a NCS are closed through infor-

mation exchange between the spatially distributed controller and system components over a

shared network, while local information in a DNCS is transmitted between different subsys-

tems through a communication network to compensate for plant-wide interaction. However,

the inevitable and time-varying network-induced communication delays degrade the system

control performance and lead to a non-stationary behavior of the closed-loop system, which

pose great challenges in the design of automatic control systems over network. On the other

hand, control performance assessment is an asset-management technology aiming at optimal

control performance and cost effectiveness. The key to control performance assessment is

first to find the limit of control performance and then to estimate this benchmark control

performance from routine operating data. This thesis extends the first step of centralized

control performance assessment techniques to distributed networked control and networked

control cases with random communication delays.

Input and output communication delays between different subsystems are posed as the

controller and observer structure constraints in DNCSs. In order to handle random commu-

nication delays, the limits of control performance in terms of variance for DNCSs is proposed

as a bounded performance region with respect to the range of communication delays. Then,

the same idea is extend to characterize the limits of linear quadratic Gaussian (LQG) control
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performance for DNCSs with the upper and lower LQG tradeoff curves.

Controller-to-actuator and sensor-to-controller communication delays are both considered

as random values or first order Markov chains in NCSs. A practical linear time-varying (LTV)

minimum variance benchmark is proposed for NCSs by using order of the interactor matrix

(OIM) and relative degree of the interactor matrix (RIM). It is shown that the obtained

benchmark terms can be estimated from routine operating data. Further, an explicit solution

to time-varying model predictive control (MPC) is derived for NCSs, based on which the

limits of control performance for networked model predictive control systems is proposed

as the time-varying MPC performance tradeoff curve. The applicability and effectiveness

of the proposed approaches are illustrated via their applications to different numerical and

chemical process examples.
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Chapter 1

Introduction

1.1 Motivation

NCS has been one of the most attractive topics in both industry and academia due to

continuously expanding physical setups and functionalities in modern industrial processes

[2, 3, 4, 5]. A typical NCS consists of spatially distributed controller and system components

(physical plants, actuators, sensors, etc.). Control loops in a NCS are closed through infor-

mation exchange between the spatially distributed controller and system components over a

shared network. The elimination of unnecessary wiring in NCSs reduces overall cost for the

installation of control systems and provides ease in maintenance. In addition, by connect-

ing cyber to physical space through communication network, NCSs are able to fuse global

information and operate systems across long distance [6, 7]. On the other hand, large-scale

processes typically can be decomposed into several operating subsystems that interact with

each other through materials, energy and information networks. Design of automatic control

systems from the distributed and the networked perspectives has gained popularity [8, 9].

In a DNCS, which denotes NCS with a number of spatially distributed subsystems, local

information is transmitted between different subsystems through a communication network

to compensate for plant-wide interaction. Different subsystems efficiently cooperate with

1



each other through the information exchange to achieve a desired control performance and

to reduce the computation cost. This feature makes DNCS more structurally flexible and

favorable for fault tolerance.

However, the inevitable and time-varying network-induced communication delays degrade

the system control performance and lead to a non-stationary behavior of the closed-loop sys-

tem, which pose great challenges in the design of automatic control systems over network

[10, 11]. Therefore, for better regulation of systems, the design of advanced control algo-

rithms for NCSs and DNCSs has largely preoccupied the control researchers’ efforts; the

authors are referred to [12, 13, 14, 15] for results on distributed networked control and

[16, 17, 18, 19, 20, 21] for results on networked control. Although a variety of control design

techniques have been proposed, the literature is relatively sparse on studies concerned with

control performance assessment of NCSs and DNCSs. Control performance assessment is

an important asset-management technology with a goal towards achieving optimal control

performance [22, 23], in which the limit of control performance for an existing control sys-

tem is determined and used to evaluate the potential for control performance improvement.

Finding the limit of control performance is helpful on maintaining control performance of

a NCS or a DNCS. Comparing with the theoretically best achievable one, the potential for

further control performance improvement indicates the needs for the tuning of controller and

observer or the improvement of communication network topology. In this thesis, for control

performance assessment purpose, the limits of control performance for DNCSs and NCSs

with random communication delays is derived.

1.2 Literature review

In this section, literature review of control performance assessment is first presented. Then,

the main mathematical techniques and concepts employed throughout this thesis is illus-

trated. Starting from the definition of the unitary interactor matrix, the algorithm of the

2



multivariate minimum variance benchmark is explained. Further, the idea of the LQG trade-

off curve is introduced.

1.2.1 An overview of control performance assessment techniques

The notable work of the minimum variance benchmark for univariate processes laid the

theoretical foundation for control performance assessment [24], where the control objective

was to minimize output variance and the feedback controller-invariant term was proposed

as a benchmark to assess control loop performance. This contribution was significant due to

the fact that only the a priori knowledge of univariate system time delay is required for the

estimation of the benchmark term from routine operating data. Another related performance

assessment statistic defined as the normalized performance index was proposed in [25]. Then,

the idea of minimum variance benchmark was extend to unstable and non-minimum phase

univariate processes in [26].

The concept of univariate system time delay, which denotes delay between a pair of input

and output, is important in determining univariate minimum variance control. This idea was

extended to multivariate minimum variance control, where delay between a set of inputs and

outputs is termed as the interactor matrix. The interactor matrix was first proposed in

[27] with a lower triangular form. The multivariate minimum variance control law designed

based on this form of the interactor matrix is output-order dependent [28]. Then, the unitary

interactor matrix is proposed in [29] as a special form of the interactor matrix. The unitary

interactor matrix is an all-pass factor, and factorization of such interactor matrix retains

the spectral property of the underlying system and is ideal for the design of multivariate

minimum variance control [1]. By introducing the unitary interactor matrix, the works

of Huang [30] and Harris [31] extended the minimum variance benchmark to multivariate

processes, where the minimum variance control law is shown to be unique.

The algorithm for factoring the lower triangular interactor matrix as proposed in [27]

requires a complete knowledge of the process model. However, a large-scale process typically
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consists of thousands of control loops, where process dynamics and disturbances may vary

with time. Identification and on-line update of such a process model are demanding require-

ments. Moreover, control performance assessment should be carried out with disturbing the

running system as less as possible. Thus, factoring the interactor matrix from process model

is not a desirable approach. An algorithm for directly estimating the unitary interactor ma-

trix from closed-loop data was proposed in [32] to promote the use of multivariate minimum

variance control as a benchmark for control performance assessment.

In the work of Huang [30], the minimum variance benchmark for multivariate processes

was introduced by considering system time delays (the unitary interactor matrix) as the most

fundamental performance limitation. Some extensions of this work were proposed to cover

more realistic performance limitations. In [1], the generalized unitary interactor matrix was

proposed to factorize both the non-minimum phase zeros and the infinite zeros from pro-

cess model, based on which the control performance assessment algorithm for multivariate

non-minimum phase processes was provided. User-specified benchmarks were proposed in

[33, 34] to include design specifications of the closed-loop system dynamics. In [35], the mini-

mum feedforward plus feedback control variance was shown estimable from routine operating

data, and can then be used as a benchmark for performance assessment of feedforward plus

feedback controllers.

Although the unitary interactor matrix can be estimated from closed-loop data [32] with

perturbations, the obtained unitary interactor matrix is generally not accurate enough and

not easily understood for practical application. Hence, reducing the complexity of the re-

quirement to develop the interactor matrix is of interest [36]. Ko and Edgar [37] proposed

a method to estimate the multivariate minimum variance benchmark using routine operat-

ing data, which does not require the intermediate interactor matrix. McNabb and Qin [38]

developed an algorithm for assessing control performance from routine operating data using

subspace projection and state space formulation. Although these attempts reduced the com-

plexity of the a priori knowledge to some extent, they all require certain information that is

4



fundamentally equivalent to the interactor matrix. Then, practical solutions to multivariate

feedback control performance assessment were introduced in [39] by using OIM and RIM.

In [40], estimation of the upper and lower bounds of the multivariate minimum variance

benchmark from routine operating data is proposed with known I/O delay matrix.

So far, various control performance assessment methods exist for stationary systems.

But there are only few results available for assessing control performance in the presence

of non-stationary characteristics in routine operating data. Control performance assessment

techniques developed for processes with time-varying disturbance dynamics were introduced

in [41, 42]. Li and Evans [43] proposed a d-step ahead minimum variance control algorithm

for LTV processes in the form of autoregressive moving average (ARMA) models. Huang

[44] developed a general framework for the minimum variance benchmark of LTV univariate

processes, and the industrial applications of this work were presented in [45].

Minimum variance control provides useful information for control performance assess-

ment, as no other controller can achieve a lower output variance. However, tighter require-

ments on output variance result in stronger disturbance rejection, and typically requires

larger variation in control action (more control effort) [46]. Minimum variance control is

usually not practical for real process operation due to its demand for excessive control ef-

fort and poor robustness. One may be interested in knowing how far away the real system

output variance is from the best achievable system output variance with the same control

effort. Grimble [47] proposed the generalized minimum variance benchmark for univariate

processes by considering control effort penalty, and this work was further extended to mul-

tivariate processes in [48]. Huang [1] proposed the use of the LQG benchmark for control

performance assessment, where the LQG tradeoff curve was introduced to show the limit

of control performance in terms of the best achievable input and output variances. As rec-

ommended in [1], the LQG solution can be achieved with the infinite generalized predictive

control approach, or can be approximated by the generalized predictive control solution with

a finite prediction horizon in practice. However, calculation of the LQG solution relies on a
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complete knowledge of the process model. A simpler method for obtaining the LQG bench-

mark based on the Lyapunov equation and subspace matrices was proposed in [49]. Kadali

and Huang [50] proposed a subspace identification based approach to directly estimate the

LQG benchmark from routine operating data. A subspace method for LQG design and

performance assessment of supervisory-regulatory control systems was proposed in [51].

In addition, MPC has been proven as one of the most effective advanced process control

strategies to deal with constraint control problems and economic objectives. The LQG bench-

mark cannot handle the hard constraints and is an unattainable benchmark for commercial

MPC algorithms. Julien, Foley and Cluett [52] pointed out that, unless the actual distur-

bance is a random walk, the best achievable MPC performance will never fall on the LQG

benchmark even if the constraints are inactive. Then, several results for performance assess-

ment of MPC were developed by considering constraints in control problems [53, 54, 55, 56].

Economic performance assessment methods of MPC were proposed in [57, 58] through the

syntheses of variance control objectives and economic objectives using optimization-based

approaches.

However, all of the aforementioned methods are concerned with performance assessment

of centralized control systems. In NCSs and DNCSs, the time-varying network-induced

communication delays degrade the system control performance and lead to a non-stationary

behavior of the closed-loop system. The influence of communication delays on the best

achievable system control performance has been seldom considered in existing control per-

formance assessment methods. This fact motivates the works of this thesis.

1.2.2 Multivariate minimum variance benchmark

The aim of the minimum variance benchmark for multivariate processes is first to design the

benchmark term (output with minimum variance), then estimate this benchmark term from

routine operating data by multivariate time series analysis. In the following, we will adopt

the algorithm developed in [30] to illustrate this procedure. Unless otherwise illustrated, a
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standard multivariate process model

Yt = T (q−1)Ut +N(q−1)at (1.1)

is used throughout the thesis, where T (q−1) and N(q−1) are proper, rational transfer function

matrices in the backshift operator q−1; Yt, Ut and at are the output, input and disturbance

vectors of dimensions ny, nu and na, respectively. For simplification purposes, we make the

following assumptions without loss of generality:

1. T (q−1) and N(q−1) are square transfer function matrices and contain no non-minimum

phase zeros except for infinite zeros;

2. at is white noise with zero mean and unit variance.

Non-minimum phase zeros in N(q−1) can be factored out by an all pass factor without

affecting the noise spectrum. Further, when E[ata
T
t ] 6= I, the disturbance model N(q−1) can

always be scaled to satisfy this assumption. For the sake of brevity, in the rest of this thesis,

the backshift operator q−1 is dropped in the expression of all transfer function matrices unless

circumstances necessitate its presence.

The system time delays of multivariate processes T can be factored as

T = D−1T̃ (1.2)

where D is called the unitary interactor matrix [59] and can be served as the optimal gen-

eralization of univariate system time delay to the multivariate case. In equation (1.2), D−1

contains the infinite zeros of T , and T̃ is an invertible transfer function matrix which only

contains the finite zeros of T .
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Definition 1 A non-singular polynomial matrix D is defined as the interactor matrix, if

for a proper rational transfer function matrix T , such that

lim
q−1→0

DT = lim
q−1→0

T̃ = K (1.3)

where K is a full rank constant matrix; T̃ is a delay-free (invertible) transfer function matrix

of T . The matrix D can be written as

D = D0q
ds +D1q

ds−1 + · · ·+Dvsq
ds−vs (1.4)

where ds is OIM which is the maximum power of q in D; vs is RIM which is the difference

between the maximum and the minimum power of q in D; Di (i = 0, · · · , vs) is coefficient

matrix. If the interactor matrix D satisfies DT (q−1)D(q) = I, then this interactor matrix is

further defined as the unitary interactor matrix, thus

D−1 = DT
vsq
−ds+vs + · · ·+DT

1 q
−ds+1 +DT

0 q
−ds (1.5)

There are three different forms for the interactor matrix D: 1) D = qdsI is a simple interactor

matrix; 2) D = diag(qds1 , qds2 , · · · , qdsny ) is a diagonal interactor matrix; 3) D is a general

interactor matrix otherwise [60].

In stationary case, it has been shown that multiplying an unitary interactor matrix to

the output does not change its variance, i.e.

E[Ỹ T
t Ỹt] = E[Y T

t Yt] (1.6)

where Ỹt = q−dsDYt, which can be called as the interactor filtered output. Multiplying q−dsD
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to both sides of equation (1.1) yields

Ỹt = q−dsDYt = q−dsT̃Ut + q−dsDNat (1.7)

where using the Diophantine identity:

q−dsDN = F + q−dsR (1.8)

where, F is the polynomial matrix consisting of the first ds terms in q−dsDN , and R is the

remaining transfer function matrix in q−dsDN . Then, Ỹt can be written as

Ỹt = Fat + q−ds(T̃Ut +Rat) (1.9)

Since the two terms on the right hand side of equation (1.9) are independent, as a result

E[Ỹ T
t Ỹt] ≥ E[(Fat)

T (Fat)] (1.10)

Thus, for centralized control systems, Ỹt with minimum variance can be obtained as

Ỹt|mvc= Fat = F0at + · · ·+ Fds−1at−ds+1 (1.11)

where Fi (i = 0, · · · , ds− 1) is the ith coefficient matrix in F . The corresponding centralized

minimum variance control law is given by

U(t)|mvc= −T̃−1RF−1Ỹt|mvc (1.12)

Due to the minimum variance benchmark term is independent of Ut as shown in equation

(1.9), the coefficient matrices F0, · · · , Fds−1 can be estimated from the interactor filtered

routine operating data of any stable process output Yt by simple multivariate time series
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Figure 1.1: The LQG tradeoff curve [1].

analysis [30]. Then, the centralized control performance index can be calculated as

ηc =
E[Ỹt|TmvcỸt|mvc]

E[Y T
t Yt]

=
tr(F T

0 F0 + · · ·+ F T
ds−1Fds−1)

tr(var(Yt))
(1.13)

1.2.3 LQG tradeoff curve

In general, variation in a system arises from the disturbance. Tighter requirements on output

variance result in stronger disturbance rejection, and typically requires larger variation in

control action (more control effort) [50, 46]. Due to this tradeoff between output variance

and control effort, one may be interested in knowing how far away the real system output

variance is from the best achievable output variance with the same control effort.

In the control performance assessment based on the LQG benchmark, a tradeoff curve

as shown in Figure 1.1 is used to solve this problem. The tradeoff curve is obtained from
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solving the LQG problem with an objective function defined by

J(ω) = E[Y T
t Yt] + ωE[UT

t Ut] (1.14)

where ω is weighting factor. By varying ω, various LQG control solutions of control effort

E[UT
t Ut] and output variance E[Y T

t Yt] can be calculated. Then, the tradeoff curve can be

determined from these solutions with the optimal E[UT
t Ut] as the x-axis and E[Y T

t Yt] as the

y-axis, respectively.

The whole control region is divided into the achievable region and the non-achievable

region by the obtained LQG tradeoff curve. Any linear controller can only operate in the

achievable region which is above the LQG tradeoff curve. With a given E[UT
t Ut] in real

system, the best achievable value of E[Y T
t Yt] can be found from this curve. The difference

between the best achievable E[Y T
t Yt] and the real E[Y T

t Yt] can be used for control perfor-

mance assessment.

1.3 Contributions of this thesis

The main contributions of this thesis are listed below:

1. Proposed the limits of control performance in terms of variance for DNCSs with random

communication delays as a bounded performance region;

2. Proposed the lower and upper LQG tradeoff curves to characterize the limits of LQG

control performance for DNCSs with random communication delays. Investigated and

demonstrated the non-applicability of separation principle in distributed networked

control;

3. Derived an explicit solution to LTV minimum variance control of NCSs with random

communication delays. Developed a practical LTV minimum variance benchmark for
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NCSs by using OIM and RIM, where the benchmark terms are shown to be estimable

from routine operating data;

4. Derived an explicit solution to time-varying MPC of NCSs with random communica-

tion delays. Proposed the time-varying MPC performance tradeoff curve for control

performance assessment of networked model predictive control systems.

1.4 Organization of this thesis

In Chapter 2, the limits of control performance in terms of variance for DNCSs with ran-

dom communication delays is investigated. With a goal towards the best achievable control

performance, a fixed network topology is designed for DNCSs where each subsystem in the

network can communicate directly with all the other subsystems. Output communication

delays and system time delays serve as the most fundamental performance limitations in

distributed networked control, and are fully considered in the proposed distributed output

feedback controller design. First, an optimization-based solution to minimum variance con-

trol of DNCSs with time-invariant communication delays is developed. The obtained output

with minimum achievable variance is equal to the feedback controller-invariant term plus a

polynomial term with its order equal to the maximum communication delay between differ-

ent subsystems. Then, this result is extend to DNCSs with random communication delays,

where the lower and upper bounds of the minimum achievable output variance are obtained

by considering boundary values of random communication delays. Finally, a numerical case

study is conducted to compare the best achievable performance between centralized control

and distributed networked control in terms of the output variance.

In Chapter 3, the lower and upper LQG tradeoff curves are proposed to characterize the

limits of LQG control performance for DNCSs with random communication delays. As an

alternative to the work in Chapter 2, a distributed LQG control framework is developed

by further considering input communication delays and control effort penalty. The opti-
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mal structures of distributed state feedback controllers and distributed observers are first

presented. Furthermore, a algorithm is proposed for designing distributed controllers and

distributed observers simultaneously, based on which the lower and upper LQG tradeoff

curves can be obtained. State estimation performance and control performance of the pro-

posed algorithm are illustrated via a simulation study, and the non-applicability of separation

principle in distributed networked control is tested.

In Chapter 4, practical solutions to the LTV minimum variance benchmark are developed

for NCSs with random communication delays, where sensor-to-controller communication

delay and controller-to-actuator communication delay are considered as independent random

variables. The interactor matrix estimated from closed-loop data is generally not accurate

enough in practice, especially when there are non-stationary characteristics in closed-loop

data. Hence, the interactor matrix should be avoided when obtaining the control performance

assessment benchmark for NCSs. To begin with, an explicit solution to the LTV minimum

variance benchmark is derived for NCSs with the simple interactor matix. Furthermore, this

result is extended to the development of practical solutions to the LTV minimum variance

benchmark for NCSs with the general interactor matrix, where only OIM and RIM are

assumed to be known as the a priori knowledge. Finally, a direct method is proposed to

estimate the benchmark terms from routine operating data. The theoretical results are

demonstrated through the application to a reactor-separator chemical process.

In Chapter 5, the time-varying MPC performance tradeoff curve is proposed to charac-

terize the limits of control performance for networked model predictive control systems with

random communication delays. Sensor-to-controller communication delay and controller-

to-actuator communication delay are considered as first order Markov chains with known

transition probabilities. In particular, an explicit solution to time-varying MPC of NCSs is

derived by minimizing the expectation of a quadratic cost function over all possible future

communication delays in the prediction horizon. Based on this control design, the time-

varying MPC performance tradeoff curve is presented for control performance assessment of
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networked model predictive control systems. Further, a strategy is provided for obtaining

the time-varying MPC performance tradeoff curve from process model. The effectiveness

of the proposed control design and the use of the time-varying MPC performance tradeoff

curve in control performance assessment are illustrated via a simulation study.

In Chapter 6, the entire thesis is summarized and the future works are presented based

on practical needs for further improvements.

This thesis has been written in a paper-format in accordance with the rules and regula-

tions of the Faculty of Graduate Studies and Research, University of Alberta. Many of the

chapters have appeared or are to appear in archival journals or conference proceedings. In

order to link the different chapters, there is some overlap and redundancy of material. This

has been done to ensure completeness and cohesiveness of the thesis material and help the

reader understand the material easily.
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Chapter 2

Limits of Minimum Variance Control

Performance for DNCSs with

Random Communication Delays1

2.1 Introduction

Nowadays, large-scale processes usually consist of several unit operations (subsystems) which

interact with each other through networks of material, energy and information streams. A

substantial increase of plant scale and complexity leads to high computation cost as well

as reduced fault tolerance for centralized control system. Due to these concerns, the de-

velopment of DNCSs has attracted much attention [5, 8]. In a DNCS, a local controller is

designed for each subsystem, and different local controllers efficiently cooperate in achieving

the desired control objectives. Information of local states, control actions and outputs is

transmitted between different subsystems through the communication network to compen-

sate for plant-wide interaction [9, 61]. In this way, computation cost can be reduced, and

1A shorter version of this chapter has been published in “Guoyang Yan, Jinfeng Liu, and Biao Huang.
Limits of control performance for distributed networked control systems in presence of communication delays.
International Journal of Adaptive Control and Signal Processing. 2018 Sep 32(9): 1282-93”.
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control performance can be guaranteed to a certain degree. Furthermore, because each local

controller works separately, DNCS is more favorable in terms of fault tolerance as well as

maintenance compared to the centralized one.

However, distributed networked control framework poses additional limitations on the

best achievable control performance, where communication delays are the most fundamental

one. In a DNCS, a communication network is needed for data exchange between different

subsystems. Communication delays caused by wireless network, bandwidth limits, or trig-

gered communication are one of the key factors that may affect control performance [14].

Hence, the overall control performance of a DNCS will be subpar compared to the one that

can be achieved in the centralized case.

Motivated by the above discussions, to maintain highly efficient operation performance

of DNCSs, this chapter is concerned with the limits of control performance in terms of

variance for DNCSs with random communication delays. An explicit solution to distributed

minimum variance control has great theoretical and practical value, but it is also equally

difficult to obtain. The main difficulty arises due to the controller structure constraints

caused by communication delays, as this yields a non-convex optimization problem. In

this chapter, (i) communication delays are posed as the controller structure constraints;

(ii) the gap between the minimum achievable output variance under centralized control

and distributed networked control is proven to be a polynomial term with its order equal

to the maximum communication delay between different subsystems. As a special case,

when a DNCS has perfect communication, distributed networked control has the same best

achievable performance as centralized control; (iii) minimum variance control for DNCSs

with time-invariant communication delays is modeled as an optimization problem and solved

using sums of squares programming; (iv) limits of minimum variance control performance for

DNCSs with random communication delays is chosen as a region between the lower and upper

bounds of minimum achievable output variance by selecting communication delays between

all subsystems as the minimum and the maximum values, respectively; (v) a simulated
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example is incorporated to show the results of the proposed work.

2.2 Preliminaries

2.2.1 System description

Consider a discrete-time linear time-invariant (LTI) system:

Yt = TUt +Nat (2.1)

where t indicates current time instant; T and N are proper rational transfer function matrices

in the backshift operator q−1; Yt, Ut and at are output, input and disturbance vectors of

appropriate dimensions. The whole system is divided into n subsystems. Yit and Uit are

the output and input vectors of subsystem i with proper dimensions, respectively. Thus,

Yt = [Y T
1t , . . . , Y

T
nt ]

T and Ut = [UT
1t, . . . , U

T
nt]

T .

2.2.2 Modeling of communication network

In this chapter, we consider a distributed networked control framework as shown in Figure

2.1, where a class of discrete-time LTI systems are composed of n interconnected subsystems.

Measurements of the n subsystems are sampled synchronously and periodically at time in-

stant tk which is the starting time of the kth sampling period. Each subsystem controller

is assumed to have direct and immediate access to the measurements of its corresponding

subsystem, and can transmit information of the local measurements to all other subsystem

controllers through a communication network. Further, information is assumed to be trans-

mitted (and received) by subsystem controllers once within each sampling period, and the

exchange of information is subject to random communication delays. The delay of informa-

tion transmission from subsystem j to subsystem i at time instant tk is denoted as a positive

integer dij(tk). If at time tk, controller i receives the latest information of controller j sent
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Y Yn
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Figure 2.1: Network topology design for DNCSs with random communication delays.

at time tk−q, then dij(tk) = q. Further, the maximum and the minimum possible values of

dij(t) for 1 ≤ i, j ≤ n, i 6= j are predetermined, denoting as dmax and dmin, respectively.

In each sampling period, all measurements of a subsystem are transmitted together as one

package.

2.2.3 Controller structure

For many DNCSs, although systems are running distributedly, controllers can be centrally

designed and then applied distributedly in the real-time functioning. In this case, the design

of control law for each subsystem is done with common knowledge of the other subsystems.

Thus, the design problem is more trackable and the global control performance is more

reliable [15].

In this chapter, a distributed output feedback controller is designed in the centralized

way for DNCSs shown in Figure 2.1. Without loss of generality, the controller for each

subsystem is designed based on the available output information from all subsystems. The
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whole controller can be expressed as Ut = Q(t)Yt, where

Q(t) =


q−d11(t)Q11(t) · · · q−d1n(t)Q1n(t)

...
...

...

q−dn1(t)Qn1(t) · · · q−dnn(t)Qnn(t)

 (2.2)

is a controller of transfer function matrix in the backshift operator q−1 at time t. In equation

(2.2), Qij(t) is the (i, j)th sub block of Q(t), and dij(t) is the communication delay from

subsystem j to i at time t. Normally, dij(t) = 0 when i = j. The controller of subsystem i

is the ith row of Q(t) which can be expressed as

Uit = Qii(t)Yit +

n,j 6=i∑
j=1

q−dij(t)Qij(t)Yjt (2.3)

According to equation (2.3), in the controller of subsystem i, the output information of

subsystem j is used up to time t− dij(t), and all the information of subsystem j after time

t− dij(t) is unavailable to subsystem i due to communication delays.

The structure of Q(t) is constrained by communication delays in the outputs at time

t. Thus, the control structure considered in this chapter only depends on the output feed-

back. When a control structure also has input communication delays, further performance

limitation will be expected. A time-varying controller is needed to achieve the theoretical

lower bound of the output variance when there are random communication delays. Fur-

ther, the controller shown in equation (2.2) can be reduced to a time-invariant controller if

communication delays are time-invariant.

2.2.4 Main objective

The main objective of this chapter is to find the theoretically achievable lower bound of

tr[var(Yt)] in DNCSs considering two types of communication delays; time-invariant com-

munication delays and random communication delays, respectively. The achievable value of
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tr[var(Yt)] is limited by system time delays when we can design multivariate controller with

full degree of freedom. In DNCSs, such a value will further be limited by the controller struc-

ture constraints caused by communication delays. To distinguish the influence of different

limitations, we denote the minimum output variance under distributed networked control as

min
Q(t)

tr[var(Yt)] = Jsysd + Jcomd (2.4)

where Q(t) is the controller with structure constraints shown in equation (2.2); Jsysd is equal

to the multivariate minimum variance benchmark obtained in centralized control systems,

which is the most fundamental limit of control performance caused by system time delays;

Jcomd is the additional term caused by communication delays in DNCSs, and can be served

as the gap of the best achievable control performance between centralized control systems

and DNCSs.

2.3 Limits of distributed minimum variance control per-

formance considering time-invariant communica-

tion delays

In this section, we derive an explicit relationship between the minimum achievable output

variance and the distributed controller which suffers from time-invariant communication de-

lays. The best achievable control performance for DNCSs with time-invariant communication

delays is obtained through optimization-based method. Because communication delays are

time-invariant, the parameter t is dropped from Q(t) and dij(t) in this section.
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Figure 2.2: Closed-loop system with separation of the interactor matrix.

2.3.1 Problem formulation

Consider the system shown in Figure 2.2:

Yt = D−1T̃Ut +Nat (2.5)

where D is the unitary interactor matrix of transfer function matrix T . We assume that ds is

the order of D and vs = ds− 1 for the sake of convenience. For regulatory control Ut = QYt,

using the Diophantine identity [31]:

Q = X + q−d̄L (2.6)

where d̄ ≥ 1 is the maximum communication delay among dij for 1 ≤ i, j ≤ n; X is a

polynomial matrix of order d̄−1, and L is the remaining transfer function matrix. According

to equation (2.2), all the controller structure constraints caused by communication delays

are contained in X, and L can be designed with full degree of freedom.
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Multiplying both sides of equation (2.5) by q−dsD yields

q−dsDYt = q−dsT̃Ut + q−dsDNat (2.7)

where using the Diophantine identity gives

q−dsDN = F + q−dsM + q−(ds+d̄)R (2.8)

Here, F and M are polynomial matrices of order ds − 1 and d̄ − 1, respectively; R is the

remaining transfer function matrix. Substituting equations (2.6), (2.8) and Ut = QYt into

equation (2.7), we obtain the following set of equation by rearranging (2.7):

q−dsDYt|mvd = Fat +Wat−ds (2.9)

T̃XYt−ds |mvd = −(M −W )at−ds + θat−ds−d̄ (2.10)

T̃LYt−ds−d̄|mvd = −(R + θ)at−ds−d̄ (2.11)

where Yt|mvd is the output with minimum achievable variance for DNCSs with time-invariant

communication delays; Fat is the feedback controller-invariant term for centralized control

systems; Wat−ds is the additional term in minimum achievable output variance caused by

communication delays; θ is a transfer function matrix. The equation set (2.9)-(2.11) is

assumed to hold without loss of generality.

Proposition 1. Term W is a polynomial matrix of order d̄ − 1 for all possible values of

communication delays between different subsystems.
∑d̄−1

i=0 tr(W
T
i Wi) is served as the gap

between the best achievable control performance under centralized control and distributed

networked control, where Wi is the ith coefficient matrix of W .

Proof: When equation set (2.9)-(2.11) holds, equation (2.7) holds naturally. From
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equation (2.9), Yt|mvd can be solved as

Yt|mvd = qdsD−1(F + q−dsW )at (2.12)

= (qdsD−1F +D−1W )at

For the unitary interactor matrix D, we have D−1(q) = DT (q−1). Therefore,

E = qdsD−1F (2.13)

= (DT
0 + · · ·+DT

ds−1q
ds−1)(F0 + · · ·+ Fds−1q

−ds+1)

where Fi is the ith coefficient matrix in F . Owing to causality, any term with a positive

power of q in equation (2.13) must be zero. So, we have

E = E0 + E1q
−1 + · · ·+ Eds−1q

−ds+1 (2.14)

with Ek =
∑ds−1−k

i=0 DT
i Fi+k.

Substituting equation (2.12) into (2.10) yields

W = (I − T̃XD−1)−1(M + T̃XE)− q−d̄(I − T̃XD−1)−1θ (2.15)

where we define P = (I − T̃XD−1)−1(M + T̃XE). Using the Diophantine identity,

P = B + q−d̄C (2.16)

where B is a polynomial matrix of order d̄ − 1, and C is the remaining transfer function

matrix. Then, we have

var[Yt|mvd] = var[Fat] + var[Bat−ds ] + var[(C − (I − T̃XD−1)−1θ)at−ds−d̄] (2.17)
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where B only depends on X and generally cannot be zero when there are communication

delays in DNCSs.

To minimize the output variance, we select

θ = (I − T̃XD−1)C (2.18)

to make the third term on left hand side of equation (2.17) equal to zero. Thus, the minimum

achievable output variance is given by

var[Yt|mvd] = var[Fat] + var[Wat−ds ] (2.19)

with W = B a polynomial matrix of order d̄− 1. Further, L is given by

L = −qdsT̃−1(R + θ)(F + q−dsW )−1D (2.20)

in order to satisfy the set of equations (2.9)-(2.11). �

For any given X, W is required to be a polynomial matrix of order d̄ − 1 and this is

ensured by selecting θ and L based on equations (2.18) and (2.20), respectively. According

to equation (2.15), W = B can be written in a compact matrix form as:



W0

W1

...

Wd̄−1


=



H0

H1

...

Hd̄−1


+



0 0 · · · 0

K0 0 · · · 0

...
...

. . .
...

Kd̄−2 Kd̄−3 · · · 0





W0

W1

...

Wd̄−1


(2.21)
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

H0

H1

...

Hd̄−1


=



M0

M1

...

Md̄−1


−



T̃0 0 · · · 0

T̃1 T̃0 · · · 0

...
...

. . .
...

T̃d̄−1 T̃d̄−2 · · · T̃0





X0 0 · · · 0

X1 X0 · · · 0

...
...

. . .
...

Xd̄−1 Xd̄−2 · · · X0





E0

E1

...

Ed̄−1


(2.22)



K0

K1

...

Kd̄−2


=



T̃0 0 · · · 0

T̃1 T̃0 · · · 0

...
...

. . .
...

T̃d̄−2 T̃d̄−3 · · · T̃0





X0 0 · · · 0

X1 X0 · · · 0

...
...

. . .
...

Xd̄−2 Xd̄−3 · · · X0





DT
ds−1

DT
ds−2

...

DT
ds−d̄+1


(2.23)

where Wi is the ith coefficient matrix of W ; Hi and Ki are coefficient matrices given in

equations (2.22) and (2.23), respectively. In equations (2.22) and (2.23), T̃i, Mi and Xi are

the ith coefficient matrices of T , M and X, respectively; Ei with i > ds − 1 and DT
i with

i < 0 are 0.

Remark 1. If a DNCS has perfect communication (d̄ = 0), in the equation set (2.9)-(2.11),

term W , M , X and θ will be 0. Then, Q = L = −qdsT̃−1RF−1D is just the minimum

variance controller for centralized control systems [1]. Thus, the best achievable control

performance of a system under distributed networked control and centralized control will be

identical if there is no communication delay between all the subsystems.
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2.3.2 Best achievable control performance

According to Section 2.3.1, the distributed controller that provides the best achievable output

variance is obtained by solving the following optimization problem

min
X

tr[var(Wat−ds)] (2.24)

s.t. (2.21), (2.22), (2.23)

Xk(i, j) = 0 for k ≤ dij − 1

where Xk(i, j) is the block in Xk with coordinate (i, j). The equality constraints in the op-

timization problem (2.24) accommodate the controller structure caused by communication

delays, which is shown in equation (2.2). To deal with the proposed non-convex optimiza-

tion problem with equality constraints, several global optimization methods can be used.

Polynomial optimization algorithms are applied here.

Based on the assumption that at is white noise with zero mean and unit variance, we

have

tr[var(Wat−ds)] = tr[W T
0 W0 + · · ·+W T

d̄−1Wd̄−1] (2.25)

where each element in Xi for i = 0, · · · , d̄ − 1 is defined as an individual variable, and

the corresponding variables are assigned 0 according to the equality constraint in equation

(2.24). Due to the quadratic form of Wi in equation (2.25), the cost function will be a strictly

positive real-valued unconstrained polynomial with order 2d̄ which can be written in the sum

of square form.

Global optimization of this kind of polynomials has been well established in literatures.

It has been shown that the global unconstrained minimization of these polynomials can

be approximated as closely as desired (and often can be obtained exactly) by solving a

finite sequence of convex linear matrix inequality problems. For the theory on polynomial

optimization, the interested reader is referred to [62, 63, 64, 65].
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2.4 Limits of distributed minimum variance control per-

formance considering random communication de-

lays

If a DNCS suffers from random communication delays, based on the controller structure

shown in equation (2.2), a time-varying controller is needed to achieve the theoretical mini-

mum output variance. In order to deal with the plant-wide interaction using a time-varying

distributed controller, each subsystem is required to transmit local information to all the

other subsystems, including current output measurements, communication delays and con-

trol laws. We define

Ij(tk) =

Vj(tk)
Qj(tk)

 =

dj1(tk) . . . djn(tk)

Qj1(tk) . . . Qjn(tk)

 (2.26)

where Vj(tk) and Qj(tk) are local communication delays and local control laws, respectively,

in the subsystem j at time instant tk. Because of communication delays, at time instant tk,

Ij(tk) is unavailable to subsystem i for all j ∈ J with J = {j ∈ Z : dij(tk) ≥ 1, 1 ≤ j ≤ n}.

Thus, there are two main challenges in designing such a distributed time-varying minimum

variance controller:

1. The whole controller structure of Q(tk) is unavailable to subsystem i due to the absence

of information Dj(tk) for j ∈ J , which makes it almost impossible to consider a global

control objective in the time-varying local controller design of subsystem i. Although

independent algorithms can be applied in which each local controller optimizes a local

performance index, such a control strategy can be unstable and far from the solution

when considering a global control objective [5].

2. For the system shown in equation (2.1) under output feedback control, the closed-loop

response Tcl(tk) at time instant tk is the relationship between output and disturbance.
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In minimum variance control, the disturbance rejection is realized by compensating the

influence of disturbance using output feedback. If there are random communication

delays in DNCSs, Tcl(tk) is unavailable to subsystem i due to the absence of information

Qj(tk) for j ∈ J , which makes the local disturbance rejection control law hard to design.

With these concerns, limits of minimum variance control performance for DNCSs with

random communication delays is relaxed from a specific value to a region by proposing the

lower and upper bounds of the minimum output variance. By selecting dij(t) = dmin for 1 ≤

i, j ≤ n, i 6= j , the lower bound of the minimum output variance can be obtained by solving

a distributed minimum variance control problem considering time-invariant communication

delays. Correspondingly, the upper bound of the minimum output variance can be obtained

by selecting dij(t) = dmax for 1 ≤ i, j ≤ n, i 6= j.

A two-step performance assessment strategy is proposed under this framework. The

system that indicates good performance compared to the lower bound of the minimum

output variance is guaranteed to be in a perfect condition; otherwise, the system needs to be

re-evaluated based on the upper bound of the minimum output variance. The system that

indicates poor performance compared to the upper bound of the minimum output variance

needs controller tuning or redesign of the controller. Moreover, different approaches can be

considered, e.g. the use of feedforward control.

The proposed performance assessment strategy has its advantages from an implemen-

tation perspective. When performance assessment is conducted for DNCSs with random

communication delays, the lower and upper bounds of the minimum output variance can

be calculated off-line in advance without considering random communication delays at each

time instant which may lead to a high computational load in application.

Remark 2. The use of bounds based on time-invariant delays may introduce conservativeness

into the results. If we refer to the lower bound of the best achievable control performance, we

get an overestimated result; on the other hand, if we refer to the upper bound, we may get

a conservative performance. In practice, the lower and upper bounds of the best achievable
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performance provide a fundamental reference for controller tuning.

2.5 Simulations

2.5.1 Case of time-invariant communication delays

Consider the following 2× 2 system adapted from [1]

Y1t

Y2t

 =

 q−1

1−0.4q−1
k12q−2

1−0.1q−1

0.3q−1

1−0.1q−1
q−2

1−0.8q−1


U1t

U2t

+

 1
1−0.5q−1

−0.6
1−0.5q−1

0.5
1−0.5q−1

1
1−0.5q−1


a1t

a2t

 (2.27)

where the system is divided into 2 univariate subsystems, (Y1t, U1t) and (Y2t, U2t), respec-

tively; k12 controls the extent of interaction between the 2 subsystems. The unitary interactor

matrix D can be factored out as

D =

−0.9578q −0.2873q

0.2873q2 −0.9578q2

 (2.28)

The output with minimum variance under centralized control is Yt|mvc= Fat, where F is

obtained by separating q−dsDN in the form of equation (2.8) as

F =

 −1.1015q−1 0.2874q−1

−0.1916− 0.0958q−1 −1.1302− 0.5651q−1

 (2.29)

Therefore, the minimum output variance under centralized control is tr[var(Yt|mvc)] =

tr[var(Fat)] = 2.9383, where disturbance is assumed to have unit variance.

By selecting the interaction index k12 = 1 and communication delays d12 = 2, d21 = 1,

we obtain the part of the distributed minimum variance controller that contains structure
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Figure 2.3: Comparison of minimum achievable output variance under centralized control
and distributed networked control with time-invariant communication delays.

constraints caused by communication delays as follows

X =

−0.4521− 0.0441q−1 0

−0.0011q−1 −0.1262 + 0.0233q−1

 (2.30)

where the off diagonal elements inX are zero or have time delay which indicate the limitations

on interaction compensation caused by communication delays. The additional term in the

output with minimum variance is

W =

−0.0788 + 0.0490q−1 −0.1395 + 0.0815q−1

−0.0446 −0.1746

 (2.31)

According to equation (2.31), the order of the additional term in Y1t is 1, which is consistent

with the maximum value of d1j−1 for 1 ≤ j ≤ 2, and this conclusion also holds for subsystem

2.

By selecting d12 = 2, d21 = 1, and d12 = 3, d21 = 1, respectively, tr[var(Yt|mvd)] for
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Figure 2.4: Comparison of minimum achievable output variance under centralized control and
its lower and upper bounds under distributed networked control with random communication
delays.

various k12 are compared to determine how the influence of communication delays on best

achievable control performance changes with the extent of interaction between 2 subsystems.

According to Figure 2.3, for each value of k12, there exists a distributed controller that

closely matches the performance of minimum variance controller in centralized case. The

gaps between Yt|mvc, Yt|mvd(2,1) and Yt|mvd(3,1) are caused by communication delays, and larger

communication delays will lead to a larger minimum achievable output variance. Yt|mvd(3,1)

is exactly equal to Yt|mvd(2,1) when k12 = 0, which indicates that communication delay d12

will not affect system control performance if subsystem 1 is not influenced by subsystem 2.

Further, the gap between Yt|mvd(2,1) and Yt|mvd(3,1) become larger when k12 increases, which

implies that communication delay d12 has greater influence on system control performance

if there is lager interaction from subsystem 2 to subsystem 1.
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2.5.2 Case of random communication delays

Consider another 2× 2 system adapted from [1]

Y1t

Y2t

 =

 q−1

1−0.4q−1
k12q−2

1−0.3q−1

0.7q−1

1−0.2q−1
q−2

1−0.9q−1


U1t

U2t

+

 1
1−0.4q−1

−0.9
1−0.3q−1

0.7
1−0.5q−1

1
1−0.7q−1


a1t

a2t

 (2.32)

where the system is divided into 2 univariate subsystems, (Y1t, U1t) and (Y2t, U2t), respec-

tively; k12 controls the extent of interaction between 2 subsystems. We assume that the

system shown in equation (2.32) is under distributed networked control and suffers from

random communication delays, where dmax = 3 and dmin = 2, respectively. The proposed

lower and upper bounds of the minimum output variance for various k12 are shown in Figure

2.4. The region between line dmax = 3 and line dmin = 2 can be treated as an alternative for

the minimum variance benchmark value. The proposed two-step performance assessment

strategy can be applied based on the obtained lower and upper bounds of the minimum

output variance.

According to Figure 2.4, the system with performance lies between line dmin = 2 and line

dmax = 3 is guaranteed to be in a perfect condition; the system with output variance larger

but close to the value shown in line dmax = 3 has an acceptable performance, but there still

is a potential for performance improvement; the system with output variance much larger

than the value shown in line dmax = 3 indicates poor performance, then controller tuning or

redesign of the controller is necessary. Comparing line centralized with line dmin = 2 and

dmax = 3, there is a significant gap between the conventional minimum variance benchmark

and the proposed limits of minimum variance control performance for DNCSs. Although

controller for a DNCS with communication delays is well designed, it is highly likely to show

a poor control performance if the conventional minimum variance benchmark is used as a

criterion. Thus, the best achievable control performance is overly optimistic, and may lead

engineers to search for non-existent distributed controllers. The proposed limits of minimum
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variance control performance can give a more precise estimate on the best achievable control

performance of DNCSs with communication delays.

2.6 Conclusions

In this chapter, we have discussed the limits of control performance for DNCSs, where the

control objective is defined in terms of the output variance. Two scenarios are considered:

DNCSs with time-invariant communication delays and random communication delays. For

the case of time-invariant communication delays, communication delays are posed as the

controller structure constraints and distributed minimum variance control is modeled as an

optimization problem which is solved using sums of squares programming. For the case

of random communication delays, the lower and upper bounds of the minimum output

variance are proposed as an alternative for limits of minimum variance control performance

by selecting communication delays between all subsystems as the minimum possible value

and the maximum possible value, respectively. A simulated example is presented to show

the results of the proposed work.

33



Chapter 3

Limits of LQG Control Performance

for DNCSs with Random

Communication Delays2

3.1 Introduction

Limits of minimum variance control performance for DNCSs provides useful information for

control performance assessment, as no other distributed controller can achieve a lower output

variance. However, tighter requirements on output variance result in stronger disturbance

rejection, and typically requires more control effort [46]. Minimum variance control is usually

not practical for real system operation due to its demand for excessive control effort and poor

robustness. Then, one may be interested in knowing how far away the real system output

variance is from the best achievable output variance with the same control effort. In this

chapter, limits of LQG control performance for DNCSs with random communication delays

is proposed as an alternative of the work in Chapter 2, where performance limitations of

2A shorter version of this chapter has been published in “Guoyang Yan, Jinfeng Liu, Yousef Alipouri,
and Biao Huang. Performance assessment of distributed LQG control subject to communication delays.
International Journal of Control. 2020 May 28: 1-23”.
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input communication delays and control effort penalty are further considered. Moreover,

separation principle works on the fact that control actions will not influence state estimation

error. But this condition is not hold in DNCSs with communication delays. In a DNCS,

for each of the subsystems, some information of control actions of the other subsystems

is missing due to the presence of communication delays. These missing information will

lead to additional state estimation error in the local observer. Thus, to take into account

the influence of control actions on state estimation error for DNCSs with communication

delays, exploring algorithms for designing distributed controllers and distributed observers

simultaneously is in need.

In this chapter, (i) the optimal structures of distributed state feedback controllers and

distributed observers are proposed with considering both communication delays in inputs and

communication delays in outputs; (ii) the best achievable control performance of DNCSs in

the framework of LQG is presented where distributed controllers and distributed observers

are designed simultaneously without using separation principle; (iii) the non-applicability of

separation principle is illustrated in distributed networked control with communication de-

lays; (iv) in order to handle random communication delays, the lower and upper LQG tradeoff

curves are proposed to characterize the limits of LQG control performance for DNCSs; (v)

implementation of the resulting control strategy is presented based on a numerical example.

3.2 Preliminaries

3.2.1 System description

In this chapter, we consider a class of discrete-time LTI systems described by the following

state-space model

Xk+1 = AXk +BUk +Mak (3.1)

Zk = CXk +Nak
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where k indicates current time instant; Xk, Uk, Zk and ak are the state, input, output and

disturbance vectors of dimensions nx, nu, nz and na, respectively; A, B, C, M and N are

matrices/vectors of appropriate dimensions. The entire system consists of n subsystems,

with Xik, Uik and Zik being the state, input and output vectors of subsystem i, respectively.

That is, Xk = [X1k, . . . , Xnk]
T , Uk = [U1k, . . . , Unk]

T and Zk = [Z1k, . . . , Znk]
T .

It is assumed that each subsystem has its own observer and controller. The subsystem

observers and controllers communicate and exchange information through a shared commu-

nication network and form a distributed networked control system. A schematic of the entire

system is shown in Figure 3.1. Following assumptions are made without loss of generality:

1. pair (A,B) is controllable, and pair (A,C) is observable.

2. ak consists of independent unit white noise which satisfies

E[ak] = 0, E[aka
T
k ] = I

where E[·] denotes the expectation of random variables. This assumption can always

be satisfied by properly choosing matrices M and N .

3.2.2 Modeling of communication network

In this chapter, as shown in Figure 3.1, the designed network topology is fixed where each

subsystem can communicate directly with all the other subsystems through a shared com-

munication network. Although such kind of network design is not always applicable in

real system operation, it can provide the theoretically best achievable control performance.

Comparing with the control performance obtained in this case, one can further decide if

improvement on network design is needed.

In the communication network, it is assumed that the measurements of the n subsys-

tems are synchronously and periodically sampled at the beginning of each sampling period.
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Controller n

Un Zn

(U, Z) (Un, Zn)

Observer n

System

Figure 3.1: Network topology design for DNCSs with random communication delays.

The controller and observer of each subsystem have immediate access to its local measure-

ments, and information of local measurements and control actions are transmitted to all the

other subsystems through the shared communication network. The exchange of information

between different subsystems is subject to communication delays. Further, information is

assumed to be transmitted (and received) by subsystems once within each sampling period.

Denote k as the starting time of the kth sampling period and dij(k) as the communication

delay from subsystem j to subsystem i at time k. If at time k, controller i receives the latest

information of controller j sent at time k − q, then dij(k) = q with q a positive integer.

Further, communication delays between different subsystems are assumed to be bounded

within a predetermined region [dmin, dmax]. In each sampling period, all the information of

a subsystem are transmitted together to the other subsystems as one package.

3.3 Objective and proposed approach

In this section, we first propose the optimal structure of distributed state feedback controllers

considering communication delays in states, then we propose the optimal structure of dis-
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tributed observers considering both communication delays in outputs and communication

delays in inputs. Due to the fact that communication delays are typically time-varying and

non-Gaussian, we propose to the lower and upper LQG tradeoff curves to characterize the

best achievable LQG performance of a DNCS. The lower LQG tradeoff curve is obtained by

assuming that the communication delays between all subsystems are equal to dmin. That is,

at time k, only control actions and outputs of the other subsystems before time k − dmin

are available for each of the subsystem. Similarly, the upper LQG tradeoff curve is obtained

by assuming that the communication delays between all subsystems are equal to dmax. At

time k, for each of the subsystem, the distributed LQG problem is solved based on control

actions and outputs of the other subsystems before time k − dmax with regardless the avail-

able information after time k− dmax. Further, the best achievable performance of DNCSs in

the framework of LQG is solved where distributed controllers and distributed observers are

designed simultaneously without using separation principle.

3.3.1 Structure of subsystem controllers

It is well recognized that a state feedback control law Uk = FXk can achieve the optimal

control performance for linear systems since the state vector Xk summarizes all the previous

state information. However, when we consider DNCSs as shown in Figure 3.1, the entire

state information of the current time instant is not available to each subsystem due to

the presence of communication delays. Therefore, the following state feedback controller

structure is proposed for subsystem i:

Uik = F 0
iiXik + F 1

iiXik−1 + · · ·+ F d−1
ii Xik−d+1 +

n∑
j=1

F d
ijXjk−d (3.2)

where communication delays between all subsystems are assumed equal to d. That is, sub-

system i only has access to the states of other subsystems at and before time k − d. Note

that subsystem i has access to its own subsystem states at all times. d is chosen as dmin and
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dmax for calculating the lower and upper LQG tradeoff curves, respectively. F q
ij is the gain

matrix for the states of subsystem j at time k − q. Based on the fact that the entire state

information of the whole system at time k − d is available, information before time k − d

is not used. In equation (3.2), states of subsystem i from time k − d to time k and states

of all the other subsystems at time k − d are used to design the controller. Therefore, the

proposed state feedback controller is designed based on all the useful state information.

Based on the proposed subsystem controller in equation (3.2), the entire system controller

can be described as

Uk = F 0Xk + F 1Xk−1 + · · ·+ F d−1Xk−d+1 + F dXk−d (3.3)

where F q = diag(F q
11, · · · , F q

nn) for q = 0, · · · , d − 1 are controller gain matrices with block

diagonal structure, and F d is the gain matrix associated with the state Xk−d.

3.3.2 Structure of subsystem observers

According to equation (3.2), at time k, Xk−d and Xik−d+1, · · · , Xik are used in the local

controller of subsystem i. A local state observer needs to be designed for subsystem i to

estimate these states.

First, Xk−d is estimated. Communication delays between all subsystems are assumed

equal to d (d = dmin or d = dmax). That is, all the control actions and outputs of the system

at and before time k − d are available to each subsystem. Thus, Xk−d can be estimated by

subsystem i (i = 1, . . . , n) as follows:

X̂c
k−d = AX̂c

k−d−1 +BUk−d−1 + Lc[Zk−d − C(AX̂c
k−d−1 +BUk−d−1)] (3.4)

where X̂c
k−d is the estimate of Xk−d. AX̂

c
k−d−1 +BUk−d−1 is the state prediction term based

on the system model, and Lc[Zk−d − C(AX̂c
k−d−1 + BUk−d−1)] is the correction term based

on output prediction error. Lc is the gain matrix for the correction term and can be directly
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assigned as the steady state Kalman filter gain for the entire system shown in equation (3.1).

Note that a copy of observer in equation (3.4) is implemented in each of the subsystems.

Then, Xik−d+1 is estimated. Xik−d+1 is only used in the local controller of subsystems

i. Due to the presence of communication delays, at time k, only local control actions and

outputs after time k − d are available to subsystem i. So, only prediction error for local

outputs at time k − d + 1 is available to update the state prediction. For subsystem i, the

observer for Xik−d+1 is designed as

X̂p
ik−d+1 = AiX̂

c
k−d +BiUk−d + Lzi11[Zik−d+1 − Ci(AX̂c

k−d +BUk−d)] (3.5)

where X̂p
ik−d+1 is the estimate of states of subsystem i at time k − d + 1, Ai, Bi and Ci

are sub matrices in A, B and C associate with subsystem i, respectively. In equation (3.5),

AiX̂
c
k−d + BiUk−d is the prediction of local states based on local subsystem model, and

Lzi11[Zik−d+1 − Ci(AX̂c
k−d + BUk−d)] is the correction term based on local output prediction

error. Lzi11 is the gain matrix for the correction term. Based on the proposed subsystem

observer in equation (3.5), the entire system observer for Xk−d+1 can be described as

X̂p
k−d+1 = AX̂c

k−d +BUk−d + Lz11[Zk−d+1 − C(AX̂c
k−d +BUk−d)]

where Lz11 = diag(Lzi11, · · · , Lzn11) is observer gain matrix with block diagonal structure.

X̂p
k−d+1 is not available to subsystem i at time k. Thus, when designing the observer for

Xik−d+2 in subsystem i, the state prediction term can only be calculated from X̂c
k−d. Also,

only prediction errors for local outputs at time k−d+1 and k−d+2 are available to update

the predictions due to communication delays. For subsystem i, the observer for Xik−d+2 is
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designed as

X̂p
ik−d+2 = Ai(AX̂

c
k−d +BUk−d) (3.6)

+ Lzi21[Zik−d+2 − Ci(A2X̂c
k−d + ABUk−d))]

+ Lzi12[Zik−d+1 − Ci(AX̂c
k−d +BUk−d))]

+ Lui11Uik−d+1

where X̂p
ik−d+2 is the estimate of states of subsystem i at time k−d+2. Ai(AX̂

c
k−d+BUk−d)

is the two step ahead prediction of local states. Lzi21[Zik−d+2 − Ci(A
2X̂c

k−d − ABUk−d))]

and Lzi12[Zik−d+1 − Ci(AX̂
c
k−d − BUk−d))] are the correction terms based on local output

prediction errors at time k − d + 2 and k − d + 1, respectively. Further, Lui11Uik−d+1 is

designed to compensate for the unavailable control actions at time k − d+ 1 from the other

subsystems. Lzi21, Lzi12 and Lui11 are the corresponding gain matrices need to be designed.

Then, the entire system observer for Xk−d+2 can be described as

X̂p
k−d+2 = A2X̂c

k−d + ABUk−d (3.7)

+ Lz21[Zk−d+2 − CA2X̂c
k−d − CABUk−d)]

+ Lz12[Zk−d+1 − CAX̂c
k−d − CBUk−d)]

+ Lu11Uk−d+1

where Lz21 = diag(Lzi21, · · · , Lzn21), Lz12 = diag(Lzi12, · · · , Lzn12) and Lu11 = diag(Lui11, · · · , Lun11)

are the observer gain matrices with block diagonal structure.

Further, based on the same idea, the entire system observer for Xk−d+i can be expressed
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as

X̂p
k−d+i = AiX̂c

k−d + Ai−1BUk−d (3.8)

+ Lzi1[Zk−d+i − CAiX̂c
k−d − CAi−1BUk−d)] + · · ·

+ Lz1i[Zk−d+1 − CAX̂c
k−d − CBUk−d)]

+ Lu(i−1)1Uk−d+i−1 + · · ·+ Lu1(i−1)Uk−d+1

where gain matrices Lzi1, · · · , Lz1i and Lu(i−1)1, · · · , Lu1(i−1) are restricted to block diagonal struc-

ture.

Remark 3. Note that one subsystem does not have access to the recent control actions of

the rest of the subsystems due to communication delays. At time k, in the proposed observer

design, missing information of control actions of the other subsystems will lead to additional

errors in both state predictions and output predictions in the subsystem i (i = 1, . . . , n).

These missing information will influence the state estimation accuracy of Xik−d+1, · · · , Xik.

Separation principle works on the fact that control actions will not influence state estimation

error. But this condition is not hold in DNCSs with communication delays. Thus, distributed

controllers and distributed observers should be designed simultaneously to take into account

the influence of control actions on state estimation error.

3.3.3 Lower and upper LQG tradeoff curves

The best achievable LQG control performance of a DNCS is time-varying due to the fact

that communication delays are typically time-varying and non-Gaussian. Online update

of the best achievable LQG control performance is challenging and time consuming under

distributed networked control. Thus, the time-varying best achievable LQG control perfor-

mance is hard to be used as a practical solution for control performance assessment.

With the above consideration, the lower and upper LQG tradeoff curves are proposed

to characterize the time-varying best achievable LQG control performance of a DNCS. The
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Figure 3.2: The lower and upper LQG tradeoff curves.

lower LQG tradeoff curve is obtained by assuming that communication delays between all

subsystems are equal to dmin, and the upper LQG tradeoff curve is obtained by assuming

that communication delays between all subsystems are equal to dmax. For example, the

entire system is assumed to be divided into 2 subsystems with dmin = 0 and dmax = 1.

It is clear that the lower LQG tradeoff curve is the best case scenario where communi-

cation delays between the 2 subsystems are assumed to be equal to 0 at each time instant.

Then, the controller and the observer for subsystem i (i = 1, 2) are given as follows based

on the proposed structure:

Uik = F 0
i X̂

c
k

X̂c
k = AX̂c

k−1 +BUk−1 + Lc[Zk − C(AX̂c
k−1 +BUk−1)]

where F 0
i is the sub matrices in F 0 associates with subsystem i. According to the above

equation, calculation of Uik needs Zk and Uk−1. At time k, Zk is not always available to
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subsystem i in the real system due to the random communication delays. Thus, the achieved

distributed LQG control in this case is actually not implementable, but this best case scenario

measures the lower bound of the best achievable LQG control performance.

Similarly, the upper LQG tradeoff curve is the worst case scenario where communication

delays between the 2 subsystems are assumed to be equal to 1 at each time instant. Then,

the controller and the observer for subsystem i (i = 1, 2) are given as follows:

Uik = F 0
iiX̂

p
ik + F 1

i X̂
c
k−1

X̂c
k−1 = AX̂c

k−2 +BUk−2 + Lc[Zk−1 − C(AX̂c
k−2 +BUk−2)]

X̂p
ik = AiX̂

c
k−1 +BiUk−1 + Lzi11[Zik − Ci(AX̂c

k−1 +BUk−1)]

where F 1
i is the sub matrices in F 1 associates with subsystem i. According to the above

equation, calculation of Uik needs Zik, Zk−1, Uk−1 and Uk−2. At time k, these information is

always available to subsystem i in the real system. The achieved distributed LQG control

in this case is implementable, and this worst case scenario measures the upper bound of the

best achievable LQG control performance.

As shown in Figure 3.2, the best achievable LQG control performance of a DNCS with

random communication delays should lie between the proposed lower and upper LQG trade-

off curves. The difference between actual performance and lower bound of the best available

performance provides at most how much can we further improve the control performance.

While, the difference between actual performance and upper bound of the best available

performance shows at least how much is the potential for control performance improvement.

Although the use of bounds may introduce conservativeness into the results, the proposed

lower and upper LQG tradeoff curves provide a fundamental reference for control perfor-

mance assessment.
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3.4 Limits of distributed LQG control performance

In this section, solution to the following LQG control problem is proposed by considering

communication delays:

min E[ZT
k Zk] + λE[UT

k Uk] (3.9)

s.t. Xk+1 = AXk +BUk +Mak

Zk = CXk +Nak

where λ is the weighting factor of LQG objective function. Consider the following system

with a new defined output Z
′

k:

Xk+1 = AXk +BUk +Mak (3.10)

Z
′

k =

C
0

Xk +

 0
√
λ

Uk +

N
0

 ak
The LQG control problem shown in equation (3.9) is equivalent to minimizing E[(Z

′

k)
TZ

′

k]

which is the H2 norm of system (3.10). The optimal distributed state feedback controllers

considering communication delays are solved first. Then the results are extended to solve

distributed state feedback controllers and distributed observers simultaneously without us-

ing separation principle. Here the solution of the optimal H2 control problem is explicitly

expressed in terms of the solutions of some matrix inequalities according to the well known

result in [66]. Due to the non-applicability of separation principle, distributed controllers

and distributed observers are designed simultaneously. Multiplication of the controller and

the observer optimization parameters lead to complex non-linear conditions in the formu-

lation. Further, block diagonal structures are imposed on the controller and the observer

optimization parameters to satisfy the constraints caused by communication delays. There-

fore, non-linear conditions is unable to reduce through non-linear transformation of variables,
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Figure 3.3: Schematic of the closed-loop system.

and the optimal H2 control problem is formulated as bilinear matrix inequalities (BMIs).

The solution for this BMI problem is proposed by iteratively solving a sequence of lin-

earized problems, which at each step parameters in distributed controllers and distributed

observers are guaranteed to provide a better control performance than the previous ones. An

algorithm is proposed to calculate the stabilizing initial values for controller and observer

parameters used in the iterative algorithm. Finally, a procedure is introduced to calculated

the lower and upper LQG tradeoff curves based on the solution of the LQG control problem.

3.4.1 Distributed state feedback control

Throughout this section it is assumed that the state information is available for feedback.

Moreover, the state information is not corrupted by the disturbance ak. Consider the closed-

loop system shown in Figure 3.3. G is the system model defined in equation (3.10), mea-

surement Yk = Xk, and C is the integration of distributed state feedback controllers defined
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in equation (3.2) with its state space realization given by

Xc
k+1 = AcX

c
k +BcYk (3.11)

Uk = CcX
c
k +DcYk

where Xc
k = [XT

k−1, X
T
k−2, · · · , XT

k−d]
T is the state of C. The system matrices in C are given

by

Ac =



0 0 · · · 0 0

I 0 · · · 0 0

...
...

...
...

0 0 · · · I 0


Bc =



I

0

...

0


Cc =

[
F 1 F 2 · · · F d

]
Dc =

[
F 0

]
(3.12)

This feedback structure produces a closed-loop system from ak to Z
′

k:

Xk+1 = AclXk +Bclak (3.13)

Z
′

k = CclXk +Dclak

where Xk = [XT
k , X

c
k
T ]T , and the closed-loop system matrices

Acl =

A+BDc BCc

Bc Ac

 Bcl =

M
0

 Ccl =

 C 0
√
λDc

√
λCc

 Dcl =

N
0

 (3.14)

The symbol Haz′ denotes the transfer function from the disturbance ak to the output Z ′k.

The following lemma is a well known result that completely characterizes the H2 norm of a

system [66].

Lemma 1. The inequality ‖Haz′‖2
2≤ µ holds if, and only if, there exists a matrix Λ and
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symmetric matrices P and W such that

trace(W +DclD
T
cl) ≤ µ (3.15)

s.t.

 W CclΛ

ΛCT
cl Λ + ΛT − P

 > 0


P AclΛ Bcl

ΛATcl Λ + ΛT − P 0

BT
cl 0 I

 > 0

is feasible.

Nonlinear conditions appear after replacing equation (3.14) and (3.12) into the inequal-

ities of equation (3.15). Owing to the block diagonal structure constraints in the controller

gain matrices caused by communication delays, these nonlinear conditions cannot be re-

duced through nonlinear transformation. To solve the BMI problem shown in (3.15), a

path-following method is introduced [67].

Theorem 1. The path-following method is proceeded as follows:

1. Set i = 0, compute a set of stabilizing initial values of F 0(i), · · · , F d(i) based on Theorem

2.

2. With F 0 = F 0(i), · · · , F d = F d(i), compute the H2 norm of the closed-loop system and

corresponding matrices Λi, P i and W i based on equation (3.15).

3. Define F 0 = F 0(i) + ∆(F 0(i)), · · · , F d = F d(i) + ∆(F d(i)),Λ = Λi + ∆(Λi), P = P i +

∆(P i) and W = W i + ∆(W i), where ∆(·) denotes the perturbation of (·). The matrix

inequalities in equation (3.15) are linearized by ignoring all the second order terms on
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∆(·). The constraints

‖∆(·)‖2≤


0.02‖(·)‖2 if ‖(·)‖2 6= 0

0.2 if ‖(·)‖2= 0

are added so that the perturbations are small and the linear approximation should be

valid.

4. Solve the linearized BMI problem around F 0(i), · · · , F d(i),Λi, P i and W i using semidef-

inite program to get the perturbations.

5. Let F 0(i+1) = F 0(i) + ∆(F 0(i)), · · · , F d(i+1) = F d(i) + ∆(F d(i)), i = i+ 1 and go to step 2.

6. The iteration stops whenever the H2 norm of the closed-loop system cannot be improved

any further.

Remark 4. The LQG tradeoff curve consists of various optimal solutions of E[UT
k Uk] and

E[ZT
k Zk] with respect to different values of λ. For the LQG objective function with a given

value of λ, a set of optimal controller parameters obtained based on Lemma 1 and Theorem

1 can be directly used as the initial values of controller parameters for the LQG objective

function with a neighbouring λ. Thus, the whole LQG tradeoff curve can be achieved by

solving each LQG control problem step by step.

A stabilizing controller in the form of equation (3.3) should be designed first as the initial

values used in Theorem 1. Due to the presence of structure constraints, F 0(0), · · · , F d−1(0)

are selected to be 0 to simplify the problem. Thus, controller Uk = F d(0)Xk−d is designed to

stabilize the system, where F d(0) can be designed with full degree of freedom. The following

Theorem 2 is proposed to design F d(0), and Lemma 2 [68] is first presented which is then

used in the proof.
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Lemma 2. The following statement is true:

(K + J)TH(K + J) ≤ (1 + ε)KTHK + (1 + ε−1)JTHJ (3.16)

where symmetric matrix H > 0, K and J are matrices with proper dimension and ε is a

positive constant.

Theorem 2. Based on Lyapunov method, the system shown in equation (3.10) with con-

troller Uk = F d(0)Xk−d is asymptotically stable if there exists a real symmetric matrix H > 0

such that

(1 + εm)ATHA+ (
1 + εm
εm

)ATdHAd −H < 0 (3.17)

where Ad = BF d(0) and εm = ‖Ad‖2‖A‖−1
2 . The conclusion is in Riccati equation form, and

the solvers for which are well designed.

Proof: Consider the following Lyapunov function

V (Xk) = XT
k HXk +

d∑
l=1

XT
k−lSXk−l (3.18)

where symmetric matrix S ≥ 0. Taking forward difference from equation (3.18) gives

∆V (Xk) = V (Xk+1)− V (Xk) (3.19)

= [AXk + AdXk−d]
TH[AXk + AdXk−d]−XT

k HXk

+
d∑
l=1

XT
k−l+1SXk−l+1 −

d∑
l=1

XT
k−lSXk−l
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Utilizing Lemma 2, inequality on equation (3.19), yields

∆V (Xk) ≤ (1 + ε)XT
k A

THAXk + (1 + ε−1)XT
k−dA

T
dHAdXk−d −XT

k HXk (3.20)

+XT
k SXk −XT

k−dSXk−d

= XT
k [(1 + ε)ATHA+ S −H]Xk +XT

k−d[(1 + ε−1)ATdHAd − S]Xk−d

Now, select S = (1 + ε−1)ATdHAd, then

∆V (Xk) ≤ XT
k [(1 + ε)ATHA+ (1 + ε−1)ATdHAd −H]Xk = ϕ(Xk, ε) (3.21)

Thus, the system is asymptotically stable if there exists a real symmetric matrix H > 0 such

that

(1 + ε)ATHA+ (1 + ε−1)ATdHAd −H < 0

where ε can be selected as any positive constant. A suggested value of ε can be selected

based on the following derivation:

Since matrices ATHA and ATdHAd are symmetric and positive semidefinite then, we have

ϕ(Xk, ε) ≤ XT
k [(1 + ε)λmax(A

THA) + (1 + ε−1)λmax(A
T
dHAd)− λmax(H)]Xk (3.22)

= g(ε)λmax(H)‖Xk‖2
2

where g(ε) = (1+ε)σ2
max(A)+(1+ε−1)σ2

max(Ad)−1, λmax(·) denotes the maximum eigenvalue

value of (·), and σmax(·) denotes the maximum singular value of (·). Maximum of the function

g(ε) can be found by taking derivative with respect to ε, which yields

dg(ε)

dε
= 0 ⇒ σ2

max(A)− σ2
max(Ad)

ε2
= 0 (3.23)
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The optimum value for ε is

εm = σmax(Ad)σ
−1
max(A) (3.24)

Therefore, we can conclude

∆V (Xk) ≤ ϕ(Xk, εm) (3.25)

= XT
k [(1 + εm)ATHA+ (

1 + εm
εm

)ATdHAd −H]Xk

Now, if the condition (3.17) is satisfied then system (3.10) is asymptotically stable. �

3.4.2 Distributed state feedback control combined with distributed

state estimation

Throughout this section it is assumed that only information of control actions and outputs is

available for feedback. Consider the closed-loop system shown in Figure 3.4. G is the system

model defined in equation (3.10), measurement Yk = [ZT
k , U

T
k ]T , and C is the integration of

distributed state feedback controllers defined in equation (3.2). E and O constitute the dis-

tributed observers designed in the previous section. Owing to the presence of communication

delays, C, E and O are designed simultaneously without using separation principle.

Structure of O can be expressed as

Xo
k+1 = AoX

o
k +BoYk (3.26)

Y o
k = CoX

o
k +DoYk
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Figure 3.4: Schematic of the closed-loop system.

where the system matrices in O are given by

Ao = Co =



0 0 · · · 0 0

I 0 · · · 0 0

...
...

...
...

0 0 · · · I 0


Bo = Do =



I

0

...

0


(3.27)

ThenXo
k = [ZT

k−1, U
T
k−1, · · · , ZT

k−d−2, U
T
k−d−2]T is the state ofO, and Y o

k = [ZT
k , U

T
k , · · · , ZT

k−d−1, U
T
k−d−1]T

is the output of O which provides all the information needed in the distributed observers.

Based on equation (3.8), the structure of observer E can be expressed as

Xe
k+1 = AeX

e
k +BeY

o
k (3.28)

Y e
k = C ′eX

e
k+1 +D′eY

o
k

where Xe
k+1 = X̂c

k−d and Y e
k = [X̂c

k−d, X̂
p
k−d+1, · · · , X̂

p
k ]T are the state and the output of E,
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respectively. The system matrices in E are given by

Ae = A− LcCA (3.29)

Be =

[
0 · · · 0 Lc 0 0 B − LcCB

]

C ′e =



I

A− Lz11CA

A2 − Lz12CA− Lz21CA
2

...

Ad − Lz1dCA− Lz2(d−1)CA
2 − · · · − Lz(d−1)2CA

d−1 − Lzd1CA
d



D′e =



· · · 0

· · · 0 Lz11 0 0 Q1 0 0

· · · 0 Lz21 0 Lz12 Lu11 0 Q2 0 0

...

Lzd1 0 Lz(d−1)2 Lu(d−1)1 · · · Lz1(d) Lu1(d−1) 0 Qd 0 0


where

Qi = Ai−1B − Lzi1CAi−1B − Lz(i−1)2CA
i−2B − · · · − Lz2(i−1)CAB − Lz1iCB (3.30)

Further, the standard state-space expression of E is

Xe
k+1 = AeX

e
k +BeY

o
k (3.31)

Y e
k = C ′eAeX

e
k + (C ′eBe +D′e)Y

o
k

Based on equation (3.3), controller C can be expressed as Uk = DcY
e
k with Dc =
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[F d F d−1 · · · F 0]. Combining C, E and O, the whole feedback part is defined as F

with Yk as input and Uk as output. Structure of F can be express as

Xf
k+1 = AfX

f
k +BfYk (3.32)

Uk = CfX
f
k +DfYk (3.33)

where Xf
k = [Xo

k
T , Xe

k
T ]T is the state of F . The system matrices in F are given by

Af =

 Ao 0

BeCo Ae

 Bf =

 Bo

BeDo

 Df = Dc(D
′
e + C ′eBe)Do (3.34)

Cf = Dc

[
(D′e + C ′eBe)C0 C ′eAe

]

Substituting equations (3.9), (3.34) and Yk = [ZT
k , U

T
k ]T into equation (3.33), yields

(I −Df

0

I

)Uk = CfX
f
k +Df

C
0

Xk +Df

N
0

 ak (3.35)

where Df [0 I]T = 0 can be proved based on simple matrix multiplication. Thus we have

Uk = CfX
f
k +Df

C
0

Xk +Df

N
0

 ak
Then the feedback structure shown in Figure 3.3 produces a closed-loop system from ak

to Z
′

k:

Xk+1 = AclXk +Bclak (3.36)

Z
′

k = CclXk +Dclak

where Xk = [XT
k , X

f
k

T
]T is the closed-loop system state. The system matrices in equation
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(3.36) are given by

Acl =


A+BDf

C
0

 BCf

Bf

C
0

+Bf

0

I

Df

C
0

 Af +Bf

0

I

Cf


(3.37)

Bcl =


BDf

N
0

+M

Bf

0

I

Df

N
0




Dcl =


 0
√
λ

Df

N
0

+

N
0




Ccl =


C

0

+

 0
√
λ

Df

C
0


 0
√
λ

Cf


Remark 5. The solution to distributed LQG problem considering state feedback control and

state estimation simultaneously can be obtained by minimizing the H2 norm of the system

shown in equation (3.36) following Lemma 1 and Theorem 1. First, a set of stabilizing initial

values of controller gain matrices are calculated based on Theorem 2 where only Xk−d is used

for the initial distributed controllers design. Since information of the entire system at and

before time k − d is available to each subsystem, then initial distributed observer is designed

in each subsystem to estimate X̂k−d based on equation (3.4) with gain matrix Lc selected as

the steady state gain of the Kalman filter designed for the entire system shown in equation

(3.1). Further, the lower and upper LQG tradeoff curves can be obtained following Remark

4 by selecting dij(k) = dmin and dij(k) = dmax for all k and 1 ≤ i, j ≤ n, i 6= j, respectively.

According to the achieved lower and upper LQG tradeoff curves, the system with perfor-

mance lies between the lower and upper LQG tradeoff curves is guaranteed to be in a perfect
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condition; the system with performance above but close to the upper LQG tradeoff curve

has an acceptable performance, but there still is a potential for performance improvement;

the system with performance far above the upper LQG tradeoff curve indicates poor perfor-

mance, then tuning of distributed controllers and distributed observers or improvement on

communication network topology is necessary.

3.5 Simulations

Considering the following 2× 2 system:

X1k+1

X2k+1

 =

 0.914 0.08

−0.126 0.917


X1k

X2k

+

 2.091 − 0.0744

−0.211 − 0.0156


U1k

U2k

 (3.38)

+

 0.914 0.08

−0.126 1.632


a1k

a2k


Z1k

Z2k

 =

1 0

0 1


X1k

X2k

+

1 0

0 1


a1k

a2k


where the system is divided into 2 univariate subsystems, (X1k, Z1k, U1k) and (X2k, Z2k, U2k),

respectively. We assume that the system shown in equation (3.38) is under distributed

networked control and suffers from random communication delays, where dmin = 1 and

dmax = 2, respectively. In the following, different solutions of the LQG problem

J(λ) = E[ZT
k Zk] + λE[UT

k Uk] (3.39)

is discussed to illustrate the proposed work.

First, the applicability of separation principle in distributed networked control is tested.

57



Considering the case with d = 2, optimal controller is in the form of

Uk = F 0Xk + F 1Xk−1 + F 2Xk−2 (3.40)

where Xk, Xk−1 and Xk−2 need to be estimated with the proposed observer. For the LQG

problem in equation (3.39) with λ = 2 and λ = 2−4, distributed LQG control are designed

without using separation principle based on the proposed algorithm. When λ = 2, the

optimal controller parameters are

F 0 =

−0.1600 0

0 0.0735

F 1 =

−0.2001 0

0 0.0090

F 2 =

−0.0134 0.1307

0.0080 −0.0264

 (3.41)

while, the optimal controller parameters for λ = 2−4 are

F 0 =

−0.2259 0

0 1.1123

F 1 =

−0.2504 0

0 0.5087

F 2 =

−0.0248 0.1875

−0.0171 0.2103

 (3.42)

To test the influence of communication delays in control actions on separation principle, the

optimal observer parameters design for λ = 2 is applied to both the cases of λ = 2 and

λ = 2−4, where the observer parameters are given as

Lc =

0.5694 0.0007

0.0007 0.7693

 Lz11 =

0.1222 0

0 −0.0611

Lz12 =

0.1747 0

0 −0.0687

 (3.43)

Lz21 =

1.9154 0

0 0.5170

 Lu11 =

0.1715 0

0 −0.7995


Control actions and state estimation errors for these two cases are shown in Figure 3.5, where

the blue curve represent the case of controller designed for λ = 2 combined with observer

designed for λ = 2 and the red curve represent the case of controller designed for λ = 2−4
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combined with observer designed for λ = 2. Xik, Xik−1 and Xk−2 are estimated in subsystem

i (i = 1, 2) based on the local observer design in equations (3.6). Theoretically, when there

is no communication delay between different subsystems, the optimal estimation of Xik−1

and Xk−2 can be achieved in subsystem i with Yk−1, Uk−2 and Yk−2, Uk−3 respectively. Thus,

when d = 2, separation principle holds for the estimation of Xik−1 and Xk−2 due to Uk−2

and Uk−3 are available to subsystem i at time k. As shown in Figure 3.5, eXik−1
and eXik−2

,

the state estimation errors of Xik−1 and Xik−2, respectively, are the same in blue and red

curves. However, in subsystem i, the optimal estimation of Xik is related to Uk−1 which is not

available due to d = 2. Then, missing information of control actions will lead to additional

state estimation error. Due to the smaller weighting coefficient in LQG cost function, control

actions with larger control effort are applied to the system when λ = 2−4 comparing with the

case λ = 2. With the same observer, larger control effort in red curve leads to larger state

estimation error of X2k, which proves that separation principle does not hold when there is

communication delays in control actions.

Then, to test performance of the proposed LQG design, the optimal controller parameters

design for λ = 2−4 is combined with the optimal observer parameters design for both the

cases of λ = 2−4 and λ = 2. The optimal observer parameters for λ = 2−4 are given as

Lc =

0.5694 0.0007

0.0007 0.7693

 Lz11 =

0.0615 0

0 −0.0573

Lz12 =

0.0878 0

0 −0.0628

 (3.44)

Lz21 =

1.9925 0

0 1.3360

 Lu11 =

−0.0352 0

0 −0.3918


Outputs and designed control actions for these two cases are shown in Figure 3.6, where

the blue curve represent the case of controller designed for λ = 2−4 combined with observer

designed for λ = 2−4 and the red curve represent the case of controller designed for λ = 2−4

combined with observer designed for λ = 2. For the blue curve, E[ZT
k Zk] = 13.3715 and

E[UT
k Uk] = 17.0140, then the LQG cost function J(λ = 2−4)|blue= 14.4348. For the red curve,
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Figure 3.5: Control actions and state estimation errors for two cases: 1) controller designed
for λ = 2 combined with observer designed for λ = 2; 2) controller designed for λ = 2−4

combined with observer designed for λ = 2.

E[ZT
k Zk] = 14.1906 and E[UT

k Uk] = 7.7791, then the LQG cost function J(λ = 2−4)|red=

14.6768. There are larger control effort and better LQG performance in the blue curve.

These results show that control actions are designed more appropriately when designing

controllers and observers simultaneously in DNCSs.

Further, the tradeoff curve of the best achievable LQG control performance is formed

based on the solutions of the LQG problem in equation (4.39) by varying λ = 2i from

i = −7.5 to i = 2 with a step size of 0.5 in i. The proposed lower and upper LQG tradeoff

curves are shown as the curve d = 1 and d = 2 in Figure 3.6, respectively. The region between

curve d = 1 and d = 2 can be treated as an alternative for the centralized LQG benchmark.

The system with performance lying between curve d = 1 and curve d = 2 may be considered

as a good performance; the system with performance above but close to the curve d = 2

has an acceptable performance, but there still is a potential for performance improvement;

the system with performance far above the curve d = 2 indicates poor performance, then
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Figure 3.6: LQG control performance for two cases: 1) controller designed for λ = 2−4

combined with observer designed for λ = 2−4; 2) controller designed for λ = 2−4 combined
with observer designed for λ = 2.

controller tuning or improvement on communication network topology is helpful. As shown

in Figure 3.7, there is a significant gap between curve centralized and curve d = 1, d = 2

which indicates that the best control performance in the centralized case is non-achievable

for a DNCS with communication delays. Thus, if centralized LQG tradeoff curve is used as

the criterion for performance assessment, although controller for a DNCS is well designed, it

is highly likely to show a poor control performance and may lead engineers to search for the

non-existent distributed controllers. The proposed lower and upper LQG tradeoff curves can

give a more practical estimate on the best achievable control performance when the system

has random communication delays. It is therefore more suitable for control performance

assessment of DNCSs.

For the case of state feedback combined with state estimation, optimal control efforts

for the LQG cost functions with different weighting factors are shown in Figure 3.8. When

λ ≥ 2−4.5, control efforts for the case of d = 1 are small, and loss of information of control

actions caused by communication delays does not have a big influence on state estimation

error. Thus, with a goal towards good control performance, control efforts for the case

of d = 1 are larger than the control efforts for the case of centralized control due to the

structure constraints in the controller. When λ ≤ 2−4.5, control efforts for the case of d = 1

are large, and loss of information of control actions caused by communication delays has a
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Figure 3.8: Optimal control efforts for the LQG cost function with different weights.
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big influence on state estimation error which will decrease the control performance. Thus,

there is a tradeoff between state feedback control performance and state estimation error

which makes control efforts for the case of d = 1 smaller than the control efforts for the

case of centralized control. It also proves that separation principle is not applicable on the

system with communication delays in control actions.

3.6 Conclusions

This chapter investigates the lower and upper LQG tradeoff curves designed for DNCSs

with random communication delays. By designing the optimal distributed controllers and

distributed observers simultaneously without using separation principle, the best achievable

control performance of a DNCS is presented in the form of the lower and upper LQG tradeoff

curves. The obtained tradeoff curves can be used to evaluate the potential performance

improvement of an existing DNCS that indicates the potential needs on tuning of distributed

controllers and distributed observers or improvement on communication network topology.

Further, separation principle is found non-applicable on DNCSs with communication delays,

and this conclusion is tested through a numerical example.
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Chapter 4

Practical Solutions to LTV Minimum

Variance Benchmark for NCSs with

Random Communication Delays3

4.1 Introduction

The research of NCS has been one of the most attractive areas in both industry and academia

due to continuously expanding physical setups and functionality in modern industrial systems

[2, 3]. A typical NCS consists of the spatially distributed controller and system (physical

plants, actuators, sensors, etc.). In a NCS, control loops are closed through information

exchange between system components over a shared network. The elimination of unnecessary

wiring in NCSs reduces overall cost for the installation of control systems and provides ease

in maintenance. In addition, by connecting cyber to physical space through communication

network, NCSs are able to fuse global information and operate systems over long distance [6,

7]. However, in a NCS, network-induced communication delays are inevitable and normally

3A shorter version of this chapter has been published in “Guoyang Yan, Jinfeng Liu, and Biao Huang.
MV benchmark for networked control systems with random communication delays. IFAC-PapersOnLine,
52(1): 970 C 975, 2019. 12th IFAC Symposium on Dynamics and Control of Process Systems, including
Biosystems DYCOPS 2019”.
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random. Random communication delays will degrade the system control performance and

lead to a non-stationary behavior of the closed-loop system [10, 11].

On the other hand, control performance assessment is a widely used process monitoring

technique aiming at optimal control performance and cost effectiveness. Among the various

control performance assessment approaches, minimum variance benchmark is the most widely

used one [69]. One of the reasons for the successes in the research and the application of

the univariate minimum variance benchmark is that this benchmark can be calculated from

routine operating data and only the a priori knowledge of time delay between a pair of

input and output is required. However, the convenience is lost for multivariate case where

time delay between a set of inputs and outputs is termed as the interactor matrix. Due to

the presence of random communication delays within the closed-loop system, the NCSs are

naturally multivariate and non-stationary. The interactor matrices estimated from closed-

loop data are generally not accurate enough in practice, especially when there are non-

stationary characteristics in closed-loop data. Hence, the elimination of using the interactor

matrix in obtaining the control performance assessment benchmark for NCSs would simplify

the calculation and reduce the uncertainty associated with the estimation of multivariate

performance index from routine operating data.

Motivated by the above discussions, this chapter considers the LTV minimum variance

benchmark designed for NCSs with random communication delays. Sensor-to-controller

communication delay and controller-to-actuator communication delay are considered simul-

taneously. These two communication delays are both modeled as random variables with a

given bounded region. Complete knowledge of the interactor matrix is not needed in this

work. Only OIM and RIM are assumed to be known as the a priori knowledge. These two

variables can be more easily estimated from closed-loop data. Thus, instead of estimating

the true LTV minimum variance benchmark, the best we can do is deriving a bound on the

benchmark control in this case.

The main contributions of this chapter are listed as follows. Firstly, explicit solutions
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Figure 4.1: Schematic of NCSs with random communication delays.

to the true LTV minimum variance benchmark and corresponding LTV minimum variance

control law are derived for NCSs with use of the simple interactor matix (all the control loops

in the multivariate system have same time delay). Secondly, the lower and upper bounds of

the LTV minimum variance benchmark region is proposed as a relaxation of the true LTV

minimum variance benchmark for NCSs with general interactor matix (time delay can be

different among control loops in the multivariate system). Explicit solutions to the lower

and upper bounds of LTV minimum variance control performance are derived. It is shown

that the lower and upper bounds can be calculated from the first few terms in the impulse

response form of the closed-loop model. The upper bound of the proposed benchmark is

proven to be achievable by a practical controller. Further, an explicit and direct method to

estimate closed-loop output under LTV minimum variance control from routine operating

data is proposed.
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4.2 Preliminaries

4.2.1 System description

This chapter mainly concerns with the multivariate NCSs shown in Figure 4.1:

Yk = Tq−dca(k)Uk +Nak (4.1)

Uk = −C(k)q−dsc(k)Yk

where k indicates current time instant; T andN are proper rational transfer function matrices

in the backshift operator q−1; Yk, Uk and ak are output, input and white-noise vectors of

appropriate dimensions; C(k) is the LTV output feedback control law to be designed; dca(k)

and dsc(k) are the random controller-to-actuator and sensor-to-controller communication

delays, respectively. Further, dca(k) and dsc(k) are assumed to be bounded and independent

with each other:

0 ≤ dca(k) ≤ d̄ca and 0 ≤ dsc(k) ≤ d̄sc

where d̄ca and d̄sc are the upper bounds of dca(k) and dsc(k), respectively.

4.2.2 Illustrative example

To show the drawbacks of applying the conventional minimum variance benchmark on NCSs

with random communication delays, an illustrative example adopt from [1] is presented in

this section. Control performance assessment is conducted on a two interacting-tank process

shown in Figure 4.2. The levels (h1;h2) of the two tanks are the controlled variables, and

the corresponding inlet flow rates (u1;u2) are the manipulated variables.
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Figure 4.2: Schematic diagram of the pilot-scale process.

The open-loop model is given as

T =

0.1963q−1−0.1737q−2−0.0112q−3

1−1.7208q−1+0.7272q−2
0.0406q−7−0.0113q−8+0.0009q−9

1−0.6495q−1+0.0482q−2

0.0147q−1−0.0127q−2+0.02q−3

1−1.3537q−1+0.3707q−2
0.0406q−2−0.0299q−3−0.0047q−4

1−1.7849q−1+0.7902q−2

 (4.2)

The hypothetical disturbance dynamics are taken as

N =

 1
1−q−1 0

0 1
1−q−1

 (4.3)

An internal model control (IMC) controller is implemented on this process. The optimal

IMC controller is the inverse of the delay-free model T̃ = DT , where D can be factored out

from T as

D =

−0.9972q −0.0748q

0.0748q2 −0.9972q2

 (4.4)
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To make the IMC controller implementable, a filter

f =

 0.1
1−0.9q−1 0

0 0.1
1−0.9q−1

 (4.5)

is cascaded to the optimal IMC controller. The final IMC controller is Q∗ = T̃−1f where Q∗

is the controller in the IMC framework [70].

Control performance of this IMC controller under both centralized control and networked

control are tested with the conventional minimum variance benchmark. Sensor-to-controller

communication delay dsc(k) and controller-to-actuator communication delay dca(k) are con-

sidered simultaneously in the networked control. The series of dsc(k) and dca(k) are generated

by values randomly taken from the set {0, · · · , d̄c} with equal probability. The step-type set-

point tracking performance is of interest in this example. The setpoint levels of the two

tanks are h1s = 3 and h2s = 4, and a random binary dither signal with amplitude of 0.25 is

inserted in the two setpoints. When d̄c = 4, the generated communication delay sequences

are shown in Figure 4.3, and the closed-loop test of the designed IMC controller under cen-

tralized control and networked control is shown in Figure 4.4 where blue curve and red curve

are centralized control result and networked control result, respectively. According to the

closed-loop test, we can find that the designed IMC controller can achieve setpoint tracking

when there are random communication delays, although its performance is degraded.

Then, control performance assessment results of the designed IMC controller with d̄c =

{1, · · · , 5} is summarized in Table 4.1. It is easy to find that larger communication delays

will lead to poorer control performance. However, the degradation of control performance

is not only because of that we do not consider communication delays in the design of IMC

controller, but also because of that the presence of communication delays further limits

the best achievable control performance. The conventional minimum variance benchmark

mainly considers the performance limitations caused by the process itself. When applying it

to NCSs with random communication delays, the best achievable control performance can
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Figure 4.4: Closed-loop test of the IMC controller.
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be overly optimistic because the performance limitations caused by communication delays

are not considered. Thus, testing performance of networked control using the conventional

minimum variance control as a benchmark is not appropriate, and may lead engineers to

search for a controller with a better performance that may not exist.

Table 4.1: Control performance assessment results of the pilot-scale process

centralized control d̄c = 1 d̄c = 2 d̄c = 3 d̄c = 4 d̄c = 5

ηc 0.3008 0.2599 0.2250 0.1897 0.1587 0.0953

Further, there are two important assumptions for using conventional minimum variance

control as the benchmark. The first is that the closed-loop data is stationary. Under station-

ary condition, the process output variance can be directly calculated with routine operating

data, and filtering the process output with the interactor matrix will not change its variance.

The second is that the interactor matrix is known as the a priori knowledge.

In a NCS, the closed-loop system is non-stationary due to the presence of random com-

munication delays, and obtaining the interactor matrix is even harder under non-stationary

condition. On the other hand, ds can be interpreted as the time used for the control actions

having influence on all the outputs; while ds− vs can be interpreted as the time used for the

control actions having influence on at least one of the outputs. Thus, system time delay of

the multivariate process T can be treated as lower bounded by ds − vs and upper bounded

by ds, respectively. Therefore, OIM and RIM are useful in control performance assessment.

Further, comparing with the a priori knowledge of the interactor matrix, OIM and RIM can

be obtained more easily. Based on these considerations, in the following sections, design of

a practical LTV control performance benchmark with OIM and RIM is proposed for NCSs

with random communication delays.
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4.3 Control performance assessment of NCSs with ran-

dom communication delay

In this section, first, preliminary knowledge on the calculation of LTV transfer function matri-

ces is introduced. Then, we derive a LTV minimum variance control law Uk = −C(k)q−dsc(k)Yk

for NCSs with the simple interactor matrix, such that the control objective function Jk =

E[Y T
k Yk] is minimized at each time instant. Further, based on this result, solutions of the

upper and lower bounds of the LTV minimum variance benchmark for NCSs with the general

interactor matrix are proposed with the requirement on the a priori knowledge of OIM and

RIM. It is shown that the obtained upper and lower bounds of the LTV minimum variance

benchmark consist of the first few terms in the impulse response form of the closed-loop

transfer function matrix and can be estimated from routine operating data.

4.3.1 Calculation of LTV transfer function matrices

Before proceeding, we need to introduce some basic properties of the calculation of LTV

transfer function matrices. These properties will be used throughout this chapter. The

most fundamental property is that for any LTV transfer function matrix A(k) we have the

following identity [43]:

q−dA(k) = A(k − d)q−d (4.6)

Then, based on this property, the multiplication of LTV transfer function matrices is

introduced below. Let V (k), W (k) and X(k) be three LTV polynomial matrices in q−1 with
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order n, m and l, respectively:

V (k) = v0(k) + v1(k)q−1 + · · ·+ vn(k)q−n (4.7)

W (k) = w0(k) + w1(k)q−1 + · · ·+ wm(k)q−m

X(k) = x0(k) + x1(k)q−1 + · · ·+ xl(k)q−l

According to equation (4.6), the multiplication of two LTV polynomial matrices V (k) and

W (k) can be conducted as:

V (k)W (k) =
n∑
i=0

m∑
j=0

vi(k)q−iwj(k)q−j (4.8)

=
m∑
i=0

n∑
j=0

vi(k)wj(k − i)q−(i+j)

and some properties in the multiplication of LTV transfer function matrices can be extended

from equation (4.8) as follows:

• Commutativity law: V (k)W (k) 6= W (k)V (k)

• Associativity law: [V (k)W (k)]X(k) = V (k)[W (k)X(k)]

• Distributive law: [V (k) +W (k)]X(k) = V (k)X(k) +W (k)X(k),

Further, the inverse of an LTV transfer function matrix is elaborated as follows. Define

WL(k) as the left inverse of W (k) and WR(k) as the right inverse of W (k). WL(k) and

WR(k) are both LTV transfer function matrices of q−1 with

WL(k) = wl0(k) + wl1(k)q−1 + · · ·+ wln(k)q−n + · · ·

WR(k) = wr0(k) + wr1(k)q−1 + · · ·+ wrn(k)q−n + · · ·
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According to the definition of inversion, we have

WL(k)W (k) = I (4.9)

W (k)WR(k) = I (4.10)

WL(k) and WR(k) can be calculated by equating coefficients of both sides of equations (4.9)

and (4.10), respectively. Then, we can obtain WL(k) = WR(k), that is, the left inverse of

an LTV transfer function matrix is equal to its right inverse. Proofs of the results shown in

this section are provided in Appendix A.1.

4.3.2 LTV minimum variance benchmark for NCSs with the sim-

ple interactor matrix

The interactor matrix D can be one of the three forms discussed in Section 1.2.2. Although

processes with the simple interactor matrices are the simplest ones and are not common in

practice, the results presented in this section are the foundation of solutions to processes

with the general interactor matrices that follow later.

Consider NCSs with random communication delays shown in Figure 4.1. The process

model is assumed to have the simple interactor matrix D = qdsI. Thus, T = q−dsT̃ , where

the time used for each of the control actions having influence on each of the outputs is ds.

Output sensor measurements are sent from the sensors to the controller subject to random

communication delay dsc(k), while designed control actions are sent from the controller to the

actuators subject to random communication delay dca(k). Then, in the closed-loop system,

the total time used for the designed control actions having influence on the outputs is

dco(k) = ds + dca(k − ds) (4.11)

and the total time used for the output sensor measurements having influence on the outputs
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through the feedback and forward channels is

dso(k) = ds + dca(k − ds) + dsc(k − ds − dca(k − ds)) (4.12)

The following results present the design of LTV minimum variance control for NCSs with

the simple interactor matrix, and the corresponding performance assessment using the LTV

minimum variance control as the benchmark. For a NCS with random communication delays

shown in Figure 4.1, solutions of the LTV minimum variance benchmark are given by the

following steps:

1. The LTV minimum variance control law is given by

C(k) = T̃−1R(k + dca(k
′′) + ds)F

−1(k − dsc(k)) (4.13)

where F (k) and R(k) are solved from a Diophantine identity [1]:

N = F (k) + R(k)q−dso(k) (4.14)

where F (k) is the LTV polynomial matrix that consists of the first dso(k) terms in the

impulse response form of N , and R(k)q−dso(k) is the remaining LTV transfer function

matrix in N . In equation (4.14), coefficient matrices in F (k) and R(k) are consistent

with those in N , and only the order of F (k) varies with time.

2. The closed-loop output under the LTV minimum variance control is given by a finite-

order moving average process

Yk|mv= F (k)ak = (F0(k) + F1(k)q−1 + · · ·+ Fdso(k)−1(k)q−dso(k)+1)ak (4.15)

where Fi(k) (for i = 0, · · · , dso(k) − 1) is the ith coefficient matrix in F (k). The LTV
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minimum variance benchmark Φmv(k) can be calculated as

Φmv(k) = E[Yk|TmvYk|mv] =

dso(k)−1∑
i=0

tr(F T
i (k)Fi(k)) (4.16)

3. The closed-loop output Yk|actual for the actual process can be modeled by an infinite-

order moving average process

Yk|actual = Gcl(k)ak (4.17)

= F (k)ak + L(k)ak

= (F0(k) + F1(k)q−1 + · · ·+ Fdso(k)−1(k)q−dso(k)+1 + L0(k)q−dso(k) + · · ·)ak

where Gcl(k) is the LTV closed-loop transfer function matrix, and L(k) is a LTV trans-

fer function matrix with the ith coefficient matrix given by Li(k) (for i = 0, · · ·). The

first dso(k) terms of Gcl(k)ak constitute the process output under the LTV minimum

variance control as shown in equation (4.15), while the appearance of term L(k)ak is

caused by the implemented non-optimal control law in the real process. The actual

output variance Φactual(k) can be calculated as

Φactual(k) = E[Y T
k Yk] = ||Gcl(k)||22 (4.18)

4. Then, the time-varying performance index is given by

ηn(k) =
Φmv(k)

Φactual(k)
(4.19)

Derivations for the results shown in this section are provided in Appendix A.2.
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4.3.3 Solutions to LTV minimum variance benchmark for NCSs

with the general interactor matrix

In the practical application, as discussed in the previous sections, the general interactor

matrix is often not available or not easy to interpret even if available due to its complex-

ity. These are the major difficulties for the application of multivariate control performance

assessment algorithms. Extending the proposed LTV minimum variance benchmark to the

NCSs with the general interactor matrix will face the same problem.

Further, the explicit solutions of minimum variance control for the stationary systems can

be obtained based on filtering the systems with the general interactor matrices [1]. While

this good property only holds in the stationary case, NCSs with random communication

delays are naturally multivariate and non-stationary. Explicit solution of control performance

assessment algorithm is desired, as it yields a considerably simple computation procedure in

practical application. Hence, in order to explore an explicit solution of the LTV minimum

variance benchmark for NCSs with the general interactor matrix, a bound on minimum

variance control benchmark is proposed as follows based on OIM and RIM.

Consider NCSs with random communication delays shown in Figure 4.1. The process

model is assumed to have the general interactor matrix

D = D0q
ds +D1q

ds−1 + · · ·+Dvsq
ds−vs (4.20)

Thus, T = D−1T̃ , and ds can be interpreted as the time used for the control actions having

influence on all the outputs, while ds− vs can be interpreted as the time used for the control

actions having influence on at least one of the outputs. The system time delay of process T

can be treated as lower bounded by ds − vs and upper bounded by ds, respectively.

Thus, in the closed-loop system, the total time used for the designed control actions

having influence on the outputs dco(k) can be treated as lower bounded by dco(k)|lower and
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upper bounded by dco(k)|upper, respectively, with

dco(k)|lower = ds − vs + dco(k − ds + vs) (4.21)

dco(k)|upper = ds + dco(k − ds)

while the total time used for the output sensor measurements having influence on the out-

puts through the feedback and forward channels dso(k) can be treated as lower bounded by

dso(k)|lower and upper bounded by dso(k)|upper, respectively, with

dso(k)|lower = ds − vs + dca(k − ds + vs) + dsc(k − ds + vs − dca(k − ds + vs)) (4.22)

dso(k)|upper = ds + dca(k − ds) + dsc(k − ds − dca(k − ds))

Then, it is natural to extend the conclusion in equation (4.17) to NCSs with the general

interactor matrices. That is, the lower bound of the LTV minimum variance benchmark

consists of the first dso(k)|lower terms in the impulse response form of Gcl(k)

Yk|mv,lower= F̃ (k)|lowerak = (F̃0(k) + · · ·+ F̃dso(k)|lower−1(k)q−dso(k)|lower+1)ak (4.23)

where F̃ (k)|lower is solved from a Diophantine identity:

Gcl(k) = F̃ (k)|lower+R̃(k)|lowerq−dso(k)|lower (4.24)

where F̃ (k)|lower is the LTV polynomial matrix that consists of the first dso(k)|lower terms

in the impulse response form of Gcl(k), and R̃(k)q−dso(k)|lower is the remaining LTV transfer

function matrix in Gcl(k). While the upper bound of the LTV minimum variance benchmark

consists of the first dso(k)|upper terms in the impulse response form of Gcl(k)

Yk|mv,upper= F̃ (k)|upperak = (F̃0(k) + · · ·+ F̃dso(k)|upper−1(k)q−dso(k)|upper+1)ak (4.25)
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where F̃ (k)|upper is solved from a Diophantine identity:

Gcl(k) = F̃ (k)|upper+R̃(k)|upperq−dso(k)|upper (4.26)

If this obvious extension of the results proposed in Section 4.3.2 can be served as a mean-

ingful benchmark, this bound on minimum variance control benchmark should satisfy two

conditions: 1) it should contain the theoretical best achievable control performance; 2) it

should be achievable by a physically implementable control. In the following, the use of this

LTV minimum variance benchmark region is analytically justified.

First, we prove that the LTV minimum variance benchmark is lower bounded by Yk|mv,lower=

F̃ (k)|lowerak. For the system shown in equation (4.1), the closed-loop output under the LTV

control law Uk = −C(k)q−dsc(k)Yk can be written as

Yk = −D−1T̃ q−dca(k)C(k)q−dsc(k)Yk +Nak (4.27)

According to equation (4.20), define D−1 = q−ds+vsD−1
l with

D−1
l = DT

vsq
0 + · · ·+DT

1 q
−vs+1 +DT

0 q
−vs (4.28)

where D−1
l consists of terms with the power of q less than or equal to 0. Thus, D−1

l is a

proper polynomial matrix. Substituting D−1 = q−ds+vsD−1
l into equation (4.27), we have

Yk = −q−ds+vsD−1
l T̃ q−dca(k)C(k)q−dsc(k)Yk +Nak (4.29)

Further, N is divided to two parts based on the Diophantine equation:

N = F (k)|lower+R(k)|lowerq−dso(k)|lower (4.30)

where F (k)|lower is the LTV polynomial matrix that consists of the first dso(k)|lower terms
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in the impulse response form of N , and R(k)|lowerq−dso(k)|lower is the remaining LTV transfer

function matrix in N . From equations (4.6), (4.24) and (4.30), it follows that

F̃ (k)|lowerak + R̃(k)|lowerak−dso(k)|lower (4.31)

=F (k)|lowerak +R(k)|lowerak−dso(k)|lower

−D−1
l T̃C(k − dco(k)|lower)Gcl(k − dso(k)|lower)ak−dso(k)|lower

It is clear that F̃ (k)|lower= F (k)|lowerak and F (k)|lowerak is related to the white noise from

time k− dso(k)|lower+1 to time k which is future noise to the second and third terms on the

right hand side of equation (4.31). Thus,

minE[Y T
k Yk] ≥ E[(F̃ (k)|lowerak)T (F̃ (k)|lowerak)] (4.32)

The theoretical best achievable control performance is lower bounded by

Yk|mv,lower= F̃ (k)|lowerak = (F̃0(k) + F̃1(k)q−1 + · · ·+ F̃dso(k)|lower−1(k)q−dso(k)|lower+1)ak

(4.33)

and the lower bound of the LTV minimum variance benchmark Φlower
mv (k) can be calculated

as

Φlower
mv (k) =

dso(k)|lower−1∑
i=0

tr(F̃ T
i (k)F̃i(k)) (4.34)

Second, we prove that for any LTV controller Uk = −C(k)q−dsc(k)Yk with its closed-

loop model given as equation (4.26), the closed-loop response Yk|mv,upper= F̃ (k)|upperak is

achievable by a physically realizable controller Uk = −C∗(k)q−dsc(k)Yk. Thus, Yk|mv,upper=

F̃ (k)|upperak can provide the measure of the upper bound of the LTV minimum variance

benchmark. For the system shown in equation (4.1), the closed-loop output under the LTV
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control law Uk = −C(k)q−dsc(k)Yk can be written as

Yk = (1 +D−1T̃ q−dca(k)C(k)q−dsc(k))−1Nak (4.35)

where D−1 is equivalent to q−ds(qdsD−1). Then we have

Yk = (1 + q−ds(qdsD−1)T̃ q−dca(k)C(k)q−dsc(k))−1Nak (4.36)

where the term (qdsD−1)T̃ is denoted as T̂ . T̂ is invertible, and its inverse is given by

T̂−1 = T̃−1(q−dsD) (4.37)

where T̃ is invertible according to the assumptions made in Section 1.2.2. Since the highest

power of q in D is ds, q
−dsD is a proper polynomial matrix. Therefore, T = q−ds(qdsD−1)T̃ =

q−dsT̂ which has the same form as the process model with the simple interactor matrix. Then,

for the LTV controllers c(k) and c∗(k) we have

F̃ (k)|upper+R̃(k)|upperq−dso(k)|upper = (1 + q−dT̂ q−dca(k)C(k)q−dsc(k))−1Nak (4.38)

F̃ (k)|upper = (1 + q−dT̂ q−dca(k)C∗(k)q−dsc(k))−1Nak (4.39)

From equation (4.6), the difference between equations (4.38) and (4.39) provides

T̂ [C∗(k − dco(k)|upper)− C(k − dco(k)|upper)]F̃ (k − dso(k)|upper)|upperq−dso(k)|upper (4.40)

=(1 + T̂C(k − dco(k)|upper)q−dso(k)|upper)R̃(k)|upperq−dso(k)|upper

Solving equation (4.40), we will get

C∗(k − dco(k)|upper) = C(k − dco(k)|upper) (4.41)

+ T̂−1(1 + T̂C(k − dco(k)|upper)q−dso(k)|upper)R̃(k)|upperF̃−1(k − dso(k)|upper)|upper
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According to the derivations in equations (A.11-A.14), equation (4.41) can be rewritten as

C∗(k) = C(k) + T̂−1(1 + T̂C(k)q−dsc(k))R̃(k + dca(k
′′
) + ds)|upperF̃−1(k − dsc(k))|upper

(4.42)

where k = k
′′ − dca(k

′′
). The closed-loop response Yk = Gcl(k) is stable, so R(k)|upper is

stable too. F̃−1(k − dsc(k))|upper is stable and proper by the assumption of N . Finally, T̂

is proved to be invertible. Therefore, C∗(k) as solved from equation (4.42) is a physically

achievable control, and the theoretical best achievable control performance is upper bounded

by Yk|mv,upper= F̃ (k)|upperak.

minE[Y T
k Yk] ≤ E[(F̃ (k)|upperak)T (F̃ (k)|upperak)] (4.43)

and the upper bound of the LTV minimum variance benchmark Φupper
mv (k) can be calculated

as

Φupper
mv (k) =

dso(k)|upper−1∑
i=0

tr(F̃ T
i (k)F̃i(k)) (4.44)

4.3.4 Practical considerations

In control performance assessment, it is important that the designed benchmark is achievable

by a physically implementable control and can be estimated from routine operating data

without artificially perturbing the operation of system. But the existence of controller-to-

actuator communication delay challenges the satisfaction of these two conditions.

In equation (4.42), sensor-to-controller communication delay dsc(k) and controller-to-

actuator communication delay dca(k
′′) are compensated in the designed LTV minimum vari-

ance control law by the term F̃−1(k − dsc(k))|upper and the term R̃(k + dca(k
′′) + ds)|upper,

respectively. At time k, the term F̃−1(k−dsc(k))|upper is determined by its order dso(k−dsc(k))
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with

dso(k − dsc(k)) = ds + dca(k − dsc(k)− ds) + dsc(k − dsc(k)− ds − dca(k − dsc(k)− ds))

(4.45)

where dsc(k) is the communication delay from the sensors to the controller, and is known by

the controller at time k. Thus, dso(k − dsc(k)) is known by the controller at time k since it

is only related to current and past information. While the term R̃(k + dca(k
′′) + ds)|upper is

determined by the order of F̃ (k + dca(k
′′) + ds)|upper, which is

dso(k + dca(k
′′) + ds) (4.46)

=ds + dca(k + dca(k
′′)) + dsc(k + dca(k

′′)− dca(k + dca(k
′′)))

=ds + dca(k
′′) + dsc(k)

where dca(k
′′) = k′′−k requires that k′′ should be known which is the time that the actuators

receive the information sent by the controller at time k. If dca(k
′′) is known by the controller

at time k, the designed benchmark control in equation (4.42) is implementable. Then,

the proposed LTV minimum variance benchmark in equation (4.44) can be used in control

performance assessment of the NCSs. If dca(k
′′) is not known by the controller at time k,

the proposed LTV minimum variance benchmark in equation (4.42) is not achievable, and

the best achievable control performance is further degraded.

In this case, the order of the minimum variance term F̃ (k)|upper cannot be directly chosen

as dso(k)|upper due to the unknown controller-to-actuator communication delay. The lower

and upper bounds of the LTV minimum variance benchmark are proposed as follows to solve

this problem.

1. The lower bound of the LTV minimum variance benchmark can be calculated from

equations (4.33) and (4.34) by assuming dca(k) is known to the controller at time k,

which is the best case for the control of the NCSs with random communication delays.
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The obtained LTV minimum variance control is actually not implementable, but the

lower bound of the LTV minimum variance benchmark provides the maximum that we

can further improve the control performance.

2. The upper bound of the LTV minimum variance benchmark is calculated from equa-

tions (4.42) and (4.44) by assuming dca(k) = d̄ca, which is the worst case of the control.

The obtained LTV minimum variance control in this case is implementable. At time

k, the control law is designed with dca(k
′′) = d̄ca by the controller. Then, the control

actions are sent to the actuators from the controller at time k, and can be implemented

by the actuators at time k + d̄ca, although the control actions may be received by the

actuators before time k+ d̄ca. Further, the upper bound of the LTV minimum variance

benchmark provides the minimum improvement that the controller can achieve.

To calculate the lower and upper bounds of LTV performance index in practice, firstly,

recursive time series analysis algorithm can be used to estimate the LTV ARMA model from

routine operating data [71, 72, 73]. If the closed-loop system is considered not to be rapidly

varying under random communication delays, then moving window based identification of

the LTI ARMA model can be used to approximate the LTV closed-loop model. Consider

the identified LTV ARMA model with order (n,m) as

A(k)Yk = C(k)ak (4.47)

where

A(k) = a0(k) + a1(k)q−1 + · · ·+ an(k)q−n (4.48)

C(k) = c0(k) + c1(k)q−1 + · · ·+ cm(k)q−m

Then, the LTV closed-loop model Gcl(k) can be calculated recursively by substituting equa-
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tion (4.48) into equation (4.47)

Gcl(k) = a−1
0 (k)[C(k)− a1(k)Gcl(k − 1)q−1 − · · · − an(k)Gcl(k − n)q−n] (4.49)

Then, one can determine how well the current controller is operating using the following

indices

ηn(k)|lower =
Φlower
mv (k)

Φactual(k)
=

∑dso(k)|lower−1
i=0 tr(F T

i (k)Fi(k))

‖Gcl(k)‖2
2

(4.50)

ηn(k)|upper =
Φupper
mv (k)|dca(k)=d̄ca

Φactual(k)
=

∑dso(k)|upper−1
i=0 tr(F T

i (k)Fi(k))|dca(k)=d̄ca

‖Gcl(k)‖2
2

where ηn(k)|lower and ηn(k)|upper are the performance indices calculated based on the lower

and upper bounds of the LTV minimum variance benchmark, respectively. According to

the obtained performance indices, the NCSs with performance lying between ηn(k)|lower

and ηn(k)|upper is considered to be in a good condition; the NCSs with performance larger

than and close to ηn(k)|upper is considered an acceptable performance, but there still is a

potential for performance improvement; the NCSs with performance larger than and far

from ηn(k)|upper indicates poor performance, and as a result controller tuning or redesign of

the controller will be considered to be necessary.

4.4 Application to a reactor-separator example

In this section, a reactor-separator process as shown in Figure 4.5 is used to illustrate the

proposed method. The process consists of two stirred tank reactors and one separator.

Streams of pure reactant A are added to the two reactors. Reactant A is converted to

product B and side product C by a first-order reaction and a parallel first-order reaction,

respectively. Then, distillate of the separator is partially redirected to the first reactor. A
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Figure 4.5: Schematic of the reactor-separator process.

dynamic model of this process has been established as following [74, 13]

dxA1

dt
=

1

ρA1H1

(Ff1xA0 + FRxAR − F1xA1)− kA1xA1

dxB1

dt
=

1

ρA1H1

(FRxBR − F1xB1) + kA1xA1 − kB1xB1

dT1

dt
=

1

ρA1H1

[Ff1(T10 + aT10) + FR(T3 + aT3)− F1T1]

− 1

Cp
(kA1xA1∆HA + kB1xB1∆HB) +

Q1

ρA1CpH1

dxA2

dt
=

1

ρA2H2

(Ff2xA0 + F1xA1 − F2xA2)− kA2xA2

dxB2

dt
=

1

ρA2H2

(F1xB1 − F2xB2) + kA2xA2 − kB2xB2

dT2

dt
=

1

ρA2H2

[Ff2(T20 + aT20) + F1T1 − F2T2]

− 1

Cp
(kA2xA2∆HA + kB2xB2∆HB) +

Q2

ρA2CpH2

dxA3

dt
=

1

ρA3H3

[Ff2xA2 − (FR + FD)xAR − F3xA3)

dxB3

dt
=

1

ρA3H3

(F2xB2 − (FR + FD)xBR − F3xB3)

dT3

dt
=

1

ρA3H3

[F2T2 − (FR + FD)T3 − F3T3] +
Q3

ρA3CpH3
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in which for i = 1, 2, 3

kAi = kAexp(−
EA
RTi

) kBi = kBexp(−
EB
RTi

)

The recycle flow and weight percentages satisfy

FD = 0.01FR xAR =
αAxA3

x̄3

xBR =
αBxB3

x̄3

x̄3 = αAxA3 + αBxB3 + αCxC3 xC3 = (1− xA3 − xB3)

This process has 9 variables where xAi is the mass fraction of reactant A in the ith vessel,

xBi is the mass fraction of product B in the ith vessel, and Ti is the temperature in the ith

vessel, for i = 1, 2, 3. We consider that the levels (H1, H2, H3), the flow rates of the feed

streams to the first and the second vessels (Ff1, Ff2), the flow rates of the effluent streams

of the three vessels (F1, F2, F3), and the recycle flow rate (FR) are maintained at constant

values. The manipulated inputs are chosen as the heating inputs (Q1, Q2, Q3) provided

by the jackets to the three vessels, while the controlled outputs are chosen as the product

mass fractions (xB1, xB2, xB3) in the three vessels. (T10, T20, T3) are the temperatures of

(Ff1, Ff2, FR), respectively. (aT10 , aT20 , aT3) are considered as Guassian disturbances with

mean 0 and variance 10 that affect (T10, T20, T3), respectively. Three proportional-integral-

derivative (PID) controllers are designed for Q1, Q2, Q3 to control T1, T2, T3, respectively,

with the controller given in the form of

Pi + IiTs
1

q − 1
+Di

Ni

1 +NiTs
1
q−1

(4.51)

where Pi is the proportional gain, Ii is the integral gain, Di is the derivative gain and Ni is

the filter coefficient in the ith PID controller, respectively. Further, actuator delays of 0.5s,

1s and 1.5s are added to the control of Q1, Q2 and Q3, respectively. The process model

is linearized around the steady state and then discretized with sampling time Ts = 0.5s.
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Figure 4.6: Sequences of communication delays.

The detailed steady state values, system parameters and controller parameters are given in

Appendix A.3.

Control performance of this PID controller under both centralized control and networked

control is tested using the conventional minimum variance and the proposed LTV minimum

variance as the benchmarks, respectively. In networked control, dsc(k) and dca(k) are assumed

to be independent of each other and are assumed to be bounded with 0 ≤ dsc(k), dca(k) ≤ 3.

Then, the series of dsc(k) and dca(k) are generated by randomly taken values in the set

{0, · · · , 3} with equal probability. The simulation is run for 20000 samples, and the results

from samples 7500 to 9000 are presented as follows.

The generated communication delay sequences are shown in Figure 4.6, and the closed-

loop test of the designed PID controller under centralized control and networked control

is shown in Figure 4.7 where blue curve and red curve are centralized control result and

networked control result, respectively. According to the closed-loop test, we can find that

the designed PID controller is applicable to the case when there are random communication

delays, although its performance is degraded.

Based on the simulated closed-loop data under networked control, moving window based
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Figure 4.7: Closed-loop test of the PID controller

identification of LTI ARMA models is conducted to approximate the LTV closed-loop model.

The window size is chosen as 2000 samples, and the window moves forward with a step

size of every 50 samples. In this case, the closed-loop model is considered not to change

very significantly within 50 samples. Then the lower bound and upper bound of the LTV

minimum variance benchmark are calculated from the closed-loop model, and are shown as

the blue curve and red curve in Figure 4.8, respectively. According to equation (4.50), for the

performance of the PID controller under the networked control, the indexes with respect to

the lower bound and upper bounds of the proposed LTV minimum variance benchmark are

shown as the blue curve and red curve in Figure 4.9, respectively. Finally, for the performance

of the PID controller under centralized control, the index with respect to the conventional

minimum variance benchmark is shown as the black curve at the bottom Figure 4.9 [30].

By comparing Figure 4.7 and Figure 4.9, we can find that the obtained LTV minimum

variance indexes can indicate the closed-loop performance effectively. In Figure 4.9, it shows

poorer performance around the 8300th sample and better performance for the rest. These

results are consistent with the closed-loop test shown in Figure 4.7. Further, although the

control performance is degraded under the networked control due to the presence of com-
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Figure 4.8: Lower and upper bounds of the LTV minimum variance benchmark.
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Figure 4.9: Performance indexes of the PID controller.
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munication delays, the obtained LTV minimum variance performance indexes of this PID

controller still show a competitive and even better result comparing with the performance

indexes obtained in the centralized case. Thus, the proposed LTV minimum variance bench-

mark can efficiently take into account the influence of communication delays, and is more

suitable to the control performance assessment of the NCSs.

4.5 Conclusions

In this chapter, practical solutions for the control performance assessment of NCSs with

random communication delays are developed. Analytical expressions for the lower and upper

bounds of the LTV minimum variance benchmark are derived, and the corresponding LTV

minimum variance control laws are provided. It is shown that the proposed benchmark is

achievable by a practical control. The estimation of the proposed benchmark from routine

operating data is illustrated with the a priori knowledge of OIM and RIM. Although it does

not provide a point estimation of the exact minimum variance benchmark, the proposed

benchmark provides an answer on how much potential in terms of minimum and maximum

improvement a controller has by tuning or redesigning. Finally, a reactor-separator process

is introduced to demonstrate the effectiveness of the proposed work.

91



Chapter 5

Limits of Control Performance for

Networked Model Predictive Control

Systems with Random

Communication Delays

5.1 Introduction

A number of works on the control of NCSs have been proposed to deal with random commu-

nication delays, among which MPC is of great concern [75]. The essence of MPC is as follows:

at each sampling time, an optimal control problem over a fixed length of prediction horizon

is solved and only the first optimal control move is implemented as the current control law;

at the next sampling time, measurements are used to update the state estimate and the same

procedure is repeated. This feature allows MPC to incorporate inequality constraints and

compensate communication delays, which increases the possibility of its application in the

synthesis and analysis of NCSs [18, 21, 76]. For stationary systems, the LQG solution can be

achieved with the infinite MPC approach, or can be approximated by the MPC solution with
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a finite prediction horizon in practice. Thus, the conventional LQG benchmark can be used

for control performance assessment of model predictive control systems in centralized case, if

performance limitations, such as hard constraints, model mismatch, etc., are not considered.

However, this conclusion does not hold for networked model predictive control systems with

random communication delays, where closed-loop systems are naturally non-stationary.

Motivated by the above discussions, following the idea of conventional LQG tradeoff

curve, this chapter proposes the limits of control performance for networked model pre-

dictive control systems with random communication delays as an alternative of the work

in Chapter 4, where performance limitation of control effort penalty is further considered.

Sensor-to-controller communication delay and controller-to-actuator communication delay

are considered simultaneously. These two kinds of communication delays are both modeled

as first order Markov chains with known transition probabilities.

The main contributions of this chapter are listed as follows. Firstly, an explicit solution to

time-varying MPC of NCSs with random communication delays is derived by minimizing the

expectation of a quadratic cost function over all possible future communication delays in the

prediction horizon. Based on this control design, the time-varying MPC performance tradeoff

curve is presented to characterize the limits of control performance for networked model

predictive control systems. Further, a strategy is provided for obtaining the time-varying

MPC performance tradeoff curve from process model. The obtained MPC performance

tradeoff curve can be used to evaluate how much potential of performance improvement an

existing model predictive controller has by tuning or redesigning it. The effectiveness of the

proposed control design and the use of the time-varying MPC performance tradeoff curve in

control performance assessment are illustrated via a simulation study.
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Figure 5.1: Schematic of NCSs with random communication delays.

5.2 Preliminaries

This chapter is mainly concerned with the NCSs shown in Figure 5.1, in which control loops

are closed through information exchange between different system components over a shared

network. We consider a class of discrete-time LTI process described by a state space model

in the innovation form [77]:

Xt+1 = AXt +BVt +Kat (5.1)

Yt = CXt + at (5.2)

where A, B, C are system matrices, and K is the Kalman filter gain; Xt, Vt and Yt are the

state, input and output vectors of dimensions nx, nv and ny, respectively; at is white noise

of dimension na with zero mean and unit variance. τt is random communication delay from

the sensor to the controller, and δt is random communication delay from the controller to the

actuator. τt and δt are modeled as two independent first order Markov chains with known
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transition probability matrices Λτ = [λτij] and Λδ = [λδij], respectively [78]. In the first order

Markov chain, the probabilistic description of current state is only related to its predecessor,

i.e.,

λτij = P (τt = j|τt−1 = i), λδij = P (δt = j|δt−1 = i) (5.3)

where λτij, λ
δ
ij ≥ 0, 0 ≤ τt ≤ τ̄ and 0 ≤ δt ≤ δ̄.

The buffer is used to receive and store the control signals sent from the controller. The

most recently received control signal will be used by the actuator with the rule of the buffer,

namely, first-in-last-out. Thus, the control input of the plant Vt = Ut−δt . We assume that δt

is measurable at the plant and τt is measurable at the controller. Further, output Yt, input

Vt and delay information δt are together sent from the sensor to the controller through the

communication network.

5.3 Time-varying MPC performance tradeoff curve for

networked model predictive control systems

In this section, first, formulation of subspace matrices considering random communication

delays is introduced. Then we derive an explicit solution of time-varying MPC for networked

model predictive control systems with random communication delays based on the introduced

subspace formulation. Further, according to the proposed control design, a strategy for

obtaining MPC performance tradeoff curve from process model is provided.

5.3.1 Subspace matrices

Consider the networked control setup shown in Figure 5.1. Output Yt, input Vt and delay

information δt are measured at the remote system and sent from the sensor to the controller

together through the communication network, while delay information τt is measured at the
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controller. Then, due to the presence of communication delays, the available information to

the controller at time t is {Yt−τt , · · · , Y0}, {Vt−τt , · · · , V0}, {δt−τt , · · · , δ0}, {τt, · · · , τ0} and its

local information {Ut−1, · · · , U0}.

From equations (5.1) and (5.2), by replacing the time subscript t with t− τt

Xt−τt+1 = AXt−τt +BVt−τt +Kat−τt (5.4)

Yt−τt = CXt−τt + at−τt (5.5)

Combining equations (5.4) and (5.5) yields

Xt−τt+1 = (A−KC)Xt−τt +KYt−τt +BVt−τt (5.6)

Based on the regression analysis approach introduced in [79], recursively substituting equa-

tion (5.6) results in

Xt−τt+1 =(A−KC)LXt−τt+1−L + (A−KC)L−1(KYt−τt+1−L +BVt−τt+1−L) (5.7)

+ · · ·+ (A−KC)(KYt−τt−1 +BVt−τt−1)

+KYt−τt +BVt−τt

Then equation (5.7) can be rewritten in matrix equation form

Xt−τt+1 =(A−KC)LXt−τt+1−L (5.8)

+
[
(A−KC)L−1K · · · K

][
Y T
t−τt+1−L · · · Y T

t−τt

]T
+
[
(A−KC)L−1B · · · B

][
V T
t−τt+1−L · · · V T

t−τt

]T
The short-hand version of equation (5.8) is

Xt−τt+1 = φxXt−τt+1−L + φyYp + φvVp (5.9)
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where φx = (A−KC)L−1 represents error dynamics of a Kalman filter. Due to the stability

of a Kalman filter, φx → 0 for L→∞. Then, for sufficient large L, the estimator equation

for Xt−τt+1 converges to

Xt−τt+1 =
[
φy φv

]Yp
Vp

 = LpWp (5.10)

where p denotes the past and stands for the time t′ ≤ t− τt. Wp is a vector that consists of

past outputs and inputs, in which

Vp =


Vt−τt+1−L

· · ·

Vt−τt

 =


Ut−τt+1−L−δt−τt+1−L

· · ·

Ut−τt−δt−τt

 = Up (5.11)

Then, according to equation (5.10), Xt−τt+1 can be estimated in the controller at time t since

all the information contained in Wp is available.

For equation (5.2), we can derive, for time t− τt + 1

Yt−τt+1 = CXt−τt+1 + at−τt+1 (5.12)

For time t− τt + 2

Yt−τt+2 = CXt−τt+2 + at−τt+2 (5.13)

Substituting the equation (5.1) for time t− τt + 1 into equation (5.13) yields

Yt−τt+2 = CAXt−τt+1 + CBVt−τt+1 + CKat−τt+1 + at−τt+2 (5.14)
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Similarly for time t− τt + 3, using equations (5.1) and (5.2), we can derive

Yt−τt+3 = CA2Xt−τt+1 + CABVt−τt+1 + CBVt−τt+2 + CAKat−τt+1 (5.15)

+ CKat−τt+2 + at−τt+3

Repeating this procedure until time t+N and then assembling the results for time {t− τt +

1, t− τt + 2, · · · , t+N}, we can obtain a matrix equation



Yt−τt+1

· · ·

Yt

Yt+1

· · ·

Yt+N


=



C

· · ·

CAτt−1

CAτt

· · ·

CAτt+N−1


Xt−τt+1 (5.16)

+



0 · · · 0 0 · · · 0

· · · · · · · · · · · · · · · · · ·

CAτt−2B · · · 0 0 · · · 0

CAτt−1B · · · CB 0 · · · 0

· · · · · · · · · · · · · · · · · ·

CAτt+N−2B · · · CAN−2B CAN−3B · · · 0





Vt−τt+1

· · ·

Vt

Vt+1

· · ·

Vt+N


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+



I · · · 0 0 · · · 0

· · · · · · · · · · · · · · · · · ·

CAτt−2K · · · I 0 · · · 0

CAτt−1K · · · CK I · · · 0

· · · · · · · · · · · · · · · · · ·

CAτt+N−2K · · · CAN−2K CAN−3K · · · I





at−τt+1

· · ·

at

at+1

· · ·

at+N


Decomposing the matrices in equation (5.16) to two parts with respect to Ypre = [Y T

t−τt+1, · · · , Y T
t ]T

and Yf = [Y T
t+1, · · · , Y T

t+N ]T , the short-hand version of equation (5.16) can be written as

Ypre
Yf

 =

ΓNpre|τt

ΓNf |τt

Xt−τt+1 +

HN
pre|τt

HN
f |τt


Vpre
Vf

+

ZN
pre|τt

ZN
f |τt


Apre
Af

 (5.17)

where f denotes the future and stands for the time t′ ≥ t+ 1, while pre stands for the time

interval t′ ∈ [t− τt + 1, t]. Then Apre = [aTt−τt+1, · · · , aTt ]T , Af = [aTt+1, · · · , aTt+N ]T and

Vpre =


Vt−τt+1

· · ·

Vt

 =


Ut−τt+1−δt−τt+1

· · ·

Ut−δt

 , Vf =


Vt+1

· · ·

Vt+N

 =


Ut+1−δt+1

· · ·

Ut+N−δt+N

 (5.18)

Defining Vpref = [V T
pre, V

T
f ]T , we further separate Vpref to two parts as

Vpref =

Upre
Uf

 , Upre =


Ut−τt+1−δt−τt+1

· · ·

Ut−1

 , Uf =


Ut

· · ·

Ut+N−δt+N

 (5.19)

where Upre consists of the control signals that are generated from the controller in the past,

and Uf consists of the future control signals over the prediction horizon. The dimensions of

Upre and Uf are related to the unknown delay sequence ∆ = {δt−τt+1, · · · , δt+N}. Upre is not
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completely available in control design since ∆ is unknown, and a strategy on making use of

Upre is proposed in the following section. Then by omitting white noise sequences Apre and

Af , the predictor equation is given by

Ŷf = ΓNf |τtXt−τt+1 +HN
f |τtVpref (5.20)

Substituting equation (5.10) into equation (5.20), one can obtain

Ŷf = ΓNf |τtLpWp +HN
f |τtVpref (5.21)

= LNw |τtWp +HN
f |τtVpref

where LNw |τt and HN
f |τt vary with τt at each time instant

• LNw |τt is subspace matrix corresponding to the past inputs and outputs Wp with pre-

diction length N and communication delay τt

• HN
f |τt is subspace matrix corresponding to the deterministic inputs Vpref with predic-

tion length N and communication delay τt

5.3.2 Time-varying MPC design

Sensor-to-controller communication delay τt is measurable by the controller, and its influence

on the predicted outputs Ŷf is completely considered in the formulation of subspace matrices

LNw |τt and HN
f |τt . The influence of controller-to-actuator communication delay δt on the

predicted outputs Ŷf is reflected in the past inputs Vp and the future inputs Vpref . The past

delay information {δt−τt , · · · , δt−τt+1−L} in Vp is known by the controller, while the future

delay sequence ∆ in Vpref is unavailable.

To deal with the unknown delay sequence ∆, a time-varying MPC is designed to minimize
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the expectation of the following quadratic cost function over all possible ∆

J(ω) = E
∆
{Ŷ T

f Ŷf + UT
f (ωI)Uf} (5.22)

=
δ̄∑

δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
{Ŷ T

f Ŷf + UT
f (ωI)Uf}

where reference trajectory is assumed to be zero, E is the expectation operator and ω > 0 is

the user defined input weighting parameter.
∑δ̄

δt−τt+1=0 · · ·
∑δ̄

δt+N=0 is the sum of all possible

combinations of future delay sequence ∆ and
∏t+N−1

i=t−τt λ
δ
δiδi+1

is the probability of each possible

∆. Substituting equation (5.21) into equation (5.22) yields

J(ω) =W T
p L

N
w |TτtL

N
w |τtWp + (LNw |τtWp)

T (
δ̄∑

δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
HN
f |τtVpref ) (5.23)

+ (
δ̄∑

δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
HN
f |τtVpref )TLNw |τtWp

+
δ̄∑

δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
V T
prefH

N
f |TτtH

N
f |τtVpref

+
δ̄∑

δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
UT
f (ωI)Uf

where LNw |τtWp is constant term, HN
f |τt is a coefficient matrix, while Vpref and Uf are related

to ∆.

First, defining HN
f |τt(:, j) as the jth block column of HN

f |τt and Vpref (j) as the jth vector

element of Vpref , we can get

HN
f |τtVpref =

[
HN
f |τt(:, 1), · · · , HN

f |τt(:, N + τt)

] [
V T
pref (1), · · · , V T

pref (N + τt)

]T
(5.24)

Since all possible ∆ is considered, in equation (5.23),
∑δ̄

δt−τt+1=0 · · ·
∑δ̄

δt+N=0 Vpref contains

all the control signals in the set of {Ut−τt+1−δ̄, · · · , Ut+N}. Analogous to equation (5.24), we

101



can rewrite part of the second term on the right hand side of equation (5.23) as

δ̄∑
δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
HN
f |τtVpref (5.25)

=

[
θN1 |τt , · · · , θNN+τt+δ̄

|τt

] [
UT
t−τt+1−δ̄, · · · , U

T
t+N

]T
=ΘN |τtUJ

pref

where UJ
pref = [UT

t−τt+1−δ̄, · · · , U
T
t+N ]T consists of all the control signals used in cost function

J(ω). ΘN |τt is the coefficient matrix corresponding to UJ
pref with

θNi |τt=
N+τt∑
j=1

[P (Vpref (j) = Ut+i−δ̄−τt |δt−τt)H
N
f |τt(:, j)] (5.26)

for i = 1, · · · , N + τt + δ̄. In equation (5.26),

P (Vpref (j) = Ut+i−δ̄−τt |δt−τt) = P (δt−τt+j = j + δ̄ − i|δt−τt) (5.27)

is the probability for Ut+i−δ̄−τt being the jth vector element in Vpref with the initial delay

state δt−τt . This probability is calculable off-line with given δt−τt ∈ [0, · · · , δ̄] and {λδij | i, j ∈

[0, · · · , δ̄]} [78]. Then, decomposing equation (5.25) to two parts gives

ΘN |τtUJ
pref =

[
ΘN
pre|τt ΘN

f |τt

]UJ
pre

UJ
f

 (5.28)

where

UJ
pre =


Ut−τt+1−δ̄

· · ·

Ut−1

 , UJ
f =


Ut

· · ·

Ut+N

 (5.29)
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UJ
pre consists of all the previously designed control signals that are contained in the cost

function J(ω), while UJ
f consists of all the future control signals that are contained in the

cost function J(ω). ΘN
pre|τt and ΘN

f |τt are coefficient matrices with respect to Upre and Uf ,

respectively.

Second, defining ΨN |τt= HN
f |TτtH

N
f |τt and ΨN |τt(i, j) as the (i, j)th block element of ΨN |τt ,

we can get

V T
prefH

N
f |TτtH

N
f |τtVpref =

N+τt∑
i=1

N+τt∑
j=1

V T
pref (i)ΨN |τt(i, j)Vpref (j) (5.30)

Similarly, analogous to equation (5.30), we can rewrite the fourth term on the right hand

side of equation (5.23) as

δ̄∑
δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
V T
prefH

N
f |TτtH

N
f |τtVpref (5.31)

=
N+τt+δ̄∑
i=1

N+τt+δ̄∑
j=1

UT
t+i−τt−δ̄Υ

N
(i,j)|τt Ut+j−τt−δ̄

where

ΥN
(i,j)|τt =

N+τt∑
p=1

N+τt∑
q=1

[P (Vpref (p) = Ut+i−δ̄−τt , Vpref (q) = Ut+j−δ̄−τt |δt−τt)Ψ
N |τt(p, q)] (5.32)

for i, j = 1, · · · , N + τt + δ̄. In equation (5.32)

P (Vpref (p) = Ut+i−δ̄−τt , Vpref (q) = Ut+j−δ̄−τt |δt−τt) (5.33)

=P (δt−τt+p = p+ δ̄ − i, δt−τt+q = q + δ̄ − j|δt−τt)

is the probability for Ut+i−δ̄−τt and Ut+j−δ̄−τt being the pth and the qth vector elements in

Vpref , respectively, with the initial delay state δt−τt . The calculation of this probability can

also be referred to [78]. Then, rewriting equation (5.31) in matrix equation form and further
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decomposing it to two parts, we can obtain

δ̄∑
δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
V T
prefH

N
f |TτtH

N
f |τtVpref (5.34)

=(UJ
pref )TΥN |τt UJ

pref

=

[
(UJ

pre)
T (UJ

f )T
]ΥN

11|τt ΥN
12|τt

ΥN
21|τt ΥN

22|τt


UJ

pre

UJ
f


where ΥN |τt is a coefficient matrix with ΥN

(i,j)|τt as its (i, j)th block element. ΥN |τt is proven

to be a positive semi-definite matrix in the Appendix B.1. Subsequently, ΥN
22|τt is a positive

semi-definite matrix and ΥN
12|τTt = ΥN

21|τt.

Finally, following the same idea, the fifth term on the right hand side of the equation

(5.23) can be rewritten as

δ̄∑
δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
UT
f (ωI)Uf (5.35)

=
δ̄∑

δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
[

N−δt+N+1∑
j=1

UT
t+j−1(ωI)Ut+j−1]

=
N+1∑
i=1

UT
t+i−1(ΩN

i |τtI)Ut+i−1

where

ΩN
i |τt= ω

N+τt∑
j=1

[P (Vpref (j) = Ut+i−1|δt−τt)] (5.36)

for i = 1, · · · , N + 1. In equation (5.36),

P (Vpref (j) = Ut+i−1|δt−τt) = P (δt−τt+j = j − τt − i+ 1|δt−τt) (5.37)
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is the probability for Ut+i−1 being the jth vector element in Vpref with the initial delay δt−τt .

Then, the matrix equation form of equation (5.35) is given by

δ̄∑
δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
UT
f (ωI)Uf (5.38)

=(UJ
f )TΩN |τtUJ

f

where ΩN |τt is a block diagonal matrix with ΩN
i |τt as its ith diagonal element. Due to ω > 0,

ΩN |τt is a positive definite matrix.

Substituting equations (5.28), (5.34) and (5.38) into equation (5.23), we can get

J(ω) =W T
p L

N
w |TτtL

N
w |τtWp + (LNw |τtWp)

T (ΘN
pre|τtUJ

pre + ΘN
f |τtUJ

f ) (5.39)

+ (ΘN
pre|τtUJ

pre + ΘN
f |τtUJ

f )TLNw |τtWp

+ (UJ
pre)

TΥN
11|τtUJ

pre + (UJ
pre)

TΥN
12|τtUJ

f + (UJ
f )TΥN

21|τtUJ
pre + (UJ

f )TΥN
22|τtUJ

f

+ (UJ
f )TΩN |τtUJ

f

where UJ
f is a vector of future control signals to be designed, while all the other matrices

and vectors are constant and known values, respectively. Taking partial differentiation of

J(ω) with respect to UJ
f and setting it to zero yields the optimal control law as

UJ
f = −(ΥN

22|τt + ΩN |τt)−1

[
ΘN
f |τTt LNw |τt ΥN

21|τt

]Wp

UJ
pre

 (5.40)

where (ΥN
22|τt + ΩN |τt)−1 always exists, since ΥN

22|τt ≥ 0 and ΩN |τt> 0.

In the controller, at each sampling time t, the controller design scheme can be stated as

follows:

1. Receive δt−τt from the remote system, measure τt and generate vectors Wp and UJ
pre;

2. Calculate the subspace matrices LNw |τt and HN
f |τt , as well as the coefficient matrices
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ΩN |τt , ΥN |τt and ΘNτt;

3. Calculate UJ
f in equation (5.40) such that J(ω) is minimized;

4. Implement Ut which is the first element in UJ
f .

5.3.3 Time-varying MPC performance tradeoff curve

For centralized model predictive control systems, the conventional LQG tradeoff curve can be

used for its control performance assessment, since an infinite horizon MPC objective function

converges to a LQG objective function in centralized case [80]. However, this conclusion

does not hold for networked model predictive control systems with random communication

delays. In order to find the limits of control performance and to further develop the control

performance assessment technology for networked model predictive control systems, in this

section, the time-varying MPC performance tradeoff curve is proposed following the idea of

conventional LQG tradeoff curve.

The time-varying MPC performance tradeoff curve is obtained from solving the MPC

objective function defined in equation (5.22). By varying ω, various solutions of E[UT
t Ut]

and E[Y T
t Yt] for the system controlled by benchmark MPC is calculated at each time in-

stant. Then, the time-varying MPC performance tradeoff curve can be determined from

these solutions with E[UT
t Ut] as the x-axis and E[Y T

t Yt] as the y-axis, respectively. This

time-varying MPC performance tradeoff curve shows the limits of control performance for

networked model predictive control systems. To assess performance of networked model

predictive control systems with the proposed time-varying MPC performance tradeoff curve,

we compare performance of the current controller with the benchmark controller in terms

of both E[Y T
t Yt] and E[UT

t Ut]. This gives rise to two problems: 1) design benchmark MPC;

2) obtain E[Y T
t Yt] and E[UT

t Ut] of the system under current controller and benchmark con-

troller, respectively. The first problem has been solved in the previous sections. In the

conventional LQG benchmark, solution to the second problem can be found in [50] where an
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algorithm for extracting E[Y T
t Yt] and E[UT

t Ut] of the benchmark control system from routine

operating data has been proposed, while E[Y T
t Yt] and E[UT

t Ut] of the current control system

can be calculated from routine operating data directly.

When it comes to NCSs with random communication delays, the second problem becomes

more challenging. The benchmark MPC designed in equation (5.40) is time-varying. Ex-

tracting E[Y T
t Yt] and E[UT

t Ut] for such a benchmark control system from routine operating

data is very difficult. Further, random communication delays will lead to a non-stationary

behavior of the closed-loop system. E[Y T
t Yt] and E[UT

t Ut] for the current control system

also change over time, and cannot be calculated from routine operating data directly. In

this chapter, we choose to calculate E[Y T
t Yt] and E[UT

t Ut] of the benchmark control system

based on process model instead of from routine operating data. Although it imposes a higher

requirement on the a priori knowledge of process model, it provides us a tractable solution

to the problem.

In spite of the presence of random communication delays, the relationship between time

series Yt and Vt still follows the process model shown in equations (5.1) and (5.2). Then

system matrices A, B, C and the Kalman filter gain K can be identified according to the

work [77]. To obtain E[Y T
t Yt] and E[UT

t Ut] of the benchmark control system, we need to

calculate the closed-loop expressions for input and output of the system at time t in terms

of the disturbance. By assuming zero initial state of the system, from equations (5.8), (5.16)

and (5.40), we can calculate the closed-loop expressions for Yt and Ut of the benchmark

control system for different time instants in terms of at recursively. Without giving a detailed

mathematical derivation, for the benchmark control system, we can express its output and

input as

Yt,opt = GYopt(t)at (5.41)

Ut,opt = GUopt(t)at
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where Yt,opt and Ut,opt are the output and the input of the benchmark control system at time

t , respectively. GYopt(t) and GUopt(t) are the LTV closed-loop transfer function matrices in

backshift operator q−1 accordingly. Then, we can get

E[Y T
t,optYt,opt] = ‖GYopt(t)‖2

2 (5.42)

E[UT
t,optUt,opt] = ‖GUopt(t)‖2

2

To obtain E[Y T
t Yt] and E[UT

t Ut] of the current control system, firstly, recursive time

series analysis algorithm can be used to identify the LTV ARMA models for output and

input of the current control system [71, 72, 73]. Consider the identified LTV ARMA model

of Yt with order (n,m) as

L(t)Yt = Q(t)at (5.43)

where

L(t) = l0(t) + l1(t)q−1 + · · ·+ ln(t)q−n (5.44)

Q(t) = q0(t) + q1(t)q−1 + · · ·+ qm(t)q−m

Then, the LTV closed-loop model GY (t) can be calculated recursively by substituting equa-

tion (5.44) into equation (5.43)

GY (t) = l−1
0 (t)[Q(t)− l1(t)GY (t− 1)q−1 − · · · − ln(t)GY (t− n)q−n] (5.45)

Similarly, we can obtain the LTV closed-loop model GU(t) of Ut following the same procedure.
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Then, we have

E[Y T
t Yt] = ‖GY (t)‖2

2 (5.46)

E[UT
t Ut] = ‖GU(t)‖2

2

Further, in the cost function J(ω), we optimize a quadratic term Ŷ T
f Ŷf +UT

f (ωI)Uf over

the prediction horizon instead of exactly optimizing E[Y T
t Yt] +E[UT

t (ωI)Ut]. The obtained

E[Y T
t,optYt,opt] and E[UT

t,optUt,opt] may have large differences among the neighbouring time

instants due to this issue. To avoid the potential rapidly change of the time-varying MPC

performance tradeoff curve and reduce the computation burden in online application, we

recommend to use the average values 1
r

∑r
i=1 E[Y T

t+i,optYt+i,opt] and 1
r

∑r
i=1 E[UT

t+i,optUt+i,opt]

to determine the curve where r is an user defined parameter.

Then, for time interval t′ ∈ [t, t+r], various solutions of E[UT
t′,optUt′,opt] and E[Y T

t′,optYt′,opt]

can be calculated by varying ω. Afterward, the time-varying MPC performance trade-

off curve for time interval t′ ∈ [t, t + r] can be determined from these solutions with

1
r

∑r
i=1 E[UT

t+i,optUt+i,opt] as the x-axis and 1
r

∑r
i=1 E[Y T

t+i,optYt+i,opt] as the y-axis, respectively.

The distance from the current operating point ( 1
r

∑r
i=1 E[UT

t+iUt+i],
1
r

∑r
i=1 E[Y T

t+iYt+i]) to the

obtained MPC performance tradeoff curve can be used for control performance assessment.

5.4 Simulations

Consider the following state space model which is modified from the example in [77]:

Xt+1 =


0.6 0.6 0

−0.6 0.6 0

0 0 0.7

Xt +


0.808

−0.1741

1.3159

Ut +


−1.1472

−1.5204

−3.1993

 at (5.47)

Yt =

[
−0.4373 − 0.5046 0.0936

]
Xt + at
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Figure 5.2: Sequences of communication delays.

We assume that the process shown in equation (5.45) is under the networked control setup

shown in Figure 5.1. τt and δt are modeled as two independent first order Markov chains

with known transition probability matrices Λτ and Λδ, respectively. In this simulation, τt

and δt are bounded within the set {0, 1, 2, 3}. The transition probability matrices are given

as Λτ = Λδ = P , with

P =



0.5 0.5 0 0

0.3 0.4 0.3 0

0.1 0.2 0.4 0.3

0.1 0.2 0.3 0.4


(5.48)

where a practical constraint of communication delays is considered as δt+1 ≤ δt + 1 (τt+1 ≤

τt + 1). The communication delay sequences are generated for 1500 samples and the results

are shown in Figure 5.2. The top and the bottom figures are the sequences for sensor-to-

controller and the controller-to-actuator communication delays, respectively.

First, the proposed time-varying MPC is tested for two cases: 1) the transition proba-

bility matrices are known accurately; 2) the a priori knowledge of the transition probability
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matrices is not available. In the first case, the transition probability matrix P shown in equa-

tion (5.46) is used in the controller design; while, in the second case, the following transition

probability matrix P1 is used

P1 =



1/2 1/2 0 0

1/3 1/3 1/3 0

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4


(5.49)

where equal probability is assigned to elements in each raw of the matrix. Here, we choose

ω = 1 and L = N = 30 for the control design proposed in Section 5.3. Then the output

trajectories of these two control cases are shown in Figure 5.3. The top and the middle

figures are the output trajectories for the first case and the second case, respectively. The

bottom figure is the difference of the two output trajectories. Our proposed control design

can restrict the variation of the output in a small region according to the control results.

Also, the proposed control design has a very good robustness to the selection of the transi-

tion probability matrices. As shown in the bottom figure, the outputs with the transition

probability matrices being selected as P and P1, respectively, are close to each other. This

is because that the proposed control design is conservative. All possible combinations of the

future delay sequences are considered in the cost function, which reduce the requirement on

the accuracy of the a priori knowledge of the transition probability matrices.

Further, by choosing L = N = 30, r = 10, ω = 2i and varying i from −15 to 9 with a

step size of 1, various optimal control solutions for equation (5.22) are calculated to generate

the time-varying MPC performance tradeoff curves following the procedure introduced in

Section 5.3.3. The following transition probability matrix P2 is used to design the current
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Figure 5.3: Output trajectories for the two control cases.

controller for ω = 2−6, with

P2 =



0.1 0.9 0 0

0.1 0.2 0.7 0

0.1 0.1 0.2 0.6

0.1 0.1 0.2 0.6


(5.50)

There is a large gap between the true transition probability matrix and the one used for the

current controller design. Then, performance of the current controller is assessed based on

the proposed approach. Output and input trajectories for the system under the current con-

troller are shown in Figure 5.4, while the control performance assessment results are shown

in Figure 5.5. The left top figure shows the conventional LQG tradeoff curve designed for

the centralized control systems. The other three figures show the time-varying MPC perfor-

mance tradeoff curves and performance of the current controller for 3 different time intervals,

respectively. Since all possible combinations of the future delay sequences are considered,

the proposed time-varying MPC is more conservative and has smaller E[UT
t Ut] comparing

with the conventional LQG control for centralized case. From the figure we can find that the
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Figure 5.4: Output and input trajectories for current control system.

best achievable E[Y T
t Yt] for a given E[UT

t Ut] in networked model predictive control is larger

than that in the centralized case. Therefore, the benchmark control performance for the cen-

tralized case is not achievable by a networked model predictive control system with random

communication delays. If conventional LQG tradeoff curve is used as the criterion for per-

formance assessment, even if the networked model predictive control system is well designed,

it is highly likely to show a poor control performance and may lead engineers to search for

non-existent networked model predictive controllers. Further, although performance of the

current controller varies with time, the distances from its operating points to the proposed

time-varying MPC performance tradeoff curves for different time intervals are similar. Thus,

the proposed time-varying MPC performance tradeoff curve can give consistent and more

reasonable assessment results for a networked model predictive control system with random

communication delays.
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Figure 5.5: The time-varying MPC performance tradeoff curves for different time intervals.

5.5 Conclusions

In this chapter, a time-varying MPC performance tradeoff curve is designed for control per-

formance assessment of networked model predictive control systems with random communi-

cation delays. Sensor-to-controller communication delay and controller-to-actuator commu-

nication delay are considered simultaneously. These two kinds of communication delays are

both modeled as first order Markov chains with known transition probabilities. An explicit

solution to time-varying MPC is derived, and the time-varying MPC performance tradeoff

curve is proposed based on it. The obtained tradeoff curve can be used to evaluate how much

potential of performance improvement an existing model predictive controller has by tuning

or redesigning it. Finally, A numerical example is provided to demonstrate the effectiveness

of the proposed work.
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Chapter 6

Concluding Remarks and Future

Works

6.1 Concluding remarks

The focus of this thesis is on finding the limits of control performance for DNCSs and NCSs

with random communication delays. A number of distributed networked control and net-

worked control solutions both numerically and analytically have been developed to optimize

variance control objectives. Further, based on the proposed control algorithms, strategies

for obtaining limits of control performance from process models or from routine operating

data are provided for control performance assessment.

Chapter 2 proposes the limits of minimum variance control performance for DNCSs with

random communication delays. A fixed network topology is presented for DNCSs where each

subsystem in the network can communicate directly with all the other subsystems. Output

communication delays and system time delays serve as the most fundamental performance

limitations in distributed networked control, and are fully considered in the proposed dis-

tributed output feedback controllers design. An optimization-based solution to minimum

variance control of DNCSs with time-invariant communication delays is developed. Then,
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this control design is extend to study of the limits of control performance in terms of variance

for DNCSs by considering boundary values of random communication delays.

However, minimum variance control is usually not practical for real process operation

due to its demand for excessive control effort and poor robustness. As an alternative, a

distributed LQG control framework is developed in chapter 3 to further consider input com-

munication delays and control effort penalty. The optimal structures of distributed state

feedback controllers and distributed observers are presented. And the non-applicability of

separation principle in distributed networked control is illustrated. An algorithm is pro-

posed for designing distributed controllers and distributed observers simultaneously, based

on which the lower and upper LQG tradeoff curves can be obtained to characterize the limits

of LQG control performance for DNCSs with random communication delays.

In Chapter 4, a practical LTV minimum variance benchmark is developed for NCSs with

random communication delays, where the a priori knowledge of the interactor matrix is

not required. Sensor-to-controller communication delay and controller-to-actuator commu-

nication delay are modeled as independent random variables. An explicit solution to the

LTV minimum variance benchmark is derived for NCSs with the simple interactor matrix.

Furthermore, this result is extended to the development of a practical LTV minimum vari-

ance benchmark for NCSs with the general interactor matrix by using OIM and RIM. The

proposed benchmark is shown achievable by a physically implementable control and can be

estimated from routine operating data directly.

MPC is widely applied in the synthesis and analysis of NCSs due to its ability to incor-

porate inequality constraints and compensate communication delays. In Chapter 5, a time-

varying MPC performance tradeoff curve is proposed to characterize the limits of control

performance for networked model predictive control systems with random communication

delays. Sensor-to-controller communication delay and controller-to-actuator communication

delay are considered as first order Markov chains with known transition probabilities. An

explicit solution to time-varying MPC of NCSs is derived by minimizing the expectation of
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a quadratic cost function over all possible future communication delays in the prediction

horizon. Based on this control design, the time-varying MPC performance tradeoff curve

is presented for control performance assessment of networked model predictive control sys-

tems. Furthermore, a strategy is provided for obtaining the time-varying MPC performance

tradeoff curve from process model.

6.2 Recommendations for future works

Control performance assessment of DNCSs and NCSs is a relatively new research area. The

results presented in this thesis address some of the fundamental issues under this theory.

As stated in this thesis, investigating limit of control performance is just the first step of

control performance assessment. Estimation of the benchmark control performance from

routine operating data is necessary for industrial applications. Furthermore, communication

delays and system time delays are the most fundamental limitations on the achievable con-

trol performance for designing automatic control systems over network. Considering more

realistic performance limitations will complicate the problem and pose as stumbling blocks

in applying these ideas. The emphasis in future research must be to develop control per-

formance assessment techniques that are user friendly to industrial application and simple

to understand. Future development in this and related areas should consider the following

problems:

1. Estimation of the benchmark control performance from routine operating data nor-

mally relies on an explicit solution to the control problem. For this purpose, exploring

explicit solutions to distributed minimum variance control and distributed LQG control

has great theoretical and practical value.

2. Controllers and observers of different subsystems are centrally designed and then ap-

plied distributedly in this thesis. Although such a strategy can provide the best achiev-

able control performance, some advantages of distributed networked control may be
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lost in the meantime. Limit of control performance for designing subsystem controllers

and observers distributedly is worthy of further investigation.

3. In practice, communication within a DNCS can be restricted to neighbouring subsys-

tems or extensively exist between a majority of subsystems. Development of approaches

for investigating limits of distributed networked control performance under different

kinds of communication network topology is of interest.

4. The unitary interactor is an all-pass term, factorization of such a unitary interactor

matrix does not change the spectral property of the underlying system. This property

of the unitary interactor matrix is desirable for minimum variance control of stationary

systems. NCSs are naturally non-stationary due to the presence of random communi-

cation delays. Instead of deriving a bound on the benchmark control of NCSs based

on OIM and RIM, estimating the true LTV minimum variance benchmark using the

unitary interactor matrix would have great industrial appeal.

5. Limits of control performance for DNCSs and NCSs with non-minimum phase zeros

should be taken into account.

6. Hard constraints should also be taken into account in practice. This would require an

optimization procedure, for which the convex optimization may provide the solution.
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Appendix A

Mathematical Backgrounds and

Derivations of Chapter 4

A.1 Calculation of LTV transfer function matrices

1. Commutativity law

V (k)W (k) =
n∑
i=0

m∑
j=0

vi(k)wj(k − i)q−(i+j)

W (k)V (k) =
m∑
j=0

n∑
i=0

wj(k)vi(k − j)q−(i+j)

Thus, V (k)W (k) 6= W (k)V (k), and the multiplication of LTV transfer function matri-

ces does not satisfy commutativity law.
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2. Associativity law

[W (k)V (k)]X(k)

=
n∑
i=0

m∑
j=0

vi(k)wj(k − i)q−(i+j)(
l∑

p=0

xp(k)q−p)

=
n∑
i=0

m∑
j=0

l∑
p=0

vi(k)wj(k − i)xp(k − i− j)q−(i+j+p)

V (k)[W (k)X(k)]

=(
n∑
i=0

vi(k)q−i)
m∑
j=0

l∑
p=0

wj(k)xp(k − j)q−(j+p)

=
n∑
i=0

m∑
j=0

l∑
p=0

vi(k)wj(k − i)xp(k − i− j)q−(i+j+p)

Therefore, [W (k)V (k)]X(k) = V (k)[W (k)X(k)], and the multiplication of LTV trans-

fer function matrices satisfies associativity law.

3. Distributive law

[V (k) +W (k)]X(k)

={
m∑
i=0

[vi(k) + wi(k)]q−i +
n∑

j=m+1

vj(k)q−j}(
l∑

p=0

xp(k)q−p)

=
m∑
i=0

l∑
p=0

[vi(k) + wi(k)]xp(k − i)q−(p+i) +
n∑

j=m+1

l∑
p=0

vj(k)xp(k − j)q−(p+j)
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V (k)X(k) +W (k)X(k)

=
n∑
j=0

l∑
p=0

vj(k)xp(k − j)q−(j+p) +
m∑
i=0

l∑
p=0

wi(k)xp(k − i)q−(p+i)

=
m∑
i=0

l∑
p=0

[vi(k) + wi(k)]xp(k − i)q−(p+i) +
n∑

j=m+1

l∑
p=0

vj(k)xp(k − j)q−(p+j)

Then, [V (k) + W (k)]X(k) = V (k)X(k) + W (k)X(k), and the multiplication of LTV

transfer function matrices satisfies distributive law.

4. Inversion

Equating coefficients of both sides of equations (4.9) and (4.10), yields



wl0(k)w0(k) = 1

wl0(k)w1(k) + wl1(k)w0(k − 1) = 0

wl0(k)w2(k) + wl1(k)w1(k − 1) + wl2(k)w0(k − 2) = 0

...

and 

w0(k)wr0(k) = 1

w0(k)wr1(k) + w1(k)wr0(k − 1) = 0

w0(k)wr2(k) + w1(k)wr1(k − 1) + w2(k)wr0(k − 2) = 0

...

Solving the above two equation sets yields



wl0(k) = wr0(k) = w−1
0 (k)

wl1(k) = wr1(k) = −w−1
0 (k)w1(k)w−1

0 (k − 1)

wl2(k) = wr2(k) = w−1
0 (k)[w1(k)w−1

0 (k − 1)w1(k − 1)− w2(k)]w−1
0 (k − 2)

...
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Then, WL(k) = WR(k), the left inverse of an LTV transfer function matrix is equal

to its right inverse.

A.2 Detailed derivations of LTV minimum variance

benchmark for NCSs with the simple interactor

matrix

The LTV minimum variance control law and the corresponding LTV minimum variance

benchmark are derived as follows. For the system shown in equation (4.1), the closed-loop

output under the LTV control law Uk = −C(k)q−dsc(k)Yk can be written as

Yk = (1 + q−dsT̃ q−dca(k)C(k)q−dsc(k))−1Nak (A.1)

According to the properties introduced in Section 4.3.1, LTV transfer function matrices can

be treated as matrices in both multiplication and inverse. Thus, we apply the well-known

matrix inverse lemma [81] to equation (A.1) and yields

Yk =[I − q−dsT̃ (1 + q−dca(k)C(k)q−dsc(k)q−dsT̃ )−1q−dca(k)C(k)q−dsc(k)]Nak (A.2)

Let us define

M(k) =q−dsT̃ (I + q−dca(k)C(k)q−dsc(k)q−dsT̃ )−1q−dca(k)C(k)q−dsc(k) (A.3)

=T̃ [(I + q−dca(k)C(k)q−dsc(k)q−dsT̃ )qds ]−1q−dca(k)C(k)q−dsc(k)

=T̃ [qds(I + q−dsq−dca(k)C(k)q−dsc(k)q−dsT̃ qds)]−1q−dca(k)C(k)q−dsc(k)

=T̃ (I + q−dsq−dca(k)C(k)q−dsc(k)q−dsT̃ qds)−1q−dsq−dca(k)C(k)q−dsc(k)
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From equation (4.6) it follows that

M(k) =T̃ (I + C(k − ds − dca(k − ds))q−ds−dca(k−ds)−dsc(k−ds−dca(k−ds))T̃ )−1 (A.4)

C(k − ds − dca(k − ds))q−ds−dca(k−ds)−dsc(k−ds−dca(k−ds))

=T̃ (I + C(k − dco(k))q−dso(k)T̃ )−1C(k − dco(k))q−dso(k)

where we define

Q(k) = T̃ (I + C(k − dco(k))q−dso(k)T̃ )−1C(k − dco(k)) (A.5)

Further, the disturbance transfer function matrix N is divided to two parts based on the

Diophantine equation:

N = F (k) + R(k)q−dso(k) (A.6)

where, F (k) is the LTV polynomial matrix consisting of the first dso(k) terms in the impulse

response form of N , and R(k)q−dso(k) is the remaining LTV transfer function matrix in N .

In equation (A.6), coefficient matrices in F (k) and R(k) are consistent with those in N , and

only the order of F (k) varies with time. Substituting equations (A.4)-(A.6) into equation

(A.1) yields

Yk =(I −M(k))(F (k) + R(k)q−dso(k))ak (A.7)

=F (k)ak +R(k)q−dso(k)ak −Q(k)F (k − dso(k))q−dso(k)ak

−Q(k)R(k − dso(k))q−dso(k−dso(k))−dso(k)ak

=F (k)ak + L(k)ak
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where

Lk =R(k)q−dso(k) −Q(k)F (k − dso(k))q−dso(k) −Q(k)R(k − dso(k))q−dso(k−dso(k))−dso(k)

(A.8)

In equation (A.7), F (k) is a LTV polynomial matrix of q−1 with order dso(k) − 1, and

each term in L(k) has at least time delay dso(k). Thus, F (k)ak is independent of L(k)ak,

and we have

E[Y T
k Yk] = E[(F (k)ak)

T (F (k)ak)] + E[(L(k)ak)
T (L(k)ak)] (A.9)

≥ E[(F (k)ak)
T (F (k)ak)]

Since F (k) is independent of the designed LTV control law C(k), the term F (k)ak in the

closed-loop output Yk is feedback controller-invariant. Thus, the term F (k)ak provides the

most fundamental measure of E[Y T
k Yk], and E[Y T

k Yk] is minimized when L(k) = 0. So, the

LTV control law C(k) that minimizes E[Y T
k Yk] satisfies

R(k)q−dso(k) −Q(k)(F (k − dso(k))q−dso(k) +R(k − dso(k))q−dso(k−dso(k))−dso(k)) = 0 (A.10)

Substitute equation (A.5), equation (A.10) can be rearranged as

C(k − dco(k)) =T̃−1[(F (k − dso(k))q−dso(k) +R(k − dso(k))q−dso(k−dso(k))−dso(k)) (A.11)

(R(k)q−dso(k))−1 − q−dso(k)]−1

=T̃−1[(F (k − dso(k))q−dso(k) + q−dso(k)R(k)q−dso(k))

(R(k)q−dso(k))−1 − q−dso(k)]−1

=T̃−1[F (k − dso(k))(R(k)q−dso(k)(q−dso(k))−1)−1]−1

=T̃−1R(k)F−1(k − dso(k))
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where T̃ and F (k) are invertible according to the assumptions made in Section 1.2.2. To

get the LTV control law C(k), substituting equations (4.11) and (4.12) into equation (A.11)

yields

C(k′ − ds − dca(k′ − ds)) = T̃−1R(k′)F−1(k′ − ds − dca(k′ − ds)− dsc(k′ − ds − dca(k′ − ds)))

(A.12)

If we define k′′ = k′ − ds, we can get

C(k′′ − dca(k′′)) = T̃−1R(k′′ + ds)F
−1(k′′ − dca(k′′)− dsc(k′′ − dca(k′′))) (A.13)

Further, defining k = k′′ − dca(k′′), we have

C(k) = T̃−1R(k + dca(k
′′) + ds)F

−1(k − dsc(k)) (A.14)
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A.3 Parameters of the reactor-separator process

Table A.1: Steady state values, system parameters and controller parameters of the reactor-
separator process

Parameter Value Units Parameter Value Units Parameter Value

H1 29.8 m A1 3 m2 P1 4.944× 104

xA1 0.4524 wt(%) A2 3 m2 I1 1420

xB1 0.4809 wt(%) A3 1.5 m2 D1 6.611× 104

T1 440.47 K ρ 1 kg/m3 N1 1.852

H2 30 m Cp 2.5 kJ/kg K P2 −210.8

xA2 0.4336 wt(%) xA0 1 wt(%) I2 −843.2

xB2 0.4917 wt(%) T10 313 K D2 0

T2 438.05 K T20 313 K N2 0

H3 32.7 m kA 0.8 1/s P3 −7.533× 104

xA3 0.2006 wt(%) kB 0.6 1/s I3 −4167

xB3 0.6286 wt(%) EA/R 900 K D3 −3.273× 105

T3 444.13 K EB/R 1500 K N3 3.014

Ff1 5.4 kg/s ∆HA -40 kJ/kg

Q1 1000 kJ/s ∆HB -55 kJ/kg

Ff2 5.04 kg/s αA 3.5 m

Q2 1000 kJ/s αB 1.1 m

FR 55.4 kg/s αC 0.5 m

Q3 1000 kJ/s
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Appendix B

Detailed Derivations of Chapter 5

B.1 Proof of positive semi-definite matrix

According to equation (5.31), we define

M =
δ̄∑

δt−τt+1=0

· · ·
δ̄∑

δt+N=0

t+N−1∏
i=t−τt

λδδiδi+1
V T
prefH

N
f |TτtH

N
f |τtVpref

where
∏t+N−1

i=t−τt λ
δ
δiδi+1

≥ 0 and HN
f |TτtH

N
f |τt is a positive semi-definite matrix. Thus, we have

V T
prefH

N
f |TτtH

N
f |τtVpref ≥ 0 for any possible Vpref , and subsequently we can obtain M ≥ 0 for

any possible Vpref . Then, in equation (5.34)

M = (UJ
pref )TΥN |τt UJ

pref ≥ 0

for any possible UJ
pref . Thus, ΥN |τt is proven to be a positive semi-definite matrix.
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