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Abstract

This thesis is devoted to the proof of several results on the existence and unique-

ness of Monge solutions to the multi-marginal optimal transportation problem.

These results are found in Chapters 3, 4 and 5, and represent joint work with Bren-

dan Pass. The Chapters 1 and 2 are devoted to the introduction and preliminaries

respectively.

In Chapter 3 we study a multi-marginal optimal transportation problem with a

cost function of the form c(x1, . . . , xm) =
∑︁m−1

k=1 |xk − xk+1|2 + |xm − F (x1)|2,

where F : Rn → Rn is a given map. When m = 4, F is a positive multiple

of the identity mapping, and the first and last marginals are absolutely continuous

with respect to Lebesgue measure, we establish that any solution of the Kantorovich

problem is induced by a map; the solution is therefore unique. We go on to show

that this result is sharp in a certain sense. Precisely, we exhibit examples showing

that Kantorovich solutions may concentrate on higher dimensional sets if any of the

following hold: 1) F is any linear mapping other than a positive scalar multiple

of the identity, 2) the last marginal is not absolutely continuous with respect to

Lebesgue measure, or 3) the number of marginals m ≥ 5, even when F is the

identity mapping. In the fourth chapter we study a multi-marginal optimal transport

problem with cost c(x1, . . . , xm) =
∑︁

{i,j}∈P |xi − xj|2, where P ⊆ Q := {{i, j} :

i, j ∈ {1, 2, ...m}, i ̸= j}. We reformulate this problem by associating each cost

of this type with a graph with m vertices whose set of edges is indexed by P . We

then establish uniqueness and Monge solution results for two general classes of cost

functions. Among many other examples, these classes encapsulate the Gangbo and

Świȩch cost [27] and the cost c(x1, . . . , xm) =
∑︁m−1

k=1 |xk − xk+1|2 + |xm − x1|2

when m ≤ 4. In the final chapter we establish a general condition on the cost

function to obtain uniqueness and Monge solutions in the multi-marginal optimal

transport problem, under the assumption that a given collection of the marginals
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are absolutely continuous with respect to Lebesgue measure. When only the first

marginal is assumed to be absolutely continuous, our condition is equivalent to the

twist on splitting sets condition found in [35]. In addition, it is satisfied by the

special cost functions of Chapter 3 and 4 (found also in [48, 49]), when absolute

continuity is imposed on certain other collections of marginals. We also present

several new examples of cost functions which violate the twist on splitting sets

condition but satisfy the new condition introduced here; we therefore obtain Monge

solution and uniqueness results for these cost functions, under regularity conditions

on an appropriate subset of the marginals.
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Chapter 1

Introduction

1.A Background

Multi-marginal optimal transport is the problem of correlating a finite number

of mass distributions to minimize a notion of total cost. This problem is a natural

extension of the well-known classical optimal transport where the correlation is done

over two mass distributions (think of using a pile of dirt to fill a hole as efficiently

as possible relative to a cost function c modeling the cost of transportation). The

classical problem was initiated by Monge in 1781 [40]; later in 1942, Kantorovich

established a relaxation by allowing the mass to be split into different target points

[33].

There are two formulations of the multi-marginal transportation problem: the

Kantorovich formulation and the Monge formulation. In the Kantorovich formu-

lation, given Borel probability measures µi on open bounded sets Xi ⊆ Rn, with

i = 1, . . . ,m, and c a real-valued cost function on the product space X1× . . .×Xm,

the goal is to minimize

∫︂
X1×...×Xm

c(x1, . . . , xm)dµ, (KP)
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among all Borel probability measures µ on the product space X1× . . .×Xm whose

marginals are the µi; that is, for each fixed i ∈ {1, . . . ,m}, µ(X1 × . . . × Xi−1 ×

A×Xi+1 × . . .×Xm) = µi(A) for any Borel set A ⊆ Xi.

In the Monge formulation, one seeks to minimize

∫︂
X1

c(x1, T2x1, . . . , Tmx1)dµ1, (MP)

among all (m − 1)-tuples of maps (T2, . . . , Tm) such that (Ti)♯µ1 = µi for all

i = 2, . . . ,m, where (Ti)♯µ1 denotes the image measure of µ1 through Ti, defined

by (Ti)♯µ1(A) = µ1(T
−1
i (A)), for any Borel set A ⊆ Xi. It is well known that

problem (KP) is a relaxation of problem (MP), as for any (m − 1)-tuple of maps

(T2, . . . , Tm) satisfying the image measure constraint in (MP), we can define µ =

(Id, T2, . . . , Tm)♯µ1, which satisfies the constraint in (KP) and

∫︂
X1×...×Xm

c(x1, . . . , xm)dµ =

∫︂
X1

c(x1, T2x1, . . . , Tmx1)dµ1.

Under very general conditions (for instance, compactness of the spaces and conti-

nuity of the cost is more than enough) there exists a solution for (KP)[51].

When m = 2, the classical optimal transport problems of Monge and Kan-

torovich arise in (MP) and (KP), respectively. This case has been widely studied

and it is reasonably well understood; in particular, under a twist condition on c (the

map x2 ↦→ Dx1c(x1, x2) is injective, for each fixed x1 ∈ X1, where Dx1c denotes

the derivative of c with respecto to x1) and assuming µ1 is absolutely continuous

with respect to Lebesgue measure Ln, there exists a unique solution to (KP) and it

is induced by a map [11, 25, 26, 37]. The classical optimal transport has profound

connections with many different areas of mathematics, including analysis, proba-

bility, PDE and geometry, and an extremely wide range of applications in other

fields, surveyed in, for example, [51, 52, 53] (see also [2] for an overview). For

the case m ≥ 3, a wide variety of applications has also recently emerged, includ-
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ing, for example, matching in economics [18, 19, 44], density functional theory in

computation [9, 10, 14, 15, 21], and interpolating among distributions in machine

learning and statistics [7, 54] (see also [45] for an overview and additional refer-

ences). However, determining whether solutions to the multi-marginal Kantorovich

problem (KP) are unique and of Monge form has proven much more challenging,

as the answer depends on the form of the cost c in subtle ways which are still not

understood.

One of the best known cost functions in the multi-marginal setting is the Gangbo

and Świȩch cost function [27]:

∑︂
1≤i<j≤m

|xi − xj|2. (1.1)

In their seminal work, they prove that every solution to (KP) is concentrated on a

graph of a measurable map (with µ1 absolutely continuous with respect to Ln), thus

obtaining a unique solution to the Monge-Kantorovich problem (in the subsequently

developed terminology of [35], (1.1) is twisted on splitting sets; see definition

2.5 below). In [1], Agueh and Carlier proved that solving the multi-marginal

Kantorovich problem with a weighted version of (1.1) is equivalent to finding the

barycenter of the marginals µ1, . . . , µm.

A fundamental characteristic of the Gangbo and Świȩch cost is that the first

variable x1 exhibits a direct interaction with all the other variables; that is, the sum∑︁
1<j≤m |x1 − xj|2 is a term of the sum in (1.1). As we will see in Chapter 4, if

this interaction is not given and only µ1 is absolutely continuous, we can show that

uniqueness is not obtained via simple examples; in particular, the twist on splitting

sets condition does not hold. An example of a cost function where such interaction

is not given is the Euler cost with m ≥ 4,

m−1∑︂
i=1

|xi − xi+1|2 + |xm − x1|2. (1.2)
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As highlighted in Section 1.7.4 of [51] this cost measures the discrete time kinetic

energy of a cloud of particles whose density at timestep k is µk, such that the initial

and final position of a particle is x1. A more general framework is given if the final

position of the particle initially at x1 is fixed to be F (x1); that is,

m−1∑︂
i=1

|xi − xi+1|2 + |xm − F (x1)|2, (1.3)

where F : Rn → Rn is a given map. In particular, when each µk = Ln|D is

(normalized) Lebesgue measure on a common bounded domain Xk = D ⊂ Rn and

F : D → D is measure preserving, F#µk = µk, the Monge problem with this cost

corresponds to the time discretization of Arnold’s variational interpretation of the

incompressible Euler equation [3]; the Kantorovich formulation corresponds to a

discretization of Brenier’s generalization [12]. If m = 2 and I+DF (x) is invertible

(alternatively it corresponds to the quadratic cost up to a change of variables) where

I denotes the identity matrix, the cost is twisted; while for m = 3, it is twisted on

splitting sets as long as DF (x)+DF (x)T > 0. On the other hand, for m ≥ 4, little

is known about the structure of solutions, although the problems has received a fair

bit of attention from a numerical perspective [6, 13, 24, 38]. In Chapter 3, we will

establish new results on this structure (available also in [48]).

In Chapter 4 we encapsulate the cost functions (1.1) and (1.2) by studying a

more general form in which arbitrary interaction structures between the variables

are permitted. More precisely, we consider

∑︂
{i,j}∈P

|xi − xj|2, (1.4)

where P ⊆ Q := {{i, j} : i, j ∈ {1, 2, ...m}, i ̸= j} (note that (1.4) takes the form

(1.1) when P = Q, and form (1.2) when P =
{︁
{i, i + 1} : i = 1, . . . ,m − 1

}︁
∪{︁

{1,m}
}︁

; our main goal is then to identify conditions on P which lead to Monge
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solutions. For this, we exploit a natural connection to graph theory; in particular, we

associate the cost function (1.4) with a graph whose vertices we label {v1, ..., vm}

and whose set of edges is indexed by P . For instance, it is evident that cost (1.1)

is associated to a complete graph with vertices {v1, . . . , vm}, denoted by Km. See

Figure (1.1) for the case m = 7.

v1

v2

v3

v4

v5

v6

v7

Figure 1.1: Km with m = 7.

In this setting every subgraph with m vertices G of Km is associated to a cost∑︁
{vi,vj}∈E(G) |xi − xj|2, where

E(G) = {{vi, vj} : G has an edge between vi and vj, vi ̸= vj}.

For instance, the ”border” of Km, that is, the cycle graph with vertex sequence

(v1, . . . , vm, v1) (see definition in Section 4.A and figure below for the case m = 7),

is associated to cost (1.2).

The connection between multi-marginal costs functions and graphs described

above recently appeared in a computational setting in [30], where a regularized

(through an entropy term) multi-marginal optimal transport problem with cost as-

sociated to a tree was studied. Although the scope of that work is restricted to
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v1

v2

v3

v4

v5

v6

v7

Figure 1.2: Cycle graph with m = 7.

a more basic graph structure (only trees were considered), the edges {vi, vj} are

associated to more general symmetric costs cij(xi, xj). Also, [31] established an

equivalence of the regularized multi-marginal optimal transport and the inference

problem for a probabilistic graphical model when both problems are associated to

a common graph structure. On the other hand, the same relationship was noted

in [23] when m = 3, where connectedness of the graph played an important role

in solving a one dimensional multi-marginal martingale optimal transport problem

under various assumptions; see Theorem 5.3 in [23].

The final chapter of this thesis focuses on the existence and uniqueness of

solutions to the multi-marginal Monge-Kantorovich problems (MP) and (KP) for

more general cost functions. This question is in general quite delicate, as the

structure of solutions depends subtly on c. In this setting, a condition playing an

analogous role to the twist condition was discovered in [35]; this condition was

called twist on c-splitting sets and states that for every x1 ∈ X1 fixed, the map

(x2, . . . , xm) ↦→ Dx1c(x1, x2, . . . , xm) is injective on c-splitting sets (see definition

2.5). The main result in [35] is then that whenever µ1 is absolutely continuous

6



with respect to Ln, and c is twisted on c-splitting sets, the solution µ to (KP) is

unique and induced by a graph. This encapsulates the results for specific costs, or

costs satisfying certain conditions, found in [16, 27, 32, 36, 44, 46, 47]. Unlike its

two marginal analogue (the classical twist condition), the twist on c-splitting sets

is very strong; there are many examples of cost functions for which it fails, and

for which non-unique, non-Monge type solutions exist [17, 19, 20, 28, 39, 42, 43].

It is, however, the most general known condition guaranteeing the unique Monge

structure of solutions, and it seems unlikely that there is a significantly weaker

condition on c under uniqueness is obtained for all choices of marginals µ1, ..., µm

with µ1 absolutely continuous.

7



1.B Summary of results

In Chapter 3 we show that the cost function (1.3) is not twisted on splitting sets for

m ≥ 4. Nevertheless, when m = 4 and F is a positive scalar multiple of the identity

mapping, we are able to prove that all solutions are of Monge type, and therefore

unique, under an additional regularity condition on the marginals (in addition to µ1,

either µ2 or µ4 must be absolutely continuous). This result is very special; indeed,

as we show later on, it is in some sense impossible to go further. A simple example

shows that the extra regularity condition on µ4 or µ2 is required. When m = 4,

and F is any linear mapping other than a positive scalar multiple of the identity, we

demonstrate that solutions may not be of Monge type, even for diffuse marginals.

Similarly, when m ≥ 5, we prove that solutions may not be of Monge type, even for

F (x) = x.

To offer some perspective on these results, we note that generalized incompress-

ible flows (ie, solutions to the infinite marginal version of the Kantorovich problem,

when each marginal is uniform and F is measure preserving) are not generally

unique in dimension n ≥ 2 [8]; however, unique Monge-type solutions exist when

F is close to the identity mapping [22]. It seems reasonable to expect the same to

hold for the time discretized problem. Our counterexamples essentially show that

this is not the case for m ≥ 4, at least when the marginals are allowed to differ.

As we shall see in sections 4.B and 4.C, our main results in Chapter 4 (Theorem

4.9 and Theorem 4.12, as well as the related Propositions 4.13 and 4.15), provide

a broad class of graphs providing unique Monge solutions to (KP) with cost (1.4);

some of these are classical, well known graphs, whereas others are less standard

and more exotic. In particular, we highlight in Corollary 4.10 a special subclass

of graphs encompassed by our theory, offering a generalization of the Gangbo and

Świȩch result which we find conceptually appealing: the class in which each vertex

is connected to all, except at most one, of the other vertices. Generally speaking, the

graphs for which we establish Monge solution results come in two complementary

8



classes; one (see Section 4.B) results from the extraction from the complete graph of

subgraphs with a particular structure, while the other (see Section 4.C) is obtained

by joining complete graphs in a special way.

We would like to emphasize that, in addition to the regularity assumption on

µ1, which is standard in optimal transport, many of our results in Chapter 4 require

extra regularity conditions on certain other marginals; these assumptions are not

typical in optimal transport theory, but are necessary in our setting, since many

counterexamples to Monge solutions and uniqueness exist in their absence (see the

second assertion of Proposition 4.6). Note that these examples confirm that the

framework developed here reaches well beyond the twist on splitting sets theory, the

most general currently known condition implying Monge solution and uniqueness

results for multi-marginal problems; indeed, Proposition 4.6 verifies that the twist

on splitting sets condition is violated by a wide variety of cost functions, many

of which fall within the scope of either Theorem 4.9 or the results in Section 4.C

(Theorem 4.12 and Propositions 4.13 and 4.15). The trade-off is that we had to

assume regularity of certain subsets of the marginals, rather than only µ1. This

naturally motivates the pursuit of a general condition on c, under which solutions to

(KP) are of Monge type and unique, for any collection of marginals µ1, ..., µm with

µi absolutely continuous for all i in a given subset of {1, 2, ...,m}. The purpose of

Chapter 5 is to develop such a condition.

Our condition is formulated in terms of c-splitting functions (see Definition

2.3) and the points where some of them are differentiable (the ones corresponding

to the marginals different than µ1 where regularity is needed). More specifically,

we require the mapping (x2, . . . , xm) ↦→ Dx1c(x1, x2, . . . , xm) to be injective on

special subsets generated by c-splitting sets and their associated Borel functions

(see Definition 5.2). This condition ensures Monge structure and uniqueness of the

optimal elements in Π(µ1, . . . , µm), as we shall see in our main result (Theorem

5.6), and it reduces to the twist on splitting sets condition in the special case when
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only regularity of µ1 is assumed, but reaches substantially beyond it in general.

Aside from including the cost functions in [48] and [49], our condition applies to a

wide variety of new costs, as we illustrate with several examples.

One essential aspect of the version of the twist condition presented in this work

is the dependence on c-splitting functions of the sets where the map (x2, . . . , xm) ↦→

Dx1c(x1, x2, . . . , xm) is injective (unlike the twist on c-splitting sets condition where

such map is injective on splitting sets with no dependency on c-splitting functions).

The involvement of c-splitting functions allows us to naturally generate several

differential equations as presented in Lemma 2.8, which are key to naturally exploit

the structure of a variety of cost functions. This type of approach is possible, in

particular, by the incorporation of additional regularity conditions on the marginals.

We also establish an equivalent condition to the twist on c-splitting sets condition

that facilitates the proof of some of the results; this condition focuses on every

m-tuple of c-splitting functions and an associated largest c-splitting set, instead of

every c-splitting set and its associated c-splitting functions (see Lemma 5.1).
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Chapter 2

Preliminaries and definitions

In this chapter, we recall some preliminary results and definitions.

2.A The dual problem

For a cost c and Xi ⊆ Rn for each i, set

U =

{︄
(u1, u2, . . . , um) ∈

m∏︂
i=1

L1(µi) : c(x1, . . . , xm) ≥
m∑︂
i=1

ui(xi),∀(x1, . . . , xm) ∈ X1 × . . .×Xm

}︄
.

The dual of (KP) asks to maximize on U the map:

(u1, u2, . . . , um) ↦→
m∑︂
i=1

∫︂
Xi

ui(xi)dµi(xi). (DP)

The following subclass of U plays a key role in multi-marginal optimal transport

theory.

Definition 2.1. An m-tuple of functions (u1, u2, . . . , um) is c-conjugate if for all i,

ui(xi) = inf
xj∈Xj ,j ̸=i

(︂
c(x1, . . . , xm)−

∑︂
j ̸=i

uj(xj)
)︂
. (2.1)

11



It is well known that if (u1, u2, . . . , um) is c-conjugate, then each uk inherits

local Lipschitz and semi-convexity properties from c [37].

The following well known duality result captures the connection between (DP) and

(KP). Most of the assertions can be traced back to Kellerer [34]; a proof that the

solutions to (DP) can be taken to be c-conjugate can be found in [27] or [46].

Theorem 2.2. Assume Xk is compact for every k. Then, there exists a solution µ

to the Kantorovich problem and a c-conjugate solution (u1, u2, . . . , um) to its dual.

The minimum and maximum values in (DP) and (KP) respectively are the same and∑︁m
k=1 uk(xk) = c(x1, . . . , xm) for all (x1, . . . , xm) ∈ spt(µ), where spt(µ) denotes

the support of µ.

2.B The twist on c-splitting sets condition

Let us recall some main concepts from [35].

Definition 2.3. A set S ⊆
∏︁m

i=1Xi is called a c-splitting set if there are Borel

functions ui : Xi ↦→ R such that

m∑︂
i=1

ui(xi) ≤ c(x1, . . . , xm) (2.2)

for every (x1, . . . , xm) ∈
∏︁m

i=1Xi, and whenever (x1, . . . , xm) ∈ S equality holds.

The functions u1(x1), . . . , um(xm) are called c-splitting functions for S.

Definition 2.4. A set S ⊆
∏︁m

i=1Xi is called c-cyclically monotone if for any finite

collection
{︁
(xk

1, . . . , x
k
m)
}︁p
k=1

⊆ S we get

p∑︂
k=1

c(xk
1, . . . , x

k
m) ≤

p∑︂
k=1

c(x
σ1(k)
1 , . . . , xσm(k)

m ),

for every σ1, . . . , σm ∈ SP , where SP denotes the set of permutations of P :=

{1, . . . , p}.

12



It is straightforward to prove that any c-splitting set is c-cyclically monotone.

When m = 2, the converse is true by Rüschendorf’s Theorem [50]. The converse

for m ≥ 3, remained an open question until Griessler proved that in fact, every

c-cyclically monotone set is c-splitting [29]. In this work, we shall find it convenient

to use both definitions interchangeably.

Definition 2.5. Let c be a continuous semi-concave cost function. It is called

twisted on c-splitting sets, whenever for each fixed x0
1 ∈ X1 and c-splitting set

S ⊆ {x0
1} ×X2 × . . . Xm, the map

(x2, . . . , xm) ↦→ Dx1c(x
0
1, x2, . . . , xm)

is injective on the subset of S where Dx1c(x
0
1, x2, . . . , xm) exists.

Remark 2.6. The main result in [35] establishes that if c is twisted on c-splitting

sets, then every solution to (KP ) is induced by a map, whenever µ1 is absolutely

continuous with respect to Ln.

The classical duality theorem of Kellerer (Theorem 2.2) automatically connects

Definitions 2.3 and 2.4 with the optimal measures µ in (KP). From now on, spt(µ)

denotes the support of µ.

Lemma 2.7. A measure µ ∈ Π(µ1, . . . , µm), solves (KP) if and only if spt(µ) is a

c-splitting set.

Let us finish this section with a convenient lemma, which will reduce some of

the technical details of the results in this work. For this, recall that given an open set

D and a semi-concave function f : D ⊆ Rn ↦→ R, the superdifferential of f with

respect to a given x ∈ A fixed is defined as the set

∂f(x) = {z ∈ Rn : f(y)− f(x) ≤ z · (y − x) ∀y ∈ D} .
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It can be proved that ∂f(x) is nonempty for every x ∈ D and Df(x) exists if and

only if ∂f(x) is a singleton.

Lemma 2.8. Let c be a continuous semi-concave cost function, and ui : Xi ↦→ R

Borel functions, i ∈ {1, . . . ,m}, satisfying the inequality condition in (2.2). Let

(x0
1, . . . , x

0
m) ∈

∏︁m
i=1Xi such that

m∑︂
i=1

ui(x
0
i ) = c(x0

1, . . . , x
0
m). (2.3)

If there exists k ∈ {1, . . . ,m} such that Duk(x
0
k) exists, then Dxk

c(x0
1, . . . , x

0
m)

exists and

Duk(x
0
k) = Dxk

c(x0
1, . . . , x

0
m).

Proof. Since c is semi-concave, the map xk ↦→ c(x0
1, . . . , x

0
k−1, xk, x

0
k+1, . . . , x

0
m)

is semi-concave. Then ∂xk
c(x0

1, . . . , x
0
k−1, xk, x

0
k+1, . . . , x

0
m) is nonempty for every

xk ∈ Xk fixed, where ∂xk
c(x0

1, . . . , x
0
k−1, xk, x

0
k+1, . . . , x

0
m) denotes the superdiffer-

ential of c with respect to xk. Using (2.3), it follows that

∂xk
c(x0

1, . . . , x
0
m) ⊆ ∂uk(x

0
k) = {Duk(x

0
k)}.

Thus, ∂xk
c(x0

1, . . . , x
0
m) is a singleton, which implies that Dxk

c(x0
1, . . . , x

0
m) exists

and Duk(x
0
k) = Dxk

c(x0
1, . . . , x

0
m), completing the proof.
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Chapter 3

Multi-marginal optimal

transportation problem for cyclic

costs

In this chapter we focus in a multi-marginal optimal transportation problem with

cost

c(x1, . . . , xm) =
m−1∑︂
i=1

|xi − xi+1|2 + |xm − F (x1)|2, (3.1)

where F : Rn → Rn and m ≥ 4. We will approach the problem of minimizing

(KP), by the equivalent problem of maximizing:

Fb[µ] =

∫︂
X

b(x1, . . . , xm)dµ (KPb)

where b(x1, . . . , xm) =
∑︁m−1

i=1 xi ·xi+1+xm ·F (x1), over the same admissible class

of (KP).
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3.A Monge Solutions

We now show that under regularity conditions on the first and fourth marginal, we

obtain a unique Monge solution for the case m = 4 and F (x) = x.

Theorem 3.1. Let µi be probability measures over open bounded sets Xi ⊆ Rn,

i = 1, 2, 3, 4. Take b(x, y, z, w) = x · y + y · z + z · w + w · x and assume µ1, µ4

are absolutely continuous with respect to Ln. Then any solution of the Kantorovich

problem (KPb) is induced by a map.

The strategy of our proof is based on the following observation: given a solution

µ to (KPb) and a b-conjugate solution (u1, u2, u3, u4) to its dual, the coupling between

µ1 andµ2 induced byµ (that is, (πxy)#µ, where πxy : X1×X2×X3×X4 → X1×X2

is the canonical projection, πxy(x, y, z, w) = (x, y)) solves a two marginal optimal

transport problem with an effective surplus given by:

f(x, y) = x · y + sup
z
[y · z − u3(z) + h(x+ z)], (3.2)

where

h(x+ z) = sup
w

[(x+ z) · w − u4(w)]. (3.3)

The key to our argument is essentially the verification that f is twisted; that is,

y ↦→ Dxf(x0, y) is injective for any fixed x0 ∈ X1 (this condition is well known to

ensure Monge solution for two marginal problems [11, 25, 26, 37]). Although the

reduction to a two marginal problem can be applied more generally, this strategy

to obtain Monge solution depends strongly on the form of the surplus function, as

one needs to be able to prove that the effective surplus function f (defined using the

Kantorovich potentials) is twisted for an arbitrary b-conjugate m-tuple (u1, ..., um)

of functions. A similar strategy is applied successfully in the one dimensional case,

n = 1, in [16].

Proof. Let µ be a solution to (KPb) and (u1, u2, u3, u4) a b-conjugate solution to its
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dual. Consider the set

S =
{︂
(x, y, z, w) : Du1(x) and Du4(w) exist and b(x, y, z, w) = u1(x)+u2(y)+u3(z)+u4(w)

}︂
.

Since the functions u1(x) and u4(w) are Lipschitz, they are differentiable Ln-a.e.,

and therefore µ1 and µ4 a.e. by hypothesis. Hence, µ(S) = 1. Note that

b(x, y, z, w)− u3(z)− u4(w) ≤ f(x, y) ≤ u1(x) + u2(y),

for all x, y, z, w and in particular equality holds on S, where f and h are defined by

(3.2) and (3.3), respectively.

Now, for any fixed x0, we will show that there is only one y0, z0, w0 such that

(x0, y0, z0, w0) ∈ S. Since the function x ↦→ f(x, y0) is convex and f(x, y0) ⩽

u1(x)+u2(y0) for every x, it is subdifferentiable everywhere. For (x0, y0, z0, w0) ∈

S the equality f(x0, y0) = u1(x0)+u2(y0) implies that the subdifferential of f(x, y0)

at x0 is contained in the subdifferential of u1(x) at x0, which is {Du1(x0)}; that

is, Dxf(x0, y0) exists and equals Du1(x0). By a similar argument Dh(x0 + z0)

exists, Dh(x0 + z0) = Dxf(x0, y0) − y0 = w0, and clearly, z0 ∈ argmax[y0 · z −

u3(z) + h(x0 + z)]. We claim that the map (y, z, w) ↦→ Dxf(x0, y) with domain

R := {(y, z, w) : (x0, y, z, w) ∈ S} is injective; this will imply the desired result.

Assume Dxf(x0, y1) = Dxf(x0, y2) for some (y1, z1, w1), (y2, z2, w2) ∈ R.

Note that

y1+w1 = y1+Dh(x0+z1) = Dxf(x0, y1) = Dxf(x0, y2) = y2+Dh(x0+z2) = y2+w2,

(3.4)

and zi ∈ argmax[yi · z − u3(z) + h(x0 + z)], i = 1, 2. Therefore

y1 · z2 − u3(z2) + h(x0 + z2) ≤ y1 · z1 − u3(z1) + h(x0 + z1) (3.5)

y2 · z1 − u3(z1) + h(x0 + z1) ≤ y2 · z2 − u3(z2) + h(x0 + z2); (3.6)
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adding these inequalities gives (y1 − y2) · (z2 − z1) ≤ 0, then by (3.4),

(w2 − w1) · (z2 − z1) ≤ 0. (3.7)

Furthermore, since wi ∈ argmax[(x0 + zi) · w − u4(w)],

(x0 + z1) · w2 − u4(w2) ≤ h(x0 + z1) = (x0 + z1) · w1 − u4(w1) (3.8)

(x0 + z2) · w1 − u4(w1) ≤ h(x0 + z2) = (x0 + z2) · w2 − u4(w2); (3.9)

after adding and canceling similar terms we obtain

(w2 − w1) · (z1 − z2) ≤ 0. (3.10)

Therefore, by (3.7) and (3.10), (w2 −w1) · (z1 − z2) = 0 and we must have equality

in (3.5), (3.6), (3.8) and (3.9). This implies that w2 ∈ argmax[(x0 + z2) · w −

u4(w)]
⋂︁

argmax[(x0 + z1) · w − u4(w)]; additionally, (y2, z2, w2) ∈ R implies

u4(w) is differentiable at w2, and so

x0 + z1 = Du4(w2) = x0 + z2; (3.11)

that is, z1 = z2. The equality wi = Dh(x0 + zi) for i = 1, 2 then implies that

w1 = w2, and so y1 = y2 by (3.4).

In summary, the equation Dxf(x0, y0) = Du1(x0), which holds on S and therefore

µ almost everywhere, implies that (y0, z0, w0) is uniquely defined from x0; therefore,

the 3-tuple (T2, T3, T4) where Ti is the map associating each x0 to y0, z0 and w0

respectively, induces µ.

Remark 3.2. In a similar way, we can prove Theorem 3.1 if we replace F = I by

F = λI , where λ > 0 is a scalar.

A standard argument now implies uniqueness of solutions to (KPb).
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Corollary 3.3. Assume the same conditions as Theorem 3.1. Then the solution to

the Kantorovich problem (KPb) is unique.

Proof. Let µ1 and µ2 be distinct solutions of (KPb). By Theorem 3.1, µ1 =

(Id, T 1
2 , T

1
3 , T

1
4 ) and µ2 = (Id, T 2

2 , T
2
3 , T

2
4 ) for some 3-tuples of measurable maps

(T 1
2 , T

1
3 , T

1
4 ) ̸= (T 2

2 , T
2
3 , T

2
4 ). Since the set of solutions of (KPb) is convex, µ =

1
2
µ1 + 1

2
µ2 is also a solution. Hence, applying one more time Theorem 3.1, we

conclude that µ is concentrated on a graph. This is clearly not possible, completing

the proof.

3.B Non-Monge Solutions

We now illustrate why the conditions on the marginal µ4, the number of variables

m and the map F in the definition of b of Theorem 3.1 are necessary.

3.B.1 The regularity condition on µ4.

Assuming m and F as in Theorem 3.1, the next example will show that if µ4 is

not absolutely continuous, we can find a solution for (KP) not induced by a map.

Furthermore, the uniqueness result of Corollary 3.3 fails.

Example 3.4. Let Xi = B(0, r) ⊆ Rn be an open ball, r > 0. Consider

c(x, y, z, w) = 1
2

(︁
|x − y|2 + |y − z|2 + |z − w|2 + |w − x|2

)︁
and the following

measures on Xi: The Dirac measure at the origin µ2 = µ4 = δ0 and the normal-

ized n-dimensional Lebesgue measure µ1 = µ3 = Ln

knrn
, where kn is the volume

of the n-dimensional ball of radius 1. Take any µ in Π(µ1, µ2, µ3, µ4). Since

(x, y, z, w) ∈ spt(µ) implies y = w = 0, we obtain

∫︂
X1×X2×X3×X4

c(x, y, z, w)dµ =

∫︂
X1×X2×X3×X4

(︂
|x|2 + |z|2

)︂
dµ

=

∫︂
B(0,r)

|x|2dµ1(x) +

∫︂
B(0,r)

|z|2dµ3(z);
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that is, F [µ] is independent of µ, hence any element in Π(µ1, µ2, µ3, µ4) is a

minimizer. Therefore, we can find optimal measures µ to (KP) not concentrated on a

graph of a measurable map; for instance, the product measureµ = µ1⊗µ2⊗µ3⊗µ4.

On the other hand, if we set µ = (Id, F, T, F )♯µ1 where T♯µ1 = µ3 and F = 0, we

get solutions for the Monge problem.

Remark 3.5. Theorem 3.1 in [35] (see Remark 2.6) and the previous example imply

that the cost function (3.1) is not twisted on splitting sets when m = 4 and F = Id is

the identity mapping. Indeed, if the cost were twisted on splitting sets, the result in

[35] would imply that the solution to the problem considered in the example would

be unique and of Monge type; as this is not the case, the twist on splitting sets

condition must fail.

Nearly identical examples can be constructed to show that (3.1) is not twisted

on splitting sets for any m ≥ 4 and any choice of F .

3.B.2 The condition F = I .

In this subsection, by assuming F is not a positive multiple of the identity mapping,

and that m = 4 and n = 2, we will find absolutely continuous marginals in R2

such that a solution of (KPb) is concentrated in a 3-dimensional set. Therefore, this

solution will not be induced by a map. For this purpose, we use the next theorem

established in [4, 5] and Lemma 3.7.

In what follows, we denote by ℜd the set of all 2 × 2 real matrices that can be

expressed as the product of d positive definite real matrices.

Theorem 3.6. Assume that M =

⎛⎝a b

c d

⎞⎠ is a 2 × 2 matrix and |M | > 0, where

|M | denotes the determinant of M , then:

1. M ∈ ℜ2 iff M is diagonalizable and its eigenvalues are both positive.

2. M ∈ ℜ3 iff tr(M) > 0 or (c− b)2 > 4|M |.
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We now recall a couple of well known formulas which will be useful in the

construction of counterexamples for the rest of this chapter.

For any 2× 2 matrices A and B we have:

|A+B| = |A|+ |B|+ tr
(︁
Adj(A)B

)︁
, (3.12)

where Adj(A) denote the adjugate of A.

Given a convex function f : Rn −→ R ∪ {∞}, its Legendre-transform will be

denoted by f ∗; that is, f ∗(y) = supx(x · y − f(x)). We have special interest in the

Legendre-transform of f(x) = 1
2
xTAx + b · x for a given positive definite n × n

matrix A and b ∈ Rn. For this function, we have:

f ∗(y) =
1

2
(y − b)TA−1(y − b). (3.13)

Lemma 3.7. For each 2× 2 real matrix F such that F ̸= λI for some λ > 0, there

exists M ∈ ℜ2 such that F +M is singular.

Proof. Let F =

⎛⎝a b

c d

⎞⎠ be 2× 2 real matrix such that F ̸= λI for any λ > 0. We

want to show that |F +M | = 0 for some M =

⎛⎝e f

g h

⎞⎠ ∈ ℜ2. First, note that by

(3.12),

|F +M | = |F |+ |M |+ (de− gb) + (ah− fc).

We divide the proof into 3 cases:

1. If c ̸= 0, take any e, h ∈ R with e ̸= h and e, h > 0. By setting f =

|F |+eh+de+ah
c

and g = 0 we obtain |M | > 0 and |F +M | = 0. Furthermore,

M is triangular with distinct eigenvalues e and h, hence M is diagonalizable.

Since e, h > 0, we get M ∈ ℜ2 by Theorem 3.6.

2. If c = 0 and b ̸= 0, using a similar argument as in 1. we obtain the same
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result by taking f = 0, g = |F |+eh+de+ah
b

and any e, h > 0, e ̸= h.

3. If b = c = 0, note that by hypothesis a ̸= d. Also, we have a, d ≥ 0, a, d < 0

or without loss of generality a < 0 and d ≥ 0. For the second and third

case, we can make M diagonalizable with positive determinant and satisfying

|F + M | = 0, by taking e = h = −a and f = g = 0. Hence, M ∈ ℜ2 by

Theorem 3.6. For the first case, assume without loss of generality a > d ≥ 0

and consider the matrix

M =

⎛⎝e f

g h

⎞⎠ =

⎛⎝ ad
a−d

+ λ d2

a−d
+ a+d

2a
λ

− a2

a−d
− λ −ad

a−d
− a+d

2a
λ

⎞⎠ ,

with λ > 0. Clearly,

|F +M | =

⃓⃓⃓⃓
⃓⃓ a2

a−d
+ λ d2

a−d
+ a+d

2a
λ

− a2

a−d
− λ − d2

a−d
− a+d

2a
λ

⃓⃓⃓⃓
⃓⃓ = 0.

Since d2

a−d
+ a+d

2a
λ = −d+ ad

a−d
+ a+d

2a
λ and ad

a−d
+ λ = −a+ a2

a−d
+ λ, we

have

|M | = −
(︂
− a+

a2

a− d
+ λ
)︂(︂ ad

a− d
+

a+ d

2a
λ
)︂
+
(︂ a2

a− d
+ λ
)︂(︂

− d+
ad

a− d
+

a+ d

2a
λ
)︂

= a
(︂ ad

a− d
+

a+ d

2a
λ
)︂
− d
(︂ a2

a− d
+ λ
)︂

=
(︂a+ d

2
− d
)︂
λ

=
(︂a− d

2

)︂
λ > 0.

Furthermore, tr(M) = e + h = a−d
2a

λ > 0. Hence, tr(M)2 − 4|M | > 0 for

big enough λ; that is, the eigenvalues of M given by

tr(M)±
√︁

tr(M)2 − 4|M |
2
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are both positive and different. Then M is diagonalizable and belongs to ℜ2,

by Theorem 3.6.

Proposition 3.8. For b(x, y, z, w) = x ·y+y ·z+z ·w+w ·F (x), with (x, y, z, w) ∈

(R2)4 and F a linear map such that F ̸= λI for any λ > 0, there are absolutely

continuous marginals µ1, µ2, µ3, µ4 with respect to L2, such that a solution of (KPb)

is not concentrated on a graph of a measurable map.

Proof. Let F =

⎛⎝a b

c d

⎞⎠ be the matrix representation of F (x). By the previous

lemma we can choose M =

⎛⎝e f

g h

⎞⎠ ∈ ℜ2 such that F + M is singular. Note

that A := M−1F + I is also singular and M−1 ∈ ℜ2. Let M1,M2 > 0 be such

that M−1 = M1M2. Decompose each vector x ∈ R2 into orthogonal components

x = x⊥ + x∥ with x∥ in the null space of A and x⊥ in the orthogonal complement

of the null space of A; that is, the range of AT . For all x, y, z, w define:

i. u1(x) =
|x⊥|2
2

+ g1(x) + g2(x), u2(y) =
|AT y|2

2
+ g(y), where g1(x) =

1
2
(M2Fx)TM1(M2Fx), g2(x) =

1
2
(Fx)TM2(Fx) and g(y) = 1

2
yTM1y.

ii. u3(z) =
1
2
zT (M−1

1 +M2)z, u4(w) =
1
2
wTM−1

2 w.

iii. ρ(x, y) = supz,w[b(x, y, z, w)− u3(z)− u4(w)].

Consider the set:

W =
{︂
(x, y, z, w) : x⊥ = ATy, z = M1(y +M2Fx) and w = M2(z + Fx)

}︂
.

We claim

b(x, y, z, w)− u1(x)− u2(y)− u3(z)− u4(w) ≤ 0, (3.14)
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for all (x, y, z, w) ∈ (R2)4 and equality holds on W . For the inequality, it suffices

to prove ρ(x, y) ≤ u1(x) + u2(y).

ρ(x, y) = x · y + sup
z,w

[y · z + z · w + w · (Fx)− u3(z)− u4(w)]

= x · y + sup
z

[︁
y · z − u3(z) + sup

w

[︁
(z + Fx) · w − u4(w)

]︁]︁
= x · y + sup

z

[︁
y · z − u3(z) + u∗

4(z + Fx)
]︁

= x · y + sup
z

[︁
y · z − u3(z) +

1

2
(z + Fx)TM2(z + Fx)

]︁
by (3.13)

= x · y + sup
z

[︁
y · z − 1

2
zTM−1

1 z + zTM2Fx
]︁
+ g2(x)

= x · y + 1

2
(y +M2Fx)TM1(y +M2Fx) + g2(x) by (3.13)

= x · y + yTM1M2Fx+ g1(x) + g2(x) + g(y)

= yT · Ax+ g1(x) + g2(x) + g(y)

= yT · Ax⊥ + g1(x) + g2(x) + g(y)

= ATy · x⊥ + g1(x) + g2(x) + g(y)

≤ |ATy|2

2
+

|x⊥|2

2
+ g1(x) + g2(x) + g(y) by the Cauchy-Schwarz Inequality

= u1(x) + u2(y),

with equality when x⊥ = ATy. Hence, for any element (x0, y0, z0, w0) in W ,

ρ(x0, y0) = u1(x0) + u2(y0). Furthermore, by tracing the cases of equality in the

preceding string of inequalities, it is not hard to show that (z0, w0)maximizes the map

(z, w) ↦→ y0 ·z+z ·w+w ·(Fx0)−u3(z)−u4(w). Then b(x0, y0, z0, w0)−u3(z0)−

u4(w0) = ρ(x0, y0); that is b(x0, y0, z0, w0) − u3(z0) − u4(w0) = u1(x0) + u2(y0)

on W , proving the claim. Since x∥ and y can be chosen freely, dim(W ) = 2 +

dim(null(A)) ≥ 3. Then, if we take any probability measure µ, concentrated on W

and absolutely continuous with respect to dim(W )-dimensional Hausdorff measure,

spt(µ) will not be concentrated on the graph of a measurable map. Now, take the
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projections of µ as marginals; that is, set µ1 = (πx)♯µ, µ2 = (πy)♯µ, µ3 = (πz)♯µ

and µ4 = (πw)♯µ. Inequality (3.14) together with the fact that equality holds µ

almost everywhere, implies that µ is a solution to (KPb). It remains to show that

these marginals are absolutely continuous with respect to Ln. Since µ is absolutely

continuous with respect to dim(W )-dimensional Hausdorff measure, it will suffice

to show that the canonical projections πx, πy, πz, πw from the linear subspace W

are surjective. We claim that M1 and M2 can be chosen so that this is the case.

Indeed, since y can be chosen freely in the definition of W , it is immediate that πy

is surjective. Given any x = x∥ + x⊥, we can find y such that x⊥ = ATy, since AT

maps R2 onto its range, which is the orthogonal complement of the null space of A.

Therefore, (x, y, z = M1(y+M2Fx), w = M2(z+Fx)) ∈ W , which implies πx is

surjective. Turning to πz and πw, note that Mλ
1 := λM1 > 0 and Mλ

2 := 1
λ
M2 > 0,

and that replacing M1 and M2 by Mλ
1 and Mλ

2 respectively does not change M (or

therefore A). Set Qλ
1 = Mλ

1 +AAT −AT and Qλ
2 = (M−1)T +Mλ

2 (AA
T −AT +

FAT ) and note that, for λ sufficiently large, both Qλ
1 and Qλ

2 are invertible. Now, let

z ∈ R2. Choose y such that Qλ
1y = z and x = x∥ + x⊥ = 0 + ATy = ATy. Then

(x, y,Mλ
1 (y +Mλ

2 Fx),Mλ
2 (M

λ
1 (y +Mλ

2 Fx) + Fx)) ∈ W , and

Mλ
1 (y +Mλ

2 Fx) = Mλ
1 (y +Mλ

2 FATy)

= (Mλ
1 +Mλ

1M
λ
2 FAT )y

= (Mλ
1 + (A− I)AT )y

= (Mλ
1 + AAT − AT )y

= Qλ
1y = z.

This establishes surjectivity of πz. Similarly, for w ∈ R2, choosing y such that

w = Qλ
2y and x = x∥ + x⊥ = 0 + ATy = ATy, we have that (x, y,Mλ

1 (y +

Mλ
2 Fx),Mλ

2 (M
λ
1 (y +Mλ

2 Fx) + Fx)) ∈ W , and
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Mλ
2 (M

λ
1 (y +Mλ

2 Fx) + Fx)) = Mλ
2 (Q

λ
1y + FATy)

= Mλ
2 (M

λ
1 + AAT − AT + FAT )y

= ((M−1)T +Mλ
2 (AA

T − AT + FAT ))y

= Qλ
2y = w.

Therefore, πw is surjective, completing the proof.

3.B.3 The condition m = 4.

In this subsection we show that the hypothesis on the numbers of variables in

Theorem 3.1 is necessary. We will follow the ideas behind the proof of Proposition

3.8.

In what follows, the presented variables are in R2. For a given xi ∈ R2 its

coordinates will be denoted by x1
i and x2

i respectively.

Proposition 3.9. For b(x1, . . . , xm) =
∑︁m−1

i=1 xi · xi+1 + xm · x1, m ≥ 5, there are

absolutely continuous marginals µi with respect to L2, such that a solution of (KPb)

is not concentrated on a graph.

Proof. By part 2 of Theorem 3.6, M =

⎡⎣−1 3

0 −1

⎤⎦ ∈ ℜ3. Hence, we can choose

positive definite matrices M1,M2,M3 > 0 such that M = M1M2M3. For all

x1, . . . , xm define:

i. um
1 (x1) =

3(x2
1)

2

2
+g1(x1)+gm2 (x1), where g1(x1) =

1
2
(M3x1)

TM2(M3x1)+

1
2
(M2M3x1)

TM1(M2M3x1) and gm2 (x1) =
1
2
xT
1M3x1 +

m−5
2

|x1|2 for

all m ≥ 5.

ii. u2(x2) =
3(x1

2)
2

2
+g(x2) with g(x2) =

1
2
xT
2M1x2, u3(x3) =

1
2
xT
3 (M

−1
1 +

M2)x3 and u4(x4) =
1
2
xT
4 (M

−1
2 +M3)x4 for all m ≥ 5.
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iii. u5(x5) =
1
2
xT
5M

−1
3 x5 for m = 5.

iv. For m > 5, ui(xi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
xT
5 (M

−1
3 + I)x5 if i = 5

|xi|2 if 5 < i < m

1
2
|xm|2 if i = m.

v. ρm(x1, x2) = supx3,...,xm

[︁
b(x1, . . . , xm)−

∑︁m
i=3 ui(xi)

]︁
for all m ≥ 5.

Consider the set:

W =
{︂
(x1, . . . , xm) : x

2
1 = x1

2, x3 = M1(x2 +M2M3x1), x4 = M2(x3 +M3x1),

x5 = M3(x4 + x1) and xi = x1 + xi−1, for i ≥ 6
}︂
.

We claim that for m ≥ 5, b(x1, . . . , xm)−
∑︁m

i=3 ui(xi) ≤ um
1 (x1) + u2(x2), for all

(x1, . . . , xm) ∈ (R2)m, and equality holds on W . For the inequality, it suffices to

prove ρm(x1, x2) ≤ um
1 (x1) + u2(x2) for all m ≥ 5. We divide the proof of the

claim into two cases:

1. For m=5

ρ5(x1, x2) = x1 · x2 + sup
x3,x4,x5

[x2 · x3 + x3 · x4 + x4 · x5 + x5 · x1 − u3(x3)− u4(x4)− u5(x5)]

= x1 · x2 + sup
x3

[︂
x2 · x3 − u3(x3) + sup

x4

[︁
x3 · x4 − u4(x4)

+ sup
x5

[(x4 + x1)x5 − u5(x5)]
]︁]︂

= x1 · x2 + sup
x3

[︁
x2 · x3 − u3(x3) + sup

x4

[x3 · x4 − u4(x4) + u∗
5(x4 + x1)]

]︁
= x1 · x2 + sup

x3

[︁
x2 · x3 − u3(x3) + sup

x4

[x3 · x4 − u4(x4)

+
1

2
(x4 + x1)

TM3(x4 + x1)]
]︁

by (3.13)

= x1 · x2 + sup
x3

[︁
x2 · x3 − u3(x3) + sup

x4

[x3 · x4 −
1

2
xT
4M

−1
2 x4

+ xT
4M3x1 + g52(x1)]

]︁
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= x1 · x2 + sup
x3

[︁
x2 · x3 − u3(x3) +

1

2
(x3 +M3x1)

TM2(x3 +M3x1)
]︁

+ g52(x1) by (3.13)

= x1 · x2 + sup
x3

[︁
x2 · x3 −

1

2
xT
3M

−1
1 x3 + (M3x1)

TM2x3

]︁
+ g52(x1)

+
1

2
(M3x1)

TM2(M3x1)

= x1 · x2 + sup
x3

[︁
x2 · x3 − u3(x3) +

1

2
(x3 +M3x1)

TM2(x3 +M3x1)
]︁
+ g52(x1)

= x1 · x2 +
1

2
(x2 +M2M3x1)

TM1(x2 +M2M3x1) + g52(x1)

+
1

2
(M3x1)

TM2(M3x1) by (3.13)

= x1 · x2 + xT
2Mx1 + g1(x1) + g52(x1) + g(x2)

= 3x2
1x

1
2 + g1(x1) + g52(x1) + g(x2)

≤ 3(x2
1)

2

2
+

3(x1
2)

2

2
+ g1(x1) + g52(x1) + g(x2) by the Cauchy-Schwarz Ineq.

= u5
1(x1) + u2(x2).

2. The case m ≥ 6 will be proved using induction. For m = 6, note that:

x4·x5−u5(x5)+sup
x6

[(x5+x1)x6−u6(x6)] = (x1+x4)x5−
1

2
xT
5M

−1
3 x5+

1

2
|x1|2

and

sup
x5

[(x1+x4)x5−
1

2
xT
5M

−1
3 x5+

1

2
|x1|2] =

1

2
(x4+x1)

TM3(x4+x1)+
1

2
|x1|2.

Then
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ρ6(x1, x2) = ρ5(x1, x2) +
1

2
|x1|2

≤ u5
1(x1) + u2(x2) +

1

2
|x1|2

= u6
1(x1) + u2(x2). (3.15)

Assume the statement is true for m− 1. Then

ρm(x1, x2) = sup
x3,...,xm

[︂m−1∑︂
i=1

xi · xi+1 + xm · x1 −
m∑︂
i=3

ui(xi)
]︂

= sup
x3,...,xm−1

[︂m−2∑︂
i=1

xi · xi+1 −
m−1∑︂
i=3

ui(xi) + sup
xm

[︁
(x1 + xm−1)xm − um(xm)

]︁]︂
= sup

x3,...,xm−1

[︂m−2∑︂
i=1

xi · xi+1 +
|x1 + xm−1|2

2
−

m−1∑︂
i=3

ui(xi)
]︂

by (3.13)

= sup
x3,...,xm−1

[︂
b(x1, . . . , xm−1)−

m−2∑︂
i=3

ui(xi)−
|xm−1|2

2
+

|x1|2

2

]︂
= ρm−1(x1, x2) +

|x1|2

2
(3.16)

≤ um−1
1 (x1) + u2(x2) +

|x1|2

2
by induction hypothesis

= um
1 (x1) + u2(x2).

Ifx2
1 = x1

2, we obtain ρ5(x1, x2) = u5
1(x1)+u2(x2) and by (3.15), ρ6(x1, x2) =

u6
1(x1) + u2(x2). Furthermore, by (3.16), ρm(x1, x2) = ρm−1(x1, x2) +

|x1|2
2

.

Hence, using induction we can easily prove that ρm(x1, x2) = um
1 (x1)+u2(x2)

for all m ≥ 5, when x2
1 = x1

2.

On the other hand, for any element (x̄1, . . . , x̄m) in W , (x̄3, . . . , x̄m) maximizes the

map:

(x3, . . . , xm) ↦→ x̄2 · x3 +
m−1∑︂
i=3

xi · xi+1 + xm · x̄1 −
m∑︂
i=3

ui(xi).
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Hence b(x̄1, . . . , x̄m) −
∑︁m

i=3 ui(x̄i) = ρm(x̄1, x̄2)= um
1 (x̄1) + u2(x̄2). This proves

the claim.

Since x1
1 and x2 = (x1

2, x
2
2) can be chosen freely, W is three dimensional, and

the claim implies that any probability measure µ supported on W is optimal for its

marginals in (KPb); such solutions are manifestly not of Monge type. It remains to

show that the marginals µi = (πxi
)♯µ of µ can be taken to be absolutely continuous.

As in the proof of Proposition 3.8, this will be the case when µ is absolutely

continuous with respect to 3-dimensional Hausdorff measure on W , provided that

the canonical projections πxi
from W are surjective; we prove this now.

It is clear that πx1 and πx2 are surjective. Turning to the other projections, set

x1 =

⎡⎣x1
1

0

⎤⎦, x2 =

⎡⎣ 0

x2
2

⎤⎦ and write Mk =

⎡⎣m1
k m2

k

m2
k m3

k

⎤⎦, k = 1, 2, 3.

Then (x1, . . . , xm) ∈ W where x3 = M1(x2+M2M3x1), x4 = M2(x3+M3x1),

x5 = M3(x4 + x1) and xi = x1 + xi−1 for i ≥ 6. Note that:

x4 = M2x3 +M2M3x1

= M2M1(x2 +M2M3x1) +M2M3x1

= M2M1x2 + (M2M1M2M3 +M2M3)x1,

or equivalently,

x4 = M−1
3

(︂
MTx2 +

⎡⎣a b

b d

⎤⎦x1

)︂
= M−1

3

⎡⎣ ax1
1

−x2
2 + bx1

1

⎤⎦ , (3.17)

where

⎡⎣a b

b d

⎤⎦ := M3M2M1M2M3+M3M2M3 is symmetric and positive definite.

x5 = M3x4+M3x1 =

⎡⎣ ax1
1

−x2
2 + bx1

1

⎤⎦+

⎡⎣m1
3x

1
1

m2
3x

1
1

⎤⎦ =

⎡⎣ (a+m1
3)x

1
1

−x2
2 + (b+m2

3)x
1
1

⎤⎦ (3.18)
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Finally, for i ≥ 6 we get

xi = x1 + xi−1 = (i− 5)x1 + x5 =

⎡⎣(i− 5 + a+m1
3)x

1
1

−x2
2 + (b+m2

3)x
1
1

⎤⎦ . (3.19)

Clearly, since M3 > 0 and

⎡⎣a b

b d

⎤⎦ > 0 we have a, a + m1
3, i − 5 + a + m1

3 > 0

(when i ≥ 6 for the last inequality), implying that the equations (3.17), (3.18) and

(3.19) each have a solution for arbitrary choice of x4, x5 and xi, i ≥ 6, respectively,

and so the projections πxi
, i ≥ 4 are surjective. Finally, we turn to the equation for

x3:

x3 = M1x2 +Mx1 =

⎡⎣m2
1x

2
2 − x1

1

m3
1x

2
2

⎤⎦ ,

which has a solution for every fixed x3 ∈ R2, as m3
1 > 0. Thus, πx3 is surjective.

This completes the proof of the proposition.
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Chapter 4

Multi-marginal optimal transport via

graph theory

In this chapter we study a multi-marginal optimal transport problem with cost

∑︂
{i,j}∈P

|xi − xj|2, (4.1)

where P ⊆ Q := {{i, j} : i, j ∈ {1, 2, ...m}, i ̸= j} (cost (4.1) reduces to (1.1)

when P = Q, and (1.2) with F = I , if P =
{︁
{i, i + 1} : i = 1, . . . ,m − 1

}︁
∪{︁

{1,m}
}︁

). We reformulate this problem using graph theory; in particular, we

associate each cost of the form (4.1) to a graph with m vertices whose set of edges

is indexed by P . For instance, the Gangbo-Świȩch cost (1.1) is associated to the

complete graph Km and the cyclic cost (1.2) to the cycle graph. See Figures (1.1)

and (1.2) for the case m = 7.

Instead of minimizing (KP), we will trent the equivalent problem of maximizing:

∫︂
X

b(x1, . . . , xm)dµ (KPG)
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where

b(x1, . . . , xm) =
∑︂

{i,j}∈P

xi · xj, (4.2)

over the same admissible class of (KP).

4.A Some graph theory and preliminary results

First, let us recall some definitions from Graph Theory. An undirected simple

graph G is an ordered pair (V (G), E(G)), consisting of a finite set of vertices

V (G) and a set of edges E(G) ⊆ {{v, w} : v, w ∈ V (G) and v ̸= w}. Through-

out this work, every graph G is an undirected simple graph. A trail is a finite

sequence
{︁
{vi1 , vi2}, {vi2 , vi3}, . . . , {vil , vil+1

}
}︁

of pairwise distinct edges which

joins a sequence of vertices. A path is a trail in which all vertices are distinct:

vij ̸= vik for all j ̸= k. A cycle graph is a trail in which the first and last

vertex are the only one repeated:
{︁
{vi1 , vi2}, {vi2 , vi3}, . . . , {vil , vil+1

}
}︁
, where{︁

{vi1 , vi2}, {vi2 , vi3}, . . . , {vil−1
, vil}

}︁
is a path and vil+1

= vi1 . A tree is a graph

where any two distinct vertices are connected by a unique path. A graph G is con-

nected if for every v, w ∈ V (G) there exists a path in the graph joining them. We

will denote by I(V (G)) the set of indices of V (G) (that is, for V (G) = {v1, ..., vm},

I(V (G)) = {1, 2, ...,m}) and |V (G)| the cardinality of V (G).

A subgraph S of a graph G is a graph whose sets of vertices and edges are

subsets of V (G) and E(G) respectively. In this case, we call the graph G \ S :=

(V (G), E(G) \ E(S)) the extraction of S from G. Note that if G is complete

and V (G) = V (S), G \ S coincides with the complement of S; that is, G \ S =

(V (S), E(Sc)), where E(Sc) := {{v, w} : v, w ∈ V (S) and {v, w} /∈ E(S)} .

Given v, w ∈ V (G), v and w are called adjacent if {v, w} ∈ E(G). The open

neighborhood of a vertex v, denoted NG(v) (or simply N(v) if there is not danger
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of confusion), is the set of vertices that are adjacent to v; that is,

N(v) =
{︁
w ∈ V (G) : {v, w} ∈ E(G)

}︁
.

The closed neighborhood of a vertex v, denoted NG(v)(or simply N(v)), is the set

N(v) ∪ {v}.

A graph G is complete if N(v) = V (G) \ {v} for every v ∈ V (G). A clique

G̃ = (V (G̃), E(G̃)) of a graph G = (V (G), E(G)) is a complete subgraph of G;

that is, G̃ is a subgraph of G and satisfies NG̃(v) = V (G̃)\{v} for every v ∈ V (G̃).

A clique is maximal if it is not a proper subgraph of any other clique of G.

The union of two given graphs G1 and G2 (denoted by G1 ∪ G2) is the graph

with set of vertices V (G1) ∪ V (G2) and edges E(G1) ∪ E(G2). A complete k-

partite graph G is a graph whose set of vertices V (G), can be partitioned into k

subsets V1, V2, . . . , Vk such that for every v ∈ Vj , N(v) =
⋃︁k

α=1
α̸=j

Vα for any fixed

j ∈ {1, . . . , k}. A complete k-partite graph G is denoted as Km1,...,mk
, where

|Vj| = mj for every j ∈ {1, . . . , k}.

Remark 4.1. Note that the definition of a graph implies v /∈ N(v) for every v ∈

V (G). Furthermore, from now on, if S is a subgraph of G and v ∈ V (S), we will

write N(v) for the open neighborhood of v in G; that is, N(v) = NG(v). Similarly,

N(v) = NG(v).

The next two concepts are used to facilitate the description of our main results,

established in Theorem 4.9 and 4.12.

Definition 4.2. We say that a subset A of V (G) is the inner hub of G, if A =

V (S1)
⋂︁

V (S2) for any two maximal cliques S1 and S2 of G.

Example 4.3. The picture below shows the graphG := S1∪S2∪S3, whereS1, S2 and

S3 are complete graphs with V (S1) = {v6, v7, v8, v9}, V (S2) = {v6, v7, v8, v4, v5}

and V (S3) = {v6, v7, v8, v1, v2, v3, v10}. Clearly, {S1, S2, S3} is the collection of
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maximal cliques of G, and the inner hub of G is the set formed by the vertices of the

triangle colored blue; that is, A = {v6, v7, v8}.

v1

v2v3

v4

v5

v6

v7 v8

v9

v10

Figure 4.1: Graph G = S1 ∪ S2 ∪ S3.

Not all graphs have an inner hub. Letting {Sj}lj=1 be the maximal cliques of a

graph G, it is clear that G =
⋃︁l

j=1 Sj; A is the inner hub of G if V (Sj)∩V (Sk) = A

for all j ̸= k, j, k ∈ {1, . . . , l}. Note that we allow the inner hub A to be the empty

set, which is the case when G is disconnected and each connected component is

complete. At the other extreme, we could have A = G, which is the case when G is

complete.

Definition 4.4. Let {S1j}l1j=1 and {S2j}l2j=1 be the collection of maximal cliques of

given graphs G1 and G2, respectively. Assume that G1 and G2 have inner hubs A1

and A2, respectively. We say the graphs G1 and G2 are glued on a clique if:

1. There are j ∈ {1, . . . , l1} and k ∈ {1, . . . , l2} such that S1j = S2k.
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2. V (G1) ∩ V (G2) = V (S1j).

Example 4.5. The picture below shows the graph S1 ∪ S2 ∪ S3, where {S1, S2, S3}

is the collection of maximal cliques in Example 4.3, glued with the graph S ′
1 ∪

S ′
2 ∪ S ′

3 ∪ S ′
4 on S2, where S ′

1, S
′
2, S

′
3 and S ′

4 are complete graphs with V (S ′
1) =

{v4, v5, v14}, V (S ′
2) = {v6, v7, v8, v4, v5} = V (S2), V (S ′

3) = {v4, v5, v15, v16} and

V (S ′
4) = {v4, v5, v11, v12, v13}. Note that the inner hub of S ′

1 ∪ S ′
2 ∪ S ′

3 ∪ S ′
4, whose

collection of maximal cliques is {S ′
j}4j=1, is formed by the vertices of the edges

colored red; that is, A′ = {v4, v5}.

v1

v2v3

v4

v15

v16

v11

v12

v13
v5

v14
v6

v7 v8

v9

v10

Figure 4.2: Graph
(︂⋃︁3

j=1 Sj

)︂⋃︁(︂⋃︁4
j=1 S

′
j

)︂
.
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4.A.1 Preliminary results connecting graph theory and multi-

marginal optimal transport

In this subsection, we establish some initial results connecting solutions of the multi-

marginal optimal transport problem (KPG) and the structure of the corresponding

graph. These include a couple of very basic observations (Proposition 4.6), as well

as a technical lemma which will be used throughout the paper (Lemma 4.8).

Proposition 4.6. Let G be the graph corresponding to some P ⊆ Q and b the suplus

(4.2).

1. Assume G is not connected and let xi be any vertex such that there is no path

between x1 and xi, and assume that µi is not a dirac mass. Then there exist

non Monge solutions to (KPG), and, if µ1 is not a dirac mass, the solution to

(KPG) is not unique.

2. Assume {v1, vi} is not an edge of G for some i, and all the marginals are dirac

measures except µ1 and µi, with µ1 absolutely continuous with respect to Ln.

Then, there exist solutions of non-Monge form to (KPG) and the solution to

(KPG) is not unique.

Proof. Consider the first assertion. Let G1 be the connected component of G

satisfying v1 ∈ Z := V (G1), and G2 the graph union of the other components of

G, with W := V (G2). Then the surplus (4.2) takes the separable form:

b(x1, . . . , xm) = bZ(xZ) + bW (xW ),

where we decompose x = (xZ , xW ) into components xZ and xW whose in-

dices of their coordinates lie in I(Z) and I(W ), respectively, and bZ(xZ) =∑︁
{vs,vt}∈E(G1)

xs · xt, bW (xW ) =
∑︁

{vs,vt}∈E(G2)
xs · xt. Solutions to (KPG) are

then exactly measures µ whose projections µZ and µW onto the appropriate sub-

spaces are optimal for the multi-marginal optimal transport problem with costs bZ
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and bW , respectively, and the appropriate marginals. In particular, the dependence

structure between µZ and µW is completely arbitrary, and so, if µi is not a dirac

mass for some vi ∈ W , we immediately get the existence of non-Monge solutions

(for instance, the product measure µZ ⊗ µW ), and if in addition µ1 is not a dirac

mass, solutions are non-unique.

Turning to assertion 2, without loss of generality, assume {v1, v2} is not an edge

of G. Take µ1 be absolutely continuous with respect to Ln, µ2 be any measure other

than a Dirac mass (so that µ2 charges at least two points) and let all other marginals

be Dirac masses, µi = δx̄i
. In this case, measures µ whose marginals are the µi

all take the form µ = σ(x1, x2) ⊗ δx̄3 ⊗ . . . ⊗ δx̄m , where σ ∈ P (X1 × X2) has

marginals µ1 and µ2. For any such µ, we have

∫︂
X1×X2×...×Xm

b(x1, . . . , xm)dµ(x1, . . . xm) =

∫︂
X1×X2

b(x1, x2, x̄3, . . . , x̄m)dσ(x1, x2)

=

∫︂
X1

b1(x1, x̄3, . . . , x̄m)dµ1(x1)

+

∫︂
X2

b2(x2, x̄3, . . . , x̄m)dµ2(x2)

where b1(x1, x3, . . . , xm) =
∑︁

{vs,vt}∈E(G) s,t ̸=2 xs · xt and b2(x2, x3, . . . , xm) =∑︁
s∈I(N(v2))

x2 · xs. Thus, the Kantorovich functional is independent of σ, and

so any σ with marginals µ1 and µ2 is optimal. We conclude that solutions are

non-unique, and can be of non-Monge form (as is the case when, for example,

σ = µ1 × µ2 is the product measure).

Corollary 4.7. Under the hypothesis in any of assertion 1 or assertion 2 of Propo-

sition 4.6, the surplus b is not twisted on b-splitting sets.

Proof. Suppose b is twisted on b-splitting sets. From Remark 2.6 every solution

to (KP) is induced by map; that is, every solution to (KP) is of Monge type. This

clearly contradicts Proposition 4.6, completing the proof of the corollary.

Clearly, in light of the first assertion there is no hope of obtaining Monge solution
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results for disconnected graphs (except in the trivial case when each µi with xi not

connected to µ1 is a dirac mass, in which case the problem reduces to a problem

on the connected component containing x1.) We therefore will focus on connected

graphs throughout this paper. On the other hand, our work in [48] suggests that at

least for some surplus functions where {v1, vi} is not an edge of G for some i, unique

Monge solutions may exist when extra regularity conditions on the marginals are

imposed (even though the twist on splitting sets condition fails). Our results in the

following sections confirm that this is indeed the case.

The proofs of our main results will require the following technical lemma.

Lemma 4.8. Let G be a graph, with V (G) = {v1, . . . , vm}, and b(x1, . . . , xm) =∑︁
{vs,vt}∈E(G) xs · xt be the surplus associated to G. Let (u1, . . . , um) a b-conjugate

m-tuple. Set

W :=

{︄
(x1, . . . , xm) ∈ X1 × . . .×Xm :

m∑︂
i=1

ui(xi) = b(x1, . . . , xm)

}︄
.

Fixx0
1 ∈ X1 and for convenience of notation setx1

1 = x2
1 = x0

1. Let (x1
1, x

1
2, . . . , x

1
m), (x

2
1, x

2
2, . . . , x

2
m) ∈

W .

1. Assume there are sets V1, V2 ⊆ V (G) such that N(vs) = V2 for every s ∈

I(V1), and set

ys =

⎧⎪⎨⎪⎩x1
s if s ∈ {1, . . . ,m} \ I(V1)

x2
s if s ∈ I(V1).

If ∑︂
s∈I(V2)

x1
s =

∑︂
s∈I(V2)

x2
s, (4.3)

then y := (y1, y2, . . . , ym) ∈ W .
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2. For all t ∈ {1, . . . ,m} we have

(︁
x2
t − x1

t

)︁
·
∑︂

s∈I(N(vt))

(︁
x1
s − x2

s

)︁
≤ 0. (4.4)

3. If there exists t ∈ {1, . . . ,m} such that

∑︂
s∈I(N(vt))

x1
s =

∑︂
s∈I(N(vt))

x2
s, (4.5)

then x1
t = x2

t .

4. Assume x1
p = x2

p and Dup(x
1
p) exists for some p ∈ {1, . . . ,m}.

(a) For every t ∈ {2, . . . ,m} \ {p} satisfying

N(vp) = N(vt), (4.6)

we have x1
t = x2

t .

(b) Assume there are sets F1, F2, F3 such that F1, F2 ⊆ N(vp) and N(vs) =

F2 ∪ F3 for every s ∈ I(F1). If x1
s = x2

s for every s ∈ I(N(vp) \ F1 ∪

F2) ∪ I(F3), then x1
s = x2

s for every s ∈ I(F1).

Proof. Since for every s ∈ I(V1) we have N(vs) = V2, and v /∈ N(v) for all

v ∈ V (G), we get V1 ∩ V2 = ∅. Hence, we can write

b(x1, . . . , xm) = g(x1, . . . , xm) +
(︂ ∑︂

s∈I(V2)

xs

)︂
·
(︂ ∑︂

s∈I(V1)

xs

)︂
,

where g(x1, . . . , xm) does not depend on {xs}s∈I(V1). Hence

{x2
s}s∈I(V1) ∈ Argmax

{︂
{xs}s∈I(V1) ↦→

(︂ ∑︂
s∈I(V2)

x2
s

)︂
·
(︂ ∑︂

s∈I(V1)

xs

)︂
−
∑︂

s∈I(V1)

us(xs)
}︂
,
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as (x2
1, x

2
2, . . . , x

2
m) ∈ W . Then, If (4.3) holds we get

{x2
s}s∈I(V1) ∈ Argmax

{︂
{xs}s∈I(V1) ↦→

(︂ ∑︂
s∈I(V2)

x1
s

)︂
·
(︂ ∑︂

s∈I(V1)

xs

)︂
−
∑︂

s∈I(V1)

us(xs)
}︂
,

which implies y ∈ W , as (x1
1, x

1
2, . . . , x

1
m) ∈ W . This completes the proof of part 1.

Using the arguments of the previous proof, and taking V1 = {vt} and V2 = N(vt)

for any fixed t ∈ {2, . . . ,m}, we deduce

x2
t ∈ Argmax

{︂
xt ↦→

(︂ ∑︂
s∈I(N(vt))

x2
s

)︂
· xt − ut(xt)

}︂
.

Similarly,

x1
t ∈ Argmax

{︂
xt ↦→

(︂ ∑︂
s∈I(N(vt))

x1
s

)︂
· xt − ut(xt)

}︂
.

Then, (︂ ∑︂
s∈I(N(vt))

x2
s

)︂
· x1

t − ut(x
1
t ) ≤

(︂ ∑︂
s∈I(N(vt))

x2
s

)︂
· x2

t − ut(x
2
t ) (4.7)

and (︂ ∑︂
s∈I(N(vt))

x1
s

)︂
· x2

t − ut(x
2
t ) ≤

(︂ ∑︂
s∈I(N(vt))

x1
s

)︂
· x1

t − ut(x
1
t ). (4.8)

Adding (4.7) and (4.8) (and eliminating terms) we obtain inequality (4.4), complet-

ing the proof of the second part.

The proof of part 3 follows immediately from part 2, as if there exists t ∈

{2, . . . ,m} satisfying (4.5) we get

x1
t +

∑︂
s∈I(N(vt))

x1
s = x2

t +
∑︂

s∈I(N(vt))

x2
s,

hence,
∑︁

s∈I(N(vt))
(x1

s − x2
s) = x2

t − x1
t . Substituting it into inequality (4.4) we get

∥x2
t − x1

t∥2 ≤ 0; that is, x2
t = x1

t . To prove part 4, first note that
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∑︂
s∈I(N(vp))

x1
s = Dxpb(x

1
1, . . . , x

1
m) = Dup(x

1
p) = Dup(x

2
p) = Dxpb(x

2
1, . . . , x

2
m) =

∑︂
s∈I(N(vp))

x2
s.

(4.9)

for any t ∈ {2, . . . ,m} \ {p} satisfying (4.6) we obtain

∑︂
s∈I(N(vt))

x1
s =

∑︂
s∈I(N(vp))

x1
s

=
∑︂

s∈I(N(vp))

x2
s by (4.9) and the equality x1

p = x2
p.

=
∑︂

s∈I(N(vt))

x2
s

Then, by part 3 we conclude x1
t = x2

t , completing the proof of part 4a. To prove

part 4b observe that F1 ∩ F2 = ∅, as N(vs) = F2 ∪ F3 and vs /∈ N(vs) for every

s ∈ I(F1). Then, from (4.9) we get

∑︂
s∈I(F1)

x1
s+

∑︂
s∈I(F2)

x1
s+

∑︂
s∈I(N(vp)\F1∪F2)

x1
s =

∑︂
s∈I(F1)

x2
s+

∑︂
s∈I(F2)

x2
s+

∑︂
s∈I(N(vp)\F1∪F2)

x2
s,

as F1, F2 ⊆ N(vp). Since x1
s = x2

s for every s ∈ I(N(vp) \ F1 ∪ F2), the above

equality reduces to

∑︂
s∈I(F1)

x1
s +

∑︂
s∈I(F2)

x1
s =

∑︂
s∈I(F1)

x2
s +

∑︂
s∈I(F2)

x2
s, (4.10)

and applying part 2 we get

(︁
x2
t − x1

t

)︁
·

∑︂
s∈I(F2∪F3)

(︁
x1
s − x2

s

)︁
≤ 0,

for any t ∈ I(F1). Summing over t ∈ I(F1) and using the equalities x1
s = x2

s on
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I(F3), we obtain

∑︂
t∈I(F1)

(︁
x2
t − x1

t

)︁
·
∑︂

s∈I(F2)

(︁
x1
s − x2

s

)︁
≤ 0.

Furthermore, by (4.10) we get
∑︁

t∈I(F1)
(x2

t − x1
t ) =

∑︁
s∈I(F2)

(x1
s − x2

s). Substitut-

ing it into the above inequality we get

∥
∑︂

s∈I(F2)

(︁
x1
s − x2

s

)︁
∥2 ≤ 0; that is,

∑︂
s∈I(F2)

x1
s =

∑︂
s∈I(F2)

x2
s. (4.11)

Now, fix t ∈ I(F1) and set V1 = F1 \ {vt}, V2 = F2 ∪ F3 and y = (y1, y2, . . . , ym)

such that

ys =

⎧⎪⎨⎪⎩x1
s if s ∈ {1, . . . ,m} \ I(V1)

x2
s if s ∈ I(V1).

Since x1
s = x2

s on I(F3), (4.11) can be written as
∑︁

s∈I(F2∪F3)
x1
s =

∑︁
s∈I(F2∪F3)

x2
s.

Therefore, by part 1 we get y ∈ W , as N(vs) = V2 for every s ∈ I(V1). Hence,

∑︂
s∈I(N(vp))

ys = Dup(yp) = Dup(x
1
p) = Dup(x

2
p) =

∑︂
s∈I(N(vp))

x2
s,

or equivalently,

yt+
∑︂

s∈I(F1)\{t}

ys+
∑︂

s∈I(F2)

ys+
∑︂

s∈I(N(vp)\F1∪F2)

ys = x2
t+

∑︂
s∈I(F1)\{t}

x2
s+

∑︂
s∈I(F2)

x2
s+

∑︂
s∈I(N(vp)\F1∪F2)

x2
s.

From (4.11), construction of y and the equalities x1
s = x2

s on I(N(vp) \ F1 ∪ F2),

we get x1
t = x2

t , completing the proof of part 4b.
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4.B Monge solutions under extraction of graphs

The main theorem of this section establishs that, roughly speaking, the extraction

fromKm of a subgraph with an inner hub provides a unique Monge solution, possibly

under an additional regularity condition on one of the marginals.

We will present several examples of graphs obtained in this way later on, but

for now we mention that the graph below (Figure 4.3) is obtained by extracting the

edges {x1, x3} and {x2, x4} from the complete graph with four vertices K4, which

can be interpreted as maximal cliques of the graph with edges {x1, x3} and {x2, x4},

and inner hub A = ∅.

v1

v2

v3

v4

Figure 4.3: Cycle graph with m = 4.

As was shown in Chapter 3, this is the only cycle graph that provides unique

Monge type solutions.

4.B.1 Monge solutions

We now state and prove our first main result.
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Theorem 4.9. Let {Sj}lj=1 be the collection of maximal cliques of a given subgraph

S of Cm with inner hub A, for some m ∈ N. Let G := Km \ S be connected,

b the surplus function associated to G and µi be probability measures over Xi,

i = 1, . . . ,m, with µ1 absolutely continuous with respect to Ln. Assume that one of

the following conditions is met:

(i) v1 ∈ V (G) \ V (S),

(ii) There exists p ∈ I(NG(v1)) such that A ⊆ NG(vp), with µp is absolutely

continuous with respect to Ln, and, if S is not complete, v1 /∈ A.

Then every solution to the Kantorovich problem (KP) is induced by a map.

Proof. Letµ be a solution to the Kantorovich problem with surplus b and (u1, . . . , um)

a b-conjugate solution to its dual. Consider:

˜︂W =
{︂
(x1, . . . , xm) : Du1(x1) exists, and

m∑︂
i=1

ui(xi) = b(x1, . . . , xm)
}︂
.

The function u1 is differentiable Ln-a.e, as it is Lipschitz continuous. Hence, it

is differentiable µ1 a.e, as µ1 is absolutely continuous. It follows that µ(˜︂W ) = 1.

Similarly, if in addition there exists p ∈ {2, . . . ,m} such that µp is absolutely

continuous with respect to Ln, we get up is differentiable µp a.e and µ(˜︂Wp) = 1,

where

˜︂Wp =
{︂
(x1, . . . , xm) : Du1(x1) and Dup(xp) exist, and

m∑︂
i=1

ui(xi) = b(x1, . . . , xm)
}︂
.

Fix x0
1 ∈ spt(µ1), where u1(x1) is differentiable, and (x0

2, . . . , x
0
m) such that

(x0
1, . . . , x

0
m) ∈ ˜︂W . Note that b is differentiable with respect to x1 at (x0

1, . . . , x
0
m)

and it satisfies

Du1(x
0
1) = Dx1b(x

0
1, . . . , x

0
m). (4.12)
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We will show that the map

(x2, . . . , xm) ↦→ Dx1b(x
0
1, x2 . . . , xm)

is injective on ˜︂Wx0
1
:=
{︂
(x2, . . . , xm) : (x

0
1, x2, . . . , xm) ∈ ˜︂W}︂, if v1 ∈ V (G) \

V (S), or on ˜︂Wx0
1p

:=
{︂
(x2, . . . , xm) : (x

0
1, x2, . . . , xm) ∈ ˜︂Wp

}︂
, if there exists p ∈

I (N(v1)) such that µp is absolutely continuous with respect to Ln and A ⊆ N(vp);

this will imply that the equation (4.12) defines (x0
2, . . . , x

0
m) uniquely from x0

1, which

will complete the proof. Let (x0
1, x

1
2, . . . , x

1
m), (x

0
1, x

2
2, . . . , x

2
m) ∈ ˜︂W and assume

Dx1b(x
0
1, x

1
2, . . . , x

1
m) =

∑︂
s∈I(N(v1))

x1
s =

∑︂
s∈I(N(v1))

x2
s = Dx1b(x

0
1, x

2
2, . . . , x

2
m).

(4.13)

We want to prove x1
s = x2

s for every s ∈ {2, . . . ,m}.

Set x0
1 := x1

1 := x2
1 and Bj = V (Sj) \ A, with j ∈ {1, . . . , l}. First, note that

S =
⋃︁l

j=1 Sj and

N(vs) = V (G) \ {vs} for any s ∈ I(V (G) \ V (S)), (4.14)

N(vs) = V (G) \ V (Sj) for any s ∈ I(Bj), j ∈ {1, . . . , l}, (4.15)

N(vs) = V (G) \ V (S), for any s ∈ I(A). (4.16)

Let us consider two cases:

Case 1. Assume v1 ∈ V (G) \ V (S) = {v1, . . . , vm} \ V (S), then by (4.14) we get

N(v1) = V (G) = N(vs) for any s ∈ I(V (G) \ V (S)) \ {1}. It follows from

part 4a of Lemma 4.8 that

x1
s = x2

s for all s ∈ I(V (G) \ V (S)) \ {1}. (4.17)

Fix j ∈ {1, . . . , l}, and let us consider two sub-cases:
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(a) If A = ∅, then V (Sj) = Bj . By defining F1 = Bj and F2 =

(V (G) \Bj)\{v1}, we getF1∪F2 = V (G)\{v1} = N(v1). Also, from

(4.15) we have N(vs) = F2 ∪ F3 for all s ∈ I(F1), where F3 = {v1}.

Then, we can apply part 4b of Lemma 4.8 to get x1
s = x2

s for every s ∈

I(Bj); that is, x1
s = x2

s on
⋃︁l

j=1 I(Bj) =
⋃︁l

j=1 I(V (Sj)) = I(V (S)).

Combining this result with (4.17) we get x1
s = x2

s on I(V (G)) \ {1} =

{2, . . . ,m}. This completes the proof of sub-case (a).

(b) Assume A ̸= ∅. By setting V2 = V (G) \ V (S) and V1 = A we can use

(4.17) to get equality (4.3), and then, by (4.16) and part 1 of Lemma 4.8

we get y := (y1, y2, . . . , ym) ∈ ˜︂W , where

ys =

⎧⎪⎨⎪⎩x1
s if s ∈ {1, . . . ,m} \ I(A)

x2
s if s ∈ I(A).

Now, setF1 = Bj , F2 = (V (G) \ V (Sj))\{v1} andF3 = {v1}. Clearly,

F1, F2 ⊆ N(v1) = V (G)\{v1} and F1∪F2 = V (G)\ (A ∪ {v1}), then

N(v1) \ (F1 ∪ F2) = A. Furthermore, y and (x0
1, x

2
2, . . . , x

2
m) trivially

satisfies ys = x2
s on I(A), and by (4.15), N(vs) = F2 ∪F3 for every s ∈

I(F1). Hence, by part 4b of Lemma 4.8 we get x1
s = ys = x2

s on I(Bj),

which proves that, using (4.17) and the equality
⋃︁l

j=1Bj = V (S) \ A,

x1
s = x2

s on I(V (G) \A) \ {1}. We combine this result with (4.16) and

part 4b of Lemma 4.8 to get x1
s = x2

s on I(A); all the conditions needed

to apply this part of the lemma are trivially satisfied by setting F1 = A,

F2 = (V (G) \ V (S)) \ {v1}, F3 = {v1} and p = 1. We conclude that

x1
s = x2

s on I(V (G) \ {v1}) = {2, . . . ,m}, completing the proof of

sub-case (b).

This completes the proof of case 1.

Case 2. Assume v1 ∈ V (S) and let p ∈ I(N(v1)) be such that µp is absolutely
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continuous with respect toLn andA ⊆ N(vp). AssumeDup(x
1
p) andDup(x

2
p)

exist. If S is complete, Sj = S for all j = 1, . . . , l, and so, A = V (S) . Using

(4.13) and (4.16) we obtain

∑︂
s∈I(V (G)\A)

x1
s =

∑︂
s∈I(V (G)\A)

x2
s. (4.18)

Also, using (4.16) and part 1 of Lemma 2.1 we get z := (z1, . . . , zm) ∈ ˜︂Wp,

where

zs =

⎧⎪⎨⎪⎩x1
s if s ∈ {1, . . . ,m} \ I(A)

x2
s if s ∈ I(A).

(4.19)

Fix t ∈ I(V (G) \ A). Then

∑︂
s∈I(N(vt))

zs = zt +
∑︂

s∈I(N(vt))

zs

= zt +
∑︂

s∈I(V (G)\{vt})

zs by (4.14)

=
∑︂

s∈I(V (G))

zs

=
∑︂

s∈I(A)

zs +
∑︂

s∈I(V (G)\A)

zs

=
∑︂

s∈I(A)

x2
s +

∑︂
s∈I(V (G)\A)

x1
s by construction of z

=
∑︂

s∈I(A)

x2
s +

∑︂
s∈I(V (G)\A)

x2
s by (4.18)

=
∑︂

s∈I(V (G))

x2
s

= x2
t +

∑︂
s∈I(V (G)\{vt})

x2
s = x2

t +
∑︂

s∈I(N(vt))

x2
s =

∑︂
s∈I(N(vt))

x2
s.
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It follows that zs = x2
s on I(V (G) \ A), by part 3 of Lemma 4.8; that is,

x1
s = x2

s on I(V (G) \ A), (4.20)

by construction of z. Now, to prove that x1
s = x2

s on I(A) we use part

4b of Lemma 4.8. For this, set F1 = A, F2 = V (G) \ (A ∪ {vp}) and

F3 = {vp}. Since vp ∈ N(v1) = V (G) \ V (S), hence N(vp) = V (G) \ {vp}

by (4.14), and so F1, F2 ⊆ N(vp). Note that F1 ∪ F2 = N(vp) and by (4.16),

F2 ∪ F3 = V (G) \ A = N(vs) for every s ∈ I(F1). Also, from (4.20),

x1
p = x2

p. This allow us to apply part 4b of Lemma 4.8 to get x1
s = x2

s on

I(A). Hence, x1
s = x2

s on I(V (G)) = {1, . . . ,m}.

Let us know assume that S is not complete, then v1 /∈ A by assumption, which

implies that v1 ∈ Bk for some k ∈ {1, . . . , l}. We first claim that x1
s = x2

s on⋃︁l
j=1
j ̸=k

I(Bj) = I(V (S) \ V (Sk)). Indeed, from (4.15) and (4.13) we get

∑︂
s∈I(V (G)\V (Sk))

x1
s =

∑︂
s∈I(V (G)\V (Sk))

x2
s. (4.21)

It follows that, by setting V1 = Bk and V2 = V (G)\V (Sk), we can use (4.15)

and part 1 of Lemma 4.8 to get y := (y1, . . . , ym) ∈ ˜︂Wp, where

ys =

⎧⎪⎨⎪⎩x1
s if s ∈ {1, . . . ,m} \ I(Bk)

x2
s if s ∈ I(Bk).

(4.22)

Fix j ∈ {1, . . . , l}, with j ̸= k. Set F1 = Bj , F2 = V (G)\ (V (Sk) ∪Bj) and

F3 = Bk. Note that from (4.15) we get F1 ∪ F2 = V (G) \ V (Sk) = N(v1)

and F2 ∪ F3 = V (G) \ V (Sj) = N(vs), for any s ∈ I(F1). Since y and

(x0
1, x

2
2, . . . , x

2
m) satisfies ys = x2

s on I(F3), we can apply part 4b of Lemma

4.8 to get x1
s = ys = x2

s on I(Bj); that is,
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x1
s = x2

s on
l⋃︂

j=1
j ̸=k

I(Bj) = I(V (S) \ V (Sk)). (4.23)

Next, as in Case 1, let us consider the following sub-cases:

(a) If A = ∅, then V (Sk) = Bk. Also, for any t ∈ I(V (G) \ V (S)) we get

∑︂
s∈I(N(vt))

ys = yt +
∑︂

s∈I(N(vt))

ys

= yt +
∑︂

s∈I(V (G)\{vt})

ys by (4.14)

=
∑︂

s∈I(V (G))

ys

=
∑︂

s∈I(Bk)

ys +
∑︂

s∈I(V (G)\Bk)

ys

=
∑︂

s∈I(Bk)

x2
s +

∑︂
s∈I(V (G)\Bk)

x1
s by construction of y

=
∑︂

s∈I(Bk)

x2
s +

∑︂
s∈I(V (G)\Bk)

x2
s by (4.21)

=
∑︂

s∈I(V (G))

x2
s

= x2
t +

∑︂
s∈I(V (G)\{vt})

x2
s

= x2
t +

∑︂
s∈I(N(vt))

x2
s

=
∑︂

s∈I(N(vt))

x2
s

Thus, by part 3 of Lemma 4.8 we obtain x1
s = x2

s on I(V (G) \ V (S)),

as ys = x1
s on I(V (G) \ V (S)). Combining this with (4.23) we deduce

x1
s = x2

s on I(V (G)\V (Sk)) = I(V (G)\Bk) = I(N(v1)). (4.24)
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To prove that x1
s = x2

s on I(Bk) we use part 4b of Lemma 4.8. Let

us first recall that p ∈ I(N(v1)), and then, the above result tell us that

x1
p = x2

p. Furthermore, p ∈ I(V (G) \ V (S)) or p ∈ I(Bj) for some

j ∈ {1, . . . , l}, k ̸= j. Thus, from (4.14), (4.15) and the disjointness of

Bk andBj , we deduceBk ⊆ N(vp). Now, setF1 = Bk,F2 = N(vp)\Bk

and F3 = V (G) \N(vp). Then, F1, F2 ⊆ N(vp), F1 ∪ F2 = N(vp) and

F2 ∪ F3 = V (G) \Bk = N(vs), for every s ∈ I(F1). Also, from (4.24)

we get x1
s = x2

s on I(F3), as it is evident that Bk ∩ F3 = ∅. We can

then apply part 4b of Lemma 4.8 to obtain x1
s = x2

s on I (Bk), which

combined with (4.24) allow us to have x1
s = x2

s on {2, . . . ,m}. This

completes the proof of sub-case (a).

(b) Assume A ̸= ∅. Let us first prove that x1
s = x2

s on I(V (G) \ V (S)); this

will be achieved via part 3 of Lemma 4.8.

Using (4.21) and (4.23), we can write

∑︂
s∈I(V (G)\V (S))

x1
s =

∑︂
s∈I(V (G)\V (S))

x2
s,

and defining y as in (4.22) we can equivalently write

∑︂
s∈I(V (G)\V (S))

ys =
∑︂

s∈I(V (G)\V (S))

x2
s.

Hence, from (4.16) and part 1 of Lemma 4.8 we get y′ = (y′1, . . . , y
′
m) ∈˜︂Wp, where

y′s =

⎧⎪⎨⎪⎩ys if s ∈ I(V (G) \ A)

x2
s if s ∈ I(A)

=

⎧⎪⎨⎪⎩x1
s if s ∈ I(V (G) \ V (Sk))

x2
s if s ∈ I(V (Sk)).
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Then,

∑︂
s∈I(V (G)\V (Sk))

y′s =
∑︂

s∈I(N(v1))

y′s = Du1(x
0
1) =

∑︂
s∈I(N(v1))

x2
s =

∑︂
s∈I(V (G)\V (Sk))

x2
s.

By construction of y′, one has,

∑︂
s∈I(V (G))

y′s =
∑︂

s∈I(V (G))

x2
s.

Hence, using (4.14) we clearly might express it as

∑︂
s∈I(N(vt))

y′s =
∑︂

s∈I(N(vt))

x2
s,

for every fixed t ∈ I(V (G) \ V (S)). We can now apply part 3 of

Lemma 4.8 and get y′t = x2
t on I(V (G) \V (S)), which implies x1

t = x2
t

on I(V (G) \ V (S)), since I(V (G) \ V (S)) ⊆ I(V (G) \ V (Sk)) and

y′t = x1
t on I(V (G) \ V (Sk)). Thus, from (4.23),

x1
s = x2

s on I(V (G) \ V (Sk)) = I(N(v1)). (4.25)

It only remains to prove that x1
s = x2

s on I(V (Sk)). Since p ∈ I(N(v1)),

from the above equalities p ∈ I (V (G) \ V (S)) or p ∈ I(Bj) for some

j ̸= k, and x1
p = x2

p. Then N(vp) = V (G) \ {vp} or N(vp) = V (G) \

V (Sj). It follows that N(vp) = V (G) \ {vp}, as A ⊆ N(vp) and

A∩(V (G) \ V (Sj)) = ∅. Now, setF1 = A,F2 = V (G)\(V (S) ∪ {vp})

and F3 = {vp}. It is clear that F1, F2 ⊆ N(vp) and F2 ∪ F3 = V (G) \

V (S) = N(vs) for every s ∈ I(A). Furthermore, for y defined as

in (4.22) and (x0
1, x

2
2, . . . , x

2
m), we have ys = x2

2 on I(Bk). It follows

from (4.25) and construction of y that ys = x2
2 on I(V (G) \ A); in

particular, ys = x2
2 on I (N(vp) \ F1 ∪ F2) ⊆ I(V (G) \ A). Hence,
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x1
s = ys = x2

2 on I(A) by part 4b of Lemma 4.8, and then, we can easily

obtain x1
s = x2

s on I(Bk), by applying again part 4b of Lemma 4.8; this

time we set F1 = Bk, F2 = (V (G) \ V (Sk)) \ {vp} and F3 = {vp}.

This completes the proof of sub-case (b).

This completes the proof of the theorem.

Before presenting some examples, we note the following consequence of the

preceding theorem.

Corollary 4.10. Let G be a subgraph of Km with |G| = m, and satisfying |N(v)| ∈

{m− 1,m− 2} for every v ∈ V (G). Assume that µ1 is absolutely continuous with

respect to Ln, and that either |N(v1)| = m − 1 or that µi is absolutely continuous

with respect to Lesbesgue measure for some i ∈ I(N(v1)). Then every solution to

the Kantorovich problem (KPG) is induced by a map.

Proof. Note that if G ̸= Km, then G = Km \
⋃︁
Sl
j=1, for some disjoint collection of

complete graphs {Sj}lj=1, where |V (Sj)| = 2 for every j (that is, every Sj consists

on a single edge). Clearly, the graph
⋃︁l

j=1 Sj has inner hub A = ∅ and maximal

cliques S1, . . . , Sl. The result then follows from Theorem 4.9.

Note that the Gangbo-Swiech surplus corresponds to a complete graph, or,

equivalently, to the graph G satisfying |N(v)| = m − 1 for each v ∈ V (G); the

Corollary is then a generalization to the case where each vertex can be missing at

most one edge connecting it to the other vertices.

4.B.2 Examples

Here, we illustrate the result obtained in Theorem 4.9 through several examples.

(i) Let G be a complete k-partite graph with set partition {V1, . . . , Vk} and

m := |V (G)| = |
⋃︁k

j=1 Vj|. Write
⋃︁k

j=1 Vj = {v1, . . . , vm}, and letS1, . . . , Sk
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be k complete graphs with sets of vertices V1, . . . , Vk, respectively. Note that

G := Km \
⋃︁k

j=1 Sj and N(v1) =
⋃︁k

j=1
j ̸=α

Vj , for some α ∈ {1, . . . , k}. Hence,

by assuming µ1 and µp absolutely continuous, for some p ∈ N(v1), we can

conclude by Theorem 4.9 that the graph G gives a unique Monge solution,

as we can interpret {Sj}kj=1 as the collection of maximal cliques of the graph⋃︁k
j=1 Sj . Here, A = ∅ is clearly the inner hub of

⋃︁k
j=1 Sj .

A special case is the complete graph Ck; several other examples of k-partite

graphs are below.

• Complete bipartite graphs Km,n:

v1v2

v3

v4 v5

v6

(a) GraphK3,3. Known as the Utility
graph.

v1

v2

v3

v4

v5

v6

v7

v8

(b) Graph K4,4. Known as the Cay-
ley graph.

Figure 4.4: Graphs K3,3 and K4,4.
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v1

v2v3

v4

v5

v6

v7 v8

v9

v10

Figure 4.5: Bipartite graph with set partition {V1, V2}, where V1 =
{v1, v2, v3, v4, v5, v10} and V2 = {v6, v7, v8, v9}.

• Complete Tripartite graphs Km,n,p:

v1

v2

v3

v4
v5

(a) Graph K1,2,2. Known as the 5-
wheel graph.

v1

v2

v3

v4

(b) Graph K1,1,2. Known as the Di-
amond graph.

Figure 4.6: Graphs K1,2,2 and K1,1,2.
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v1

v2

v3

v4

v5v6

Figure 4.7: Graph K2,2,2. Known as the Octahedral graph.

• A notable special case of Corollary 4.10 occurs when m is even and

|N(v)| = m − 2 for all v ∈ V (G), in which case G = K2,...,2(m
2

times).

This graph is known as the Cocktail Party Graph. See example below.

v1

v2
v3

v4

v5

v6

v7

v8
v9

v10

v11

v12

Figure 4.8: A Cocktail Party Graph with m = 12.
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(ii) Theorem 4.9 can be used easily to construct many other, more obscure, graphs

leading to Monge solutions. We construct one of such examples here; set

V1 = {v1, v14, v15, v16, v17, v18, v19, v20},

V2 = {v9, v10, v11, v12, v13, v14, v15, v16},

V3 = {v6, v14, v15, v16},

V4 = {v4, v14, v15, v16}.

Consider S1, S2, S3, S4 complete graphs with V (Sj) = Vj , j = 1, 2, 3, 4.

Then, the graph S = S1 ∪ S2 ∪ S3 ∪ S4 has inner hub A = {v14, v15, v16},

with maximal cliques S1, S2, S3, S4. See Figure below.

v20

v1

v6
v4

v9

v10

v11

v12

v13

v14
v15

v16

v17

v18

v19

Figure 4.9: Graph S = S1 ∪ S2 ∪ S3 ∪ S4.

Then, G = C20 \ S provides a solution of Monge type. See graph below.

57



v1

v2

v3

v4
v5

v6

v7

v8

v9

v10

v11

v12

v13

v14
v15

v16

v17

v18

v19

v20

Figure 4.10: Graph G = C20 \ S.

4.C Monge solutions for graphs with inner hubs and

gluing of them

The main result of this section (Theorem 4.12) ensures that under regularity con-

ditions on two of the marginals, the surplus associated to a graph with inner hub

provides a unique solution for the Monge-Kantorovich problem.

Before stating the main result of this section, we present the following simple
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example, which illustrates part of the motivation for Theorem 4.12 and Propositions

4.13 and 4.15.

Example 4.11. Let b be the surplus associated to the graph G below.

v1

v2

v4

v3

v5

The second assertion of Proposition 4.6 implies that b is not twisted on splitting

sets, and there are in fact choices µ1, µ2, µ3 and µ4 of marginals such that µ1 is

absolutely continuous with respect to Ln and the solution to (KPG) is of non-Monge

form and non-unique (explicitly, take µ3 to be a Dirac mass and the other marginals

to be uniform on bounded domains). However, it is clear that the problem does

admit a unique, Monge type solution as soon as both µ1 and µ3 are absolutely

continuous. The reason for this is one may solve the three marginal problem with

µ1, µ2, and µ3 and the surplus x1 · x2 + x1 · x3 + x2 · x3 via the Gangbo-Świȩch

theorem [27], obtaining unique optimal maps T2, T3, and then solve independently

the two marginal problems between µ3 and µ4 with surplus x3 ·x4, yielding a unique

optimal map T̄ 4, and between µ1 and µ5, with surplus x1 · x5, yielding a unique

optimal map T5. Since x4 only interacts with x3, and x5 only interacts with x1,

(T2, T3, T4, T5) := (T2, T3, T̄ 4 ◦ T3, T5) is then the unique Monge solution for the

overall problem.
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This sort of result is not captured by Theorem 4.9, as the graph extracted from

the complete graph C5 to yield G, depicted below:

v1

v2

v4

v3

v5

does not have an inner hub; we develop in this section a framework that en-

capsulates simple examples like this one, as well as more complicated ones which

cannot be treated with adhoc arguments like the one sketched above.

4.C.1 Monge solutions for graphs with inner hubs

We now proceed to state and prove our second main result.

Theorem 4.12. Let G be a graph with inner hub A and maximal cliques S1, . . . , Sl,

with m = |V (G)|, and b its associated surplus. Let µi be probability measures

over Xi, i = 1, . . . ,m, with µ1 absolutely continuous with respect to Ln. If there

exists p ∈ I(A) such that µp is absolutely continuous with respect to Ln, then every

solution to the Kantorovich problem (KPG) with surplus b is induced by a map.

Proof. Letµbe a solution to the Kantorovich problem with surplus b and (u1, . . . , um)

60



a b-conjugate solution to its dual. Set:

˜︂Wp =
{︂
(x1, . . . , xm) : Du1(x1) and Dup(xp) exist, and

m∑︂
i=1

ui(xi) = b(x1, . . . , xm)
}︂
.

As in Theorem 4.9, we obtain µ(˜︂Wp) = 1. Moreover, by fixing x0
1 where u1(x1) is

differentiable, we get for any (m− 1)-tuple (x0
2, . . . , x

0
m) satisfying (x0

1, . . . , x
0
m) ∈˜︂Wp,

Du1(x
0
1) = Dx1b(x

0
1, . . . , x

0
m).

Let us show that the map

(x2, . . . , xm) ↦→ Dx1b(x
0
1, x2, . . . , xm)

is injective on ˜︂Wx0
1p
:=
{︂
(x2, . . . , xm) : (x

0
1, x2, . . . , xm) ∈ ˜︂Wp

}︂
. Indeed, assume

Dx1b(x
0
1, x

1
2, . . . , x

1
m) =

∑︂
s∈I(N(v1))

x1
s =

∑︂
s∈I(N(v1))

x2
s = Dx1b(x

0
1, x

2
2, . . . , x

2
m),

(4.26)

where (x0
1, x

1
2, . . . , x

1
m), (x

0
1, x

2
2, . . . , x

2
m) ∈ ˜︂Wp, and x0

1 := x1
1 := x2

1. Recall that

G =
⋃︁l

j=1 Sj , and without lost of generality assume v1 ∈ V (S1). Then v1 ∈ B1 or

v1 ∈ A, where Bj = V (Sj) \ A, j ∈ {1, . . . , l}. For the case v1 ∈ B1, we split the

proof into several steps.

Step 1. Since S1 is complete, for every s ∈ I(B1), N(vs) = V (S1) \ {vs}, which

implies N(v1) = N(vs). Then, by part 4a of Lemma 4.8 we get

x1
s = x2

s for all s ∈ I(B1). (4.27)

Hence, the equalities N(v1) = V (S1) \ {v1} = (B1 ∪ A) \ {v1}, and (4.26),

show that ∑︂
s∈I(A)

x1
s =

∑︂
s∈I(A)

x2
s. (4.28)
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Step 2. From part 2 of Lemma 4.8, for every t ∈ I (A) we get

(︁
x2
t − x1

t

)︁
·
∑︂

s∈I(N(vt))

(︁
x1
s − x2

s

)︁
≤ 0, (4.29)

and by the definition of A,

N(vt) = V (G) \ {vt}

=

(︄
l⋃︂

j=1

V (Sj)

)︄
\ {vt}

= (A \ {vt})
⋃︂(︄

l⋃︂
j=1

Bj

)︄
. (4.30)

Thus, we can write (4.29) as

(︁
x2
t − x1

t

)︁
·
∑︂

s∈I(A)\{t}

(︁
x1
s − x2

s

)︁
+
(︁
x2
t − x1

t

)︁
·

∑︂
s∈

⋃︁l
j=1 I(Bj)

(︁
x1
s − x2

s

)︁
≤ 0.

It follows from (4.28) that

∥x2
t − x1

t∥2 +
(︁
x2
t − x1

t

)︁
·

∑︂
s∈

⋃︁l
j=1 I(Bj)

(︁
x1
s − x2

s

)︁
≤ 0, (4.31)

hence, one easily deduces

(︁
x2
t − x1

t

)︁
·

∑︂
s∈

⋃︁l
j=1 I(Bj)

(︁
x1
s − x2

s

)︁
≤ 0. (4.32)

Summing over t ∈ I(A) we get

∑︂
t∈I(A)

(︁
x2
t − x1

t

)︁
·

∑︂
s∈

⋃︁l
j=1 I(Bj)

(︁
x1
s − x2

s

)︁
≤ 0,

and by (4.28), we must have equality in (4.32) for every t ∈ I(A). Therefore,
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from (4.31) we get

x1
t = x2

t for all t ∈ I(A). (4.33)

In particular, x1
p = x2

p and so, x2
p belongs to

Argmax
{︂
xp ↦→

(︂ ∑︂
s∈I(N(vp))

x1
s

)︂
·xp−up(xp)

}︂⋂︂
Argmax

{︂
xp ↦→

(︂ ∑︂
s∈I(N(vp))

x2
s

)︂
·xp−up(xp)

}︂
.

It follows that

∑︂
s∈I(N(vp))

x1
s = Dup(x

2
p) =

∑︂
s∈I(N(vp))

x2
s,

or equivalently, invoking (4.30),

∑︂
s∈I(A)\{p}

x1
s +

∑︂
s∈

⋃︁l
j=1 I(Bj)

x1
s =

∑︂
s∈I(A)\{p}

x2
s +

∑︂
s∈

⋃︁l
j=1 I(Bj)

x2
s.

It immediately implies by (4.33) that

∑︂
s∈

⋃︁l
j=1 I(Bj)

x1
s =

∑︂
s∈

⋃︁l
j=1 I(Bj)

x2
s. (4.34)

Step 3. Fix k ∈ {2, . . . , l}. From definition 4.2, {Bj}lj=1 is a disjoint collection of sets

and every j ∈ {1, . . . , l} satisfies N(vs) = V (Sj) \ {vs} = (Bj ∪ A) \ {vs},

for every s ∈ I(Bj). Since (x0
1, x

1
2, . . . , x

1
m) ∈ ˜︂Wp, we get

{︁
x1
s

}︁
s∈

⋃︁l
j=1
j ̸=k

I(Bj)
∈ Argmax

{︄
{xs}s∈⋃︁l

j=1
j ̸=k

I(Bj)
↦→
(︂ ∑︂

s∈I(A)

x1
s

)︂
·

∑︂
s∈

⋃︁l
j=1
j ̸=k

I(Bj)

xs

+
l∑︂

j=1
j ̸=k

∑︂
s,t∈I(Bj)

s<t

xs · xt −
∑︂

s∈
⋃︁l

j=1
j ̸=k

I(Bj)

us(xs)

}︄
,
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and by (4.33),

{︁
x1
s

}︁
s∈

⋃︁l
j=1
j ̸=k

I(Bj)
∈ Argmax

{︄
{xs}s∈⋃︁l

j=1
j ̸=k

I(Bj)
↦→
(︂ ∑︂

s∈I(A)

x2
s

)︂
·

∑︂
s∈

⋃︁l
j=1
j ̸=k

I(Bj)

xs

+
l∑︂

j=1
j ̸=k

∑︂
s,t∈I(Bj)

s<t

xs · xt −
∑︂

s∈
⋃︁l

j=1
j ̸=k

I(Bj)

us(xs)

}︄
.

Hence, setting y := (y1, y2, . . . , ym) with

ys =

⎧⎪⎪⎨⎪⎪⎩
x2
s if s ∈ {1, 2, . . . ,m} \

⋃︁l
j=1
j ̸=k

I(Bj) = I(V (Sk))

x1
s if s ∈

⋃︁l
j=1
j ̸=k

I(Bj),

we get y ∈ ˜︂Wp, as (x0
1, x

2
2, . . . , x

2
m) ∈ ˜︂Wp. Since (4.34) holds true for

every (x0
1, x

1
2, . . . , x

1
m), (x0

1, x
2
2, . . . , x

2
m) ∈ ˜︂Wp; in particular, it is true for

(x0
1, x

1
2, . . . , x

1
m) and y, which implies that

∑︂
s∈I(Bk)

x1
s =

∑︂
s∈I(Bk)

x2
s.

Using (4.33) we can write the above equality as

∑︂
s∈I(V (Sk))

x1
s =

∑︂
s∈I(V (Sk))

x2
s.

Hence, all the elements of I(Bk) satisfy (4.5), as each s ∈ I(Bk) satisfies

N(vs) = V (Sk) \ {vs}. Then, by part 3 of Lemma 4.8, x1
s = x2

s for all

s ∈ I(Bk). We thus conclude by (4.27) and (4.33) that x1
s = x2

s for all

s ∈
⋃︁l

j=1 I(Bj) ∪ I(A) = I(G) = {1, 2, . . . ,m}. This completes the proof

for the case v1 ∈ B1.

Finally, for the case v1 ∈ A, note that every s ∈ I(A) satisfiesN(vs) = V (G)\{vs},
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hence for any s ∈ I(A) we get

N(vs) = {vs}∪N(vs) = V (G) = (V (G) \ {v1})∪{v1} = N(v1)∪{v1} = N(v1).

Therefore, by part 4a of Lemma 4.8 we get (4.33), and then, (4.26) reduces to (4.34).

The rest of the proof runs exactly as the proof in Step 3, but instead of fixing k in

{2, . . . , l}, we fix it in {1, . . . , l}, completing the proof of the theorem.

4.C.2 Monge solutions for graphs glued on cliques

We now turn to a natural extension of Theorem 4.12. The next proposition states,

roughly speaking, that gluing together several graphs with inner hubs via the proce-

dure formulated in Definition 4.4, leads to a solution of Monge type.

Proposition 4.13. Let S1 be a graph with inner hub A1 and {S1j}lj=1 its collection

of maximal cliques. Let E ⊂ {2, . . . , l} such that for every α ∈ E, Sα is a graph

with inner hub Aα ̸= ∅, and with collection of maximal cliques {Sαj}kαj=1. Assume

Aα ∩ A1 = ∅ for every α ∈ E, and set G =
⋃︁

α∈E∪{1} Sα and m = |V (G)|. Let µi

be probability measures over Xi, i = 1, . . . ,m and assume:

1. Sα and S1 are glued on a clique for all α ∈ E.

2. V (Sα)
⋂︁

V (Sβ) = A1 for all α ̸= β, α, β ∈ E.

3. For each α ∈ E ∪ {1}, there exists pα ∈ I(Aα) such that µpα is absolutely

continuous with respect to Ln.

4. µ1 is absolutely continuous with respect to Ln and v1 ∈ V (S11).

Then every solution to the Kantorovich problem (KPG) with surplus associated to

G is concentrated on a graph of a measurable map.

Proof. The strategy of the proof is similar to the strategy used in Theorem 4.12. Let

µ be a solution to the Kantorovich problem with surplus b(x1, . . . , xm), where b is
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the surplus associated to G. Let (u1, . . . , um) be a b-conjugate solution to its dual

and set

˜︂W =
{︂
(x1, . . . , xm) : Du1(x1) and Dupα(xpα) exist for all α ∈ E ∪ {1},

and
m∑︂
i=1

ui(xi) = b(x1, . . . , xm)
}︂
.

Fixx0
1 ∈ spt(µ1), whereu1(x1) is differentiable. ThenDu1(x

0
1) = Dx1b(x

0
1, . . . , x

0
m),

for every (x0
1, . . . , x

0
m) ∈ ˜︂W . We want to prove that the map (x2, . . . , xm) ↦→

Dx1b(x
0
1, x2, . . . , xm) is injective on

˜︂Wx0
1
:=
{︂
(x2, . . . , xm) : (x

0
1, x2, . . . , xm) ∈ ˜︂W}︂ .

Assume

Dx1b(x
0
1, x

1
2, . . . , x

1
m) =

∑︂
s∈I(N(v1))

x1
s =

∑︂
s∈I(N(v1))

x2
s = Dx1b(x

0
1, x

2
2, . . . , x

2
m),

(4.35)

with (x0
1, x

1
2, . . . , x

1
m), (x

0
1, x

2
2, . . . , x

2
m) ∈ ˜︂W and x0

1 := x1
1 = x2

1. Note that if

E = ∅, we get G = S1, and then, by Theorem 4.12 we get a solution of Monge type.

Assume E ̸= ∅ and set Bj = V (S1j)\A1, where j ∈ {1, . . . , l}. Since Aj∩A1 = ∅

for every j ∈ E, Bj ̸= ∅ for every j ∈ E and

N(vs) = V (S1) \ {vs} =
l⋃︂

j=1

Bj ∪ (A1 \ {vs}) , for every s ∈ I(A1). (4.36)

Furthermore, by assumption 1 we can assume without lost of generality that S1α =

Sα1 for every α ∈ E. As in Theorem 4.12, we consider two cases, v1 ∈ B1 or

v1 ∈ A1. Let us divide the proof of case v1 ∈ B1 into several steps:

Step 1. We proceed to make a straightforward adaptation of the arguments used in

Step 3 of the proof of Theorem 4.12. First, note that N(vs) = V (S11) \ {vs},
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for every s ∈ I(B1), then, using the differentiability of up1(xp1) at x1
p1

and

x2
p1

, and the equalities (4.35) and (4.36), we can mirror steps 1 and 2 in the

proof of Theorem 4.12 to get:

x1
s = x2

s for all s ∈ I(B1), (4.37)

x1
s = x2

s for all s ∈ I(A1), (4.38)

and ∑︂
s∈

⋃︁l
j=1 I(Bj)

x1
s =

∑︂
s∈

⋃︁l
j=1 I(Bj)

x2
s. (4.39)

Step 2. Fix α ∈ {2, . . . , l} and set Sβ = S1β for any β ∈ {2, . . . , l} \ E. Define

I1 =
⋃︁l

β=2
β ̸=α

I(V (Sβ)\A1)∪I(B1) = {t1, . . . , td} and I2 = I(V (Sα)\A1) =

{r1, . . . , re}. We claim that x1
s = x2

s for all s ∈ I2, this will complete the

proof. Indeed, note that

{1, . . . ,m} =
l⋃︂

β=2

I(V (Sβ)) ∪ I(B1)

=

⎛⎜⎝ l⋃︂
β=2
β ̸=α

I(V (Sβ)) ∪ I(B1)

⎞⎟⎠ ∪ I(V (Sα))

=

⎛⎜⎝ l⋃︂
β=2
β ̸=α

I(V (Sβ) \ A1) ∪ I(B1)

⎞⎟⎠ ∪ I(V (Sα) \ A1) ∪ A1

= I1 ∪ I2 ∪ A1 (4.40)

Furthermore, the last union is disjoint by assumptions 1 and 2. Now, let

g1(xt1 , . . . , xtd) and g2(xr1 , . . . , xre) be the functions formed by all the terms

of b that depend only on the variables with index in I1 and I2 respectively.
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From Definition 2.3 and assumptions 1 and 2, it is not hard to deduces that

⋃︂
s∈Ik

N(vs) = {vs}s∈Ik ∪ A1, k = 1, 2.

Combining the above equalities, (4.40) and (4.36) we get

b(x1, . . . , xm) = g1(xt1 , . . . , xtd) + g2(xr1 , . . . , xre)

+
(︂ ∑︂

s∈I(A1)

xs

)︂
·

∑︂
s∈

⋃︁l
j=1 I(Bj)

xs +
∑︂

s,t∈I(A1)
s<t

xs · xt

= g1(xt1 , . . . , xtd) + g2(xr1 , . . . , xre)

+
(︂ ∑︂

s∈I(A1)

xs

)︂
·

∑︂
s∈

⋃︁l
j=1
j ̸=α

I(Bj)

xs +
(︂ ∑︂

s∈I(A1)

xs

)︂
·
∑︂

s∈I(Bα)

xs +
∑︂

s,t∈I(A1)
s<t

xs · xt.

Note that
l⋃︂

j=1
j ̸=α

I(Bj) ⊂ I1, (4.41)

and the only terms of b that depend on the variables with index in I1 are

g1(xt1 , . . . , xtd) and
(︂∑︁

s∈I(A1)
xs

)︂
·
∑︁

s∈
⋃︁l

j=1
j ̸=α

I(Bj)
xs. Hence,

{︁
x1
s

}︁
s∈I1

∈ Argmax

{︄
{xs}s∈I1 ↦→

(︂ ∑︂
s∈I(A1)

x1
s

)︂
·

∑︂
s∈

⋃︁l
j=1
j ̸=α

I(Bj)

xs + g1(xt1 , . . . , xtd)

−
∑︂
s∈I1

us(xs) + g2(x
1
r1
, . . . , x1

re) +
(︂ ∑︂

s∈I(A1)

x1
s

)︂
·
∑︂

s∈I(Bα)

x1
s

+
∑︂

s,t∈I(A1)
s<t

x1
s · x1

t −
∑︂

s∈I2∪I(A1)

us(x
1
s)

}︄
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= Argmax

{︄
{xs}s∈I1 ↦→

(︂ ∑︂
s∈I(A1)

x1
s

)︂
·

∑︂
s∈

⋃︁l
j=1
j ̸=α

I(Bj)

xs + g1(xt1 , . . . , xtd)

−
∑︂
s∈I1

us(xs)

}︄
,

and by (4.38),

{︁
x1
s

}︁
s∈I1

∈ Argmax

{︄
{xs}s∈I1 ↦→

(︂ ∑︂
s∈I(A1)

x2
s

)︂
·

∑︂
s∈

⋃︁l
j=1
j ̸=α

I(Bj)

xs + g1(xt1 , . . . , xtd)

−
∑︂
s∈I1

us(xs)

}︄
.

Since (x0
1, x

2
2, . . . , x

2
m) ∈ ˜︂W , we obtain y := (y1, y2, . . . , ym) ∈ ˜︂W , where

ys =

⎧⎪⎨⎪⎩x2
s if s ∈ {1, 2, . . . ,m} \ I1

x1
s if s ∈ I1

Therefore, (4.39) holds true for y and (x0
1, x

1
2, . . . , x

1
m) ∈ ˜︂W ; that is,

∑︂
s∈

⋃︁l
j=1 I(Bj)

ys =
∑︂

s∈
⋃︁l

j=1 I(Bj)

x1
s,

or equivalently,

∑︂
s∈I(Bα)

ys +
∑︂

s∈
⋃︁l

j=1
j ̸=α

I(Bj)

ys =
∑︂

s∈I(Bα)

x1
s +

∑︂
s∈

⋃︁l
j=1
j ̸=α

I(Bj)

x1
s.

By the above equality, (4.41) and construction of y we get

∑︂
s∈I(Bα)

x2
s =

∑︂
s∈I(Bα)

x1
s. (4.42)
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Step 3. Since Bα = V (S1α) \ A1, by (4.38) and the above equality we can write,

∑︂
s∈I(V (S1α))

x1
s =

∑︂
s∈I(V (S1α))

x2
s. (4.43)

Now, if α ∈ {2, . . . ,m} \ E, then Sα = S1α and N(vs) = V (S1α) \ {vs} for

any s ∈ I(Bα). Hence, from (4.43) we get (4.5) on I(Bα), implying x1
s = x2

s

on I(V (Sα)), by part 3 of Lemma 4.8 and (4.38).

On the other hand, if α ∈ E, the equality Aα ∩ A1 = ∅ implies Aα ⊆

V (Sα1) \ A1 = V (S1α) \ A1 = Bα. It follows by (4.43) that equality (4.5)

holds for the elements of I(Bα \ Aα), as every s ∈ I(Bα \ Aα) satisfies

N(vs) = V (S1α) \ {vs}. Then, by part 3 of Lemma 4.8,

x1
s = x2

s for all s ∈ I(Bα \ Aα), (4.44)

and by (4.42), ∑︂
s∈I(Aα)

x1
s =

∑︂
s∈I(Aα)

x2
s.

Note that by the differentiability of upα(xpα) at x1
pα and x2

pα , we can apply

to the graph Sα =
⋃︁kα

j=1 Sαj , the same arguments discussed in Step 2 of the

proof of Theorem 4.12, getting

x1
s = x2

s for all s ∈ I(Aα), and
∑︂

s∈
⋃︁kα

j=1 I(Bαj)

x1
s =

∑︂
s∈

⋃︁kα
j=1 I(Bαj)

x2
s,

(4.45)

where Bαj = V (Sαj) \ Aα for all j ∈ {1, . . . , kα}. By the left-hand equality

of the above results, (4.38) and (4.44), we get

x1
s = x2

s on I(V (S1α)) = I(V (Sα1)). (4.46)

Next, we fix r ∈ {2, . . . , kα} and proceed to apply the same strategy used
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in step 2: we set I ′
1 = {1, . . . ,m} \ I(V (Sαr)) = {e1, . . . , eq} and I ′

2 =

I(Bαr) = {d1, . . . , df}, and consider g′1(xe1 , . . . , xeq) and g′2(xd1 , . . . , xdf ),

the functions formed by all the terms of b that depend only on the vertices with

index in I ′
1 and I ′

2 respectively. Noting that
⋃︁

s∈I′
j
N(vs) = {vs}s∈I′

j
∪Aα, j =

1, 2, and using the left-hand equality in (4.45), we follow the arguments of

Step 2 to get

{︁
x1
s

}︁
s∈I′

1
∈ Argmax

{︄
{xs}s∈I′

1
↦→
(︂ ∑︂

s∈I(Aα)

x1
s

)︂
·

∑︂
s∈

⋃︁kα
j=1
j ̸=r

I(Bαj)

xs + g′1(xe1 , . . . , xeq)

−
∑︂
s∈I′

1

us(xs) + g′2(x
1
d1
, . . . , x1

df
) +

(︂ ∑︂
s∈I(Aα)

x1
s

)︂
·
∑︂

s∈I(Bαr)

x1
s

+
∑︂

s,t∈I(Aα)
s<t

x1
s · x1

t −
∑︂

s∈I′
2∪I(Aα)

us(x
1
s)

}︄

= Argmax

{︄
{xs}s∈I′

1
↦→
(︂ ∑︂

s∈I(Aα)

x1
s

)︂
·

∑︂
s∈

⋃︁kα
j=1
j ̸=r

I(Bαj)

xs + g′1(xe1 , . . . , xeq)

−
∑︂
s∈I′

1

us(xs)

}︄

= Argmax

{︄
{xs}s∈I′

1
↦→
(︂ ∑︂

s∈I(Aα)

x2
s

)︂
·

∑︂
s∈

⋃︁kα
j=1
j ̸=r

I(Bαj)

xs + g′1(xe1 , . . . , xeq)

−
∑︂
s∈I′

1

us(xs)

}︄
,

and then, using the right-hand equality in (4.45), we get the equality (4.42) on

I(Bαr); that is, ∑︂
s∈I(Bαr)

x2
s =

∑︂
s∈I(Bαr)

x1
s. (4.47)

Finally, we combine the above equality with the left-hand equality in (4.45) to
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get (4.5) for all s ∈ I(Bαr), sinceN(vs) = V (Sαr)\{vs} for every s ∈ I(Bαr)

and Bαj = V (Sαj) \ Aα. Hence, by part 3 of Lemma 4.8, x1
s = x2

s for all

s ∈ I(Bαr). Thus, x1
s = x2

s for all s ∈
⋃︁kα

j=2 I(Bαj) = I(V (Sα) \ V (Sα1)).

Hence, from (4.46) we conclude x1
s = x2

s on I(V (Sα)), and so, x1
s = x2

s for all

s ∈
⋃︁l

α=1 I(V (Sα)) = {1, . . . ,m}, completing the proof of the case v1 ∈ B1.

For the case v1 ∈ A1, every s ∈ I(A1) satisfies N(vs) = V (S1) \ {vs}, then any

s ∈ I(A1) satisfies N(vs) = N(v1). Therefore, by part 4a of Lemma 4.8 we get

(4.38), and (4.35) reduces to (4.39). For the rest of the proof we fix α ∈ {1, . . . , l}

and mimic the proof of the case v1 ∈ B1, completing the proof of the theorem.

Remark 4.14. The results developed in this section, for graphs with inner hubs glued

on their cliques, are neither more or less general than Theorem 4.9, which applies

to graphs obtained by extracting subgraphs with inner hubs from complete graphs.

To see this, note that in Theorem 4.9, if m = 4 and l = 2, with S1 = {x1, x3} and

S2 = {x2, x4}, we get the surplus associated to the graph in Figure 4.3, which clearly

cannot be obtained from the results of Section 4.C. On the other hand, we can find

examples of surplus functions covered by the framework presented in Section 4.C,

but not covered by Theorem 4.9. For instance, Figure 4.13a and 4.13b are graphs

whose respective surplus are not covered by Theorem 4.9, as we need more than two

absolutely continuous measures and clearly, these conditions are necessary.

We next turn to a slight generalization of Proposition 4.13, where, roughly

speaking, any two graphs (with inner hubs) can be glued together (unlike in the

preceding proposition, where each Sα, α ∈ E was glued to S1). The proof is

a straightforward modification of the proof of Proposition 4.13 and is therefore

omitted.

In order to facilitate the description of the next Proposition we will introduce a

natural higher level notion of graph. For this, we interpret any collection of graphs

with inner hubs {Gα}lα=1, as the vertices of a graph G, whose edges are glueings on
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cliques between the Gα and Gβ; that is,

V (G) = {Gα}lα=1

and

E(G) = {{Gα, Gβ} : Gα is glued on a clique to Gβ} .

Proposition 4.15. Let {Gα}lα=1 be a collection of graphs with inner hubs Aα, and G

its associated higher order graph (described above). Let m = |
⋃︁l

α=1 V (Gα)| and

µi be probability measures over Xi, i = 1, . . . ,m, where without loss of generality

v1 ∈ V (G1). Assume:

1. For each distinct α ̸= β, Aα ∩ Aβ = ∅ and V (Gα) ∩ V (Gβ) is either:

• empty,

• the vertex set V (S), where S is a maximal clique S of both Gα and Gβ

(in this case Gα and Gβ are glued on a clique S), or

• Aλ for some other Gλ (as when Gα and Gβ are both glued to Gλ).

2. µ1 is absolutely continuous with respect to Ln, and, for each α ∈ {1, . . . , l},

there exists pα ∈ I(Aα) such that µpα is absolutely continuous with respect to

Ln.

3. For at least one maximal clique S having v1 as one of its vertices, G1 is not

glued to any other Gα on S.

4. G is a tree.

Then every solution to the Kantorovich problem with surplus
⋃︁l

α=1Gα is induced

by a map.

Remark 4.16. Using the terminology developed above, the assumptions in Propo-

sition 4.13 are equivalent to the assumptions in Proposition 4.15, except that the
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hypothesis thatG is a tree is replaced with the hypothesis thatG is a star with internal

node S1. Therefore, Proposition 4.15 is a direct generalization of Proposition 4.13.

4.C.3 Examples

Let us illustrate the results obtained in this section throughout some examples. In

what follows, µ1 is absolutely continuous.

Examples 4.17. (i) In Theorem 4.12, if Sj = Sk for every j, k ∈ {1, . . . , l}, then⋃︁l
j=1 Sj reduces to the Gangbo and Świȩch surplus.

(ii) By Theorem 4.12, the graph S1 ∪ S2 ∪ S3 in Example 4.3 provides a Monge

solution, with µp absolutely continuous for some p ∈ {6, 7, 8}.

(iii) In Example 4.5, if there are p1 ∈ I(A) and p2 ∈ I(A′) such thatµp1 andµp2 are

absolutely continuous, then by Proposition 4.13 the graph
(︂⋃︁3

j=1 Sj

)︂⋃︁(︂⋃︁4
j=1 S

′
j

)︂
provides a solution of Monge type .

(iv) By Theorem 4.12, any graph of the formK1,k ( known as a star graph) provides

a solution of Monge type, under at most two regularity conditions (see pictures

below). Note that |V (K1,k)| = k + 1 and there exists v ∈ V (K1,k) such that

N(v) = {v1, . . . , vk}. Additionally, N(vs) = {v} for all s ∈ {1, . . . , k}.

This is one of the most simple graphs providing Monge solutions that we

could obtain, since a graph with inner hub have in fact a ”star shape”. Note

that, in the general setting, the single set {v} is replaced by the inner hub A

and {vj} is replaced by Bj := V (Sj) \A, j = 1, . . . , k, where {Sj}lj=1 is the

collection of maximal cliques. See for instance Figure 4.12.
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v1v2

v3

v4 v5

v6
v7

(a) K1,6, with V1 = {v7} and V2 =
{vi}6i=1. Here, we need regularity
conditions on µ1 and µ7.

v7v2

v3

v4 v5

v6
v1

(b) K1,6, with V1 = {v1} and V2 =
{vi}7i=2. Here, we only need a regu-
larity condition on µ1.

Figure 4.11: Star Graphs.

v1 v7

v2

v3

v4

v5

v9
v6

v8

v10

v13
v11

v12

Figure 4.12: Graph G =
⋃︁5

j=1 Sj generated by the collection of its maximal cliques
{Sj}5j=1, where V (S1) = {v2, v3, v4, v1, v7}, V (S2) = {v2, v3, v4, v6, v8}, V (S3) =
{v2, v3, v4, v11, v12}, V (S4) = {v2, v3, v4, v10, v13} and V (S5) = {v2, v3, v4, v5, v9}.
Clearly, A = {v2, v3, v4} is the inner hub of G.

(v) Let G be a graph tree with V (G) = {v1, . . . , vm} and D = {s ∈ {1, . . . ,m} :

|N(vs)| = 1}. Assume µs is absolutely continuous for every s ∈ {2, . . . ,m}\
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D. Monge solutions for these graphs could be easily deduced by adapting the

reasoning presented in Example 4.11; the solution will be the composition of

optimal maps for two marginal problems along any path. Alternatively, these

can be seen as special cases of Proposition 4.15.

v1

v3

v4 v5

v6
v7

(a) Path with vertex sequence
(x3, x7, x1, x6, x5, x4). Here,
we need regularity conditions on
µ1, µ5, µ6, µ7.

v1v2

v3

v4 v5

v6
v7

v8

v9

v10

(b) Here, we need regularity con-
ditions on µk, for every k ∈
{5, 6, 7, 8, 9}.

Figure 4.13: Trees.

(vi) Consider the graphs G1 and G2 below (Figures 4.14 and 4.15)
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v20
v4

v6

v1

v9
v10v11

v12

v13

v14

v15
v16

v17

v18

v19

Figure 4.14: Graph G1 with inner hub {v14, v15, v16}.

v11

v23

v12
v24

v13

v25 v14

v15
v16

Figure 4.15: Graph G2 with inner hub {v11, v12, v13}.
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Note that the graphsG1 andG2 have a common clique with vertices{v11, v12, v13, v14, v15, v16}

and they do not have any other common vertex; that is, G1 and G2 are glued

on a clique, as shows the graph below.

v20
v4

v6

v1

v9
v10v11

v23

v12
v24

v13

v25 v14

v15
v16

v17

v18

v19

Figure 4.16: Graph G1 ∪G2.

Similarly, the graphs G3 and G4 in Figures 4.17 and 4.18 have inner hubs

{v4, v6, v9, v10} and {v21, v22} respectively. Also, they have a common clique

with vertices {v4, v6, v9, v10, v21, v22} with no other common vertex. Then,

they are glued on a clique. See Figure 4.19.
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v4
v6

v22

v9

v21

v10

v14

v15
v16

Figure 4.17: Graph G3 with inner hub {v4, v6, v9, v10}.

v26

v27

v4
v6

v22

v9

v21

v10

Figure 4.18: Graph G4 with inner hub {v21, v22}.
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v26

v27

v4
v6

v22

v9

v21

v10

v14

v15
v16

Figure 4.19: Graph G3 ∪G4.

It is clear that under some conditions the graphs in Figures 4.14, 4.15, 4.16,

4.17, 4.18 and 4.19 provide uniqueness in the Monge-Kantorovich problem,

by Proposition 4.13. Note also that by Proposition 4.15, the graph G1 ∪G2 ∪

G3 ∪ G4 also provides uniqueness in the Monge-Kantorovich problem. See

graph below.
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v20

v26

v27

v4
v6

v22

v1

v9

v21

v10v11

v23

v12
v24

v13

v25 v14

v15
v16

v17

v18

v19

Figure 4.20: Graph G1 ∪G2 ∪G3 ∪G4.

4.D Uniqueness

Here, we include a standard argument, showing that in situations where all solutions

are of Monge type, the solution to (KPG) must be unique.

Corollary 4.18. Under the hypotheses in any of Theorem 4.9, Theorem 4.12, Propo-

sition 4.13 or Proposition 4.15, the solution to the Kantorovich problem (KPG) is

unique.

Proof. If there are two such solutions, µ0 and µ1, linearity of the Kantorovich
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functional implies that their interpolant µ1/2 =
1
2
µ0 +

1
2
µ1 is also a solution; under

any of the collections of hypotheses listed in the statement of the corollary, the

corresponding result then asserts that each of µ0, µ1 and µ1/2 must concentrate on

the graph of a function. This is clearly not possible, as if µ0, µ1 concentrate on

the graphs of T0 and T1, respectively, µ1/2 concentrates on the union of these two

graphs, which is itself a single graph only if T0 = T1 µ1 almost everywhere, in

which case µ0 = µ1.

4.E Discussion and negative examples

This section has identified a wide class of graphs leading to Monge solution and

uniqueness results in the multi-marginal optimal transport problem (MP) with corre-

sponding surplus (4.2), under appropriate conditions on the marginals; see Theorems

4.9 and 4.12 as well as Propositions 4.13 and 4.15. To the best of our knowledge,

such results are not known for any graph which is not covered here. Furthermore,

Part 2 of Proposition 4.6 verifies that the extra regularity conditions on the marginals

imposed here are necessary in order to obtain Monge solution and uniqueness results.

There are many graphs to which none of Theorem 4.9, Theorem 4.12, Proposition

4.13 or 4.15 apply, and for most of these we do not know whether or not Monge

solution and uniqueness results might hold, assuming for simplicity that all the

marginals are absolutely continuous. A notable exception to this is the cycle graph

for m ≥ 5 (see Figure 1.2 for the case m = 7); in a recent work [48], we showed the

existence of absolutely continuous marginals generating non-Monge solutions for

the corresponding surplus (1.2). For illustrative purposes, we close by mentioning a

class of graphs falling outside the scope of this paper, for which Monge solution and

uniqueness remain completely open. For this, recall that for graphs G1 and G2 with

disjoint vertex sets V1 and V2, the graph join G1 +G2 is defined as the graph union

G1 ∪G2 together with all edges joining vertices in V1 with vertices in V2. Also, for
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any graph G, the graph complement (denoted G) is the graph with vertices V (G)

and set of edges E(G) = {{v, w} : v, w ∈ V (G) and {v, w} /∈ E(G)}.

Definition 4.19. Let Pn be a path with n vertices and Kr the complement of the

complete graph with r vertices Kr (so NKr
(v) = ∅ for every v ∈ V (Kr)). The fan

graph Fr,n is defined as the graph Kr + Pn.

Example 4.20. Let us illustrate the above definition with some basic examples.

• The graphsF1,1 andF1,2 reduce to complete graphs with two and three vertices

respectively.

• The graph F1,3 reduces to the extraction of the graph consisting of only one

edge from the complete graph K4.

• The graphs F1,6 and F2,5, where for F1,6 we denote the only vertex of K1 as

v1, and for F2,5 we denote the vertices of K2 as v1 and v7. See figures below

v1

v2

v3

v4

v5

v6

v7

(a) F1,6

v7

v2

v3

v4

v5

v6

v1

(b) F2,5

Figure 4.21: Fan Graphs.

Proposition 4.21. Let Fk,n be a fan graph.
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1. If n ≥ 4, then Fr,n does not belong to the class of graphs in Theorem 4.9,

Theorem 4.12, Proposition 4.13 or Proposition 4.15.

2. If n < 4, then Fr,n belongs to the class of graphs considered in Theorem 4.9.

The proof of Part 1 of the above proposition will be divided into two cases. In

both cases the next lemma will be used during the proofs.

Lemma 4.22. Assume n ≥ 4. Then F1,n does not have an inner hub.

Proof. Assume F1,n has an inner hub. Since F1,n is connected, every vertex in the

nonempty hub is adjacent to all the other vertices. Now, the only vertex of F1,n

satisfying this property is the vertex of K1 = K1 (so V (K1) is the hub of F1,n).

This implies by definition of inner hub that Pn is complete or it is the disjoint union

of complete graphs. This is a contradiction as n > 2 (so Pn can not be complete)

and it is connected, completing the proof of the lemma.

Proof of Proposition 4.21. Since Proposition 4.15 generalizes Theorem 4.12 and

Proposition 4.13, it suffices to prove Part 1 for Theorem 4.9 and Proposition 4.15.

For this, we set m = r + n and consider two cases.

Case 1. Assume r = 1. If F1,n = Km \ S for some subgraph S of Km, then S = Pn

or S = K1 ∪ Pn. Since n ≥ 4, Pn is connected and there is not a vertex

in V (Pn) adjacent to all the other vertices; that is, Pn can not have an inner

hub. Also, the only way that the disconnected graph K1 ∪ Pn has an inner

hub is when Pn is complete (as it is connected), which is clearly not the case.

Hence, the structure of F1,n does not correspond to the graphs considered

in Theorem 4.9. On the other hand, note that the vertex of K1 = K1 is

connected to all the other vertices of F1,n, and the only case in Proposition

4.15 where a vertex of a graph
⋃︁l

α=1Gα ( where {Gα}lα=1 is a collection

of graphs with inner hubs Aα satisfying the conditions in Proposition 4.15)

satisfies this condition is when l = 1; that is, if there exists one of these
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collections satisfying
⋃︁l

α=1Gα = F1,n, then F1,n would be a graph with an

inner hub, contradicting Lemma 4.22. This proves that F1,n does not belong

to the class of graphs in Proposition 4.15, completing the proof of Case 1.

Case 2. Assume r ⩾ 2. If Fr,n = Km \ S for some subgraph S of Km, then

S = Kr ∪ Pn. Note that S is disconnected with connected components Kr

and Pn (as n ⩾ 4), so if S has inner hub then it must be empty, which implies

Pn is complete. This clearly is not possible as n > 1. Hence, Fr,n does not

belong to the class of graphs in Theorem 4.9. For the other part of the assertion,

consider {Gα}lα=1 a collection of graphs with inner hubs Aα satisfying the

conditions imposed in Proposition 4.15 and assume Fr,n =
⋃︁l

α=1Gα. Fix

any vertex v in V (Kr) ⊆ V (Fr,n), then there exists β such that v ∈ Aβ or

v ∈ V (Sβ) \ Aβ for some maximal clique Sβ of Gβ . If v ∈ Aβ , then

V (Gβ) = (V (Gβ) \ {v}) ∪ {v}

= N⋃︁l
α=1 Gα

(v) ∪ {v}

= NFr,n(v) ∪ {v}

= V (Pn) ∪ {v} as v ∈ V (Kr)

This implies that Gβ = Pn ∪ Kv,V (Pn) where Kv,V (Pn) is a bi-partite graph

with set partition {{v}, V (Pn)} (alternatively we can interpret it as a star

graph with ”center” v); that is, Gβ is a graph of the form F1,n having an

inner hub. This is a contradiction by Lemma 4.22. This proves that Fr,n does

not satisfy the graph structure condition in Proposition 4.15. Now, assume

v ∈ V (Sβ) \ Aβ and without lost of generality assume v /∈ Aα for any

α ̸= β (otherwise we apply the same arguments as in the case v ∈ Aβ above),

then V (Sβ) = NFr,n(v) ∪ {v} = V (Pn) ∪ {v}; that is, Pn ∪ Kv,V (Pn) is a

complete graph (so it has inner hub V (Pn ∪Kv,V (Pn))), contradicting Lemma

4.22. Hence, Fr,n does not belong to the class of graphs in Proposition 4.15,
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completing the proof of Part 1.

To prove Part 2, note that if n ∈ {1, 2, 3} the graph Pn can be trivially expressed as a

union of disjoint complete graphs, so Kr∪Pn is a disjoint union of complete graphs

and can be interpreted as a graph with empty inner hub. SinceFr,n = Km\(Kr∪Pn),

we immediately conclude that Fr,n belong to the class of graphs in Theorem 4.9.

This completes the Proof of part 2.

We note that the essential ideas in the proposition above can in fact be adapted

to a more abstract class of graphs. The next lemma describes such a class, which

therefore also falls outside the scope of the results in this paper and for which the

Monge solution and uniqueness questions remain open.

Lemma 4.23. Let G be a connected graph satisfying NG(v) ∪ {v} ≠ V (G), for all

v ∈ V (G) and consider the graph Fr,G := Kr + G. Then Fr,G does not belong to

the classes of graph considered in Theorem 4.9 and Proposition 4.15.

Proof. Note that the condition NG(v) ∪ {v} ̸= V (G), for all v ∈ V (G) implies

that G does not have an inner hub (there is not a vertex in V (G) adjacent to all

the other vertices). Also, since G is connected, NG(v) ∪ {v} ≠ V (G) for all

v ∈ V (G) = V (G), so G also has no inner hub. In particular, G and G are not

complete and can not be expressed as a disjoint union of complete graphs. Knowing

this, it is not hard to follow the arguments of Lemma 4.22 to prove that F1,G does

not have inner hub, and then, by mimicking the proof of the above proposition the

proof is completed.

Lemma 4.23 allows one to construct many graphs for which Monge solution and

uniqueness results are not known, with more adhoc structure than the fan graphs

considered above. One such possibility is illustrated in the figure below.
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Chapter 5

A general condition for uniqueness in

the Monge-Kantorovich problem

Our goal in this chapter is to generalize and extend the twist on c-splitting sets

condition.

In the next section we formulate the conditions we will need and show a prelim-

inary result. In Section 5.B we formulate and state our main result and in Section

5.C we illustrate our condition through several examples.

5.A Essential definitions and preliminary results

Here we establish the main background concepts used in this Chapter. For this,

we first introduce some convenient notation. Assume {ki}ri=1 ⊆ {2, . . . ,m}, with

k1 < k2 < . . . < kr.

• Let S ⊆
∏︁m

i=1Xi be a c-splitting set and (u1, . . . , um) an m−tuple of c-

splitting functions for S. Given x0
1 ∈ π1(S), where π1 is the canonical
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projection from
∏︁m

i=1Xi to X1, we define

Wx0
1k1...kr

(u1, . . . , um, S) :=
{︂
(x2, . . . , xm) ∈

m∏︂
i=2

Xi : (x
0
1, x2, . . . , xm) ∈ S and

Duki(xki) exists for each i = 1, . . . r
}︂
.

• For a given m-tuple of Borel functions (u′
1, . . . , u

′
m) satisfying inequality

(2.2), and x0
1 ∈ X1, we define

Mx0
1k1...kr

(u′
1, . . . , u

′
m) :=

{︂
(x2, . . . , xm) ∈

m∏︂
i=2

Xi : Du′
ki
(xki) exists for each

i = 1, . . . , r and u′
1(x

0
1) +

m∑︂
i=2

u′
i(xi) = c(x0

1, x2, . . . , xm)
}︂
.

From now on, if there is not danger of confusion, we will write Wx0
1k1...kr

and

Mx0
1k1...kr

for Wx0
1k1...kr

(u1, . . . , um, S) and Mx0
1k1...kr

(u′
1, . . . , u

′
m) respectively.

Remark 5.1. Note that Wx0
1k1...kr

(u1, . . . , um, S) ⊆ Mx0
1k1...kr

(u1, . . . , um), for any

c-splitting set S, m-tuple of c-splitting functions (u1, . . . , um) for S and x0
1 ∈ π1(S).

Hence, for any fixed (u1, . . . , um) satisfying inequality (2.2) and x0
1 ∈ X1, we get

⋃︂
S∈F

Wx0
1k1...kr

(u1, . . . , um, S) ⊆ Mx0
1k1...kr

(u1, . . . , um),

where

F :=
{︂
S ⊆

m∏︂
i=1

Xi : x
0
1 ∈ π1(S) and S is a splitting set having (u1, . . . , um)

as c-splitting functions
}︂
.

On the other hand, for any (x2, . . . , xm) ∈ Mx0
1k1...kr

(u1, . . . , um), the single-

ton S̄ = {x0
1, x2, . . . , xm} is trivially a c-splitting set satisfying (x2, . . . , xm) ∈
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Wx0
1k1...kr

(u1, . . . , um, S̄) with S̄ ∈ F . This immediately implies

⋃︂
S∈F

Wx0
1k1...kr

(u1, . . . , um, S) = Mx0
1k1...kr

(u1, . . . , um).

Definition 5.2. Let c be a continuous semi-concave cost function, and let {ki}ri=1 ⊆

{2, . . . ,m}, with k1 < k2 < . . . < kr. We say c is twisted on c-splitting sets with

respect to the variables x1, xk1 , . . . , xkr , if for each c-splitting set S ⊆
∏︁m

i=1Xi and

m-tuple (u1, . . . , um) of c-splitting functions for S, the map

(x2, . . . , xm) ↦→ Dx1c(x
0
1, x2, . . . , xm)

is injective on the subset of Wx0
1k1...kr

where Dx1c(x
0
1, x2, . . . , xm) exists, for each

fixed x0
1 ∈ π1(S) satisfying Wx0

1k1...kr
̸= ∅.

Remark 5.3. Note that Definition 2.5 is equivalent to c being twisted on c-splitting

sets with respect to the variable x1. Hence, our main result (Theorem 5.6), general-

izes the main result in [35] (see Remark 2.6).

We now proceed to prove a lemma, which provides an alternative way to check

the condition above.

Lemma 5.4. Let c be a continuous, semi-concave cost function. Let {ki}ri=1 ⊆

{2, . . . ,m}, with k1 < k2 < . . . < kr. The cost c is twisted on c-splitting sets

with respect to the variables x1, xk1 , . . . , xkr if and only if for every m-tuple of

Borel functions (u1, . . . , um) satisfying inequality (2.2) and for every x0
1 ∈ X1 with

Mx0
1k1...kr

̸= ∅, we get that the map

(x2, . . . , xm) ↦→ Dx1c(x
0
1, x2, . . . , xm)

is injective on the subset of Mx0
1k1...kr

where Dx1c(x
0
1, x2, . . . , xm) exists.

Proof. The converse is straightforward, as for every c-splitting set S ⊆
∏︁m

i=1Xi and
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m-tuple (u1, . . . , um) of c-splitting functions for S, we have Wx0
1k1...kr

⊆ Mx0
1k1...kr

for each fixed x0
1 ∈ π1(S). Hence, if Wx0

1k1...kr
̸= ∅ we get Mx0

1k1...kr
̸= ∅, which

implies that the map (x2, . . . , xm) ↦→ Dx1c(x
0
1, x2, . . . , xm) is injective on the subset

of Mx0
1k1...kr

where Dx1c(x
0
1, x2, . . . , xm) exists, in particular, it is injective on the

subset of Wx0
1k1...kr

where Dx1c(x
0
1, x2, . . . , xm) exists; that is, c is twisted on c-

splitting sets with respect to the variables x1, xk1 , . . . , xkr . Assume now that the

cost c is twisted on c-splitting sets with respect to the variables x1, xk1 , . . . , xkr . Let

(u1, . . . , um) be an m-tuple of Borel functions satisfying inequality (2.2), and fix

x0
1 ∈ X1. Assume Mx0

1k1...kr
̸= ∅, and set

S :=
{︂
(x0

1, x2, . . . , xm) ∈
m∏︂
i=1

Xi : (x2, . . . , xm) ∈ Mx0
1k1...kr

}︂
=
{︂
(x0

1, x2, . . . , xm) ∈
m∏︂
i=1

Xi : u1(x
0
1) +

m∑︂
i=2

ui(xi) = c(x0
1, x2, . . . , xm), and

Duki(xki) exists for each i = 1, . . . r
}︂
.

Clearly,S is a c-splitting set, π1(S) = {x0
1} andWx0

1k1...kr
= Mx0

1k1...kr
̸= ∅. This im-

mediately implies, by assumption that the map (x2, . . . , xm) ↦→ Dx1c(x
0
1, x2 . . . , xm)

is injective on the subset ofMx0
1k1...kr

whereDx1c(x
0
1, x2, . . . , xm) exists, completing

the proof of the lemma.

Remark 5.5. Note that by Lemma 2.8, if (u1, . . . , um) is an m-tuple of Borel

functions satisfying inequality (2.2) and Du1(x
0
1) exists for some x0

1 ∈ X1 satisfying

Mx0
1k1...kr

̸= ∅, then the map

(x2, . . . , xm) ↦→ Dx1c(x
0
1, x2, . . . , xm)

is injective on the subset of Mx0
1k1...kr

where Dx1c(x
0
1, x2, . . . , xm) exists if and only

if Mx0
1k1...kr

is a singleton. As we shall see in the next two sections, this fact will be

convenient for the proof of our main result (Theorem 5.6) and the propositions in
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Section 5.C.

5.B Existence and Uniqueness to Monge Problem

We now state and prove our main result.

Theorem 5.6. Assume the measures µ1, µk1 , . . . , µkr are absolutely continuous with

respect to Ln, with {ki}ri=1 ⊆ {2, . . . ,m}, k1 < k2 < . . . < kr. Assume c is twisted

on c-splitting sets with respect to the variables x1, xk1 , . . . , xkr . Then the solution µ

in (KP) is concentrated on a graph of a measurable map and it is unique.

Proof. Let us first prove that µ is induced by a map. The uniqueness assertion

will follows immediately by a standard argument. By Theorem 2.2 there exists

an m-tuple (u1, . . . , um) of c-splitting functions for spt(µ) satisfying (2.1). Fix

i ∈ {0, 1, . . . , r} and set k0 = 1. Note that the function uki(xki) is semi-concave

for each ki, as it is the infimum of semi-concave functions. Hence, uki(xki) is

differentiable almost everywhere with respect to Ln. It follows that uki(xki) is

differentiable µki almost everywhere, as the measure µki is absolutely continuous

with respect to Ln. It implies that µ(S) = 1, where

S :=
{︂
(x1, x2, . . . , xm) ∈

m∏︂
i=1

Xi : Du1(x1) and Duki(xki) exist for each i = 1, . . . r, and

m∑︂
i=1

ui(xi) = c(x1, x2, . . . , xm)
}︂
.

Fixx0
1 ∈ π1(S). Clearly,Mx0

1k1...kr
̸= ∅, and so by Lemma 5.4 the map (x2, . . . , xm) ↦→

Dx1c(x
0
1, x2, . . . , xm) is injective on the subset ofMx0

1k1...kr
whereDx1c(x

0
1, x2, . . . , xm)

exists, this happens if and only if the set Mx0
1k1...kr

is a singleton (see Remark 5.5),

which implies Wx0
1k1...kr

is also a singleton. This completes the proof that µ is in-

duced by a map. To prove that µ is unique note that for any pair of solutions µ1 and

µ2 (which are induced by maps T1 and T2), we have 1
2
(µ1 + µ2) is also a solution (by
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the convexity of the set Π(µ1, . . . , µm)), which implies that it is also concentrated

on the graph of some map. However, 1
2
(µ1 + µ2) must be concentrated on the union

of the graphs of T1 and T2. We conclude T1 = T2 µ1-a.e., completing the proof of

the theorem.

Remark 5.7. Note from the above proof that the regularity condition on the first

marginal (which is a standard assumption in the classical and multi-marginal op-

timal transport for uniqueness results), allow us to focus on the set {x1 ∈ X1 :

Du1(x1) exists}, for every m-tuple (u1, . . . , um) of Borel functions satisfying in-

equality (2.2). In what follows such regularity condition holds, so to get uniqueness

of solutions in the Monge-Kantorovich problem it suffices to prove that the set

Mx0
1k1...kr

(u1, . . . , um) is a singleton for every x0
1 ∈ {x1 ∈ X1 : Du1(x1) exists}

fixed, for every m-tuple (u1, . . . , um) of Borel functions satisfying inequality (2.2)

(see also Remark 5.5).

5.C Examples.

Here, we illustrate the result obtained in Theorem 5.6 throughout several examples.

Proposition 5.8 (One dimensional sub-modular type costs). Assume c(x1, . . . , xm)

is semi-concave and C2, where Xi = R for all i = 1, . . . ,m. Let G be an undirected

simple graph on {1, . . . ,m} and assume

1.
∂2c

∂xi∂xj

≤ 0 for all i ̸= j and
∂2c

∂xi∂xj

< 0 for all {i, j} ∈ E(G).

2. There exists a set P := {k1, . . . , kr} ⊆ {1, . . . ,m} such that for every i ∈

{1, . . . ,m}not adjacent to 1, there is a path{{1, i1}, {i1, i2}, . . . , {il−1, il}, {il, i}}

in G with {i1, . . . , il} ⊆ P .

Then c is twisted on c-splitting sets with respect to the variables x1, xk1 , . . . , xkr .
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Proof. Let (u1, . . . , um) be an m-tuple of Borel functions satisfying inequality (2.2)

and fix x0
1 ∈ X1 such that Du1(x

0
1) exists and Mx0

1k1...kr
̸= ∅. We want to prove that

Mx0
1k1...kr

is a singleton. This will complete the proof.

Let (x2, . . . , xm), (x2, . . . , xm) ∈ Mx0
1k1...kr

and set x = (x0
1, x2, . . . , xm) and x =

(x0
1, x2, . . . , xm). Consider

x+ = (x0
1, x

+
2 , . . . , x

+
m) where x+

k = max{xk, xk},

x− = (x0
1, x

−
2 , . . . , x

−
m) where x−

k = min{xk, xk}.

From definition of Mx0
1k1...kr

the set {x, x} is a c-splitting set, so it is cyclically

monotone. Then

c(x) + c(x) ≤ c(x+) + c(x−). (5.1)

We claim that the reverse inequality also holds. To get this consider x(t) = tx+ +

(1− t)x and y(t) = tx+ (1− t)x− for s ∈ [0, 1]. Next, write

c(x+)− c(x) =

∫︂ 1

0

d

dt
c(x(t))dt

=

∫︂ 1

0

m∑︂
i=2

∂c(x(t))

∂xi

(x+
i − xi)dt, (5.2)

and

c(x−)− c(x) = −
∫︂ 1

0

d

dt
c(y(t))dt

= −
∫︂ 1

0

m∑︂
i=2

∂c(y(t))

∂xi

(xi − x−
i )dt. (5.3)

Since for each i ∈ {2, . . . ,m} we have

x+
i − xi = xi − x−

i =

⎧⎪⎨⎪⎩xi − xi if xi > xi

0 xi ≤ xi,

(5.4)
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the addition of (5.2) and (5.3) gives

c(x+)− c(x)+ c(x−)− c(x) =

∫︂ 1

0

m∑︂
i=2

[︃
∂c(x(t))

∂xi

− ∂c(y(t))

∂xi

]︃
(x+

i −xi)dt (5.5)

Now, set x(t, s) = sx(t) + (1 − s)y(t), with t ∈ [0, 1] fixed. Then for each

i ∈ {2, . . . ,m} we have

∂c(x(t))

∂xi

− ∂c(y(t))

∂xi

=

∫︂ 1

0

m∑︂
j=2

∂2c(x(t, s))

∂xi∂xj

[︁
tx+

j + (1− t)xj−
(︁
txj + (1− t)x−

j )] ds

=

∫︂ 1

0

m∑︂
j=2

∂2c(x(t, s))

∂xi∂xj

[︁
t(x+

j − xj)− t(xj − x−
j ) + xj − x−

j

]︁
ds

=

∫︂ 1

0

m∑︂
j=2

∂2c(x(t, s))

∂xi∂xj

(︁
xj − x−

j

)︁
ds. by (5.4)

Substituting it into (5.5) we get

c(x+)−c(x)+c(x−)−c(x) =

∫︂ 1

0

∫︂ 1

0

m∑︂
i,j=2

∂2c(x(t, s))

∂xi∂xj

(︁
x+
i − xi

)︁ (︁
xj − x−

j

)︁
dsdt.

Now note that x+
i −xi, xj −x−

j ≥ 0, then by Assumption 1, c(x+)− c(x)+ c(x−)−

c(x) ≤ 0. This implies that equality holds in (5.1), completing the proof of the

claim. Also, note that if one of the inequalities

u1(x
0
1) +

m∑︂
i=2

ui(x
+
i ) ≤ c(x+) (5.6)

u1(x
0
1) +

m∑︂
i=2

ui(x
−
i ) ≤ c(x−) (5.7)

is strict, we would have

2u1(x
0
1) +

m∑︂
i=2

ui(x
+
i ) +

m∑︂
i=2

ui(x
−
i ) < c(x+) + c(x−)
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= c(x) + c(x)

= 2u1(x
0
1) +

m∑︂
i=2

ui(xi) +
m∑︂
i=2

ui(xi)

= 2u1(x
0
1) +

m∑︂
i=2

ui(x
+
i ) +

m∑︂
i=2

ui(x
−
i ),

which is clearly not posible; that is, equality holds in (5.6) and (5.7). Hence

x+, x− ∈ Mx0
1k1...kr

. (5.8)

Furthermore, from Lemma 2.8 we get

∂c(x+)

∂x1

= Du1(x
0
1) =

∂c(x−)

∂x1

,

or equivalently, ∫︂ 1

0

m∑︂
i=2

∂2c(r(t))

∂x1∂xi

(x+
i − x−

i )dt = 0,

where r(t) = tx+ + (1− t)x−, t ∈ [0, 1]. We then must have

∂2c(r(t))

∂x1∂xi

(x+
i − x−

i ) = 0

for every i ∈ {2, . . . ,m}, as
∂2c(r(t))

∂x1∂xi

(x+
i − x−

i ) ≤ 0 on {2, . . . ,m}. We next use

Assumption 1 to deduce x+
i = x−

i for all i adjacent to 1; that is,

xi = xi for all i adjacent to 1. (5.9)

Now, if 1 is adjacent to all the other vertices, the proof is completed. If there is a

vertex not adjacent to 1, then 1 must be adjacent to some i ∈ P (by Assumption 2),

which implies xi = xi by (5.9). Combining this with (5.8) and Lemma 2.8 we get
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∂c(x+)

∂xi

= Dui(xi) =
∂c(x−)

∂xi

,

so we can mimic the arguments presented in the proof of (5.9) (beginning from

(5.8)) to get xj = xj for every j adjacent to i. Following this iterative process we

can prove that xj = xj for every j ∈ V (G), as Assumption 2 implies that every

vertex of V (G) is adjacent to at least one vertex in P , completing the proof of the

proposition.

Remark 5.9. Note that if the graph G is complete, we can take P = ∅ and Condition

1 basically means that c is strictly sub-modular. Unique Monge type solutions for

strictly sub-modular costs was established by Carlier [16]. It was observed in [41]

that this condition is equivalent (up to a change of variables) to the compatibility

condition, which states that

(︃
∂2c

∂xi∂xj

)︃(︃
∂2c

∂xk∂xj

)︃−1(︃
∂2c

∂xk∂xi

)︃
< 0

everywhere, for all distinct i, j, k, and so compatible costs yield unique Monge

solutions as well.

We can easily see that the next result is a generalization of a special case of

Theorem 4.9. Note that here we do not require f being symmetric.

Proposition 5.10. Let {I1, I2, I3} be a partition of {1, . . . ,m}. Let f : Rn×Rn ↦→ R

be a function satisfying:

1. f is bi-linear,

2. f(x, x) ≤ 0 for every x ∈ Rn,

3. f is bi-twisted; that is, for each x0, y0 ∈ Rn fixed, the maps y ↦→ Dxf(x0, y)

and x ↦→ Dyf(x, y0) are injective on {x0} ×Rn and Rn × {y0} respectively.
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Assume 1 ∈ I1 and fix p ∈ I2 ∪ I3, then the cost function

c(x1, . . . , xm) =
∑︂
s∈I1

∑︂
t∈I2∪I3

f(xs, xt) +
∑︂
s∈I3

∑︂
t∈I2

f(xs, xt) +
∑︂
s,t∈I3
s<t

f(xs, xt) (5.10)

is twisted on c-splitting sets with respect to x1 and xp.

Proof. Firstly, by hypothesis 1 we can write

c(x1, . . . , xm) = f(
∑︂
s∈I1

xs,
∑︂

t∈I2∪I3

xt) + f(
∑︂
s∈I3

xs,
∑︂
t∈I2

xt) +
∑︂
s,t∈I3
s<t

f(xs, xt). (5.11)

Let (u1, . . . , um) be an m-tuple of Borel functions satisfying inequality (2.2) and fix

x0
1 ∈ {x1 ∈ X1 : Du1(x1) exists}, with Mx0

1p
(u1, . . . , um) ̸= ∅. We want to prove

that Mx0
1p

is a singleton, this will complete the proof.

Let (x1
2, . . . , x

1
m), (x

2
2, . . . , x

2
m) ∈ Mx0

1p
. Since {I1, I2, I3} is a partition and 1 ∈ I1,

we get from Lemma 2.8 and (5.11),

Dx1f(x
0
1,
∑︂

t∈I2∪I3

x1
t ) = Dx1c(x

0
1, x

1
2, . . . , x

1
m)

= Du1(x
0
1)

= Dx1c(x
0
1, x

2
2, . . . , x

2
m)

= Dx1f(x
0
1,
∑︂

t∈I2∪I3

x2
t ).

It follows that ∑︂
t∈I2∪I3

x1
t =

∑︂
t∈I2∪I3

x2
t , (5.12)

by Assumption 3.
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Claim 5.11. For every N ⊆ I1 we get yN := (y2, . . . , ym) ∈ Mx0
1p

, where

ys =

⎧⎪⎨⎪⎩x2
s if s ∈ {2, . . . ,m} \N

x1
s if s ∈ N.

(5.13)

Proof of Claim 1. Note that from (5.11), we can write

c(x1, . . . , xm) = f(
∑︂
s∈N

xs,
∑︂

t∈I2∪I3

xt) + f(
∑︂

s∈I1\N

xs,
∑︂

t∈I2∪I3

xt) + f(
∑︂
s∈I3

xs,
∑︂
t∈I2

xt) +
∑︂
s,t∈I3
s<t

f(xs, xt).

(5.14)

Since (x1
2, . . . , x

1
m) ∈ Mx0

1p
, we get

{︁
x1
s

}︁
s∈N ∈ Argmin

{︄
{xs}s∈N ↦→ f(

∑︂
s∈N

xs,
∑︂

t∈I2∪I3

x1
t )−

∑︂
s∈N

us(xs) + f(
∑︂

s∈I1\N

x1
s,
∑︂

t∈I2∪I3

x1
t )

+ f(
∑︂
s∈I3

x1
s,
∑︂
t∈I2

x1
t ) +

∑︂
s,t∈I3
s<t

f(x1
s, x

1
t )−

∑︂
s∈{1,...,m}\N

us(x
1
s)

}︄

= Argmin

{︄
{xs}s∈N ↦→ f(

∑︂
s∈N

xs,
∑︂

t∈I2∪I3

x1
t )−

∑︂
s∈N

us(xs)

}︄

= Argmin

{︄
{xs}s∈N ↦→ f(

∑︂
s∈N

xs,
∑︂

t∈I2∪I3

x2
t )−

∑︂
s∈N

us(xs)

}︄
,

by (5.12). We deduce yN ∈ Mx0
1p

, as (x2
2, . . . , x

2
m) ∈ Mx0

1p
. This complete the

proof of Claim 1.

Claim 5.12. x1
s = x2

s for every s ∈ I2.

Proof of Claim 2. From Claim 1, (y2, . . . , ym) ∈ Mx0
1p

where

ys =

⎧⎪⎨⎪⎩x2
s if s ∈ {2, . . . ,m} \ I1

x1
s if s ∈ I1.

(5.15)
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Then, by fixing r ∈ I2 we get

x1
r ∈ Argmin

{︄
xr ↦→ c(x0

1, x
1
2, . . . , x

1
r−1, xr, x

1
r+1, . . . , x

1
m)− ur(xr)

}︄
,

yr = x2
r ∈ Argmin

{︄
xr ↦→ c(x0

1, y2, . . . , yr−1, xr, yr+1, . . . , ym)− ur(xr)

}︄
.

Then

c(x0
1, x

1
2, . . . , x

1
m)− ur(x

1
r) ≤ c(x0

1, x
1
2, . . . , x

1
r−1, x

2
r, x

1
r+1, . . . , x

1
m)− ur(x

2
r),

(5.16)

c(x0
1, y2, . . . , ym)−ur(x

2
r) ≤ c(x0

1, y2, . . . , yr−1, x
1
r, yr+1, . . . , ym)−ur(x

1
r), (5.17)

which implies

c(x0
1, x

1
2, . . . , x

1
m) + c(x0

1, y2, . . . , ym) ≤ c(x0
1, x

1
2, . . . , x

1
r−1, x

2
r, x

1
r+1, . . . , x

1
m)

+ c(x0
1, y2, . . . , yr−1, x

1
r, yr+1, . . . , ym).

(5.18)

Now, from bi-linearity of f we can write

c(x1, . . . , xm) = f(
∑︂
s∈I1

xs,
∑︂

t∈I2∪I3

xt) + f(
∑︂
s∈I3

xs,
∑︂
t∈I2

xt) +
∑︂
s,t∈I3
s<t

f(xs, xt)

= f(
∑︂

s∈I1∪I3

xs,
∑︂
t∈I2

xt) + f(
∑︂
s∈I1

xs,
∑︂
t∈I3

xt) +
∑︂
s,t∈I3
s<t

f(xs, xt)

= f(
∑︂

s∈I1∪I3

xs, xr) + f(
∑︂

s∈I1∪I3

xs,
∑︂

t∈I2\{r}

xt) + f(
∑︂
s∈I1

xs,
∑︂
t∈I3

xt) +
∑︂
s,t∈I3
s<t

f(xs, xt).
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Combining this with (5.18) we get

f(
∑︂

s∈I1∪I3

x1
s, x

1
r) + f(

∑︂
s∈I1∪I3

x1
s,
∑︂

t∈I2\{r}

x1
t ) + f(

∑︂
s∈I1

x1
s,
∑︂
t∈I3

x1
t ) +

∑︂
s,t∈I3
s<t

f(x1
s, x

1
t )

+f(
∑︂

s∈I1∪I3

ys, yr) + f(
∑︂

s∈I1∪I3

ys,
∑︂

t∈I2\{r}

yt) + f(
∑︂
s∈I1

ys,
∑︂
t∈I3

yt) +
∑︂
s,t∈I3
s<t

f(ys, yt)

≤ f(
∑︂

s∈I1∪I3

x1
s, x

2
r) + f(

∑︂
s∈I1∪I3

x1
s,
∑︂

t∈I2\{r}

x1
t ) + f(

∑︂
s∈I1

x1
s,
∑︂
t∈I3

x1
t ) +

∑︂
s,t∈I3
s<t

f(x1
s, x

1
t )

+f(
∑︂

s∈I1∪I3

ys, x
1
r) + f(

∑︂
s∈I1∪I3

ys,
∑︂

t∈I2\{r}

yt) + f(
∑︂
s∈I1

ys,
∑︂
t∈I3

yt) +
∑︂
s,t∈I3
s<t

f(ys, yt).

Then, the above inequality reduces to

f(
∑︂

s∈I1∪I3

x1
s, x

1
r) + f(

∑︂
s∈I1∪I3

ys, yr) ≤ f(
∑︂

s∈I1∪I3

x1
s, x

2
r) + f(

∑︂
s∈I1∪I3

ys, x
1
r). (5.19)

By construction of y and linearity we have

f(
∑︂

s∈I1∪I3

ys, yr) = f(
∑︂
s∈I1

ys, yr) + f(
∑︂
s∈I3

ys, yr) = f(
∑︂
s∈I1

x1
s, x

2
r) + f(

∑︂
s∈I3

x2
s, x

2
r),

f(
∑︂

s∈I1∪I3

ys, x
1
r) = f(

∑︂
s∈I1

ys, x
1
r) + f(

∑︂
s∈I3

ys, x
1
r) = f(

∑︂
s∈I1

x1
s, x

1
r) + f(

∑︂
s∈I3

x2
s, x

1
r).

Substituting it into (5.19) and eliminating similar terms we get

f(
∑︂
s∈I3

x1
s, x

1
r) + f(

∑︂
s∈I3

x2
s, x

2
r) ≤ f(

∑︂
s∈I3

x1
s, x

2
r) + f(

∑︂
s∈I3

x2
s, x

1
r),

and by (5.12), we get

f(
∑︂
s∈I2

(x2
s − x1

s), x
1
r − x2

r) = f(
∑︂
s∈I3

(x1
s − x2

s), x
1
r − x2

r) ≤ 0;
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that is,

f(
∑︂
s∈I2

(x2
s − x1

s), x
2
r − x1

r) ≥ 0.

Summing over r ∈ I2 we get

f(
∑︂
s∈I2

(x2
s − x1

s),
∑︂
r∈I2

(x2
r − x1

r)) ≥ 0.

Combining this with hypothesis 2 we get f(
∑︁

s∈I2(x
2
s − x1

s),
∑︁

r∈I2(x
2
r − x1

r)) = 0.

Then, we must have, in particular, equality in (5.16). It follows that (x1
2, . . . , x

1
r−1, x

2
r, x

1
r+1, . . . , x

1
m) ∈

Mx0
1p

, and so

Dx1f(x
0
1,
∑︂

t∈I2∪I3

x1
t ) = Dx1c(x

0
1, x

1
2, . . . , x

1
m)

= Du1(x
0
1)

= Dx1c(x
0
1, x

1
2, . . . , x

1
r−1, x

2
r, x

1
r+1, . . . , x

1
m)

= Dx1f(x
0
1, x

2
r +

∑︂
t∈I2∪I3\{r}

x1
t ).

Thus, x1
r = x2

r , as f is twisted. This completes the proof of Claim 2.

Claim 5.13. For every n, equation (5.12) implies x1
tj
= x2

tj
for 1 ≤ j ≤ n, where

I3 := {t1, . . . , tn}.

Proof of Claim 3. From Claim 2 and (5.12) we get

∑︂
t∈I3

x1
t =

∑︂
t∈I3

x2
t . (5.20)

We proceed to apply induction on n. Indeed, when n = 1 it is clearly true. Assume

the statement is true when n = k − 1. Note that

f(
∑︂
s∈I1

xs,
∑︂
t∈I3

xt) = f(
∑︂
s∈I1

xs, xtk) + f(
∑︂
s∈I1

xs,
∑︂

t∈I3\{tk}

xt),
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f(
∑︂
s∈I3

xs,
∑︂
t∈I2

xt) = f(xtk ,
∑︂
t∈I2

xt) + f(
∑︂

s∈I3\{tk}

xs,
∑︂
t∈I2

xt),

∑︂
s,t∈I3
s<t

f(xs, xt) =
∑︂

s∈I3\{tk}

f(xs, xtk) +
∑︂

s,t∈I3\{tk}
s<t

f(xs, xt).

Hence,

c(x1, . . . , xm) = f(
∑︂
s∈I1

xs,
∑︂

t∈I2∪I3

xt) + f(
∑︂
s∈I3

xs,
∑︂
t∈I2

xt) +
∑︂
s,t∈I3
s<t

f(xs, xt)

= f(
∑︂
s∈I1

xs,
∑︂
t∈I2

xt) + f(
∑︂
s∈I1

xs,
∑︂
t∈I3

xt) + f(
∑︂
s∈I3

xs,
∑︂
t∈I2

xt) +
∑︂
s,t∈I3
s<t

f(xs, xt)

= f(
∑︂
s∈I1

xs,
∑︂
t∈I2

xt) + f(
∑︂
s∈I1

xs, xtk) + f(
∑︂
s∈I1

xs,
∑︂

t∈I3\{tk}

xt) + f(xtk ,
∑︂
t∈I2

xt)

+ f(
∑︂

s∈I3\{tk}

xs,
∑︂
t∈I2

xt) +
∑︂

s∈I3\{tk}

f(xs, xtk) +
∑︂

s,t∈I3\{tk}
s<t

f(xs, xt).

Since the only terms of c depending on xtk are f(
∑︁

s∈I1 xs, xtk), f(xtk ,
∑︁

t∈I2 xt)

and
∑︁

s∈I3\{tk} f(xs, xtk), we get

x1
tk
∈ Argmin

{︄
xtk ↦→ f(

∑︂
s∈I1

x1
s, xtk) + f(xtk ,

∑︂
t∈I2

x1
t ) +

∑︂
s∈I3\{tk}

f(x1
s, xtk)− utk(xtk)

}︄
.

Furthermore, defining y as in (5.15) we get

ytk = x2
tk
∈ Argmin

{︄
xtk ↦→ f(

∑︂
s∈I1

ys, xtk) + f(xtk ,
∑︂
t∈I2

yt) +
∑︂

s∈I3\{tk}

f(ys, xtk)− utk(xtk)

}︄
.

We deduce

f(
∑︂
s∈I1

x1
s, x

1
tk
) + f(x1

tk
,
∑︂
t∈I2

x1
t ) +

∑︂
s∈I3\{tk}

f(x1
s, x

1
tk
)− utk(x

1
tk
)

≤ f(
∑︂
s∈I1

x1
s, x

2
tk
) + f(x2

tk
,
∑︂
t∈I2

x1
t ) +

∑︂
s∈I3\{tk}

f(x1
s, x

2
tk
)− utk(x

2
tk
), (5.21)
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f(
∑︂
s∈I1

ys, x
2
tk
) + f(x2

tk
,
∑︂
t∈I2

yt) +
∑︂

s∈I3\{tk}

f(ys, x
2
tk
)− utk(x

2
tk
)

≤ f(
∑︂
s∈I1

ys, x
1
tk
) + f(x1

tk
,
∑︂
t∈I2

yt) +
∑︂

s∈I3\{tk}

f(ys, x
1
tk
)− utk(x

1
tk
).

Adding the above inequalities, using Claim 2 and construction of y we get

∑︂
s∈I3\{tk}

f(x1
s, x

1
tk
) +

∑︂
s∈I3\{tk}

f(x2
s, x

2
tk
) ≤

∑︂
s∈I3\{tk}

f(x1
s, x

2
tk
) +

∑︂
s∈I3\{tk}

f(x2
s, x

1
tk
).

Combining this with (5.20) we get

f(x2
tk
− x1

tk
, x2

tk
− x1

tk
) = f(

∑︂
s∈I3\{tk}

(x1
s − x2

s), x
2
tk
− x1

tk
) ≥ 0.

From hypothesis 2 we then get f(x2
tk
− x1

tk
, x2

tk
− x1

tk
) = 0. Hence, equality holds

in (5.21) and (x1
2, . . . , x

1
tk−1, x

2
tk
, x1

tk+1, . . . , x
1
m) ∈ Mx0

1p
. This implies

Dx1f(x
0
1,
∑︂

t∈I2∪I3

x1
t ) = Dx1c(x

0
1, x

1
2, . . . , x

1
m)

= Du1(x
0
1)

= Dx1c(x
0
1, x

1
2, . . . , x

1
tk−1, x

2
tk
, x1

tk+1, . . . , x
1
m) = Dx1f(x

0
1, x

2
tk
+

∑︂
t∈I2∪I3\{tk}

x1
t ).

Thus, x1
tk

= x2
tk

, as f is twisted. Hence, from (5.20) and Claim 2 we can write∑︁
t∈I2∪I3\{tk} x

1
t =

∑︁
t∈I2∪I3\{tk} x

2
t . It follows that x1

t2
= x2

t2
, . . . , x1

tk−1
= x2

tk−1
,

by induction hypothesis. This completes the proof of Claim 3.

Claim 5.14. x1
s = x2

s for every s ∈ I1.

Proof of Claim 3. Since p ∈ I2 ∪ I3, x1
p = x2

p by Claim 2 and 3. Hence,

Dxpc(x
0
1, x

1
2, . . . , x

1
m) = Dup(x

1
p)

= Dup(x
2
p)
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= Dxpc(x
0
1, x

2
2, . . . , x

2
m).

Combining the above equality, Claim 2 and 3, and (5.11) we getDxpf(
∑︁

t∈I1 x
1
t , x

1
p) =

Dxpf(
∑︁

t∈I1 x
2
t , x

2
p). It follows that

∑︂
t∈I1

x1
t =

∑︂
t∈I1

x2
t . (5.22)

Now, fix t ∈ I1\{1}. SettingN = {t}, we use Claim 1 to get yN = (x2
2, . . . , x

2
t−1, x

1
t , x

2
t+1, . . . , x

2
m) ∈

Mx0
1p

. Since (5.22) holds true for every (x1
2, . . . , x

1
m), (x

2
2, . . . , x

2
m) ∈ M1p, in partic-

ular, it is true for yN and (x2
2, . . . , x

2
m). It immediately implies x1

t = x2
t , completing

the proof of Claim 4.

This completes the proof of the Proposition.

The next result focuses on a cost with a cycle structure that generalizes Theorem

3.1.

Proposition 5.15. Consider

c(x1, x2, x3, x4) = c1(x1, x2) + c2(x2, x3) + c3(x3, x4) + c4(x4, x1), (5.23)

with ci semi-concave for each i = 1, 2, 3, 4. Assume

1. For every 4-tuple of Borel functions (u1, u2, u3, u4) satisfying inequality (2.2)

and x0
1 ∈ {x1 ∈ X1 : Du1(x1) exists}, we get

c2(x
1
2, x

1
3)+c3(x

1
3, x

1
4)+c2(x

2
2, x

2
3)+c3(x

2
3, x

2
4) ≥ c2(x

1
2, x

2
3)+c3(x

2
3, x

1
4)+c2(x

2
2, x

1
3)+c3(x

1
3, x

2
4),

(5.24)

for every (x1
2, x

1
3, x

1
4), (x

2
2, x

2
3, x

2
4) ∈ Mx0

14
.

105



2. c3 is twisted with respect to x4; that is, for every x4 fixed the map x3 ↦→

Dx4c3(x3, x4) is injective on the subset of X3×{x4} where c3 is differentiable

with respect to x4.

3. c1 and c4 are twisted with respect to x1 respectively; that is, for every x1 fixed

the maps x2 ↦→ Dx1c1(x1, x2) and x4 ↦→ Dx1c4(x4, x1) are injective on the

subsets of {x1} ×X2 and X4 × {x1} where c1 and c4 are differentiable with

respect to x1 respectively.

Then, c is twisted on c-splitting sets with respect to x1 and x4.

Proof. Let (u1, u2, u3, u4) be a 4-tuple of Borel functions satisfying inequality (2.2).

Fix x0
1 ∈ {x1 ∈ X1 : Du1(x1) exists} and let (x1

2, x
1
3, x

1
4), (x

2
2, x

2
3, x

2
4) ∈ Mx0

14
. We

want to show x1
i = x2

i , i = 2, 3, 4. For this, observe that

(xk
3, x

k
4) ∈ Argmin

{︂
(x3, x4) ↦→ c(x0

1, x
k
2, x3, x4)− u3(x3)− u4(x4)

}︂
, k = 1, 2.

Then

c(x0
1, x

1
2, x

1
3, x

1
4)− u3(x

1
3)− u4(x

1
4) ≤ c(x0

1, x
1
2, x

2
3, x

1
4)− u3(x

2
3)− u4(x

1
4), (5.25)

c(x0
1, x

2
2, x

2
3, x

2
4)− u3(x

2
3)− u4(x

2
4) ≤ c(x0

1, x
2
2, x

1
3, x

2
4)− u3(x

1
3)− u4(x

2
4). (5.26)

Adding the above inequalities and eliminating similar terms we get

c2(x
1
2, x

1
3)+c3(x

1
3, x

1
4)+c2(x

2
2, x

2
3)+c3(x

2
3, x

2
4) ≤ c2(x

1
2, x

2
3)+c3(x

2
3, x

1
4)+c2(x

2
2, x

1
3)+c3(x

1
3, x

2
4).

(5.27)

By Assumption 1, the above inequality is in fact equality, which implies that we

must have equality in (5.25) and (5.26). In particular, (x1
2, x

2
3, x

1
4) ∈ Mx0

14
, so by

Lemma 2.8 we get

Dx4c(x
0
1, x

1
2, x

2
3, x

1
4) = Du4(x

1
4) = Dx4c(x

0
1, x

1
2, x

1
3, x

1
4),
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or equivalently,

Dx4c3(x
2
3, x

1
4) +Dx4c4(x

1
4, x

0
1) = Du4(x

1
4) = Dx4c3(x

1
3, x

1
4) +Dx4c4(x

1
4, x

0
1).

The above equalities gives Dx4c3(x
2
3, x

1
4) = Dx4c3(x

1
3, x

1
4), and by Assumption 2,

x1
3 = x2

3. Now, note that

x1
4 ∈ Argmin

{︁
x4 ↦→ c(x0

1, x
1
2, x

1
3, x4)− u4(x4)

}︁
= Argmin

{︁
x4 ↦→ c3(x

1
3, x4) + c4(x4, x

0
1)− u4(x4)

}︁
= Argmin

{︁
x4 ↦→ c3(x

2
3, x4) + c4(x4, x

0
1)− u4(x4)

}︁
= Argmin

{︁
x4 ↦→ c(x0

1, x
2
2, x

2
3, x4)− u4(x4)

}︁
,

as (x2
2, x

2
3, x

2
4) ∈ Mx0

14
. Hence, (x0

1, x
2
2, x

1
3, x

1
4) = (x0

1, x
2
2, x

2
3, x

1
4) ∈ Mx0

14
, and by

Lemma 2.8 we get Dx1c(x
0
1, x

2
2, x

1
3, x

1
4) = Du1(x

0
1) = Dx1c(x

0
1, x

1
2, x

1
3, x

1
4); that is,

Dx1c1(x
0
1, x

2
2)+Dx1c4(x

1
4, x

0
1) = Du1(x

0
1) = Dx1c1(x

0
1, x

1
2)+Dx1c4(x

1
4, x

0
1). Thus,

Dx1c1(x
0
1, x

2
2) = Dx1c1(x

0
1, x

1
2) and by Assumption 3, x1

2 = x2
2. Finally, we clearly

have (x2
2, x

2
3, x

1
4) = (x1

2, x
1
3, x

1
4) ∈ Mx0

14
, hence applying one more time Lemma

2.8 we get Dx1c(x
0
1, x

2
2, x

2
3, x

1
4) = Du1(x

0
1) = Dx1c(x

0
1, x

2
2, x

2
3, x

2
4). It follows that

Dx1c4(x
1
4, x

0
1) = Dx1c4(x

2
4, x

0
1), and by Assumption 3, x1

4 = x2
4. This completes the

proof of the proposition.

Note that it is not hard to find costs of the form (5.23) satisfying Assumptions

2 and 3. Assumption 1, on the other hand, is less common. We proceed now to

illustrate the previous proposition with an example, which can also be seen as a

slight generalization of Proposition 5.10 when m = 4, I3 is empty, I1 = {1, 3} and

I2 = {2, 4}. Note that the bi-linearity assumption from Proposition 5.10 is relaxed

here.

Example 5.16. For the cost (5.23), take c1(x1, x2) = f(x1, x2), c2(x2, x3) =

f(x3, x2), c3(x3, x4) = f(x3, x4) and c4(x4, x1) = f(x1, x4), where f : Rn×Rn ↦→
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R is a map satisfying:

(i) f is additive with respect to the second coordinate; that is, f(x, y + z) =

f(x, y) + f(x, z) for every x fixed.

(ii) f is bi-twisted; that is, the maps y ↦→ Dxf(x, y) and x ↦→ Dyf(x, y) are

injective.

Substituting into (5.23) and using (i) we get

c(x1, x2, x3, x4) = f(x1, x2) + f(x3, x2) + f(x3, x4) + f(x1, x4)

= f(x1, x2 + x4) + f(x3, x2 + x4)

Now, let (u1, u2, u3, u4) be a 4-tuple of Borel functions satisfying inequality (2.2). Fix

x0
1 ∈ {x1 ∈ X1 : Du1(x1) exists} and let (x1

2, x
1
3, x

1
4), (x

2
2, x

2
3, x

2
4) ∈ Mx0

14
. From

Lemma 2.8,

Dx1f(x
0
1, x

1
2 + x1

4) = Dx1c(x
0
1, x

1
2, x

1
3, x

1
4)

= Du1(x
0
1)

= Dx1c(x
0
1, x

2
2, x

2
3, x

2
4)

= Dx1f(x
0
1, x

2
2 + x2

4).

From Assumption (ii), we deduce

x1
2 + x1

4 = x2
2 + x2

4. (5.28)

It follows that

c2(x
1
2, x

1
3) + c3(x

1
3, x

1
4) + c2(x

2
2, x

2
3) + c3(x

2
3, x

2
4) = f(x1

3, x
1
2) + f(x1

3, x
1
4) + f(x2

3, x
2
2) + f(x2

3, x
2
4)

= f(x1
3, x

1
2 + x1

4) + f(x2
3, x

2
2 + x2

4)

= f(x1
3, x

2
2 + x2

4) + f(x2
3, x

1
2 + x1

4)
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= f(x2
3, x

1
2) + f(x2

3, x
1
4) + f(x1

3, x
2
2) + f(x1

3, x
2
4)

= c2(x
1
2, x

2
3) + c3(x

2
3, x

1
4) + c2(x

2
2, x

1
3) + c3(x

1
3, x

2
4).

Thus, Condition 1 in Proposition 5.15 is trivially satisfied. Since Conditions 2 and 3

are also satisfied (by (ii)), we obtain that c is twisted on c-splitting sets with respect

to x1 and x4.

The next Proposition was obtained from some of the essential ideas of Theorem

5.1 in [35], which provides Monge structure and uniqueness of the optimal measures

in infimal convolution type examples.

Proposition 5.17. Letm0 := 1 < m1 < . . . < mn := m. SetYj := (xmj−1+1, . . . , xmj
)

and (xmj−1
, Yj) := (xmj−1

, xmj−1+1, . . . , xmj
), where j = 1, . . . , n, and (xm0 , Y1, Y2, . . . , Yn) =

(x1, . . . , xm). Consider the cost

c(x1, . . . , xm) =
n∑︂

j=1

cj(xmj−1
, Yj), (5.29)

and assume

1. cj semi-concave for each j.

2. cj is twisted on cj-splitting sets with respect to xmj−1
; that is, for each cj-

splitting set Sj ⊆ Xmj−1
× . . .×Xmj

and xmj−1
∈ πmj−1

(Sj), where πmj−1
:

Xmj−1
× . . . × Xmj

↦→ Xmj−1
is the canonical projection, the map Yj ↦→

Dxmj−1
cj(xmj−1

, Yj) is injective on the subset ofSj whereDxmj−1
cj(xmj−1

, Yj)

exists.

Then, the cost c(x1, . . . , xm) is twisted on c-splitting sets with respect tox1, xm1 , . . . , xmn−1 .

Proof. Fix j ∈ {1, . . . , n}. Let us first prove that for every c-splitting set S ⊆∏︁m
i=1 Xi, the set Sj := πxmj−1 ...xmj

(S) is a cj-splitting set on
∏︁mj

i=mj−1
Xi, or
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equivalently, a cj-cyclical monotone set on
∏︁mj

i=mj−1
Xi, where πxmj−1 ...xmj

: X ↦→∏︁mj

i=mj−1
Xi is the canonical projection. Indeed, fix S a c-splitting set on X , and let{︂

(xk
mj−1

, . . . , xk
mj
)
}︂p

k=1
⊆ Sj and σmj−1

, . . . , σmj
∈ SP , where SP denotes the set

of permutations of P = {1, . . . , p}. We want to show

p∑︂
k=1

cj(x
k
mj−1

, Y k
j ) =

p∑︂
k=1

cj(x
k
mj−1

, . . . , xk
mj
) ≤

p∑︂
k=1

cj(x
σmj−1 (k)
mj−1 , . . . , x

σmj (k)
mj ).

(5.30)

Note that for each k ∈ P , there are Y k
s = (xk

ms−1+1, . . . , x
k
ms

), s ̸= j, such that

(xk
1, Y

k
1 , Y

k
2 , . . . , Y

k
n ) ∈ S. Set

σi =

⎧⎪⎨⎪⎩σmj−1
if 1 ≤ i ≤ mj−1

σmj
if mj ≤ i ≤ m.

(5.31)

Since S is c-cyclically monotone we get

p∑︂
k=1

cj(x
k
mj−1

, Y k
j ) +

j−1∑︂
s=1

p∑︂
k=1

cs(x
k
ms−1

, Y k
s ) +

n∑︂
s=j+1

p∑︂
k=1

cs(x
k
ms−1

, Y k
s )

=
n∑︂

s=1

p∑︂
k=1

cs(x
k
ms−1

, Y k
s )

=

p∑︂
k=1

c(xk
1, . . . , x

k
m)

≤
p∑︂

k=1

c(x
σ1(k)
1 , . . . , xσm(k)

m )

=

p∑︂
k=1

cj(x
σmj−1 (k)
mj−1 , x

σmj−1+1(k)

mj−1+1 , . . . , x
σmj (k)
mj ) +

j−1∑︂
s=1

p∑︂
k=1

cs(x
σms−1 (k)
ms−1 , x

σms−1+1(k)

ms−1+1 , . . . , xσms (k)
ms

)

+
n∑︂

s=j+1

p∑︂
k=1

cs(x
σms−1 (k)
ms−1 , x

σms−1+1(k)

ms−1+1 , . . . , xσms (k)
ms

) (5.32)
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From (5.31) we have

j−1∑︂
s=1

p∑︂
k=1

cs(x
σms−1 (k)
ms−1 , x

σms−1+1(k)

ms−1+1 , . . . , xσms (k)
ms

) =

j−1∑︂
s=1

p∑︂
k=1

cs(x
σmj−1 (k)
ms−1 , x

σmj−1 (k)

ms−1+1 , . . . , x
σmj−1 (k)
ms )

=

j−1∑︂
s=1

p∑︂
k=1

cs(x
k
ms−1

, xk
ms−1+1, . . . , x

k
ms

)

=

j−1∑︂
s=1

p∑︂
k=1

cs(x
k
ms−1

, Y k
s ), (5.33)

n∑︂
s=j+1

p∑︂
k=1

cs(x
σms−1 (k)
ms−1 , x

σms−1+1(k)

ms−1+1 , . . . , xσms (k)
ms

) =
n∑︂

s=j+1

p∑︂
k=1

cs(x
σmj (k)
ms−1 , x

σmj (k)

ms−1+1, . . . , x
σmj (k)
ms )

=
n∑︂

s=j+1

p∑︂
k=1

cs(x
k
ms−1

, xk
ms−1+1, . . . , x

k
ms

)

=
n∑︂

s=j+1

p∑︂
k=1

cs(x
k
ms−1

, Y k
s ).

(5.34)

Substituting the above equalities into inequality (5.32) we get (5.30); that is, Sj is a

cj-splitting set on
∏︁mj

i=mj−1
Xi.

Now, let (u1, . . . , um) be anm-tuple of c-splitting functions forS and fixx0
1 ∈ π1(S).

Assume Dx1c(x
0
1, x

1
2, . . . , x

1
m) and Dx1c(x

0
1, x

2
2, . . . , x

2
m) exist, and

Dx1c(x
0
1, x

1
2, . . . , x

1
m) = Dx1c(x

0
1, x

2
2, . . . , x

2
m),

where (x1
2, . . . , x

1
m), (x

2
2, . . . , x

2
m) ∈ Wx0

1m1...mn−1
. Since cj does not depend on x1

for every j ∈ {2, . . . , n}, we immediately get

Dx1c1(x
0
1, x

1
2, . . . , x

1
m1

) = Dx1c1(x
0
1, x

2
2, . . . , x

2
m1

),
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then

x1
j = x2

j for every j ∈ {2, . . . ,m1}, (5.35)

as clearly (x0
1, x

1
2, . . . , x

1
m1

), (x0
1, x

2
2, . . . , x

2
m1

) ∈ S1 and c1 is twisted on the c1-

splitting set S1. In particular, x1
m1

= x2
m1

and by Lemma 2.8,

Dxm1
c(x0

1, x
1
2, . . . , x

1
m) = Dum1(x

1
m1

) = Dum1(x
2
m1

) = Dxm1
c(x0

1, x
2
2, . . . , x

2
m)

(here the differentiability ofum1 atx1
m1

follows from the fact that (x1
2, . . . , x

1
m), (x

2
2, . . . , x

2
m) ∈

Wx0
1m1...mn−1

). Hence,

Dxm1
c1(x

0
1, x

1
2, . . . , x

1
m1

)+Dxm1
c2(x

1
m1

, . . . , x1
m2

) = Dxm1
c1(x

0
1, x

2
2, . . . , x

2
m1

)+Dxm1
c2(x

2
m1

, . . . , x2
m2

).

Combining this with (5.35) we get

Dxm1
c2(x

1
m1

, x1
m1+1 . . . , x

1
m2

) = Dxm1
c2(x

1
m1

, x2
m1+1 . . . , x

2
m2

).

Since c2 is twisted on the c2-splitting setS2 and (x1
m1

, x1
m1+1 . . . , x

1
m2

), (x1
m1

, x2
m1+1 . . . , x

2
m2

) ∈

S2, we deduce x1
j = x2

j for every j ∈ {m1 + 1, . . . ,m2}. Note that this is an itera-

tive process, so continuing with this inductive reasoning we get x1
j = x2

j for every

j ∈ {2, . . . ,m}. This completes the proof of the proposition.

In the following proposition, for a given subset Y := {xt1 , . . . , xts} ⊆ V =

{x1, . . . , xm} with t1 < . . . < ts and x ∈ V \ Y , we will write (Y, x) :=

(xt1 , . . . , xts , x) and (Xk, xk) := (xk
t1
, . . . , xk

ts , x
k), k = 1, 2.

Proposition 5.18. Fix s ∈ {2, . . . ,m − 1}. Consider a sequence {tα}m−(s+1)
α=1

and sets Y2, . . . , Ym−s+1 such that xtα ∈ Yα+1, α = 1, . . . ,m − (s + 1) and

Yj ⊆ {x2, . . . , xs+j−2} \ {xtα}
j−2
α=1 for every j = 2, . . . ,m − s + 1. Consider the

cost

c(x1, . . . , xm) = c1(x1, . . . , xs) +
m−s+1∑︂
j=2

cj(Yj, xs+j−1) (5.36)
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where cj is semi-concave for each j, and suppose

1. c1 is twisted on π1,...,s(S) for every c-splitting set S, where π1,...,s :
∏︁m

i=1 Xi ↦→∏︁s
i=1 Xi is the canonical projection; that is, for every c-splitting set S and

x0
1 ∈ π1(S), the map

(x2, . . . , xs) ↦→ Dx1c1(x
0
1, x2, . . . , xs)

is injective on {(x2, . . . , xs) : (x
0
1, x2, . . . , xs) ∈ π1,...,s(S)}.

2. cj is (xtj−1
, xs+j−1) twisted for all j = 2, . . . ,m − s + 1; that is, the map

xs+j−1 ↦→ Dxtj−1
cj(Yj, xs+j−1) is injective on the subset of Xs+j−1 where

Dxtj−1
cj(Yj, xs+j−1) exists, for every j = 2, . . . ,m− s+ 1 and Yj fixed.

Then, c is twisted on c-splitting sets with respect to the variables x1, xt1 , . . . , xtm−s .

Proof. Let S ⊆ X1 × . . . × Xm be a c-splitting set and (u1, . . . , um) an m-tuple

of c-splitting functions for S. Fix x0
1 ∈ π1(S) and assume Dx1c(x

0
1, x

1
2, . . . , x

1
m) =

Dx1c(x
0
1, x

2
2, . . . , x

2
m), where (x1

2, . . . , x
1
m), (x2

2, . . . , x
2
m) ∈ Wx0

1,t1,...,tm−s
. We want

to show that x1
j = x2

j for every j = 2, . . . ,m. Indeed, since the costs c2, . . . , cm−s+1

do not depend on x1, we immediately get

Dx1c1(x
0
1, x

1
2, . . . , x

1
s) = Dx1c1(x

0
1, x

2
2, . . . , x

2
s).

Hence, by Assumption 1 we get

x1
j = x2

j for 2 ≤ j ≤ s. (5.37)

To prove that x1
s+j = x2

s+j for 1 ≤ j ≤ m − s we use induction on j. For j = 1,

note that xt1 ∈ Y2 ⊆ {x2, . . . , xs}, so x1
t1
= x2

t1
by (5.37), and by Lemma 2.8

Dxt1
c(x0

1, x
1
2, . . . , x

1
m) = Dut1(x

1
t1
) = Dut1(x

2
t1
) = Dxt1

c(x0
1, x

2
2, . . . , x

2
m).
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Since xt1 /∈ Yj for 3 ≤ j ≤ m− s+ 1, we deduce

Dxt1
c1(x

0
1, x

1
2, . . . , x

1
s)+Dxt1

c2(Y
1
2 , x

1
s+1) = Dxt1

c1(x
0
1, x

2
2, . . . , x

2
s)+Dxt1

c2(Y
2
2 , x

2
s+1),

then by (5.37),

Dxt1
c2(Y

1
2 , x

1
s+1) = Dxt1

c2(Y
2
2 , x

2
s+1)

and Y 1
2 = Y 2

2 . Consequently, we must have x1
s+1 = x2

s+1, as c2 is (xt1 , xs+1) twisted

on c2-splitting sets, by Assumption 2.

Assume x1
s+1 = x2

s+1, . . . , x
1
s+k−1 = x2

s+k−1, where 1 < k = j ≤ m − s.

Combining this and (5.37) we get x1
tk

= x2
tk

, as xtk ∈ Yk+1 ⊆ {x2, . . . , xs+k−1} \

{xt1 , . . . , xtk−1
}. Then

Dxtk
c(x0

1, x
1
2, . . . , x

1
m) = Dutk(x

1
tk
) = Dutk(x

2
tk
) = Dxtk

c(x0
1, x

2
2, . . . , x

2
m).

Since xtk /∈ Yj for k + 2 ≤ j ≤ m− s+ 1, we get

Dxtk
c1(x

0
1, x

1
2, . . . , x

1
s)+

k+1∑︂
j=2

Dxtk
cj(Y

1
j , x

1
s+j−1) = Dxtk

c1(x
0
1, x

2
2, . . . , x

2
s)+

k+1∑︂
j=2

Dxtk
cj(Y

2
j , x

2
s+j−1).

(5.38)

Now, by induction hypothesis and (5.37),Dxtk
c1(x

0
1, x

1
2, . . . , x

1
s) = Dxtk

c1(x
0
1, x

2
2, . . . , x

2
s),

Dxtk
cj(Y

1
j , x

1
s+j−1) = Dxtk

cj(Y
2
j , x

2
s+j−1) for every j = 2, . . . , k, andY 1

k+1 = Y 2
k+1.

Hence, (5.38) reduces to

Dxtk
ck+1(Y

1
k+1, x

1
s+k) = Dxtk

ck+1(Y
1
k+1, x

2
s+k).

We then conclude x1
s+k = x2

s+k, as ck+1 is (xtk , xs+k) twisted by Assumption 2.

This completes the proof of the proposition.
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