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ABSTRACT

One of .the long outstanding open questions in point set
topology asks whether or not each normal Moore space is metrizable. Our
effort in this thesis is directed towards the study of intrinsic properties
which characterize Moore spaces and the study of some related generalizationms

of metric spaces.

We begin in Chapter 1 with the investigation of a class of.
spaces introduced by Aragel%kii, called p-spaces. Various spaces related

to p-spaces are also discussed.

Chapter 2 contains definitions, notations and some of the known
results concerning networks for topological spaces, and spaces with GG_
diagonal that are used in the following chapters. We believe that the
notion of almost base and the characterization of spaces with Gs-diagonal

is new.

In Chapter 3 we study o-paracompact spaces and their relation

with some other well known topological spaceés.

In Chapter 4 we give various characterizations of semi-metric
spaces. The following is of special interest: A regular space is semi-

metrizable iff it is first countable and has a o-cushioned paired network.

In Chapter 5 we give various characterizations of quasi-
metrizable spaces and a necessary and sufficient condition for a

space to have a conjugate strong quasi-metric.
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In Chapter 6 we give an intrinsic. chatacterization of Moore
spaces and show that every completely regular conjugate strong quasi-

metric space is a Moore space.

In Chapter 7 we define the notions of weakly fundamental
sequences of coverings and weak k-refining sequences of cb;erings, and
we give a characterization of Nagata spaces in terms of weakly fundamental
Sequences of coverings, weak k-refining sequences of coverings and
certain almost bases. Finally, we end this chapter, and the thesis,

with some metrization theorems for the various classes of spaces we

have gtudied here.
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INTRODUCTION

Perhaps the most tantalizing open question remaining today
in point set topoldgy is the problem of determining whether each normal
Moore space is metrizable. Our efforts in this thesis are directed
towards the study of some intrinsic properties which characterize Moore

spaces and the study of some related generalizatippafof;metrid?spaces.

A Moore space is a topological space which satisfies Axiom O
and the first three parts of Axiom 1 of [40]. In modern terminology
a Moore space is a regular developable space. It is well known that
every Moore space is semi-metrizable. On the other hand, Ceder [16]
has shown that every Nagata space is semi-metrizable. Also, quasi-
metric spaces have a natural relation with Moore spaces. We will show
that a completely regular Moore space 1s a o-paracompact, p-space with
G —-diagonal. Therefore, as promised in the previous paragraph, our sub-
ject of investigation becomes o-paracompact spaces, p-spaces, spaces
with GG-diagonals, semi-metric spaces, Nagata spaces, quasi-metric

spaces and metrizable spaces.

In Chapter 1, we investigate p-spaces, strict p—-spaces as
defined by Arhangel%kii [7]; M-spaces, P-spaces by Morita [41], and the
A-spaces, wA-spaces introduced by Borges [13]. The notable results in
this chapter are characterizations of p-spaces without reference to
compactification in Theorem 1.1.1 and the result that every wA-space is

a P-space.

In Chapter 2, we define the notions of (i) almost base and

(i1) o-cushioned paired network for a topological space. We study
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various properties of spaces with o-cushioned paired networks. We also
show that a topological space has Gs-diagonal iff it is an open Tl-image

of a metric space.

The main results of Chapter 3 are the following:

(a) Every Fb—screenable space is o-paracompact.

(b) X 1is Fc-screenable 1ff eQery open cover has a g-locally
finite closed refinement.

(e) Fo-screenable spaces are invariant under perfect maps
in both directions.

(d) For locally compact Hausdorff spaces, X is Fo—
screenable iff X 1s a countable union of closed paracompact subspaces.

(e) If X is metacompact and every closed set is G6 then
X 1s Fc-screenable. ~

(f) In countably metacompact spaces, X is screenable
iff X 1is o -fully normal.

(g) In o-paracompact spaces, X is compact iff countably
compact.

(h) A metacompact completely regular space need not be

o-paracompact. This answers a question of Arhangelskii [7].

In Chapter 4, we give several necessary and sufficient
conditions for semi-metrizability. In particular, we show that a
regular space is semi-metrizable iff it 1s first countable and has a

o-cushioned paired network.

In Chapter 5, we give various necessary and sufficient

conditions for quasi-metrizability of - topological spaces. We also give
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4 necessary and sufficient condition for a topological space to have a
conjugate strong quasi-metric. Unfortunately, we could not find a

necessary and sufficient condition that is "purely" topological.
ry -4

In Chapter 6, we have obtained the following results:

(a) A completely regular space X is a Moore space iff
X is o-paracompact and the diagonal of X is a closed G6 set in
X x BX, where BX 4is a Hausdorff compactification of X .

(b) A completely regular space X 1is a Moore space iff
X is a o-paracompact, p-space with Ga-diagonal.

(c) A completely regular space X 1s a Moore space 1ff it
is a p-space and has a o-cushioned paried network. This answeres the
question in [15].

(d) Every conjugate strong quasi-metric space is

developable.

In Chapter 7, we show that the notions of weakly fundamental
sequence of coverings and weak k-refining coverings are equivalent. A
Tl-space is Nagata iff it has a weakly fundamental sequence of coverings
or a weak k-refining sequence of coverings. We also show that for a
regular space X to be Nagata it is necessary and sufficient that it
is first countable and has a o-cushioned paired almost base. Finally,
we give some metrization theorems. The Theorem 7.3.3 is of interest as
it answers the question raised by McAuley [35], "Is it possible to
partition Bing's Theorem 4 of [11] into three or more parts which
begins with a condition for a topological space and which ends with a

condition for metrizability of the space, but with necessary and
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sufficient conditons somewhere between these extremes for semi-metric

and Moore Spaces?'

The following notation and terminology will be used through-

out this thesis.
1. If A d4s a collection of sets, then U(A| A ¢ A) 1s
the set of all x such that x € A for some A ¢ Q ;s sometimes,

U(A |A € A) will be denoted by at .

2, 1If {éa |a € A} 1s a family of sets such that each
member is a family of sets, then {eala € A} = oA {AlAce Qa} where
A, = {(A|lAe éa} for each a ¢ A.

3. Unless explicitly stated otherwise, the letters i,

3 k, m, n will denote variables whose values are natural numbers.

4, All other terms not defined here in are used as in [19]

and [28] with the exception that regular and normal spaces are assumed

T10



CHAPTER I

p—-SPACES

The concept of p-space is quite recent. It was introduced by
Arhangeihkii [7]. The importance of this notion lies in the fact that
a paracompact Hausdorff space admits a perfect mapping onto a metric
space iff it is a p-space. Hence, in particular, it follows that the
product of a countable set of paracompact Hausdoxrff p-spaces is a
paracompact Hausdorff p-space. Furthermore, the closed image of a

metrizable space is metrizable iff it is a p-space.

The definition of p-space given by Arhangelskii [7] involves
compactification of the space. In view of the above interesting properties
of p-spaces Alexandroff [3] suggested a problem of finding a direct

intrinsic definition (without appeal to compactification).

The investigations of this chapter are motivated by the above

problem.

Definition 1.1.1 A completely regular space X is called a p-space

iff there is a countable family {Xi}:-l of open covers of X in any

one (hence in all) of its Hausdorff compactifications such that

19 st(x,xi) cX, forall xe¢ X .

Definition 1.1.2 Let {Asl 8 € S} be a family of subsets of a set

X and {Xi}:-l be a countable family of covers of X . Then, we say

that the family {Asl s € S} has sets which are base point small relative



to {Xi}:;l 1iff there exists X, € X such that for each i, there

€ S and Vi eV

for which x ¢ Vi and A c Vi .
At o -]

i

is si

Theorem 1.1.1 A completely regular space X is a p-space iff there

exists a countable family {Xi};;, of open covers of X such that

for every family of closed sets {Fgl 8 € S} which has che finite
intersection property and contains sets which are base point small

relative to {¥1}1=1 the inequality n(F, |s € S) # ¢ holds.

Proof. Let us suppose that there exists in X a countable family

{Xi}:-l of open covers of X which has the required property. Let

i
Xi = {V8 ls € Si} for i =1,2,..., and let Wi denote an open set

in BX (the Stone éech Compactification of X) such that V: = w: nXx

(- -]
for s ¢ Si and i = 1,2,... . Evidently, {Hi}i-l where
¥ = {W: |s € Si} is a countable family of open covers of X in BX

for each i . We now show that 131 St(x,Hi) <X for all xe X .

-]
Let y ¢ 191 St(x,Hi), and let g(y) be the family of éll
its neighborhoods in BX . The family {(CleB) nX|Be g(y)} consists
of closed subsets of the space X and has the finite intersection

property. Also, for each 1 there exists 8y such that x, y is

in w: . By the regularity of BX there is B ¢ g(y) depending
i
on i such that y ¢ B and CleB < W: + This implies that the
i
family {(CleB) nX|Be B(y)} contains sets which are base point

small relative to {Xi}:=1 » the base point being x . Therefore

by the hypothesis n(X n (C14B) |B e B(y) =xn (n(C1 B B e By)) #¢.



3.

But n(CleB IB € B(y))=y , hence y e X. Since y is an arbitrary
(- -]

- -]
member of 18 St(x,xi), consequently 19 St(x,xi) cX.

Conversely, let us agssume that X is a p—-space, i.e., there
exists a countable family {Xi}:-l of open covers of X in BX such
that for each x € X we have izl St(x’Xi) €X. For each x ¢ X
and 1 = 1,2,..., let Wi be an open set in BX such that
X € Wi c CleWi €V for some V ¢ ¥i + We shall show that the
countable family {Hi}:-l of open covers of the space X , where

U= {Xn W; | x € X} has the required property.

Let {Fs |s € S} be a family of closed subsets of X which
has the finite intersection property and contains sets which are base
[--}
point small relative to {Hi}i-l . The family {CleF8 |8 € S} has
the finite intersection property and consists of closed subsets of BX .
Therefore, by the compactness of B8X , n(CleFs |s € S) ¥ ¢ . Suppose
X € n(CleFBI 8 €5) . Since F_ =Xn (ClgyF.) , 1in order that

X € n(Fs |s e 8), it is enough to show that x € X .

Because {Fsl 8 € S} has sets which are base point small

relative to {U.}. s there exists x_ e X such that for each 1,
1" i=] o

one can choose 8, ¢ S and Ui € H such that F c Ui and x ¢ Ui .
1 i si ()
i i
Since x € CleFsi c CleU c Clele < St(xo’¥1) , 1t follows that

X € St(xo’¥1) for all i ; but, by the hypothesis 18 St(xg’Xi)-S X .

Consequently, x ¢ X . Hence the theorem is proved.



Corollary 1.1.1.A A completely regular space X is a p-space iff

there is a countable family {¥1}:-1 of open covers of X satisfying:

(a) for each x € X and any sequence {Vi}I;l where vt € Xi

i © Vi
and x eV for each 1 , Ax - igl is compact; and

(b) the family {Vi}zgl is the"basd' for the open sets containing

The proof follows immediately from Theorem 1.1.1.

Remark 1.1.1 If a completely regular space X is a p-space, then

by Theorem 1.1.1, there exists a countable family (Vv ¥ of open
Vi i=]

covers of X such that for every family of closed subsets {Fsl s € S}
of X which has the finite intersection property and contains sets
which are base point small relative to {Xi}:-l has non-empty inter-

section. Now, it is easy to show that the countable family {xi}:;l

of open covers of X is pointwise finitely additive; 1i.e., for each

xe€X and each 1 = 1,2,... and finitely many members Vi, ooy Vi
n
i
containing x , the jgl Vj is an element of Xi .

i

Theorem 1.1.2 Let X be a completely regular space and BX be the

Stone Cech compactification of X . Then, X 1is a p-space iff there

exists a sequence {Gi}:-l of open sets in X x BX such that

Ax c 131 Gi c X x X, where Ax = {(x,x) | x € X} .

Proof. Let X ,be a p-space. Then there exists a countable family

{¥1}I-1 of open covers of X in BX such that 131 St(x,V.) € X for

’xi



all x ¢ X . Let us define G, = UWxV|W=VnX and Ve xi)

for each i . Evidently, for each 1i , Gi is open in X x BX and

contains Ax . We need only show that iEI Gi cXxX. If

(x,y) € izl G, then y € iEl St(x,xi) . Consequently, by the

hypothesis, y € X . Hence 131 Gi cXxX.

Conversely, let us assume that Ax c c Xx X, where

191 6

G is open In X x BX for each 1 . For each x e X and 1= 1,2,... ,

i
let us choose an open neighborhood Vi of x in BX such that

- -]
4 + We shall show that the countable family {¥1}1=1 s

where Y - {V; |x € X} for i =1,2,..., of open covers of X in

(Vi n X) x Vi <G

BX has the required property, i.e., 131 St(x,xi) c X for all
XeX . Let y ¢ 131 St(x,xi) » where x 18 any point of X . Then

(x,y) € . G, € X xX implies y € X . Hence the theorem is proved.
i=] "1

Arhangel%kii [7] has also defined the notion of a strict
p-space, a stronger notion than that of p~space. Noticing that the
definition of strict p-spaces again requires use of a compactification
of the spaces involved, we now extend our investigation to look for
an internal characterization of these spaces. One of our characterizations,

the third, has also been given recently by Burke and Stoltemberg [12].

Definition 1.2.1 A topological space X is called a strict p-space

i£f there exists a countable family {Xi}:-l of open covers of X

in BX (where B8X 1is the Stone Cech Compcatification of X) satisfy-

ing the following conditions:

[ ]
(a) for each x e X , 101 St(x,gi) <X



(b) for each x € X and 1 there is j > 1 such that

Cle(St(x’Xj)) = sc(x’Xi) .

Definition 1.2.2 Let {As | s € S} be a family of subsets of X and

{Xi}:=1 be a countable family of open covers of X . Then we say
{A.s |s € S} has sets which are base point strictly small relative
. [

{¥1}1=1 1ff there exists x, € X such that for each i there is

8, ¢ S for which A.s

1 C‘St(xb,xi) .

i

Theorem 1.2.1 In a completely regular space X the following state-

ments are equivalent:
(1) X 1is a strict p-space;
(i1) there exists a countable family {Xi}z-l of open covers of
X such that
(a) for each xe¢ X and 1 there is j > i such that
Clx(St(x,Xj)) < St(x,Xi) , and
(b) for any family of closed sets F = {Fs | s € S} of X
with the finite intersection property and contains sets whicb are base
?oint strictly small relative to {Xi}:-l » the inequality
n(Fs ls € S) ¢ holds;
(iii) there exists a countable family {Xi}:-l of open covers of
X such that for each x ¢ X , Ax = 131 St(x,xi) is compact and for

any open U> Ax there is an 1 such that Ax c St(x,yi) cu

(Burke and Stoltenmberg [12]).

Proof. (1) ==> (ii) Let X be a strict p-space and BX be the



Stong Cech Compactification of X . Let {Hi}:-l be a countable
family of open covers of X 1in BX satisfying (a) 131 St(x,Hi) cX
for all xe¢ X, and (b) for each x € X and any positive integer
n there is hl > n such that Cle(x,Hnl)) c St(x,Hn) . Let us
define Xi = {WnX IW € Wi} for i =1,2,... . We shall show that
the countable family {Xi}:-l of open covers of X has the required
property. It is easy to see that condition (a) of (ii) is satisfied
by the countable family {¥1}:-1 of open covers of X . We now show

that (b) is also satisfied.

Let us assume that {Fs |s € S} 1is a family of clased:
subsets of X which has the finite intersection property and contains
sets which are base point strictly small relative to {¥1}1=1 . The
family {CIBXFs |s € S} has the finite intersection property and
Cle Fs is closed in BX for each s € S, and so, by the compact-
ness of BX , there is x ¢ n(CleFs |s € 8) . Now, it is enough

to show that x ¢ X .

For each natural number 1 1let us choose j such that
ClBX(St(xo,Hj)) c St(xo,Hi{ .

Then, clearly Clx(St(xo,x )) ¢ Cle(St(xo,Hj)) . Now, choose

J
si,j € S such that
F St v .
si’j = (xos"‘J)
Then x € C1BXF3 c ClBX(St(xo,Xj)) c Clex(st(xo,ﬂj)) c St(xo’Hi)

i,3



(-] (- -]
for all 1 , implies that x ¢ 19 St(xo,yi) ; but 01 St(xo,ﬂi) cX
implies x e X .

(11) ==> (iii) Let us suppose there exists a countable family
{Xi};;l of open covers of X satisfying the conditions in (ii) .
Then we may assume that ¥i+1 refines. Xi for each 1 . Let x e X
and Ax - 131 St(x,xi) and let {F8 |s € S} be a family of closed
subsets of A.x which has the‘finite intersection property. It is
easy to see that by (a) A.x is closed. Therefore {Fs Is e s} 1is
a collection of closed subsets of X which has the finite inter-
section property and cbntains sets which are base point strictly
small relative to {Xi}:;l" Hence n(Fs |s € 8) #¢ . Consequently,
by Theorem 1 on page 137 of Kelley [28], Ax is compact. Since x
is an arbitrary point of X , for each x ¢ X we have shown that
Ax - izl St(x,xi) is a compact subset of X . Finally, let U be
any open set containing Ax and suppose St(x’¥1) ¢ U for each 1.
Then, for each 1 choose -xi € St(x,xi) - U. Let us define
F, = u({xj} |3 > 1) . Then clearly {ClXFn}:-l is a family of closed
sets with the finite intersection property. Furthemore {Clen}:=1
contains sets which are base point strictly small relative to {Vi}zal .
Hence, by the hypothesis, there is y ¢ n(Clei |1 =1,2,...) . By
construction n(Clei |1 =1,2,...) cX~-U so that y ¢ U ;s but
Yy € 131 St(x,xi) c U (because for each i there is j > i such
that CIXFj c Clx(St(x,xj)) c St(x,xi)) » a contradiction. This
implies that, for some io’ St(x,¥i )cUu.,

o



(111) ==> (1) Let {Xi}z-l be a countable family of open
covers of X satisfying the required properties. For each 1 , let
us define Hi = {W |W opmgin. BX, WniXe xi} . We shall show that
the countable family {Hi}:-l of open covers of X in BX has the
required property. First, recall the fact that if y 1is any open
set in BX then Clsx(Ur1x) = Cle U - Now, by the hypothesis we

- -]
know that for x € X, A = ,n; St(x
{St(x,yi)}:_l forms a base for the neighborhoods of Ax . We first

,Xi) is compact and
[ -]

show that {Cle(St(x,Xi)}i_l forms a base for the neighborhoods of
Ax in BX . Let U be an open set containing A.x . Then by the
regularity of BX there is an open neighborhood G of Ax such
that Ax c Gc CleG cy. Now A.x cGnX and G n X is open in
X . So there is an 1 such that Ax c St(x,xi) cGnX. Now,
clearly Cle(St(x,Xi)) c CleG c P . Also, now using the fact
recalled above, St(x,Hi) c CleSt(x,Xi) . Again using the regularity

’ 3
fo PBRX we have Ax =40 St(x,Hi) c X and St(x,Hn.) c CleG c St(x,Hn)

for n' > n . Hence X 1s a strict p-space.

We shall now broaden our investigation to consider the relation-
ship between the properties so far studied and some obviously related

concepts which are defined below.

Definition 1.3.1 A topological space X is an M-space iff there

exists a normal sequence {Hn}:zl of open covers of X satisfying
the following condition: if {A,, A2, cesy An’ ...} 1s a sequence
of subsets of X , with the finite intersection property, and if

there exists X, € X such that, for each n = 1,2,... , there
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[ -] -
exists Ak c St(xo’Hn) , then 201 An $ ¢ .

Definition 1.3.2 A topological space X is a A*-gpace iff there

exists a countable family {Hh}:-l of open covers of X satisfying

the following conditions:

(a) for each x € X and each n = 1,2,...,

Cly(St(x,0 11)) = St(x,[) ;

(b) 4if {Al, AZ’ cees Ah’ ...} 18 a sequence of subsets of X .
with the finite intersection property, and if there exists x, € X

such that for each n = 1,2,... » there exists some

Ak c St(xo,Hn) , then nEI A; £ ¢ .

Definition 1.3.3 (a) A topological space X 1is said to be a wA-space
iff there exists a countable family {Hi}:;l of open covers of X
such that for each x e X, 1if x is in St(xo,Hn) for n=1,2,... ,
then the sequence {xn} has a cluster point.

(b) A topological space X is sald to be a A-gspace
1ff X 1is a wA-space and the covers Hﬁ satisfying (a) can be so
choosen that we can also have, for each x ¢ X and each n = 1,2,... ,

Cly(St(x,g 1)) < St(x,[)

Definition 1.3.4 A topological space X 1is a P-gpace in the Morita

sense iff for any set é of indices and for any family
{G(al,...,ai) Ial,...,ai € A; i=1,2,...} of open subsets of X

satisfying the condition:
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(a) G(al,...,ai) c G(al,...,ai+1) for Uyseeesly g € A and

for 1 =1,2,... ,

there exists a family {F(al,...,ui) Ial,...,ai €ceA; for 1= 1,2,...}
of closed subsets of X satisfying the conditions (b)
F(al,...,un) c G(al,...,an) for Aysecesd € A, and (c)

@©
X=,9 F(al,...,ai) for any sequence {ai} such that

X = i% G(al,...,ai) .

Proposition 1.3.1 Let X be a topological space. Then,

(1) X 1is a M-space implies X is a A*-gpace;
(i1) X 1s a A*-gpace implies X 1s a A-space;
(111) X 4s a A-space implies X is a wA-space;
(iv) X 1s a wA-space implies X i1is a P-space in the Morita sense.
Proof. (1) 1I1f {Hi}:-l is a normal sequence of covers of X ,
then for each i1 and x ¢ X we have St(St(x,Hi+1))E_St(x,Hi) s
i.e., Clx(St(x,Hi+1)) c St(x,Hi) . Now, by the definition, it is
easy to see that every M-space is a A*-gpace.
(11) and (iii) are obvious.
(iv) Let {G(al,...,ai) Ial,...,ai cph, 1= 1,2,...}
be a family of open subsets of X satisfying condition (a) of definition
1.3.4. Since X 1is a wA-space there exists a countable family {Hi}:=1
of open covers of X satisfying the condition (a) of definition 1.3.3.

Without loss of generality we may assume that Hi+l refines Hi for

each 1 . Let us now define
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F(agseeesty) = X = SECCK = 6(a,..000))), ) -

Obviously, F(al,...,ai) c G(al,...,ai) for each 1 . 1If
X = igl G(al,...,ai) we want to show that X = i§1 F(al,...,ai) .

Suppose X € X - 191 F( 1,...,gi). Since X - 191 F(al,...,ai) =

- -]

407 St((x - G(al,...,ai)), Hi) we have (X - G(al,...,ai)) n

S;(xo,gi) $# ¢ for all i . Let us choose x, € X - G(al,...,ai)) n

- -]

St(xo,ﬂi) for each i . By the hypothesis {xi}i=1 has a cluster

point which belongs to 151 X - G(al,...,ai)) » contrary to the fact
- -] . - -

that 131 G(al,...ai) = X . Consequently, X = 191 F(al,...,ai) .

Hence X 1is a P-space in the Morita sense.

Proposition 1.3.2 Every P-space in the Morita sense is a countably

metacompact space.
Proof. Follows from Theorem 2 on page 162 of Hayashi [23].

Proposition 1.3.3 Every .strict -p~space.1s:a wA-space.

Proof. Follows from Theorem 1.2.1. .

Proposition 1.4.1 Let X be a completely regular space with the

following properties:
(a) X has no infinite compact set;
(b) X has at least one point which is not Gg -

Then X 1is not point countable type.
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Proof. Suppose X 1s point countable type. Let x, € X be a point
which is not a Gs point of X . Since X 1is point countable type
there exists a compact set K of countable character containing x .
According to the choice of X s K 18 not a finite set, i.e., K

is infinite, which contradicts (a) . Hence X is not point

countable type.

Corollary 1.4.1A If X 1is a completely regular space satisfying

conditions (a) and (b) of Proposition 1.4.1, then X d1s not a p-space

(X 1is not a strict p-space).

Proof. Follows from the fact that every p-space is point countable

type.

Proposition 1.4.2 1If X is'a completely regular p-space such that

each point is a ~G6 set, then X 1s first countable.

Proof. Follows by Remark 1.1.1, Arhangelskii [5], and Aull [9].

Theorem 1.4.3 There exists a completely regular countably compact

space which is not a p-space.

Proof. By Novak [44] there exists a completely regular countably
compact space X such that N c« X c BN (where N denotes the set
of positive integers with the discrete topology and AN is the

‘ ¥
Stone Cech .compactification of N), le.i 2° and every infinite
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Y
set which is closed in X has cardinality 22 ° . The space X

has no infinite compact set. Also, no point of X which is in

§

GG point is first countable. . We shall .show that no point of X - N

has countable neighborhood base. Suppose some x, € X~-N has a

X-N 48 a G, set. Actually, since X iéacounxa§17~compact every

countable neighborhood base. It is then eaéy to see that there
exists a continuous function £ on X with f(xo) = 0 and

f(y) >0 for y € X - {xo} . Evidently, g(y) = sin ET%T has

né continuous extension across X, » but this is not possible. Now,

by Corollary 1.4.1A, X 1s not a p-space.

Remark 1.4.1 Theorem 1.4.3 shows that an M-space need not be a

p-space.



CHAPTER II

ON NEIWORKS FOR TOPOLOGICAL SPACES AND

TOPOLOGICAL SPACES WITH GG-DIAGONAL

This chapter contains definitions, notations and some of the
known results concerning networks for topological spaces and spaces

with Gs-diagonal that are used in the following chapters.

The concept of a network for a topological space, or what

is called a point pseudobase by Michael [36], was‘first intfoduced by
Arhangei%kii [8]. 1In this chapter we define the notion of almost base
and c-cuéhioned paired network. The former is a generalization of the
notion of pseudobase which was introduced by Michael [36]) and the
later 18 a generalization of the nﬁtion of o-cushioned paired base by
Ceder [16]. Our o-cushioned paired networks have been considered
recently by Kofner [31], who calls them o-biconservative paired net~

works.

In Section 1, we study a few simple properties of almost
bases for a topological space and also properties of some special net-

works.

In Section 2, we recall many results known for spaces with

GG-diagonal and characterize spaces which admit a Gs-diagonal.

Definition 2.1.1 A collection E of subsets of a topological X
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is called a network for X iff for each x ¢ X and any open subset

U of X containing x there is B e B such that x e Bc U,

Remark 2.1.1 If B is a base for the topology of X , then B is

a network for X , but the converse is not true.

Remark 2.1.2 If B is a base for the topology of X , then for each

compact set C of X and any open set U containing C there is

n
a finite collection Bl,...,Bn € E such that C < 121 Bi cU. In
general the above property is not possessed by a network for a topological

space.

Definition 2.1.2 A network B for a topological space X is called

an almost base 1iff for each compact set K of X and any open set
U containing K there exists a finite collection Bl,...,Bn € E

B, cU.

n
such that K c 21 i

i
Obviously, a base for a topological space X 1is an almost
base for X and an almost base for X 1s a network. But it is easy

to construct examples to show that a network for a topological space

need not be an almost base and an almost base need not be a base.

Remark 2.1.3 1In a regular space the notions of locally finite net-

work and locally finite almost base are the same. However, there are
regular spaces with a g-locally finite network and without a o-locally
finite almost base and also regular spaces with a o-locally finite

almost base and without a o-locally finite base.
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In general an almost base is not a continuous invariant.
As a matter of fact the continuous image of a base need not be an almost

base.

Definition 2.1.3 A continuous mapping f : X > Y of X onto Y is

called a compact covering iff every compact subset of Y is the image

of a compact subset of X .

The proof of the following proposition is immediate.

Proposition 2.1.1 Let X be a topological space and B be an almost

base for X and let f : X+ Y be a compact covering. Then f(k) =

{£B) |B ¢ B} 1is an almost base for Y .

Remark 2.1.4 If X 1s a regular space and B 1s a network for X,

then El » the collection of closures of members of k s 1s also a

network for X .

Definition 2.1.4 Let R be a collection of ordered pairs P = (Pl’PZ)

of subsets of X , with P1 c P2 for all P ¢ g + Then g is called

a paired network 1iff for each x € X and an arbitrary neighborhood U

of x, there is a P ¢ g such that x € Pl c P2 <y . E is called

a cushioned paired collection in X i1ff for each gl c R s

U(Pl |P € gl) c u(P2 |P e gl). Finally, P 1s called a g—cushioned

paired network for X iff g is a paired network for X which can

be written as a countable union of cushioned paired collections.
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The prdof of the following proposition is easy.

Proposition 2.1.2 1If a topological space X has a o-cushioned paired

network, then every closed subset of X 1is a G6 set.

Proposition 2.1.3 Let X be a countable product of spaces Xn H
n=1,2,... . If each Xn has o-cushioned paired network, then X

has o-cushioned paired network.

Proof. For each n , let gn = m§1 g; be a o-cushioned paired net-

work for xh . Without.loss of generality, let us assume that

n n n po
(xh,xn) € Rm and gm c Em+1 . Now let X = ngl xn » and define

n n
- 1,1 1,2y 1 o1 . o1
B, {(11:1 P, iflrn )Ipnegn}
where )
n n
m Pl e xexx e Pt for 1gnre 1 el g X
i=] . i=1 3>n
and
n n
n pl?. {xe X|x, € pis2 for 1 <n} = I pls2 « g X, ,
j=1 O n g=1 ®  4>n 3

We will use the notation ?n = (Pg,P;) for an element of the collection
R? thus defined. Letting R = v En we claim that £ is a o-
n=1

cushioned paired network for X . That it is a paired network follows

by the construction. We now show that kn is cushioned for each =n .
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Letting gi € R, » We need to show that u(P?l P ¢ gi) c

U(Pg [P® € gi) . Suppose y & U(Pg | P? gi) + Then

n
) _ i,1 n 1
121 (U@ x ooox (R = u@ T | P" e P 1)) x X .%...))

is a neighborhood of y which does not intersect (P? IPne Ei) 3

i.e., U(P; IPn € gi) c u(Pg IPn € Pi) . Hence the proposition is

proved.

Corollary 2.1.3A If X 1is a Tz-space with o-cushioned paired net-

work, then Ax = {(x,x) | x € X} 1is a Gs set in X ; i.e., X has

a Ga-diagonal.

Proposition 2.1.4 If X is a topological space with o-cushioned

[- -]
network, then X has o-cushioned paired network E =Y 51

satisfying the following four conditions:

(1) Ei is a cushioned paired covering of X for each 1 H
(i1) gi c Pi+1 for each 1 ;
(ii1) £i is closed under intersections; i.e., if
. i i N .
Po= {(pal’Puz) |a e Ai} then for any subset A; < A, the pair
i

i
(agAi Pal’ aQAi Pa2) belongs to ki for each i .
(1v) for each x € X there is a collection {P:}:-l where
Pi € Ei such that for any neighborhood U of x there is 1 with

i i

al © Pa2 <U.

the property that x ¢ P
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Proof. Let B = j§1 kj be a given o-cushioned paired network for
X . Without loss of generality we may assume that By = {(x,x)} .

i
Let us define £4 jgi By and let Ry {(agF C1* olF a2)| Fca }
i i
where 91 - {(Cal’ Caz) ]a € Ai} - We do not consider a pair

(n Ci ) in Ri for which n Ci We claim that

alF “al’ ofF a2 alF a1 = ¢ -
g = i§1 Ei satisfies all the four properties in the hypothesis. Let
A A
i be a fixed but arbitrary index and let A' < 2 i where 2 i denotes

the collection of all non-empty subsets of A, . We now need to show

i
] ]
that u( n oF al |F e A") € U(aeF a2 | Feary . Suppose
1 v
y ¢ U(aeF a2 |F € A') . Then for each F € A there is aF such

that y ¢ C » 1.e., y ¢ U(Ci |F € A') . Then
aFZ aFZ

i ] i '
y ¢ U(CaFl [F e A") so that y e X - U(Ca 1 IFeary . Now,

i
let us assume that X - U(Ca 1 IF € A")) n (U(anF all FeA')) ¢,

i.e., there is 2z ¢ (X - U(C el |F e A')) n (u( OF C IF e A')) .

This implies that for some F, ¢ A" we have z ¢ (X - U(Ci 1 |FeA"))n
F

(GQFO Czl) which is impossible since there 2z ¢ CiF , and
o

Z e n Ci1 where aF € F° . Hence, for each i , Ri is
o o

cushioned collection and it is a cover because the pair (X,X) € Ri

for each 1 .

From the above argument and the construction of E, it is
easy to see that R satisfies (1), (ii1) and (1ii). We now need to
show that (iv) is satisfied. For each x € X and i define

Al = {a € Ay | x e C } Consider the pair P! - (n Ci s N ct )
X X i 1 i 2
aeA aeA
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for each i . Now, if U 1is any neighborhood of x , then by the

fact that B 1s a paired network there is 1 such that x ¢ Bi c B; cU.

It is easy to see by comstruction that x e n i C:I c n i C:Z cU
aeA aeA
X X
as n Ci c Bi and _n Ci c Bi Hence the proposition is
i1 1 aeA_ a2 2"’
aeA_ X
proved.

Definition 2.1.5 A network B for a topological space X 1s called

g- closure preserving (c-locally finite or o-discrete) provided B
can be written as a countable union ¢f closure preserving (locally

finite or discrete) collections.

Proposition 2.1.5 If X 1s a topological space with a o-closure

preserving closed network, then X has a o-closure preserving closed

[
network g = 121 Ei satisfying the following conditions:

(1) P, 1s a closure preserving closed covering of X

_ i
for each 1 ;
(ii) gi < £i+1 for each 1 ;

(111) P; 1is closed under intersection;

(iv) for each x ¢ X there exists a collection {Pi}:_l
such that for each 1 , Pi € £i and for each neighborhood U of
i

*x there is 1 with the property that x ¢ Px cU.

Proof. Similar to Proposition 2.1.4.

Proposition 2.1.6 If X is a topological space with a o-locally
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finite closed network, then X has a o-locally finite network

= .U satisfying the following conditions:
R i=] Ri ying

(1) Ry 1s a locally finite closed covering of X for
each 1 ;

(11) B, < By4q for each i ;

(111) Ry 1is closed under finite intersection;

1y

(iv) for each x € X there exists a collection {Px =1

such that Pi € Ei for each 1 and for each neighborhood U of x
there is Pi such that x e Pi cU.

Proof. See K. Nagami [43].

Theorem 2.1.7 For a regular space X the following statements are

equivalent:
(1) X has a o-discrete network;
(11) X has a o-locally finite network;

(1i1) X has a o~closure preserving network.

Proof. See Siwiec and Nagata [51].

Proposition 2.1.8 ©Let £ : X+ Y be a continuous and closed mapping

of a regular space X onto a Tl—space Y . Then

1) Y has a o-discrete network if X has a o-discrete

network;

(ii) Y has a o-locally finite network if X has a O-locally

finite network;
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(i11) Y has a o-closure preserving network if X has a
o-closure preserving network;
(iv) Y has a o-cushioned paired network if X has a

o-cushioned paired network.

Proof. Is obvious.

Definition 2.2.1 A topological space X 1s said to have a GG—

diagonal 1iff Ax = {(x,x) |x e X} is a G6 set in X x X .

Theorem 2.2.1 The diagonal Ax of a topological space X is a

Gs set in X x X iff there exists a countable family {Xi}:=1 of
open covers of X such that for each x ¢ X we have

-]

19 St(x,Vi) = {x} .

Proof. See Ceder [16].

Corollary 2.2.1A If a topological space X has a GG-diagonal, then

X is a Tl-space.

We note the following simple properties of spaces with GG-

diagonal.

Theorem 2.2.2 Let X be a topological space.

(@) If X= I X
1m1

then X has a G%-diagonal.

where for each 1, X, has G _-diagonal,

1 i 8
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(b) If X 4is a space with Gc-diagonal, then every subset A
of X has the property that AA is a GG set in Ax A ; i.e, A

has Gs-diagonal.

(c) If X 4is a space with Gs-diagonal, then X has a Gs-

diagonal with respect to every stronger topology.

Proposition 2.2.3 If a topological space X = i§l Xi where for each

i, X, 1s a closed G, set in X and such that A is a G, sget
1 8 Xi é

then X has a G-diagonal.

in Xi x Xi R §

Proof. By Theorem 2.2.1, for each i there exists a countable family

{Xj J -1 of open covers of xi such that for each x e Xi we have
jgl St(x,XJ) = {x} . Let Xi - jzl Uj s Wwhere U; is open in X .
Without loss of genrality let us assume that U§+1 c Uj for

j=1,2,... . For a fixed 1 and J 1let us define H; the collection
of open sets W in X such that W n xi 1s a member of X} and

We Uj . We now consider the sequence of covers {Ej# s Where for
each fixed 1 and arbitrary 3 , Hj {x - X, dIu Hj We shall

show that for each x ¢ X , 4 9 1 St(x,ﬂj )= {x} . Let xe¢X.

Then x € xi for some i , and by the construction 131 St(x,H;#) = {x}
as Xi - jEI Ui « Hence the proposition is proved.

Definition 2.2.2 A mapping £ : X+ Y from a metric space X onto

Y 1is said to be a Tl-mapping 1ff the pre-image of any two distinct
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points of Y are at a positive distance.

Theorem 2.2.4 A topological space Y has a Gs-diagonal iff 1t is

an open Tl—image of a metric space.

Proof. Let' X be a metric space with metric p and f be an
open Tl-mapping of X onto a topological space Y . We want to
show that Y has a Gs-diagonal. For each positive integer n let
us define Xn = {S(x,n) lx € X} where 8S(x,n) for each x € X and
positive integer n denotes the sphere of radius 1. Obviously,

n
Xn for each n 1is an open cover of X . Since f is onto and
open, Hn - f(xn) - {f(S(x,n))I X € X} 1is an open cover of Y. for
each n . By Theorem 2.2.1, to show that Y has Gs-diagonal, it is

enough to show that nzl St(y,Hn) = {y} for each y e Y.

Suppose for some Yo € Y we have ¥y € nEl St(yo,ﬂn) and

Y1 ¥ Y, + Since y; $ Y, and £ is a T,-mapping, we have
-1 -1
p(f Yy £ yo) >0 i.e., there is an integer n  such that

p(f"lyl. f'lyo) > n—l . But this will imply that
(o]

-1 -1
£ Y, 0 St(f Yo? ¥no) =¢ , i.e., Y1 ¢ St(yo,Hn) » Which contradicts

the fact that ¥y € nzl St(yo,Hn) . Hence Y has a G,-diagonal.

s

Conversely, suppose that Y has a Ga-diagonal. Then, by

Theorem 2.2.1 there exists a sequence {Xi}:-l of open covers of Y

such that 131 St(y,xi) = {y} for each y € Y . Without loss of

generality we may assume that ¥i+1 refines ¥1 for each i . Let
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. (-]
Xi - {vila € Ai} for each 1 . Let A = 121 Ai where each A

carries the discrete topology and A carries the usual product
topology. Each Ay has the discrete topology, i.e., for any

@js0, € Ai we can define a metric Py such that pi(al,az) =1 if
ay ¥ a, and zero otherwise. Then if (al,...,an,...) and

(Bl,...,Bn,...) are in A , define p((al,...,an,...), (Bl,...,Bn,...)) =

@ 1 2 1/2
[n§1 > pn(an,Bn)] . Let a {ai} be a point of A . If
o _ 1 i ©
121 v 1 ¥ ¢ and x € 18 Va , then x = 18 Va since
5. s ) = {x} . In thi £(a) If .n, V-
191 t(x,)li x} . n this case we put (¢) = x . 18 Va = ¢

then the map f 1is not defined.

Let X < A be the set of a ¢ A such that f 1is defined.
Since every subspace of a metric space is a metric space, X is a

metric space. It remains to show that f 1is an open, Tl-mapping.

First, we show that f 1is onto. For 1f y e Y , we can

select a = {a,} , a, € A, such that y ¢ vi for 1= 1,2,...,
i i i oy
as Xi for each 1 1is an open cover of Y . But then 131 V: =y,
i

so that f(a) =y , where a e X c A,

We now show that £ 1is open. Let a® € X be an arbitrary

point, say o° = {a:}:_l . Then it is enough to show that for any

neighborhood O o of o° there is a neighborhood 0O ° of o°
] la
such that O cO and f0 is open. Let
(¢] o o
la a la
(nl,...,nk)

o
o ={a = {an} e A @ =oa ,is= 1,...,k} be a basic
a i i

0
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neighborhood of a° contained in O o and let

o
: o . o
0. .= {a-{an} € xlan =a for 1 =1,...,k, a a where
la i i o . o
(Myseees )
n_ is any index ¥ ni} . Then a® € O 0 <0 ol nk'c o, -
° la o o
k ni
Now by the definition of £ we have f£0 o™ ifo v °o ° Clearly
la o
il
£0 o is open as it is a finite intersection of open sets.
la

Finally, it remains to show that £ is a Tl-mapping. Let
Y1 ¢ y, be two distinct points of Y . Then there is a k such that
Yo ¢ St(yl,Xk) . Therefore, 1if a = (al,...,ak,...) € f-ly , and

-1
B = (Bls""BkQ"') e f yz then ak ¥ Bk and
p(ﬁal,...,qk,...), (Bl,...,Bk,...)) :-% . Consequently

p(f-l(xl),f-l(xz)) :-% . Hence the theorem is proved.

Definition 2.2.3 A topological space X 1is said to have G6 diagonal

iff there exists a sequence {Xi}z-l of open covers of X such

that for x,y € X there is n_ with the property that

y ¢ Cly St(x,xnx) .
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o-PARACOMPACT AND FO-SCREENABLE SPACES

The concept of o-paracompactness was introduced by
R !
Athangel%kii [4], who obtained a few properties of ¢ -paracompact
sbaces, conjectured many and, remarked that it will be worth investigat-

iné further properties.

The study of the class of o-paracompact spaces is the subject
of Section 1. There we give some necessary conditions for a space to

be o-paracompact and study various operations.

In Section 2 we study Fc-screenable spaces introduced by
McAuley [34]). We give a characterization of Fb-screenable spaces and
hs a corollary obtained that every Fc-screenable space is o-paracompact,

ﬁe_alao study various operations on Fo-screenable spaces.

In Section 3 we establish some interrelations between o-para-

compact and other well known topolgical spaces.

In Section 4 we give some examples.

Definition 3.1.1 A topological space X is g-paracompact iff for

every open cover JJ of X there exists a countable family {¥1}2=1

of open covers of X satisfying the condition: for any x € X there

exists i such that St(x,Xi) c U for some U ¢ n.



29.

Definition 3.1.2 A topological space X i1s fully normal iff every

open cover of X has an open point star refinement; i.e., for each
open cover U of X, there is an open cover V such that the cover

{st(x,Y) | x € X} refines ¥-.-

Definition 3.1.3 An open cover [ of a topological space X 1s cal=

led a’ o—even cover 1ff there exists a sequence of open neighborhoods
{Vi}I_l of the diagonal in X X X such that for each x € X there

is 1 for which Vi[x] €U for some Uel}.

The definition of fully normal immediatly implies -

Pfoposition 3.1.1 Every fully normal space is o-paracompact.

Proposition 3.1.2 If X 1is a o-paracompact space, then every open

cover is a o-even cover.

Proof . Let U be an open cover of a o-paracompact space X . Then

there exists a countable family {Xi}:-l of open covers of X satisfy-

ing the condition that for any x ¢ X there 18 1 such that

st(x,y,) ¢ U for some Ue} . Let G, = u(VxV | v e Yy) for

i
i=1,2,... . Obviously, {Gi}I_l is a countable sequence of neighbor-
hoods of the diagonal in X x X . We shall show that the countable

sequence {Gi}:- has the required property.

1

Let Xx ¢ X and 1 be such that St(x,xi) c U° for some

Uo € § . We shall show that Gi[x] c St(x,xi) . For if y ¢ Gi[x] .
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then (x,y) ¢ G, = WV xV|Ve Xi) » l.e., x and y 1s in some
Ve Xi implies y € St(x,xi) « Since y 1s an arbitrary point of
Gi[x] , implies Gi[x].c St(x,xi) . But St(x,Xi) €U, , so

Gi[x] c UB . Hence the proposition is proved.

Proposition 3.1.3 If X is a o-paracompact space, then every open

cover of X has a o-cushioned closed refinement.

Proof. Let = {Ué ls € S} be an open cover of a og-paracompact
space X . Then there exists a countable family {xi}:-l of open
covers of X satisfying the condition that for x € X there is

i such that St(x,xi) c Us for some 8 € S . Let us define

Us,i = {xeX ISt(x,Vi) c Us} for s ¢S and {41 =1,2,... . For
each s €S and 1 =1,2,..., the set. Us,i is closed. Because
if y 1is a limit point of the set Us,i » then every member of Xi

which contains y will also contain some point x of U But

s,1.°

St(x,xi) for all x ¢ Ua is contained in Us » 8o that

i

14

St(y,xi) c Us s 1.e., y ¢ Ué 4 *+ Consequently, Us i is closed for
] 1 ]

each 8 € S and ;.- 1,2,... . Let us denote by Hi - {Us,il s € S}

for i = 1,2,... .

It follows from the preceding paragraph that is a

(.-

19 B
closed refinement of H . We want to show that it is a o-cushioned
refinement. For this, we need only show that for each i and any

subset Sl of S we have

u(U sesl)cu(us|sesl) )

8,1
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Let y be a limit point of u(Ué il 8 € Sl) . Then every member of
]
Xi which contains 'y' has a non-empty intersection with u(Us il 8 € sl) .
]
This implies that St(y’Xi) c U(Us | s € Sl) 80 y ¢ u(UBI 8 € Sl) .

Since for each s ¢S, U < U we have
_ 8,1 8

U(Ué 1 |8 € Sl) c U(Usl 8 € Sl) for each 1 and any subset Sl of
14

S . Consequently, 3 is a o-cushioned closed refinement of .
i=1 %f

Corollary 3.1.3A If X 1is o-paracompact, then for any well ordered

monotone decreasing family {Ha Ia € A}  of closed sets with empty
intersection, there is a monotone decreasing family of GS sets

'{Ga | @ € A} such that

(a) Ha c Ga for all o € A, and

(b) n(qu a€A)=¢ .

Proposition 3.1.4 Every o-paracompact space X 1s countably meta-

compact.
Proof. Let [ = {Ui}:_l be a countable open cover of a g-paracompact
space X . Then there exists a countable family {V }°° of open

vi 31
covers of X satisfying the condition that for any x € X there is

J such that St(x,yj) c Ui for some 1 . Let us define

wij = {x e X lSt(x,Xj) c Ui} for each 1 and j . As in Proposition

3.1.3, wij is a closed subset of X for each i and J . Letting

¥ = {Wij}: j=1 ° it is clear that ¥ 1is a countable closed .refinement
1]

of U and W, < U, for each fixed i and arbitrary j . The family

13 %1
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H is countable, so we can index by integers and say H = {wk}k-l .
Now, ) being a refinement of U » for each k there exists an

integer such that W, c U . Let us define B, = U and
k ik : k ik

B = {Bk}:_l - Then B = {Bk}:-l 18 an open cover of X such that

¥ -‘{Wk}:_l is a closed refinement and Wk c Bk for each k .

' n=1
Let us define R1 - Bl and Rn =B n (121 x - Wi)) for

n

n>1. Clearly, for each n " R.n is an open set and R.n S Bn for

each n . We need only show that {Rn}:_1 is a point finite cover

of X . {R.n}:_1 is a cover of X , for if x e X and x ¢ R1 then
there is8 first n such that x ¢ Bn and x ¢ Bm for m < n . Then,
by the donstruétion of R.n we have x € R.n . Therefore {R.n}:_1 is

an open cover of X . '[R,n}:_1 is point finite because {Wk}:_l is

@ countable closed cover of X . Thus, we have shown that {Rh}:-l

is a point finite open refinement of {Bk}:-l and therefore of J .

" Hence X 1s countably metacompact.

Proposition 3.1.5 A topological space X 1is hereditarily o-para-

compact 1ff every open subspace X 1is o-paracompact.

Proof. If X is hereditarily o-paracompact, then every subspace of
X 1is o-paracompact, and hence every open subspace of X 1s o-para-

compact.

Conversely, let us assume that every open subset of X is
o-paracompact, and let A be any subset of X . Let = {US | 8 € S}

be a cover of A by sets open in A and let V= {Vsl 8 € S} be a
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family of open sets in X such that U8 - vs nA for s €S . Let

V# = U(Vsl 8 € S) . Obviously, V# is an open subset of X , and

so by the hypothesis V# i8 o-paracompact. Since V# is o-paracompact
there exists a sequence {Xi}:-l of open covers of V# satisfying

the condition that for any x € V# there is 1 such that St(x,V,) c VB

Ny
%or gsome 8 € S . For each 1 1let us define Hi = {Vn A| Ve Xi} .
Clearly, {Hi}:_l is a sequence of covers of A by open sets in

A and if x e A, then x ¢ V# and so there is 1 such that

St(x,xi) c Vs for some s € S . Consequently, St(x,xi) naAm= St(x,Hi) c
V. nA=U . Hence {Hi}:-l is a desired sequence of open covers

of A which implies A 1s a g-paracompact space. Since A 1is an

arbitrary subset of X ; X 1is hereditarily o-paracompact.

Definition 3.1.4 A subset A of a topological space X 1s called

a generalized Fa set 1iff for each open set U > A there is a Fo

set F sguch that Ac FcU.

Proposition 3.1.6 If X 1is o-paracompact, then every generalized

FU set A 1s og-paracompact.

Proof. Let A be a generalized L subset of X . Let [ = {Usl s € S}
be an open cover of A by sets open in the subspace A . Let

Y= {Vs | s € S} be a family of open sets in X such that Vo nA=T,

for each 8 ¢ S . Let V# - U(V3| s € S) . Obviously, V# is open

in X and contains A . Since A 1s a generalized Fo-set in X

there exists a Fo-set F in X such that Ac F < V# s, Where
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i§1 Fi , and Fi is closed in X for each i . For each 1

it is obvious that {VBI s € S} u{(X - Fi)} is an open cover of X .

F=

But, X is o-paracompact implies for each fixed i there exists a

countable family {H;};_l of open covers of X satisfying the condition

that for any x € X there is J such that St(x,H;) cX-F or

vV, for some s € § . For arbitrary 1 and j define .E; = {Wna|lwe H}} .
We shall show that the countable family {5;};’1_1 of open covers of

A has the required property.

Let x € A . Then for some io , X € Fi so that x ¢ X - Fi .
o o

Now consider the countable family {Hjo};-l ; then there is J such
i

i
that St(x,Rjo) -ASt(x,Hjo) nAc VB nAm= Us for some s € S . Hence
o (o]

the proposition is proved.

Corollary 3.1.6A If X 1s o-paracompact, then every Fo subset of

X 1s o-paracompact.

Corollary 3.1.6B If X 1is o-paracompact, then every closed subset

of X 1s o-paracompact.

Corollary 3.1.6C A perfectly normal c-paracompact space is hereditarily

G-paracompact: .

Proposition 3.1.7 The sum () X, of a family {Xsl 8 ¢ S} of dis-
seS
joint topological spaces is o-paracompact iff Xs is o-paracompact

for each 8 € S .
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Proof. If X is o-paracompact, then by Corollary 3.1.6B, xs is

o-paracompact for s € S .

Cordversely, let us assume that X8 is o-paracompact for all

8¢S and let V= {th t ¢ T} be an open cover of X . For each
8 € S the famlly V = {xX nv | t € T} 1is an open cover of X_ .

8 8 t 8

. [

Let {Xa,i}i-l be a countable family of open covers of X = satisfy-
ing the condition that for x € XB there is ix such that
St(x,xs’ix) S xs nv, for some t € T . We shall show that the

countable family {Hi}:-l' is the required one, where By =v {¥s i| 8 € S} .
?

For if x € X, then there is 8, such that x ¢ xs and there is
x

ix such that St(x,xsx’ix) c xsx n Vt for some t . But

St(x,xsx’ix) - St(x,ﬂix) implies St(x,Hix) <V, . Hence the

prOposition is proved.

A discrete space of arbitrary power is always fully normal, and
hence by Proposition 3.1.1, X is o-paracompact. We also know that
every topological space is a continuous image of a discrete space, so0
we can easily conclude that the continuous image of a o-paracompact space

is not necessarily o-paracompact.

Definition 3.1.5 A continuous mapping f : X+ Y dis called a W-

mapping for any open cover W of X iff for each point y € Y there

1

is a neighborhood 0y of y such that £ 0y is contained in some

member of W .

Proposition 3.1.8 If for every open covering W of the space X
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there exists an W-mapping £ : X * Y., , where Y, i1s o-paracompact,

then X 1s o~-paracompact.

Proof. Let W be an open cover of X . Then there is a continuous
function f : X » YW where Yw is a o-paracompact space depending
on W . Since f 1s an W-mapping for each y ¢ Yw s, there is an

open neighborhood 0y of y such that f—loy is contained in some
member of W . Obviously Q = {0y Iy € Y} 1is an open cover of Yw .
Now, Yw is o-paracompact, so.thiere exists 3 countable family
.{Xi}:-l of open covers of Y satisfying the condition that for each
y € Y there is iy such that St(y,xiy)_ is contained in some member
of g . W§ shall show that the countable family {f-1¥1}:-1 of open
covers of X , where f_lvi -{sly|v e Vi} for each 1 , has the

required property.

Let xe¢ X, and 1x - if(x) where if(x) is an integer

such that St(£f(x),V ) 1is contained in some member of . Clearly,
i

£(x)
St(x,f—lxi ) € St(f-ly,f-l)li ) , where y = £f(x) . It is obvious
x £(x)
that St(f‘ly,f'lxi ) 1is contained in the inverse image of a
£(x)
member of Q which contains St(y,x ) and which in turn is
. . if(x)

contained in a member of W . Hence the proposition is proved.

Definition 3.2.1 A topological space X is Fa—screenable iff every

open cover of X has o-discrete closed refinement.

Theorem 3.2.1 A topological space X 1is F}-screenable iff for every
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open cover JJ of X there is a countable family {Hi};;l of open
covers of X refining [ for dll i satisfying the condition that

for each x € X there is ix such that x 1is in exactly one member

gf Hix .

Proof. Let U= {Ué| 8 € S} be an open cover of X . Then,

there is a o~discrete closed refinement V = i§1 Xi of U , where

for each 1, Xi = {Vi Ia € Ai} . Let us define O: =X - u(V; IB € Ay

and a ¥ B) for aec A, and 1 =1,2,... . Obviously, 0: is open

p |
i i i
for each a ¢ Ay Vi c Oa and Oa n VB =¢, if a ¥ B . For each a ,
and i choose a set UB € U such that Vi c Us » and denote it by

4 i 5 .
H . Now for each 1 , 1let us define ¥ = {Oa n Hal a e Ai} v

{x - U(Vz | a e Ai)) n Usl 8 € S} . It is easy to verify that for

each 1 , Hi is an open cover of X and if x ¢ Vi s then x 1is

o
in a unique member of Hi » namely O: n H: . We shall show that the

countable family {Hi}:-l of open covers of X satisfies the required

property.

i
Let x ¢ X . Then x € Vax for some ix and a € Ai .
x

Then by the remark in the preceding paragraph x 1s in a unique member
of Hi . Hence {Ei}:-l is the required countable family of open
X

covers of X .

Conversely, let J = {Usl 8 € S} be an open cover of X and
{Hi}:-l be a countable family of open covers of X having the required
property. Let Hi = {W: Ia € Ai} for each 1 . Let us define

U(a,i) = {x e X ISt(x,Hi) - wi } for o ¢ Ay and i =1,2,... . The
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subset U(a,i) of w: is closed in X . For if y is a limit point
of U(a,i) every member of Hi which contains y will also contain
a point of U(a,i) . So, if y belongs to W; for B ¥ a , then
some point of U(a,1) is in two members of Hi which is not possible,
i.e, y is in U(a,1) . Now we show that the collection
Ky = {U(a,i) |a € Ai} for each 1, 1s discrete. For if x ¢ X ,
there is no member of Hi which contains x and intersects two members
of the collection Hi . Hence Hi is a discrete collection of closed
sets for each i . Finally, it 1s easy to verify that i§1 Hi is a

o-discrete closed refinement of ¥ . Hence the theorem is proved.

Corollary 3.2.1A Every Fa-screenable space 1s o-paracompact.

Corollary 3.2.1A answers a question of Arhangei%kii [4].
Recently Coban [17] ‘and Burke and Stoltenberg [12] have also proved

this Corollary.

Corollary 3.2.1B Every Fc-screenable space is countably metacompact.

Proof. Follows from Corollary 3.2.1A and Proposition 3.1.4.

Remark 3.2.1 Every countable Tl—space is Fc-screenable and hence

o-paracompact.

Proposition 3.2.2 Let X be an Fo-screenable space and let F be

an Fo set of X . Then, the subspace F 1is Fc-screenable.
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Proof. Let F = i§1 Fi » Where Fi is closed in X for each i .
Let § -'{Ué | s € S} be an open cover of F and let us denote by
Y -‘{V8 |s € S} a family of open subsets of the space X such that
U, =V _nF for each s ¢S . The family {Vsl 8 € S} v {(X - Fi)}
is an open cover of X for each i1 . X is Fc-screenable, so for
each 1 there exists a o-discrete closed refinement Hi = j§1 H; .
Let us define Xi -

A
to verify that i,?—l X; is a o-discrete closed refinement of H .

i
{Wn F, |w e Hj and WnF, ¥ ¢} . It is easy
Hence F 1is Fc-screenable.

Corollary 3.2.2A Every closed subspace of a Fa-screenable space 1is

Fa-screenable.

Proposition 3.2.3 The sum () X, of the family {X | s € s} of
seS
disjoint topological spaces is Fo-screenable iff each xs, is Fo-screen-

able.

Proof. Similar to Proposition 3.1.7.

Proposition 3.2.4 Let X be a topological space such that X = i§l Xi R
where Xi for each 1 18 a closed Fc-screenable subspace of X .

Then X is Fa—acreenable.

Proof. Let U= {Us | s € S} be an open cover of X . Then, for each
i , the family {Us n X |s € S} 1s an open cover of X, and so there

exists a o~discrete closed refinement Xi - n§l Xi n in Xi . Since
Hd
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Xi is closed, for each 1 and arbitrary n , Xi n is a discrete
]

collection of closed subsets of X . Now, it is clear that
- -] [ -] o
Y- 191 Xi = Y91 Y91 Xi,n is a required o-discrete closed refinement

of H . Hence X 1is Fc-screenable.

Corollary 3.2.4A Let X be a regular space which is a countable

union of closed paracompact spaces. Then X 1is Fc—screenable.

Proof. Follows by Proposition 3.2.4 and the fact that a regular

paracompact space 1s F,-screenable.

Proposition 3.2.5 If X 1is a Hausdorff locally compact and Fo_

screenable space, then X 1is a countable union of closed paracompact

subspaces.

Proof. Let H be an open cover of X and X be an open refinement
such that the closure of each of its members is compact. X 1is Fo-

screenable, so there exists a o-discrete closed refinement H = i§l Hi
of YV , where Hi - {Wi | € A} for each i . We shall show that for

each 1 the subset # =y (Wi a € A,) 1is paracompact as a subspace
i o i

of X . By Theorem 2 of Suzuki [54] W# is collectionwise normal and

i
by Corollary 3.2.4A, W# is Fa—screenable. Finally be Lemma 2 of

i
McAuley [34] Wf is paracompact for each 1 . Hence the proposition

is proved.

Remark 3.2.2 From Proposition 3.2.4 and Proposition 3.2.5 we

immediately conclude that a locally compact Hausdorff space is
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Fo-screenable iff it can be represented as a countable union of

closed paracompact subspaces.

Theorem 3.2.6+ A topological space X 1is Fc-screenable 1ff every

open cover of X has a o-locally finite closed refinement.

Proof. Clearly, if X is Fo-screenable then every open cover of

X has a o-locally finite closed refinement.

Conversely, suppose every open cover of X has a o-locally
finite closed refinement. Let = {UE Is € S} be an open cover of
© i
X and let Yy = 491 ¥y » where Y - {V' |a e Ai} for each i, be
a o-locally finite closed refinement of H . For each 1 and a ¢ A

let us denote by s: a fixed index in S such that Vi cu 4 -+ Now
8y
we denote by W(vi) = (U, xU 4) v (X - Vi) x (X - Vi)) and

8 8
o a

Wi - n(W(Vi) |a e Ai) for each 1 . We claim that for each 1 ,

Wi is a symmetric neighborhood of A = {(x,x) |x e X} . Let

(x,x) ¢ A and Oi be a neighborhood of x in X which intersects

i i

at most finitely many members of Xi say Va 2o,V . This is
1

Q
n

1 c (X - V;) X

possible as Xi is locally finite. Clearly 0; x 0x

x - V;) for all B ¢ Ay for which Oi n V;
n
easy to see that (0i x Oi) n (.n w(Vi )) 1s a neighborhood of
x x J=1 aj

= ¢ . Now, it is

(x,x) and is contained in Wi .

Without loss of generality let us assume that Xi c ¥i+1
for each: 1 . Then by the construction, it is easy to see that for

each 1 , Wi is symmetric, W

Pk Sy oemd ACH . On X et

i

U D.K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc., 23

(1969), 655-663.
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us define a new topology T such that U.e t 1ff for each x e U
there i such that Wi[x] c U . It is easy to see that T 1i1s a
topology. Let us define d : X x X+ R, where R denotes the set

1
of real numbers, by setting d(x,y) T 1£f  (x,y) e W, - W1

for 1 = 0,1,2,... and d(x,y) =0 , otherwise. Obviously,
d(x,y) = d(y,x) , d(x,y) =0 if x=y and x ¢ ClTA <mm>

inf {d(x,A)} =0 .

Now, for Vﬁ - u(Vi o € Ai) , consider

i# o
i}i-l *
topology T , for each x e int (Wi[x]) . Also, for each 1 and

K= {int:T (Wi[x]) |x eV This is an open cover of X in the

X € Vf we have Wi[x] c W(Vi) c Usé for some a € Ai , l.e., H
is a refinement. Now using techniques of Lemma 1 in McAuley [34] ome
can show that every T open cover of X has a o-discrete closed
refinement with respect to T . Since T is weaker than the original
topology, o-discrete closed collection in Tt is also a o-discrete

closed collection in the original topology. Hence the theorem is

proved.

Definition 3.2.5 A mapping f : X > Y is called perfect iff £ 1is

continuous, closed and for each y € Y , f-ly is compact.

Theorem 3.2.7 Let X and Y be regular spaces and f : X > Y be

a perfect onto mapping. Then X 1is Fc-screenable iff Y dis

Fa-screenable.
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Proof. Let X be Fc—acreenable space and f be a perfect mapping
of X onto Y. Let J= {USI 8 ¢ S} be an open cover of Y.. By
the continuity of £ the collection {f-lUsl 8 € S} is an open cover

of X . Let V be a o-discrete closed refinement of

V=1 ¥y
{1y | 8 € S} where = {Vil a € A,} for each 1 Let us

8 ’ Xi i :

defi -0 wher - (V)| 0 e A} for 1=1,2
now define } 191 Hi e Hi €A or 923000 o
Since for each y € Y, f-ly is compact. For fixed 1 there is
an open set 0i > f_ly and intersecting only finitely many members
of Xi . By the fact that f 1is continuous and closed by Theorem 11.2,
page 86 of Dugundji [18] there exists a neighborhood G, of y such

-1

that £ Gi c Oi . i
of Xi , 80 does Gi intersect finitely many members of Hi . Hence

Clearly, 1if O intersects finitely many members
M= i§1 Hi is a o-locally finite closed refinement of J . Comnsequently,

by Theorem 3.2.6, Y is F -screenable.

Conversely, let £ be a perfect mapping of X onto a
Fo-screenable space Y . Let ¥ be any open cover of X and
B = {UB | s € S} be an open refinement of W such that the cover by
closures of members of JJ also refines J . This is possible as X
is regular. For each y ¢ Y , f-ly is compact so we may pick a

y y -1 n(y)
finite set s(y) < S say Sl""’sn(y) such that £ "y c iél U y °

8
n(y) i
Let V =Y - £(X - 191 U ) . Then, since f 1is closed V_ 1is an
y SZ y
. -1 n(y) .
open neighbor.ood of y such that f Vy <49 1] . Now Iet

o1
Y- i§1 Yy » where for each i, VY, = {Vi o € A}, be a o-discrete

closed reinement of {Vs| s €S} . Foreach i and a e A, pick
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y such that Vi c Vy and let sg € S(y) . Then, define

W(i,a,sg) - f-lvi nu y° For fixed 1 and j the collection
8

'{W(i,a,sg) |a € Ai} is discrete as for fixed 1 , Xi is discrete

and f 1is continuous. Let us define 1. U, U {W(i,o sy) Ia € AL}
inuous. K= 8 g8 2%58] 1t

It is easy to see that Ql is a refinement of U and is o-discrete.

Consequently, closures of members of Hl from a o-discrete closed

refinement of ¥ . Hence the theorem is proved.

Definition 3.3.1 A topological space X is g-fully normal iff

every open cover of X has an open o-point star refinement.

Definition 3.3.2 A topological space X 1is screenable iff every

open cover of X has a open o-disjoint refinement.

Definition 3.3.3 A topological space X is g-metacompact iff every

open cover of X has an open o-point finite refinement.

Definition 3.3.4 A topological space X 1is meta-Lindelof iff

every open cover of X has an open point countable refinement.

Proposition 3.3.1 A topological space X is metacompact iff it

is o-metacompact and countably metacompact.

Proof. TLet [ = {Ué | s € S} be an open cover of X and

o i
X = 4Y {Va Ia € Ai} be an open o-point finite refinement of v.
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Let Vf - u(Vi |a e Ai) for each i . Then {Vf}:;l is a

countable open cover of X . But X is countably metacompact, so
that by Theorem 1.4 on page 142 of Dugundji [17], there exists an
© #
open point finite refinement ¥ {wi}i-l such that Wi c Vi
i
for each i . Let us define By = {V& n wil a e Ai} for 1 =1,2,,,.,
- -]
and B = 1Y Ei « It is easy to verify that B 1s an open refinement

of H - Now we show that % is point finite.

Let x € X . Then there are only finitely many indices

such that x ¢ W for § = 1,...,n(x) only. But

il""’in(x) ij

each Ei is point finite, so x belongs to only finitely many members
3

of B . Therefore g is an open point finite refinement of H.

Hence X is metacompact.

The converse is obvious.

Corollary 3.3,1A A o-paracompact (or Fb-screenable) and O-metacompact

space is metacompact.

Proof. Follows from Proposition 3.1.4, Corollary 3.2.1B and

Proposition 3.3.1.

Corollary 3.3.1B A topological space is countably metacompact iff

every o-point finite open cover has an open point finite refinement.

Remark 3.3.1 'Proposition 3.3.1 can also be found in Kljushin [30]

and Greever [21].
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Proposition 3.3.2 Let X be metacompact and o-paracompact. Then

every open cover of X has a o-locally finite closed refinement.

Proof. It is enough to show that every point finite open cover
B= {Us | s € 8} of X has a o-locally finite closed refinement.
Since X is metacompact and o-paracompact there exists a countable
family {Xi}z-l of open covers of X with the property that for
each 1 , Xi refines J and is point finite. Furthermore, for

each x € X there is ix such that St(x,Xi ) ¢ U for some
x

Uel . Let us define for each i = 1,2,... and s € S , W(s,i) =
{xeX ISt(x,Xi) c Us} . W(s,1) 1is closed for each i and s .
For, if y is a limit point of W(s,1) the open neighborhood

0y =n(Vey, |y € V) of y has a non-empty intersection with
W(s,1i) which inplies y € W(s,i) and therefore W(s,i) 1is closed
in X . Let us define J,6 = {W(s,1) | s € S} for each 1 . J, 1s

locally finite, because if x ¢ X, 0x =n (Ve Vv, xe V) 1is an

i
open neighborhood of x which does not intersect more then finitely
many members of Hi . For 1if 0x intersects infinitely many members
of Hi then x will be contained in infinitely many members of - [
which contradicts the fact that [ 1is point finite. It is now

-]
easy to see that W = 121 Hi is a required o-locally finite closed

refinement of H .

Corollary 3.3.2A Every metacompact and o-paracompact space is

Fd-screenable.
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Proof. Follows from Proposition 3.3.2 and Theorem 3.2.6.

Corollary 3.3.2B Every compact (or Lindeldf) o-paracompact space

is Fo—screenable.

Theorem 3.3.3+ If X 41is a regular metacompact space in which every

closed set is a Gg set, then X 1is Fc-screenable.

Proof. -Let J be an open cover of X and gl be an open point

finite refinement of H . Let Mi be the set of all points of X

each of which belongs to exactly one member of Xl . For each V € Xl

such that V n M1 ¥ ¢ let us define R1(V) = VoM, . It is easy

to verify that {Rl(V) |v ¢ Xl and VnM % ¢} is a discrete collection
1
and M, = u (Rl(V) |v e Y

Mi = 131 Gi s Wwhere Gi is open in X for each 1 . Let M

and V n M + ) . M, is closed so

2 be

the set of all points of X each of which belongs to exactly two

members of Xl and let Ké = {g:g=hnk for h¥k and

h,k € 1} v {Gl} for each i . If p e X-M, then p belongs to
i

1
at least two members of Xl . Hence 5; covers X for each 1 .
i
Now, if p € M2 then p belongs to exactly one member of sz for

o 1
some ip as 121 Gi = Ml . Let us denote by M2i the set of all

X € M2 which are exactly in one member of K; and hence not in

G1 . It is clear that M2 = i§l M21 . Now as before let us construct

i
RZi(V) =Vn MZi for V e Ké and for each i . We can easily verify

that for each i the collection {RZi(V)l Ve K;, VoM, # ¢}

i
is Qiscretg, ggq . U(RZi(V)I V e Kz, vVn M21 * ¢) = M21 for each 1i .

+R.E. Hodel, A note on subparacompact spaces, Proc. Amer, Math, Soc.,

25(1970), 842-845,
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For n> 2, let Mh be the set of all points belonging to exactly

n~-1 .
n members of ¥1 s let Dn—l - 121 Mi . Dn—l is closed so

© n-1
D1 =401 6
i n
define Kn = {g '8 = 121 hi N hi ¥ hj for 1 # 3, hi f Xl for

where Gi is open in X for each 1 . Let us

i=1,...,n} v {G:—l} . Let us denote by Mi the set of x ¢ Mh

i
which are exéctly in one member of K: . It 18 clear that
M = 3 M and as before for each i , we define
n n=1 "ni

i
Rhi(v) =V n M.ni for V € Kn and for V n Mii ¢ .

We can easily see that X = M1 ] (ng 191 Mﬁi) and

) © i
s VAN A vy, G {Rji(V)IVeKJ,VnMji#et}

is a o-discrete refinement of H .. But X is regular, so we can

= RW|Ve vt

conclude that every open cover of X has a o-discrete closed refine-

ment. Hence the theorem is proved.

Theorem 3.3.4 A countably metacompact space X is o~fully normal

1£ff it is screenable.

Proof. A screenable space is obviously a o-fully normal space.

Conversely, let X be a countably metacompact and o-fully
normal space. Let D= {Ué ls € S} be an open cover of X and

™ 1
y=- 141 ¥i » where Xi - {Va Ia € Ai} be an open o-point star

refinement of ¥ . Let us denote by Vf =y (Vi Ia € Ai) for each

#}°°
1°1=]1
is countably metacompact, there exists an open point finite refinement

i . Clearly (v is a countable open cover of X . Since X
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* h th v
{m1 suc that W1 c 4

Ry = {Wi n Vi | o € Ai} . Obviously, R = i§1 R; 1s an open

'{Wi} for each i . Now, let us define

refinement of JJ and for each =x € X there exists a finite.

collection Us ,...,Us of members of H such that every member
1 n

of R which contains x belongs to one of them. Now, by

Theorem 1 of Worrell [58] X 1is metacompact and finally by Theorem 6

of Heath [24], X 4is screenable.

Corollary 3.3.4A A o-paracompact (or Fa-screenable) space is

screenable 1ff X is o-fully normal.

Proof. Follows from Proposition 3.l1l.4 and Theorem 3.3.4.

Definition 3.3.5 A topological space X is called weakly collection-

wise normal iff for every discretelfamily {Ca Ia € A} of closed sets
there exists a point finite collection {Oa la € A} of open sets

such that for each a ¢ A , Ca <0, and Oa n CB =¢ , 1if a ¥ B .

Proposition 3.3.5 Every weakly collectionwise: normal Fo—screenable

space is metacompact.

Proof. Let U = {Usl 8 € S} be an open cover of X and

© i .
X 121 Xi » Where xi = {Va La € Ai} be a og-discrete closed

refinement of U . Since X is weakly collectionwise normal, for

each 1 there eéisgg:an open point finite collection {Oz |a € Ai}

i i i i
such that Oa >V, for each a ¢ Ay and VB n Oa - ¢. if o % B8 .
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i i

Let us denote by Ha = Oa n Ué where Ué € ¥ and is such that

i © i
Vo € Ug » Now, it is easy to verify that 191 {Hal a € Ai} is an
open c-po;nt finite refinement of H ,i.e., X 1is o-metacompact.

Hence by Corollary 3.3.1A, X is metacompact.

Remark 3.3.2 Every normal metacompact or collectionwise normal

space is weakly collectionwise normal. On the otherhand there are
collectionwise normal spaces which are not metacompact. Therefore,

weakly collectionwise ' normal spaces need not be metacompact.

Proposition 3.3.6 A screenable space X is Fo-screenable i1ff X

is o-paracompact.

Proof. The necessity follows from Corollary 3.2.1A. For sufficiency,
observe that every screenable space is o-metacompact. Therefore by
Proposition 3.1.4 and Proposition 3.3.1 a screenable and o-paracompact
space is metacompact. Now, finally by Proposition 3.3.2 and Theorem

3.2,6, X is Fo-screenable.

Proposition 3.3.7 .Let X be a o-fully normal space in which every

- cloged set is a GG' set. Then X is o-paracompact.

Proof. Let ¥ be an open cover of X and V= i§1 xi be an

open o-point star refinement of H . Let us denote by

V# =y (Vl Ve Xi) for each 1 . Since every closed set is a Gs »

i
it o 4 i
set X -V = ng Gj » where G

i 1 is open in X . Let us define
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ﬂj ={V|Ve Vi} v {Gj} for each i and j . Now, it is easy to
show that the countable family {H;}: ju=1 of open covers of X has
’

the required property.

Let é and _g be collections of subsets of a set X s

and m be any cardinal number >2 ., B 1is an m-star refinement of

A if (i) foreach £c B with |¢| <m and nElceg %9,

there is A ¢ A such that u (C lc e £) = A.

Let m be any cardinal number > 2,

Definition 3.3.6 (Mansfield [33]) A topological space X 1is

m-fully normal iff each open cover of X has an open m-star

refinement.

Theorem 3.3.8 (Arhangelskii [6]) 1In a topolgoical space X , the
following statements are equivalent:
(1) X is fully normal;
(11) every open cover of X has an open star refinement; .
(111) for eve&y open cover I of X there exists a countable -

family {Xi}:-l of open covers of X satisfying the condition that for

any x € X there is n, and a neighborhood 0x of x such that

St(ox’an) c U for some U ¢ u.

Proof. (1) ==> (11) see Theorem 3.4 on page 157 of Dugundji [18].
(11) ==> (iii) 41s obvious.

(111) ==> (1) see Theorem 3.7 on page 169 of Dugundji [18].
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Thoerem 3.3.9 (A.H. Stone [53]) A topological space X is Hausdorff

and paracompact 1ff X 1is a fully normal and Tlespace.

Proof. See Theorem 3.5 on page 169 of Dugundji [18].

Theorem 3.3.10 A topological space X is fully normal iff X is

2-fully normal and o-paracomapct.

Proof. First, we show that 2-fully normal and o-paracompact space
is fully normal. Let U be an open cover of X . Then, by the

o-paracompactness of X there exists a countable family {xi}:_l

of open covers of X satisfying the condition that for any
x € X there is n, such that St(x,gnx) <R for some U ¢ X . Since

X 1is also 2-fully normal for each i R xi has an open 2-star refine-

ment say J, . We shall show that the countable family {Hi}:-l of
open covers of X satisfies the condition that for each x € X there
is ix and a neighborhood 0x of x such that St(Ox,xix) c U for

gome U € H .

Let X, be any point of X and n_ be such that
o

St(xo,,\\{n ) cU for some U ¢ H,‘ Let us pick Wo € Hﬁ such
*o %o
that X € WB'. Now, for W ¢ ¥, such that W nw, $¢ ,
Xo
Wu Wo cV for V e Xn » but each-such V ¢ Xn ‘contains X, .
X X, ;
Consequently, we have St(ws,an ) e St(xo,xnx ) U for some U ¢ y.

o o
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Now, by taking 0x = W6 and ix =n,  we have proved the claim.
o o o

Hence by Theorem 3.3.8, X is a fully normal space.

The converse is obvious.

Corollary 3.3.10A A topological space X 1is Hausdorff and para-

compact 1iff it is a Tl » 2- fully normal and o-paracompact space.

Rgmark 3.3.3 In Hausdorff 2-fully normal spaces, it is not difficult

to show that o-paracompact, metacbmpact and meta-Lindel8f properties
are equivalent. This remark follows from Theorem 3.3.10 and Theorem

5.10 of Mausfield [33].

Proposition 3.3.11 Let X be a Tl s O—paracompact space in which

every uncountable set has a limit point. Then X 4is Lindeldf.

Proof. Let U be an open cover of X . Then by Proposition 3.1.3
[ -]

there exists a o-cushioned closed refinement X = 121 Xi of H . If

every uncountable set has a limit point, then ¥i is at most a

countable collection for each 1 . Now, it follows immediately that

H has countable subcover. Hence X is Lindelof.

Corollary 3.3.11A Every T1 » O-paracompact and countably compact

space is compact.

Proposition 3.3.12 Let X bea T

1 > O-paracompact and hereditarily

separable space. Then X is Lindelof.
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Proof. If X is hereditarily separable, then every uncountable set

has a limit point. Now by Proposition 3.3.11, X 1is Lindelsf.

Proposition 3.3.13 Let X bea normal, screenable and o-para-

compact space. Then X is paracompact.

Proof. Let U= ﬁUsl 8 € S} be an open cover of X and N= igl Xi
where Xi - {Vi |a e Ai} be a c-disjoint open refinement of U . Then
using methods employed in Proposition 3.1.3 we can construct

= U o i i - 1,3 -
X 191 3491 Hﬁ s Where HJ {Wa | @ e Ai} is a o-discrete closed
refinement of D and for each fixed 1 and any j we have

Wi’j c Vi for a € A, . Since x is normal by Lemma 1 of Michael

i
[38], there exists a o-discrete open refinement of ¥ . Finally

by Kelley [28] X ig paracompact.,

Remark 3.3.4 1In Proposition 3.3.13 normality cannot be replaced by

complete regularity. See Example 2 on page 766 of Heath [24].

Proposition 3.3.14 Let X be a weakly collectionwise normal, Fc-

screenable, connected, locally connected peripherally separable space.

Then X is Lindeldf.

Proof. Follows from Proposition 3.3.5 and Theorem 4 of Grace and

Heath [22].

Proposition 3.3.15 a completely regular space X , 1is o-paracompact
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and a M-space iff it is a paracompact p-space.

Proof. If X 18 o-paracompact and a M-space then by Theorem 6.1 of
Morita [41], Corollary 3.3.11A and Theorem 5.2 of Arhangelskii [4],

X 1s a paracompact p-space.

The converse follows from Corollary 3.3.10A, Theorem 5.2 of

Arhangeigkii [4]) and Theorem 6.1 of Morita [41].

Proposition 3.3.16 Every o-paracompact space with G ~-diagonal has

Gg-diagonal.
Proof. Is obvious.

Example 3.4.1 There exists a finite To-space which is not a o-para-

compact space.

Example 3.4.2 An uncountable space with the cofinite topology (in

which the closed sets are the finite sets) is an example of a compact

Tl-space which is not a O-paracompact space.

Example 3.4.3 There exists a regular metacompact space which is not

a J—-paracompact space.

Let 91 denote the first uncountable ordinal and let

L ={a|ag Ql} with the discrete topology except at Q; . Let the

topology at 91 be the ordered topology. Let 92 denote the least
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ordinal such that if X, ={8]|8 < 8,} the cardinality of X, is
greater than the cardinality of X1 + Let X2 have discrete topology
except at 92 . Let the topology at 92 be the ordered topology.

Let X = X *X, - (91,02) with the product topology.

It is easy to see that X is completely regular because
there is a base for the topology of X which consists of sets which
are at the same time both open and closed. We now show that X 4ig

metacompact.

Let Y be an open cover of X and let ¥y = {V(c,B) | (x,B) € X}

denote the following refinement of B
(a) i1if a4 s B¥8y), let V(a,8) = (a,8) ;

(b) 1if g = 9, B¥ 2, , let W(Ql,B) denote an element
of ¥ containing (ﬂl,B) and let V(Ql,B) = {(Y,B)l l<y S Ql} n

W(ﬂl,B) 5

(c) 41if a ¢ 91, B = 92 » let W(a,ﬂz) denote an element
of U containing (a,ﬂz) and let V(a,QZ) = {(a,y) | 1 SYS39 n
w(a,nz) + Clearly, X is an open cover of X refining H . More~
over, each point of Xx belongs to atmost three points of Y - Hence
X 1s metacompact. Now it remains to show that X 41s not O-para-
compact, for which inview of Corollary 3.3.2A it will be enough' to

show that X 4is not Fc-screenable.

Let U = {U(a,B) | (a,8) 1is of the form (91,8), (a,Qé) or

(91,92)} s define

@ if a=9),, B840, let u(a,s) - (e 1 5y 50,0
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(11) 4if a#éa;, B =0, , Ula,B8) = {(a,y) |1 <

SY S}
and
(111) 1f a=Q,, B8=9,, U(a,8) = {(x,B) € X | either

o= 91 or B = 92} .

Suppose there exists a o-discrete closed refinement = i§1 Xi »
i
where V. = {V |a e A} foreach 1, of J. For each U« ¥

of type (i) there exists j such that |vf n Ul -@ol where
#

Vg =y (Vj |a e AJ) - This implies that the member (x,y) of Vj
such that x = 91 is a 1limit point of Vf N U, hence some member
of ¥1 containsg all except countably many points of Vf n U . There-

fore for somé J and some subcollection X} of ¥j having
cardinal JF 2 it is true that if Vg_ belongs to Xj then some
element of JJ of type (1) contains o 1 points of VJ . Since
\N\z >:Jv 1 shows that for some a, < 91 it is true that J@ 2
elements of Xj contains (x,y) such that x = a . Hence every
neighborhood of (ao,ﬂz) intersects J@ 2 members of xi , which

is a contradiction.

Example 3.4.4 There exist a perfectly normal Fo_ screenable spaces

which are not metacompact.

Example 4 of Bing [11] is a perfectly normal space which
is a countable union of closed metrizable spaces, therefore by
Proposition 3.2.4, X 1is F,~screenable. But by Michael [37], X

is not a metacompact space,



Example 3.4.5 There exists a perfectly normal, Fh-screenable and

metacompact space which is not paracompact.

See Example 2 of Michael [37].
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CHAPTER IV

SEMI-METRIC SPACES

Apparently, little attention was given to the study of
semi-metric spaces before F.B. Jones begag a systemetic study of them
[27]. One should, of course, note the work done by Frechet [20], and
Wilson [57]. Recently, several other mathematicians became involved

in this field.

In Section 1, we list some of the simple well-known properties
of semi-metric spaces and give several characterizations of semi-

metrizable spaces.

In Section 2, we give various mapping theorems for semi-

metric spaces.

Definition 4.1.1 A Tl-Space X 1is a gemi-metric space iff there

exists a non-negative real valued function d on X x X such that
for any (x,y) € X x X

(1) d(x,y) =0 1if x =y ;

(2) d(x,y) = d(y,x) ;
and

(3) forany AcX., xeA 1ff inf {d(x,y) | y e A} =0 .

For each x ¢ X and positive nubmer € > 0 , we shall

always denote the set {y |d(x,y) < €} by S(x,€) and shall call
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S(x,e) the sphere of radius ¢ about x .

Remark 4.1.1 There exists a regular semi-metric space for which there

is no semi-metric under which all spheres are open. See Heath [25].

Proposition 4.1.1 Let (X,d) be a semi-metric space. Then, for each

X € X and any positive number € > 0 ; x e int (S(x,e)) .

Proof. Let € > 0 be given. If A = X - S(x,e) , then d(x,A) > 0 ,

80 X ¢ A . Then x e X - X c S(x,€) » 80 that x e int (S(x,e)) .

Proposition 4.1.2 Let (X,d) be a semi-metric space. If A.m n(x) =
’

{z ¢ X |S(z,m) < S(x,n)} , then A; o(¥) € S(x,n) for fixed m and

n.

Proof. Let y be a limit point of A _(x) then there 18 x ¢ A (x)
—_— m,n o m,n
such that X, € int(S(y,m)) < S(y,m) , 1i.e., y € S(xb,m) . But
S(xo,m) < S(x,n) , implies y € S(x,n) . Hence A; n(x) c S(x,n)

2

for fixed m and n .

Proposition 4.1.3 If (x,d) is a semi-metric space, then X has

a g-cushioned paired network.

Proof. For each x € X and any positive integer n let us define

1
Xh = {S(x,.;? | x e X} ,

el b etzexlsmd csa, L)
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and finally
= (@ 2D, s by [x e

for m = D . We shall show that for each fixed n and arbitrary m
the éollect:lon Xn m is cushioned; i.e., we want to show that for
t ]

arbitrary A c X,

v’ L, hixem cusm, bixea .

Let ¢t ¢ U(S#(x; % s %)l X € A) . Then sS(t, %) has non-empty inter-

Foee 1 1
section with MA;n,m = u(s"(x; P ln)l X € A) . Now if

-]-'-) -y and since

X eM n s(t, %) » then ¢t ¢ S(xo, -

o  "A;n,m
1 1 1
S(xo, ;) c S(x, ;) > we find that t ¢ u(S(x, E)) . Since A 1is an
arbitrary subset of X » 1t is proved that Xn n is a cushioned
»
collection for each fixed n and m > n . Finally, we shall show that

- -3
Ve n¥1 mgn 'Yn,m is a paired network for X .

Let U be an open subset of X containing x . Since

(X,d) 1s a semi-metric space, there is n_ such that x ¢ S(x, -i—) cU.
X

x
# 1 1 1
Now, for each m > n,. we have x ¢ 8" (x; n—x s ;)c S(x, a) cU.

Hence the proposition is proved.

The proof of the next Theorem 4.1.4 follows exactly on the
same lines as Theorem 4.5 of Arhangeiékii [4]. But for the sake of

completenesg,we give the proof.
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Theorem 4.1.4 A regular space X is a semi-metric space 1iff it

is first countable and has a o-cushioned paired network.

Proof. Necessity of the conditions is obvious from Proposition 4.1.1

and Proposition 4.1.3.

, We shall show that the conditions are sufficient. Let
'{Vn(x)}:_l be an open countable neighborhood base at x ; without
loss of generality we assume that Vn(x) c Vm(x) for all n>m .

Let .H = ngl Hﬁ be a g-cushioned paired network for X » Wwhere

¥, = {(Wzl,wzz)l d e An} for each n , 1is a paired cushioned

collection. Let us now define

Mﬁ = u(WEl In Sk, ace AL and x ¢ W:2)
U@ = v - M:: (k = 1,2,...)

N(x,y) = max {n : (Un(x) n Uh(y)) n ({x} v {y}) # ¢}
and |

d(x,y) = for all x,y in X .

_1

N(":Y)
It is obvious, that d(x,y) = d(y,x) . If x = vy , then

N(x,y) = » and so d(x,y) =0 . If' d(x,y) = 0 , then either

Yy € Un(x) c Vn(x) for an infinite set of values of - n , or vice-

versa. This is possible only 1f x = y .

We now show that d is a semi-metric for X . Let M be

a subset of X and x  be any point of X such that x ¢ M . By
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the regularity of X there 1is "n, such that V (x) nM =¢ . Now

n nl °

let us choose "nl . such that x "¢ W'l c W cX-M . We claim
) a, a,

- 1 -
that d(xo,M ) =F(n1’n—¢;) ;s i.e. for any YoM N(xo,yo) 3

max (n},no) . We know that Uno(xo) < Vno(xo) €cX-M cX-~ Y, » and

: n n
) 1 1
on the otherhand Unl (yo) c an (yo) - Myo c an(yo) - w“l c an (yo) - X .

Hence for nl > max (no,nl), (U'nl(yo) n Unl(xo)) n ({xo} v {yo}) c

(Uno(xo) n Unl(yo)) n ({xo} v {yo}) =¢, i.e.,

N(xo,yo) < max (no ,nl) which proves our claim that d(xo,M—) >0 .
Suppose M 1s a subset of X and. x, is a point of X
such that d(xo,M) >0 . We claim that x é¢M . Let d(xo,M) =-c .

Let us choose n, a positive integer such that n, > %— « The set
o

n : :
Mxo is a closed set not containing x, - Consequently, by the
o
regularity of X there is a neighborhood Vn (xo) of xo disjoint
1 .
n : )
o 1
from Mxo . Then for n~ > max (no,nl) we have an,(xo) c Vno(xo) -
n, :
Mx - Un (xo) . But if y € Un (xo) then N(xo,y) 2n, , and
o o o
d(x y)--# < L <e sothat U (x)nM=¢ . Hence
o’ N(xo »y) = n o n "o

d is a semi-metric for X .

Remark 4.1.2 Recently, Theorem 4.1.4 has been stated in Kofner [31].

Proposition 4.1.5 1In a ’1‘2 semi-metric space X every closed set
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is a G6 set and X has a Gs-diagonal.

Proof. Follows from Proposition 4.1.3, Proposition 2.1.2 and

Corollary 2.1.3A.

Proposition 4.1.6 If X 1s a space with o-cushioned paired net-

work then it is Fa-screenable.

Proof. 1Let [ = {U& | @ € A} be an open cover of X and let A be
well ordered by < . Let = igl Hi be a o-cushioned paired network
‘ n

for X , where K= {(wal,wzz)l a € An} for each n is a paired

cushioned collection. Let

h(U

i i
a,l) - U(wall waz c Uﬁ) for a e A and i =1,2,.,, .

i

Further for each 1 , define wl

= h(U& i) - U(UBI BeA, B<a). Foreach a e A and each 1 ,
’

{ " h(Ui,i) and for o > 1 ,
V&i

V&i is a closed subset of X . Let Xe€eX. Let Y be the first
member of A such that x e U& . If B>y, then UY n VBi = ¢ .
If B <y, then VBi c h(UB,i) < h('(Ual & €A, ac<y),i)c

u(U& la € I, a <vy) . Since U(Ua lu € A, & < y) does not contain
x , UY n [X - h(U(U& | €A, @ <vy),1)] 18 an open subset of X
containing x which intersects V&i » only if o =y . Therefore
Xi = {Vai |a € A} is a discrete collection of closed sets. Now we

[ -]
need to show that X = 121 Xi 18 a cover of X . Since H is a

o-cushioned paired network there is k such that x ¢ h(U&,k) and

therefore, x ¢ VYk = h(U&,k) - U(Ua o € A, a <y) and Y is a
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cover of X . X is a refinement of H is obvious. Hence X 1is

Fc-screenable.

An immediate consequence of Proposition 4.1.6 is that every
semi-metric space is Fo-screenable. This was first proved by

McAuley [34].

Theorem 4.1.7 A Tl-space X 1is semi-metric 1iff there exists a

countable family {Xi}:-l of symmetric subsets of X x X satisfying"

@ 4 V=8
(b) for xe X, {Vi[x]};;l forms a base for the

neighborhood system at x .

Proof. Let (X,d) be a semi-metric space. Then let us define

by Vi = {(x,y) e X xX Id(x,y) <-%} for each 1 . Now it is easy

see that the countable- family {Vi}:-l of subsets of X x X has

the required properties.

Conversely, let us assume that there exists a countable
family {Vi}:-l of symmetric subsets of X x X satisfying the
required properties. Let us assume that Vi+1 c Vi for each 1 .

Now we define a real valued function d : X x X + R by setting:

d(x,y) = 0 1iff (x,y) € Vi for all 1

di(x,y) =1 1iff (x,y) ¢ Vi for all 1

and

d(x,y) = E%I 1iff (x,y) € Vi - Vi+1
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It is easy to see that d(x,y) = d(y,x) and d(x,y) = 0
1ff x =y , Suppose C 18 a closed subset of X and x,€eX-cC.
Then by (b) there is n such that v, [xO] € X~-C . Now for each

o
y €C, it is easy to see that d(xb,y) > %— » for if

o

d(xo,y) < %— + Then, by the definition of d we have v e Vn [xol
o ¢]
a contradiction, i.e., if C i1s closed and x £ C then

d(xo,c) ¥ 0 . Furthermore, suppose that C 18 a subset of X and

8l

d(xo,c) =€, ¥0. Let n bea positive integer such that €, >
Then, it is easy to verify that Vh[xb] n C=¢ . Consequently,

X, £C . Hence d is a semi-metric for X which proves the

theorem.

In addition C.C. Alexander [2] announced the following

interesting theorem.

Theorem 4.1.8 Let X be a Tl-space. Then X 1is a semi-metric

space 1ff there exists a countable family {Xi};;l of covers
(not necessarily open) of X such that the following conditions

are satigfied.
(a) ¥i+l refines Xi for each 1 ;

o
(b) for each x ¢ X , {St:(x,}\{:'-)}i“1 is a base for

the neighborhood system at x .

Proof. Is obvious.

Theorem 4.1.8 suggests the following definition:
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Definition 4.1.2 A topological space X 1is a semi-strict p-space

iff there exists a countable family of covers {Xi}:;l (not
necessarily open) of X satisfying:

[--]
(1) Ax =0 St(x,Xi) is a compact set for x ¢ X ;

(11) the family {St(x,xi)}:;l is a base for the open

sets containing Ax for each x ¢ X .

Theorem 4.1.9 A Tz-space X 18 a semi-metric space iff it 1s a

semi-gtrict p-space and has a Gg-diagonal.

Proof. Necessity follows from Proposition 3.3.15 and Theorem 4.1.8.

We now prove the sufficiency part. Since X has a GE-

diagonal there exists a countable family {Hi}:;l of open covers

of X such that for each x ¢ x , 131 EET;:EIT = {x} . Also X

a8 semi-strict p-space, so there exists a countable family {Xi}:-l

of covers of X satisfying conditions (1) and (11) of Definition 4.1.2.
Without loss of generality we may assume that Hi+1 refines Hi

and V refines v

i+l i
By =X AR, =vnw v e Y, and We ¥;} for each 1 .

for each i = 1,2,... . Let us define

Now it is easy to see that the countable family {Hi}:-l
of covers of X satisfies the conditions (a) and (b) of Theorem 4.1.8.

Hence X 1s semi-metrizable.

Definition 4.2.1 A topological space X 1is said to be point

countable type iff each x ¢ X is contained in a compact set of
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countable character.

Theorem 4.2.1 Let f : X+ Y be a continuous and closed mapping of

a regular semi-metric space X onto a completely regular space Y .

Then Y 1is a-gemi-metric space 1ff Y 1s point countable type.

Proof. 1Let f : X-+Y be a continuous closed mapping of a semi-
metric space X onto a completely regular space Y which is point

_ countable type. By Proposition 4.1.3 and Proposition 2.1.8;, Y has
o-cushioned paired network. Now in:view of Theorem 4.1.4, we need only
show that Y is first countable. Let y € Y be any point, then by
Proposition 2.2.1, there exists open sets {V;};;l such that

i+l _

o 1 +
y =40 V& and V&

is a compact set Ey such that y ¢ Fy and Ey is of countable

V; « Since Y 4is point countable type, there

character. Let Qi = V; n F& .. The sets Qi sy 1i=1,2,,.. , are
open in F& and 131 Q = {y} . But F} is comﬁact implies y 1is
of countable character in F& + Now y 1is of countable character
in Fy and Ey is of countable charaater in Y . Applying
Proposition 3.3 of Arhangel%kii [5] y 1is of countable character
in Y . Since y is an arbitrary point of Y . We have shown that
Y i1s first countable. Hence by Theorem 4.1.4, Y 1is a semi-metric

space.

The converse follows from the fact that every first countable

space is point countable type.

Proposition 4.2.2 Let X be a normal o-paracompact space, Y a locally
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compact (or first countable) Tl-hpace and £ : XY contiﬂuous and

closed. Then the boundary of f-ly » denoted by af-ly s 1s compact.

-~

Proof. . By The§rem 2.1 and Corollary 2.2 of Michael [39] af-ly is
countably compact. Since af-ly is a closed subset of X and X
is g-paracompact, af-ly is o-paracompact by Corollary 3.1.6B.
Finally, af-ly is compact by Corollary 3.3.11A. Hence the

proposition is proved.

In view of the preceding results, the following makes an

attractive conjecture.

Conjecture. Let £ be a closed continuous mapping of a normal semi-
metric space X onto a regular space Y . Then the following are
equivalent:

(a) Y 1s first countable;

(b) for each y ¢ Y, 8f-1y is compact;

(¢) Y 1s a semi-metric space.

Proposition 4.2.4 Let X be a regular topological space and

f : X>Y be a perfect mapping of X onto a semi-metric space Y .

Then X 1is a o-paracompact semi-strict p—-space.

Proof. In view of Theorem 3.2.7 and.Corollary 3.2.1A, it is enough

to show that X is a semi-strict p-space.

Since Y 18 a semi-strict p-space by Theorem 4.1.8 there
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exists a countable family {xi}:-l of covers of Y such that
'{St(yl,Xi)}:_l is a base for the neighborhood system at y . Let

us define W, = £y |v e ¥i} for 41 =1,2,... . Now for each

x € X, it is easy to see that 131 St(x,Hi) = f—ly where y = fi .
Now it remains to show that {St(x,k{i)wi_1 ‘is a base for the
neighborhood of f-ly - Let U be an open set containing f_ly .
Since f is closed O = Y - f(X - U) 41s an open set in Y contain-

Lcy. Because {St(y,Xi)}I_l -is a

ing y and such that f
base for the neighborhood system at y we have St(y,¥i) c 0 for
some 1 . Now by the continuity of f , f-l(St(y,gi)) is a
neighborhood of f-ly contained in £ 10 < U . But f-ls(y,xi) -
St(x,ﬂi) for x ¢ f-ly 3 8o {St(x,mi)}:_l is a base for the open
sets containing f-ly where y = fg/. Hence the proposition is

proved.

Definition 4.2.2 A continuous mapping f : X >+ Y 1s called a weak

W-mapping for an‘open cover W of X 1iff for each point yeyY,

f_ly is contained in some member of W .

Theorem 4.2.4 1In order that a space X be contractible to a

Hausdorff semi-metric space, it is necessary and sufficient that there

exists a countable family of open covers {V.} of X satisfying
it i=]l

the following conditions:

(a) 10 St(x,gi) = {x} for xe X ;

(b) for every Xi there exists a weak V,~mapping

fi : X~ R.1 on X into a Hausdorff semi-metric space . R.i .
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Proof. The necessity of the conditions is obvious.

-]
For sufficiency, let us define a function f : X -+ f(x) < inl Ri ,

o L3
where f£(x) = {fi(x)}i=l € :LEl R, . Clearly, f is continuous and

£(X) being a subset of a semi-metric space igl R:l is a semi-metric
space. We need only show that f 1s one to one. Let f(x) = £(y) .
Then, fi(x) - fi(y) » for each i 80 that y ¢ St:(x,xi) s, for
each 1 . But :I.El St(x,xi) = {x} , s0 x=1y . Hence £(x) = £(y)

iff x=y ; i.e., £ 1s one to one. Thus the theorem is proved.



CHAPTER V

QUASI-METRIC. SPACES

The notion of quasi-metric was introduced by Wilson [57]
and has also been studied by Albert [l], Ribeiro [49], and more recently
by Kelly [29], Pervin [48], Stoltenberg [52], Patty [47] and Sion

and Zelmer [50]. In this chapter, we extend and unify some of their

work.

In Section 1 we give some simple properties possessed by

quasi-metric spaces.

K
L]

In Section 2 we give some theorems characterizing quasi-

metrizability of a topological space.

Definition 5.1.1 A quasi-metric for a set X 1is a non-negative real

valued function d on X x X such that for X,¥,2 in X,

(1) d(x,y) =0 1iff x =y ;

(2) d(x,y) g d(x,2) + d(z,y) .

Let d be a quasi-metric on a set X , and define

d1 : Xx X+ R by the equation dl(x,y) = d(y,x) . It is easy to

verify that dl is a quasi-metric on X . d1 and d are called

conjugate quasi-metrics on X . The quasi-metric topology on X
is the family of all sets U in X such that for each x ¢ U there
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is € > 0 with the property that S(x,c) = {y]| d(x,y) < €} cU. The
quasi-metric topology will be denoted by T3 and X with topology T4
is called a quasi-metric space. X with < 1 where d1 is a conjugate

duasi-metric of d 1is called the conjugate guasi-metric space.

Proposition 5.1.1 Let X be a set with quasi-metric d, A be a

subset of X and X,y be any pair of points of X . Then

d(A,y) - d(A,x) < d(x,y) , where d(A,y) = inf {d(a,y) | a ¢ A} .

Proof. d(A,y) < d(a,y) for all a e A . Now, by the triangle
inequality d(A,y) < d(a,y) S d(a,x) + d(x,y) for all a e A . Hence,
it follows that d(A,y) S d(A,x) + d(x,y) ; i.e., d(A,y) - d(A,x) <

d(x,y) . Hence the Proposition is proved.

Proposition 5.1.2 Let (X.rd) be a quasi-metric space. Then, every

closed subset of X is a G6 set in X,t 1) .
d

Proof. Let C be a closed subset of X with respect to the topology
Tq - Let Ui = {xeX ldl(c,x) <-%} for 1 =1,2,... . We first show

that U, 1s open with respect to T 1+ Let x ¢ Ui and

i
d
r --% - dl(C,x) Let y e S (x,r) = {z ¢ X| d (x,2) < r} . Then,

wa have d (x,y) < I-- d (C,x) . Therefore, by Proposition 5.1.1, we
have gl c,y) - at (C,x) < —-- d(C,x) , 4i.e., dl c,y) <-I s SO that

y € Ui . It is easy to see that each U, 1is open with respect to

i

T1 - It remains then to show that C = 1:1 U, . It is easy to
d =11
" show that C c U, for 1=1,2,..., f.e., Cc 0, U, . Let

o ' 1 1
€ Ui o Then d (q,y) <7 for all i =1,2,.., , i.e.,
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d(y,C) <~% for all i = 1,2,... . Since d(y,C) <-% for each 1
there is x, € C such that d(y,xi) <-% » 1.e., the sequence
. [
{xi}i-l converges to y in Tq * But C 1s closed in Tq » SO that
ye€ C. Since y is an arbitrary member of .n. U implies n, U, ccC .
i=1 "1 i=1 "4
Therefore C = .n, U where U, is open with respect to T for
i=1 "1 i dl
each i . Consequently, C is a GG set with respect to 1 1

d
Hence the proposition is proved.

Remark 5.1.1 Let d be a quasi-metric for a set X . For each

m > 0 define p_(x,y) = min {m,d(x,y)} . Then P is a quasi-metric
m m _

for X and T3 -'Tp . Thus any quasi-metric is equivalent to a
m

bounded quasi-metric.

Proposition 5.1.3 Let {(x,n,dn)}:_1 be a countable family of

quasi-metric spaces, each of diameter at most one. For X and y
-]

belong to ngl Xn s define

® d_(x sY.)
d(x’y) - E n_z_n o
n=1 2

Then d 1is a quasi-metric for ngl Xh » and the resulting quasi-

metric topology is the product topology. Also d1 defined by

1
®  d7(x_,y.)
dl(x,y) - Z n’’'n
n=1 2

n

- -]
is the conjugate quasi-metric for ngl xh and its quasi-metric topology

is the product of the topologies generated by the conjugate quasi-

metrics di s n=1,2,,,, .
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Proof. Similar to Theorem 14 on page 122 of Kelley [28].

" ‘Proposition 5.1.4 If (X,d) 1is a regular quasi-metric space, then

(X,dl) is a Hausdorff quasi-metric space.
Proof. See Corollary 3.19 on page 43 of Murdeshwar and Naimpally [42].

Corollary 5.1.4A Let (X,d) be a regular quasi-metric space. Then

b= {(x,x) |x € X} 1is a GG set in X x X with respect to Tg X1

d L]

Proof. Since (X,d) 1is a regular quasi-metric space, by Proposition

5.1.4 (X,dl) is a Hausdorff quasi-metric space. Therefore A 1is

a closed subset of X x X in = 1 X T, + Now, by Proposition 5.1.2
d d

it is easy to see that A is a GG subset of X x X with respect

to the topology T X Tg -

Theorem 5.2.1 [Ribeiro [49]) A T,-space X 1is quasi-metrizable
i1ff for each x ¢ X there is a base for the neighborhood system
'{U(x,n)}:_o such that U(x,0) =X and if y e U(x,n) for n> 0 ,

then U(y,n) ¢ U(x,n-1) .

Proof. Let (X,d) be a quasi-metric space. Let us define

U(x,n) = S(x, l;) s where for each x ¢ X and positive integer n > 0 ,
2

S(x,-l; ) = {y|d(x,y) < &;} and U(x,0) = S(x,0) = X . Now, obviously
2 2

{U(x,n)}:_o is a countable base for the neighborhood system at x
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and, if y ¢ U(x,n) and . z € U(y,n) , then

1,1 __1

i.e., 2z e U(y,n) implies z € U(x,n-1) . Thus, for any vy ¢ U(x,n)
we have U(y,n) c U(x,n-1) . Consequently, {U(x,n)}:_o is a

Tequired countable base for the neighborhood system at x .

Conversely, for each XeX, let {U(x,n)}:_° be a base
for the neighborhood system with the Property described in the

hypothesis of the theorem. Let us define

Vo, ™ ul{x} x U(x,n) | x € X) for n=12,2,.., .,

It is easy to see that {Vn}:_l is a countable base for a quasi-

uniformity. we verify only the triangle inequality sl.e., we want
to show that V oy c vy for each n = 1,2,... where

n n n-1
V° =XxX. Let (x,y) ¢ Vh ° Vn - Then there 18 z guch that
(x,2) and (z,y) € Vh - Thus 2z ¢ U(x,n) and y € U(z,n) ; also
U(z,n) ¢ U(x,n-1) » 80 that y e U(x,n-1) , f.e., (x,y) ¢ {x} x
U(x,n—l) c Vn_1 - Hence by Theorem 11.1.1 on Page 175 of Pervin [45]

X 1s quasi-metrizable.

Theorem 5.2.2 4 T, -space X 1s quasi-metrizable iff for each x e X

there exists a decreasing base {Uh(x)}:_l for the neighborhood Bystem

such that for each n there exist neighborhoods Si(x) s Si(x) of
x with the property that y € Si(x) implies Si(y) E_Un(x) and

Un+1(x) c Si(x) n Sﬁ(x) .
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Proof. Suppose X is a quasi-metric space. Then by the Theorem 5.2.1,
for each x € X there exists a countable base {U(x,n)}:_° for the
neighborhood system such that if y € U(x,n) for n=1,2,,,. s then
U(y,n) c U(x,n-1) where U(x,0) = X . Let us define for each n >0 ,
Un(x) = U(x,n) and Si(x) = S:(x) = U(x,n+1) . Now, it is easy to
verify that {Un(x)}:_o where Ua(x) = X and for each n ,

1’x) - i(x) has the required properties.

Conversely, let us suppose that for each x ¢ X there exists
a decreasing countable base {U (x)} =] for the neighborhood system
at x and for each n there exist neighborhoods S (x), S (x) such

that y ¢ st (x) implies. S (y) < U (x) and U 1(X) cs (x) ns (x)

Let us define U(x,0) = X and U(x,n) = Sn(x) n Sn(x) for n>0 .,
Clearly {U(x,n)}:_o is a countable base for the neighborhood system
at x . We now need only show that if y € U(x,n) then U(y,n)
UGeo-1) . If y € U(xn) = S50 0 52x) then s 2 0 s2(y) =

U(y.n) cSs (y) c U (x) < S 1(x) n S 2(x) = U(x,n-1) ; i.e., 1if

y € U(x,n) then U(y,n) c U(x,n-1) . Hence the theorem is proved.

Corollary 5.2.2a. 4 T)-space X 1s quasi-metrizable iff there exist

sequences of neighborhoods of X , {U’n(x)}:_1 and {Sn(x)}:“1
such that:

(a) for each x ¢ X , {U’n(x)}:_1 is a base for the
ﬁeighborhoodvystem at x ;

(b) for all x,y ¢ X, y e Sn(x) we have Sn(y) c Uh(x)

and U 1(x) cs (x) for all n = 1,2,... .
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Theorem 5.2.3 A Tl-space X 1is quasi-metrizable iff there is a

collection'{Un(x)}:_o of open sets such that:

(a) for all x e X, {Uﬁ(x)}:_o is a decreasing base

for the neighborhood system at x where Uo(x) = X , and
. © [}
(b) for y € X and {y'n}n_1 and {zn}n-l are sequences

. -]
such that z € U (y) and y e U (y) for each n , then {2} 4

converges to y and zn € Uh_l(y) for all n=1,2,... .

Proof. Let X be a quasi-metric space with a quasi-metric d .

Let Uo(x) =X and foreach x ¢ X and n> 0, Un(x) = S(x, !:? -
2

{y | alx,y) < i, . Clearly, {U_(x)} is a base for the
o0 n n=o
neighborhood system at x . Now, if y is an arbitrary point of X

[ ] o0
and {yn}n-l and {zn}n-l are sequences such that z ¢ U (y )
1 1 1

and y e Un(y) then d(y,zn) < d(y,yn) + d(ynzn) <-;;-+-;H - ;E:T .
- -]
Now, it is easy to see that z, €U _,() forall n and {zn}n-l

converges to y .

Conversely, suppose that there exists a collection {Un(x)}:_o

of open sets such that, it is a base for the neighborhood system at
[- ]

%', where Uo(x) =X, forany xe€eX. If y e X and {yn}n-l

“ .
and {zn}n_1 are sequences such that z e Un(yn) and ¥, € Un(y)
(-
z
for each n then { n}n-l converges to y and zn € Uh_l(y) for
all n . We claim that the collection {U(x,o)}:_o where U(x,0) = X
and U(x,n) = Un(x) for n=1,2,..., has the property that if

y € U(x,n) for n > 0 then U(y,n) ¢ U(x,n-1) . Suppose for some
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x, € X and some n, there is yno € U(xo,no) such that U(Uho,no) ¢

U(xo,no-l) . Let us choose kno € U(yhb,no) - U(xo,no-l) and for

. . ©
n ¢ n, choose z e U,(y,) where Yo € Uy(x) . Clearly, {zn}n-l

converges to X but z, ¢ U(xo,no-l) s & contradiction. Hence
. (6]
the theorem follows from Theorem 5.2.1.

Theorem 5.2.4 Let X be a Tl-space such that there exists a

countable family {ki}:;l of open covers of X satisfying the follow-

ing conditions:

(a) Ei+1 refines ki for each 1 and Ei c §1+1 :

i

(b) for each i and each x € X » N(B|x ¢ B ¢ Ei) -0,

- -]
is a neighborhood at x and {oi}i-l is a base for the neighborhood

system at x for all x e X . Then X 1is quasi-metrizable .

Proof. Foreach x ¢ X and 1 define U(x,0) = X and U(x,1) = O:

for 1 >0 . By (a) U(x,i+l) < U(x,1) for all i and by (b)
{U(x,i)}:;o is a base for the neighborhood system at x . Also,
if y e U(x,1) by the construction it is easy to see that

U(y,1i) < U(x,1) . Hence by Theorem 5.2.1, X is quasi-metrizable.

Theorem 5.2.5 A Tl-space with o-point finite base is quasi-

metrizable.

' [~ -]
Proof. Let X be a Tl-space with o-point finite base B= 1Y, gi ’

B =X and B

%o is point finite for each 1 . Without loss of

i
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generality let us assume that Ei c £i+1 for each i1 . Now for each-

X € X define U(x,0) = X and U(x,1) = n(B{ x € B ¢ gi) . Since

ki is point finite, U(x,i) is a finite intersection of open sets

and therefore open. Also, since B 1is a base, {U(x,i)}:;o is a

base for the neighborhood system at x € x » Furthermore if y € U(x,1)
for i >0 by the consﬁruction of U(x,i) , it is easy to see that
U(y,1) € U(x,1i) < U(x,1-1) . Hence by Theorem 5.2.1, X is-quasi-

metrizable.

Corollary 5.2.5B If a topological space X is such that there exists

a countable family {Xi}z;l of point finite open coverings satisfy-

ing the conditon:

(*) for any x € X there is a sequence {Vn}°° where

n=1 °*

Vn € xn » forming a base for the neighborhood system at x » then

X is quasi-metrizable.
Proof, Similar to Theorem 5.2.4.

Definition 5.2.1 A quasi-metric (X,d) is called a conjugate strong

quasi-metric 1ff Td cT 1

d

Theorem 5.2.6 A quasi-metric space (x,d) is conjugate strong iff

(- -] - -]
for any two sequences {xh}n-l s {yn}n-l such that d(xn,x) +0

and d(xn,yn) + 0 it follows that d(x,yn) +0.

Proof. Let x ¢ X and S(x, —%—) = {y|d(x,y) < —%—} be a basic
2 © 2 ©
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neighborhood of x and suppose that for all m s

1l 1 1 1
§7(x, =2) = {y | d"(x,y) <=}
2 2
is such that

sex, ?) - S(x, =) # ¢
2 [+

where n 1s fixed. Let us choose X € Sl(x, !:? - S(x, —%%0 . Now
2 2 0
choose Y = X, - Clearly d(xh,x) + 0 and d(xm,ym) + 0 so that

by the hypothesis d(x,ym) + 0 . Hence for some m > n, we have

y_ e S(x, -%TQ » @ contradition. Consequently, Sl(x, i;p < S(x, !;?

n 2 © 2
for some m > n, o3 i.e., Td =‘rdl .
Conversely, if Tq € T 1 We want to show that for any pair
d
- -] - -]
of sequences {xn}n-l , {yn}n_1 for which d(xn,x) + 0 and

[- -} . -}
d(xn,yn) + 0, we have d(x,yn) + 0. Let {xn}n-l and {yﬁ}n-l
be two sequences such that d(xn,x) + 0 and d(xn,yn) + 0 . Now
d(x_,x) > 0 implies dl(x,x ) > 0. Since T, c T we have

n n d d1
d(x,xn) + 0 . Using the triangle inequality the result follows

immediately.



CHAPTER VI

DEVELOPABLE SPACES

The concept of developable spaces is quite old and has its
origin in the works of R.L. Moore [40]. In recent years the problem
of whether each normal developable space is metrizable has received
a considerable amount of attention. However the problem still remains

open.

In this chapter we list some familiar properties of developable
spaces and an internal characterization is given in Theorem 6.1.2. We
demonstrate the relation between semi-metric and developable spaces,
quasi-metric and developable spaces. Also, we show thata:-locally .

developable Fo-screenable space is a developable space.

Definition 6.1.1 A topological space X is called developable iff

there exists a countable family {xi}:-l of open covers of X such
that for any x € X , {St(x’X1)}:-1 is a base for the neighborhood

system at x .

Clearly a developable space is o-paracompact.

Let us recall several other properties of developable spaces
which are either known or immediate consequences of the definition:
(a) Every developable space has a o-diecrete closed net-

work. See Bing [1l1].



83.

(b) Every developable Tl-space has Gg-diagonal. See

Theorem 2.3.1.

(¢) Every completely regular developable space is a strict

p—space. See Theorem 1.2.1.

(d) Every developable Tl-space i1s semi-metrizable. See

Theorem 4.1.4.

(e) If X 1is a regular developable space, then there
exists a countable family {Xi}z-l of open covers of X such that
for x,y in X there is 1  guch that y ¢ Cly(St(s,y, ) , i.e.,

X

X has Gg-diagonal. See Definition 2.2.3.

Theorem 6.1.1 A completely regular space X is a p-space and has

Gs-diagonal iff the diagonal of X 1is a closed Gs ?et in X x BX

where BX is any Hausdorff compactification of X .

Proof. Assuming X 1s a p-space, by Theorem 1.1.2 the diagonal

(- .
_Ax < 191 Gi c X x X, where for each 1 , Gi is open in X x BX
and BX 1is a Hausdorff compactification of X . Also Ax is a G6
set in X x X dimplies Ax = 131 Hi where Hi is open in X x X for

each 1 . Let us choose Ui open in X x BX such that Ui n XxX) = H,
and let Ui - Ui n Gi for each i . Because E Gi c X xX and

i=1

[ -]
i U, = A where U

1 Uy x i is open

o ,
Ax = 40 Hi s 1t is easy to see that i

in X x BX for each 1 . Hence Ax is a G6 set in X x BX . Ax

is closed in X x BX follows from the fact that BX is Hausdorff.

Conversely, let us assume that Ax = 131 Ui where for each
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i, Ui is open in X x BX for BX a Hausdorff compactification of
X . By Theorem 1.1.2, X 1is a p-space and Ax = 131 (Ui n (X x X)) ;

therefore Ax is a G6 set in X x X . Hence the theorem is proved.

Corollary 6.1.1A A completely regular space X is a p-space and has

Ga-diagonal iff there exists a countable family {Xi}:=1 of open
covers of X in BX such that 131 St(x,xi) = {x} for all x e X ,

where BX is a Hausdorff compactification of X .

Proof. Is similar to Theorem 2.3.1.,

Theorem 6.1.2 A completely regular space X is developable iff

X 1s g-paracompact and Ax is a closed G set of X x BX s Wwhere

)
BX 1s a Hausdorff compactification of X .

Proof. 1If X 1is developable, it is trivially a og-paracompact space

and by Theorem 1.2.2 and Theorem 2.3.1, it is a p-space with G —diagonal.

8

Therefore, by Theorem 6.1.1, Ax is a closed G6 set in X x BX where

BX 1s a Hausdorff compactification of X .

Conversely, let X be a g-paracompact space and Ax be
a closed G6 set in X x BX . Since Ax is a closed Gs set in
X x BX by Corollary 6.1.1A there exists a countable {Xi}z_l of open
covers of X in BX such that 131 St(x,xi) - {x} for all x e X .
For each 1 and x ¢ X let us define 0; a neighborhood of :ﬁ in

BX such that ol c o1 and c1_ofcy for some Ve Yy, . Let
X b4 BX x i

Wi - Oi n X . Then for each 1, Hi = {Wi Ix € X} 1is an open cover
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X . Now, since X 1is o-paracompact, for each 1 there is a
sequence {Hin}:=1 of open covers of X satisfying the condition:
i

for x € X there is n such that St(x,H nx) ©W for some W e Hi .

= § i
Without loss of generality we may assume that Eﬁ+1 refines Hn
for each n . Finally, for any integer m let Bm be an open cover
of X such that Em refines each E: for s <m, ¢t im and
Rpey refimes R . We‘shall show that the countable family {Bm}m-l
of open covers of X 18 a development for X . If x e X 1is fixed
and k is a positive integer, then there is some X, € X and

n 2 k such that St(x,Hﬁk) c Oik n X, so that St(x,gnk) c

k
St(x,ﬂ: )0 nXx. If > we have St(x, ) < st(x, ) .
X el 7 P e Enk+1 x Bhk

Suppose U i1s a neighborhood of x , open in X and U# is an

it n
open set in BX such that U=Xn U . If k 1 BX xk ¢ U for
any m , then
k # ®
0 (Cleoxk - Uk

is a decreasihg aequence of closed sets in BX and hence

k

0 - .
m-l (kn1 Cl BX s U ) ) Now

W0y Gl oxk < [,3, stle,y1 0 L3, ka] <X L3 W .- R "k

k #

o _k
Hence vy € k Cleoxk - U dimplies that y ¢ k21 0xk and then by

Corollary 1.1.A it follows that {xk}:=l converges to y , . 1i.e.,

St(x,Vi) . Bur for any x e X, St(x,Vi) = {x} 80 x=1y

(-] (-
ye 4l 131
m
which is a contradiction. So there is m such that n, C1..0 c U .
k=1 BX xk

it follows that
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it

"ok
e g, 0, 1 nXcU nx=vU .

m
St:(x.g.n ) e k21 St(x x,
m

’Bhk

Hence x ¢ St:(x,,g.n ) € U and hence we havupgnpwedthe claim. Thus the

-m
theorem is proved.

Corollary 6.1.2A A completely regular space is developable iff

the following conditiohs are satisfied:
(1) X has a Ga-diagonal;
(11) X 18 o-paracompact;

(111) X 4is a p-space.

Proof. Follows from Theorems 6.1.1 and 6.1.2.

Theorem 6.1.4 A completely regular space X is developable iff X

has a o-cushioned paired network and is a p-space.
Proof. Necessity is trivial from the properties listed for developable
space in the beginning. Sufficiency follows from Proposition 4.1.6,

Corollary 3.2.1A, Proposition 2.1.2 and Theorem 6.1.2.

Corollary 6.1.4A A completely regular space X is developable iff

X 1is a semi-metric and p-space.

Proof. Follows from Theorem 4:1.4, Theorem 1.2.2 and Theorem 6.1.4.

Corollary 6.1.4A answers the question raised by Morton Brown [15]:
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"What is a topological condition which is necegsary and sufficient for
a semi-metric space to be developable'? Recently, several others have

solved this problem independently.

Thorem 6.1.5 A Fa-screenable locally developable space is a

developable space.

Proof. Since X i1s locally developable for each x € X there is
an open neighborhood Wx of x which is developable, i.e., there

exists {Hﬁ(x)}:-l a sequence of open coverings of W& such that

{St(y.ﬂh(x))}:_l is a base for the neighborhood system at y for

y € W& « Further, X 1is F&-screenable, therefore there exists a
L]

o-discrete closed refinement = 14 Xi of {Wx lx € X} where we

denote X - {V: la e Ai} for each 1 .

Let 1 be a fixed but an arbitrary integer. Let Vi € Xi

let us define

h(V:) = X - U(V; IB €A, and a ¥ B8) .

i

For Jj any integer let us define

iy (Vi) - {h(Vi‘) NW|We ]gj(x,v:)}

i

where H(x,vi) € {Hn(x)}:_l such that Va

c Wx « Finally we define

Hij = {U:Ue¢ Hij(vi), ae Ai} v (X - U(Vi |a € xi)) .

Then Hij is an open cover of X for each i and 3} we now show
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that .{Hij};.d‘l is a development of X .

i
Let x, € X and let io be an integer such that x e Vao .
o
Then if G 1is an open set containing X, » then there is jo such

i i
that St(xo,gjo(va)) cGn W&(Vi) where W&(V&) is W, such that

Vi c W& + By construction x, is not contained in any other element

of By, (Vi) for a $B . Thus Se(x , ) = St(x_, vy
By 5 e ok 3 oK1 3 o
St(xo,ﬂio(vi)) < Gn W#(Vi) € G . Hence we have St(xo’Hiojo) cG .

Hence the theorem is proved.

Theorem 6.1.6 Let (X,d) be a conjugate strong quasi-metric space.

Then, (X,t d) is a developable space.

Proof. Let (X,d) be quasi-metric space and Tg €Ty - Let us
d

define En = {S(x,n) lx € X} where for each n and x ¢ X,
S(x,n) = {y ld(x,y) < l;-} - We shall show that the countable
2
(-] - -]
family {En}n-l of open covers of X is such that {St(x,gn)}n_l

is a base for the neighborhood system with respect to Tq *

let x e€X and U be an open set containing x . Then

there is an n such that x ¢ S(x,n-1) ¢ U . But Ta €T, implies
d

that there is m > n such that x € Sl(x,m) € 8(x,n) c S(x,n~1) c U R

where Sl(x,m) = {y | dl(x,y) < l;-} . We shall show that

2
St(x,gm) cU. Let x ¢ S(y,m) . Then d(y,x) <L »» 80 that
om
y € Sl(x,m) 5 S(x,n) . Hence S(y,m) c S(x,n-1) ¢ U s for if

z € S(y,m) then we have d(x,2) < d(x,y) + d(y,z) < l;.+ i .1 ,
= =on Lm 2n--l
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i.e., z S(x,n~1) . Hence the theorem is proved.

Remark 6.1.1 It is not. difficult to show that a metacompact develop-

able Ta—space is conjugate strong quasi-metrizable.



CHAPTER VII

NAGATA SPACES AND METRIZABILITY OF SPACES

In 1961, Ceder [16] introduced a class of spaces called
Ms-spaces. In 1966, Borges [13] named this class of spaces stratifiable
and proved a number of theorems about stratifiable spaces. Ceder [16]
showed that a topological space is Nagata iff it is first countable

and an Ma-space.

In Section 1 we give an intrinsic characterization of

Nagata spaces.

In Section 2 we give some mapping theorems.

In Section 3 we give some metrizability conditions which
establish relations between various classes of spaces considered in
this work and metric spaces. Theorem 7.3.3 is of special interest

as it answers McAuley's question raised in [35].

Definition 7.1.1 A Nagata space X is a Tl-space such that for each
x € X there exist sequences of neighborhoods of x ’ {Un(x)}:_1

- -]
and {Sn(x)}n-l such that:

(1) for each x e X, {Un(x)}:_1 is a base for the

neighborhood system at x ;

(2) for all x,y € X, Sn(x) n Sn(y) ¥ ¢ implies

X e Un(y) .
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Let P be a collection of ordered pairs P = (Pl’PZ) of
subsets of X , with P1 c P2 for all P ¢ g . Then g 1s called
a paired base for X if Pl is open for all P ¢ ® and if, for
any x € X and any neighborhood U of x , there exists a P € {
such that x € Pl c P2 < U . Moreover, a collection g of ordered

pairs P = (Pl’PZ) of subsets, with P1 c P2 for all P ¢ R is

1 1 1
called cushioned if for every Prcp, u(P1 |P e P < U(P2| PepP) .
R 1s called g-cushioned if it is the countable union of countably many

cushioned subcollections.

Definition 7.1.2 An M3—8pace is a Tl—spéce with o-cushioned

paired base.

Theorem 7.1.1 (J.G. Ceder [16]) A topological space X 1is a

Nagata space iff it is a first countable and My~space.

Definition 7.1.3 Let X be a topological space and R = i§1 51 s

i _1
where gi = {(Pal’Paz) jo € Ai} » for each i, 1s a o-cushioned
paired network. Then R is a g-cushioned paired almost base iff for
KcU, where K is compact and U open in X , there is a finite
-~}
subset F of 491 Ay such that K < U(Pall a € F) c u(Pm2 |a e F) cU .

Definition 7.1.4 A sequence {Xi}zal of covers (not necessarily

open) of the space X 1is called weakly majorized by the open covering

x if for each point x € X » and for some n , 0x (a neighborhood

of x) and V ¢ Y we have St(Ox,Xn) sv.
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A sequence {Xi}:=l of covers (not necessarily open) of

a space X 1is called weakly fundamental iff it is weakly majorized

by every open cover of the space X and for each x ¢ X ,

{St(x’Xi)}:=1 is a base for the neighborhood system at x .

Definition 7.1.5 A sequence {Hi}znl of covers (not necessarily

open) of a space X is called a weak k~refining sequence iff for

an arbitrary compact set k ¢ X , {St(k,Hi)}:=1 forms a base for the

open sets which contain k .

Proposition 7.1.2 In a Tl-Space X, the following statements are equivalent:

(a) X has a weakly fundamental sequence of covers:

(b) X has a weak k-refining sequence of covers.

Proof. (a) ==> (b) Let {Xi}:-l be a weakly fundamental

sequence of covers and not a weak k-refining sequence of covers.

Without loss of generality let us assume that ¥i+1 refines Xi
for each 1 . Now, since {(V,}, is not a weak k-refining sequence,

i“i=1

there exists a compact set k and an open set U > k such that

St(k,V.) n (X -U) # ¢ for all i . Then, for each i there is x

S 1

in k such that St(xi’Xi) n (X-1U) #¢ . k being compact, the

oo - -]
sequence {xi} j=1 has a subsequence {xn } 4=1 ¥hich converges to

i
some point x € k . Let us choose a neighborhood Oi of x such
1
that St(Ox, Xi 1 ) < U. Then, obviously St(xn ’Xn ) €U for
o ,u) i i
x o o

some n, > i(O1 U) as x € 01 for some i since {x' 5

i x’ n, x (<] n, i=1

o

converges to x . This contradicts the choice of the x,'s , completing

i
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the first part of the proof.

(b) ==> (a) . Suppose {Xi}:;l is a weak k-refining
sequence of covers of X , but not a weakly fundamental sequence of
covers of X . Without loss of generality assume that ¥i+1 refines
Yy for each 1 . Since {Xi}:=1 is not weakly fundamental, there
exists a point x € X with a neighborhood 0x such that for each

1 1
neighborhood 0, of x we have for all {1 , St(Ox,Xi) n X - Ox) $¢ .
In particular, this will be true if we put Oi i St(x,xi) « Let
’
i be an integer such that 01 © O0_ . This is possible as
o x,1 b4
{St(x’¥1)}:-1 is a base for the neighborhood system at x . Let us

1
choose X, € ox,i (for 1 > io) for which St(xi’Xi) n (X - Ox) ¢ .

The sequence {xi}i=>=i° converges to x as {St(x,,\\{i)}i=l
forms a base for the neighborhood system at x . Obviously,

A= {xi}:>i u {x} 1is a compact set. And for all i > io we have

St(A,Xi) n (X - Ox) > St(xi’Xi) n X - Ox) ¥ ¢ which contradicts the

fact that {Xi}:;l is a weak k-refining sequence of covers of X .

Theorem 7.1.3 For a Tl-space the following statments are equivalent:

(a) X 1is a Nagata space;
(b) X has a weakly fundamental sequence of covers;

(c) X has a weak k-refining sequence of covers.

Proof. By Proposition 7.1.2 (b) <==> (g) .

(b) ==> (a) Let {Xi}:=1 be a weakly fundamental sequence
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of covers of X . It is easy to see that for each x ¢ X ,

. [--]

{St(St(x’Xi)’xi)}i=1 is a base for the neighborhood system at x .
Now, for each 1 define Ui(x) = St(St(x,Xi),xi) and Si(x) = St(x,gi)
Suppose Si(x) n Si(y) # ¢ , then, clearly y e Ui(x) for each 1 .

Thus, X i1s a Nagata space.

(a) ==> (b) Let X be a Nagata space. Then by
definition there exist sequences {Un(x)}n=1 and { n(x)}n=1 of

neighborhoods of x such that

(1) for each x ¢ X , {Un(x)}:=1 is a local base of

neighborhoods of x ;

(2) for all x,y ¢ X , Sn(x) n Sn(y) # ¢ implies

X € Un(y) .

Without loss of generality let us assume that Sn(x) < Un(x) s
Sn+1(x) c Sn(x) . Un+l(x) c Un(x) for each n and x ¢ X . Now,
define d : X x X » R by setting a(x,y) --% s where n 1is the
largest integer for which y ¢ Sn(x) and x € Sn(y) . It is not
difficult to show that d is a semi-metric for X . For each
positive integer n , let Xn be the collection of all sets of
1 1
diameter less than 5 - Then for each n , S(x; ;) = St(x,)\{n) 9
1
for let y e S(x; ;) . Then A = {x,y} ¢ xn implies y ¢ St(x,xn) .
On the otherhand, let y ¢ St(x,xn) . Then there is A ¢ ¥n such that
1

X,y € A, and therefore, d(x,y) < diameter of A < 5 - Thus

1
y € S(x, ;) , and {St(x,xn)}:=l is a base for the neighborhood

system at x .
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It remains to show that {St(St(x,Xn),Xn)}:al is a base for
the neighborhood system at x . Let x € X and U be any neighbor-
hood of x . Suppose for all n we have St(St(x,xn),Xh) -U#¥ ¢,

),V) -U . For each

i.e., for each n there is x € Sst(St(x Vo

,Xn
n there is A and B in V_ such that x e€eA_, xeB and

n n n n n n
Ah n Bn # ¢ . Now, by the definition of d , we have Sn(x) n Sn(xn) £ ¢
for each n . Hence, for some m , X € U for which Um(x) cU,

which contradicts the construction of the sequence {xm} . Hence

the theorem is proved.

Theorem 7.1.4 A regular space is Nagata iff it is first countable

and has o-cushioned paired almost base.

Proof. Necessity follows trivially. Sufficiency follows on the same

line as Theorem 4.2.3 in [46].

Corollary 7.1.4A Every Nagata space is semi-metric.

Definition 7.2.1 A function f : X+ Y 1s called o-cushioned paired

mapping iff £. is such that for any o-cushioned paired open base

Y= 0 (0 vy la el the £(p) = 8 (W), E0E)) [a e apd

is a o-cushioned paired cover of Y which need not be open or closed.

Theorem 7.2.1 fbr a T,-space Y the following statements are

1

equivalent:

(1) Y has a o-cushioned paired network;
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(2) Y d1s the image of a M3-space under a g-cushioned

paired mapping which is one to one and continuous.

Proof. (1) => (2) Let Y be a o-cushioned paired network for

Y . Then there exists a o-cushioned paired network ¥ as in
Proposition 2.1.4. Let X be a copy of Y topologized by taking

U as base for the topology of X . Then, obviously X is a Tl-
space with o-cushioned paired base ,i.e., X is an M3-space. Let

f : X+ Y be the identity transformation. Clearly f is one to one
continuous. f is o-cushioned follows by the construction of base

for X .

Remark 7.2.1 It is to be noted that o-cushioned paired mapping need

not be closed or open. This follows since there exist non M3-spaces
which have o-cushioned networks. Hence, if o-cushioned mappings
implied closedness or openness of f by the above theorem, every
Tl-space with 0-cushioned paired network would be an M3-space which

is not true.

Definition 7.2.2 A regular space X is called an M,-space iff it

has o-closure preserving open base.

Definition 7.2.3 A function f : X+ Y is called og-closure preserving

© i
mapping iff for any o-closure preserving open base N = 1Y {v I a € Ai}

the collection f(x) = igl {fVila € Ai} is a o-closure preserving

cover of X .
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Theorem 7.2.2 For a regular space Y , the following statements

are equivalent:
(1) Y has o-closure preserving networkg

(2) Y is an image of an Mi—space under a o-closure

preserving mapping which is one to one and continuous.

Proof. Is gimilar to Theorem 7.2.1.

Remark 7.2.2 There exist regular spaces with o-closure preserving

networks which are not M3-spaces and so not Mi-spaces by Ceder [16]:
following Remark 7.2.1 we can now show that a o-closure preserving

mapping need not be closed or open.

Remark 7.2.3 We feel that Theorem 7.2.1 and Theorem 7.2.2 will

probably help in answering the question of Ceder [16]: 'Is an

- - "
M3 space an M1 space''?

Theorem 7.3.1 (Tamano [55]) A completely regular space X is

metrizable iff X x BX is normal and A = {(x,x) |x € X} 18 a

closed Gc-set in X x BX , where BX is any Hausdorff compactification

of X.

Theorem 7.3.2 If X is a completely regular space, then X 1is

metrizable iff X i1is a p-space with Gs-diagonal and X x BX is

normal, where BX is a Hausdorff compactification of X .
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Proof. Follows from Theorems 6.1.1 and 8.1.1.

Remark 7.3.1 In view of Theorem 8.1.1, it is easy to see that the

normal Moore space problem (is every normal Moore space metrizable?)
is equivalent to asking whether or not product of ndrmal Moore space

with any of its Hausdorff compactification is normal.

The following theorem gives a factorization of a metrization

Theorem 4 by Bing [11] and answers the question raised by McAuley [35].

Theorem 7.3.3 A completely regular space X is metrizable iff the

following conditions are satisfied:

(a) ‘X has o-cushioned paired network;
(b) X 1is first countable;

(¢) X is a p-space;

(d) X 1is collectionwise normal.

Proof, By Theorem 4.1.4 (a) and (b) imply that X is a semi-metric
space. By Theorem 6.1.5 (a), (b) and (c) imply X 41s developable.
Finally by Bing [11] (a), (b), (c) and (d) combined together imply

X 1is metrizable. The converse is well-known.

Remark 7.3.2 For the metrizability of X in Theorem 7.3.3, condition

(b) is redundent as (a) and (c) implies (b) by Theorem 6.1.4.

Theorem 7.3.4 A Nagata space X is metrizable iff any one of the

following conditions are satisfied:
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(1) X 1is a p-space;
(11) X has point countable base;

(iii) X is quasi-metrizable.

Proof. (1) If a Nagata space is a p-space by Corollary 7.1.4A and
Corollary 6.1.4A, it is a developable. Since Nagata space is also
paracompact by Theorem 2.2 of Ceder [16]. By Bing [11] X is
metrizable. .
(11) See Theorem 2 of Heath [25].
(1i1) If X 4is a Nagata space which is also quasi-metrizable.
By Theorem 5.2.2 it is easy to show that there exist sequences

{U’n(x)}:_1 and {Sn(x)}:::-1 of neighborhoods satisfying

(a) {U’n(x)}:_1 is a base for the neighborhood system at x s

(b) for all x,y ¢ X, Sn(x) n Sn(y) ¥ ¢ implies

X € Un(y) .
(e) for all x,y e X, y ¢ Sn(x) implies Sn(y) c Un(x) .

Hence by Theorem 1 of Nagata [44] X is metrizable. The converse

is obvious.

Theorem 7.3.5 A regular o-paracompact M-space X 1s metrizable

iff X has Gg-diagonal.

Proof. By Theorem 6.1 of [41), there exists a metrizable space
Y and a mapping f from X onto Y such that f£ is continuous

closed, and f-ly is countably compact for each y € Y. Thus
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by our Proposition 3.3.11A, f—ly is compact, and so f 418 a perfect
mapping. Thus, by Arhangelskii [4] X is a paracompact p-space with
Gs-diagonal. Hence, by Corollary 6.1.2A and Bing [11], X is

metrizable.

Corollary 7.3.5A A regular semi-metric space is metrizable 1ff it

is an M-space.
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