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Abstract

The conventional unidirectional model of the electricity grid operations is no longer

sufficient. The continued proliferation of distributed energy resources and the resul-

tant surge in net load variability at the grid edge necessitates deploying adequate

demand response methods.

This thesis proposes, investigates, and demonstrates the Autonomous Local En-

ergy eXchange (ALEX), an indirect demand response mechanism grounded in the

principles of transactive energy. ALEX operates as a fully automated, decentralized,

and economy-driven local energy market with the overarching objective of reducing

net load variability on a community level to enhance grid operability. ALEX strongly

distinguishes itself from schedule-based approaches commonly utilized for indirect de-

mand response in how it addresses the challenges of interest alignment and end-user

participation. The alignment of end-user and grid stakeholder interests is achieved

through the market mechanism, which incentivizes pricing in relation to the current

timestep’s supply/demand ratio. To facilitate broad end-user participation in the face

of such a granular incentive signal, ALEX relies on model-free automation through

deep reinforcement learning.

The thesis employs a reductionist approach to navigate the complex dynamics

of this interconnected system. It formulates three primary research goals, addressed

through corresponding chapters.

Chapter 2 explores the challenges of economy-driven transactive energy, focusing

on designing an appropriate local energy market mechanism. Through classification

driven experiments, a market mechanism is identified that strongly incentivizes pric-
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ing in relation to the supply/demand ratio. This provides an effective solution to the

alignment problem between grid stakeholders and electricity end-users.

Chapter 3 develops a benchmarking approach for local energy markets, confirm-

ing the central hypothesis of emergent, community-level variability reduction within

ALEX. ALEX significantly outperforms baseline approaches, demonstrating its capa-

bility to enable community-wide coordination of distributed energy resources. The

benchmarking process addresses broader research gaps in the current literature related

to Local Energy Markets.

Chapter 4 concludes the thesis by training deep reinforcement learning agents to

achieve near-optimal performance on ALEX. An augmented proximal policy opti-

mization algorithm demonstrates the ability to produce a convergent set of policies

close to a Nash equilibrium. The resulting policies reduce community-level variabil-

ity across several timescales without information sharing between agents and without

access to future information.

In summary, this thesis advances the state of the art in indirect demand response

by introducing and demonstrating ALEX. ALEX’s decentralized, autonomous nature

positions it as a robust solution to the challenges posed by the growing adoption of

distributed energy resources, aligning with the Smart Grid’s principles of intelligent

asset integration for efficient and reliable grid operations.
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Chapter 1

Introduction

Climate change stands as an unequivocal global challenge, necessitating collabora-

tive, multi-generational endeavors. Addressing this issue mandates a dual focus on

sustainable energy consumption and accommodating the escalating energy demands

propelled by technological advancements. In the face of this vast spectrum of adap-

tations, the maintenance of reliable and efficient operations is paramount.

The electricity grid is conventionally treated as a unidirectional, hierarchical graph.

A powerplant generates electricity at the graph’s origin, from where a cascade of levels

with increasing local resolution distributes it to the end-user at the grid edge to satisfy

their load demand. These end-users are traditionally regarded as passive consumers

with reasonably predictable consumption patterns. Unit-commitment and economic

dispatch algorithms schedule power plants while the grid’s configuration adjusts to

the implied power flow. Mechanisms such as spinning reserves and ancillary services

mitigate deviations from forecasts, ensuring equilibrium between energy sources and

sinks. The directed graph structure of this model focuses efforts toward higher voltage

levels and major nodes, optimizing adjustments in an effective, centralized manner.

The energy sustainability efforts materialize through many avenues. Electrifica-

tion in the form of electric vehicles and electric heating shifts the primary mode of

energy consumption. Concurrently, consumer end-users evolve into prosumers pro-

pelled by the economic viability of residential electricity generation in photovoltaic
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panels, wind turbines, and geothermal energy [4, 5]. These adaptations drastically al-

ter end-user behavior and occur at a pace clearly surpassing the typical infrastructure

upgrade cycles of the electricity grid. Consequently, this challenges the established

centralized operational paradigm of the grid. In response, the Smart Grid emerges as

a comprehensive ‘catch-all’ solution concept, characterized through a decentralized

autonomous operation that intelligently integrates and leverages all available system

participants and assets to ensure an efficient and reliable grid [6].

1.1 Distributed Energy Resources

One of the foremost ambitions of the Smart Grid is addressing the pronounced surge

in the variability of the end-user netload, which encompasses the composite effects of

intermittency and other net load volatilities. In this context, intermittency is strictly

defined as the fluctuations in net load attributed to uncontrollable factors. While

photovoltaic and wind energy are inherently intermittent, electrified assets such as

HVAC systems and electric vehicles also induce instantaneous load demand surges.

The result is a marked amplification of day-to-day and moment-to-moment variabil-

ity of end-user energy usage. This intensifies the steepness and unpredictability of

net load ramps, turning the maintenance of electricity grid operations increasingly

intricate and brittle. The shape of the ‘duck-curve’, depicted in Figure 1.1 effectively

encapsulates this significantly increased variability.

The adoption of the aforementioned assets unfolds disparately across the electric-

ity grid, with certain areas advancing more rapidly based on individual values and

financial capacities. The uneven distribution of these distributed energy resources

(DERs) compounds operational challenges, particularly in the absence of comprehen-

sive monitoring infrastructure at the grid edge.
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Figure 1.1: Average day net-load profiles for a community with and without residen-
tial photovoltaics (PV). Shaded areas depict variance bands. With PV, the commu-
nity net load curve exhibits a clear ’duck-curve’ pattern and elevated variability.

1.2 Demand Response

The first-principles approach to address these challenges involves transforming end-

users and their DERs into active contributors to grid stabilization and operation.

While the term ”Demand Response” (DR) lacks a universally adopted, strict defi-

nition, it generally refers to the set of mechanisms employed to shape end-user load

demand via signaling to maintain or enhance grid operations [7, 8]. DR approaches

can be broadly classified into two categories: direct DR and indirect DR.

Direct DR involves the utilization of a control signal, allowing grid stakeholders

access to energy assets to shape load demand. Albeit effective, direct DR faces

challenges stemming from inherent conflicts of interest between asset owners and

grid operators. Additionally, its tendency towards centralized approaches and the

requisite communication and data exchange infrastructure may prove inadequate for

addressing the decentralized nature of DERs and their diverse adoption rates [9].

In contrast, indirect DR relies on incentive signals, often in monetary form, to
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guide end-users’ behavior by aligning their interests with grid stakeholder objectives.

The effectiveness of an incentive signal hinges on its value perceived by end-users

and its ability to elicit the desired behavioral response from the perspective of grid

stakeholders. End-users are typically motivated by the goal of minimizing electricity

costs and enhancing their well-being, while grid stakeholders prioritize the stable

operation of the electricity grid and efficient revenue generation. Once communicated,

garnering a substantial end-user response toward an incentive signal becomes critical

to achieve the intended effects. This poses a challenge for non-automated, indirect

DR programs [8, 9].

1.3 Transactive Energy

Indirect DR signals vary over a spectrum from fixed schedules like Time-of-Use to real-

time pricing derived from the instantaneous state of the electricity grid at the moment

of transaction [9]. Traditionally, this incentive signal is formulated through model

predictive control (MPC), relying on behavioral models and a centralized information

processing structure, and then communicated as a price schedule. For sustained

effectiveness, DR must adapt to current trends, evolve to accommodate a myriad of

participants, and account for the distributed nature of DERs.

This imperative motivates the emergence of the transactive energy (TE) frame-

work. The GridWise Architecture Council defines TE as “the use of a combination

of economic and control techniques to improve grid reliability and efficiency” [10].

TE introduces a market-oriented incentive delivery mechanism that fundamentally

distinguishes it from conventional MPC-derived pricing schedules. In contrast to the

centralized nature of the electricity grid’s wholesale market, TE emphasizes decen-

tralization and automation of transactions and control, aligning elegantly with the

notion of the Smart Grid [9].

Various approaches exist to assign value to transactions within the TE framework.

Some studies adopt power flow-driven pricing based on one or more power system
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performance metrics [11–14]. While this ensures the effectiveness of the incentive

signal concerning the selected metrics, grid stability is a multi-objective concept with

variability occurring on various time scales. The computational expense of calculating

an exhaustive set of informing metrics reverts to an MPC-driven incentive scheme.

Other studies employ economy-driven TE, which derives price from economic and

market-centric considerations [15–18]. An economy-driven TE system offers the ad-

vantage of not relying on additional monitoring infrastructure, being computationally

less expensive, and aligning better with the original intentions behind the TE pro-

posal. However, the main challenge lies in designing the market appropriately to

incentivize behavior that reduces variability across all time scales.

In recent literature, the local energy market (LEM) has emerged as a promising

concept for the implementation of TE at the grid edge [19, 20].

1.4 Automation of Demand Response

While one might expect heightened end-user engagement with a less variable schedul-

ing approach like Time-of-Use, pilot studies indicate that the response to any incentive

signal remains notably low in the absence of facilitating factors such as automation [8,

9, 21].

To address this participation challenge, the majority of DR mechanisms proposed in

the literature rely on the MPC framework: leveraging a behavioral model to generate

a forecast, which then informs a search algorithm that devises a target schedule. The

primary advantages of MPC include a degree of explainability and a soft guarantee of

optimality. However, drawbacks include reliance on experts, extended execution times

and brittleness due to the layered model and forecast structure. The computational

demands of the MPC loop impose a lower limit on the step size, and the framework

favors centralized approaches. Moreover, compared to model-free approaches, MPC

systems struggle to adapt to changes in the controlled system [22].

Developments in machine learning, deep learning, and specifically, deep reinforce-
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ment learning (DRL) open up such model-free control approaches as a viable alter-

native to MPC [23]. DRL has demonstrated effectiveness in complex system control

tasks, emerging as the state-of-the-art for robotics [24] and general process control

applications [25]. Implementing control through DRL offers a pathway to decentral-

ized participation automation, where each end-user could be automated through their

individual DRL agent. Such advantages are further reinforced by general consider-

ations on performance scaling, such as outlined in Rich Sutton’s Bitter Lesson [26].

Given that the advantages of the DRL framework align with the Smart Grid vision

and correspond to some of the challenges faced by DR in the context of DERs, an

expanding body of literature is exploring its applications [27–29].

1.5 Research Objectives and Outline

This thesis endeavors to formulate an indirect DR system aligned with the Smart Grid

paradigm and the previously outlined developments. To this end, the research pre-

sented within this thesis proposes, investigates, and demonstrates the Autonomous

Local Energy eXchange (ALEX): a fully decentralized, economy-driven, TE-based

LEM in which end-user participation and DER control are automated via DRL agents.

Aligning end-user and grid stakeholder interests through a LEM results in a far more

granular incentive signal than one derived from a schedule-based mechanism. Suffi-

cient end-user participation is consequently ensured using decentralized, model-free

control through DRL agents.

The central challenge in achieving this thesis goal arises from the intricate dynamics

of the interconnected system interplay between the LEM and its automated partici-

pants. Simultaneously developing both components poses significant challenges, hin-

dering the design of robust experiments and increasing the likelihood of deviant, high-

performant solutions, as observed in experiments like OpenAI’s Hide and Seek [30].

Thus, a reductionist approach is adopted, aiming to minimize the interplay between

system sub-components, providing clearer insight and informing more precise exper-
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imental design. To demonstrate ALEX, the following research objectives must be

met:

• Design of a suitable LEM

• Development of an adequate DRL algorithm and training routine

• Establishment of an appropriate benchmarking and evaluation process

As highlighted by Mengelkamp et al. [20], decoupling the effects of the LEM from the

behavior of the automating agent is an extremely intricate task. The terms ’suitable’,

’adequate’, and ’appropriate’ in the objective formulation denote achieving a specific

objective without hindering the remaining ones while enabling ALEX to exhibit the

desired performance attributes as a DR system. Drawn from corresponding academic

contributions published as journal articles, Chapters 2 to 4 each address one of these

research objectives. This process enables clearer insights into the interactions within

the system, setting the stage for a comprehensive understanding of ALEX.

Chapter 2 is published as ”Reinforcement learning-driven local transactive energy

market for distributed energy resources” in Energy and AI [1]. This contribution

forms the initial proposal of ALEX. It explores the challenges of economy-driven

TE, focusing on designing a LEM settlement mechanism that efficiently solves the

alignment problem between grid stakeholders and electricity end-users. It identifies

a set of properties necessary for LEM to achieve this efficiently in the presence of RL

agents. Criteria for classifying a double auction market are established, and a set of

corresponding LEMs are constructed and tested with RL agents in a bandit setting.

This effort identifies a market mechanism for ALEX that strongly incentivizes pricing

in relation to the settlement time step’s supply and demand ratio. This informs the

hypothesis that such a market mechanism could be sufficient to encourage behaviors

that emergently reduce community-level variability.

In Chapter 3, submitted to IEEE Access as ”Transactive Local Energy Markets

Enable Community-Level Resource Coordination Using Individual Rewards”, an eval-
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uation procedure is developed to assess ALEX’s impact on variability across various

time horizons in the presence of residential load shifting capabilities. Formulating

ALEX as a discrete markov decision process (MDP), this approach employs iterative

best response and dynamic programming to derive a strong, near-optimal perfor-

mance baseline. This contribution validates the hypothesis of emergent, community-

level variability reduction through ALEX and serves as an evaluation benchmark for

any trained DRL agents.

Chapter 4, submitted to Energy and AI as ”Decentralized Coordination of Dis-

tributed Energy Resources through Local Energy Markets and Deep Reinforcement

Learning” [3], concludes the research. The main contribution is the development of a

DRL algorithm producing a converging set of agents within ALEX, demonstrating the

desired emergent DR properties. Built on the popular proximal policy optimization

algorithm [31], the approach implements several general algorithm improvements [32–

34] Notably, the achieved performance level, close to the near-optimal baseline estab-

lished in Chapter 3, is accomplished without access to future information, affirming

ALEX’s capabilities as originally intended.

In its entirety, this thesis documents contributions to the development and demon-

stration of ALEX, a fully data-driven, model-free DR system significantly reducing

net-load variability on a community level. Crucially, ALEX operates in a decentral-

ized, autonomous manner with only building-level information, offering the necessary

scalability and adaptability for the future electricity grid.

8



Chapter 2

Reinforcement Learning-Driven
Local Transactive Energy Market
for Distributed Energy Resources

2.1 Introduction

Demand response (DR) techniques have become popular means to increase the value

of distributed energy resources (DER), such as rooftop solar, while mitigating the

negative effects of their intermittent nature. DR methods can be direct or indirect.

Indirect DR aims to change customer behavior using an incentive signal, usually

through monetary means [35–37]. Direct DR grants grid operators immediate control

to perform grid balancing. As DER adoption continues, centralized approaches to DR

will encounter scalability barriers [9, 35, 38, 39], and more granular and robust control

will be necessary due to the increased intermittency and stochasticity of supply and

demand. Despite the effort to tackle some of these challenges [40–42], it is increasingly

clear that alternative, decentralized solutions, must be explored [43]. In this context,

transactive energy (TE) is gaining popularity as a design framework for decentralized

DR [9, 39]. The U.S. Department of Energy Gridwise Architecture Council defined

TE as “a system of economic and control mechanisms that allows the dynamic balance

of supply and demand across the entire electrical infrastructure using value as a key

operational parameter” [44]. A locally constrained TE system is often referred to
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as local energy market (LEM). In lieu of a formal definition of LEM [20, 45], we

adopt the description developed by Mengelkamp et al. [20], i.e. “a market platform

for trading locally generated (renewable) energy among residential customers within

a geographically and socially close community. Supply security is ensured through

connections to a superimposed energy system.”

High DR participation rates, especially within a LEM, can only be maintained with

automation. Expert-designed, rule based systems have initially been considered for

this purpose. However, learning-based approaches are now preferred, mainly because

of their robustness and scalability. However, the vast majority of existing approaches

that apply learning methods to LEM do not tailor the market mechanism to the al-

gorithm used for automation. Given the fact that most established LEM mechanisms

were designed for human participants or rule-based system automation [46], this is

especially problematic. The result is suboptimal DER utilization, as the LEM is not

appropriately adjusted to best leverage the potential of the automation approach used.

This is exacerbated for reinforcement learning (RL) agents that can quickly learn to

exploit loopholes in competitive-collaborative multi-agent settings [30]. Mengelkamp

et al. clearly identify this research gap in their review, stating that “a comprehensive

comparison of the impacts of different trading designs (especially market mechanisms)

should be carried out. Specifically, the impact of different allocation mechanisms on

the market objectives and agent behavior need to be evaluated” [20]. Their later

work [47] follows the same reasoning, noting that both agent design and market de-

sign influence the resulting system behavior. We argue that the LEM mechanism

should be tailored to adequately empower the strengths of their automation methods

and to mitigate their potential weaknesses.

To the best of our knowledge, there has been no contribution that explicitly designs

experiments to identify the requirements that a specific LEM market mechanism must

fulfill to be well compatible with independently-learning RL actors. This article aims

to provide a starting point to fill this research gap. We narrowly focus on the following
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two questions:

• What are the required properties of the LEM settlement mechanism suitable

for deployment of RL-based automation?

• Does the resulting market behavior effectively support DR for LEM with high

penetration of DER?

To answer these questions, three different settlement mechanisms are examined that

cover a set of established criteria for auction environments. The most suitable market

design is found by analyzing the agent policies developed for each mechanism. This

is followed by modeling the resulting LEM transactions as a dynamic price signal and

comparing its economic performance with existing pricing methods.

This article is organized in five sections. Section 2.2 provides the necessary back-

ground and describes the related work. Section 2.3 introduces the proposed au-

tonomous local energy exchange (ALEX) and describes it as a stochastic game.

Section 2.4 describes two sets of experiments. The first set is designed to identify

settlement mechanism suitable for market automation using learning agents. The

second set performs an economic analysis of the selected mechanism and compares

its performance with several benchmarks. Major conclusions are summarized in Sec-

tion 2.5, along with possible directions for future work. Appendices present a brief

introduction to RL [48] (A.1), overview the principles of net billing (A.2), describe

the transactive energy simulator T-REX (A.3), and provide the details of the specific

market design used in this article (A.4).

2.2 Background and Related Work

This section provides an in-depth review of the related work, focusing on articles

that combine RL with LEM. For a broader context of LEMs, the reader may refer

to a general review by Mengelkamp et al. [20], game-theory focused review by Pilz
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et al. [45], and review of LEM settlement and market mechanisms by Khorasany et

al. [46].

2.2.1 Reinforcement Learning for Local Energy Markets

Several authors investigate the combination of RL and dynamic pricing for central-

ized control. Notably, Kim et al. [36], and Lu et al. [37] develop RL-based approaches

for dynamic pricing from the perspective of a service retailer. Both articles address

difficulties of predicting participant response to a pricing schedule by mitigating the

reliance on accurate customer side information. A Markov decision process is formu-

lated based on customer behaviour models and preferences. A Q-learning agent is

trained to simultaneously minimize customer costs and maximize the service provider

benefit. The two approaches differ in the formulation of the reward function, which

is a major influencing factor in RL algorithms. Lu et al. [37] use a weighted sum

of retailer and customers, while Kim et al. [36] use a modelled utility function. Al-

though both proposed approaches successfully implement dynamic pricing strategies

without scheduling, they still rely on modeling consumer behavior and preferences

via utility functions. Liu et al. [43] address some of these weaknesses by applying

deep reinforcement learning (DRL) in a consumer-centric, resource-sharing economy

model.

Zhang et al. [49] train an RL agent to manage a community-shared battery and

trade its resources on a TE market to maximize economy. The reward function is

the economic performance of the battery. The authors show that positive economic

benefits can be achieved, even when considering the running costs of the battery.

Foruzan et al. [50] investigate the behavior of independent Q-learning agents, ex-

changing energy within a microgrid through a LEM. Each agent’s goal is to maximize

its own profit. Managed DERs include battery energy storage systems, rooftop solar,

wind and diesel generators. The participants’ stochastic behavior is approximated

using random models. The authors investigate several micro grid configurations and
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perform an in-depth hyperparameter study of the RL algorithm with respect to re-

turn, self-sufficiency and fairness.

Zhou et al. [51] combine a fuzzy rule-based system with Q-learning to train agents

to exchange energy resources over a peer-to-peer LEM setup whose pricing is directly

tied to the ratio of supply and demand. The authors investigate the performance of

several community configurations with ranging number of battery energy storage sys-

tems and renewable generation assets. They show that such a system setup generally

achieves lower bills than TOU and net-billing baselines.

Chen et al. [52] employ a deep Q-network (DQN) variant to automate the interac-

tions of prosumers equipped with battery energy storage system in a LEM. The RL

agents’ action space consists of four distinct, discrete actions covering buy/sell and

charge/discharge operations. The learned policy surpasses an intuitive, rule-based

strategy. It also outperforms a pure random policy equivalent to a zero-intelligence

agent, originally proposed by Ghode et al. [53] as a baseline for agent competence in

automated markets. In another article, Chen et al. [54] investigate the function of

Q-learning based energy brokers as LEM consensus mechanism for settlements with

profit used as the agent’s reward. Using several ablation and sensitivity studies, the

authors show that the brokers efficiently learn how to maximize their own profit and

the efficiency of the market. A recent article by Jogunola et al. [55] augments the

DQN agent using prioritized experience replay [56] to maximize the economic benefits.

Bose et al. [15] focus on emerging participant interaction within a fixed LEM setup

under differing levels of DER penetration. The authors demonstrate that RL-based

agents in such environment can cause partial energy self-sufficiency to emerge. They

also show that the degree of self-sufficiency and the complexity of agent interactions

depends on the level of DER penetration within the market. Mengelkamp et al. [16]

study three different extensions of the Erev-Roth RL algorithm applied to automate

LEM participation. They find that the extensions further increase the self-sufficiency

of the LEM when compared to the original Erev-Roth algorithm [57].
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Mengelkamp et al. [47] compare a peer-to-peer LEM against a closed book, double-

auction LEM with settlement rounds. The authors compare the performance of zero-

intelligence agents and “intelligent” agents adopted from Nicolaisen et al. [58] on both

LEM designs. They show that all market scenarios offer similar economic advantages,

with the peer-to-peer LEM used by intelligent agents slightly outperforming the other

variants. However, they also note that using one strategy on different markets results

in different price trends, The authors eventually conclude that agent strategy and

market design need to be co-developed to guarantee the system’s performance.

Harrold et al. [59] use rainbow DRL to learn arbitrage in a microgrid. Lee et al. [60]

apply dynamic pricing and DRL to maximize the profits of multiple electric vehicle

charging stations. Although not directly related to the approach presented in this

article, these studies are excellent references for future research on the use of energy

storage within the proposed LEM.

2.3 ALEX: Autonomous Local Energy Exchange

The need to model customer behaviour via utility functions and heavy reliance on

forecasts may hinder the robustness and scalability of traditional DR techniques. Fur-

thermore, due to the amount of DERs that are expected to be on-line in the near

future, certain infrastructure requirements may pose additional barriers for the effec-

tive deployment of DR systems. For example, the communication and computational

costs for centralized control may grow too expensive, especially for the high tempo-

ral resolutions necessary to fully capture the intermittent behaviour of rooftop solar

panels and stochastic use patterns of electric vehicles.

Keeping these challenges in mind, this article proposes a distributed, multi-agent

approach combined with a double auction market mechanism. When designing this

approach, dubbed ALEX (autonomous local energy exchange), the following assump-

tions have been made:
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• Participants are self-interested and, therefore, prioritize their own economic

well-being in the decision making process.

• Participants are willing to defer some decision making regarding interactions

with indirect DR measures to automation (e.g., using RL agents).

• Each participating unit is equipped with a smart meter, and a sufficient amount

of high-resolution historical data is available to train the RL agents.

• The large-scale electricity grid that customers are connected to is an infinite

bus.

2.3.1 Core Concept

Conceptually, ALEX is a behind-the-meter DR technique for a localized community

using a double auction market as a coordination mechanism. Market participants

are the customers who live within the community. However, this could be expanded

to include entities that are only temporarily present, such as electric vehicles. The

market employs double auctions with a fixed settlement frequency ∆t. For each

interval [t, t + ∆t), participants can communicate their intention to trade energy by

submitting bids

bidt = (qbidt , pbidt ), q ∈ [0, ..., qaskmax], p ∈ [pmin, ..., pmax], (2.1)

and asks

askt = (qaskt , paskt ), q ∈ [0, ..., qaskmax], p ∈ [pmin, ..., pmax], (2.2)

where bidt and askt communicate the intention to buy or sell energy, respectively.

They are represented by tuples consisting of the desired quantity q and desired price

p of energy to be exchanged. Quantities are expressed in watt hours (Wh), and can

range from 0 to a designated maximum. qaskmax should be set to accommodate expected

maximum generation derived from historical data. Likewise, qbidmax should be set to

accommodate the expected maximum load demand. Similarly, prices in $ are within
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a designated window between pmin and pmax. Bids and asks are settled pairwise at the

end of each settlement round, returning a settlement signal mt to each participant

mt = (qsettlement
t , psettlement

t ). (2.3)

More details on the market implementation are provided in A.4. It is important to

stress that in this setting, participants both determine the price signals and make

energy management decisions through market interactions, whereas most other DR

approaches simply have agents react to external price signals.

The settlement signal mt is represented as a list of tuples containing the settled

quantities, and the respective prices. It is important to note that participants only

receive information about their settlements and, therefore, do not have access to

information on the behaviour of other participants.

After the internal trades are concluded, any excess generation/demand within the

community is exchanged with the electricity grid at retail prices. In this article, we

assume net billing, a commonly used practice where excess energy is sold to the grid at

price pgridsell and deficient energy is purchased from the grid for price pgridbuy that includes

fees. The behind-the-meter setup grants the community a window of profitability by

deferring fees. This naturally bounds the range of internal market prices as follows

pmin = pgridsell <= pmarket <= pgridbuy = pmax. (2.4)

We hypothesize that, if the interactions between participants are dominated by

the law of supply and demand, then ALEX functions as a decentralized, indirect DR

tool. The resulting pricing naturally provides economic incentives for all market par-

ticipants to balance supply and demand. We demonstrate this using the experiments

described in Section 2.4.1.

2.3.2 ALEX as a Stochastic Game

To analyze the properties of the proposed approach, the auction and strategic bidding

by the actors can be described using a suitable mathematical model. A game-theoretic
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representation of ALEX can be derived by modelling the interactions of participants

as a discounted stochastic game

Γ := (n, L, S,A, P,R) ∀t ∈ [0...T ], λ ∈ (0...1), (2.5)

where n is the number of players, L is the list players of length |L| = n, S is the state

space, A is the action space, P represents the state transition probabilities, R is the

reward function, t is the current time step over the modelling period [0...T ], and λ is

the discount factor.

Both S and A can be decomposed into n individual components Si and Ai, as

shown below

S = S1 × ...× Sn, (2.6)

A = A1 × ...× An. (2.7)

Superscript i refers to a specific individual Li, while the subscript is reserved for

time t. Note that the action space A is separated in notation from a specific set of

actions at at time step t, as in the commonly used RL nomenclature introduced in

Section 2.2.

State transition probabilities are defined for any set of actions at taken at time

step t, as follows

∀at : P (St+1|St, at) := St → St+1 (2.8)

Analogous to the RL setting, the reward or payoff in the stochastic game at time

step t is defined by

Rt := S × A→ r, (2.9)

which maps from (St, at) to a real number r ∈ R. Similarly, each agent aims to

maximize their own return Gt (A.1). Thus, all participants use their individually

developed policy πi (A.4 and A.5), to determine action set ait based on observations

from Si
t .
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At each time step, all agents can interact with the market by submitting bids (2.1)

and asks (2.2). This leads to the following definition of action

ait = (bidi
t, ask

i
t, e

i
t), (2.10)

where the additional parameter, eit, is reserved for future expansion of the model, e.g.,

to define nonmarket actions, such as battery management or thermal load control.

Finally, the state observations for each agent are defined as follows

Si = (dit, g
i
t,m

i
t−1), (2.11)

where dit and git are, respectively, the load demand and generation at time t, and mi
t−1

are settlements received at time t− 1.

Note that the transition probabilities P result from the collective actions of all

agents. However, due to the pairwise settlement mechanism, market design, and the

observation space, P is not fully accessible to Li. This ensures that the developed

model is a truly stochastic game.

At least one stable Nash equilibrium is guaranteed to exist within Γ, as long as n, S

and A are finite. This condition can be guaranteed by limiting prices p to a reasonable

decimal place accuracy (e.g., 4 or 5 significant digits commonly used in banking). A

is logically bounded by the condition previously defined by (2.4). As a result, S must

also be finite, and therefore each implementation of ALEX is guaranteed to exhibit

at least one stable Nash equilibrium.

2.3.3 Automation using Reinforcement Learning

Since the interaction through the developed stochastic game Γ requires strategic com-

petence, automating the interactions of participants (typically prosumers, but theo-

retically any grid-connected entity) with the LEM is a reasonable response to the dif-

ficulties of accurately modeling customer behaviour. The proposed approach centers

around training RL agents to perform market interaction and energy management
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actions, compensating for nonoptimal human behaviour. RL is theoretically very

suitable for this task, as the stochastic game described in the previous subsection is

equivalent to a Markov decision process under an established set of criteria, outlined

in [61]. The framework developed in this section is set up to be algorithm agnostic.

However, the subsequent experiments described in Section 2.4.1 employ independent

Q-learning.

In this Article, the reward function, Ri, is formulated as follows

Ri
t = (profiti,LEMt + profiti,gridt )− (costi,LEMt + costi,gridt ), (2.12)

where,

costi,LEMt = qi,settled−bids
t × pi,settled−bids

t , (2.13)

profiti,LEMt = qi,settled−asks
t × pi,settled−asks

t , (2.14)

costi,gridt = qi,grid−buy
t × pi,grid−buy

t , (2.15)

profiti,gridt = qi,grid−sell
t × pi,settled−sell

t , (2.16)

and,

qi,settled−bids
t + qi,grid−buy

t = dit (load demand), (2.17)

qi,settled−asks
t + qi,grid−sell

t = git (generation). (2.18)

Other considerations, such as social welfare costs, are explicitly excluded as the

current aim is to study participant and system behaviour using pure economic per-

formance. Nevertheless, these factors may be included in future studies. Since RL

agents are trained using high-frequency smart meter data, explicit customer behaviour

models can be omitted. This is because a sufficient amount of data can better cap-

ture nuanced and individualized customer behavioural patterns, while maintaining

scalability.
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2.4 Experiments and Discussion

2.4.1 Suitability of Settlement Mechanism

A typical market participant can be represented by a prosumer’s home. The home

may contain any combination of generation, storage, and controllable loads. For the

experiments, the generation and load sources are taken directly from smart meter

data. As the focus of this article is to study the LEM’s behavior under differing

ratios of available supply and demand, profile shaping via load shifting or battery

storage are not considered.

Experimental Design

This experiment focuses on the first research question: What are the required prop-

erties of the LEM settlement mechanism suitable for the deployment of RL-based

automation? The results of this experiment will also show how different market prop-

erties influence the policies learned by the RL agents. Since the environment (i.e.,

the market mechanism and the participation strategies of other agents) plays just as

important role as the learning algorithm, it is imperative to establish the most suit-

able market mechanism for subsequent research and implementation of more complex

agent designs, and action and strategy spaces. The scope of the experiment is carefully

managed to magnify the influence of the settlement mechanism on the resulting agent

policies while providing strong convergence bounds despite ALEX’s properties as a

partially observable, nonstationary environment. As a reminder, the market design

used in this study and the rules of interaction are described in detail in A.4. In this

experiment, three different settlement mechanisms with varying market properties

are tested:

1. Average-Price (M1): Trades are settled if the bid price is greater than or equal

to the ask price. The settlement price is the average of the bid and ask prices.

2. Exact-Match (M2): Sellers and buyers choose bid and ask prices from a list of
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available prices. Trades are settled if the bid price equals the ask price.

3. Exact-Price (M3): Trades are settled if the bid price is greater than or equal

to the ask price. The buyer buys from the auctioneer at the bid price, and the

seller sells to the auctioneer at the ask price.

Any double auction mechanism can be described by the following properties [62]:

individual rationality1, economic efficiency2, budget balancing3, and truthfulness4.

An ideal mechanism satisfies all four properties, but it cannot be realized in prac-

tice [62]. Since the design of ALEX and the use of RL agents ensures economic

efficiency and individual rationality, the three settlement mechanisms can be differ-

entiated by truthfulness and budget balancing alone, as shown in Table 2.1.

Market Property Settings

Mechanism Individual Economic Budget Truthfulness

rationality efficiency balancing

M1 Yes Yes Strong False

M2 Yes Yes Strong True

M3 Yes Yes Weak True

Table 2.1: Settlement mechanism properties

Three scenarios with different community supply/demand ratios are evaluated for

all considered settlement mechanisms: over-supply (10:1), over-demand (1:10), and

perfect balance (i.e. equal supply and demand). Each mechanism is evaluated based

on the policies developed by the agents and the resulting market behaviour based

1Individual rationality states that no participant should lose money from joining the auction
2In an economically efficient system, at the end of all trading, the items should be in the hands

of participants who bid the highest value.
3There are two variants of budget balancing: weak and strong. In a weak budget balancing

system, a portion of the money transferred also goes to the auctioneer; this is in addition to money
transfers between participants which are the only type of exchange in a system with strong budget
balancing.

4The dominant strategy in a truthful market is for the participants to report prices at what they
believe should be the true value of the item to be exchanged.

21



on emerging equilibrium bid, ask, and settlement prices, given the same training

curriculum. The goal is to find a market mechanism that follows the law of supply

and demand, and is compatible with RL agent learning behavior. Such a mechanism

is expected to produce the following results:

• Excess supply case: The generators compete for demand, driving ask prices low

with bid prices following.

• Excess demand case: The consumers compete for supply, driving bid prices high

with ask prices following.

• Equal supply and demand case: The bid and ask prices converge around the

middle of the available price range.

• For all cases: The mean bid, ask, and settlement prices should have low spread.

A set of n = 4 learning participants is considered. Two participants with di > gi

act as buyers, and the remaining two participants with di < gi act as sellers. Two of

each type of participant maintain competition on both sides of the market and should

prevent monopolistic behaviour. Steady-state (flat, time-invariant) energy profiles are

employed for each agent, with the collective load demand and supply corresponding

to the previously given ratios

gLEM

dLEM
=

∑︁
i g

i∑︁
i d

i
. (2.19)

The use of steady-state load profiles reduces the agents’ task to only finding the

equilibrium pricing. This setup collapses the observation space of each agent to a

single point and fixes qibid or qiask to the residual load. This allows to further improve

the purity of the experiment by learning only the price policy. From the view of a

single agent, this transforms the experiment into a partially observable, nonstationary

multi-armed bandit, where the number of arms corresponds to the number of discrete

price actions |p|. For each individual participant, an independent tabular Q-learning

22



algorithm can be used, with ϵ-greedy exploration policy and learning rate α, as de-

scribed in A.1. This maintains loose convergence guarantees despite the properties

of the resulting environment [63]. For this experiment, α is set to 0.1, γ to 0.98, and

exploration rate ϵ to 0.1. Values of ϵ and α are annealed starting from episode 100

to balance exploration and convergence speed, with a multiplier of 0.98 per episode.

Under this simple setup, if the agents fail to develop policies that reflect the previ-

ously mentioned criteria, the respective mechanisms will be considered infeasible for

subsequent use.

This experiment was performed using the T-REX simulator, which is described

in A.3. The simulations were run on a workstation with Ryzen 9 3900X processor

and 32GB of 3200MHz DDR4 memory. In this specific setup, each episode took

approximately 5 minutes. Detailed experimental configurations can be found on the

GitHub repository of the project [64].

Results and Discussion

Recall that, in ALEX, participants both determine the price signals and make energy

management decisions through market interactions. Therefore, it is important to

study the agent actions as well as the resulting settlement prices. Figure 2.1 shows,

for settlement mechanism M1, the policies learned for bid and ask prices, as well as the

resulting settlement prices as density plots. The bid, ask, and settlement prices are, in

general, closely clustered on the expected side of the price range for both unbalanced

cases. However, the balanced case reveals a critical problem. While the settlement

prices are concentrated in the middle of the price range (as expected), both bid and

ask prices diverge to near the extremities. This phenomenon results from the lack of

truthfulness of M1. Agents have no incentive to submit the bid and ask prices that

correspond to what they believe should be the value of energy (near the settlement

price). Since M1 calculates the settlement price as the average of each pair of bid/ask,

this strategy increases the chance of reaching a favorable settlement. However, at the
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same time, it also increases the reward if an opponent follows a truthful strategy.

This behavior is evidently the optimal strategy to employ in this scenario. The price

divergence is problematic, especially when continuous, unbounded action spaces were

used for price selection: exceedingly large bid/ask prices may cause settlement prices

to become unstable. Because of this risk, M1 is disqualified.
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Figure 2.1: Validation policies for bid, ask, and resulting settlement prices for agents
operating under M1 for episodes 70 to 100. The histograms show the probabilities of
the discrete action policies for the agents and the resulting settlement prices. Modes of
the prices are highlighted and shown by the vertical dashed lines. Probability density
functions of the histograms are overlaid on top, which are approximated with the
Gaussian KDE function in the scikit-learn Python package with default parameters.

Figure 2.2 shows the results for settlement mechanism M2. Unlike the previous

mechanism, M2 shows no clear convergence for any case. A possible explanation is

that M2 satisfies the conditions for an ideal double auction market, which is known

to be impossible to practically implement according to the Myerson–Satterthwaite
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theorem [62]. Another possibility is that strong budget balancing drastically decreases

the number of successful settlements, which results in sparse rewards within this

nonstationary environment. Therefore, despite the theoretical existence of a Nash

equilibrium, agents are unlikely to discover it due to the lack of feedback. While it

may be possible for M2 to converge, given a sufficiently long training time, the fact

that it fails to show convergence using the same simulation parameters as M1 and

M3 makes it less desirable. RL agents are often expected to update policies on data

streams in real-time, which is much slower than in simulations. Currently, there is

still a lack of historical smart meter data. Thus, if this system were deployed in a real

environment, it would have to learn in real-time. As a result, the market mechanism

M2 is disqualified as unsuitable for real world applications.

Figure 2.3 shows the results for settlement mechanism M3. Similar to M1, the

bid, ask, and settlement prices are closely clustered on the expected side of the price

range for both unbalanced cases, even more closely together. However, unlike M1, the

balanced case shows similar behaviour, with prices concentrated in the middle of the

price range. Therefore, it can be concluded that M3 has the truthfulness property.

The agents have little incentive to set bid/ask prices that deviate too far from the

settlement prices, which should closely approximate the true value of energy for each

ratio of supply-to-demand. Consequently, M3 is qualified for further research as it

satisfies the previously mentioned selection criteria.

The supply-to-demand ratios used in the initial experiments were quite extreme.

Examination of the settlement prices for more balanced ratios should provide a more

thorough picture of market behaviour. Therefore, the ratios 1.5:1 and 1:1.5 are added

to the experiments for M3. The simulations are extended by 100 episodes with an-

nealing as described in Section 2.4.1. As shown by the results in Figure 2.4, the

prices settle slightly lower than the balanced case for supply-to-demand of 1.5:1, and

slightly higher for supply-to-demand of 1:1.5. This confirms the dominance of the law

of supply and demand, as the settlement prices follow the supply-to-demand ratio.
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Figure 2.2: Validation policies for bid, ask, and resulting settlement prices for agents
operating under M2 for episodes 70 to 100. The histograms show the probabilities of
the discrete action policies for the agents and the resulting settlement prices. Modes of
the prices are highlighted and shown by the vertical dashed lines. Probability density
functions of the histograms are overlaid on top, which are approximated with the
Gaussian KDE function in the scikit-learn Python package with default parameters.

Further experiments with more ratios of supply and demand will be performed to

develop an empirical model of the price behaviour.

In summary, the experiments show that efficient RL agent training requires weak

budget balancing, resulting in a stronger, denser reward signal. Truthfulness is nec-

essary for the emerging policies to truly reflect the law of supply and demand. In a

LEM with these two properties, the individual rationality of agents maximizes the

value exchanged between participants, guaranteeing economic efficiency as a result of

convergence. Even though perfect budget balancing has not been achieved, this may

be desirable for deployment: a small profit for the auctioneer can be used to maintain
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Figure 2.3: Validation policies for bid, ask, and resulting settlement prices for agents
operating under M3 for episodes 70 to 100. The histograms show the probabilities of
the discrete action policies for the agents and the resulting settlement prices. Modes of
the prices are highlighted and shown by the vertical dashed lines. Probability density
functions of the histograms are overlaid on top, which are approximated with the
Gaussian KDE function in the scikit-learn Python package with default parameters.

the infrastructure necessary for operating the market.

2.4.2 Economic Study

Experimental Design

This experiment focuses on the second research question: Does the resulting mar-

ket behavior effectively support DR for LEM with high penetration of DER? This

investigation is performed by comparing the proposed approach with conventional

pricing schemes, such as net billing5 and time-of-use. As indicated by the results

5The distinction between net billing and net metering is clarified in Appendix A.2.
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Figure 2.4: Validation policies for bid, ask, and resulting settlement prices for agents
operating under M3 for episodes 100 to 200. Exploration factor and learning rate are
annealed starting from episode 100 with a multiplier of 0.98 applied at the beginning of
each episode. The histograms show the probabilities of the discrete action policies for
the agents and the resulting settlement prices. Modes of the prices are highlighted and
shown by the vertical dashed lines. Probability density functions of the histograms
are overlaid on top, which are approximated with the Gaussian KDE function in the
scikit-learn Python package with default parameters.
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from the previous experiment, the prices in market equilibrium are dominated by the

law of supply and demand (see Figure 2.4). By performing additional simulations

with alternative proportions of supply and demand, an empirical model of the price

behaviour can be obtained via interpolation. Such a model can be used as a simple

approach to set local market prices, without implementing an actual auction-based

market. The supply-to-demand ratio for a local market can be derived from metering

data.

The economic study is conducted using a residential community microgrid with

ten participants. Due to the lack of suitable smart home data from Canada, energy

profiles from the openly available SunDance data set [65, 66] are used. Ten energy

profiles have been randomly selected to assemble the virtual community. The IDs

of the selected customers are as follows: 10011, 1001625, 1002714, 10068, 100703,

1001420, 1003173, 1001230, 100114, 100196. All participants are prosumers partici-

pating in energy trading to gain economic benefits. The microgrid is assumed to be

on a single bus behind a community smart meter. Similar to the previous experi-

ment, no load shaping is performed. To illustrate the changes of supply-to-demand

behaviour of the test community, the aggregated values of supply and demand over

a single summer day (June 1, 2015) are plotted in Figure 2.5.

The experiment evaluates the changes of electricity bills caused by enabling a local

energy market that sets energy exchange prices based on the local supply and demand.

Because the local market price is time-varying and supply-to-demand dependent, the

LEM-based pricing can also be compared to a benchmark TOU pricing schedule.

Results and Discussion

The system-wide market model is developed using the data from the previous exper-

iments, supplemented by four additional demand ratios (1:1.1, 1:2, 1.1:1, 2:1). The

resulting pricing model is shown in Figure 2.6. Note that in real settings, where the

load demand curve and DER availability of each participant are unique, ALEX agents
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Figure 2.5: Total supply and demand profile of the residential community test over
one summer day in June 1, 2015

may develop personalized pricing schedules. The goal of this experiment is to evaluate

the economic performance of an ALEX-based trading system and to compare it with

common tariffs that do not use individual pricing schedules.

The resulting equation for the price curve is as follows:

P (s, d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P grid
NB,load P (s, d) ≥ P grid

NB,buy

P grid
NB,gen P (s, d) ≤ P grid

NB,sell

−0.0254 s
d
+ 0.1426CTOU

H,M,L if buying

−0.0280 s
d
+ 0.1299CTOU

H,M,L if selling,

(2.20)

where s is energy supply, d is energy demand, P grid
NB,load is price of electricity when

buying electricity from the grid under net billing, P grid
NB,gen is price of electricity when

selling electricity to the grid under net billing, and CTOU
H,M,L are the adjustment factors

when TOU is used.
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Figure 2.6: Pricing model developed for the test local market. The dotted lines show
the price boundaries defined by (2.4). Linear regression between the price points leads
to a well-fit, generalized mathematical model.

A pricing schedule for the local market of the energy community and a selected

day can be obtained by applying this model to specific energy profiles, as shown in

Figure 2.7 for the sample profiles from Figure 2.5.

The internal price determined using the model corresponds well to the ratio of

supply and demand of the community throughout the day. For example, at midnight,

when solar generation is nil, the price for selling energy to a peer is $0.1449, which is

the same for the buyer as if purchasing energy from the grid. Later in the morning,

at 7:00AM, when solar energy becomes available, the price for selling to peers lowers

accordingly. At around 9:00AM, when generation is significantly higher than demand,

the price for selling to peers drops to $0.069, which is the same as selling to the grid

under net billing.
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Figure 2.7: Internal prices of ALEX used to conduct transactions

The economic performance of all participants under this price curve is calculated

and compared with net billing. The results of this comparison are shown in Figure 2.8

and summarized in Table 2.2. As a reminder, the rules of interaction between the

community participants and the grid are detailed in A.4. In accordance with the

operating principles of net billing, described in A.2, the entire community is placed

behind a community meter, and energy exchanged directly between peers does not

incur transmission and distribution fees.

The results in Table 2.2 show that the implementation of a community market can

financially benefit the community as a whole, reducing the total community bill by

35.9%. The mean and median of individual bill reductions are 74.51% and 38.8%,

respectively. This reduction in bills is due to the more efficient usage of local energy

resources, which is more accurately reflected by the local market price. By putting
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Figure 2.8: Electricity bill comparison between net billing and ALEX

the whole community behind-the-meter, financial benefits may even be gained by

those who cannot afford the expense of acquiring and installing their own DER.

This is because they have direct access to excess generation of their neighbours that

may be lower priced in comparison to buying from the grid. Similarly, there is an

inherent financial incentive to sell excess generation to peers first, as the profits can

be higher than selling directly to the grid. In other words, this setup may further

socialize the benefits of DERs. Although not directly comparable, recent work by

Jogunola et al. [55] obtained average financial benefits of 35% by leveraging energy

storage, and 55% when leveraging both PV and storage. While the proposed approach

currently uses only PV, energy storage will be added in future studies. Similar or

better performance than that reported in [55] is expected.

As mentioned before, the local market price is time-varying and supply-to-demand
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dependent. This is similar to the philosophy behind the development of TOU, which

uses the time-varying supply/demand of the entire grid instead of focusing on any

specific area. Therefore, these two approaches are compared to quantify their relative

performance. Ontario TOU is used as a benchmark in Canada and is often referenced

by utility companies in jurisdictions without TOU, such as Alberta.

Figure 2.9 displays the two pricing schedules, showing the stark contrast between

their shapes. Whereas the local energy price decreases toward noon due to the increase

in generation, TOU increases, which suggests that there is more load than generation

during this period. While it is possible that this is true due to commercial and

industrial loads, which do not exist in the local market, the fact remains that the

TOU is not correlated with the actual balance of load and demand in the testing

locale. While this disconnect may be a cause for the lack of participation in TOU

mentioned in Section 2.2, it also suggests the need for very localized, highly relevant

pricing signals to increase the efficiency of managing DERs and the overall system.

ALEX is a highly scalable, distributed approach that generates highly relevant pricing

signals at a low cost.

2.5 Conclusions and Future Work

DR techniques provide an effective means to manage DERs. As more such resources

are installed and the energy mix becomes more complex, their management and coor-

dination should be automated. This article explores the requirements for automating

LEMs using multi-agent reinforcement learning. The exploration is facilitated by

ALEX, a LEM framework that can use an arbitrary closed-book, double auction set-

tlement system. It is used to identify the market properties that drive the policies of

independent Q-learning agents to follow the law of supply and demand. After estab-

lishing an appropriate market settlement mechanism, the emergent market behaviour

is compared to conventional DER integration techniques.

The first experiment trains a group of agents with three market configurations,
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Figure 2.9: Local market pricing schedule compared against Ontario summer TOU
prices.

distinguished by their general properties. The results show that, for a double auctions

based market, truthfulness is necessary for the collective policy to reflect the law of

supply and demand. The second requirement, weak budget balancing, facilitates the

generation of stronger, denser reward signals sufficient for training the trading agents.

These properties, combined with agents’ individual rationality, maximizes economic

efficiency and reduces the effects of weak budget balancing.

The second experiment compares the resulting LEM behaviour with that of mar-

kets based on net billing and time-of-use (TOU). Since consensus pricing in ALEX

strongly reflects the law of supply and demand, the resulting price signal is signifi-

cantly more responsive and relevant than TOU. This signal will likely further increase

the effectiveness of DER utilization. In turn, these efficiency gains will propagate
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upstream across the entire grid. One such effect can be observed in the economic

performance of the test community. Using the proposed approach, the community as

a whole experienced a bill reduction of 35.9% compared to net billing. For individual

customers, the mean and median bill reductions were 74.51% and 38.8% respectively.

The findings presented in this article lay the crucial ground for future work. We

plan to investigate the integration of battery energy storage systems, along with more

complex RL algorithms to increase profile shaping capabilities. These extensions are

expected to further reduce bills, as well as to increase the grid efficiency and stability.

Performance comparisons with other deployed LEM approaches will be conducted to

identify the most suitable automation approach for ALEX. As the development of

this new LEM framework continues, additional studies will examine the effects of its

application. One planned study is the evaluation of system efficiency improvements

within a local market with the addition of battery storage and electric vehicles. This

will be further extended to study the impact across the grid via inter-ALEX energy

exchanges.
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Chapter 3

Transactive Local Energy Markets
Enable Community-Level Resource
Coordination Using Individual
Rewards

3.1 Introduction

The electrification and the accelerated adoption of distributed energy resources (DERs)

significantly alter community net load patterns, exacerbating variability and giving

rise to phenomena like the “duck curve” [4]. The uneven distribution of DERs, cou-

pled with the challenges they pose, results in localized grid disturbances. Traditional

stabilization methods, such as spinning, primary, and secondary reserves, lack the re-

quired local granularity. Demand response (DR), which uses control signals to shape

the community net load at the building level, has emerged as a promising and effective

solution to address these issues.

DR can be classified as direct or indirect, depending on the nature of the control

signal. Direct DR enables the grid operator to shape the net load by directly accessing

controllable assets. However, its adoption faces challenges due to the inherent conflict

of interest between the grid operator and end users regarding asset usage. On the

other hand, indirect DR aims to encourage more favorable net load patterns through

a proxy control signal, often utilizing monetary incentives. Although indirect DR is
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easier to convey to end users, it is often found to be ineffective [9].

According to the GridWise Architecture Council [10], transactive energy (TE)

is defined as “the use of a combination of economic and control techniques to im-

prove grid reliability and efficiency.” A TE system falls under indirect DR, intending

to balance its supply and demand in a decentralized (autonomous) fashion through

well-aligned incentives. The local energy market (LEM) has recently emerged as a

framework to implement TE at the grid-edge. Mengelkamp et al. [20] define LEM as

“a geographically distinct and socially close community of residential prosumers and

consumers who can trade locally produced electricity within their community. For

this, all actors must have access to a local market platform on which (buy) bids and

(ask) offers for local electricity are matched.”

Therefore, the LEM functions as an indirect and decentralized DR mechanism,

with the aim of aligning the goals of the grid stakeholders and participating elec-

tricity end users through dynamic electricity pricing that reflects the state of the

grid and the community. Under this assumption, the stability and efficiency of the

local electricity grid improve as participants minimize their electricity bills and maxi-

mize their DER-related returns. Consequently, much of the LEM literature evaluates

market performance based on economic metrics, presuming that minimizing bills is

equivalent to positive effects on the local electricity grid [19].

An emerging body of literature argues that the underlying assumption of incentive

alignment does not automatically hold true [67–69]. LEM studies are inherently

scenario-based and performance depends both on participant behavior and the market

mechanism of the EM [20, 67]. As noted by Mengelkamp et al. [20] and reinforced

by contributions from Kiedanski et al. [68] and Papadaskalopoulos et al. [69] the

complex interplay between strategies and market design has a profound impact on

LEM performance. A more thorough approach is needed to adequately assess the

efficacy of a given LEM design as a DR system.

Following this logic, this study focuses on the DR capabilities of the Autonomous
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Local Energy eXchange (ALEX), originally proposed by Zhang et al. [1]. It investi-

gates ALEX’s ability to foster the desired alignment of interest between participants

and grid stakeholders, and further explores ALEX’s capabilities as a community-level

DR system.

Assuming selfish behavior, near-optimal participant policies are generated using

a dynamic programming-based procedure, and their performance is evaluated on an

open-source dataset. The results demonstrate that within ALEX, selfish cost mini-

mization leads to the emergence of community-level DER coordination, significantly

improving several metrics related to community net-load, such as ramping rate, load

factor, and peak load. They exhibit community-level coordination of DERs, facili-

tated by the LEM. Although participants only have access to building-level informa-

tion, they clearly outperform classical indirect DR approaches that operate at the

building level. This study also outlines a methodology for evaluating LEM based on

a high-quality open-source data set previously used to analyze other DR systems [70,

71]. This contribution thereby helps alleviate the lack of benchmarks in this field.

The article is organized into seven sections. Related work and background concepts

are described in Section 3.2. Section 3.3 deduces the investigated hypotheses and

develops the experiments, algorithmic methodology and metrics to evaluate them.

Experimental results are described and discussed in Section 3.4. The final section

provides a brief summary of the study, draws the main conclusions, and outlines

possible directions for future work.

3.2 Background

This section reviews literature related to this contribution regarding methodology,

data sets, and evaluation metrics. It also provides background information on ALEX

and markov decision processes.
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3.2.1 Related Literature

Capper et al. [19] and Mengelkamp et al. [20] offer a comprehensive review of recent

LEM literature. The authors categorize LEM approaches as peer-to-peer, individual,

community-level self-consumption, and TE LEM. The majority of studies focus on

the economic performance of end users within the LEM compared to net billing. For

example, Mengelkamp et al. [16, 72] compare several LEM designs using a range of

heuristics to demonstrate improved economic performance of the proposed LEM.

Kiedanski et al. [68] and Papadaskalopoulos et al. [69] study LEM scenarios in

which agent-to-market interactions lead to detrimental effects on the local electric-

ity grid. This can occur due to a misaligned incentive signal conveyed through a

suboptimally designed LEM or due to ill-tuned, suboptimal policies resulting in par-

ticipant actions that deviate from the incentivized policy. This investigation serves

as one of the primary objectives of our study: exploring ALEX’s capabilities to align

participant and grid stakeholder incentives. We approach this by generating a set of

near-optimal policies, using an appropriate search algorithm rather than relying on

heuristics to assess ALEX’s performance.

A deeper understanding of LEMs as DR systems requires investigating their effects

on the local electricity grid. A review of LEM by Dudjak et al. [67] focuses on the

impacts of LEMs on power systems. The authors highlight a challenge underlying the

direct comparison of LEM articles that rely on power-flow-related metrics, such as

voltage violations and congestion: Direct power-flow analysis injects design choices,

such as circuit and load placement, into the experiment, exacerbating the problem

of LEM comparability, as there are no clearly adopted benchmark scenarios across

the community. To avoid this issue, this article performs an experimental analysis

using metrics that pertain to power system stability and efficency, but are circuit-

independent. It relies on net load-related metrics such as ramping rate, load factor,

peak export, and import to provide insight into variability across several time-scales.
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In addition, to ensure robust results, the experiments utilize an openly accessible,

high-quality data set of sufficient length.

Nweye et al. [71] and Vázquez-Canteli et al. [73] describe community-level DR

approaches based on deep reinforcement learning (DRL), a concept that is related to

the simulation approach employed in this article. Refer to Vázquez-Canteli et al. [27]

for a comprehensive review of articles that apply reinforcement learning to DR. Nweye

et al. [71] conduct their DR experiments using the same data set and a set of metrics

similar to those in this study. Nevertheless, ALEX relies on building-level information

and optimizes for a singular, building-level objective, whereas Nweye et al. [71] use

both building- and community-level information for control and optimize for a mixed

objective that includes metrics at both levels. Although this study does not directly

compare with [71], we maintain principal comparability by using the same data set

and similar metrics.

Zang et al. [49] investigate a decentralized peer-to-peer LEM, where buildings

within a community and a centralized battery energy storage system (BESS) sup-

ply bids and asks to the LEM. The BESS is automated via an RL agent that learns

to maximize its profit through temporal arbitrage and load shifting. As mentioned

earlier, the current article uses grid performance-related metrics to evaluate the DR

capabilities of ALEX. In contrast, study [49] uses only economic metrics to evaluate

LEM performance and features a single rational agent with a monopoly on the load-

shifting service. The LEM introduced in this article has several independent buildings,

each represented by a rational agent equipped with load-shifting capability.

Xu et al. [74] propose a methodology for DR using community-level dynamic pric-

ing. They employ neural networks to forecast load consumption and subsequently

develop an approximate pricing schedule. The forecasts and schedules are then used

to formulate a markov decision process (MDP), which is approximately solved using

Q-learning. Although [74] and this study employ a conceptually similar simulation

approach, there are several distinguishing factors. Both studies evaluate the per-
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formance of pricing mechanisms inherently tied to the ratio of supply and demand.

However, in Xu et al.’s [74] study, they employ a schedule-based dynamic pricing

model that remains fixed during the optimization process, even when the balance

between supply and demand changes. In ALEX, the equilibrium price reflects mar-

ket dynamics and thus changes due to actions performed by agents. Both studies

simulate DR methods by formulating and subsequently solving MDPs. However, the

current study uses a fundamentally different method to simulate agents, based on a

tree-search approach with strong convergence properties.

3.2.2 Autonomous Local Energy Exchange (ALEX)

ALEX is a purely economy-driven LEM, where the price of a specific energy trans-

action is not dictated by its impact on one or several metrics of local electricity grid

performance. Instead, it results from participants’ efforts to minimize their bills. We

reframe ALEX, initially proposed by Zhang et al. [1] as an automated, economy-driven

LEM, using the nomenclature established by Chapper et al. [19]: ALEX is an LEM

that facilitates trading between buildings b of a community B through a blind double

auction settlement mechanism based on clocks and futures. Clock-based markets em-

ploy bids and asks supplied for specific settlement time steps, rather than following

a continuous settlement process. The futures market means that at the current time

step tnow, bids and asks are accepted for a future settlement time step tsettle > tnow,

and the settlements are delivered at a subsequent time step tdeliver > tsettle. Blind

double action means that each building b communicates bids and asks to the market

without seeing bids and asks of other buildings.

Using only building-level information, each building b minimizes its electricity bill

calculated as

billb =
(︁
costmarket

b − profitmarket
b

)︁
+

+
(︁
costgridb − profitgridb

)︁
+ feesb, (3.1)
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that is as the sum of the market bill (costmarket
b − profitmarket

b ) and grid bill (costgridb −

profitgridb ), in addition to the fee component feesb.

The utilization of LEM is incentivized through a profitability gap

pgrid,sell < pmarket,min <= pmarket <= pmarket,max < pgrid,buy. (3.2)

This profitability gap enables a mutually advantageous exchange of energy on the

LEM at a market price pmarket, ranging between the minimum market price pmarket,min

and the maximum market price pmarket,max. The minimum and maximum market

prices are constrained by the grid sell price pgrid,sell and the grid buy price pgrid,buy,

respectively. A profitability gap can be achieved through various mechanisms, for

example, GHG or fee offsets [19, 67]. The size of the profitability gap has no impact

on the hypotheses investigated and the metrics used in this study.

Optimal actors within ALEX converge to a Nash equilibrium due to its nature

as a (partially observable) stochastic game [1]. The authors conducted an in-depth

investigation into ALEX’s settlement mechanism [1], identifying a design in which a

set of agents learns to price in relation to the supply/demand ratio, despite having

no information about it. These experiments were carried out without the presence of

load-shifting capacity. The follow-up study [75] evaluates a system with one residen-

tial battery controlled by an expert-designed heuristic.

This article builds on these studies and significantly extends their contribution by

investigating ALEX’s aligning properties and its capabilities as a DR system. The

analysis of ALEX’s DR properties is conducted in the presence of load-shifting capa-

bilities, using rational agent behaviors. A rational agent aims to perform optimally

with respect to its environment and objective.

3.2.3 Markov Decision Processes

An MDP is defined as a tuple (S,A, Pa, Ra), which forms a model of a discrete-

time stochastic control process [76]. The process nodes, or states, are fully described
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through the state space S, the set of all possible states s ∈ S. The action space

A is the set of all possible actions a ∈ A. An action a initiates the transition from

the current state s to the next state s′ with a transition probability Pa(s, s
′) ∈ [0, 1].

This transition results in a reward r = R(s, s′). The transition probability can also be

denoted as p(s′, r|s, a), specifying the transition from s to s′ using a while receiving

a reward r. The optimization objective of a MDP is the return G, defined as the

discounted cumulative sum of future rewards, given the discount factor γ ∈ [0, 1] and

a sequence of state transitions

Gt =
∞∑︂
i=t

γi−tR
(︁
si, si+1

)︁
. (3.3)

A policy, π, is a (probabilistic) mapping S ↦→ A. It allows to define the state value

V (s) as the expected return G, given a policy π followed from a starting state s

V (s) = E [G|s, π] . (3.4)

The optimal policy, π∗, maximizes V

Vπ∗(s) = max
π

Vπ(s). (3.5)

There are several common search methods for MDPs to determine the optimal

policy π∗, including dynamic programming [48, 77], Monte Carlo tree search [78], and

reinforcement learning [48]. This study employs dynamic programming using value

iteration as described by Sutton et al. [48]. The pseudocode of this method is outlined

in Algorithm 1.

3.3 Methodology

The goal of this study is to investigate ALEX’s DR capabilities in the presence of

multiple independent agents with the capability to load-shift. Some LEMs ensure

alignment between participant and grid stakeholder interests by tying pricing directly

to grid stability or related metrics, whereas ALEX is a purely economy-driven LEM.
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Algorithm 1 Dynamic programming through value iteration, as per Sutton et al.
[48]. tol is the convergence tolerance. V is the state value (3.4). p(s′, r|s, a) is the
probability of the transition to the next state s′ while receiving the reward r, starting
in state s given action a. π is the policy. γ is the discount factor.

given MDP
given tol , γ
δ =∞
while δ > tol do

δ = 0
for s ∈ S do
Vold(s) = V (s)
V (s)←− maxa

∑︁
s′,r p(s

′, r|s, a) [r + γV (s′)]
δ = max(δ, |V (s)− Vold(s)|
end for

end while
Output deterministic policy π ≈ π∗ such that
π(s) = argmaxa

∑︁
s′,r p(s

′, r|s, a) [r + γV (s′)]

3.3.1 Study Hypotheses

In light of recent studies questioning the alignment capabilities of economy-driven

LEMs, we investigate the following hypothesis:

Hypothesis 1: ALEX’s market mechanism, which incentivizes bid and ask prices in

correlation to the current timestep’s supply and demand ratio within a prof-

itability gap, is capable of fostering a strong alignment between participant and

grid stakeholder interests;

This is based on intuition revolving around the competitive nature of ALEX. Ratio-

nal agents should compete for the most profitable arbitrage opportunities, striving to

maximize their own bill savings. Concurrently, they utilize the load-shifting capacity

to manipulate the supply/demand ratio in their favor. ALEX’s market mechanism

should be sufficient to strongly encourage interest alignment.

It is economically rational to maintain local surplus generation within the commu-

nity. Shifting surplus generation through the LEM is more profitable than selling it

to the grid and subsequently satisfying the load demand from the grid (3.2). Each
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agent would first aim to meet its load demand through LEM. Supplying to the mar-

ket during times of high demand is more profitable than doing so during times of

low demand, and purchasing from the market during times of high supply is more

profitable than purchasing during times of low supply. This informs the deduction of

a second hypothesis:

Hypothesis 2: Rational agents, representing individual buildings within ALEX, co-

ordinate DER usage patterns across the entire community B, despite each agent

operating with only building-level information and selfishly minimizing its own

electricity bill.

Agents within ALEX do not share information. Communication and informa-

tion sharing, common in other LEM designs, incentivize community-level coordina-

tion [19]. Demonstrating hypothesis 2 would illustrate a set of unexpected yet de-

sirable properties for ALEX. The rational agents within ALEX converge to a Nash

equilibrium, meaning that their policies are best responses to each other and each

agent is maximally exploiting the joint communal policy. The presence of several

agents with load-shifting capacity should stabilize the LEM’s supply/demand ratio

through temporal arbitrage in the market. This results in load-flattening behav-

ior at the community level across both short- and long-term time scales, resembling

the properties of centralized DR systems. It has a higher performance ceiling than

building-level DR, despite each agent only using building-level information.

Demonstrating both hypotheses would highlight ALEX as an efficient tool for im-

plementing TE at the community level. This approach allows for the realization of

community-wide benefits without the necessity of centralization or data-sharing.
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3.3.2 ALEX as a Markov Decision Process

The joint state-space of ALEX, SB, covers the entire community B and is the product

of the individual building state spaces, Sb, of all buildings b ∈ B

SB =
∏︂
b∈B

Sb. (3.6)

The state of an individual building, sb, is as a tuple of the load demand l(t),

generation g(t) for time step t, and state of charge of the battery SoC

sb = (l(t), g(t), SoC) (3.7)

This notation can be condensed into a tuple of time step t and SoC

sb = (t, SoC). (3.8)

The joint action space AB is the product of the individual action spaces Ab of all

buildings b

AB =
∏︂
b∈B

Ab. (3.9)

The actions of individual buildings, ab, are tuples of bid bidb, ask askb, and battery

action batb

ab = (bidb, askb, batb). (3.10)

The bid bidb and the ask askb are tuples consisting of price p and quantity q,

respectively, according to

bidb = (pbidb , qbidb ), (3.11)

askb = (paskb , qaskb ). (3.12)

The joint MDP of ALEX is deterministic, with a transition probability equal to

1. Since the goal of each agent is to minimize the bill billb of its building b, defined

by (3.1), the reward function Rb is the negative of the bill

Rb(s, s
′) = −billb(s, s′). (3.13)
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The joint community policy of ALEX, πB, is the set of individual building policies

πb.

With ALEX defined as an MDP, a search method can be developed to find a

near-optimal policy πb ≈ π∗
b for rational agents.

3.3.3 Simulation of Rational Agents for ALEX

The primary focus of this study is to examine the system properties of ALEX. In

contrast to RL-based approaches (such as Xu et al. [74]), this study uses dynamic

programming through value iteration to search the MDP for an optimal set of deter-

ministic building policies π∗
B. Dynamic programming, in comparison to Deep Rein-

forcement Learning (DRL) algorithms designed for the same setting, exhibits robust

convergence properties, rendering it better suited for this particular task. While

generating a set of generalizing agents does require a learning approach (such as

DRL), the evaluation of these agents’ capabilities becomes challenging without a

well-founded understanding of ALEX’s performance potential. Therefore, we defer

the analysis of DRL agents to future work, focusing the contribution of this study on

establishing an in-depth understanding of ALEX’s systemic properties.

While it is possible to use dynamic programming to search the joint state space

SB and the joint action space AB for the optimal joint policy, π∗
B, such a process

would be extremely time-consuming. To enhance the efficiency of this search, several

adjustments have been made, as outlined in the remainder of this section.

Zhang et al. [1] show that the optimal communal policy, π∗
B, is expressed as the

Nash equilibrium of individual building policies π∗
b , where each building policy is the

best response to all other policies that currently compose π∗
B. Therefore, the approach

used in this study iteratively computes the best response of each building π∗
b to the

current communal policy πB, randomly iterating through buildings b ∈ B. This way,

only one building policy πb changes at a time, maintaining convergence to a Nash

equilibrium while searching a significantly smaller space. The search is performed in
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the building state space Sb and the building action space Ab for each building in the

community b ∈ B. This approach effectively replaces
∏︁

b∈B with
∑︁

b∈B, i.e.∑︂
b∈B

Sb < SB =
∏︂
b∈B

Sb, (3.14)

∑︂
b∈B

Ab < AB =
∏︂
b∈B

Ab. (3.15)

In addition, the building action space Ab is simplified using the price curve derived

by Zhang et al. [1] as a rational heuristic for the bid price pbid and the ask price pask.

The net load of each building at time step t, denoted as Eb(t), is defined as the

sum of load demand l(t), generation g(t), and battery charge bat(t):

Eb(t) = lb(t)− gb(t) + batb(t). (3.16)

The bid and ask quantities qbid and qask are set as the residual positive and neg-

ative net load, respectively. The battery charge batb gives each agent the ability to

manipulate Eb and, consequently, the market interactions.

qbid(t) = max(Eb(t), 0), (3.17)

qask(t) = max(−Eb(t), 0). (3.18)

The state of charge of each building is discretized into nquant discrete values to

iterate over each state s of the building state space Sb. This discretization results in

a manageable size for the building state, given by:

|Sb| = Tnquant, (3.19)

where b represents the building and T is the number of time steps. In the experiments,

nquant is set to 40.

The building action space Ab is quantized to align with Sb by only allowing batb

transitions from one valid state to another, denoted as sb, s
′
b ∈ Sb. This restriction

limits the number of actions for any state to a maximum of nquant. This forced quan-

tization, combined with the search for deterministic policies, may lead to situations
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where reaching π∗
B is unattainable, leading to cyclic sequences of policies that revolve

around the true Nash equilibrium. To address this, a policy distance-based cut-off

criterion is introduced based on the mean, state-wise difference

dπnew,πold
=

1

|Sb|
∑︂
s∈Sb

|πnew(s)− πold(s)|. (3.20)

When the distance metric for each building remains below 0.01, the joint com-

munity policies are considered converged, i.e., πB ≈ π∗
B. This arbitrarily chosen

threshold effectively avoids cyclical convergence patterns in this study. The abstract

pseudocode of the algorithm is provided in Algorithm 2 and implemented in Python.

Algorithm 2 A pseudocode of the algorithm to generate rational agents for ALEX,
given the MDP discussed in Section 3.3.2. DP refers to the dynamic programming al-
gorithm defined in Algorithm 1, and D is the distance metric defined in Formula 3.20.

given MDP
for b ∈ B do

initialize πb randomly
end for
dB =∞
while dB < 0.01 do
shuffle B

for b ∈ B do
πold
b = πb

π∗
b = DP(Sb)

πb = π∗
b

db = D(π∗
b , π

old
b )

end for
dB = maxb∈B db
end while

3.3.4 Evaluation Methodology

This section discusses the design of a set of experiments to test the hypotheses pre-

sented in Section 3.3.1. The hypotheses are evaluated on the CityLearn2022 data

set [70], which provides a year of hourly data for 17 smart community buildings in an

open-source format. For each building, it includes a time series of energy demand (lb)

and photovoltaic generation (gb), along with details of the BESS. The open-source
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nature of this dataset enables follow-up studies to benchmark directly against this

contribution, spanning a variety of DR applications.

To maintain comparability with other studies using this dataset, and due to the

absence of available benchmark circuits, ALEX’s performance is assessed using a set

of community net load metrics. This approach provides insights into the variability of

net community load across various time scales, which is generally relevant to power

system stability. To maintain primary comparability with previous studies on the

CityLearn2022 data set, such as Nweye et al. [71], we adopt and extend previously

used metrics. Economic metrics, such as carbon emission rate, electricity price, and

economic welfare, are excluded as they are not directly related to the hypotheses

examined in this study. Nevertheless, for a general comparison across literature, an

overview of average electricity bills can be found in the Appendix B.1.

All performance metrics in this study are functions of the community net load EB,

calculated as the sum of the net loads of all buildings

EB(t) =
∑︂
b∈B

Eb(t). (3.21)

In the following expressions, nd is the number of days in the data set, d is the number

of time steps in a day, and t is the current time step. maxstopstart and minstop
start denote,

respectively, the maximum and minimum values over the interval from start to stop.

Given the hourly resolution of the CityLearn2022 data set, the conversion from kWh

to kW is straightforward and, therefore, is excluded from the notation.

The average daily imported energy

Ed,+ =
1

nd

nd∑︂
d=0

(︄∑︂
t∈d

max(EB(t), 0)

)︄
, (3.22)

and the average exported energy

Ed,− =
−1
nd

nd∑︂
d=0

(︄∑︂
t∈d

min(EB(t), 0)

)︄
, (3.23)

illustrate the typical energy needs and usage patterns of the community.
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The average daily peak

P d,+ =
1

nd

nd∑︂
d=0

(︃
max
t∈d

EB(t)

)︃
, (3.24)

and the average daily valley

P d,− =
1

nd

nd∑︂
d=0

(︃
min
t∈d

EB(t)

)︃
, (3.25)

provide insight into daily power usage swings.

The absolute maximum peak

P+ =
T

max
t=0

EC(t), (3.26)

and the absolute minimum valley

P− =
T

min
t=0

EC(t), (3.27)

provide information on the necessary line capacity and peak swing.

The average daily ramping rate

Rd =
1

nd

nd∑︂
d=0

(︄∑︂
t∈d

|∇EB(t)|

)︄
, (3.28)

provides a measure of momentary volatility of the net load signal of the community.

The load factor L indicates the efficiency of energy consumption with respect to

peak load, ranging between 0 (inefficient) and 1 (most efficient), over a given period

of time. Similar to Nweye et al. [71], a load factor complement (1 − L) is reported

in this section so that lower magnitudes are desirable across all metrics. Specifically,

for the period of a day

1− Ld =
1

nd

nd∑︂
d=0

(︃
1− meant∈dEB(t)

maxt∈d EB(t)

)︃
, (3.29)

and for the period of a month

1− Lm =
1

nm

nm∑︂
m=0

(︃
1− meant∈mEB(t)

maxt∈m EB(t)

)︃
, (3.30)
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where nm is the number of months, and m denotes a specific month.

Experiments are conducted to compare the performance of ALEX as a DER man-

agement system (DERMS) on the CityLearn2022 data set with a set of baselines.

This study primarily focuses on testing the proposed hypotheses, deferring the inves-

tigation into the potential of ALEX as a state-of-the-art DERMS to future work.

ALEX utilizes building-level data to optimize a single, building-level objective.

Consequently, we avoid benchmarking against algorithms that utilize community-

level information or employ multi-objective optimization. To evaluate the hypotheses

stated in Section 3.3.1, ALEX is compared against two benchmarks

• NoDERMS: The standard CityLearn2022 community, where no building ex-

ploits its battery storage capacities, serves as the performance baseline for our

experiments.

• IndividualDERMS: In this case, a ‘smart’ net billing scenario is considered for

the CityLearn2022 community, where each building maximizes self-sufficiency,

prioritizing the reduction of building-level peaks and valleys while minimizing

the ramping rate. The building policies for IndividualDERMS are generated

using the same approach as the building policies for ALEX, i.e., by modifying

the reward function to incentivize self-sufficiency with minimal building peaks

and valleys.

The NoDERMS scenario is included in the experimental results and discussion to

allow comparison with studies reporting normalized scores of metrics on the CityLearn2022

data set. Both scenarios together form reasonable benchmarks to evaluate our hy-

potheses. For Hypothesis 1 to be valid, ALEX should strictly improve all metrics

compared to the NoDERMS scenario. Assuming Hypothesis 2 holds, ALEX is ex-

pected to surpass the IndividualDERMS in terms of average daily imported energy

Ed,+ and average daily exported energy Ed,−. This is achievable only through a more

effective use of the community’s load-shifting capability, redistributing surplus energy
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from one building to another with spare battery capacity. For ALEX to outperform

IndividualDERMS for all established metrics, both formulated hypotheses must be

true.

3.4 Results and Discussion

The community’s average daily net load profile is shown in Figure 3.1.

As anticipated, the IndividualDERMS noticeably flattens the average daily net

load of the community compared to the NoDERMS scenario. ALEX, in turn, ex-

hibits further improvement in this aspect, demonstrating a reduced swing with a

significantly diminished valley.

Table 3.1 shows the results for each scenario in terms of metrics, facilitating their

quantitative analysis.

Metric NoDERMS IndividualDERMS ALEX

Ed,+ 258.54 214.81 202.68

Ed,− -77.48 -26.49 -12.46

Pd,+ 25.61 19.95 19.44

Pd,− -16.55 -6.35 -1.67

P+ 49.06 42.37 42.37

P− -37.86 -36.80 -29.34

Rd 4.28 2.87 2.84

1− Ld 0.73 0.65 0.64

1− Lm 0.82 0.80 0.78

Table 3.1: Summarized metrics for full simulation on CityLearn2022 data set [70] for
NoDERMS, IndividualDERMS and ALEX scenarios. For description of the metrics
c.f. Section 3.3.4. Best values are typeset in bold.

The performance values of ALEX, compared to the NoDERMS scenario, clearly

support the validity of Hypothesis 1. The consistent improvement across all metrics,

driven by participants’ selfish bill minimization, indicates a strong alignment between
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Figure 3.1: Average daily community net loads in kWh at hourly resolution for a
full simulation on CityLearn2022 data set [70] for NoDERMS, IndividualDERMS,
and ALEX scenarios. The plot displays both the average values and the standard
deviation bands.

participant and grid stakeholder interests.

ALEX significantly reduces average daily exports and imports. In comparison

to IndividualDERMS, ALEX consumes a higher proportion of locally generated en-

ergy. It is essential to note that IndividualDERMS optimizes for building-level self-

consumption. Therefore, ALEX’s improvement in average daily imports and exports
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can be solely attributed to its capacity to utilize the unused shifting capabilities of

the community when some buildings have spare battery capacity, and others have

surplus generation. This strongly supports Hypothesis 2. This observation is further

supported by the graphs of the average daily SoC profiles in Figure 3.2.

Figure 3.2: Average daily community SoC values are presented at hourly resolutions
for a full simulation on the CityLearn 2022 dataset [70], encompassing NoDERMS,
IndividualDERMS, and ALEX scenarios. The figure displays both the average values
and the standard deviation bands.

The increased swing in SoC for ALEX corresponds to greater utilization of the
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community’s load-shifting capacity. In contrast, IndividualDERMS is designed to

maximize battery utilization at the building level. Therefore, the heightened battery

utilization in ALEX must stem from community-level DER resource coordination, i.e.,

coordination between buildings within the community. Figures 3.1 and 3.2 confirm

that ALEX equalizes the load in the community in a constructive manner. By sum-

ming the average daily import Ed,+ and the average daily export Ed,−, the average

total energy consumed by the community per day can be calculated. The NoDERMS

scenario community consumes 181.06 kWh, which is less than the IndividualDERMS

community with 188.32 kWh. The ALEX community consumes 190.22 kWh, which

is more than the IndividualDERMS community. Given that the battery energy stor-

age system has an efficiency less than 100%, any energy temporally shifted within

the community to satisfy later demand must compensate for incurred round-trip and

self-discharge losses. Consequently, the community utilizing its shifting capabilities

the most will also exhibit the highest net energy consumption, along with the lowest

average daily exported and imported energy. This finding further confirms Hypothesis

2.

The evaluation of Hypothesis 2 is conducted by assessing average daily peak, maxi-

mum peak, maximum valley, community ramping rate, and load factor complements.

ALEX outperforms IndividualDERMS for all metrics except the maximum peak,

where both ALEX and IndividualDERMS perform equally. Given that Individual-

DERMS minimizes peaks and valleys at the building level, the reductions in average

daily peak and valley by ALEX are particularly significant. Unlike the NoDERMS

scenario, IndividualDERMS and ALEX reduce the average daily peak P d,+ by 22.1%

and 24.1%, respectively, and the average daily valley P d,− by 61.6% and 89.9%, respec-

tively. Although both alternatives equally reduce the maximum peak P+, ALEX sig-

nificantly reduces the minimum valley P− by 22.5%, compared to IndividualDERMS,

which achieves only a 2.7% reduction. This confirms that ALEX is more efficient

at load balancing across the community. Similarly, in terms of community net load
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volatility, ALEX consistently outperforms IndividualDERMS, achieving higher re-

ductions in ramping rate Rd, daily load factor complement 1−Ld, and monthly load

factor complement 1 − Lm. This leads to the conclusion that the ALEX-managed

system continuously maintains a better-behaved, less variable community net-load

curve than the benchmarks, resulting in a more stable local electricity grid.

The performance values and quantitative analysis strongly support both hypothe-

ses. These experiments robustly demonstrate that ALEX, assuming rational actors,

exhibits all the desirable features of a LEM: ALEX aligns electricity end-user interests

with grid stakeholder interests, as the act of maximizing relative profits (minimizing

bills and maximizing DER-related returns) strongly correlates with improvements in

various metrics indicative of electricity system stability. The community-level coordi-

nation to achieve such effects is present, despite each automating agent having access

only to building-level information. This allows ALEX to exhibit properties usually

associated with centralized DR approaches. In essence, ALEX as a LEM provides a

pathway to implement TE at the grid-edge.

3.5 Summary and Conclusion

This study investigates ALEX, a TE-based LEM, where rational agents automate

building DER management and trading. Each agent represents one building and

aims to minimize its electricity bill using only building-level information. The ALEX-

specific LEM mechanism is purely economy-driven and encourages rational agents to

price in relation to the current round’s supply/demand ratio. The concept of LEM

as a tool for implementing community-level TE has gained traction recently. The

successful implementation of such systems would address a growing, emerging set of

DER-related challenges that grid stakeholders face.

Despite its promise, recent literature has shown that for LEMs, the common ob-

jective of maximizing relative profits might not necessarily result in the originally

intended DR behavior but instead produce adverse effects [68, 69]. This could be a re-
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sult of a market mechanism that insufficiently aligns participant and grid-stakeholder

interests or insufficiently tuned participant heuristics, for example. A common strat-

egy to ensure alignment between participants and grid stakeholders is explicitly con-

sidering grid performance or related metrics in the LEM’s price formation process.

Taking this information into account, this study aims to investigate the following two

hypotheses:

Hypothesis 1: ALEX’s market mechanism, which incentivizes bid and ask prices in

correlation to the current timestep’s supply and demand ratio within a prof-

itability gap, is capable of fostering a strong alignment between participant and

grid stakeholder interests;

Hypothesis 2: Rational agents, representing individual buildings within ALEX, co-

ordinate DER usage patterns across the entire community B, despite each agent

operating with only building-level information and selfishly minimizing its own

electricity bill.

Both hypotheses are tested through a set of experiments designed to benchmark

ALEX with fully rational agents against a baseline NoDERMS approach and an In-

dividualDERMS approach that maximizes self-consumption, while minimizing the

ramping rate and the peak net load at the building level. This comparison is per-

formed using the CityLearn2022 dataset, and the performance of both approaches is

assessed using a suite of community net load metrics indicative of the state of the

local electricity grid, such as ramping rate, load factor, peak export and import, and

average daily export and import. The behavior of ALEX rational agents is simulated

with an algorithm that combines iterative best response with dynamic programming

through value iteration.

The experimental results confirm both hypotheses. ALEX’s settlement mecha-

nism appears sufficient to generate alignment between participants’ selfish financial

interests and grid stakeholders’ interests, thereby improving the local performance
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of the electricity grid despite being economy-driven. All load-balancing and smooth-

ing properties result from bill minimization, as agents are neither explicitly incen-

tivized to coordinate nor optimize for any of the investigated metrics. ALEX exhibits

community-level coordination of DERs and outperforms the IndividualDERMS base-

line across all investigated metrics. These experiments demonstrate that ALEX is

a decentralized DERMS with properties usually associated with centralized DR ap-

proaches, such as community-level coordination.

In addition to demonstrating that economy-driven LEM such as ALEX have the

potential to successfully deliver on the promise of LEM, this article contributes to clos-

ing several research gaps in the current LEM literature. The simulation approach for

rational actors developed in this article can be applied to other LEM designs, address-

ing the unreliability of LEM investigation using expert-designed agent heuristics. The

CityLearn2022 dataset is a high-quality, benchmarkable, open-source dataset that has

been previously applied to non-LEM DERMS. Its successful application in the LEM

environment described in this article is an additional contribution toward establishing

an accepted benchmark dataset for DERMS.

The main focus of future work is to enhance the research by training a group of gen-

eralizing rational actors using state-of-the-art DRL techniques and evaluating their

effectiveness as DERMS. This exploration will open up several areas for additional

investigation. For example, it provides an opportunity to examine the differences be-

tween single-agent and multi-agent setups, investigating how various configurations

impact dynamics and performance. Moreover, the investigation will include the explo-

ration of different methods for generating and handling rewards, providing valuable

insights into the developing field of decentralized energy management.
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Chapter 4

Decentralized Coordination of
Distributed Energy Resources
facilitated by Local Energy
Markets and Deep Reinforcement
Learning

4.1 Introduction

Progress towards sustainable energy utilization is crucial for addressing climate change.

In this context, the convergence of technological advances and lagging regulatory

frameworks has precipitated the rapid adoption of distributed energy resources (DERs),

reshaping the dynamics of the grid edge where electricity end-users reside [4]. Con-

sequently, the variability of the net load at the grid edge is rapidly increasing. The

term variability encompasses the composite effects of intermittency and other net load

volatilities, such as those caused by electric vehicle charging. This marked increase

amplifies the challenges associated with ensuring the reliability and efficiency of grid

operations [79, 80]. This drives the transition to the Smart Grid, which operates

in a decentralized and autonomous manner to maintain and possibly enhance the

operability of the electricity grid.

To address these challenges, the research community has been actively exploring

demand response (DR) methodologies. Broadly speaking, DR techniques leverage
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various signals to modulate end-user load demand, supporting electrical grid effi-

ciency and reliability. These signals encompass both direct control commands to

assets and incentive mechanisms intended to influence end-user behavior, thus delin-

eating between direct and indirect DR. Notably, the key hurdles in indirect DR lie in

aligning the interests of grid stakeholders and electricity end-users through appropri-

ate incentive structures and subsequently ensuring sufficient participation to achieve

the desired effect [8, 9, 21].

Traditionally, schedule-based approaches employing model predictive control (MPC)

frameworks have been predominant in indirect DR. These approaches rely on behav-

ioral models to form a forecast and then attempt to optimize load demand over a

future time horizon. However, their inherent reliance on expert knowledge, high time

complexity, and bias toward centralized information processing may impede their

efficacy in addressing the rapid and disparate changes observed at the grid edge.

In response to the challenges faced by these scheduling-based methods, transactive

energy (TE) has emerged as a compelling alternative. TE, defined as “the use of

a combination of economic and control techniques to improve grid reliability and

efficiency” by the GridWise Architecture Council [10], aligns well with the Smart Grid

ethos, emphasizing the market as a decentralized delivery mechanism for incentive

signals [9].

Recent literature has highlighted the concept of Local Energy Markets (LEMs)

as a viable path to implement TE within geographically constrained communities

at the grid edge. Mengelkamp et al. define LEM as “a geographically distinct and

socially close community of residential prosumers and consumers who can trade locally

produced electricity within their community. For this, all actors must have access to

a local market platform on which (buy) bids and (ask) offers for local electricity are

matched” [20]. LEMs allow for the delivery of real-time incentive signals to electricity

end-users, providing the necessary granularity and immediacy within a decentralizable

framework.
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The surveys of completed DR pilot studies confirm that automation is necessary

to facilitate sufficient levels of participation [8, 9, 21]. While MPC is entrenched

in the general DR literature for automation, model-free approaches such as deep

reinforcement learning (DRL) present a promising paradigm better suited to tackle

the challenges faced at the grid edge. Initially inspired by high-level performance

showcases of DRL in games [81–83], this notion is reinforced by the success of DRL

in fields like robotics [24] and process control [25]. Moreover, it is supported by a

growing body of research applying DRL to the electricity grid [27–29].

Within this context, recent studies have explored automating end-user participa-

tion and DER management in LEMs [13–15, 17, 18, 49, 84], predominantly through

agents trained to optimize end-user bills via load-shifting capacities. Some stud-

ies demonstrate the reduction of net community energy consumption [18, 84], while

others investigate the provision of flexibility services [14]. However, to the best of

the authors’ knowledge, there are no other studies demonstrating the reduction of

community-level load variability through the automation of LEMs using DRL.

Such a conclusive demonstration is not trivial. Despite the intention of LEMs to

align the interests of end-users with the objectives of grid stakeholders, it is crucial

to recognize that incentivized behavior may not automatically translate into reduced

variability or enhanced power quality at the local level [68, 69]. Similarly, the intri-

cate interplay between LEM design and participant automation may yield unforeseen

outcomes [47], a phenomenon commonly observed when automating complex systems

using DRL [30].

This article addresses this research gap by training independent agents to auto-

mate end-user participation in LEMs and the utilization of DERs. The study demon-

strates an emergent reduction in community net load variability even when agents

solely prioritize individual bill optimization. To enhance benchmarking and future

comparability, performance evaluation is conducted on an open-source dataset, and

the agent’s performance is compared to several baselines. The trained DRL agents
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perform close to the near-optimal benchmark without information sharing or access

to future information.

Subsequent sections of this article delve into related work and background in Sec-

tion 4.2, methodology for training DRL agents, evaluation and benchmarking proce-

dures in Section 4.3, a comprehensive discussion of simulation results in Section 4.4,

and conclude with a brief summary and avenues for future research in Section 4.5.

4.2 Related Work and Background

Subsection 4.2.1 briefly reviews related literature and establishes a notable research

gap: the lack of a well-benchmarked demonstration of variability reductions within

an economy-driven LEM, emerging from selfish end-user bill minimization that DRL

agents automate. Subsection 4.2.2 introduces the LEM design that forms the foun-

dation of this study. Subsection 4.2.3 overviews reinforcement learning and proximal

policy optimization, the base DRL algorithm employed within this article.

4.2.1 Related Literature

The application of DRL in DR, and for the electricity grid in general, has garnered

significant attention in recent years [27–29]. Studies exploring the distributed coor-

dination of DERs through DR mechanisms outside of LEM, such as those by Chung

et al. [11], Zhang et al. [12], and Nweye et al. [71], tend to optimize for composite re-

wards and incorporate community-level metrics related to grid stability or variability,

following a direct optimization approach.

Concurrently, there has been a surge in literature investigating LEMs. Mengelkamp

et al. [20], Capper et al. [19], and Tushar et al. [21] provide comprehensive insights into

the evolving LEM ecosystem. In general, this field tends to focus on the socioeconomic

performance of the proposed system, while DR aspects are only narrowly discussed,

and performance benchmarking tends to be restricted.

For instance, Liu et al. [85] propose a LEM-like mechanism, using pricing based
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on the supply-demand ratio to coordinate energy flow between microgrids, leverag-

ing MPC for automation. Similarly, Lezama et al. [86] explore LEMs from a grid

integration perspective, focusing on socioeconomic performance. Ghorani et al. [87]

develop bidding models for risk-neutral and risk-averse LEM agents, evaluating their

socioeconomic efficacy under various market designs. Meanwhile, Mengelkamp et

al. [47] investigate different market designs using heuristic agents, focusing on socioe-

conomic metrics. A burgeoning body of research emphasizes the automation of LEM

participation through DRL. Xu et al. [18] employ a MARL Q-learning algorithm to

automate participation in a LEM that communicates a pricing schedule based on

a supply and demand forecast. Zhou et al. [17] propose an economy-driven LEM

pricing mechanism, optimizing participant bidding via a combination of Q-learning

and fuzzy logic. Similarly, Zang et al. [49] train end-user agents to interact with

community-level batteries within LEMs.

As Mengelkamp et al. [47] highlight, the integration of LEMs and automated par-

ticipation presents complex challenges and potentially unforeseen consequences due

to the emergent, intricate system dynamics. Investigations by Kiedanski et al. [68]

and Papadaskalopoulose et al. [69] demonstrate that increases in socioeconomic per-

formance in such settings may not directly translate to improved grid performance in

terms of reducing variability or improving power quality.

To address this issue, some studies incorporate electricity grid performance metrics

into the LEM’s pricing mechanism or the agent’s reward function, diverging from the

original purely economic focus of LEMs and adopting a direct optimization approach.

For example, Chen et al. [84] investigate microgrid trading in the context of LEMs,

employing a reward function with explicit constraints. Their findings demonstrate

that this approach increases self-sufficiency compared to expert-designed heuristics

and random action agents in benchmarking experiments. Similarly, Ye et al. [14] ex-

plore the use of LEMs to provide flexibility services. Their contribution stands out by

benchmarking against a near-optimal MPC baseline, establishing a reasonable upper
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performance limit. However, even such contributions do not evaluate their agents’

performance on variability-related metrics for which the agents do not explicitly op-

timize.

The principal promise of LEM, and, in a more general sense, TE, lies in the notion

that a well-designed market mechanism should incentivize a broad range of benefi-

cial behaviors. The underlying ambition is to achieve this without explicitly tying

the market’s cost function to these outcomes, enabling agile and robust decentraliza-

tion by avoiding the need for expensive real-time computation of an expressive set

of related metrics. In a sense, optimizing end-user bills should indirectly and emer-

gently reduce net load variability in this setting. Despite the current landscape of

contributions, the demonstration of such behavior via an LEM that relies on DRL

for automation purposes is still outstanding. This study aims to contribute to closing

this research gap.

4.2.2 Autonomous Local Energy eXchange

The Autonomous Local Energy eXchange (ALEX), initially proposed by Zhang et

al. [1], serves as an LEM for a community denoted as B, where individual buildings

b ∈ B participate in energy trading facilitated by a round-based, futures-blind double

auction settlement mechanism. In the context of a round-based futures market, trad-

ing occurs in predefined time intervals. A futures market accepts bids and asks for a

future settlement timestep tsettle, to be submitted at the current time step tnow. Settle-

ments are then executed at a subsequent time step tdeliver, with tdeliver > tsettle > tnow.

In such a blind double auction market, each building interacts with the market with-

out awareness of other buildings’ activities.

In ALEX, market participants do not share information and instead selfishly op-

timize their individual electricity bills. The building’s electricity bill consists of two

main components: the market bill and the grid bill. The market bill includes the
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cumulative settlement cost, determined by pairing each settlement price with its cor-

responding quantity for the building. In contrast, the grid bill covers the residual

amount required to meet the household’s energy demand, billed at the prevailing

grid rate selling or buying price, depending on the current net-billing scenario. A

profitability margin between the grid rate selling and buying prices serves as an in-

centive for LEM utilization. This means that any exchange over the LEM presents

a favorable scenario. Achieving this could involve leveraging tracked greenhouse gas

emission savings or partial fee offsets [19, 67].

Zhang et al. [1] delve into the essential properties required for ALEX’s settlement

mechanism to incentivize RL agents to learn pricing in correlation with the settle-

ment timestep tsettle supply and demand ratios. Formulating ALEX as a mixed-form

stochastic game suggests the existence of at least one Nash equilibrium. This insight

facilitates the identification of a market mechanism possessing the desired properties

through experiments that employ tabular Q-learning bandits under varied but fixed

supply and demand ratios. Subsequent experiments deduce a market price function

based on the current supply and demand ratio. A follow-up study by Zhang and

Musilek [75] investigates a system incorporating a communal battery energy storage

system (BESS) controlled by an expert-designed heuristic. The study demonstrates

efficacy in avoiding violations of voltage-frequency constraints on a test circuit.

May and Musilek [2] further examines ALEX as a DR system. The authors simulate

a group of near-optimal, rational actors on ALEX using an iterative best-response and

dynamic programming algorithm. Their performance is then compared against several

baselines. The identified policies reveal emergent community-level coordination of

DERs, driven by incentives within the LEM. Remarkably, this coordination occurs

even though each participant accesses only building-level information and selfishly

optimizes their electricity bills. Consequently, these policies consistently outperform

the benchmark building-level DR system across various community net-load-related

metrics measuring net load variability at the community level. While this agent
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behavior shows promise, it is important to note that it is generated using a pure

search approach that relies on a perfect forecast of end-user generation and demand.

This study aims to extend these results by training a set of DRL agents on the

equivalent task without access to perfect forecasts, yet achievening a comparable level

of variability reduction. This would effectively address the research gap identified in

subsection 4.2.1.

4.2.3 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning framework closely linked to opti-

mal control paradigms.

As illustrated in Figure 4.1, RL focuses on optimizing the behavior of an agent

that interacts with the environment through actions and subsequently receives obser-

vations and rewards.

Figure 4.1: Agent to environment interaction diagram, taken from Sutton &
Barto [48].

This is typically formalized through the markov decision process (MDP), repre-

sented by the tuple (S,A, Pa, Ra). The MDP encapsulates the state space S, action

space A, transition probabilities Pa from state s to the next state s′ upon taking an

action a, and receiving an immediate rewards Ra. A policy, denoted as π, charac-

terizes an agent’s behavior through a probabilistic mapping from state s to action a.

For instance, this mapping could take the form of a Gaussian distribution, where the

mean µ and standard deviation σ are functions of the state s.

MDPs within the context of RL are typically time-discrete, allowing the notation

of the time-step t to represent a specific point in the interaction trajectory between
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the agent and the environment. This trajectory starts at t = 0 and concludes at

t = T . The return G signifies the cumulative, discounted future reward,

Gt =
T∑︂
t=0

γtRt+1, (4.1)

which facilitates the definition of state value

Vπ(st) = EGt∀π, (4.2)

and state-action value

Qπ(st, at) = EGt∀π, (4.3)

where γ is the discount factor. The primary objective is to identify an optimal policy

π∗ which maximizes the expected return EG.

Distinguished from other MDP search methods by its emphasis on temporal dif-

ference and bootstrapping, RL agents iteratively learn the optimal policy π∗. They

adjust their encoding in response to the reward signal received from the environment.

The parameters underlying this encoding are denoted as θ and are updated through

an RL learning algorithm’s loss function, often employing a stochastic gradient de-

scent method. RL algorithms are generally categorized into two types: value-based

and policy gradient methods. Value-based methods estimate state values V or state-

action values Q and subsequently associate policies π with these estimates. On the

other hand, policy gradient methods directly learn policies π or their parameters using

a policy loss

L(θ) = E [log πθ(at, st)Vt] , (4.4)

with actor-critic methods utilizing a critic to estimate state values V and compute

advantages A in order to reduce variance, resulting in the corresponding actor-critic

loss

L(θ) = E [log πθ(at, st)At] , At = Vt − Vθ(st). (4.5)

Deep Reinforcement Learning (DRL), an amalgamation of RL and deep neural

networks, has gained traction for its ability to solve complex MDPs in a generalized
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manner [81–83]. DRL methods leverage replay buffers to store agent-environment

interactions, facilitating multiple mini-batch stochastic gradient descent epochs. This

necessitates the differentiation between the parameter set used to collect samples into

the replay buffer θold and the new parameters θ, which emerge as a result of gradient

updates.

Particularly noteworthy within the dynamic landscape of DRL is Proximal Policy

Optimization (PPO), introduced by Schulman et al. [31]. In contrast to naive actor-

critic approaches, PPO employs a clipped surrogate objective based on the probability

ratio r(θ). This ratio compares the probabilities of the new policy πθ and the old

policy πθold , aiming to mitigate policy drift and ensure the reliability of data collected

into the replay buffer. PPO’s actor loss clips the magnitude of the policy ratio r(θ)

within a tolerance parameter ϵ

L(θ) = E [min (r(θ)At, clip(r(θ), 1− ϵ, 1 + ϵ)At)] . (4.6)

In addition, most Proximal Policy Optimization (PPO) implementations incorpo-

rate generalized advantage estimation, a technique proposed by Schulman et al. [88],

to reduce the variance of the advantage A.

4.3 Methodology and Evaluation

This study aims to extend previous contributions [1, 2] by training DRL agents to

autonomously participate in ALEX. The expectation is that these agents will demon-

strate a level of emergent community-level variability reduction that is comparable to

the near-optimal search method described by May and Musilek [2], but without relying

on a perfect forecast. Such a showcase of variability reduction within a DRL-driven

LEM context would address the significant research gap outlined in Subsection 4.2.1.

To achieve this goal, this section formulates ALEX environment as MDP in Sub-

section 4.3.1, outlines the DRL algorithm employed for training the agents in Sub-

section 4.3.2, and elucidates the experimental design in Subsection 4.3.3. The latter
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also includes details on evaluation performance metrics and baselines.

4.3.1 Autonomous Local Energy eXchange as Markov Deci-
sion Process

The formulation of ALEX as an MDP involves defining the agent’s observations O,

actions a, rewards r, and policy π. In comparison to the initial formulation [2], the

approach outlined here incorporates specific adaptations tailored to the nature of

ALEX as a futures market. This is crucial, given the constraint that the DRL agents

should not rely on future information. Additionally, the formulation accommodates

continuous observation and action spaces for the DRL agents.

The individual agent’s MDP encapsulates the viewpoint of a single agent within

the ALEX environment. Given that participants in ALEX neither share information

nor engage in communication, this individual agent MDP is partially observable. This

contrasts with the fully deterministic nature of the joint MDP. In this study, the DRL

agents must function as fully independent actors, navigating a continuous action and

a partially observable, continuous state space. Accordingly, this section adopts this

perspective and refers to the state space S as the observation space O.

The observation space Ob for an individual agent at timestep t encompasses various

continuous variables, including the current net load Eb
t , battery state of charge SoCb

t ,

the average last settlement price pbidtlast settled
, and total bid and ask quantities from

the last settlement round qbid
tlast settled and qasktlast settled

, respectively. To capture temporal

patterns such as daily and yearly seasonalities, sine and cosine transformations of the

current timestep t are incorporated instead of using the raw timestamp.

Ob
t := ( sin(t)year, cos(t)year, sin(t)day, cos(t)day,

Eb
t , SoC

b
t , ptlast settled

, qbidtlast settled
, qasktlast settled

) .
(4.7)

However, future information, such as net load at settlement time Eb
tsettle

, is not

included in this observation space.
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In contrast to the action space proposed by Zhang et al. [1], the action space Ab for

an agent at timestep t exclusively includes the continuous battery action, scheduled

for the future settlement time step aBESS,tsettle . This action is constrained by the

battery’s charge and discharge rates. The determination of bid and ask quantities

at settlement time tsettle relies on the residual net load, while bid and ask market

conditions dictate prices following the round’s closure, guided by the price curve

defined by Zhang et al. [1].

The building’s battery action abBESS,tsettle is defined as a superposition of two com-

ponents: the self-sufficiency maximizing, greedy battery action aπ0
BESS,tsettle

and the

agent’s learned action aπθ
BESS,tsettle

. Here, the policy π0 represents the self-sufficiency

maximizing policy, which aims to greedily minimize the amplitude of the participant’s

net load Eb
t using the residential BESS.

abBESS,tsettle
:= aπ0

BESS,tsettle
+ aπθ

BESS,tsettle
. (4.8)

This action and agent policy definition offers several distinct advantages, signif-

icantly expediting the learning process of the studied DRL agents. The policy π0

can be computed at settlement time and serves as a reasonable initial heuristic, even

though it may be far from the optimal policy. This approach enables more efficient

state exploration while mitigating some of the internal environment modeling that

the agent has to perform.

As a result, the agent’s reward function is formulated as the difference between

the electricity bill billbt and the bill incurred by the self-sufficiency maximizing policy

π0, denoted as billb,π0

tsettle. This approach, in contrast to using the naive participant

electricity bill billbt as a reward signal, offers a clearer indication of whether the RL

agents are learning a useful policy

rbt := billbtsettle − billb,π0
tsettle

(4.9)
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4.3.2 Shared Experience Recurrent Proximal Policy Opti-
mization

The agents in this study undergo training as independent agents with shared experi-

ence [89]. Although each agent acts autonomously and solely accesses building-level

information, they aggregate trajectories into a shared replay buffer. During trajectory

collection, the actors function as independent copies of the same actor and critic neural

network, which is updated from the shared replay buffer. This maintains full indepen-

dence between agents during rollout but promotes faster convergence. Christianos et

al. [89] demonstrated the efficacy of this approach in enhancing performance within

complex multi-agent environments when compared to a fully independent learning

setup. Observations undergo standardization and mean-shifting, while rewards are

solely standardized, following best practices proposed by Schulman et al. [90].

The remaining portion of this section details modifications to the underlying PPO

algorithm. A recurrent PPO [91], using a Long Short-Term Memory (LSTM) [92]

hidden layer for both the actor and the critic, is enhanced with recurrent burn-in

and initialization, proposed by Kapturowski et al.[32]. Drawing motivation from the

findings of Andrychowicz et al. [34], after processing a replay buffer, the new weights

θ are used to recalculate the hidden states of the agent LSTM based on the entire

trajectory experienced during the current episode. Both enhancements address the

risk of stale or drifted state representations, enhancing the agent’s capacity to de-

velop meaningful state representations and a long-term context. Informed by Ilyas

et al. [33] and with the goal of convergence towards a Nash equilibrium, the learning

rate is annealed throughout the training. Instead of setting the value for the terminal

transition at T to 0, this study takes it from the critic’s value prediction, with prelim-

inary tests indicating an accelerated convergence of the critic to a higher explained

variance. Furthermore, instead of naively imposing action space boundaries by clip-

ping the Gaussian distribution, the algorithm used in this study employs a squashed

Gaussian distribution followed by renormalization, as popularized by soft actor-critic
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algorithms [93].

The initialization of the actor’s final layer is designed to ensure that the mean µ

exhibits an expected value of 0. This is achieved by sampling the weights and biases

of this layer from a uniform distribution between 0.001 and -0.001. In a similar vein,

the policy’s standard deviation σ is initialized very narrowly. This setup enables the

agent to commence training based on trajectories collected near the self-sufficiency

maximizing policy π0. This strategy is grounded in the assumption that the optimal

policy π∗
θ is much closer to the self-sufficiency policy π0 than to a pure random policy.

Large deviations from π0 are considered highly situational, while smaller deviations

are more common. From a task decomposition perspective, the RL agents learn how

to load shift to maximize self-sufficiency, an internally focused task, and then proceed

to learn how to leverage the market, an externally focused task. Hence, this practice

aims to bias the agents to first learn how to load shift and then learn how to utilize

the market. Both adjustments contribute to notable improvements in convergence

for the studied task.

Hyperparameters are used in this study are provided in Appendix C.1, along with

a brief discussion of the tuning and monitoring process.

4.3.3 Experimental Design

The DRL agents are trained and evaluated on the CityLearn2022 dataset [70]. The

open-source nature of this dataset enables subsequent studies to directly benchmark

against this contribution across a diverse range of DR applications. This dataset pro-

vides a year of hourly data for 17 smart community buildings, featuring time series

of energy demand, photovoltaic generation, and BESS performance characteristics.

For each building, one independently acting agent is trained as outlined in Subsec-

tion 4.3.2. Therefore, one episode is defined as a full trajectory over the dataset and

lasts 8760 steps, while one run fully trains such a set of 17 agents. For evaluation,

the parameter set θ with the best episodic communal return GB is selected from a
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run, assuming that this snapshot represents the best-performing equilibrium between

agents. This snapshot is updated throughout training when a new best communal

return is achieved. From a set of 5 runs, the median performing run is selected for

benchmarking purposes.

To assess agent performance, we employ a set of metrics from May and Musilek [2].

All performance metrics in this study are functions of the community net load EB,

defined as the summation of all building net loads Eb. The following expressions

utilize nd to denote the number of days in the dataset, d to represent the number

of time steps in a day, and t as the current time step. The notations maxstopstart and

minstop
start denote the maximum and minimum operands over the interval from start

to stop, respectively. Given the hourly resolution of the dataset used in this study,

the conversion from kilowatt-hours (kWh) to kilowatts (kW) is excluded from the

notation. The performance metrics encompass:

• The average daily imported energy

Ed,+ =
1

nd

nd∑︂
d=0

(︄∑︂
t∈d

max(EB(t), 0)

)︄
(4.10)

• The average exported energy

Ed,− =
−1
nd

nd∑︂
d=0

(︄∑︂
t∈d

min(EB(t), 0)

)︄
(4.11)

• The average daily peak

P d,+ =
1

nd

nd∑︂
d=0

(︃
max
t∈d

EB(t)

)︃
(4.12)

• The average daily valley

P d,− =
1

nd

nd∑︂
d=0

(︃
min
t∈d

EB(t)

)︃
(4.13)

• The absolute maximum peak

P+ =
T

max
t=0

EB(t) (4.14)
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• The absolute minimum valley

P− =
T

min
t=0

EB(t) (4.15)

• The average daily ramping rate

Rd =
1

nd

nd∑︂
d=0

(︄∑︂
t∈d

|∇EB(t)|

)︄
(4.16)

• The daily load factor complement

1− Ld =
1

nd

nd∑︂
d=0

(︃
1− meant∈dE

B(t)

maxt∈d EB(t)

)︃
(4.17)

• The monthly load factor complement

1− Lm =
1

nm

nm∑︂
m=0

(︃
1− meant∈mE

B(t)

maxt∈m EB(t)

)︃
. (4.18)

This comprehensive set of metrics offers insights into the variance of the commu-

nity net load EB across various time scales. These time scales range from the hourly

perspective, as captured by the ramping rate Rd, to daily and monthly perspectives,

as captured by the daily and monthly load factors 1−Ld and 1−Lm. Additionally, the

yearly and daily averages of peak load demands and generation values provide valu-

able information about community energy consumption and infrastructure strains.

Importantly, all metrics are formulated so that lower values are preferable. Collec-

tively, these metrics provide a robust framework for assessing the performance of an

arbitrary DR system regarding its general impact on net load variability.

To effectively gauge the relative performance of the trained DRL agents, three

benchmarks are used:

• NoDERMS: This baseline corresponds to the default community, where no

building exploits its battery storage capacities. It serves as the reference setting

and is expected to be easily outperformed by any DR system.
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• IndividualDERMS: In this benchmark, each building in the community oper-

ates under a net billing strategy. Buildings prioritize self-sufficiency by smooth-

ing building-level peaks and valleys while minimizing the ramping rate [2]. This

benchmark serves as a reasonable performance baseline, resembling a well-tuned

heuristic system commonly found in current DR applications. Importantly, un-

like the proposed DRL agents, this benchmark has access to a perfect forecast.

• ALEX DP: This benchmark represents a near-optimal policy within a dis-

cretized version of ALEX’s MDP. It is determined using a dynamic program-

ming search method based on iterative best response and value iteration [2].

Importantly, unlike the proposed DRL agents, this benchmark has access to a

perfect forecast.

The expectation is that ALEX RL shows a clear correlation between participant

bill savings and improvement in the outlined performance metrics compared to the

NoDERMS baseline. The desired outcome is for ALEX RL to perform comparably to

ALEX DP. This achievement would indicate agent convergence to a near-optimal level

of performance and a clear outperformance of the Individual DERMS benchmark.

This outcome would effectively address the identified research gap by demonstrating

a clear reduction in variability across the community due to participant automation

DRL within a LEM. The achieved performance would be contextualized against a set

of reasonable benchmarks.

4.4 Results and Discussion

This study aims to address a significant research gap highlighted in the background

section by demonstrating a reduction in community-level variability of net load facil-

itated by DRL agents within a LEM. Towards this objective, this section establishes

a clear connection between participant bill reduction and performance metrics within

the chosen setting. Subsequently, a comparative analysis of the DRL agents against
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benchmarks introduced in the earlier subsection is conducted.

The training methodology of the agents focuses on their relative improvement

compared to the self-sufficiency maximizing policy π0, as outlined in Section 4.3.2.

Convergence behaviors are visually depicted in Figure 4.2, highlighting the average

building bill savings of ALEX RL across episodes, benchmarked against ALEX DP.

The shaded area represents the variance between runs.

Figure 4.2: Average participant bill savings comparison between ALEX RL (blue),
ALEX DP (red). Shaded areas depict variance bands between a set of 5 ALEX RL
runs, trained over 117 episodes.

As evident from Figure 4.2, ALEX RL manages to achieve bill savings that slightly

exceed those of ALEX DP. It is crucial to note that ALEX DP performs its search

for one day ahead, while ALEX RL is not constrained in the duration of its load

shifting. These results indicate that, for the CityLearn 2022 dataset, there is ample

opportunity to shift load over several days.

To strengthen the correlation between achieved bill savings and evaluation metrics,

Figure 4.3 tracks the performance of the median-performing run of ALEX RL in terms

of performance evaluation metrics throughout training. A discernible downward trend

is evident for all performance metrics, signifying a clear correlation between selfish
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bill minimization and the selected set of performance metrics.

Figure 4.3: Performance of recorded community-level metrics per episode throughout
training. The opaque scattered data points represent singular episode equivalents,
while the blue line depicts the metric performance of the most recent highest return
achieved.

Qunatitative analysis, summarized in Table 4.1, consistently supports correlations

between performance metrics and participant bill savings. These findings affirm that

training DRL agents within ALEX incentivize behavior conducive to the emergent

suppression of variability in community net load.

These results strongly suggest that the observed correlations between performance

metrics and return are consistent across runs. Furthermore, the observed maximum

return correlations are consistently higher than the episodic equivalent. Considering
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Metric Correlated to Episodic Return Maximum Return

Average daily import [kWh] Ed,+ -0.993 (-0.994) -0.994 (-0.995)

Average daily export [kWh] Ed,− -0.993 (-0.993) -0.994 (-0.994)

Average daily peak [kW] Pd,+ -0.980 (-0.982) -0.982 (-0.982)

Average daily valley [kW] Pd,− -0.966 (-0.964) -0.975 (-0.972)

Minimum peak [kW] P+ -0.466 (-0.470) -0.478 (-0.480)

Maximum valley [kW] P− -0.734 (-0.736) -0.775 (-0.770)

Average daily ramping rate [kW] Rd -0.934 (-0.932) -0.952 (-0.955)

Average daily load factor 1− Ld -0.726 (-0.730) -0.833 (-0.833)

Average monthly load factor 1− Lm -0.982 (-0.980) -0.985 (-0.982)

Table 4.1: Pearson’s correlations between the metrics and achieved bill savings; the
rightmost column correlates Maximum Return episodes and their respective metric
performance, while the middle column correlates episodic return and the respective
episodic metric performance; the numbers in parentheses denote the average correla-
tion over 5 training runs, whereas the non-bracketed number denotes the correlation
of the run achieving the median return.

ALEX’s nature as a mixed-form stochastic game, this outcome is not necessarily

surprising and might result from the convergence path towards a Nash equilibrium.

This implies that episodes with higher returns tend to be episodes where the agent

policies are closer to a joint best response scenario.

The performance of the median performing set of DRL agents is compared to

the proposed benchmarks in Table 4.2. As a result of significantly enhancing the

utilization of locally available energy, both the average daily import (Ed,+) and export

(Ed,−) decline by 21.9% and 84.4%, respectively. Additionally, emergent peak-shaving

behavior leads to a lowering of the average daily peak (Pd,+) and valley (Pd,−) by 27.0%

and 71.1%, respectively, while the maximum peak (P+) and minimum valley (P−) also

shrink by 16.0% and 27.0%, respectively. This behavior also results in the smoothing

of moment-to-moment community net-load demand, leading to a 26% decrease in the

ramping rate (Rd) and a mitigation of the overall community net-load swing, which
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reduces the daily load factor (1 − Ld) and monthly load factor (1 − Lm) by 11.0%

and 3.6%, respectively. In summary, ALEX RL significantly mitigates the effects of

community-level variability across all measured metrics.

Metric NoDERMS IndividualDERMS ALEX DP ALEX RL

Average daily import [kWh] Ed,+ 258.54 214.81 202.68 201.83

Average daily export [kWh] Ed,− -77.48 -26.49 -12.46 -12.04

Average daily peak [kW] Pd,+ 25.61 19.95 19.44 18.69

Average daily valley [kW] Pd,− -16.55 -6.35 -1.67 -4.78

Maximum peak [kW] P+ 49.06 42.37 42.37 41.22

Minimum valley [kW] P− -37.86 -36.8 -29.34 -27.62

Average daily ramping rate [kW] Rd 4.28 2.87 2.84 3.15

Average daily load factor 1− Ld 0.73 0.65 0.64 0.65

Average monthly load factor 1− Lm 0.82 0.8 0.78 0.79

Table 4.2: Summarized metrics for full simulation on CityLearn2022 data set [70] for
NoDERMS, IndividualDERMS and ALEX DP and ALEX DRL scenarios. Values for
the NoDERMs, IndividualDERMS and ALEX DP are taken out of May et al. [2].
Best values are typeset in bold.

Further comparative analysis demonstrates the cumulative outperformance of the

DRL agents against IndividualDERMS and partial outperformance against ALEX

DP. Notably, the ramping rate (Rd) emerges as a sub-performant metric for ALEX

RL compared to IndividualDERMS and ALEX DP. Additionally, it is noteworthy

that the average daily valley metric (Pd,−) for ALEX RL is significantly higher than

ALEX DP, which is somewhat unexpected. While IndividualDERMS and ALEX DP

search over a perfect forecast, ALEX RL does not have access to future information

and must internally perform some degree of participant net load modeling. As the

most short-term volatility-focused metric, the ramping rate (Rd) is also most sensitive

to such misadjustments. The relative disparity in average daily valley (Pd,−) between

ALEX RL and ALEX DPmay result from a strategic tradeoff, where it is economically

safer for the DRL agents to err on the side of selling to the grid than buying from it in

the face of an imperfect model. Such a scenario could occur when the market receives

significantly more bids than asks in terms of quantity, as the remaining residual load
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will be settled according to a net-billing scenario.

These results further suggest that ALEX RL compensates for its lack of perfect

internal modeling by leveraging its capability to load shift over a longer duration

than ALEX DP, resulting in a further decrease in the maximum peak (P+) and

minimum valley (P−). Therefore, ALEX RL’s relative outperformance in terms of

bill savings does not necessarily translate to a strict outperformance of ALEX DP

in terms of evaluation metrics. Overall, ALEX RL’s performance closely aligns with

ALEX DP, indicating similar levels of emergent, community-level coordination of

DERs. The collective results compellingly demonstrate emergent, community-level

variability reduction facilitated by automated participation via DRL agents within a

LEM, effectively closing the identified research gap.

In summary, the findings underscore the effectiveness of leveraging DRL agents in

LEMs for load optimization. This emphasizes the potential for mitigating variability

and optimizing energy consumption at a community level.

4.5 Conclusion

This study explores the automation of participation in economy-driven LEMs through

DRL agents.

The rapid proliferation of DERs at the grid edge has led to a significant increase

in variability and variance in community net load, posing challenges to electricity

grid operability. In response, there has been a growing interest in TE-based DR,

facilitated by community LEMs, as a viable solution to align the interests of electricity

end-users and grid stakeholders [19, 20, 67]. At the same time, insights from DR

system pilots highlight the necessity for automation to ensure robust participation

across DR initiatives [8, 9]. In response to the decentralized and distributed nature

of this challenge, model-free control approaches, particularly DRL, have emerged as

promising candidates [27], fueling the interest in studies investigating the automation

of participation in LEMs via DRL methods [13, 14, 17, 18, 49, 84]. While prior
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research has predominantly focused on socioeconomic metrics and community net load

consumption, there remains a gap in demonstrating a clear reduction in variability

or variance.

This article addresses the research gap by utilizing a shared experience [89], re-

current PPO [91] algorithm with several modifications [32–34] to train a set of DRL

agents within the context of ALEX, an economy-driven LEM where participants aim

to selfishly minimize bills without information sharing [1]. The trained DRL agents

are compared against benchmark approaches, including a building-level DR strategy

and a near-optimal dynamic programming-based solution [2]. Performance is evalu-

ated using a set of metrics capturing net load variance across multiple time horizons,

encompassing ramping rate, daily and monthly load factor, peak and average daily

import and export. The experiments reveal a clear correlation between relative bill

reduction and improvements in the investigated metrics. The trained DRL agents

demonstrate promising performance, nearing and, in some instances, surpassing the

benchmarks set by the near-optimal approach, while consistently outperforming the

building-level DR strategy.

Future research directions should focus on designing more sophisticated DRL al-

gorithms explicitly tailored to the mixed-form stochastic game nature of LEMs like

ALEX. The goal is to establish a clearer performance ceiling for such solutions. Ad-

ditionally, extending this investigation to diverse LEM designs could offer insights

into the factors influencing the efficacy of incentivizing desired behaviors within these

systems [68, 69].
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Chapter 5

Conclusion and Future Research

5.1 Conclusion

In the face of escalating challenges posed by the growing adoption of DERs and the

resulting increase in net load variability at the grid-edge, the conventional unidirec-

tional model of grid operations is no longer sufficient. The Smart Grid emerges as

a crucial solution to these challenges by focusing on decentralized, intelligent asset

integration.

This thesis addresses these issues by proposing the Autonomous Local Energy eX-

change (ALEX), demonstrating its operation, and evaluating its efficiency. ALEX,

rooted in the principles of TE, is a fully economy-driven LEM automated using DRL

agents. The overarching goal is to enhance grid operability and effectively reduce

community-level variability by aligning end-user behavior with grid stakeholder ob-

jectives while participation and effect are ensured by leveraging decentralized, model-

free automation methods.

A reductionist approach is employed to navigate the intricate challenges of such an

interconnected system with complex internal dynamics. Key components are isolated

through focused experiments, resulting in the formulation of three primary research

goals. Each goal is addressed through corresponding journal-grade academic contri-

butions, encapsulated in the chapters of this thesis.

• Design of a suitable LEM. Chapter 2, published as “Reinforcement learning-
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driven local transactive energy market for distributed energy resources” in En-

ergy and AI [1], is motivated by the hypothesis that pricing according to the

supply/demand ratio should incentivize the emergent reduction of variability.

Such a market is identified from a pool of candidates, delineated by classifica-

tion criteria for double-auction mechanisms. The insight that ALEX can be

formulated as a mixed-form stochastic game, implying the existence of at least

one Nash equilibrium, forms the basis of underlying experiments. Beyond its

relevance to this specific research goal, this work addresses research gaps ac-

knowledged by other LEM researchers [16, 20] by thoroughly documenting and

justifying the process of LEM settlement mechanism design.

• Establishment of an appropriate benchmarking and evaluation pro-

cess. Chapter 3 has been submitted to IEEE Access as “Transactive Local

Energy Markets Enable Community-Level Resource Coordination Using Indi-

vidual Rewards”[2]. It focuses on confirming the central hypothesis regarding

emergent, community-level variability reduction within ALEX and develops a

benchmarking approach for LEM. The conducted experiments demonstrate the

capability of ALEX to enable community-wide coordination of DERs. The

benchmarking further shows that ALEX significantly outperforms a set of base-

line DR approaches. This is facilitated by a search algorithm that leverages

ALEX nature as a mixed-form stochastic game, employing iterative best re-

sponse and dynamic programming to simulate a set of near-optimal policies

close to a Nash equilibrium. In the process, this chapter also addresses broader

research gaps in current LEM literature [68, 69] such as the general lack of com-

parison platforms. This is achieved through using an open-source dataset and

benchmarking via metrics that evaluate LEM performance regarding variability

instead of socioeconomic considerations.

• Development of an adequate DRL algorithm and training routine.
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The conclusive Chapter 4, submitted to Energy and AI as “Decentralized Co-

ordination of Distributed Energy Resources through Local Energy Markets and

Deep Reinforcement Learning” [3], marks the conclusion of the thesis by training

DRL agents to near-optimal performance on ALEX. Related work combining

DRL agents with LEM [14, 17, 18, 49, 84] largely evaluates their agents shal-

lowly on socioeconomic or self-sufficiency-related metrics, lacking a convincing

showcase of community-level variability reduction. By demonstrating the emer-

gence of variability reducing coordination across a community in this setting,

this study closes a significant research gap. The utilized DRL algorithm is based

on PPO [31] and augmented with several general algorithmic improvements [33,

89, 94]. ALEX is formulated as an MDP with continuous action and observa-

tion space, emphasizing observation and policy design to accelerate learning.

The agents are trained on the same dataset employed in Chapter 3, demon-

strating performance very close to the established near-optimal policies while

consistently outperforming all other baselines. This demonstrates the ability

of the proposed algorithm to produce a convergent set of policies close to a

Nash equilibrium, even without information sharing between agents and access

to future information.

In summary, this thesis significantly advances the state of the art of indirect DR

by proposing and demonstrating ALEX. The decentralized, autonomous nature of

ALEX positions itself as suitable for addressing the challenges posed by the growing

adoption of DERs in the shape of a system that aligns itself with the Smart Grid’s

tenets of intelligent integration of all system participants towards ensuring efficient

and reliable grid operation.
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5.2 Future Work

The contributions presented in this thesis, including the development and demon-

stration of ALEX, have laid a foundation for further exploration and sparked com-

mercialization efforts. Implementation-focused future work considerations revolving

around hardware implementation, communication modeling for deployment, and cy-

bersecurity are better suited to this commercialization environment. Additionally, the

improvements made to PPO within Chapter 4 are general but not exhaustive. Fur-

ther advancements, such as prioritized replay buffers [95], regularization, and intrinsic

motivation for exploration [96], should be explored for direct algorithm improvement

within the commercialization context. With that in mind, the presented future work

suggestions maintain a software focus and consider integration into the academic

environment.

The convergence of participants to optimal prices has been demonstrated in ban-

dit experiments in Chapter 2, and further confirmed in preliminary experiments for

Chapter 4. However, the near-optimal participants within ALEX with the originally

envisioned multi-modal action space encompassing bid and ask quantities, prices,

and DER control have not been demonstrated yet. Exploring DRL agents with this

multi-modal action space represents an ambitious research avenue. Such investiga-

tions might be better suited towards evaluation within the computer science context,

focusing on more contained multi-agent systems in mixed-form stochastic games with

multi-modal action spaces. This research would have a clear pathway toward pub-

lication, whilst simultaneously holding significant potential for follow-up integration

into the commercialization pathway.

The DRL algorithm proposed and utilized in Chapter 4 can be enhanced on sev-

eral fronts. Currently, it does not explicitly account for the mixed-form stochastic

game nature of ALEX. A more sophisticated approach considering this characteristic

could potentially outperform the existing algorithm. The field of multi-agent DRL is

88



actively researched, and exploring more advanced techniques in a larger project that

benchmarks the proposed algorithm on other applications holds academic promise.

Another intriguing direction for future research involves a comprehensive explo-

ration of different double auction markets and other settlement mechanism intricacies.

Preliminary studies may be based on a bandit RL setup akin to the described experi-

ments in Chapter 2. Still, the research should aim to leverage a search process similar

to the one implemented in Chapter 3 to grade market mechanisms based on their di-

rect effects on community net-load variability. The wide variety of LEMs proposed in

recent literature [19–21, 67] adds further motivation for such investigations. Given the

landscape of LEM literature, such research has a promising pathway to publication

within the academic context and also possible commercialization implications.

Extending the benchmarking efforts initiated in Chapters 3 and 4 to include other

DR methodologies would be valuable for the broader DR field. Reproduction studies

benchmarking various DR approaches using common datasets and metrics could ele-

vate future research. However, such an endeavor might be challenging to publish as

a standalone contribution and would be better suited for an advanced course format.
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Appendix A: Appendices for
Chapter 2

A.1 Reinforcement Learning

There have been numerous approaches used to address the optimization problems
inherent to demand side management [9, 35, 38, 39]including mixed-integer program-
ming, stochastic programming, and dynamic programming. After RL demonstrated
great competence in partially observable, stochastic game environments [83, 97, 98],
this model-free, sequence-oriented, semi-supervised machine learning framework has
also gained popularity as a control method for DR [27]. The learned policy can sub-
stitute the solution of the equivalent optimization problem at each time step. As a
result, RL approaches can be more computationally efficient at scale, when compared
to conventional optimization methods.

In the RL setting, illustrated in Figure A.1, an agent learns to maximize the return
G by interacting with its environment through actions a while receiving observations
of the environmental state s. G is commonly defined as the expected, discounted
cumulant of future reward R

Gt =
T∑︂
i=t

γ(i−t)Ri, ∀γ ∈ [0...1], (A.1)

where γ is the discount factor. The expected value of Gt, given the current state st

Environment

Agent

Action State, 
Reward

Figure A.1: Reinforcement Learning Setting
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or the current state-action tuple (st, at), is referred to as the state value

V (st) = E
(︁
Gt|st,π(st)

)︁
, (A.2)

or action value
Q(st, at) = E

(︁
Gt|st,at

)︁
, (A.3)

respectively. An RL agent acts according to a policy π

π : S × A→ [0...1]. (A.4)

Policy is a (probabilistic) mapping of the state space S on action space A, i.e.∑︂
a

π(a, st) = 1. (A.5)

This allows the definition of the state value V as action value Q weighted by π

V (st) =
1

na

∑︂
a

π(a, st)Q(st, a). (A.6)

This system of equations (A.1-A.6) is sufficient to broadly classify all RL algorithms
along two axes: the learned function and the relation between the target and behavior
policy. According to the learned function, RL algorithms can be classified as policy-
gradient methods and value-based methods. The policy-gradient methods directly
learn the policy π, while the value-based methods learn estimations for either V
or Q, and employ a fixed mapping of these values to π. RL algorithms can also
be classified into on-policy and off-policy methods, by comparing their target and
exploratory behavior. An on-policy RL algorithm explores the environment with the
same policy that is optimized, while an off-policy algorithm explores the environment
with a behavioral policy b ̸= π.

Internally, RL algorithms often employ function approximation techniques to per-
form the mapping of the state space S to the learned target, and therefore the return
G. Historically, tabular encoding was commonly used while currently deep artificial
neural networks are currently most popular. As a framework, RL is independent of
the choice of state estimator. Currently, a very popular choice is the use of deep
artificial neural networks. Historically, other function approximation techniques have
also been used, such as tabular encoding.

The algorithm used in this paper is Q-learning, a well-established, value-based,
off-policy algorithm. It learns the greedy policy, a deterministic policy that always
picks a corresponding to the largest Q, by following behavioral policy b. A popular
choice for b is the ϵ-greedy policy, which takes a random action with probability ϵ and
otherwise follows the greedy policy. The corresponding learning rule can be written
as

Qupdated(at, st)← (1− α)Q(at, st)+

α

(︃
Rt + γmax

a

(︁
Q(a, st+1)

)︁)︃
,

(A.7)

where α is the learning rate.
Q-learning is a relatively well-understood RL algorithm, with strong convergence

criteria for the tabular function approximation case, as long as both ϵ and α are
annealed towards 0 at infinity. It is also the most common algorithm in the related
literature reviewed in section 2.2.1.
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A.2 Net Billing

This appendix clarifies the distinction between net billing and net metering. In cer-
tain jurisdictions, such as Alberta, Canada, the electricity market is ”unbundled”.
In simple terms, electric utilities are only in charge of building and operating the
infrastructure (wires), and a multitude of retailers (which cannot be the same entity
as the electric utility) are allowed to sell electricity to end users, with almost complete
freedom to set the rate of electricity. Customer bills are therefore also separated into
two main components: infrastructure (transmission and distribution, or T&D fees,
which can have a fixed component and a variable component), and energy. Under
net metering, any electricity that flows into the meter (loads) incurs both energy and
variable T&D costs, and any electricity that flows out of the meter (generation) has
both energy and T&D costs deducted, either as credits or cashback. Net billing is
the same for loads, but only the energy component is deducted for generation. One
way to avoid this infrastructure cost is to install both the solar panel and a battery
behind the meter to minimize the amount of energy flowing out of the meter. The
advantage of net billing is the socialized cost of infrastructure, which is more evenly
divided amongst all customers. In contrast, net metering tends to shift these costs
onto the segment of the population who cannot afford their own solar (this is a com-
monly known and often criticized problem). The disadvantage of net billing is that
the return on investment (ROI) can be significantly longer due to less bill deductions.
From this perspective, net billing is a more fair baseline. It also provides more op-
portunities for community-based energy management, such as through local energy
markets like ALEX.

A.3 T-REX

A.3.1 System Architecture

The major limitations in deploying any TE technology at a scale are communication
infrastructure and computational power. This is especially true for the distribution
system, where the amount of data that needs to be collected and processed for TE
is orders of magnitude greater compared to the transmission system. Furthermore,
the necessary infrastructure, such as SCADA, private fiber networks, voltage sensors,
current sensors, etc., is typically unavailable to the distribution system and would be
prohibitively expensive to retrofit.

The T-REX architecture is therefore designed around the least expensive way to
implement and scale TE technology. This means that inexpensive, low bandwidth,
long-range wireless mesh networks, such as LoRaWAN, can be used for reliable com-
munications. Computing devices should also be distributed so that the total compu-
tational power of the network scales with the number of TE clients. Figure A.2 shows
the simplified architecture diagram of this approach.

A.3.2 Data Fabric

T-REX is built upon socket.io [99] as the system foundation. This guarantees com-
patibility, scalability, reliability, and deployability. When using T-REX in simulation
mode, the asynchronous, highly parallel design provides true system-wide random-
ness and eliminates the need for pseudo-random sequence queues that are typically
required for contemporary TE simulators. Standard networking performance and
penetration testing techniques can be readily used to evaluate the performance and
cybersecurity aspects of the TE systems designed with T-REX.
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Figure A.2: Simplified T-REX V3 Architecture Diagram

A.3.3 Clients

The functional modules of T-REX are built as socket.io clients. As in the de-
ployment case, interaction between modules is facilitated by passing messages using
the socket.io API. Although designers are free to use payloads of any permissible
size, format, and endpoints, care should be taken to preserve genericity and minimize
bandwidth usage. There have been three main classes of clients implemented, as
shown in the architecture diagram and described below:

• Participant modules, which are in charge of energy trading and managing energy
resources that are directly accessible. Participants are, for example, households
and self-driving EVs.

• Non-participant modules, e.g., the TE market. The market facilitates the dis-
covery and exchange of energy between participants.

• Simulation-only modules, e.g., the simulation controller, or a powerflow calcula-
tion module. The simulation controller augments the deployment environment
to form a simulation model. It can also perform advanced functions such as
training curricula for ML applications.

With a few restrictions pertaining to the simulation mode, the number of modules
of each type is unlimited. The functions are also not restricted to the list described
above. For example, a traffic module can function in parallel with multiple markets
to guide self-driving EV participants to find optimal paths to carry passengers in
conjunction with charge and discharge locations to maximize profit. Other modules
that do not use traffic data to make decisions simply do not know about its existence.

A.3.4 Implementing TE in T-REX

TE systems can be setup in T-REX using a simple JSON configuration file. The T-
REX runner assembles the modules as configured and launches them as independent
processes on the assigned machine or machines at run time. Examples of configuration
files can be found on the GitHub repository [64].

To launch a classical TC simulation, the following modules are required:

1. A non-participant powerflow module. The built-in implementation uses OpenDSS [100]
and its Python API [101].
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2. TC Market with a sub-module that generates prices based on the received pow-
erflow data.

3. Participants containing load profiles, controllable devices, and price-reactive
logic.

Figure A.3 shows a simplified version of the sequence flow diagram of the TC co-
simulation implemented in T-REX. Due to the asynchronous nature of T-REX, many
independent asynchronous functions and parallel loops have been omitted from the
diagram, and only an approximation of the main flow path is shown.

In the same way, T-REX can also be configured to run agent-based economics
(ACE) [102] simulations with minimal modifications from the TC configuration. In
the example configurations, the only modifications are the removal of the parallel
running powerflow module and swapping in the appropriate market module and agent
logic submodules.

A.4 Double Auction Market Design for AI

A.4.1 Trading Mechanism

Price theory states that the price for any specific good or service is based on the
balance of supply and demand. In a market-based TE approach, the role of the market
is to efficiently facilitate the exchange of energy so that the price can appropriately
and accurately reflect the balance of supply and demand at the time of exchange.
ALEX adapts and adjusts an existing market design to fit three key considerations:

1. Suitability for electricity grids with high penetration of DER and
RES. This means that, from a high level perspective, a market (or a collection
of markets) must be able to effectively target localization and the intermittent
nature of RES.

2. Technical constraints and requirements of deployment: Data acquisi-
tion, transportation, and cost must be minimized.

3. Machine learning considerations for agents: Related to the point above,
ML will play an important role in trading and managing of energy resources in
place of humans. For this reason, the market should be conducive to learning.
One way to achieve this is to compose the market with a small set of explicit
rules. The rules should provide a strong feedback signal, and they should be
flexible enough to offer large action spaces.

With these considerations in mind, the final market is a modified form of double
auctions [103][104]. The rules, explicitly implemented in the code, are described
below:

1. It is assumed, for the time being, that the grid is an infinity bus and it can be
interacted with through net billing. We therefore adapt retail electricity prices
in Alberta, where buying energy from the grid costs $0.1449/kWh, and selling
earns $0.069/kWh.

2. The local market has two energy pools: one for dispatchable sources, such as
battery energy storage systems, and one for non-dispatchable sources, such as
photovoltaics. This is intended to distinguish the source of energy, and to allow
for the value of dispatchability to emerge.
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3. Auctions settle for energy to be delivered during the one-round period from the
end of the current round. However, the delivery period can be parametrically
adjusted during run-time for future design explorations.

4. During the current round, participants submit bids and asks for energy to be
delivered during or beyond the next delivery period.

5. A modified double auction system is used to settle trades: bids/asks are settled
pairwise, with bids sorted from the highest to lowest, and asks in reverse to
ensure pareto equality.

6. Bid/ask quantities can be partially settled.

7. A bid/ask quantity must be an integer multiple of 1 Wh. This is in consideration
of future hardware integration, to allow direct use of the watt-pulse function of
most smart-meters.

8. During the delivery period, if a seller is in short supply, it must financially
compensate for the shortage at net metering prices. If batteries are available,
the seller has the option to compensate by discharging its batteries, for all or
part of the shortage during this period.

9. During the delivery period, if a buyer settled for more energy than used, the
buyer must still pay the seller for the unused energy at the settlement price.

This market design strikes a compromise between a peer-to-peer market and a
centralized market. By using pairwise settlements, a peer-to-peer like individualized
value feedback can still be provided, while the simplicity and efficiency of a centralized
market can be kept, especially for deployment in a small, localized region.
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Appendix B: Appendices for
Chapter 3

B.1 Additional Information on Experiments

This appendix provides additional information on the experiments described in Sec-
tion 3.3 and discussed in Section 3.4. It serves to further illustrate the performance
of ALEX beyond the narrow focus on the discussed hypotheses.

Figures B.1 and B.2 depict the average daily community net load and average
daily community state of charge (SoC), respectively, separated into the four seasons.
We observe the same trends discussed in Section 3.4, under the influence of seasonal
variance of load demand and photovoltaic power availability. The NoDERMS scenario
provides the seasonal trend of net-load swing, which is most pronounced in Spring
and Summer. While ALEX consistently reduces community net-load swing beyond
the IndividualDERMS capabilities, its performance advantage is more pronounced as
the seasonal net-load swing increases, due to it’s capability to shift load within the
community.

Figure B.3 depicts the average cumulative electricity bill for the three examined
scenarios. Although the economic performance of ALEX is not directly relevant to
the hypotheses posed in this article, the economic performance of LEM with respect
to net-billing scenarios, such as IndividualDERMS, is often discussed in the LEM
literature [67].

The economic welfare of a specific baseline depends on the grid sell price pgrid,sell and
grid buy price pgrid,buy in a given jurisdiction, along with the accessible profitability
gap. Typically, the difference between pgrid,sell and pgrid,buy comprises various fees or
fee-like components. ALEX consistently outperforms IndividualDERMS in terms of
economic welfare for the same setting, as long as a profitability gap exists. While
assuming the existence of a profitability gap is not unrealistic, access to the full
profitability gap remains a strong assumption [19]. However, performance across
scenarios remains consistent for all other metrics, irrespective of the actual size of the
profitability gap.
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Figure B.1: Average daily net loads in kWh at hourly resolution for winter, spring,
summer, and fall in a full simulation on the CityLearn 2022 data set [70] are presented
for NoDERMS, IndividualDERMS, and ALEX scenarios. The figures display average
values along with standard deviation bands.
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Figure B.2: Average daily SoCs at hourly resolutions for winter, spring, summer and
fall of a full simulation on CityLearn 2022 data set [70] for NoDERMS, Individual-
DERMS and ALEX scenarios. Shown are the average values as well as the standard
deviation bands.
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Figure B.3: Average cumulative building bill for a full simulation on CityLearn 2022
data set [70] for NoDERMS, IndividualDERMS and ALEX scenarios. In the depicted
scenario, ALEX has access to the full profitability gap.
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Appendix C: Appendices for
Chapter 4

C.1 Hyperparameters

This appendix aims to enhance the reproducibility of the presented results by pro-
viding hyperparameters while also detailing the general approach taken in designing
the DRL algorithm and testing the modifications.

The algorithm employed in this study is rooted in the publicly accessible Recurrent
PPO implementation from Stable Baselines3 (SB3)[91]. The hyperparameter values
that deviate from SB3’s recurrent PPO default settings are as follows:

• The neural network architecture for both critic and actor consisted of 2 LSTM
layers with 256 neurons each, followed by a 64-neuron head, along with a shared
64-neuron feature encoder.

• The actor’s log standard deviation is initialized as -10 instead of the default 0.

• An exponentially decaying learning rate schedule is employed, reducing the
learning rate by a factor of 0.69 every 1 million steps.

• The size of one mini-batch is set to 72, equivalent to one 3-day trajectory, based
on SB3’s recurrent PPO implementation for sample collection.

• The replay buffer stored 3672 transitions, equivalent to 9 days at 24 steps per
day for 17 houses.

• The burn-in period for a single sample is set at 50% of the sample’s length, or
36 steps.

The algorithm adaptations, design, and hyperparameter choices underwent testing
across increasingly complex versions of the experiments discussed in the main body of
this article until the performance detailed in the discussion section was achieved. The
testing progression began with artificial load profiles, aiming to optimize net billing,
then advanced to optimizing net billing on the City Learn dataset for a singular
month, then the full year, and finally transitioned to the target application.

The advantage of this iterative process lies in the clearly defined optimal returns
for the test scenarios. Recurrent PPO variants seem to vary across implementations,
as the exact nature of making PPO recurrent is up to interpretation. We refer to
Pleines et al. [105] for an investigation into the characteristics and sensitivities of
recurrent PPO. Tests commenced with the default SB3 recurrent PPO in a shared
experience replay setting [89], followed by the implementation of R2D2 [32], then
state recalculation [34], and finally incorporating a learning rate schedule [33]. Each
implementation underwent testing over a small range of hyperparameters for three
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runs each to ensure consistency, leading to the crystallization of the hyperparameter
set used in this study.

The quality of a run was primarily evaluated based on its achieved return, supple-
mented by the investigation of various RL agent performance metrics. These metrics,
inspired by those discussed in the SB3 documentation and Huang et al.’s insightful
blog [106], encompassed explained variance, KL-divergence, and entropy loss curves.
Even if an algorithm change did not directly impact the agent’s average return, it
was considered an improvement if, for example, it led to higher explained variance
and thereby a stronger critic.

This iterative practice enabled the authors to initiate algorithm development in

smaller, constrained versions of the final application, gradually scaling the difficulty

of the experiments as the algorithm matured. Consequently, the algorithm utilized in

this study is relatively basic and does not entail a vast array of modifications, focusing

instead on targeted adaptations aimed at enabling the agents to construct a robust

temporal state representation.

113


	Introduction
	Distributed Energy Resources
	Demand Response
	Transactive Energy
	Automation of Demand Response
	Research Objectives and Outline

	Reinforcement Learning-Driven Local Transactive Energy Market for Distributed Energy Resources
	Introduction
	Background and Related Work
	Reinforcement Learning for Local Energy Markets

	ALEX: Autonomous Local Energy Exchange
	Core Concept
	ALEX as a Stochastic Game
	Automation using Reinforcement Learning

	Experiments and Discussion
	Suitability of Settlement Mechanism
	Economic Study

	Conclusions and Future Work

	Transactive Local Energy Markets Enable Community-Level Resource Coordination Using Individual Rewards
	Introduction
	Background
	Related Literature
	Autonomous Local Energy Exchange (ALEX)
	Markov Decision Processes

	Methodology
	Study Hypotheses
	ALEX as a Markov Decision Process
	Simulation of Rational Agents for ALEX
	Evaluation Methodology

	Results and Discussion
	Summary and Conclusion

	Decentralized Coordination of Distributed Energy Resources facilitated by Local Energy Markets and Deep Reinforcement Learning
	Introduction
	Related Work and Background
	Related Literature
	Autonomous Local Energy eXchange
	Reinforcement Learning

	Methodology and Evaluation
	Autonomous Local Energy eXchange as Markov Decision Process
	Shared Experience Recurrent Proximal Policy Optimization
	Experimental Design

	Results and Discussion
	Conclusion

	Conclusion and Future Research
	Conclusion
	Future Work

	Bibliography
	Appendix A: Appendices for Chapter 2
	Reinforcement Learning
	Net Billing
	T-REX
	System Architecture
	Data Fabric
	Clients
	Implementing TE in T-REX

	Double Auction Market Design for AI
	Trading Mechanism


	Appendix B: Appendices for Chapter 3
	Additional Information on Experiments

	Appendix C: Appendices for Chapter 4
	Hyperparameters


