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N . ABSTRACT

&

|

©
A history of uniforh pseudorandom number generation is.
presented from. the expériments of W.S. Gossett up to‘the
- present day. A new concept of digitized uniform pseudorandom

vn@gger generator (due to K.V. Lehhg).is described. Various
models deyelogéd from the original.coﬁcept have been imple- -
mented ‘and tested;for coﬁpari;on with,éxisting'SystémsL;
_These tests produce results Showing that ‘the ﬁew génerators
_’appear~to have some statistical merit. .Qne practical appli— @
‘ca ioﬂ of uniform pséudoraﬁdom number generation is given;.

w
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of cardboard had been weil sh ffled. Tippett (1927) re-. 'Q»

: ) @ ' 1.
. N
) CHAPmER 1 K
H“IST)ORY OF RANDOM ,NTUMBER GBr:nﬁATroy\ r | N

% . o - - * .
oy s : - . o
SRR R ’ N : : _—

A The generatlon of sequences of random numbers from thd
&
unlform dl trlbutlon is a problem with a great hlstorlcal

'backgrounda-.Gossett (1908) was probably’the f1rst person

to aptually use random numbers — his general method con-

1,
T

51sted of taklng a correlatlon table of heights and left

mlddle flnger measurements of 3000 criminals (see MacDonell

(1901)] ‘ The table-entries wére written on 3000 p1eces of :
ca\dboard shuffled, and drawn at random (with replacement)
four at a tlme The resultlng sequence of random numbers
was used in formulatlng what 1s now. known as Student s t
dlstrlbutlon. However, his "random number generator was
extremely’sloy,zand:it Qas'hard to say when the 3000,pieces,

A
B \,

placed thlS system by a table of 10000 four dlglt numbers,

/ .

which had been formed by taklng 40000 d1g1ts "at réndom

from census tables,\and grouplng these in fours to obtaln

) the 10000 numbers. Flsher and Yates (1?38) 1mproved on this

bx produc1ng a table ofvlSOOO random sampllng numbers. L

Kendafi~and'Babington—Smith (1938) were the'first'to

o~



-
successfuily generate’random‘digits by mechanical means.

They used a disc which was rotated by an electric motor at

a rapid\rate'in a darkened room.  This disc was diuided into
ten equal sections on Which appeaxred the ddgits 0-9 inclusiveh

, - : . _ .
An electric spark illuminated the disc instantaneously, so as
- . . . h ) :

-
to make the disc appearzstationary for a moment. When,the‘
spark occurred, a number was'selectedtfrom the disc by--
means of a fixed p01nter The—intervals'between sparks'were
‘varied by means of ;)neon lamp in parallel with a condéﬁsor
"1n an 1ndependent electrlcal CIICUlt. P\ key tapped by an.
observer broke the c1rcu1t 1nterm1ttantly at 1rregular
n?ervals, to further add to the randomness A table of4
random numbers generated by thlS mechanlsm was publlshed in
1939 ~— this satlsfled the Criteria for, random numbers until
the late 1940 s.’ At thlS tlme, computers were 1ntroduced —-H
1thls made the use of tables of random numbers unde51rable
ma;nly.due to the large amount of space requlred for storlng
tables} In.order to be able to use‘random:digits, it Qas
necessar} to derivensome method of generating thevnumbers
within” the computer itself. Two basic typeS‘of generators,
:physibal and.arithmetic,:haVe been develOped for internal
computer %se. Physical generators, whlch ba51cally consist
of: some exter;:}\dev1ce which dellvers a serles of random
| pulsés to the computer to be'converted 1nto-random numbers,

are dlscussed in some detall by Scott (1967), and w111 not

be: elaborated on here.ﬂ_Ar;thmetlc‘generators,_whlch.form -

\. ‘_" . \ .
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the basis for the majority of computerized réQdom'ﬁumbg}

. ) , , oo
generators, will be discussed in the following sectipphof

L

o
. 4

4 v

Arithmetic generatbrs all have the same basic property

¢

~

— 3 sequence of 'digits is;manipulated using a séries‘of

arithmetic operations to’fo;m a second sequence Ofidigité;
‘_Part of this new sequeﬁce is retained és a new random number.
?hé major advantage‘with this type“of gepera&or is that any
séquence'of réndom nUmbe;s can be réproduced/e;actly,-if‘ |
necessa;y,'for checking purposes. t should bé'noted_tﬁht
all,fhe numbers in a.sédueqce'of r nddm‘humbers obtained
from an arithmetic generator caﬁ b *pré@ict;d" —fftheré—
fore, each numﬁér in such'a”sequenCe-is'acpuallylg éseudd-
fandom number. | |

H
b
o

The f%

sffaiithmetic‘Q?heratbr was developed in 1946
by von Neumann and Metropolis. 1eir method, called "mid-

. square", was as follows:

" a) Define an n-digit‘huﬁber' Xi S .  1-*

b) ' Square this number to give a :2n _dégit‘product ,
’ 2 . . av.l'A ) ) ‘.. . ‘." . Lo~
X. o S ) R . .

"1

s T T
v

\

;o c) Retain_the.middle .n digits as 'xi;l , and répeat_

‘the process.’
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ﬁ . . ‘ Y . v . ! . ) ‘

For ekample;~con5idet n=2, and x, = 63 . Then we ob-
{e?in the folloWing: : S ' | . eV
2 o _\ ‘2_ . N ~'2'_ . _ .
x, = 3969 ¥, 296 x; = 9216 x,-= 21 ¥, = 0441 x, = 44 ..
]‘ weo . . . /

Thls generator was proven to be unsatlsfachary, as the length

of a cycle (the lﬁfé/h of a non- repegtlng serleﬁo é@p ds on
3

s
. the‘value,ofk X, » and some 1n1t1a1 values &t

_extremely short cycles. qu-example,'con ider h‘¥f4 ;QxandA

. . ’ ' ‘ . . - s
x = 3600. The generated’ sequence becomes: >

0 N
. ) S . . - ' L
/ e . . o .
o . _}/‘ T t ‘ . . .

. ‘ - a 2 R _
x, = 9600 X, =-1600 X, = 5?00 X, = 3600 Fog = -9600. ...
N ] 4 : : ’

‘,Anqtﬁer draﬁback“is thatﬂcertain igﬁrting values ’xo_'lead te
a non—repeaﬁing eeries of’lenggbwrl ‘(fbr example, n=4,
'and“xo =_1000) . ‘Apart}from these problems, the mid-square
generator has been shown to not glve a true unlforw dlstrlbu—

. tion of dlglts kegardless of the value of X,

'Forsythe (1951) described an improved version of the

'mid—square"ngenerator. It is‘khown as the ”mid—produétﬁ.r

- generator., S ;/’ﬂi:en as follows.
‘<' o S & '-.'

a) Dp&fine two n-digit numbers . x

1~-1 o x

b) Multiply them togefﬁer to obtain.a  2n
| duct. = °
T . ! : N

: : N - .
c) "Retain the midd¥3>)n~ digitSNQf‘this prxoduct as

A

J

——



I Y S
Xig1 * and repeat the procesngA ;’ : Y,
¥ . ) . :

et C o o L I .

i . ' 4, . ool ‘. ‘ - /, ‘- PEERE
5 For example, consider n = 4 , x,/= 1234, x, =-5678. 'Then

- we obtaﬁn the following: v , ) . |

x, = 0066 x; = 3747.-x“ = ?473 .xs'f_2663 PR

This method may produce a much longer cycle than the mld— .

square method ——-note that bothr x and x, must occur |

agaln consecutively before the eycle can repeat;‘:H0wever; |

even thistmethod hasAEtarting ,‘values";‘xo and nl. that lead .

to a non—repeating}series:of length. l . For.example, n =4
' ' @ o j . ’

X, = 0100 , and x, 0500 leads to the follow1ng series

-7

z

< = 0500  x. = 2500 x .= 2500 x_ = 2500 ...
2 I o4 = 5 T -

& ‘ ‘ | »/ .
Lehmer (1949) Proposed a generator that not only X

”“ellmlnated degeneratlng seqﬂences, but also guaranteed a

non- repeatlng cycle of max1mum length. Hls method called

N -
o multlpllcatlve congruentugl" con51sts of formlng a sequence
of pseudo ~random numbers accordlng to the formula‘

X541 = axi(Mod Ml ’ " o

Y . [
) . . ‘ R
—~—— _

. for given a and x, . Thelmaximal'lengthifOr a cycle ie

ensured by thé'fpllOWing restrictions:'
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a)“ X, must be relatively %Fime to M .
N ' ) . v )

3

b) a is.a primitive root of p® ', if p” is a fac-
1 . . : ‘t&‘ -

Y
o

+ £l . : A LA TN . ’
tor.é% M, with p odd and o as large as
- ' /. T "" . . S
‘possible. 7 e e o T . L
. o i . 8. . ’ Loy

N (S
2 PP

. - oy : . - . #
c) -a belonggxto 2072 jf 2° is factor off M

g

— -

- with a > 2 . Moreover for any value of M , ?
c oreogrg for an v of

there exist values o a satiszingSthese‘conditionS,y

and finally, the max1ma1 period is the lowest comron .

% . :
- 7 , multlple of the perlods (p-—l)p0l { , Or - 2ar2 w1th ; ,
) | > | \ §

' respect to the ‘prime power factors.
: ' o .
o S =
' Proof of the above statements is glven 1n Full and Dogell

(1962).45Thlsrtype_of’generétor has been w1delyvused, and

has paSsed afnumber.Of tests_for randoﬁne's. Marsaglia
(1968) found, hewever,‘thatv"all the pseu jrandom,pdints
.fgenefated in the unit n-cube pf 3 multit 'cative{cpngruen— '
it tlal generator will e foungltO»li

oer gf parallel hyperplanes.

tively small
&Q To illugty suppose
ed to be U(0,1)

?l.
A

that the points XX i+l,..,<:are'n
(N) (N) A\

numbers xi R xi+l, <o ‘a that o -
_ (o (N). (N) (N) 17 12 ’ ;. g
= (x’,<f-*i+l' ce ey l+5) 1,7,13,...: be independ

ent points‘pn the unit ﬁfcubé.-fMarsaglla‘showed that if

-~

ball of the points were generated by a hultiplicativetcon—f‘

vgruentlal geherator on a ‘32—bit Qord size computer Sueh'és
the IBM. 360/67 then all the pm.nts‘vni would fall on less

than 120 parallel hyperplanes {Marsagliafs”tbeotem_States

.
S

4



2 - | \> '

that the'numbervof hyperplanes_is less than or e@uaiﬂtO‘ {
B SO : ‘r/
(n!M)nJ: In other words, multlpllcatlve congruentlal

J

generators suffer from lack of multldlmen51onal unlformlty.

z t .
Thompson (1958), Coveyou (1960), and Rotenberg (196J)
RS
all proposed variations to Lehmer s method whlch con51sted
.of addlng a constang ‘¢ to the equation»for the mulgiplica-

tive congruential generator toﬂobtain:

R . o : ¢

S XiapT @yt cMod M) ir\§\

N s
.This variation‘is referred~to as the mixed con%ruential

method. The max1mum length for a non- repeatlng cycle is

"ensured by fthe follow1ng restrlctlons . {
N . - >
a) ;C is relativety prime to M . : ‘/
b) a = 1(Mod P) if P is a prime factbi of M . i

1(Mod 4) if 4. is a faczor of M .

E)

i

c) .a-

Proof of the above statements can be found in Aull and Dobell

!

(1962). - o o ,5**3 o . )7'
Peach (1961) shows that any congruau -1 ger :rator with
. P2
k 1

'M =:2 and w1th a nor- repeatlng cycle length of 2

0 <i<k, has subcycles-of length 23'-0 < j < k that

&

" are subject to definite patterns. He Yives ds an example, .

the generator ' 0 g - 'r .

"

«



. X140 = Sxi + 13 Modfzs) .

o _ . s C
- . ot ‘)‘
: Bi. ,

The series produced‘by this,genefator‘is:
S . - }‘ N

Kad
.

0 13 2 31 4 17 6 3 .8 21 10 7 12 25 14 11
16 29 18 15 20 1 22 19 24 5 26 23 28 9 30 27

0 13 ...
L

!

- The flrst two 11nes are half—cycles of length 2“ — it can

,be sg@n that correspondlng numbers in ‘the two half cycles
differ by 2% or 16 . 1In fact, whatever the value of 2l ,
the dlfference between correspondlng numbers in two half-

1 -1

cycles 1s‘j If 'quarter cycles ‘are taken, the differ-

ence between correspond1ng>numbers in four quarter cycles

is a multlple of 2l 2?; In general, the dlfference between

" n

correqupdlng numbers 1n p - B cycles is a multlple of

. , : . . A
2l 1092p for p = 21.2',.3.,2l « Mixed congruentlal . .

' generatorskhave the. advantag. over multiplicative congruen-

) SO L

can be attalned — however, thlS is done at

g

tial generators'in that a nCi—repeat&ng cycle of length M
N "
Q/Zost of poor

statlstlcal behaviour (see qul and Dobell (1964))

-

MacLaren and Marsaglla (1965) suggested comblnlng two
.or more congruentlal generators to produce what is called a
6J&p051te congmuentlal genorator. They give the follow1ng

3_general procedure for two gonerators. - v

©



a) cConsider the congruentizl generators . ‘

. x
- —- \)
.1) X1 = axiMed(M)
ii). Yip1 = byi + c Mod (M) - |
b) Definehinrfial»¥alues_for Xy o Y, - ‘jl

_c€) Fill up a table of 128 locations in core with the
values of X ,..c,X;,4 -
IS ‘ . : . A

Zy - the k random number to be

generated, u$e the first Seven bits of . yk as an

a) To’generate‘

index to get =z,

in +he‘table,_with‘the value of

from the table,\%gefillfthevlpca—
téon of z,

*1284+k °
o
Macparen.and Marsag;ia successfully;debelopea.such a éenerator
-with a = 217'_ 3, b-— 27 +1, c=1, and M= 235 _
>'They state that the tlme-taken to generate a ranlom number
“is about twice that requlred by a single congruent1al

generator, ‘but that thls is offsetiby a great 1mprovement

1n statﬂ@tlcal propertles.» Marsaglia and Bray (1968) give
P

’

a 51mp1e algorlthm for a comp031te genexator. u51ng thréﬁ\}'
' multlpllcatlve congruent1a1 generators, A flrstydefrnlng. i
1nteger values/ j(l). ..,N(128? ‘,; h ,vand Kt'h They‘ |
then glve the follow1ng FORTRAN subproc*‘n for generatlng

'unlform random numbers ‘U , "on the interval 0 < U < IOQ

(Q = 0,1,2,...) 051ng an IBM 360 coﬁ\hter-

»



10.

L=L*ML

M=M*MM .

| J=1+IABS (L) /16777216
U= (.5*FLOAT (N (J) +L+M) *.23283064E-9) *10%*Q

| K=K*MK L | )
X N(J}:R- o , - - i

In this program, the integer J iS’USéd” s an index for

pickfng a'value from N(l), to N (128);--.J comes from the
value of L after division by 22" . (or 16777216). " In
forming U , the argument of the ﬁloat 1nstructlon 1s the

o

sum (Modulo 232)ﬂ of the randemly chosen N(J) ,{ the
random integer . L° used tb flnd J . and a thlrd gratU1—
tous Lnteger M. The randOm 1ntegers 5Kn,':t_; and M }

are the outputs of the thgee congruential generators, and

-

~the constants _MK , ML, and_<MM are,chosen to ensure

‘long non—qéé%gting.Cycles;n“Mafsagiiadand'Brayeclaim to
have obtalned excellent results u51ng ML—65539 v

MM=33554433 , and MK=362436069 ;f»? SR o e
. E S PR

fHutchinson'(1966) reqpened the casé\for u51ng a. multi-
plicative congruentlal pseudo random number generator by

vsuggestlng one in whlch the value of M (the modulUS) »isv

the Iargest prlme less than 2k He states ‘that thls type-

“,of generator a) passes the bas1c stat1st1cal tests for

,’randomness, b) has a suff1c1ently long non—repeatlng cycle

A

N length -an& c)‘does not have sub—cycles followlng-certaln



i - ,) 11.
Patterns that other congrtential generators have been shown °

to have. Scott (1967) gives . the generator Xi41 = 24xi[Mod 31)

as an example of Hutchinson's generator.

7 . ) . o v
Tausworthe (1965).prbposed a new uniforn random number

erator, based on irreducible primitive trinodials over °
field of characteristic 2. Whittlesey (19&8) describes-

asic’ prcp ~ties of a Tausworthe génerator, and gives the
. . A

following algorithm for implementation purposes.

1) Define N as ohe‘less_than the number of bits &
per word, and M as less than /2 (as chosen

from the list of primitive trinomials). ' r
. . . - ( : .

2) Let register A.vinitially,contain the'prévious
random ngmber (say, Y) in bit-pbsitions 1 to N,

with zero in the éigh bitv (poéition;gL/

3) Copy_régister" A ’intb fégister S',_'ang then
right—shift registef‘ B. by M ‘biaces}." |

4) Excluéiﬁe;OR regiqﬁér A intO“rggisfer B', " and

also store the resuif back into register . A"

(Registers ‘A ‘and - B now have bits for the.new

random number in bit pogitioqs.‘M+l- to xlefi.buf

Stiil'cbntaiﬁ bits from the old N-bit ?andom nunber

in bit posi“ions 1 through M).

! .
5)  Left-shift regiéter‘ B by N-M positions.  (This

‘places M bits for the new random number in bit
. - : : i . . ot
, _ , ; : t



3
positions 1 through M of registerfﬁBa; and

zero bits in positio:. M+l through N)
)

~6) Exclusive-OR register B into register A, and

.~

zero out register A's sign bit (Register A now '

contains all n . bits of the new random number »Y').

Thls algorlthm will generate all possi te 2 -1 non zero
s
N blt numbers before it repeats any of these numbers for

- proper ch01ces of ‘M used w1th a ﬁ»itlcular N . For.

example, on the IBM360 where the'51ngle-precision word

~

length is 32 bits (N=31) , M must be set equal to 3 6,

'

7, or 13 to obtaln the maximum length of the non- repeatlng
” cycle. Such a genitator has been tested exten51vely in

: recent years.. Whi tlesey (1968) states that a. Tausworthe

generator has no serial correlatlon, and speed The same

=Y

e .
’ author (1969) states that thls generator- does have multl-

<

dlmen51onal unlformlty. Tootlll Robinson, and Adams (1971)

' have sho n- that as long as ’M"is*not too small,’ not tooh

close to N/} or not greater than .N/2 , this generator -

also.ha a good runs up and down performance.p However,

the Tau worthe generator suffers from ‘the fact that for
many c mputer word lengths‘ N, the values of M“producing
non-r peatln; cycles of length pZNa'l afe not known (only
Zlerl r and Brlllhart (1969) have made any attempt to tabu-

late values of M for certaln glven values of  N).
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"CHAPTER 2 ' -

'DESCRXPTION OF NEW SYSTEM OF GENERATORS
_ Lo - . _
“

2.1 Introduction

In the prev1ous chapter, the development of unlform_fw

pseudorandom number generators was outllned w1th spec1a1f

mempha51s be1ng placed en the so called congruentlal system

ofy generators,-and the prlmltlve polynomlal based generator‘

of Tausworthe. It is apparent however, that the optlmal

/

'use of any congruentlal or Tausworthe qenerator is dependent

e

ton the word size in blts allowed on various computers. For

example, the multlpllcatlve congruentlal generatgr deflned

'by:

v | = €8 s s 31)
X 41 —|65539xn[Modulo;%,\)
can‘be used on anilBM360 model computerfwithi32—bit words;

but not on a PDP serles computer with lﬁ -bit words. ”This

~problem can be solved by a generator that selects suff1c1ently'

random dlgltS one at a, t1me in - order to form a number of a

'flxed dlglt length, w1thoht sacr1f1c1ng a great deal of

computer tlme in the process.‘ It is the purpose of thlS‘;

chapter to descrlbe a proposal for such a system, which w111

be. shown in a later chapter to have good statlstlcal



i
. . ea . R W N
behaviour, while using a minimal amount .0f computer storage.
N - v - ’ o s
’ ¥ - " > 'A»'. " : )
{

2.2 Description of General System » .
ol o N
. e - 4 ' . :
The basic elem%nts»for gbe new system are as follows:

oA
E = {0,1,2,...,9} ¥
> o .. ! . E
p = pointer index vector,

o

z = column pointer, -° oo
.. . . v’ o . )
— ( a v a ’
%,1 %0,2 ~ 0,n
A< | %11 21,2 777 C1n
' . a. .
- 1,]
L 99,1 9,2 777 Z9.n jLo
T 710x

" where a. .
. - 1,)

is a digit value located at the position defined
’ i : ‘ i . '

by (i,3j) such that a if

ng_' and, “ai'j f‘ak,j

i,3
i#k for ard j=1,...,n .

- There are three.elementary operatiOns'inﬁoived in the
generating of each digit of a random number. They are as

- follows:

l. Select one digitvfrom a”column of A . The digit
value is located*at a position'being referred to '

re

directly or'indirectly'by»a pointer.
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2. Define newjvalue(s) for any pointers used.
3. Reorder the column of ‘A- from whiqhdthe digit was -
" selected. |

There are many'genegal procedures that could be derived

R B : ‘ R
‘for-manipulating A in order to produce a sequence of random

4

",digits. Two such procedures, namely Sequentlal Slngle Arrays

and - Sequent1a1 Pair Arrays, have been analyzed in terms of '
,the components,glven;_both‘of these w111 be discussed in some'

detail in the suceeeding sections. = = , S :
. PR / ﬂ;%

For this type of'generator, the number of‘columns of A

2.3 Sequential Single Arrays

can be any integer’greater:than one. Theipointer vector B
‘has onlytone'element' p whichtis-eontained.in E . The value

"of the column pointer =z , if used, is-in the range‘ <

1 isz <n. To generate a random number of L digits, a
digit Q is to be selected from column j ‘of A . This can

" be done by one of the follow1ng three methods.‘ T

a;'iThls method uses two columns, jth and

[ Moa n)+1]th , to select Q. If J = s,
. / ,

the value of Q ‘will be

»

~and K = ay (3 Mod n)4+1 FT

Q=a, . .,
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while p is;ﬁhe value of the previously'generated
digit. The next digit will be‘selectedlfrom the

RS MOd-n)451]th' colﬁmn. o . o ' \QV

The reordering of the jth' column consists of

interchanging the two elements a and ahd .

‘ = > %p.j K, 3
then, using modulo 10 arithmetic, adding Q + GQ’O
th

to each element in the j  co1umn, where

!
7

5. =

0,0 1 if Q=0 .

lQ will become the new value of P , to be used in 'f'

g
LE
+ A

¢

e
: '»?»Jv'
e

generating the next digit.

The complete algorithm for genefating a 'L ﬁﬁ“
- P ) ’:,,_.J.

digi;’ranaom number using this method is givenigw

follows: 'J
Algorithm.I i
i) Set the digit index N to 1 . Qffwill be
~ selected from the jth‘ column of A .

It
Q’ .

11 Set J .
ii) g pﬂj

i11) Set K =35 (5 Moa my+1 ¢ 3Nd Q= Ay g

o

iv Interchange a_ . with. a. ..
) _ g %, W K,3"



C | .
.- . . \
‘¢ 3 | /o
v) Set the Nth _digit of the mumber equal to
Q . A
-vi) Replace a_ . , m = 0,,...,9 , by
} ' m,J !

E L+ Q+6 . d .
(am,} 0] ?QlO)MO_ 10

te \ -
~vii) If N is éqﬁal’to L , » the generation bf

the number is completed. uOtherwise;'
viii) Set N =N+1, j = (j M% n)+l , and go

 to step ii).

This method uses only one column of A to select’

3 7y

each digit Q . Its value will be v !

o
N

where p "is the Valué pf?the previously_generated

%

digit.
' .th R ,
- The reordering of the j column is done by
, interéhanging the two elements a_ . with a .
o _ ' P,J 9-p.,]

and ﬁhen using modulo lO‘arithmefic to add Q+ 6,
to‘éach éleﬁént in the jtb_ column. Q will also
be thé péw value of ‘p». ‘The complete'aigofithm.for
this methoa can be derived from Algorithm I by ' “
jdeleting,steps ii) and.y) and~rep1acing stéps’iii)

)

and iv) by:
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 iid) set 04a . and setithe NP aigit of
- ’ ’J' ’
R ; f
' the numpe; equal to Q .
iv Interchange "a_ . with . ..
) 9 %3 T 29-p,3

The‘éxpression S

0.0 is defined as before.

th column, and another

This‘method uses the j
column referred to‘by a column pointer z , to

select the digit Q'.ﬁ Its value 1is

where J is the same as described in method a.,
~and z has also been defined while generating the

previous digit. The new value of z is

[z + 01 - GQMOd‘n’n_l]]Mod,p + 1.

The-reordering of the~bjth column is done by inter—

changing the two. elements

o

a .
P.3

Cana . | .: | .A(/i

oo a, .
: . _le;'J
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{ ’ ' ‘ . ‘Q ' .
' and u51ng modulo 10 arlthmetlc to add Q + GQ 0

2

to each element of the jthf column Q will be

N
the new value of P . <:~;

_ ?he expreaslon GQMod n,n-1 18 defined as:

0 AbMod n#¥ n-1

5 | = , |
QMod n,n-l‘ l QMod n=n -1 ,’

The expression féQ o is similarly defined.

\ The complete algorlthm can be derlved from

Algorlthm 1 by replac1ng step 111) by
‘Q = aK 5 " Replace z by

lll) Set K = aJ'? '

[z + Q(l - QNod n,n- 1)]Mod n+ 1.

If the generator is being used for the first time, the -
:'matrix A ) and the pointerS‘ p and  z 'mUSt be aSSigned
l*vAlnltxal values by the user, and the - startlng value of j ‘is

B
Otherw1se they have been deflned from a prev1ous run.

; vFor-this typerf»generator,‘the'nuﬁberrof‘cdlumns_in-

A is n=2m (m=1,2,...) . ‘The‘pointeruveétor p “has _

m fcemponents, each of which has a value ¢E . The column

/. 'pointer z. rhas a value in the range 1 <z <m.. In some

hN

Y
- .
. -

Syt
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Y
' . cases, a second columnvpointer z may be required “which -
has the same'range'as wz . All oﬁ‘{hese polnters have been _

a551gned values durlng generatlon of the prev1ous dlglt

o

In order‘to geherate a rdndom digit, each of t e) m -

a

adjacent column palrs, startlng with the first two\columns,

© are mqnlpulated before actually ch0051ng a dlglt.' This

Suggmmodlfylng the thlrd elementary operatlon to read:
' o
« ‘ .
"QL» Reorder each of'the non-overlapping column”
' o ‘ pairs 6f, Aﬂibefore»selecting a .digit.
.“__ - o . . '

- The value of the dlglt selected then depends on the

‘value of the column p01nter z , and an element of the -

vector p .

As w1th Sequent1a1 Slngle Arravs, three methods have
been developed for generatlng a random number of - length L

digits. They,are descr;bed as follows:

a. 'Suppose that: ‘, e o « . o
c ‘.'\_

(a; j] Si=0,...,9 3=22-1,22 2 odd 1<% <m

”represents an adjacentA601umn'pair‘to be manipulated.
-Deflne J = pluzi 1 (v_and K = aJ'22 . The  re-

‘orderlng of columns 2Q—l~-and 2% iS"done-by:
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a) interchanging apb,ZQ-l WIth: aK,ZR-l ’

b) using modulo 10 arithmetic_te_add

1-§

_ ‘ : j+K+a., 0
T (J -k- ?K,Zl-—l]

K,22-1"

to each element in-coiumn 22-1 ,
“c)- interchanging,columns 22-1 and 22 .

" The new value of the referéhce pointer for that
column palr'becomes’ PQ = h‘22 . After all of
. the m ad]acent colurn palrs have been manlpulated
. in thlS way, the value of the selected digit will j/'

be

© =%, ,22-1. 7

o | N

The new value of the special pointer will be
zz= (Q+2z) Mod m + 1 &

(B

“An algorlthm to generate an " L- alglt number usang
the precedlng pr1n01ples is glven En the foll w1ng

page. ' ' s oo



a)
b)
c)

d)

e)

f)

- g)

h)

1)

3)

k)

..lh

3q,21-1 + (J—ng})

- Replace P

‘and go to ¢ ep b).

22,

“Algorithm(II o o

t

Let the_digit-index (say, N) be set equal to

1.

Let an index for the adjacent column pairs

(say, I)‘be‘sst equal to 1. - R
Set J =_ap1'21_i / K= ajspp + and 7 -

K1l = aK,ZI—l . ‘
jInterchangi aK;ZI—l "with apI,ZI—l . .

Replace aq,ZI—l q = Q,...,9',b¥

1=85 v x1,0

vIntechgnge Eat;2£§l] with [étiZQ]

't =20,1,...,9 .

I,._byv Kl»;:

If‘ I(i m-,§ theén go to step j . Else

Increment --I by 1 , gnd.goito step c).

: - 4 v = .
Set Q = a ' + -and thus; the Nth digit
: pz,ZZfl : S o

of the ﬁumber being generated = Q .

If N> L, ‘then stop. Else
o &
v E

Increase N by l.,"set z =;(z+—Q)Modulo(m)+;1,'
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- column .pair becomes:

23.

“ {
Suppoce that

//1 ) | A .
' ) L .
i j] i= 0,...,9 jo=22-1,22 L odd 1 <R <m

[a

|

. represents an‘adjéCent &olumn pair to be manipulated.

Define ‘J. to'bé the same as in method a,{and K to

be a - . The reordering of columns 2%2-1 and
J, 2z '

[N

a) 1ntgrchanglpg apzrzg"lg thh::ax,2l—l ’
. w ! .

b) using modulo 10 arithmetic to add
1-8.

3+K+a 0_
2.20-1)

( K 29 1’

[rexesy
I .

to each element in column 2%-1 .

£
-~
R

'{ c). interchanging column 21 -1 lwith co1umnA
22 .
The new value of‘theg}eference pointer for that
- Py T 2%,20-1 -
The new véIugaof' z becémes;_
'z = (z + K)Modulo(m) + 1 .

After all of the m adjacent column pairs of A
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have been manipuléted, the value of the selected

digi?’ will be:

The new value of =z will be defined in the same
.manner as in the previous method. 'The'algorithm'
to generate an L- dlglt number using the precedlng

_prlnc1p1es is the same as that for the previous
b

method but with the;follow1ng two changes:
2y A _ ,

-

i) ~ Step c¢) is repléced by: -

{
L]

c) Sset J = a

N - pI'ZI L J'zz ’
v . and Kl —,ah ZI 1
ii) ~ Step g) is ,vr‘epléce_d_iby
-&_'_ \\'   yp“g) ﬁeplace pi by . Kl',_ and 'z
by (z +K)T"odulo (m) +1 L

20

c. Suppose that

[a; 5] = 0,...,9 3 =28-1,22 2 odd 1< f<n (m=10)

'.t rebtesents an a. acent column pa1r -to be manlpulated.

.0

;'ryﬁfﬂﬁefine-'J as in method &., and K to bé

- .
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N N
(,(“‘ I

The reorderlng of columns 28-1 and 2% is nowl

done using the same procedure as in the preceding
¥

_ two methods, and the value of the selected digit

~

ég (as'well as the new values for any pointers
used) are defined ‘as before. An algorithm to
generate an L dlglt number: u51ng the precedlng

prlnc1p1es is the same as for'method -a., but ‘with

 the following change:-

'step c) is replaced by:

c) Set J = a -~ , K=a
- oppe2Il Pye1e

and Kl f aK;ZI-l_‘ /////§

J+l !

e

3 » .
' For all three Sequential Pair Array methods, the
expression 6J+K+a .0 "is defined in a mahner

. K,Zl_l R : . :
similar to that as defined in Sequential Single
_Arrays'Method 3. ,

2.5 Modifications.

The methods descrlbed in Sections 2 3 and 2. 4 can be

mOdlfled in many ways, in order to attempt to improve the
randOmness.of‘a generated‘sequence of random numbers. Oné
possible modification.is to add to the list of basic

- elements, the foliowing selector matrix::



26.

Ee"

b b |
. [ L1 K2 ) .o

vwh%re by # by 3 for i #Kk, and 1< biy <L -

‘ Each/tlme a sequence.of L digits is genereted by‘any‘of
the prev1ously descrlbed methods, the: flrst column of B
fcan be used as an 1Qdey vector to re-order the L dlglts
‘ The mat@fx B can thén be modified as follows:

4 _ : _ o

Y‘}f;“' ':‘:‘ e :. . . . ’ . ’ .
a) Interqhange two random digits in the first column.

-

b) .Replace b,, by .({bli - a random value constant)
5 I,Mcdulo-L]’+.ra'for_ i=1,2,...,L . |
c) tInterChange fhe two columns. ->A\ ';‘
A further hodification is to redefine the function AGQ o @as:
0 Q#0
' K2 Q =0
wﬁere : KZ = K for'Sequentiel‘single,Arrays
Method 1 = />
a, .‘"fbr,sequentiallsingle Arrays,

Method 2.
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J ‘ ~ for Sequential Single Arrays

o

w ,JMethod 3.

Por definitions of K, ’ and J , see the descrip-

a, .
9-p,3J

tions of the various methods involved. Similar modifications

to the 6 function can be made for the Sequent1a1 Pair

Arrays methods.
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CHAPTER 3

TESTING THE NEW CLASS OF PSEUDORANDOM NUMBER GENERATORS

3.1 Introduction - Description of Tested Generators

A series of tests (see Appéndix A) were'apﬁlieé té each -~
of the deyelopéd metbqas ﬁsiné_diffefent valuestof the matrix
A . This was done in ofaéf.to enabyguéﬁ'to compare thesé
_methods with otfier alreédy-ekistihg?mégﬁods of uniform
pseuaofandom number‘genefation. Some preliminafy testing

was done on the following generators:

a) Sequential single afrays,'all three methods, with
n=3; L=2, and 3. The generating process

begins with:

p=2, z=1, and

~ (1 2 0] (1 2 0 7}
3.6 3 3 6 3 2

5 4 6 5 4 6 6
7.3 9 7-3 9 8/
A=l 9 1 1 or L9 1 1 4}
8 9 4 8 9 4 1

6 71 1 6 7 7.\5

4 8 2 4.8 2 9

2 0 51 “2.0 5 0
L-oss,ﬂ\-; | 0 5 8 3




c)

)y .

Wy "“'

n = 20, (m= 10); L =‘2 and | T3
Tal
The generating process beglns Wch _
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t y 4 ~ EAT . 3 . .

IBM Multlpllcatlve Cbngruentlal generator (seé ’

'May (1967)) based on._ﬂ“;,fc

. PR,
K

r' .= ) - ‘, o :"6\‘3:“‘~ .

X = 123321

l

- .

'

Sy et , CO N

. : N R K e
" o X . <

.Comp051te Congruentlal Generator (see~Marsag11a &

Sieade

"Bray (1968)) based on:

TR S R *A”.-w~hg,;‘gﬁ,;'-f
AL ., R S ; ;
LI 1 .
X s
h+l
br. t"
.

. ¥ypy 733554433y (Modulo 22 .@7 "
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4 s 41 = 362436069s (Modulo 2°')

X, = 13 y

~
N -]
N

15
s = 17 . :

g} (-:".’: 1 ¥ - . . ' ri,‘
e |

Le) %?usworthé_Génerator (Seefwhittlesey}(1968)) based

on:’

31

o]
]

I3

m= 13 .

'f)‘ Séquehtial single arrays, method 1 (modified with

Selector matrix and_revised'6‘function),kwith n =

2 3

L = 2 B"= o
' L ”1 2

3-2

' process begins with other parameters defined as.in

a) .

For each of ¢), d), and e), the L leftmost digité of each o

normalized number’ generated were tdken as being the m

dgsired for testing‘purpbses.'.; (7
: o o
‘3.2 Results:
Tables 3.1 - 3.4 .give a summary of the results of the

LN

e ’ d . :
. éﬂ‘ﬁ‘:{‘: b . ’&;‘( b,

3

-
ln»

and - 3 B=1 1 . The generating
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_ tests descrlbed in Appendix A as applied to sequences of
L—digit numbers generated by the random number generators
- of section 3.1. For Tables 3.1 and 3.2, a total of 100
. . ~ :

,sequences cf L-digit numbers (10L numbers per sequence)
were generated, and the average of the various statlstlcs
calculated for each sequence were entered in the tables. For
Table 3.3, a total of 100 non- overlappl%gvsequences of 3-digit
numbers (1000 numbers per secuence) were generated by the .
varlous generatcrs. The samole covariances of lags - {1, 2, 3,
'4? 5, 7, lO 15,'20} 'were caiculated for each sequence.
Table 3.3 shows tne largest (in magnltuoe) p051t1ve and negat—
‘1ve sanple covarlances for the varlous lags, for- the 100.°
sequences of numbers tested from each generator. For the pur;
pose of determlnlng the serlalygorrelatlon coeff1c1ents of
Table 3.4, a total of lOO series of length X dlglts each were
generated by each of’ tne random number generators (u51ng the
leftmost dlglt of each number generated (normallzed) in
fqrmlng such avsequence-from.already ex1st1ng’generators);
_For each digit_series length x given in Table 3. 4"the
correlatlon coeff1c1ent glven for any partlcular generator is

the average correlatjon coefficient from the lOO

,non—overlapplng series (each of length X ).

The following abbreviations are used in the tables. for
“representing the varicus‘random,number generators tested:

&
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MC

cc -

M31,

Tausworthe. -

IBM Multiplicative Condruential.

Marsaglia & Bray gggg?site Congruential.

32.

M32; M33, M34 - Se&uential Single ArraYS,‘methods

‘1 to 3, and 1 (modified), with 3 column A matrix.

'M4l, M

2, M

43’

M

4

P

4 - As above, with 4 column A métrix.

P1, P2, P3 - Sequential Pair Arrays, methods 1 to 3.

! .

52.7

-

[

\ .
Table %.lh.sfatistiqal Test Resulfs; L =2 |
Ex Moments 12 ?Runs ‘Runs Above
st = 2nd  3rd; leo_';ggwind'3812$§Mean,
lExpected value! w500 333 .250 100 | 66.33] 51
L MC  |.4952 .3276 .2439/100.6 | 66.6 | 51.07
; cc .4933‘7325§‘.2425 99.56 | 66.3 | 50.94
T  |.4956 .3288 .2453|100.22 | 66.68] 50.94
¢ M1 "".4970';3311 .2459v 99.94 »'ﬁs;o 149.63
- F M1 |.4964 .3308 .2481 96.44 65.74] 50.57
N M2 |.4947 .3266 .2426| 97.8 | 66.59| 51.48"
N M,2 .4977 .3319,.2458 98.38.| 65.76| 50.24
| i M;3 '.4887 .3325 .2399 101.36 ~65.71 59;79
| ‘M,3  |.4960 .3289 .2451| 97.38 | 66.32] 50.56
o "M34 ' |.4987 ,3337-.24ﬁ9‘ 97*75,§ 65.95 50.87
5"0 M4 |.4975 .3311 .2474 99.6 | 66.25| 50.34
'g N Pl |.487 .318 .233 | 94.4 | e4.3 52.2
} P2 .500 .336 .252 | 99.8 }‘65.9, 51.6 g
5 p3. laso 325 .244 | 95.8 i 67.5 :



.. Table 3.2

Stétisticél Test Results,

s

L =3

lst =

FMoments
,-2nd

- \ )
3xrd .

g

X2

Frooo

Runs Up

and
:Down

~and
Below Mean

"Runs Above

Expectec

Value

. 500

- .333.

.250

| 666.33

501

ke

CHMC

CC

by 2 M o

o B » w

.49864
.49¢915

.49976

.49991

”.49851

.50004

»hé797-

.50011

;.49967
.49902
;4937i:
|.4990"

49126 .

.49367"

.33163 -

.33219.

.33300

.33338

;33199

%‘h

3335?&

‘.33131

k.33406.
33357;
';33221

-;33222”

.;zgghl'

33354

.32211

248203
.24884 |-
.g249621

925Q11_

_.24833{'

25023 |
?524810n
.25106
.25051

24890
24905
’,24995¢

;2}371”

.24467

.1003 85;:“'
995 oejf
998 OGT;A
993 181;1

f,$99;48' |
L004:62 "

: ib60;34_>'§‘

r024.24

998. 45”

‘1000 92_‘

f1006 6

100981

51013.g7,

1015.63

a

‘f668 67

664 87

668 47

}twees;sgéfj
eesier |

. 664.97

664.19

b"-§68231?i*;
Gl
7664 55
666 . 46: 
666.85
865,1,

662.41

1501.39

500.41

497.83
501:10
501.54

. 501.7"%

" 498.7

502 .03

499 @6,

©500.61

.505.7

505.69

486 ..32

RAE A
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Table 3.3 Sample Covariances

" Lag 1 " Lag 2 ! ‘Lag 3
maximum + méximum -imaximum + maximum —!maximum + maximum -
MC |.01901835 .02316471|.02081275 .02195925!.01632577 01943672 |
c CCv..Ol712263 .02396256 .02335012 .02164644 .01635188\.02371913j"”
g T ;01902263 .02292240, .02577430 .01882613|.01652348 ,02&;5538
| & ‘M31 .02243072..02377337 60220?267u.01726127'.01965195-.01952958
'E;Ny41 02359688 .01376563|.01703537 .02621007 01682722 .02395767
R M32.101790768 .02136540] .02589786 .02305722|.0169379W. 01848930
A M,2|.02099341 01959455 ;01703322 .01776278 ;02677é88 .02191240
’T 'M33 .02036148 .01666689| 02222055 .018436251.02320236 .02408600
o M3 ,01963347'.01908273 .02522922 .02036721|.01571190 .02069843
R M3d -01969737';02117995 }02497673 .6183547? .02186227.;019386351
{ h M44 fpz192307 .02113056 .01601058.¢0263802jﬁu02189398A.0184669§
| | 4 | |
Lag 4. Lég 5 Lag 7
_ maximum + maximumk—‘maximﬁh +Iméximum-— maximuﬁt+ maXimuﬁ -
- MC .02504158_.b1871359:.01574999,.02426082 02239877 .02208483‘
¢ ccC .02848285 ;021167761.919646707.02558970 .03082705 .02292681
] - '.01531214 .02045643 | .%2328374 .02043569 ,61309034 .02443165
‘N“ M31{.01764828 .oézo?eia f0154?039;;02889735 02064329 .02169812
Ev‘néi .01752037 .021949051 01802725 701947057 '01784194-‘03994923
g M2 01794446 7017f§b46 .01737756 02390039 |.01473556, .03169173
A M2 |-02000433 .02003938|.02368927 .02001894|.02196926 .02971965
T M33 .02610642 ,030113291.01686752 iogooo713,.01655871 ;02346992
[0 M43 ;02239919 .91912284 -02615678 .01912671 ;01425946 .02252066
g M4 |-01700616 .02308607.01962841 02080506 .02080%14>.020%9083 :
‘M44'.01460218‘,02495801‘i03150270 .01951635 .016424;6';03121573




N
Table 3.3 Sémpie‘Covariances‘(continued)
' Lag 10 Lag 15 . Lag 20 .

maximum + maximum - |maximum + maximum - maximum + maximum -,

MC }.01565522 .02593273 .01971841 .02038187/.01889032 .02547860

o C€ |.01545042 .02506441‘.017417311;02238601 }019842Q9 .p2015865 
g T |-02286863 .02494532|.02054280 .02286071 .01867527 .02540678‘ 

N M3l' .01963478,..0}.’.013986 .02538’252;.015478-3;7 - 03304946 .02728808

£ My10:02797441 02673942 .01659322 .02411312]. 02920538 .02523404

‘ R M32 ;01835030 .02160770 .02035809_.02362400 l02064977‘.02103329

A' M42 01909184 .021:23976 .02388716 .02609020 |.02170926 .02485698

i M33‘ .0237566.8‘".02‘322906‘ .02153707 ."0224_2440 .02369136 .02’883'_750

o 5M43 .017132345.02114234 .ozosgéoi';ozsssssl .02349776 .03040141

R.. M34 ;.b2602476 .02056391 .01924860 /;62001607. .02292496 .0236‘8999"

M4 .02172583_.02028894 02111971 .02435941|.02345341 .02558398
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~ Tab;e 3.4 Serial Corre;atioh Coeffitients
Digit Series.hength
200 600 1000 2000 5000 ‘xisooo 30000
‘MC |.0466417 .0151888f.0091332?.0046%06?.0018439 .0006246l.0002878
“ G,cc .0447958].0151032 .oo91729§.0044792;.0018094'.0006039 .ooéggi7
& T |.0454965 .0148421'.0085381;.0043835510018124 .0005823 ,(?4)
: M1 .0452844.0146433-0087501!.00438285.0917494'.OOégg%Zi.OO?S?IQ
. M4} .0433684 ;0144784 .0087953£.0043342;.0017707 .ooosozeu -
N MjE.LO4$4211 ,0149993;,009009i1.0045992!:0017998..0005913 ;0033307
M,2|.0451244,.0151776 |.0089936 .0045773;.0017851 .0005946
' %33 1.0467582/.0161885|.0103518; .0056430 -0031852 .001943i1
9 M,3 .0445786 .0;58209 .0096346 -0052842!.0025701.0013488 |
3 M4 .0448398'.0149859.,0090415 .0646055 .0017698.,0095849 .06?2?67
M4 +0450476 .0149749 |.0088008 .0044189 .00179431.0006021

“The numbers in Drackets represent the number of trlals used

to obtaln the serlal correlatlon uhen machlne llmltatlono

llmlteo the number of trlals to less than the 100 used for

ffllllng in the rest of the table.
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Due to machine.limitations, the results obtained for
a digit-'series length ofv30000 cannotvbe consrdered as
'conolusive, as in most cases, -the number of trlals 1nvolved
was very small. 'In fact whenever the number of trials was
less than 5, _he average serial correlation coerf1c1ent,
'obtained was not used for the purpose of'setting upiTable :

3.4.

".3  Conclusions

The results of the tests as sammarized ianabies 3.1 andb
_3 2 show that botn Sequentlal Slngﬁe Array and Sequentlal Palr‘
Array generators appear to have cood statlstlcal behav1our.
It should@ be noted that a'Sequentlal Pair Array generator
using m array pairs takes more cormputer time to generate
'a‘random number than a Sequentlal CJ.ngie Array generator
[u51ng 2n arrays, without 1mprov1ng the statlstlcal behayiour
notlceably. Therefore, the ‘data 'in Tables 3 3 to 3.5 comparest

already ex1st1ng generators w1th Secuentlal Slngle Array

‘ generators only.

For all:series 1eogthS‘of generatedvdigits, the
.Sequential'single Array systems‘appear'to_compare very favor-,
ably‘with already existing'systems-with respect to the‘seriall
c0rrelation between consecutive pairs of overiappingidigits;'

t



. generators in torrs of'tlme ‘nd core used, u51ng actual data

b -0 38. ,

:‘1mprovements in the Sequentlal Slngle Array methods (or in

the startlng value of the matrix A used) could cause ‘a

further improvement in thlS respect.

From'observing lable‘B 3, there does not appea. to be a
notlceable dlfference between Sequentlal Slngle Array systems;
and already ex1st1ng systems w1th respect to the obserVeo
sample covarlances of generated sequences of numbers. The
difference between the max1mum p051t1ve and negatlve values'

for all tested lags is: smaller in many cases for the Sequen—

tial Slngle Array generated sequenqes than - for sequences

,-generated by already ex1st1ng methods (note that zero lles’

well w1th1n the observed range of values in all cases) N

_Agaln, 1mprovements 1n the-ﬁ@thods (or 1n the startlng value:

of A) could cause the dlfferences to become more notlceable.

The ‘same algorlthms for the Sequentlal Slngle Arrav

I,

generators were run on an IBM 360/67 (32 blt word length) “

and a DEC-PDP9Y (16 -bit word length) As. these two comouters

represent an extreme in allowable blt—word length, it would
appear that- Sequent1al Slngle Arrav generators should be )
able to bezlmplemented w1thout any changes in the algorlthm
involved, or parameter values used\\on any computer that
allows array manlpulatlon.‘ The same’ is not neCessarlly true
for a congruentlal or- Tausworthe.generator.” J'af %

S -

$ Ay Lo .
The follow1ng table shows a comoarlson between varlouS'

-~
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taken from testing with L = 2, and all testing subroutines

 eliminated.

SN i .

~

Table 3.5 Time,and Core Comparison
IR P S P TIE '

Generator :{ﬂ Tie , CofeAUsed
' (sec) (bytes)
JiMC' o 0.63 -~ | 900
cc ], \»:‘ 1.04 .| -7 1812
T - ] 56.36‘ | 2556
Myl  9.85  ’ 1748
;M41,f¥ .‘ R 9.85 . 1788
M2 o 9.27 1620
M, 2 e - 9.27 . 1660
M33" 1 10036 | 7 1880
M, 3 T~ 10.36 | 1920
M4 T | 12.61 o 2444
M4 1 12.61 | "‘-2484" i

Time refers to the time in seconds taken to generate
100 numbers of 2 digits each. Core Used refers to the number
of bytes used to store the FORTRAN object code plus all

)

varfgbles needed for generating a random number of L digits.
., It should be noted that the extremely high table values

' for thé Tausworthe generator are caused by the fact that the

N ’ . _ :

¢ S : » ‘ :

FORTRAN implementation of such a generator involves simula-

btigh of the Exclusive-OR operation. The use of a laagﬁﬁge

A RN
|

N

w
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such as ASSEMBLER (ror which Exclusive—OR is part.of the
basic iDStructlon set) WOuld drastically reduce both tlme

and core used As for the other generators, both the Mult-
1p11cat1ve Congruentlal and Composite Congruentlal generators
are much faster than the new”’ geneiézgrs. However, 1n texrms

'of core used, the new systems as they now stand (partlcularly,

Methods l and 2) compare favorably with the Comp051te Con-

gruentlal generator. _It may be thy'.more eff1c1ent program

' coding will’reduce the core used fo the n"w generators to

f
such - an extent that they w111 all save. core storage when
compared to the Comp051te Congruential generator, and may
.ven approach the'900 bytes used for a Multiplicative Con=-

gruential generator.
,\\: o o
When looklng at CORE USED' for all of the generators,

two factors should be considered:

a) For M1, M2, and M3, as L (the number of dlglts used
to form each’ random number) 1ncreases by 1, CORE USED w1ll
increase by 4 bytes (these 4 bytes belng used to store the
extra d1g1t generated). For;M4, as L .increases by 1, CORE-h
fUSED will increase by (4+4L°? ) bytes (the. same 4 bytes as
before, plus the extra core used to store the extra elements.

of the selector matrlx B).

- b) For all the new generators, as M increases by 1,

‘CORE USED wil} be increased by the 40 bytes used to store
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-

the new column of the A matrix.

The following is aniexample1of how CORE USED was cal- -

culated for method 3 with L=2, M=3.

CORE USED
| ‘BYTES = o EXPLANA’i‘ION
N 1728 ' -.FORTRAN‘object code |
K\i\\;, 120 ' ‘k-matri#_of (10x3)/nﬁmbers 
‘ - 4 .vélue of L - ' o
- 4 B value of M o
4 "column pointer
4 sﬁecial pdinﬁer
4 vcolumn index K
4. ~ the final L-digit number
. 8 ‘:- o £he fwo generated.digitsgtstoréd
| separately |

TOTAL 1880 bytes
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i
| . . .
| <

f

With respect to the already reasonable:beﬁaviourhpf
theGnew Systems, further'researchshouid:befdone in order
to determine 1) if_the starting parameter values for a
Sequential Sifngle Array system can be optimized'for'a'parti—“
cular number of columns in matrix..A,i and 2)!if a.-further |
increase in the number of columns in A improves the stat77
istical behavi r‘of‘the‘generator enough to offset any
increase in computer’storace required‘ Any work done along
these 11nes should take the follow1ng fact into account:
‘an increase in the number of columns of A causes an ln; ~
crease in both the‘amount of computer storage reaulred |
and the expected len959 of a unique series of generated
dlglts. The latter part of this statement can be seen from
”the fact thatlfor a startlng value for matrix A with n
COlumns;‘the probabilitylthat’ A will again take on its

starting value is: 4
: To. [

v

-

. n
10 x (100)"

11

This suggests that the expected value‘of the unique.digit ‘

series length is

, 10 x (10)™ o _
\ n o e *

N

2f one. also takes into account the probabllltv t%at
'the various p01nters w111 also return to their startlng

~$alues at the same time as Matrlx‘ A r thls expected’jpique
: L



T

B

digitvlength will be increased further.

There is another dlstlnct advantage to the new system
of generators,f Unllke any Tausworthe or congruent1a1 gen—
erator,.the new generators can. be ea511y adapted to the

generatlon of random dlglts uslng any base - arlthmetlc up

- to ba%e 10 The general programs for generatlng random dlglts_

Tu51ng Sequentlal Slngle Array methods for any such base

)

‘arlthmetlc are glven 1n Appendlx B , Only base 10 generators

0
were gested here in: order to prov1de d1rect comparlsons

'w1th the already ex1st1ng generators., - : o Co.

oy

KIt mlght be wise in the future, when analy21ng the new

’genenatQI& ‘to. 1ncorporate tests of 51gn1f1cance in analyz1ng
'the results of spec1f1c tests for unlformlty.» In thlS way,

.. one can truly determlne if a generator passes: or falls certain

%)
criteria;_ L

S
. !

2¢ o summarlze, in splte o an increase in computer time =

. ”(' ’ I

, requ red for 1mp1ement1ng a Sequentlal slngle Array dlgltlzed

generator, these new generators as tested appear to compare

'_favorably Wlth ex1st1ng generators w1th regard to statlstlcal

.behhviour, and 1n‘most cases, storage. The new generators

.

- §re also machlne 1ndependent. this .is not necessarlly true'

¥

N

for any congruentlal or Tau5worthe generator. It is con-

cluded therefore, that Sequent1a1 Single Array generators
)

do_havevsome merit,-and that any further work to be done

.

should concentrate on optimizing these g&nerators.

~ 7/
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Appendix A

Description of Tests for Uniform Pseudorandom

Number Generation

47.

A series of tests were used in order to determine the

‘numbers. Suppose, then, that we have a sequenéévof I

numbers éf'length L digité each (xi;xz,.:.,xI]',

generated by some uniformvrandom'number generator. The

3

from the true Uniform distribution:

._following'shoula_hbld true ‘if the generated numbers are

~

>

a) Moments (see Gorenstein (1967)) .

i)

ii)

iii)

‘The first moment,

-

- has expected valué

" The second moment,

has‘expeCted value
b |
+

The third moment,

has ekpected.value‘%

randomness of a generated sequence of uniform pseudorandom



b)

©

48.

iv) -The sample covariance,

[ L 1 1+Y]///((I-Y) *102 ) ; ;i—i+Y

,

_ :I"'y | o L V
Tivy T 121 iy | / LI £ 107)

Runs Up and Down.(sée Downham (1969)) .

Define"a} as the number of runs'in'the séquence of
I numbers)'and' r(F) as the number of runs above

and beyow the’ mean in the sequence of I numbers.

» : e :'!J, :k o
Then: . .0
',//,(—f—/ ' @
Frequency Tests [see Jansso: ’1266));
i) One- dlmen51onal One d-vides the interval

0 -10 “into lOL’ equal non—ovérlapping sub-
‘intervals, and calculatés théafrequency dis--
~ tribution of the I = 10" numbers with'resbect

to these intervals. As the expected value of

should be equal to zero for any value of y> 1

. . _ I_Y 1
where x. = | }J x. ((x-y) *10™) ,
| ¢ = - :



i)

the number of L-digit numbers falling into

each interval is 1 , a x? statistic can"

then be calculated for testing purposes by

using

where 0, is the observed number og//i—digit

numbers falling in the ith( interval, while -

Ei =1 for all i . For the purpose of test—

ing ‘the generators described here, 100 values

of 'x? were calculated for 100 sequences of

1 = 10" numbers, and_the average of these -

2

~values taken as a representativei X® statis-

tic with 10T degrees of freedom.

i

Two-dimensional.; One divides the existence

»square' (0-—10L, 0 —10 ) into equal non-

overlapping squares, and calculates the

frequency dlstrlbut .on of succ sSlve palrs of

the I numbers in t}:\e squares. These_palrs
may be'overlappinq \xl,rz), (xz,le,

..,,v( Ivl,x )} or non—overlappinq g
((xl,x )o (x,0%, ) ";"(xI "*I)] . A graph

of these points should show a uniform dlstrl—

 bution over the existence square.

.-
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'd) Serial Association (see Keeping (1962)).

The following is aﬁ_algorithm‘for calculating a
serial assoéiation coefficient for a sequence of

" numbers of léngth L Adigits‘éach:

i) . Treat the series of I  numbers as a series

- of (L*I) digits.

(’
ii) calculate the frequency distribution table
of the number of times digip value i 1is

followed by digit valué:~j in the series.

-iii) Divide'ali eléments in~this tablé.by the @ f fg
"' _total number of overlapplng palrs of consecﬁ—
tive digits to obtain a probablllty table. -
Therefore, deflne.vH;j ;as the-probabll;ﬁy
. ’ thét.digit value i ‘cccurs, and is followed
by digit ;alue f‘; -and Hi. és the |
proﬁébility’thaﬁldigit value i oqccurs, re-

gardle§svof digit ‘vdlue § .

' / .
- 1iv) Calculate the quantity ‘
- ) . 9 "9' 2
S er= | T e f /9
- oL i= 0 3 =0""1i"3j

ThlS quantlty 1s a measure of the assoc1atlon_

-
V

2

of consecutive dlglts in the serles, and

-



should be close to zero for the sefies of

digits to'be independent.

51.



e !
P - [

& ' f . - W?k“if,

‘Agpendix ﬁ

Programs

. 5
o . -
i

The purpoae ofathis appendix isito present lietincS cf
program segments wrlﬁten 1n FORTRAN IV to generate an.
L—dlglt random number u51ng the varlous models of Sequentlal
" Single Array generators descrlbed 1n Chapter 2 ‘as well as

[
iyt

llstlngs of programs . for testlnc seqnences of numbers
generated by such generators. In all.casesj the follow1ng
varlables have been deflned as the result of generatlng some’

‘prevlous‘number (or ‘initializing the system 1nvolved):

P - the arlthmetlc base value- belng-used.
L - the dlglt length of the number belng generate&.
IA- - the matrlx A . L. ‘

&

M if the nnmbereéf'colpmnslipr\A .

;IP = -reference ébinter to an element in»a eolumn{ofrfA‘;g
K" _ refereneehcolumn index.pornter‘for gA . |
iPZ'é_ speeialvcoiumn indexfpornter-fer:'A .
1IB - hthe Z;L, eeiector matrix' B;.

- In addition, the following -two variables are assigned values -
in the. course bf:generatingpa‘number:

¢
.

'“lngUM - 'aﬂvectbr'containing'the L digits of a‘generated :

£,

“humber.
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J

. KNUM. - the final generated number,; formed from the
G . elements of NUM.
s “

For testing programs, a sequence of LM consecutively
Léenerated values of KNUM is taken (call this -sequence

NUMB) , and the followiﬁg variables defined:

IFRQ - a 10 x10 matrix, in which the i,jt'h element

¢

will contain the number of times digit value i-

is followed by digit value 'j' in the-sequence

of LM L-digit numbers. o ' : : €

ILN® - a vector of length L containing the L digits
o " of a particular element of NUMB to be ﬁsed
. . : '
in defining IFRQ.

AVG, AVG2, AVG3 - the three morients .
IRUNS - the number of runs up and dbwh.v
_IRNS - the number of‘runsvébéve and:below the mean.
PHI - the serial corfelation coefficient,
- 7 -
COV -~ - the sample covariance.
VFREQ - a vector contdining the frequency count used’
for calculating x?2.
N 7
. CHISQ -~ the x° value.

N S

i

'@Ihe-program>segments are as follows:



a)

b)

[

Method 1.

fe ]
v &
gb’ ‘i ‘ ,
KNUM=0"
DO 2 N=1,L .

" J=IA(K,IP)

IL=IA(MOD (K, ,M)+1,J+1)
IQ=IA(K,IL+1)
IA(K,IP)=IQ

“ IA(K,IL+1)=J

Method 2.

NUM(N) =IQ

‘IP=IQ+1

IF (IQ.NE.O) GO TO 3

1Q=1

DO 5 KL=1,p

IA (K, KL)—MOD(IP(K KL)+IQ,P)
K=MOD (K, M) +1

DO 11.%0 1,L

- KNUM=KNUM+NUM (JJ)*10%* (L- -33)

KNUM=0

DO 2 N=1,L

J=IA (K,IP).

NUM (N) =,

IA (K, IPYAEA (K, P+1-1IP)
IA (K, p$& TP) =J :

IP=J+1

IF(J.NE.O) GO TO 3

J=1

DO 5 KL=1,P

IA(K,KL)= NOD(IA(h,hL)+J P)
K=MOD (K, ) +1 : .
p6 11 JJ=1, L - : !
KNUM= KNUM+NUM(JJ)*10**(L JJ)

54.



c)

- d).

‘Method 3.

LJ -

N Awmﬁﬁﬁ@y'
KN UM-? 9 i 3; i \_/
DO 2 N=1,L

J=IA(K,IP)

IL=IA(IP2,J+1])
IQ=IA(K,IL+1)

. IF(MOD(IQ,M) .NE. M-1) FO TO 3

983

6
2

11

Methodfl,

IP2=MOD (IP2,M)+1 =
GO TO 5 '
IP2=MOD(IP2+IQ, M)+1

IA (K, IP)=IQ :

IA(K,IL+1)=J

IP=IQ+1
NUM(N)=IQ

IF(IQ.NE.0)GO TO 983

I0=1

‘DO 6 KL=1,P

1A (K,KL) MOD(IA(k\KL)+IQ P) . -
K=MOD (K, M).+1 \ o T
DO 11 JJ=1,L I o :
KNUM—YNUH+NUM(JJ)710**(L JJ)

L

-
with selector-matrix.

" KNUM=0

DO 2 N=1,L

J=IA(K,IP)

TN WY G

11

- .96

IL=IA(MOD (K,M)+1, J+l)
I=IA(K,IL+1)
IA(K,IP)=IQ, Lo e
IA(K,IL+1)=J : - “ o
NUM(N)=I1Q" . - , - .

IP=IQ+1

IF(IQ.NE.0) GO TO 3
IQ=(MOD(J,P) +1)
DO 5 KL=1,p

“IA(K,KL) MOD(iA(x KL)+IQ p)
" CONTINUE
DO 11 3J=1,L

KNUM*KNUM+NUM(IB(1 JJ))*lO**(L-JJ)
I2=IB(2,MOD(IP,L)+1)

IR=MOD (IP,L)+1
-IT=IB(1,12)

IB(1, IZ) IB(1>IR)

"IB(1,IR)=IT

DO 96 I=1,L R
1B(1, I)-MOD(IB(l I)+NUM(1) ,L)+1 .
IT=IB(1,I) . '
IB(1,I)=IB(2,I)

IB(Z I) IT
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~e) Tests giving data for Tables 3.1 -3.2.

. IF(NUMB(2)-uUMB(1)) 15,15,16 vu»@%ﬁ
15 15G=-1 e Cd =
GO TO 17 o : L : 2
16 ISG=1 . ‘ ' : :
17 IRONS=1 - - : X
- : - 'DO 14 I1I=3,LM . . ‘ '
(j - - IF((NUMB (I)-NCMB (I- 1))*ISC) 18,14,14 %
18 . . - IRUNS=IRUIS+1l :
. ISG=-ISG
14 * CONTINUE L
IF(NUMB (1) .LT. LM/2 0) Go TO 321 - g
ISG=-1. 3 S o o C o~
e » GO TO 33 - o
32 7 ISG=+1
33 °-  IPNS=1
‘ " ° DO 34 I=2,LM '
‘ IF((NUHB(I)—LM/Z o o 5)*ISG) 35, 34, 34
-+ IPNS=IRNS+1 x
-ISG=7ISG . 1
34 CONTINUE . LA
AVG=0.0 . : : .
AVG2=Q.0 N
. AVG3=0.0
- DO 24 I=1,LM
AVG—AVG+PLOAm(VUMB(I))/L§ '
'AVG2=AVG2+ (FLOAT (NUMB(I) }/LM) #x2 - -
AVG3—AVC3+(FLOA1(NUMB(I))/LH)**3
~AVG=AVG/LM .
AVG2=AVG2 /LM
AVG3=AVG3/LM
o - DO 1 I=1,LM
1 - VFREQ(I1)=0.0 - - ‘
o DO 2 I=1,1LM S > O e
S KT~NUMB(I)+1 | ‘ ‘ :
2 . VFREQ (K’I‘)—VFR.,Q (KTy+1
‘ CHISQ=0.0

N

: ‘DO 3 I=1,LM .
3 ’CHISQ—CHISQ+((VFREQ(I) =1)-**2)



“868
52
53
50

212

213

, DO 868, 1=1,10 °
' DO 868 J=1,10 -
" IFRQ(I,J)=0 . ' L.
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DO 50 I=1,LM = e

- DO 51 K=1,L S
» ILN(K)—(NUMB(I)/(IO**K))*10**K
51

ILN (K)=NUMB (I)-ILN (K)
DO 52 K=2,L , v
ILN (L+2- K)—(ILN(L+2—K)-ILN(L+1—K))/10*f(L+1-K)

DO 53 K=2,L

IFRQ(ILN(K—1)+1,ILN(K)+1)=IFRQ(ILN(K—1)+1,ILN(K)+1)+1
IF(I.EQ.LM) GO TO 50 e .
KR=NUMB (I+1) /10** (L-1) : ,

IFRQ (ILN (K-1)+1,KR+1)= =IFRO(ILN(K-1)+1,KR+1) +1

' CONTINUE

FSUM=0.0
DO 212 I=1,10

DO 212 J=1,10 o
FSUM=FSUM+IFRQ (I ,J)

DO 213 1=1,10 .

DO 213 J=1,10

FMAT (I,J)=IFRQ(I J)/FSUM . : -

PO 4 1=1,10

FPRB (I)= 0 0

DO 4 J=1,10

FPRB (I) = FPRB(I)+FMAT(I J)
DO 5 J=1,10.

GPRB{(J) = 0 0

DO 5 1=1,10

GPRB (J) = GPRB (J)+FMAT(I J)
PHI=0.0

.DOGIllO

DO 6 J=1,10 - . I
PHI = PHI+ ((FMAT (I,J)%2. 0)/(GPRB(J) *FPRB(I))) - ~ -
PHI= (PHI-1.0)/9.0 I -
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Test for Sample Covariance.
‘;:
DO 550 IG= 1,20
IF (1¥G.GT.10.AND. IG.LT.15) .OR. (IG.GT. 15.
10R.IG.LT.20) GO TO 550
LP=LM-1IG
SUM1=0.0,
SUM2=0. 0
SUM3=0.0
DO 551 KG=1,LP
SUM1=SUM1+NUMB (KG) /FLOAT (LM)
SUM2=SUM2+NUMB (KG+IG) /FLOAT (LM) .
551 SUM3=SUM3+NUMB (KG) *NUMB (KG+1G) /FLOAT (LM**2)
COV—(SUMB/LP)—((SUMl*@UMZ)/(LP**Z)) o
550 CONTINUE . e .

-~/

w7
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Appendix c

Periodicity —
's

One aspect of the new random number generators thatr
~was not disoussed previonsly in any detail was the actual
periodicity‘of the sequencestof digits generated; Due to a
lack inbavai}ability of computer t%?e and resources, it was
not considered feasible™to test thebbaseglo Sequential Single
Array generators of Chapter 3 e#tensiQely for‘periodicity’;
However,'as the questlon of the~p0551b1e effect, of an 1n—
crease in the number of columns of matrix ‘A on the perlod—
icity was ralsed, it was deezded to perform some testing for

*1od;c1ty onva base 4 'ver51on ‘of one of the new Sequen—
tia Sinéle Array generators. Method 2 was_ohosen, and |

the f llowing values of A were used:

1n  >tal of 60,000,000 digits were generated using the base

. generator referred to -in Chapter 3 by -M,l, without any

repetition in the set of starting parameter'values,,and with-

RN

. out - any 1nternal degenerate sequences occurlng. ~However,,due:

to the high cost 1nvolved in. genenatlng that many dlglts, the

'jprocess was not carrled out any further.

.,
N, -

N

A
¥ .
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! (20 31 ) (2 30 1)
11203 1023
1 33272 3 3232
o110 | 01 1,0 |
(20311 f 23011 )
12033 110233
Ay =1, By =
33222 32322
| 01100 | L 017100 .

For each of the startinngalues of A used , all

p0551b1e comblnatlons ofﬂstartlng values for the column -

p01nter z a%g polnter 1ndex p were tested in order to
determlne whlch comblnatlog dT’ P and for a part1cu1ar

A produced a sequence of dlglts of maximum per10d1c1ty.

g o
The results Were as follows ' TR L
".;L_: E

g ) o e
:_\!,\ﬁ . AR

: é—c?@umn matrices htrsioolumn matrices- .

' . Periodicity ’ . Periodicity

Matrrx Length _“‘Matrlx Length
24128 A, 1298590
_27200 - A, ' 254730

It would appear as though the increase in‘the'number of

;columns of A from -4 to 5 causes a great 1ncrease in the

-
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actual periodicity - it ié}expectéd that a further increase
in the number of columns (and the optimization of' A for.
any number of columns) will cause the increase in periodicity"

' ool
'to be more ‘pronounced.
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* . -Appendix D

Applications to Queueing Theory

-

C.1 Introduction

One major use of Uniform pseudorandom number generation‘
- is in the study and 51mulatlon of queuelng systems, in‘which
the generatlon of random arrlvals and departures plays an

important role: It is the purpose of this sectlon to deflne |
.one partieular queueing model, and to describe how one can -
uoptimize thisvmodel by use of U%}form pseddoranddm number

generation.

C.2 Descrlptlon of Slngle Channel Single—Server; Dynamic
Queueing Model , - o

<

s

A sing;eFChannel single-server dynamic.queueing system -

(no-feedback) can be denoted by S(T,a,g,N)d;‘ in whioh:v

l) T , the pfocessing period'(or simulation period)
is the lapse of time between the start (t=0). and

the end (t=T) of each pfocessing.

2) a = a(t) t'= 0,1,..L,T is a vector of time-—

" dependent job arrival rates.

'3) B = B(t) t = 0,1,:;.;T is aﬁveetor of time-

dependent job departure rates,'and.
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4) N is.the maximum allbwgble quéue length.

»
K

It should be noted that:

1) B(t) - is independent of -a(t) , 'bht dependent on

cyvof the server.

Y :

the efficien

2) The‘haximum éllowable gqueue length, N , is depen-
dent entirely.on'the,setup of the server. An in-
coming job will be rejected if there are already N

jobs waiting in the gueue. N is assumed here to .

be time independent.

When simulating such a systém, the following quantitie§§

should be calculated:
I .

1) The total number of -customers arriving at the system

[
v
°

¥

2) ;The.total number of cuStQmers rejected by the system
3) The total numbervof custoﬁers éntering the server
| ENT" “ | |
: o
*'4) The total number"of:cﬁstomers‘departing ffbm the

‘

-server DEP . ~

' 5) _The number of time units "t": for which the server .

is idle IDL .

. . . . \

o
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"6) The aggregate total of the number of units of time.,i}. ' °

v N i ,)' .
all customers have waited in the queue QTM .
: . . IEN

kK

The following is an algorithm for simulatiné this sf%teh:

1.. Initialize ARR, REJ, ENT, DEP, IDL, and QTM to be

zero. .~ . D

i

2. Set the index I , Land the.quéuéilengﬁh to be zero.

3. Generate two normalized L-digit random nurbers
ARVL 4and DEPT wusing a sequential single arﬁ?y
method. -
4. 1f DEPT is leSs‘ghah 38(I)', ‘then go to statement
10 . Else, ' . ; | .
5. If ARVL is less than a(I) , then go to statement .

'18 . Else,

6. If theiserVer.is busyfﬁthgn go to statement 9 .

Else,

7. -If the queu%—léngth is not equal ,to zero, then go to.

statement 20 . Else,

_8;' Increase thé value of IDL by oné as the\server.is

- ifle, and go to statement 25 .

Y : o -
9. Increase QTM by the Gégue of the queug-length, and

go to statement 25 .
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12.

13.

14.

15.

16.

17.

©18.
- 19.

20.

If the server is not busy,

Else-' . ’ Y

Increase the value of

leaving the server.

If ARVL .is less than

15 . Else,

If the queue length is

~statement -8 . Else,

Go. to statement 20 .

Increasegthe'values:§f>
-job 1s arriving at the
’ the server) and go to statement 9 ..

If “ARVL 1is less than

15 . Else,

Go” to Statement-,S .

if the queue-length is

“to statement 21 . Elge,

Increase the value of

Yy

value of ENT by l

65.

16

bEP by 1, as”a job is

™

)

a(I) , then go to statement
equal to zero,'then 9o to
ENT and .ARR by 1 (as a
system, and a job is enterlng

a(I) , then go to,statement

not equal to N , then go

~

REJ by 1 (as a:job is

rejected by the.system) andsgo to ‘'statement 9 .

; Decrease the queue- length by "1 ,. and increase the .

(as a job is»entering the
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Y . 4¢%% ‘

server from‘the QQSRE) and go to statement 9 .
21, increase the queue-length by,‘l';

>22., if the server is not busy, then go to. statement 24 .

Else,

23, Increase the value of ARR by 1 , and go to state-

ment 9 .
0 3
. . ) - . r

24.  Decrease the'queue—length’by '11,  increaSe_thelf
values of ENT and ARR§ by I‘, .aﬁdigo-tofétatef :

ament 9 .

PRI

25..~IncreaSe the value of L5‘by: 1;;g . By

'26.  If the value of I 'iswless.than E‘;"jﬁhgn,gcitolk o
statement 3 . Elge}‘ji:‘ s T S T
27. Stop, as the simuflation-+‘% finished. ... - .. e
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A
QAT

C.3 Optimization of the System for Given o« and N .
v | - )

‘,_;.? .
In order to determlne the opt1ma1 behav1our of the .

system descrlbed in secﬁlon C. 2,1t is necessar? to find the

_answers to thei& lrpygng two questlons in turn.

. wk' '

a) For %ny %ystem where the area under the curve de-
flned by o (t) ‘Vs t  is equal to the area under
the correspondlng curve deflned by B(t) vs t , -

what pattern of . B(t) w111 optlmlze the sf@%em

for a glven a(t) ?

-

b) Startlng with the optlmal system of al(t) and B (t)
_ values determlned from answerlng question a), how

w1ll overstafflnq and understafflnq change‘the'
behav1ouv of'the¥svstem° ' .
- '@l. . . \‘"‘ % . : . g v' ) ’ . ,

Before attemptlng to answer elther of these questlons, one

,,‘:..,

must first ass1gn arbltrary values to:

[ !

i) Loss - the loss in profit for each time unit a
customer waits in the queue.
ii) GAQN -the~ galn in profit for each time un1t a

jcustomer spends in the server. . o ’

[

* By overstafflng and understafflng, we refer to deflnlng _
values of B(t) such that the curve defined by  B(t) wvs
© t is either greater than or less than (in area under-
neath) the curve deflned by a(t) vs t .
N

~
%
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iii) IDCOST - the upkeep cost for each time unit the

.‘

. év) SVCOST - the labor cost for each time unit the

server is 1dle. ’

server 'is busy.
g Once these varlables have been given values, any: curve (tf
Vs t‘ that saé@sfles the criteria of elther guestions a)

or b) can be used to determine the behaviour of the complete

system for given < T , and N by the following:
! i) Define the set of values B(t) ~t=0,1,...,T .

'1i) Perform a series of simulations using S(T,H,giN) ,
ahd calcuiate'the average values ofuthe~parameters'

IDL , QTM .
: !

iii) Calbulgte the system profit by evaluating:

PROFIT= ({GAIN-SVCOST) * ( T-IDL))- (IDCOST*IDL) - (LOSS*QTM) .

bl
N

'By testing’various ‘B(t) patterns in this vay, one can
meventually flnd a ‘pattern- that prg%uces a max1mum value of -

PROFIT for a glven -3'; T , and N in order to answer the

two questions posed_above.



