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Abstract

The continuing miniaturization of computing technology and the increasing popularity
of CubeSats among a growing market of modest-budget developers have revolution-
ized the space industry by enabling cost-effective access to space. However, ensuring
reliability remains a paramount concern. This thesis describes research that addresses
two critical reliability drivers for CubeSat missions: radiation effects and power system

design.

Characterizing the sensitivity of commercial off-the-shelf (COTS) components to ion-
izing radiation can be challenging for inexperienced CubeSat developers. To bridge
this gap, an open-source, versatile radiation testing platform is investigated and imple-
mented. This automated platform leverages a modular design, allowing rapid testing
of up to 24 devices in a particle accelerator beamline during a single testing session,
thereby enhancing data collection efficiency and lowering costs. Experimental results
demonstrate the feasibility of this approach for estimating error rates in low Earth

orbit.

On any spacecraft, the Electrical Power Supply (EPS) is a mission-critical subsystem,
and its reliability is crucial. An innovative open-source EPS design is proposed with
fault tolerance features and novel attributes including adaptive single-event latchup

detection, a battery charge inhibit scheme for low temperatures, and a power-saving
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control scheme. A complete hardware prototype is built and tested, demonstrating
promising efficiency, fault tolerance, and overall functionality, that matches or exceeds

the performance of COTS EPSs.

Both the software and hardware for both projects are intended to be open-source,
contributing to the CubeSat community by providing accessible design resources for
enhancing reliability. By offering economical radiation testing and an adaptable and
feature-rich EPS solution, the result of this research project should accelerate the
development of cost-effective CubeSat missions, empowering researchers to focus on

mission-specific scientific payloads and novel contributions to space exploration.
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1. Introduction

1.1. Thesis Overview

This thesis investigates two of the leading reliability drivers for spacecraft developers:

radiations effects and power system design.

Radiation Effects Traditionally, spacecraft have used purpose-built radiation hard-
ened computing technology to mitigate faults caused by ionizing radiation. Unfortu-
nately such “space grade” components are prohibitively expensive for most university
CubeSat projects. The alternative approach, proposed in [15], is to use standard
commercial off-the-shelf (COTS) components, with critical components having had
some assessment of vulnerability to radiation. However, meaningful characterization
of radiation sensitivity for modern devices is complicated and costly for inexperienced
developers, such as university groups building their first CubeSat. In this work, an au-
tomated and versatile open-source device testing platform is proposed, implemented,
and tested. The testing platform is intended to provide an efficient tool for placing the
device under test (DUT) in a particle accelerator beam and log meaningful test data
that can used to access reliability in orbit. The testing platform is intended for either

discrete components, such as microcontrollers, or entire CubeSat subsystems. One of
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the primary design considerations is efficiency of testing, to get the most radiation

sensitivity data out of the necessarily limited testing time.
The contributions of this work are:

e Development of an innovative, modular, and open-source testing platform de-
signed for characterizing radiation sensitivity in electronic components or systems

used in intense radiation environments.

o A modular design that improves versatility and simplifies the preparation of

devices for testing.

o Automated DUT swapping allowing rapid testing of up to 24 devices without

the need for human intervention in the radiation test chamber.

o A testing platform tailored to the specific challenges faced by CubeSat developers,

including budget constraints and the need for rapid development cycles

o Release of software and hardware design files under an open-source license, aim-
ing to alleviate trial-and-error challenges faced by CubeSat developers during
radiation testing, ultimately simplifying the process of designing more reliable

and cost-effective spacecraft components

o A discussion of low-energy proton effects and testing strategies including detailed

simulations showing the relevant effects of degrading materials.

Part T focuses on the proposed open-source radiation testing apparatus, shown in
Fig. 1.1. Chapter 2 provides a review of the literature and background information.
Chapter 3 presents the design and implementation of a hardware prototype of the
testing apparatus, outlining the technical capabilities and design considerations. In
Chapter 4, the developed prototype is used to evaluate the radiation sensitivity of four

different types of microcontrollers. A total of 20 devices were tested, and the data
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collected, shown in Table 1.1, is evaluated to estimate single-event upset (SEU) error
rates and the corresponding mean-time between failures (MTBF) in low Earth orbit
(LEO). Chapter 5 discusses the emergence of smaller technology-node devices that are
now sensitive to direct ionization from low-energy protons. The contribution of low-
energy protons to soft-error rates on CubeSats operating in LEO and the implications

on ground-based testing methods are discussed.

Figure 1.1.: Test equipment installed at TRIUMF'.
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Table 1.1.: Calculated in-orbit SEU rates for the devices tested.

SEU Rate MTBF
(/bit/day) | per Device

M430FR5989SRGCREP 0.90 x 1077 16661 hours

Manufacturer Part No.

EFM32GG11B820F2048 5.53 x 1077 11 hours
AT32UC3C0512C-ALZR 1.38 x 1077 339 hours
M2S010-TQG1441 2.52 x 1077 186 hours

CubeSat Electrical Power Supply The power system is suspected to be the single
largest cause of all spacecraft failures [16] and therefore, EPS design is a key driver
in reliability assurance. Development of a power system that is capable and reliable
enough to support all operations of a given mission for the entire mission life is a
challenge for most university CubeSat groups, which are relatively inexperienced in
developing mission critical subsystems. Instead, most CubeSat missions rely on COTS
power systems, which are costly, sometimes difficult to procure, and not necessarily
optimized for the given mission. In this work, an open-source EPS for CubeSats is

proposed, with several novel features that enhance reliability.

The contributions of this work are:

An innovative open-source EPS design for the CubeSat community that offers

similar or better capabilities than popular COTS EPSs.

A fail-safe solar panel power control feature that activates when recovering from

a fully-discharged battery state.

A charge/discharge inhibit mechanism allowing battery discharge and heating in
low-temperature conditions. It also can be used to optimize battery heater use

during eclipse, minimizing unnecessary heating when solar power is unavailable.

A transistor-based power inhibit circuit for power-off before satellite deployment,
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reducing conduction losses and simplifying wiring harness design.

o Intelligent low power sensors that quickly decouple power during over-current
events and monitor critical parameters, minimizing power consumption without

constant polling.

e A jumper matrix to supply regulated or unregulated bus voltage to 18 output

channels, with a synchronized fault response feature for codependent channels.

o Adaptive over-current fault detection compensating for gradual leakage current
increase due to accumulated total-ionizing dose effects over the mission’s dura-

tion.

Part II focuses on the proposed open-source EPS; starting with a review of the litera-
ture and background information in Chapter 6. In Chapter 7, the design and testing
of a finished hardware prototype, shown in Fig. 1.2, are presented. In future work,
this design will be implemented as a technology demonstration payload on a future
CubeSat project led by the AlbertaSat team at the University of Alberta [5]. The
objective of this project is to provide an affordable EPS option for university CubeSat
groups that offers a similar or better level of reliability and sophistication as state-
of-the-art COTS EPS products, while also benefiting from collaborative open-source

development.

Open-Source Development The two projects presented in this thesis have been
developed with the intention of being published under open-source licenses. The mo-
tivation for this initiative is to contribute to the community of university CubeSat
groups by providing a freely available resource to accelerate their own development
efforts. With a shorter path to inexpensive and reliable mission-critical subsystems

and testing infrastructure, CubeSat groups can then focus more on the development



1.2 CubeSats — Background Information

Figure 1.2.: Photograph showing a fully implemented prototype of the proposed
open-source EPS design. The design is compatible with the stackable PC104-like
physical form-factor, that is used on most CubeSats [2].

of their scientific payloads and on novel contributions to the space community.

1.2. CubeSats — Background Information

The rapid development and miniaturization of computing technology continuously re-
defines what is possible. As computing technology has evolved to achieve more with
less, so too has the space industry. Small satellite technology is a rapidly growing
presence in the modern space sector that has greatly lowered the barrier of entry

to access space [17]. Among the increasingly diverse classifications of “small satel-
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lites”, the CubeSat has emerged as an effective form factor for academic research and
technology demonstrations. The CubeSat standard originated in 1999 from the col-
laborative effort of California Polytechnic State University and Stanford University’s
Space Systems Development Laboratory [15]. Since then, over 1800 CubeSats have
been launched into space [18]. CubeSats are classified based on units of volume as
shown in Fig. 1.3, where each unit (U) is a 10 x 10 x 10 cm cube [19]. Fig. 1.4 shows

the sizes and developer categories for CubeSat missions launched in 2022.

10cm /,Qim . ‘
2U 3U 6U 12U

1U

Figure 1.3.: Different CubeSat size classifications, based on the number of 10 x 10 x
10 cm cubes.

CubeSat Mission Developer Categories in CubeSat Mission Sizes in 2022
Space Agency 12U Other

6U

School/Un less than 1U
Company Military
Non-profi 1
Institute 2U

Figure 1.4.: Statistics for CubeSat missions launched in 2022, using data from [3].

A key advantage of CubeSat missions, compared with larger spacecraft projects, is
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significantly lower launch costs and shorter development time. These characteristics
expand the pool of potential developers and lower the stakes, allowing some risk miti-
gation efforts to be relaxed. However, reliability is still a critical factor when designing
any system intended to operate in a harsh remote environment such as space, where
physical access is nearly impossible. As CubeSat developers aim to add even more ca-
pabilities to their platforms, new design solutions are needed to optimize the tradeoff

of lower costs and mission reliability.

AlbertaSat

The initial motivation for this thesis was the CubeSat development efforts of the Al-
bertaSat team at the University of Alberta. Fig. 1.5 shows renderings of the Ex-Alta 1
and Ex-Alta 2 CubeSats, developed by the AlbertaSat team, and launched into orbit
from the NanoRacks CubeSat Deployer (NRCSD) on the International Space Station
(ISS) in 2017 and 2023, respectively. The developments efforts and lessons learned
from these and other AlbertaSat projects have motivated the topics chosen for this

thesis and it is my hope that this work will be an asset to future AlbertaSat projects.
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A) Ex-Alta 1

B) Ex-Alta 2

Figure 1.5.: Renderings of the A) Ex-Alta 1 [4] and B) Ex-Alta 2 [5] CubeSats,
developed by the AlbertaSat team at the University of Alberta.
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2. Background — Radiation Testing of

Electronics to be used in Space

Ordinary COTS electronic components, rather than higher-reliability radiationhardened
components, are often used with acceptable success on LEO CubeSat missions [20].
But intense radiation levels do occur in LEO conditions, particularly at the South
Atlantic Anomaly [21], and CubeSats with COTS components routinely encounter
reliability issues caused by radiation [22]. Some of those issues can be effectively mit-
igated using error-tolerance strategies. Also, some COTS components are likely to
be more vulnerable to radiation effects than others. By screening COTS components
based on their sensitivity to radiation effects, components that are particularly vul-
nerable can be avoided. This method is sometimes referred to as the “careful-COTS”

approach [23].

Particle accelerator testing is a standard method used by in the aerospace industry
to characterize the radiation sensitivity of a component, but it is often too costly and
complex for CubeSat missions, particularly in budget-constrained academic projects.
The main objective of this work is to develop an inexpensive and straightforward test
method to effectively evaluate the radiation tolerance of devices while maximizing the

efficiency of costly particle accelerator test time. This work thus aims to develop a
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Background — Radiation Testing of Electronics to be used in Space

new cost-effective method of testing that will be more accessible to groups developing

CubeSat subsystems within a limited budget.

System Design using a “Careful COTS” Approach

Semiconductors in microelectronic devices are sensitive to changes in electrical and
material properties caused by ionizing radiation. Solar protons and galactic cosmic
rays pass through semiconductor devices, causing soft errors or damage. Thanks to
shielding provided by the Earth’s magnetic field, faults in devices on the Earth’s surface
are rare enough that they are not typically a major concern. However, in applications
requiring high reliability, such as implantable medical devices [24] or critical data
infrastructure, and in applications involving highly radioactive environments, such as
nuclear facilities or aerospace applications [25], careful consideration should be given

to mitigate faults caused by ionizing radiation.

To ensure reliability for satellite missions, semiconductor components in conventional
spacecraft are typically radiation-hardened, meaning specialised fabrication processes
and /or integrated circuit (IC) layout techniques have been used to mitigate ionizing
radiation effects. Those components come with higher cost, larger size, increased power
consumption, limited performance, and supply chain constraints that often make them

unsuitable for low-cost CubeSat missions.
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2.1 Sources of Ionizing Radiation in Space

2.1. Sources of lonizing Radiation in Space

Solar Energetic Particles (Solar Flares)

It is well known that the sun releases harmful ionizing radiation in the form of solar
energetic particles, particularly during solar flares and coronal mass ejections [26].
This solar radiation is usually in the form of high-energy protons (ionized hydrogen),
smaller quantities of helium ions, electrons and (during solar flare activity) X-ray
radiation [27]. Solar energetic particles are usually on the order of 10 to 100 MeV and
rarely reach Earth’s surface because they are deflected by the Earth’s magnetic field, as
illustrated in Fig. 2.1, but still pose a threat to orbiting spacecraft [28]. Occasionally,
solar radiation levels will peak during events known as geomagnetic storms. X-rays
are also generally stopped by Earth’s atmosphere but occasionally interfere with radio

communications and Global Positioning System (GPS) measurements [29].

Figure 2.1.: Illustration of solar energetic particles interacting with Earth’s magnetic

field [6].

Planetary Radiation Belts

As solar energetic particles pass the Earth, high-energy electrons and protons are

captured by the Earth’s magnetic field and trapped in what are referred to as the Van
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2.1 Sources of Ionizing Radiation in Space

Allen radiation belts [30], as shown in Fig. 2.2. The Earth’s inner radiation belt exists
just above low Earth orbit between 1000 and 6000 km with proton energies exceeding
100 MeV. Because most spacecraft operating in low Earth orbit operate below these
altitudes, this is not a major concern. However, there is one region where high radiation
levels exist at lower altitudes. This phenomena is called the South Atlantic Anomaly

and is known to wreak havoc on spacecraft in low Earth orbit [21].

Earth’s magnetic field

Outer van Allen belt
Inner van Allen belt

Figure 2.2.: Illustration of the van Allen radiation belts around Earth [7].

Galactic Cosmic Rays

Galactic cosmic rays (GCRs) are believed to originate from the remnants of supernovas
elsewhere in the galaxy [31], with a wide distribution of energies sometimes exceeding
10Y eV [32]. GCRs react with Earth’s atmosphere, producing complex cascades of sec-
ondary particles. The most important of those secondary particle for SEEs is neutrons
[33] because of the ability neutrons to penetrate materials and produce isotopes [34].
These events will occasionally interfere with or damage digital infrastructure. Most
users would prefer to endure rebooting their computer ever few years rather than pay

for expensive radiation testing campaigns. But in applications that demand very high
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2.2 Radiation-Induced Fault Types

reliability, this becomes an important consideration that requires thorough testing and
mitigation strategies known as radiation hardening. This has become an increasingly
important issue as more and more aspects of everyday life become dependent on em-
bedded systems and ever shrinking feature size makes semiconductor devices more
vulnerable to radiation effects. Radiation hardening is generally reserved for military,
medical and aerospace applications [24, 25]; however, it has become a growing concern
for automotive applications [35] and critical data infrastructure such as internet nodes,

and banking systems.

2.2. Radiation-Induced Fault Types

Radiation effects in semiconductor devices can be classified as either total ionizing dose
(TID) effects or single-event effects (SEEs). SEEs are the result of a single energetic
particle [36] while TID refers to gradual parametric changes caused by an absorbed

radiation dose over time [37].

2.2.1. Soft Errors

A soft error can occur when an energetic ion passes through the depletion region
of an N+/P junction. The charged particle creates a funnel-shaped distribution of
higher charge carrier density along its trajectory. This ionization track momentarily
extends the depletion region into the substrate, resulting in a brief pulse of drift current
(Larift) across the junction, reducing the voltage on the node. This interaction, shown
in Fig. 2.3, occurs within several picoseconds before the charge carriers diffuse back

into the substrate [38]. The most significant naturally occurring cause of soft errors in
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2.2 Radiation-Induced Fault Types

semiconductor devices are alpha particles emitted from high energy particle collisions

or isotopic decay in the device materials [38].

.
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Figure 2.3.: Ionization along the trajectory of a charged particle through a pn-
junction momentarily extends the depletion region creating a pulse of increased
drift current.

Single-Event Transient (SET)

When a soft error occurs at a driven node, the node voltage is temporarily reduced. Any

faulty behaviour resulting from this transient effect is called a single-event transient

(SET) fault [36].

Single-Event Upset (SEU)

An single-event upset (SEU) occurs when a soft error occurs on a floating node (causing
a static voltage change) or when an SET fault results in a change to a static logic value

(such as the state of a memory bit) [36].
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2.2 Radiation-Induced Fault Types

Single-Event Functional Interrupt (SEFI)

A single-event functional interrupt (SEFI) fault occurs when a soft error, such as an
SEU fault in a configuration register, causes a device to malfunction in a detectable
way. A SEFI can be resolved with a soft reset of the configuration registers and does

not result in permanent damage to the device [39].

2.2.2. Hard Faults
Single-Event Gate Rupture (SEGR)

An ion passing directly through the gate oxide of a transistor can create a filament of
plasma along the ionization track. The resulting electric field can be strong enough to

cause a breakdown of the oxide layer. This fault is called a single-event gate rupture

(SEGR) [40].

Single-Event Latchup (SEL)

A single-event latch-up (SEL) fault occurs when a self-sustaining parasitic silicon con-
trolled rectifier (SCR) latch structure, is activated within a complementary metal-oxide
semiconductor (CMOS) structure, as shown in Fig. 2.4. Similar to burnout, this is due
to the movement of charge caused by the ionization track of heavy ions passing through
the device. SEL faults result in high current between the Vpp and Vsg terminals of
the CMOS transistor. Generally, this can be detected by constant current monitoring

and then halted by cycling the power.
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I
Gate

I

Parasitic SCR Structure

P-Substrate

Figure 2.4.: Tllustration of a self-sustaining parasitic SCR latch structure within a
CMOS structure causing an SEL fault.

Single-Event Burnout (SEB)

An ion passing through a transistor in the off state, which is isolating the signal node
from a high drain-source voltage, can activate a parasitic bipolar transistor structure
between the n+ source, the p-body, and the epitaxial layer [41]. If enough current
is available to the source terminal, the resulting positive feedback mechanism could

cause a failure. This fault is called a single-event burnout (SEB).

2.3. Radiation Testing Methods

Proton Testing

Proton testing is an effective testing method that is used to emulate the effects of solar
radiation, and is the method chosen for this work. Linear energy transfer (LET) refers
to the increment of energy transfer per unit length along the trajectory of the ionizing
particle incident through the device under test and is typically expressed in units of
MeV cm?/mg [9]. Protons passing through silicon have a relatively low LET of only

0.54 MeV em? /mg or less which is often not sufficient to cause SEEs. However, collisions
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between protons and nuclei within the DUT, such as silicon, aluminum, copper, or gold,
can generate nuclear reaction products with LET as high as 15 MeV cm?/mg, and are
therefore representative of a large fraction of the LET spectrum encountered in LEO

[23, 42]. This makes protons suitable for SEE testing of LEO spacecraft.

Heavy lon Testing

Heavy ion testing is an effective and versatile method for evaluating the sensitivity of
devices to ionizing radiation [36]. For this method, a particle accelerator facility is
used to fire heavy ions at the DUT. This method allows control of the LET between
the ionizing radiation and the device under test (including very high LET values) by
changing the ion species [43]. Because this method allows the LET to be varied, it
can provide insights into radiation effects mechanisms that other testing methods can
not. However, the effects of high LET are not truly representative of the proton-rich
environment in LEO that exists in the Van Allen Belts [9]. Also, heavy ion testing is

generally more costly and facility availability is limited [23, 44].

Total Dose Testing

TID is the total absorbed dose deposited in a device substrate by ionizing radiation. In
electronic devices the accumulation of TID causes permanent parametric degradation
in the device and can lead to functional failure [45, 46]. There are many approaches
for performing TID testing, some of which are less expensive and more accessible than
particle accelerator testing. Some examples are gamma ray sources, such as cobalt-60,
and X-ray sources [47]. These testing methods are attractive because they are relatively
inexpensive and generally more accessible than other forms of radiation testing. Due

to the very low LET of gamma rays and X-rays incident through silicon, this type
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of testing does not cause SEEs so it is only useful for total dose testing. Although
this method is a cost-effective way to evaluate lifetime dose effects of COTS devices,
it neglects some failure modes that are seen with charged, strongly ionizing, particles

such as protons or heavy ions.

In-Orbit Testing

All of the methods discussed above are intended to assess how devices will perform in
their operational environment. For the purposes of this work, that operational envi-
ronment is integrated within a CubeSat in LEO. The mechanisms of radiation effects
that cause SEEs and parametric degradation in electronic devices are complex; using
ground-based testing to predict and quantify error rates in LEO is not straightfor-
ward. Hence, a clear solution is to complement ground-based testing by evaluating
device performance in orbit [48]. Such missions have been attempted to study how
well classical error rate prediction models based on ground-based testing estimate in or-
bit performance, particularly in emerging technologies, where new failure mechanisms

exist [20, 48].

2.4. Trends in Emerging Semiconductor Technology

Effects of Technology Scaling

As the feature size in modern integrated circuits gets smaller, devices are becoming
more vulnerable to radiation-induced faults [35]. This is due to a reduction in the
minimum amount of charge needed to disrupt an individual transistor, commonly

referred to as the critical charge. The critical charge needed to cause faults has steadily
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decreased due to reductions in supply voltage, gate oxide thickness and transistor

dimensions [49].

Radiation Effects in State-of-the-Art FinFET Devices

In semiconductor technology beyond 22 nm, three-dimensional FinFET transistor struc-
tures have become an attractive option because of improvements in channel effects and
reduced leakage [50]. Along with their many other advantages, FInFET structures have
shown a remarkable reduction in sensitivity to ionizing radiation with 5 to 10 times im-
provement compared with previous technology nodes [51]. This is due to an improved
isolation between the charge collected in the substrate, and the charge collected in the

drain and source regions of the transistor.
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3. An Automated Platform for

Testing Microelectronics

3.1. Introduction

Microelectronic devices continue to evolve rapidly. Keeping up with the latest tech-
nology improvements poses a particular challenge to the space industry because of the
rigorous and time-consuming quality control measures that are required to develop
reliable spacecraft components. This precaution causes a lag in the use of cutting
edge computing technology. The development of CubeSats and inexpensive access to
space has enabled a new market segment of satellite developers who are able to accept
greater risk. Thanks to their small size, low cost, relatively quick development, and
the abundance of inexpensive launch opportunities, CubeSats have become popular for
increasingly complex missions in low Earth orbit (LEO) [3]. The low cost of CubeSats
justifies relaxed quality assurance and reliability constraints, enabling a more rapid de-
velopment cycle and more aggressive adoption of new component technologies. To get
the most out of this balancing act of lower cost and relaxed reliability requirements,
innovative testing approaches are needed to maximize the operational lifetime and

expand the utility of CubeSat missions while still preserving their low cost advantage.
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CubeSat projects increasingly use commercial off-the-shelf (COTS) microelectronic
components, as opposed to the radiation-hardened components traditionally used on
spacecraft, because of more stringent budget, volume, and power constraints [23, 42,
52]. Radiation-hardened refers to components that have been specifically designed
and manufactured to withstand high-radiation environments, and are typically several
orders of magnitude more expensive than other high-reliability classes of components
such as automotive-grade. COTS components are often used on CubeSats despite
lacking characterization data indicating their sensitivity to radiation effects. While
such components can be, and often are, used with success, many developers of past
CubeSat missions, which failed within the first 6 months after launch, have blamed
radiation effects [53]. To ensure sufficient mission reliability, the radiation tolerance
of COTS components is a major consideration in determining their suitability for use
in space. CubeSat developers need a cost-effective and easily implemented method
to characterize the radiation sensitivity of non-hardened components and to identify

vulnerabilities before they become mission reliability concerns.

The complexity of designing particle beam experiments and the high cost of access to
testing facilities are significant hurdles [54] that make it difficult for CubeSat develop-
ers to characterize the radiation tolerance of COTS components. The cost of particle
accelerator beam testing can often be equally as prohibitive for developers as purchas-
ing radiation-hardened components. The objective of the work reported here was to
create a simple and versatile open-source testing platform that is easy to implement
and that will maximize the amount of useful data that can be gathered from beam
testing during necessarily limited testing time. The goal is to lower the cost of access
to radiation testing and to increase the availability of radiation test data for COTS de-

vices in the literature, which would then help guide future CubeSat subsystem design.
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Ultimately this should improve the reliability of low-cost CubeSats and accelerate the

adoption of cutting edge computing technology in the space industry.

The hardware and software described in this chapter are entirely original work. The
modular testing platform described below has six removable and interchangeable test-
ing stages (each supporting up to four device-under-test boards) that can be indi-
vidually and remotely positioned into the beam-line, allowing the rapid testing of up
to 24 devices without requiring personnel to enter the radiation test chamber. After
firing the radiation beam, a cool-down period is required before personnel can enter
the testing chamber, to avoid exposing personnel to high levels of radioactive decay
from the short-lived unstable isotopes produced during the testing. This remote de-
vice manipulating capability significantly improves the utilization of testing time by
avoiding the need to enter the testing chamber until after all of the testing is complete.
The particle beam incidence angle can also be varied remotely. The platform was de-
veloped for use at TRIUMF, a high-energy particle accelerator facility in Vancouver,
Canada [55]. The design and functionality of the testing platform are discussed below.
Test data recorded at the TRIUMF Proton Irradiation Facility (PIF) is presented and
analysis is discussed. Finally, plans for future improvements to the testing platform

are proposed.

3.2. Objectives

In this section, we outline the key objectives that drove the development of our testing
platform. These objectives include characterizing the radiation sensitivity of electronic
components, by providing rapid and cost-effective implementation of testing proce-

dures, and promoting an open-source design approach for collaborative development.
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3.2.1. Characterize Sensitivity to Single-Event Effects

A faulty behavior or fault caused by a single ionizing particle is called a single-event
effect (SEE). The primary purpose of the developed testing platform is to more rapidly
and more efficiently measure the statistical cross-section of SEEs caused by ionizing
radiation particles. SEEs have many different forms. The most common fault in
memory devices is the single-event upset (SEU) [56], which is a fault that changes
the binary state of a memory cell. Any other soft fault that produces a measurable
malfunction and does not require a power cycle to recover is deemed an SEFI [39]. An
example of a single-event functional interrupt (SEFI) is an SEU fault in a configuration
register. A single-event latchup (SEL) fault produces a parasitic high current latch
structure in the device, which could result in permanent device failure. This work
focuses on these three fault types. The testing platform must reliably detect these
faults (SEU, SEFI, and SEL) and record relevant data to characterize operational

reliability:.

3.2.2. Limitations of Existing Approaches

Components on CubeSats are vulnerable to the same radiation reliability concerns as
those on large satellites. Unfortunately, the limited resources of small satellite projects
are often accompanied by a lack of radiation testing and analysis [57]. The high
cost of beam-time and the effort required to develop a test fixture can make particle
accelerator testing a very costly endeavor [54]. An alternative approach sometimes
used by CubeSat developers is to include DUTs as a payload on a CubeSat mission to
investigate the radiation sensitivity of devices in their actual operating environment

[48, 58]. The rationale of such experiments is generally that the compact payload
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poses less cost than accelerator testing [54]. However, repeatability of this approach
is limited compared with particle accelerators and this approach can be unforgiving if

limitations of the test fixture become apparent after launch.

3.2.3. Rapid Low-Cost Implementation

Preparing devices for testing should be fast and easy. To make the testing platform
versatile with respect to the type of devices that can be tested, a modular solution
is used for mounting the devices under test (DUTs). This system is designed to hold
a 10 x 10cm DUT motherboard, with four small DUT daughter cards, each holding
only the DUT and essential circuitry needed for it to operate. These DUT cards,
shown in Fig. 3.1, are interchangeable and simple in design, simplifying the test setup.
Alternatively, any device with a serial interface that can fit within the 10 x 10cm
DUT motherboard (including entire CubeSat subsystems) can be directly attached,

replacing the small DUT cards.

3.2.4. Minimizing Human Intervention

A common approach in the literature is to use a single fixed board with a single DUT in
the beamline and supporting circuitry around it [59]. A key limitation apparent with
this approach is the time needed to swap the DUT throughout testing to determine the
repeatability of the experiment. Due to high levels of short-lived residual radioactivity,
a cool-down period is required after beam irradiation before personnel can re-enter the
testing chamber. This required cool-down time is typically on the order of ten minutes
to an hour or more, depending on the duration, intensity and energy of the dose,

and the materials receiving the dose. These periods of wasted time reduce the time

26



3.2 Objectives

Figure 3.1.: Individual DUT cards for SEE testing.

available for irradiating devices, thus limiting the expensive beam time devoted to
actual testing. Automation and remote operation avoid the need for costly cool-down

periods during testing and also adequately limiting the safety hazard to personnel.

3.2.5. Open-Source Design

The design files for the software and the electrical and mechanical hardware for this
testing platform will be published under an open-source license so that they will be
available to other developers. This initiative aims to alleviate trial-and-error challenges
faced by CubeSat developers during radiation testing. Moreover, data gathered by
different groups using a common testing platform will facilitate the comparison of test
results. The total bill of materials cost for this project is under $1000, thus making it

accessible to most CubeSat developers.
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3.3. Review of Radiation Testing Techniques

The high cost and procurement challenges associated with radiation-hardened devices
have driven the growing adoption of COTS devices in satellite components [23, 42,
52]. While this approach offers clear advantages in terms of cost savings and power
requirements, it also introduces the potential for unacceptable risks when the radiation
effects on these devices are not adequately characterized [60]. The responsibility then
lies with the space project engineers to systematically evaluate the sensitivity of these
devices to radiation effects [61]. Thus, there is a growing demand for the development
of cost-effective radiation testing strategies. In this section, some approaches from
the literature are reviewed, which have the potential to be more cost effective than

traditional beam-line testing.

3.3.1. Simulation-Based Testing

Various simulation techniques have been proposed to evaluate the SEE sensitivity
of devices [62-65]. Additionally, fault-injection simulations are used to verify SEE
mitigation techniques, such as logic redundancy [66]. The clear advantage of simulation
is that it eliminates the need for expensive radiation facilities and specialized hardware.
However, meaningful prediction of SEE rates through simulation generally requires
detailed knowledge of the semiconductor layout, which is typically unavailable to the

space project engineers.

3.3.2. Pulsed-Laser Testing

Pulsed-laser radiation can effectively emulate the influence of heavy ions and presents

several distinct advantages over traditional particle accelerator testing [67-69]. Laser
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devices are much more affordable compared with particle beam sources and have fewer
safety and ecological concerns [70]. Some other unique advantages of pulsed-laser
testing are high reproducibility, precise spatial control to focus on certain elements on
a chip and the ability to study dynamic sensitivity in various operational modes [71].
However, the large parameter space of laser testing can make it complex and time-
consuming to achieve meaningful predictive results [67]. Additionally, fundamental
mechanisms are lacking with laser radiation compared with exposure to radiation from

heavy ions, such as ionization of dielectric materials or secondary ion production [70].

3.3.3. Total lonizing Dose Testing

Total ionizing dose (TID) effects refers to the gradual degradation of a device, such
as the ionization of dielectrics. Accumulated TID affects will eventually cause failures
and are thus an important factor for mission lifetime requirements [72]. TID testing
typically uses radioisotopes such as Cobalt-60 and Cesium-137 or low-energy X-ray
generators [73]. Such facilities are relatively low-cost compared with proton and heavy-
ion accelerators and have been used to validate CubeSat subsystems [74]. However
the significant limitation of this approach is that it provides no information about

susceptibility to SEEs.

3.4. Hardware Design

The main elements of the testing platform design are the mechanical mechanism for
positioning the DUTs into the beam-line, and the programmable controller for manag-
ing the flow of power and data to and from the DUTs. Each of these design elements

is discussed in turn in this section.
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Figure 3.2.: Test equipment installed at TRIUMF.
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Figure 3.3.: The mechanical rotating mechanism.

3.4.1. DUT Positioner Design

The test platform, shown in Fig. 3.2, was developed for use at the TRIUMF Pro-
ton Irradiation Facility [14]. The DUT positioner holds six DUT motherboards and

positions them, one at a time, into the beamline, by rotating the assembly.

The rotation is achieved by a stepper motor and gear mechanism, shown in Fig. 3.3.
The angular position of the DUT selector is measured with an encoder wheel. Once the
DUT selector has been calibrated to the zero position on the encoder wheel, the DUT
selected motherboard can be centered in the beamline with an accuracy of +0.6 mm.
Signals and power are supplied to the DUT motherboards through a central conductive

slip ring, which allows for continuous rotation without twisting wires.

3.4.2. DUT Form Factor

The DUT selector holds up to six DUT motherboards. Each DUT motherboard is

10 x 10 cm in size and is connected to the rotating assembly using a reversible con-

31



3.4 Hardware Design

nector and two machine screws. Because the connector is reversible, the DUT moth-
erboard can be positioned to irradiate either face. In this work, a 55 x 55 mm square
beam spot was focused on the center of the DUT motherboard in-line with the beam,
meaning that only components within that square region would be irradiated. Each
DUT motherboard in this work was designed to hold four DUTs, which were either
microcontrollers (MCUs) or microprocessor system-on-a-chips (MPSoCs). Each DUT
was mounted on a 40 x 27.5 mm DUT card over spring-loaded Pogo-pin contacts with a
27.5 x 27.5 mm portion positioned within the beam spot. The remaining area on each
DUT card is available for supporting circuitry, such as oscillators, and for connectors
for loading a test program or data into each DUT. The 10 x 10 cm size was chosen
so that entire assembled CubeSat subsystems could be mounted on the platform, if

desired.

3.4.3. Data Logger Design

A system was needed to record data during particle beam testing. This system needed
to be reliable and not suffer significantly from the effects of the incoming radiation
during the test. At TRIUMF, most of the protons that scatter outside of the beam
spot are absorbed in a thick aluminum collimator. Thus, the effects of stray radiation
scattering from the beamline are negligible. Therefore, being simply physically out of
the path of the beam is usually sufficient to protect the data logger from deleterious

effects caused by radiation.
The purpose of the data logger is to reliably perform the following functions:
1. To assign accurate time stamps to each measurement, with millisecond resolution.

2. To detect and record SEL faults by monitoring the current consumption of each
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DUT and to power cycle the affected device when a fault occurs, to prevent

damage from component overheating (single-event burnout).

3. To forward data output from test programs running on the DUTs to the control

terminal.

4. To respond to commands sent by the user from the control terminal to multiplex

the data and power connections to the intended DUTs.

The terminal side of the data logger has five serial data interfaces. Four of those
serial interfaces forward test data that is transmitted from each of the four DUT cards
to the terminal. The fifth serial interface receives commands from the terminal and
transmits all other data, including current sensor measurements, and time-stamped
records of events, such as power cycling a DUT. Fig. 3.4 illustrates the data and power

connections.

3.4.4. Incidence Angle Control

The rate of SEEs can vary depending on the angle of incidence between the DUT and
the particle beam [75]. The incidence angle of each stage can be adjusted remotely
using a servo motor, as shown in Fig. 3.5. The incidence angle can be set between
0° and 180°. Additionally, the stage connectors are reversible so that each stage
can be mounted with either the top or the bottom facing towards the particle beam,
allowing a full 360° range of incidence angles. The current prototype of the testing
platform has only one DUT motherboard with a servo motor, but the platform is
capable of supporting up to six DUT daughter cards at the same time. Power to the
servo motors is kept separate from the DUT power supply lines to avoid disturbing

the current consumption measurements.
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3.4 Hardware Design

Data Logger DUT MB 1
Processor
<—Data (A..D) :
Real-time Clock <—Power (A..D)
Multiplexer .
Network .
Current Sensors <—Data (A..D) DUT MB 6
<—Power (A..D)
Data 4
Logger ~ DUT Device 6D
Serial Serial

* * Terminal in

Control Room
Serialto USB €

Figure 3.4.: Data logger block diagram.

Figure 3.5.: Rendering of the servo-actuated DUT motherboard that allows the
beamline incidence angle to be changed.
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3.5 Fault Detection

3.5. Fault Detection

3.5.1. Detecting SEU Faults in SRAM

In this experiment, SEU faults in embedded static random access memory (SRAM)
subsystems are detected by continuously scanning a large array of data-words for
erroneous bits while the DUT is being irradiated. All of the DUTs were either MCUs
or MPSoCs that are capable of executing downloaded software. SEU faults in SRAM
were detected by continuously writing and then reading back the memory contents
a few seconds later. After reading each dataword, it is re-initialized with new data
according to the test pattern. The used test pattern alternated with each test between
writing and reading back all 1’s and all 0’s. The newly written value is immediately
read to confirm that the write operation was successful. The SEU fault detection
algorithm is presented in Fig. 3.6 as pseudo-code. After ten consecutive failed write
operations, a SEFI fault is recorded and the affected device is automatically turned off
for two seconds to terminate any latching. The number of incident radiation particles
per unit area over the duration of the test is called the fluence. The fluence values
used to determine SEU fault cross-sections must be corrected by subtracting the fluence
received during each two-second power off cycle, and during test cycles that coincided

with other faulty behaviors.

When an SEU fault is detected, the DUT outputs a single line message that describes
the error. The message specifies the time in milliseconds, the type of error (read or
write), the value that was read from memory, the value that was expected to be read
from memory, and the address of the fault in memory. Fig. 3.7 shows a screenshot of

data being recorded on the computer terminal while a DUT is being irradiated.
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3.5 Fault Detection

#DEFINE bigarray 99999 // (placeholder wvalue)
typedef unsigned int word; // (placeholder wvalue)
volatile word albigarray] = {0};

word previous_write = 0;

word next_write = O0;

ramtest () {
previous_write = next_write;
next_write = next_write Oxffffffff;
for (j in bigarray) {
read = aljl;
if (read != previous_write){
// Delayed read error
printf ("DR,%0x,%0x,%0x\n",j,
read ,previous_write);

}

aljl] = next_write;

read = alj];

if (read != next_write){

// Instantaneous write error
printf ("IW,%0x,%0x,%0x\n",j,
read ,previous_write);

Figure 3.6.: Pseudo-code algorithm for SEU fault detection implemented on MCU
and MPSOC DUTs during testing. The placeholder value “99999” is replaced later
with the appropriate test array size for each DUT (see Table 3.1).

-3A.CRC:db3aBBds
-3A.end223

S3A.ram

-3A.DR:114e 20000008 .0
-3A.DR:1567.18068.0
-3A_.RE:48

S3A.num
-3A.CRC:db3aBBds
-3A.end224

-3A.ram
,3R,DR:ii3a,ffff7fff,ffffffff

S3A.num
-3A.CRC:db3aBBds
-3A.end225

-3A.ram

-3A.DR:0, 66000000 . 6

-3A.DR:5hf . 20800000, 8
-3A.RE:43
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Figure 3.7.: Screenshot of data being recorded during testing.

36



3.5 Fault Detection

3.5.2. Detecting SEU Faults in Flash

Additionally, the flash memory of each DUT is monitored for any SEU faults. SEU
faults in the non-volatile flash memory of the MCU or MPSoC DUTs are detected
by calculating and verifying a 32-bit cyclic redundancy check (CRC) in between each
iteration of the SRAM test. The start and end times of each memory scan are also

recorded.

3.5.3. Detecting SEL Faults

An SEL fault occurs when a parasitic self-sustaining silicon controlled rectifier (SCR)
latch structure is activated within a bulk complementary metal-oxide semiconductor
(CMOS) structure due to the movement of charge caused by the ionization track of
charged particles passing through the device. SEL faults persist due to feedback paths
and can result in potentially damaging high current between the drain and source
terminals of the CMOS transistor. The magnitude of the rise in current will depend
on the device and the location of the fault within the device. It is very difficult to
accurately predict a suitable threshold value for reliable detection of SEL faults for a

particular device without experimental testing.

The current consumption of each DUT is monitored with a least-significant bit (LSB)
resolution of 65 pA and a sampling rate of 50 samples/s. The SEL detection threshold
can be configured remotely at any time with a unique value for each device. Fig.
3.8 shows a SEL fault recorded by the current sensors during a proton beam test at
TRIUMF. The nominal current consumption of this DUT oscillates around 20 mA as
the memory test cycles. When the SEL fault occurs, the current consumption of the

DUT increases sharply to approximately 65 mA for just over 1 second. This increase
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Figure 3.8.: Current consumption produced by an SEL fault measured during proton-
beam testing of an EFM32GG11B820F2048 MCU at TRIUMEF.

in current is then detected by the current monitor. The time and current measurement

values are recorded by the data logger and the power to the device is cycled to prevent

damage to the DUT.

During the two-second period when the DUT is off, the SEU fault detection is not
functioning. To prevent this off time from skewing the statistical analysis of the data,
the turn-off and turn-on times are recorded so that the effective dose contributing to

SEU faults can be correctly calculated.

3.5.4. Detecting SEFI Faults

A SEFT fault occurs when a soft error, such as an SEU fault in a configuration register,
causes a device to malfunction in a detectable functional way; however, an SEFT fault
does not require a power cycle to recover the device, nor does it result in permanent

damage [39]. SEFI faults can be corrected by a soft reset of the device. An SEU is a
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00 00:04:59.626 ,4B,ram
01 00:04:59.773 ,4B,RE:8

02 00:04:59.899 ,4B,nvm

03 00:05:00.025 ,4B,CRC:5df3fc83
04 00:05:00.298 ,4B,end81 ‘BA~i

05 00:05:00.530 ,4B,boc

06 00:05:00.545 ,4B,2amp

07 Wi | pidd | 11d3381dd |

08 00:05:00.571 ,4B,RE:0

09 00:05:00.572 ,4B, nvmiiyi | it | 43
10 Wi 7idpid | ipdi | | uidii

11 Bitipiii

12 piiiitidipdidid | iddiidiutiiidil

13 dputtid?| ditidipdi | | 1§d1d | pipdiipp
14 00:05:01.269 ,4B,CRC:1144a915
15 00:05:01.643 ,4B, endOpiiiipiii | 331

Figure 3.9.: Example of corrupt data recorded from the serial line during testing.

type of SEFI; however, in this work we will distinguish between the two for clarity.

SEFT faults can interfere with the memory test program and the determination of SEU
error rates. If the fault persists, then a two-second power cycle is performed on the

malfunctioning DUT. Some examples of SEFI faults include:
o The re-initialization of a dataword fails during a memory scan.
e The DUT becomes unresponsive.

o The DUT outputs produce incorrectly formatted data. An example of corrupted

data is shown in Fig. 3.9.

The testing method used in this experiment is referred to as dynamic mode testing.
In dynamic mode testing, a continuous write-read sequence is performed during beam
exposure [76]. In contrast, during static mode testing, the memory is initialized before
beam exposure and then read back and the data verified after delivering a particular
dose. While static mode testing can simplify data collection by avoiding faulty behavior

during exposure, it ignores detecting potential vulnerabilities to SEFT fault modes.
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3.6 Testing Results

Table 3.1.: Technical details of the tested devices.

| Manufacturer Part No. | Manufacturer | Word Size | SRAM | SRAM Test Array | Flash |

A M430FR5989SRGCREP | Texas Instruments 16-bit 16 kbit 14 kbit 1 Mbit
B EFM32GG11B820F2048 Silicon Labs 32-bit 4096 kbit 3940 kbit 16 Mbit
C || AT32UC3C0512C-ALZR Atmel 32-bit 512 kbit 480 kbit 4 Mbit
D M2S010-TQG1441 MicroSemi 32-bit 512 kbit 448 kbit 2 Mbit

3.6. Testing Results

Some details about the four different DUT types that were tested are summarized in
Table 3.1. “SRAM Test Array” indicates the size of the array allocated for the memory
scan loop in SRAM. Five copies of each of the four DUT types were tested (20 DUTs in
total) at four to six different energies and five different incidence angles. Figs. 3.10 and
3.11 show the SEU cross-section data collected at TRIUMF. This data was obtained
during a total of 4 hours of testing time, including setup and tear-down. The testing
platform performed well and the results obtained can be analyzed for comparison with

other devices or used to predict the SEU sensitivity in known radiation environments.

3.6.1. SEU Cross-sections

Dynamic mode testing is effective for identifying vulnerabilities to SEFI faults. How-
ever, those SEFI faults might lead to certain memory test cycles being invalidated.
Consequently, the faulty behavior from a SEFI fault could inaccurately influence the
count of SEU faults reported within that particular test cycle. Thus, to ensure accu-
rate SEU cross-section calculations, it becomes necessary to subtract the radiation dose
delivered during these faulty test cycles from the overall effective dose that contributes

to the SEU faults. Intervals when the DUT is powered off must also be subtracted.
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Figure 3.10.: SEU cross-section of the AT32UC3C0512C’s SRAM.

Table 3.2.: Classification of fault behaviors recorded during testing.

Other Fault DUT | Occurrences for each DUT o .
SEU SEL Behavioury Failed A B c D Fault Description
Yes 18 58547 | 2772 | 7064 | SRAM SEU
Yes 0 8 376 361 | SEFI
Yes 0 5 0 0 SEL
Yes Yes 0 0 0 3 SEL and SEFI
Yes Yes 0 0 3 3 SEL causing Failure
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3.6.2. Fault Behavior Classification

The total tallies of different types and combinations of fault behaviors that were ob-
served during normal incidence testing are summarized in Table 3.2. A total of six
devices (three M2S010-TQG1441 MPSoCs and three M430FR5989SRGCREP MCUs)
failed permanently when a SEL fault occurred but did not result in sufficiently high

current to trigger the over-current protection circuit.

Any memory test cycle for which the recorded data was invalid in a detectable way
(such as invalid syntax or a non-consecutive cycle number) was counted as a SEFI
fault. While counting rates of SEU faults is relatively straightforward and directly
comparable between devices, recording and classifying SEFI faults can be a significant
challenge. SEFI faults can render the DUT completely nonfunctional and different
types of SEFIs can exhibit the same symptoms and are thus difficult to classify in a
meaningful way [54]. Some of the faulty behaviors that were observed are described

below for each type of chip.

3.6.2.1. (Device A) M430 SEFI Behaviors

o The only errors observed were 18 SRAM SEUs.

3.6.2.2. (Device B) EFM32 SEFI Behaviors

« In only one instance a DUT (of any processor variety) this processor stopped
responding over the serial line, not attributed to a SEL. The average current
consumption decreased until the automatic 2-second watchdog timer automati-

cally triggered a power cycle.
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e In 7 instances, the DUTs reported instantaneous write errors for a high percent-
age of memory addresses until the DUT was power cycled. Each such instance

was tallied as one SEFI.

o For one DUT, a single bit became stuck, reporting as a SEU for every memory
scan, even when the beamline was turned off. After allowing the test code to
continue running for about 15 minutes, the faulty bit appeared to return to nor-
mal operation. The SEUs counted for this bit during that period were discounted

from the SEU cross-section calculations.

o The rate of SEFI faults increased significantly at lower incidence angles.

3.6.2.3. (Device C) AT32 SEFI Behaviors

 In 373 out of 13253 memory test cycles of all 0’s, the first (i.e., at index 0) 32-bit

word in the tested memory region was read as 0x66000000.

3.6.2.4. (Device D) M2S SEFI Behaviors

o In 399 out of 7599 memory test cycles of all 0’s, the first (i.e., at index 0) 32-
bit word in the tested memory region was read as 0x66666666. This behavior
is possibly related to the SRAM cell layout, such as when alternate cells have

mirrored layouts.

o In 39 instances, bytes sent over the serial line would be corrupted, as shown in

Section 3.5.4.
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Table 3.3.: Incidence angle testing data.

| DUT | Angle | SEU | SEFI | SEL | SEL Cross-section

90° 7 0 0 |<208x10"'em?
82.5° 21 0 0 |<291x10"Hem?
75° 28 0 0 |<227x10"Hem?
67.5° 16 0 0 |<3.08x10"Hem?
0 2
5

45° 9 0 < 3.68 x10~Hem
90° 415 192 8.68 x 10~ Hem?
82.5° | 2332 | 306 10 [2.91 x10719%m?
75° 1449 | 342 14 [3.17 x10719%m?

p)

p)

67.5° | 1611 | 206 12 [3.69 x10~%m
45° 395 | 144 22 [8.11 x10~Y%m

90° 22 1 3 [5.21 x10em?

82.5° | 66 0 0 |<291x10""em?
75° 285 0 0 |<2.27x10"em?
67.5° | 113 0 0 |<3.08x107 cm?

QOO Q| P B @ I T | | =] =] >

3.6.3. Incidence Angle Testing

With the beamline at a lower incidence angle, the energy deposited by penetrating
protons in the sensitive plane of the DUT is higher due to a longer trajectory through
this region. Therefore, an increase in SEEs is expected for smaller incidence angles.
Indeed, the test results included in Table 3.3 show a significant increase in SEL and

SEFT fault rates. Fig. 3.11 shows the calculated SEU cross-section data.

3.7. Future Considerations

Perhaps the most significant complicating factor in the development of this testing
platform was the range of unexpected faulty behaviors encountered during irradiation.
Even after multiple design iterations, there is still room for improvement to achieve

suitable handling of all faulty behaviors. More sophisticated fault classification meth-
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Figure 3.11.: SEU cross-section for 57.6-MeV protons versus different incidence an-
gles.
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ods could further improve ease and efficiency of testing. If this open-source design is
adopted by other groups, lessons learned from each team of users could contribute to

better fault modeling and detection.

During DUT malfunctions or power cycles, the test data output by the DUT may
become inaccurate. SEEs tallied during such instances should be omitted, along with
the corresponding fluence. This exclusion slightly lowers the effective dose used for
calculating SEE cross-sections. In this experiment, we recorded the cumulative total
dose at the end of each test. The effective dose used for SEE rate calculations was
determined by subtracting the dose received during malfunctions or power cycles. We
made the assumption that the fluence rate remained constant throughout each test.
However, there were fluctuations in the instantaneous fluence rate during the test,
which reduced the accuracy of the calculated SEE. To mitigate this potential source
of error, it would be advisable to record the instantaneous fluence rate throughout the

test.

In future work, the development of a console-side user interface that offers real-time
statistical analysis of recorded data would be highly beneficial. Providing this real-time
information would allow the operator to identify optimal radiation energy values based
on trends observed in the resulting energy spectrum of measured fault cross-sections.
Additionally, enhancing the software interface to enable users to define efficient test
schedules would be advantageous. For instance, users could conduct a sweep of various

incidence angles with specified time intervals, minimizing downtime in between tests.
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3.8. Conclusions

Radiation effects are a significant consideration in the design of electronics for space ap-
plications [53]. CubeSats operating in LEO can effectively utilize cost-effective COTS
components that have been found to have reasonably good radiation tolerance, instead
of using radiation-hardened components that are expensive and difficult to procure.
Using traditional methods to evaluate the susceptibility of COTS components to radi-

ation effects is too complex and costly for many groups that are developing CubeSats.

This project aimed to develop a platform that allows efficient, accurate, and cost-
effective measurements of SEE rates, including SEU, SEL, and SEFT faults on devices,
with minimal complexity for test setup. An automated and remotely controlled, mod-
ular testing platform was developed, permitting up to 24 different devices to be tested
during a single experiment while minimizing the setup time and the need for human
intervention during the testing. The testing platform also allows the incidence angle

of the beamline to be adjusted to any angle.

Overall, the final prototype of the testing platform performed well and provided a
substantial amount of useful data within a short timeframe. During a four-hour ex-
periment, 20 individual devices were tested at varying energies and incidence angles.
A speculative estimate suggests that approximately 20 minutes of cool-down time and
10 minutes of setup time would have been required between each of the five DUT
motherboards that were tested. Therefore, this automated testing platform saved ap-
proximately two hours of time, or 30 minutes per each of the four different devices.
At the time of this writing, TRIUMF’s pricing is USD $950 per hour. That amount
of cost savings could be substantial relative to the often limited budgets of university

CubeSat groups. The collected data can now be used to compare the DUTs to devices
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tested in other experiments or to estimate error rates in orbit.

The software and hardware developed for this project are being released under an
open source license. Our aim is to significantly reduce the cost, development time and
beamline leasing time required for CubeSat developers to assess the radiation sensi-
tivity of devices, especially those lacking published radiation sensitivity characteristics
— which is commonly the case for commodity commercial-grade parts. This initiative
opens the door for more published test data on more devices, including non-hardened
commercial-grade components that are attractive to budget constrained CubeSat de-
velopers. Through collaborative open-source development, the testing platform can

continue to evolve, incorporating improved automation and advanced fault modeling.

Ultimately the testing platform and methodology outlined in this work should alleviate
some of the trial-and-error challenges faced by CubeSat developers during radiation
testing. This, in turn, will simplify the process of designing more reliable spacecraft
components at a lower cost, thereby expanding the capabilities of the broader space

industry.
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4. Proton-Beam Testing of

Microcontrollers

4.1. Introduction

As CubeSat developers reach for increasing sophistication by integrating newer, high-
density integrated circuits (ICs) into payloads and avionics, there is a growing need for
rapid and inexpensive assessment of radiation effects and in-orbit error rate predictions.
To support CubeSat developers in assessing the effects of radiation on component re-
liability, a versatile open-source radiation effects testing platform was developed to
support efficient particle accelerator testing of ICs, such as microcontrollers (MCUS).
This testing platform uses automation to minimize human interaction in the radiation
testing chamber. This allows the tester to maximize testing efficiency, testing more de-
vices in less time. Using that testing platform, five each of four different 1Cs were tested
including MCUs and microprocessor system-on-a-chips (MPSoCs). Testing was done
at the TRIUMF Proton Irradiation Facility [55] in Vancouver, Canada. The testing
platform recorded single-event effects (SEEs) including single-event upsets (SEUs) in
the volatile memories of the devices under test (DUTs) as well as single-event latchups

(SELs) and single-event function interrupts (SEFIs). SEU cross-sections were deter-
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mined at different energies and at different incidence angles including 90° (normal),
82.5°, 75°, 67.5°, 60°, and 45°. An initially near mono-energetic 65 MeV proton beam
was used through a Lucite degrader wheel, shown in Fig. 4.1. The degrader thickness
was varied to modulate the mean energy between 3.9 MeV and 57.6 MeV. On-orbit
SEE rates of the devices tested were calculated and compared by combining these

results with models of the radiation flux in low Earth orbit (LEO).

4.2. Experiment Design

4.2.1. Radiation Sources

Testing was done at the TRIUMF Proton Irradiation Facility in Vancouver, Canada
[55]. Protons were delivered to the test area with a mean energy of 65 MeV and a full-
width half-mazimum (FWHM) of 1.2MeV. To produce an accurate estimate of SEU
rates in orbit based on data obtained while using the cyclotron, the error rates must
be determined over a range of proton energies. While measuring SEE rates at a single
proton energy can provide an approximation of on-orbit performance [77], testing over
a range of energies should improve the accuracy of the determined on-orbit SEE rate.
In this experiment, the proton energy incident on the DUT was varied by inserting
a degrader, provided by TRIUMF, inline with the beam. The degrader, shown in
Fig. 4.1, was a clear Lucite disk with a wedge cut along the radius of a clear acrylic
disk. By rotating the disk, the thickness of material in the beamline was varied to
modulate the mean energy of the beam. As the degrader thickness is increased, the
mean proton energy incident on the DUT decreased to a minimum of 2.4 MeV with a

FWHM of 2.4 MeV. Using the thinnest portion of the degrader, the maximum mean
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Figure 4.1.: Energy-modulating degrader wheel, provided by TRIUMF at the TRI-
UMF Proton Irradiation Facility. By rotating the clear-acrylic disk, which has a
wedge cut along its radius, the kinetic energy of the beam is modulated.

proton energy was 57.6 MeV with a FWHM of 1.4 MeV.

After passing through the degrader, the proton bean passes through a square aperture
made of thick aluminum. This ensures that only the intended 5 x 5cm target is
irradiated. Ambient radiation from the activation of long-lived isotopes in the testing

area exists but is considered negligible in this work.
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4.2.2. Test Setup

Testing was done using the remotely controlled robotic testing platform that was pre-
sented in Chapter 3. The testing platform, shown in Fig. 4.2, detects and logs SEEs
and cycles DUT power if a SEL or a SEFI fault are detected. A stepper motor, in
the DUT selector, rotates the assembly to position the DUT motherboards within the
5 x5 cm beamline. Each DUT motherboard has four DUT card slots, each with a mon-
itored power supply and a 1-MHz serial interface. On one of the DUT motherboards,
the incidence angle is varied using a servo motor. After the initial setup of the testing
platform, all manipulation is done remotely or automatically. This solution improves
the utilization of costly testing time, maximizing the amount of useful data that can

be obtained during the experiment.

The final iteration of the testing platform was successfully implemented at TRIUMF
with a total of 20 DUTs arranged with four on each of five DUT motherboards. The
sixth DUT motherboard was unused in this experiment. The 20 DUTSs included MCUs

and MPSoCs which are listed below:

DUT Board 1: 4 x M430FR5989SRGCREP (Device A)

DUT Board 2: 4 x EFM32GG11B820F2048 (Device B)

DUT Board 3: 4 x AT32UC3C0512C-ALZR (Device C)

DUT Board 4: 4 x M2S010-TQG1441 (Device D)

DUT Board 5: One of each of the above devices

DUT Board 6: Not populated

The fifth DUT board was used for testing varied incidence angles. Fig. 4.3 illustrates

the arrangement of DUTs and Table 4.1 lists some details of each device as tested.
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Figure 4.2.: Labelled drawing of the front face (oriented towards the oncoming proton
beam) of the rotating testing platform used for positioning the DUTs during testing.
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Table 4.1.: Technical details of the four devices.

‘ Manufacturer Part No. ‘ Manufacturer ‘ Word Size ‘ SRAM ‘ Flash ‘ Core Freq. ‘ Process ‘

M430FR5989SRGCREP | Texas Instruments 16-bit 16 kbit 1 Mbit 16 MHz 130 nm [78§]

EFM32GG11B820F2048 Silicon Labs 32-bit 4096 kbit | 16 Mbit 72 MHz 90 nm [79]

AT32UC3C0512C-ALZR Atmel 32-bit 512 kbit | 4 Mbit 50 MHz ?
M2S010-TQG1441 MicroSemi 32-bit 512 kbit | 2 Mbit 166 MHz 65 nm [80]

The sixth DUT board was not used.

DUT Board 1 DUT Board 2 DUT Board 3
Device A || Device A Device B || Device B Device C || Device C
Device A || Device A Device B || Device B Device C || Device C

DUT Board 4 DUT Board 5 DUT Board 6
Device D || Device D Device A || Device B
Device D || Device D Device C || Device D Unused

Figure 4.3.: A summary of the arrangement of DUTs during testing.

During the 4-hour experiment, 22 tests were performed on the 20 devices, 4 devices at

a time. The proton energy and incidence angle were varied between the tests.

4.2.3. SEE Detection

As the test progresses, SEEs are detected and recorded by the data logger and displayed
on the connected terminal in the control room in real-time. The test cycle to detect
SEUs begins by initializing a region of memory, alternating between all 1’s and all
0’s. Immediately after initializing each dataword, the value is read back to ensure that
the operation was successful. After initialization is completed, a checksum of the non-
volatile memory (NVM). is done, providing a brief delay and a method for detecting

SEUs in the NVM. After the checksum is completed, the cycle begins again but this
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time each data word of the test region is also read before reinitilizing it to check if
any bits have unexpectedly changed. When an erroneous bit is detected, the value
read, the expected value, and the address of the dataword are recorded along with a

timestamp in milliseconds. The sizes of each test region are listed in Table 4.2.

Table 4.2.: Sizes of the test regions being scanned for SEU faults in each DUT.

’ Manufacturer Part No. \ SRAM Test Size ‘

M430FR5989SRGCREP 14 kbits

EFM32GG11B820F2048 3840 kbits

AT32UC3C0512C-ALZR 480 kbits
M2S010-TQG1441 448 kbits

SEL faults are recorded when a DUT sustains current consumption beyond a pre-
configured threshold value for 1second. Current is measured by sense resistor current
sensors with a least significant bit resolution of 62 uA. When an SEL fault is detected,
power to the affected DUT is turned off for 2 seconds before attempting to restart the
DUT and re-establish communication. A timestamp is recorded for the fault when
the over-current is registered and can be correlated with current sensor data that is
sampled at 100 Hz. The measured average current consumption of each type of DUT
and the corresponding pre-configured latchup threshold values that were used during

testing are listed in Table 4.3.

Table 4.3.: The measured average operating current of each DUT and the pre-
configured current threshold used for detection of SEL faults.

Average SEL
Manufacturer Part No. Current Threshold
M430FR5989SRGCREP 6.4 mA 30 mA
EFM32GG11B820F2048 20.0 mA 50 mA
AT32UC3C0512C-ALZR 62.3 mA 100 mA
M2S010-TQG1441 123.4 mA 150 mA

95



4.3 Results

Any other fault that interrupts the testing in a detectable way is classified as a SEFI
fault. Using a static testing method where the system clock is disabled during irradi-
ation and reread after could mitigate SEFI faults during the test but would provide
less information about vulnerability of the DUT to SEFT faults. When a malfunction
is detected, such as garbled or missing communication or a failure to write content to
memory, the affected DUT is turned off for 2 seconds before attempting to restart the

DUT and re-establish communication.

4.3. Results

The SEU cross-section from each test was calculated as the number of SEUs over
the total fluence received minus the fluence that was received while a device was
unresponsive or while power to the device was turned off. The resulting fluence value
is the effective fluence. Where data exists for multiple similar DUTs at the same proton
energy and incidence angle, the fluence values and SEU counts are added together such
that the resulting SEU cross-section is the weighted average based on the number of
SEUs recorded during that test for each similar device. The results recorded during
each test are presented in Table 4.4. No changes in checksum values were recorded

during the testing indicating that zero SEU faults occurred in the NVM of any DUT.

To evaluate the repeatability of the experiment, Table 4.5 shows the SEU cross-section
results for each individual EFM32GG11B820F2048 MCU (Device B) at each of the
tested energies. The error crossections measured on each individual DUT agreed within
10% of the combined averages. Some sources of error that could affect the repeatability
of this experiment are, random shot noise consistent with modeling SEUs as a Poisson

process [81], non-uniform flux density of the proton beam and manufacturing variability
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Table 4.4.: Summary of SEE data recorded during proton-beam testing at TRIUMF'.

| Device [ Board No. | Proton Energy | Effective Fluence | SEUs | SELs [ SEFIs | SEU Cross-section |

A 1 4.8 MeV 4.07 x 10'° /em? 1 0 0 1.76 x10~Pcm? /bit
A 1 9 MeV 3.04 x 10'° /em? 2 0 0 4.70 x10~cem? /bit
A 1 20.7 MoV 475 x 10 Jem? 8 0 0 | 1.20 <10 Mem?/bit
A 5 57.6 MeV 1.27 x 10" /em? 7 0 0 3.94 x 10~ em? /bit
B 2 3.9 MeV 1.68 x 10 /em? 6628 0 0 1.03 x10~Bem? /bit
B 2 4.8 MeV 3.47 x 10'° /em? 25307 | 0 0 1.90 x 10~ Bem? /bit
B 2 9 MeV 4.79 x 10'° /em? 11707 | 1 0 6.36 x 10~ cm? /bit
B 2 13.7 MoV 143 % 10 Jem? 4107 | 0 0 | 2.70 x10 Mem?/bit
B 2 20.7 MeV 6.05 x 10'° /em? 7986 1 4 3.43 x 10~ em? /bit
B 5 57.6 MeV 1.25 x 10 /em? 2812 1 1 5.85 ><107]4CH12/bit
C 3 9 MeV 6.53 x 10'° /em? 286 1 1 9.12 x 10~ cm? /bit
§ 3 13.7 MoV 6.58 x 1010 Jem? 166 | 0 0 | 148 x 10 em?/bit
C 3 20.7 MeV 6.34 x 101 /em? 801 0 0 2.63 x 10~ em? /bit
C 3 27.1 MeV 6.00 x 10'° /em? 1015 1 0 3.53 x10~em? /bit
C 5 57.6 MeV 1.27 x 10 /em? 204 0 0 3.35 x10~em? /bit
D 1 18 MoV 8.73 x 1010 Jem? 2366 | 1 0 | 6.05x10 cm?/bit
D 1 9 MoV 6.24 x 1010 Jem? 1222 | 0 0 | 4.37 <10 Mem?/bit
D 4 13.7 MeV 24.2 x 101 /em? 1417 1 1 1.31 ><10_14CII12/bit
D 4 20.7 MeV 18.5 x 10 /em? 2059 0 0 2.48 XlU_MCIIl2/bit
D 5 57.6 MeV Device failed due to SEL - 1 - -
Table 4.5.: SEU cross-section results for each individual EFM32GG11B820F2048
(Device B) MCU at each of the energies tested.
‘ Proton Energy ‘ Device B1 ‘ Device B2 ‘ Device B3 ‘ Device B4 H Combined Average ‘
3.9 MeV 1.03 x10713 9.64 x10~1 1.07 x10713 1.06 x10~13 1.03 x10713
4.8 MeV 1.86 x10~5 1.82x10°5 1.97 x10°5 1.94 x1075 1.90 x10~"
9 MeV 6.22 x10~ 14 5.99 x10~ 1 6.63 x10~ 14 6.59 x10~14 6.36 x10~ 1

13.7 MeV 2.69 x10~14 2.57 x10~ 1 2.79 10714 2.79 10714 2.71 <101

20.7 MeV 3.55 x10714 3.14 x10~ 1 3.70 10714 3.32 <1071 3.43 x107 1

57.6 MeV 6.00 x 1014 5.33 x10~1 5.77 x10~14 6.30 x10~14 5.85 x10~1

cm?/bit cm? /bit cm?/bit cm? /bit cm?/bit

between individual devices.

4.3.1. Single-Event Latchup

Sense-resistor-based current sensors were used to continuously monitor DUT current
consumption during testing so that SEL faults could be detected. While testing
with a 90° incidence angle, SEL faults were recorded in each type of DUT except
the M430FR5989SRGCREP MCUs. Fig. 4.4 shows an example of a SEL fault in a
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EFM32GG11B820F2048 MCU. In this case, detection of the SEL by the testing plat-
form was delayed by a few seconds due to latency caused by buffering of the current
sensor data. Before and after the SEL fault, the current consumption fluctuates pe-
riodically with each test cycle. The number of SEL faults recorded was not sufficient
to allow any additional insight. As the incidence angle was decreased, the number
of SEL faults recorded in the EFM32GG11B820F2048 MCUs increased significantly.
Early in test 1, Device D (a M2S010-TQG1441 MPSoC) experienced a latchup event
with an average current consumption of around 140 mA and it permanently failed
shortly after. This failure is referred to as a single-event burnout (SEB) Because this
was below the pre-configured threshold, which was set to 150 mA, the SEL detection
was not triggered. A total of six devices (three M2S010-TQG1441 MPSoCs and three
M430FR5989SRGCREP MCUs) failed in this way.
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Figure 4.4.: Current consumption recorded during a single-event latchup fault, in-
cluding overcurrent detection, shutoff, and resume.
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4.3.2. Single-Event Functional Interrupts

Several anomalies occurred in the recorded data which were counted as SEFT faults.
In most of these cases, serial data transmitted from the DUTs appeared corrupted,
as shown in Fig. 4.5. This is caused by SEUs within the working memory of the
SEU causing faulty behaviour. In some other cases, which mostly occurred in the
EFM32GG11B820F2048 devices, the re-initialization step of the memory test cycle
failed such that the value read immediately after attempting to overwrite the memory
was not the expected value. In most cases this condition persisted until the DUT was
power cycled. While testing with a 90° incidence angle, SEFI faults occurred in each
type of DUT except the M430FR5989SRGCREP MCUs.
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Table 4.6.: Numbers of SEU, SEL, and SEFI faults recorded with different incidence

angles.
Angle Fluence SEU SEL SEFI
82.5° || 3.43 x 10'9 /cm? 21 8570 140 0 10 0 0 2 0
75° 4.41 x 10'° /em? 32 11947 | 628 0 14 0 0 8 0
67.5° 3.25 x 10 /Cm2 16 10244 270 0 12 1* 0 3 0
60° 0.79 x 10'° /cm? 2 10266 - 0 3 - 0 3 -
45° 2.71 x 101% /em? 9 17258 - 0 22 - 0 12 -
Device: ‘ A ‘ B ‘ C H A B ‘ C H A ‘ B ‘ ‘

*Failed due to burnout caused by SEL fault with current below threshold

00 00:04:59.626 ,4B, ram

01 00:04:59.773 ,4B,RE:8

02 00:04:59.899 ,4B ,nvm

03 00:05:00.025 ,4B,CRC:5df3fc83
04 00:05:00.298 ,4B,end81 ‘dA~1i
05 00:05:00.530 ,4B, boc

06 00:05:00.545 ,4B,2amp

07 ddd | pitdd | 41Gddud |

08 00:05:00.571 ,4B,RE: 0

09 00:05:00.572 ,4B,nvmiya | dd | id

10 Wi ?7idpud | updi | | duddd
11 diipii
12 puiidipdidid | 100U GdUALTEdTY

13 dpuuud?| Widdupdu | | 4joud | pipdiph
14 00:05:01.269 ,4B,CRC:11442a915
15 00:05:01.643 ,4B, endOpiitipti | 331
16 iidipud | ot |

17 00:05:01.793 ,4B,boot

18 00:05:02.150 ,4B, ram

19 00:05:02.167 ,4B,RE:0

20 00:05:02.168 ,4B,nvm

21 00:05:02.168 ,4B,CRC:5df3fc83
22 00:05:02.169 ,4B, end0

Figure 4.5.: Screenshot of corrupted data being recorded during testing due to a
SEFI fault.
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4.3.3. Varied Incidence Angles

To test the dependence of SEEs on the incidence angle of incoming radiation, the
devices were tested at different angles. A servo motor was used to rotate a DUT board
with one of each of the four different devices tested, in the beamline. Testing was done
with 57.6-MeV protons at 82.5°, 75°, 67.5°, 60° and 45° incidence angles. Table 4.6
lists the number of SEEs recorded for each device. Because Device D had failed earlier
in the experiment, it is not included here. While testing with a 67.5° incidence angle,
a SEL fault occurred in Device C (a AT32UC3C0512C-ALZR MCU) at an average
current around 80 mA. Because the pre-configured threshold was set to 100 mA for
this device, the SEL fault was not detected and the device failed. Fig. 4.6 shows the
corresponding SEU cross-sections, calculated using the effective fluence received by

each device, which accounts for time when the device was unresponsive or turned off.

4.4. Predicting SEU Rates in Low Earth Orbit
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Figure 4.7.: Average differential proton flux from AP8 model at ISS orbit (400 km,
51.6°) [1, §].
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Figure 4.6.: SEU cross-section versus incidence angle in the proton beamline.
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When testing the radiation hardness of a component for use in a particular environ-
ment, such as space, the tester hopes to accurately predict how the component will
behave in that environment. Testing in a particle accelerator gives information on how
a component will respond to intense radiation, but such testing most likely produces
a radiation spectrum very different from that in the actual operating environment.
In this section, the testing results obtained are combined with information about the

radiation environment seen by a spacecraft in LEO.

The average SEU rate Rggy in a known radiation environment can be determined as
the integral of the product of the SEU cross-section oggy and the differential proton

flux spectra d®/dE over the energy range [82].

do
RSEU = /E @USEU(E> -dF (4.1)

NASA’s radiation belt model, AP8, gives the proton flux spectra down to LEO and is
freely available [8]. Fig. 4.7 shows the average differential proton flux spectrum for the
ISS orbit with 400 km altitude and 51.6° inclination during both solar minimum and
solar maximum in the year 2020. Table 4.7 shows the calculated in-orbit SEU rates
and mean time between failures (MTBF) for the devices assuming 1 mm of aluminum
shielding.

Table 4.7.: Calculated proton induced OOSR for the devices tested, calculated using
SPENVIS [1].

SEU Rate MTBF
Manufacturer Part No. (/bit/day) per Device
M430FR5989SRGCREP 5.09 x 1078 1226.9 days
EFM32GG11B820F2048 9.47 x 1078 2.6 days
AT32UC3C0512C-ALZR 4.99 x 10~® 39.1 days
M2S010-TQG1441 6.10 x 1073 45.9 days

63




4.5 Conclusions

4.5. Conclusions

Four different types of MCUs or MPSoCs were tested for sensitivity to SEUs using
protons between 2.4 MeV and 57.6 MeV. Using the AP8 model for proton flux in

Earth orbit, the in-orbit error rates were calculated for each device.

The EFM32GG11B820F2048 MCUs, which has the most features and the highest
memory capacity of all of the devices tested, showed the highest sensitivity to SEEs.
When the incidence angle was reduced, the number of SEL and SEFI faults in those
devices increased significantly. The M430FR5989SRGCREP MCUs, which have the
fewest features and the lowest memory capacity, showed by far the lowest sensitivity
to SEUs and showed no sensitivity to SEL or SEFI faults during the testing. This
result could be due to the higher-density devices having smaller feature sizes for their

SRAM cells, thus making them more vulnerable to radiation effects.

The results of this experiment can be used to inform the design and reliability analysis
of CubeSat components. The appropriate selection must be made based on a combi-
nation of the system requirements and the estimated error rates evaluated against the
margin for acceptable risk. For example, although the M430FR5989SRGCREP MCUs
had the lowest error rate out of the devices tested, the limited features and memory

capacity of this devices may be insufficient for a particular application.
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5. Low-Energy Proton Effects

5.1. Introduction

As modern semiconductor technology moves towards smaller and smaller feature sizes,
devices have become vulnerable to direct ionization from low-energy protons (LEPs)
[83-85]. In the past, LEPs could be ignored because the energy imparted by the protons
through direct ionization would not cause enough movement of charge in the device
to result in a fault. However, in 2006, Rodbell et al. [83] observed large single-event
upset (SEU) cross-sections from LEPs, raising concerns that this new mechanism could
significantly increase error rates. Since then, several studies have revealed high SEU
cross-sections caused by direct ionization from LEPs in devices with smaller process
nodes, 90 nm and below [12, 86-89]. This trend raises concerns that the on-orbit SEU
rate (OOSR) will be significantly increased [75]. In this chapter, the contribution
of LEPs to the OOSR is estimated based on the results presented in Chapter 4. It
is shown that even relatively modest shielding can significantly reduce LEP flux for

CubeSats operating in LEO.

Beamline testing of LEP effects poses unique challenges due to small-scale effects hav-
ing a big impact on the outcome of the experiment, such as the beam degrading effects

of air, or the encapsulation material used in the devices under test (DUTs). Other
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studies have used methods such as removing the device encapsulation and irradiating
devices in a vacuum to minimize degrading effects [90]. However, these methods are
tedious and require specialized facilities. Higher-energy proton sources, which are often
used for radiation-effects testing, often rely on degrader blocks to achieve the desired
proton energy at the target [91]. When using a high-energy proton source, the de-
grader must be thicker to reduce the proton energies enough to study direct ionization
from LEPs. However, degrader blocks have undesirable effects on the proton beam,
such as scattering and beam straggle [12]. Beam straggle refers to the widening of the
distribution of proton energies in the beamline as it passes through degrader materials.
Simulation results showing the extent of beam straggle on a degraded 70-MeV proton

beam are shown at the end of this chapter.

5.2. Background

The primary mechanism that produces soft errors in CMOS devices is direct ionization
caused by charged particles passing through the sensitive regions of the semiconductor
junctions, causing a movement of charge carriers. The minimum movement of charge
needed to induce a fault is the critical charge. For example, in the case of an SRAM
latch with cross-coupled inverters, the critical charge is the minimum charge that must
be transferred to one of the two storage nodes that will flip the state of the latch. As
feature size becomes smaller, so does the critical charge, thus devices are increasingly

vulnerable to radiation effects [92, 93].
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Figure 5.1.: Cross-section of alpha particle production caused by collisions of high-
energy protons with silicon atoms (adapted from [9] with permission; see Appendix

F).
5.2.1. Alpha Particles Induced Soft Errors

In past technologies, the most significant naturally occurring cause of soft errors has
been alpha particles emitted from high-energy particle collisions or isotopic decay in
the device materials [38]. The onset of alpha particle production from proton collisions
in silicon starts at an incident particle energy of about 10 to 20 MeV, as shown in Fig.
5.1. Previous testing methods with proton beams often focused on using higher proton

energies, to determine the worst-case error rates [77].

5.2.2. Direct lonization from Low-Energy Protons

As the incident particles slow down and come to rest, the rate of their interactions
with the surrounding material increases, thus the local energy deposition comes to a
maxima called the Bragg peak [38]. Fig. 5.2 shows the linear energy transfer (LET)

of low-energy alpha particles and protons in silicon. The higher mass and charge of
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Figure 5.2.: LET of protons and alpha particles in silicon, from simulation data cre-
ated with SRIM [10].

alpha particles result in much higher LET compared with protons. However, in smaller
technology-node devices, the LET of protons around the Bragg peak can be sufficient
to cause soft errors, thus introducing a new fault mechanism that requires through
consideration and revised testing methods. Some proposed new methods from the

literature are discussed below.

5.2.3. Minimally Degraded Beam

Some testing facilities have been specially designed to minimize the perturbing effects,
such as beam straggle, caused by degrading materials. The Vanderbilt University
School of Engineering’s Pelletron accelerator [90] allows testing in a vacuum and uses
only thin gold foils in the beamline to minimize scattering. Thus it is an ideal platform
for high-fidelity characterization of LEP effects. In [11], Dodds et al. present measured
proton SEU cross-sections, as shown in Fig. 5.3A. This specialised facility minimizes

energy loss, beam straggle, angular scattering, and flux attrition. Flux attrition refers
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to a reduction in the particle flux reaching the DUT because some of the particles
come to a stop in the beamline material. Fig. 5.3B shows that the measured SEU
cross-sections correlate with the increased LET of protons in silicon at the Bragg

peak.

5.2.4. LEP Testing with High-Energy Protons

High-energy proton sources, such as the TRIUMF Proton-Irradiation Facility [55], are
often used to test devices for aerospace applications. In [12] Dodds et al. show that the
physics of proton energy loss in matter causes the spectrum from high energy proton
sources that pass through degrading materials to always converge to a qualitatively
similar energy spectrum at low energies (less than 5 MeV). This is demonstrated in
their simulated results shown in Fig. 5.4. Thus Dodds et al. propose that a degraded
70-MeV beam can be used as a practical test environment to predict the contribution of
LEPs on error rates in a space environment. This method can be applied without the

need to remove the device encapsulation for testing and without detailed knowledge

of the IC design [12].

5.3. Simulated Energy Spectra for TRIUMF BL2C

The experiment presented in Chapter 4 was conducted at beamline 2C (BL2C) at
TRIUMF [55]. For this experiment, a 70-MeV proton beam was emitted from the
particle accelerator. As the protons travel through the various materials along the
beamline, they lose energy. Variations in the paths taken by each individual proton
result in a distribution of energies called the energy spectrum at the DUT. To determine

the energy spectrum the effects of all the various materials along the beamline must be
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Figure 5.3.: A) Measured proton SEU rates using minimally-degraded LEPs on an

SRAM device with its encapsulation material removed (from [11] © 2015 IEEE), and
B) LET of protons in silicon, from simulation data created with SRIM [10].
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Figure 5.4.: Simulation results showing energy spectra of degraded high-energy pro-
ton environments in space and in ground testing, demonstrating that a degraded
70-MeV beam produces a qualitatively similar spectra compared with the LEO and
geosynchronous space environments (from [12] © 2014 IEEE).
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Figure 5.5.: Energy spectra (simulated in SRIM [10]) of protons reaching the DUT
at TRIUMF’s BL2C for different degrader thicknesses, with an initial beam energy
of 70 MeV. The LET of the protons is indicated by the shaded gradient.

considered. Fig. 5.5 shows the energy spectra of protons reaching the DUT for different
degrader thicknesses, simulated with SRIM [10]. A schematic diagram along with a
list of the materials and their thicknesses along the simulated beamline is provided in

Appendix A. The device encapsulation is modelled as 0.5 mm of epoxy.

As the degrader thickness is varied, it changes the probability that a proton will reach
the sensitive volume of the DUT with its energy within the narrow range of the Bragg
peak. Based on the simulated beam spectra, Fig. 5.6A shows the probability that a
proton will have an LET greater than 0.2 MeV cm?/mg when it reaches the DUT. This
result suggests that a degrader thickness around 28.5mm is appropriate to measure
SEU rates from LEPs. Fig. 5.6B shows the measured SEU cross-section data, plotted
according to the degrader thicknesses used. The result appears slightly shifted com-

pared with the simulation result. Improved modeling of the device encapsulation could
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Figure 5.6.: A) probability that a proton will have an LET greater than the given
thresholds and B) the measured SEU cross-sections, from Chapter 4, organised by
degrader thickness.

possibly improve the accuracy of the simulation.

5.4. Impact of LEPs on Error Rates in LEO

As shown in Fig. 5.7, the measured SEU cross-sections were significantly higher at lower
proton energies for two of the DUTs from Chapter 4, indicating greater sensitivity to

direct ionization from LEPs:
1. EFM32GG11B820F2048, manufactured with a 90-nm process [78].
2. M2S010-TQG1441, manufactured with a 65-nm process [80].

The most significant contributor of radiation-induced faults on satellites in LEO is
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Table 5.1.: Variation in OOSR with four thicknesses of aluminium shielding for the
EFM32GG11B820F2048 MCU, calculated using SPENVIS [1].

Aluminium Percent Reduction
Thickness in Average SEU Rate
0 mm 0%
0.370 mm 91.5%
1.853 mm 94.0%
7.410 mm 96.2%

the South Atlantic Anomaly (SAA), where the Earth’s inner Van-Allen radiation belt
comes closest to the Earth’s surface [21]. Using shielding materials in this proton-rich
environment reduces the LEP flux reaching devices, as shown in Fig. 5.8, because LEPs
come to a stop in the shielding material. Radiation belt proton flux is highest during
periods of lower solar activity because the slower-moving solar energetic particles are
more easily captured in the Van-Allen belts [94]. Thus, Fig. 5.8 considers a solar

minimum as a worst-case scenario.

Table 5.1 shows the percent reduction in OOSR produced by various thicknesses of
aluminium shielding, for the EFM32GG11B820F2048 MCU. This shows that the con-
tribution of LEPs to OOSR can be significantly mitigated by modest shielding, which
is generally already provided by the satellite’s solar panels and mechanical struc-
ture. This result is consistent with the conclusions from the AO-85 CubeSat that
was launched in 2015 to a 792-km apogee, 499-km perigee, 65° inclination orbit. The
AO-85 CubeSat included a LEP experiment payload to investigate the contribution of
LEPs to the OOSR of a commercial SRAM device that was shown to be sensitive to
LEPs in ground-based testing [48]. That mission concluded that LEPs did not appear

to contribute significantly to the measured OOSR.
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Figure 5.7.: Measured SEU cross-sections of two devices showing sensitivity to direct
ionization from LEPs, from the test results presented in Chapter 4. The degrader

thicknesses used for each datapoint are shown at the top.
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Figure 5.8.: Trapped proton spectra for different aluminium shielding thicknesses at
a 400-km altitude during a solar minimum, calculated using SPENVIS [1].
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5.5. Conclusions

This chapter focused on investigating the contribution of direct ionization from LEPs
on SEU rates in devices with smaller process nodes, particularly in the context of
CubeSats operating in LEO. Previous assumptions that LEPs could be ignored are no

longer valid for devices with process nodes at 90 nm and below.

Direct ionization from LEPs has been shown to be an important mechanism causing
SEUs in new devices [75]. However, for CubeSats operating in LEO, relatively thin
shielding can reduce the flux of LEPs that reach the sensitive devices inside by over
90%. This is consistent with the results from Sierawski et al. and the LEP payload
on their AO-85 CubeSat, which indicated that LEPs did not appear to significantly

contribute to the measured OOSR [48].

Testing the effects of LEPs presents challenges due to the significant impact of small-
scale effects. Minimizing degrading effects requires specialised facilities. Dodds et al.
show that the physics of proton energy loss in matter causes degraded high energy
proton sources to converge to a qualitatively similar energy spectra at low energies
(less than 5 MeV). Thus, a degraded high-energy beamline could be effective as a
practical test environment to predict the contribution of LEPs on soft error rates in a

space environment [12].

The simulated energy spectra for the TRIUMF BL2C beamline indicate that a de-
grader thickness of around 28.5 mm is optimal for LEP testing. This thickness results
in a higher probability of protons depositing increased energy within the sensitive vol-
ume of the DUT. The simulations presented in this study do not account for certain
factors, such as variations in ambient air pressure and DUT encapsulation thickness,

which could potentially influence the outcomes. Subsequent research could focus on
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enhancing the accuracy of these results.

7



Part II.

Design of a CubeSat Electrical Power

Supply
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6. Background — CubeSat Electrical

Power Supplies

Determination of the electrical power system requirements is a critical element in the
design of a spacecraft mission. Nearly all aspects of the mission design impact the
power system requirements to some extent. Futhermore, development of the power
system is an iterative process which aims to strike a balance between the mission

objectives and practical constraints such as size, development time and budget.

The preliminary design process of the power system for a spacecraft generally involves

these four high-level steps:

1. Requirements: Determine system-level parameters such as average and peak

power requirements, mission life, orbital parameters and spacecraft configuration.

2. Energy source: Determine the type, size and configuration of the solar array.
Most CubeSats use GaAs solar cells [95], and could use deployable or sun tracking

arrays to accommodate higher average power requirements .

3. Energy storage: Determine the type, size and configuration of the electrical
energy storage solution. Most CubeSats use lithium-ion batteries (LIBs) [96-98].

Some recent projects have used super-capacitors to accommodate higher peak
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6.1 Power Generation Requirements

power requirements [99-101].

4. EPS architecture: Determine the high-level arrangement and interconnections

of power system elements, such as converters and distribution elements.

6.1. Power Generation Requirements

The solar array must be sized to satisfy the average power requirements of the various
subsystems, throughout the entire mission life. Equation (6.1) can be used to determine

how much power the solar array must provide [102]:

( n,

e Nd
Poy >

SA Z 72[

P.T, PLTd>

where, Pgy4 is the power provided from the solar array,
Py, is the total power required for all the various loads in the spacecraft,
T, and T, are the daylight and eclipse periods per orbit, respectively,
14 is the efficiency of the path from the solar arrays, directly to the loads,

7M. is the efficiency of the path from the solar arrays, through the
batteries, to the various loads on the spacecraft.
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Figure 6.1.: Illustration of the daylight and eclipse periods of a spacecraft orbit

80



6.1 Power Generation Requirements

Solar | |eeeeeeeeeeceeeee. » | Bus Regulators
Nsa ¥ T 3

Arr ]

ay n4 no ns
r'bat
1 Py |P> |P3

l Loads

= Ne=Nsalpat P, = PR

Figure 6.2.: Efficiency elements of the EPS, where 7, is the daylight power efficiency
and 7. is the eclipse power efficiency

Bus Regulation Efficiency: The power P supplied to the various loads must also
account for the efficiencies of the bus regulators (7, 12, 13) along the power path, as
shown in Fig. (6.2). State-of-the art integrated converters can easily achieve efficiencies

around 95% or better [41].

Battery Module Efficiency: The battery module efficiency depends on many fac-
tors such as temperature, end-of-charge voltage, the charging/discharging current,
and overall battery health, which deteriorates throughout the mission. [96-98]. A
room temperature battery with a charging/discharging current of 1C has an overall

charging/discharging efficiency of around 95 % [103].

Solar Array Efficiency: The solar array efficiency also varies with operating condi-
tions and degrades over time due to ionizing radiation [104, 105]. In LEO, GaAs solar
cells degrade at a rate of approximately 2.75% per year [102]. All of these variables

must be considered to guarantee operability throughout the entire mission life.
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6.1 Power Generation Requirements

6.1.1. Solar Power Modeling

The illumination experienced by a solar array in a given orbit varies based on the
time of year, the geometry of the spacecraft, and the sun tracking capabilities of the
spacecraft. The Systems Tool Kit (STK) software environment is a physics-based tool

for modeling and simulating complex systems on their operational environment [106].

The EPS design presented in this thesis is intended to be a versatile open-source design
that can be applicable to a variety of different CubeSat missions, with only minor
modifications. The proposed design is also intended to be included on a technology
demonstration payload on the University of Alberta’s Ex-Alta 3 CubeSat, currently
in development at the time of writing. Thus as a case study for deriving the power

handling requirements for the proposed EPS, the Ex-Alta 3 mission will be considered.

6.1.2. Ex-Alta 3 Mission Parameters

The primary payload of the Ex-Alta 3 mission will be a multi-spectral camera and the
estimated launch for this mission is in 2025, into a 450 km altitude sun-synchronous
orbit [107]. The mission design proposes a 3U CubeSat, possibly including deployed
solar panels for additional power capabilities. The most common size for CubeSat
missions is 3U [3] and the use of deployable solar panels puts Ex-Alta 3 towards the
upper limit of the target audience for the EPS design proposed in this thesis. Thus,
considering the power handling requirements of this mission provides a benchmark
set of requirements that is likely to be applicable to a large portion of LEO CubeSat

missions.
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6.1.3. Solar Panel Configuration

Four different solar array designs are considered, as shown in Fig. 6.3. Simulation re-
sults from STK (provided by Max Schatz of the AlbertaSat Power System Team) were
used to determine the energy generation and the peak power per orbit for each config-
uration, as shown in Fig. 6.4. The simulations considered a 450-km sun-synchronous
orbit, with an orbit period of 90 minutes and the local-time of the ascending node

(LTAN) at noon such that the orbit plane intersects the sun, as shown in Fig. 6.5.

Legend:
=3 Earth facing vector

Configuration-0 Configuration-1 Configuration-2 Configuration-3

Figure 6.3.: Different solar array configurations for a 3U CubeSat
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Figure 6.4.: A) Energy generation per orbit and B) peak power generation for the dif-
ferent solar array configurations in Fig. 6.3, based on STK simulation data provided
by Max Schatz of the AlbertaSat Power System Team
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Figure 6.5.: Illustration of the noon-LTAN orbit used for evaluating the different
solar array configurations.
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The results in Fig. 6.4 show that the highest peak total power generation is approxi-
mately 20 W. Adding a 20 % contingency factor shows that a power rating of 24 W for
the MPPT converters on the proposed open-source EPS will be applicable to most 3U

(or smaller) CubeSat missions.

6.2. Power Budget

Another critical step in satellite power system design is to determine the power con-
sumption requirements of the various subsystems throughout the mission. This iter-
ative process aims to optimize mission success within the constraints of the CubeSat
form-factor and the mission parameters, such as size, mass, and cost. This section
outlines the key components involved in determining the power budget for a CubeSat,

focusing on the Ex-Alta 3 mission as an illustrative case study.

Table 6.1 shows the estimated power consumption requirements for the various sub-
systems on the proposed Ex-Alta 3 CubeSat. A comprehensive power budget analy-
sis must also encompass all other operating modes of the satellite, such as early life
commissioning, power safe modes, etc. For brevity, the hypothetical power budget
presented here only considers the science mode — an operating mode with all payloads

and communications are functioning at their intended duty-cycles.

The hypothetical power budget in Table 6.1 shows that the power consumption re-
quirements for the Ex-Alta 3 mission are 34.2 W for total peak power and 20.1 W for
average power. These results will provide some context to the power ratings of the bus

regulators for the open-source EPS proposed in this thesis.
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Table 6.1.: Hypothetical power budget for the proposed Ex-Alta 3 CubeSat mission,
based on parameters provided by the AlbertaSat Power System Team

Peak Average Duty Energy
Subsystem Power Power Cycle per Orbit
Command and data handling 2.0 2.0 100 3.00
On-board processing 6.0 6.0 2 0.18
Communications (UHF) 7.9 0.3 100 0.45
Communications (S-Band) 5.0 0.9 10 0.14
Payload-1 (Imager) 8.0 8.0 18 2.16
Payload-2 (Magnetometer) 1.0 1.0 100 1.50
Attitude determination and control 3.5 1.5 18 0.40
GPS module 0.3 0.3 100 0.45
EPS control circuitry 0.5 0.1 100 0.15
Maximum Total System Power 34.2 20.1 100 8.43
Units: (W) (W) (%) (Wh)
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7. CubeSat Electrical Power Supply

7.1. Introduction

CubeSat, a class of miniaturized satellite, emerged in the early 2000s as a cost-effective
platform for space research [15]. By standardizing a compact form factor, CubeSats
provide an affordable and accessible means of conducting scientific research, technology
demonstrations and educational activities in a space environment. With an extensive
range of potential payloads, CubeSats have proven to be highly versatile. Their rel-
atively low cost has opened up space exploration to a wider range of participants.
Despite their small size and reduced robustness, CubeSats can perform substantial
and valuable tasks in space at relatively low cost, including roles in lunar expeditions

[108].

The development of an efficient, reliable and adaptable electrical power supply (EPS)
is critical to the successful operation of any space mission. Power system failures are
suspected to be the single largest cause of spacecraft failures [53]. Given the stringent
size and weight constraints, designing a reliable and efficient power system for a Cube-
Sat presents a significant challenge, especially for an inexperienced design team. The
effectiveness of the EPS directly impacts overall mission success. This work introduces

an innovative, open-source design of an EPS for CubeSats that optimizes reliability,

87



7.1 Introduction

efficiency and flexibility. The design uses a parallel, multi-channel, mazximum power

point tracking (MPPT) architecture and includes several novel advanced features:

o A conservative solar panel power point control feature that automatically acti-
vates when MPPT software is inactive, such as when recovering from a fully-

discharged battery state.

» A charge/discharge inhibit mechanism that allows battery discharge and heating
when the batteries are too cold for safe charging. Furthermore, this feature could
allow for reducing the heater power during eclipse until just before returning to
sunlight, thus avoiding unnecessary heating of the batteries while solar power is

unavailable.

» A transistor-based power inhibit circuit (for switching off all power before the
satellite is deployed) that reduces power wastage by preventing conduction losses,
which would typically occur in switch wiring. It also mitigates the magnetic mo-
ment created by current-carrying wires that could disrupt the CubeSat’s attitude

control system and any other magnetometer instruments.

o Intelligent sensors which rapidly decouple power in the event of over current and
monitor key parameters, such as current, voltage and temperature, only alert the
microcontroller during system-critical conditions like over-current events. This

autonomy reduces power consumption by eliminating the need for polling.

o A jumper matrix to supply regulated (e.g.: 5V, 3.3V, 1.2V) or unregulated bat-
tery bus voltage to each of the 18 output channels, and a software feature that

synchronizes the fault response of codependent channels.

o Adaptive over-current fault detection that compensates for the gradual increase

of leakage currents caused by accumulated total-ionizing dose (TID) effects over
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Figure 7.1.: Photograph showing a fully implemented prototype of the proposed
open-source EPS design.

the course of the mission.

By leveraging open-source hardware and software, this project is intended to promote
collaborative and cost-effective development. A prototype EPS has undergone ex-
tensive testing, demonstrating the expected functionality, efficiency, reliability, fault
tolerance and thermal management. This chapter presents the proposed EPS design,

prototype implementation (shown in Fig. 7.1), and functional test results.

7.2. Motivation

The initial motivation for this work originated from the student-led development of

the Ex-Alta 1 CubeSat at the University of Alberta [4]. Like in many other university
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CubeSat projects, a commercial-off-the-shelf (COTS) power system was purchased.
Although successful, the relatively high cost, long procurement time and a lack of access
to the proprietary design details of the purchased EPS were significant challenges for
the Ex-Alta 1 team. In-house development of a power system would have ensured full
control of all the design details to ensure optimal support for the mission. However,
developing a reliable power system from scratch is a substantial task, especially for
a relatively inexperienced team. The proposed open-source project aims to provide
a versatile EPS design that is freely available and that will over time benefit from

collaborative development from multiple groups.

7.3. Power System Architecture

The architecture of a satellite power system typically includes: an energy source (such
as solar panels), energy storage (such as batteries), and power regulation and distri-

bution. This section presents the design of a partially regulated architecture using:

 parallel multi-channel MPPT solar-array converters for maximizing power pro-

duction from the solar arrays,

o charge current supplied directly to the battery bus from the solar array converters

and
« a versatile hybrid of centralized and distributed power bus regulation.

A recent study comparing MPPT architectures for CubeSats shows that a parallel
multi-channel MPPT architecture provides the best overall performance with respect
to efficiency, reliability and battery health [109]. The DET architecture proposed in

[110] reduces the number of single points of failure with a modest reduction in solar
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power utilization, which is mostly compensated for by avoiding converter efficiency
losses. However, recent advances have enabled high power density integrated switching-
mode power supply regulators to achieve very high efficiencies of 95% and above [41],
which tips the scales in favor of MPPT. Furthermore, small footprints could allow for

multiple redundant converters, improving fault tolerance.

Distributed bus regulation reduces conduction losses [110] and improves thermal distri-
bution [111] but also requires point-of-load regulation, potentially resulting in increased
system complexity and mass. A versatile hybrid solution is proposed using a jumper
matrix to select regulated or unregulated power independently for each output channel,

optimizing both efficiency and reusability, as shown in Fig. 7.2.

BATTERY

CONVERTER _’14_ CONVERTER
WITH MPPT WITH MPPT

CONVERTER = = CONVERTER
WITH MPPT WITH MPPT

POWER DISTRIBUTION
18 Independent Output Channels w/
Current & Voltage Monitoring/Protection

Figure 7.2.: Architecture of the proposed EPS.
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Table 7.1.: Comparison of specifications of this work with similar COTS EPS prod-

ucts
| EPS-1 (this work) | EPS-2 [113] | EPS-3[112] | EPS-4 [114] |

Product Name openEPS NanoPower P31u | NanoAvionics EPS iEPS Type A
Solar panel input voltage 3to 18V up to 8.5V 2.6 to 18V 3.5t015V
MPPT solar input channels 4 3 4 3
Solar input per channel up to 3A up to 2A up to 25 W up to 2A
Solar converter efficiency Up to 97% Up to 96 % Up to 96 % unpublished
Regulated bus voltages 1.2,3.3,5.0V 3.3,5.0V 3.3,5.0,3 — 12 V** 3.3,5.0V
No. of switched outputs 18 10 10k *
Operating Temperature***** —40 to 105°C —40 to 85°C —40 to 85°C —40 to 85°C
Mass 90¢g 100 g 190 g*** 184 g***
Height 9.8 mm 15.3 mm 19.0 mm™*** 11.3mm

* Outputs are always ON and loads are responsible for managing their own connection to the bus.

** An optional resistor programmable buck-boost converter can supply 3 to 12V.

*** Includes batteries.

6% Expandable to 18 outputs with an optional expansion board.

*HHRE The referenced work also uses LIBs which typically have an operating temperature range of —20 to 60°C [115]

7.4. Design Overview

One of the defining characteristics of the CubeSat concept is to establish a standard
form factor so that reusable subsystems can be developed and shared within a budget-
constrained satellite developer community [15]. Many CubeSat subsystems are now
available commercially as COTS products, applicable to many CubeSat missions. The
proposed EPS design has the same goal, but with the added benefits of collaborative
open-source development. Table 7.1 compares the technical specifications of this work
with state-of-the-art commercial CubeSat EPSs. The next most capable COTS EPS to
this work in its specifications is the NanoAvionics EPS (EPS-3 [112]). The proposed
EPS is more versatile in terms of output channel configuration (because of the jumper
matrix feature) and includes a generous 18 software-controlled and current-protected
output channels on a single board. A detailed diagram showing the various hardware
components and their interconnections for the proposed EPS is shown in Fig. 7.3 and

the design of the novel features is presented below.
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Figure 7.3.: Detailed block diagram showing the elements and interconnections of
the proposed EPS design.
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7.4.1. Solar Power Regulation

The Linear Technologies LTC3119 buck-boost converter [116] is chosen as the solar
power DC-DC converter. Multi-junction GaAs solar cells are commonly used because
of their high efficiency and radiation-tolerance. These solar cells typically produce an
open-circuit voltage of 2.7V per cell at room temperature [13] and CubeSats typically
have 2 to 6 cells per facet, resulting in an overall voltage range of 5.4 to 16.2V. The
operating range of the LTC3119 converter is 2.5 to 18 V, making it a suitable match.

Selection of the LTC3119 converter is also supported by the following factors:
o High efficiency, small footprint and low part count

o Integrated MPPT feature, which regulates the average inductor current and thus

the input voltage from the solar array
» Proven space heritage from past missions [117].

To enhance the MPPT capabilities, a novel approach is employed, adding a control
circuit with a digital-to-analog converter (DAC) that is controlled by a microcon-
troller (MCU) via a Serial Peripheral Interface (SPI), as shown in Fig. 7.4. When the
battery voltage is sufficient for the DC bus regulators to be active, the DAC circuit
allows for software control of the MPPT, resulting in dynamically maximized tracking
efficiency. When the battery voltage is insufficient, the DAC control circuit is auto-
matically isolated and the resistor divider (R; and R, in Fig. 7.4) takes over, providing
a conservative fixed power point setting (based on the maximum expected solar cell

temperature) to ensure charging can occur while the microcontroller is unpowered.

Selecting the default solar array voltage (Vg, r,) programmed by the R;,Rs resistor

divider is guided by two main criteria:

1. Ensure that solar power extraction is always possible, including at high solar cell
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_____________________________________________

| SOLAR o

3.3V

T
o AR
LTC3119 I I
Buck-Boost

Controller
12-bit DAC

Powered from 3.3V
Bus Regulator

Figure 7.4.: Schematic of solar panel regulator with MPPT control.

temperature, which produces lower input voltage.

2. Maximized power extraction. Maximum power extraction is achieved at the
maximum power point (Vj,p) of the power-voltage curve of the solar array, as

shown in Fig. 7.5.

The characteristics of the solar cells vary with environmental conditions such as tem-
perature, as shown in Fig. 7.5. If Vg, g, is greater than the open circuit voltage of
the solar array, then the solar array voltage will never reach the threshold required
by the MPPT control circuit. This will result in zero power generation and is an un-
recoverable failure mode. Thus, Vg, g, is conservatively chosen to be the maximum
power point at the maximum expected temperature, which is about 75 to 94°C for

small satellites in low Earth orbit (LEO) [118].

Maximum Battery Voltage and Current To avoid damage to the batteries, it is
important to limit the maximum voltage applied while charging [96]. In case the
power demands of the CubeSat are low, the LTC3119 converter will become output-

regulated, limiting the voltage applied to the batteries to a safe resistor-programmed
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Figure 7.5.: PV curves of a GaAs Solar Cell at different temperatures, with the max-
imum power point indicated for 28°C [13]

voltage. Battery discharge current is monitored by an overcurrent protection circuit.
Output channels can be assigned a priority level and automatically switched off when
battery discharge current is too high or when battery voltage is too low. In future
work, battery charge current limiting could be achieved by implementing a control
scheme that automatically perturbs the operating point of the solar cells away from

the maximum power point.

7.4.2. Battery Charge or Discharge Inhibit

Rechargeable lithium-ion batteries (LIBs) have emerged as the preferred energy stor-
age solution for CubeSat applications because of their high energy density [100]. A
limitation of popular LIB cells reported in the literature is that operating at temper-
atures below 0°C sharply diminishes the performance and accelerates aging, reducing
the useful life of the cells [119]. This is particularly significant during charging because

of irreversible lithium plating of the cell anode that could cause short circuits or even
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Figure 7.6.: Schematic showing the novel discharge-only mode. When the Charge
Enable signal is low, the charge current is blocked, while the discharge current
passes through the bypass diode.

battery thermal runaway and explosion [119]. Therefore, the charging current should
be blocked when the cell temperature is below 0°C to protect the cells from damage.
Discharge performance, on the other hand, is primarily limited by low ionic conduc-
tion, which sharply diminishes below —20°C [119]. Therefore, between —20°C and
0°C, it is possible to discharge the batteries to operate satellite loads and power the
battery heaters to heat the battery cells up to an acceptable charging temperature.
In this work, a solution is proposed to selectively inhibit charging and/or discharging
using two independently controlled transistors, as shown in Fig. 7.6. When charging is
disabled, the discharge current will flow through the bypass diode of the charge enable

transistor.
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7.4.3. Power Inhibit Switch

CubeSats are typically deployed from spring-loaded rectangular pods, such as the
NanoRacks CubeSat Deployer system [120], from the International Space Station. To
ensure astronaut safety and to prevent interference with the deployer, CubeSats must
be powered off while stowed in the pod. Thus, three independent inhibits are required
to disconnect the battery and solar power while the CubeSat is stowed. The advantages

of using transistor inhibits are:

Avoid conduction loses in the alternative high-current switch wiring that would

otherwise be required.

o Lower mass and eased mechanical design because of smaller switches and thinner

wires.

e Avoid magnetic moments from switched wiring that could interfere with sensors

or attitude control.

o Furthermore, this solution provides a power-on reset mechanism that can be

triggered to power-cycle the satellite in case of an anomaly.

In this work, a transistor inhibit solution is proposed, as shown in Fig. 7.7. Mechanical
switches on the CubeSat external toggle the transistor gates to inhibit the power while
the CubeSat is stowed. Several remove-before-flight (RBF) jumpers are included to
override the inhibits during ground testing. The battery charge or discharge inhibit

feature, discussed in the previous section, is also incorporated.

98



7.4 Design Overview

Always ON Always OFF

Legend:
Jumper t Jumper t _
I N T Remove-before-flight Jumpers

T Switches that are kept open until
the satellite is deployed in orbit

Watchdog | |

Inhibit Switches %

g

Solar
Power [

Ground -

Charge !

Enable

Jumper t
Charge Charge
Enable _l l_ Enable
Discharge _| Discharge
Enable Enable

Figure 7.7.: The novel transistor-based power system inhibit switch circuit, support-
ing separate control over charge and discharge.
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5.0V Configuration Battery Voltage Configuration

Figure 7.8.: A jumper configuration design that provides four different bus connec-
tion options, to maximize flexibility and hence reusability.

7.4.4. Output Configuration Jumpers

Because there is no industry standard on pin assignment, ensuring compatibility of
subsystems is a challenge for CubeSat developers. To maximize reusability, the pro-
posed design includes a jumper matrix, shown in Fig 7.8, that allows each of the 18
output channels to be connected to the either the unregulated battery voltage, or to
one of three regulated buses. For unused channels, the corresponding output channel
components or just the current sense resistor can be left unpopulated to isolate the

stack pin from the EPS.
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7.4.5. Interfacing and Control

There are two main objectives when designing an EPS subsystem: 1) reliable and
capable hardware (discussed above); and 2) an interfacing and control scheme that
ensures high availability for the user and that preserves functionality despite anomalies
such as partial subsystem failures. This section discusses some of the key features of

the interfacing and control scheme developed for the proposed design.

CANbus Interface The controller area network bus (CANbus) is a standard multi-
master serial bus that connects multiple nodes together using differential wired-AND
signals [121]. A major advantage of this interface for CubeSat applications is that
it allows direct bi-directional communication between any two subsystems, without
requiring a host computer in-between. Thus in the event of a failure of the on-board
computer, the CubeSat would still be operational with the EPS and radio subsystems

alone. The EPS also supports control via synchronous or asynchronous serial interfaces.

Power Saving Sensors To maximize the overall efficiency of the EPS, the power
consumption of the control circuits should be minimized. In this work a network of
low-power integrated sensors is used, with programmable threshold value registers.
During initial startup, the microcontroller initializes all of the sensors with threshold
values and then enters a low-power sleep mode, waiting for the next interrupt or
timed event. If a threshold value (such as maximum current or voltage) is violated,
the sensor immediately turns off the affected channel and sends an interrupt signal
to wake up the microcontroller. The microcontroller then logs the event and takes
appropriate action, such as attempting to restart the affected channel. Wake-up can

also be triggered by the real-time clock (RTC) for scheduled events (such as turning a
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Figure 7.9.: Flow chart showing the different events that can trigger a wake-up.

load on at a specified time) or when commands are received from other subsystems over
the serial or CANbus interfaces. Fig. 7.9 summarizes the wake-up interrupts scheme.
Additionally, the sensors themselves each have low-power shutdown modes for when

not in use, such as when an output channel is switched off.

Output and Bus Monitoring Voltage, current, and temperature sensing and thresh-
old monitoring are achieved using bus monitoring circuits, and temperature sensors.
The sensor locations are shown in Fig. 7.3. The temperature sensors are positioned to
have thermal contact with the microcontroller and with each of the seven inductors.

Each output channel can be configured with a different over-current threshold value.
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Battery and Solar Array Interfaces The interfaces of the battery module and solar
array include several features. An inter-integrated circuit (12C) interface connected to
bus current and voltage monitoring circuits and temperature sensors on the battery
module. This 12C interface allows control of the battery charge/discharge inhibit
circuit and battery heaters. Additional 12C interfaces to each of the eight solar array
connectors (two for each MPPT converter) allow temperature and light sensors to
be implemented on each solar panel facet, and also provide an interface to actuate
deployment of antennas, instruments, folding solar panels or any other deployable

elements.

Software Features The real-time software architecture was developed by Junqi Zhu
and is described in detail in his MSc thesis [122]. Some key features that improve

operability are:

1. Back-up of persistent configuration data, such as sensor threshold values, to

protect the system from data corruption.
2. A software-controlled maximum power point tracking algorithm.

3. Ganged-output channel operation to synchronize control of power distribution

to subsystems with multiple bus connections.

7.4.6. Fault-Tolerant Features

Reliability is a major concern for spacecraft developers because of the high cost, harsh
operating environment and the lack of physical access after launch. For large non-
military spacecraft, long operational lifetimes are required to justify the high devel-

opment cost. CubeSat missions usually reduce the reliability and operational lifetime
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requirements in favor of much lower cost and faster development. Nonetheless, relia-
bility is still a significant concern, and a balance is needed to optimize the trade-off

between cost and reliability.

Supervisor Circuit The supervisor watchdog circuit is used to enhance fault tolerance
and operational reliability, safeguarding against potential software errors, unexpected

behaviors and environmental challenges. The key features are:

o During correct firmware operation, the MCU sends a periodic pulse to the watch-
dog circuit. If the MCU fails to send a pulse signal to the watchdog timer within
the timeout period, the watchdog circuit will automatically trigger a power cycle
of the entire satellite, allowing the system to recover from many potential soft-
ware errors or faulty behaviors caused by radiation. The reset duration is the
elapsed time from the moment a reset is triggered until the moment the power
is restored to the system. Both the timeout period and reset duration of the
watchdog circuit are programmable up to a maximum value of 10 seconds. A re-
set duration of 5 seconds was used during testing and was consistently sufficient
to allow charge stored in capacitors throughout the subsystems to dissipate, to

ensure a complete power cycle operation.

o The battery voltage level is continuously monitored by the watchdog circuit and
will shut down the satellite subsystems if the battery voltage falls below a resistor-
programmable threshold. This limits the degree of discharge, thus extending the

operational lifetime of the batteries [96].

o The independent reset input of the watchdog circuit allows other fault detection
mechanisms or supervisor circuits in the system, such as over-current sensors, to

trigger a power-cycle operation.
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Figure 7.10.: Schematic of the main supervisor circuit, built around the
MAXI16998A.

o The EPS firmware implements multiple software watchdog timers with config-
urable timeouts, reset mechanisms, and effects. The effects can be to power cycle
a supply channel, a group of supply channels, or (after a longer programmable
time-out) power-cycle the entire satellite. In addition to each EPS firmware pro-
cess being checked by a software watchdog timer, satellite subsystems including
the main computer and ground communication subsystem can send messages to
reset their respective software watchdog timer in the EPS. One of the software
watchdog timers could be reset by a ground station command, ensuring that the
satellite would be power cycled if anything were preventing communication with

the ground station.

Fault-Tolerant MCU The proposed EPS uses an MCU from the Hercules TMS570
series [123], which is marketed for safety-critical automotive applications. TMS570
MCUs have been successfully used as a mission-critical component for several space-
craft missions, including NASA’s Ingenuity Mars Helicopter [124]. TMS570 MCUs

are an appealing option for CubeSats because they include several fault-tolerant fea-
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tures, at a much lower cost compared with radiation-hardened devices. Some of those

features are listed below:

« Two ARM Cortex-R4 central processor units (CPUs) operate in a redundant lock
step architecture. The results of each CPU cycle are compared by the hardware
and a disagreement will trigger a power-on reset. The CPUs are physically
rotated relative to each other to avoid common mode faults related to silicon

layout.

e« SRAM and flash memory modules are protected by a CPU-coupled (72,64)-
Hamming error correction code (ECC) that will correct single-bit errors or trigger
a reset for double-bit errors. This is particularly useful for space applications

where high levels of ionizing radiation increase the probability of data corruption.

Adaptive SEL Detection Another important consideration in intense radiation en-
vironments is single-event latchups (SELs). An SEL is a potentially destructive fault
condition that occurs in complementary metal-ozide semiconductor (CMOS) devices
when ionizing radiation causes a self-sustaining parasitic silicon-controlled rectifier cir-
cuit to form, resulting in a short circuit path and possibly catastrophic damage unless

the supply current is quickly switched off [125].

An effective and straightforward method for mitigating permanent electronic compo-
nent damage from SEL faults is continuous current monitoring with an over-current
detection threshold [126]. An SEL fault is presumed when the measured current draw
of a channel is in excess of a configured threshold value. The affected channel is
switched off for several seconds to allow the SEL to dissipate. However, selecting too
low a threshold value could result in normal behavior being mistaken for SEL faults,

while too high a value could result in a fault going undetected, resulting in possible
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damage. Accurate characterization of SEL fault behavior to determine an appropriate
threshold value for a particular device requires modeling with knowledge of the phys-
ical layout dimensions [127], or particle accelerator testing which is often too costly
for CubeSat projects. To overcome this issue, an adaptive SEL over-current detection

threshold algorithm is proposed with the following features:

o The over-current detection threshold can automatically be adjusted upward as
the satellite the satellite is exposed to radiation and the current consumption
increases. Without this feature, the satellite could get trapped in an over-
current protection power-cycling loop where the satellite operator is unable to
send a command to adjust the current limit. The static current consumption of
CMOS devices increases with accumulated total radiation dose effects that cause
a gradual breakdown of gate oxides, resulting in increased leakage currents [37].
Frequent over-current trips on a particular power channel (parameter settable)
causes the over-current threshold for that channel to be increased to allow for

greater current consumption due to these total radiation dose effects.

o The satellite operator can also adjust the configured threshold values, based on
an assessment of diagnostic data. For example, if error reporting indicates that
erroneous SEL detection is repeatedly interfering with a normal function, the
operator could choose to adjust the threshold accordingly. Each output channel

can be configured with a different over-current threshold value.

7.5. Converter Testing

A complete hardware prototype was implemented and tested in a lab setting to assess

its performance and verify its functionality. One of each converter design was tested
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Figure 7.11.: Instrumentation and test setup to measure converter performance.

in isolation to assess the efficiency, output ripple voltage, and load regulation with
different constant current loads. The test setup and instrumentation used are shown

in Fig. 7.11.

7.5.1. Solar Power MPPT Converter

The solar power MPPT converter (designed using the LTC3119 buck-boost converter
controller) was tested in isolation. Fig. 7.12 shows the measured efficiency and ripple
voltage versus input current at different input voltages. For lower input voltages, the
converter operates in the less efficient “boost” mode. Also, when the output power is
low, the converter operates in a “frequency modulating” mode that improves efficiency
under light load but significantly increases the ripple voltage [116]. The battery is not
significantly impacted by voltage ripple and any large ripple voltage will be largely
blocked by the power bus regulators before reaching devices that could be sensitive to

the ripple.

The MPPT control operation was tested using two illuminated GaAs solar cells con-
nected in series. Fig. 7.13 shows the input power and input current versus the config-
ured output value of DAC in the MPPT control circuit. The results show the correct

characteristic curves of the solar cells, demonstrating the ability of the MPPT control
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LTC3119 Efficiency vs. Input Current
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Figure 7.12.: Test results for the solar power LTC3119 converters showing efficiency
and output ripple versus the input current.
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Figure 7.13.: Test results for the LTC3119 converters with a solar panel connected,
showing the power point tracking capability using the DAC control circuit.

circuit to linearly control the solar array operating point across the desired operating

range. The MPPT control circuit actively regulated the solar input voltage to maintain

peak solar cell efficiency under varying loads and illumination. The MPPT algorithm

in the firmware uses a perturb-and-observe algorithm to seek the optimal input voltage

setting for the current solar cell temperature.

7.5.2. Power Bus Regulators

The regulated bus voltages (1.2V, 3.3V, and 5.0V) are produced using TPS53319
buck converter controllers . Each bus voltage regulator was tested in isolation. For

each converter, the measured efficiency and ripple voltage versus input current are
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shown in Fig. 7.14 for four different input voltages. When the output power is low,
the converter operates in a frequency-modulating mode that improves the efficiency

under light load.

7.5.3. Microcontroller Low-Power Mode

The current consumption of the 1.2-V bus to the EPS microcontroller was measured
with a 16-MHz oscillator during active mode (153.5mA), and low-power sleep mode

(6.9mA), confirming a 96% reduction in power consumption.

7.6. Conclusions

An open-source EPS for CubeSats was presented, which has advanced features that
improve reliability and versatility. This EPS has been tested to verify its functionality
and converter performance. Future testing will include vacuum thermal cycling in a
chamber, vibration testing and radiation testing. The primary limitation that deter-
mines whether this design is applicable to a particular mission is the magnitude of the
power handling requirements. For example, a CubeSat with a very large solar array
might produce more power at one time then the converters in this design can handle.
Although significant efforts have been made to maximize the versitility of this design,
interfacing considerations such as the number of individually controlled outputs and

the available bus voltages are also important constraints.

The EPS architecture uses a parallel multi-channel MPPT for solar array power op-
timization, unregulated battery charging, and a hybrid of centralized and distributed

power bus regulation. Each of 18 independently controlled and monitored output chan-
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nels can be connected to one of three regulated bus voltages, or to the unregulated
battery voltage. Separate battery charge and discharge inhibit circuits allows separate
temperate ranges and battery heater set points to be defined for safe charging and
discharging. A transistor-based power inhibit circuit isolates the EPS while stowed
during launch while minimizing magnetic moments and conduction loses. An adaptive
SEL detection scheme works to correct the SEL detection threshold as needed through-
out the mission. A network of integrated low-power sensors allow the EPS MCU to
remain in a low-power sleep mode, minimizing power consumption. Future work will
include integration of the battery module and solar array, and further development of

the innovative features introduced in this work.
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The rise of the versatile CubeSat, as an affordable platform for space exploration
and research, is a game changer for rapid innovations and democratized access to
space. As these satellites become increasingly complex and diverse in their applica-
tions, new solutions are needed to improve reliability while maintaining low costs and
rapid development time — two characteristics that are fundamental to the concept of
CubeSats. This thesis presented a research and development project that produced
two new open-source tools that address two important drivers of spacecraft reliability:

radiation effects and electrical power supply (EPS) design.

8.1. Radiation Effects

Purpose-built radiation-hardened devices provide the best reliability assurance for
space applications, but such devices are expensive, difficult to procure, and gener-
ally lag far behind state-of-the-art computing technology. Thus, the creators of the
CubeSat concept proposed using COTS components, with some characterization of
radiation sensitivity for critical components. This thesis presented the development of
an open-source radiation testing platform, which enables efficient and comprehensive

radiation testing within particle accelerator facilities. By offering a modular, remotely
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controlled setup, this platform simplifies experiment preparation, and maximizes the
utility of testing time, thereby promoting data-driven component selection in CubeSat
subsystem design. The proposed apparatus can hold up to 24 DUTs — four on each of
six stages that are robotically positioned in the beamline. Real-time current consump-
tion and test program data output over a serial interface is logged for each individual
DUT. Each stage can be rotated within a 90 ° range to measure radiation effects with
varied incidence angles. The final implemented prototype was used at the TRIUMF
Proton Irradiation Facility [55] to evaluate the radiation sensitivity of four different
microcontrollers. The data collected was analysed to estimate the on-orbit error rates,
as shown in Table 8.1. This result clearly shows that the EFM32GG11B820F2048
MCU has a significantly higher error rate than the other DUTs, and thus is not a
very good candidate to use when designing CubeSat subsystems. On the other hand,
the M430FR5989SRGCREP MCU shows a significantly lower error rate, potentially

making it a good option for CubeSat design.

Table 8.1.: Calculated in-orbit SEU rates for the devices tested

Manufacturer Part No. (S /]illi /132;(; pelz'd]gffi‘ce SRAM
M430FR5989SRGCREP 0.90 x 1077 16661 hours 16 kbit
EFM32GG11B820F2048 5.53 x 1077 11 hours 4096 kbit
AT32UC3C0512C-ALZR 1.38 x 10~ 339 hours 512 kbit

M2S010-TQG1441 2.52 x 1077 186 hours 512 kbit

8.1.1. Future Work

The radiation testing platform presented in Chapter 3 has demonstrated its potential
for advancing radiation tolerance evaluation in CubeSat subsystem design. However,

there are several avenues for future work that could enhance its capabilities and appli-
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cability:

Improved Faulty Behavior Handling Unexpected faulty behaviors encountered dur-
ing irradiation highlighted the need for more sophisticated fault handling methods.
Further research could focus on developing improved algorithms and software to au-
tomatically handle a broader range of faulty behaviors, ultimately leading to a more

comprehensive and efficient testing process.

Soft Reset Analysis While power cycling was effective in restoring normal operation
following faulty behaviors, the outcomes of applying soft resets in specific scenarios

could provide insights into different categories of faulty behaviors.

Real-Time Statistical Analysis Developing a console-side user interface that offers
real-time statistical analysis of recorded data could significantly enhance the platform’s
usability. This interface would enable operators to make more informed decisions in-

situ about configuring test conditions based on trends in observed error rates.
Instantaneous Flux Rate Recording

The radiation testing experiments presented in this thesis assumed a constant radia-
tion flux rate for each test. In reality, the flux rate varies somewhat over time. To
improve accuracy, recording the instantaneous flux rate throughout each test rather
than assuming a constant rate could help refine the calculation of Single Event Effects

(SEE) rates.

Enhanced Data Analysis Future efforts could focus on developing more advanced
data analysis techniques to extract deeper insights or more accurate fault rate predic-

tions from the collected data.
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Additional Testing and Collaborating Testing more devices with the proposed ap-
paratus will provide a more comprehensive database of radiation sensitivity character-
istics for various components, further assisting CubeSat developers in making informed
choices. As an open-source project, this radiation testing platform can be expected to

continue to evolve, contributing to more reliable and robust CubeSat designs

8.2. CubeSat Electrical Power Supply

An effective and reliable EPS is essential to any spacecraft. COTS EPS subsystems
are costly, can be difficult to procure, and the technical support for university groups
has proven to be quite poor. CubeSat developers need a more affordable option to
acquire a proven power system. The design of an innovative open-source EPS for
CubeSats was proposed to meet this demand. Preliminary testing of a hardware pro-
totype demonstrates the performance of the converters and solar panel power point
tracking capabilities. The proposed EPS design uses a parallel multi-channel MPPT

architecture, and introduces a range of innovative features:

o A fixed solar panel power point control engages automatically in scenarios where

MPPT software is unavailable, such as during recovery from a dead battery state.

» A charge/discharge inhibit mechanism facilitates battery heating in excessively

cold conditions (between —20°C and 0°C).

o A transistor-based power inhibit solution, that guarantees power-off status during
launch vehicle stowage, reduces power wastage by preventing conduction losses
from switch wiring. This feature also mitigates potential magnetic interference

with the CubeSat attitude control system.
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o Intelligent sensors autonomously monitor critical parameters like current, volt-
age, and temperature, alerting the microcontroller only under system-critical cir-
cumstances, like over-current events. This self-governing feature reduces power

consumption by eliminating constant microcontroller polling.

o A versatile jumper matrix enabling regulated or unregulated bus voltage al-
location across 18 output channels, supported by synchronized fault response

capabilities for co-dependent channels.

« Adaptive single-event latchup detection compenses for the gradual rise in leakage
currents due to accumulated total ionizing dose (TID) effects over the mission’s

duration.

The proposed EPS design aims to provide similar or better performance and capabil-
ities, compared with state-of-the-art COTS EPS solutions for CubeSats. Thus, this
open-source project provides a new resource for CubeSat groups to develop capable,
reliable and cost-effective power systems for their missions. In future work, the pro-
posed EPS design will be further verified with environmental testing, and a technology
demonstration aboard the Ex Alta 3 CubeSat, being developed by the AlbertaSat team

at the University of Alberta [5].

The solutions presented in this thesis have been developed with the intention of being
published under an open-source license, thus contributing to the global community
of university CubeSat groups. Hopefully, these contributions will bolster CubeSat
mission success, and promote collaborative innovation within the space exploration

community.
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8.2.1. Future Research and Development

Transistor-Based Power Inhibit Solution: Further validation and testing of the transistor-
based power inhibit solution, including its integration into the actual deployment pro-
cess and thorough hazard assessment, would be essential before it can be considered

as a reliable alternative to mechanical switches.

Thermal Management Optimization The thermal performance of the EPS, partic-
ularly in extreme temperature environments, warrants thorough evaluation and op-
timization. Conducting detailed thermal simulations and experiments would identify
potential hotspots and cold spots within the EPS assembly. Additional measures,
such as improved thermal interfaces, could be explored to ensure stable and efficient

operation.

Environmental Testing The proposed EPS design should undergo comprehensive
environmental testing to validate its robustness and performance under relevant op-
erating conditions. This includes subjecting the EPS to thermal cycling, vibration,
and radiation tests to mimic the challenges it would face in space. Testing will help

uncover potential weaknesses and allow for necessary adjustments and improvements.

Integration with CubeSat Platforms Integrating the EPS design into an actual
CubeSat would provide better insights into its compatibility and performance in real-
world scenarios. Feedback from or collaboration with CubeSat mission developers that

use the proposed EPS could help identify any challenges or areas for improvement.
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Mission-Ready Software Further development and documentation of the real-time
software architecture is necessary for mission readiness. Additionally, the EPS software
could be further optimized by developing more advanced algorithms for MPPT and

SEL fault detection, as well as implementing.

Technology Readiness Level Before the EPS can be considered to be a credible
candidate to be a critical subsystem for a CubeSat mission it must undergo thorough
validation and demonstrate its long-term reliability in a space environment. By imple-
menting the EPS as a technology demonstration payload on the Ex-Alta 3 CubeSat
mission, the EPS design would advance along the technology readiness level (TRL)
scale by gaining real-world space environment data and validation. This will help eval-
uate factors such as hardware performance, software robustness, thermal performance,

and fault tolerance.

Documentation and Knowledge Sharing Further developing comprehensive docu-
mentation for the EPS design, including detailed specifications, guidelines for integra-
tion, and operational procedures would help promote future use of the EPS design for

diverse missions.

Battery Module Development The battery module shown in Fig. 8.1, a fundamen-
tal component of the electrical power system, is currently still being developed. As a
critical energy source for the CubeSat, the battery module requires dedicated efforts.
This includes detailed design of the battery charging circuitry, and the necessary mon-
itoring and control circuits. Once the battery module design is complete, it will be
tested to ensure it meets the requirements of the NanoRacks CubeSat Deployer System

120].
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Figure 8.1.: Rendering of the unfinished battery module with four 18650 LIBs, left
as future work.

By addressing these areas of future work, the proposed EPS design can evolve from
a promising concept to a mature and reliable power system solution for CubeSats.
The collaborative efforts of the CubeSat community, along with rigorous testing and
real-world mission experience, will contribute to the overall success and advancement

of CubeSat technology.
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A. TRIUMF BL2C Details for SRIM

Simulation
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Figure A.1.: Schematic layout of the irradiation equipment in beamline 2C at the
TRIUMF proton irradiation facility (image from [14] © 2019 TRIUMF).
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TRIUMF BL2C Details for SRIM Simulation

Table A.1.: Materials and their thicknesses between the proton beam source and the

DUT for the BL2C beamline.

Description Material Thickness | Medium to Medium
Next Layer Thickness
Secondary emission monitor Al 76.2 pm Vacuum 79.95 mm
Beam exit window Steel 25.4 pm Air 152.96 mm
Beam profile monitor Al 50.8 pm Air 66.17 mm
Collimator #1 Scatterer Pb 800 pm Air 44.95 mm
Diagnostic Ion Chamber Al 101.6 pm
Air and degrader wheel* Air and Lucite | 54.95mm Air 949.9 mm
Main Ion Chamber Kapton 203.2 pm Air 509.9 mm
Approximate DUT Encapsulation Epoxy 500.0 pm

* Lucite degrader wheel thickness can be 2.23 mm to 30.44 mm.
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B. Open-Source Radiation Testing

Platform Schematics
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System Description

The openEPS Electrical Power Supply (EPS) is in-
tended for mission critical power management on
CubeSats. The system includes four independent
maximum power point tracking converters, each with
two solar panel connectors. Up to four parallel sets
of two-cell series strings (up to eight cells in total)
of lithium-ion batteries can be connected to the bat-
tery module interface. Each of 18 independantly con-
trolled output channels can be connected to any of
the regulated bus voltages, or to the unregulated bat-
tery voltage. Current, voltage and temperature sen-
sors provide comprehensive system monitoring and
threshold limit control. The system was developed
as an open source initiative at the University of Al-
berta in hopes that it will be useful to other groups
developing small, low-cost satellites.

Highlighted Features

Figure 1: Photograph showing a fully imple-
mented prototype of the openEPS for CubeSats

Four parallel MPPT converters, each with a maximum input power capacity of 24 W, and a maximum
input current of 3 A

Three regulated bus voltages (1.2V, 3.3V, and 5.0V) with independent voltage and current monitor-
ing and protection

18 independently controlled power output channels with voltage and current monitoring and both
hardware and software controlled over current protection thresholds

Independently monitored and protected 3.3V power output channel to solar panel interfaces for solar
panel mounted sensors or deployment actuation

Controlled with CANbus, UART, or SPI interface using the CubeSat Space Protocol (CSP) network
protocol

Configurable ground station watchdog timer to recover from failure to connect with a ground station

Open Source Links

https://github.com/sdamkjar /openEPS

2023-08-08 openEPS Electrical Power Supply Datasheet Version 0 DRAFT Page 2 of 9
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1 Electrical Specifications

1.1 Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings (Table 1) may cause permanent damage
to the device. These are stress ratings only and functional operation of the device at these or any other
conditions beyond those indicated throughout the rest of this document is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability and lifetime.

Table 1: Absolute maximum ratings

Parameter Min Max Units

Solar Panel Connectors (P1 to P8) ‘

Solar panel input V+ —-0.3 | 19.0 A%
Solar panel I2C pins -05 | 7.0 A%
3.3V supply to solar panels —-0.3 | 19.0 A%

Inhibit Switch Connector (P9) ‘

Any inhibit switch connector pin ‘ —0.6‘ 10 ‘ \% ‘

Flight Preparation Panel (FPP) Connector (P10) ‘

JTAG inputs: TCK, TMS, TDI, nTRST —-0.5 | 6.5 A%
JTAG outputs: TDO —-0.3 | 4.6 \%
Debug UART (RX, TX) —-0.5 | 6.5 A%
RBF ground charge enable —12 12 A%
RBF always on, always off —-0.6 10 \%
RBF deploy disable —-03 | 4.6 \%
Battery Module Connector (P11)
Battery V+ -0.3 | 19.0 A%
Battery module 12C pins —-0.5 7.0 \'%
3.3V supply to battery module —-0.3 | 19.0 \%
Stack Connector (H1 and H2)
Stack connector SPI or UART (MISO, MOSI, CLK, nCS, RX, TX) | —0.3 4.6 \%
CANbus terminals (CANH, CANL) -14 14 A%
Any power output channel —-0.3 | 19.0 \%
2023-08-08 openEPS Electrical Power Supply Datasheet Version 0 DRAFT Page 4 of 9

163



Table 2: Operating environment ratings

Parameter Test Conditions Min ‘ Max Units

‘ Pin Current Ratings ‘

P1 to P10 current rating per pin 2.0 A

H1,H2 current rating per pin 6.2 A

‘ Temperature Ratings ‘

Operating temperature Free-air —40 105 °C

Vacuum —40 | TBD °C
Junction temperature 2 —40 130 °C
Storage temperature —40 150 °C

! Ratings for EPS module only! (NOT including battery module or solar panels)

2 Thermal shutdown protection is intended to protect the device during momentary overload conditions.
The maximum rated junction temperature will be exceeded when this protection is active. Continu-
ous operation above the specified absolute maximum operating junction temperature may impair device
reliability or permanently damage the device.

2023-08-08 openEPS Electrical Power Supply Datasheet Version 0 DRAFT Page 5 of 9
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1.2 MPPT Converters

Electrical specifications of the MPPT converters is given in Table 3. The MPPT converters are designed

using the LTC3119 buck-boost converter controller. All specifications are at 25 °C unless otherwise speci-
fied.

Table 3: MPPT Converter and solar panel interface electrical specifications

Parameter Test Conditions Min | Typ Max Units
Input voltage (Vpyin) 3.0 18.0 A%
Input current per converter Vpvin =3.0V 6.0 A
Vpyiny =18.0V 1.3 A
Input power per converter (Ppyn) Vpvin >80V 24 w
Solar panel connector V+ current in 6.0 A
Solar panel connector 3.3V current out 2.0 A
Output ripple voltage See Fig. 3
Switching frequency 400 kHz
Output soft-start rise-time 6 ms
Input under-voltage lock-out Falling (ON to OFF) | 2.44 | 2.50 | 2.56 A%
Rising (OFF to ON) | 2.60 | 2.70 | 2.80 \%
Output voltage limit 7.92 | 8.00 | 8.08 \%
Thermal shutdown threshold 165 °C
Converter efficiency See Fig. 2
100 LTC3119 Efficiency vs. Input Current 300 _LTC3119 Output Voltage Ripple vs. Input Current
g AE‘ 250
> 951 . =
s £ ---L E 200}
] = )
E 90 g 150
o] Vin=4v | o L
§ a5 | ———v::=sv Z 100
g Vin = oV S 5l
[ J I N AR PYTTPrreN Vin = 12V =
80 ‘ . : ‘ ! : 0 . L . . . !
0 0.5 1 1.5 2 25 3 0 0.5 1 15 2 2.5 3
Input Current (A) Input Current (A)
Figure 2: MPPT converter efficiency Figure 3: MPPT converter ripple voltage.
2023-08-08 openEPS Electrical Power Supply Datasheet Version 0 DRAFT Page 6 of 9
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1.3 Bus Regulators

Electrical specifications of the bus regulators is given in Table 4. The bus regulators are designed using
the TPS53319 buck converter controller. All specifications are at 25 °C unless otherwise specified.

Table 4: 1.2 V Bus regulator electrical specifications

Parameter Test Conditions Min Typ Max
Output current 8 A
Output voltage 115 | 1.20 | 1.21 \%
Output ripple voltage See Fig. TBD

Switching frequency 250 300 350 kHz
Output soft-start rise-time 0.7 ms
Input under-voltage lock-out Falling (ON to OFF) | 4.25 | 4.45 | 4.58 A%

Rising (OFF to ON) | 4.00 | 4.20 | 4.33 \%

Output under-voltage protection 0.78 | 0.84 0.9 \%
Output under-voltage protection delay 0.8 1.0 1.2 ms
Output over-voltage protection 1.38 | 1.44 1.5 A%
Output over-voltage protection delay 1 s
Thermal shutdown threshold 145 °C
Converter efficiency See Fig. TBD

2023-08-08 openEPS Electrical Power Supply Datasheet Version 0 DRAFT Page 7 of 9
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Table 5: 3.3 V Bus regulator electrical specifications

Parameter Test Conditions Min Typ
Output current 6 A
Output voltage 3.22 | 3.30 | 3.33 \%
Output ripple voltage See Fig. TBD
Switching frequency 250 300 350 kHz
Output soft-start rise-time 0.7 ms
Input under-voltage lock-out Falling (ON to OFF) | 4.25 | 4.45 | 4.58 A%
Rising (OFF to ON) | 4.00 | 4.20 | 4.33 A%
Output under-voltage protection 2.15 | 231 | 248 \%
Output under-voltage protection delay 0.7 ms
Output over-voltage protection 3.80 | 3.96 | 4.13 \%
Output over-voltage protection delay 1 s
Thermal shutdown threshold 145 °C
Converter efficiency See Fig. TBD
2023-08-08 openEPS Electrical Power Supply Datasheet Version 0 DRAFT Page 8 of 9
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Table 6: 5.0 V Bus regulator electrical specifications

Parameter Test Conditions Min Typ
Output current 4 A
Output voltage 4.90 | 5.00 | 5.05 \%
Output ripple voltage See Fig. TBD
Switching frequency 250 300 350 kHz
Output soft-start rise-time 0.7 ms
Input under-voltage lock-out Falling (ON to OFF) | 4.25 | 4.45 | 4.58 A%
Rising (OFF to ON) | 4.00 | 4.20 | 4.33 A%
Output under-voltage protection 3.25 | 3.50 | 3.75 \%
Output under-voltage protection delay 0.7 ms
Output over-voltage protection 5.75 | 6.00 | 6.25 \%
Output over-voltage protection delay 1 s
Thermal shutdown threshold 145 °C
Converter efficiency See Fig. TBD

2 Mechanical Specifications

Table 7: Mechanical Specifications

Parameter Test Conditions ‘ Min ‘ Typ Max ‘ Units

Overall Dimensions 93.3 x 87.6 x 15.3 mm

Mass No battery ‘ 93.00 ‘ g
2023-08-08 openEPS Electrical Power Supply Datasheet Version 0 DRAFT Page 9 of 9
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E. openEPS Bill of Materials

222



As of January 28, 2024, the total bill of materials cost from Digikey is less than $915.50 CAD to populate a single board. This cost improves with higher volumes
such as 5 or 100 units. The 6-layer PCB with up to 2 ounce copper and gold plating was $115 CAD each in quantities of 5.

Designator

Manufacturer Part Number

Manufacturer Name

Quantity

Extended Price
for 1 board

Extended Price
for 5 boards

Extended Price
for 100 boards

C1, 2, C3,C6,C8,C9_1,C9_2,
€9_3,C9_4,C9_5,C9_6,C9_7,
€9_8,9_9,C9_10, C9_11,
€9_12,C9_13,C9_14, C9_15,
€9_16,C9_17, C9_18, C9_19,
C12_1,C12_2,C12_3,C12_4,
€13_1,C13_2, C13_3, C13_4,
C14,C18_1, C18_2, C18_3, C20,
€21, €22, €23, C64_1, C64_2,
€67_1, C67_2, C80, C81, C82,
83, C84, C85, C87, C88, C89,
€90, €91, €92, €93, C94, C95,
€96, 97, 100, C102, C103,
€104, C105

CGA2B3X7R1H104K050BB

TDK Corporation

66

5.58

S 22.010

228.95

ca,C7,C11_1,C11_2,C11_3,
C11_4,C11_5,C11_6,C11_7,
C11_8,C11_9,C11_10, C11_11,
C11_12,C11_13,C11_14,
C11_15,C11_16, C11_17,
C11_18, C11_19, C17, C31, C39,
€43, €51, €55, C63, C66_1,
C66_2, C78_1, C78_2, C78_3,
C78_4, C86, C98, C101

GRM188271C475KE21D

Murata Electronics

37

9.10

S 25.840

336.26

C5

CGA2B2X8R1H472K050BA

TDK Corporation

0.24

S 1.200

7.88

C10_1, C10_2, C10_3, C10_4,
€10_5, C10_6, C10_7, C10_8,
€10_9, C10_10, C10_11,
€10_12, C10_13, C10_14,
€10_15, C10_16, C10_17,
€10_18, C10_19, €24, C25, C26,
€27, C65_1, C65_2

EMK316BB7226ML-T

Taiyo Yuden

25

17.90

S 58.820

588.28

C15, C68_1, C68_2, C68_3,
C68_4, C69_1, C69_2, C69_3,
C69_4

CGA3E3X7R1H224K080AB

TDK Corporation

2.34

$ 7.520

54.58

C16,C71_1,C71_2,C71_3,
C71_4,C72_1,C72_2,C72_3,
C72_4,C73_1,C73_2,C73_3,
C73_4

UMK107AB7105KA-T

Taiyo Yuden

13

3.07

$ 9.680

98.93

C19_1, C19_2, C19_3, C29, C30,
€33, €34, €35, C41, C42, C45,
46, C47, C53, C54, C57, C58,
€59, €70_1, C70_2, C70_3,
C70_4,C74_1,C74_2,C74_3,
C74_4,C75_1, C75_2, C75_3,
C75_4,C76_1,C76_2, C76_3,
C76_4

C3225X7R1E226M250AB

TDK Corporation

w
S

51.17

$ 191.220

2218.02

(28, C36, C37, C40, C48, C49,
C52, C60, C61

TWK107B7104MVHT

Taiyo Yuden

3.96

13.320

126.13

€32, C44, C56

C0402C332K5RAC7867

KEMET

0.42

0.800

7.02

(38, C50, C62

CGA2B1C0G2A102J050BC

TDK Corporation

1.08

3.440

34.86

C77_1,C77_2,C77_3,C77_4

CGA2B1C0G2A681J050BC

TDK Corporation

1.08

3.560

35.88

€79_1,C79_2,C79_3,C79._4

CGA2B2NP01H4R7C050BA

TDK Corporation

0.56

1.940

18.28

C99

CGA2B3X8R1H103K050BB

TDK Corporation

0.27

1.350

8.49

D1, D2

BAS116LPH4-7B

Diodes Incorporated

1.06

3.590

35.06

D3

150060GS75000

Wirth Elektronik

0.23

1.150

H1, H2

SSW-126-23-G-D

Samtec Inc.

37.22

186.100

3,722.00

L1,12,13

MPXV1D0840L1R5

KEMET

6.24

26.320

344.50

14 1,14 2,14 3,14 4

MPXV1D1264L1R5

KEMET

Slwv|p|v[R|sd|lwlw]|o

|| |n|n|ulnln|u|n|n

14.60

| |n|u|n|ulunln|lu|n|n

62.040

$
$
$
3 18.52
$
$
$

376.31
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P1, P2, P3, P4, P5, P6, P7, P8 G125-MH11005L1P Harwin Inc. 8| $ 11544 | $ 519.440 | $ 7,778.66
P9 G125-MH10605L1P Harwin Inc. 1l s 12.86 | S 64.300 | S 1,034.39
P10 G125-MH12005L1P Harwin Inc. 1 $ 18.26 | $ 91.300 | $ 1,410.99
P11, P13 TW-02-07-T-S-500-080 Samtec Inc. 2| $ 136 | S 6.800 [ $ 136.00
Ql, Q2 EM6K34T2CR Rohm Semiconductor 2| $ 1.08 | $ 3.800 | $ 38.36
Q3_1,03_2,03_3,Q3_4,

Q3_5,Q03_6,Q3_7,Q3_8,

Q3_9,Q3_10,Q3_11, Q3_12,

Q3_13,Q3_14,Q3_15, Q3_16,

Q3_17,Q3_18,Q3_19,Q4,Q5 [TPN1R603PL,L1Q Toshiba 21( $ 20.87 | $ 81.200 | $ 1,055.59
R1, R2, R3, R4, R4S, R4S_1,

R48_2, R48_3, R48_4, R48_5,

R48_6, R48_7, R4S_8, R4S 9,

RA48_10, R4S_11, R48_12,

R48_13, R48_14, R4S_15,

RA8_16, R4S_17, R48_18,

R48_19, R52, R55, R101, R105,

R111 ERJ-2RKF1004X Panasonic 29[ $ 1.04 | S 2.800 [ $ 32.86
R41, R42 ERA-2AEB60R4X Panasonic 2| $ 0.52|$ 1.870 [ $ 26.30
RA44, RA7_1, RA7_2, R47_3,

R47_4, R47_5, R47_6,R47_7,

RA47_8, R47_9, R47_10, R47_11,

RA47_12, R47_13,R47_14,

R47_15, R47_16, R47_17,

RA47_18, R47_19, R87_1, R87_2,

R88_1, R88_2, R107, R108 ERA-2AKD100X Panasonic 26[ S 2.99 [ $ 10.750 | $ 146.15
RA6_1, R46_2, RA6_3, R46_4,

R46_5, R46_6, R46_7, R46_8,

R46_9, R46_10, R46_11,

RA6_12, R46_13, R46_14,

R46_15, R46_16, R46_17,

R46_18, R46_19 WSLO805R1000DEA18 Vishay Dale 19] $ 42.20 | $ 186.560 | S 1,908.70
R49_1, R49_2, RA9_3, R49_4,

R50_1, RS0_2, R50_3, R50_4,

R51_1,R51_2, R51_3, R51_4,

R56_1, R56_2, R56_3, R86_1,

R86_2, R106 CRF0805-FZ-ROO5ELF Bourns Inc. 18] $ 10.01 | $ 29.740 | $ 244.04
R53 ERJ-2RKF3833X Panasonic 1| $ 0.15($ 0.750 [ $ 1.93
R54, R63, R72, R81 ERJ-2GEOR0OOX Panasonic 4|$ 0.60 | $ 0.720 | $ 4.78
R57 ERJ-2RKF22R0OX Panasonic 1 s 0.15|$ 0.750 | $ 1.93
R58 ERJ-2RKF49R9X Panasonic 1l s 0.15|$ 0.750 | $ 1.93
R59, R68, R77 CRCW02013K01FKED Vishay Dale 3| $ 099 |$ 2.620 [ S 30.84
R60, R69, R78 CRCWO02013R01FXED Vishay Dale 3| $ 0.63 ]S 1.660 | S 18.90
R61, R62, R65, R66, R67, R74,

R75, R76, R83, R84, R85, R89_1,

R89_2, R90_1, R90_2, R109,

R110 ERJ-2RKF1003X Panasonic 17| $ 0.61|$ 1.960 | $ 19.26
R64 ERJ-2RKF1103X Panasonic 1| s 0.15|$ 0.750 | $ 1.93
R70, R71 ERJ-2RKF4533X Panasonic 2| S 030|$ 0.360 | $ 3.86
R73 ERJ-2RKF1053X Panasonic 1| $ 0.15($ 0.750 | $ 1.93
R79, R80 ERJ-2RKF7323X Panasonic 2| $ 030|$ 0.360 | $ 3.86
R82 ERJ-2RKF1243X Panasonic 1 s 0.15|$ 0.750 | $ 1.93
R91_1,R91_2,R91_3,R91_4 MCS0402MD4703BEOOO Vishay Dale 4| S 2.00 [ $ 7320 | S 100.80
R92_1,R92_2,R92_3,R92_4 RP73PF1E158KBTD TE Connectivity 4] s 1.88 [ S 6.900 | S 95.96
R93_1,R93_2,R93_3,R93_4 RP73PF1E178KBTD TE Connectivity 4| $ 172 S 6.280 [ $ 87.68
R94_1, R94_2, R94_3,R94_4 |RP73PFIE20KBTD TE Connectivity a]'s 1.72[$ 6.340 [ $ 88.48
R95_1,R95_2, R95_3, R95_4 RP73PF1E28KBTD TE Connectivity 4| $ 1.72|$ 6.320 | $ 88.00
R96_1, R96_2, R96_3, R96_4  |RP73PF1E1K27BTD TE Connectivity a's 176 | $ 6.580 | $ 91.88
R97_1,R97_2,R97_3,R97_4 RP73PF1E95K3BTD TE Connectivity 4| $ 172 [ $ 6.320 | $ 88.00
R98_1,R98_2, R98_3, R98_4 RP73PF1E127KBTD TE Connectivity 4| S 1.88 S 6.860 | S 95.60
R99_1,R99_2, R99_3, R99_4 RP73PF1E200KBTD TE Connectivity 4] s 1.72 | $ 6.280 | S 87.68
R100_1, R100_2, R100_3,

R100_4 RP73PF1E40K2BTD TE Connectivity 4|$ 172 | $ 6.280 [ $ 87.68
R102, R103, R104 ERJ-2RKF1002X Panasonic 3| $ 045 |$ 0.540 | $ 5.79
RN1, RN2, RN3, RN4, RN5, RN6 |EXB-24VR0O00X Panasonic 6l S 1.08 | $ 3.300 | $ 22.68
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RN7, RN8, RN9 EXB-28VR000X Panasonic 3| $ 045 |$ 1.800 | $ 11.35
RN10, RN11, RN12, RN13,

RN14, RN15, RN16 EXB-28V103JX Panasonic 7| $ 1.05 (S 3.070 [ $ 21.04
U1 TMS5701224CPGEQQ1 Texas Instruments 1l s 3399 | $ 169.950 | $ 2,993.97
u2 REF35160QDBVR Texas Instruments 1$ 3.16 | $ 15.800 | $ 227.98
u3 TCAN330DCNR Texas Instruments 1l $ 443 (S 22.150 | $ 320.10
U4,U7_1,U7_2,U7_3, U7 4,

U7_5,U7_6,U7_7, U7_8, U7_9,

U7_10,U7_11,U7_12, U7_13,

U7_14,U7_15,U7_16, U7_17,

U7_18,U7_19, U10 MIC5019YFT-TR Microchip Technology 21| $ 32.13 | $ 127.530 [ $ 2,550.66
us AD5324BRMZ Analog Devices Inc. 1l s 32.08 | $ 160.400 | $ 2,489.52
U6_1,U6_2, U6_3, U6_4, U6_5,

U6_6, U6_7, U6_8, U6_9,

U6_10, U6_11, U6_12, U6_13,

U6_14, U6_15, U6_16, U6_17,

U6_18, U6_19, U11_1, U11_2,

U11_3,U19_1,U19_2,U24 INA226AQDGSRQ1 Texas Instruments 25| S 122.31 529.99( $ 7,229.63
U8 _1,U8_2,U8_3,U8 4 INA3221AQRGVRQ1 Texas Instruments 4| $ 30.24 135.7| $ 2,109.52
U9 MAX16998AAUA/V+ Maxim Integrated 1| s 4.75 23.75[ $ 349.85
U12,U13,U14 SN74LVC2G17MDCKREP Texas Instruments 3[S 10.71 48.15| $ 726.85
U15 RV-3032-C7-32.768KHZ-2.5PPM-TA-QA |Micro Crystal AG 1| s 6.80 34( $ 500.27
U1le6, U17,U18 TPS53319DQPT Texas Instruments 3| $ 35.49 160.24| S 2,111.56
U20_1, U20_2, U25 INA381A2IDSGT Texas Instruments 3| $ 5.37 23.96[ $ 290.95
U21_1,U21_2,U21_3,U21_4 |[LTC3119IUFD#PBF Analog Devices Inc. 4| S 113.88 523.26( $ 8,404.53
u22,U34 TCA9548ARGERQ1 Texas Instruments 2| $ 6.96 31.22( $ 501.70
U23 SG-210STF 24.0000MYO0 EPSON 1| s 1.96 9.8| $ 142.76
uU32,U33 TMP117NAIYBGR Texas Instruments 8| S 63.28 211.01| $ 3,270.54
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F. Figure Permissions

Fig. 5.1 used with minor edits, with permission:

https://marketplace.copyright.com /rs-ui-web/mp/license/428f01{7-6ab4-4bf4-ac68-
b530f15ebd98/637f1dc2-b19f-4b27-bc03-0e0e795¢20b6

Fig. 5.3 used with permission:

https://marketplace.copyright.com /rs-ui-web/mp /license /1cac8dc6-93f5-4041-9ad 2-
8e6a97c034f3 /422b2fe9-8565-4052-b6f0-d7e81154f1cd

Fig. 5.4 used with permission:

https://marketplace.copyright.com /rs-ui-web/mp/license/1cac8dc6-93f5-4041-9ad2-
8e6a97c034f3/422b2fe9-8565-4052-b6f0-d7e81154f1cd
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