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Abstract

A weakly nonlinear theory is developed for the finite-amplitude evolution of margin-
ally unstable modes for a mesoscale gravity current on a sloping bottom. The theory
is based on a nonquasigeostrophic, baroclinic model of the convective destabilization of
mesoscale gravity currents introduced previously which allows for large-amplitude isopyc-
nal deflections while filtering out shear-based barotropic instabilities. Two calculations are
presented. In the first, an amplitude equation is derived for marginally unstable modes not
located at the minimum of the marginal stability curve. It is shown that the modes even-
tually equilibrate with a new finite-amplitude periodic solution formed. In the second, the
cvolution of a packet of marginally unstable modes located at the bottom of the marginal
stability curve is described. The derivation of these two models is dramatically different
due to fundamental differences in the mathematical properties of the leading order prob-
lems. In particular, it is shown that the nondispersive nature of the leading order problem
for the wavepacket analysis leads to an infinity of coupled amplitude equations, each simi-
lar in form to those previously obtained for the Phillips model of baroclinic instability. It is
shown that if this system is truncated to include only the fundamental harmonic and its ac-
companying mean flow, tlﬁere exist steadily-travelling solitary eddy solutions. As well, the
sine-Gordon equation is derived from this truncated set, which indicates the existence of
multisoliton solutions, among others. Higher order truncations suggest that whenever the
closure systematically includes a higher harmonic and its accompanying mean flow there

exist bounded, periodic solutions. Finally, a solution to the entire infinite set, introduced

previously, is adapted to the model used here.
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Chapter 1

Introduction

Mesoscale gravity currents are density-driven flows with length and time
scales large enough so that the earth’s rotation cannot be neglected in modelling
their dynamics. These currents appear when dense water is formed or «.therwise
released in a shallow sea, such as a shelf region, and settles onto the bottom. If
the bottom is sloping, then the combined influences of the Coriolis and buoyancy
stresses may force the current to be transversely constrained and flow, in the north-
ern hemisphere, with the direction of locally increasing bottom height to its right.
Examples include the Denmark Strait overflow (Smith, 1976), Antarctic Bottom
Water (Whitehead and Worthington, 1982), deep water formation in the Adriatic
Sea (Zoccolotti and Salusti, 1987), and deep water replacement in the Strait of
Georgia (Leblond et al., 1991). In particular, it is possible that the formation of
coherent cold eddies or domes (e.g. Armi and D’Asaro, 1980; Houghton et al.,
1982; Mory et al., 1987; Nof, 1983; Swaters and Flierl, 1991; among others) which

propagate along the bottom may be the result of the instability of these currents.

In this thesis, the physical model consists of two layers of fluid in a channel
with a gently sloping bottom, where the lower layer is a dense gravity current
which extends completely across the bottom of the channel, and the upper layer is
less dense with an undulating free surface (Figure 1). Of particular importance in
this configuration is the fact that the thickness of the gravity current is much less
than the depth of the channel, and so the scale of any deflections of the interface
between the upper and lower layers will be small in comparison to the upper
layer thickness, but not small in comparison to the gravity current thickness. The

ramifications of this will be discussed at length in further sections.



Much of the theoretical work on the stability of benthic gravity currents is
based on the study by Griffiths, Killworth, and Stern (1982, hereinafter referred
to as GKS). This study presented a long-wavelength perturbation analysis of the
ageostrophic (where “geostrophic” is defined to be a dynamical balance between
the Coriolis force and pressure gradients in the fluid, such that the isobars act as
streamlines for the flow) barotropic instability of a gravity current on a sloping
bottom (GKS also studied finite wavenumbers). In order to focus attention on
barotropic instability processes (i.e., the release of mean kinctic energy), GKS
worked with a reduced-gravity single-layer theory in which the overlying fluid was
infinitely deep and motionless. The instability was the result of a coupling of
two free lateral boundary streamlines and did not require, as in quasigeostrophic
theory (see Pedlosky, 1987, Section 7.14 or Leblond and Mysak, 1978, Section
44), a zero in the cross-shelf potential vorticity gradient {quasigeostrophic theory
implies that the leading order dynamics is geostrophic, but the evolution of the
fields is determined from higher order terms). While the instability was primarily
barotropic, the unstable mode described by GKS necessarily had a concomitant
release of mean potential energy. In general, the coupled front was found to bhe
quite unstable when the width of the current was of the same scale as the Rosshy
deformation radius, which is the length scale at which the Ccriolis force becomes
important.

When GKS compared the predictions of their theory to laboratory simu-
lations of the instability of a buoyant coupled front, substantial differences were
found. For example, the unstable modes described by GKS have asymptotically
small along-front wavenumbers while the observed instahilities occurred over a
range of wavenumbers including those corresponding to finite wavelengths. An-

other difficulty with the theory was that the observed insiability had a dominant



lengthscale independent of the current width in contradiction to the theoretical
prediction.

A third aspect of the observations that the theory could not explain was a
secondary branch of instabilities which had a dipole-like appearance. This differ-
ence was attributed to the existence of another, possibly baroclinic unstable mode
(i.c., instabilities which form as a result of the release of available potential energy
from the rectification of a situation in which isopycnals and isobars are initially
misaligned) outside the range of applicability of the GKS analysis.

To address these issues, Swaters (1991) developed an “intermediate length-
scale” theory for the baroclinic instability of mesoscale gravity currents. This
model assumed that the dynamics of the overlying water column (see Figure 1)
was quasigeostrophically determined and that the gravity current, while the veloc-
ity field was geostrophically determined, was not quasigeostrophic because deflec-
tions in the current height are on the same order of magnitude as the scale height
for the gravity current itself That is to say (as was mentioned previously), the
dynamic deflections associated with the free surface or the interface between the
two layers are, roughly speaking, very small in comparison to the mean thickness
of the upper layer. However, the dynamic deflections of the interface between the
two layers are on the same scale as the mean thickness of the lower layer. This
balance represents a middle dynamical regime between a full ageostrophic theory
in which all terms are retained in the governing equations, and the low wavenum-
ber/frequency dynamics of quasigeostrophic theory. This model was derived as
a systematic asymptotic reduction of the full two-layer shallow-water equations
for a rotating fluid on a sloping bottom and has been used to model aspects of
the propagation of cold domes (Swaters and Flierl, 1991) as well as the instability

calculation of Swaters (1991).



The instability mechanism modelled by Swaters is the release of the available
gravitational potential energy associated with a pool of relatively dense water
sitting directly on a sloping bottom surrounded by relatively lighter water. As
such, this instability mechanism is phenomenologically completely different than
the shear based instability associated with a buoyancy-driven current containing
lighter water sitting on top of a finite lower layer (e.g., Paldor and Killworth, 1987).
The Swaters theory describes a purely baroclinic instability in that it filters out
the shear based instability and exclusively models the convective destabilization
of a mesoscale gravity current on a sloping bottom. In addition, the Swaters
model does not require a zero in the transverse potential vorticity gradient for
instability. By allowing for finite-amplitude deformations in the current height,
the Swaters’ theory can describe the instability of gravity currents with isopycnals
which intersect the bottom.

The intrinsically baroclinic instability of the Swaters model differs from the
nonbaroclinic instability identified by GIKS associated with the coupling of the
two fronts in a mesoscale gravity current (for a discussion comparing these two
models see Swaters, 1991). Numerical simulations based on the primitive equations
(Kawase, personal communication, 1994) suggest that the convective instability
mechanism is two orders of magnitude more important than any other instability
mechanism for mesoscale gravity currents.

The most unstable mode (the mode with the fastest growth rate) in the Swa-
ters (1991) calculetion was consistent with available observations of propagating
cold domes. Moreover, the theory was able to predict the onset of the curious
dipole-like branch of instabilities observed in the experiments of GKS.

Notwithstanding the success of the linear instability theory, if this model is

to describe the dynamical transition from an unstable gravity current to propa-



gating cold domes, it is necessary to show that the exponentially growing insta-
bilities whicli are obtained from the linear analysis eventually saturate with a new
finite-amplitude crnfiguration formed. That is, if it is found that introducing the
nonlinear terms in the governing equations does not lead to an eventual halt to the
growth of the instabilities, then we must have serious concerns about the model
equations themselves. The principal purpose of this thesis is to develop a finite-
amplitude instability theory for the Swaters (1991) model applied to a mesoscale
gravity current on a sloping bottom.

The gravity current model examined here will be highly idealized and will no!
include an interface which intersects the bottom in a coupled front configuration.
The mathematical difficulties associated with handling the finite-amplitude dy-
namics of isopycnals which intersect the bottom, while interesting (and uitimately
the problem one wants to solve}, cbscure the essential physics of the problem
and are ignored here. After briefly examining the linear stability problem for the
model gravity current, two finite-amplitude calculations are presented, in which
we employ weakly nonlinear analysis. This procedure allows us to develop equa-
tions which follow the evolution of the amplitude of a disturbance associated with
a slightly unstable (supercritical) mode using the full nonlinear set of governing
equations. In the first calculation, we derive a purely temporal amplitude equa-
tion describing the equilibration of a marginally unstable mode which does not
correspond to the mode located at the minimum of the marginal stability curve
(which defines the boundary between stability and instability for each horizontal
wavemunber versus the variation of the gravity current thickness). In the second,
we derive a wave-packet amplitude equation for the mode located at the minimum
of the marginal stability curve, assuming it is slightly supercritical.

These two models are dramatically different due to the mathematical proper-



ties of the individual leading order linear instability problems. In the first problen,
the marginally unstable mode is dispersive (i.c., the frequency is not a linecar fune-
tion of the wavenumber) so that higher order harmonics do not directly produce
secularities (terms which result in linear growth over time) in the asymptotic anal-
ysis developed here. Our derivation of the temporal amplitude equation for this
problem is straightforward and closely follows the classical work of Pedlosky (1970)
for quasigeostrophic baroclinic instability modified for our governing equations.

However, the leading order stability problem for a marginally unstable mode
located at the minimum of the marginal stability curve is nondispersive. This
means that all higher harmonics necessarily give rise to secularities in the first
order perturbation equations in the asymptotic expansion. Consequently, the ap-
plication of the appropriate solvability conditions will necessarily yield a denumer-
able infinity of coupled wave-packet equations which are similar in form to those
obtained from the revised wave packet analysis presented by Pedlosky (19821) for
the Phillips instability model.

The analysis of these equations is complicated. Nevertheless, we explicitly
show that if we retain, on a purely ad hoc basis, the principal harmonic and its
accompanying mean flow, there exists a steadily-travelling solitary cold eddy solu-
tion to the envelope equations. We also examine numerically the purcly temporal
problem associated with higher order truncations. It appears that whenever the
truncation systematically includes a higher harmonic and its accompanying mean
flow, the evolution equations admit bounded, periodic finite-amplitude solutions.
We also briefly describe a technique, introduced by Warn and Gauthier (1989),
which allows for the analytical solution of the entire set of equations with respect
to the fundamental perturbation pressure harmonic by recasting the solvability

conditions into the form of an initial value problem.



The thesis is set out as follows. In Chapter 2, the model is derived, and in
Chapter 3, a hamiltonian formulation for the governing equations is introduced
and utilized in a linear and nonlinear stability analysis. In Chapter 4, the linear
stability problem is reviewed and a marginal stability curve is obtained. Chapter
5 and 6 contain the weakly nonlinear stability analysis for the two cases mentioned
above, and in Chapter 7 a sine-Gordon equation is derived from the truncated set
of evolution equations which include only the primary modes. Various solutions
to this equation are examined. Finally, in Chapter 8, there is a discussion of the

results, concluding remarks, and suggestions for further research.
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Figure 1. Geometry of the channel two-layer model




Chapter 2

Derivation of the Governing Equations

Geophysical fluids are characterized by a striking difference between the
length scale of vertical motion compared to that of horizontal motion. In the
atmosphere, for example, vertical movement of air associated with typical weather
systems takes place almost entirely in the region between the surface of the earth
and the tropopause, a distance of, on average, about 10 kilometers. Coherent
horizontal movements occur on a much vaster scale - a typical wavelength for a
series of disturbances on a planetary Rossby wave may be one to two thousand
kilometers or more. In the ocean, the vertical scale in the micd-ocean is about
5 kilometers, and the horizontal scale is about 100 kilometers. We may take
advantage of these scale differences by developing a theory which, to leading order,
ignores vertical accelerations compared to horizontal accelerations. The resulting
equations are called the shallow water equations. In this thesis, we use a two
layer rigid-lid model (see Figure 1) in order to address the baroclinic aspect of the
problem. In Section 2.1, we derive the shallow water equations for each layer in
our model, and we call these the two layer shallow water equations. In Section 2.2,
we develop scalings to highlight the dynamics we expect to occur in the specific
physical situation studied here, and in Section 2.3, a potential vorticity formulation
of the scaled two layer equations is derived. We then apply a straightforward
asymptotic expansion in the small slope parameter s to these equations, and
from the leading order problem derive, in Section 2.4, the governing equations for

our model.



2.1 The Two Layer Shallow Water Equations

To derive the shallow water equations in the context of the problem we are
studying in this thesis, we start with the inviscid Navier-Stokes equations for a
fluid which is incompressible and has constant density (this derivation is adapted
from Pedlosky, 1987). Note that these conditions imply that the three dimensional
velocity field is divergence free. We take into account the earth’s rotation by
applying these equations to an f — plane, which means the Coriolis parameter
is taken to be constant at the value appropriate for the origin of our coordinate

system. The equations in vector form are

A 1 A
U+ (v Vu+ f(é X“)=—;VP—£I€3, (2.1.1)

V-u=0, (2.1.2)

where wu(z,y,z,t) isthe velocity such that u = (u,v,w) where wu,v, and w
are the along-channel, across-channel, and vertical velocities, respectively, p is
the density, p(z,y,z,t) is the total pressure, the operator V = (0,,0y,0:),
and f = 2Qsin(fp) where Q is the magnitude of the earth’s rotation vector
(i.e., =27 radians/day)and 6, is our reference latitude for the f— planc
approximation.

We now apply a scaling argument to the above set to arrive at the shal-
low water equations. The horizontal lengthscale is much larger than the vertical
lengthscale, as mentioned before, and this ansatz is quantified in the following

relation
Ap=H/L« 1, (2.1.3)

where (H,L) are the horizontal and vertical length scales, respectively, and

10



Ap s called the aspect ratio. We now apply (2.1.3) to (2.1.1) and (2.1.2) using
the symbols (U,V) for along and across channel velocity scales and W for

the vertical velocity scale. The continuity equation (2.1.2) is, with scales beneath,

uz + vy +w; =0. (2.1.4)
Tuvw
L L H

This implies that W = O(UH/L) = O(ARU), if all terms in (2.1.4) are to be
of the same order of magnitude.

Now we write down (2.1.1) in component form with scales underneath

1
ug + utz + vuy +wu; — fo = ——;p_.,, (2.1.5)

v v UU Uw
T L L H

1
vy 4 uvy +vvy +wu; + fu = —-p—py, (2.1.6)

g vv UU Uw
T L L H
wy + uwz + vwy + ww, = —%p: —-g. (2.1.7)
E’: Uw Uw Ww

T L L H

fU

fU

First we examine the vertical momentum equation. We see that (assuming an

advective timescale T = L/U) that, in terms of the scales, (2.1.7) suggests

72"
0 (ARC ) =L g (2.1.8)

L p

Now, for the sake of argument, suppose we use typical mid-ocean scales to deter-

mine the left hand side, i.e, let Agp = 10"2,U = 107'm/s, L = 10°m. We

11



then find

p: = —g+0(10™°m/s%), (2.1.9)

=

which means that the hydrostatic approximation is an excellent estimate under
these circumstances, and we shall assume it to hold from here on in.
We now integrate the relation (2.1.9), neglecting the non-hydrostatic terms,

with respect to z to get

p(z,y,2,t) = —pgz + p(z,y, 1), (2.1.10)

where p is the dynamic pressure. Siuce p is independent of =z, it follows
from (2.1.10) that the horizontal pressure gradients in (2.1.5) and (2.1.6) will
also be independent of z, which in turn meaus that wu. = v; = 0 if they
are initially independent of 2. This is known in geophysical fluid dynamics as
the Taylor-Proudman Theorem, and its basic assertion is that in classical shallow
water theory the motion is strictly two dimensional (Pedlosky, 1987). It can be
shown that if uw,=v,=0 at £=0, then u and v are independent of =z
for all time ¢ > 0. We will assume that this is the case here.

The relationship between the dynamic pressure and the other dynamical
variables depends on the specific layer. In the upper layer, which has density p,

(see Figure 1), (2.1.10) takes the form

pl(m, y’zat) = —p192 +p~l (I) yvt)’ (2111)

where the subscripts refer to the specific layer.
We assume that the undulations of the free surface do not change the stresses

acting on the atmosphere, because, compared to the size of the deflection of the

12



free surface, which we denote by 7(z,y,t), the atmosphere may be considered
to be infinitely deep. This allows us to assume the atmospheric pressure at the

free surface to be constant, which we then scale by setting it to zero. We now

apply this to (2.1.11) and we obtain

0 = —p1gn(z,y,t) + p1(z, ¥, 1), (2.1.12)

which means that
pi(z,y,2,t) = —p1g(z ~ n). (2.1.13)

In the lower layer, which has density p2 > p; (stable stratification is

assumed), it is convenient to write (2.1.10) in the form
p2(2,y,2,t) = p1gH — pag(z + H) + p2(,y,1). (2.1.14)

We determine p; by imposing the dynamic boundary condition that the total
pressure must be continuous across the interface between the two layers. Referring
to Figure 1, the position of the interface is given by z = —-H —sy+h where H
is the mean thickness of layer 1, h(z,y,t) is the thickness of the lower layer, and
the sy depth term is associated with the sloping bottom. Thus the dynamic

boundary condition is
pi(z,y,—H — sy + h,t) = pa(x,y, —H — sy + h, ). (2.1.15)
Applying (2.1.13) and (2.1.14) to the equation (2.1.15) gives

prg(n+ H + sy — h) = p1gH — p2g(—H - sy + h + H) + ps. (2.1.16)

13



Rearranging, we find that

P2 = p1g(n 4+ sy — h) — pag(sy — h)
= p1g1 + (p2 — p1)g(h — sy)

= p1g7 + p2g'(h — sy), (2.1.17)

where ¢’ = g(p2—p1)/p2 > 0 isthereduced gravity. Therefore the total pressure

in the lower layer is given by
p2 = p1g(H + 1) = p2(z + H) + p2g'(h — sy). (2.1.18)

We now develop a mass conservation equation for the upper layer. In order
to do this, we will need to apply kinematic boundary conditions at the interface
between this layer and the gravity current, and at the surface. We require that
if a fluid parcel is on either of these boundaries initially, it remains there for all
time. This condition prevents “cavitation” at these interfaces and ensures that
the boundaries between the fluids share the same shape on either side. Thesc
requirements are stated mathematically by

D
wy = E(_H —sy+h) on z=-—-H-sy+h, (2.1.19)

for the condition on the interface between the gravity current and the ambient

fluid, and

_Dn

=51 on z=m, (2.1.20)

wy

for the condition on the surface (see Figure 1 for the description of the boundaries

for z). The operator D/Dt = §/0t +u; -V represents the lotal derivative,

14



or the derivative following the motion, in layer 1. Note that V = (2;,0,), the

horizontal gradient operator, here and from now on.
Because u and v are independent of z, we may integrate the con-
tinuity equation (2.1.4) over the entire layer 1 thickness given by the interval

—H —sy+h <z<mn Theresultis
u)](.'I,’,'I 177vt) _wl(xa:‘h_H —3y+h,t) = _(77+H+Sy—h)(ulx+v]y)' (2121)

If (2.1.19) and (2.1.20) are substituted into (2.1.21), we obtain

Dy + D(H + sy —h)

=1 - = 2.1.22
D B +(n+ H + sy —h)(uiz +v1y) =0, - (2.1.22)

which may be expanded in vector form as
mM+H+sy—h)i+u-Vin+H+sy—h)+(n+ H+sy—h)V-u;. (2.1.23)

Equation (2.1.23) may be written more compactly by using the vector identity
V.(ag) =@V -a+a-V¢ for an arbitrary vector a and an arbitrary scalar

¢. The result is
(n=h)+V-jui(n+H+sy—h)]=0. (2.1.24)

The mass conservation equation for the gravity current (layer 2) is found in

much the same way. The boundary conditions are

wy=TH~H-sy+h) on :=-H-sy+h (2.1.25)

on the interface, where D/Dt = 8/0; +uz-V, and

we = uz(~H — sy)r + vo(—H — sy), on :z=-H - sy, (2.1.26)
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which arises from the requirement that there be no component of the flow normal

to the bottom of the channel (i.e. u2:71 =0 on z=—H-sy). Note that (2.1.26)

implies that we have the simple relation w; = —sv2 on the channel bottom.
We integrate the continuity equation (2.1.4) over the thickness of the gravity

current, an interval defined by —H —sy <z < —H — sy + h, and obtain
wa(z,y, —H — sy + h,t) —we(z,y,~H — sy,1) + (ua, + v2,)h =0.  (2.1.27)
We substitute (2.1.25) and (2.1.26) into (2.1.27) to get

D
b—t(——H —sy+h) —ua(=H = sy)z —va(—H — sy)y + (uz, +v2,)h =0, (2.1.28)

or

Dh
..D_t. + (u2l_ + v2y)h = 0’ (2.129)

which may be rewritten in conservation form, with the same procedure as was

used to derive the layer 1 mass conservation equation, as
hy+ V- (u2h) = 0. (2.1.30)

The set of equations for the two layers are listed below. We introduce aster-
isks to emphasize the fact that the variables are dimensional. For the overlying

fluid we have

ul,. + (u] - V)ul + f(é xuy)+9gVy" =0, (2.1.31)
M =h")e +V - [ui(n"+H+s"y" = h")] =0, (2.1.32)
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where p;  has been replaced by (2.1.13), and the gravity current equations are

~ = 1 ® =
g, +(uz - Vi)ug + f(é3 xu3) + p—2V p; =0, (2.1.33)

hi. +V* . [ush*] = 0. (2.1.34)
The set (2.1.31)-(2.1.34) is closed with the pressure continuity condition, given by
p; = pgn” + pag' (k" = s*y"), (2.1.35)

where p, is the dynamic pressure in the lower layer (the tilde in equation (2.1.17)

has been dropped).

2.2 Scales for the Two Layer Equations
Now we must scale the two layer equations according to parameters which
are specific to the physics of the problem (see Swaters and Flierl (1991)). The

scaling for horizontal length is
(z*9") = L(2,y) = (¢ B)? /f](=.9), (22.1)

so that L" represents the internal radius of deformation, and where, henceforth,
all variables without an asterisk are dimensionless. This scaling implies that we
look for motions which are of a magnitude where the effects of rotation are at least
as important as buoyancy effects. Note that (g’H)? is the phase speed of an
internal gravity wave unaffected by rotation (Pedlosky, 1987).

The timescale will be given by

"= (fL"/g¢'s")t, (2.2.2)
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where g¢'s*/f isthe Nofspeed, which is the theoretical speed at which an isolated
cold eddy travels along a bottom which slopes in the zonal direction if there is
no interaction with the surrounding fluid (Nof, 1983). The Nof speed is a logical
choice for this problem because if there are instabilities in the gravity current, the
possibility exists that it may break up into isolated travelling eddies. Note that
this is an advective time scale, because it consists of a lengthscale divided by a
speed.

The thickness of the gravity current will be scaled according to
h* = hoh, (2.2.3)

where hg is the maximum thickness of the undisturbed current, and we let

§=ho/H < 1.

The layer 1 velocity u} and the free surface deformation 7* are scaled

as

ul = 86fL"u; = (ho/H)(¢'H)u,

n* = [6(fL*)*n/g) = (hog'[g)n. (

)
S
o

o
o
[oe ]

We scale u} by dividing the deformation radius by the inertial timescale (1/f)
and multiplying by the ratio of ho/H. The purpose of this scaling is to ensure
that changes in the relative vorticity (i.e. V x u}) in the upper layer are a
result of vortex tube stretching/contraction caused by the movement of the gravity
current underneath. Note that if ho is small comparedto H then uj (and
therefore the upper layer relative vorticity) is also small. The scaling for n* is
constructed so that u] and 7™ are in geostrophic balance to leading order.

The geostrophic scaling simply implies that the upper layer velocity is scaled so
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For the gravity current, we scale u; with the Nof speed,

p3  geostrophically, so that

u; = g's"up/f,

p: = p2L7g's* pa.
The slope of the channel is scaled by
s = (H/L)s = (¢'H)2s/(d'/ ).
which, if rearranged, may be written as

s=(s"g'/f)/(g'H)z,

and then scale

—_—
%)
1o
=

N

——
o
to
~1

S

(2.2.9)

which allows interpretation of the scaling as the ratio of the Nof speed to the speed

of long baroclinic gravity waves. A small s acts as a filter to remove these long

waves from the upper layer and so focus attention on the vorticity generated waves

(Swaters and Flierl, 1991).

To arrive at the non-dimensional equations for the upper layer. we apply the

scales above to (2.1.31) and (2.1.32). The momentum equations become

8(g'H)*

(g’li)ik g g
9 (g

[l

+ f(&s x (¢"H)26u;) +

1

(gH)z ¢

MJWWHﬁ(é (w2 - V)b(g'H) buy

!
gf /.h_og..7 = 0./

(2.2.10)

where  § = ho/H has been used wherever applicable. Simplifving each term

19



fhod'
(9'H)?

8(g'H)® fou, + 62(g'H)® flur - Vuy + flg"H)28(és x w) + Vi = 0.
(2.2.11)
Dividing (2.2.11) through by &(¢’H)*f and simplifying the last term on the left

hand side provides the end result, which is
su, +5(‘U1 -V)ul +é3 X U +V71=0 (2212)

The mass continuity equation for the upper layer is handled in a similar fashion.

We obtain

hog' \y _ poh
( 9 n 0 )1 + f 7.
@WHE g (g'H)%

g (¢'H)3 fo

) 0g "H)% 'H)%
§(¢'H)?u, bg—‘q-n +H+ g Hz of g i) sy—hoh )| =0.
g g f (2.2.13)

Simplifying each term in (2.2.13) leads to

hog' hog'
fs —g-—-—n —hoh ) +46fV - |u; —g——n +H+ Hsy—hoh }| =0. (2.2.14)
t

We drop terms in (2.2.14) which are multiplied by ¢'/¢g = (p2 — p1)/p2, because
we assume that the difference in the densities of the two layers is ‘smull, which
means that (ps — p;1) < p2. This approximation is equivalent to assuming that
the upper surface in layer 1 is rigid, and that 75(z,y,t) may be interpreted as
the dynamic pressure in that layer. This also eliminates long surface gravity waves

(i.e., Poincare waves) from the model (Swaters and Flierl, 1991). This leaves

—hofshi +6fV - [uy(H + Hsy — hoh)] = 0. (2.2.1¢

L)
o]
—
r
~—
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Dividing by —ho} and using o0 = ng/f1 1O SINPUIY U1€ $eCona lerm on tie

left hand side of (2.2.15) leads to
shy + V- [uj(dh — sy — 1)] = 0, (2.2.16)

which is the nondimensional upper layer mass continuity equation.
The nondimensional equations for the lower layer (or gravity current) are

obtained in exactly an analogous manner to the upper layer equations, and the

result is

suz, + s(uz - V)uz + €3 x ua + Vpo =0, (2.2.17)

he + V- (hup) = 0. (2.2.18)

Application of the scales to the equation for the dynamic pressure in the lower

layer (2.1.35) gives

p2(g'H)g'(g'H)? fs (gH)Ef (¢H)? prghod’
fq' p2 = p2g’ | hoh — g : 7 sy |+ ——g——’?-
(2.2.19)
Algebraic simplification of (2.2.19) leaves
p2g' Hspa = pag'(hoh — Hsy) + prhog'n. (2.2.20)
Dividing through by ¢’H and using 6 = ho/H gives
p25p2 = pa(6h — sy) + p16n. (2.2.21)

Now we use the fact that p; and p; are of a similar magnitude to eliminate
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did in (2.2.14), that ¢'/g is small enough to ignore terms multiplied by it). The

end result is

sp2 =6 +h) - sy. (2.2.22)

The boundary conditions on the channel walls are very simple; there can
be no flux of fluid through the walls, which implies that the velocity component

normal to the walls must be zero. In mathematical terms, we have

vm(m,O,t) = 'Ulyg(fl?,L,t) = 0, (2223)

where y=0 and y=L are the nondimensional location of the walls.
Typical values for the dimensional parameters appropriate for a continental
shelf are (e.g., Houghton et al. (1982)) s* = 1.2m/km, I* =40m, and H =
250m, which suggest s ~ 7 x 1072, § = 1.6 x 107!, L* =~ 15km and an
advective timescale of t* = fL*/(¢'s*) =% 7 days. Note that s and 4 are
both O(107!). "These scalings imply that a new parameter, denoted 4, may

be introduced, such that
§ = us, (2.2.24)

where p = O(1); for the above scalings, p 2. Wecall p the inleraction
parameter (after Swaters and Flierl (1991)), and it physically measures the ratio
of the destabilizing influence of baroclinic vortex tube stretching/compression in
the nonfrontal area to the stabilizing influence of the sloping bottom, which acts
like a topographic [-plane.

Substituting (2.2.24) into (2.2.12) and (2.2.16)-(2.2.18) yields the two layer
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equations

é3 x u; + V= —su;, — su(u; - V)u,, (2.2.25)
V.u; =shy - sV (yuy) + suV - (hu,), (2.2.26)

é3 X ug — €3 + uV(h 4+ n) = —sug, — s(ug - Vuy, (2.2.27)
hi+ V. (huz) =0, (2.2.28)

where we have separated terms multiplied by the small parameter s from those
which are not. We have also substituted (2.2.22) into (2.2.17) to arrive at (2.2.27).

The pressure continuity equation becomes

p2 ==y +p(n+h). (2.2.29)

Note that the location of the small parameter s in the above equations produces
the effect suggested in words earlier, which is that the channel water will follow
quasigeostrophic dynamics but the frontal interior will be geostrophic, but not
quasigeostrophic. Specifically, this is manifested in the retention, to leading order,
of mass flux terms in the gravity current continuity equation, whereas the velocity

field is divergence free to leading order in the upper layer.
2.3 Potenlial Vorticity Formulation of the Two Layer Equations

We will convert the two layer equations into a single potential vorticity equa-
tion for each layer. In the next section, we will then use this formulation to derive
the governing equations, which are the ones studied throughout the rest of the
thesis.

Casting the equations in terms of potential vorticity implies that the curl of

the momentum equations is taken to arrive at the vorticity equation, and from this
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we look for a quantity, called the potential vorticity, which is conserved following
the motion of a fluid parcel. Of course, taking the curl means that certain infor-
mation is lost, and we will see that we must refer back to the momentum equations

to determine the velocity fields which are inherent in the relative vorticity.

respectively,

—Viy + Mgy = —SU1gy — :s,u(u]yu]..r + UUi gy T V1 U, + vlulyy), 23.1)

Utz + Myr = —SV1yr — sp(urzv1z + iV + VU1 t+ vl"lyr)' ( 2)
2.3.2

Then, subtracting (2.3.2) from (2.3.1) gives
—(u1z +v1y) = 8y +splurli, + o1y + (v +21,)G)s (2.3.3)

where () = v1, —u1, is the relative vorticity in the upper layer. This may be

rewritten as

D
—(U]I+v1y)=3D—f] +3/1(ulx+v]y)(,'1, (234)

where we have used the scaled material (total) derivative, written as

3}
- = —_ — 2.3.5
We expand (2.2.16) after applying (2.2.24) to obtain
shy+ (ush ~sy = 1)V-u; +u; - V(ush —sy — 1) = 0. (2.3.6)
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Solving for the divergence in (2.3.6) leads to

_shi+uy - V(ush —sy—1)

V-m =

push —sy —1
_ _D/Di(ush — sy — 1)' (2.3.7)
plush — sy — 1)
Now substitute this into (2.3.4) to get
D¢, D/Dt(ush —sy —1)] _ 0
sy~ (L+spG) (ash — sy~ 1) =0, (2.3.8)
or
D (1+su¢;) D o o
E(l + su(q) (ish — sy - 1) Dt (ush —sy—1) =0. (2.3.9)
This may be rewritten as
Dy 14+suG | _ o
Dt [ysh - sy — IJ =0, (23.10)

which is the potential vorticity equation for the upper layer. The potential vorticity
is the quantity in the square brackets, and it is conserved following the motion.
It is of some interest to note that the equation (2.3.10) may be derived
in another way. Shallow water theory dictates that, in general, the potential
vorticity equation for an inviscid, incompressible layer of fluid which feels the

earth’s rotation will take the form (Pedlosky, 1987)

D {relative + planetary vorticity = 0. (2.3.11)
Di* depth of layer

For the upper layer in our model, equation (2.3.11) is equivalent to

D G+/f _ 0210
Dt* [H + s*y" — h‘] =0 (23.12)
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When the scales from Section 2.2 are applied to equation (2.3.12), the result is
equation (2.3.10).

In order to derive the governing equations for the upper layer, we exploit
the fact that 0 < s € 1 to derive a leading order potential vorticity equation
for the upper layer. Our procedure will be to rewrite the dependent variables in
a series, where each succeeding term is asymptotically smaller than the last. For

example, suppose we have an ordinary differential equation given by
r'(z) + 2¢ sin(z)r'(z) + r(2) =0, (2.3.13)

where the prime denotes differentiation with respect to z, and ¢ is a small

parameter. We then expand r in a series in terms of €, so that
r(z) ~ @ +erM(z) + 2 P(2) +...=pO 4 pM 4 p® 4 | (2.3.14)

where the p¥) represent the terms in the asymptotic series. This series is then
substituted into (2.3.13) and terms collected to form equations at each order of

€. The leading order problem (i.e., the O(1) problem) for 7(x) 1is simply
PO" L 0 g, (2.3.15)
The next order (the O(e) problem), is
rM" 4 95in(z)r@" 4 ) =0, (2.3.16)

and so on, to all orders of .
We proceed by solving the leading order problem, subject to the initial con-

ditions, then substitute the solution into (2.3.16) and solve the O(e) problem. If
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more terms in the series are required, this procedure is continued at higher orders.
The advantage of this method is that the problems at each order are generally
easier to solve than the original equation, especially the leading order problem
(see (2.3.15) compared to (2.3.13)). As well, if € is small enough, very good
accuracy may be obtained by retaining only one or two of the terms in the series.
We shall see why by looking at the definition of such series.

The term “asymptotic series” is defined mathematically by stating that each

term in the series must meet the requirement that (Bender and Orszag, 1979)

S LR )
lim T 2i=0P” o oo n= 0,1,2,.... (2.3.17)
=0 p(")

where the p(? represent terms in the series, as in (2.3.14). Equation (2.3.17)
states that the remainder left, after subtracting an n term asymptotic series
from the function r(z), is asymptotically smaller than the nth term in that
series. We sec that (2.3.14) meets this requirement, as long as the () are
O(1) quantities. Also,if n =0 in (2.3.17),as € — 0, the term p(©® — r,
and thus p(® may be an accurate reflection of the behavior of r under these
circumstances, if € is small enough.

From a physical point of view, we want to segregate the dynamics of a system
into distinct orders, so that the leading order dynamics are unencumbered by the
effects of terms asymptotically smaller than those retained in the leading order
problem. This allows a determination of the dominant dynamical balance in the
problem, which will be perturbed only slightly by the higher order effects. That
is not to say that these effects are not important; in fact, it will be seen that in
quasigeostrophic theory, the evolution in time of the velocity fields, balanced to

leading order with pressure gradients, is determined by appeal to second order
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dynamics.
With the above discussion in mind, we construct a straightforward asymp-

totic expansion in the small parameter s of the form
(n,u1,h) ~ (77,u1,h)(°) + s(n,ul,h)“) +.... (2.3.18)

The first step is to expand the potential vorticity equation (2.3.10) by carrying

out the material differentiation with respect to time, so that

(1sh — sy~ 1)-D(spds) = (1+ sGa) or(pash — sy) =0, (23.19)

where all D(1)/Dt terms have been ignored, and where a division through by
s was done.

The leading order problem is obtained by gathering all the terms which are

in the lowest order of the small parameter s, after application of the asymptotic

expansion (2.3.18) to (2.3.19), and this leads to

D(O) ) Dl © _

o7 W) = 57 (kh y) =0, (2.3.20)

where D /Dt = §; + pu; ©.v. Dividing (2.3.20) through by ~p and com-

bining the two terms on the left hand side gives

DO T o
= RO _ Y| _o. 2.3.21
i [ + . ( )

To eliminate the velocity terms which make up Cl(o) ,  we utilize the as-
ymptotic expansion (2.3.18) in the upper layer momentum equations (2.2.25). We

immediately see that the leading order terms form the equation

& xul” + Vn® =g, (2.3.22)
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We may solve for u(lo) by applying €3x to each term in equation (2.3.22).

The result is

u” = & x Vg = (=, ("), (2.3.23)

This is known as the geostrophic relation, for reasons we will soon discuss. Sub-

stituting (2.3.23) into (2.3.21) gives

D) y
An©® L p©@ _ Y| _ 2.3.24
Dt [ o u = | (2329

where A = 0;;+0y,. We may refer to equation (2.3.24) as the quasigeostrophic
potential vorticity equation for the upper layer, where the quasigeostrophic po-
tential vorticity is the quantity inside the brackets, and it is conserved following
the flow.

The geostrophic relation (2.3.23) may be obtained in another way. In quasi-
geostrophic shallow water theory, the velocity fields are determined geostrophi-
cally, which means that the isobars are the streamlines for the flow. However, the
geostrophic relations are degenerate in the sense that any pressure field is a solution
(i.e., creates a velocity field). To find the time evolution of the pressure fields, it
is necessary to consider the O(s) dynamics, while still requiring the geostrophic
determination of the velocity fields. This is the essense of quasigeostrophic shallow
water theory.

The geostrophic relations, in general, for a shallow, inviscid, incompressible

layer of fluid which feels the effect of the earth’s rotation are simply

. 1,
—-fu* = —;px.
1
fo* = —;p;., (2.3.25)
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in component form, or in vector form
- = 1 =
f(és xu®) = —;Vp . _ (2.3.26)

But for the upper layer, pj is given by equation (2.1.13), so that the dimensional

geostrophic relation becomes
f(és x u3) = gVn". (2.3.27)

When this equation is scaled using the scalings set out in Section 2.2, we arrive at
(2.3.23).

The situation is quite different for the lower layer (i.e., the gravity cur-
rent), because, as has been indicated previously, the dynamics here are not quasi-
geostrophic. The divergence of the velocity field does not vanish to leading order,

which is a requirement in quasigeostrophic theory. We begin the derivation of the

result is

D¢,

s —5;+(u21+vzy)<f2 ) (2.3.28)

u2.1:+v2y = -

where (2 = vy, —uzy, and D/Dt =8 +uz-V isthe scaled material derivative
for the lower layer.
If we then rewrite (2.2.28) so that
Dh

1
Hﬁzv'u2 =‘u2l_+‘02y, (23.20)
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we may substitute (2.3.29) into (2.3.28) to obtain

Dh_ [% _ l@@J , (2.3.30)

or, after multiplying by 1/h and rearranging

SDC2 1+3C2 Dh _ 9
S BT gy =0 (2.3.31)

Equation (2.3.31) may then be rewritten as

D [1+s(, _ o o
Di [ 5 ] =0, (2.3.32)

which is the potential vorticity form of the governing equations.
As was the case for the upper layer, the equation (2.3.32) could also have
been obtained by scaling the dimensional shallow water potential vorticity equation

(2.3.11), as it relates to the lower layer,

D (G+f|_
F [Zh—] =0. (2.3.33)

As was done for the upper layer equations, an asymptotic expansion in the

small parameter s of the form
(7,12, h) ~ (9,12, ) + s(n,uz, )V +.... (2.3.34)

is applied to equation (2.3.32) to get the leading order potential vorticity equation

for the gravity current

DO 1
5 [W] =0, (2.3.35)

where D©/Dt = 8, +ulVV ..
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The velocity terms which are implicit in the material derivative operator
may be replaced by a geostrophic relation which is obtained in precisely the same

fashion as for the upper layer. We apply the asymptotic expansion (2.3.33) to the
in the small parameter s. These terms form the equation
€3 Xt — €+ uV(h+1)=0, (2.3.30)
or solving for u; by applying €3 X - to all terms in (2.3.36), we find
Uy = & + pés x V(n+ h). (2.3.37)

Note that this equation could also have been derived by substituting the dynamic
gravity current pressure equation (2.1.35) into the general geostrophic relations

(2.3.25), and then scaling the result.
2.4 Derivation of the Governing Equations

In this section, the leading order potential vorticity formulation developed
in Section 2.3 is used to derive the governing equations for the model. We start

by rewriting the expression (2.3.35). We have

D(O) 1 D(O)(h(o)) 1 D(O)(}L(O))
—_— === = — = 2.4.1
Dt [h(o)] Dt (hl0))2 0= Dt 0 ( )

We may utilize (2.4.1) by writing it in component form (where we drop the “(0)”

superscripts)

©
=
o
S

hy + uzhy 4+ vahy = 0. (
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he+ (1= p(hy + py)lhe + plhe +n. "y =0, (2.4.3)
and this may be rewritten as
he+hs +pJ(n,h)=0, (2.4.4)

where J(A,B)= A;By — AyB; is the Jacobian operator.
Now we return to the upper layer equations, and expand equation (2.3.21)

to get

to
=
ot
e

(An+ h) + puy(An+ h)e + poi(An+ h)y — v =0, (

where we again have dropped the “(0)” superscripts. If we now use the geostrophic

relation (2.3.23) to substitute for the velocity fields in (2.4.5), we obtain, after some

rearrangement
(AQy — Or )+ he + uJ(n, An) + pJ(n,h) = 0. (2.4.6)

Equation (2.4.4) is then used to eliminate two terms in favor of h, to give

[C)
:J:»
-1
o

(AG — 0:)n = he + pd (0, An) = 0. (2.

We may now write down the complete set of governing equations as they

will be used in this thesis. We have

(A0 — 8:)n — he + pJ(n, An) = 0, (2.4.8)
hi + by + pJ(n,h) =0, (24.9)
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u; = €3 x V), (2.4.10a)

up = € + péz x V(n+ h), (2.4.10b)
p=—y+u(n+h), (2.4.10¢)
where we have dropped the subscript “2” in (2.2.29), and where (2.4.10a) is taken

from (2.3.23) and (2.4.10b) is taken from (2.3.37).
after applying (2.4.10a) and (2.4.10b),

Z’ig} on y=0,L. (2.4.11)
=

The model (2.4.8) - (2.4.11) has an exact steady nonlinear along-channel
solution given by

n=moy) = = o oL g ooy (2.4.12)
h= ho(y) ) ’ T

where we assume ho(y) is everywhere non-negative. It may easily be verified
that (2.4.12) is a solution by direct substitution into (2.4.8) and (2.4.9). Equation
(2.4.12) is the general form of the steady solution whose stability characteristics

we will study throughout the remainder of this thesis.
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The Hamiltonian Structure of the Governing Equations

The model equations for the channel may be recast into a hamiltonian formu-
lation. The chief advantage of this is that more general and sweeping statements
may be made about the stability, in particular the nonlinear stability, of steady
solutions to the governing equations. Swaters (1993) did an extensive examina-
tion of these same equations applied to an arbitrarily-shaped gravity current on
a continental shelf, and this investigation is adapted here to the channel model,
which, with its simple gravity current profile, allows some specific conclusions to
be drawn. We make one simplifying assumption here. In the governing equations
derived in Chapter 2, the Jacobian terms are multiplied by the O(1) quantity u.
For the purposes of this analysis we take u =1 so that all the calculations in
this chapter do not carry this coefficient. It turns out, as will be seen later, that u
determines the nature of the instability if there is instability, but it does not appear
in the criteria which set the boundaries between stability and instability, outside
of the requirement that u > 0 (i.e., there must be a sloping bottom). This is
not to say that a hamiltonian formulation cannot be found with this coefficient
included; we are simply stating that it complicates the calculations but in the end
has no effect on the stability convexity estimates and so it is excluded in favor of
a simpler presentation. Setting ¢ =1 in the governing equations is equivalent

to introducing the transformation 7 = 7/u and h = A/ in equations (2.4.8)

and (2.4.9).
3.1 A Finite Dimensional Example

The hamiltonian formulation for a system of partial differential equations is
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dimensional conservative systems. The equations of motion for such systems are

(Goldstein (1980); Shepherd (1990))

dg; OH dp; OH

=% &= ae (3.1.1)

where ¢; and p; are the generalized coordinates and momenta, respectively, in
the phase space denoted by [gi,p;] where 7=1,2,--- ,N, and where H =
H(q;,p;) isthe hamiltonian, which is generally an expression of the total energy of
the system. These equations may be written in symplectic form as well (Shepherd,

1990), such that

dq oOH
— =M— 1.2
where M is a skew-symmetric matrix given by
0 I
we [0 1] .

and q is a column vector with 2N components. Note that this matrix is
invertible; this makes the formulation canonical.

We look at a simple two dimensional example to fix these ideas. Suppose we
have a massless spring with a spring constant % fixed at one end to a frictionless
table, with a mass m attached at the other end. The equation of motion for
this system is given by Hooke’s Law for ideal springs combined with Newton’s 2nd

Law, so that
m—- = —kz, (3.1.4)

where =z s the spatial coordinate along which the mass-spring system moves,
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and t istime. If wescale ¢ suchthat y/k/mt =1, then, after dropping the

tildes,
T+ = 0, (315)

where the subscript denotes differentiation. We see that the motion is decribed

by a simple harmonic oscillation.

We wish to form an energy equation, so equation (3.1.5) is multiplied by

and then rearranged to give

(%), =0, (3.1.6)

and then integrating (3.1.6) with respect to ¢, we find

1
;)-(av,)2 + %mz = E. (3.1.7)

4

We see that the expression on the left hand side of (3.1.7) is simply the total energy
(a constant which is denoted by E) where %(z()? is the kinetic energy, and

z&? is the potential energy. We call this the hamiltonian and rewrite it as

1,1
H(g.p) = 57" + 50 (3.1.8)

because p =z, is the scaled momentum, and ¢ =z is the coordinate for the

motion. It is easy to see that the equations (3.1.1) applied to (3.1.8) lead to

Hy=gq=—py, (3.1.9)

Hy=p=gq, (3.1.10)

and if (3.1.10) is differentiated with respect to ¢ and the result substituted into

(3.1.9), then we obtain (3.1.5).
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Note also that H(g,p) is invariant with respect to time, since

dH _ dp  dq _ _
o P tag =-pratap=0. (3.1.11)

This result is not surprising, since the hamiltonian represents the total energy of

this system, which is conserved. The symplectic form of (3.1.9) and (3.1.10) is

[zz]f [—01 (I)J [ﬁ:] . (3.1.12)

We apply the formulation developed here to a simple problem to illustrate

simply

its utility. We look for a steady solution (a solution independent of time) to the
governing equation, which we call qy = (go,po). Then the equations (3.1.9) and

(3.1.10) give

Hy(go,p0) = qo = —po, = 0, (3.1.13)

Hp(g0,p0) = po = go; = 0. (3.1.14)

This implies that, as we would expect, the only steady solution for this system
iIs z=u=x4=0, ie, the system is at rest (which means E =0 for the steady

state).
3.2 The Hamiltonian Formulation for the Channel Model

In the case of partial differential equations, the independent variables ¢ =
q(x,t) are functions of both space and time, and so functions of ¢ become
functionals (Shepherd (1990)), and we will need to take variational derivatives
rather than partial derivatives. With this in mind, we say that a system of partial

differential equations is hamiltonian (Olver (1982); Benjamin (1984)) if there exists
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a conserved functional H(q) such that

q =M—, (3.2.1)

where q = (q1,...,q2)7 is a column vector of n independent variables, M
is a matrix for which the associated Poisson bracket must satisfy the five properties
of self-commutation, skew-symmetry, distributive property, associative property,
and, finally, the Jacobi identity. We will carefully describe the Poisson bracket
and these algebraic properties later in this section. It should be noted that such
a system has an infinite dimensional phase space, in contrast to the finite dimen-
sional, canonical hamiltonian systems governed by ordinary differential equations
with time as the independent variable (the harmonic oscillator in Section 3.1 is
an example). The infinite number of dimensions is a result of the fact that the
p(t) and q(t) analogues may be represented by an infinite Fourier series in a
spatial basis function.

The domain, for the purposes of the hamiltonian analysis, is given by y =
(0,L) in the cross-channel direction. In the along-channel direction, we specify
a periodic domain r =(—~A,)) such that n and h are smoothly periodic at
v = £A. This “periodicity boundary condition,” as we will refer to it, implies
that at every point 0 < y < L, and at any time ¢, 7, and h, and all
their derivatives, have the same value on the boundaries = = +A. Therefore the

domain is

Q={(z.y)l-A<z<A\0<y< L} (3.2.2)

The boundary of the domain, 99, is simply the piecewise continuous curve
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bounding the open set 2. This may be represented as

8% = {[=\ A x [0,L]} = {(=\.2) x (0.L)}. (3.2.3)

The boundary conditions on the channel walls are, from equation (2.4.11),

n:=h,=0 on y=0,L. (3.2.4)

This implies directly that 7 and A must be independent of & on the channel
walls. Therefore, we conclude that 7» and h are constart on y = 0,L (not
necessarily the same constant). For our purposes here, we shall assume that 7 =0
on the channel walls (i.e., the constants are set to zero), which implies that there
will be no net along-channel flux in the upper layer. Also, as alluded to above,
the “periodicity boundary condition” on the boundaries x = +) implies that
at every point y, and at any time ¢, 7 (and h) has the same value on

the boundaries = = +.

The above discussion is consistent with the analysis we intend to carry out
in this thesis. We will set Up = 0 in (2.4.12) (and therefore 1y = 0) in
order to confine our work to baroclinic phenomena, and we will look for wave-like
solutions for the perturbations with along-channel structure exp(ik(z—ct)] +c.c.,
where k is the along-channel wavenumber and ¢ is the phase speed. Both of
these conditions imply that if 7, =0 then 7 =0, i.c., the amplitude of the

perturbation fields must be zero, on the channel walls. Therefore, the houndary
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conditions may be stated as

n=0 on y=0,L,
h = constant on y=0,L,

[, Rl(=A 9, 8) = [0, h)(A, 9, ). (3.2.3)

We also require, as indicated above, that all derivativesof 7 and h meet
the periodicity boundary condition (e.g., 7n:(z = =A) = n(z = A). o =

—A) = ngy{z = A) and so on), just as would be expected from an along-channel

travelling wave solution.
We also need to define the boundary conditions for perturbationson 7 and
h, which will be denoted én and dh. Recall the boundary conditions set out

in (3.2.5), and suppose we have steady solutions 79 and ho which depend on

y only. We must have

mo(y) + én(z,y,4) =0 on y=0.L,
ho(y) + éh(z,y,t) = constant on y=0,L,

(105 ho)(y) + 8[n, h)(=A, g, t) = [0, ho)(y) + 8[m, h) (A, y. ¢). (3.2.6)

But the steady solutions themselves must meet the boundary conditions (3.2.5).

so this fact, combined with (3.2.6) leads to the boundary conditions for the per-

turbations

8[n,h]=0 on y=0,L,

§[n, h)(z = =A) = 8[n, h](z = ), (3.2.7)

where it is understood that the constant in the boundary condition for h as
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written in (3.2.5) is, in fact, the value of ho on y = 0,L, respectively. We
see that the boundary conditions on the perturbations are essentially the same
as those set out in (3.2.5), and we also note that any higher variations taken on
n or h will meet the same conditions as well (i.e., §°75) for the same reasons.
As well, as previously described for the general boundary conditions above, auy
spatial derivative of én or dh also meets the periodicity boundary conditions.
For example, this implies that [Adn]z=—x = [Ady]r=2, and so on.

Swaters (1993) has shown that for the governing equations (2.4.8) and (2.4.9)
(setting p =1), ahamiltonian formulation may be found, and that it takes the

form

1

H(q) =3 //Q Vi Vn+[(h—y)* - y*)drdy, (3.2.8)

where M is the two by two matrix

’_'](QI -y, ) 0
M = \ 3.2.9
[ 0 gz, ") (3:29)
and where
@ = An+h, (3.2.10)
g2 = h. (3.2.11)

Here J is the Jacobian operator, as it was defined in the previous chapter.
Note that if g was included in this analysis, J(q; —y) would be given by
J(gy —y/un) (see equation (2.3.24)).

For (3.2.8)-(3.2.11) to be considered as a Hamiltonian formulation for the
governing equations, three requirements must be met.

(1) The functional H(q) must be invariant with respect to time.

42



(2) The formulation must be equivalent to the governing equations.
(3) The associated Poisson bracket of the M matrix must satisfy five

algebraic properties. In Poisson bracket form, these are

(a) Self-commutation

[F,F} =0, (3.2.12)
(b) Skew-symmetry
[F,G] = —[G, F], (3.2.13)
(c) Distributive property
[aF + BG, Q) = a[F, Q] + BIG, @], (3.2.14)
(d) Associative property
[FG,Q] = F[G,Q] + [F, Q]G, (3.2.15)
(¢) Jacobi identity
[F,|G,H]] + |G,[H, F]] + [H,|F,G]] =0, (3.2.16)

where [, ] is the Poisson bracket, which may be rewritten as (Shepherd (1990))

oF 6G> , (3.2.17)

where

(1) = [ [ s237) dod, (3:2.18)
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and where F,G, and Q are arbitrary allowable functionals (the concept of al-

lowable functionals will be discussed in more detail later).
3.2.1 INVARIANCE OF THE HAMILTONIAN FUNCTIONAL

We begin the analysis by proving that the system (3.2.8)-(3.2.11) is, in fact, a
hamiltonian representation of the governing equations. We first show that H(q)

is invariant in time. The first derivative of H with respect to time is

dH
—- = // {Vn-Vn 4 (h - y)hi}dzdy
Q

= ¢ n(a-Vn)ds - [ [ non+ (- ey
a9 e (3.2.19)

where Green’s first identity has been used. Here n is the unit outward-pointing
normal and dS is the differential arclength. We may rewrite this boundary

integral as

f n(n- Vn)dS
N
L A
= - / [Mzt)r=-ady + / A[7777_:/:].;,=Ld-1'
0 -

L A
+ / [777711]:=A dy - / [UUy(]y:Q dx
0 -

= 0. (3.2.20)

The second and fourth terms in the first line of (3.2.20) are zero because 7 =
0 on y=0,L. The first and third terms add to zero because the integrands are
equal, due to the periddicity boundary condition, but the signs of the integrals are
opposite.

This means tnat the boundary integral on the right hand side of (3.2.19)
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contributes nothing, so that

dH

= = / {nAne + (h — y)h:}dzdy. (3.2.21)
dt 0

Now the governing equations (2.4.8) and (2.4.9) are utilized to replace A7, and

h; to obtain

= - //Q{n[nz + hy = J(n, An)] + (h — y)[—h: = J(n, k)] }dzdy

=."§ //Q{—(vf)x = 2nhs — J(7, An) — (h®):

~ J(n,h®) + 2yh; + 2yJ (0, h)}dzdy. (3.2.22)

An z — integration of the first, fourth, and sixth terms in (3.2.22) and the use
of the periodicity boundary condition shows that these terms contribute nothing.

This gives
———//{ 2nhy - 2n:h — J(n?, An) — J(n, k%) + 2J (n, hy) }dzdy, (3.2.23)

where we have rewritten the last term in (3.2.22). The integrals involving the
Jacobian terms in (3.2.23) may be evaluated by using the following property, for

arbitrary scalars A and B,
J(A,B) =V -[Bé; x VA] = -V . [Aé; x VB], (3.2.24)

which can be easily proved by writing both sides of (3.2.24) in component form.

First we look at the third term in (3.2.23). We have

// J(n?, An) = // V - [Ané; x Vn?]dzdy

f n- (& x Vn?)AndSs. (3.2.
%

o
[\"]
()]
S’
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where n is again the unit outward pointing normal vector and where we have
used the divergence theorem. To evaluate the integral (3.2.25), we break it up. as
we did in (3.2.20), in such a way as to integrate separately along each of the lines

forming the piecewise continuous boundary, so that

L A
fa‘n n-(é3 x Vp®)AndS = — / [~(m*)yAn)r=-ady +/ (M) e A)y=1 dx
0 =-A

L A
+/(; [_(772)yA77]1‘=,\dy—'/A[(712)1A7l]y=0 dr
=0,

(3.2.26)

where the first and third terms on the right hand side of (3.2.26) cancel becausc
of the periodicity of 7 and its derivatives on z = %), and the second and

fourth terms are each zero because (%), = 21, and 7,77, =0 on y =0, L.

We integrate the fourth term in (3.2.23) in an analogous fashion, so that

// J(n, h?) dzdy =// V- [h%&; x Vnjdzdy = f n-(é3 x Vi)h?drdy
Q Q a0

L A
=- / [_'Uyh2]r=-z\ dy + / [n:h?]y=1 dx
0 -2

L A
+/ [—nyhz]r=z\ dy "'/A[nr}’2]y=0 dz
0 -

=0, (3.2.

o
V]
-1

because of the periodicity boundary condition on derivatives of 7. and because
n: =0 on y=0,L.
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" Finally, the last term in (3.2.23) is evaluated as

2// J(n, hy) dzdy ='3// V. [hyés x Vn]dzdy = 2% n- (é3 x Vn)hydzdy
114 Q o0
L A
=-2 [ Fonbalemady+2 [ nalymsdo
0 -

L A
+ 2/ [—nyhy]r=A dy - 2/ [Thhy]y=0 dr
0 =X

=0, (3.2.28)

for exactly the same reasons as (3.2.27).

The results of (3.2.26)-(3.2.28) imply that (3.2.23) may be rewritten as

e _ / / (—ths — oh)dzdy = / / (7h)e dedy = 0, (3.2.29)
dt Q J JQ

upon integration with respect to z and the application of the periodic boundary

conditions, and thus we have shown that H(q) isinvariant with respect to time.

3.2.2 GoVERNING EqQuATiONS DERIVED FROM THE HAMILTONIAN FORMULA-

TION

We now show that the components of the Hamiltonian formulation do indeed

vepresent the governing equations. First, we calculate the first variation of the
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Hamiltonian functional, which is

6H = / / {Vn-Vén+ (h — y)Sh}dzdy
Q
= f n(n-Vén)dS 4 / / {=nA8y + (h — y)Sh}drdy
a9 Ja
L A
=_L [M(6n)z}r=-x dy+/,\[n(6n)y]y=1, dr
L A
+/(; [U(‘sﬂ)x]x:Ady—/,\[77(577),,],,:0 dx
+ // {=nAdén+ (h — y)oh + néh — néh}dady
Q
= // {—n(Aén + éh) + (h +n —y)dh}dzdy
Q

= / / {=néq1 + (h + 1 — y)éga }dzdy, (3.2.30)
Q

where the components of the boundary integral contribute nothing because of the
periodicity condition on 7 and dp at z =4\, and because =0 on y =
0,L. Equation (3.2.30) implies that §H/édqy = —n and éH/bq2 = h + 13— y.

Therefore, we may write

Q= Mﬁﬁ, (3.2.31)
éq
as
An+h| _|-J(An+h-y,.) O -7 ]. (3.2.32)
R 0 I,y | [h+n-y]
Expanding the first row in the matrix, we obtain
Ang+hy=-J(An+h —y,—n) = =J(n,An) ~ J(n,h) = J(y,n)

= —J(n,An) = J(n, k) + s, (3.2.33)
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and expanding the second row of the matrix

hy=J(h,h+n—y)
= J(hyn) = J(h,y)

= —J(n,h) - he, (3.2.34)

which is precisely equation (2.4.9). Now we insert (3.2.34) into (3.2.33) to get

Any = J(n,h) = he = =J(n,An) = J(n,h) + 12, (3.2.35)

or
Ang —nz — he + J(n,An) =0, (3.2.36)

which is exactly equation (2.4.8). Therefore the Hamiltonian formulation is equiv-

alent to the governing equations as required.

3.2.3 PROOF OF THE ALGEBRAIC PROPERTIES OF THE P01sSON BRACKET

We must now show that the Poisson bracket associated with the M matrix
satisfies the required five algebraic properties, as set out in (3.2.12)-(3.2.16). Before
we begin, it is necessary to point out that because of boundary integrals which
appear in the course of the proofs, we are restricted to the use of arbitrary allowable
functionals only. An allowable functional is a functional R(q) which meets either
of the following requirements (Shepherd, 1990; McIntyre and Shepherd, 1987):

1) [F,R] =0 forany arbitrary functional F (these are known as Casimir

functionals - see section 3.3)
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2) On the channel walls y=0,L, R(q) satisfies

2 [s7]_, .
65 5q, — Yy (3.....3‘)

where 7 = 1,2. The second requirement implies that [6R/dq;] is identically

constant on y = 0,L, and therefore that

§8%R
=0, 3.2.38
4qidq; ( )

on y = 0,L. This restriction on the functionals, as we shall see, ensures that
the boundary integrals which arise contribute nothing, and that the algebraic
properties are met. |
There are physical reasons for the use of allowable functionals as well. In a
finite dimensional system, a function of state is a function which depends only on
the state of a system, that is, on the variables which describe its state. For such
systems, position and velocity (momentum) of particles are enough to completely
describe the state. However, in an infinite dimensional system, such as a fluid
flow, individual parcels are indistinguishable (i.e., they may be interchanged) and
so a function or functional of state must depend only on the velocity (McIutyre
and Shepherd, 1987). It would then be expected that boundary conditions on the
functional of state would, in some way, be related to the boundary conditions on

the velocity, which are

o
—_— = = 2.
55 0 on y=0,L, (3.2.39)

where ¢ 1is the streamfunction. In accordance with the discussion above, we
ask that the variational derivative with respect to q of a functional of state for

the system meets the same criterion (McIntyre and Shepherd, 1987), which leads
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to (3.2.37).

It follows from (3.2.37) that

9 [ﬁﬁ] 0, (3.2.40)

for 1=1,2 on y=0,L, orequivalently, that

,

SR = constant, (3.2.41)

dg;

on y=0,L, respectively,if R is not a Casimir.

At £ =-M)\) wedemand that §R/§g; be smoothly periodic, i.e.,

6R] [JR]
L . 2 3.2.42
[6q1 re==\ (;qt =\ ( )

as well as all the derivatives of §R/dg;.
The above conditions on the first variation of an allowable functional lead

directly to conditions on the second variation, based on (3.2.38), which are

[ PR,
Jq'(quJ y=0,L ’

5R ] [ 5R J

—_ = . 3.2.43
[quéqjdg_x 69idq; | . ( )

Let us fix these ideas by applying them to the hamiltonian itself, which
is given by equation (3.2.8). We found in (3.2.30) that éH/8qq = —n and
0H/8q =13+ h—y. We have

oH
[(S_) :, = (_771'1771' + h'.r)y=0,L =0, (3.2.44)
9/ rly=o,L
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by application cf the boundary conditions (3.2.4). Also

[0H .
i =(=nn+h = Y)r=za, (3.2.45)
Qi Jr=x
which satisfies by hypothesis the periodicity boundary condition at & = +.\.

We now have the prerequisites in place for the proof of the five algebraic

identities. We start with the skew-symmetry property, where we must show that
[F1 G] = —[Gv F]’ (3246)

where F and G are any allowable functionals. We have

oF oG oF oG
F,G] = , M; +< , M- >
\F Gl <5 15q1> 5Q2 s

= —// 5FJ(q -y, ) dxdy-}-// (qg, ) dxdy,
81 oq dg2 (3.2.47)

where we have let M; = —J(q1 —y,*) and My = J(qz,*) be the two non-zero
diagonal components of the M matrix.
We now rewrite the first term on the right hand side of (3.2.47) using the

identity (3.2.24) for Jacobians

SF G
_//QE{; (QI Y3 >d:z:dy— // ia [5&-1—63 x V(g —y)| dady.

(3.2.48)

We may make use of the vector identity (twice)
V.(¢a)=¢V-a+a- Vg, (3.2.49)

for an arbitrary vector a and an arbitrary scalar ¢, to rewrite this equation
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as

—/ JFV [6—6:63 x V(g —y)] dzdy
dqy oy

dF 6G
=—//v [Es—q?eg, X‘(ql —y)] dl’dy

// 9G (64 x V(g — )] - v(gf) dady

JF G
—— 1 [é3 x V(g1 —y)ldzd
50 091 041 [é3 (@1 — y)) dzdy
+/ &GV [6F63 x V(g — )} dzdy
é.ql Jql
G OF
- _ ) -
/ 5, 8qy =V [é x V(g1 — y)] dedy. (3.2.50)

But we may rewrite the divergence of the quantity in the square brackets in the

last term in (3.2.50) using the following vector identity

V.-(axb)=b:(Vxa)—a-(Vxb), (3.2.51)

for arbitrary vectors a and b, so that we may write, in general, that

V(& x V¢] = Vo (V x &) — & - [V x V¢

=0, (3.2.52)

for any arbitrary scalar ¢. It is easy to see that both terms on the right hand

side of (3.2.52) are zero, and therefore that the last term in (3.2.50) is also zero.
We now break up the boundary integral in (3.2.50) into four integrals, each
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representing a side of the domain, so that

SF 6G §F 6G
V( T
- 5 5qln [és x V(g1 ~y)]dS = / [ 3 3a (@1 y)y] L dy

LT éFsG
- [Lstto st~ [ -5 -]

A
+ /_A[fo(m)(fh —¥)z]y=0dzx
=0, (3.2.53)

where we make use of the fact that F and G are allowable functionals by
defining fo r(q1) to be

fou(q) = [ (3.2.54)

OF JGJ
6(11 &h y=0, L

The first and third terms (3.2.53) cancel because of the periodicity boundary

conditions in .

We note that if both F and G are not Casimirs, then fy 1 are simply
constants. If either F' or G are Casimirs, then fp; may explicitly depend
only on ¢ —y (see Section 3.3). Regardless, the second and fourth terms in

(3.2.53) integrate to zero, since

A A
/ [fo,o(@ = y)(@1 — ¥)zly=0,0dz = / [fo,L{a1 — ¥)q1 -]y=0,L dx
-A =A

A o fn-v
NI EL=O'L(

=0, (3.2.55)

due to periodicity at z = %,
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The second term in (3.2.47) is evaluated in an analogous way, so that

dzd \% dzd
//qu <q2’5q> J,Cy //&12 [queax qu ey

OF 6G
—n- x Vg,]dS
an 5‘12 5(12 [63 q2]

// [ —€3 X qu} dzrdy
g

+// :;F gGV [és x Vgo] dzdy.
92 992 (3.2.56)

The third term is zero from a similar argument to that shown for (3.2.52), and

the first term becomes

OF 6G

—n-[é3 x Vg|dS =
a0 JQ2 dg2 [3 (J2]

0F 6G A
- dy + / ly=1 &
/o [6q2 5q2( Q2y)L=_A y _A[QL(Qz)QZ ly=1 dz

502 80\ dy — Jy=0dz
+~/c; [5‘12 5qQ( Q2y)JI=A y _A[go(qz)qz Jy=0 dzx

= 0, {3.2.57)
where go,1.(q2) s defined to be

oF m} . (3.2.58)
y=0,L

90,.(q2) = [EJ_QZ-

The first and third terms in equation (3.2.57) sum to zero due to the periodic
boundary conditionsin «, and the second and fourth terms are zero individually

because ¢z, =h, =0 on y=0,L.
We are left with the second terms on the right hand side of (3.2.50) and
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(3.2.56), which gives

F6l=[[ 3 [—esxw )] drdy
// s [54263 "V‘”] drdy

= - [G, F]. (3.2.59)

We see immediately that (3.2.59) implies that the Poisson bracket must self-
commute, that is, since [F,F] = —[F,F] by skew-symmetry, we must have
that [F,F]=0 for an arbitrary allowable functional F. Also, the above proof
implies that each term in (3.2.47) is individually skew-symmetric, which will be a

useful result in later derivations.

We now prove the distributive property for the Poisson bracket. For any

constants o and £, we have

aF +86,Q) = - [ / MJ (q1 v %f) dedy

[ “1?2; = (%f?Q) dsdy

Lo ) e [ (0 )
_ﬂ// oqy ( Y% )d dy+ﬁ// g{i (2,61) dady

= o[F,Q]+6[6,Q). (3.2.00)
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The associative property of the Poisson bracket is proved as follows

[FG,Q]=-//MJ( ~Ygs )dd +// (2,%)dxdy
[/@%ﬁm_jj@_mg)mw
o[ (6 +rt 2)J(QZ,gg) dud
-~ r{ [ (w-wgt) detu= [ 520 (57 ) deas}
‘G{ffwl(“‘° *-//a@Jéﬁﬁﬁdwﬁ

=F|G, Q] +F,QIG, (3.2.61)

where the functionals F and G may be pulled outside the integrals because

they are independent of the spatial integration (i.e., dependent on time only).

Finally we must show that the Poisson bracket satisfies the Jacobi identity.
Before we proceed, note that if any one of the allowable functionals F,G, or @
in (3.2.16) is a Casimir (i.e., the first requirement for allowable functionals), the
Jacobi identity is trivially satisfied, since the Poisson bracket of a Casimir with
any functional is zero. We therefore assume that the allowable functionals all meet

the second requirement (3.2.37). We have (the following proof is based on the one
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given by Scinocca and Shepherd, 1992)

[F,[G. QII+(G,[Q, F]} + [@.[F.G]] = —([G.Q], F] - [[Q. F].G] - [[F.G).Q]

5 6Q> <6G 6Q>} <$F>
== — M, + M. M
<5fh {<5Q1 "o 8g2"" “8qs Ysqu
5 (/4G 6Q> < 6Q>} 6F>
Y M M A
<5q {<5q1 1591 + dqp’ 25‘12 25(12
o i)+ (i) | M5
—{ — — M — )+ ,]Wg JM
<5(11 {<5QJ 15‘11 dq; 5‘12 '8q,
o M5 )+ (M) | i)
—( = —, M , M. , M.
<5<12 {<5Q1 Y6 + 0q2" " 2 8qy 28q2
é oF oG 6F 0G 5Q>
BYOLED FOLLEY YA WL a2
<5q1 {<5q1 15<h> <5qz 25@2>} g
_<_5__{<5FM5G>+<5F A126C>} AI26Q>.

The first step in this procedure is to calculate the variational derivatives

inside the outer Poisson bracket, which are quantities of the form

é 6Q>
—_ M, 3.2.63
5‘1:‘ <5‘h 501 ( )

where we have taken as an example the first and second lines in (3.2.62). To cal-
culate this variational derivative, we first integrate the Poisson bracket in (3.2.63)

by parts as follows

(Gt = ~[[ 52 (-5 ) aet
B o)
[ e oo
// 7 -y) [esxv(g(?l)J (‘(’S_'ICQ (1:1,-(13/.(3-2.64)
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We proceed by applying the divergence theorem to the first term on the right
hand side in (3.2.64), and by using the vector identity (3.2.49) to rewrite the

second terin, so that

5Q ic 5Q
<59'1 My 591> a0 5(11 vn- [ea v (5— ]

—//m-w-[—a (@) o
oo oo () o
=§ Lla-ym: [e3xv( )]ds

(s 6Q> . ]
+ / /Q (g1 —y)J ( o) dady (3.2.65)

where the integral on the third last line of (3.2.65) is zero because of (3.2.52), and
where we have used the identity (3.2.24). The boundary integral in (3.2.65) is

evaluated as follows

oG ) 6Q)] /L 6G ( 6Q)
—y)n- V(= )ds=-] | =(a-v) |- d
Jaa dq (@ ~yin [c;,x /<5‘11 o [dm (=) 9/ ] o ’

A 6Q J Lisc 6Q
() o[ i (-59)]
,\[5(11 (a1 (5q Joes 2+ | 5 (g1 —y) b)) _ y

)
X

/ )
/,\[6‘1 @) (ﬁ)r}yﬂd

4~

since the first and third terms in (3.2.66) sum to zero by the periodicity boundary
condition. The second and fourth terms are zero because [(6Q/8¢;i)z]y=0,L = 0

by the definition of allowable functionals. Therefore the boundary integral in
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(3.2.65) contributes nothing. Thus we have found that

0G 6Q> < (JG 6Q)> ~
M -y, Jl —.—= . 3.2.6%
<5‘11 15@1 h-y 5(11 5(11 ( )

To proceed, we take the variational derivative of (3.2.67) to obtain

6G 6Q>>
é - 7'] =
<QI Y (5(11 5(11
G 6Q 50 |
// (5(11 l)JQI d:ndy'*'// (@1 —y) (6(1] (5(11,(s ) drdy
§G 6%Q 522G 50
+//9(QI Bk (59 " 8q? &h) d.zdy+// @ -v) (5(116%5”’ an) ddy

6G 62Q )
—y)J —Z §q0 ) dady. 3.2.68
+ / /Q (@1 —y) ( b0 500 %2 ) 42l ( )

Now we evaluate the second integral in (3.2.68) to obtain

82 )
// (g1~ <6q?5(h, 5Q> dxdy

// qQ — [ (5(1] éz x V (gg):l d?(]y

= _// [ G6QI€3 x V (::(f)] daxdy
2
// [5 G5q163 X (g—Q> - V(g —y)] drdy
qi

= —f ( ) Jq, [63 x V <§Q>} ds

on q1

[ 17 ,
J 2 6(1]‘7 ((]] -- y)ea x V| — (1.‘1‘(]]/
v vit :

‘)
62G )
—/ 7% — (g ~y)V - [63 x V (—Q>] dady

Vel
// d G(SqlJ( y,?) dzdy, (3.2.69)
qi

where we have integrated by parts in exactly an analogeus manner as was done i,

60



(3.2.66). The boundary iutegral in (3.2.69) contributes nothing, because

G 6Q>]
_ é e xV dS =
ff;ﬂ((ll )5 2 gin- {é3 X (5‘11

LT 822G 5Q
—y)—=0 d
(1 —y) 5 q:( 5q1)J . y

oo (5) ).,

((QI“y)(SZG :( &g)i

-

M G, /6
(@ —¥) 57 da ( —Q) } dz
L q rd y=0

|
S— —

+ +
o\.|\.
[ B >

\‘5f11
(3.2.70)

il
o

Tlie first and third terms of (3.2.70) are zero by the periodicity boundary condi-
tions, and the second and fourth terms are zero because of (3.2.43).
The last three integrals in (3.2.68) are evaluated in the same fashion as was

the integral in (3.2.69), which means we inay write (3.2.68) as

6G JQ)\
§lq—yJ[Z, %
<91 ] <6q]'6q1)
#G < 5@) (5@ 6Q) 820 ( JG)}
y & +J + J - Y, 6
// { q? yéql 8q1’ gy oq? n-y dq @

822G F) G
+ {— J (q: - Q) ' —J <q1 - —)}&12} drdy.
5q1602 50 ) " Sqioqs dqy (3.2.71)

We now introduce a shortform notation to simplify the lengthy derivations

which will follow. Subscripts 1 and 2 appended to the allowable functionals
F.G. and @ will denote variational differentiation with respect to ¢, and qq,
respectively. As an example

62G

G2 = .
& dq 5‘12
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Using this notation. it follows from (3.2.63), (3.2.67) and (3.2.68) that (using inner

product notation)

é
o (G1, MiQ1) = Gui M Q) + J(G1, Q1) — Qi MG
é
E (G],A‘.’[]Q]> = GmJu]Ql - QIZAIIGI- (3273)

We may generalize this result by stating that

% (Gi, MiQi) = Gi; MiQi + J(Gi, Qi)dij — Qij MG, (3.2.74)

where ¢ =j = 1,2, §;; is the Kroneker delta and no summation is implied,

We may now write (3.2.62) as

[F,[G, Q) +[6,[Q. Fi + [0, [F\5]) =
—{GnMQy. M Fy) - ((Gr, Q1) Mi Fq) — (@i MGy, M Fy )}
~{{Co Ma @, My F1) — (@21 M2 G, M, Fy) }
—{{G22M2Qa, Mo F) + (J(G2, Q2), Mo F2) — (Qa2 Mo Go, My Fy)}
—{(G12M1Q, My ) — (Q12 MGy, My F) }
—{{(Q1 M1 Fy, M Gy) + (J(Q1, Fy), My Gy) — (F1u M, Qy, M\ G)y)}
~{(QuM2Fy, My G1) — (Foy My Q2, M) G)) }
—{(Qu2 My F>, MyGy) + (J(Q2, F2), My G2) — (Faa M, Q2, My Ga)}
~{{Q12M; Fr, MyGa) — (FiaMyQy, My i)}
~{(Fui MyG1, My@1) + (J(F1,G1), M1 Q) — (G1i My Fy, M, Q1))
—{{Fo1 MG, M1 Q1) — (Goy Mo Fo, M1 Q) }
—{(FoaMaGo, Ma@3) + (J(F2, G2), M2 Qa) — (G2 Mo F, M2 Q1) }
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~{{(F12M1G1, M2 Q) — (G2 M F1, M2Q5) . (3.2.73)
Using the fact that for the inner product we may write (A,BC) = (AB,C) for
arbitrary scalars A,B, and C, and that (McIntyre and Shepherd, 1987)

§R &R
dgidg;  6q;0q;’

(3.2.76)

for any arbitrary functional R, we see that all the terms in (3.2.75) sum to zero

except for

[F[G.Q)] + [G,(Q, F]| + [@,[F,G]] =
(G, @), M1 Fy) — (J(G2,Q.). M Fy) — (J(@Q1, F1), M Gy)

- (J(Q21F2)a A42G2) - (J(F11G1 )aMlQ]) - (‘](F2’G2)9 A12Q2) .
(3.2.77)

The Jacobian terms may be rewritten as (taking the first term in (3.2.77) as

an example)

(J(G1,@1), M1 Fy) = = (J(G1, Q1) I (@1 — v, F1))
= [ (61,007 It - i x VFi)dedy

- / /Q V. (G, Q:)(q1 — y)és x VE;)dedy

- [ [ @ - e x VA V(61 @u) dry
=}£Q(ql — y)J(G1,Q1)n - [& x VF]dS

- [ =9 x VFs-9(3(61, @: 3 dndy
=~ [ [ @ =0V 161,01 x VA dudy

+ [ [ - 0)161,Q)V - (e x V) dndy
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o
154
-]
oD
b

- / /Q (@1 = 9)IJ(Gr, 01 ). F ) dady, (3.

The boundary integral contributes nothing by virtue of

){m(ql —~ 9)J(G1.Qu)n- [é x VF]dS =

L

-/ (@ — ¥)J(G1, Q1) (—Fiy)]r=-rdy

A
+ [l =961 QE e i
-

L
n / (g = 9)T(Gr, Q1) (= FyVoen dy
0

A
- _A[(ql - y)J(G]’QI)(F]x)] =0 dr

=0, (3.2.79)

where the first and third integrals sum to zero by the periodicity boundary con-
dition, and the second and fourth integrals are each zero because F) = constant
on y=0,L. andso Fj, =0 there (see (3.2.40)).

The other Jacobian terms in (3.2.77) evaluate the same way, and when they

are added to (3.2.78), we get

[F[G, Q)] + [G,[@, F} + [, [F, G]]
=//Q(‘h —yHJI(J(G1,@Q1), Fy) + J(J(F1,G1), Q1) + J(J(Q:1, F), Gy )} daedy

—// @{J(J(G2,Q2), F2) + J(J(F2,G2),Q2) + J(J(Q2, F2),G) } dudy.
Q (3.2.8m

To complete the proof, we use the Jacobi identity for Jacobians, which states that

for arbitrary scalars A, B, and C, the following holds

J(J(4,B),C) + J(J(C,A),B) + J(J(B,C), A) = 0. (3.2.81)
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This identity may easily be proved by writing (3.2.81) in component form. We see

that this immediately allows us to state that
[F G, Q) + (G, [Q. Fl| + (@, [F,G]] = 0, (3.2.82)

so that we have proven the Jacobi identity holds for the Poisson brackets associated
with the M matrix.

Therefore (3.2.8)-(3.2.11) is a hamiltonian formulation of the problem. It
should be noted that with the skew symmetry property of the Poisson bracket,
the invariance of the hamiltonian with respect to time may be proved in a much

more succinct manner than was done in Subsection 3.2.1. We have (Shepherd,

1990)

dH  /6H SH  SH\
—_— = — fred —_— — = .2-
dt <5q ’q'> <5q M3e) =0 (3.2.83)

by skew symmetry (self-commutation).

The five algebraic properties (3.2.12)-(3.2.16), which we have proved above,
in particular skew symmetry and the Jacobi identity, are essential to the proper
formulation of the hamiltonian structure. From (3.2.83), we see that skew sym-
metry guarantees the invariance of the hamiltonian with respect to time, if the
governing equations can be cast in the hamiltonian form (3.2.8)-(3.2.11). The
Jacobi identity is the closure condition which must be met on an associated sym-
plectic formulation if the M matrix has explicit dependence on q (Olver,
1982). This requirement (as well as skew symmetry), originally derives frora con-
nections this method has with Lie algebras, and has much in common with, for
example, quantum mechanical Poisson brackets (McIntyre and Shepherd, 1987).

It is possible, in many cases, to find alternative “hamiltonian” formulations

65



which meet all requirements except the Jacobi identity. This could lead to serious
deficiencies in the resulting analysis, however. Benjamin (1984) gives an example
of just such a case, and it was found that the Casimirs were incorsectly determined

by the fornrulation (Shepherd, 1990).
3.3 The Casimirs

There are two kinds of invariants associated with hamiltonian dynamics. One
type relates to the hamiltonian’s own symmetry properties, and if these symmetries
are continuous (such as translations in space or time), then connections between
these symmetries and conservation laws are given by Noether’s theorem (Shepherd,
(1990)).

The other type of invariant are called the Casimirs, which are functionals

C(q) that satisfy the requirement

oF | 6C

for any arbitrary functional F(q). If (3.3.1) holds, then we must have
M— =0, (3.3.2)

since F(q) is arbitrary. Note that the Casimirs will not be trivial if the matrix

M s not invertible. Equation (3.3.2) may be rewritten as follows

=Jg-y) 0 5Cléq ] _
0 J(qz,-)] [56/5(,2] =0, (3.3.3)
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which leads to the equations

J(q1 —y,6C/dq1) = 0, (3.3.4)

J(QQ,60/6QQ) = 0. (335)

We are able to integrate (3.3.4) and (3.3.5) by taking advantage of a property

of the Jacobian. Suppose we have
J(A,B) =0, (3.3.6)
for arbitrary scalars A and B. Then we may write

A= ®(B), (3.3.7)

or
B =U(4) =3"1(4), (3.3.8)

for arbitrary functions & and W. We prove this by rewriting (3.3.6) in another

form, which is
J(A,B)=¢é;-[VAXx VB] =0, (3.3.9)

which may easily be verified by writing the right hand side of (3.3.9) in compo-
nent form. Since the normal vectors to the surfaces 4 and B are given by
]g—;‘:[ and ]%I%, respectively, these vectors must coincide everywhere, since the
cross-product VA x VB is zero. This implies that the two surfaces must have
the same slope at every point (z,y) (but not necessarily the same value) which

allows us to write 4 as a function of B or vice versa.
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Using the above property of the Jacobian, we may integrate the equations

(3.3.4) and (3.3.3) once to find

fo = i -y = =Y (3.3.10)
o = thlae) = GALL @311
where @] and &) are arbitrary functions.
From this we may construct C(q) as
Cla) = [ [ 11l 1)+ ala)} drc,
= .//n{q)l(An +h—y)+ ®2(h)}drdy. (3.3.12)

We call the functions ®; and ®, the Casimir densitics.
3.4 Variational Principle for Steady Solutions

Our treatment will closely follow Swaters (1993). Steady solutions of the
governing equations have no dependence on time, and so they may be written in

the form

M o, (3.4.1)
oq

We have calculated the first variation of H in the previous subscetion, and

found there that (see equation (3.2.30))

o0H o0H
_— = -1 - = -y. 4.2
50 7 502 h4+n-y (3.4.2)

We denote a general steady soluticn of the governing equations by 3 = 1z, y)

and h = hg(x,y). We note that we will still assume that o(r.y = 0.L) = 0.
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It is possible to generalize the boundary conditions, but it would involve including

additional circulation integrals in the hamiltonian which are not relevant in the

analysis described here.
Using this solution and equations (3.4.1) and (3.4.2) we write the Hamilton-

ian formulation for the steady solution as

—J(Ano+ho—y,) 0 ] [ —no J _
[ 0 J(ho,")| [ho+m0—y]| 0 (3.4:3)
or
J(AUO + hO - yaTIO) = Oa (344)
J(ho, ho + o — y) = 0. (345)

We now integrate (3.4.4) and (3.4.5) once, using the property of the Jacobian as

set out after (3.3.5), to obtain

no = F1(Ano + ho — y), (3.4.6)

o —y = F3(ho), (3.4.7)

where F; and F; are arbitrary functions, and where we have used the fact that
J(ho,ho) = 0 to arrive at (3.4.7).
In finite dimensional, canonical, non-dissipative systems, it is easy to see

that the hamiltonian is extremized by a steady solution, since (Goldstein, 1980;

Shepherd, 1990)

OH 0H

"5;1— = -a—q =0, (3.4.8)

qt=0=M
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since M is invertible in such cases. However, this property does not necessarily
hold in the infinite dimensional case. For example, in our case, if §H(1jg,ho) = 0.
then from (3.4.2) we have 19 = 0 and /ip = y which, as will be seen, does
not represent all possible steady solutions. This means that we cannot use the
hamiltonian alone as a functional for a variational principle describing arbitrary

steady solutions.

However, it is possible to find a functional which does behave in this fashion
by making use of the Casimir functional determined earlier. Consider the following

constrained hamiltonian
H=H+C, (3.4.9)

which, when written out, is

1
H(n,h) = 5 // {Vn-Vn+[(h—y)?* - y*] + 28, + 2, }dzdy. (3.4.10)
“ Q
We take the first variation of #, so that

dH(n,h) = / Q{Vn -Vén+ (h — y)oh + 8¢ + 846¢0 }dzdy
= jé o n(n - Vén)dS + / Q{-—nAén + 5k — y)6h + ¥ 8q) + @ 6q, }dudy
= [ [[t=n(asn+ 8h) + (1 = y 4 m)sh + 9450 + B30} dody
[/{ n)8qy + (8 + h +n —y)dge }dady, (3.4.11)
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where the boundary integral in (3.4.11) contributes nothing becaiise

L
fverMM5=—/[Mmhth
an 0
A

by L
4 / [l de + / [monc]ec dy — / nnJymode
= 0. (3.4.12)

The first and third integrals on the right hand side of (3.4.12) sum to zero because

of the periodicity boundary condition, and the second and fourth terms are zero

because =0 on y=0,L.
It is easy to see that the steady solutions will lead to dH(7n0.ho) =0, (i.e.,

the first order necessary conditions for extremizing #H) if

&, 1m0 =0, (3.4.13)

20 +ho+m0 —y =0, (3.4.14)

where @}, and ®); represent @) and @) evaluated at the steady solution.
We may develop expressions fo- ®; and ®; intermsof F; and F» which

encompass (3.4.6), (3.4.7), (3.4.13) and (3.4.14) if we simply set

‘I);((h -y) = Fi(q - y),
Py(q2) = ~Fa(q2) —h = -F; — g, (3.4.15)

which become, after integrating

q1=y

B1(qr ~ y) = / Fy (€)d, (3.4.16)
-y
q2

Balg) =~ [ FaEde - 1(an)” (3.4.17)

0
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In order to see if the steady solution is stable or unstable to small perturba-
tions, we first, in an analogous manner to what would be done in finite dimensional
canonical systems, find the second variation of the constrained hamiltonian. If the
second variation evaluated at the steady solution is definite, then we have proved
that the system is formally stable as defined by Holm et al. (1985). Formal
stability does not necessarily imply nonlinear stability in the sense of Liapunov,

however, as it would in the finite dimensional case.

To prove linear stability in the sense of Liapunov, we must show that for

every € >0 thereexistsa >0 such that (Drazin and Reid, 1981)
l|6all] <é at t=0=||dq||<e forall ¢ (3.4.18)

where dq is a small perturbation, and € and § are arbitrary small numbers.

In order to prove this, we must first choose a norm which serves as a measure
of the size of the perturbations, because in infinite dimensional vector spaces,
norms are not necessarily equivalent. The next step is to find criteria which
bound the second variation of the constrained hamiltonian evaluated at the steady
solution with respect to this disturbance norm. If the system mecets these criteria,

it is then possible to prove that we have stability in the sense of Liapunov.

We proceed by taking the second variation of the constrained hamiltonian.

The first variation is

§H(n, h) = // (V- Vén + 8h(h ~ y) + ®16q, + Phdqy}dedy.  (3.4.19)
JJa
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which means that the second variation is

52H(n / / {Vén-Vén+ V- Véln+ 8h(h — y) + (6h)?
+®7(601)° + 85(dg2)* + 918%q1 + 956%q2 }dady
- f n(n - V6%5)dS
an
+/ {Vén - Vin — nAé*n + 82h(h — y) + n62h — n6%h + (6h)?
Q

+ ®7(Adn + 6h)? + 85(5h)? + 9182 q1 + $48°g2 }dzdy,
(3.4.20)

where Green’s first identity has been used. The boundary integral is evaluated as

L A
$ - vEnas == [n@n)deeosdy+ [ 6y lyes de
an 0 Y
L A

=0, (3.4.21)

where the first and third integrals sum to zero due to the periodicity boundary
conditiony »n % and the perturbation dn. The second and fourth terms are
zero becau.: =0 on y=0,L.

We are left with

82H(n. h) = // {Vén - Vién + &Y(Adny + 6h)? + (@4 + 1)(6h)*}dzdy

//{ 1) (A8n + 6%h) + (8} + h + n — y)82h}dzdy.
(3.4.22)

But for steady solutions, the second integral is zero by using (3.4.13) and (3.4.14),

and therefore we have

82 H (10, ho) / {Vén-Vén+ &15(Adn+ 6h)? + (@5 + 1)(8h)? }drdy. (3.4.23)
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o and &35, into (3.4.23) directly by differentiating

We may substitute for
equations (3.4.15) and by using the steady solution (see equation (2.4.12), setting
Uo = 0) whose stability characteristics will be studied throughout this thesis.

This solution is given by

no(z,y) =0,

ho(r,y) =1 — vy, (3.4.24)

where v isa real constant. This steady state corresponds to a calm upper layer
with the gravity current having a linearly decreasing thickness in the cross-channel
direttion. We may now solve for F; and F, using the above solution along

with equations (3.4.6) and (3.4.7) to find

Fi(qo-y)=0,

Fy{qa0) = —y. (3.4.25)

We may recast Fp in terms of hg by using equation (3.4.22). This gives

o hy-1 ‘,
Fa(qe0) = Fa(ho} = ~ ’*,7*— (3.4.26)

We now obtain @7, and &/, by differentiating F, and F, once with re-
spect to ¢ —y and ¢z, respectively, and utilizing equations (3.4.15). This

gives

;,0 =0,
" 1 5
20 — —"; - l (34...7)



Substituting this into equation (3.4.23) gives

82 H(no. ho) = // {Vén.Nén— (8h)?/+}dzdy. (3.4.28)
0

Before we discuss this equation in the context of linear stability, we must first
show that &62H(no,he) is invariant in time with respect to small perturbations.
This is needed to ensure that if the constrained hamiltonian is definite at some

time, say t =0, then it is definite for all time ¢. We define these perturbations

as follows

n =+ dn = on,

h=ho+8h=1--y+ dh. (3.4.2¢,

where the steady solutions (3.4.24) have been substituted, and where ¢én and éh
represent the perturbations. We now insert (3.4.29) into the governing equations

{2.4.8) and (2.4.9) to obtain the linear stability equations

Abny — dny — Shy =0,

Shy + 8hy —~éne =0, (3.4.30)

where we have excluded all terms which are quedrartic in the perturbations.

We now take the derivative of the second variation of the constrained h: mil-



tonian (3.4.28) with respect to time, which gives

O(8%H)
ot

(no, ho) = //9{2\7577 - Vény — (28hSh,) [~ }dady
=f 2n(n - Vér;,)dS—/f {261,285 + (286hShy) /vy }dady
N Q
=- /j{){2577(5n1 + 8hy) + 20h(yén, — Shy )/~ dedy

=— // {[(6n)%)z + 2008h + 26hén, — 2((6h)?). /4 }dxdy,
Q (3.4.31)

where we have substituted the linear stability equations (3.4.30) for Ady, and

8hy. The boundary integral is zero t=cause
i A
f{ 20n(n- Vén)dS =~ Innr)e=-rdy + / 2[6ndneyly=1 dr
(221 JO -

L A
+ / 2[6n6n1r)r=rdy — / 2néniyly=1 dr
0 Y
=t (3.4.32)

where the first and third terms in (3.4.22) sum to zero because of iic periodicity
boundary conditions, and the second and fourth terms are zero becaiise  dy =
0 on y=0,L. The first and fourth terms of (3.4.31) vanish upon integration by
z and another application of the boundary conditions for th: yerturbations, We

are left with

—2//(577511,), dzdy = 0. i3.4.33)
Q

This proves that ¢2H(mo,he) is invariant in time with respsct to the linear
stability equations.
If it can 1. shown that there exist criteria such that the second variation

of the constrained hamiltonian is either positive or negative definite with respect
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to all small perturbations, then it is possible to prove that the system is linearly
stable in the sense of Liapunov when these criteria are met (Shepherd, 1990).
We sce immnediately that, if 4 > 0, we cannot guarantee the definiteness of
8%H(nmo,.'0) because both Vén-Vién and (6h)* in the integrand of (3.4.28)
are always positive, but one is sulitracted from the other. Therefore the steady
state solution (7o, ko) = (0,1—vy),4 > 0, isnot necessarily linearly stable in the
sense of Liapunov with respect to the perturbation norm ||dq|| = [62H{no, ho)]%
(the norm would be ||8q|| = [-6*H(no,ho)]? if 62H was negative definite -
see Section 3.5 for a more detailed discussion of disturbance norms). This implies
that there exists the possibility of linear instability in our model. In practice, such
a result almost always means that instability is present, but there is no way to
prove this fact.

If <0, however, we see that the integraud of (3.4.28) is always positive
definite, which means that for this case. the steady solution is linearly stable in
the sense of Liapunov. This implies that if the gravity currenrt depth :ncreases in
the positive y direction, we have linzar stability, but ¢t iz . _iwacss, there exists
the possibility of linear instability (note that the case v =10, which is not dealt
with here or in the next section, is a special situatio:. - see Chapter 6).

We now procced to the nonlinear extension of this apprcuch in cider to
develop convexity estimates for nonlinzar stability. These estimates will be used

to determine if there exists the possibiliiy of nonlinear instability in our model.

3.5 Nondnear Stability

The definiteness of the s~cond variation of the constrained hamiltonian for
a system of partial different. = :.juations does not ensure nonlinear stability as it

would in a canonical finite dimensional case because the infinite dimensional phase

~1
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space is not compact, and as a result there are mathematical difficulties associated
with convergence which do not otherwise arise (Ebin and Marsden, 1970). In order
to derive criteria for nonlinear stability, we start by defining a new functional £,

equivalent to H(q + qo) — H(qo), so that
L(q) = H(q + qo0) — H(qo) + C(q + q0) = C(qo), (3.5.1)

where H and C are as defined in (3.2.8) and 3.3.12) respectively, ®; and
®, are defined by (3.4.16) and (3.4.17) respectively, qg is the steady solution,
and q represents a finite amplitude, time dependent adiustineit to the steady
state. It is important to note that L£(q) 1is an invariant cf the full noulinear

equations (3.2.1). We ma; rewrite (3.5.1) as

1
Lla)=1 / /Q {V(n+10) - V(n +10) + (h + ho — y)? = y*}dady

1 .
~ 35 // {Vno - Vo + (ho - y)2 - y2}d.1:dy
Q

+// (/‘h+q;o'yF](£)d§> dxdy
// {( e '2(5)‘%) + %((12 + (]20)2} dzdy
// (/qlo y dc) dzdy + //Q {(/ Js) + %‘Igo} (/;l;],gr/_‘))

This inay be rewritten as

L(q) = -;—/}{2{'\77) V5 + 2Vio - Vi + h% + 2hhg — 2hy}drdy

. / /‘ (/Qm-l-lll-yF (ﬁ)dé‘\ dl-dy
/9 910~y 1 )
q20+9q2
- // {</ Fg(f)df) dzdy + %qf + (12(120} dady.
JJQ q20 = (353)
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We now utilize (3.4.25) and the fact that 79 =0 and ¢, = h to rewrite (3.5.3)

as

£@) =5 [ [[ (90 9n-+2hFifho)}dedy

S res) e [ ([T mios) ey

10-Y

whiin, upon rearranging, gives

/ / Vi Vidady + / / ( /q”q )d§> dady
/ / [{/q:m Odf} "F2(h°)”] dzdy. (3.5.5)

Suppose that Fy(£) and Fy(€) satisfy the following inequalities

o1 < Fj(§) < By, (3.5.6)

ay < Fj(€) < B, (3.5.7)

for al! arguinersis €, where the primed superscript reprizents  d/d€  and where

a;, a2, ;%. and [, are real constants. Then, if these equations are in-

functional L(q). We integrate (3.5.6) as an example. The first integration gives

qro+qi—y qrotq1-y Qro+q1-y )
[ e [T R0k < [T e, (3.5.8)
q q q

10—y 10-Y 10-Y
which gives

arq1 < Fy(quo+ a1 —y) — Fi(qio —y) < Bias- (3.5.9)
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We then integrate (3.5.9) with respect to ¢; as follows

q1 q1 q1
a; / gdg; < / Fi(qi0 + ¢})dg; < By / e, (3.5.10)
0 0 0

where we have used the fact that Fi(qi0 — y) =0, and where ¢} represents a

dummy integration variable. Inequality (3.5.10) may be rewritten as
1 2 f1+q10-~y 1 0
seadt< [ RO < 3hidh (3.5.11)
= qi0—Y =

We may also integrate (3.5.7) in exactly the sam way to obtain

1 g20+42 1
sezh? < / Fy(€)d€ ~ Fy(ho)h < 5212, (3.5.12)
q20 =

By selecting the appropriate segments of the inequalities {3.5.11) and (3.5.12)
and substituting these into (3.5.5), we may develop the following inequality for
L(q). If we replace the second term in (3.5.5) with the term »u the left hand side
of the inequality (3.5.11), an:d the third term in (3.5.5) with the term ou the right
hand side of the inequality (3.5.12), then the result must be less than  L(q). We

may write
L(q) > é// {Vn-Vn 4+ a)(An+ h)? — Boh?} dady (3.5.13)
=JJa

Similarily, if we replace the second and third terms in (3.5.5) with the reverse of
what was done to develop (3.5.13), we have constructed a term which must be

greater than L(q), viz.

1
5 // {Vn - Vn+ Bi(An + k) — axh?} dzdy > L{q). (3.5.14)
2JJa
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If we put (3.5.13) and (3.5.14) together, the result is the following estimate for

L(q)

%// {Vn-Vn+a(An +h)? - fh?}dzdy < L(q)
<JJa

< é// {Vn-Vn+B8:1(An+ h)? — ash?®}dzdy.
=JJa (3.5.15)
Now it is possible to develop criteria so that L£(q) is positive definite. Since

V1. Vn is always positive (unless there is no disturbance at all), if

0< <F{(f)<ﬂ1 < oo, (3.5.16)

—00 < ay < Fj(€) < 3, <0, (3.5.17)

then the left hand side of (3.5.15) must always be positive, which guarantees the
positive definiteness of L.

The next step in this process is to select a norm which will be the measure of
the distr= -+~ and to find bounds for it such that we have criteria for stability
in the punov.

V.. .. already indicated that norms are not identical in infinite dimen-
sional space, which means there exists the possibility that the system could be
nonlinearly stable with respect to ¢ne norm, but not necessarily so with respect
to another (Shepherd, 1990). This suggests that some thought should go into the
selection of the disturbance norm.

First, there are some basic requirements which the norm must meet, which
derive from abstract functional analysis. The norm must be a metric on the space
in question, which means that a) it must be positive for aiy non-zero vector ¢

in the function space, b) it must satisfy the triangle inequality, i.e., ||q; + q,|| <
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lla; [l +1lazll. and ¢) it must behave in such a way that ||eq|| = |¢||]ql| for any
constant ¢ (McIntyre and Shepherd, 1987).

Second, the norm should make some physical sense, i.c.. it should represent
rjuantiiies which have an impact on a growing perturbation. For example, it scems
reasonable to assume that disturbance growth should be related to disturbance
energy, which makes the latter a possible norm.

In our case, because in (3.5.16) and (..5.17) «a; and B are not bounded
away from zero, it turns out that we will require two norms to find bounds on the

disturbance (the reason for this will be discussed later). The norms we choose are

1
lall = [ [ 90 Indea, (3.5.15)
~ Q
and
qul%l = %// {Vn-Vn+ ('An‘)2 + h?} dady, (3.5.19)
~ Q

where ||q|[; is simply the disturbance kinetic energy, and ||q|l;; is |gl|s
plus the disturbance enstrophy (the square of t*«¢ relative vorticity in the upper
layer) and the square of the disturbance pote:::i .. neigy as a result of deflections
in the gravity current thickness.

We now redefine slightly the notion of nonlincar stability in the sense of
Liapunov, which :n general takes the same form as (3.4.18) with d§q replaced by
q, to take into account the two norms (see, e.g., Benjamin, 1972). We say that
the steady solution (70,ho) is nonlinearly stable in the sense of Liapunov if for

every € >0, thereexistsa ¢ >0, such that

lallir <6 at t=0==>|lqll; <e¢ forall ¢3>0. (3.5.20)
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We now proceed to find bounds on the norms. We have

1
lalf =3 [ [ - Fndedy
0
1
<3 [ {90+ arlan+ b - pah?) dody

< L(q) = L(q), (3.5.21)

where q = =0, and we are using the invarianceof L£(q). Notice that we could
not have developed the inequality (3.5.21) if we had used the norm |[|q||;;, be-
cause quantities proportional to a;/inf(a;) and B;/max(f2) would be needed.
The problem here is that inf(e;) and max(f;) (theinfimu:iof a; and max-
imum of f3,), are zero (from (3.5.16) and (3.5.17)), thus making quantities in
which it is part of the divisor undefined.

Continuing, we have
£@) < 5 (V- Vil B(&i 4 B)? - azh?) dedy
<3/ (97 Vi + 28180 + 72 - aal} dody
= 5 [ {93 Wi+ 260(80) - (a2 - 260132} dedy
< g/'/n{v-;;- Vi + (A7)? + A%} dzdy
= Slalf, (3.5.22)

where T = max(1,283,,26; — a3) > 0, and where [7, 1~1] = [1,h]t=0. So we

" have

laltr < (5) "l (5.5.23

for all time (Swaters, 1993). We see that for every € < 0, if ||g||;; < e(I'/2)" 3,

then |{q|l; < e. and soif L(q) is positive definite, we have bounds on the
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disturbance norms ||q||; and |lq||;; such that the system is stable in the sense
of Liapunov.

To examine our model for nonlinear stability, we review the criteria (3.5.16)
and (3.5.17). We see that, if v > 0, 2€)=1/7>0 if E=ho=1—-1y
(see equation (3.4.28)), and thus criterizs {3.5.17) cannot be met for ali arguments
€. Therefors £13) is not positive definite, and so if we can show “*:: it is also
not negative ..finete for 4 > 0, then there exists the possibility of nonlincar
instability. It turns out that in this case, the procedure and the results are exactly
as set out in Swaters (1993), and so only the convexity estimates derived there

will be presented. They are

—co<a < Fl(6)< B < -C <0, (3.5.24)

Co <z < Fi€) < fr < x, (3.5.25)

where ¢ = 5,/(C+8;) and € >0 isa constant, which is obtained by the
introduction of a Poincare inequality in the analysis. Swaters went on to find
bounds on a disturbance norm, but, for our purpares, it is sufficient to point
out that FJ(§) =0 when ¢ = qi¢ —y (seec equaiion: (3.4.25). IlLercfore, the
inequality (3.5.24) is not met, and we have shown that :%e:: exists the possibility
of nonlinear instability if ~ > 0.

If 4<0, wehave, from (3.4.25), that Fi(qio—y) =0, .udsubstituting
in the steady solution (3.4.24), that Fy(1—(14++)y) = 0. We sce that any value
of v or y sets F} to zero, and so it is not unreasonable to conclude that
F(§) =0 for all arguments ¢. We may then state that F|{{) =, which
means that inequality (3.5.16) is satisfied.

We now rewrite (3.4.26), replacing ho with the arbitrary argument ¢,

“ga.
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s that

Fy(€) = -5-%3 (3.5.26)

This means that Fj{7) = 1/v, which is always negative for ~ < 0, and so
inequality (3.5.17) is »e.isfied. We may therefore state that if <0, then L(q)
i= positive definite, and so the steady solution is nonlinearly stable in the sense of
Liapunov.

In summary, we cannot show that L£(q) 1is either positive or negative
definite if + > 0, and so there exists the possibility of nonlinear instabiiity in the
sense of Liapunov in this case, but if v < 0, then we have nonlinear stability. We
therefore now turn to methods which will allow us to derive evolution equations,
for the possibly unstable case 4 > 0, which model the amplitude of an initial
perturbation on the steady solution as it evolves in time, so that we may see the

actual form of the instability, if it exists.



Chapter 4

The Linear Stability Problem

4.1 The Linear Stability Fquations

The first step in the process of examining the weakly nonlincar stability
characteristics of steady solutions in our model is to perform a linear stability
analysis. We do this because there is certain information essential to the weakly
nonlinear work which is generated from the linear analysis, namely the marginal
stability curve, whose meaning will be discussed at lenigth in a later section.

Linear stability analysis is a procedure in which a small perturbation is
applied to a steady solution of the governing equations in order to see if such dis-
turbances will grow with time, indicating instability, or remain constant, oscillate,
or recede, indicating stability of the steady solution tc such perturbations. From a
physical context, we are really determining if the steady solution exists, because it
will never be seen in nature (or even in a laboratory setting) if it is susceptible to
small perturbations since it is not possible to completely eliminate imperfections
which give rise to small deviations from the steady solution (Drazin and Reid,
1984).

The work is carried out by adding a small perturbation to the steady solu-
tion to be studied, and substituting this into the governing equations. The key
assumption in this analysis is that the perturbations are small, which allovs us
to ignore terms which are quadratic in the perturbations (which essentially means
dropping the nonlinear terms). The result of applying this procedure is the lnear
stability equations, the solution of which dictates the form of the disturbances and
provides a dispersion relation between the phase specd of the wave disturbance

and the wavenumbers of the modes.
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It is important to point out that if there is instability in linear stability anal-
ysis, the growing disturbance will always reach a size where the linear stability
squations are no longer valid, because at that point the small perturbation as-
sumption is violated. One then needs to appeal to nonlinear theories in order to
follow the evolution in time of the disturbance; because the nonlinear terms can
no longer be ignored.

In Swaters (199'), a comprehensive linear stability analysis was performed
for a coupled density front on a semi-infinite s... ping continental shelf with only
one boundary. In this chapter, we apply this work to our model and derive the

margiual stability curve for the subsequent nonlinear analysis.

In order to derive the stability equations, we * troduce

h = ho(y) + ' (z,y,1), (4.1.1a)

n=mno{y) +7'(,4.1), (4.1.1b)

where 70(y) and  ho(y) are the steady solutions, and 7’ and h’ are the
perturbation quantiti~  We then substitute (4.1.1) into (2.4.8) and (2.4.9) using

(2.4.12) to get (after dropping the primes)

[0 + 1Uo(y)0:]An — (1 4+ ulh,, Iz — he + pJ(n, An) = 0, (4.1.2)

[0: + (1Uo(y) + 1)3:)h + pho,nz + pJ (0, k) = 0. (4.1.3)

These are the nonlinear perturbation equations, and they will be used in the
weakly nenlinear analyses presented in the next two chapters. For our purposes

here, we drop the Jacobian terms, which are quadratic in the perturbations. to
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arrive at the equations

[0 + 1Uo(y)0:)An - (14 pli,, s — he = 0, (4.1.4)
[0r + (uUo{y) + 1)0:)h + ttho,nr = 0. (4.1.5)

In this chapter, we assume that the steady solution for the gravity current takes

the form, as we did in Chapter 3, of a simple wedge described by

holy) =1 - ~y. (4.1.6)

Here « is the cross-channel rate of change of the thickness of the gravity current
reiative to the sloping bottom. The dimensional rate of change is given by 4° =
(h*/L")y.

We also concentiute on the “pr. " baroclinic problem by setting the mean
flow Up = 0. This approximation fiiters out any possible barotropic instability
in the upper layer (Swaters, 1991). Applying (4.1.6) and the baroclinic approxi-
mation to (4.1.4) and (4.1.5) leads to

Ang—nr—h, =0, (4.1.7)

he+hy —psm, = 0. (4.1.8)
These equations are the liz~ar stability equations for our model (note that if we
let pu =1, these equations are identical in form to equations (3.4.30)).
4.2 Energetics

It is possible to derive necessary conditions for linear instability from an

energy form of the perturbation equations. We multiply equation (4.1.7) by 1,
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equation (4.1.8) by h, and then add the result (after dividing (4.1.8) by 43)

to obtain (after simplifying)

[(hz)r + (”2)1]

1 .
5 3 - — (i), = 0. (4.2.1)

We now average this cquation over one along-channel wavelength by applying the

operator

1 A
(*) = EX _/\(*){]’.:IY, (4 .

12
o
e

and we integrate over 0 <y <L to obtain

1
—// TAY T dxdy+ // =2 dady =0, (4.2.3)
2A J Ja 2uy

where we have utilized the domain Q as defined in (3.2.2). The second, third,
and fifth terms on the left hand side of (4.2.1) are zero after carrying out an
= — integration and applying the periodicity boundary conditions.

We now apply Green’s first identity to rewrite the first term in (4.2.3), which

gives

—1— f (n-Vn)dS - // Vn- de:z:d,/-i—//
22 (Jan

wi.irh leaves after applying the averaging operator notation (4.2.2) and rearranging

(l.’l,d_j} 0, (4.2.4)

[S%]
fula ]
e

a [* o ()
at Jo {(v".vn) 2/1/}d"’_0 (a2
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The boundary integral in (4.2.4) contributes nothing because

L A
f n(n-Vm)dS = —/ [MM1z)o=-a dy +/ [7Mey)y=1 dz
an 0 -X

L A
+/(; [7777!:]1=A dy — /,\[nmy]y=o dz
=0, (4.2.6)

where the first and third integrals sum to zero by the periodicity boundary con-
ditions on 7 and its derivatives, and the second and fourth integrals are zero
because =0 on y=0,L.

If we integrate (4.2.5) with respect to time, we find that

L (h?) |
/ {(Vn -Vn) - ———} dy = constant. (4.2.7)
0 2py

From (4.2.7), we see that if v >0 (note that g >0 - see Chapter 2), then it
is possible that the perturbation kinetic energy could grow large and the equality
still be maintained, because the second term on the left hand side is negative.
However, if v < 0, then (4.2.7) is positive definite for all perturbation quanti-
ties 1 and h, which implies stability. Therefore, from (4.2.7) we see that a
necessary. condition for instability is v > 0, and ¥ < 0 is sufficient for sta-
bility. In physical terms, this means that if the rate of change of thickness of the
gravity current is negative (i.e., the gravity current becomes thinner in the positive
y — direction), then we have met a necessary (but not sufficient) condition for

instability (note that these results agree with what was found in Section 3.4).

4.3 Normal Mode Analysis

In order for a system to be considered stable to small disturbances, it must

be stable to all possible arbitrary perturbations (Chandrasekhar, 1961). To see
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why this is so, suppose a system is stable when perturbed by all. except one.
arbitrary disturbances. Then it is likely that at some time, as a result of natural
imperfections in the system, that this perturbation will be realized, and instability

is the inevitable result (Drazin and Reid, 1981).

From the discussion above, it is obvious that care must be taken to make sure
that a method is used in the linear stability analysis which allows for the testing
of all possible disturbances. The most widely applied procedure which meets this
requirement is the method of normal modes. The basic idea behind this approach
is to recognize that it is possible to represent arbitrary functions with Fourier scries
and transforms in space, and Laplace transforms in time (Drazin and Reid, 1981).
If we can find a complete set of basis functions for solutions to the lincar stability
equations, then if the system is stable to each individual mode represented in the
basis functions, it is stable to all arbitrary perturbations because each disturbance
is nothing more than a particular superposition of these modes (Chandrasekhar,

1961).

It was mentioned in Chapter 3 that stability in the sense of Liapunov hinged
on whether a disturbance grows in time to a finite size, or remains bounded by the
size of the initial perturbation. In the normal mode analysis, the time component
will be represented by the basis function of the complex Laplace transform, i.e.,
exp(—tket) , where c=cr+ic; isa complex phase speed with ¢p and ¢
representing the real and imaginary parts, respectively. We sec that if ¢; > 0,
then the mode will grow exponentially in time until it is a finite size, and thercfore

may be termed unstable.

With the above discussion in mind, we now inttoduce along-front normal
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mode instabilities of the form
[n, ] = [#i(y), A(y)]exp[ik(z - ct)] + c.c, (4.3.1)

where c¢.c means the complex conjugate, & is the real-valued along-channel
wavenumber, and ¢ is the along-channel complex wave speed. Substituting

(4.3.1) into (4.1.7) and (4.1.8) gives (after dropping the tildes)

e(nyy = K5+ 1= pyle=1)"n =0, (4.3.2)

h=~py(c—-1)"1n, (4.3.3)

where we take v > 0 here, and from now on. We may rewrite these equations

as

1 1y
| X = 3.
Nyy { . c(c—-l)}n , (4.3.4)
_ K7 =
h P (4.3.9)

The boundary conditions on the channel walls (2.4.11) become

n=10 _ '
h=0 } on y=0,L. (4.3.6)

The solution to (4.3.4), subject to (4.3.6), is

n(y) = ay sin (%ﬁ) for n=1,2,3,..., (4.3.7)

where a, is a free constant.
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We have found, therefore, the general form of the normal mode solutions to

the perturbatior: equations, which are

n(z,y,t) = aysin(ly) explik(x — ct)] + c.c.;

h(z,y,t) = —ay u’)l sin(ly) exp[ik{x — ct)] + c.c., (4.3.8)

whereA l=nn/L.

We note, however, that the equations (4.3.8) are not solutions for arbitrary
k,l, and ¢, rather they will besoonly for ¢ as aspecific functionof & and [
To determine what this function is, we simply substitute (4.3.8) into the perturba-
tion equation (4.1.7) (since (4.1.8), after substitution, gives nothing but & simple

identity). We have

{(——k2 _ 12)(=ike) — ik + ”Z”; } a1 sin(ly) explik(z — ct)] + c.c. = 0. (4.3.9)

c
Dividing (4.3.9) through by ikn(z,y,t) and rearranging leaves

(K2 +12)c® = (K2 + 2+ Vet (L+py) =0. (4.3.10)

Application of the quadratic formula to (4.3.10) provides the solution for ¢,

which is

-

. k2402 41 (k2412 4+1)2 —4(k*+ 1) (1 + pv)]

3.11
2(k? + I2) (4.3.11)

The equation (4.3.11) is known as the “dispersion relation” for the perturbation
wave solution. In wave theory, it is said that if ¢ is not a constant function
of k% +12, then the waves are dispersive, which means that waves of different

wavelengths have different phase speeds (Kundu, 1990). We see from ( 4.3.11) that
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waves will be dispersive for all but certain special cases, one of which we will
discuss below.

For instability to occur, ¢ must have a complex component. The boundary
between instability and stability will be given, therefore, by setting the quantity
in equation (4.3.11) under the square root sign to zero. This gives us the marginal

stability curve, whose equation can be written in the form

1 [(K2=1)2 ,

where 7. is the critical value of « aiaove which the K2 = k%2 +[* mode
goes unstable.

The marginal stability curve, as mentioned above, represents the boundary
between stable modes and unstable modes for a particular .. The technical
definition for marginal stability is that a point on the curve must be neutrally
stable (i.e., ¢; = 0), but there must be at least one neighboring point to it
which is unstable (i.e., ¢; >0) for a particular value of <, (Drazin and Reid,
1981).

Figure 2 shows the marginal stability curve, plotted on the program Math-
emalica, where the interaction parameter has been set to p = 2 (the reason
for this is given below equation (2.2.24)). The minimum of the marginal stability
curve is located at ' =1 and +, =0. Thusfor every 7. >0, there exists
wavenumbers which are unstable (independently of p; see (4.3.12)).

It can easily be deduced that, since ! =nw/L, as n increases a larger
range of values for the along-channel wavenumber k give stable K modes for
a given 7. For example, suppose K = Ko >1 and n =1 for a particular

~r

qe. Thenif n issetto,say, n=2, NI mustincreasebeyond Ko, and 7.
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will be larger for this K. This implies that the n =1 mode for a particular
K is the first mode to go unstable for a particular value of .. With this
in mind, for the remainder of this thesis we set [ = m/L. the first across-
channel harmonic, because this is the first cross-channel mode to go unstable.
We also see from the dispersion relation (4.3.11) that if K =1 and 7. =10
then ¢ = 1, which means that this horizontal mode is nondispersive. This
has important ramifications for the nonlinear theory developed for this mode in
Chapter 6. Furthermore, we see that #/L <1 for the K =1 mode to exist,
and that if I is in fact very large then we have a useful model for continental

shelf dynamics because the offshore boundary will be effectively unbounded.



Te

Unstable

3

Figure 2. Marginal stability curve as determined from equation (4.3.12) using u = 2.0.
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Chapter 5
Weakly Nonlinear Analysis for Unstable Modes other than K=1

In order to see how the unstable modes as determined by linear theory
actually evolve in time and space we must allow the nonlinear interactions to be
included in the description of the physical process. That is, we must develop a
finite amplitude theory which follows the evolution of the wave when it has reached
amplitudes for which the linear theory is no longer valid. This occurs when the
amplitude has grown to the point where the assumption that the terms quadratic
in the perturbations (i.e., the nonlinear terms) are small compared to the linear
terms is no longer applicable. Up to this time, the amplitude has grown essentially
at the linear rate, which is purely exponential, but after this time, we expect the

nonlinear terms to modify this growth in a meaningful way.

However, the fully nonlinear set of governing equations (2.4.8) and (2.4.9)
are intractible analytically as they stand. In order to get around this problen,
we employ a method called weakly nonlinear analysis, which essentially allows us
to utilize the fully nonlinear equations as long as the mode being studied is only
weakly unstable. This allows the use of asymptotic methods to derive amplitude
equations which follow the evolution of the disturbance associated with a slightly

supercritical mode.

The reason for doing this analysis is twofold. First, it is essential to show
that the disturbances saturate (do not show unbounded growth) with the inclusion
of nonlinear effects, or the physicality of the model itself is thrown into question.
Second, it is of interest to determine the form that the finite amplitude solutions
take; for example, they may be oscilliatory, or the amplitude may stabilize at some

new level after a period of time.



5.1 Derivation of the Amplitude Equation

In this section, we derive a temporal amplitude evolution equation for a
weakly unstable mode which has a wavenumber modulus differeni than K = 1.
In this situation, there will always be other modes with different wavenumbers
which are unstable at smaller values of «. For this reason, in this section we do
not utilize a slow space variable which would follow the evolution of a wavepacket
centred on the mode in question. This problem will be examined in the next
section, where the amplitude equation is derived for the K =1 mode.

To determine the proper scaling for the slow time variable, we look at the

dispersion relation (4.3.11). From this it can be seen that if <. is increased to

Y.+ A, where A is asmall number, we have

) ) 2 __4AK? z
KRl (K 41) 21;1\ [L+u(re+ A} (5.1.1)

Substituting for v, from the marginal stability curve (4.3.12) gives

. C K241 {(B? 4 1)? — AK?[1 + (K = 1) /4R + pAJ}
o 2K?

CR241# {—4R%A): K2 4+13i{4K%uA)E

2
2K 2RK? ’ (5.1.2)
so that the growth rate o =kecy is
KuA): [ R2uA \®
_mus)r R 1
0= = <k2+12> x Az, (5.1.3)

Thus the corresponding increase in the growth rate will be proportional to Az,

This means that if we let ¢ = A (for convenience), then we write the following
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to represent a small supercriticality in v

v =+ €, (5.1.4)

which, according to the above discussion, leads us to introduce a slow timescale

with the following scaling

T = et, (5.

Tt
iy
3
N

where T will be the timescale over which the nonlinear interactions make an
O(1) contribution to the dynamics. The method used here is known as multiple
scales, and it is based on the premise that the dynamics evolve (in this case) over
two distinct time scales, where the “fast” scale is the advective time scale for the
plane waves themselves, and the “slow” scale dictates the evolution of the form of
these waves over time. In other words, the slow scale is the time scale over which

the envelope bounding the amplitude of the fast moving plane waves cvolves.

We take equations (4.1.2) and (4.1.3), which are the nonlinear perturbation
equations, and substitute in (5.1.4) and (5.1.5), set Up =0 in order to concen-
trate on baroclinic instability, and notice that the time derivative mapping as a

result of (5.1.5) is 9y — 0; + e0r. This yields

Any — 0z — by = —eAnr — pd(n, B1), (5.1.0a)

hy + hg — pryene = —ehr + e unz — pJ(n, ). (5.1.6b)

We now apply a straightforward asymptotic expansion to these equations
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(in order to exploit the small parameter ¢)

n(z,y,t,T) = eno(z, 9,4, T) + €m(z, 4,8, T) + ..., (5.1.7a)

h(z,y,t,T) = eho(z,y,4,T) + €h1(z,y,¢,T) +... . (5.1.7b)

We remind the reader that henceforth throughout this paper the “0” subscript
on the perturbation thickness h(z,y,t) and the upper layer perturbation geo-
strophic pressure 7(z,y,t) will denote the respective leading order term in the
asymptotic expansion utilized in the finite amplitude instability theory.

The O(1) problem associated with substituting (5.1.7) into (5.1.6), is given

by

A770. —No, — hoz = 0, (5.1.8&)

ho‘ + hO, — Uyeno, = 0. (5.1.8b)
The solution for the equations (5.1..8) will be in the form

no = A(T) sin(ly)exp(ikf) + c.c, (5.1.9a)

ho = B(T) sin(ly)exp(ikf) + c.c, (5.1.9b)

where @ =ax —ct, c¢ isa real phase speed, | =m/L, c.c iscomplex conju-
gate, and A, B are the amplitude coefficients.

After substitution of (5.1.9) into (5.1.8), we obtain

k241241 -

c

which is the dispersion relation found in Chapter 4 using linear theory after uti-
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lizing (4.3.12), and

A (RRER-1)4
B=‘1‘7_6=( tL Dd - (5.1.11)

which is the equation relating the amplitude of h to that of 1. Notice that
if k2412 = K? =1, then B = 0 to leading order. This has important
ramifications for the scaling of the gravity current equations in the L' =1 mode

analysis, as will be seen in Chapter 6.

The Of(e) problem is given by

Am, —m, —hi, = =Bnoy — pJ (M0, Amo), (5.1.12a)

hy, + h1, — pyem, = —hoy — pJ(no, ho). _ (5.1.12b)

Substituting in the solutions from the O(1) problem, we find

Any, —m, — hy, = Ap(k? + [*)sin(ly)exp(ikf) + c.c, (5.1.13)

hy, + h1, — Ve, = —Brsin(ly)exp(ikf) + c.c. (5.1.14)

The solution to (5.1.13) and (5.1.14) may be written in the general form

m = E(T)sin(ly)exp(ik) + c.c, (5.1.15a)

hy = é(y, T) + F(T)sin(ly)exp(ik8) + c.c, (5.1.15D)

where &(y,T) is a homogeneous solution which will be required to balance

adjustments to the mean flow resulting from nonlinear interactions in the O(€?)
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problem. Now substitute (5.1.15) into (5.1.13) and (3.1.14) to obtain

ikE[c(k? + 1?) = 1] — ikF = Ap(k* + 1?), (5.1.16a)
ikF(1 = ¢) — ikpyE = _"1“’°_ACT. (5.1.16b)

Thus, from (5.1.16b) we find an expression for F, whichis

ﬂﬁ'cE . /l‘YcAT -
= . A1
F 1_c+zk(1_c)2 (5.1.17)

Now we use (5.1.17) in (5.1.16a) to olitain, after making use of the dispersion

relation (5.1.10) and the expression for the miarginal stability curve (4.3.12)

2 2

< -~

k2 2 .2 2 _
ikE (—i—1> —ikE (-’”-—L—l-> + Ap(k? + 1?) = Ap(k® +1%). (5.1.18)

We see that (5.1.18) is an identity, which implies that the “E” mode is simply
proportional to the O(1) solution. We may thus absorb this contribution directly
into the O(1) solution (Newell, 1985; Pedlosky, 1970). We therefore set E =0,

which produces O(e) solutions in the form

771 = 0, (5.1.193)
hy = o(y,T) + z]‘—'ullc—fh—z sin(ly)exp(ik6) + c.c.
(1-¢) (5.1.19b)

The required evolution equation for A(T) is determined by examining the

O(e*) problem given by

Az, =12, = ha, = =Amyy — pJ(m, Ano) — pJ(mo, Am). (5.1.20a)
ha, + ha, ~ yeuna, = —h1p + uno, — pJ(m1, ko) — pJ(no. h1). (5.1.20b)
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Using (5.1.19) and (5.1.9) in (5.1.20) we find

Ang, — 12, — ha, =0, (5.1.21a)
ha, + ha, — Yeima, = [—% (%%f—) +ikuA — ikuAdy | sin(ly)exp(ikf) + c.c.
—é7 — p[2ikl(ADr" — A*Dr)sin(ly) cos(ly)), (5.1.21h)

where
Dr= 72’% O (5.1.22)

Now we apply solvability conditions to (5.1.21b) in order to determine the
amplitude equation. Since all the terms in the left hand side operator of this equa-
tion contain derivatives in either z or t, the coefficient of the inhomogeneities
on the right hand side which are independent of z and ¢ must be set to zero.
This is done because if it is not, the particular solution to the homogeneous equa-
tion involving these terms will grow linearly in time (i.e., it will be a term or terms
multiplied by t). This means that eventually the solution will grow to the point
where it violates the basic requirements of the asymptotic expansion, namely that
the terms in the series will remain O(1) quantities multiplied by the various orders
of e

From a physical standpoint, solutions which grow lincarly in time imply
that there exists the possibility of an infinite amount of energy associated with
the perturbations. This is an unacceptable, unphysical result, which makes it

necessary to set these so-called secular terms to zero and avoid these consequences.
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Setting the sccular terms to zero in (5.1.21b) leads to
¢1 = —2uikl(ADy" — A" Dt)sin(ly) cos(ly). (5.1.23)

Using the expression for Dr and the trigonometric identity sin(2z) =
2sin(z)cos(z), this may be written as

br = —(l‘“_’_‘c’) (A1) sin(2ly). (5.1.24)

Now integrating with respect to T , we find, after applying (4.3.12) and the

dispersion relation (5.1.10)
¢ = —pl K2 (|A]2 - |Ao|?) sin(2ly), (5.1.25)

where Ao = A(T =0). It is important to note that ¢, the adjustment to the
mean flow, is always strictly real.

Another point to appreciate is that the differential equation for &(y,T)
given by (5.1.24) does not contain any derivatives with respect to the cross-channel
coordinate y. Thus, it is not possible to impose additional auxilliary boundary
conditions at y = 0,L on ¢ as one needs to do in quasigeostrophic theory
(Pedlosky (1970)). The reason why there are no y-derivatives in (5.1.24) arises
from the fact that the convective time derivatives in the momentum equations for
the gravity current have been completely filtered out in the derivation of the gov-
erning equations (2.4.8) and (2.4.9). The additional auxilliary boundary conditions
for the a-independent mean fiow required in finite amplitude quasigeostrophic
baroclinic instability are derived from the local time rate of change of momentum
terms which are retained in quasigeostrophic theory. Since these terms are not

retained here in any form it is inappropriate to expect that ¢ should satisfy

104



conditions which are derived from them. We note, however, that the  sin{2/y)
dependence in the solution for ¢ will imply that there is no net aloug-channel
mass Aux associated with the mean flow, i.e., generated by the self-interaction of

the perturbation wave field to this order. This means that

L
/ ¢ydy = 0. (5.1.26)
0

To derive the required evolution equation for A(T) it is convenient to first

eliminate ho between (5.1.21a) and (5.1.21b) to yield

(8t + 0 ) (A0 — Oz)12 — YehN2a =
et A RONTE) LY )
Z—LZ%:- — k2pA -~ —'Y—E———z——-(IA|2 — |Ao|?) cos(2ly) | exp(ik@) sin(ly) + c.c.
(1-¢) (1-c¢) o0
(5.1.27)
where we have substituted the y — derivative of (5.1.25) for ¢, in (5.1.21b).
Using another trigonometric identity we may re-write cos(2ly)sin(ly) as
[sin(3ly) — sin(ly)]/2. The only terms which produce secular growth are those
terms on the right hand side of (5.1.27) which are proportional to sin(ly)exp(1k6)

and its complex conjugate. Setting the coefficient of these terms to zero gives
(k% + 1P)Arr — K2uA + 2 KPR (R + 2)A(JA]* - |Aol?) = 0, (5.1.28)

where we have used (4.3.12) and (5.1.10) to replace /(1 — ¢)* with (k% +

?)/u.
Equation (5.1.28) may be simplified by dividing through by (k?+101%) and

rearranging, so that the evolution equation for the perturbation amplitude A is

Arr = 0 A~ KENA(JA]? - |Ad)?), (5.1.29)
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1
where o = (Tﬁ—:‘_z—lg)i and N = p?l®. Note that o represents the growth
rate for the unstable mode as would be determined from linear theory (see (5.1.3)).
Pedlosky (1970) derived a similar evolution equation from a two-layer, rigid-lid

model of quasigeostrophic bar - “linic instability on a B-plane.
5.9 Solulion to the Evolution Equation

The method of solution for (5.1.29) follows Pedlosky (1987, Ch.7) exactly,

and so we merely provide an outline. Assuming a solution to (5.1.29) of the form
A(T) = R(T)exp[i6(T)], (6.2.1)

leads to, after separating the real and imaginary parts,

br = 2 (5.2.2a)
]\'{2 2 2 2 2
RTT - —}-z? =0°R - k ]VR(R - Ro ), (5221))

where M is a constant. If we assume that the phase is constant in time, then

M =0 and (5.2.2b) becomes
Rrr = o>R - E*NR(R? — Ro®). (5.2.3)

The constant phase for A means that at the T=0, dA/dT =04, thatis,
the amplitude increases initially according to the growth rate specified by linear

theory.

If (5.2.3) is multiplied by Rz and integrated, we obtain

(13
1o
&

(Rr)*+V(R)=E, (

o]
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where V(R) = —-’;—2[02 +k2NRo*+ “\;—Rq and E isa constant. Since (5.2.4)
implies that the amplitude behaves like a harmonic oscillator, we may utilize the
“potential” function V(R) to determine maximum and minimum amplitudes
for the oscillating system. We do this by setting V(R) = E (Fedlosky (1987)),
where we take E to be the energy evaluated at T =0 (i.c. E =[JR}+

V(R)]r=0). We obtain

_R(P+E'NRY) | KNR'_QF R3(o? + K°NERE) | K NRy

2 R 5 T (5:29)
where Q} = R} #lr=0. We may rewrite this as
...R2 203 2R2 ‘
B - kzN( + K NR;) = A2Q]€r - k2]$[ o’ + K’ NR3) + Ry (5.2.6)

We use the quadratic formula to solve for R?, which is, after some simplification

o2 + k2NR:  o? 2Q3k2N

Rxmin = oy Ty |1t "o (5.2.7)
or
1
o’ 2k NRo*\ 2 )
Rzma\' min = RO + = .1»2N |:1 + (1 -+ 7‘9"> ) (028)
where we have let Q2 = RZ%|r=o0 = 0?R2, for reasons indicated carlier (sce

description after equation (5.2.3)), and where the maximum and minimum are
associated with the plus and minus signs, respectively.
From the derivation of Rmax.min, We see that we are able to rewrite (5.2.4)

as

L2 N ;
:‘]?:-(RT)Z = - (%) (R2 - R?nax)(R R?mn) (

[}
o
0
il
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because Rpmax and Rpnin are the roots of the expression V(R)—-FE =0 in

terms of R? (the k*N/4 factor was divided out in the derivation, so it must

be multiplied back in as a coefficient).

Now apply the change of variables (Pedlosky (1987))

R

= 5.2.10
(=5 — (5-2.10)
which allows us to rewrite (5.2.9) as
k*NR? RZ.
ery = (F ) - (- Fn ). (6.2.11)
- max
Now let
R, (k?NRf,, )
a=—=mb. ;= —722) T (5.2.12)
Riax 2
and we may rewrite (5.2.11) as
- A (5.2.13)
[(1-¢2)(6% - o?)]=
Integrating (5.2.13) leads to
€ = dn(7 - m|m), (5.2.14)
where
7o =dn~? ( L | m) . (5.2.15)
Rmax

Here dn is the Jacobi elliptic dnoidal function (following the notation of Milne-

Thomson, 1950), m =(1-a?), and 7o ischosen in such a way as to ensure
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that R= Ry at 7 =0. The period of the disturbance is given by

7y = 2E(m), (5.2.16)

where E(m) is the complete Jacobi elliptic integral of the first kind, given by

(Abramowitz and Stegun, 1964)

! dt o g
E(m)= /0 (=)= TS {5.2.17)

The evolution of A follows the form of a dnoidal wave, and therefore is
periodic in time. This means that after the initial exponential increase of the
unstable mode the effect of the nonlinearities in the equations for A s to slow
and eventually reverse the growth of the disturbance. The amplitude falls until
it reaches a point where the linear growth rate becomes dominant again, and the

cycle begins anew.

5.8 Description of the Solutions for the Dnoidal Wave Equation

In this subsection, we examine the amplitude function derived in the previous
subsection, redimensionalize it, and see what it means for the physical problem
that was enunciated at the outset.

The scalings presented in Chapter 2, as mentioned before, suggest horizontal
lengthscales of order 15 km, advective timescales of order 7 days, and a scale height
for the gravity current of about 40m. Let us consider a channel width L =7 in
non-dimensional units, so that we set the cross-channel wavenumber, [ = n/L,
equal to 1 (this corresponds to a dimensional channel width of about 47 kin).

As an example, if we set k = 1, then the solution (5.2.14) corresponds

to the horizontal mode K = 2. Wealsolet u =2, € =0.1, and the
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initial nondimensional perturbation pressure amplitude Ag = 0.1. With these
parameters, the amplitude function A(T) is found to vary with slow time as
depicted in Figure 3 (see Program 1 in the Appendix for the Mathematica program
used to plot this figure). From this plot, it can be seen that the oscillations at
this wavenumber are such that R grows to about 7 times its initial amplitude
before saturating. The period is about 10 slow time units. The ultra-long period
is indicative of nothing more than the fact that the supercriticality is very small
(i.e. O(e?)). This produces a small growth rate which eventually is balanced by
a similarly scaled nonlinearity. This is certainly a weakness in the model, but our
main purpose has been to show that the nonlinearities will slow and reverse the
linear growth rate of the disturbance. Since this is the situation, we expect that
in the full nonlinear case, where the supercriticality could be much larger than
~e + €2, there exists the possibility that the wave will be large enough to break
up the gravity current into coherent travelling eddies or, equally likely, accelerate
the instability further.

Analyses similar to what is presented above may be done for each along-
channel wavenumber. To see how the key parameters change as k& changes,
we present the following plots. Figure 4, plotted on Mathematica from equation
(5.2.8), shows how the maximum aruplitude, Rmax, Varies with wavenumber.
It can be seen that as the wavelength becomes shorter, the maximum amplitude
decreases, becoming more or less constant with about an 80% reduction from
small & at the high wavenumber limit. Figure 5, plotted on Mathematica from
equation (5.2.16), is a plot of the period of the disturbance as it varies with k.
From this figure, we see that the period falls off as the along-channel wavenumber
increases, very much like the period of the fast along-channel oscillations would be

expected to change. Sc from the above discussion it can be concluded that as the
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wavenumber increases, the maximum amplitude of the disturbance falls off and
the period becomes shorter, which suggests that the low wavenumber disturbances

should dominate if instability is present.
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Figure 3. Plot of nondimensional perturbation pressure amplitude R(T) versus time

T, where k=[=10, N =40,
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€=0.1 and where 7= enp + O(e?).



Rmax

Figure 4. Plot of Rpmax versus k for =10, p=20 (from cquation (5.2.8)).
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Figure 5. Plot of period versus k for [=1.0,
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p =20 (from equation (5.2.16)).



Chapter 6

Amplitude Equations for the K=1 Mode

6.1 Derivation of the Equations

In this section, we examine a supercriticality which is centred on the I =1
mode, which is the wavenumber modulus found at the bottom of the marginal
stability curve (see Figure 2). Under these conditions, a finite but small increase
in v over 7. will excite initially a small, finite band of unstable modes. We
wish to follow the evolution of the resulting “baroclinic wave packet,” and so a
slow space scale is introduced along with the slow time scale adopted in the last

section. The scalings will now be

T=€,
T =et, (6.1.1)
X =e¢x

Note that 5. =0 at K =1, which changes thescalingfor ~ to (6.1.1)
from what was used in (5.1.4). Since the rate of change of channel thickness is
extremely sinall in this scenario, it can easily be shown by the use of an asymptotic
analysis that the gravity current perturbation height is not an O(1) quantity as
it was in Chapter 5. This can be seen by inserting K =1 into (5.1.11), which

yields k=0 to leading order. This implies that we should introduce

~

h = eh, (6.1.2)

as the scaling for h.



As in the previous section, we now take the nonlinear perturbation equations
(4.1.2) and (4.1.3) with Up =0 and substitute the scalings (6.1.1) and (6.1.2).
drop the “0" subscript and use the mappings O — O +€dr and 9, —

O, +€dx . The scaled equations are (after dropping the tildes)

Vi — e + ud(n, An) = elhe — AN — 20X 20 + nx)+ 0(62), (6.1.3a)

he + hy + pJ(m, h) = e{unz — hr — hx] + O(€?). (6.1.3b)

Now we exploit the small parameter € by introducing a standard asymp-

totic expunsion for 7 and h in the form

n(z,y.t, X,T) = eno(z,y,t, X, T) + em(z,y,t, X, T)+..., (6.1.4a)

h(z,y.t,X.T) = eho(x,y,t,X,T) + ehy(z,y.t, X, T)+.... (6.1.4b)
The O(1) problem is given by

Ao, — o, =0, (6.1.5a)

ho, + ho, = 0. (6.1.5bH)

Note that to leading order the thickness and pressure perturbations are uncoupled.

The solution to (6.1.5) may be written in the form

o = A(X, T)sin(ly)exp(tkf) + c.c, (6.1.6a)

ho = f(6,y.X,T), (6.1.6b)

where 6 =2 —ct and the form of h is left unspecified at this point because
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it cannot be determined from (6.1.5). The phase speed satisfies, of course.

since B24+0%2=1 at v.=0.
The O(e) problemis

Ay, —m, = ho, — pJ (10, A1) = Atjor — 2oy + 105, (6.1.84)

hy, +h, = pno, = pJ (M0, ho) — hop — hoy - (6.1.8b)

The simple hyperbolic nature of the left hand side operator in (6.1.8b) implies that
any dependence on the variable 8 in the right hand side of (6.1.8b) produces

secular growth. This means that the solvability condition for (6.1.8b) is
pno, — pd (10, ko) = hop — hoy = 0. (6.1.9)

The structure of the solution for 7o as given by (6.1.6a) implics that /i

takes the form

m=1n=1

o o0
ho = o(y, X, T) + { Z Z B (X, T) sin(nly)exp(mik6) + czc} . (6.1.10)

where &(y,X,T) is a mean flow adjustment term whose form is determined as
a result of the balance between the growth of the disturbance and the extraction
of potential energy from the ambient flow. It can be seen that the form for the
solution for hg is such that all possible along and cross-channel modes are
represented. This is because nonlinear interactions (through the Jacobiau term in
(6.1.8b)) will generate higher modes from lower modes, which will result in sccular

growth if they too are not included in the solution for hq.
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The phase velocities calculated from (6.1.5a) and (6.1.5b) for the upper and
lower layers, respectively, are equivalent (see (6.1.7)), but the group velocities will

be different, viz

Cqy

d k
== [m] =1-2k?, (6.1.11)

(since k?+1*=1) and from (6.1.5b), we have

cgr =1, (6.1.12)

where the subscripts 1 and 2 denote the upper and lower layer, respectively. The
phase velocities “coalesce” at the K =1 mode, but the group velocities remain
distinct. This is exactly the same observation made by Pedlosky (1972) for the

Phillips model.
Substituting (6.1.6a) and (6.1.10) into the right side of (6.1.8a) leads to

o0 oo
Vi, —m. =tk Z Z m B o sin(nly)exp(mik6)

m=1 n=1

+[Ar + (1 — 2k?)Ax] sin(ly)exp(ik6) + c.c. (6.1.13)

The only terms which cause resonant behavior for the left hand side of (6.1.13)
are those which are proportional to sin(ly)exp(ik6), which means the solvability

condition for this equation may be written in the form
ikBy, + Ar + (1 - 2k%)Ax = 0. (6.1.14)

This equation determines B, as a function of A(X,T).

Substituting (6.1.6a) and (6.1.10) into (6.1.9) yields

pik A(l — ¢y ) sin(ly)exp(1k6)
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wkl e . .
Z Z {an'n sin[(n 4+ 1)ly] = (n 4 1)Bu n+1 sin(nly)
m=1n=
(n+

— mBm nsin[(n 4 1)y} = mBm n+1 sin(nly)}e.\'p[(m + 1)ik6)

uzklA

oo [>2]
Z Z {an,n sin[(n + 1)ly] — (n + 1)Bum n41 sin(nly)

[

m=

1
+ mBp nsin[(n + 1)ly] + mBm n+1 siu(nly)}exp[(m — 1)ik6)

n=

oo oo
- Z Z(B’"'"-\' + B nyp ) sin(nly)exp(mikf) + c.c. — gy — ¢ = 0.
(6.1.15)

—

=]1n=

3

This expression is a double Fourier series in the basis functions {sin(nly)}5L,
and {exp(mik8)}%_o. The evolution equations are obtained by demanding that
each individual Fourier coefficient be identically zero.

The terms which are independent of the fast phase 6 are given by

k
oy +or = piklA” Z {nBl,n sin[(n + 1)ly] — (n + 1) By 441 sin(nly)
n=1
+ Bj nsin[(n 4+ 1)ly] + By n+1 sin(nly)} + c.c. (6.1.16)

Simplifying and including the complex conjugate explicitly, we find that

szl .
dx + o1 =553 {n(4B] 14y = A" Biui)

n=1

— n(ABju_y = A"Bynos) | sin(nly). (6.1.17)

The solution to (6.1.17) may be written in the form

tolt

oC
Z an(X,T)nsin(nly). (6.1.18)
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Substituting (6.1.18) into (6.1.17) leads to the following set of equations for a,
Cny + @y = ik[(AB} s — A"Brnt1) — (ABj,_, — A"Biay)). (6.1.19)

We shall now examine the exp(¢kf) terms. Extracting from (6.1.15) all
terms of this form yields

[}

pikld Z {nt,n sin[(n + 1)ly]

2

ik A(1 — ¢y ) sin(ly) +

n=1

— (n + 1)By ny1sin(nly) + 2By n sin[(n + 1)ly] + 2Bz n1a sin(nly)}

=) (Binx + Binr)sin(nly) = 0. (6.1.20)

n=l1

If (6.1.18) is substituted into (6.1.20), we find, after some manipulation
/.tlkA + y2l2ikAa'2 - Bl,l,\- - B],]T = 0, (6121)

from the sin(ly) terms, and from the sin(nly) terms (n > 1)

A%k A

4 [(71 - 1)2Cl‘n_.] - (n + 1)20n+]]

piklA®
R

-

[(n+1)B2,n-1 — (n — 1)Ba n41]

"‘(Bl,nx +Bl.n7~)=0 (TL=23,)
(6.1.22)
Finally, the equations associated with the modes where m > 1 are found
in exactly an analogous way, and are given by

thlA®
E'T—[(" +m)Bm1,n-1 = (7 — M) Bm1,n41]
prklA

)

Bm.nr + Bm‘n_\- =

[(n = m)Bm-1,n-1 = (n + m)Bm_1n+1]

(m=23,..., n=12...). (6.1.23)
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Equation (6.1.23) can be consolidated with (6.1.22) to yield equations for
all Bmn and if (6.1.14) is substituted into (6.1.19) and (6.1.21) to generate
equations for A and a2, then a complete, closed, infinite set of nonlincar
partial differential equations is the result. To simplify these resulting equations,

we introduce the transformations

Qp = —Qq,

B = —iBm (except for By ;1), (6.1.24)
which yields the coupled system (after dropping the tildes)

(Or + 0x)(Br + (1 — 2k*)9x)A = pk*A — p*IPk* Aay, (6.1.25)

(Or + Ox )ag = (O + (1 — 2k%)8x)|A* + k(AB; 3 + A" Bia),
(6.1.26)

(81 + Ox)an = K[(AB; ny1 + A" Bint1) = (ABf oy + A"Brn-a)]

(6.1.27)
(n=13,4,...),
212k A
(Br + 0% )Bmn = — ——[(n = 1)*@n-1 — (n + 1)?0nt1]d1,m
kIA®
+ # > [(n +m)Bms1,n-1 — (n— M) Bint1,n+1]
klA
i [(n—m)Bm—lvﬂ—l —(n'+m)Bvrz—],1z+]]
(6.1.28)

(m=12,...,n=1,2,3,... (except m=n=1)).

Equations (6.1.25) - (6.1.28) define the evolution in slow time and space

of the perturbation pressure amplitude A(X,T), all the modes of the gravity
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current height Bpa(X,T), and all the mean flow modes a,(X,T). It is
important to note that each mode does not interact directly with all the others;
a mode interacts only with a small band of its nearest “neighbours”. This makes
the system more tractible numerically, especially if Ox or Jr is set to zero.
The major problem here is the determination of an appropriate point to truncate
the system so as to work with a closed, finite set of equations, but at the same
time retain as much of the physics that the infinite system represents as possible.

There is an interesting point to notice about the equations (6.1.25) - (6.1.28)
before any analysis is done. It can immediately be seen that the “ladder” of excited
modes is initiated by the presence of the B3 amplitude coefficient in (6.1.26).
This “odd” mode excites only “even” mean flow modes (i.e. a2ns) and only
“even-even” or “odd-odd” pairs of height perturbation modes (i.e. Ba3, Bas

etc. =0). Soalthough the excluded coefficients are represented in the equations,

they are not forced by the perturbation pressure.
6.2 Solitary Wave Solution

It is possible to derive a steadily-travelling solution to a truncated set of the
equations (6.1.25) - (6.1.28). If we retain only (6.1.25) and (6.1.26) and neglect

B; 3 and higher order terms, we are left with the coupled set of equations

(Or + 0x)(Or + (1 — 2k%)0x)A = pk?A — 1®k*1? Aas. (6.2.1)

(Or + Ox )ag = (Or + (1 — 2k%)0x )| A (6.2.2)

These equations correspond to retaining only the fundamental harmonic and its
accompanying mean flow, and are identical in form to those derived by Pedlosky

(1972) in a marginally unstable wave packet analysis of the Phillips model of
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baroclinic instability. It should be noted here that Pedlosky revised his 1972 work
in two papers published in 1982 (Pedlosky (1982a,b)), which are further discussed
in Section 6.4. For our purposes here, however, the truncation at the primary
modes is still interesting, and useful to analyze and compare to solutions which do
include higher harmonics.

It is straightforward to verify that there exists a steadily-travelling solution

to these truncated equations of the form (Pedlesky, 1972)

A(X,T) = A6),

a2(X,T) = az{€), (6.2.3)

where & = X — VT. Substituting (6.2.3) into (6.2.1) and (6.2.2) leads to the

solution

A(€) = Agsech(kf), (6.2.4)
az(§) = (1—_12%2—‘,-—-‘1) Aglsech?(k€), (6.2.5)

where Ag is the maximum envelope amplitude, and where

_ 2pk® Ao p2lPk2(1 — 2k?)

S AT (6.2.6)

(6.2.7)

AoZ 212K\ % 2uk? — Ag2pRIPk?
2 2‘402“212“ )

We may determine the perturbation thickness amplitude from (6.1.14) which yields

Bia(§) =1 [Aorz(V —kl i 2k2):| sech(k€)tanh(kE). (6.2.8)
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We now follow a similar procedure to that employed in Section 5.2 and
analyze this solution in the context of a channel. A plot of the envelope phase
speed V  versus the along-channel wavenumber % is found in the upper panel
of Figure 6. We see that V is greater than both group speeds if & is between
0 and 1. This effect was explained by Pedlosky (1972), who suggested it essentially
is a result of a combination of the linear instability and nonlinear stability of the
ambient fluid in which the wavepacket is propagating. Behind the packet, the
ambient fluid is returning energy to the mean flow at a faster and faster rate as
the amplitude falls off, which gives the packet an extra “push” to speeds beyond
the group speeds. The same effect in reverse is provided by the fluid in front of
the packet, with the same result.

The bottom panel of Figure 6 is a plot of ~ versus k, and we see that as
k tends to 0 or 1, k becomes infinite. This simply means that the envelope
becomes extremely small in the along-channel direction for these values of &,
vanishing at the endpoints.

Figures Ta, b, and ¢ are contour plots for the upper layer perturbation pres-

sure
no(x,y,0,X,0) = 24gsech(xk.X) cos(kz) sin(ly), (6.2.9)

assuming an initial nondimensional amplitude of A4p = 0.5, assuming time is
fixed (i.e. a “snapshot” in time), with €=0.1, and where k=0.2, 0.5, and
0.8, respectively. The plot was produced by the program Spyglass from data
generated by a Fortran program using (6.2.9) - see Program 2 in the Appendix for
an example. The figures show that as &k increases, the solitary wave envelope
broadens and so includes more fast plane-wave oscillations. Since 1, the speed

of the solitary wave, is larger than the phase speed ¢ the fast oscillations will
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appear in front of the wave, reach their apex at the maximum amplitude of the
solitary wave, and then disappear again behind the moving wavepacket.
Plots of the gravity current thickness perturbation

1-2k2-V
(_(fT‘)Aﬁsechz(feX) sin(2ly)+

(V =14 2k?)
k

ho(z,y,0,X,0) =~ ul

240K sech(xX )tanh(kX) cos(ka + 7/2) sin(ly),

(6.2.10)
using the same data as above is shown in Figure 8a, b, and ¢. These contour
plots were produced in exactly the same manner as those for Figure 7a, b, and
¢, using Program 2 in the Appendix to generate the data. We see that the mean
flow adjustment dominates and that the plane wave component simply distorts
these cross-channel high and low thickness cells. Figure 9a, b, and ¢ are plots,
done the same way as Figures 7 and 8, of the O(e?) contribution to the lolal
current height, i.e., the leading order nonconstant part of the total current height
given by [(4.1.6)+¢€%(6.2.10)—1]/€? (i.e., —y+ho) where it is understood that
5 = €.

We note however that there is some question regarding the stability of this
solitary wave solution over time. Gibbon et al. (1979) examined Pedlosky’s equa-
tions in detail, and from them derived a sine-Gordon cquation (sce Chapter 7).
They concluded from this derivation that if the linear growth rate is positive, then
the disturbance is itself unstable to small perturbations on the “tail” of the wave
because there is a source of available potential energy there. We have not been

able to determine the role of the higher harmonics in the evolution of this solution,

or whether similar solutions exist for higher order truncations.
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Figurc 6. Upper panel - Envelope speed V versus k (from equation (6.2.6)) for the
soliton solution. Lower panel - « versus k (from equation (6.2.7)) for the
soliton solution.
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Figure 7a. Contour plot of the leading order nondimensional perturbation pressure (from
equation (6.2.9)) where k=02, [=0.978, ;=20 and Ag =0.5. Con-
tour intervals +£0.15.
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Figurc 8a. Contour plot of the leading order nondimensional gravity current perturba-
tion thickness (from equation (6.2.10)) where & = 0.2, [ = 0978, pu =
2.9 and Ag =0.5. Contour intervals 4-0.03.
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Figure 8b. Contour plot of the leading order nondimensional gravity current perturba-
tion thickness (from equation (6.2.10)) where k = 0.5, [ = 0.866, ; =
2.0 and Ao = 0.5. Contour intervals +:0.04.
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Figure 8c. Contour plot of the leading order nondimensional gravity current perturba-
tion thickness (from equation (6.2.10)) where &k = 0.8, [ = 0.600, p =
2.0 and Ag = 0.5. Contour intervals £0.05.
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Figure 9b. Contour plot of the leading order nondimensional variable part of the total cur-
rent height scaled by €72 where k=005, !=0.866, p=20 and Ay =
0.5. Contour intervals =+0.04.
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6.3 Multiple Equation Representation

All of the remaining spectral analysis will be done by setting dx =0 in
the system (6.1.25) - (6.1.28). We do this because the partial differential equations
in their present form are intractable analytically, and are very difficult to resolve
numerically, so we content ourselves with examining the time evolution of the
various modes as described by the resulting set of ordinary differential equations.
With this assumption made, some points of interest should be noted here. First,
if B3 isset to zero in (6.1.26) and the equation is then integrated with respect

to the slow time T , we find that
as(T) = |A(T)|* + |A(0) 2. : (6.3.1)

If this equation is substituted into (6.1.25), we find that the result is equivalent
to (5.1.29) if we apply it to the most unstable mode (i.e set k%41 =1 in
that equation). Another interesting aspect here is that if we sum all equations

represented by (6.1.27) and add them to (6.1.26), we find the following

o0 2
dasznp _ d'Al 92
2 =a (6:3.2)
which leads immediately to
oo
Y aza = AP + | 4o[*. (6.3.3)

n=l1

Equation (6.3.3) implies that, if all the excited modes are represented, that the
sum of all the mean flow adjustment amplitudes at any time T is equal to the
modulus squared of the free surface perturbation amplitude to within a constant.

This suggests strongly that, if the assumption is made that A is bounded, the
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mean flow modes fall off in importance as the “ladder” is climbed (but there is no
proof for this because we cannot claim that a,4+2 < a, forall n).

We now examine in more detail the system of equations (6.1.23) - (6.1.28).
Three different truncation points are applied, and standard Ruhge-Kutta methods
are used to integrate the resulting set of equations numerically. -We first derive
a simple system of four equations, where two mean flow modes are included as

follows

% = uk2A — 212K Aasy,

% - %’;'_2 +k(AB"13 + A" By 3),

Brs _ 1M oy~ 1604)

doy . x

- = —k(AB"13 + A" By 3). (6.3.4)

In order to simplify the system (6.3.4), we assume that all variables have
constant phases, which allows us to use the linear theory growth rate as an ini-
tial coﬂdition (as mentioned in Section 5.1) on the perturbation pressure ampli-
tude. We use the same parameter settings as in the previous subsection, except
here we set the nondimensional initial amplitude A = 0.01. A fourth-order
Runge-Kutta scheme for solving systems of ODEs numerically was then applied
(see Program 3 in the Appendix), and the results for the perturbation pressure
amplitude are plotted in Figure 10a. The nondimensional perturbation pressurc

amplitude reaches about 130 times the initial perturbation amplitude before non-

137



linear effects finally halt the growth. The timescale of the disturbance is again
very long, similar to what was found in Chapter 5, and it is again due to the very
small supercriticality applied to the gravity current thickness.

In Figure 10b, we plot, using an eighth-order Runge-Kutta scheme (see Pro-
gram 4 in the Appendix for an example - note that the fourth-order and eighth-
order Runge-Kutta methods produce results with essentially the same level of
accuracy, because the solutions in this section are well-behaved), the results from
performing exactly the same procedure for a system of 12 equations, which essen-
tially amounts to adding one more mean flow mode (as) and including pertur-
bation thickness modes up to B4 and Bss to make a complete set (to work
with real valued functions only, we set Bzm’gn = —iBgm,gn). The figure shows
a very similar result, where the pressure amplitude again grows to approximately
130 times the initial amplitude before nonlinearities stop and reverse the growth.
It is interesting to note that the amplitude oscillates as before, but several more
cycles are required to form a period than in the 4 equation system.

Another set of equations was developed by truncating after the mean flow
mode ajo and after the even thickness mode Bjgi0 and the odd thickness
mode Byg. The perturbation pressure amplitude is plotted in Figure 11a, again
using an cighth-order Runge-Kutta scheme (see Program 4 in the Appendix - all
of Figures 11 and 12 were calculated using this program), and we see that the
amplitude is now constricted somewhat, with a secondary longwave periodicity
also appearing. From this evidence it may be suggested that this amplitude,
if enough equations were integrated, may stabilize at some new finite level and
remain there for all time.

Figures 11b and 11c show the corresponding primary perturbation thickness

mode —iBj,; and primary mean flow mode aj. Figure 11d is a plot of the
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mode Bsg, which shows that this higher mode has a much smaller maximum
and minimum amplitude than do the primary modes (about 20 times smaller),
lending credence to the suggestion made previously that the higher modes will
tend to fall off in signiﬁcance;

Figures 12a and 12b are plots of A(T) for the 56 equation set where
k=02 and k=08, respectively. It is easy to see from these plots that as the
along-channel wavenumber increases, the frequency of the oscillation also increases
(see Figure 11a as well for the k =0.5 plot).

Other truncations were applied and it was found, in gencral, that if the
cutoff was applied too soon after (but not directly after) a mean flow mode, then
exponentially growing solutions resulted for A(T). In particular, if Bya s
included but not the second mean flow mode a4, then exponentially growing
solutions are obtained. If the truncation was applied directly after a mean flow
mode, then the equation set yielded bounded oscillating solutions, where the cycles
forming a period became more complex with each increase in size of the set. This
would seem to indicate that the mean flow modes have a stabilizing influence on
the solutions, possibly by acting to restrict the potential energy available to the
higher modes. We were unable to rigorously establish whether or not increasing
the number of modes always leads to an increase in the munber of cycles needed

to form a period, although the numerical evidence seems to indicate this.
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Figure 10a. Plot of temporal solution for A(T) for the 4 equation set (from equations
(6.3.4)) where k=05, [=0.866, u=20 and Ap=0.01.
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Figure 10b. Plot of temporal solution for A(T) for the 12 equation set where & =
0.5, !=0.866, p=2.0 and Ap = 0.01.
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6.4 A Solution lo the Complete Multiple Equation Set

As has been alluded to previously, Pedlosky (1982a,b) revised his 1972 cal-
culations for the mode at the bottom of the marginal stability curve which he had
derived from the Phillips model. In the new work, he found an infinite system of
coupled nonlinear partial differential equations which have substantially the same
form as those presented in (6.1.25) - (6.1.28). This revision was motivated by some
numerical results presented by Boville (1981), which showed that there were im-
portant differences between these and Pedlosky’s analytical results for this mode,
which manifested themselves in the form of higher harmonics not seen in Ped-
losky’s 1972 analysis. As an explanation for the existence of these higher modes,
Pedlosky (1982a) points out that the potentiél vorticity gradient disappears in one
of the layers, as well as the Doppler-shifted frequency of the wave. This generates
a singularity in the linearized equations, and so the whole layer is a critical layer
for this wavenumber. This then implies (Warn and Gauthier, 1989) that since the
mean advection of potential vorticity is no longer important, the initial form of the
perturbation will dominate the dynamics, and higher harmonics will be generated
rather quickly. |

For example, in our model, the leading order potential vorticity in the lower

layer, from equation (2.3.35),is 1/hg, and so the gradient in the across-channel

direction is

h
PV, = —%. (6.4.1)
0
But hg =1~19y, so hoy = —y =0 for the critical mode, and so the basic

state potential vorticity gradient vanishes. Also, equation (4.3.4), which is the

linearized normal mode equation, shows that if ¢ =1, which is the phase speed
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for the lower (and upper) layer when ¢ =0, then there exists a singularity in
the equation. This implies the existence of a critical layer there. These similarities
between Pedlosky’s model and our model explain why the analysis results in similar
wavepacket equatioiis for the minimum critical thickness.

Warn and Gauthier (1989) found an analytical solution to Pedlosky’s infinite
set of equations (Pedlosky (1982b)) by changing the focus of the analysis from a
spectral approach, which we have already outlined in this chapter, to an attempt
to find a solution to the solvability conditions directly by casting them in the form
of an initial value problem. We now will outline this solution as it relates to onr
model.

We first write down the solvability conditions. From equation (6.1.9), we

have

pnoz — #J (10, ko) = hor — hoy =0, (6.4.2)

for the gravity current equation, and for the upper layer, we note that the right

hand side of equation (6.1.13) indicates a condition of the form
((Ar + (1 = 262 Ax)® + hoy]@7) = 0, (6.4.3)

where @ = sin(ly)exp(:kf) and

(%)) = 2%/_1 /OL(*)dmdy - %//ﬂ(*)my, (6.4.4)

is the area average over the domain. This is simply the statement that, since the
left hand side operator is dispersive, only terms multiplied by @ will give rise
to secular growth. This is essentially an application of the Fredholin Alternative

Theorem (Boyce and DiPrima, 1986).
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Now let us work with the purely temporal problem in the slow variables (i.e..

set Oy =0). Then (6.4.3) may be rewritten as

AT(®9") = —(ho, %), (6.4.5)
— (Ilor@.) - -
T= " 560 = ['(ho,®"), (6.4.6)

where T'=-1/(®®").

Now insert the solution for 7o (i.e. (6.1.6a)) into (6.4.2), to get
pA®, — pJ(A®, ho) — hoyp +c.c. =0. (6.4.7)

We may let A be real without loss of generality; in fact, if A is real initially,
then it remains so for all time (Warn and Gauthier, 1989). We may prove this

statement in the following way. First, (6.4.6) is differentiated with respect to T

to obtain
Arr =T{ho1®"). (6.4.8)

Also, we rewrite (6.4.7) as, after differentiation with respect to

hore = — uJ(A® + A"®*  ho — ¥)z

= — pAJ(®,ho — y)r — pA*J(®", ho — Y)z- (6.4.9)
Inscrtil;g (6.4.9) into (6.4.8) leaves

Apr = —pTA(J(®,ho — y)r ") — uTA*(J(®", ho — 4)®7). (6.4.10)
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We look at each of the terms on the right hand side of (6.4.10) separately. The

first term becomes

—uTA(J(®,ho — y)2®") = — L A(J(D, ho — y)®1)
= — thuT'A(J(®, ho — y)@")
= — ikuTA(@,8" (ho — y)y — 8,8 (o — y).),
(6.4.11)
where in the first line of (6.4.11), we have integrated by parts with respect to
z and used the periodic boundary conditions on @ and ho. The quantity
®,9" = lcos(ly)sin(ly) is independent of 2, and so the sccond term on the
right hand side of (6.4.11) is zero after an @ —integration and application of the

periodicity boundary conditions on ho. The first term may be rewritten as

~ihpTA(B,@" (ho ~ y)y) =k UTA(®™ &(ho — y),)
=k2uT A8 2 (ho - 1)) (6.4.12)

The second term on the right hand side of (6.4.10) becomes

—pTA™(J(®",ho — y)e®") = —uT A" (J(2", ho — y)@2)

= — ikul A™(J (3", ho — y) ")

== B (@ ko - )

<

_tkul'A // V- [82¢; x V(ho — y)) dzdy
4 Q

_ikplA
74X

f 5[0 - & x V(ho — y)}dS
N
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kpT A" b * &
= {’/ [~®"%(ho = y)yle=-» dy+/ 2% (ho ~ y)zly=1 da
4\ 0 -A

L 'y
+/(; [“q’-z(ho - y)y]:r:z\ dy — /_,\[‘I’-z(ho - y)r]y=0 dfl?}
=0, (6.4.13)

where the first and third terms in the last two lines of (6.4.13) sum to zero by the

periodicity boundary condition, and the second and fourth terms are zero because
ho=0 on y=0,L.
We may therefore rewrite (6.4.10) as

Arr = k2T A(|®2(ho — 1)y ). (6.4.14)

It is clear from (6.4.14) that if A isreal at t =10, then it is real for all time
t, which proves the assertion.

With this in mind, we may rewrite (6.4.7) as
hop + 2uAJ(®, ho —y) = 0. (6.4.15)
We also rescale the independent variables, to simplify the subsequent calculations
T=kiT; X=ka; Y=Ily—7/2, (6.4.16)
so that (6.4.15) becomes
hor + 2uAJ(®,ho — (Y +7/2)/1) =0, (6.4.17)
where J(4,B) = AyBy — AyBx, and we revise (6.4.6) to

A-;- = F](ho;l'@‘), (6418)
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where T = —1/({{®%")).

We now define a new variable v
v=2u /(;" A(r")dr!, (6.4.19)
which allows (6.4.17) to be written in the simpler form
ho, + J(®,ho — (Y +=/2)/1) = 0. (6.4.20)
Finally, if we let ho — (Y + n/2)/l =g, we may write
gy + J(®,9) =0. (6.4.21)

Now we derive an equation for A(r). If (6.4.21) is multiplied by Y and then
the area average is taken, the following expression is obtained after transforming

the independent variable v back to 7 using (6.4.19).
(Yg)r + 2uA(YI(2,9)) =0, (6.4.22)

where the area average is now taken to be over the (X.Y) coordinates. If we
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rewrite the Jacobian using (3.2.24) and rearrange, we find

(Vg)r =2uA(VV - (D& x Vg))
=2uA(V - (Y®é3 x Vg)) — (®(é3 x Vg) - VY)
=2uA $ Yan. (85 x Vg)dS
—~ uA(BY - (Ve x Vg) +dYV - (& x Vg))
=0 — 2uA(®V - Y(-gy,gx))
= — 2uA(®(~Ygyx + 9x + Vgx))

= — 2uA(®gx). (6.4.23)

where the vector identity (3.2.4%} Lias . «r. used twice, and (3.2.52) has been

)

applied. The boundary integral is zero because

Y&n - (¢ x Vg)dS =

o0

(L+Z)/1 (M

*/ [V&(—gy)lx==rik dy+/ [VO(9x)ly=(L+m/2)/1dX
%/I =AMk
(L+3)/1 Mk

+ / [V&(—gy)lx=r/kdY — / [Y@(gx)y=(x/2)/1 dX
3/ - Mk

=0, (6.4.24)

where the first and third terms of (6.4.24) sum to zero because of the periodicity
boundary conditicns, and the second and fourth terms are zero because @ =0
on Y=[(0,L)+=/2]/L

If equation (6.4.23) is inserted in (6.4.18), and noting that ho, =gx and

that @ is real, we get



or

Iy
1

(A%)r = ——(¥g)-- (6.4.26)

Integrating with respect to 7 gives, after using (6.4.19) and taking A(r = 0) =
0

dv\? - 4T - 197
i) = #L1(Vg)lo- (6.4.27)

If we now define a “potential” (Warn and Gauthier, 1989) such that
V(v) = 4uT1(V9)lg, (6.4.28)
where ¢ =g(v) now, we may write

dv\? .
(a;) £ V() =0. (6.4.29)

Now Warn and Gauthier introduce a transformation of the spatial variables to
a=a(X,Y); m=mX,)Y), (6.4.30)

such that

oxX 0% 9y _ 0%

It can be shown easily that the result of the conditions set out in (6.4.31) is that

® is independent of o; ie ® = &(m). Now since @ = cos(kz)sin(ly) =
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cos X cos), we have

% = g—;— = —sinX cos Y
m? sin X cos N
(1 — cos? X cos? y)%
= —m#(1 —m~sin? ))¥, (6.4.32)

where we have let m = 1—®2. Now it is possible to rewrite (6.4.32) in the form

/ ( dy = —mZa, (6.4.33)

. 1 =
1 —m-1sin® Y)z

which may be put in the form of elliptic functions, so that

sin) = sn(-mZall/m)
= —sn(mZall/m)

= —m%sn(alm), (6.4.34)

where identity (16.11.2) for Jacobi elliptic functions listed in Abramowitz and

Stegun (1964) has been used along with the fact that sn(—z|m) = —sn(z|m).

The A’ coordinate gives a very similar integral

A 1 .
%— =m3(1 —m~!sin® X)3, (6.4.35)
so that
sind’ = m%sn(a|m), (6.4.36)
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but Warn and Gauthier shift this solution over by a quarter period, so that

sn{a + I |m) = cd(a|m)

cn(a|m)

= m, (6.4.37)

where K represents a quarter period of the sn function {Dixon, 1894). We may

then rewrite (6.4.36) as

) 1 enfa|m)
X =m2—m——, 1.
sin m dn(am) (6.4.38)

We now substitute these transformations into equation (6.4.21) to get

gv = _J({I)ag)
= —Prgy + Pygx
= _yogy - /"'og,l'- (6439)

But the right hand side of (6.4.39) is just —ga. So we may write

dg | dy

= + = =0. 6.4.40
Ov + Oa 0 ( )

The solution to this equatia is given by
g = gla —v,m), (6.4.41)
where § isthe initial g in (a,m) coordinates. This implies that

§ = holX(a,m).¥(a,m)] = (V(a,m) + n/2)/L. (6.4.42)
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Now define

sin) = —-m%sn(a — rlm)

sin X' = 777%21—(2—_-@. (6.4.43)
dn{a —v|lm)

where (A”,)') represents the initial position of a particle now at (A, Y), then

the solution may be written as

(X, Yv) = hglA", V') = V' X < 7/2
=ho(n =X\ Y)=-Y  |x=-X|<7/2
(6.4.44)
Using the addition theorem (16.17.1) for elliptic functions (Abramowitz and Ste-

gun, 1964), we may write

sin)’ = —mZsn'a — v|m)
15sn(o}m)cq_(u]m)dn(ulm) — sn(v|m)en(a|m)dn(a|m)
1 — msn?(a|m)sn?(v|m) .(6 4.45)

= —m

It is possible to eliminate the dependence on a in the above expressions by
utilizing (6.4.34) and (6.4.38). After the use of the identity en?(zjm) = 1 —

sn®(x)m) , we finally obtain

Gn ) = sin ycn(lem)dn(u.lng) + sn(v|m) cos® Ysin X. (6.4.46)
1 — sin® Ysn?(v|m)

Similarily, we find

2en(v|m)dn(v|m)sin Y + sn(v|m)sin A" cos 2y (6.4.47)
2dn(v|m) cos Y — sn(v|m)en(rm) sin A’ sin2)’ =

sin '’ =
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It is now possible to write an expression for V(1) as
V(w) = 4Ty (V3 D) + (Vi 2] (6.4.48)

where the first term on the right hand side is actually the thickness at the current
position (see equation (6.4.44)) multipliedinto ) and arca averaged. The sccond
term is the area average of Y multiplied into the initial form of g cvaluated
at the current coordinates.

it turns out that calculating v(r) is quite difficult, since V() must be
determined at all (X,)) in the domain for each value of v, uvisfizing (6.4.48),
with area integrals catried out oves the arcsins of the transformation functions
(6.4.48) and (6.4.47). Thex this result must be included in the differential equation
(6.4.29), and again: integrated numerically. In fact, Warn and Gauthier (1989)
present two calculations of V(v) in their work, but they do not attempt the
calculation of v(r) from equation (6.4.29) at all.

So although an analytical solution has been derived for the complete infinite
set of equations (6.1.25) - (6.1.28), its utility is limited by the difficulty in actually
calculating the solution numerically. In fact. integrating many equations in the
spectral approach is much easier, and the physics is much clearer. The role of
the higher harmonics and the mean flow distortion arc explicit in the spectral
approach, whereas these effects are hidden in the analytical solution presented

kere.



Chapter 7

The Sine-Gordon Equation

It was shown in the previous chapter that there exists a solitary wave solution
to the truncated set of equations (6.2.1) - (6.2.2). A solitary wave is a disturbance
which retains its form as it propagates for all time, :and is a result of a balance
between dispersive and amplitude steepening effects in a nonlinear system. The
existence of such solutions for this set of equations suggests that there may be
other forms of these waves, or perhaps even more than one such disturbance may
co-exist at the same time in the same domain. These multiple solitary waves are
known as solitons, and have been much studied in the last two decades. The most
interesting property of solitons is that they retain their form after interactions,
or collisions, with one another (except possibly for a phase change), and so, in
a sense, behave like particles (Lamb, 1980). The purpose of this chapter is to
derive an equation from the truncated set, called the sine-Gordon equation, whose

solutions include solitons as well as other permanent wave disturbances.

A method for solving certain nonlinear partial differential equations such as
the sine-Gordon equation, called the “inverse scattering transform,” or IST, was
developed in the early 1970’s by Ablowitz and coworkers (Abiviwitz and Segur,
1981) as an extension to similar methods which generated soliton solutions to the
nonlinear Korteweg-deVries (KdV) equation. It proves the existence ©f multiple
soliton solutions for the sine-Gordon equation, which implies that if it is possible to
derive this equation from our truncated set, then we must allow for the existence

of such solutions to our problem.
The IST as applied to the sine-Gordon equation is beyond the scope of
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this thesis, so our approach here will be to examine some well-known solutions
to this equation which were developed long before the advent of IST, and apply
them to our problem. We still are able to show, however, that there exists the
equivalent of solitary wave solutions to our sine-Gordon equation, including a 2-
soliton disturbance (it will be seen later that a differentiation is required to obtain

the classic “hump” form of the soliton).
7.1 Derivation of the Sine-Gordon Equation

We derive the sine-Gordon equation from the set (6.2.1) - (6.2.2), rewritten

with minor changes as

(81 + ¢10x)(Or + c20%)A = 02A — N Aas, (7.1.1)

(O + c20x)az = (Or + cla,\')|A|2, (7.1.2)

where ¢; =1 —2k2, ¢y =1, o?=puk? and N = p?k%*> and where A —
0 as |X| -+ co. The derivation which follows is based on that given by Gibbon,

James and Moroz (1979) (or GJM), with certain of the steps expanded for clarity.

First the following substitution may be made
S=1-Nay/o®; R=V24 (7.1.3)

If (7.1.3) is inserted into (7.1.1) and (7.1.2), we obtain

(B + c19x)(Or + c20x )(R/V?) = (0?/V2)R = (N/V2)(s* (=S + 1)/N )L,
(7.1.4)

(07 + 20x )(* (=5 + 1)/N) = (1/2)(9r + 10x)|RI. (7.1.5)
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The dependent variables are then transformed as follows

— l r— 2 "—
_ N3(X c,T); o (I.X czT). (7.1.6)
€1 —C Nz(¢; —c2)

Utilizing the chain rule, (7.1.6) applied to (7.1.4) gives

1 2 rd 2
N2c]05— 1acz 3,—61A235+ lac] 8.
€] — C2 Nz(c; —¢a) €1 —C2 Niz(c; —c2)
1 2 ¥ 2
Nig 9 — 1(Icg o, — co N O + .1002 .| R
C) —C Nf(C] —Cg) ¢ —C2 J\’i"(C] —Cg)
=o?R— (¢*(-S +1)R). (7.1.7)
This simplifies to
0’2 1
( : ar) . <N50€) R=0’R-[0*(-S + 1)R]. (7.1.8)
N2
which becomes
Rer = RS. (7.1.9)
From equation (7.1.5) we get
Ni¢ O — — o?cy 9, s Nz O + — oler o, (oz(——ST—*- 1)>
¢ — €2 Ni(c; —ca) <] —C2 Nz(c; — c2) N
1( Nic , alc Nt o%c
= = L - By - g~ ————08: | IR
2\¢c —1 Ni2(ey —¢2) €1 —C2 Nz(c¢; —c2) (7.1.10)

This simplifies to

) 0'2(~—5+1)\ o? 2
Nz¢ = ;= “)r, 7.1.11
o (Z ) = rum. (711



which heceines

1,50
Se = =518 (7.1.12)
The boundary conditions becomes
R—0 as |f|3x (oras |[r]— o). (7.1.13)

GJM were able to derive a conscrvation law from these equations by first

rewriting (7.1.12) as
1 . . -
Se = —;[RR,. + R*R;]. (7.1.14)
Then multiplying both sides of (7.1.14) by S and rearranging gives

(S%)e = —[RSR; + R*SR.]. (7.1.15)

But S is real (because oy is real). Therefore substitute for RS and R*S

from (7.1.9) to obtain
(S%)e = —[Rer R + R Re) = (IR[7)e- (7.1.1)
Integration with respect to € of (7.1.18) leads to
5% = —|R,|* + C. (7.1.17)
By a simple scaling, we may set C =1 which means that

S?+IR P =1 (7.1.18)
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Therefore, if R— 0 as |[£] = oo, we must have
S—+1 as €] = oo. (7.1.19)

To finish the derivation, we assume that R is real and then make the

following substitutions
R = ¢g; S = cos¢. (7.1.20)

The sine-Gordon equation may be derived from either (7.1.9) and (7.1.12). Using

(7.1.12) we have
. 1,, .9 .10
—¢gsing = _$(¢E)r = —¢¢Per, (7.1.21)
or
¢er = sing. (7.1.22)

This is the sine-Gordon equation. GJM point out that (7.1.9) and (7.1.12) caunot

be simplified further if R is complex, but that such a systém is still solvable by

using the IST.
7.2 Cnoidal $Wave Solutions to the Sine-Gordon Equation

We start the analysis of the sine-Gordon equation by looking for permanent
wave solutions in the form

¢(€v7—) = ¢(§ - CT) = ¢(F)a (721)

where I'=¢ —c¢r and ¢ is a constant (see Drazin, (1983), or Drazin and Jobn-
son, (1989), for more details). In this way, we hope to find any solitary or periodic

wave solutions which exist.
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We start by inserting (7.2.1) into (7.1.22). This gives

—c¢” = sin @, (7.

-1
|8
2
e

where the prime indicates differentiation with respect to the variable I'. We

then multiply both sides by ¢’ and rearrange to obtain

(/D7) = (cos @)’ (7.2.3)

Integrating once and taking the square oot of both sides leaves, again after rear-

ranging

d¢
= dI, (7.2.4)
Eq/icosg+ K

where L7 is a constant of integration. Now we rewrite the integrand on the left

J—

hand side of (7.2.4) by using the trigonometric identity cosf =1 — 2sin”(46),

[

and obtain

do
ty /Ky - %sin?(%é)

where &, is a constant. The next step is to let ~ = %(p and then integrate

:(lr, (

=~
|8
[y}

both sides of (7.2.5) to arrive at

'-T _—H‘/T
—Ty=2 6
0 44/Kp~ —‘; sin® 6

2 /" dé (7.2.0)
-—VK2 o 1-—msin29’ o

where m =4/cky, 6 isa dummy variable of integration, and Lo s the initial

value for T.



The integral on the right hand side of equation (7.2.6) is an clliptic integral,
and so, f 0 < m <1, we may make use of the Jacobi elliptic functions to
represent the solution. We choose the “cn” function (the “sn” function would do

just as well), and write the solution in the form (we have chosen the positive sign)

~1
to
~1
S

cn [\/;—\:(I‘ - Fo)|7n] = cosy = cos(%é), (

so that

-1
o
(v2]
——

#(€,7) = 2cos™ {cn [\/E(T—Fo)l7n]}. (7.

2

This is the cnoidal wave solution for the sine-Gordon equation.

We may find the amplitude function by making use of (7.1.20) and (7.1.3)

to find

=R=V24A=- 2 —sn [w|m}dn [w|m K,/2), 7.2.9
b NiETaroh [wim) dnfolm])(VEz/2),  (7.29)

where we have let w = (VR3/2)(T' —Tp). But we may use the identity en?a +

sn?x =1 to simplify (7.2.9), which becomes

A=/ -I;—2dn [wlm]

= \/-I})—zdn [\/ZG(I‘ ——I‘o)lm] . (7.2.10)

Thus we have obtained dnoidal wave solutions analogous to equation (5.2.14),

derived in Chapter 5 for the modes not at the bottom of the marginal stability
curve.
7.3 Single Solilon Solution to the Sine-Gordon Equation

There are several approaches which have been developed over the years to
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solve the sine-Gordon equation. For example, it has been known for a long time
that various forms of arctan functions are solutions to this equation. and they
generally represent solitary waves.

We may see why this is the case by simply setting Ko = 0 in equation
(7.2.5), and require that ¢ < 0. Letting ¢ = —¢, this equation becomes,
choosing the positive form of the integrand (this derivation is based on Drazin

(1983))

-9 .
dl' = -\%sin(;—d))' (7.3.1)

Integrating both sides of this equation gives

T — To = Vélnescy — cotrl, (7.3.2)
where we have again let v = %qﬁ. Exponentiating and rearranging leads to
1-—cosy 1
———— =exp | —=(T = To)|. 7.3.3
Sne exp [ \,/5( 0)] (7 )

We use the trigonometric identities sin2z = 2sinzcosa and 2sin’r = 1 -

cos2z to rewrite the left hand side of (7.3.3) so that we obtain
t (1 ) tan(lé) exp ! (T —To) (7.3.4)
an(=7) = tan(=¢) = exp | —=(T — . 79
Finally, we may write
-1 1 - .
H(T) =4tan™ {exp | —=(T = To)| ¢. (7.3.9)
| Ve
Rewriting in terms of (£,7) coordinates, we find that

o€, 1) = 4tan”? {explaf + 7/a + v]}, (7.3.0)
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where we have let v = exp (— %) , and a = E&/& TThi- constant is deter-
mined by the initial form of the solution ¢(&(T = 0),7(T =0)), and plays the
role of a phase factor only.

To proceed, we take the derivative of (7.3.6) with respect to £ to obtain

(letting 6 = a€ + 7/a)

_ p_ Aaexp() 4a _ 5 -
¢e=R= T+ exp(20) ~ exp(—0) +exp(0) 2asech(8). (7.3.7)
GJM show that the transformation
6; = ki(X ~vT),
v; 5= ¢ + (¢ — ¢)[Nato™% —1)71,
ki = (0% = a?N)[a,-N%(c] — )] i=12,...,n, (7.3.8)
converts (7.3.7) into
R = 2aysech[k) (X — v, T)), (7.3.9)

where in this case, of course, 7 =1 only. Using the fact that R = V24, we
see that if we set v2a = 4, and a; = a, then (7.3.9) is precisely the solitary

wave solution presented in Chapter 6 as equation (6.2.4).

7.4 A 2-Soliton Solution

More solutions to (7.1.22) may be found by making a transformation of the

independent variables, which is motivated by the form of the solution found in

168



Section 7.3, given by (see Lamb. 1980)

p=b{+ /b,

q=0bf—1/b, (7.4.1)

where we take b to be a constant, so that the sine-Gordon equation becomes

Gpp — Pgq = sing. (7.

-1
-
o

e

We look for solutions of the form (this derivation is based on Lamb, 1980)

é(p,q) = 4tan™’ [%} . (7.4.3)

Taking the required derivatives gives

du"v(u? +v?) — (2un’)(4u'v)

Gpp = (u? + v2)? ’
Jo"u(u? + v?) — (200)(40'u) -
$gq = — L , (7.4.4)

where the prime denotes differentiation with respect to p when it is a superscript

for u, and ¢ when it isa superscript for v. We also have (see Shen (1993))

sin[4 tan™! (u/v)] = sin46

= 4sin 6 cos B(cos? § — sin’ §)
4tan d(1 — tan® )
~ (1 + tan26)?
duv(v? — u?)
TR

where we have let 6 = tan™!(u/v).
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Substituting (7.4.4) and (7.4.5) into (7.4.2) gives
Au"v(u? + v?) — 8(u)Puv + 4v"u(u® + v?) - 8(v")?uv = duv(v® ~u?), (7.4.6)

which may be simplified to

(u"v + v"u)(u? + v?) — 2u[(¥)? + (v')?] = wo (v ~u®) =0, (7.4.7)
or
u’ v 2, .2 2 ne .2, .2 -
\-;-+-;}-— (u® +v°) = 2(u')* = 2(v")* —v* +u” =0. (7.4.8)
We take the derivative of (7.4.8) with respect to p to get
u" " u ! '
2uu’ <-—— + —) + (u? +?) (—-) — qu"y’ + 2uu’ =0. (7.4.9)
u v u
The derivative of (7.4.8) with respect to ¢ is
" " AN ’
Ty <%— + %) + (u? +v?) (3”—) — 4" — 200" = 0. (7.4.10)
¢

The next step is to divide equation (7.4.9) by uw/(u? 4+ v?) and equation

(7.4.10) by vv'(u® + v?) and add the results together to obtain, after some

rearranging
'(l” U” ) uII
2(7“"7)“ T+2+ 1w
u? 4 02 uu \ u
1" 11 "
9(u_ 4 v v _9
+“(u+v) v "'+1 (v”)l_o
2 1 2 w\v /) o
u + vy v (7.4.11)

which becomes after simplifying

1 m\ /! 1 n\'’
(X)) = (L) = (7.4.12)
w’ \u v’ \ v



or

INATLAN 1 e\ ”
—_— — = e—— ——— = _,I‘.-‘ ,_' )
“uu! ( u > v’ ( v > AR, (7.4.13)

where # is a constant, because u is a function of p only. and ¢ isa

functionwf ¢ only. The form of the constant is chosen for simplicity. as we shall
(& . . - v

see later. Wow let us integrate the left hand side of (7.4.13). We first rearrange

the equation to get

AN
(11—) = —4k%uu’ = —2k*(u?)’, (7.4.14)
u

and then integrating both sides of (7.4.14) with respect to p, we obtain
u" = <2k%u® + Byu. (7.4.15)
where [ is a constant. Multiplying (7.4.15) by u’ and rewriting gives
LY =~ + 3, (e
so that
(v')? = —k%* +ﬂ1 W+ . (7.4.17j

where +; is a constant.
We get similar equations when we integrate the second term in (7.4.13) with

respect to g. After the first and second integrations, respectively, we obtain

o = 2k%3 + Bv, {7.4.18%

(v')? = k2t + oot + . (7.4.19)

where (3 and +2 are constants.
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Note that since differentiation was required to get to equation (7.4.13), we
would expect that there should be some relationship between the constants in

(7.4.15) and (7.4.17) - {7.4.19) (Lamb, 1980). To find this, we insert these equa-

tions into (7.4.13), which gives

(—Sk2u? + By + 2k%0° 4 Bo)(u® +v?) + 2k%u* — 26,u? ~ 27

— 2%k%0*t — 2Bpv? — %y, — 0P 4+ u? =0,
(7.4.20)
whirh simplifies to
(81 = Ba)(v? —u?) = (v¥ —u?) =27 — 272 =G, (7.4.21)
The coefficients in (7.4.21) may be equated to get
ﬁl = 1 + ﬂ?-,
Y1 =" (7.4.22)

Let f =m? and 7 =n?® Then By =m?-1 and v; = —n*. Then (7.4.17)

and (7.4.19) may be written as

(w')? = =K%t + m%u® +n?, (7.4.23)

(v)? = k%! 4 (m? — 1)o? —n?. (7.4.24)

We may manipulate the constants k,u, and m in (7.4.23) and (7.4.24)

in order to generate various solutions to the sine-Gordon equation. For example,
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ifweset k=0, m>1, n=0, weobtain (Lamb, 1980)

!
u = +mu,

v =4+vm?2—-1v, (7.4.20)

which leads to

= wxp(Emp),

v=fuap(Eyvm? —-14). (7.4.20)

This iinplies that
-1 [b] _ ] o o
#(p,q) = 4tan Lg~cxp(imp:{: vm? -1 q)j : (7.4.27)

If we choose the signs appropriately, and let p = v'm? —1/m, then we may

rewrite one of the above solutions as (letting ~y = by /by)

¢(p,q) = 4tan™" [wcp (%)] : (7.4.28)

If we substitute back for p and ¢ in terms of ¢ and 7 using equation

(7.4.1), we find

ot e [ EE2)+ (7/0)(1 ~ p)
¢’(€ )“‘"“" |:7 P( \/T—7 )]

=4tan”’ [*,'exp(bﬁ + T/i))], (7.4.29)

where we have let & = b(1 + p)/+/1—=p?. This is exactly the solitary wave
solution found by simpler means as presented in (7.3.6), if 7 = exp(r) and =

a.



The 2-soliton solution is shtained if welet k=0, m>1, n#0 (Lamb,

1980). Then the u(p) equaticn becomes
(u’)? = m*u® + n®. (7.4.30)

This may be rewritten as

du
vul+ (n/m)?

= mdp. (7.4.31)

Upon integration of both sides of (7.4.31), we £nd
sinh™!(mu/n) = mp + 1, ' (7.4.32)
where ¢; is a constant. Thus we ohtain
u(p) = (nfm)sinh(mp + ¢1). (7.4.33)
Similarly, the u(q) equatiox is integrated to give
ncosh(vm? — 1 ¢ + ¢z)

q) = , 7.4.34
w(a) e (7.4:34)

and so the solution is

f .
6(p,q) = dtan™! vm? -1 smh(7lnp + 1) |, (7.4.35)
m  cosh(vm? —1¢qg+cy)

Note that the solution is independent of n, which is due to the fact that u/v
turns out to be a ratio of exponentials (Lamb, 1980). Equation (7.4.35) represents

the collision of twn solitons, which can be more easily seen if we rewrite this
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equation as

ay — a,_,) sinh{3(6) + 62) + 1} (7.4.36)
1.2

¢,7) = dtan”" .
#(8,7) = dian [(a1+a2 cosh{ (B — )+ 2} )

where we have used m = (a7 + a2)/2\/araz and b= ,/ayaz, and where 6; =
ai€ + v/a;, i =1,2 (Lamb, 1980). Using the transform {7.3.8) we may write

¢ intermsof (X,T) asfollows

S(X,T) = dtan"" Kul - ag) sinh{3[r1(X = 01 T) + R2(X = w2 T)] + 1}
’ a + az cosh{,i—,[r;] (X =0y T) = ko(X —0oT)] + ca}
(7.4.37)

A plot of (7.4.37) with a; = 2.0, ax =04, p= 2.0, k=05, and
¢, = ¢g = 0 is shown in Figure 13a (see Program 5 in the Appendix for the
Mathematica program used to calculate this figure and Figure 13h). We now find

the solution for R is

62 )] sinh[.l,((),+6v_.)]

¢ =R =
cosh[%(6,462)] 1
(a1 + ”2)€<§1[5f(a,-02)] ~ (@) - ap)tanh[5(6: - cosh[ L (A= 02)]

1 4 2sech?[1(6; — f2)sinh2[3{0; + 62)] {7.4.38)

27

where ~ = (ay —az)/(a1+az). A plot of this equation with the same parameters
as used for (7.4.37} (and using (X,T) coordinates) is shown in Figurc 13h. We
see in this plot that we have a collision between a faster moving small soliton,
and a slower moving larger soliton, and that the constants a, and «a, arc
representative of the amplitudes of the solitons. We see that the solitons retain

their form after the collision process, as expected.
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Gordon equation where a;

Figure 13a. Plot of the 2-soliton arctan solution
2.0.
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Amplitude

Figure 13b. Plot of the 2-soliton “hump” solution (from equation (7:4.38)) for the sinc-
Gordon equation where a3 =2.0, a; =04, k=05, ! =0.806 and g =
2.0.
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7.5 A Kink-Antikink Solulion

Another kind of solution is obtained if weset k#0, n=0, m?®>1 in

the equation set (7.4.23) - (7.4.24), so that (Lamb, 1980)

(v')? = —k%u® + m?u?, (7.5.1)

~1
o
o
N

(v')? = k%ot + (m® — 1)02 (7.
We look at the u equation first. We may rewrite (7.5.1) as
u' = kuy/T? - u?, (7.5.3)

where T'=m/k. Upon separation of the variables and integrating, we obtain

.‘/2_..2
—%M(Ei—%—4L)=kp+C, (7.5.4)
\ /

where ' is a constant. Taking exponentials and rearranging, we have

T+ V7 — 2
U

= expl—(mp 4 ¢1)], (7.5.5)

where ¢ is a constant. If we add the inverse of (7.5.5) to each side of this

equation, we obtain

F+\/I‘2—u?+ u
U I‘+m

= 2cosh(mp + ¢1). (7.5.6)

After some algebra, we find the solution for u to be

r

u(p) = cosh(mp + ¢1)° (.

=1
o
=~
S
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In an exactly analogous manner, we find the solution for » to t=

I
sinh(T1kq + ¢2)’

o~
-1
o
o
e

v(g) =

where T; = vVm? —1/k. Inserting (7 5.7) and (7.5.8) into the arctan zolution

(7.4.3), we find that

. 5 1
m  sinh(vm? — 1g+¢2)
= —4tan”? : ; 7.5.9
(p:9) [\/77‘)2 —1 cosh(mp+¢p) (7.5.9)
where we have used the fact that tan~!(—z) = —tan™!(z). In the same way as

was done in Section 7.4, (7.5.9) may be rewritten in terms of (X,T) coordinates,

whicl: gives

a; + ag) Sinh{%[fi](.’{ - 'U]T) - NQ(.X - 'UQT)] + (J')_}
cosh{1 1 (X — viT) + ro(X ~ v T)} + ¢1} '
(7.5.10)

&(X,T) = —4tan™" [(

a) —az

A plot of this equation, with the sasie parameters as was used in Section
7.4, is found in Figure 14a (this figure aud ¥:gare 14b were plotted on a Mathe-
malica program in the same manner as Figures 13a and b - see Program 5 in the
Appendix). The derivative with respect to ¢ gives the soliton solution, as in

Section 7.4, which is

¢e=R=
cosh[ (8,8 o vy sinh[L(8,—0.)
) (a1 — “2)%1.—{275% — (a1 + az)tanh{3(6; + ’)}EE[T}WT%
2y 1+ v2sink2[1(6; — 67)]scch?(5(6) + 62)] (’7.5.11)

where ~ = (a) +@a2)/(a; - az) in this case, and where we have set ¢ = ¢ = 0,
(and recalling that 6; = x;(X —v;T)). A plot of this solution may he found in

Figure 14b. where we see that we have a soliton and an anti-soliton (a soliton with
9
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a negative amplitude) colliding, and again retaining their form after the collision

process.
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Amplitude

Figure 14b. Plot of the kink-antikink “hump” solution (from equation (7.5.11)) for the sine-
Gordon equation where a; =2.0, a, =04, k=05, [=02866 and o=
2.0.
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7.6 Breather Solutions

If we take the kink-antikink solution of Section 7.5, but require that m?® < 1,
then we obtain breather solutions, which are essentially stationary solitous (Lamb,
1980). We sei that we may rewrite vm?® —1 =11 —m?, and along with the

identity sinh(iz) = isin(z), equation (7.5.9) becomes

(7.6.1)

i m  sin(v1—m?q+ c2)
V1-m?2 cash(mp+c) .

This is the breather solution in (p,g) coordinates. If we now write this in

terms of (€,7) coordinates, we have

_ - m  sin[v1 — m?(b€ — 7/b) + cz] -
¢(£,7) = —4tan™? [ e T T o] ] : (7.6.2)

This leads to, in (X,T) coordinates

in[v1— m2e}(X —v;T) + ]
YT = — - m  sig| ; ; - 6.3
AN T) dtan [\/1 —_m2 coshfmri(X —u,T) + ¢4} (7.6.3)
where v; and k; depend on the choice of b, and where

vl =¢; — (¢ — e)[NV*o™2 + 1)1,

K] = —(02 +BEN)BNZ(c; — cg)]™ " (7.6.4)

We show a plot of (7.6.3) in Figure 15 (calculated using Mathemalica - see Program
6 in the Appendix), where we have set m = 0.5, b= 2.0, and ¢, = ¢, = 0.
This is a plot of a moving breather, and so we see that the change in coordinate

system transforms a stationary breather into one which is propagating.
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Chapter 8
Summary and Conclusions

In this thesis, a theory has been developed to describe the weakly nonlinear
stability characteristics of a baroclinic mesoscale gravity current in a channel with
a sloping bottom. The model assumes that the gravity current evolves geostroph-
ically but not quasigeostrophically, because the interface deflections are not small
compared to the scale depth of the current. The ambient channei water dynam-
ics are quasigeostrophic, however, which leads to strong interaction between the
geostrophic pressure and the height of the front.

It is shown, with the use of a hamiltonian formulation of the governing
equations, that there exists the poasibility of linear and nonlinear instability when
small perturbations are applied i « simple steady solution to the channel model.
Linear stability theory was then applied to the model in order to generate a mar-
ginal stability curve which relates the rate of change of gravity current thickness
to the horizontal wavenumber. We then utilized weakly nonlinear stability tie-
ory to derive finite-amplitude equations which follow the evolution of an unstable
mode after application of a small supercriticality to the gravity current thickness
slope. It was found that if the wavenumber was not at the bottom of the marginal
stability curve, then the amplitude of the wave is periodic in time and it takes the
form of a Jacobi dnoidal function.

If the supercriticality is centred on the mode at the bottom of the marginal
stability curve, then an infinite set of nonlinear partial differential equations, in
slow space and time, are required to describe the finite-amplitude evolution of
the flow. These equaticns link the perturbation pressure amplitude to an infinite

number of modes for the amplitude of the frontal thickness and the mean flow
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adjustment. If the truncation of this set 1s applied so that only the perturbation
pressure and the first mode for the mean flow adjustment are included, then soli-
tary wave solutions are possible. It is also shown that a sine-Gordon equation
may be derived from this set, which opens up the possibility for multisoliton so-
lutions, among others. If more modes are included then numerical integrations
of the spatially-independent equations suggest that the solutions are oscilliatory,
and that if enough equations are inciuded, a constriction of the oscillation also
becomes apparent.

The theory shows that the retention of the nonlinear interaction terms in the
stability equations sets up a balance between the tendency of the wave to extract
potential energy and grow, and the adjustment to the mean flow which necessarily
results from this, which réduces the available potential energy and so slows the
growth. This balance produces an oscillation between states of maximum ampli-
tude and minimum available potential energy, and vice versa. The “saturation”
and eventual reversal of the initially exponential growth rate of the disturbance
makes it possible to think of this as a mechanism for the breakup of the gravity
current into coherent cold eddies.

There are weaknesses in the weakly nonlinear analysis which has been done in
this thesis. The timescale over which the nonlinear disturbance evolves is unphys-
ically long, because of the very small supercriticality which is applied. As well,
the physical configuration upon which the model equations are applied is quite
simplistic. However, the analysis did answer the main questions asked of it; the
disturbances do indeed saturate with the inclusion of the nonlinear interactions,
and a form for these disturbances was elucidated.

Addressing the concerns forms the basis for further rescarch. Numerical

schemes may be used to overcome the need for a small initial instability. The
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model itsclf may be applied to more complicated physical situations, such as an
arbitrarily-shaped gravity current on a sloping continental shelf, or a channel with
more complex bottom topography. It would be interesting to see whether the
fundamental nature of the instabilities in such cases would change from what was

found in this thesis.
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Appendix

(*********************************************************)

(*

(* PROGRAM 1

(*

(*

(* NAME: PLOTDNOIDAL.M

(*

(* PURPOSE: THIS IS A MATHEMATICA PROGRAM TO PLOT
(* THE DNOIDAL SOLUTION TO THE TEMPORAL
(* AMPLITUDE EQUATION. FOR MODES NOT AT
(* THE BOTTOM OF THE MARGINAL STABILITY
{* CURVE

(*

(*

(*

(* PROGRAMMED BY: C. J. MOONEY

(*

*)
*)
*)
*)

*)

*)

(*********************************************************)

ao=0.1
mu=2.0

sigma=Sqrt[ (mu*k"2)/(k*2+1"72)]
rmaxsqd=ao”2+ ( (sigma”2) / (mu~2*172*k"2) ) *

{(1+Sqgrt [1+ (2*mu~2*k"2*1"2*a0"2)/{sigma”2)})
"rminsqgd=ao”2+ ({sigma”2)/ (mu"2*172*k"~2)) *

(1-Sgrt[1+(2*mu"2*k~2*1*2*a072)/(sigma”~2)])
kappa=1-rminsqgd/rmaxsqd
tpfactor=Sqrt [2/ {mu"2*1*2*k 2 *rmaxsqd) ]
taunot=InversedacobiDN[ao/Sart [rmaxsqd] , kappal

dn:Sqrt[rmaxsqdj*JacobiDN[((1/tpfactor)*t—taunot),kappa]

Plot[dn, {t,0,100}, AxesLabel->{"T",*R"}]
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCcCCCceccceccccccece

C C
C PROGRAM 2 C
C c
C C
C NAME: SECHTANHMF.F C
C Cc
C PURPOSE: THIS PROGRAM GENERATES DATA FOR THE Cc
C SECHTANH CONTOUR PLOT (PERTURBATION C
Cc THICKNESS IN THE CHANNEL) FOR C
C SPYGLASS Cc
Cc Cc
Cc 2 CASES - FOR THICKNESS PERTURBATION C
C ONLY, USE h_0 ONLY; FOR C
C LEADING ORDER VARIABLE THICK- C
C NESS, USE -Y+h_ 0 Cc
c c
C PROGRAMMED BY: C. J. MOONEY C
C : c

C

CCCCCCCCCCCCCCCCecceeecceecceeceeecccecceeceeccecccceccce

REAL*8 X,Y,Z,EPSLN,AO,KAPPA, SIGMA, K, L, MU
REAL*8 MU2,K2,L2,A02,V
INTEGER I,J

X=-18.0 0
¥=0.0

20=0.5
AO02=A0*A0
EPSILN=0.1
K=0.5

K2=K*K
L=SQRT (1-K*K)
L2=L*L
MU=2.0
MU2=MU*MU

NOW CALCULATE KAPPA FOR THE SECH ARGUMENT

OO0

KAPPA=SQRT ( (A02*MU2*L2*K2) /2) * ( (2*K2 *MU-A02*MU2*L2*K2) /
& (2*¥A02*MU2*L2*K**4) )

NOW CALCULATE V FOR THE COEFFICIENT

Q0o

V= (2*K2*MU-AQ2*MU2*L2*K2* (1~2*K2) ) / (2*K2*MU~
& AO2*MUZ2*L2*K2)
WRITE(7,50)KAPPA,V
50 FORMAT (F9.5,F9.5)
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CALCULATE THE THICKNESS AT EACH POINT

o NS N]

DO 200 I=1,248
DO 300 J=1,248
Z=-Y- (MU*L/2) *{ (1-2*K2-V) / (1-V)) *A02*
( (1/COSH(KAPPA*EPSLN*X) ) **2) *2*SIN(2*L*Y) +
2% ( (AO*KAPPA* (V-1+2*K2) ) /K) * (1/COSH (KAPPA*EPSLN*X) )
*TANH (KAPPA*EPSLN*X)
*COS (K*X+3.141592/2.0) *SIN(L*Y)
WRITE(8,100)X,Y,2
100 FORMAT(F7.2,F7.2,F9.4)
Y=Y+,0146274

R R R R

300 CONTINUE
¥Y=0.0
X=X+0.15

200 CONTINUE

C

. END
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CCCCCCCCCCCCCCCCCCCCeCeeeeecceeeeceeeeeeccccceeccecccecee

C C
c PROGRAM 3 C
C C
C c
c NAME: RK4_4EQN.F C
c C
C PURPOSE: THIS PROGRAM USES THE NSWC C
C 4TH ORDER RUNGE-KUTTA SCHEME c
C TO SOLVE THE 4 EQUATION SYSTEM C
Cc FOR THE CHANNEL MODEL - TO c
C PLOT B, USE PSI/K C
C c
c C
C C
C PROGRAMMED BY: C. J. MOONEY C
Cc C
CCCCCCCCCCCCCCCCCCCCCCceccecececececeeccceecceeccececcece

REAL*4 A(15),AMP(5000),PSI(5000),PHI(5000),F,Z(5)
REAL*4 B13(5000),ALPHA4(5000),T,H
REAL*4 K,L,MU,AQ .

EXTERNAL F

INTEGER I

T =0.0

H=20.1

K =20.5

L = SQRT(1.0-K**2)
MU = 2.0

A0 = 0.01

A(l) = AO )
A(2) = AO*SQRT (MU*K*K)
A{(3) = -AQ*AO

A(4) = 0.0

A(5) = 0.0

CALL RK(5,T,0.0,A,F)

DO 10 I = 1,2000
CALL RK(5,T,H,A,F)

AMP(I) = A(1)
PSI(I) = A(2)
PHI(I) = A(3)
B13(I) = Aa(4)

ALPHA4 (I) = A(5)
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WRITE(7,100) T,PSI(I)/K

100 FORMAT (F6.2,F10.6)
10 CONTINUE

STOP

END

SUBROUTINE F(T,2)

REAL*4 Z(5),AMP, PHI,PSI,B13,ALPHA4,T
REAL*4 K,L,MU

K = 0.5

L = SQRT(1.0-K**2)

MU = 2.0

AMP = Z(1)

P8I = 2(2)

PHI = Z(3)

Bl3 = Z(4)

ALPHA4 = Z(5)

Z(1l) = PSI

Z{(2) = MU*K*K*AMP - MU*MU*K*K*L*L*AMP* (PHI + AMP**2)
Z(3) = 2.0*K*AMP*B13

7(4) = ~(MU*MU*L*L*K*AMP/4.0)*(4.0% (PHI + AMP**2)

& - 16.0*ALPHA4)
Z(5) -2.0*K*AMP*B13

RETURN
END

195



CCCCCCCCCCCCCCCCCCCCCCeeeeeeeeceeeeceeceeceeeeceececeecec

O

PROGRAM 4

NAME: RK8_56EQN.F

C

cC

C

C

C

c

C PURPOSE: THIS PROGRAM USES THE NSWC

c 8TH ORDER RUNGE-KUTTA SCHEME
c TO SCLVE THE 56 EQUATION SYSTEM
c FOR THE CHANNEL MODEL - TO

c
Cc
c
C
Cc
C
C

Cc
c
C
c
C
C
c
C
Cc
PLOT B, USE PSI/K C

Cc
Cc
Cc
PROGRAMMED BY: C. J. MOONEY C
C
C

CCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeeeceeccecceeccceeecccee

REAL*4 Y(56),DY(56),WK(560),AMP,PSI,PHI,F,Z2(56),T,H,K
REAL*4 B13,ALPHA4,B22,B24,B15,B31,B33,B35,ALPHA6,MU, L
REAL*4 B17,B19,B26,B2§,B37,B39%,B42,B44,B46,B48,B51
REAL*4 B53,B55,B57,B59,B62,B64,B66,B68,B71,B73,B75,B77
REAL*4 B79,ALPHAS8,ALPHALQ ,

REAL*4 B82,B84,B86,B88,B810,B91,B93,B95,B97,B99

REAL*4 B210,B410,B610

REAL*4 P,Q,A0

EXTERNAL F

INTEGER I

0.5

SQRT (1-K**2)

U=2.0

(MU*K*L*AMP) /2.0
(MU*MU*L*L*K*AMP) /4.0
0 =0.01

POYRER

3

nn

0.0
0.1

C INITIAL CONDITIONS

Y(1l) = AO

Y{(2) = AO*SQRT (MU*K*K)
Y(3) = -AO*AO

Y(4) = 0.0

Y(5) = 0.0

Y(6) = 0.0

Y(7) = 0.0

Y(8) = 0.0
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Y(9) = 0.0

Y(10) = 0.0
Y(11l) = 0.0
Y(1i2) = 0.0
Y{13) = 0.0
Y(14) = 0.0
Y(15) = 0.0
Y(1i6) = 0.0
Y(17) = 0.0
Y(18) = 0.0
Y(19} = 0.0
Y(20) = 0.0
Y(21) = 0.0
Y(22) = 0.0
¥Y(23) = 0.0
Y(24) = 0.0
Y(25) = 0.0
Y(26) = 0.0
Y(27) = 0.0
Y(28) = 0.0
Y(29) = 0.0
Y(30) = 0.0
Y(31) = 0.0
Y(32) = 0.0
Y(33) = 0.0
Y(34) = 0.0
Y(35) = 0.0
Y(36) = 0.0
Y(37) = 0.0
Y(38) = 0.0
Y(39) = 0.0
Y(40) = 0.0
Y{(41l) = 0.0
Y(42) = 0.0
Y(43) = 0.0
Y(44) = 0.0
Y (45) = 0.0
Y{(46) = 0.0
Y(47) = 0.0
Y(48) = 0.0
Y(49) = 0.0
¥Y({50) = 0.0
Y(51) = 0.0
Y(52) = 0.0
Y(53) = 0.0
Y(54) = 0.0
Y{(55) = 0.0
Y(56) = 0.0

CARRY OUT THE INTEGRATIONS

CALL RK8(56,T,0.0,Y,DY,WK,F)
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DO 10 I = 1,4000
CALL RK8(S56,T,H,Y,DY,WK,F)

AMP = Y (1)
PSI = Y({2)
PHI = Y(3)
B13 = Y(4)
ALPHAL = Y(5)
B22 = Y{(6)
B24 = Y(7)
B15 = Y(8)
B31 = Y(9)
‘B33 = Y{10)
B35 = Y(11)
ALPHAG6 = Y(12)
B17 = Y(13)
B19 = Y(14)
B26 = Y(15)
B28 = Y(16)
B37 = Y(17)
B39 = Y(18)
B42 = Y(19)
B44 = Y(20)
B46 = Y{21)
B48 = Y(22)
B51 = Y(23)
B53 = Y(24)
B55 = Y(25)
B57 = Y(26)
B59 = Y(27)
B62 = Y(28)
B64 = Y(29)
B66 = Y(30)
B68 = Y(31)
B71 = Y(32)
B73 = Y(33)
B75 = Y(34)
B77 = Y(35)
B79 = Y(36)

ALPHA8 = Y (37)
ALPHALO0 = Y(38)

B210 = Y{39)
B410 = Y (40)
B610 = Y (41)
B810 = Y(42)
B82 = Y(43)
B84 = Y (44)
B86 = Y(45)
B88 = Y(46)
B91 = Y(47)
BY93 = Y (48)
B95 = Y (49)
B97 = Y(50)
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B99 = Y(51)

B102 = Y(52)
B104 = Y(53)
B106 = Y(54)
B108 = Y(55)

B1010 = Y(56)

WRITE(7,100) T,AMP

100 FORMAT(F10.2,F10.6)
10 CONTINUE

STGP

END

SUBROUTINE TO DEFINE THE EQUATIONS

SUBROUTINE F(T,Z)

REAL*4 Z(56),AMP, PHI, PSI,B13,ALPHA4,B22,B24
REAL*4 B15,B31,B33,B35,ALPHA6, T

REAL*4 B17,B19,B26,B28,B37,B39,B42,B44,R46
REAL*4 B48,B51,B53,B55,B57,B59,B62,B64,B65
REAL*4 B68,B71,B73,B75,B77,B79,ALPHAS
REAL*4 ALPHAl0,B82,B84,B86,B88,B91,B93
REAL*4 B95,B97,B99,B210,B410,B610,B810
REAL*4 B1010,B102,B104,B106,B108

REAL*4 K,L,MU,P,Q

K=0.5
L=SQRT(1.0-K**2)
MU=2.0

P (MU*K*L*AMP) /2.0

Q (MU*MU*L*L*K*AMP) /4.0
AMP = Z (1)

PSI = Z(2)

PHI = Z(3)

B13 = Z{4)
ALPHA4 = Z(5)
B22 = Z (6}

B24 = Z(7)

B15 = Z(8)

B31 = Z(9)

B33 = Z2(10)
B35 = Z(11)
ALPHAG = Z(12)
B17 = Z({13)
B19 = Z(14)
B26 = Z(15)
B28 = Z(16)

199



&

B37 = Z(17)
B39 = Z(18)
B42 = Z{(19)
B44 = Z(20)
B46 = Z(21)
B48 = Z(22)
B51 = Z(23)
BS53 = Z(24)
B55 = 2(25)
B57 = Z(26)
B59 = Z(27)
B62 = Z(28)
B64 = Z(29)
B66 = Z(30)
B68 = Z(31)
B71 = Z(32)
B73 = Z(33)
B75 = Z(34)
B77 = Z(35)
B79 = Z!36)

ALPHAS = Z(37)
ALPHAL10 = Z(38)

B210 = Z{39)

B410 = 2(40)

B610 = Z(41)

B810 = Z(42)

B82 = Z(43)

B84 = Z{44)

B86 = Z{45)

B88 = Z(46)

B91 = Z(47)

B93 = Z{48)

B95 = Z(49)

B97 = Z(50)

B99 = Z(51)

B102 = Z(52)

B104 = Z(53)

B106 = Z(54)

B138 = Z(55)

B1010 = Z(56)

Z{(l) = PSI

Z(2) = MU*K*K*AMP - MU*MU*K*K*L*L*AMP* (PHI + AMP**2)

Z(3) = 2*K*AMP*B13

7Z(4) = -Q*(4* (PHI+AMP**2)-16*ALPHA4)+
P* (4*B22-2*B24)

Z(5) = 2*K*AMP*(B15-B13)

7(6) = -P*(4*B31 + 4*Bl3)

7Z(7) = -P*(6*B33 - 2*B35 - 2*Bl3 + 6*Bl5)

7(8) = -Q*{16*ALPHA4 - 36*ALPHA6) +
pP* (6*B24-4*B26)

Z(9) = P*(4*B22+2*B42)

Z(10) = P*(6*B24+6*B42)
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Z(11)
Z(12)
Z(13)
7(14)
Z(15)
7Z(16)
Z2(17)
Z(18)
zZ(19)
Z(20)
Z(21)
Z(22)
Z(23)
Z(24)
Z(25)
Z2(26)
Z(27)
7(28)
Z(29)
Z(30)
Z(31)
Z(32)
Z(33)
Z(34)
Z(35)
Z(36)
Z{37)
Z(38)
Z(39)
Z(40)
Z(41)
Z(42)
Z{43)
Z(44)
Z(45)
Z(46)
7Z(47)
7(48)
Z(49)
Z(50)
Z(51)
Z{52)
Z(53)
Z(54)
Z(55)
Z(56)

RETURN

END

L | V| | | | | | U 1 | A { £ O ¥ § O I 1 T ¢ e I T (T O { T I (O S SO VR T IO | AN |

P*(8*B44-2*B46-2*B24+8*B26)
2*K*AMP* (B17-B15)

-Q* (36 *ALPHA6-64*ALPHA8) +P* (8*B26-6*B28)
-Q* (64 *ALPHAS-100*ALPHALQ)+P* (10*B28~8*B210)
-P* (8*B35-4*B37-4*B15+8*B17)
-P*(10*B37-6*B39-6*B17+10*B19)
P*(10*B46-4*B48-4*B26+10*BZ8)
P*(12*B48-6*B410-6*B28+12*B210)
-P*(6*B51+2*B53+2*B31+6*B33)
-P*(8*B53+8*B35)
—-P*(10*B55-2*B57-2*B35+10*B37)
-P*{12*B57-4*B59-4*B37+12*B39)
P* (4*B62+6*B42)

P* (8*B62+4*B64+4*B42+8*B44)

P* (10*B64+10*B46)
P*(12*B66-2*B68-2*B46+12*B48)
P*(14*B68-4*B610-4*B48+14*B410)
-pP*(8*B71+4*B73+4*B51+8*B53)
-P*(10*B73+2*B75+2*B53+10%*B55)
-P*(12*B75+12*B57)
-P*(14*B77-2*B79-2*B57+14*B59)
P*(6*B82+8*B62)
P*(10*B82+4*B84+4*B62+10*B64)
P*(12*B84+2*B86+2*B64+12*B66)
P*(14*B86+14*B68)
P*(16*B88-2*B810-2*B68+16*B610)
2*K*AMP* (B19-B17)

2*K*AMP* (-B19)
-P*(12*B39-8*B19)
-P*(14*B59-6*B39)
-P*(16*B79-4*B59)

-p* (18*B99-2*B79)
-P*(10*B91+6*B93+6*B71+10*B73)
-P% (12*B93+4*B95+4*B73+12*B75)
-P*(14*B95+2*B97+2*B75+14*B77)
-P*(16*B97+16*B79)
P*(8*B102+10%*R82)
P*(12*B102+6*B104+6*B82+12*B84)
P*(14*B104+4*B106+4*B84+14*B86)
P*(16*B106+2*B108+2*B86+16*B88)
P*(18*B108+18*B810)

-P* (8¥B91+12*B93)
-P*(6*B93+14*B95)
-P*(4*B95+16*B97)
-P*(2*B97+18*B99)

0.0
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(****************************************i?***************'*)

(* *)

(* PROGRAM 5 *)
(* *)
(* *)
(* NAME: ARCTAN1.M *)
(* *)
(* PURPOSE: THIS IS A MATHEMATICA PROGRAM TO PLOT *)
(* THE 2-SOLITON SOLUTION TO THE SINE- *)
(* GORDON EQUATION *)
(* *)
(* *)
(* PROGRAMMED BY: C. J. MOONEY *)
(* *)

(************'k********************************************)

k=0.5

1=Sqgrt[1-k"*2]

mu=2.0

sigma2=mu*k”"2

¢cl=1.0-2*k"2

c2=1.0

al=2.0

a2=0.4

n=mu’*2*k"2*12
kappal=(sigma2-al”~2*n)/(al*n”0.5*(cl-c2))
kappa2=(sigma2-a2”2*n)/(a2*n"0.5*(cl-c2))
vl=cl+(cl-c2)/({n*al/sigma2)-1)
v2=cl+(cl-c2)/({n*a2/sigma2)-1)

gammas= (al-a2)/(al+a2)

phi=4*ArcTan[ ((al-a2)*Sinh([(1/2)*(kappal* (x-vl*t)+kappa2*
(x-v2*t))1)/((al+a2)*Cosh[(1/2) * (kappal* (x-v1*t)-kappa2*
(x-v2*t))]1)] '

dphi=2*gamma* ( (- (al-a2)*Tanh{ (1/2) * (kappal* (x-vl*t)-kappa2*
(x-v2*t))]*Sech[(1/2)*(kappal*(x-vl*t)-kappa2* (x-v2*t))]*
Sinh{(1/2)*{kappal*(x-vl*t)+kappa2* (x-v2*t))]
+(al+a2)*Sech[(1/2)*(kappal* (x-vl*t)-kappa2* (x-v2*t))]}*
Cosh{(1/2)* (kappal* (x~-vl*t)+kappa2* (x-v2*t))])/
(1+gamma“2*Sech[(1/2)*(kappal*(x—vl*t)—kappaz*(x—vz*t))]“2
*ginh([(1/2)* (kappal* (x-v1*t)+kappa2*(x-v2*t)}]172))

Plot3D[phi, {x,-20,20},{t,-10,10},PlotPoints~>50, PlotRange->
{-7.0,7.0}, AxesLabel->{*X", *T", *Amplitude*}]

(* Plot3D[dphi, {x,-10,10},{t,-5,5},PlotPoints->120, *)
(* PlotRange->{-0.5,4.5},AxesLabel->{"“X","T*, "Amplitude"}] *)

(* Plot[phi,{x,-10,10}] *)
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(*********************************************************)
(* )
(* PROGRAM 6 *)
(* %)
* *
( )

(* NAME: BREATHERL.M *)
(* *)
(* PURPOSE: THIS 7 A MATHEMATICA PROGRAM TO PLOT *)
(* THE MUV ING BREATHER SOLUTION TO THE *)
(* SINE-GORDON EQUATION *)
(* *)
(* PHI - (X,T) COORDINATES *)
(* PHIXITAU - (XI,TAU) COORDINATES *)
(* PHIPQ - (P,Q) COORDINATES (STAT- *)
(* IONARY SOLUTION) *)
(* *)
(* *)
(* PROGRAMMED BY: C. J. MOONEY *)

(+ *)

(*********************************************************)

k=0.5

1=Sqgrt{1-k"2]

mu=2.0

sigma2=mu*k”2

cl=1.0-2*k"2

c2=1.0

al=2.0

n=mu”*2*k*2*1"2
kappal=(sigma2-al~2*n)/(al*n”0.5%(cl-c2))
vl=cl+(cl-c2)/({n*al/sigma2)-1)
kappalstar:—(sigma2+al“2*n)/(al*n“O.S*(cl—cZ))
vlistar=cl-(cl-c2)/{{al*2*n/sigma2)+1)
m=0.5

phi=-4*ArcTan[ ( (m/Sqrt[1-m~2])*Sin{Sqrt [1-m"2]*
kappalstar* (x-vlstar*t)])/(Cosh[m*kappal* (x-v1l*t)]1)]

phixitau=-4*ArcTan[ ( (m/Sqgrt[1-m*2])*Sin[Sqgrt[1l-m"2]*(al*xi-
tau/al)])/(Cosh[m* (al*xi+tau/al)]l}]

phipg=-4*ArcTan[ ( (m/Sqrt [1-m~2]) *Sin[Sqrt [1-m"2] *q]) /
{Cosh[m*p])]

Plot3D(phi, {x,-10,10},{t,-10,10},PlotPoints->100, PlotRange->
{-2.0,2.0},AxesLabel->{"X", "T", *Amplitude"}]

(* Plot3D[phixitau, {xi,~10,10},{tau,-10,10},PlotPoints->50,
(* PlotRange->{-6.2,6.2}]

(* Plot3D[phipa, {p,-20,20},{q,-20,20},PlotPoints->50,
(* PlotRange->{-6.2,6.2}]
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