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“Follow your dreams. You can reach your goals. ['m living proof. Beefcake!
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- Eric Cartman



Abstract

In water treatment, there is a constant trend of ever increasingly stringent standards for
finished water quality and with that comes the need to meet and surpass these standards,
which include particle count levels. This requires a good knowledge and understanding
of the treatment processes involved as well as good control of these processes. However,
finished water particle counts are highly variable and difficult to control. In order to
improve process control, an artificial neural network (ANN) model of filtration
performance was developed for the E.L. Smith Water Treatment Plant (WTP) in
Edmonton, Alberta. This model is unique because it encompasses the complete treatment
plant rather than focussing on a single unit treatment process. The model was also
applied and demonstrated to be a potentially powerful tool in assisting WTP operators in
optimising process control and researchers in analysing particle counts in a virtual lab

setting.
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1.0 Introduction
1.1 Background

One of the most important goals of a water treatment plant (WTP) is the removal of
particulate matter. Giardia and Cryptosporidium removal are of particular concern in
water treatment, and this is addressed by stricter standards such as the Enhanced Surface
Water Treatment Rule (ESWTR) (Lind 1997), which may ultimately include standards
for particle count levels in finished water. With this trend of ever increasingly stringent
standards for finished water quality comes the need to meet and surpass these standards.
This requires a good knowledge and understanding of the treatment processes involved as
well as good control of these processes. Filtration in particular is important in that it
removes particles from the water and is credited with the removal of 99% of Giardia
Cysts present in the water. While much study has been done to understand the theory
behind the process as well as the factors involved in influencing the performance of the
process, there is still uncertainty in terms of understanding the quantitative relationships
between various factors and filtration performance. More specifically, the relationship
between various factors and particle counts, which is a direct measure of filtration
performance, is still not completely understood. This is due to the fact that such
relationships are quite complex. In fact, there are situations in which the reason for

observed particle count behaviour is unknown (Ginn Jr., Bennett and Wheatley 1997).

In practice, an understanding of how these various factors influence filtration
performance is important since this will lead to better control of the treatment process.

Currently, process control stems from the results of traditional jar tests performed to



determine chemical dosages as well as from operator experience. However, jar tests only
assess clarification performance and does not directly assess filter performance. While
this generally works for controlling turbidity, particle counts are more sensitive to small
changes in filtration efficiency than turbidity (LeChevallier and Norton 1992; Hall and
Croll 1997; Lind 1997), and thus particle counts are more variable and are harder to
control.  Therefore, with better control and improved understanding of these

relationships, stringent water quality standards can be met.

One way of understanding these relationships is through deriving mathematical models
and equations. However, determining an exact mathematical model to describe the
relationships between various factors and filtration performance is very difficult if not
impossible given that such relationships are complex and non-linear. Therefore, a
different type or method of modelling is necessary rather than conventional mathematical
modelling. Artificial neural network (ANN) modelling is just such an alternative. It is
applicable to problems in which the cause-effect relationships are complex and non-linear
and where no mathematical formulae exist, such as the case with filtration performance.
If enough data are available that represent all aspects of the problem domain, then a
model can successfully be developed. Unfortunately, ANN will not give an explanation
of why different effects are observed. However, it is up to the investigator to interpret
these observations. Therefore, it is important to have expert knowledge and a strong
understanding of the problem domain, and in this case, a strong understanding of the
filtration process itself not only to interpret results, but also to develop a model that

accurately represents all aspects involved in filtration. ANN also will not provide a



precise explanation as to how the relationships are derived, but that is not necessary for
the purposes of this study since determining the relationships and interpreting them are

the more important goals in this study.

Development of an ANN model for filtration performance addresses the problems of
meeting stringent water quality standards by providing a description of the complex
relationships involved in filtration performance and improving the process control of
water treatment. Once developed, the optimised model can be used to provide insight
into particle count behaviour without experimentation in a standard wet laboratory or
through pilot tests. Control of the treatment process would improve since the ANN
model could provide immediate multiple treatment options as opposed to performing
time consuming jar tests. The model can also be implemented online with the process
control system in an advanced control mode improving process control by not only
providing treatment options but by initiating the action. Improved control results in the
optimisation of the treatment process and will lead to improved water quality. Moreover,
there are savings benefits from reagent costs since an optimal chemical dose can be
determined without utilising an excess amount of reagents. In addition to the quickness
and convenience of using the ANN model for process control, the model could also be
useful in operator training by simulating possible scenarios in which the operator would
learn the results of various treatment options. All of these various uses show the

tremendous benefits of developing and utilising an ANN model of filtration performance.



1.2 Objectives

One of the main objectives in this study is to determine the feasibility of developing an
ANN model of filtration performance. Furthermore, the feasibility of developing a model
of not just a single unit process but for a complete plant will be determined since
filtration performance will be modelled based on plant operating conditions and raw
water quality. This is significant because even though research has been conducted on
the ANN modelling of unit processes in water treatment (Mirsepassi, Cathers and
Dharmappa 1995; Maier and Dandy 1996; Rodriguez and Serodes 1996; Gagnon,
Grandjean and Thibault 1997; Han et al. 1997; Rodriquez, Serodes and Cote 1997;
Stanley and Zhang 1997; Zhang and Stanley 1997), little development has been done in
developing process models for a complete WTP. Therefore, the model to be developed in
this study is unique with beneficial implications as a result of this type of model

development.

Other objectives of this study are:
® to demonstrate the use of the ANN model as a tool for WTP operators and researchers

® to examine the effects of various parameters on particle counts



1.3 Scope of Study

To meet the objectives, the following work was completed. A literature review of
filtration and the factors that affect the process was conducted and the available data were
assessed as part of the model development process. From there, models were developed
and optimised to predict with statistically reasonable results for the E.L. Smith WTP in
Edmonton, Alberta. Finally, the applicability of the model and the benefits of using the
model were demonstrated. Particle count behaviour in response to changing various

factors was examined by utilising the developed model.



2.0 Background

2.1 Introduction

Before development of an ANN model can begin, background information of the
problem domain needs to be researched and examined in order to have an understanding
of the problem domain and subsequently to be able to develop a representative model.
As a result, presented in this section is an overview of filtration performance and the

filtration process as well as a discussion of the ANN modelling technique.

The first topic to be discussed is filtration performance parameters. An understanding of
how performance is measured and their significance is important since that is what is
being modelled. Next, the filtration process and the mechanisms involved are discussed
followed by a discussion on the factors that affect filtration performance. This is
necessary to be able to determine the parameters that are to be used in model
development. In order to be able to design, develop and optimise an ANN model, an
understanding of ANN and its aspects are necessary, and that is covered in the following
section. Other artificial intelligence (Al) systems are discussed afterward as options to
ANN. Finally, the treatment process at E.L. Smith WTP is described since the model is

to be specifically developed for that plant.



2.2 Filtration Performance Parameters
2.2.1 Descriptions

Two of the most commonly used performance parameters for filtration are turbidity and
more recently particle counts. Tufbidity is a light-transmitting property of water caused
by a wide variety of suspended materials, which interfere with the passage of light
through water (Sawyer, McCarty and Parkin 1994). It is measured in nephelometric
turbidity units (NTU), which is a measure of the degree of light scattering from particles.
Therefore, it is an indirect measure of the amount of particulate matter that is present in
water. The suspended particles responsible for turbidity can be inorganic colloidal rock,
silt, or clay materials, or organic materials of either natural or anthropogenic origin.
Particle counts, on the other hand, are a direct measure of the amount of particulate
matter present in solution that is causing turbidity. Turbidity is usually measured using a
turbidimeter. A light source is shined through the water sample in which a photoelectric
detector detects the intensity of scattered light at right angles to the path of the incident
light (Sawyer, McCarty and Parkin 1994). Particle counters measure particle counts
slightly differently. The water sample flows through a small channel in which light,
typically a laser beam, shines through. A diode opposite the laser detects the light that is
not scattered or obscured. The particle is thus counted and sized depending if the particle
is greater than the sensor size detection limit. At E.L. Smith WTP, the turbidimeter used
is a Hach Model 2100N and the particle counters are the Met One, PCX model. A more

detailed description of how they operate is discussed in the appendix on pages 141-144.



2.2.2 Significance of Filtration Performance Parameters

There are two main reasons for wanting to remove turbidity. One is for aesthetic reasons
so that the treated water appears to be clear, not murky. The other reason is for
disinfection. Many harmful microorganisms, such as Giardia cysts and Cryptosporidium
oocysts, tend to be adsorbed to particles or encased in solid material, and so it is
necessary to remove such particles while disinfectant is used to kill the remaining
microbes. Reduction of particle counts is desired for the same reasons as removal of
turbidity. Removal of Cryptosporidium oocysts is a particularly major concern right now
for water treatment. Water disinfectants such as chlorine have little effect on the
inactivation of Cryptosporidium oocysts, thus filtration is the most practical treatment
technology to remove Cryprosporidium. However, there is currently no accurate and
precise method for determining Cryprosporidium removal rates in filtration systems (Li et
al. 1997). One study of 66 surface water treatment plants showed that there was no
significant correlation between parasite removal and removal of turbidity (LeChevallier,
Norton and Lee 1991). Furthermore, it was found in a series of four pilot studies that
turbidity removal did not directly correlate well with removal of either Cryprosporidium
or Giardia (Patania et al. 1995). In these pilot studies, it was observed that turbidity was
removed to a much lesser extent than Cryprosporidium or Giardia when raw water
turbidity was less than 10 NTU. However, for raw water with higher turbidity, there
would be greater log removal of turbidity, thus turbidity is not a proper surrogate for
Cryptosporidium or Giardia (Patania et al. 1995). Nevertheless, the level of turbidity
removal did influence the level of organism removal (Patania et al. 1995). Moreover,

turbidity was deemed to be a useful predictor of Giardia and Cryptosporidium removal



within a single treatment facility (LeChevallier and Norton 1992). Nonetheless, the U.S.
Environmental Protec:tion Agency has proposed stricter particle control standards to
expand its Surface Water Treatment Rule to address removal of Giardia,
Cryptosporidium, and other microorganisms by reducing particle counts (Lind 1997).
Since Cryptosporidiunn oocysts are roughly spherical particles 4-6 pum in diameter and
Giardia cysts are appr-oximately 10-20 um in diameter, it is desirable to reduce particle
counts in that size ramge. Particle counts, however, do not necessarily correlate with

turbidity.

Particle counts have ®been found to be more sensitive to small changes in filtration
efficiency than turbidity (LeChevallier and Norton 1992; Hall and Croll 1997; Lind
1997), and removal of” particles >5 um has been considered to be a useful predictor of
Giardia and Cryptosposridium removal (LeChevallier and Norton 1992). For example, in
a pilot plant study (Hall and Croll 1997), it was observed that in the first hour of a
filtration run where tur-bidity ranged from 0.15 to 0.2 NTU, the average 2-5 pum particle
count ranged from 13500 to 7100 particlessmL. Thus, although there is a slight
relationship between turbidity and particle counts, the correlation does not appear to be
significant. This is alswo indicated by particle monitoring that was done at two full-scale
plants (Hall and Croll 1997). It was found in this study that although turbidity ranged
from 0.1 to 0.2 NTU att both sites, the 2-5 um size range of particle counts ranged from
20 to 250 particles/mL. at one site and 2000 to 6000 particles/mL at the other site. In
addition, at the site in which particle counts peaked to 6000 particles/mL from 2000

particles/mL, such chamges were not evident from turbidity as it remained fairly constant.



This further indicates the lack of correlation between particle counts and turbidity. In
addition, this finding also highlights the greater sensitivity of particle counts with regards

to filtration performance compared to turbidity.

Despite the sensitivity of particle counts to changes in filtration performance, the
accuracy and interpretation of such data are still not completely certain, particularly with
the correlation between particle count removal and Cryprosporidium and Giardia
removal. A study utilising field-scale bag filtration systems declared that removal of 4-6
pm polystyrene microspheres was an accurate and precise surrogate for determining
Cryptosporidium log removal in bag filtration processes without addition of chemical
coagulant (Li et al. 1997). However, naturally occurring 4-6 pum particle counts, as well
as 1-25 pum particle counts and turbidity, were found to be less accurate and precise due
to great variations in log removals. Variations in particle counts, not just within the bag
filtration study, but between treatment plants, can be due to natural variation in water
chemistry (Li et al. 1997) and the addition of particles such as floc particles or granular
activated carbon fines from other treatment processes (Hall and Croll 1997). Therefore,
there is still concern with how reliable a surrogate particle count removal is with Giardiu
and Cryptosporidium removal. Although Li er al. (1997) found 4-6 pum polystyrene
sphere removal to be an accurate surrogate for Cryptosporidium removal for bag filtration
processes, which was observed under the condition of no added chemical coagulant, pilot
studies done by Patania er a/. (1995) had different results. Direct correlation was not
observed between removal of 1-2, 2-5, 5-15, and 1-25 um particles and Giardia cyst or

Cryptosporidium oocyst removal. Instead, it was observed that removal of particles
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underestimated removal of Giardia and Cryptosporidium. However, just as with
turbidity, the level of removal of particles can be dependent on concentration in raw

water (Patania et al. 1995).

These research studies have illustrated the need for further study to understand the
relationship between turbidity and particle counts and how the removal of each
quantitatively relates to Giardia cyst and Cryptosporidium oocyst removal. Even though
exact relationships are not clear, general conclusions can still be made. It has been
concluded that achieving a turbidity of 0.1 NTU is effective for cyst and oocyst removal
(Patania et al. 1995). In addition, it has also been concluded that removal of particles >5
pm has been considered to be a useful predictor of Giardia and Cryptosporidium removal
(LeChevallier and Norton 1992). Therefore, both turbidity and particle counts still

remain as important measures of filtration performance.

As stated previously, particle counts are more sensitive to small changes in filtration
efficiency than turbidity (LeChevallier and Norton 1992; Hall and Croll 1997; Lind
1997). Particle counts are thus a useful measure within a single treatment plant more so
than turbidity because of its sensitivity to these changes. However, with greater
sensitivity comes greater variability, and this makes particle counts more difficult to
control. An example of this is with the Quarles No. 1 WTP in the state of Georgia (Ginn
Jr., Bennett and Wheatley 1997). Particle count peaks were observed with no change in
the treatment process during the summer afternoons whereas turbidity remained relatively

constant. No certain explanations could be given for this phenomenon. This serves to
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illustrate the difficulty of «<ontrolling particle count levels. Subsequently, meeting the
stricter standards that address Giardia and Cryptosporidium removal is made difficult.
The development of an AINN model for filtration performance for predicting particle
counts addresses this concexn by improving the process control of water treatment, which

subsequently improves the «ontrol of particle count levels in finished water.

12



2.3 Filtration Process and Mechanisms

In addition to understanding the parameters that measure filtration performance, it is
necessary to understand how the process works to help determine the factors that have an
effect on filtration performance. Consequently, an ANN model representative of the
problem domain can be developed. Control of the treatment process is also discussed

illustrating the need for improved control to improve performance.

2.3.1 Description of Filtration

Filtration is a unit treatment process used in producing potable water. Its primary
objective is to remove particulate matter from the water whether the particles come from
the source water or are generated in treatment processes (AWWA 1990). As mentioned
previously, filtration performance is typically measured in two ways: filtrate turbidity
levels and filtrate particle count levels. Performance can also be measured by headloss

through a filter.

There are a number of different types of filters used in potable water production, and
consequently they can be generally classified in four ways (AWWA 1990). One way is
based on the type of media that is used. Granular media of sand, crushed quartz,
anthracite, and garnet can be used in mono-media, dual media, or tri-media form. Instead
of a granular bed, a contrasting type of filter is the pre-coat filter where a thin layer of
very fine medium such as diatomaceous earth is used. Hydraulic arrangement is another
means of classifying filters. With gravity filters, flow through the media achieved by

gravity and the filter is open to the atmosphere. On the other hand, pressure filters have
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the filter medium contained under pressure, and water is driven through the filter by
pressure. A third means of classifying filters, particularly granular-bed filters, is by the
rate of filtration. Rapid sand filters operate at high flow rates, whereas slow sand filters
operate at much lower rates. A final means of classifying filters is by the type of
filtration defining where in the filter the solids are removed. If particles are removed
within granular material, then this is defined as depth filtration. In contrast, cake
filtration is when particles are removed on the entering surface of the filter media as the

case with pre-coat filters.

The type of filters used at the E.L. Smith WTP is dual-media granular filters operated
under gravity. Anthracite and sand are the two types of media used in the filters. The
flow rate is high therefore utilising rapid sand filtration, and since particles are removed
within the granular media bed, the type of filtration can be classified as depth filtration as

opposed to cake filtration.

2.3.2 Mechanisms of Filtration

The mechanism of rapid filtration is complex in that there are actually multiple
mechanisms involved. Particles that are larger than the pore spaces in the filter media are
physically removed by the process of interstitial straining (AWWA 1990). However, for
smaller particles, filtration is considered to be a combination of particle transport to the
media and attachment to the media (O'Melia and Stumm 1967). Small particles must first
be brought from the bulk of the fluid within the interstitial spaces of the media to the

surface of the media grains by transport mechanisms. Once particles are brought to the
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surface of media grain, or surface of other deposited solids, physical and chemical forces

control the attachment of the particles to the grain surface.

There are three transport mechanisms that are generally considered to be the most
important in particle transport: sedimentation, interception, and diffusion (AWWA 1990).

Efficiency of particle transport by sedimentation is governed by equation 1:

- d?
7. = (p, —pled, )
18uV
where, s = sedimentation transport efficiency of collector,

ps = filter grain mass density,
p = mass density of fluid,

g = acceleration of gravity,
dp = particle diameter,

p = fluid viscosity,

V = filtration rate.

Efficiency of particle transport by interception is given by equation 2:

d 2
n, =3/ 2(-5) )
where, M1 = interception transport efficiency of collector,

dp = particle diameter

d. = filter grain diameter.

Finally, efficiency of particle transport by diffusion is governed by equation 3:
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(3)

2/3
KT
pd d_V

Np = 0.9(

where, np = diffusion transport efficiency of collector,
K = Boltzman’s constant,
T = absolute temperature,
p = fluid viscosity,
d, = particle diameter,
d. = filter grain diameter,

V = filtration rate.

Particle transport can be influenced by media grain size, filtration rate, fluid temperature,
and the density and size of the suspended particles (O'Melia and Stumm 1967), and this
can be clearly seen within the three transport model equations. In fact, the dominant
transport mechanism is dependent on particle size. For particles <1 um in size, the more
dominant transport mechanism is diffusion, whereas for particles >1 pm in size, the
dominant mechanisms are sedimentation (Amirtharajah 1988) and interception (O'Melia
1985; Aim et al. 1997). As a result, there is a minimum net transport efficiency for
particle sizes of approximately 1 um (Habibian and O'Melia 1975; Amirtharajah 1988).
In other words, particles that are about 1 um in size are the least effectively removed
particles by filtration, and this has been observed in a number of studies (Tobiason,

Johnson and Westerhoff 1990; Tobiason et al. 1993; Aim et al. 1997).

Upon transport of the particle near the surface of the media grain, the particle must then

attach to it. According to the DLVO theory, named after the work of Derjagin, Landau,
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Verwey, and Overbeek, a charged particle will have a layer of oppositely charged ions
(the Stern layer) around it as well as a diffuse layer of mixed charged ions, which results
in particles being repulsed from the media grain (Sawyer, McCarty and Parkin 1994).
However, if the particle is destabilised enough from the coagulation unit process prior to
filtration, electrostatic repulsions will be minimal allowing the particle to collide with the
media grain surface. Through physical adsorption due to Van der Waals’ forces, particles
are thus able to attach to the grain or to other particles already attached to the media.
Chemical adsorption may also play a role in particle attachment in which the particles
become fixed to the surface of the media. Exchange adsorption is another possible form

of interaction particularly for ions present in solution.

2.3.3 Filter Operation and Control

Typically at a WTP, the operator assesses the current state of the treatment process from
data acquired from the Supervisory Control and Data Acquisition (SCADA) system or
from information collected through testing. Then based on a series of jar tests and
through operator experience, a control action is determined. The problem with this level
of control is that with all the variables involved that influence filtration performance, it is
difficult to completely assess the state of the system process and there is no definite clear-
cut control action that can be taken. Moreover, jar tests only assess clarification
performance, and therefore results from these tests do not necessarily reflect how well the
filters will perform. The use of an ANN model to predict performance provides an
alternate means of assessing the state of the treatment process as well as providing

control options based on the determined relationships between variables and
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performance. Such determinations are more comprehensive than relying solely on
operator assessment since the model is able to derive the extent of impact of multiple
parameters making ANN assessments more reliable. Furthermore, current process
control of treatment is a reactive process in which control actions are dictated and taken
by changes in water quality coming off of the filters. However, since there is
approximately a three to four hour detention time through the whole treatment process,
the effects of control actions will not take effect for that time period, and this can
potentially result in three to four hours worth of poor water coming from the plant before
this is corrected. Utilising ANN models for process control is a proactive control
technique in which water quality can be controlled based on influent water quality and
operational control. Therefore, action is taken prior to incidences of poor water quality
effluent by taking action in response to varying influent quality. This addresses the

problem of the time delay of control actions resulting from reactive process control.
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2.4 Factors Affecting Filtration Performance

Given an understanding of the filtration process as described in section 2.3, the factors
that affect filtration performance can be determined and assessed, which is done in this
section. This is necessary to determine the parameters that will be used in model
development. These factors are categorised into three categories: operational parameters,

solution chemistry and suspended particle properties.

2.4.1 Operational Parameters

2.4.1.1 Filtration Rate

According to models of transportation by sedimentation and by diffusion shown in
section 2.3, it is indicated that particle collection is hindered by higher filtration rates
(AWWA 1990). As can be seen in the equations, as filtration rate increases, efficiency of
transport of particles to the filter media decreases, thus filtration performance decreases.
However, there have been a number of studies done in the 1950°s and 1960’s on varying
filtration rates and the subsequent effects on turbidity removal in which rates ranging
from 5 m/h to 15 m/h were examined (AWWA 1990). It was found that the varying rates
had little effect on effluent turbidity. Nonetheless, the conclusion made from this
literature was that higher filtration rates result in slightly poorer filtrate, and it was shown
that high rates up to 37 m/h had a detrimental effect (AWWA 1990). This result was also
demonstrated in a different pilot plant study undertaken in Israel (Hatukai, Ben-Tzur and
Rebhun 1997). It was shown that as filtration velocity changed from 20 m/h to 15 m/h,
total particle counts decreased correspondingly, and it increased as filtration velocity
increased back to 20 m/h. Interestingly, turbidity remained constant throughout the entire

run. Such a result shows the sensitivity of particle counts compared to turbidity and
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implies that the effect of varying filtration rates may not be detected as well through
turbidity. Therefore, the filtration rate may have a more significant effect on efficiency
of particulate removal than what is indicated by earlier studies. This is further indicated
in a bench scale study that was done in which the effects of filtration velocities of 0.11,
0.22, and 0.33 m/h on particle removal were examined (Moran et al. 1993). It was found
that there was greater particle removal with a lower filtration velocity. Therefore, given
the experimental evidence, filtration rate should be considered a significant factor

affecting filtration performance.

2.4.1.2 Filter Media Size

[t is generally understood that the larger the media, the less efficient the particle removal.
This is because with increasing diameter of the filter particles, less surface area is
available for contact to be made with particles, thus less opportunity for particles to be
retained. This is supported theoretically by the model of efficiency of transport by
interception (eqn. 2) and by the model for transport by diffusion (eqn. 3) given in section
2.3.2. From these equations, it can be seen that as filter grain diameter decreases,
efficiency of transport of particles increases resulting in improved filtration performance.
Experimental evidence from a bench scale study supports this statement (Moran et al.
1993). 1.85 mm media was tested against 0.78 mm media with the same depth of 746
mm. [t was found that clean bed removal was more efficient for the smaller 0.78 mm
media than the 1.85 mm media. Moreover, when adjustments were made to filter depth
so that surface area was constant for both media sizes, particle removal efficiencies were

very similar. This supports the concept that the amount of surface area of filter media
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influences efficiency of particle removals. Therefore, filter media size is a significant

factor in filtration performance.

2.4.1.3 Filter Media Depth

Little information was encountered in literature regarding effects of filter media depth on
filtration. However, it is intuitive to deduce that increasing the depth of the filter would
improve filtration. This is because increasing filter depth increases total filter media
surface area thereby allowing for greater opportunity for particles to have contact with
the filter media. As a result, particle removal efficiency should improve. A bench scale
lab study was done in which particle removal was determined at filter depths of 193 mm
and 746 mm (Moran et al. 1993). It was observed and concluded that particle removal
increased with increasing depth. Therefore, filter depth can be considered to be an

important factor in filtration performance.

2.4.2 Solution Chemistry

2.4.2.1 Coagulant Dosage and Type

The two general mechanisms that occur in filtration are the transport of particles to the
filter grain followed by adherence of the particle to the grain. In order for particles to
attach, they must be chemically destabilised by pre-treatment, and the importance of pre-
treatment has been emphasised in literature (O'Melia 1985; Amirtharajah 1988). Given
that coagulants are responsible for destabilisation, it is clear that coagulant dosage is a

significant factor in filtration efficiency.

21



A series of pilot plant experiments were performed which demonstrates the importance of
coagulant dosage to filtration performance (Amirtharajah 1988). Alum dosages of 1, 5,
and 8 mg/L were examined, and an optimal alum dosage was observed at S mg/L at a pH
of 6.9-7.0. Good filtration was also observed at a dosage of 8 mg/L, however poor

turbidity removal occurred with a dosage of 1 mg/L.

In a different lab study (Tobiason and O'Melia 1988), calcium nitrate was used as a
coagulant in varying concentrations to observe the clean-bed particle removal of a
monodisperse solution of 4 um latex particles. It was found that as concentration of the
coagulant increased, particle removal increased further demonstrating the influence of
coagulant dosage. Zeta potential, which is explained in section 2.4.3.1 on p. 34, was also
measured in this experiment, and it was observed that as coagulant dosage increased, the
zeta potential of the particles approached 0 mV compared to an initial negative value of
~70 mV. This is an indication of how the coagulant destabilises the particles eliminating

the negative charge.

Coagulant type can also be considered to be an influential factor on filtration
performance as some coagulants may be more effective than others at destabilising
particles depending on solution conditions. An example of this was demonstrated in a
study in which alum and Fe;(SO4); were compared (Valade et al. 1996). It was observed
that the iron sulfate produced slightly lower filter effluent turbidity than alum, which is
evidence that coagulant type is an important factor that can influence filtration

performance.
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From these studies, it is apparent that coagulant type, and more particularly the dosage, is
very important in particle removal. Coagulant dosage should definitely be considered as

a significant factor in filtration performance.

2.4.2.2 Polymer Dosage and Type

Polymers can be used as a sole coagulant, coagulant aid or filter aid. It differs from metal
salt coagulants, such as alum, in that polymers are long chain organic molecules with
positive and/or negative charges and may destabilise particles possibly by charge
neutralisation or by interparticle bridging.  Therefore, the effects of polymer
characteristics may not be as significant depending on the dominating mechanism. This
was demonstrated by a pilot plant study that was done in which the effects of using
polymers as a filter aid on filtration performance were assessed (Zhu et al. 1996).
Different molecular weight polymers with different charge densities were examined, and
it was found that these parameters had little effect on filtrate quality. However, since the
polymers were used as filter aids and used in small amounts, it is difficult for charge
neutralisation to occur, therefore polymer type and charge density would have little
impact on filtrate quality (Zhu et al. 1996). It is more likely that the dominant
mechanism of removal was interparticle bridging between the polymers and particles,
which would explain the observed lack of influence of polymer type. Polymer dose,
however, was found to be an important factor. An optimal dose was found to be 0.01
mg/L with no improvement when dose was increased to 0.02 mg/L. However, when dose

was decreased to 0.005 mg/L, filtrate quality degraded.
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In another pilot plant study (Hatukai, Ben-Tzur and Rebhun 1997), it was shown that
addition of cationic polymer to alum as a coagulant aid resulted in better turbidity and
total particle count removal. Log removal increased from 1.4 to 1.8 for particles in the
size range of 2-5 pm with the addition of 0.1 mg/L of polymer. Furthermore, increasing
the polymer dosage from 0.1 mg/L to 0.3 mg/L also improved removal efficiency. There
was less improvement in the removal of smaller sized particles, but there was good
improvement in the removal of coarser particles at this higher dosage. This is another

indication on the importance of polymer dose to particle removal efficiency.

It was shown in the study by Zhu et al. that polymer type was not found to be a
significant factor in filtration performance. However, both studies discussed have shown
polymer dose to be an influential factor and therefore should be considered as significant

in filtration performance.

2.4.2.3 pH and Alkalinity

One of the main effects of pH during water treatment is on the solubility and speciation
of the coagulant alum. This in turn affects the degree of destabilisation of particles as
well as determines the dominant mechanism(s) of destabilisation, which ultimately
affects filtration performance. The relationship between pH and alum concentration is
shown in Figure 2-1, which clearly displays solubility of alum at a given pH. The zeta
potential of a colloid in a solution of 10 mg/L of alum and without alum is compared in
the lower half of the diagram. pH can also influence the surface charge of a particle

(Stumm and Morgan 1996). At low pH, protons can adsorb to the surface of a negatively
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charged particle. Conversely, at high pH, hydroxides can adsorb to the surface of a
positively charged particle. Either way, the surface charge is affected and the particle can

become destabilised.
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Figure 2-1. Alum coagulation diagram and zeta potential with charge neutralisation zones (modified
from Amirtharajah (1988)).

In one direct filtration bench study (Collins, Amy and Bryant 1987), the effect of varying
pH on filtration was determined. It was observed that an initial pH of 8.5 generally

resulted in lower final turbidity and total particle counts compared to an initial pH of 5.5,
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but a clear explanation of these results was not discussed. The problem lies in the fact
that alum dosages were chosen based on near-maximum removal of non-volatile total
organic carbon. This resulted in holding alum of dosage to 2.0 mg/L for pH 5.5 and 4.0
mg/L for pH 8.5. Therefore, the reason for the lower turbidity and particle count at pH
8.5 compared to 5.5 was likely due to the higher amount of alum present whose actions

result in improved filtration.

The opposite results were found, however, in another lab study (Tobiason and O'Melia
1988). In this study, the zeta potential of a monodisperse mixture of 12 pum latex
particles was measured as pH was changed. It was observed that as pH decreased from
10 to 2, zeta potential changed from —55 mV to ~ 3 mV. Filter efficiency was then
observed for pH 9.7 and 3.0, and it was found that particle removal efficiency was better
at pH 3 than at 9.7. This observation is explainable by the likely fact that at such a low
pH, protons adsorbed to the surface of the particle, which accounts for the observed zeta
potential change to a positive value at lower pH. As a result, the particles are destabilised
allowing for greater interaction and attachment with the negatively charged filter media.
At a pH of 9.7, the particles would tend to retain a highly negative charge and therefore
would be less likely to interact and be retained by the filter media. Therefore, the filter

efficiency would be greater at a pH of 3.0 than at 9.7.

Another study evaluated the effect of pH on direct sand filtration at pH values of 5, 7, and
9 (Ebie and Miyake 1991). It was found that turbidity removal was higher at pH 5 and 7

compared to pH 9, however the mode of filtration was different at each pH. At pH 3,
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particles had a highly positive charge and were therefore retained in the filter media
mainly due to electrostatic attractive forces. At pH 7, which is in the optimal coagulation
range of kaolinite particles with alum, larger flocculated particles formed with the
predominant transport mechanism found to be interception. This is different from
filtration at pH 5 because the effectiveness of filtration is due to both particle attachment
and transport, whereas at pH 5, filtration efficiency was mainly due to particle
attachment. At pH 9, the suspended particles and the filter sand grains had a negative

charge, and it was assumed that particles passed directly through the filter.

Another study found that optimal filtration occurred at a pH range of 6.9-7.1 with a
sufficient dosage of alum for destabilisation (Amirtharajah 1988). This range of pH also

falls within the pH boundary for charge neutralisation.

It has been shown through these studies that pH has a major impact on filtration
performance. It influences alum solubility therefore affecting the degree of particle
destabilisation and subsequently particle attachment to filter media. pH also impacts
filtration by affecting the surface charge of the particle with the adsorption of protons
onto the negatively charged surface of the particle resulting in particle destabilisation.

pH should therefore be considered as a significant factor in filtration performance.

Alkalinity is defined as the measure of the capacity to neutralise acids (Sawyer, McCarty
and Parkin 1994). This is an important characteristic of water because it has an effect on

pH in that it would influence how much pH decreases as acid is added to water. Such a

27



situation arises when alum is added to water. As alum undergoes hydrolysis, a proton is
released which results in a decrease in pH. The alkalinity of the water, however, would
determine the extent to which pH is affected. Since changes in pH have an effect on
filtration performance and alkalinity affects changes in pH, alkalinity can be said to have

an effect on filtration performance and may be a significant factor.

2.4.2.4 lonic Strength

The ionic strength of the solution may influence the surface chemistry of the particles and
alter the interactions between particles and between particles and filter media, which
consequently may have an effect on filtration performance. If ionic strength is
sufficiently high enough, the double layer of the particle is compressed with the diffuse
layer reduced (AWWA 1990). This would reduce the range of repulsive interaction
between similarly charged particles allowing the particles to interact more easily through
van der Waals interactions. A lab study was done (Prasanthi et al. 1994) with hematite
particles in which the ionic strength was varied from 107 to 8x102 M by varying the KCl
concentration from 0 to 80 mM. With increasing ionic strength, colloidal aggregate size
increased from 0.085 um to 0.99 um. Clean bed filter efficiency thus increased with
increasing size within this size range. However, efficiency decreased as aggregate size
neared 1 um, which is theoretically expected as discussed in section 2.3. During the
transient stage of filtration, there was quick breakthrough with KCl concentrations from 0
to 10 mM. For higher concentrations (40 to 80 mM), initial removal efficiency improved
with decreasing concentrations, however the trend was reversed as breakthrough was
approached in that removal efficiency improved with increasing concentrations. Based
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on these experimental results, ionic strength can have an impact, and it may be

considered a significant factor.

2.4.2.5 Particle Concentration

Influent particle concentration is an important parameter in that it has an influence in
deciding the type of filtration process to utilise. Depending on the mass concentration
and volume average diameter of particles in the raw water, there are three types of
filtration processes to consider as an optimal treatment process: contact filtration, direct
filtration, and conventional filtration (O'Melia 1985). This is shown in the Figure 2-2
below. Generally, for larger sized particles in greater concentrations, conventional

filtration is most effective.

4 r v r r
Contact
3 F Filtration i
Conventional
Direct Treatment
2 Filtration

Volume Average Diameter (um)
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Particle Mass Concentration in Raw Water (mg/L)

Figure 2-2. Optimal water treatment configuration as a function of raw water characteristics
(modified from O'Melia (1985)).

More importantly is the effect of particle concentration on filter performance. Given that
the purpose of filtration is to remove particles, variations in influent particle

concentration have the potential to affect performance. Such effects are related to
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particle size in that the presence of different sized particles also affects performance.
Thus, varying concentrations of different sizes of particles have a varying effect on filter
efficiency (Prasanthi, Vigneswaran and Dharmappa 1997). This is partially due to the
different mechanisms that dominate depending on the particle size as discussed in section

2.3.

The removal efficiency of a clean filter is independent of influent concentration, but as
filtration proceeds, concentration is observed to have a significant effect (O'Melia and Ali
1978). Specifically, it was observed that as influent concentration of suspended particles
increased from 1 mg/L to 50 mg/L, the percent concentration remaining decreased. It
was also found in the same study that during the filter ripening stage, filter efficiency was
higher for higher influent concentrations. In another study in which submicron particles
of sizes 0.46 pum and 0.825 pum were used, it was observed that the clean bed filter
efficiency increased with increasing influent mass concentration (Prasanthi, Vigneswaran
and Dharmappa 1997). Given the observations made in these studies, particle

concentration should be considered to be a significant parameter in filtration.

2.4.2.6 Hardness and Water Softening

Hardness of water is caused by multivalent metallic cations and is derived largely from
contact with soil and rock formations (Sawyer, McCarty and Parkin 1994). Some of the
principal cations that cause hardness in water include Ca®", Mg?*, Sr**, Fe?*, and Mn?*.
Very little information was encountered in the literature regarding the effects of hardness

on filtration performance. It was stated, however, that the colloidal stability of natural
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particles in surface water depends significantly on hardness and dissolved organic carbon
or humic substances in the water (Amirtharajah 1988). This in turn can affect the ability
of the particles to interact with the filter media and each other implying that filtration

performance could ultimately be affected.

In some treatment plants where the source water is quite hard, hardness is removed by
softening. Lime is a typical chemical added to soften the water, and this results in the
formation of calcium carbonate, which precipitates and settles out. This reaction also
results in an increase in pH, which is then controlled. Because of this process, the
formation of calcium carbonate precipitate may add to the particle concentration that
enters the filters, which in turn could affect filtration performance as discussed previously
in section 2.4.2.5. Therefore, it is possible that if water softening by lime addition is
performed at a treatment plant, lime dosage could be considered to be an influential

factor in filtration performance.

2.4.2.7 Organic Matter Concentration

Organic matter is capable of adsorbing onto particles, which can alter the surface
characteristics of the particle thus altering interactions with other particles (Prasanthi et
al. 1994). In fact, colloidal stability of natural particles in surface water is dependent on
dissolved organic carbon or humic substances in water (Amirtharajah 1988). Since the
surface chemistry of particles and the extent of particle stability affect particle removal,

filtration performance may be affected by organic matter concentration.
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A lab study was done (Prasanthi et al. 1994) with hematite particles in which fulvic acid
concentration was varied from 0 to 4 mg/L to determine the effect on particle removal.
As concentration increased from 0 to 0.5 mg/L, the zeta potential of the particles went
from a positive charge to a net charge of near zero, and the particle aggregate sizes
increased. Clean bed filter efficiency was highest at a concentration of 0.5 mg/L fulvic
acid. Removal efficiency dropped at 0.75 mg/L fulvic acid because aggregate size was at
approximately 1 um, which is the critical size in which particle transport is at 2 minimum.
At 2 and 4 mg/L fulvic acid, there was virtually no aggregation because the particles were
stabilised by the fulvic acid as evidenced by the particles possessing a negative zeta
potential. However, removal efficiency was still quite high due to increase in transport of

particles from diffusion.

In another study that was done Collins et al. (1987) found that the presence of higher
levels of fulvic acid did not significantly affect final turbidity and total particle counts at

a pH of 8.5. However, at pH 5.5, inhibition of particle removal was observed.

The results from these studies are evidence that organic matter can interact with and

affect the chemistry of particles. Consequently, organic matter concentration might be

considered to be an influential factor in filtration performance.
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2.4.2.8 Activated Carbon Dosage

Powdered activated carbon (PAC) is predominantly used for controlling taste and odour
by adsorbing organic compounds. By affecting the concentration of organic matter in
water, filtration performance may subsequently be affected as discussed previously in
section 2.4.2.7. Furthermore, addition of activated carbon to water may contribute to
particle concentration that eventually enters the filters. As previously mentioned in
section 2.4.2.5, the added particle concentration may impact filtration performance.
Given the effects that activated carbon potentially has, it should be considered to be an

influential parameter in filtration performance.

2.4.2.9 Temperature

From the models shown for transport efficiency by sedimentation (eqn. 1) and diffusion
(eqn. 3j in section 2.3.2, it can be seen that transport is dependent on temperature for
diffusion and viscosity for both sedimentation and diffusion. As temperature decreases,
efficiency of transport by diffusion would decrease. In addition, viscosity increases with
decreasing temperature, which results in a decrease in efficiency of transport of particles
by sedimentation and diffusion. This can ultimately result in a decrease in particle
removal efficiency in filtration. Settling in the clarification tanks can also be affected.
Another effect that temperature can have is on reaction rates. Cold temperatures can
result in a decreased reaction rate affecting upstream processes such as coagulation and
softening. Consequently, if the extent of destabilisation in coagulation is decreased,

filtration efficiency may decrease. Therefore, temperature should be regarded as an
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important factor in filtration performance. However, the impact may only be slight if

temperature does not vary greatly.

2.4.3 Suspended Particle Properties

2.4.3.1 Zeta Potential

Zeta potential can be described in the following way. A charged particle (negative)
accumulates a layer of ions around it, which is the diffuse layer, with ions of the opposite
charge (positive) particularly around the surface to form a layer called the stern layer.
Together, these layers comprise the electric double layer, and this is shown in Figure 2.3.
The potential at the edge of the stern layer within this double layer is the zeta potential
(Sawyer, McCarty and Parkin 1994). The zeta potential is dependent on the potential at
the surface of the particle, which is the Nerst potential, and the thickness of the double
layer, and its value determines the extent of the electrostatic forces of repulsion between
charged particles (AWWA 1990). Particles in natural water typically have a zeta
potential ranging from —-20 to —40 mV. but suspensions of particles that are well
destabilised have a potential close to 0 (AWWA 1990). Therefore, it is evident that zeta
potential is a good indication of the extent of particle destabilisation, which is an

important condition in filtration effectiveness.
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Figure 2-3. Electrical double layer of a negatively charged colloid (adapted from Sawyer, McCarty
and Parkin (1994)).

In a study previously mentioned in the section on coagulant dosage in section 2.4.2.1,
zeta potential was monitored as coagulant dosage varied (Tobiason and O'Melia 1988). It
was observed that as coagulant dosage increased, the zeta potential of the particles
approached zero, whereas the particles initially possessed a negative zeta potential. As
well, as zeta potential approached 0 mV, removal efficiency improved significantly.
Within the same study, another experiment was carried out in which zeta potential was
monitored while the pH was varied. What was observed was that as pH was shifted from
10 to 2, zeta potential of the particles changed from -55 mV to nearly 0 mV.
Furthermore, as zeta potential became less negative, removal efficiency improved. These

results indicate a correlation between zeta potential and filtration performance, thus it

may be an important factor.
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2.4.3.2 Particle Size and Size Distribution

Particle size is an influential factor in filtration performance in that the dominant
mechanism of transport of particles to filter media is dependent on the size of the particle.
As it was discussed in section 2.1, there is 2 minimum net transport efficiency for particle
sizes of approximately 1 um (Habibian and O'Melia 1975; Amirtharajah 1988). Particles
that are about 1 pm in size are least effectively removed by filtration, and this was

observed in the following studies.

In one lab study of contact filtration in which monodisperse suspensions of 0.27, 1.32 and
10.0 um particles were used, it was found that the 1.32 pm particles were removed least
efficiently. Removal of the submicron particles was better, and removal of the large 10

um particles was best (Tobiason, Johnson and Westerhoff 1990; Tobiason et al. 1993).

In another granular bed filtration study (Aim et al. 1997), monodisperse suspensions of
0.46, 0.825, and 2.967 um latex particles were studied. It was observed that the clean
bed filter efficiency was less for the 0.825 pum particles than the other two sizes, which
supports the contention that minimal particle removal occurs for particles approximately
1 pm in size. However, it was also found that such a critical size did not exist for the
ripening stage filter efficiency and that removal efficiency at this stage increased with

particle size.

Size distribution may also play a role in filtration efficiency in that particles of one size

can affect the removal efficiency of particles of a different size (Aim et al. 1997). In the
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contact filtration study (Tobiason et al. 1993), the removal efficiency of a polydisperse
suspension of 0.27 and 1.32 pm particles was examined. It was found that for the 0.27
um particles, the presence of the larger particles resulted in a decrease in clean bed
removal efficiency of the smaller particles. On the other hand, for the 1.32 pum particles,
the presence of the smaller particles resulted in an improvement in clean bed filter
efficiency of the larger particles. The improvement in filter efficiency for larger particles
due to smaller particles could have been because of increased apparent surface roughness
of the media or of the larger particle due to small particle deposition. Conversely, the
effect of larger particles on smaller particles could be due to unfavourable hydrodynamic
interactions or differences in destabilisation (Tobiason et al. 1993). These effects of one
particle size on another are dependent on the relative abundance of each particle as well

as chemical conditions (Tobiason, Johnson and Westerhoff 1990).

Given that transport mechanisms are size dependent and that there is experimental
evidence supporting this, it is apparent that particle size is a significant factor that affects
filtration performance. As well, particle size distribution can also be considered a

significant factor in filtration performance from observations made in lab studies.
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2.5 Aspects of Artificial Neural Networks

The purpose of this section is to discuss the basic fundamentals of ANN. It is important
to have an understanding of ANNs in order to be able to design, develop and optimise an
ANN model. A description of ANN is presented in this section along with its specific

components and aspects.

2.5.1 Description

An artificial neural network is a biologically inspired computational model (Kasabov
1996; Garrett Jr., Gunaratnam and Ivezic 1997). It is classified as an artificial
intelligence modelling (AI) technique in that it has the capability to learn from examples,
which is a key characteristic. An example of a basic network is depicted in Figure 2-4.
The network consists of highly interconnected processing units called neurons, which are

the basic elements of an ANN. These processing units or neurons receive input signals

Error Backpropagation

Error

Outputs

Layer

Input
Layer Hidden
Layer

Figure 2-4. A basic artificial neural network.
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from other neurons or external stimuli, process it through an activation or transfer
function, and produces a transformed output signal to other neurons or external outputs
(Zhang, Patuwo and Hu 1998). Learning occurs through training of the network in which
input examples are repeatedly presented to the network, and modification and
optimisation of the connection weights between neurons are performed through the use of
a learning algorithm. Therefore, mathematical formulae or algorithms are not required to
develop solutions to the problem. Other important characteristics are its robustness and
its ability to generalise rules and apply them to new cases. The network is able to
produce the best output according to training examples when new input vectors are
presented to the network, and it is fault-tolerant in that the system is still able to perform
well if there are errors within the network (Kasabov 1996). In other words, approximately
correct answers are produced even though data presented to the network is partially

incorrect or incomplete.

Before ANN can be applied to a problem, it should be determined if using ANN is
appropriate and applicable. ANN is applicable in cases in which the algorithms or
heuristics to solve the problem are unknown or too expensive or difficult to determine. In
addition, developing mathematical formulae for the case study should not be a goal since
ANN does not use nor provide such formulae. Furthermore, success of the model is
dependent on data as the modelling process is data intensive. If an adequate amount of
data are not available or if the type of data available is insufficient to describe the
problem domain, then ANN may not be applicable. It is also important to have expert

knowledge of the study domain itself. In the case of filtration performance, it is known
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that this is a complex process with multiple factors influencing the process. The
algorithms and heuristics to define and describe all the complex relationships involved
are not completely known and are quite difficult to determine. Since mathematical
formulae are not necessary for this study, and provided that there is sufficient variety and
quantity of data available that will represent the domain of this process, using ANN is

applicable to the modelling of filtration performance in a WTP.

ANN has previously been applied to other environmental engineering problems. Such
applications have included water demand forecasting, river water quality prediction, air

quality prediction, pipe break analysis, and enhanced coagulation modelling.

2.5.2 Architecture, Components, and Aspects of ANN

There are several main aspects of ANN models: a set of processing units called neurons,
a state of activation for each neuron, a set of connection weights, a propagation rule, an

activation rule, and a learning rule (Rumelhart and McClelland 1986).

2.5.2.1 Neurons

Neurons are processing units that receive input signals, process this information and then
transmit an output signal. There are three types of neurons in a neural network: input,
output, and hidden neurons. Input neurons receive input from external sources, which is
scaled to a value to between 0 and 1 or —1 and 1 depending on the type of scaling
function used. This scaling function is present only within input neurons. Their output is

then computed as a function of the activation level, which is then transmitted to the
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network (Garrett Jr., Gunaratnam and Ivezic 1997). Specific examples of inputs from
models developed for this thesis include raw water parameters such as turbidity and
temperature and operational parameters such as alum dose or polymer dose. Output
neurons receive input from the rest of the network. The output of these neurons are
computed and sent out of the system (Garrett Jr., Gunaratnam and Ivezic 1997). An
example is effluent particle counts, which was used in model development. Hidden
neurons are those units in which inputs are received and outputs are sent within the
network with no external contact (Garrett Jr., Gunaratnam and Ivezic 1997). These
neurons are very important in that they allow the network to detect and capture features
and patterns in data and to perform the non-linear mapping between input and output

variables (Zhang, Patuwo and Hu 1998).

As it was introduced in section 2.5.1, neurons process information in the following way.
Input signals from other neurons or external stimuli are received by a neuron. This would
include signals from error backpropagation as well. This is then processed through an

activation or transfer function producing a transformed output signal that goes out to

External input Propagation | Nt Activation
or preceding Function ﬁnput Function Output
neuron output
f State of
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& Algorithm Error
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Figure 2-5. A basic neuron.
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other neurons or as external outputs. A diagram of a neuron is shown in Figure 2-5.

2.5.2.2 State of Activation

The state of activation of a neuron determines whether or not the neuron will fire off an
output. This is determined by the neuron after processing input stimuli and calculating

whether or not a certain threshold is exceeded by the transformed signal.

2.5.2.3 Set of Connection Weights

Neurons are connected to each other and communicate through these connections. The
strengths of these connections determine how the network will respond to a given input
(Rumelhart and McClelland 1986; Garrett Jr., Gunaratnam and Ivezic 1997). There are
three types of connections: excitatory, inactive, and inhibitory (Garrett Jr., Gunaratnam
and Ivezic 1997). For example, if the weight, wy;, of the connection from the ith neuron
to the jth neuron in a network with a sigmoidal activation function is positive, the
connection is excitatory meaning that neuron i has an activation effect on neuron j. If wy
is zero, then the connection is inactive meaning that neuron i has no effect on neuron j. If
wy; is negative, then the connection is inhibitory meaning that neuron i hinders activation

of neuron j.

2.5.2.4 Propagation Function

The rule of propagation determines the net input to a neuron by combining the output of a
preceding neuron and the connection weight. The total net input from all preceding

neurons can be mathematically represented by (Garrett Jr., Gunaratnam and [vezic 1997):
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where, N; = total net input,
wy = connection weight,

o; = output of preceding neuron

2.5.2.5 Activation Function

The activation function, which is also referred to as the transfer function, determines the
new level of activation of a neuron by combining the total net input received with the

current level of activation. This can be represented mathematically by (Garrett Jr.,

Gunaratnam and Ivezic 1997):

Dpew = F[amld’ N:] )

new

where Qinew = New activation level,
F = activation function,
Q.14 = current activation level

N; = net input

The current activation level acts as the threshold value to which the new activation level

is compared as mentioned in section 2.5.2.2.
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2.5.2.6 Leaming Rules and Network Leaming

In order for the neural network model to learn the relationships between inputs and
outputs, the pattern of connectivity in a model would need to be modified. The learning
rule determines how the network is modified (Garrett Jr., Gunaratnam and Ivezic 1997).
There are three types of modifications that can be done: the development of new
connections, the loss of existing connections, or the modification of the strengths of
connections that currently exist (Rumelhart and McClelland 1986). The development and
loss of connections can be considered to be special cases in that connection weights
become zero for a connection to be lost or move away from zero for a connection to be
gained (Rumelhart and McClelland 1986). Most neural network simulators, however,
only provide the capability to modify existing connection strengths (Garrett Jr.,
Gunaratnam and Ivezic 1997). In which case, a zero connection weight indicates an

inactive connection.

Most learning rules involving the modification of current connection weights are variants
of the Hebbian learning rule. The general idea of this rule is that if a neuron, u;, receives
input from another neuron, u,, and both neurons are highly active, then the connection

weight, wy;, from ; to u; should be strengthened (Rumelhart and McClelland 1986).

Another learning rule, which is utilised in the models developed in this study, is the delta
rule. Basically, an input is used by the model to generate an output and this is compared
with the desired or actual output. Connection weights are then modified to minimise the

squares of the difference between the generated output and the actual desired output.
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There are two phases in the application of the generalised delta rule (Rumelhart and
McClelland 1986). First, input is presented to the network and propagated forward
through the network to generate an output value. This output is then compared with the
actual output, and an error signal 8 is computed from the difference between the outputs
times the derivative of the squashing function. In the second phase, & is propagated
backwards through the network, and appropriate weight changes are made. Mathematical

derivation of the generalised delta rule is presented by (Rumelhart and McClelland 1986).

Supervised learning is a type of learning that utilises the delta rule. Training examples
include both the input vectors and the desired output vectors. Training is performed until
the neural network is able to associate each input vector with the corresponding desired
output vector (Kasabov 1996). Unsupervised learning is a different type of learning. It
differs from supervised learning in that the training examples only include the input
vectors and not the output vectors. The neural network learns the internal features of the
input vectors presented to it and categorises outputs according to how they associate with
each other (Kasabov 1996). Kohonen categorisation is associated with this type of

learning and is further discussed in section 2.5.4.

2.5.3 Generalisation and Convergence

Convergence is the ability of the network to learn the training data within the specified
error tolerance, whereas generalisation is the ability of the network to produce reasonable
results for the unknown situation after training has been completed. This is important

particularly during model development because it describes the ability of the network to

45



learn and then perform. The two main reasons for a network to not generalise or
converge well are because the data set is too noisy or is not representative enough of the
problem domain. Noise is further discussed in section 3.2. Another reason for poor
generalisation includes previously unknown data deviating too much from examples used
in the learning (Muller and Reinhardt 1991). By avoiding these conditions, model

development should be easier to accomplish.

2.5.4 Kohonen Categorisation

As it will be discussed in the methodology section in section 3.0, Kohonen networks were
used as part of the modelling process in this study. Therefore, the concept of this
network is described here to provide an understanding of what Kohonen networks are and

how they work in order to understand how and why they are utilised.

Kohonen networks are based on the behaviour of biological neurons in which specific
neural responses are associated with the spatial location of neurons. The network
comprises an interconnected lattice or array of neurons each of which are connected to
input neurons. As network training occurs, example inputs are presented to the network,
and neuron connection weights are adjusted. The output neuron and its connection
weights, which is equivalent to the centre of the category, that most resembles the input is
the “winner” and its weights are changed accordingly. In addition, neurons in the
neighbouring vicinity to the winning neuron are also adjusted. As a result, those input
patterns that have similar characteristics tend to activate neurons that are clustered

together. The resulting output is the categorisation of each input data pattern. Thus,
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significant features and patterns within the training data influence the network and are
categorised accordingly, and this type of network learning is defined as unsupervised
learning. This differs greatly from backpropagation networks, which employ supervised
learning and requires the actual outputs in addition to the inputs. In other words, the
correct output is not required in the training of Kohonen networks, only inputs are

needed, whereas the actual outputs are required to train backpropagation networks.

Data patterns are categorised based on the spatial relation of the pattern to the centre of a
category in n-dimensional space in which n-dimensional space is defined by the number
of inputs. The centre of the category is defined by the average value of the inputs of all
patterns within that category. The spatial distance of the pattern is calculated based on
the input values and relative to the centre of the category in terms of the Euclidean

distance, which is defined by equation 6:

X -7, =, cx. -1} ©

where, X is the input value,
Y is the value of the centre, and

n is the number of inputs that define the pattern.

The smaller the Euclidean distance, the closer a pattern is to the centre of a category, and

the more likely it is that the pattern belongs to that category.
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2.6 Other Al Systems

ANN is not the only type of Al modelling technique that is available. These other Al
techniques have been applied to water treatment (Boscolo, Mangiavacchi and Drius 1991;
Zhu and Simpson 1996; Liu and Wu 1997; Evans et al. 1998). However, there are
advantages and disadvantages of each technique that need to be considered. Ultimately,
upon evaluation and given the available resources as well as considering previously
successful application of ANN in the environmental engineering field, which includes
water demand prediction (Stark, Stanley and Buchanan 2000), prediction of cast iron
water main breaks (Sacluti, Stanley and Zhang 2000), air quality prediction (Hasham,
Stanley and Kindzierski 1998), modelling of coagulant dosages (Mirsepassi, Cathers and
Dharmappa 1995; Gagnon, Grandjean and Thibault 1997; Han et al. 1997), pressure drop
in filtration (Conlin, Peel and Montague 1997), chlorination dosage and control
(Rodriguez and Serodes 1996; Rodriquez, Serodes and Cote 1997), enhanced coagulation
application (Stanley and Zhang 1997), and water quality parameter prediction (Maier and
Dandy 1996; Zhang and Stanley 1997), ANN is still the modelling technique of choice.
There has been little research, however. in the modelling of the treatment process of an
entire WTP. The examples of applications in water treatment given here are the
modelling of single unit processes in treatment. Therefore, development of an ANN
model encompassing the entire treatment process, as with the case in this study, is a

unique approach toward modelling water quality from a plant.
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2.6.1 Expert Systems

An expert system is a computer system that simulates human experts in a given area of
specialisation (Castillo, Gutierrez and Hadi 1997). Human reasoning is simulated about a
problem domain with reasoning performed over representations of human knowledge,

and problems are solved by heuristics or approximate methods (Jackson 1990).

The basic architecture of an expert system is made up of six components: knowledge
base, context, inference mechanism, explanation facility, knowledge acquisition, and user
interface (Maher and Allen 1987). The knowledge base contains the facts and heuristics
or rules associated with the problem domain, and the context contains information about
the problem being solved. The inference mechanism is the heart of an expert system,
which contains the control information and uses the knowledge base to modify and
expand the context. The explanation facility is the component that can trace the
execution of the system program and provide the explanations behind a solution to the
problem being solved. The knowledge acquisition facility is the component that
facilitates entering knowledge into the knowledge base. Finally, the user interface is the
liaison between the expert system and the user where the user can interact with the
system. Additional subsystems include coherence control, information acquisition, action
execution, learning (Castillo, Gutierrez and Hadi 1997). The coherence control
subsystem controls the consistency of the knowledge base and prevents incoherent
knowledge from reaching the knowledge base. Information acquisition is utilised by the
inference engine when initial knowledge is limited and conclusions cannot be made. The

user can provide such information through the user interface. The action execution
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subsystem allows the expert system to perform actions based on conclusions or solutions
made. Expert systems can learn and gain experience based on available data by storing

knowledge, which can be drawn upon by the knowledge acquisition subsystem.

Compared to algorithmic solutions, heuristics are not guaranteed to succeed, and the
system must be capable of explaining and justifying solutions or recommendations
(Jackson 1990). However, mathematical algorithms might be too difficult to develop in
some cases, whereas rules for expert systems are easier to develop. In addition, expert
systems can acquire knowledge as well as verify its coherence, store the knowledge or
ask for new knowledge when needed, learn from the knowledge base and available data,
reason and make inferences in deterministic and uncertain situations, and communicate
with experts, non-experts, and other expert systems (Castillo, Gutierrez and Hadi 1997).
The main problem with utilising an expert system, however, is that the general rules
developed might be too simplistic to describe more complex problem domains. For
example, filtration performance at a WTP involves many complex processes, therefore
the rules that would be developed for an expert system may not adequately describe all
the relationships involved that affect filtration performance. As well, experts would need

to be available to develop and modify rules as needed.

2.6.2 Fuzzy Logic

Fuzzy systems are rule-based expert systems based on fuzzy rules and fuzzy inference,
which represent knowledge that is subjective, ambiguous, vague, or contradictory

(Kasabov 1996). There are three main components in a fuzzy system: fuzzy input and
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output variables defined by their fuzzy values, a set of fuzzy rules, and a fuzzy inference
mechanism. Fuzzy propositions are used in that propositions contain fuzzy variables and
values such as “the temperature is cold” or “the pH is high.” Fuzzy inference takes
inputs, applies fuzzy rules, and produces outputs, and inputs and outputs may be either
crisp exact values such as “2” or “3,” or fuzzy values such as “low” or “high” (Kasabov
1996). Defuzzification is then done in which an output membership function is

transformed into a single value.

Fuzzy logic has an advantage over expert systems in that rule generation can be done
with statistical tools using historical data rather than relying on experts themselves.
Another advantage just as with expert systems is that mathematical equations are not
necessary to solve the problem. Other advantages of fuzzy systems are that they are easy
to implement, easy to maintain, easy to understand, robust, and cheap (Kasabov 1996).
The problem with applying fuzzy logic to filtration performance is that filtration
performance is a complex process, and even though rule generation is easier than for
expert systems, it may still be inadequate to describe the relationships involved in the

process.

2.6.3 Hybrid Systems

There are systems in which rule-based systems, fuzzy logic, and neural networks, as well
as other paradigms such as genetic algorithms and probabilistic reasoning, are combined
together to form hybrid systems. These systems are used when requirements for the

solution of a problem are not met with a single method, or if models either cannot be
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implemented using a single method or implement better using more than one method.
Advantages of individual systems can thus be applied in a single system. If a fuzzy
neural network were to be developed, then advantages of both systems could be utilised.
For example, fuzzy systems can contribute the following features: a well-developed fuzzy
logic theory, humanlike reasoning mechanisms, uses linguistic terms, accommodates
common-sense knowledge, ambiguous knowledge, imprecise but rational knowledge,
uses universal approximation techniques, robustness, fault-tolerance, low cost of
development and maintenance, and low computational cost. Neural networks can
contribute the following advantages: ability to learn from data, ability to model empirical
behaviour of humans, use of universal approximation techniques, good generalisation,
can extract knowledge from data, possess methods for data analysis, associative
memories and pattern-matching techniques, massive parallelism (during data processing,
many neurons may “fire” simultaneously), and robustness (Kasabov 1996). There are
also several disadvantages of using hybrid systems. Knowledge and skills about different
paradigms and methods are required, investigation and comparison of alternative
solutions is necessary, and suitable software environment and simulation equipment is

needed (Kasabov 1996).
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2.7 E.L. Smith WTP Description

The E.L. Smith WTP was built in 1976 and is owned and operated by EPCOR. It is
located on the western side of the city of Edmonton, AB, and it draws water from the
North Saskatchewan River, which is fed by the Saskatchewan Glacier on the Columbia
Icefields. The plant was expanded in 1984 and it currently has a design capacity of

approximately 200 ML/d, but it can be further expanded to a capacity of 800 ML/d.

The first stage in water treatment involves adding alum for coagulation / flocculation and
powdered activated carbon (PAC) for colour removal and taste and odour control to
water pumped in from the North Saskatchewan River upstream of the clarifiers. Rapid
mixing occurs by means of an inline mixer. Raw water then enters one of two upflow
solids-contacting clarifiers running parallel. Polymer is introduced to the clarifiers to
assist in flocculation. Entry of the influent raw water is through a circular draught tube
with an impeller mixer in the clarifier basin, and recirculated sludge is mixed in with the
raw water. Water is forced upward and out of the draught tube and into the basin because
of the recirculated flow generated by the mixer. Water may then re-enter the draught
tube through the bottom or exit the clarifier through tube settlers. After leaving the
clarifiers, lime is added for softening (soda ash is also added seasonally for the same
purpose) to the reaction zone of the third clarifier. After exiting the third clarifier, pH is
adjusted by the addition of CO,, and chlorine is added for disinfection as well as for
further taste and odour control. Fluoride is added at this point as well. Water then flows
by gravity through one of twelve filters in parallel with some polymer added as a filter

aid. The filters are dual media rapid sand filters consisting of 475 mm of anthracite
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supported on 300 mm of sand and are approximately 18.9 m by 6.7 m length by width.
After leaving the filters, chlorine and ammonia (for disinfection through the distribution
system) and caustic soda (for pH adjustment) is added to the combined filter effluent
before being pumped out to the reservoirs and into the distribution system. A schematic

of the treatment process at E.L. Smith WTP is shown in Figure 2-6.
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3.0 Methodology

3.1 Introduction

Described in this section are the steps and tasks that were completed in order to develop
an ANN model of filtration performance. There were three main steps involved in
creating a model: 1) source data analysis, 2) data preparation, and 3) model development

and optimisation.

Source data analysis involves the evaluation of the available data in terms of what data
are available and determining the inputs and outputs to be used in the model based on
availability and significance as discussed in section 2.4. Also part of source data analysis
was the time scale analysis to determine which time scale of data readings was most
appropriate whether every minute, an hourly average, or a daily average. Characteristics

of the data set of the chosen factors were also examined.

Data preparation involves setting up the data patterns in preparation for model
development and optimisation, with data patterns defined as the set of input values and
output value(s) for the one day. Part of the preparation of the data is to divide the
patterns into a training set, a testing set, and a production set as explained in section
3.3.4. Normally, model development would commence after this point. However,
preliminary attempts at development were unsuccessful due in part to large variations
within the data making it difficult for the models to converge and generalise. The data
was therefore further processed to aid in model development. Part of the processing was

the categorisation of the data patterns into a number of sets. The purpose of this was to
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address the problems of large variations in the data by grouping together data patterns
that shared similar characteristics. A model could then be developed for each category.
Another problem contributing to poor model development was the presence of noise
patterns. Noise is defined here as data patterns with similar input values, but greatly
different output values, and this results in difficulties in model convergence and
generalisation.  The occurrence of noise can arise from poor readings due to
instrumentation error. It can also arise from operational activities at the WTP in which
abnormal operations are occurring on particular days such as the shutdown of a clarifier
or filter. Therefore, such data patterns can be removed since they do not represent the
normal operations of the WTP, which is what the model represents. Consequently, the

removal of such noise patterns should result in improved model development.

Finally, with the data set prepared, model development and optimisation can take place.
In this case, models of each category were developed. This involved testing various
network architectures and numerous network parameters, such as number of neurons and
type of activation function, until the best model performance is achieved for each model.
The final overall model configuration was also examined to determine how each model

would work together as an overall predictor of filtration performance.
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3.2 Source Data Analysis

One of the initial tasks to perform prior to modelling is the analysis of the data set to be
used for modelling. This includes identifying what data are available, determining what
inputs to include in the model, and analysing the appropriateness of the data for

modelling. It is also important to determine how much data are available.

3.2.1 Data Availability
Table 3-1 lists data that are recorded and available at the E.L. Smith WTP. At the time of

model development, data from March 14, 1998 to April 30, 1999 was utilised.

3.2.2 Input and Output Selection

For the output, reservoir influent particle counts (>2 pm) was chosen, and this is based on
the fact that particle counts are more sensitive to changes in the treatment process
compared to turbidity as explained in section 2.2. The size range of >2 pm was chosen
over the size range of 2-15 pm since the >2 um size range essentially is a measure of total
counts, whereas 2-15 pum is a more limited range in comparison. Therefore, the size
range of >2 um is a more accurate measure of finished water quality. Filter effluent
particle counts of each filter was not chosen as outputs for a number of reasons. One
reason is that it makes the configuration of the model unnecessarily complicated in using
twelve outputs compared to using just one output, or alternatively developing twelve
models for each filter compared to just one model. More importantly is the idea behind
developing this model, which is to generate a model that encompasses all unit processes

within water treatment rather than isolating filtration by itself and modelling that process.



Table 3-1. Available data at E.L. Smith WTP.

Description of Data Data Type Description of Data Data Type

Raw water particle Water Raw water colour (daily |Water
counts (2-15 pym) characteristics average) characteristics
Raw water particle Water Total hardness Water
counts (>2 ym) characteristics characteristics
Recarbonation influent |Water Total alkalini Water
particle counts (2-15 pm)|characteristics ty characteristics
Recarbonation influent |Water Maximum conductivity Water
particle counts (>2 pm) |characteristics i characteristics
Filters 1-12 effluent Performance . . Water

article counts (2-15 pm)|parameter Clarifier 3 influent pH characteristics
Filters 1-12 effluent Performance . Water
particle counts (>2 um) |[parameter Clarifier 3 effluent pH characteristics
Clarifier 3 effluent Water Recarbonation influent |Water
particle counts (2-15 pm)|characteristics pH characteristics
Clarifier 3 effluent Water Recarbonation effluent |Water

article counts (>2 pm) [characteristics pH characteristics
Reservoir influent Performance Filter influent pH Water
particle counts (2-15 ym)|parameter P characteristics
Reservoir influent Performance .
particle counts (>2 um) |parameter Alum dose Operational data
Raw water turbidity (daily|Water . .
high) characteristics Lime dose Operational data
Raw water turbidity Water . .
(bench test) characteristics Chlorine dose Operational data
Raw water turbidity Water .
(online) characteristics PAC dose Operational data
Recarbonation influent |Water . .
turbidity characteristics Ammonia dose Operational data
Filters 1-12 effluent Performance .
turbidity — (onstream) parameter Soda ash dose Operational data
Filters 1-12 effluent Performance . -
turbidity — (bench test) parameter Primary polymer dose Operational data
Clarifier 3 effluent Water .
turbidity characteristics Raw water flow Operational data
Reservoir influent Performance . .
turbidity parameter Filter 1-12 effluent flow |Operational data
Raw water temperature Water Noon air temperature Misceilaneous

characteristics

Raw water colour (daily |Water
 high) characteristics

In taking this approach, reservoir influent particle counts is a better measure for taking
into account the overall effectiveness of water treatment rather than each filter
individually. Moreover, it is the finished water quality that proceeds out into the
distribution system that is of greater importance than the effluent of each filter. In terms

of operations, changes in operations upstream generally are performed in reaction to
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overall finished water quality rather than individual filter performance, and this is another
reason for using reservoir influent particle counts rather than individual filter effluent

particle counts.

The following inputs were chosen to be included in the model: raw water turbidity (bench
test), raw water temperature, total hardness, total alkalinity, recarbonation effluent pH,
alum dose, lime dose, PAC dose, polymer dose, raw flow (total flow through the plant).
As discussed in section 2.4, all of these parameters have a significant impact on filtration
performance, and since all of these readings were available, these ten parameters were
chosen on this basis. The appendix section on pages 140-144 describes how they were

measured and the related protocols for measurement.

The other data were not included as inputs for several reasons. Filter media size and
depth are considered to be important factors in influencing filtration performance.
However, since these factors are fixed in an operational water treatment plant, they
cannot be changed nor controlled and therefore is not suitable to be included in a neural
network model. The type of coagulant and polymer is also not a significant factor since it
does not change during operation at E.L. Smith WTP, therefore they were not included as
inputs. However, this type of parameter would be included in WTPs that change
coagulants or polymers during the year. Ionic strength, particle size and size distribution
were not included as inputs because they are not measured. Maximum conductivity has
an influence on filtration performance, however the accuracy of the instrumentation

readings is questionable, thus it was not included as an input. As a measure of levels of
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particulate matter entering the plant, turbidity was chosen over particle counts. The main
reason for this is that at high levels of particulate matter, turbidity is a fairly accurate
measure. Particle counts are less accurate in this case in that the particle counters
themselves are limited in accuracy at high levels of particulate matter. Therefore, particle
counts was not included as an input. Clarifier 3 (C3) effluent turbidity could have been a
potential input rather than raw turbidity. However, preliminary model runs indicated
better model performance with raw turbidity rather than C3 effluent turbidity, therefore it
was decided to stay with raw turbidity. Little information regarding the impact of
chlorine dose and ammonia dose on filtration performance was encountered in the
literature, therefore they were not included as inputs. Raw colour, which is related to
organic matter concentration, was also not included as an input. Since PAC dose, which
impacts colour and organic matter concentration, is already included as an input, it would
be redundant to include colour as an input as well as PAC dose. Soda ash dose was not
included because it was rarely used during treatment, therefore it was unnecessary to
include it. Noon air temperature was not included since raw water temperature has a
direct impact on filtration performance rather than air temperature. Effluent flow from
filters 1-12 was not included as inputs since each individual filter was not being

modelled.

pH readings are available at various points in the treatment process, thus choosing
between the different sets of pH readings was not straightforward. As discussed in
section 2.4.2.3, pH impacts filtration performance by influencing the solubility of alum

for coagulation and by affecting the surface charge of particles. However, since all pH

61



readings that are available are post coagulation, the effect of pH on the particles
themselves should be more greatly considered. Furthermore, such effects on particle
surface charge are important because it will influence how the particle interacts with the
filter media grains. Therefore, this effect would more likely be represented by pH
readings nearer to filtration. With recarbonation for pH adjustment taking place, C3
influent and effluent pH and recarbonation influent pH is not as significant compared to
recarbonation effluent pH and filter influent pH. Since filtration follows recarbonation,
there should be little difference between the latter two pH readings. Some preliminary
ANN models were therefore trained using one or the other to determine the impact each
input had on prediction performance of the models. The result was that recarb-onation
effluent pH had a more significant positive impact in model prediction than filter influent

pH, therefore recarbonation effluent pH was retained as an input.

3.2.3 Time Scale Analysis

Another factor to be considered is determining for what time scale the models should be
developed. In other words, it should be considered if particle counts are to be predicted
by the minute, as an hourly average, or as a daily average since data are available in each
of these time scales. Developing a model to predict particle counts by the minute is
impractical and unnecessary. Since water quality does not change drastically by the
minute, a longer time scale is more relevant. The time scale up from minutes would be
hourly average particle counts. However, a problem with hourly predictions is with the
total retention time of water within the entire treatment process. The finished water that

is measured for particle counts over an hour is not going to be the same as the raw water
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that is measured for turbidity and other raw water characteristics over that same hour.
Thus, to compensate for this problem would require increasing the time scale, and daily
averaged readings could accomplish this. The main concern is if particle count readings
would be variable enough for ANN modelling to pick up the trends. In addition, it would
need to be checked if trends in variability in hourly averaged readings are visible in daily

averaged readings.

Figures 3-1 and 3-2 compare particle count readings by the minute, hourly averaged
particle counts, and daily average particle counts. In Figure 3-1, which compares
readings every minute versus the hourly average, it can be seen that the hourly average
follows the definite trend displayed by the minute readings. The main difference is that
there is more instrumentation noise associated with readings every minute. In Figure 3-2,
which compares hourly average and daily average, it can also be seen that the daily
average follows trends displayed by the hourly average. The main difference in this
graph is that peaks are not as high for the daily average as for the hourly average.
However, the daily average still demonstrates a fair amount of variability and therefore
provides a sufficient description of the water quality. Furthermore, the peaks and trends
that are observed in the daily average values are more likely to characterise the normal
behaviour of treatment operations rather than hourly average values, in which peaks are

more likely to be the result of upsets in the normal treatment process.
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Figure 3-1. Minute readings vs. hourly average filter effluent particle counts from April 15-17, 1998
for filter 5§ at E.L. Smith WTP.
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Figure 3-2. Hourly average vs. daily average reservoir influent particle counts from E.L. Smith WTP.

3.2.4 Data Characteristics

Table 3-2 lists some statistical information on each input and output that is used in model

development.
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Table 3-2. Statistics of input and output data to be used.

input Range Average | Std. Dev.
raw turbidity (NTU) 2 - 1967 46.1 147.0
temperature (°C) 0.1-249 7.6 8.0
hardness (mg/L) 111-184 157.7 12.2
alkalinity (mg/L) 102 - 149 126.4 7.1
alum dose (mg/L) 18 - 198 449 29.2
lime dose (mg/L) 38-93 57.6 10.9
PAC dose (mg/L) 0-158 7.0 22.8
polymer dose (mg/L) { 0.11-0.43 0.23 0.08
raw flow (ML/d) 81 -253 187.9 22.4
recarb. effluent pH 7.61-8.37 7.96 0.16
reservoir influent

particle counts 1.5-1153 12.3 11.6
(counts/mL)

As it can be seen, there is much variability in raw water quality throughout an entire year,
and in response, operational parameters can vary just as much. With raw water turbidity
varying between 2-1967 NTU and temperature varying between 0.1-24.9°C, it is clear
that variability is very high. These are not the sorts of conditions that are normally
encountered for water treatment in other regions, and therefore it is difficult to model
under such conditions. Finished water quality, however, tends to remain at a constant

level rarely exceeding 50 particle counts/mL.
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3.3 Methodology of Data Categorisation and Preparation

With the available data analysed and the inputs and output chosen, the next stage is to
prepare the data for model development. As previously mentioned, data patterns would
normally be divided into a training set, a testing set, and a production set followed by
model development. However, initial attempts at model development were unsuccessful,
therefore the data patterns needed to be further processed. As part of the processing, the
data patterns are to be categorised to group together similar patterns to deal with large
variations thereby assisting in model convergence and generalisation. This procedure is

outlined in this section.

A total of 410 data patterns were available starting from March 14, 1998 up to April 30,
1999. Data were categorised in two stages using a Kohonen network followed by a noise
analysis. An explanation of how the network performs the categorisation is given in
section 2.5.4, and it is used because it allows for classification based on multiple inputs as

opposed to graphical techniques that only allow for three inputs in three dimensions.

3.3.1 First Stage Categorisation

The first categorisation was based on raw water data inputs of raw turbidity, temperature,
total hardness, and total alkalinity, and the result was two categories of data patterns. Of
the 410 data patterns, 221 or 53.9% of the data patterns went into category 1, 138 or 33.7
% of the data patterns went into category 2, and 51 or 12.4% did not go strictly into either
category. Table 3-3 shows the values of each category, and it can be seen that main

differences between the categories are raw water turbidity and temperature.
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Table 3-3. Statistical values of input data in each category.

category 1 category 2
inputs range average std dev range average | std dev
raw turbidity
(NTU) 2-841 22.2 76.8 2-720 56.8 107.0
Efg')per awre lo1-95| 15 21 |9.1-249| 168 3.7
hardness
(mg/L) 126 - 184 161.3 12.2 140 - 181 153.6 8.0
alkalininty
(mg/L) 108 - 144 126.8 7.2 111-143| 1262 5.7

*calculated after placement of the non-specific data

Of the 51 data patterns that were not categorised by the Kohonen network, 44 patterns
could be placed in either category 1 or 2, while the remaining 7 were extreme values that
could not go into either category. In Figure 3-3 below, category 1 data are shown as
circles, category 2 data are shown as squares, extreme values are shown as triangles, and
patterns which can be placed in either category are shown as an X. The distinction

between the two categories is clearly illustrated to be based on temperature.

jbitegow ldata = _Cate—g;BFy-E Ez-ﬁa ~ Extreme Values “x Cat 1or Qgt 2

2000
1800
1600
1400
=)
g 1200
2 1000
h=4
£€ 800 ®
- .
- .
600 .
a0 g "
L] L
200 " . x “'- ". -
o X% e X pux X G I L
0 5 10 15 20 25 30

Temperature (°C)

Figure 3-3. Distinction between category 1 and 2 based on turbidity and temperature.
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The 44 data patterns that could go into either category were placed according to
whichever category the pattern was closest to as determined by the Kohonen network.
As a result, 19 of these patterns were placed in category 1 for a total of 240 patterns in
that category, and 25 were placed in category 2 for a total of 163 patterns in that

category. This resulted in the definition of the categories shown in Figure 3-4.

e Category 1 data = Category 2 data Extreme Values .

2000
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800 *

Turbldity (NTU)
8

Temperature (°C)

Figure 3-4. Distinction between category 1 and 2 based on turbidity and temperature after manual
placement.

Although there is slight overlap between the two categories, the boundaries are still fairly

well defined.

The remaining seven extreme data patterns include:

Date Description

July 1-2, 1998 Extremely high raw turbidity
values

April 12-16, 1999 Low alkalinity and hardness
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These patterns have input values beyond the domain of the two defined categories.

Figure 3-5 graphically shows how far out their values are compared to the categories

themselves.
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Figure 3-5. Comparison of extreme data points to category 1 and 2 based on alkalinity and hardness.

Table 3-4 shows the input values of the extremities, and it clearly shows that they are

indeed extreme cases when compared to the average values of each category.

Table 3-4. Values of extreme cases compared to category average.

Date raw turbidity [temperature [hardness }alkalininty
(NTU) (°C) (mgiL) (mg/L)
01-Jul-88 L1967 16 158
02-Jul-98 —13067 7 16.7 143
12-Apr-99 207 0.6 212001 ) s
13-Apr-99 304 0.6 e b & B2
14-Apr-99 187 0.9 w4435
15-Apr-99 187 0.9 - : ;
16-Apr-99 162 1 7119
category 1 avg. 222 1.5 161.3
category 2 avg. 56.8 16.8 153.6
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Since these patterns do not represent the typical scenarios encountered in water treatment,
these patterns would hinder model development. Therefore, these patterns were excluded
from the data set at this point in model development. However, these patterns may be

incorporated into the model after further development.

3.3.2 Second Stage Categorisation

The second stage categorisation was based on the operational parameters of alum dosage,
lime dosage, PAC dosage, polymer dosage, raw flow, and the water characteristic
parameter of recarbonation effluent pH. This categorisation was done to each of the two
categories that resulted from first stage categorisation, and this further processing was
done to further assist in preparing data for data set extraction, which will be discussed in

section 3.3.4.

3.3.2.1 Category 1

Out of 240 patterns, 75 or 31.3% went into sub-category 1, 75 or 31.3% went into sub-
category 2, and 90 or 37.5% were not placed in either sub-category. The reasons for non-
placement are the same as in the first stage. Either it was unclear as to which sub-
category the pattern solely belonged to in that it could go into either sub-category, or the

pattern did not fit into either sub-category at all.

72 of the 90 uncategorised data were manually placed into one or the other sub-category
based on whichever sub-category the pattern was closest to as calculated by the Kohonen

network. 47 patterns went to sub-category 1 for a total of 122 patterns, and 25 patterns

70



went into sub-category 2 for a total of 100 patterns. Table 3-5 shows the values of the

inputs of each sub-category.

Table 3-5. Statistical values of input data in each sub-category of category 1.

sub-category 1 sub-category 2
Inputs range | average | std. dev. | range [ average | std. dev.
(arf:gl“l_‘)mse 18-77 | 347 105 | 31-39 | 343 1.3
i‘r’::/f)"se 43-68 | 53.0 64 | s52-77 | 627 5.4
z:;Ld)“e 0-446 | 76 122 | 0-32 0.2 0.7
E’r‘;g/’l'_‘)er dose 19.13-0.36| 0.23 0.04 [0.26-043 0.33 0.04
Zi‘n";’_/f('j‘;w 149-222| 190.4 16.4 |156-199| 169.9 9.9
pH 7.66-8.15 7.93 0.12 |7.61-8.05 7.88 0.12

The main differences seem to be a lower average lime dose, higher PAC dose, and higher
raw flow in sub-category 1 than in sub-category 2. As well, alum dose in sub-category 1
is more scattered with a wider range than in sub-category 2, which is shown in Figure 3-
6. Sub-category 1 is shown as circles, sub-category 2 is shown as squares, and the
extreme cases are shown as triangles. Since only two dimensions are shown in the graph,
it does not provide a complete illustration of how each sub-category is defined in n-
dimensional space seeing as there are six inputs in total. However, the graph does show
why the extreme values do not fit into either sub-category. The one exception that
appears in the midst of sub-category 2 is an extreme value because of its low raw flow
and high pH. Table 3-6 lists all 18 extreme cases with the extreme values highlighted,
and when it is compared to the domain of each sub-category, it is clear that they do not fit

into either category.
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Figure 3-6. Comparison of extreme values to sub-category 1 and 2 of category 1 based on PAC dose
and alum dose.

Table 3-6. Values of extreme cases compared to sub-category average.

Date alum dose | lime dose { PAC dose | polymer raw flow pH
{mg/L) (mg/L) (mg/L) |dose (mg/L)| (ML/d)

24-Feb-99 33 66 0 0.37 CC 87 8.33
05-Apr-99 61 63 57 - . 0.23 165 8.02
06-Apr-99 091 - 75 134.6 - 0.33 159 7.94
07-Apr-99 L I8 75 111.7 .. 0.34 163 8.02
08-Apr-99 G- 827 68 - 118.8 .- 0.34 170 8.05
09-Apr-99 103 68 - 138 - - 0.3 172 8.06
10-Apr-99 - o138 70 . 149.7 - 0.14 171 8.02
11-Apr-99 =13 e 70 127.4 .- 0.11 169 7.98
17-Apr-99 R b LR 71 69 -+ 0.21 186 7.87
18-Apr-99 R -k ] O £ - 59.4 0.2 191 7.92
19-Apr-99 188 . 83 ]:- 568" 0.19 190 8.01
20-Apr-99  }i# 1610} o83 0. - 48.4 < 0.18 190 8.15
21-Apr-99 s 840 0] - 43 0.27 189 8.19
22-Apr-99 b 88 37.4 0.2 190 8.05
23-Apr-99 - 81 - 23.7 0.14 181 7.91
24-Apr-99 92 R A 22.1 0.14 181 7.64
29-Apr-99 65 9.5 042020 190 7.87
30-Apr-99 .89 68 7.4 - 0.12:00 190 7.75
sub-cat 1 avg. 34.7 53.0 7.6 0.23 190.4 7.93
sub-cat 2 avg. 34.3 62.7 0.2 0.33 169.9 7.88
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These values are not typical conditions encountered in water treatment within either sub-
category, therefore they are excluded from further model development at this point to
prevent hindrance of model development. They may, however, be used and incorporated

into a model at a later point.

3.3.2.2 Category 2

Out of 163 patterns, 41 or 25.2% went into sub-category 1 and 54 or 33.1% went into
sub-category 2. 68 or 41.7% were left uncategorised either because they could fit in both

sub-categories or because they could not fit into either sub-category.

58 of the 68 uncategorised data patterns were manually placed into either sub-category
depending on which sub-category was closest as calculated by the Kohonen network. 37
patterns were placed in sub-category 1 for a total of 78 patterns in that sub-category, and
21 patterns were placed in sub-category 2 for a total of 75 patterns. Table 3-7 shows the

input values of each sub-category.

Table 3-7. Statistical values of input data in each sub-category of category 2.

sub-category 1 sub-category 2
inputs range average | std. dev. range average | std. dev.
alum dose
(mg/L) 26 -124 51.7 248 23-80 354 14.3
lime dose
(mg/L) 45 -90 60.4 96 38-72 47.0 7.1
PAC dose
(ma/L) 0-36 0.07 0.43 0-0 0.00 0.00
polymer dose _

(mg/L) 0.12-0.18 0.15 0.02 10.16-0.22] 0.19 0.02
raw flow

(ML/d) 100 - 235 1956.8 18.6 170 - 253 206.6 24.8
pH 7.73-8.20 7.95 0.10 |}7.66-8.35 8.10 0.21
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The most significant differences between the two sub-categories are that alum dose and

lime dose is higher in sub-category 1 than in sub-category 2.

In Figure 3-7 showing the graph of alum dose vs. lime dose, sub-category 1 patterns are
shown as circles, sub-category 2 patterns are shown as squares, and extreme cases are
shown as triangles. Since this graph only shows two dimensions, it does not show a
complete illustration defining each sub-category. However, even though there is some
overlap between the sub-categories, which is due to the fact that the other four inputs are
not represented in this graph, the extreme cases are clearly shown to stand out from the
defined sub-categories. The four extreme cases that appear to be in the domain of the
sub-categories are defined as extreme in that the raw flow and pH are beyond the domain
in one case, and PAC dose and pH are beyond the sub-category domains in the other

three cases. This is more clearly shown in Table 3-8 with the extreme input values

highlighted.
_eSubCali _:SunCatz  Estreme Values
100
%0 . .
..
80
%’) . (X} . °
E . e .t
Q L3
L)
[=]
S w -
E
-
50
40
30

s} 20 40 60 80 100 120 140 160 130 200
Alum Dose (mg/L)

Figure 3-7. Comparison of extreme values to sub-category 1 and 2 of category 2 based on lime dose
and alum dose.
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Table 3-8. Values of extreme cases compared to sub-category average.

Date alumdose | lime dose | PAC dose | polymer raw flow pH
(mg/L) {mg/L) (mg/L) |dose (mg/L)] (ML/d)
03-Jul-98 i%ﬁiﬂ "‘:2"5% sk Bl 0 0.13 170 8.19
04-Jul-98 : 80 0 0.12 170 8.19
07-Jul-98 0 0.16 172 8.19
08-Jul-98 0 0.16 179 8.20
09-Jul-98 0 0.16 179 8.25
10-Jul-98 T3y 0 0.16 179 8.19
16-Sep-98 25 40 0 0.18 A - } EEE '-‘F - 8.37:7
25-Apr-99 85 75 @2 R 0.14 190 ST 885
26-Apr-99 85 73 L 20.3 i 0.14 189 £ h
27-Apr-99 82 75 179 7 0.14 190 e ":7‘.62‘?.;.;;"
sub—cat 1 avg. 51.7 60.4 0.07 0.15 195.8 7.85
sub-cat 2 avg. 35.4 47.0 0.00 0.19 206.6 8.10

Since these 10 patterns are extreme cases and are not typically encountered, they were
excluded from the data set from further model development at this point. However, they
may be incorporated into the model at a later point after models have been developed

further.

3.3.3 Noise Analysis

As discussed in section 3.1, noise patterns are a problem that hinders model development.
Noise is defined as data patterns with similar input values but vastly different output
values. This would cause model predictions to be less accurate because there is conflict
with the input-output cause-effect relationships the model is trying to capture. Therefore,

with the removal of such patterns, convergence and generalisation should improve.

This analysis was performed on each sub-category separately and done in the following
manner. A Kohonen network was used to categorise the data set into 20 different

categories based on the 10 input parameters of raw turbidity, temperature, hardness,
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alkalinity, alum dose, lime dose, PAC dose, polymer dose, raw flow, and pH. This
resulted in approximately 2-10 patterns in each category. The values of the input
parameters of the patterns within a category should theoretically be quite similar. To
determine if a pattern is considered to be noise, the value of the output parameter,
reservoir influent particle count, was compared between the patterns within a category.
The normalised value of the output was used to assist in evaluation with an explanation
of its calculation given in section 3.3.4. If a data pattern had a significantly different
value for its output parameter than the other patterns, then it was considered to be noise
and is removed from the data set. All noise patterns were set aside to later be
incorporated into a model depending on whether or not the data had an adverse effect on

model predictions. Table 3-9 shows the total number of noise patterns that were removed

from each category data set.

Table 3-9. Number of noise patterns removed from the category data sets.

Number of I\_Jumber of % of total
Category noise pattemns
total patterns removed
removed
cat 1 sub-cat 1 122 11 9.0%
cat 1 sub-cat 2 100 12 12.0%
cat 2 sub-cat 1 78 8 10.3%
cat 2 sub-cat 2 75 8 10.7%

sub-cat 1 data set. Patterns removed are highlighted in grey.
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3.3.4 Data Set Extraction Preparation

Before models are to be trained, the data set of each sub-category was to be extracted into
a training set, a testing set, and a production set. The training set is the set of data that the
model is trained with, and it is tested on the testing set during training. The production
set is data that is not presented to the model during training. Instead, it is used on the
model after training is complete to determine the accuracy and robustness of the model.
Variability of the data within each sub-category data set should no longer be too
extensive as a result of categorisation. However, to ensure that distribution of patterns
was even between each set, preparation of the data set was required. Essentially, the n-
dimensional distance of each data pattern was calculated relative to the mean of the data
set, and each pattern was subsequently ranked from furthest distance to the mean to the
closest distance to the mean. Finally, data were extracted in that every third pattern was

placed in the testing set and every fifth pattern was placed in the production set.

N-dimensional distance between two points is calculated using the following formula:

DABz\/(XA-XB)z-*'(YA_YB)2+"‘+(ZA _ZB)2 Q)

where, Dag is the n-dimensional distance between pattern A and B,

X, Y,..., Z are values of each input for either pattern A or B.

Before the n-dimensional distance of a data pattern is calculated, the data set needs to be
normalised, which scales the range of all input values between 0 and 1. The purpose of

this is to ensure that each input value has an equal contribution or impact on determining
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the n-dimensional distance. Therefore, a significant change in one input will not be
masked by changes in other inputs. Normalisation of an input value is calculated in the

following way:

_ (XA _Xmin (8)

X =
norm(A) (Xmax _ X"u-n )

where, Xnom(a) is the normalized value of X4
Xa is the actual value of input X of pattern A
Xmin 1s the minimum value of input X in the data set

Xmax 1s the maximum value of input X in the data set.

Once this was calculated for each input value in each sub-category data set, the n-
dimensional distance relative to the mean of the data set was calculated for each pattern.
The next step was to rank each pattern. In order to do that, the z-score of each pattern

was calculated utilising the n-dimensional distance in the following way:

A ')
Z reA norm(A) norm(avg) (9)
L norm(std .dev.)
where, ZSCOI’CA is the Z-score of pattern A
P

Duorma) is the normalized n-dimensional distance of pattern A
Drommeavg) is the average normalized n-dimensional distance of the
data set

Drorm(std.dev.y 1S the standard deviation of the data set of normalized
n-dimensional distances.
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Once ranked and listed in descending order, every third pattern was placed in the testing
set, every fifth pattern was placed in the production set, and the rest was placed in the

training set.
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3.4 Model Development and Optimisation

With the data sets now prepared, model development is the next step. Using the software
NeuroShell 2 version 4.0, models were set up and trained. Training criteria were kept
constant in all modelling. Pattern selection was set at random, weights were updated by
momentum, and training was stopped either if the number of training epochs reached
10000 or if the average error for the test set reached 0.002. Model performance was
measured by the R? value, the coefficient of multiple determination, and by the mean
squared error, both of which were calculated by the software. The appendix section on

pages 145-146 describes how these were calculated.

3.4.1 Architecture

The architecture of a neural network is the overall structure of the network, which
includes the number of hidden layers and the types of connections between the layers.
Backpropagation networks were the type of networks to be used, however there are four
types of backpropagation networks to choose from with three variations of each for a
total of twelve choices in the NeuroShell 2 software. Standard net is the first type in
which each layer is connected only to the previous layer. Variations include three layers
(one hidden layer), four layers (two hidden layers), and five layers (three hidden layers).
The next type of backpropagation network is the Jordan-Elman net. These are recurrent
networks with dampened feedback. Variations include input layer feedback, hidden layer
feedback, and output layer feedback. The third type of backpropagation network is the
Ward net, which has multiple hidden slabs with different activation functions. Variations

include two hidden slabs with different activation functions, two hidden slabs with
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different activation functions and a jump connection, and three hidden slabs with
different activation functions. The final type of backpropagation network is the jump
connection net where each layer is connected to every previous layer. Variations here
include three, four, or five layers. Each type of network was tried and tested with the

results presented in Table 3-10.

Table 3-10. Model performance results testing various network architectures.

Type of R-squared value Mean Squared Error
Network Production Test Training Entire Production Test Training Entire

0%

T e s

oo

5 675
YRR

2
gk

4-layer standard net 0.64 0.62 0.45 14.8 10.3 21.2 16.9
3-layer standard net 0.63 0.58 0.41 0.50 15.6 11.3 23.0 18.2
recurrent net, input layer

feedback 0.55 0.60 0.47 0.50 18.9 10.7 206 18.3
recurrent net, hidden layer|

feedback 0.54 0.56 0.47 0.51 19.3 11.8 20.6 17.9
recurrent net, output layer 0.58 0.57 0.46

feedback

ward net, 3 hidden slabs 0.64 0.60 0.40

ward net, 2 hidden slabs,

with jump connection 0.56 0.59 0.50 0.54 18.1 11.0 19.2 16.6
:—el?yerjump connection 0.56 0.60 0.46 0.52 18.1 10.7 21.1 17.5
- layer jump connection 0.48 0.52 0.50 0.51 216 13.0 196 18.0
5-layer jump connection 0.51 0.56 0.48 0.51 202 119 202 17.8

Default settings were used in running these models, and the number of hidden neurons
were set to be twice the number of input neurons in each hidden layer. The results from
the table are from the category 1, sub-cat 1 model. It can be seen that the two best results
are the 5-layer standard net and the ward niet with two hidden slabs (no jump connection).
Since the standard net is a common and virtually universal architecture for most problem

domains, it was decided to use the 5-layer standard net exclusively.
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3.4.2 Modelling Parameters

After determining the best architecture, other parameters can be examined and optimised.
These parameters include the scale function, activation function, number of hidden
neurons, learning rate, momentum, and initial weights. The category 1, sub-cat 1 model

was used in examining each parameter.

One of the first parameters tested was the number of hidden neurons. With three layers
of hidden neurons, many combinations of numbers are available, thus multiple arbitrary

combinations were tested. Table 3-11 shows what was tested and the results.

Table 3-11. Model performance results testing various combinations of numbers of hidden neurons.

S-layer bp neuron R-squared value Mean Squared Error
configuration Production Test Training Entire Production Test Training Entire
10-10-10-10-1 0.66 0.65 0.46 0.55 14.2 9.5 21.0 16.4

~5£10:20-20-20-1 5 § <1 08751 %07.0.68 - |--iS0.47 | 50 0.68 D) 13,8 | i 9.3 N 208 = fisi18.0 o -
10-30-30-30-1 0.65 0.62 0.45 0.53 14.7 10.3 21.3 16.9
10-20-10-10-1 0.67 0.63 0.45 0.54 13.5 10.0 21.2 16.6
10-10-20-10-1 0.65 0.64 0.46 0.55 14.4 9.6 20.8 16.4
10-10-10-20-1 0.64 0.64 0.45 0.54 15.0 9.7 212 16.7
10-20-20-10-1 0.65 0.62 0.46 0.54 14.5 10.2 20.9 16.6
10-10-20-20-1 0.70 0.60 0.40 0.51 12.5 10.8 23.3 17.8
10-15-15-15-1 0.67 0.65 0.45 0.55 13.7 9.5 21.2 16.5
10-25-25-25-1 0.61 0.59 0.45 0.52 16.3 11.0 21.2 17.4

Default settings were used in each model. Out of the combinations that were tested, the
configuration of twenty neurons in each hidden layer had the best overall results when

tested using the production set, training set, testing set and the entire data set.

The next parameter tested and examined was the activation function of the hidden layers
with eight different activation functions available to choose from in NeuroShell 2. These
include logistic, symmetric logistic, linear, tanh, tanhl5, Gaussian, Gaussian

complement, and sine. With a 5-layer standard net being used, there are three hidden
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layers whose activation function can be changed. Default settings for initial weights,
momentum, learning rate and scaling function was used. After some extensive testing
with various combinations, it was found that the best statistical results were obtained with
a logistic function set for the first hidden layer, a Gaussian function for the second hidden
layer, and a tanh15 function for the third hidden layer compared to the default setting of
logistic function for each of the three hidden layers. This is shown in Table 3-12.

However, problems arose with the actual predictions of the model.

Table 3-12. Best model performance results from the testing of various combinations of activation

functions.
Activation R-squared value Mean Squared Error
function Production Test Traininﬁg Entire Production Test Training Entire
logistic 0.68 0.61 0.45 0.54 13.8 9.5 18.4 149
Gaussian /
tanh15 0.76 0.63 0.47 0.59 9.9 9.3 18.3 14.2

As can be seen in Figure 3-8 below, which is production set data, network predictions are
fixated around two points: 18 particle counts/mL and 9 particle counts/mL. This is even
more apparent when running the entire data through the model as shown in Figure 3-9. In
contrast, this behaviour was not observed in the model using the logistic function solely
as the activation function, and this is demonstrated in Figure 3-10 using production set

data and Figure 3-11 using the entire data set.
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Figure 3-8. Actual vs. model predicted particle counts using a Gaussian and tanh 15 activation
function and production set data.
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Figure 3-9. Actual vs. model predicted particle counts using a Gaussian and tanh 15 activation
function and the entire cat 1, sub-cat Idata set.
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Figure 3-10. Actual vs. model predicted particle counts using the logistic activation function and
production set data.
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The main reason for these results is the different mapping characteristics of each
activation function. The Gaussian function maps values between 0 and 1, therefore the

output of that function will always be positive.

values between 0 and 1 while negative values are mapped between —1 and 0. Since these
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two activation functions are quite different, using them in subsequent order is what is
causing the network predictions to fixate around the two values illustrated in Figures 3-8
and 3-9. Using one consistent activation function such as the logistic function does not
result in this problem as illustrated in Figures 3-10 and 3-11. Therefore, it was decided to
keep using the logistic function, which is a commonly used in many neural network

applications, as the activation function in all models in each hidden layer.

Learning rate, momentum, and initial weights of the links between each layer are other
factors that can be modified. Each of the four links was changed individually at first.
Initial weights were set at 0.3 or 0.7. Learning rate and momentum were set at
combinations of 0.1 or 0.7 as well as setting both at only 0.4. Two, three, and four links
were then changed at a time based on the best results of changing each link by itself.
Table 3-13 shows the statistical results of the optimal combination compared to the
default setting. As it turned out, the best overall result was obtained by setting link 3
with a learning rate and momentum of 0.4 and the initial weight at 0.7 while keeping the
other links at default settings. All the results are shown in the appendix on pages 146-

149.

Table 3-13. Best model performance result after testing various combinations of learning rate,
momentum, and initial weights.

R-squared value Mean Squared Error

Production Test Training Entire  { Production Test Training Entire
all links (default)
learning rate = 0.1, 068 0.61 0.45 0.54 13.8 95 18.4 14.9
momentum = 0.1,
initial wt = 0.3
link 3
learning rate = 0.4,
momentum = 0.4, 0.77 0.64 0.47 0.58 9.8 9.2 18.1 14.1
inittal wt = 0.7
links 1, 2, 4 = default
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The final parameter to investigate is the scaling function for which there are seven
options available in NeuroShell 2. These include linear functions scaled from zero to one
or minus one to one. Each of these ranges can be set with closed brackets, [], or open
brackets, <<>>. The closed brackets mean that later data values beyond a given range are
scaled to 0 or 1 or -1, whereas the open brackets would allow data beyond a given range
to be scaled beyond 0, 1, or —1. The remaining options for scaling functions include a
logistic function, a tanh function, both of which are non-linear, or no scaling function at
all. Each scaling function was tested and it was found that there was no significant
difference in model performance between each function as shown in Table 3-14. Using
no scaling function was the only option that resulted in poor performance. Therefore, it
was decided to use a linear function that scaled <<-1,1>>, which provides a larger range
than 0,1, and the open brackets allow for future data that may go beyond the defined

range to be scaled more accurately and relevantly.

Table 3-14. Model performance results of testing various scale functions.

funitlc'aol: for R-squared value Mean Squared Error

slab 1 Production Test Training Entire Production Test Training Entire
linear [-1,1] 0.77 0.64 0.47 0.58 9.8 9.2 18.1 14.1
linear <-1,1> 0.77 0.64 0.47 0.58 9.8 9.2 18.1 14.1
linear [0,1] 0.80 0.63 0.45 0.57 8.5 9.6 18.7 14.3
linear <Q,1> 0.80 0.63 0.45 0.57 8.5 9.6 18.7 14.3
logistic 0.81 0.60 0.48 0.59 8.2 10.3 17.4 13.7
tanh 0.78 0.55 0.47 0.56 9.06 11.5 18.2 147
none -0.07 0.02 -0.03 -0.02 44.6 25.1 352 33.8
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3.4.3 Model Amalgamation

With parameters set at optimal settings, the next step is to combine the resulting models
from each sub-category. The sub-category models within category 1 were to be
combined as well as the sub-category models within category 2. Therefore, the data set
for each model to be combined was made into one data set. Then, extraction into the
training, testing, and production set was done with every third pattern placed in the
testing set and every fifth pattern placed in the production set with the rest going into the
training set. A model was then developed using this combined data set and using the
same settings as before for the various modelling parameters. Tables 3-15 and 3-16 show
model performance results of the models for category 1 and 2 using the different data sets
to test performance compared to the results of combining the sub-category models. As
shown in Table 3-15, combining the category 1 sub-category models resulted in a model
that performed more poorly than the separate sub-category models. Therefore, it was
decided to keep them separate as the category 1, sub-cat 1 (C1S1) model and category 1,
sub-cat 2 (C1S2) model. On the other hand, Table 3-16 shows that the combined model
outperforms the category 2, sub-cat 1 (C2S1) model and is comparable to the category 2,
sub-cat 2 (C2S2) model. Therefore, it was decided to keep the two sub-category models

as one combined model, the category 2 model (C2).
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combined model.

Table 3-15. Model performance results of the category 1 sub-category models compared to the

C1S1 C182 combined
model model model
R squared production set 0.80 0.51 0.33
test set 0.59 0.18 0.09
training set 0.40 0.28 0.26
entire set 0.51 0.29 0.22
mean production set 8.7 11.0 23.4
squared test set 10.5 24.5 42.2
error training set 229 372 27.2
entire set 17.5 29.0 30.5

combined model.

Table 3-16. Model performance results of the category 2 sub-category models compared to the

C251 C252 combined
model model model
R squared production set 0.29 0.54 0.42
test set 0.1 0.05 0.24
training set 0.34 0.70 0.78
entire set 0.22 0.38 0.4
mean production set 7.2 7.0 5.8
squared test set 41.5 36.7 24.5
error training set 7.3 3.6 3.4
entire set 16.6 12.7 9.8

At this point, data that were set aside during categorisation and noise analysis were
inserted into the relevant data set and the model was retrained. If the insertion of these
additional patterns did not affect model performance too adversely, they were kept in the
model. R? values and mean squared error were evaluated and compared using not only
the production set, but also the training, testing and entire set for evaluation just as for
evaluating the combined models as listed in Tables 3-15 and 3-16. If there was
significant overall deterioration in model performance, the patterns were removed.
Tables 3-17, 3-18, and 3-19 list performance results of the C1S1, C1S2, and C2 models

when noise patterns and extreme case patterns were included in the model data set. As it

can be seen, performance generally deteriorated in most cases. However, the case in
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which four extreme patterns were included in the C1S1 model data set did not show
significantly negative impacts on model performance. In fact, convergence improved
slightly as shown by the slightly higher R? and lower mean squared error values when
using the training and testing set to test model performance. Therefore, these four data

patterns were kept as part of the C1S1 model data set.

Table 3-17. C1S1 model performance results with the inclusion of noise patterns and extreme case

patterns.
6 noise 11 noise 8 | 10 extreme| 17 extreme
Cc181 e,
model patterns patterns patterns patterns
added added added added
R squared production set 0.80 0.50 0.53 0.60 0.62
test set 0.59 0.43 0.45 0.61 0.63
training set 0.40 0.39 0.34 0.40 0.45
entire set 0.51 0.42 0.39 0.48 0.53
mean production set 8.7 225 20.6 17.0 16.6
squared test set 10.5 15.8 15.0 10.6 11.6
error training set 229 271 35.5 226 20.3
entire set 17.5 23.5 28.0 18.6 17.4

Table 3-18. C1S2 model performance results with the inclusion of noise patterns and extreme case

patterns.
6 noise 12 noise | 6 extreme
c182
model patterns patterns patterns
added added added
R squared production set 0.51 0.30 -0.39 0.13
test set 0.18 0.35 0.35 0.07
training set 0.28 0.52 0.64 0.11
entire set 0.28 0.38 0.44 0.10
mean production set 11.0 23.3 106.1 28.5
squared test set 24.5 41.1 258.0 57.7
error training set 37.2 12.4 141.1 23.3
entire set 29.0 25.2 167.7 35.9

103



Table 3-19. C2 model performance results with the inclusion of noise patterns and extreme case

patterns.
8 noise 16 noise | 2 extreme | 10 extreme
C2 model | patterns patterns pattemns patterns
added added added added
R squared production set 0.42 0.17 -0.04 -0.10 0.13
test set 0.24 0.02 0.00 0.00 0.28
training set 0.78 0.22 0.00 -0.03 0.71
entire set 0.49 0.15 0.00 -0.02 0.46
mean production set 58 11.3 214 10.9 9.0
squared test set 245 34.2 39.1 32.4 21.9
error training set 3.4 20.2 428 16.0 45
entire set 9.8 22.6 38.1 19.7 10.3
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4.0 Results

At the end of model development and optimisation, three models were produced; models
for sub-category 1 and 2 of category 1 (C1S1 and C1S2) and a model for category 2 (C2).
Section 4.1 presents performance results of these models while examples of predictions
of each model as a result of varying different input values are presented in section 4.2. In
addition, the significance of the prediction results will also be discussed. Performance
was measured by the R? value, mean squared error, and mean and maximum absolute
error. The appendix on pages 145-146 describes each parameter and how it was

calculated by the software.

4.1 Model Performance Results

Table 4-1 shows the statistics of the data set used for the C1S1 model, which contains
115 patterns in total. The vast majority of patterns come from the months of October,
November, March, and April corresponding with fall and spring. This is also reflected in
the observations of the average raw turbidity and temperature being slightly higher than
the average for the data set of the C1S2 model shown in Table 4.3. PAC dose is also
significantly higher. Therefore, the CI1S1 model will be referred to as the spring/fall

model.

The spring/fall model is a 5-layer backpropagation network with twenty hidden neurons
in each hidden layer, ten input neurons, and one output neuron. A linear scale function
that scales <<-1,1>> as explained in section 3.4.2 was used along with a logistic

activation function. Each link between each layer was set with a learning rate of 0.1, a
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momentum of 0.1, and an initial weight of 0.3, except for link 3, which links slab 3 and 4,

where learning rate is set to 0.4, momentum to 0.4 and initial weight to 0.7.

Table 4-1. Spring/fall (C1S1) data set characteristics.

Mean Range Std. Dev.
Raw Turbidity
NTU) 14.6 2-172 29.3
Temperature (°C) 2.3 0.1-95 26

Total Hardness 156.4 134 - 176 8.7

(mg/L)

Z:;'L;"ka"““y 1248 | 110-138 | 6.1
Alum Dose (mg/lL)|]  36.6 18-117 | 154
Lime Dose (mg/L) 53.8 43 -81 74
PAC dose (mg/L) 7.9 0-446 125
z:g‘se' Dose 023 |o012-036| o0.04

Raw Flow (ML/d) 190.4 149 - 222 16.3

pH 7.93 7.64 -8.15 0.13
Reservoir Influent

Particle Counts 13.8 1.5-279 6.0
{counts/mL)

Table 4-2. Spring/fall (C1S1) model performance results.

R” 0.79

Mean Squared Error 8.9

Mean Absolute Error 2.3 counts/mL
Maximum Absolute Error | 6.7 counts/mL
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Figure 4-1. Spring/fall (C1S1) model predictions vs. actual particle count data.

Table 4-2 shows the statistical results of the spring/fall model performance based on the
production set. The R? value is quite good and errors are quite low. Figure 4-1 compares
model predictions to actual particle count data, which are from the production set. As

can be seen, trends in the data tend to be followed well by the model.

88 data patterns were used as the data set for the C1S2 model. Table 4-3 shows the
statistics of this data set. The majority of patterns come from the months of December,
January, and February, which corresponds with winter, and this is associated with
consistently low raw turbidity and low temperatures. Therefore, the C1S2 model will be

referred to as the winter model from this point onward.
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Table 4-3. Winter (C1S2) data set characteristics.

The winter model is a 5-layer backpropagation network with twenty hidden neurons in
each of the three hidden layers, ten input neurons, and one output neuron. A logistic
activation function was used for each hidden layer, and a linear scale function in the input
layer that scales <<-1,1>> was also used. All links between each layer were set with a

learning rate of 0.1, a momentum of 0.1, and an initial weight of 0.3.

Mean Range Std. Dev.

Raw Turbidity

NTU) 2.6 20-50 0.8
Temperature (°C) 0.53 05-0.6 0.05
Total Hardness
(mgrL) 171.0 156 - 184 7.3
Total Alkalinity

(mgiL) 131.3 119-144 5.0
Alum Dose (mg/L) 343 31-39 1.2
Lime Dose (mg/L) 62.6 52-71 5.1
PAC dose (mg/L) 0.04 0-2.40 0.28
Polymer Dose 033 |026-043| 004
(mg/L)
Raw Flow (ML/d) 1704 156 - 199 10.0
pH 7.89 7.62-8.05 0.11
Reservoir Influent
Particle Counts 11.8 2.2-40.0 6.4
(counts/mL)

Table 4-4. Winter (C1S2) model performance results.

R2

0.51

Mean Squared Error

11.0

Mean Absolute Error

2.8 counts/mL

Maximum Absolute Error

6.9 counts/mL
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Figure 4-2. Winter (C1S2) model predictions vs. actual particle count data.

Table 4-4 shows the statistical results of the winter model performance based on the
production data set. The R? value is somewhat low, but the errors are quite low. Figure
4-2 compares model predictions to actual particle count data from the production set.
Although peaks in the data were missed in some cases, the general trends in the data still

tend to be followed by the model.

Statistical characteristics of the data set of 137 patterns used for the C2 model is shown in
Table 4-5. Data patterns generally come from between May and September, which
corresponds with summer weather. The main difference in the data set compared to
category 1 is that average temperature and raw turbidity are higher in category 2 than in
category 1. In addition, the range of raw turbidity encountered in category 2 is higher
than the range of the data sets in category 1. Therefore, the C2 model will be referred to

as the summer model from this point onward.
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Table 4-5. Summer (C2) data set characteristics.
Mean Range Std. Dev.

51.1 2-720 98.7

Raw Turbidity
(NTL)

Temperature (°C) 17.1 9.1-246 3.6

Total Hardness

(mgL) 154.3 140 - 181 7.8
Total Alkalinity

(malL) 126.3 113-143 5.8
Alum Dose (mg/L) 45.0 23-124 22.5
Lime Dose (mg/L) 544 38-90 11.0
Polymer Dose

(mg/L) 0.17 0.12-0.22 0.02
Raw Flow (ML/d) 200.5 100 -253 226
pH 8.02 7.66 -8.35 0.18
Reservoir Infiuent

Particle Counts 7.8 25-263 4.4
(counts/mL)

The summer model is a S5-layer backpropagation network with eighteen hidden neurons in
each of the three hidden layers and a logistic function as the activation function for each
hidden layer. The scale function in the input layer is a linear function that scales <<-
1,1>>, and links between each layer was set with a learning rate of 0.1, a momentum of
0.1 and an initial weight of 0.3. The summer model also differs from the spring/fall and
winter models in that there are nine inputs in the summer model compared to ten in the
other two models. This is because PAC dose was not included as an input. Only two
patterns out of the 137 in total contained a value of PAC other than 0 mg/L, therefore it
was decided not to include this parameter as an input. The output parameter of reservoir
influent particle counts remains the same, but eighteen hidden neurons were used instead
of twenty to follow an arbitrary rule of two times the number of input neurons for each

hidden layer used in the spring/fall and winter models.

110



Table 4-6. Summer (C2) model performance results.

R? 0.42

Mean Squared Error 5.8

Mean Absolute Error 2.0 counts/mL
Maximum Absolute Error 5.4 counts/mL

—e—Actual « Predicted |
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Figure 4-3. Summer (C2) model predictions vs. actual particle count data.

Table 4-6 shows the statistical results of the summer model performance based on
production set data. Although the R? value is low, the absolute errors are low as well.
Figure 4-3 shows how well the model predicts compared to the actual particle count
values. Some peaks are missed and sometimes trends are not followed precisely, which

accounts for the relatively low R? value.
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4.2 Model Predictions

Now that the models have been trained and developed, they can be used to determine the
impact any of the parameters used in the model has on the reservoir influent (combined
filter effluent) particle counts. Presented in this section are the results of model
predictions made by each model in response to varying different inputs. From these
results, the effect of the varied input on particle counts can be examined. The difference
of this effect under different seasonal conditions can be examined as well since each
model represents different seasonal conditions with the C1S1 model representing spring
and fall, the C1S2 model representing winter, and the C2 model representing summer.
Section 4.2.1 presents results of varying a single input and comparisons are made
between the three models. Section 4.2.2 presents the resulting effects of varying two

parameters at a time.

In order to use the models to make predictions, a dynamic link library was created for
each model, which allows for the model to be called and utilised from a spreadsheet
program such as Microsoft Excel. Therefore, using the spreadsheet as an interface,
values of each input can be typed onto the spreadsheet, and then these values are fed

through a given model with the model predicted output written to the spreadsheet.

Listed in Table 4-7 are the values of each input when that input was held constant while
varying one or two other inputs. For example, if model predictions were made with the
spring/fall model while varying alum dose, raw turbidity would be set at 10 NTU,

temperature at 2°C, hardness at 160 mg/L, alkalinity at 125 mg/L, lime dose at 55 mg/L,
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PAC dose at 0 mg/L, polymer dose at 0.25 mg/L, raw flow at 190 ML/d, and pH at 7.90.
These set values were chosen based on the statistical average of each model’s data set
(shown in Tables 4-1, 4-3, and 4-5) with the values chosen as the average or near the

average.

Table 4-7. Values of inputs held constant during examination of effects of inputs on particle counts.

Spring/Fall | Winter (C1S2) | Summer (C2)
(C181) model model model

Raw Turbidity (NTU) 10 2 50
Temperature (°C) 2 0.5 20
Total Hardness (mg/L) 160 170 155
Total Alkalinity (mg/L) 125 130 130
Alum Dose (mg/L) 35 35 50
Lime Dose (mg/L) 55 60 60
PAC dose (mg/L) 0 0 -
Polymer Dose (mg/L) 0.25 0.30 0.18
Raw Flow (ML/d) 190 170 200
pH 7.90 7.90 8.00

It should be noted, however, that model predictions are limited by the boundaries of the
range of data values used to train the models. If presented with data beyond this range,
model predictions are extrapolated and are not necessarily as accurate as opposed to

predictions based on data within the trained range.

4.2.1 Model Predictions With One Varied Input

The parameters that were varied and examined for their effect on particle counts are alum
dose, lime dose, PAC dose, and polymer dose. These factors were chosen based on the
fact that these are parameters that can be modified and changed during operation of a

WTP.
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Figure 4-4. The effect of alum dose on particle counts as predicted by each model.

Shown in Figure 4-4 is the effect of alum dosage on particle counts predicted by each
model. As it can be seen, the spring/fall model predicts that there is a decrease in particle
counts as alum dosage is increased, however, the effect is not very big. The winter model
predicts the opposite where increasing alum dose increases particle counts particularly
when alum dose is greater than 35 mg/L. The reason for this is that under winter
conditions, temperature and turbidity are quite low. With such a low turbidity, adding
excess alum may be adding particles to the system. Moreover, lower temperatures
decrease the efficiency of filtration as discussed in section 2.4.2.9. Therefore, these two
factors combined may account for the observed increase in particle counts with
increasing alum dosage. Another reason could be that excess alum is causing charge
reversal in which particles result in having a positive charge from a negative charge
rather than being neutralised. Consequently, coagulation/flocculation is less effective
ultimately resulting in more particles passing through the filters. The summer model also

predicts that as alum dose increases, particle counts increase but not by as much. This is
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likely due to the effect of adding particles to the system with excess loading of alum or

possibly due to charge reversal as was described.
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Figure 4-5. The effect of lime dose on particle counts as predicted by each model.

Figure 4-5 shows the effect of varying lime dose on particle counts while other inputs are
held constant as predicted by each model. The trend predicted by the spring/fall model of
decreasing particle counts with increasing lime dose could be attributed to extensive
removal of calcium and magnesium particles associated with hardness. It is also possible
that with high amounts of calcium carbonate precipitating, more particles that did not
settle during coagulation/flocculation are being removed in secondary sedimentation by
adhering to the calcium carbonate precipitate. With the winter model, it can been seen
that there is a gradual increase in particle counts with an increase in lime dosage. The
reason for this is likely similar to the one described for observations for alum dose.
Although water is harder on average in the winter model than in the spring/fall model, the
temperature is lower, and reaction kinetics are slower. Thus, calcium carbonate may not

be precipitating out as fast as when temperatures are warmer resulting in particle
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formation beyond sedimentation and ultimately resulting in higher particle counts. For
the summer model, it can be seen that generally, particle counts increase as lime dose
increases at doses greater than 70 mg/L. The reason for this is likely due to particles

being added to the system from excess dosages of lime.
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Figure 4-6. The effect of PAC dose on particle counts as predicted by each model.

Figure 4-6 shows the effect of PAC dose on particle counts while keeping the other input
values constant. The summer model does not include PAC dose as an input as discussed
in section 4.1, therefore it is not shown in the graph. It can be seen that increasing the
PAC dose results in increased particle counts, minimally for the spring/fall model and
more significantly for the winter model. Since particles are being added to the system,
the extra particles detected are likely PAC particles, and adding more PAC therefore

increases particle counts.
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Figure 4-7. The effect of polymer dose on particle counts as predicted by each model.

The effect of polymer dose on particle counts as predicted by each model is shown in
Figure 4-7. For the spring/fall model, it can be clearly seen that the use of polymers
reduces particle counts in finished water. However, the curve levels off indicating that it
is unnecessary to have high levels of polymer to further reduce particle counts below 5
counts/'mL. The opposite is observed for the winter model where increased polymer
dosage results in increased particle counts. The likely reason for this observation is
similar to the one given for the trend observed with varying alum doses. With low
turbidity, less coagulant is necessary and excess polymer added may be adding particles
to the system. Together with lower filtration efficiency due to lower temperatures, the
result would be an increase in particle counts with increased polymer dosage. The
summer model shows a much different curve in which particle count levels peak at a
dosage of 0.15 mg/L, decreases for a bit before increasing again and levelling off. The

reason for this behaviour is unknown.
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Table 4-8. Overview of the impact of parameters on finished water particle counts.

Predicted Particle Count Range (counts/mL)
Parameter Parameter | Spring/Fall |Winter (C1S2)| Summer (C2)
Range (C181) model model model
Alum Dose |10-110 ma/L 7-16 5-42 4-8
Lime Dose |40-100 mg/L] 5-17 5-27 5-12
PAC Dose 0-50 mg/L 13-14 7-25 -
Polymer Dose | 0-0.6 mg/L 5-22 7-15 3-7

Table 4-8 provides an overview of the extent of impact each of the four parameters that
were examined has on finished water particle counts according to the models developed.
Essentially, information from Figures 4-4 to 4-7 is summarised in Table 4-8. The
parameter range indicates the range in which the parameters were varied. The predicted
particle count range lists the range of particle counts that were predicted by each model

within the parameter range.

Under spring and fall conditions (C1S1 model), polymer dose appears to have the largest
impact on particle counts followed by alum and lime dose. PAC dose does not appear to
have a relatively significant impact. Under winter conditions (C1S2 model), alum, lime,
and PAC dose appear to have the most impact on particle counts with polymer dose
having a relatively smaller impact. Under summer conditions (C2 model), alum, lime,
and polymer dose does have an impact on particle counts, but not to the same extent as

under spring, fall, or winter conditions.

4.2.2 Model Predictions With Two Varied Inputs

The effects of varying alum and lime dose plus alum and polymer dose at the same time

on particle counts are presented in this section. These factors were chosen to be
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examined because they can be changed operationally in a WTP, therefore these results
serve as a demonstration of the usefulness to operators of utilising these models in
determining operating conditions. The other inputs are held constant as listed in Table 4-

7.
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Figure 4-8. The effect of alum and lime dose on particle counts as predicted by the spring/fall model.

In Figure 4-8, the spring/fall model predicts the effect of alum dose and lime dose on
particle counts while the other inputs are held constant. [t is observed that particle counts
decrease as alum dose and lime dose increases, and the trends are similar to those

observed in Figures 4-4 and 4-5.

The same inputs are examined in Figure 4-9, but the winter model was used. It can be

seen that with both increasing alum and lime dosage, particle counts increase due to the

same reasons described in section 4.2.1.
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Figure 4-9. The effect of alum and lime dose on particle counts as predicted by the winter model.

Figure 4-10 also shows the effect of alum and lime dose but as predicted by the summer

model.
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Figure 4-10. The effect of alum and lime dose on particle counts as predicted by the summer model.

It is generally seen in Figure 4-10 that increasing both alum and lime doses increases
particle counts likely due to the effect of the addition of particles to the system at high

doses of these chemicals.
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An operator can use the type of information that can be generated such as those presented
in Figures 4-8 to 4-10 to help determine the amount of chemicals to use. If the main goal
is to reduce particle count levels, the operator can try different levels and combinations of
alum and lime dose and determine from the model predictions the optimal combination of
dosages. For example, under spring conditions, if an alum dose of 40 mg/L is to be used,
a lime dose of 40 mg/L will result in 18 particle counts/mL or a lime dose of 65 mg/L
would result in 10 particle counts/mL based on the spring/fall model in Figure 4-8. The
operator could then decide which option is more optimal when factoring in chemical
costs. However, under winter conditions shown in Figure 4-9, although lime dose has a
minor effect on particle counts, the choice for alum dose needs to be considered carefully
as too high a dose would result in high particle count levels. Summer conditions shown
in Figure 4-10 indicate that different doses do not significantly vary the resulting water

quality, therefore it is up to the operator to decide the economically optimal choice.
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Figure 4-11. The effect of alum and polymer dose on particle counts as predicted by the spring/fall
model.
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Figure 4-11 shows the effect of alum and polymer dose on particle counts as predicted by
the spring/fall model. The trend is apparent with a decrease in particie counts as alum

dose and polymer dose increases.

, —o—polymer dose = 0.20 mg/L. —e—polymer dose =0.25mg/. —— polymer dose = 0.30 mg/L.
'L—K— polymer dose = 0.35 mg/L —=—polymer dose = 0.40 mg/L. —-— polymer dose = 0.45 mg/L. |

45.0
40.0 —a
_é ot
= 350
a
£ 300
=
A 250 :
2 200
=3
Q
© 450
(-]
=
£ 100
[\3
a.
50
0.0
20 30 40 $0 60 70 80

Alum Dose (mgiL)
Figure 4-12. The effect of alum and polymer dose on particle counts as predicted by the winter
model.
Depicted in Figure 4-12 is the effect of alum and polymer dose as predicted by the winter
model. It can be seen that an increase in alum dose can cause a significant increase in

particle counts while an increase in polymer dose causes a minor increase in particle

counts. Reasons of this behaviour are the same as that described in section 4.2.1.

A much more complex behaviour is observed in Figure 4-13 in which the effect of alum
and polymer dose is predicted by the summer model. With polymer doses of 0.12 and
0.14 mg/L, particle counts decrease with increasing alum doses. But with polymer doses
of 0.16, 0.20, 0.22, and 0.24 mg/L, particle counts increase with increasing alum dose.

Furthermore, the curve for 0.16 mg/L of polymer is different from 0.20, 0.22, and 0.24
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mg/L in that a peak is reaclned with particle counts actually decreasing after an alum dose
of 110 mg/L. The reason ffor this behaviour is unknown, but it is important to note that
the overall impact is neot significant since particle counts vary only between

approximately 4 and 10 cousnts/mL.
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Figure 4-13. The effect of alum zand polymer dose on particle counts as predicted by the summer
model.

The information presented in Figures 4-11 to 4-13 is another demonstration of the
usefulness of utilising the models to assist the operator in determining the treatment
action to take. For examplle, it is significant to note the impact polymer dose has on
particle counts compared tw alum dose under spring/fall conditions. For instance, if
under these conditions a go-al of 10 particle counts/mL is desired, a combination of 50
mg/L of alum and 0.28 mg/E. of polymer or 25 mg/L of alum and 0.32 mg/L of polymer
is required. In opting for the latter, a 50% reduction in alum dose along with only a 14%
increase in polymer dose is required as opposed to the former option. Under winter
conditions, however, polymer dose is not as significant a factor in finished water particle
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counts, and care must be taken not to use an alum dose that is too high otherwise, particle
counts may be high. Under summer conditions the effect of alum dose and polymer dose
is not as significant since particle counts would vary between 4 and 10 counts/mL,
therefore the operator could choose a combination of doses that was economically

optimal.

Even though the results presented here were limited to operationally controllable
parameters, any input used in the models can be examined in this way. This would
provide more information to assist operators in determining treatment options.
Furthermore, this provides insight into the behaviour of particle counts in response to

various parameters, which would be beneficial to researchers in this field.
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5.0 Discussion

5.1 Performance Summary

Table S-1. Statistical performance of the models that were developed.

spring/fall winter mode!l | summer model
mode!

R squared 0.79 0.51 0.42
Mean Squared Error 8.9 11.0 5.8
Mean Absolute Error

(particle counts/mL) 2.3 2.8 2.0
Maximum Absolute Error

(particle counts/mL) 6.7 6.9 54

Based on the model performance statistics as summarised in Table 5-1, the spring/fall
model performs reasonably well. The winter and summer models have fairly low
predicting errors as well, however their R? values are not very high. By looking at the
model performance graphs in Figures 4-1, 4-2, and 4-3, however, one would have a better
idea of how well the models predict. In Figure 4-1, it can be seen that the spring/fall
model follows the trends in the data quite well and manages to reach the same peaks, and
this is an indication of the model predicting reasonably well. The winter model,
however, does not predict as well as the spring/fall model. It can be seen in Figure 4-2,
that the model is able to follow the trends in the data but not to the same extent as the
spring/fall model. In addition, some peaks are reached such as pattern 3, but others are
not such as pattern 6. Altogether this accounts for why the R? value is not as high.
Nonetheless, it can also be seen that the differences between the actual and predicted
particle counts are not that great, and this is reflected in the fairly low mean squared error

and mean absolute error. The summer model also does not tend to predict as well as the
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spring/fall model. In examining Figure 4-3, it is observed that trends in the data are
mostly followed except patterns 21-25, and when trends are followed, it is not to the
same extent as the spring/fall model. Some peaks are reached such as at pattern 14, but
others are missed such as at pattern 4. Since the trends are not being followed as closely
and because of some missed peaks and over-predictions, a low R? resulted just as for the
winter model. However, the actual differences between actual and predicted particle

counts are not very high as reflected by the mean squared error and mean absolute error.
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5.2 Model Applications

Once the models were developed, a series of examinations into the effects of various
factors on particle counts were done using these models and presented in section 4.2.
This served to illustrate the great potential these models have as powerful tools that are
useful for plant operators and researchers to use. These models are useful in two ways:
as a means of determining optimal operational dosages and as a research tool in studying

particle counts through the filtration process.

Currently, it is standard practice at a WTP to run jar tests as a means of determining
treatment options. Coupled with operator experience, operational dosages are chosen,
and this is how process control in the treatment process is achieved. One problem with
jar tests is that they do not directly predict filtration performance. Instead, clarification
performance of chemicals is measured, which does not necessarily mean that the filters
will behave in the same way. Not only are these tests time consuming and inconvenient,
but decisions based on experience are not as reliable considering all the variables that are
involved that influence filtration performance. Despite the fact that this level of process
control generally works for controlling turbidity, particle counts are more variable and
harder to control using traditional process control. ANN, on the other hand, can improve
process control and has a number of advantages. One major advantage of using the ANN
models is that a wet laboratory is not required for performing these tests. Instead, the
model acts as a virtual laboratory, and it is very easy to utilise through a spreadsheet
program providing treatment options immediately. In addition, there is no concemn with

problems of scaling up from bench or pilot plant to a full-scale plant because the data that
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is used to train the models is full-scale data. Figure 4-11 is a strong example of the
model’s use for determining operational dosages. From the graph, an operator can
evaluate and decide the optimal dosage to use. In this example, if an operator wanted a
finished water quality of 10 particle counts/mL, the person has the option of using 50
mg/L of alum and 0.28 mg/L of polymer or half as much alum at 25 mg/L and only 14%
more polymer at 0.32 mg/L. From this, the operator can decide which option is more
economical and yet produces the same result. Process control is achieved quickly and
efficiently compared to using jar tests. Furthermore, such determinations are more
comprehensive since the impact of multiple parameters can be examined rather than
relying on operator experience. A WTP could go one step further and integrate the ANN
models as part of the process control system. In a fully automated system, not only does
the model give treatment options, but it could also initiate the action providing even more

immediate process control action.

Besides providing treatment options, the ANN models are useful as research tools in
studying particle counts through the filtration process. Figure 4-4 provides a good
example of using the model as a means of researching factors affecting particle counts
through filtration. In Figure 4-4, the effect of alum dose on particle counts is examined.
In comparing each of the three curves, it can be seen that alum dose affects particle
counts differently in different seasons. Researchers can use this information as well as
study other factors as demonstrated in Figures 4-5 to 4-13 and make some conclusions as
to the extent of effect different factors have on particle counts under different conditions.

With an improved understanding of how particle counts are affected, water utilities
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would be better able to control and reduce particle counts and therefore comply with

strict water quality standards.
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5.3 Conclusions

It can be concluded that an ANN model of filtration performance can be feasibly
developed as shown by the results of the models developed in this study. Given a similar
amount of data or more and the same availability of data, the same type of model can be

developed for other WTPs.

Another conclusion is that the ANN models developed are useful as tools to assist
researchers and WTP operators. As a research tool, the models can be used to study
particle counts as demonstrated in this study. It is also useful to WTP operators for
determining optimal chemical dosages or to assist in determining courses of action for
treatment, thereby improving process control. Not only that, the models that have been
developed are unique in that complete plant models are not available. ANN models that
have been developed for water treatment focused on unit processes, therefore this was a

different modelling approach to encompass an entire plant.

Conclusions can also be made regarding the behaviour of particle counts in response to
various conditions. One general conclusion is that particle count behaviour is complex
and not necessarily simple and linear. With several factors having an influential effect
both individually and combined, it is difficult to make conclusive remarks on overall
particle count behaviour. Another general conclusion is that different water conditions
result in different particle count behaviour. This can be seen in predictions between the
three models, which predict based on data from different seasons. The settings that were

used in predictions were those typically occurring within that data set and thus that
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season. As a result, different curves were observed between each model examining the
same factor. For example, in Figure 4-4, the effect of alum dose was examined using
each model. The result is three different shaped curves, and it appears to be due to the

fact that the set conditions used for each model are different and dependent on season.

More specific conclusions could be made about particle count behaviour as well. Adding
non-coagulation/flocculation related chemical to the system, such as PAC and lime,
generally increases the amount of particle counts in the finished water. This is illustrated
in Figures 4-5 and 4-6. This observation is likely due to the fact that adding these
chemicals is equivalent to adding particles to the system, and therefore it is these particles
that are contributing to the particle count. The exception appears to be lime dose in the
spring and fall where adding more lime decreases particle counts. This may be due to
hardness being extensively removed and more particles settling out by adhering to the
calcium carbonate precipitate. It could also be concluded that adding excess alum or
polymer increases particle counts under winter conditions as illustrated in Figure 4-12.
This may be due to particles being added to the system coming from the excess alum and
polymer. However, the same behaviour is not observed under spring and fall conditions
shown in Figure 4-8 where increased dosages result in decreased particle counts. Particle
count behaviour is even more complex under summer conditions and is shown in Figure
4-13. Depending on the polymer dose, excess alum could increase or decrease particle
counts. This illustrates the general conclusion that different water conditions result in
different particle count behaviour. To be more specific, it appears that temperature and

raw turbidity, two major factors that differentiate between the different seasonal
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conditions, play a crucial role in the way particle counts react to other factors. And this is
part of the general conclusion that particle count behaviour is complex because of the

multiple factors involved and the possible interactions that occur between the factors.

It is important to stress, however, that the model predictions are limited by the boundaries
of the range of data values used to train the models as was previously mentioned in
section 4.2. If data that is presented to the models is beyond this range, the resulting
predictions are extrapolated and are not necessarily as accurate as opposed to predictions
based on data within the trained range. For example, the range of alum dose in the data
set for the winter model is between 31-39 mg/L. Thus, in Figure 4-4, the winter
predictions outside that range were extrapolated, and particle counts may not necessarily
behave in the manner presented in that graph. Therefore, conclusions made based on
model predictions outside these boundaries may not be accurate. It would be necessary

to study and determine how well the models can predict beyond these boundaries.
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5.4 Recommendations

There are a number of issues that would need to be examined in further study. One is the
testing of model limits and boundaries as just discussed previously. Another area in
association with testing model limits is the verification of model predictions and the
conclusions of particle count behaviour made based on these predictions. This would
need to be done in the laboratory either bench-scale, pilot-plant scale, or by use of full-
scale plants if available. Another issue, particularly with the winter and summer models,
is model performance. The winter and summer models do not follow trends as well in
the data as the spring/fall model, and this is reflected in their low R? values. With the
collection of more data providing more data patterns for the models to train from and
therefore providing a better representation of the cause-effect relationships in place,
model performance should improve especially considering approximately only a year’s
worth of data is used and split between three models. Another area of improvement
would be the Kohonen classification of data. The main problem that arose, mainly in the
second stage of categorisation, was the unclear categorisation of some of the data. In
other words, the Kohonen classifier could not place certain data patterns into one
exclusive category because they possessed characteristics that could have placed them in
either category. The determination of the final model configuration is still in question. If
an overall model were to be implemented at E.L. Smith WTP, the input data would first
pass through a Kohonen classifier and then be fed through to whichever of the three
models developed would be appropriate. This is shown in Figure 5-1. However, if the
three models were to be combined into one model, the need for a data classifier would be

eliminated, and the overall configuration would be much simpler as shown in Figure 5-2.
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Associated with that area of study is the need to develop better protocols for merging
models since attempts to amalgamate the spring/fall (C1S1) and winter (C1S2) models

were unsuccessful.

Spring/Fall ANN
model N
Input __{ 4! Kohonen Winter ANN _p| Output=
Data Classifier model predicted
particle count

Summer ANN A
model

Overall predictive model

Figure 5-1. Overall configuration of the predictive model.

Input

Output =
Data ————» Amalgamated ANN model | predicted

particle count

Figure 5-2. Configuration of predictive model with all ANN models combined into one.

Once these issues are resolved, the next area of concern would be the integration of the
ANN model with the WTP SCADA system. It would need to be determined in what
capacity the model would be inserted whether as part of the process control system or as

a separate interface apart from the system for the operator to perform “virtual” jar tests.

Although further study is required before full implementation of the models could be

done, the study that was done has shown that an ANN model of particle counts through
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filtration can be feasibly developed. Provided that there is enough data, other WTPs can
also develop their own ANN models based on the ones developed in this case. The
potential of the model as a useful tool for WTP operators to determine optimal chemical
dosages was also demonstrated. Process control would therefore improve, and a water
utility could go so far as to incorporating the ANN model as part of the process control
system to automate the system thereby improving it. Furthermore, the models developed
were shown to be potentially valuable research tools in studying the effects of various
factors on particle counts; a field in which much more research needs to be done. With
an increased understanding of particle counts, a water utility will be better able to reduce

counts and comply with stricter water quality standards.
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Appendix

Hach Model 2100N Laboratory Turbidimeter
Principle of Operation

This instrument is a Nephelometer with the capability to measure with either the Ratio on
or Ratio off. It meets the design criteria of the United States Environmental Protection
Agency and is acceptable for compliance reporting. The optical system is comprised of a
tungsten-filament lamp, lenses and apertures to focus the light, a 90 degree detector,
forward-scatter light detector, and a transmitted-light detector. Turbidity measurements
at less than 40 NTU are performed utilising only the 90 degree scattered-light detector or
using the complete set of detectors (ratio). With the Ratio ON (necessary for samples
greater than 40 NTUs), the instrument’s microprocessors uses a mathematical calculation
to ratio signals from each detector.

Specifications

Principle of Operation: Nephelometric

Measurement Units: Nephelometric Turbidity Units (NTU), Nephelos, European
Brewery Convention (EBC)

Ranges (With Ratio ON)
NTU Mode: 0-4000 NTU with automatic decimal point placement or 0-0.999, 0-
9.99, 0-99.9, and 0-4000 with manual range selection
Nephelo Mode: 0-26 800 with automatic decimal point placement or 0-9.99, 0-
99.9 and 0-26 800 with manual range selection
EBC Mode: 0-980 with automatic decimal point placement or 0-0.999, 0-9.99, 0-
99.9, and 0-980 with manual range selection

Ranges (With Ratio OFF)
NTU Mode: 0-40
Nephelo Mode: 0-268
EBC Mode: 0-9.8

Accuracy: £2% of reading plus stray light from 0-1000 NTU; £5% of reading from 1000
to 4000 NTU based on Formazin primary standards and with Ratio ON, 2% of
reading plus stray light from 0-40 with Ratio OFF
E.L. Smith Acceptable Limits: £20% at < 10 NTU and £10% at> 10 NTU
Reference Conditions: 0 to 40°C, 0 to 90% RH Noncondensing @ 25°C, 115/230
Vac £17%, 50/60 Hz

Resolution: 0.001 on lowest range
Repeatability: £1% of reading or + 0.01 NTU, whichever is greater
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Reference Conditions: 0 to 40°C, 0 to 90% RH Noncondensing @ 25°C, 115/230
Vac £17%, 50/60 Hz

Response Time: 6.8 s with signal averaging off or 14 s with signal averaging on
Standardisation: Formazin Primary Standards

Display: 5-character LED, 13.7 mm high digits with custom annunciators

Light Source: Tungsten filament lamp. Lamp life 8800 h (typical)

Signal Averaging: Operator selectable on or off

Sample Cells: 95 mm high x 25 mm diam. Borosilicate glass with rubber-lined screw
caps.

Sample Required: 30 mL minimum

Secondary Standards: Gelex Secondary Standards

Temperature
Storage Temperature: -40 to 60°C
Operating Temperature: 0 to 40°C
Sample Temperature: 0 to 95°C

Operating Humidity Range: 0 to 90% RH Noncondensing @ 25°C; 0 to 75% RH
Noncondensing @ 40°C

Instrument Stabilisation Time: 30 min with ratio on, 60 min with ratio off, typical

applications leaves instrument on 24 h/d.

Measurement Procedure

1. Collect a representative sample in clean container. Fill sample cell to the line
(Approx. 30 mL) and cap the sample cell.

2. Hold sample cell by the cap and wipe to remove water spots and fingerprints.

3. Apply a thin bead of silicone oil from the top to the bettom of the cell enough to coat
cell with a thin layer of oil. Use provided oiling cloth to spread oil uniformly and
wipe off excess.

4. Place the sample cell in the instrument cell compartment and close the lid.

5. Select manual or automatic ranging by pressing the Range key.
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6. Select the appropriate signal averaging setting (on or off) by pressing the Signal Avg
key.

7. Select the appropriate Ratio setting (on or off) by pressing the Ratio key

8. Select the appropriate measurement unit (NTU, EBC, or NEPH) by pressing the Units
key.

9. Read and record the results.

Met One Model PCX Particle Counter (with local display)
Principle of Operation

Particle count measurement is online and continuous. Water is directed into the sensor
and funnelled through an optical flow cell measuring 750 x 750 microns. Flow rate
through the sensor is at 100 mL/min. Each particle that passes through the sensor
generates a signal corresponding to its size. Each sensor comes with a calibration curve
showing the signal response versus size of each sensor. NIST-traceable spheres of
known size are used to calibrate each sensor. Information is stored in the memory of the
sensor and is used to separate the particle counts into the proper size category.

Specifications

Smallest Particles Counted: down to 2 microns

Largest Particles Counted: up to 750 microns

Distance from Computer to Sensor: 4000’ maximum (for entire RS-485 signal path)
Power: 115 VAC (£10%); Optional 220 VAC (£10%; 50/60 Hz)

Enclosure: NEMA 4X-Rated

Indicators: Power, Particle/Alarm, Calibration Status, Count Display

Flow Rate: 100 mL/min, nominal

Max. Pressure: 65 psi, not more than 1 min duration; 55 psi continuous

Fluid Connections:
Inlet: Quick disconnect. Connects to % inch OD Tubing
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Outlet: Quick disconnect. Connects to ¥ inch OD Tubing

Accuracy:
Manufacturer: + 5 counts / mL for a sample of blank water
E.L. Smith: + 10 counts /mL for filtered water, = 10% for raw water

Other Parameter Measurements

Raw Water Temperature

An online thermometer measures the temperature at an accuracy of +2%.

Total Hardness and Total Alkalinity

Readings are based on a colorimetric titration by a Tytronics FPA 400 series analyser
with an accuracy of 5 mg/L

The following steps outline a typical analysis cycle:

1. Fluid from the sample stream is used to wash out the reaction cell by
exchanging several volumes of fluid

2. The sample is captured using a syphon method that assures volume

repeatability better than 1%

The appropriate reagent(s) is added and the solution is mixed

Titrant is slowly added, and the time to reach an end point is measured

The sample concentration is calculated and results displayed

hlP ol

pH

Readings are measured by a Rosemount Model 1054 online pH analyser, which utilises a
glass electrode. The manufacturer’s stated accuracy is £0.01 pH units, however E.L.
Smith’s acceptable limit is 0.2 pH units.

Alum Dose and Polymer Dose

Alum and polymer feed is measured with a magmeter (magnetic flow meter) with an
accuracy of £0.5%.
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Lime Dose and PAC Dose

Lime and PAC feed is measured with a massmeter (mass flow meter) with an accuracy of
+0.25 t0 0.5%

Raw Flow

Measured using a magmeter (magnetic flow meter) with an accuracy of 0.5% except at
low flows in which accuracy slightly decreases.

Calculation of R?

The formula that NeuroShell 2 uses for calculating R? is:

2?1 SSE
SS,,
where SSE = Z(}/ _ },})2

—\2
SS)'_V = Z (y - y)
y is the actual value (particle counts in this case),

y is the predicted value of y,

y is the mean of the y values

R? is defined as the coefficient of multiple determination. It compares the accuracy of the
model to the accuracy of a trivial benchmark model wherein the prediction is just the
mean of all of the samples. A perfect fit would result in an R* value of 1, a very good fit
near 1, and a very poor fit less than 0. [f model predictions are worse than one could
predict by just using the mean of the sample case outputs, the R? value will be less than 0.

Definition of Mean Squared Error, Mean Absolute Error, Maximum Absolute
Error

Mean squared error is defined by NeuroShell 2 as a statistical measure of the differences
between the values of the outputs in the data set and the output values the network is
predicting. This is calculated as the mean of the square of the actual values minus the
predicted values, i.e., the mean of (actual - predicted)”. The errors are squared to penalise
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the larger errors and to cancel the effect of the positive and negative values of the
differences.

Mean absolute error is the mean of the series of absolute errors calculated, which is
defined as absolute value of the difference between the value the network is predicting

for an output and the actual value of that output. In other words, it is the mean of |actual -
predicted|.

Maximum absolute error is the maximum of the series of absolute errors calculated.

The lower or nearer to 0 these errors are, the more accurate the model predictions.
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