
p-Cycle Spare Capacity Allocation for Large-Scale Networks

 by

Tiange Shi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Engineering Management

Department of Mechanical Engineering
University of Alberta

© Tiange Shi, 2021

ABSTRACT

Optical transport network failures are destructive, costly and inevitable. Therefore,

extensive work has been conducted on survivable network designs. Survivable network

designs are primarily built around network span failures, and a common approach for

improving network resilience against span failures is by adding redundancy in span

capacities. In recent years, a relatively new p-cycle survivable network design has drawn

much attention due to its ring-mesh dichotomy that allows p-cycles to provide ring-like

restoration speed with mesh-like protection efficiency. One approach to enhancing the p-

cycle survivable network design is by optimizing allocation of its spare capacities. The spare

capacity allocation problem optimizes spare capacity designs by placing selective pre-

enumerated candidate cycles onto the network to achieve 100% network survivability with

minimal allocation cost. Integer linear programming (ILP), heuristics, and meta-heuristics

are commonly-adopted approaches for optimizing the p-cycle spare capacity allocation

problem. Although extensive work has been conducted on p-cycle survivable network

designs and p-cycle SCA problems using either linear programming or heuristic methods,

there are still great opportunities for enhancement. For example, to the best of our

knowledge, there has not been a p-cycle spare capacity allocation method proposed and

tested particularly for large-scale networks.

 The work herein addresses the problem of p-cycle spare capacity allocation by

developing and evaluating two new algorithms. The first algorithm is a novel heuristic

algorithm for generating efficient candidate p-cycles, referred to as the disjoint-paths

Dijkstra cycle development (DDCD) algorithm. The DDCD is an iterative cycle development

ii

method that is capable of generating high-performance candidate p-cycles in networks of

any size. The DDCD outperforms some conventional cycle enumeration methods in small

and large networks and is particularly desirable for large-scale networks that are over 80

nodes. The second algorithm is a novel GA model for optimizing the p-cycle spare capacity

allocation problem, referred to as a GA-SCA model. The GA-SCA model provides a better

optimized spare capacity allocation solution than that of CIDA. The GA operators, especially

the mutation operator, are specifically designed and tuned to enhance the performance of

the GA-SCA model.

iii

To the ones who dream and dare to challenge.

iv

For my father, Xiaonan Shi, mother, Jiangling Zhao, and HH.

v

ACKNOWLEDGEMENT

 The work herein would not have been possible without the support, continuous

guidance, and infinite patience of my supervisors, Dr. John Doucette and Dr. Tetsu

Nakashima, who have set examples of excellence and professionalism.

 I would like to extend my gratefulness to my MSc. examining committee members,

Dr. Michael Lipsett and Dr. Dan Sameoto, for attending my virtual oral defence despite this

challenging time of a global pandemic and offering valuable advice.

 I would especially like to thank my research group members and friends, with whom

I have shared many discussions and good laughs. I would like to thank Samira Doostie and

Juan Tzintzun Ramos for countless fantastic conversations, discussions and collaborations.

I would like to thank Abril Alvaro Munos, Farhad Haftani, and Shirin Geranmayeh for

sharing knowledge and advice and always reminding me of the power of hugs (and virtual

hugs) and smiles. I would also like to thank Andres Castillo and Wenjing Wang for their

kind assistance and valuable advice when I started my thesis research.

 Finally, I would like to dedicate this thesis to my parents, Beth DeBlock and Joel

DeBlock, for their countless love and education. Thank you, HH, for being the wildest

dreamers with me.

vi

TABLE OF CONTENTS

CHAPTER 1 Introduction …………………………………………………………………………………………………….. 1
 1.1 Background ……… 1
 1.2 Motivation and Goals. ………………………………………………………………………………………………….. 3
 1.3 Thesis Outline …………………………………………………………………………………………………..…………. 3

CHAPTER 2 Transport Network Basics and Research ………………………………………………….…… 5
 2.1 Graph Theory in Transport Networks …………………………………………………………………….…….. 5
 2.2 Optical Transport Network Basics ……………………………………………………………………………….. 8
 2.3 Network Survivability …………………………………………………………………………………………….….. 12
 2.3.1 Survivable Rings …………………………………………………………………………………………. 13
 2.3.2 Mesh Network Survivability …………………………………………………………………………. 14
 2.3.3 p-Cycles ……………………………………………………………………………………………………… 17
 2.3.4 p-Cycles vs. Survivable Rings ……………………………………………………………………….. 18
 2.3.5 Network Protection vs. Network Restoration ……………………………………………..….. 19
 2.4 Mathematical tools - Selected Search Algorithms …………………………………………………………. 19
 2.4.1 Finding the Shortest Path - Dijkstra’s Algorithm …………………………………………… 19
 2.4.2 Finding All Distinct Routes - Depth-First Search Algorithm ……………………….…. 22
 2.5 Mathematical Tools - Linear Programming (LP) ……………………………………………………….…. 25
 2.5.1 Key Terminology ……………………………………………………………………………………..…. 25
 2.5.2 Integer Linear Programming (ILP) ………………………………………………………………. 26
 2.5.3 ILP Formulation in Survivable Network Designs ………………………………………..…. 27
 2.6 Mathematical Tools - Heuristics & Meta-Heuristics ………………………………………………….….. 29
 2.6.1 Heuristics vs. Meta-Heuristics ………………………………………………………………….….. 29
 2.6.2 Meta-Heuristics Basics & Overview ……………………………………………………………….. 29
 2.6.3 Meta-Heuristic in Survivable Network Optimization …………………………………..…. 32

CHAPTER 3 p-Cycles Basics and Studies ……………………………………………………………………….….. 34
 3.1 Introduction to p-Cycles ………………………………………………………………………………………….…. 34
 3.2 Types of p-Cycles …………………………………………………………………………………………………..….. 36
 3.3 Determining p-Cycle Efficiency ………………………………………………………………………………….. 38
 3.4 p-Cycle Network Design and Optimization ………………………………………………………………….. 42
 3.4.1 Candidate p-Cycles Enumeration …………………………………………………………….…… 42
 3.4.2 Candidate p-Cycles Selection ………………..…………………………………………………….. 47
 3.4.3 p-Cycle Protection Capacity Optimization: LP/ILP Approach ……………………….… 48
 3.4.4 p-Cycle Protection Capacity Optimization: Heuristics/Meta-Heuristics ………..… 51

CHAPTER 4 Genetic Algorithms Basics and Studies …………………………………………….……….… 54
 4.1 Introduction to genetic algorithms …………………………………………………………………………..…. 54
 4.1.1 GA Process Overview .……………………………………………………………………………….…. 54

vii

 4.2 Key Concepts in Genetic Algorithms ………………………………………………………………………..…. 57
 4.2.1 Genomes and Chromosomes …………………………………………………………………….…. 57
 4.2.2 Schemes and schemata …………………………………………………………………………….…. 57
 4.2.3 Encoding Chromosomes …………………………………………………………………………..…. 58
 4.2.4 Population and Generation ……………………………………………………………………….…. 59
 4.2.5 Fitness Function and Objective Function ………………………………………………….…… 61
 4.2.6 Selection and Elitism …………………………………………………………………………………… 61
 4.2.7 Crossover …………………………………………………………………………………………….…….. 64
 4.2.8 Mutation ………………………………………………………………………………………………..….. 68
 4.2.9 Other GA Operations …………………………………………………………………………………… 71
 4.2.10 Termination Criteria ………………………………………………………………………………..….. 72
 4.3 Genetic Algorithms in Network Survivability ……………………………………………………………..… 72
 4.3.1 Genetic Algorithms in p-Cycle Protection …………………………..…………………..……… 74

CHAPTER 5 Experimental Set-Up & Benchmarking ………………………………………………………… 77
 5.1 Experimental Network Models ………………………………………………………………………………….… 77
 5.1.1 Calibration Networks ……………………………………………………………………………….….. 78
 5.1.2 Test Case Networks ……………………………………………………………..……………………… 79
 5.2 Demand Models and Working Routing ……………………………………………………………………….. 80
 5.3 Computational Set-Up ……………………………………………………………………………………..……….. 80
 5.4 Experiment Benchmarking ………………………………………………………………………………….…….. 81

CHAPTER 6 A Novel Heuristic Method for p-Cycle Design ……………………………………….…..… 82
 6.1 Introduction …… 82
 6.2 A Novel Heuristic p-Cycle Enumeration algorithm ……………………………………………………..… 84
 6.2.1 Design Considerations ……………………………………………………………………………….… 84
 6.2.2 Disjoint-Paths Dijkstra Cycle Development (DDCD) …………………………………..… 85
 6.3 Experimental Set-Up …………………………………………………………………………………………..…….. 95
 6.3.1 Benchmarks and Test Cases …………………………………………………………………………. 96
 6.4 Experimental Results and Discussion ……………………………………………………………………….…. 97
 6.4.1 Calibration Network Models …………………………………………………………………….…… 97
 6.4.2 Small Test Case Networks (10-node to 40-node) …………………………………………… 99
 6.4.3 Large Test Case Networks (50-node to 140-node) …………………………………….…… 101
 6.4.4 Runtimes vs. Network Sizes …………………………………………………….………………..… 104
 6.5 Conclusions ………………………………………………………………………………………………………..…… 106

CHAPTER 7 Genetic Algorithms for p-Cycle Spare Capacity Allocation ………………………… 107
 7.1 Introduction ……..… 107
 7.2 Statement of Problem & Design Considerations ……………………………………………………….… 108
 7.2.1 Design Considerations ……………………………………………………………………………..… 109

viii

 7.3 Genetic Algorithm for p-Cycle Spare Capacity Allocation (GA-SCA) ……………………………… 110
 7.3.1 Chromosome Representation for GA-SCA ……………………………………………………. 110
 7.3.2 Initial Population for GA-SCA …………………………………………………………………..… 112
 7.3.3 Fitness Function for GA-SCA ………………………………………………………………….…… 114
 7.3.4 Selection & Elitism for GA-SCA ……………………………………………………….…….….… 115
 7.3.5 Crossover for GA-SCA ……………………………………………………………………….……….. 116
 7.3.6 Mutation for GA-SCA ……………………………………………………………………………..….. 118
 7.3.6.1 Mutation Operation Design - Cycle-Merging ………………………………..… 118
 7.3.7 Repair Mechanism for GA-SCA …………………………………………………………………… 120
 7.3.7.1 Repair Mechanism Design - Maximum-Matching …………………………… 121
 7.3.7.2 Repair Mechanism Design - Minimum-Cycle ………………………………… 124
 7.3.8 Next Generation ……………………………………………………………………………………..… 124
 7.3.9 Termination Criteria for GA-SCA ……………………………………………………………….. 125
 7.4 GA-SCA Experimental Set-Up ……………………………………………….……………………………..…… 125
 7.4.1 Test Networks for GA-SCA .…………………………………………………………………..…..… 125
 7.4.2 Overview of GA-SCA Tests for GA Operators Study ………………………………….…… 127
 7.4.3 Overview of GA-SCA Mutation Operators Study …………………………………………… 128
 7.5 Experimental Results and Discussion …………………………………………………………………………. 129
 7.5.1 GA-SCA Operators Study ………………………………………………………………………….… 129
 7.5.2 GA-SCA Mutation Operators Study ……………………………………………………………… 131
 7.5.3 Cycle-Merging Mutation: Benefits, Shortfalls, and Mitigation Plan ……………….… 133
 7.5.4 The Coupled Mutation Operator for GA-SCA ………………………………………………. 136
 7.5.5 Recommended GA Operators for GA-SCA on Large Networks ………………………. 139
 7.5.6 GA-SCA vs. CIDA vs. ILP on Large-Scale Networks ……….………………….…………… 139
 7.6 Conclusions ……..… 141

CHAPTER 8 Conclusions and Discussion ………………………………………………………………………… 143
 8.1 Summary of Thesis …………………………………………………………………………………………………… 143
 8.2 Research Contributions ……………………………………………………………………………………………. 145
References ……….…. 146
Appendix A Network Topology Graphs ………………………………………………………………….…………….… 153
Appendix B Network Topology Files (Nodes and Spans) …………………………………………………………… 156
Appendix C Model and Data Files for Spare Capacity Allocation ……………………………………….……… 176
Appendix D.1 Python Models for DDCD …………………………………………………………………………………… 179
Appendix D.2 Python Models for GA-SCA ………………………………………………………………………………… 185

ix

LIST OF TABLES

Table 5.1 — Features of calibration networks (USA and France) ..……………………………………………………. 78
Table 5.2 — Features of 14 test case networks …………………………………………………………………….…………. 79
Table 5.3 — Experimental benchmarking results …………………………………………..………………………………. 81
Table 6.1 — Network topologies used in selective past literature ………………………………………………..……. 83
Table 6.2 — Results comparison (DDCD, Grow, DFS) on USA/France networks ………………………….…… 98
Table 6.3 — Results comparison (DDCD, Grow, DFS) on small networks ……………….………………….….. 100
Table 6.4 — Results comparison (DDCD, Grow, DFS) on large networks ……………….…………………..….. 103
Table 7.1 — GA-SCA mutation operators tuning results (on USA) ..………….………………………………….…. 133
Table 7.2 — GA-SCA test results (on large networks) ..……………………………………………………………….…. 134
Table 7.3 — GA-SCA test results using coupled mutation operators (on USA) ..……..…………………….….. 137
Table 7.4 — GA-SCA + Grow test results (on large networks) ..…………………………….…………………….….. 140
Table 7.5 — GA-SCA + DDCD test results (on large networks) ..…………………………….…………………….…. 140

x

LIST OF FIGURES

Figure 2.1 — Illustrations of link and span …………………………………………………………………………………..… 6
Figure 2.2 — Illustrations of path and route …………………………………………………………………………………… 6
Figure 2.3 — Illustrations of span-disjoint and node-disjoint routes …………………………………………………. 7
Figure 2.4 — Illustrations of two-connected and bi-connected graphs ………………………………………………. 7
Figure 2.5 — Illustrations of Hamiltonian cycle and Eulerian cycle ………………………….………………………. 8
Figure 2.6 — USA long-haul backbone network …………………………………………………………………………..…. 9
Figure 2.7 — Working paths and spare paths in a network ………………………………………………………………. 11
Figure 2.8 — Illustration of UPSR protection mechanism ……………………………………………………………….. 13
Figure 2.9 — Illustration of BLSR protection mechanism ……………………………………………………….………. 14
Figure 2.10 — Illustration of span restoration …………………………………………..…………………………….……… 15
Figure 2.11 — Illustration of shared backup path protection ……………………………………………………..…….. 16
Figure 2.12 — Illustration of path restoration with stub-release ……………………………………………….…..…. 16
Figure 2.13 — Illustrations of p-cycle, on-cycle spans and straddling spans ……………………………………….. 17
Figure 2.14 — Illustration Dijkstra’s algorithm …………………………………………………………………….………… 21
Figure 2.15 — Illustration depth first search algorithm ……………………………………………………………….….. 23
Figure 2.16 — Example of a standard algebraic form of ILP ……………………………………………………………. 26
Figure 2.17 — Overview of a meta-heuristic algorithmic process ……………………………………………………… 31
Figure 3.1 — Illustration of a p-cycle ………………….…………………………………………………………………………. 34
Figure 3.2 — Illustration of p-cycle protection mechanism …………………………………………………….…….…. 35
Figure 3.3 — Illustrations of Hamiltonian p-cycle, simple and non-simple p-cycles …………………………. 36
Figure 3.4 — Illustrations of FIPP p-cycle and flow p-cycle ……………………………………………………………. 37
Figure 3.5 — Illustrations of simple and non-simple node-encircling p-cycles ………….………………………. 38
Figure 3.6 — Illustration of straddling link algorithm ………….…………………………………………………….…… 43
Figure 3.7 — Illustration of the Add algorithm ………….……………………………………………………………….….. 43
Figure 3.8 — Illustration of the Join algorithm ………….………………………………………………………………….. 44
Figure 3.9 — Illustration of the Expand algorithm ………….………………………………………………………….….. 45
Figure 4.1 — Overview of a genetic algorithmic process ………….……………………………………………………… 55
Figure 4.2 — Illustrations of binary-encoded chromosomes ………….……………………………………….………. 58
Figure 4.3 — Illustrations of permutation-encoded chromosomes ………….………………………………………. 59
Figure 4.4 — Illustration of a population of encoded chromosomes ……………..…………………………………. 60
Figure 4.5 — Illustration of roulette wheel selection ………….……………………………………………………..……. 63
Figure 4.6 — Illustration of one-point crossover ………….…………………………………………..……………………. 65
Figure 4.7 — Illustration of two-point crossover ………….…………………………………………………..……………. 66
Figure 4.8 — Illustration of uniform crossover ………….……………………………………………………………..…… 67
Figure 4.9 — One-point crossover applied on variable-length string chromosomes ………….…………….… 67
Figure 4.10 — Value-modifying mutation applied on fixed-length string chromosomes ………….………… 69

xi

Figure 4.11 — Permutation mutation applied on fixed-length string chromosomes ………….…………….…. 69
Figure 4.12 — Insertion and Deletion applied on variable-length string chromosomes ………….………….. 70

Figure 5.1 — Illustrations of calibration networks (USA and France) ………….…………………………….…….. 78

Figure 6.1 — Overview of DDCD algorithm mechanism ………….……………………………………………….…….. 86

Figure 6.2 — Illustration of double-shortest-path method ….……………………………………………….………..… 88
Figure 6.3 — Developing larger p-cycles using DDCD algorithm ………………………………………….………..… 91

Figure 6.4 — Illustration of DDCD algorithm verification step …………………………………………….………..… 94

Figure 6.5 — Runtimes comparison (DDCD + CIDA vs. Grow + CIDA) ………………………………………..…. 104

Figure 6.6 — Runtimes comparison (DDCD + ILP vs. Grow + ILP) ……………………………….………..…..…. 105
Figure 7.1 — Illustration of GA-SCA chromosome encoding ……………………………….…………………..…..…. 111
Figure 7.2 — Illustration of GA-SCA one-point crossover ……………………………….………….…………..…..…. 117
Figure 7.3 — GA-SCA one-point crossover with duplicate cycles ………………………….…………….………..…. 117
Figure 7.4 — Illustration of cycle-merging mutation for GA-SCA .……………………….…………….………..…. 119
Figure 7.5 — Illustration of GA-SCA test networks (USA and 30n45s) .…….………….…………….………..…. 127
Figure 7.6 — Overview of GA-SCA operators tuning (USA and 30n45s) .…….………….………….………..….. 130
Figure 7.7 — Overview of GA-SCA mutation operators tuning (USA) .…….………….………….…..………..…. 132

xii

CHAPTER 1. INTRODUCTION

1.1 Background

Network survivability is the capability of a network to maintain proper functioning in

the event of a network failure [1]. It is a fascinating topic to consider due to our growing social

dependency on telecommunication and a pivotal aspect to consider when designing optical

transport networks due to their ultra-high capacities [1]. With the advent of 5G technologies,

artificial intelligence, cloud computing, etc., modern life and business transactions depend

increasingly heavily on faster and more reliable network traffic. In the 2016-2020 ICT Market

Review and Forecast released by the Telecommunication Industry Associated (TIA), it was

reported that some rapidly growing markets would experience an increase of 13.7% compound

annual growth rate from 2015 to 2020. These markets include cloud computing services,

business ethernet, Internet of Things (IoT), network virtualization, and intelligent

transportation services, where IoT and network virtualization will experience more than 30%

compound annual growth rate [2]. This prediction indicates a significant increase in the Internet

demands in recent years and dramatic internet traffic growth that will continue in the years to

come. To support increasing volumes of data traffic, the Internet Protocol (IP) and optical

transport networks have become dominant forms of transmission [3].

Because significant volumes of data is carried on network traffic, any failures or

disruptions on the transport network may lead to tremendous financial loss and social impacts

on the services and transactions that rely on these infrastructures. For example, Amazon Web

Services (AWS) experienced a significant outage in their US East region that lasted over 20

hours in April 2011 [4]. Since AWS is a major cloud computing platform that provides cloud

services to a number of online sites and services, this major outage caused downtimes and

service interruptions to various popular online sites including Reddit, Quora, SCVNGR (now

known as LevelUp), Foursquare, etc. [5]. Based on a study by Cérin et al. [6] from the

International Working group on Cloud Computing Resiliency (IWGCR), some major cloud

service providers experienced an increase on annual downtime from 2012 to 2013. For example,

the downtimes at SalesForce and Microsoft Windows Azure almost tripled from 2012 to 2013

 1

(34.36 hours and 111.5 hours in 2012 to 84.72 hours and 272.04 hours in 2013, respectively) [6].

Therefore, designing networks with faster data transmission and better survivability are highly

desirable [2]-[3].

Despite the fact that optical transport network failures or disruptions are destructive and

costly, studies have shown that optical network outages and cable cuts are inevitable despite a

considerable amount of effort taken to physically protect the cables [3], [7]. A network failure

can occur at various network components, e.g., a node of a network, or a span of a network [1].

Because nodes of a network are often considered perfect, survivable network designs are

primarily built around network span failures [1], [5]. A common approach for improving

network resilience against span failures is by adding redundancy in span capacities, such as

adding spare capacity units on each network span. These spare capacity units do not carry any

traffic and are not cross-connected until restoration of a failure is needed [8]. Examples of such

survivable network designs include 1+1 automatic protection switching (APS) [9], survivable

rings [10], span restoration [11], path restoration [12], shared backup path protection (SBPP)

[13], and p-cycles [14]-[16]. Except for the 1+1 APS and survivable ring designs, allocation of

spare capacity is carefully optimized when designing survivable networks [17].

In recent years, the relatively new p-cycles survivable network design has drawn a lot of

attention. The p-cycles concept was proposed in the late 1990s [14]-[16] and has been widely

studied due to its ring-mesh dichotomy, which allows p-cycles to provide ring-like restoration

speed with mesh-like protection efficiency. Various studies have been conducted on p-cycle

designs and selection methods which will be elaborated further in CHAPTER 3 of this thesis.

Integer linear programming (ILP), heuristics, and meta-heuristics are commonly-adopted

approaches for optimizing p-cycle survivable network design problems [3]. Integer linear

programming is a type of linear programming where some decision variables are integers. It is

often solved by the branch-and-bound method, where a branching process explores the entire

solution space by creating new sub-problems with new bounds [18]. An ILP can provide an

optimal solution to a problem, however, the computational runtime increases extensively as a

problem gets more complicated [19]. A heuristic method is a problem-specific method that is

used for all or part of a problem [20]. Compared to LP or ILP, a heuristic method generally

provides sub-optimal solutions; however, it can solve a complex problem within a relatively

 2

shorter run time. Meta-heuristics are a type of heuristic method that are not problem-specific,

and that can be widely used in a wide variety of optimization problems [3]. They are high-level

structures or processes for solving optimization problems and can easily be customized into

case-specific problems.

1.2 Motivation & Goals

Although extensive work has been conducted on p-cycle survivable network designs

using either linear programming or heuristic methods, there are still great opportunities for

further exploration of this topic. For example, to the best of our knowledge, there has not been a

design proposed in particular for large-scale networks and tested using large test networks that

are over 100 nodes. Therefore, the primary focus of this work herein is to scale up and advance

the p-cycle protection design optimization problem for large-scale networks. In this thesis, we

will challenge and scale up the p-cycles designing problem for large networks using heuristic

and meta-heuristic methods. To be specific, a novel heuristic algorithm will be developed for

enumerating highly efficient p-cycles in large-scale networks. Also, a suitable genetic algorithm

model will be proposed for optimizing p-cycle network protection against single-span failures.

The research goals of this thesis can be generalized as the following:

1) Develop a novel heuristic p-cycle enumeration algorithm with strong performance

2)Propose a genetic algorithm model for p-cycle spare capacity allocation, including:

• Proposing suitable chromosome encoding and optimal GA operators

• Developing suitable repair mechanism for disrupted chromosomes

• Developing effective and problem-specific mutation operation

1.3 Thesis Outline

 The remainder of this thesis will provide a thorough discussion of relevant background

concepts regarding p-cycles and relevant mathematical tools, followed by experimental and

 3

computational set-ups, and two main contributions to the p-cycle network protection design

problem for large-scale network topologies.

 CHAPTER 2 introduces fundamental concepts and terminologies in transport network,

graph theory and network survivability which will be used extensively throughout this thesis.

This chapter also highlights some mathematical tools and algorithms (e.g., key search

algorithms, linear programming, heuristics and meta-heuristics), which will build a solid

foundation for developing our heuristic algorithm and GA model in later chapters of this thesis.

In CHAPTER 3, p-cycles fundamental concepts and metrics, and relevant previous

research and studies will be presented. Previous work on p-cycle pre-selection methods, p-cycle

enumeration methods, p-cycle protection design and optimization methods will be discussed in

detail in this chapter.

CHAPTER 4 will introduce a key meta-heuristic method called a genetic algorithm (GA).

Fundamental GA concepts, genetic operators designs, and applications of genetic algorithm in

optimizing p-cycle protection in network survivability will also be discussed.

CHAPTER 5 is devoted to introducing the experimental methods and computational set-

ups. The calibration network topologies (also referred to as “calibration networks”) and test case

network topologies used in the experiments conducted for this thesis works will also be

introduced in this chapter.

CHAPTER 6 will propose a new heuristic p-cycle design method, which is referred to as

disjoint-path Dijkstra cycle development (DDCD). Detailed case-specific experimental designs

and set-ups will be presented. The experimental results will be compared to a benchmark

heuristic method from the literature and a conventional depth-first search (DFS) approach.

CHAPTER 7 will present a meta-heuristic approach to solving the p-cycle spare capacity

allocation problem using genetic algorithm (GA). This novel GA design developed for this thesis

work is referred to as a GA-SCA model. Specific chromosome encoding and GA operator design

rationales (selection, crossover, mutation) will be explained in detail. The proposed GA-SCA

model will be applied to various test case network topologies that are up to 140 nodes.

Comprehensive experimental results and discussions will follow.

Finally, in CHAPTER 8, this thesis will conclude with a summary discussion of the main

contributions of this thesis work, as well as recommendations for future studies.

 4

CHAPTER 2. TRANSPORT NETWORK BASICS & METHODS

2.1 Graph Theory in Transport Networks

A graph can be denoted as G = (V, E), which has a finite set of vertices V = {v1, v2, v3, ...},

and a finite set of edges E = {e1, e2, e3, …} [21]. Each edge in E connects two vertices in V and can

be referred to as e1 = {v1, v2}. An edge in E (e.g., e1) connects two adjacent vertices in V (e.g., v1,

v2). If v1 is considered the origin of the edge e1 and v2 is the destination, and swapping these

designations will change properties of the edge, then e1 is a directed edge. A directed edge is

drawn using an arrowhead pointing its direction. A graph with at least one directed edge is

referred to as a directed graph. An undirected graph is a graph with no directed edge. In the

case of an optical transport network, the terms nodes and spans are used to refer to vertices and

edges, respectively [3]. In the context of this thesis, all transport network models are illustrated

and treated as undirected network graphs.

A graph is considered a weighted graph if a value wei is associated with each edge ei, and

wei is considered the weight of the edge. In transport networks, weights of edges may be span

costs, distances, capacities, etc. [3] Where edge weights indicates span capacities, the graph is

considered a capacitated graph.

The number of edges incident on a vertex is referred to as the degree of the vertex. In

transport networks, degrees of vertices are referred to as nodal degrees. The degree of a node is

determined by the number of spans traverses that node. A network’s average nodal degree can

be calculated by = , where |E| is the total number of edges (spans) and |V| is the total

number of vertices (nodes) [3].

Figure 2.1. illustrates two key terms used in transport networks, a link and a span. A link

is the fundamental unit of capacity where nodal switching devices (OXC, ADM) function to

interconnect capacity [7]. A span refers to a physical unity of a collection of such links in parallel

between a pair of adjacent nodes. A failure of a span will cause the failure of all the links

associated with the span simultaneously [3].

d̄ 2 * |E |
|V |

 5

 Figure 2.1. Illustra0on of a link and a span.

Figure 2.2 distinguishes a route from a path in the context of transport networks. A route

refers to a general outline of the sequence of connected spans, whereas a path is a particular

cross-connected sequence of links that are embedded within a route. Therefore, a route can

consist of multiple paths. As shown in Figure 2.2, there are two paths on the same route.

 Figure 2.2. Illustra0on of a path and a route.

Disjoint Routes

Two routes are considered disjointed if they do not share any element in common. Two

span-disjoint routes do not share any span; however, they may share common nodes other than

their end nodes (as shown in Figure 2.3(a)). In the case of node-disjoint routes, two routes share

no common nodes except the two end nodes (as shown in Figure 2.3(b)). In an undirected graph

G = (V, E), survivability of the graph is determined by the number of node-disjoint paths (xij)

 6

between pair of nodes i, j. To be specific, transmission is ensured between i and j until xij -1 of

nodes fail [21].

 Figure 2.3 Illustra0ons of a span-disjoint route (a) and a node-disjoint route (b) between an
 origin node and des0na0on nodes.

Two-connectivity vs. Bi-connectivity

As was explained in [3], a network graph is a valid two-connected graph if there are at

least two span-disjoint routes between every pair of nodes (see Figure 2.4 (a)). Compared to a

two-connected graph, a valid bi-connected graph has at least two node-disjoint routes between

every node pair (see Figure 2.4 (b)). In the context of transport networks, two-connectivity is

required for any single span failure survivability in a transport network, whereas bi-connectivity

is required for survivability of any single-node failure.

 Figure 2.4 Examples of (a) a two-connected graph and (b) a bi-connected graph.

 7

Hamiltonian Cycle vs. Eulerian Cycle

A Hamiltonian cycle is a cycle that traverses all the nodes in a graph where each node is

passed through once and only once, whereas a Eulerian cycle is a cycle that visits all the spans

once and only once [3] (see Figure 2.5). In a Eulerian cycle, a node may be traversed more than

once. As shown in Figure 2.5, the Eulerian cycle F-G-D-B-F-E-A-B-C-D-F passes through nodes

B and D twice. A Eulerian cycle protects every span of a network with an on-cycle relationship. A

Hamiltonian cycle also has the potential to protect every span of a graph, however, through both

on-cycle and off-cycle protection relationships [3]. This is a particularly important concept in p-

cycle network protections. As shown in Figure 2.5, the Hamiltonian cycle F-G-D-C-B-A-E-F can

also protect the spans B-F and B-D which straddle the cycle. CHAPTER 3 of this thesis will

further discuss the concepts and mechanisms of p-cycles and straddling spans.

 Figure 2.5 Examples of a Hamiltonian cycle F-G-D-C-B-A-E-F (leL) and a Eulerian cycle
 F-G-D-B-F-E-A-B-C-D-F (right).

2.2 Optical Transport Network Basics

A transport network (also known as a backbone network) provides fast and efficient

network data transmission for various types of data, such as voice, images, videos, etc. Sets of

multi-channel point-to-point data transmissions are managed through transport networking, in

order to create a virtual network domain for other services to operate on [22]. Current optical

transport networks, using dense wavelength division multiplexing (DWDM) [22] and optical

 8

cross-connects (OXC) [17], allow a massive amount of data to be transmitted at ultra-high speed

[3]. A transport network consists of nodes and spans that connect two neighbouring nodes. In

the case of an optical transport network, a node can be an OXC device, an add/drop multiplexer

(ADM) device, or an Internet Protocol (IP) router. A span generally refers to an optical fibre

cable. Figure 2.6 illustrates an example of an optical transport network topology, which is the

US long haul network with 28 nodes and 45 spans [78]. The nodes and spans represent various

cities and connecting fibres, respectively.

In transport network operations, various network components play crucial roles.

Although a detailed introduction of all these key components is beyond the scope of this thesis,

some key terms and definitions regarding high-level optical transport networks, which will be

referenced throughout this thesis, are explained in detail as follows:

 Wavelength Division Multiplexing (WDM)

 Wavelength division multiplexing (WDM) is an optical transport network technology

that has favourable long-haul network transport capacity efficiency. In WDM, each optical fibre

is capable of carrying multiple optical carrier wavelengths [22]. Each wavelength has its distinct

 9

Figure 2.6 US long haul network with 28 nodes and 45 spans

payload (for instance, a formatted signal). Different payloads are appropriately spaced apart and

are modulated onto each optical carrier. With growing service demands over long haul

transportation, it is suggested installing WDM systems are more economical than installing and

upgrading fibre systems [3].

A preferred such system is called dense wavelength division multiplexing (DWDM),

where a larger amount (> 40) of wavelengths are carried on each fibre with tighter frequency

spacing [80]. In contrast to DWDM, an earlier technology which is referred to as a coarse

wavelength division multiplexing (CWDM) allows only two to four wavelengths with wider

frequency spacing [3].

Add/Drop Multiplexer (ADM) vs. Optical Cross-Connect (OXC)

The ADM and the OXC systems are two types of nodal switching devices in optical

transport networks, where fibre optic cables are connected to [17]. An ADM line-terminating

device has two line-rate interfaces, East and West lines. An ADM also has local add/drop ports

to allow tributary signals to enter (add) or exit (drop) the main line-signals that pass through the

device from West and East lines. ADMs are generally used in survivable ring designs, such as in

bidirectional line-switched rings (BLSR) [10] and unidirectional path-switched rings (UPSR)

[10]. An OXC terminates and switches optical signals in a fibre optic network, and are usually

used in mesh-based survivable networks.

Network Demands

Demands on a transport network refer to an aggregation of all traffic flows from an

origin node to a destination node of the transport network [24]. A demand unit is expressed in

terms of the number of transmission capacity units required by the traffic flow aggregates, such

as whole lightpaths and OC-48 [24]. OC-48 standards for a particular category of Optical

Carrier (hence, OC-n) line with transmission rate of 2488.32 Mb/s (48 multiplies the base rate

of 51.84 Mb/s), where an optical backbone network is usually managed [24]. In the context of

this thesis, one unit of traffic demand takes on a whole lightpath, hence one unit of working

 10

capacity on a span between an origin node and a destination node of a network. In addition,

only integer units of optical network traffic demands will be considered in this thesis unless

stated otherwise.

Working Path vs Spare Path

A working path is a path that carries traffic demands (or, units of working capacity)

during normal operations. A protection path, however, carries spare traffic capacity (or units of

spare capacity) that is available for deployment when a failure occurs [25]. In general, spare

capacities may refer to protections fibres in APS or rings or spare channels designed in mesh-

based restorable networks [3]. Lengths of the working and spare paths vary based on the

number of spans along the path between the origin node and the destination node. A network’s

working capacity status and spare capacity status will be looked at while assessing a network’s

capacity efficiency, which is the reciprocal of the network redundancy.

Figure 2.7 illustrates a working path of D-C-B and outlines a spare path of D-G-F-B that

can be used to restore the working path in case of a failure. The spans D-C and C-B carries 4 and

3 units of working capacity, respectively. The spans D-G, G-F and F-B carry 4, 4, and 5 units of

spare capacity that are available for restoring a failure.

 Figure 2.7 Example of a working path (and units of working capacity) and a spare
 path (and units of spare capacity) in a network.

 11

5

Network Redundancy

In the context of this thesis, a redundancy calculation is used to measure a network’s

efficiency. When all span costs (ci) are equal (c1 = c2 = c3 = c4 = ...) or are not available for

efficiency calculation, redundancy of a transport network is calculated as a capacity redundancy

(Rcap) of the network. Rcap is defined as the total units of all the spare capacity (Si) allocated on

all spans (S) divided by the total units of all the working capacity (Wi) across all spans of the

transport network [7], as shown below in Eq. 2.1.

 (Eq. 2.1)

When capacity costs are considered, and span costs are not identical, capacity cost redundancy

(Rcost) is calculated for transport network design efficiency. The Rcost is defined as the total cost

of spare capacity (summation of costs of spare capacity on each span) divided by the total cost of

working capacity (summation of costs of working capacity on each span)(Eq. 2.2) [7].

 (Eq. 2.2)

While designing a survivable transport network in this thesis, network redundancy

calculation will be taken into consideration (Rcap or Rcost depending on the design of the span

costs in test networks) because the calculation indicates how efficient the design is in terms of

using its spare capacity. A lower redundancy indicates a lower total spare capacity is used to

protect the total working wavelengths, hence better efficiency. For the same network topology

and the same set of network traffic demands, a survivable ring network design will have higher

redundancy than a mesh-based design or a p-cycle design.

2.3 Network Survivability

 As mentioned in CHAPTER 1, Network survivability is the capability of a network to

maintain proper functioning in the event of a network failure [1]. A network failure event can be

either a node failure or a span failure [21]. In practice, a node failure of a network can be a

Rcap = ΣSi / Σ Wi, ∀i ∈ S

Rcost = Σ(Si × ci) / Σ(Wi × ci), ∀i ∈ S

 12

failure of a data centre, a city, or a switching point. A span failure, however, is a complete cable

cut between two nodes [21]. Failure of a node will cause the failure of all spans that traverse that

node simultaneously. As discussed previously in this thesis, network failures are costly and

inevitable; therefore, studying and advancing survivable network designs that restore or protect

network failures is much needed [17]. Over the past two decades, various types of network

restoration and protection mechanisms have been studies by researchers [9]-[13], [17]. In this

section herein, we will introduce some common survivable network schemes.

2.3.1 Survivable Rings

Survivable rings are pre-configured closed-loop structures (ring-like) that use ADM

nodal devices to switch optical signals. In a survivable ring structure, half of the transmission

capacity can be used for working lightpath traffic routing [10]. In contrast, the other half is

reserved as a backup channel for rerouting disrupted lightpath when a failure occurs.

There are two types of survivable rings: unidirectional path-switched rings (UPSR) and

bidirectional line-switched rings (BLSR) [3]. A UPSR contains a working fibre and a protection

fibre. The working fibre transmits the working signals in one direction, and the protection fibre

transmits the backup signal in the opposite direction. In the event of a single span failure, two

end nodes next to the failure perform a tail-end transfer and switch the signals to the backup

channel to reroute the signal around the ring [7]. Figure 2.8 shows a UPSR during normal

operation (left) and its protection switching operation after a failure occurs (right).

 Figure 2.8 Illustra0on of UPSR protec0on mechanism aLer a failure occurs.

 13

Working fibre

Protection fibre

Failure

Before
Failure

After
Failure

In a bidirectional line-switched ring, a failure may involve a span or several spans. When

a failure occurs, working demands are protected through a loop-back mechanism. Figure 2.9

shows a 4-fibre BLSR where a pair of bidirectional fibres is designated for working demands and

a separate pair is for protection. When a failure occurs, the entire working demands are looped

back from working fibres to the protection fibres at the nodes on both ends of the failed section

[3]. Because the protection signal is share across the entire ring and the same path (unoccupied

spans) can be reused for other demand units, a BLSR is more capacity-efficient than a UPSR

under general demand patterns [3], [10].

 Figure 2.9 Illustra0on of BLSR protec0on mechanism aLer a failure occurs.

2.3.2 Mesh Network Survivability

Mesh network survivability is a type of network survivability scheme, where protection

or restoration of paths utilizes spare capacities distributed across entire network instead of

following pre-constructed capacity structure (as in survivable rings) [17]. Sharing of spare

capacities allows survivable network designs with lower capacity redundancy [17]. The working

paths routing in mesh network survivability usually follow a shortest path method [3].

Mesh network survivability mechanisms can be further categorized under localized and

end-to-end restoration and protection mechanisms [25]. Localized restoration refers to the

 14

Working fibre

Before
Failure

After
Failure

Protection fibre

Failure

Loop Back

survivability mechanism where the restoration paths are constructed between the two end nodes

that are adjacent to the failure itself [17]. Span restoration is an example of a localized mesh

restoration mechanism [11], where a set of local restoration paths are formed between

immediate end nodes of a failed span to re-route the demands as illustrated in Figure 2.10.

 Figure 2.10 An illustra0on of span restora0on.

End-to-end restoration or protection mechanisms establish spare routes between origin

and destination nodes for any affected demand units [17]. This approach effectively deploys

more network resources (e.g., exploring more disjoint routes or utilizing unoccupied existing-

working routes). Therefore, an end-to-end restoration or protection scheme tends to be more

capacity-efficient than a localized restoration mechanism [17], [25]. Shared backup path

protection (SBPP) [13] and path restoration (PR) [12] are examples of end-to-end restoration or

protection schemes. In SBPP, a set of end-to-end backup routes are formed and are fully disjoint

from corresponding working routes. By doing so, capacity efficiency may be compromised.

However, SBPP allows the sharing of spare capacities on the backup routes and allows activation

of signal switchover by affected end nodes without prior knowledge of a failure [13]. Therefore,

SBPP is considered “failure-independent” and is also referred to as failure independent path

protection (FIPP). As shown in Figure 2.11, node pairs C-E and D-G route their demands via

completely disjoint working paths (C-A-E and D-G, respectively) as drawn in solid lines.

Therefore, no single-span failure will trigger both working paths (C-A-E and D-G) to fail at the

same time so that their backup paths (dotted lines) will be occupied simultaneously. In this case,

both backup paths can share the spare capacity on their common span B-F.

 15

 Figure 2.11 An illustra0on of shared backup path protec0on.

Path restoration (PR) is also an end-to-end restoration scheme. However, unlike in the

case of an SBPP, the formation of end-to-end backup routes occurs in real-time in response to

an actual failure occurs on a working path [12]. Therefore, PR is considered “failure-dependent”.

Because the failure is known prior to restoration, it is possible to re-use the working capacity on

the surviving segments of the affected working route. This special mechanism of “releasing” the

surviving “stub” portions to be re-used for restoration is referred to as “stub-release“, which

makes it the most capacity-efficient survivability mechanism [12]. Figure 2.12 shows a path

restoration with sub-release. C-B-F and C-B-A-E are two working paths that share a common

failure (a cut on span C-B). With stub-release, the restoration paths C-D-B-F and C-A-E each

picks up a portion of the surviving working paths (B-F and A-E, respectively) and re-use their

working capacities for restoration.

 Figure 2.12 An illustra0on of path restora0on with stub-release.

 16

2.3.3 p-Cycles

As discussed in previous sections, survivable rings may be preferred due to simpler

mechanisms and faster restoration processes; however, they are less capacity-efficient than

mesh-restorable network designs. Mesh network survivability schemes are favoured for their

enhanced capacity efficiency, despite relatively longer restoration time [17].

p-Cycle protection is based on the optimal formation of p-cycles in the spare capacity of a

mesh-restorable network, which was proposed in [14]-[16]. The p-cycles are formed prior to any

network failures and are formed out of the previously un-connected spare links of a mesh-

restorable network [14]. Figure 2.13 (a) illustrates a p-cycle (bolded), where the spans traversed

by the p-cycle are on-cycle spans. A p-cycle provides one unit of spare capacity to all the on-cycle

spans and offers two units of spare capacity for the spans that straddle over the cycle. This type

of spans, which has its two end nodes on the cycle but not the span itself, is referred to as

straddling spans to the p-cycle. Straddling spans carry two working paths for each protection

path on the p-cycle they straddle, but they do not retain any spare capacity themselves [3].

Figure 2.13(b)-2.13(c) indicate two scenarios where a p-cycle can protect a span failure. When an

on-cycle span fails (as shown in Figure 3.2(b)), the surviving portion forms one restoration path

between both nodes adjacent to the failure. This protection operation is similar to that of a

bidirectional line-switched ring. In Figure 3.2(c), if a failure occurs not on any part of the p-cycle

but on a span that straddles the p-cycle, two restoration paths will be available for restoring the

failure around the failed spans.

Figure 2.13 (a) a p-cycle. (b) a failure occurs on an on-cycle span, and (c) a failure occurs on
a straddle span.

 17

p-Cycle is a relatively new network survivability scheme that combines both ring-like

restoration speed and mesh-like protection efficiency [14]-[16]. It is “ring-like” mostly because

the topology of a p-cycle is similar to that of a ring. Additionally, the signal switching

mechanism of a p-cycle is functionally similar to that of a BLSR. The restoration speed of a p-

cycle depends on the time taken for two end nodes to perform signal switching from a failed

working path to a pre-cross-connect protection path. This resembles the mechanism of a

survivable ring where routing of the protection path is determined before a failure occurs.

Despite its ring-like signal switching mechanism and restoration time, a p-cycle is more

structurally accessible for restoration in more ways, which contributes to its “mesh-like”

efficiency [14]. Details regarding p-cycles will be further discussed in CHAPTER 3 of this thesis.

2.3.4 p-Cycles vs. Survivable Rings

Even though rings and p-cycles share some similarities topologically and functionally,

various studies have discussed the comparison between rings and p-cycles in optical networks

[26]-[28]. Some studies have suggested more efficient spare capacity utilization in p-cycles

protection as compared to that of ring protections [29]. In general, a p-cycle protection scheme

is a more plausible protection mechanism in the following aspects:

Firstly, when a span on a p-cycle fails, two end nodes adjacent to the failure are involved

in switching the traffic signals to the protection path. No real-time signalling is needed between

the two end nodes for the switching (unlike in rings) [26]. Secondly, in survivable rings, the

protection path routing must comply with the working routing and is structurally restricted by

it. However, compared to rings, p-cycles are formed in the sparing capacity pool of a network,

which does not collide with the routing of working paths [26]. Additionally, p-cycles have the

flexibility to be restructured and modified, whereas rings cannot be modified once they are

deployed [27]. Finally, p-cycles can provide network protection with redundancy less than

100%, whereas ring-based protection has a redundancy of at least 100%. With its capability to

protect straddling spans, p-cycles can provide more efficient overall protection to the whole

network [27].

 18

2.3.5 Network Protection vs. Network Restoration

Previously, there have been two types of survivability mechanisms against network

failures that we used to differentiate from one another: network protection and network

restoration. "Network protection” refers to the type of network survivability mechanism where

the cross-connections and allocation of spare capacities are pre-determined. The backup routes

are determined prior to a failure [14]. Some survivable network schemes provide dedicated

protection where each traffic demand is protected by a dedicated backup path (e.g., in 1:1 APS),

whereas some provide shared protection (e.g., in SBPP). “Network restoration” does not require

the provision of spare capacity in advance. In response to a network failure, network restoration

schemes allow an alternative route to be configured in real-time to restore each failed

connection (e.g., in span restoration and path restoration).

In recent years, “network protection” and “network restoration” are often used

interchangeably. Going forward in this thesis, we will be using these two terms interchangeably.

2.4 Mathematical Tools - Selected Search Algorithms

2.4.1 Finding the Shortest Path - Dijkstra’s Algorithm

Dijkstra’s algorithm is a search algorithm that finds the shortest path between a pair of

nodes in a weighted network with non-negative edge weights, and it can be applied in either a

directed or an undirected graph [30]. The problems discussed in this thesis will simulate the

real-world network cases with non-negative edge weights (e.g., Euclidean distances). Therefore,

studies conducted in this thesis will be using Dijkstra’s algorithm to find the shortest path from

an origin node to a destination node [30]-[31]. Dijkstra’s algorithm starts at a node of origin and

explores the entire network in a process as outlined in the following steps [30]-[31]:

 19

Step 1: The process starts at a node of origin. Scanning all the neighbouring nodes that

are adjacent to the node of origin (also referred to as the predecessor node) and assign them

temporary labels in the format of {T, total distance to the node of origin, predecessor node ID},

where “T” represents a temporary label.

Step 2: Choose the temporarily labelled node with the smallest total distance from the

node of origin and replace the temporary label with a permanent label in the format of {P, total

distance to the node of origin, predecessor node ID}, where “P” stands for a permanent label. If

more than one temporarily labelled node has the same smallest total distance, which indicates

more than one shortest path, we can randomly pick one of them. If the permanently labelled

node has no neighbouring nodes, skip it and move on to the next permanently labelled node.

Step 3: Continue scanning all the adjacent nodes of the newly permanently labelled node.

Assign temporary labels to the nodes that are not yet labelled and skip the ones with permanent

labels. For previously labelled nodes, update their temporary labels if the new total distances to

the node of origin are smaller than previously assigned values.

Step 4: Repeat Steps 2 and 3 until the node of destination is permanently labelled.

Obtain the shortest path from the node of origin to the node of destination by following along all

predecessor nodes in permanent labels.

Figure 2.14 illustrates an example of finding the shortest path between Node 1 to Node

10 using Dijkstra’s algorithm in a network with 10 nodes and 20 spans (10n20s). Figure 2.14(a)

presents the network topology where each span weight (Euclidean distance between two end

nodes of a span) is indicated next to each span. Figure 2.14(b) tabulates the scanning process as

described above in Steps 1-4. Therefore, the shortest path between Node 1 to Node 10 in the

10n20s network is {Node 1 → Node 4 → Node 8 → Node 10} with the shortest distance of 7.

 20

Figure 2.14 Example of Dijkstra’s algorithm in a network with 10 nodes and 20 spans.

A pseudo-code for Dijkstra's algorithm [30] can be generalized as follows:

function Dijkstra(Graph, source):

 initialize node set N

 for each vertex v in Graph:

 initialize distance[v], visited[v] as empty

 add v to N

 distance[source] ← 0
 while N is not empty:

 u ← node in N with min distance[u]
 remove u from N

 for each neighbour v of u:

 21

(b)

(a)

 distance2 ← distance[u] + length(u, v)
 if distance2 < distance[v]:

 distance[v] = distance2

 visited[v] = u

return distance[], visited[]

In p-cycle enumeration problems, Dijkstra’s algorithm can be used to generate eligible p-

cycles [32]-[34] by applying the algorithm twice between a pair of nodes. For example, Zhang

and Yang [32] proposed a heuristic p-cycles generation algorithm where a p-cycles is formed by

running Dijkstra’s algorithm twice consecutively on a pair of origin-destination (O-D) nodes to

generate two node-disjoint paths. The two node-disjoint paths are then joined to form a bi-

connected cycle with one straddling link. Dijkstra’s algorithm is also used for working path

routing in various p-cycle protection optimization studies [32]-[37].

2.4.2 Finding All Distinct Routes - Depth-First Search (DFS) Algorithm

Depth-first search (DFS) algorithm is a search algorithm used for a thorough exploration

of all the reachable vertices of an undirected or directed graph. The algorithm starts at an

arbitrary root node on a graph, exploring all neighbouring nodes (either towards the left side of

the graph or to the right side of the graph) and spans as “deep” as possible until all the nodes

and spans on the current path are explored [38]. If there is any unexplored nodes remain in the

graph, the DFS process will start to backtrack to the next reachable unexplored node. The entire

search process is repeated until all the nodes in the graph are explored. During the search, nodes

in a graph can be “marked” with different colours indicating their status [38]. For example, all

nodes are white initially (“unexplored”) and are marked grey once they are “discovered”. Once

exploration of a node and its adjacency list is completed, the node will be coloured black. The

output of a DFS algorithm is a depth-first forest with a collection of spanning tree [38].

Figure 2.15 illustrates an overall search process of a DFS algorithm. In this example, the

search process starts at Node A in the original graph (as shown in Figure 2.15(a)) and explores

the network from the left side (Node A → Node B). Figure 2.15(b) outlines the full details of the

search process. The solid directed lines marks the forward edges that point from a node of

 22

origin to a descendant node, whereas the dotted directed lines indicates the back edges which

point from a node to its ancestor node. The numbers next to the directed lines indicate its

search sequence. For example, the forward edge of “Node A → Node B” is the first edge explored

during the process whereas the back edge of “Node B → Node A” is explored at the 12th step.

 23

Figure 2.15 Example of the depth-first search algorithm.

Pseudo-code for a classic DFS algorithm [38] is outlined as follows, where the graph G

can be either a directed graph or an undirected graph:

function DFS(G):

 for each vertex u ← V[G]:
 do colour[u] ← WHITE
 pred[u] ← null
 for each vertex u ← V[G]:
 if colour[u] == WHITE:

 do DFS-Visit(u)

function DFS-Visit(u):
 colour[u] ← GREY
 for each v adjacent to [u]:

 if colour[v] == WHITE:

 pred[v] ← u
 DFS-Visit(v)

colour[u] ← BLACK

In the above pseudo-code, whenever a vertex v is discovered as a result of scanning the
adjacency list of a predecessor vertex u (already explored), this action is recorded as setting the
predecessor field of pred[v] to u (pred[v] ← u). In addition, all vertices are initialized with
colour WHITE and are updated as GREY once they are “discovered”. Once exploration of a
vertex is completed, the vertex is labelled as BLACK.

In p-cycle protection design problems, DFS algorithms can be used to enumerate sets of

candidate cycles as a preparatory step for the subsequent cycle placement process[33]-[34],

[39]-[40] or for the working path routing [39]. In addition, DFS algorithm can also be used find

the kth shortest path by conducting a topological sorting because it is capable of finding all the

paths in a network [3], [25]. In this thesis herein, the depth-first search algorithm will be

implemented to enumerate candidate cycles in CHAPTER 6 as one of the benchmark algorithms

to be compared with our novel heuristic algorithm.

 24

2.5 Mathematical Tools - Linear Programming

 2.5.1 Key Terminology

 A linear programming (LP) method is a type of mathematical programming method

used for planning decisions, where an objective function is optimized (e.g., maximized or

minimized) and one or more constraints are satisfied [19]. A linear programming model is a

constrained optimization model which include decision variables, an objective function, and

constraints [19]. Optimization is a process of searching for the best solution(s) to a particular

operations research problem; operations research refers to a scientific decision making process

that aims at pursuing the best way to plan and operate a system [19], [41].

In a linear programming model:

 An objective function is a function that represents a problem to be either maximized or

minimized, and it reveals how much each decision variable contributes to the value to be

optimized [19]. The contribution to the objective function from each decision variable is

proportional to its value [3]. An objective function is usually denoted by f (x).

 Constraints are the limitations and conditions that must be satisfied in search of

solutions [19]. Each constraint of a LP model includes one of the three relationships: “≤”, “≥” or

“=” [19]. “≤” means that the constraint function on the left-hand side (LHS) of the relationship is

less than or equal to the right-hand side (RHS). “≥” indicates that the LHS of the constraint

relationship appears to be greater than or equal to the RHS. Whereas, in a “=” relationship, the

LHS and RHS are equal. For example, a constraint may look like f1 (x) ≥ a1 or f2 (x) ≤ b1.

 Decision variables are values that must be determined to solve an optimization problem.

They are under our control and their values have direct impacts on performance of an LP model

[3]. Decision variables are usually represented by xi = {x1, x2, x3, …, xn} for a problem with n

variables. A continuous decision variable refers to a decision variable that can take on either a

fractional value or an integer value [19].

 The objective function and all constraints in a LP model are linear, and the decision

variables are continuous [3]. LP models can be solved using the simplex method, which finds the

 25

optimal feasible solution in a cascade of pivot moves and matrix operations [19]. A feasible

solution satisfies all constraints on the variable values [3]. An optimal solution for a LP model is

the feasible solution that provides the best value to the problem’s objective function [19].

 A decision-making environment for LP models can be either deterministic or

probabilistic. In a deterministic decision-making environment, the uncertainty about the

decision outcome is so trivial that it can be ignored [19]. On the contrary, a probabilistic

environment is where the uncertainty about the decision outcome is significant enough that it

requires special consideration [19].

 2.5.2 Integer Linear Programming

 When one or more of the decision variables are required to be integers, the mathematical

programming problem is referred to as an integer linear program (ILP) [3]. A pure integer

programming problem is an ILP where all decision variables are integers. A mixed integer

programming (MIP) problem, however, refers to an ILP where some decision variables are

integers and some are continuous. Integer variables are the variables that must have integer

values, whereas, binary variables are a type of variables whose value must be either 1 or 0.

 An ILP or LP can be reduced to a standard algebraic form as shown in Figure 2.16.

Unless otherwise specified, all LPs discussed in this thesis are ILPs, and they are pure ILPs in

most cases.

 26

Figure 2.16 Example of a standard algebraic form for an ILP.

 As mentioned briefly in the CHAPTER 1 of this thesis, an ILP model is typically solved by

the branch-and-bound method. In the branch-and-bound method [18], the “branching” process

creates new sub-problems with new bounds. The “bounds” are used to snip off any branch LPs

that do not contain an overall optimal solution. Branching continues down on each sub-problem

until all the branches are explored, and the best integer solution is found.

 2.5.3 ILP Formulation in Survivable Network Design

 ILPs are formulated to solve optimization problems in various survivable transport

network designs (i.e., span restoration [11], path restoration [12], SBPP [13], p-cycles [14]).

Given a network topology, a set of working traffic demands, and any constraints that must be

satisfied, this type of ILP formulations finds the minimum cost associated with working and

spare capacity distribution. In these formulations, the cost of placing the required capacity units

in the network is minimized. Constraints that must be satisfied include: ensuring full working

lightpath routing and achieving 100% restorability to single-span failures [3].

 To optimize this type of network design problem, we can adopt either a single-step or

two-step approach. The single-step approach to optimizing a survivable network design problem

is generally referred to as a joint capacity allocation (JCA) problem. The JCA optimizes the

working units routing in conjunction with the allocation of spare capacities, so that the total

capacity cost (working capacity plus spare capacity) will be minimized [17], [26]. The spare

capacity allocation (SCA) problem, on the other hand, is a two-step approach where the

working paths are usually routed in advance via preferred routing methods, such as the shortest

path method [26] or the DFS algorithm [32]-[39], [42]-[43]. Given the working capacities, the

allocation of spare capacities with minimum cost will be determined to ensure 100% protection

for all working paths.

 To demonstrate how an ILP may be formulated to optimize a survivable network design,

we will provide an example of a SCA problem in a span-restorable network. The SCA problem in

a span-restorable network can be formulated using an arc-path approach [11], [44]. An arc-path

approach assumes that all distinct eligible restoration routes are already enumerated and

working demands are routed. Based on specific spare capacity values on each span , the model

 27

optimizes assignment of restoration flows over eligible restoration routes that crosses each span

in a network topology so that the total cost of spare capacity allocation is minimized. The ILP

formulation of arc-path approach of SCA in span-restorable network is as shown below.

Objective function: Minimize (Eq. 2.1)

Subject to: sj ≥ Ɐ(i,j) ∈ S2 i≠j (Eq. 2.2)

 wi = (Eq. 2.3)

All variables are non-negative and integer

In the model presented above, S is a set of all network spans and Pi is a set of distinct

eligible routes available to carry restoration flow for failure on span i (Ɐi∈ S). i is a failed span in

a network scenario, whereas j refers to a span on an eligible restoration route p. In the objective

function (Eq. 2.1), ci and sj are the cost of each unit capacity and the number of spare capacity

on span i, respectively. The objective function minimizes the cost of placing spare capacities to

restore a failed span i. In the first constraint (Eq. 2.2), xi,j,p is a binary parameter that equals one

if span j on the restoration route p traverses the failed span i, zero otherwise. fi,p is the number of

restoration flow assigned to the eligible restoration route p for failure of span i. The sj on the left

hand side indicates the number of total spare capacities on span j. This constraint ensures that

the spare capacities on span j can support all the eligible restoration routes that cross the span i.

The second constraint (Eq. 2.3) ensures that the total protection provided by the restoration

route p for each failed span i is enough to fully restore the working capacity on the failed span.

The total number of working capacity to be protected on span i is denoted by wi. Number of

restoration flow on restoration route p for failure of span i is denoted by fi,p. The arc-path ILP

formulation provides a detailed specification of restoration routes and flows.

∑
Ɐi∈ S

ci ∙ si

∑
Ɐp∈ Pi

xi, j,p ∙ fi,p

∑
Ɐp∈ Pi

fi,p

 28

2.6 Mathematical Tools - Heuristics & Meta-Heuristics

 2.6.1 Heuristics vs. Meta-Heuristics

 Apart from the ILP method, which provides the optimal solution to a problem, heuristic

methods were also adopted in some studies to optimize survivable network design problems.

Heuristic methods are problem-specific, purpose-specific methods to be used for all or part of a

problem [20]. Compared to LP or ILP methods, heuristic methods generally provide sub-

optimal solutions; however, they can solve a complex problem within a relatively shorter run

time. In reality, large-scale problems may take exceedingly long runtime for an ILP solver to

reach an optimal solution, and a sub-optimal solution with significantly shorter runtime may be

preferred. Depending on the details of a heuristic algorithm and the problem it is applied, the

result of a heuristic algorithm may be very close to an optimal solution. However, in reality, one

may never know how close it actually is to the optimum [26]. Heuristic algorithms may be

proposed and implemented in various aspects of a survivable network design problem, such as

cycle enumeration [32], [39], [45], candidate cycle selection and refinement [46]-[49], optimal

capacity design and optimization[39], [50]-[52], wavelength assignment [53], etc.

 Like a heuristic method, a meta-heuristic method also does not guarantee to find an

optimal solution to a problem. However, unlike a heuristic algorithm, a meta-heuristic

algorithm is not a problem-specific algorithm but a general problem-formulating framework

that can be implemented in any optimization problem [20].

 2.6.2 Meta-Heuristics Basics & Overview

 A meta-heuristic method is a highly general framework for solving optimization

problems. The prefix “meta-” is derived from a Greek word which means high-level

methodologies. Therefore, a meta-heuristic approach is not specific to a single problem but can

be customized and applied to many optimization problems. Typically, meta-heuristics are

applied to complex, computationally-intensive problems that cannot be easily solved by other

techniques like ILPs or LPs. Meta-heuristics do not guarantee optimal results; however, they can

 29

find near-optimal results for complex optimization problems more effectively and efficiently as

compared to ILP/LPs [54]. As compared to ILP/LPs, meta-heuristic methods are exploration-

focused and are suitable for handling computational-intensive problems. They also have the

advantage of handling non-linear constraints or objectives [3].

In general, a meta-heuristic algorithm optimizes the objective function value by

randomly explores a search space to find the most appropriate solution for the decision variable.

Figure 2.17 depicts the schematic of a generic meta-heuristic algorithm process, which involves

the following key elements and factors [54]:

Initial State and Input Data. All meta-heuristic algorithms start from an initial state,

which can be predefined, calculated or randomly generated. The input data include the input

information data that is critical for solving the optimization problem and the input parameters

that are required to execute the algorithm.

Objective Function. An objective function delineates the goal of an optimization

problem. The objective function values are either minimized or maximized over a set of various

feasible solutions to the optimization problem.

Decision Variables. Decision variables are calculated when an algorithm is executed.

The values of decision variables reflect the solutions to an objective function.

Fitness Functions. A fitness function is generated to evaluate the suitability or

desirability of a possible solution. It advances a search process by promoting more desirable

solutions or inhibiting less-desirable solutions.

Iterations. Meta-heuristic algorithms are executed iteratively when exploring a solution

in the search space. At each iteration, a new solution to the objective function is generated,

which will be used as the initial value for the next iteration. The number of iterations can serve

as a termination condition.

Constraints. In optimization problems, constraints determine the boundaries of the

search space for feasible solutions. All constraints must be satisfied for a solution to be feasible.

Final State and Termination Criteria. Termination criteria delineate the conditions

required to terminate a meta-heuristic search process. Once the termination criteria are

satisfied, the search process will stop and return the best available solution, showing the final

state of the problem.

 30

 Figure 2.17 Overview of a meta-heuris0c algorithmic process from start to end.

Some optimization problems are highly complex and are considered to be NP-hard [3].

NP stands for non-deterministic polynomial problems. These problems can be solved and then

validated by a non-deterministic algorithm within polynomial time. NP-hard problems are the

ones that are at least as hard as the hardest NP problems. In the telecommunication industry,

 31

various optimization problems are considered to be NP-hard, hence cannot be solved and

validated within polynomial time. For example, the network design problem, the routing

problems, and the frequency assignment problems are all categorized as NP-hard problems.

Among these problems, the network design problem is one of the most robust and crucial

combinatorial optimization problems (COPs) [55]. Meta-heuristics and heuristics have been the

preferred approaches for solving NP-hard combinatorial optimization problems [55].

2.6.3 Meta-heuristics in Survivable Network Optimization

Various meta-heuristic optimization methods have been proposed in the literature to

solve network optimization problems, such as genetic algorithms (GAs) [56]-[57], simulated

annealing (SA) [51], ant colony optimization (ACO) [58]-[59], Tabu Search (TS) [54], [60], etc.

Genetic algorithms are developed based on the Darwinian theory on natural selection, where

individuals with the most advantageous variations are selected and reproduced in subsequent

generations. Simulated annealing (SA) mimics the slow metal cooling process (“annealing”) in

metallurgy. The algorithm randomly explores a solution at each iteration while the temperature

decreases progressively. It is a stochastic algorithm for exploring the global optimal solution.

Ant colony optimization (ACO) is a meta-heuristic method that imitates the social behaviour of

ant colonies, where the quality of a possible solution is evaluated based on the associated

amount of pheromone during the search process. Tabu Search (TS) is inspired by conventional

“hill-climbing” that only accepts “uphill” moves after a local optimum is discovered. A backward

step is considered “tabu” for a defined period of time.

These meta-heuristic methods can be categorized in several ways [54]-[55], which

include single-solution meta-heuristics, population-based meta-heuristics, hybrid meta-

heuristics, nature-inspired vs. Non-nature-inspired.

Single-solution meta-heuristics involve one solution in the search process. TS and SA

are good examples of single-solution meta-heuristics. TS is deterministic, and SA is stochastic.

Population-based meta-heuristics are in search for a population of search points at

each iteration. GA and ACO are examples of population-based meta-heuristics.

 32

Hybrid meta-heuristics is an approach taken to combine meta-heuristics with other

methods to achieve a synergistic performance. For example, a hybrid heuristic-GA (HGA) is

proposed in [53] for survivability dynamic routed and wavelength assignment problems on IP/

WDM transport networks. At first, a heuristic algorithm was executed to generate an optimized

searching space for GA. Then, a GA was applied to find the best near-optimal solution within the

search space. In a survivable network design problem with relays [52], the author solved the

problem in two steps using a hybrid GA-Lagrangian heuristic approach. GA was used in the first

step to search for paths, and the Lagrangian heuristic was used for relay assignment in the

second step.

Some meta-heuristic algorithms are designed based on behaviours of certain organisms

(such as ACO) or biological theory (such as GA). As mentioned in Fernandez et al. [53], nature-

inspired meta-heuristics are suitable for solving optimization problems regarding planning,

designing and controlling. These approaches search for the global optimum by manipulating a

population of possible solutions in a competitive manner using well-designed operators.

In Fernandez et al. [55], the authors conducted an extensive review of meta-heuristics in

telecommunication applications. This paper indicated the increasing popularity of meta-

heuristics in the past two decades in solving various large-scale telecommunication optimization

problems, especially for addressing the population-based meta-heuristics (e.g., GA and ACO).

In our research in this thesis, we will be implementing the GA technique to optimize p-

cycle spare capacity allocation problem. More details regarding GA and its implementation in

the problem will be further elaborated in CHAPTER 4 of this thesis.

 33

CHAPTER 3. p-Cycles Basics and Studies

3.1 Introduction to p-Cycles

Before the p-cycle protection mechanism was proposed, there had been two basic

approaches to survivable network designs: survivable rings mechanism and mesh network

survivability mechanism. As introduced in CHAPTER 2 of this thesis, the mesh-based

survivability mechanism has a more favourable capacity efficiency than a ring-based protection

mechanism. However, a real-time mesh-based restoration scheme requires longer restoration

time than a ring-based survivability mechanism, which is undesirable. Therefore, a cycle-

orientated pre-configuration of spare capacity was introduced in the mesh network restoration

scheme, and a ring-mesh hybrid protection scheme was proposed to allow the faster protection

speed of a ring as well as the higher protection efficiency of a mesh [14]-[16]. This novel design

was named a p-cycle, meaning a pre-configured protection cycle.

 Figure 3.1 Illustra0on of a p-cycle (bolded lines).

p-Cycle protection is based on the optimal formation of p-cycles in the spare capacity of a

mesh-restorable network and is a type of shared link protection, first proposed in late 1990s

[14]-[16]. The p-cycles are formed prior to any network failures and are formed out of the

previously un-connected spare links of a mesh-restorable network [14]. Two immediate end

nodes on a failed span perform real-time optical signal switching for restoration to happen. An

 34

exceptional feature of a p-cycle is that it not only provides one unit of spare capacity to all the

on-cycle spans but also offers two units of spare capacity for the spans that straddle over the

cycle. This type of spans, which has its two end nodes on the cycle but not the span itself, is

referred to as straddling spans to the p-cycle. Straddling spans carry two working paths for each

protection path on the p-cycle that they straddle, but they do not retain any spare capacity

themselves [3]. Figure 3.1 shows an example of a p-cycle, where the spans traversed by the

bolded p-cycle are on-cycle spans.

 Figure 3.2 Illustra0on of a p-cycle in a network (a). (b) shows a failure on an on-cycle span,
 and (c) shows a failure on a straddle span.

Figure 3.2 was presented previously in section 2.3.3. The figure demonstrates examples

of different failure scenarios occur on a p-cycle. As illustrated in Figure 3.2(b), when an on-cycle

span fails, the surviving portion forms one restoration path between both nodes adjacent to the

failure. This protection operation is similar to that of a bidirectional line-switched ring. In

Figure 3.2(c), if a failure occurs not on any part of the p-cycle but on a span that straddles the p-

cycle, two restoration paths around the failed spans are available for restoring the failure.

Therefore, the p-cycle in Figure 3.2(a) provides one protection path for 9 of the on-cycle spans,

and it provides two protection paths for each of the three straddling spans (six units of

protection). Hence, the p-cycle provides a total of 15 units of protection from 9 units of spare

capacity, a redundancy of 9/15 = 60%.

 35

3.2 Types of p-Cycles

There have been various types of p-cycles discussed in the literature[26]-[28], [56]. They

can be categorized either based on their structural relationship with the network they are in or

based on specific protection functionality that they provide to the network.

p-Cycles that are named based on their structural relationship with the network are

Hamiltonian p-cycles, simple p-cycles, and non-simple p-cycles [26]. Hamiltonian p-cycles are

the ones that pass through all the nodes of the network once and only once (see Figure 3.3(a)).

Simple p-cycles refer to p-cycles that do not pass through any nodes or spans more than once

(see Figure 3.3(a)). A non-simple p-cycle, on the other hand, is a p-cycle that passes through a

node or a span more than once (see Figure 3.3(b)). The type of p-cycles that are going to be

studied in this thesis herein are the simple p-cycles.

 Figure 3.3 Examples of a Hamiltonian and simple p-cycle (leL), and a non-simple p-cycle (right).

 p-Cycles that have different protection functionalities (e.g., protecting spans, paths,

nodes, or path segments against failures) are named differently. Based on their specific

functionalities, these p-cycles are referred to in the literature as span p-cycles, path protecting

p-cycles, node encircling p-cycles, and flow p-cycles [26].

A span p-cycle protects a particular span of a network. It refers to a p-cycle that allows

protection to a span that is either on the cycle or straddles the cycle [26]. The p-cycle illustrated

in Figure 3.3(a) is also a span p-cycle.

 36

A path-protecting p-cycle protects an entire path on which its origin node and

destination node incident. A failure independent path protection (FIPP) p-cycle is an example

of a path-protecting p-cycle, which offer protection to a set of end-to-end disjoint paths whose

end nodes are located on the cycle [62]. FIPPs have similar capacity efficiency than that of

SBPP, and they can protect failures on both node and span[27], [62]. An important pre-requisite

for FIPP p-cycles is that all paths to be protected must be all mutually disjoint to share spare

channels, which is similar to that of SBPP [62]. In a FIPP p-cycle protection, a real-time cross-

connection is not needed to form protection paths, and protection switching is controlled by end

nodes and is entirely failure-independent [62]. As shown in Figure 3.4, the FIPP p-cycle in blue

dotted lines protects a set of disjoint paths (green double-arrowhead lines) with their end nodes

on the FIPP p-cycle.

Flow p-cycles are a type of path segment-protecting p-cycles [63]. The section of a traffic

flow that lies between two intersecting nodes of the flow and the associated p-cycle is referred to

as a flow or path segment. The p-cycle that protects these flows is known as a flow p-cycle. Flow

p-cycles can provide both path protection (if the origin and destination nodes incident on the p-

cycle) and node protection and are shown to be capacity efficient [27]. As demonstrated in

Figure 3.4, the flow p-cycle (in blue dotted lines) can provide path and node protections to the

flows or path segments (red double-arrowhead lines). Flow p-cycles and their designs for path-

and node-protection are extensively studied in [63]-[66].

 Figure 3.4 Examples of a failure-independent path protec0on (FIPP) p-cycle (leL) in doZed lines,
 and a flow p-cycle (right) in doZed lines.

 37

p-Cycles can also provide node protection by adopting the node-encircling p-cycle

(NEPC) scheme [67]. An NEPC traverses all the neighbouring nodes of a failed node but not the

failed node itself. It can protect all the traffic flows that pass through the failed node, hence

protecting the failed node. The NEPC protection is illustrated in Figure 3.5; its design and

mechanism are discussed extensively in [67]. As shown in Figure 3.5, the nodes that are

highlighted in orange circles (Node B and Node E, respectively) are not part of the p-cycles,

however, they are protected by the NEPC protection scheme. An NEPC can be either a simple

cycle (Figure 3.5 on the left) or a non-simple cycle (Figure 3.5 on the right) [27].

 Figure 3.5 Examples of a simple node-encircling p-cycle (leL) and a non-simple node-encircling p-
 cycle (right) in doZed lines. Circled nodes (orange) are the nodes protected by NEPC protec0on.

3.3 Determining p-Cycle Efficiency

An efficient p-cycle is capable of providing more units of protection per spare capacity

used. Finding and selecting efficient p-cycles for network protection is getting more beneficial as

network size increases. The most fundamental efficiency metrics which have been deployed in

the literature include the topological score (TS), and A Priori efficiency score (AE). These

metrics laid the foundation for the development of several other advanced efficiency metrics,

such as the actual efficiency (Ew), the demand weighted efficiency (DWE), the efficiency ratio

(ER), and the efficiency of restoration (EoR).

 38

Topological Score (TS)

The topological score (TS) of a candidate p-cycle is a basic metric that measures the

amount of protection a p-cycle provides to the network [46]. It is defined as TS(j) = ∑Xi,j for all

spans i on p-cycle j. Xi,j takes a value of 1,2 or 0 depending upon whether the link is on the cycle,

straddles the cycle, or is not a part of the cycle. However, TS only takes into account the

topological structure of a cycle and does not consider the cost of using that cycle.

A Priori Efficiency (AE)

A priori efficiency (AE) score measures the potential efficiency of using a p-cycle [26],

[46]. It calculates the total number of protections a p-cycle provides relative to the cost of

constructing the p-cycle. Therefore, a p-cycle with a higher AE score has higher numbers of on-

cycle and straddling spans per unit of the cost; hence, higher protection capacity efficiency.

However, neither AE nor TS considers the actual set of demands of a network. Therefore, AE

and TS both calculate only the potential efficiency of a p-cycle, not the weighted actual efficiency

of a p-cycle. For a candidate p-cycle j in a p-cycle set, AE(j) is defined as in Eq. 3.1.

AE(j) = , Ɐi ∈ S, Ɐk ∈ S (Eq. 3.1)

In Eq. 3.1, Xi,j is the same as in TS which equals to 1,2 or 0; ∂k,j equals to 1 if span k traverses

cycle j, and zero otherwise. Ck refers to the cost of using span k. S is set of all spans.

Demand Weighted Efficiency (DWE)

The third metric, demand weighted efficiency (DWE) [26], takes into account the actual

demands in a network. For a given network, the DWE assigns actual units of demands on each

link and calculates the protection provided by the cycle in the presence of those demands. For

example, a cycle may protect n straddling links in a network. However, if there is no actual

∑ Xi, j
∑ ∂k , j ∙ ∑ Ck

 39

traffic flowing through those n links, the actual protection provided by the cycle to the network

will not factor in those n links.

For a candidate p-cycle j in a p-cycle set, DWE is defined as below in Eq. 3.2.

DWE(j) = , Ɐi ∈ S, Ɐk ∈ S (Eq. 3.2)

Xi,j is the same as in Eq. 3.1, and wi is the working capacity of span i. ∂k,j equals to 1 if span k

traverses cycle j, and zero otherwise. Ck is the cost of using span k. S is set of all spans.

Actual Efficiency (Ew) in Capacitated Iterative Design Algorithm (CIDA)

The actual efficiency metric which was proposed by Doucette et al. [39] considers

current working capacity status (number of unprotected working capacity) on the span i and the

protection relationship of span i relative to the cost of using the p-cycle. The Ew score provides

not only an indication of a p-cycle’s ability to protect current working capacity but also a

suggestion of a p-cycle’s actual suitability in a specific working capacity state. The capacitated

iterative design algorithm (CIDA) calculates and ranks current working capacity state at each

iteration and conducts iterative placement of p-cycles based on the highest-ranked actual

efficiency (see details in CHAPTER 3 regarding CIDA).

The Ew of a candidate p-cycle p is defined as shown in Eq. 3.3.

 Ew(p) = , Ɐi ∈ S, Ɐk ∈ S (Eq. 3.3)

Xi,j equals to 1,2 or 0 as in previous metrics, and wi is the unprotected working capacity on span

i. The binary ∂k,j equals to 1 if span k traverses cycle j, and zero otherwise. Ck is the cost of using

span k. S is set of all spans.

∑ min(Xi, j ∙ wi)
∑ ∂k , j ∙ Ck

∑ Xi, j ∙ wi
∑ ∂k , j ∙ Ck

 40

Efficiency Ratio (ER)

Efficiency Ratio is an efficiency metric for a unity p-cycle that was proposed by Zhang et

al. [40]. A unity p-cycle refers to a p-cycle that has one unit of capacity on each of its spans. An

ER is the ratio of the number of working capacity units that are protected by a p-cycle to the

number of spare capacity units of the p-cycle. ER sounds similar to the Ew score, but instead of

looking at unprotected working capacity, ER brings protected working capacity into the ratio

calculation. A higher ER indicates a higher spare capacity utilization efficiency of a p-cycle.

Unlike TS and AE scores, where only topology of a p-cycle is considered, an ER value indicates

both a p-cycle topology and the working capacities protected by the said p-cycle.

Efficiency of Restoration (EoR):

This efficiency metric was proposed by Meixner et al. [68] to be used in conjunction with

a heuristic method for a scalable p-cycle selection method. The metric can be used in both ILP

and Genetic Algorithm models. Calculation of EoR involves the following parameters: average p-

cycle length (%), the standard deviation of p-cycle length (&), the total cost of a p-cycle (TC), and

total protection a p-cycle provides (TS). A set S refers to all the spans in the network. This metric

is based on the TS, but with consideration of p-cycle lengths.

EoR(S) = (Eq. 3.4)
TS(S)

TC(S) ∙ β(S) ∙ (η(S) + 1)

 41

3.4 p-Cycle Network Design and Optimization

 3.4.1 Candidate p-Cycles Enumeration

The depth-first search (DFS)algorithm is commonly used to generate sets of candidate

cycles [12]-[14]; however, the DFS algorithm is a greedy approach and is not runtime-efficient in

large-scale network problems. Therefore, some studies have proposed various problem-specific

heuristics to find eligible candidate p-cycles that are high-merit [32]-[33], [45]. The following

algorithms are commonly used in the literature, which has also inspired the novel heuristic

cycle-enumeration method that will be proposed and discussed in CHAPTER 6 of this thesis.

Straddling Link Algorithm (SLA)

In Zhang and Yang’s research [32], a heuristic method called straddling link algorithm

(SLA) was proposed to find protection cycles in a network. For each span i of a network, the SLA

algorithm finds two other node-disjoint paths (if any) that originate from one end node (Oi) of

span i and terminate at the other end node (Di). An eligible p-cycle is formed by merging the

second and third node-disjoint paths at node Oi and node Di. The shortest path calculation of

the node-disjoint paths is based on Dijkstra’s algorithm. The multiple node-disjoint paths

between two nodes are found by executing Dijkstra’s algorithm iteratively, with the previously

found paths (and all nodes along the paths, except Oi and Di) being labelled and hidden before

the next one is found.

As shown in Figure 3.6 below, two node-disjoint paths between span Oi-Di are illustrated

and highlighted. To be specific, for the span Oi-Di (the dotted line as shown in the Figure 3.6),

the SLA algorithm finds two node-disjoint paths: A-B-C-Di-Oi (orange arrow) and Oi-E-Di

(green arrow). Merging these two paths and removing span Oi-Di will yield a new p-cycle A-B-C-

Di-E-Oi. In this case, span Oi-Di becomes a straddle link of the new p-cycle.

 42

 Figure 3.6 Illustra0on of genera0ng a new p-cycle (A-B-C-Di-E-Oi) using SLA.

Add and Join Algorithms

Based upon the SLA, two cycle-merging operations were proposed in [39] to create p-

cycles with more straddling spans (hence, higher efficiency). The Add and Join algorithms are

operations that can be applied to the primary cycles generated by SLA. In the Add algorithm,

two primary cycles can be merged if they meet the following criteria:

1) Span i is a straddling span of Cycle A, but an on-cycle span to Cycle B;

2) Span j is a straddling span of Cycle B, but an on-cycle span to Cycle A;

3) Cycle A and Cycle B are not adjacent to one another in the network

 When the Add algorithm is applied, Cycle A and Cycle B are merged into one. The

resulting new p-cycle will include all the on-cycle spans of both Cycle A and Cycle B (except

Span i and Span j), and Span i and Span j will be straddling spans to the new cycle. As shown in

Figure 3.7, Cycle A is cycle A-B-C-K-P, and Cycle B is cycle A-C-K-P. Span i refers to span A-C,

and Span j is span P-K. The resulting cycle after applying the Add algorithm is A-B-C-K-E-P.

Figure 3.7 Illustra0on of genera0ng a new p-cycle using the Add algorithm.

 43

In the Join algorithm, two primary p-cycles have one and only one common span, and

that span has to be an on-cycle span (not a straddling span of any of these two p-cycles). As

shown in Figure 3.8, Cycle A (cycle A-B-C-K-P) and Cycle C (cycle P-K-G-F-E) share only one

common span, the span P-K (Span k). The resulting cycle (cycle A-B-C-K-G-F-E-P) contains the

straddling spans of both Cycle A and Cycle C, as well as their common span (Span k).

 Figure 3.8 Illustra0on of genera0ng a new p-cycle using the Join algorithm.

Expand and Grow Algorithms

Doucette et al. [39] proposed two advanced algorithms that transform primary p-cycles

with one straddling span to larger p-cycles with more straddling span, hence higher efficiency.

Unlike the Add or Join algorithm, either Expand or Grow algorithm takes just one primary p-

cycle as an input cycle. In the Expand algorithm, an on-cycle span is expanded and replaced

with a node-disjoint path that connects the same origin and destination nodes as the said on-

cycle span. The newly formed p-cycle will then be added to the cycle set. The operation repeats

recursively until all on-cycle spans of the original primary p-cycle are visited and replaced by a

node-disjoint path (if existed). As shown in Figure 3.9, the Expand algorithm can generate

multiple new p-cycles from the original primary p-cycle. In Figure 3.9 (a), span B-F (left) is

replaced by path B-H-F (right), and generate a new p-cycle B-H-F-G-K-C. In Figure 3.9 (b),

span B-C (left) is replaced by path B-A-C (right), resulting in a new p-cycle B-H-F-G-K-C-A. In

Figure 3.9 (c), span C-K (left) is replaced by path C-A-P-K (right), which forms a new p-cycle B-

F-G-K-P-A-C.

 44

Figure 3.9 Illustra0on of genera0ng new p-cycles using the Expand algorithm. The double-arrowhead
lines Indicate transi0ons of the spans from leL side of a figure to the right side of a figure.

The Grow algorithm is a more extensive approach that generates p-cycles of various

sizes. The Add algorithm is first applied to the primary cycles to generate a set of intermediate p-

cycles. The Grow operation then takes place on the new intermediate cycle set. For each cycle in

the intermediate cycle set, pick one on-cycle span (span s) and replace it with a node-disjoint

path (path p) that connects end nodes of the said on-cycle span. This node-disjoint path is

generated using the shortest path method. If such a path exists, span s is removed from the cycle

and path p is added to the cycle, resulting in a new p-cycle (say, Cycle M). The algorithm will

then start on the first span of Cycle M and repeat the same path-finding process until no more

node-disjoint paths can be found on any of the spans on any of the newly-formed cycles. During

 45

this process, each p-cycle that is incrementally generated will be retained and added to the total

p-cycle set. Therefore, the resulting total p-cycle set will contain an extensive profile of various

small and large p-cycles, including primary p-cycles, intermediate p-cycles, and new p-cycles

that are incrementally grown out of previous p-cycles. Having a wide range of p-cycles is very

beneficial for the later stage of cycle placement.

The pseudo-code for Grow algorithm is as follows:

function Grow(OriginalCycleSetA):

 initialize SPAddCycleSetB

 AddCycleSetB = Add(OriginalCycleSetA)

 initialize NewCycleSet

 for each cycle p in SPAddCycleSetB:

 let cycle p’ = cycle p

 for each span i on cycle p’:

 mark all spans and nodes on cycle p’

 Dijkstra(i, unmarked spans/nodes) → r

 if returns a route r:

 add route r to cycle p’

 remove span i from cycle p’

 add cycle p’ to NewCycleSet

 restart count of i to first span in p’

 unmark all spans and nodes

 add OriginalCycleSetA to NewCycleSet

 add SPAddCycleSetB to NewCycleSet

 for each span i:

 mark span i

 Dijkstra(i, unmarked spans/nodes) → r

 if returns a route r:

 let cycle x = span i and spans on route r

 add cycle x to NewCycleSet

 unmark span i

 return NewCycleSet

 46

Weighted DFS-Based Cycle Search Algorithm (WDCS)

The weighted DFS-based cycle search (WDCS) algorithm is a DFS-inspired cycle finding

algorithm that was proposed in Liu and Ruan [33], where the WDCS algorithm finds a

controlled number of cycles in the graph. The algorithm explores the graph from a root node v,

extending the path along the way until the root node is reached again and a new cycle is formed.

While exploring, the algorithm finds a neighbouring span with the highest weight so that cycles

with higher efficiency are likely to be found earlier in the process.

 3.4.2 Candidate p-Cycles Selection

Prior studies on p-cycle designs and selection suggested two approaches to selecting

candidate p-cycles, where candidate p-cycles are selected by limiting either the maximum hop-

limits (or route length-limit) or the circumference-limits of all candidate p-cycles to reduce the

complexity of a problem [14]-[16], [47]. When considering hop-limits as a constraint, p-cycles of

any length may be used; however, the lengths of actual paths are restricted to a defined limit. In

a circumference-limit approach, however, the length of a p-cycle is constrained. A comparison of

hop-limit versus circumference-limit in terms of their effect on p-cycle capacity efficiency was

studied by Kodian et al. [47]. This research indicated that a hop-limiting factor (limit of 3 or 4

hops) brings about a positive effect on providing better capacity efficiency in their test cases of a

13-node network and a 19-node network. Another approach to selecting good eligible p-cycle

candidates is to exhaustively find all the p-cycles in a network, rank them based on a particular

selection metric, and then select the top few candidates [46], [48]. For example, in the study by

Doucette et al. [46], all the candidate cycles were first ranked using TS or AE scores, from which

a limited number of top candidate cycles were chosen.

Both of these two approaches are greedy and runtime-consuming, as both will require

exhaustively enumerating all cycles. This will be counter-efficient when it comes to studying

large networks. When network size increases, finding all cycles in a network can get explicitly

 47

calculation intensive. Some score-based approaches or heuristic approaches, however, do not

require finding all the cycles and are more runtime-efficient [49], [68].

Score-based p-cycle selection utilizes the efficiency metrics discussed earlier in the

CHAPTER 3. These metrics are used to rank p-cycles based on their protection efficiency.

Selecting or pre-selecting a lesser amount of highly efficient p-cycles using an efficiency metric

has shown to provide at least equally good results, and in the meantime, significantly reduce

cycle enumeration time [32]-[34], [39]-[40], [68]. In addition, some heuristic p-cycle selection

methods avoid greedy searching of cycles and suitable for solving large-scale network problems

[49]. For example, Lo et al. designed a two-step heuristic method in selecting and grooming

high-quality candidate p-cycles, which does not require enumeration of all cycles. However, the

selection part of the heuristics can increase capacity inefficiency whereas the grooming part of

this approach may prolong the program runtime [49]. To be specific, the selection approach

taken in the first step can result in a considerable amount of idle capacities (“wastes”) which

impede the overall capacity efficiency. The second step of grooming (“refining”) is to conduct a

secondary search of cycles in order to replace any inefficient cycle pairs from step one. This

grooming step can significantly increase program runtime, especially in large networks.

 3.4.3 p-Cycle Protection Capacity Optimization: LP/ILP Approach

As mentioned earlier in CHAPTER 2, there are two algorithmic approaches to designing

a fully restorable p-cycle protection: a one-step approach and a two-step approach. The one-step

approach refers to the joint capacity allocation (JCA) approach, where working path routing

and spare capacity placement are optimized jointly [36]. The one-step approach to solving a p-

cycle protection optimization problem is the spare capacity allocation (SCA) approach. The SCA

optimizes the allocation of spare capacities so that the total cost of capacity placement will be

minimized, regardless of working path routing. Optimization of p-cycle protection capacity may

be solved by either ILP models or case-specific heuristic algorithms.

 48

Joint Capacity Allocation (JCA) Model

In the JCA model, the total capacity (spare capacity plus working capacity) is optimized

as a whole. For each origin-destination node pair in the network, several eligible working routes

are available. Working paths are selected concurrently with spare capacity allocation to

minimize the cost of the operation. The ILP formulation of JCA problem, as well as the

definitions of specific parameters and variables are presented as follows [12]:

S = set of network spans

C = set of eligible cycles

D = set of non-zero demands

Et = set of eligible working routes for demand t

sj = number of spare capacity on span j, Ɐj∈ S

wj = number of working capacity on span j, Ɐj∈ S

cj = cost or length of span j, Ɐj∈ S

pi,j = number of spare links needed on span j to form a copy of p-cycle i, Ɐi∈ C, Ɐj∈ S

(pi,j =1 if cycle i traverses span j, 0 otherwise)

ni = number of copies of p-cycle i, Ɐi∈ C

xi,j = number of paths that a p-cycle i provide to restore span j, Ɐi∈ C, Ɐj∈ S

(xi,j = 0 if span j not on p-cycle i, xi,j = 1 if span j on p-cycle i, xi,j = 2 span j straddles i)

dt = an integer values of demand for demand pair t

ft,e = integer number of demand for tth demand allocated to the eth eligible route, Ɐe∈ Et

 = 1, if the eth working route for the tth demand traverses span j, 0 otherwise γ t,e
j

 49

Objective function: Minimize (Eq. 3.1)

Subject to: dt = , Ɐt∈ D (Eq. 3.2)

 wj = , Ɐj∈ S (Eq. 3.3)

 sj = (Eq. 3.4)

 wj ≤ (Eq. 3.5)

 ≥ 0, Ɐi∈ C (Eq. 3.6)

All variables are non-negative and integer

 The objective function of this JCA model (Eq. 3.1) minimizes the cost of both working

routing and placing spare capacities to restore failed span j. The first constraint, as shown in the

Eq. 3.2, makes sure that all the demands are routed. The second constraint (Eq. 3.3) indicates

the amount of working capacity on span j will support routing of all demands. The constraint in

Eq. 3.4 ensures that the spare capacity on span j can support all the p-cycle i that cross the span.

Eq. 3.5 is the constraint that ensures total protection provided by the p-cycle i for each failed

span j is sufficient to restore the working capacity on the span j fully. In reality, all variables

must be non-negative and integer, as indicated in Eq. 3.6.

Spare Capacity Allocation (SCA) Model

In the case of a two-step p-cycle SCA model, working paths are routed in advance via

preferred routing methods, such as the shortest path method [26] or the DFS algorithm [32],

[35]-[39]. Given the working capacities, the allocation of spare capacities with minimum cost

∑
Ɐj∈ S

cj ∙ (wj + sj)
E
∑

Ɐe∈ E
f t,e

∑
Ɐt∈ D

∑
Ɐe∈ E

f t,e ∙ γ t,e
j

∑
Ɐi∈ C

pi, j ∙ ni

∑
Ɐi∈ C

xi, j ∙ ni

ni

 50

will be determined to ensure 100% protection for all working paths. The p-cycle SCA ILP can be

formulated by modifying the above mentioned JCA model by eliminating a few sets, parameters,

variables and constraints. The resulting ILP formulation for a p-cycle SCA problem will be as

shown below in equations 3.7 - 3.10, where the objective function (Eq. 3.7) will simply be to

minimize the cost of placing spare capacities to restore failed span j:

Objective function: Minimize (Eq. 3.7)

Subject to: sj = (Eq. 3.8)

 wj ≤ (Eq. 3.9)

 ≥ 0, Ɐi∈ C (Eq. 3.10)

All variables are non-negative and integer

Apart from the above two-step approach, an SCA problem may also be formulated

without enumerating candidate cycles (step one) using ILP [69], [90]-[91]. For example, Wu et

al. [69] proposed three ILP models to solve the p-cycle SCA design problem. These three ILP

models were based upon recursion, flow conservation, and cycle exclusion. The study showed a

linear correlation between the number of ILP variables and constraints versus network size in

the flow conservation approach [69].

 3.4.4 p-Cycle Protection Capacity Optimization: Heuristics/Meta-Heuristics

Several prior studies have proposed heuristic or meta-heuristic algorithms in solving p-

cycle capacity optimization problems [39]-[40]. The following are some problem-specific

heuristic algorithms and a meta-heuristic approach (genetic algorithm) that were proposed in

the some prior studies.

∑
Ɐj∈ S

cj ∙ sj

∑
Ɐi∈ C

pi, j ∙ ni

∑
Ɐi∈ C

xi, j ∙ ni

ni

 51

Capacitated Iterative Design Algorithm (CIDA)

Capacitated Iterative Design Algorithm (CIDA) was a p-cycle placement operation

proposed by Doucette et al. [39]. CIDA selects and places a set of p-cycles that provide full

network protection with near-minimal spare capacity. The process starts by generating a set of

eligible candidate cycles using a preferred cycle enumeration method, such as Add, Expand,

Grow, SLA, etc. The current efficiency of candidate cycles will be calculated using capacity-

weighted efficiencies, also known as the actual efficiencies, Ew (see details in CHAPTER 3). p-

Cycles with the highest Ew score will be selected and placed in the network. The network traffic

flows protected by this p-cycle is deducted from existing working capacity values. To be specific,

subtracting one unit of working capacity from each on-cycle span of the p-cycle just placed, and

two units on each straddling span (if present). Then, update the working capacity values of the

current network so that they always reflect the current actual efficiency status at each iteration.

The process is repeated recursively until all the network working capacities are protected.

The pseudo-code for CIDA is shown below:

function CIDA(OriginalCycleSet, i):
 initialize CycleSet, work[], and CycleUse[]
 CycleSet = Grow(OriginalCycleSet)
 while work[i] > 0 for all spans i:

 BestCycle = 0
 for each cycle p in CycleSet:
 calculate Ew(p)
 if Ew(p) > Ew(BestCycle):
 BestCycle = p

 if BestCycle not in CycleUse ! add BestCycle to CycleUse

 else if BestCycle in CycleUse:
 CycleUse[BestCycle] = CycleUse[BestCycle] + 1
 for each on-cycle span i in BestCycle:
 work[i]= work[i] - 1
 for each straddling span i in BestCycle:
 work[i]= work[i] - 2
 return CycleUse

 52

ER-Based Unity p-Cycle Design

Another example of heuristics is an ER-Based Unity p-cycle Design proposed in [40]. A

unity-p-cycle refers to a unidirectional p-cycle with capacity equals to one unit of wavelength on

each span. A unity-p-cycle provides one unit of protection in the opposite direction for an on-

cycle span, and two units of protection for each straddling span (one unit in each direction). The

ER refers to efficiency ratio (as previously described in Section 3.3), which is the ratio of the

number of protected working units by a p-cycle to the number of spare capacities provided by

that same p-cycle. This algorithm starts by enumerating all candidate cycles in the network,

given network topology and traffic demand. Determine working capacity on each span of the

network based on working path routing performed in advance. Then, determine the ER value of

each candidate cycles. Place the cycle with the largest ER value into the network and deducting

the number of working units protected by this p-cycle from the network. Repeat the process by

selecting the second cycle with the largest ER value, and so on. If multiple cycles share the same

ER value, then they can all be selected at the same time as long as they are span-disjoint to one

another. The algorithm will terminate when working capacity on each span is reduced to zero,

which means full protection to the network has achieved.

Genetic Algorithm

Genetic algorithms may be implemented in conjunction with heuristics in solving

network survivability problems [53]. In work conducted by Pastor et al. [53], a hybrid heuristic-

GA (HGA) approach was proposed to optimize a network routing and wavelength assignment

(RWA) problem. Genetic algorithms can also be applied as a standalone method to solve various

aspects of communication network survivability and optimization problems, including

survivable network topology designs [70]-[72], network service reliability [73], shortest path

routing in survivable networks [74], etc.

 Detailed examples and discussions regarding past GA implementation in survivable

network designs and p-cycle protection optimization will be further elaborated in CHAPTER 4

of this thesis.

 53

CHAPTER 4. GENETIC ALGORITHMS BASICS & STUDIES

4.1 Introduction to Genetic Algorithms

Genetic algorithms (GAs) are stochastic, discrete search algorithms that are inspired by

Darwin’s theory of evolution. They solve problems by using an evolutionary process, where elite

chromosomes are selected from a population (parents) for crossover and mutation processes to

generate a new population (offspring). The more elite (better fitness) a chromosome is, the

higher the probability it is to be selected for reproduction. The new population is expected to fit

the objective function better than the predecessor population. This process is repeated until

some predefined termination conditions are satisfied. The idea behind it is that the fittest

individuals will be more likely to adapt to the evolving circumstances and have a better chance

of survival. The offspring of these individuals will likely inherit these traits and evolve into even

fitter descendants who are more likely to survive and reproduce.

4.1.1 GA Process Overview

Genetic algorithms start with a random population of chromosomes. Each chromosome

is a possible solution to the optimization problem. Some of these chromosomes will be selected

for reproduction based on their fitness values. Selected chromosomes will go through crossover

and mutation operations to form a new population of offspring. The newer offspring is expected

to have better performance (fitter) than the predecessor. The new generation of offspring will

contain newly-produced offspring chromosomes as well as the parent chromosomes. This

reproduction process will continue until the termination criteria are satisfied.

For a given optimization problem, a genetic algorithm process will first define its

objective function and associated variables. Then, the genetic algorithm will commence with the

following steps: generating the initial population and encoding the chromosomes, creating an

evaluation mechanism (fitness function), selecting individuals for reproduction, the crossover

 54

and mutation operations on chosen individuals, termination and decoding of the results. Figure

4.1 illustrates a flowchart of a generic GA process and its components.

 Figure 4.1 Overview of a gene0c algorithmic process from start to end.

An initial population is created by generating a group of random feasible solutions

(chromosomes) for the problem. Encoding a chromosome is to create a particular genetic code

to represent a possible solution and to make sure it contains the required information for

 55

solving the problem. Designing a suitable fitness function is crucial for evaluating elitism

(fitness) of a solution. Based on the fitness values, two individual chromosomes will be selected

for crossover using a predetermined selection method. An individual (chromosome) with a

better fitness value will have a higher probability of being selected from mating, hence the

survival of the fittest. For the reproduction process, a crossover operation takes place on a pair

of individuals to allow the exchange of genetic information between the two chromosomes and

to yield two new individuals (offspring). Besides, a mutation operator will be applied on a

random chromosome and alters its genetic information at a random locus to generate a new

individual. These GA operators are used to increase the diversity of a population and to prevent

an algorithm from falling into local optima. Newly formed offspring from crossover and

mutation and the existing parent chromosomes will create a new population, which will be used

as the starting population for the next generation (iteration). This process continues iteratively

until a predetermined termination condition is met, and the GA will then stop and return the

best current solution. The results will be decoded to reveal the real solution to the problem.

 A pseudocode for a GA is shown below, where generate candidate individuals is

simply a space holder for any problem-specific initiation function:

 function Genetic_Algorithm(popSize, cross_rate, mutation_rate):
 initialize spans, nodes, p-cycle sets → input_param
 generate candidate individuals → individual

 generate initial population(popSize, individuals) → init_pop
 calculate fitness values → fit_val
 rank population using fit_val → ranked_pop
 while termination condition not met:

 Initialize new set → new_pop
 Selection(ranked_pop, fit_val) → selected_parent

 Crossover(selected_parents, cross_rate) → crossover_child

 Mutation(crossover_child, mutation_rate) → mutated_child
 add crossover_child, mutated_child to new_pop
 update population, fit_val, ranked_pop for new_pop
 best_ind = ranked_pop[0]

return best_ind

 56

4.2 Key Concepts in Genetic Algorithms

4.2.1 Genomes and Chromosomes

In cell biology, genetic contents of a cell are structured into a pair of deoxyribonucleic

acid (DNA) double helixes known as chromosomes. A complete genetic package of a cell is

referred to as a genome. In genetic algorithms, genomes represent the search spaces [75]. The

chromosomes are strings of one consistent data type (bits or real values), which represent the

feasible solutions to a problem. A string chromosome can be either fixed-length or variable-

length [75]. A chromosome is often referred to as an individual to a population. In this thesis,

the terms chromosome and individual are used interchangeably. Two relevant concepts that are

worth mentioning are locus and allele. A locus is the location of a gene in a chromosome. An

allele is the value of a gene. In terms of genetic algorithms, the term locus means a string

position which may be used to specify the location where a crossover or mutation operation

takes place.

4.2.2 Schema and Schemata

According to Holland’s Schema Theorem [75], a schema refers to a subset of a string

chromosome with common features at certain positions (loci) among all chromosomes. It is

composed of some common elements, and the don’t care symbol (*) [76]. A schema serves as a

masking template for a chromosome. It matches a specific string at every position (locus) other

than the *. For example, a schema *110* would match these four strings {11101, 01101, 11100,

01100}. A schemata refers to sets of encoded string chromosomes that share one or more

elements in common.

 57

4.2.3 Encoding Chromosomes

Encoding a chromosome is a process of assigning an artificial data structure to each

feasible solution (chromosome). Chromosome encoding allows the information of a

chromosome to be processed and analyzed in a genetic algorithm. A suitable and robust

chromosome design should contain essential information that is critical for resolving the

objective function and evaluating fitness values. It should also be accessible to GA operators

(crossover and mutation).

A common approach to encode a chromosome is a bit string (binary) encoding, which is

relatively unsophisticated and traceable [76]-[77]. As shown in Figure 4.2, a 1 or 0 stands for two

distinct features of a solution in each binary string. Another popular approach to chromosome

representation is real-value chromosomes [77] (or continuous chromosomes [78]), where the bit

strings are replaced with real values. Real-value encoding is a more plausible option for solving

practical problems with actual parameters. For problems that involve sequencing, a

permutation encoding may be more suitable. In a permutation encoding, each chromosome is a

list of numbers that stand for their logical position in a sequence (see Figure 4.3). Permutation

encoding is exceptionally suitable for optimization problems like the travelling salesman

problem, where a chromosome stands for a trail of cities visited.

 Figure 4.2 Example of two binary encoded chromosomes, where Pi and Pi’ refer
 to the loci in Chromosome #1 and Chromosome #2, respec0vely.

 58

 Figure 4.3 Example of two chromosomes with permuta0on encoding, where each
 string on a chromosome refers to its posi0on in a sequence.

4.2.4 Population and Generation

 Once chromosomes are encoded, a set of individual string chromosomes (feasible

solutions) will randomly form an initial population. A population can also be created by

including better-fit individuals that are generated and evaluated previously. The predetermined

population size will decide the number of individuals in a population. The performance of a

population is improved iteratively. The current population will then serve as a starting

population to reproduce a successor population in the next generation.

GA populations can be constructed in various ways. An example, as provided by

Goldberg [76], is to implement a population as a series of individual string chromosomes where

each chromosome contains binary strings (genotype), key variable (phenotype), and

corresponding objective function value (fitness value) (see Figure 4.4).

 59

Figure 4.4 Example of a popula0on of encoded chromosomes. Popula0on size is n. x is a key
variable that is plugged into the fitness func0on to generate corresponding fitness value f(x).

Population design, population size and the number of generations play pivotal roles in

enhancing the search power of a genetic algorithm and are problem-specific. If a suboptimal

population size or the number of generations is used in a genetic algorithm, the algorithm may

encounter insufficient exploration for a global optimum and reach a premature convergence.

Alternatively, the algorithm may plateau over numbers of iterations and extend the

computational runtime with no performance improvement. Typically, GA operations will

significantly increase the population size, and then individuals with the lowest fitness values

from both prior generation and newly generated individuals will be removed from further

reproduction. By doing so, population size will remain constant in each generation.

Individual
Identification

Individuals (String Chromosomes)

String Variable, x Fitness Value, f(x)

Ind #1 101101 3 82

Ind #2 001110 28 353

Ind #3 001010 11 198

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ind #n 111000 10 187

 60

4.2.5 Fitness Function and Objective Function

 The Darwinian theory regarding the survival of the fittest can be translated into

reproduction based on values of fitness, where individuals with higher values of fitness have

higher probabilities to be selected for breeding. A problem’s fitness function is designed to

evaluate the level of fitness of each individual in a population-based on its power to provide a

favourable solution. It is designed based on the problem’s objective function, and the fitness

value of an individual reflects its objective function value. Therefore, a fitness function links a

genetic algorithm to its problem system by taking an input chromosome and generating a

number that is related to its level of fitness. For example, fitness functions can be designed as

measures of profits to be maximized or costs to be minimized.

 Scaling of the fitness values is a commonly used practice in genetic algorithms to

standardize objective function values across various problems and to maintain uniformity

during the simulation process [76]. Scaling fitness values is implemented by converting a range

of raw fitness values into an acceptable range that is suitable for the problem. The scaled fitness

scores will assist the selection operation in picking the fittest individuals for reproduction.

Without scaling of fitness values and the fitness values vary over a broad range, some

outstanding super-individuals may be predominant over the selection process at the early stages

of GA, which will lead to premature convergence. At later stages of GA, where the population is

extensively diverse, and the fitness values vary too little, competitions among individuals will

become unnoticeable. In which case, scaling up fitness values will boost rewarding the top

performers [76]. There are three approaches generally adopted in literature for scaling fitness

values: linear scaling, power-law scaling, and sigma truncation [76]-[77].

4.2.6 Selection and Elitism

Elitism is a strategy that allows the fittest individuals to survive and reproduce in the

succeeding generations by retaining it from generation to generation. It is implemented by

copying the best-performing individuals directly to a new population without any alterations.

 61

Protecting the fittest individuals may enhance the performance of a GA rapidly for a local

search; however, elitism sacrifices a GA’s potential to explore a globally optimal solution [76].

Selection operation, however, chooses competent individuals from a population-based on their

fitness values and places them into a new population. Selection plays a crucial role in directing a

GA convergence as it determines whether an individual is to be born, and live or die [79].

A critical factor that determines the convergence rate of a GA is selection pressure.

Selection pressure refers to the probability an individual with a higher fitness value is selected.

To calculate the selection pressure, taking the ratio of the likelihood that the best individual is

chosen to the probability that the average individual is selected. A higher selection pressure will

result in a higher convergence rate, and a better individual will be more likely to be chosen.

Therefore, a higher selection pressure will expedite convergence, whereas a low selection

pressure may impede the process as convergence rate gets slow [80].

Various selection mechanisms have been proposed and discussed in the literature, such

as fitness proportionate selection (also known as roulette wheel selection), tournament

selection, ranking selection, and steady-state selection [79]. In this thesis herein (see details in

CHAPTER 7), we will be implementing the two most commonly discussed selection methods:

roulette wheel selection and tournament selection.

 Fitness Proportionate Selection (Roulette Wheel Selection)

The fitness proportionate selection (also known as roulette wheel selection) was

introduced in Holland [75] and is one of the oldest selection mechanisms. As implied by its

name, the probability of an individual being selected is proportional to its standardized fitness

value as compared to the sum of all fitness values. Imagine all individuals are placed on a

roulette wheel. The slot sizes of the individuals are directly proportional to their fitness values,

where a higher fitness value indicates a larger slot size on the wheel (as shown in Figure 4.5).

The selection process starts like a marble tossed on a spinning roulette wheel. Clearly, the

marble has a higher chance of stopping and pick the individual with a larger slot size on the

wheel. This process will continue iteratively until a desired amount of individuals are selected.

 62

The probability (P) for an individual i with a fitness value of f to be selected from a population

(Pop) is calculated as per the following equation (Eq. 4.1):

 , Ɐj∈ Pop (Eq. 4.1)

 Figure 4.5 Example of a rouleZe wheel selec0on on a popula0on with four individuals.
 Fitness values of these individuals are indicated in the brackets aLer their names.

 Tournament Selection

Tournament selection starts by randomly choosing a small subset of chromosomes from

the current population, where each chromosome is considered a tournament participant. The

chromosome with the best fitness value in the subgroup is declared to be the winner and will be

selected for reproduction. The best chromosome has a probability of p to become the winner.

The second best chromosome has a probability of p(1-p), while the third has a probability of p(1-

p)2, and so on. The size of the subset in a tournament selection will affect its selection pressure.

To be specific, the more individuals in a subgroup (more competitors), the higher the selection

Pi = fi
∑ fj

 63

pressure will be [81]. Some research suggested that tournament selection is more desirable for

problems with population size, where sorting gets exceedingly time-consuming [78].

 Linear Ranking Selection

Linear ranking selection is the most common and straightforward type of ranking

selection, where a linear equation is used as an assignment function [78]. A linear ranking

selection requires sorting the population from the fittest to worst based on each individual’s

fitness value, extrapolating a linear function, and then assigning a number to each individual

based on the linear function. The process is then followed by a proportionate selection. In a

linear ranking selection, the probability of an individual being selected is directly proportional to

its ranking in the sorted list of all individuals in a population [61].

Steady-State Selection

The steady-state selection evaluates an individual’s fitness based on its linear ranking. It

proceeds by choosing an individual with a higher fitness value for reproduction, and in the

meantime, replacing the current worst individual with a newly generated one. Results of steady-

state selection are found to follow an exponential growth, which stops when the desired

population size is filled [79].

4.2.7 Crossover

The two most fundamental GA operators are crossover and mutation. Crossover is a GA

operator that mimics the biological reproduction process, where two parent chromosomes

exchange and combine their genetic contents to generate a new pair of offspring chromosomes.

It is a stochastic process where the crossover point(s) is/are selected randomly.

There are three primary types of crossover: one-point crossover, two-point crossover,

and uniform crossover. In a one-point crossover, each of the pairs of parent chromosomes

 64

splices at the same randomly-picked crossover point along the chromosome. Then, the two

parent chromosomes exchange their contents by mix-matching the portions of their genetic

materials before and after the crossover point (see details in Figure 4.6).

Two-point crossover is similar to one-point crossover but with two random crossover

points in each chromosome. Again, the two parent chromosomes are slitted at the same

crossover points. As demonstrated in Figure 4.7, the sections between the two crossover points

are swapped and combined with the remaining genetic contents in their counterpart.

 Figure 4.6 One-point crossover applied on Parent #1 and Parent #2 to generate Child #1 and
 Child #2. The crossover occurred at the crossover point, as indicated by the doZed line.

 65

 Figure 4.7 Two-point crossover applied on Parent #1 and Parent #2 to generate Child #1 and
 Child #2. The crossover occurred at the crossover points as indicated by the doZed lines.

Uniform crossover involves multiple crossover points in each parent chromosome. This

is implemented by designing a randomly generated binary crossover mask which has the same

length as the parent chromosomes. This crossover process looks at each gene on each parent

chromosome individually and allocates it based on the “0” and “1” pattern along with the

crossover mask. As shown in Figure 4.8, where it is a “0” on the mask, the corresponding gene in

parent #1 is assigned to child #1 and parent #2 to child #2. Where it is a “1” on the mask, the

corresponding gene in parent #1 will be passed on to child #2, and the gene in parent #2 goes to

child #1. Therefore, the resultant pair of offspring chromosomes will contain mixed contents

from both parents. The number of crossover points varies in a uniform crossover; however, the

average length of a mask is found to be around half of the length of parent chromosomes [78].

 66

 Figure 4.8 Example of uniform crossover applied on Parent #1 and Parent #2 to generate Child #1 and
 Child #2. The crossover mask is indicated as a binary string with the length of the parent chromosomes.

As mentioned previously, a string chromosome can be either a fixed-length string

chromosome or a variable-length string chromosome. In both cases, the same types of crossover

operation can be implemented (one-point, two-point or uniform); however, the crossover points

vary. In the fixed-length string chromosome, the crossover points always occur at the same loci

position, as shown in Figure 4.6 and 4.8. Whereas, in variable-length string chromosomes, the

crossover points may shift during the reproduction process [61]. The lengths of the child

chromosomes may, therefore, differ from the lengths of the parent chromosomes (as shown in

Figure 4.9).

 67

 Figure 4.9 Example of one-point crossover applied on a pair of variable-length string chromosomes.

Crossover Rate

The crossover rate indicates the frequency (in percentage) a crossover operator is applied

to a particular population. It determines the number of individuals from a population that is

going to participate in the reproduction process. Therefore, assigning an appropriate crossover

rate is critical for a valid GA. To be specific, if the crossover rate is too large, too many

individuals will be disrupted by the crossover operation, and that competent individuals are less

likely to be retained [78]. A GA with a small crossover rate, on the other hand, may impede the

GA’s search power and fail to find a local near-optimal solution.

4.2.8 Mutation

After crossover has taken place, the mutation operator is applied to each chromosome

individually by altering the genes in a chromosome in a random fashion. It is executed on a

population with a relatively small probability. Traditionally, a crossover has been the primary

and most desirable GA operator to exploit a desirable search region by recombining highly

potential chromosomes. In contrast, a mutation has been considered merely the secondary

operator. However, some research has suggested that a well-designed mutation operator has the

 68

potential to reach a different region of the search space [78]. Studies have also indicated that

tailoring the population size and mutation rate has a paramount influence on enhancing GA’s

capability to find the local optima [78].

There are various ways to implement mutation in a GA, such as modifying values,

permutation, and deletion/insertion. A more general approach to implement a mutation

operator is by randomly altering genes in a chromosome. The genetic alteration may be handled

as a one-point mutation or a multi-point mutation (see details in Figure 4.10). Permutation

mutation is where two genes on a string chromosome are swapped (as shown in Figure 4.11).,

which requires the data type of all genes to be consistent. These two approaches can be applied

to the fixed-length string chromosomes [61].

 Figure 4.10 Examples of value-modifying muta0on on a fixed-length string chromosome (Parent),
 where (a) shows a one-point muta0on, and (b) shows a mul0-point muta0on.

 Figure 4.11 Examples of permuta0on muta0on on a fixed-length string chromosome (Parent), where
 the gene at P1 locus is swapped to C2 locus in the Child chromosome, and the one at P2 traded to C1.

 69

In the case of variable-length string chromosomes, a mutation can be implemented by

either randomly inserting or deleting a few genes at random positions along a chromosome (see

details in Figure 4.12).

 Figure 4.12 Examples of inser0on (a) and dele0on (b) as muta0on operator on a variable-length
 string chromosome (Parent A, Parent B).

Mutation Operator vs Chromosome Encoding

Choosing a suitable type of mutation operator for a problem is closely associated with

how the chromosomes are encoded. For binary encoded chromosomes, permutation can be

applied to swap two different genes in a chromosome (a “1” and a “0”). The deletion/insertion of

a specific gene will also work in this case. Alternatively, bit inversion is also a suitable mutation

operator where a selected gene is replaced by its opposite value (a “1” substituted with a “0”, or

vice versa). For real-value encoded chromosomes, implementing a one-point or multi-point

value modification mutation is a desirable approach. For permutation encoded chromosomes,

selecting two genes and exchanging their orders in a chromosome using permutation mutation

is an appropriate approach.

 70

Mutation Rate

A mutation rate indicates the percentage of genes in a population that is going to be

mutated (altered) to create new individuals. As compared to crossover rates, mutation rates are

usually lower (no more than 0.1) [77]. If a high mutation rate is applied to a GA, then the GA

search will ultimately be converted into a random search.

4.2.9 Other GA Operations

Various studies in the literature have discussed other advanced genetic algorithm

operations reported and studied. For example, Deshpande and Kelkar [57] studied advanced

genetic algorithm operator Dominance & Diploidy in binary string chromosomes, where new

binary strings are structured regarding expressions of dominant (apparent) or recessive

(hideous) alleles. Reordering operation is another example of advanced GA operations, which

involves the movement of gene positions in a chromosome [57], [77]. It is beneficial in situations

where the order of genes in a chromosome is crucial and that changing order of genes will alter

phenotypic expressions. Inversion is a type of reordering operation where two randomly

selected loci in a chromosome are reversed [77].

Detailed mechanisms of Dominance & Diploidy, reordering or inversion will not be in

the scope of this research since none of these operations applies to the research problem we are

going to study. For example, changing the ordering of genes in the chromosomes in our design

will not affect altering the decoded string structure.

 71

4.2.10 Termination Criteria

The GA process is repeated until predetermined termination criteria are satisfied. There

are various ways to define termination criteria: a predefined fitness value [77], a total number of

evolutionary iterations, a predetermined level of variations between different generations, a

specific total computational runtime [54]. When the termination criteria are reached, the GA

will exit the current program loop and return the best current solution.

4.3 Genetic Algorithms in Network Survivability

As mentioned previously in this chapter, genetic algorithms are capable of delivering

results for NP-hard problems like network optimization problems. In fact, genetic algorithms

have been applied to various aspects of communication networks survivability and optimization.

Examples of typical applications include survivable network topology designs, network service

reliability, shortest path routing in survivable networks, and network routing and wavelength

assignment (RWA) problems.

 Telecommunication network topology optimization has been studied in various research

using genetic algorithms. An early study by Dengiz et al. [72] set the stage for optimizing

communication network topology designs using genetic algorithms. Their research with 70

randomly generated test networks has proved substantial flexibility and scalability of a genetic

algorithm approach in handling NP-hard problems. In this work, Dengiz et al. [72] presented a

GA model to minimize the cost of a network placement. The study used variable-length string

encoding of the chromosomes, uniform crossover and an effective mutation design with local

search operators. For repairing disrupted chromosomes, this GA model used a repair

mechanism that checks and fixes any non-two-connectivity in a candidate network.

In recent years, Morais et al. [70]-[71] developed a genetic algorithm for optimizing the

topological designs of survivable optical transport networks with minimum capital expenditure

(CAPEX). In this work, the chromosomes were encoded as binary strings with information

regarding an adjacency matrix. The binary adjacency matrix carries information on node-span

 72

correlations in a particular network. The GA model was tested with various combinations of

initialization methods and GA operators. To be specific, the authors tested two initial population

generators (random topology generator vs. a realistic optical network topology generator), two

selection methods (roulette wheel selection vs. tournament selection), two crossover operators

(one-point crossover vs. uniform crossover), and two population sizes (100 vs. 500). Simulation

tests were conducted on nine test networks ranging from 9 nodes to 17 nodes.

Some studies use genetic algorithms to optimize optical network reliability for real-world

communication networks, where maintaining reliable network connections and survivability

against failures are critical to customer satisfaction. This type of problem focuses on connecting

all customers (nodes) to infrastructure connecting points with the lowest cost while ensuring

network survivability against single-span failures. To tackle this problem, Binh and Duong [73]

proposed a genetic algorithm, also referred to as GA-EDP, for optimizing survivable network

design problems (SNDP) to minimize network cost. The GA model was implemented with three

different case-specific initialization methods, two customized crossover methods. Mutation

operation for GA-EDP was conducted by adding an extraneous node and its associated spans to

a selected chromosome. The proposed GA-EDP algorithm was proven to obtain promising

results on both real-world and random examples.

Genetic algorithms were also used to solve the shortest path routing in network

survivability. Ahn and Ramakrishna [74] developed a GA model for solving the shortest path

problem in wireless networks with dynamic changes in a network topology. This study applied a

GA model to the classic shortest path routing problem. It used variable-length string

chromosomes to encode the problem. This design also included a simple repair mechanism to

fix infeasible chromosomes after the crossover and mutation. The repair mechanism will find

and remove the lethal genes (a loop) in a disrupted chromosome. This study also developed a

scalable population-sizing algorithm that can be used to customize a suitable population size for

a GA model, which will enhance the solution with desirable quality.

In terms of solving the routing and wavelength assignment (RWA) problems, Kavian et

al. [82] presented a genetic algorithm for optimizing survivable optical networks that can

survive single link failures. The objective function of this problem was to minimize wavelength

utilization by the working and spare lightpaths while servicing the demands. The GA encoded

 73

the chromosomes as variable-length binary strings. A single-point crossover and a binary

mutation operator were used as GA operators. The GA terminated when the process reached a

predetermined number of generations. This proposed approach was implemented on both

dedicated path protection and shared path protection on a Pan European network with 18 nodes

and 35 spans.

4.3.1 Genetic Algorithms in p-Cycle Protection

A recent study by Guo et al. [83] introduced an improved genetic algorithm using a

genetic p-cycle combination protection strategy (GPCPS) to produce a set of p-cycle

combinations that can fully protect the entire network topology. This result is used in secondary

algorithms to optimize network spectrum allocation. The GPCPS utilizes the improved GA to

optimize the arrangement of primary candidate p-cycle so that an effective p-cycle protection

combination can be achieved, which fully protects the whole optical network topology with a

minimum cost. The algorithm takes in network topology, a request (demand), and the number

of requests to be processed, and it returns an optimized working path, a protection path and an

assigned spectrum index for the particular request. The process started by generating all the

primary cycles in a network topology using DFS. Then, cycles under a predetermined hop limit

were selected. Individual chromosomes were encoded using a variable-length decimal encoding

method where each gene is denoted with a serial number that reflects the identification of a p-

cycle. In terms of GA operators, this study adopted the roulette-wheel selection, two-point

crossover, and an adaptive mutation function. The process terminates when the maximum

allowed number of generations is reached or when the objective function value remains

unchanged for the maximum allowable generations. The results are verified for whether full

protection has reached. For any unprotected spans, an additional minimum p-cycle will be

formed to protect those spans, and the newly formed minimum p-cycle will be added to the total

p-cycle combination. The simulation results indicated that this proposed method was effective.

This study did not look at optimizing the cost-efficiency in placing p-cycle. To be specific, the

proposed improved GA used a fitness function that calculates the total number of unit

protection that a p-cycle can offer. This fitness function does not reflect the cost-efficiency of

 74

protection (total protection versus the cost of cycle placement), nor does it consider how real-

world demands may affect p-cycle protection effectiveness.

Genetic algorithms have also been effectively implemented in optimizing p-cycle

selection for maximizing p-cycle protection efficiency [68], [84]. For example, Colmán et al.

[84] proposed a GA model that takes a set of previously generated candidate p-cycle and

calculates an optimized set of p-cycle with maximum protection efficiency. The chromosomes in

this problem had dynamic sizes, which enveloped multiple information (a p-cycle ID and a value

indicating the number of cycles). All required information regarding features of all candidate p-

cycles is tabulated into a Protection Table, which can be used to decode chromosomes. This

work implements a binary tournament selection and a mutation operator that involves replacing

individuals. At each generation, the GA model retained the top performer by directly passing the

best individual onto the next generation with no genetic alterations. Simulation tests were

conducted with eleven test networks, ranging from 11 nodes to 66 nodes. This work did not

consider demands as a relevant factor that may influence p-cycle selections.

Meixner et al. [68] adopted the GA model developed in [84] and incorporated a novel p-

cycle efficiency metric as a fitness function. The novel p-cycle efficiency metric proposed in this

study was referred to as Efficiency of Restoration (EoR). The metric assesses a p-cycle’s

efficiency based on its total protection, total hop count, average p-cycle length and fairness of

cycles (standard deviation of cycle length). This study also proposed a new heuristic algorithm

called Efficient Restoration Algorithm (ERA). GA was implemented as a benchmark, and the

results were compared to the results of the ERA.

Genetic algorithms were also adopted to solve the shared risk link group problems in p-

cycle network protection. Shared risk link groups (SRLG) refer to sets of optical links on a cycle

that are grouped together and, therefore, will fail simultaneously in the event of a node or duct

failure [58]. In the research conducted by Paez et al. [58], a GA design was proposed to find the

best set of p-cycles that are capable of enhancing the survivability of network traffic flows

against SRLG. The proposed algorithm was also capable of restoring network failure faster and

more efficiently.

 75

This thesis herein will be devoted to developing a novel heuristic algorithm and a GA

model for solving the p-cycle spare capacity allocation problem with given demands. The details

regarding these two novel design will unfold in CHAPTER 6 and 7 of this thesis. For the

heuristic algorithm, a scalable cost-efficient and computational memory-efficient model is

proposed that targets solving the spare capacity allocation problem in large-scale networks. A

selection of network topologies with up to 140 nodes will be used in testing this model, which is

avant-garde. For the GA approach, a problem-specific chromosome encoding method is

proposed that adequately reflects all genetic information. Two efficient and objective-driven

repair mechanisms are developed for this problem. Also, an additional contribution of this work

includes an extensive study on novel mutation operator design and refining for this problem. To

the best of our knowledge, there has not been a study conducted on designing and testing a

suitable GA model for minimizing the cost of p-cycle spare capacity allocation with given

demands, nor has there been a similar problem-specific repair or mutation method proposed.

 76

CHAPTER 5. EXPERIMENTAL SET-UP & BENCHMARKING

So far in this thesis, key concepts regarding survivable networks and p-cycle protection

in survivable network design have been introduced. Fundamental concepts and background

information regarding heuristics, meta-heuristics and genetic algorithms, as well as their

applications in network survivability and p-cycle protection, have also been reviewed and

discussed. To the best of our knowledge, there has not been a heuristic method proposed in

particular for large-scale networks and tested using multiple large test networks that are over

100 nodes. Besides,, there has not been a GA model explicitly proposed for optimizing p-cycle

spare capacity allocation problem. In this thesis, we would like to challenge and scale up the p-

cycle survivability problem for large networks using heuristic and meta-heuristic methods. A

novel heuristic algorithm will be developed for enumerating highly efficient p-cycle in large-

scale networks. In addition, a scalable GA model will be proposed for optimizing the p-cycle

spare capacity allocation problem. This chapter is devoted to providing details regarding the

experimental and computational set-up and test network topologies.

5.1 Experimental Network Models

For the WDM optical mesh networks discussed in this thesis, a network topology can be

denoted as G(N, E) where N stands for the set of nodes and E is the set of edges (spans). |N|

 and |E| represent the number of nodes and the number of edges, respectively. All the network

graphs used in this research are weighted and undirected, and their topologies are known in

advance. Each span's weight is uniformly one for all the calibration networks (the USA network

and the France network) to allow comparison between the experimental results from this study

with those in Doucette et al. [39]. However, to simulate real-world problems, the weight of each

span in all other test case networks (10n20s to 140s220s) will be adopting the Euclidean

distance between two end nodes of the said span.

 77

5.1.1 Calibration Networks

Since we will conduct comparison studies on our novel heuristic algorithm versus the

Grow algorithm, we will be using the USA network [78] and the France network[4], [79] used in

Doucette et al.[39] as our calibration networks in CHAPTER 6. The USA network and the

France network have average nodal degrees of 3.2 and 3.3, respectively. As mentioned in

CHAPTER 2 of this thesis, a network’s average nodal degree is calculated as per the formulae: d

= 2 * |E||V|. The USA network will again be used as a calibration network for designing and

calibrating the GA model in CHAPTER 7.

 Figure 5.1 (a) USA long-haul network [78]; (b) France network [4], [79].

The two calibration network topologies are illustrated in Figure 5.1, which are generated

using the networkx package in Python version 3.7.6. The nodes and spans features of these two

topologies are listed in Table 5.1.

Table 5.1 Features of Calibra0on networks: USA and France networks

Networks Number of Nodes Number of Spans Avg. Nodal Degrees

USA 28 45 3.2

France 43 71 3.3

 78

(a) (b)

5.1.2 Test Case Networks

A total of 14 test case network topologies will be used in the experiments conducted in

this thesis, which were selected from [25]. Each of the test case networks was modified from a

master network (same nodes but difference spans, average nodal degree equals to 4) by

removing random span(s). By doing so, the average nodal degrees of these test cases decreased

from 4 to 3 progressively. All the test case networks in this study are bi-connected and have

average nodal degrees between 3 and 4. Table 5.2 presents nodes and spans features for all 14

test case networks. Network notations follow the pattern of X-n-Y-s, where X stands for the

number of nodes, and Y is the number of spans. For example, 10n20s refers to the test network

topology with 10 nodes and 20 spans. The weight of each span of all test case networks (10n20s

to 140s220s) is determined using the Euclidean distance between two end nodes of the said

span. The network topology graphs for all 14 test case networks will be provided in the Appendix

I, which are generated using the networkx package in Python 3.7.6 [86].

Table 5.2 Features of all 14 test networks. Span costs are equivalent to Euclidean distances.

Network Number of Nodes Number of Spans Avg. Nodal Degree

10n20s 10 20 4

20n34s 20 34 3.4

30n45s 30 45 3

40n60s 40 60 3

50n80s 50 80 3.2

60n96s 60 96 3.2

70n105s 70 105 3

80n128s 80 128 3.2

90n135s 90 135 3

100n150s 100 150 3

110n165s 110 165 3

120n180s 120 180 3

130n195s 130 195 3

140n210s 140 210 3

 79

5.2 Demand Models and Working Routing

Demands of a transport network refer to an aggregation of all traffic flows from an origin

node to a destination node of the transport network [3]. Working capacity on every span can be

determined based on traffic demands. A working path carries traffic demands during regular

operation. In this thesis, one unit of traffic demand takes on one unit of working capacity on

each span between an origin node and a destination node of a network. Also, only integer units

of traffic demands will be considered in this thesis unless stated otherwise. Usually, network

traffic demands of optical WDM networks can be forecasted or determined beforehand [50], and

the information can then be used for working capacity routing.

For the algorithms in this thesis, working capacity routing was conducted beforehand

using the shortest path method in all test networks, i.e., probably solved in an SCA fashion.

Therefore, the working capacity on every span of each test network is considered an input

parameter for the algorithms.

5.3 Computational Set-Up

All the heuristic algorithms (e.g., DDCD and CIDA) and genetic algorithm models

generated in this thesis work are programmed using Python 3.7.6 [86]. All the Python coding is

conducted, compiled and debugged using the Visual Studio Code [87]. All ILP models in this

thesis herein are compiled using a third party software called AMPL [88] and are solved using

IBM ILOG CPLEX Interactive Optimizer 12.6.1.0 [89]. AMPL is an LP modelling language used

to describe mathematical programming formulations in general algebraic forms. AMPL reads an

LP model and case-specific data and generates a readable standard file format imported to an

LP solver (i.e., CPLEX) to find the optimal solution of the LP [17]. All experiments are programs

run on a server with 12-core ACPI multiprocessor X64-based PC with Intel Xeon® CPU

E5-2430 running at 2.2 GHz with 96 GB RAM. All ILP results include a default mipgap of

0.0001 (unless specified otherwise), which indicates that the results are ensured to be within

0.01% of optimal.

 80

5.4 Experiment Benchmarking

Studies in this thesis will be using the experimental results presented in [39] as

benchmarks, where Doucette et al. compared performances of the CIDA-Grow and pure ILP

models on both the USA and France networks. The experimental results from [39] are

presented in the Table 5.3 below. In this table, “# of p-cycles” indicates the total number of

candidate p-cycles generated using either the Grow algorithm or the ILP model. The “Work”

and “Spare” stand for the total working capacity and total spare capacity of a network design,

respectively. “Redundancy” is the percentage of spare capacity over the working capacity. The

lower the redundancy, the better the efficiency a design resembles. “% Difference” indicates how

much (in %) the CIDA-Grow result deviates from the pure ILP approach (the true optimal or

near-optimal results). “RT” stands for the total runtime of a model, which includes the time

taken to generate eligible cycles plus the time taken to solve the ILP model using CPLEX 7.5

[39]. In the USA network, a “Pure ILP” approach is where all the eligible cycles from the

network topology are enumerated and used as possible candidate cycles when optimizing the

capacity cost, therefore, the resulting “Redundancy” value is the true optimal result. In the

France network, Doucette et al. generated the shortest 15,000 eligible p-cycles out of over

500,000 possible cycles using DFS, which is used as a near-optimal solution for this problem.

 Table 5.3 Test results as reported in DouceZe et al. [39] for the USA and France networks

* The shortest 15,000 eligible p-cycles out of over 500,000 possible cycles generated by DFS [39]

USA Network France Network

Grow
+ CIDA

Grow
+ ILP

Pure
ILP

Grow +
CIDA

Grow
+ ILP

Pure
ILP

of p-Cycles 839 839 7321 2407 2407 15000*

Work 1273 1273 1273 4043 4043 4043

Spare 1212 1164 1064 3890 3692 3675

Redundancy 95.2% 91.4% 83.6% 96.2% 91.3% 90.9%

% Difference 13.9% 9.4% 0.0% 5.9% 0.5% 0.0%

RT (sec) 0.32 1.70 17.29 1.93 8.25 541.08

 81

CHAPTER 6. A NOVEL HEURISTIC METHOD FOR p-CYCLE DESIGN

6.1 Introduction

As discussed previously, the p-cycle is a promising network protection mechanism in

WDM mesh networks due to its ring-mesh dichotomy and its capability to protect off-cycle

straddling spans. In a non-joint approach to design a fully restorable p-cycle network protection

in WDM mesh networks, the first step is to generate a set of eligible and efficient candidate p-

cycles that can provide full protection across the entire weighted network. The second step is to

optimize the allocation of selected p-cycle spare capacities to achieve 100% network survival

with the minimum spare capacity cost. Since p-cycles are constructed in the spare capacity of a

network, solving a p-cycle spare capacity allocation problem does not interfere with working

capacity routing.

As stated previously, heuristic methods refrain from searching cycles exhaustively and

are suitable for solving large-scale network problems. Prior studies on heuristics in p-cycle

designs, as discussed in CHAPTER 3 of this thesis, have shown promising results in various

network topologies that have less than 50 nodes. Among these studies, the Grow algorithm for

cycle enumeration and the CIDA for cycle placement by Doucette et al. [39] were the most

frequently referenced benchmark methods. The experiments conducted in this chapter of the

thesis will use the Grow algorithm as the benchmark to the proposed novel heuristic method.

The CIDA algorithm will be implemented as one of the spare capacity allocation methods in this

research. The Grow algorithm starts by enumerating some small primary p-Cycles using the

straddling link algorithm (SLA) proposed in [32]. By doing so, it generates a wide range of p-

cycles in various sizes (small p-cycles, intermediate p-cycles, and very large p-cycles) based on

the primary cycles. CIDA selects p-cycles with the highest current actual efficiency (Ew) scores

and places them in the network. Once a cycle is placed onto the network, working capacity

values are updated by subtracting one unit of working capacity from each on-cycle span of the

selected p-cycle, and two units on each straddling span (if present). Working capacity values are

updated at each iteration. This process is repeated iteratively until all the working capacities are

protected (meaning all working capacity values are reduced to zero).

 82

A review of prior work indicates that the majority of previous studies have conducted

simulation tests using networks that have less than 40 nodes (see details in Table 6.1). Among

which, COST239 with 11 nodes and 26 spans and USA long-haul network of 28 nodes and 45

spans are the most frequently tested network topologies. Some studies used network topologies

that have more than 60 nodes [64]-[69], [90]-[93]. However, these methods expedited the

eligible cycle searching process using genetic algorithms, which is an alternative approach that

we will implement in the next chapter. As mentioned in [25], there is no explicit definition for a

large network. However, since the majority of the test case networks in prior work are no larger

than 40-node networks, network topologies that have 50 nodes or more with nodal degrees of

three and above will be referred to as large networks in this study.

Table 6.1 Test networks used in selec0ve literature which adopted heuris0c or ILP approach in p-cycles designs and
pre-selec0ons against single network failure. * indicates studies that used gene0c algorithm.

 83

Reviewed Literature Test Network Used

[56] 6n8s, 17-node GERMAN network

[42] 8n13s

[28] 9n16s

[14][15][29][69][91] SmallNet network (10n22s)

[14][16][17][29][35]-[37][42]

[45][46][48][50][69][91]
COST239 network (11n26s)

[47] 12n19s, 13n23s, 15n26s

[34][42][43][45][47][56][68]* NSFNET network (14n21s)

[92] 15n27s

[14][15][35][40] KL Network (15n28s)

[68]* European Core Network (ECN)(18n39s)

[40][42][43][49] EON network (19n38n)

[14][15] 20n31s, 30n59s

[60] 28-node EUROPEAN network

[32][33][36][39][43][48][49][68]* USA long-haul network (28n45s)

[69] 30n62s

[32][39] France network (45n71s)

[14][15] 53n79s

[68]* China National Backbone Network (CNBN)(66n120s)

To the best of our knowledge, there has not been a study that experimented with

heuristic cycle enumeration algorithms on large networks in particular. With the rapid

advancement of and growing demands for network technologies, we are motivated to pursue

this study to develop methods that can effectively scale up and solve large-scale network

problems. In this chapter, we will introduce and test a novel heuristic method for highly efficient

candidate cycle enumeration that is proved to be effective in large networks, which is referred to

as the disjoint-paths Dijkstra cycle development (DDCD) algorithm. The DDCD approach starts

by generating short primary p-cycles using a double shortest path approach inspired by [33]. In

the next step, a heuristic algorithm is proposed to iteratively develop an extensive set of p-cycles

of various sizes using the short primary p-cycles.

 The remainder of this chapter is organized as follows. Introduction and design

consideration of the novel disjoint-paths Dijkstra cycle development (DDCD) algorithm will be

presented in Section 6.2. Section 6.3 includes detailed descriptions of the experimental set-ups.

The experimental results and algorithm performance will be presented in Section 6.4, which

includes the results of calibration networks and all test case networks with sizes ranging from 10

nodes to 140 nodes will be presented. Finally, Section 6.5 will wrap up this chapter with key

findings and conclusions.

6.2 A Novel Heuristic p-Cycle Enumeration Algorithm

6.2.1 Design Considerations

The heuristic cycle enumeration algorithm is referred to as the disjoint-paths Dijkstra

cycle development (DDCD). It is a recursive cycle enumeration method which is capable of

“developing” efficient p-cycles in small and large networks (over 100 nodes). This algorithm is

designed based on the following considerations:

First, the DDCD algorithm will be generating p-cycles of various sizes. Liu and Ruan [33]

stated in their research that a good candidate cycle set should incorporate both large cycles with

multiple straddling spans as well as small-sized candidate cycles. Analyzing the set of p-cycles

generated by Grow from [39] also indicated that the resulting candidate p-cycles contained a

 84

diverse profile of p-cycles: very small p-cycles, intermediate p-cycles, and very large p-cycles. As

discussed in [21], p-cycle sets with higher average cycle length (meaning more larger p-cycles)

provide better average protection efficiency. In the meantime, small p-cycles are essential for

preventing excessive capacity redundancies. In a situation where the working capacities of most

spans are protected, short p-cycles are needed to protect the remaining working capacities with

a lower spare capacity cost [33].

Second, the DDCD algorithm avoids duplicate p-cycles and is more memory-efficient,

especially when applied on large-scale networks. In the Grow algorithm, a significant amount of

duplicate cycles were generated and retained during the process. For example, the Grow

algorithm created 839 candidate cycles for the USA network and 2407 cycles for the France

network as reported in [39]. However, after duplicate p-cycles in both cycle sets are eliminated,

only 309 and 863 candidate cycles remain in each cycle set, respectively. The DDCD algorithm is

designed to check and remove duplicate cycles, and avoid the accumulation of duplicate cycles

during the process as well as in the final cycle set.

Finally, the amount of p-cycles to be enumerated is controllable in the DDCD algorithm.

The DDCD algorithm finds new p-cycles repetitively, and the number of iterations is an input

parameter for the algorithm. While some network topologies may require more cycles, some

may need less to provide equally good results (if not better) as compared to the benchmark. By

controlling the number of iterations, the number of output cycles will be customized as per the

input test network topologies. Correlations between the input number of iterations versus

network sizes will be discussed later in this chapter.

6.2.2 Disjoint-Paths Dijkstra Cycle Development (DDCD)

Figure 6.1 shows an overview of the mechanism involved in the DDCD algorithm

mechanism that is applied on a network topology as shown in Figure 6.1 (a). In general, there

are three steps involved in the DDCD algorithm:

1) Generating starting cycles based on each span i in a network (see Figure 6.1 (b));

2) Larger p-cycles by converting on-cycle spans to straddling spans (Figure 6.1 (c));

3) Post-enumeration procedure to verify straddling spans (Figure 6.1 (d)).

 85

The first two steps will yield a set of high-merit candidate p-cycles with a wide range of

sizes. The last step ensures computational soundness, memory efficiency, and data correctness.

All the network topologies used herein are undirected and bi-connected.

Figure 6.1 Overview of the DDCD algorithm mechanism applied on a topology shown in (a).

Step One: Generating Starting Cycles

Similar to the Expand and Grow algorithms in [39], the DDCD algorithm operates on an

initial set of short p-cycles. These starting cycles are crucial for developing eligible and capacity-

efficient p-cycles at later stages. Each of the short cycles generated at this step will be an input

cycle for the DDCD algorithm, where further operations will be conducted to generate larger p-

cycles with higher capacity efficiency. The starting cycles are generated using the short cycle

enumeration method proposed in [33], which is referred to as a double-shortest-path method in

our implementation. For each span i of a network, the double-shortest-path algorithm will find a

 86

(a) (b)

(c)(d)

minimum cycle that protects i as an on-cycle span and a short p-cycle if such a cycle exists.

Figure 6.2 demonstrates how double-shortest-path algorithm is used to generate minimum cycle

and short p-cycle. An overview of the process can be described as follows:

1) Initialize a new cycle set where all newly enumerated short cycles will be saved:

New_Cycle_Set = {}

Note that in our python implementation, each item in the New_Cycle_Set is an eligible

cycle that is distinguished by a specific cycle ID plus the cycle’s span information (span

ID + span relation values). The span relation values are represented as either 1 or 2,

where 1 represents an on-cycle span, and 2 represents a straddling span.

2) For each span i of a network N, locate the two end nodes (N1 and N2) of span i. Using

Dijkstra’s algorithm, find two shortest paths r1 and r2 between N1 and N2 that are node-

disjoint from span i.

3) If only r1 exists for span i (illustrated in Figure 6.2(a) and displayed in the pseudo-code

below as distance(r1) != MAX), then connect r1 with i to form a minimum cycle a that

includes span i as an on-span cycle. The algorithm will proceed no further and the cycle a

is saved to the New_Cycle_Set. As shown in Figure 6.2 (a), only one shortest path (r1)

exists between two end node of span i (Node 1 → Node 2). Therefore, only one minimum

cycle is formed by joining r1 with span i.

4) If both r1 and r2 exist for span i, the algorithm will first form and keep the minimum

cycle a. Then, a p-cycle b will be formed by joining the r1 and r2 at their end nodes, where

span i is a straddling span to the cycle b. Save the cycle b to the New_Cycle_Set. This is

shown in Figure 6.2 (b) and displayed in the pseudo-code below as distance(r1)!= MAX

and distance(r2)!= MAX. As illustrated in Figure 6.2 (b), two node-disjoint shortest

paths (r1 and r2) are found for span i (Node 4 → Node 7). In this case, a minimum cycle

is formed by joining r1 with span i. In addition, a short p-cycle is formed by joining r1 and

r2, with span i straddles over this cycle.

5) This process continues until all the spans in the network N is explored. The process will

then terminate and return the New_Cycle_Set.

 87

Figure 6.2 Genera0ng star0ng cycles (and p-cycles) using double-shortest-path method.
(a) a minimum cycle is formed by joining r1 + i, (b) a small p-cycle is formed by joining r1 + r2.

The pseudo-code for generating starting cycles and double-shortest-path are as follows:

all_spans is a set of all spans in the network N;

function StartCycles(all_spans):

 initialize New_Cycle_Set

 for each span i in all_spans:

 N1 = origin_node(i)

 N2 = destination_node(i)

 double_ShortPath(Graph, N1, N2) → r1, distance(r1), r2,

 distance(r2)

 if distance(r1) != MAX:

 add all the spans of r1 to span i → cycle a

 save cycle a to New_Cycle_Set

 if distance(r2) != MAX:

 add all the spans of r2 to r1 → cycle b

 remove duplicate spans

 mark span i as a straddling span

 save cycle b to New_Cycle_Set

return New_Cycle_Set

 88

(a) (b)

function double_ShortPath(Graph, origin, destination):

 set graph distance between origin & destination to MAX

 for each span i on Graph:

 Dijkstra(i, unmarked spans/nodes) → r1, distance(r1)

 if distance(r1) != MAX:

 mark visited nodes

 Dijkstra(i, unmarked spans/nodes) → r2, distance(r2)

 unmark all spans/nodes

 reset graph.distances()

 return r1, distance(r1), r2, distance(r2)

Step Two: Disjoint-Paths Dijkstra Cycle Development (DDCD)

The DDCD algorithm takes the starting cycles that were generated at the previous step

and develops various larger p-cycles with higher capacity efficiency (more straddling spans).

The DDCD algorithm adopts Dijkstra’s algorithm to replace each span of a selected cycle

progressively by a node-disjoint path. The DDCD algorithm starts at an arbitrary span i on a

starting cycle p. The algorithm finds the shortest node-disjoint path that connects the end nodes

of span i (if existed) and then connects this path with the remaining portion of cycle p to form a

new p-cycle. Span i is then removed from the newly-formed cycle. Therefore, span i will be

transformed from a on-cycle span of the old p-cycle to a straddling span to the newly generated

p-cycle. Note that in the python code implementation for the DDCD algorithm, straddling spans

are “marked” as straddling spans to be distinguished from on-cycle spans and other off-cycle

spans. If such a node-disjoint path does not exist, the algorithm will move on to the next span on

cycle p and start over. If such a path does exist, a new p-cycle is generated. The visited nodes

along the path are then “marked” and hidden, so the same path will not be explored again. The

algorithm will then find the second shortest node-disjoint path for span i, and the process will

continue as above. If no more node-disjoint paths can be found to connect the end nodes of span

i, the algorithm will jump to the next span on the cycle and repeat the same procedure. The

algorithm will terminate when all the spans on the cycle p are explored.

 89

Figure 6.3 illustrates the process of developing larger p-cycles using the DDCD

algorithm. Figure 6.3(1) shows a starting small p-cycle enumerated from Step one of the DDCD

algorithm. This starting p-cycle has four on-cycle spans, denoted as Span 1, Span 2, Span

3, and Span 4. Figure 6.3(2) illustrates the scenario when the cycle development process starts

at Span 1. As shown in Figure 6.3(2), there exist more than one node-disjoint paths between the

two end nodes of Span 1, including but not limited to p1 (grey), p2 (green), p3 (yellow), and

p4 (orange). Figure 6.3(3a)-Figure 6.3(3d) presents the resulting newly formed p-cycles by

replacing Span 1 with the node-disjoint paths p1 - p4, respectively. In these newly formed p-

cycles, Span 1 becomes a straddling span. Therefore, Step two of the DDCD algorithm generates

larger candidate p-cycles with at least one more straddling span (better protection efficiency).

Every time when a node-disjoint path is explored, it will be “hidden” so it will not be explored

again. Once a span (e.g., Span 1) is fully explored, the algorithm will move on to the next spans

(Span 2, Span 3, and Span 4) on the topology until all spans are explored. Each new p-cycle

formed will be saved to the New_Cycle_Set as a valid candidate.

Unlike the Grow algorithm, DDCD finds all possible node-disjoint paths for each chosen

span (if existed). Therefore, more than one new p-cycles (if existed) are generated for each span

explored on a starting cycle. As in the Expand and Grow algorithms, all the newly generated p-

cycles are saved and added to the total p-cycle pool to be used in a later cycle allocation

optimization process (e.g., CIDA). Therefore, the resulting total p-cycle pool from DDCD will

incorporate a diverse set of cycles that includes minimum cycles, short p-cycles, medium-sized

p-cycles and very large p-cycles.

The pseudo-code for developing larger p-cycles using DDCD is provided in the section

below.

 90

Figure 6.3 Overview of developing larger p-cycles from a start cycle (a) using DDCD algorithm.

function DDCD(input_cycle_set, Graph, new_cycle_id):

 initialize New_pCycle_Set

 for each cycle c in input_cycle_set:

 initialize marked_nodes_list

 let cycle c’ = cycle c

 91

 for on-cycle span i on cycle c’:

 mark all nodes except end nodes → marked_nodes_list
 while marked_nodes_list:

 Dijkstra(i, unmarked spans/nodes) → pi, dist(pi)
 if path pi exists:

 add path pi to cycle c’ → cycle c”
 mark span i as straddling span

 add cycle c” to New_pCycle_Set

 add nodes on path pi to marked_nodes_list

 Dijkstra(i, unmarked spans/nodes) → pi’, dist(pi’)
 if Dijkstra() does not return pi’:

 break

 unmark all nodes and spans

return New_pCycle_Set

In the above pseudo-code, note that the data structure in our python implementation for

each p-cycle in the New_pCycle_Set contains a p-cycle ID and its span information (span ID +

span relation values). The span relation takes on a value of either 1 or 2, where 1 represents an

on-cycle span, and 2 represents a straddling span.

As stated previously, The DDCD algorithm searches cycles iteratively in a network

topology, where the number of iterations (k) is a controllable input parameter. Note that k can

take on any integer values from 1 to ∞. As the value shifts from 1 to ∞, the DDCD algorithm will

find as many candidate cycles as possible. Once no more can be found, the DDCD algorithm will

exit and return the most recent collection of p-Cycles. The entire DDCD process is demonstrated

by the following pseudo-code (the *asterisk part will be presented later in Step Three):

start_cycles = startCycles(all_spans)

for k ∈ [1,∞), do:
 initialize new_cycle_id

 new_pcycles = DDCD(start_cycles, Graph, new_cycle_id)

 remove duplicate cycles* → no_dup_pcycles
 add no_dup_pcycles to start_cycles → New_pCycle_Set
 if no new cycle found → break

 92

Step Three: Duplicates Removal and Validity Checks

After p-cycle enumeration, there are a few miscellaneous cleaning and verification steps

that we take to ensure excellent memory efficiency and data correctness.

a) Remove Cycle Duplicates. At the end of each DDCD iteration, all the candidate

cycles in the total cycle pool (e.g., input_cycle_set) are checked for possible duplicates. This

duplicate removal step is implemented by first calculating all candidate cycles' costs and sorting

the cycles based on their costs. Cycles with different costs are considered non-duplicates by

default. Cycles with the same costs, however, are grouped together where their span information

will be investigated to find out whether these cycles are identical or not. We compare the on-

cycle spans of each cycle within each group with those of other cycles within the same group.

Non-duplicate cycles are added to a new list (e.g., a new p-cycle set called no_dup_cycle_set),

whereas the duplicates are flagged and dropped. The resulting p-cycle set (no_dup_cycle_set)

will contain no duplicates. This duplicate removal step is conducted at the end of an iteration

(see the asterisk* part in previous pseudo-code for Step Two), as well as after the Step b) below.

The pseudo-code for removing duplicate p-cycles is as shown below:

function Remove_Duplicates(input_cycle_set):

 initialize no_dup_cycle_set, cycle_costs_set

 for cycle c in input_cycle_set:

 calculate cycle costs → cycle_costs_set
 sorted_cycles = groupby(cycle_costs_set, cycle costs)

 for cycle c’ in group i in sorted_cycles:

 if set(on-cycle span)for c’ = set(on-cycle span)for c+1:

 flag duplicates

 break

 if not duplicates:

 add cycle c’ to no_dup_cycle_set

 i = i+1

 return no_dup_cycle_set

 93

b) Straddling Span Check. During the process of DDCD, when a new p-cycle is

formed, only the selected span i was marked as a straddling span. As the size of the node-

disjoint paths grows, larger cycles will be generated that may contain multiple additional bonus

straddling spans that are not explicitly expressed during the process. Therefore, an additional

check on all the cycles is performed to capture any missed straddling spans. If a span is found to

straddle the cycle but is not previously identified, it will be “marked” as a straddling span. Since

we assign values of 1 or 2 to each span on a p-cycle, “marking” a straddling span means to assign

a value of 2 as its span relation, whereas an on-cycle span will retain a value of 1 for its span

relation. This step is conducted by scanning all spans and nodes information is all candidate

cycles in a p-cycle set (input_cycle_set).

For example, say a cycle p from input_cycle_set is structured as follows:

{cycle p: {span 1: 1, span 2: 1, span 3: 2, …, span i: 1}, …}

where cycle p is the cycle ID and {span 1: 1, span 2: 1, span 3: 2, …, span i: 1}

is the cycle span information (span ID : span relation). For any two arbitrary nodes on the

cycle p, if there exists a span s in the network graph G, which is not included in the span

information. The span s is an additional straddling span to the cycle p, which should be added

to the cycle span information and assigned a span relation of 2.

 As illustrated in Figure 6.4, the p-cycle in Figure 6.4(1) is a newly formed p-cycle

developed by Step two of the DDCD algorithm. This step only identified the straddling span 1 at

which the new p-cycle was formed. We may notice that there is still a straddling span (span j) in

this newly formed p-cycle that is not identified yet. Span j is identified during this verification

step and is “marked” in the cycle’s span information.

Figure 6.4 Upda0ng span informa0on for a newly formed p-cycle (1) at the DDCD verifica0on step.

 94

The pseudo-code for this step is shown as follows:

function Straddle_Spans(input_cycle_set, Graph):

 for (cycle p, cycle_p_span_info) in input_cycle_set:

 initialize cycle_node_set, updated_pcycle_set

 save all nodes on cycle p → cycle_node_set

 for each node pair from cycle_node_set:

 if span s ∈ Graph and span s ∉ cycle_p_span_info:

 add span s to cycle_p_span_info as straddling span

 update cycle p information in updated_pcycle_set

 Return updated_pcycle_set

c) Save to a .pcycle File. Last but not least, for accessibility of these p-cycle data at

later stages of our experiments (e.g., CIDA optimization and genetic algorithms operation), all

the p-cycle data are saved to a .pcycle file, which can be imported into other algorithms.

6.3 Experimental Set-Up

As mentioned earlier, the SCA approach will be implemented to solve the p-cycle

protection design problem. The candidate p-cycles are generated using the novel DDCD

algorithm. In addition, the Grow algorithm [39] and the conventional depth-first search (DFS)

algorithm are implemented as our benchmark cycle enumeration methods. After the p-cycles are

enumerated, both a heuristic algorithm (CIDA) and an ILP model are used for spare capacity

allocation optimization. These two methods are used to select a set of p-cycles to protect the

network's working capacities entirely while minimizing the cost of spare capacity.

The DDCD algorithm is programmed using Python 3.7.6. The Grow algorithm is from

[94], which was programmed previously in C++ (see pseudo-code in Section 3.4.1 of this thesis).

The DFS approach is from [95] and was also programmed in C++ (see pseudo-code in Section

2.4.2 of this thesis). The CIDA is implemented based on the pseudo-code provided in [39]. It is

 95

programmed using Python 3.7.6 (see pseudo-code in Section 3.4.4 of this thesis). The ILP spare

capacity allocation model is from [96] and was presented and discussed in Section 3.4.3. The

three cycle-enumeration methods and two spare capacity allocation methods are paired up as

follows: DDCD + CIDA, DDCD + ILP, Grow + CIDA, Grow + ILP, DFS + CIDA, DFS + ILP. The

result of each pair will be presented and compared against one another in the experimental

results section in this chapter. Where applicable, all eligible cycles in a network topology will be

enumerated using DFS which will be followed by SCA ILP model to find the optimal solution.

There are various input files and parameters, algorithmic models, and output files and

information that are associated with developing these experiments. Detailed lists of these items

(item names and explanations) can be found in the Appendix section of this thesis.

6.3.1 Benchmarks and Test Cases

 As mentioned in CHAPTER 5, the calibration network topologies for this study are the

USA long-haul network and the France network from [39]. Other test network topologies vary

from 10 nodes with 25 spans to 140 nodes with 210 spans. The number of working capacity units

on each span is determined by the shortest-path routing of all traffic demands in [94]-[96].

Since a uniform span weight of one is used in [39], we will continue adopting the same span

weight in our experiments using the USA and France network to facilitate results comparison.

For any experiments conducted on other test case networks, however, we will be using the

Euclidean distances between two end nodes of a span as the span weights.

 In our implementation and experimentation, three consecutive sets of experiments will

be conducted. First, experiments will be performed on the two calibration networks using a

uniform span weight of one. To be specific, the process will start by enumerating eligible p-

cycles using the Grow algorithm, DDCD algorithm, and DFS, and then follow up with spare

capacity allocation using CIDA and ILP. The results will be compared against the benchmark

results as reported in Doucette et al. [39] for the USA and France networks, which is listed in

Table 5.3 in Section 5.5 of this thesis. These benchmarking tests are conducted on our server,

therefore, the runtimes are updated to reflect our current computational set-ups. Once

benchmarking tests are completed, the same sets of combined algorithms will be applied on

 96

small test networks between 10 nodes and 40 nodes using Euclidean distances as the span

weights. For these small test networks, the DFS algorithm is capable of finding all eligible

candidate cycles in a network topology within three days of runtime, which provide the optimal

solutions to these test cases. Finally, all sets of combined algorithms will be applied to larger

networks with sizes of 50 nodes up to 140 nodes using Euclidean distances as the span weights.

In these network topologies, ILP is unable to provide an optimal result within three days of

runtime. In this study, tests that take longer than three days of runtimes to obtain results will be

considered unsatisfactory and unfavourable.

6.4 Experimental Results and Discussion

6.4.1 Calibration network Models

As explained in the previous section, a set of eligible p-cycles will be generated using a

specific cycle enumeration algorithm (Grow, DDCD, or DFS). Then the set of cycles will be used

in either the CIDA or ILP model for spare capacity optimization. Table 6.2 presents the results

of such benchmark tests on the USA network and the France network. As shown in the table,

three cycle enumeration algorithms were used to generate candidate cycles: Grow, DFS, and

DDCD. Each set of candidates are then combined with either CIDA or SCA ILP model for the

spare capacity allocation. Experimental result generated from each test is a minimum total cost

of capacity placement for 100% network survivability that each combined algorithm is capable

of achieving. Since all span costs are assumed to be one, the working capacity costs will equal to

the working capacity units, and the spare capacity costs equal to the spare capacity units.

Results of the “CIDA + Grow” and “ILP + Grow” are the repeats of the tests as reported in

Doucette et al. [39] with updated experimental runtimes that reflect our current computational

set-up. DFS algorithm in our implementation finds the shortest X number of cycles given

network topology. Therefore, our DFS cycle finding algorithm is executed with a controllable

input parameter, the number of output cycles. This input parameter is set to be the same as the

number of candidate cycles generated by DDCD, which will allow us to compare the robustness

of the results by DDCD to those by DFS. Therefore, DFS and DDCD enumerate the same amount

 97

of eligible cycles; however, member cycles in each candidate pool are different due to distinct

cycle finding methodologies. Resulting cycle pools are combined with either CIDA (“DFS +

CIDA”, “DDCD + CIDA”) or SCA ILP model (“DFS + ILP”, “DDCD + ILP”). DFS is again used to

find all eligible cycles in a network topology (“All”) which is used in the SCA ILP model to obtain

the optimal solution. This result is reported as “(Near) Optimal” in the last column of Table 6.2,

where the result for USA is the true optimal solution using a complete set of 7,321 eligible cycles,

and the result for France is a near optimal solution using the shortest 50,000 p-cycles out of

over 500,000 total possible cycles [39].

For each column of a test method in Table 6.2, the “# of cycles” shows the total number

of eligible cycles generated by a corresponding cycle enumeration algorithm. Each test result

yields a minimal total cost of capacity placement. The “Normalized Cost” is obtained by dividing

all the capacity costs by the minimum cost among all. “Total RT” is the summation of the

runtime taken to enumerate candidate cycles plus the runtime taken to optimize the spare

capacity allocation by either the CIDA or ILP model.

* Equal amount of p-Cycles as those of DDCD but different member cycles in each set
** Using DFS to generate the shortest 50,000 p-cycles instead of 15,000 as reported in [39]

When comparing normalized costs, the lower the value indicates better capacity

efficiency. The lowest capacity cost has a normalized value of 1.000. As shown in Table 6.2, for

the same spare capacity allocation method (CIDA or ILP), candidate p-cycles generated by the

DDCD algorithm provided full network protection with the lowest spare capacity cost compared

Table 6.2 Comparing DDCD with Grow and DFS for cycle enumeration in the USA and France networks

Network Topologies
CIDA ILP (Near) Optimal

Grow DFS DDCD Grow DFS DDCD All + ILP

USA
(28n45s)

of cycles 839 1028* 1028 839 1028* 1028 7321

Normalized Cost 1.139 1.117 1.110 1.094 1.048 1.045 1.000

Total RT (s) 0.06 1.23 4.13 0.39 0.64 2.46 3.26

France
(43n71s)

of cycles 2407 28810* 28810 2407 28810* 28810 50000**

Normalized Cost 1.130 1.127 1.072 1.072 1.043 1.000 1.026

Total RT (s) 0.98 361.31 966.16 1.62 295.25 887.52 760.28

 98

to those by Grow or DFS. Among all the tests by combined algorithms, “DDCD + ILP” generates

the best near-optimal solutions in either test network. In the USA network, the “DDCD + ILP”

result deviates from the true optimal solution by 4.5%. In the France network, the “DDCD +

ILP” result is 2.6% better than the near optimal solution provided by the 50,000 shortest cycles

in the last column. In our implementation, we generated the shortest 50,000 eligible p-cycles

instead of the shortest 15,000 as reported in [39]. This is because the “DDCD-ILP” capacity was

found to have outperformed that of the shortest 15,000 p-cycles, and the number of cycles

generated by DDCD (28,810) has surpassed 15,000. When comparing the total runtimes for all

the tests, DDCD creates a better near-optimal solution with an approximately four times longer

runtime than those of Grow or DFS. However, the runtimes are comparable to the (near)

optimal solution provided in the last column (e.g., 4.13s and 2.46s vs. 3.26s for USA network,

966.16s and 887.52s vs. 760.28s for France network). These results suggest promising results

for application in larger networks, where ILP runtimes grow exponentially as network size grow.

6.4.2 Small Test Case Networks (10 Nodes to 40 Nodes)

We now apply the DDCD algorithm on networks with the sizes of 10 nodes to 40 nodes.

Again, CIDA and ILP models are used for spare capacity allocation, and the results of DDCD are

compared to those of Grow and DFS. In all the test case networks here, we use the actual

Euclidean distances between two end nodes of spans as the cost of these spans. The optimal

solution to each test case network is determined by the spare capacity allocation ILP model

using the complete set of eligible cycles enumerated by DFS. Same as in the calibration network

models discussed in Section 6.4.1, DFS and DDCD generates the same amount of eligible cycles;

however, member cycles in each cycle pool are different due to distinct cycle finding approaches.

Results of all small test case networks are presented below in Table 6.3.

Same as performed previously, the resulting candidate cycle pools are combined with

either CIDA (results reported as “DFS + CIDA”, “DDCD + CIDA”) or SCA ILP model (results

reported as “DFS + ILP”, “DDCD + ILP”). DFS is again used to find complete sets of cycles in

each network topology ,which is combined with the SCA ILP model to generate the optimal

solution in each of the small network case. These results are reported as “Optimal” in the last

 99

column of Table 6.3. For each column of a combined test method, the “# of cycles” shows the

total number of eligible cycles generated by a corresponding cycle enumeration algorithm. The

last column (“All + ILP”) indicates the total numbers of all the eligible cycles in a network

topology. “Normalized Costs” are calculated by dividing all the capacity costs by the minimum

cost among all, which indicate quality of a result. The lower the normalized cost, the better the

solution. A normalized cost is 1.000 indicates a minimum capacity cost across all data. “Total

RT” is the summation of the runtime taken to enumerate candidate cycles plus the runtime

taken to optimize the spare capacity allocation by either the CIDA or ILP model.

* Equal amount of p-cycles as those of DDCD but different member cycles in each set

Table 6.3 indicates that “DDCD + CIDA” and “DDCD + ILP” outperformed both “Grow

+ CIDA” and “Grow + ILP” in all four small test case networks. Especially in the cases of 10n20s

and 20n34s, the “DDCD + ILP” method was able to find the optimal solution (normalized costs

of 1.000) within comparable runtime as compared to the normalized costs and runtimes as

reported under “Optimal”. Therefore, the DDCD-CIDA and DDCD-ILP are proven to show

Table 6.3 Comparing DDCD with Grow and DFS for cycle enumeration in small test networks (10n20s to 40n60s)

Network Topologies
CIDA ILP Optimal

Grow DFS DDCD Grow DFS DDCD All + ILP

10n20s

of cycles 449 376* 376 449 376* 376 416

Normalized Cost 1.058 1.141 1.056 1.004 1.061 1.000 1.000

Total RT (s) 0.16 0.08 0.42 0.19 2.04 0.67 0.48

20n34s

of cycles 1018 699* 699 1018 699* 699 2794

Normalized Cost 1.079 1.062 1.037 1.025 1.035 1.000 1.000

Total RT (s) 2.35 1.31 2.11 0.22 0.27 0.78 1.03

30n45s

of cycles 723 1138* 1138 723 1138* 1138 15818

Normalized Cost 1.131 1.242 1.093 1.099 1.175 1.023 1.000

Total RT (s) 4.49 5.74 7.00 0.46 3.98 4.89 10.58

40n60s

of cycles 1158 1692* 1692 1158 1692* 1692 234065

Normalized Cost 1.156 1.191 1.125 1.104 1.144 1.064 1.000

Total RT (s) 15.28 20.11 23.25 0.84 7.06 5.32 357801.11

 100

robust performance in optimizing the capacity allocation with 100% survivability in these test

cases. The DFS, on the other hand, shows the least favourable performance in almost all test

cases. Compared to the optimal solution in the last column, “DDCD + ILP” is proven to provide

the best near-optimal solution. For example, “DDCD + ILP” obtained the optimal solutions in

both 10n20s and 20n34s. In the 30n45s and 40n60s networks, “DDCD + ILP” provided near-

optimal solutions that deviate from the optimal solutions by only 2.3% and 6.4%, respectively.

In terms of the test runtimes as shown in Table 6.3, all tests combined with CIDA show

an increase in runtimes as the network size grows. Although DFS-ILP is still able to find the

optimal solutions for these networks (results reported under “All + ILP” in the last column), we

observe a significant increase in ILP runtime as the network size grows from 10n20n to 40n60s.

In the 40n60s network, test runtime soared up to 357,801.11s, which is almost 7,000 times

longer than the runtime of DDCD-ILP (5.32s). The sharp increase of runtime may be associated

with the tremendous amount of candidate cycles involved (234,065 candidate cycles) in

generating the optimal solution. In contrast, only 1,692 candidate cycles are involved in DDCD-

ILP to provide a near-optimal solution that only deviates from the optimal solution by 6.40%. As

network size grows, finding the optimal solution within a satisfactory time frame (e.g., three

days in our experiments) will be more challenging. Finding the best near-optimal solution

within an acceptable runtime will be the primary concern in large networks, where DDCD shows

promising results. Although Grow-CIDA and Grow-ILP took shorter runtimes as compared to

those of DDCD-CIDA and DDCD-ILP in most cases, their normalized costs indicate much

weaker performance in all test networks.

6.4.3 Large Test Case Networks (50 Nodes to 140 Nodes)

 As the results of DDCD combined with either CIDA or ILP have been proved to be

promising on the calibration networks and the small test case networks, we will now be

implementing these methods on large test case networks that are over 50 nodes. In these

networks, DFS-ILP cannot find an optimal solution within acceptable runtime (e.g., over three

days of runtime). Therefore, it is our primary interest to find the best near-optimal results for

 101

these test case networks. All span costs are the Euclidean distances between two end nodes.

Results of DDCD with CIDA and ILP are again compared to those with Grow and DFS.

As shown in Table 6.4, the lowest spare capacity costs are highlighted with bolded font

and compared with other test results. Same as previous tests, the “# of cycles” is the total

number of eligible cycles generated by a specific cycle enumeration algorithm (Grow, DFS, or

DDCD). “Normalized Costs” are assessed by dividing all capacity costs by the minimum cost

among all, which indicate the quality of a result. Therefore, the lower the normalized cost, the

better the solution. As mentioned before, a normalized cost is 1.000 indicates a minimum

capacity cost (hence, best result) across all data. “Total RT” includes both the runtime taken to

enumerate candidate cycles plus the runtime taken to optimize the spare capacity allocation by

either the CIDA or ILP model. For tests that fail to provide results within three days of runtime,

their normalized costs are voided (“/”), and corresponding “Total RT” is recorded as “> 3 days”.

These tests are considered undesirable due to long runtimes.

 As demonstrated in Table 6.4, DDCD-ILP still generates the best results with the lowest

spare capacity costs among all six tests in every test case network. When looking at the sets of

experiments with the same spare capacity allocation methods (using either CIDA or ILP), tests

using DDCD as the cycle enumeration method outperformed Grow or DFS. Among these, DFS

provides the weakest-performing candidate cycles in every test case network. Especially when

the network size reaches 80 nodes and above, DFS failed to generate the same amount of

candidate cycles as DDCD within three days of runtime in almost all cases. Therefore, DFS is the

least desirable cycle enumeration method as compared to Grow and DDCD in large networks,

whereas DDCD is the most plausible method for large-scale networks.

 102

* Equal amount of p-cycles as those of DDCD but different member cycles in each set

Table 6.4 Comparing DDCD with Grow and DFS for cycle enumeration in large test networks (50n80s to 140n210s)

Network Topologies
CIDA ILP

Grow DFS DDCD Grow DFS DDCD

50n80s

of cycles 4104 13550* 13550 4104 13550* 13550

Normalized Cost 1.094 1.143 1.054 1.058 1.096 1.000

Total RT (s) 88.74 469.74 210.32 7.92 353.51 29.79

60n96s

of cycles 6626 6708* 6708 6626 6708* 6708

Normalized Cost 1.072 1.115 1.042 1.044 1.068 1.000

Total RT (s) 225.18 7880.98 186.76 9.90 7712.29 21.15

70n105s

of cycles 3974 10671* 10671 3974 10671* 10671

Normalized Cost 1.099 1.155 1.051 1.057 1.107 1.000

Total RT (s) 232.52 612.62 376.84 42.54 192.51 119.03

80n128s

of cycles 11018 3629* 3629 11018 3629* 3629

Normalized Cost 1.083 / 1.042 1.049 / 1.000

Total RT (s) 1613.81 > 3 days 173.37 64.18 > 3 days 17.49

90n135s

of cycles 7548 2953* 2953 7548 2953* 2953

Normalized Cost 1.103 1.408 1.051 1.075 1.337 1.000

Total RT (s) 1794.62 6444.63 161.36 50.65 6178.02 17.66

100n150s

of cycles 7114 4278* 4278 7114.00 4278* 4278

Normalized Cost 1.122 / 1.039 1.083 / 1.000

Total RT (s) 2091.85 > 3 days 12.74 69.92 > 3 days 12.74

110n165s

of cycles 9669 3278* 3278 9669 3278* 3278

Normalized Cost 1.068 / 1.033 1.028 / 1.000

Total RT (s) 4543.99 > 3 days 315.55 150.65 > 3 days 16.22

120n180s

of cycles 8485 5353* 5353 8485 5353* 5353

Normalized Cost 1.167 / 1.040 1.131 / 1.000

Total RT (s) 6545.41 > 3 days 1082.25 333.34 > 3 days 27.42

130n195s

of cycles 11531 4675* 4675 11531 4675* 4675

Normalized Cost 1.058 / 1.034 1.037 / 1.000

Total RT (s) 12473.49 > 3 days 1228.40 532.04 > 3 days 30.6

140n210s

of cycles 7155 7450* 7450 7155 7450* 7450

Normalized Cost 1.251 / 1.029 1.272 / 1.000

Total RT (s) 10212.74 > 3 days 2085.01 804.79 > 3 days 47.41

 103

6.4.4 Runtimes vs. Network Sizes

 Let us now have a look at how the runtime changes for the DDCD tests (“DDCD + CIDA”

and “DDCD + ILP”) versus the Grow tests (“Grow + CIDA” and “Grow + ILP”) as the network

sizes increase from 50n80s to 140n210s. All the test results are obtained from Table 6.7 and are

plotted using line charts.

Figure 6.5 illustrates the comparison between the “DDCD + CIDA” tests runtimes and

the “Grow + CIDA” tests runtimes in test cases from 50n80s to 140n210s, as outlined in Table

6.7. It is shown in the figure that the Grow-CIDA runtime inclines as the network size grows;

however, the DDCD-CIDA runtimes are maintained at below 2,500s for all network sizes and

only start to incline from 110n165s slightly. The runtime differences are especially significant for

networks larger than 80n128s, where “Grow + CIDA” starts to show a rapid increase in runtime

and “DDCD + CIDA” remains relatively steady. Therefore, the DDCD-CIDA approach is proven

to be a much more runtime-efficient heuristic approach for large networks than Grow-CIDA.

Figure 6.5 Comparing DDCD-CIDA run0mes with Grow-CIDA run0mes in 50n80s to 140n210s.

 104

ILP test results are also plotted using a line chart and are presented in Figure 6.6. Figure

6.6 presents the trending of ILP test runtimes for both DDCD-ILP and Grow-ILP in test case

networks from the 50n80s to 140n210s. As shown in the figure, all the ILP tests (maximum

804.79s) show much shorter runtimes (about 1/15) as compared to those of CIDA tests

(maximum 12,473s). From 50n80s to 70n105, the DDCD-ILP test runtimes appeared less

plausible than those of the Grow-ILP. However, starting from 80n128s, the DDCD-ILP

runtimes dropped to much lower values (119.07s to 17.49s) and remained relatively steady at

less than 50s regardless of the network size. However, the runtimes of Grow-ILP tests start to

jump significantly since 80n128s. Therefore, it may be concluded that the DDCD-ILP approach

is exceptionally robust in large-scale networks. The DDCD-ILP is the most preferred approach

in solving the p-cycle SCA problem among Grow-ILP, DFS-ILP, Grow-CIDA, DFS-CIDA, and

DDCD-CIDA.

Our experiments demonstrated that DDCD is the more robust cycle enumeration method

than Grow or DFS. The DDCD-ILP combined algorithmic approach can provide 100%

survivability with much lower spare capacity costs with much shorter runtimes than Grow-ILP

and other methods used in this study, especially in large-scale networks.

Figure 6.6 Comparing DDCD-ILP run0mes with Grow-ILP run0mes in 50n80s to 140n210s.

 105

6.5 Conclusions

In this chapter, a novel heuristic algorithm for the p-cycle design was presented and

discussed, which is the disjoint-paths Dijkstra cycle development (DDCD) algorithm. The DDCD

is an iterative cycle development method capable of generating high-performance candidate p-

cycles efficiently in small and large-scale networks. Various experiments were conducted, which

demonstrated the DDCD algorithm's robust performance in solving the spare capacity allocation

problem in large-scale networks compared to either Grow or DFS algorithm.

Based on the experimental results discussed in the previous sections, we can reach the

following conclusions:

1) The DDCD algorithm outperforms either the Grow algorithm or conventional DFS

algorithm in both small and large networks in terms of generating highly efficient

candidate p-cycles;

2) The DDCD algorithm is most desirable for large-scale networks that are over 80 nodes,

where the traditional spare capacity allocation ILP model fails to find an optimal

solution, and the conventional DFS fails to provide a near-optimal solution within a

satisfactory timeframe;

3) In terms of test runtimes with an increase of network sizes, the DDCD algorithm

demonstrates much more robust results than the Grow algorithm in networks larger

than 80 nodes when combined with either CIDA algorithm or the spare capacity

allocation ILP model;

4) In large-scale networks over 80 nodes, DDCD-ILP is the best-performing combined

algorithm in solving the p-cycle protection optimization problem with the best capacity

costs and the least solution runtimes.

 106

CHAPTER 7. GENETIC ALGORITHMS FOR p-CYCLE SPARE
CAPACITY ALLOCATION

7.1 Introduction

Various real-world optimization problems in the telecommunication industry are

considered NP-hard, which refer to complex problems that are unable to be solved and

validated within polynomial time, such as network design problems, and network routing

problems. Meta-heuristic methods like genetic algorithms (GAs) are preferred methods for

handling highly complex NP-hard problems. GAs do not guarantee optimal results. However, as

compared to ILP/LPs, GAs are exploration-focused search algorithms that can find near-optimal

results more effectively and efficiently for the computational-intensive optimization problems.

As discussed in CHAPTER 4 of this thesis, GAs have been successfully implemented in

various research and studies regarding network survivability and reliability [70]-[74]. GAs have

also been adopted to solve p-cycle protection optimization problems like p-cycle selection

problems and p-cycle placement problems [58], [83]-[84]. A p-cycle spare capacity allocation

(SCA) problem optimizes the placement of a selective set of p-cycles from a given set of

candidate p-cycles. Therefore, a well-designed GA model for SCA problems is expected to have

the flexibility to be compatible with various p-cycle enumeration methods. A review of past

literature, as presented in CHAPTER 4, indicated that there had not been a scalable GA model

proposed for optimizing the p-cycle SCA problem with minimum allocation cost. An improved

GA model was proposed in [83] that finds a combination of various candidate p-cycles with

optimal protection ability to protect the entire network topology. This method is referred to as a

genetic p-cycle combination protection strategy (GPCPS), which includes a working path

routing sub-problem, and a protection path configuration sub-problem. The protection path

configuration part of the GPCPS proposed an improved GA for allocating a combination of

various p-cycles. However, the objective function of the GPCPS is to maximize the protection

ability of a p-cycle combination and not to minimize the cost of allocating the cycles. Therefore,

the GPCPS does not look at the cost-efficiency of placing the p-cycles, nor does it consider how

demands may affect p-cycle protection effectiveness. Allocating proper candidate cycles with

 107

minimum possible capital expenditure while fulfilling service demands are crucial factors to

consider in the real-world telecommunication industry. Therefore, it is the primary purpose of

this study to propose a scalable GA design to address these gaps.

This chapter will introduce a novel genetic algorithm design for optimizing the p-cycle

spare capacity allocation optimization problem with minimal cycle allocation cost, which is

referred to as a GA-SCA model. The proposed GA-SCA is designed to be used in conjunction

with any p-cycle enumeration method, and it can be applied to any fully connected network

topologies of any size. In addition to proposing a model, this study also focuses on designing and

tuning problem-specific GA operators to enhance the effectiveness of this GA-SCA model.

The remainder of this chapter is organized as follows. Section 7.2 will analyze the

problem formulation as well as design considerations of the GA-SCA. Section 7.3 will introduce

the design of GA-SCA in extensive details, including the development of the case-specific

chromosome representation and GA operators (selection, crossover, and mutation). The GA-

SCA experimental set-up, network topologies, computational set-up and experiment overviews

will be presented in Section 7.4. The experimental results and performance of the GA-SCA

model will be presented in Section 7.5, where GA results will also be compared against those of

the classic CIDA and ILP. Finally, Section 7.6 will wrap up this chapter with key research

contributions and conclusions.

7.2 Statement of the Problem and Design Considerations

The formulation of a p-cycle spare capacity allocation (SCA) problem was discussed in

CHAPTER 3 of this thesis. Let me start the GA implementation of this problem by reviewing the

objective function, constraints, parameters, and variables of the SCA problem. In Section 3.4.3

of this thesis, all the relevant sets, parameters, and variables in a p-cycle SCA problem were

presented. These will be considered again in this section when we design and implement the GA

model. The set of eligible cycles (C) is an input to the GA model, which can be generated using

any cycle enumeration method (e.g., the Grow algorithm, DFS algorithm, or the DDCD

algorithm as proposed in the previous chapter). The information on the set of network spans (S)

 108

will be collected based on the input network topology. Its data structure can be expressed as lists

of on-cycle spans and straddling spans given the network topology. The relevant parameters (ni,

cj, xi,j, pi,j) will be incorporated into the chromosome representation so that the chromosome

encoding can best reflect the SCA problem formulation. ni is the number of copies of p-

cycle i (Ɐi ∈ C). cj is the cost or length of span j (Ɐj ∈ S). xi,j is a binary parameter that equals 1

when p-cycle i traverses span j and zero otherwise (Ɐi ∈ C, Ɐj ∈ S). pi,j equals to 1 if span j is

on p-cycle and is 2 if span j straddles p-cycle i (Ɐi ∈ C, Ɐj ∈ S). pi,j equals to zero if

span j neither traverses nor straddles p-cycle i. There are two variables used in the p-cycle SCA

formulation. The variable wj is not determined in the GA-SCA design because it is determined

by the working capacity routing before the SCA. The working capacity routing is formulated

using the shortest path routing and is not part of the GA-SCA design. Therefore, the wj will be

treated as an input parameter in this problem. The sj is what the GA-SCA model optimizes and,

therefore, is an output of the GA-SCA model in addition to the objective function value.

An objective function value reflects the quality of a feasible solution, thereby assessing

the level of fitness of an individual in a population. Therefore, the objective function will be used

while determining the fitness function for the GA-SCA model. The objective function of this GA-

SCA problem is to minimize the total cost of placing the candidate p-cycles onto a network. As

previously defined in the Eq. 3.7 in Section 3.4.3 of this thesis, the objective function is to

minimize the function .

 7.2.1 Design Considerations

The GA-SCA model is developed based on the following key design considerations:

1) An appropriate chromosome encoding design is required for the GA-SCA, which should

be accessible for calculating and assessing the fitness values of individuals.

2) The fitness function design must best reflect the problem’s objective function.

∑
Ɐj∈ S

cj ∙ sj

 109

3) Proper initiation of the first population must be proposed to allow access to the GA

operators and to jump-start the performance of GA-SCA.

4) Choosing an appropriate selection mechanism, with sound selection pressure and proper

elitism strategy, so that the most suitable individuals will be selected for subsequent

reproduction processes.

5) Choosing a suitable crossover method for the chromosome encoding design and

designing an effective repair mechanism for any disrupted chromosomes.

6) Designing a problem-specific mutation mechanism design that is can effectively improve

the objective function value and can facilitate the exploration of solution space.

7) Determine an appropriate termination criterion for the GA-SCA.

7.3 Genetic Algorithm for p-Cycle Spare Capacity Allocation (GA-SCA)

 This section will unfold the details regarding the novel GA-SCA design for solving the p-

cycle spare capacity allocation problem. As emphasized previously, this algorithm is designed to

minimize the cost of p-cycle spare capacity allocation while adequately protecting a network

topology. Adopting the GA concept and schematic, the GA-SCA model is expected to generate

offspring with progressively enhanced objective function values.

 7.3.1 Chromosome Representation

The chromosome representation in a GA is a process of designing an artificial data

structure to each chromosome, which facilitates critical information of a chromosome to be

accessed and processed in a genetic algorithm model. An adequately encoded chromosome must

also be accessible for fitness value calculation. The GA-SCA model in this study adopts a

variable-length string encoding approach to design the chromosomes. Each chromosome

represents an individual feasible solution to the objective function, which consists of a

combination of various p-cycles that altogether protect the entire network topology. A schematic

of the chromosome design (with locations of genes) is shown in Figure 7.1.

 110

Figure 7.1 Chromosome encoding for GA-SCA. (a) shows a chromosome and (b) indicates input parameters.

Figure 7.1(a) shows a hierarchical view of the chromosome design and pi indicates the

location (locus) of each gene in a chromosome. Figure 7.1(b) illustrates how each parameter and

variable is incorporated into the chromosome design. It shows how input parameters are

applied in calculating the objective function values for each individual. The binary parameter xi,j

is interpreted as whether a cycle is present in an individual’s chromosome. If a cycle is not

present in a chromosome (xi,j = 0), the cycle and its span information are excluded from the

chromosome. Therefore, each chromosome does not necessarily carry all the span information

of all the candidate cycles. As shown in Figure 7.1 (a), the cycles that are present in the

 111

Chromosome #1 have xi,j values equal to one. The parameter ni indicates the numbers of copies

of corresponding candidate cycles used in a chromosome. The parameter pi,j is included as part

of a cycle’s span information, which indicates whether a span is on the cycle or straddles the

cycle. Note that spans that are neither on a cycle or straddle a cycle (pi,j = 0) are not present in

the chromosomes. This detailed span information is reflected in the data structure of p-cycles

and is carried over to a chromosome when a cycle is picked to form the chromosome. The ci is

used when calculating the cost of each chromosome (the objective function value), as illustrated

in Figure 7.1 (b).

Pseudo-code for p-cycles and chromosomes can be illustrated as shown below:

Input_pcycle_set = {cycle_1 : {span_1 : 1, span_3 : 2, span_4 : 1, … , span_i

: 2}, cycle_2 : {span_1 : 2, span_2 : 1, span_5 : 1, span_7 : 2, … , span_i :

1}, … , cycle_n : {span_5 : 1, span_6 : 1 , span_9 : 2, … , span_i : 1} }

Chromosome1 = {cycle_1 : 5, cycle_8 : 22, cycle_9 : 10, …, cycle_n : 9}

Chromosome Decoding

Given the genetic code of a feasible solution, the genetic decoding of a solution

chromosome will be the inverse operation of what was presented above.

 7.3.2 Initial Population for GA-SCA

A group of various encoded chromosomes will form an initial population. There are two

key elements to consider while initiating a GA population. Firstly, designing a suitable approach

to generate an excellent initial population for the GA-SCA problem. Secondly, determining an

appropriate population size for the GA-SCA problem.

Generating a good initial population is crucial for enhancing the performance of GA

operations. As discussed in previous chapters, CIDA [39] is a robust p-cycle placement

operation that selects and places a set of p-cycles that provide full network protection with near-

 112

minimal spare capacity. Therefore, GA-SCA modifies the classic CIDA by adding a randomness

factor, so it finds distinct relatively better-performing p-cycles at each execution. The

randomized CIDA is referred to as a CIDA_rand algorithm in the pseudo-code below. In the

classic CIDA, as presented in CHAPTER 3.5.2.2, the algorithm calculates current actual

efficiency (Ew) scores for all cycles in a cycle pool, and it selects the best cycle with the highest

Ew score. In the CIDA_rand, however, all cycles are assigned weight scores based on their Ew

scores (the higher the Ew score, the higher weight). The cycles with higher weight scores will

have better chances of being selected and vice versa. By doing so, CIDA_rand finds a different

relatively good candidate cycle at each execution, which will eventually form a population for

GA-SCA.

The pseudo-code for CIDA_rand and inital_population are as follows:

function CIDA_rand(CycleSet, i):

 initialize CycleEw[], work[], CycleUse[]

 while work[i] > 0 for all span i:

 CandCycle = 0

 for each cycle p in CycleSet:

 calculate Ew(p)

 save all cycle_id : cycle_ew → CycleEw

 rank CycleEw from high Ew to low Ew → assign weights

 pick p from CycleEw: higher weight more likely picked

 CandCycle = p

 if CandCycle not in CycleUse[]:

 add CandCycle to CycleUse[]

 else if CandCycle in CycleUse[]:

 CycleUse[CandCycle] = CycleUse[CandCycle] + 1

 for each on-cycle span i in CandCycle:

 work[i]= work[i] - 1

 for each straddling span i in CandCycle:

 work[i]= work[i] - 2

 return CycleUse

 113

function initial_population(popSize, CycleSet, Spans):

 init_population = []

 for n in range(popSize):

 init_individual = CIDA_rand(CycleSet, Spans)

 if init_individual not in init_population:

 add init_population to init_pop_member

 return init_population

In terms of the population size for GA-SCA, various population sizes will be tested on the

two calibration networks (USA Network and 30n45s network). The best-performing population

size determined in the benchmark tests will be applied to other test case networks. It is expected

that larger population sizes may increase computational runtimes; however, they can enhance a

GA’s search power by extending the search space. On the contrary, smaller population sizes will

shorten the runtime with a higher likelihood of reaching premature convergence of the GA.

 7.3.3 Fitness Function for GA-SCA

As discussed previously in CHAPTER 4, a suitable fitness function accurately evaluates

the level of fitness of each individual in a population, based on its power to provide a favourable

solution to a problem. It also must reflect the objective function of the problem. In the SCA

problem, the objective function is to minimize the total cost of allocating the spare capacities

across an entire network. Therefore, the fitness function for the GA-SCA problem is to calculate

the total cost of allocating a particular set of p-cycles onto a network, which is defined as:

 (Eq. 7.1)

calculates the cost of individual cycle i by summing up costs of all span j that

traverse cycle i. This fitness function will be applied to all the individuals in a population, and

the fitness values will be utilized in the GA selection operation.

∑
Ɐi∈C, Ɐj∈S

(∑ ci*p
i, j

)*ni

∑ ci* pi, j

 114

 7.3.4 Selection & Elitism for GA-SCA

Three selection methods are implemented and tested in this work: roulette wheel

selection, tournament selection, and random selection. Preliminary tests on USA network

indicate that the random selection is ineffective for the GA-SCA problem; therefore, only

roulette wheel selection and tournament selection methods will be tested extensively on the

calibration networks.

In the roulette wheel selection implemented in this work, the probability of an individual

being selected is proportional to its fitness value as compared to the sum of all fitness values in

the population. Inversion of the proportionate probabilities is used as the fitness score so that

individuals with higher fineness value (higher cost) have lower probabilities to be selected. The

fitness scores are then normalized and assigned to corresponding individuals. The fitness scores

are then squared so that more weights are allocated to better-performing individuals. By doing

so, the selection pressure of this selection method will be enhanced. As mentioned previously in

CHAPTER 4, selection pressure affects how likely a better individual is favoured, and is a crucial

factor that regulates the convergence rate of a GA.

For the tournament selection method in this study, two subset sizes are implemented to

find out a more suitable selection pressure for the tournament selection. As discussed in [81],

the selection pressure of a tournament selection is determined by its tournament subset size. A

higher tournament subset size will increase the selection pressure, and vice versa. The first

subset size applied in this work is a fixed number of ten chromosomes for any population size.

Because a diverse set of population sizes are tested in this work (e.g., 250, 500, 750, and 1000),

an adaptive tournament subset size is applied where 5% of population size is used as the size of a

tournament subset. An adaptive tournament selection approach allows variation of tournament

subset according to changes in chromosome sizes.

Finally, a random selection is to simply select an arbitrary chromosome from a

population, where every individual has an equal opportunity to be picked for subsequent

breeding. Interestingly, preliminary tests on the three selection methods in the GA-SCA model

do not show satisfactory results when random selection is applied. Therefore, random selection

will not be further discussed in this study or tested on any other test cases.

 115

Elitism strategy is also implemented in the GA-SCA model, where the top-performing

individuals are retained and carried over to the next generation. Details of this elitism strategy

will be further explained in Section 7.3.8.

 7.3.5 Crossover for GA-SCA

A pair of selected individuals (parent chromosomes) will go through crossover operation

to generate a pair of offspring chromosomes. Two types of crossover operations are

implemented and compared in the GA-SCA: one-point crossover, and two-point crossover.

In the one-point crossover, each parent chromosome is spliced at one arbitrary crossover

point. This is followed by the two parent chromosomes exchanging portions of their genetic

contents to form a pair of offspring chromosomes. Therefore, each offspring chromosome

retains parts of each parent’s genes. Figure 7.2 illustrates how the one-point crossover is applied

in the GA-SCA problem. In a situation where duplicate cycles with different cycle usage values

(ni) occur, the one with higher ni is retained. In contrast, the other one is removed from the

offspring chromosome (as demonstrated in Figure 7.3). The two-point crossover is carried out in

a similar approach, but with two crossover points on each parent chromosome.

Various crossover rates will be tested in this study, including 0.1, 0.2, 0.3, and 0.4, to

find an optimal crossover rate for the GA-SCA problem. The crossover operation will result in

infeasible chromosomes that will require a repair mechanism; therefore, increasing the

crossover rate will extend the computational runtime drastically. Crossover rates higher than

0.4 are not preferred in this study due to extensively long runtime.

 116

 Figure 7.2 Implementa0on of one-point crossover in GA-SCA.

Figure 7.3 One-point crossover in GA-SCA where duplicate cycles occur in an offspring.

 117

 7.3.6 Mutation for GA-SCA

Another critical GA operator which will be extensively discussed in this study is the GA-

SCA mutation operator. A mutation operation occurs on individual chromosomes in a

population; it increases the diversity of a GA population and enhances GA’s capability to find the

global optimum. Various types of commonly used mutation operations were introduced in

CHAPTER 4 of this thesis, which included one-point mutation, multi-point mutation, insertion/

deletion, and permutation mutation. In the case of a GA-SCA problem, a one-point mutation

operator can be applied to mutate one of the member cycles in a chromosome. In contrast, a

multi-point mutation can mutate multiple member cycles concurrently. A deletion can be

implemented by completely removing a random member cycle from a chromosome. Any of

these mutation operations will result in infeasible solutions (a disrupted chromosome) that

must be fixed by a repair mechanism. A permutation mutation, however, will have no effect on

the chromosomes in the GA-SCA problem and will not be considered in this study.

Several mutation approaches will be implemented and tested out in this GA-SCA study,

which includes removing a random cycle, removing one or multiple lowest-performing cycles,

removing a random cycle and add another random cycle, etc. Since these mutation approaches

will result in disrupted chromosomes, therefore, problem-specific repair methods will be

designed to repair the resultant chromosomes.

In addition to these conventional mutation operators, a novel problem-specific mutation

operator is designed for the GA-SCA problem, which is referred to as Cycle-Merging mutation

operator. The Cycle-Merging mutation operator is designed based on two considerations:

1) To ensure enhanced performance of the offspring over the parent chromosomes.

2) To avoid repairing the resultant chromosomes to shorten computational runtimes.

 7.3.6.1 Problem-Specific Mutation Design Without Repairs - Cycle-Merging

To ensure enhanced operator performance and to avoid extensive runtime, a problem-

specific mutation operator is designed for the GA-SCA model, which is referred to as the cycle-

merging mutation operator. Compared to those commonly used mutation operators mentioned

 118

previously, The cycle-merging mutation operator can benefit the GA-SCA problem in the

following aspects: 1. cycle-merging fuses two candidate p-cycles to yield a larger but valid p-

cycle that will not require any repair; 2. fusing two p-cycles ensures will eliminate one span,

hence reduced cost and improved objective function value.

The cycle-merging mutation proceeds as follows: For all the genes (individual p-cycles

and their numbers of copies) in a chromosome, the cycle-merging operator finds two cycles that

share one and only one common span and merges them to form a new larger cycle. The common

span is then removed and labelled as a straddling span to the new cycle. It is important to note

that, other than the merged common span and its two end nodes, the two cycles must not share

any other common spans or common nodes. As shown in Figure 7.4, cycle A-B-C-D-E and cycle

A-B-K-H-G-F are two p-cycles on a 10n20s network topology that share one and only one span

(span i). Upon applying the cycle-merging operator, the two cycles are joined at span i and a new

cycle is formed. The common span i is then removed from the new cycle and is marked as a

straddling span.

Figure 7.4 Illustra0on of the cycle-merging muta0on operator for the GA-SCA on a 10n20s network.

Subsequently, the newly generated p-cycle is added to the chromosome, with the number of

copies being the value of the two predecessor p-cycles with fewer copies. The two predecessor p-

cycles are either completely removed or subtracted from the chromosome.

The cycle-merging mutation operator guarantees that the resultant new p-cycle is a

feasible solution to the problem and that the overall cost of spare capacity placement is reduced

(removal of a span reduces costs).

 119

 The pseudo-codes for the Cycle_Merging mutation operator is as follows:

function Cycle_Merging(input_genome, CycleSet):
 initiate newCycle[], newCycle_num[], mutated_ind[]
 new_individual = copy.input_genome
 new_id = 0
 for cycles in input_genome:
 pick Cycle1, Cycle2, where Cycle1 != Cycle2
 Cycle1_num = number of copies of Cycle1
 Cycle2_num = number of copies of Cycle2
 if Cycle1 and Cycle2 share one and only one span i:
 mark span i as straddling span
 assign new cycle id → Merged_CYL + str(new_id)
 assign all spans to new cycle → {Merged_CYL1:span_info}
 newCycle_num = min(Cycle1_num, Cycle2_num)
 add new cycle id and newCycle_num to newCycle[]
 updated and add Cycle1_num, Cycle2_num to newCycle[]
 new_id += 1
 mutated_ind = new_individual + newCycle
 return mutated_ind, newCycle

Several mutation rates will be tested in this study (0.05, 0.1, 0.2, 0.3, and 0.4) in order

to find a suitable mutation rate for the GA-SCA problem. Since it is not common to find two

cycles in a population that share one and only one span, the actual mutation operation is

expected to occur on a chromosome at a lower rate than the applied mutation rate. Therefore,

very low mutation rates (e.g., lower than 0.05) may not be beneficial to this problem and will not

be considered in this study.

 7.3.7 Repair Mechanism for GA-SCA

Repair mechanisms are crucial for fixing the infeasible solutions generated from

crossover and mutation. As mentioned above, the one-point or two-point crossover operators

and most mutation operators in this study will generate infeasible solutions that are unable to

 120

provide full protection to the network topology. Therefore, the offspring chromosomes

generated by these operators must be repaired to satisfy the desired protection efficiency while

minimizing protection cost entirely.

One repair operator option for an SCA problem is CIDA. Previous chapters have

discussed the effectiveness of CIDA in providing full network protection with near-minimal

spare capacity. Therefore, CIDA can be used to repair an interrupted chromosome by

complementing a set of cycles to protect any unprotected working capacities. However, CIDA

calculates the capacity-weighted efficiencies iteratively, which will be runtime-inefficient in a GA

problem with large population size and large numbers of generation. This assumption is tested

and proved in preliminary tests using the USA network topology, where extensively long

runtimes were observed due to repetitive calculation of current actual efficiency scores (Ew) with

only minimal improvement on the objective function.

Apart from runtime-efficiency, another critical factor to consider while designing a

suitable repair mechanism is its power to allow a GA to explore a globally optimum solution. For

example, if repairing a chromosome can introduce new genes to a chromosome that does not

previously exist in that chromosome. The repair operator helps expand the search space and

enables the GA to explore an optimal solution globally.

To enhance the runtime-efficiency of a GA model and to boost the model’s ability to

explore an optimal solution globally, two problem-specific repair mechanisms are developed for

the GA-SCA model. They are referred to as the maximum-matching repair method and the

minimum-cycle repair method. The former one focuses on a faster way to generate results with

as many straddling spans as possible (higher protection efficiency). In contrast, the latter

focuses on a quick and easy way to repair with smallest possible local cycles (minimum costs).

 7.3.7.1 Problem-Specific Repair Mechanism - Maximum-Matching

 The maximum-matching repair mechanism starts by scanning a disrupted chromosome

to collect information on all the unprotected working capacities (the spans they are located on,

and the number of unprotected working capacity units). For the unprotected working capacities,

maximum-matching will allocate a candidate cycle that matches the maximum possible

 121

unprotected working capacities with the most straddling spans. If there are more than one p-

cycles that offer the same level of protection (same amount of working capacities with the same

number of straddling spans), the p-cycle with the least cost will be favoured. To accurately track

these protection relations, two types of matrices are required: a cycle-span relation matrix,

and a cycle protection matrix. The cycle-span relation matrix displays information

regarding all the p-cycles from the cycle pool that can protect a particular span either as an on-

cycle span or a straddling span. The cycle protection matrix indicates the number of

straddling span protection and on-cycle span protection a particular p-cycle can offer. The two

matrices are designed as follows:

Cycle-span relation matrix = {span_1 : [(cycle1, Ew[cycle1]),([cycle3,

Ew[cycle3]),…, (cyclep, Ew[cyclep])], span_2 : [(cycle2, Ew[cycle2]),

([cycle4, Ew[cycle4]),…, (cyclep’, Ew[cyclep’])], …, span_i : [(cycle1,

Ew[cycle1]),([cycle3, Ew[cycle3]),…, (cyclep, Ew[cyclep])]}

Cycle protection matrix = {cycle_1 : [cycle_1, straddle#, on-cycle#], cycle_2

: [cycle_2, straddle#, on-cycle#], …, cycle_p : [cycle_p, straddle#, on-

cycle#]}

The straddle# indicates the number of straddling spans the corresponding cycle can protect,

and on-cycle# refers to the number of on-cycle spans that the same cycle can protect.

When a p-cycle is placed onto the network, the network protection status is updated by

subtracting one unit of each on-cycle span and two units of each straddling span (if present).

This process continues iteratively until all the unprotected working capacities are fulfilled in

such a way. Once the maximum-matching function terminates, a complementary set of

protection cycles are returned. The complementary cycles are subsequently combined with the

input disrupted chromosome to form a repaired offspring chromosome.

 The pseudo-codes for the Max-Matching function and the overall repair mechanism

(Repair_Genome) are as follows:

 122

function Max-Matching(CycleSet, i):

 initialize Complement_cyc[]

 max_straddle_count = 0

 min_cycle_cost = sys.maxsize

 for each unprotected span i:

 find cycle-span relation matrix for i → list(pcycles[i])

 for each pcycle in list(pcycles[i]):

 find corresponding cycle protection matrix →

 pcycle[i] = [pcycle_id, straddle#, on-cycle#]

 if straddle# > max_straddle_count:

 max_straddle_count = straddle#

 min_cycle_cost = global_cost[pcycle_id]

 BestCycle = pcycle_id

 else if straddle# = max_straddle_count:

 if global_cost[pcycle_id] < min_cycle_cost:

 max_straddle_count = straddle#

 min_cycle_cost = global_cost[pcycle_id]

 BestCycle = pcycle_id

 if BestCycle not in Complement_cyc:

 add BestCycle to Complement_cyc

 else if BestCycle in Complement_cyc:

 update BestCycle in Complement_cyc

 for each on-cycle span i in BestCycle:

 work[i]= work[i] - 1

 for each straddling span i in BestCycle:

 work[i]= work[i] - 2

 return Complement_cyc

function Repair_Genome(input_genome, Spans, CycleSet):

 initiate unprotected_spans[], protected_spans[]

 for gene in input_genome:

 collect protected_spans[]

 collect unprotected_spans[]

 complement_cycles = Max-Matching(CycleSet, unprotected_spans)

 repaired_child = input_genome + complement_cycles

return repaired_child

 123

 7.3.7.2 Problem-Specific Repair Mechanism – Minimum-Cycle

The minimum-cycle repair mechanism generates a minimum (smallest) protection cycle

for each unprotected span identified. This repair process starts by identifying all the unprotected

working capacities in a disrupted chromosome. Then, for each unprotected span, the minimum-

cycle operator generates the shortest path that is node-disjoint from the unprotected span to

form the smallest protection cycle for the span. If this minimum protection cycle is a duplicate

cycle of an existing cycle in the chromosome, the cycle count for the existing cycle id is updated.

If this is a new cycle, it will be added to the chromosome with a newly generated cycle id. This

process will repeat iteratively until all spans are protected.

The pseudo-codes for the minimum-cycle repair function is as follows:

function Min-Cycle(CycleSet, i, Graph):

 initialize Complement_cyc[]

 for each unprotected span i on Graph:

 Dijkstra(i, unmarked spans/nodes) → r1, distance(r1)
 if distance(r1) != MAX:

 add all the spans of r1 to span i → cycle a
 if cycle a not in Graph, add cycle a to Complement_cyc

 else: update BestCycle in CycleSet

 for each on-cycle span i in cycle a:

 work[i]= work[i] - 1

 for each straddling span i in cycle a:

 work[i]= work[i] - 2

 return Complement_cyc

 7.3.8 Next Generation

The fittest will survive. At the end of a generation, the population will include original

individuals (reserved for the purpose of elitism), as well as individuals generated from crossover

and mutation operations, and the size of the population will enlarge to almost double of original

population size. Therefore, all the individuals will be ranked based on their fitness values, and

 124

the bottom low-performing individuals with low fitness values will be eliminated. The size of the

population reduced to the original size. From generation to generation, only the top-performing

individuals from predecessor generation will be retained and carried over to the next generation

(an elitism strategy), which allows survival of the fittest individuals.

 7.3.9 Termination Criteria for GA-SCA

Two termination criteria will be implemented in the GA-SCA model in this study:

1) Terminate when a predetermined fixed number of total generations has reached (e.g.,

terminate after the 1000th generation), or

2) Terminate when there is an unchanged objective function value for x iterations.

When any one of these two termination criteria is satisfied, the GA-SCA process will stop and

return the best current solution.

7.4 Experimental Set-Up

The GA-SCA model takes a set of candidate p-cycles, a set of given demands, and a

network topology to generate an optimized p-cycle combination and an updated set of p-cycles.

The resulting p-cycle combination will provide full network protection to the given network

topology with near-optimal minimal cost of allocating the spare capacities. The updated set of p-

cycles excludes low-performance candidate cycles (removed by GA selection and elitism

mechanism). It will include new p-cycles that are generated by the GA's reproduction

mechanism. Eligible starting candidate p-cycles are generated before the GA-SCA and are

brought into the GA-SCA model as input information. The candidate cycles can be generated in

any method. In this study, both the Grow algorithm [39] and DDCD (developed in CHAPTER 6

of this thesis) are applied to generate different candidate p-cycle pools to test the GA-SCA

model's consistency on different sets of cycle pools. Results of the GA-SCA will be compared to

those of Grow + CIDA and DDCD + CIDA in the experimental results section of this chapter.

 125

Extensive experiments will be conducted to explore various portions of the GA elements

(initial population size, crossover method and repair, mutation method and repair, crossover

and mutation rates, etc.). The study will also emphasize the development of an appropriate

mutation method and proper repair mechanisms due to the significant impact of these elements.

Once optimal GA operators are determined for the GA-SCA model, they will be applied on

various test case networks with sizes ranging from 50 nodes to 100 nodes. Results of GA-SCA

will be compared to those of CIDA and ILP.

The GA-SCA model is programmed using Python 3.7.6 in the Visual Studio Code. AMPL

is used to generate ILP .mps files using the ILP SCA model file (.mod) and specific data files

(.dat), which are solved using IBM ILOG CPLEX Interactive Optimizer 12.6.1.0. All experiments

are run on a server with 12-core ACPI multiprocessor X64-based PC with Intel Xeon® CPU

E5-2430 running at 2.2 GHz with 96 GB RAM. All ILP test results include a default mipgap of

0.01% (unless specified otherwise).

7.4.1 Test Networks for GA-SCA

In this study, the USA Long-Haul network with 28 nodes and 45 spans (as shown in

Figure 7.5 (a)) is used as the primary calibration network where an extensive number of tests are

conducted to explore possible combinations of GA operators. As mentioned in previous

chapters, a uniform span weight of one for USA network was used in [39]. We will continue

adopting the same span weight in our experiments using the USA network to allow results

comparison. To best represent the real-life examples where costs of network spans are usually

different, a 30n45s network with 30 nodes and 45 spans (as illustrated in Figure 7.5 (b)) with

weighted spans will be used as a secondary test network. The 30n45s network has span costs

equal to their Euclidean distances and is tested using preferred GA operator combinations

determined based on the USA test results. The most suitable option is subsequently used for

tuning mutation operators for this problem. More extensive real case test networks will be used

in this study to verify the suitability and scalability of the GA-SCA model, including the 50n80s,

60n96s, 70n105s, 80n128, 90n135s, 100n150s networks from CHAPTER 6 of this thesis. The

topologies of these test case networks can be found in the Appendix A of this thesis.

 126

 Figure 7.5 Test networks for GA-SCA: (a) USA network and (b) 30n45s Network.

 7.4.2 Overview of GA-SCA Tests for GA Operators Study

To obtain an optimal GA operator combination for the GA-SCA model, various tests are

conducted on both the USA network and the 30n45s network. The GA operator combinations to

be tested in this study include mixing and match of four selection methods (tournament

selection, roulette wheel selection, random selection, and a customized adaptive tournament

selection), three crossover methods (one-point crossover, two-point crossover, and uniform

crossover), various initial population sizes, various crossover and mutation rates. Two

termination criteria will be tested: a total of X generations, or an unchanged objective function

value over Y generations (where X, Y are predetermined fixed number). The tests can be

summarized into two stages: the first stage of tests is conducted on the USA network, and the

second stage of tests is conducted on the 30n45s network. Note that a consistent mutation

method is applied across all sets of tests here, which is the cycle-merging mutation method.

Various mutation methods will be extensively tested at a separate study later.

A summary of GA-SCA test parameters that will initiate this study is as follows:

- Initial population sizes: 100, 200, 400, 600, 800, 1000

- Total number of generations (termination condition): 100, 200, 500, 1000

- Selection Methods: tournament selection(S1), roulette wheel selection (S1), random

selection (S3), adaptive tournament selection (S4)

- Crossover Methods: one-point (C1), two-point (C2), uniform (C3)

- Crossover & Mutation Rate: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5

 127

7.4.3 Overview of GA-SCA Mutation Operators Study

The study of suitable mutation operators for a GA problem has a profound impact on the

performance of a model. A crossover operation primarily focuses on the exploitation of local

optima, whereas a mutation operation empowers the global exploration of a search space. To

study the best-performing mutation operators in the GA-SCA model, a set of best-performing

combination of GA operators will be applied, which were discovered from the previous GA-SCA

tests for GA operators tuning. The mutation tests are carried out with consistent initial

population size, selection method, crossover method (and designated repair mechanism for a

crossover), crossover rate, and termination criteria. These factors are considered input

parameters for the mutation tests. Five different mutation approaches will be tested in this

study (which will be denoted as M1, M1’, M2, M3, M4, and M5). Details regarding these

approaches are as follows:

- In M1, randomly select a member cycle from a chromosome (consists of n copies of

various member cycles) and remove all copies of this cycle from the chromosome.

- In M1’, randomly select a member cycle from a chromosome and only remove one

copy of this cycle from the chromosome (n-1 copies remaining).

- In M2, the problem-specific cycle-merging mutation operator is applied.

- In M3, randomly select a member cycle from a chromosome, remove only one copy

of this cycle from the chromosome and add one copy of a new cycle from a global p-

cycle set that does not present in the chromosome.

- In M4, rank and find out the bottom 10% of worst-performing member cycles from a

chromosome, remove one copy of each of these worst cycles. Then, add one copy of 3

new cycles from the global p-cycle set that does not present in the chromosome.

- In M5, randomly select a member cycle from a chromosome and remove all the

copies of this cycle from the chromosome. Add one copy of a new cycle from a global

p-cycle set that does not present in the chromosome.

Three repair mechanisms will be tested for repairing mutated chromosomes, which are

the minimum-cycle repair (R1), maximum-matching repair (R2), and CIDA (R3). Mutation rates

in the tests will range from 0.05 to 0.4.

 128

7.5 Experimental Results and Discussion

7.5.1 GA Operators Study

Figure 7.6 depicts an overview of experimental designs and various preliminary tests for

tuning the GA operators in the GA-SCA problem, mentioned briefly in Section 7.4.2. Among all

selection methods, the random selection method was eliminated first due to poor performance.

Adaptive tournament mutation allows variation of tournament subset according to changes in

chromosome sizes. It was introduced to study how a dynamic, non-fixed tournament subset size

will perform in a problem with dynamic chromosome sizes compared to a fixed small

tournament size. However, test results indicate that a fixed small tournament size has better

performance (better objective function value) than a dynamic tournament size. Crossover and

mutation rates of 0.01, 0.05 and 0.5 are eliminated due to poor performance. A crossover rate of

0.35 (between 0.3 and 0.4) was added to the tests. For the next sets of tests, all possible

combinations of selection and crossover methods are tested. The best-performing combination

is found to be the tournament selection coupled with a two-point crossover. This operator pair is

carried over to the next round of tests with various initial population sizes (500, 750, 1000),

crossover rate (0.2, 0.3, 0.35, 0.4) and mutation rate (0.1, 0.2, 0.3, 0.4). Our case-specific cycle-

merging method was used as the mutation operator for all these tests; therefore, no repair

mechanism is needed at this testing phase.

Based on the results obtained from our preliminary and second round of tests (see

Figure 7.6), re-test and second re-test are conducted on the USA network. These re-tests

indicated that a larger population size (750 or 1000) is beneficial for generating better results

because it enhances a GA’s search power. A relatively higher crossover rate (0.35) and a

relatively lower mutation rate (0.1 or 0.2) are preferred to allow extensive local search and

sporadic global search. As a result, the following parameters are selected for the next sets of

tests: initial population size of 750, a crossover rate of 0.35 and a mutation rate of 0.1. A

population size of 1000 provides similar results on the USA network, but with longer runtime.

 129

Figure 7.6 Overview of GA-SCA tes0ng process on the USA and 30n45s networks for operator tuning.

 130

7.5.2 GA-SCA Mutation Operators Study

Based on the tests completed at the previous phase (Section 7.5.1), the following input

parameters and GA operators are selected for the GA-SCA mutation operators study (conducted

as outlined previously in Section 7.4.2):

- Initial population size: 750

- Selection method: tournament selection

- Crossover method: two-point crossover

- Mutation methods: M1, M1’, M2, M3, M4, and M5 (details see Section 7.4.3)

- Crossover rate: 0.35

- Repair for crossover: maximum-matching repair

- Repair for mutation: minimum-cycle repair (M2 does not require any repairs)

- Termination criteria: total 1000 generations, or unchanged values for 60 generations

Figure 7.7 outlines the experimental process for the mutation operators tests in the GA-

SCA problem using various mutation methods introduced previously in Section 7.4.2. Among all

mutation methods, removing all copies of a random cycle showed more mediocre performance

(M5 and M1’) than those that only remove one copy of a cycle (M3 and M1’). Our case-specific

cycle-merging method (M2) demonstrated to have the most robust performance than any other

mutation operator in this study. A smaller mutation rate, 0.1 or 0,2, appeared to provide more

satisfactory results with relatively shorter runtimes.

 131

 Figure 7.7 Overview of GA-SCA muta0on operator tes0ng process on USA Network.

Test results of the 3rd set of mutation tests using various mutation operators (M1', M2,

M3, M4) and two different repair methods (R1 and R2) and various mutation rates (MR = 0.05–

0.4) are presented in Table 7.1. A larger initial population of 1500 was included in the tests. The

average value of each set of tests (denoted in the table as "Avg.") is calculated and compared to

show each mutation method's average quality. The lower the result, the better the quality. As

indicated in Table 7.1, all test results (bolded fonts) by the cycle-merging mutation (M2),

regardless of mutation rate, appear to be better than those of other mutation methods. When

comparing population sizes or 750 vs. 1500, it is evident that a larger population size generates

relatively better results with compromised runtimes (at least 1.5 times more runtime). When

comparing the performance of repair mechanisms, with the same initial population of 750,

results of minimum-cycle repair (R1) are generally better than those of maximum-matching

repair (R2) in the majority of the tests (except in the case of M2, which does not require any

repair mechanism). Therefore, the minimum-cycle repair is generally a more suitable repair

mechanism for a mutated individual. Small protection cycles generated from minimum cycle

repair mechanism introduce fewer costs to an individual, hence better objective function value.

 132

7.5.3 Cycle-Merging Mutation: Benefits, Shortfalls, and Mitigation Plan

Previous tests have indicated a robust performance of the cycle-merging mutation

operator compared to any other mutation operator. This strong performance is because

whenever the cycle-merging operator is applied on a chromosome and a pair of valid cycles are

found, and a guaranteed cost reduction will occur (by removing the cost of the common span).

Therefore, the resultant offspring will be guaranteed to perform better (less cost) than the

 133

Table 7.1 GA-SCA mutation operators tests on USA Network using various repairs and initial population size.

Mutation
Mutation

Rate

Repair: Max-Match
Init.pop = 750

Repair: Min.Cycle
Init.pop = 750

Repair: Max-Match
Init.pop = 1500

Results RT (s) Results RT (s) Results RT (s)

M1' 0.05 1206 1966.51 1198 5554.98 1200 7920.27

M1' 0.1 1197 4722.53 1200 4549.22 1201 7647.39

M1' 0.2 1203 3419.90 1203 2577.60 1199 11402.89

M1' 0.3 1200 2978.68 1200 3942.75 1203 5559.47

M1' 0.4 1202 3726.08 1201 3620.35 1200 7874.34

Avg. 1201.6 1200.4 1200.6

M2 0.05 1147 4793.15 1146 3436.32 1146 7377.16

M2 0.1 1146 3311.13 1147 3611.29 1145 19520.31

M2 0.2 1143 3310.56 1147 3474.66 1141 25136.73

M2 0.3 1146 3494.67 1149 2967.55 1145 19746.20

M2 0.4 1146 2853.67 1147 3052.44 1146 29206.82

Avg. 1145.6 1147.2 1144.6

M3 0.05 1206 2138.23 1204 2907.57 1198 12252.75

M3 0.1 1206 3872.17 1199 6497.77 1200 6129.27

M3 0.2 1206 2158.60 1196 4653.70 1198 9883.58

M3 0.3 1205 3015.07 1199 6183.84 1205 3556.57

M3 0.4 1201 4149.55 1202 5542.53 1196 8911.75

Avg. 1204.8 1200.0 1199.4

M4 0.05 1206 2363.49 1203 3883.44 1205 3644.17

M4 0.1 1200 4479.34 1201 3090.22 1201 6134.17

M4 0.2 1202 2889.05 1202 2610.04 1203 4465.00

M4 0.3 1206 2356.05 1204 3867.60 1205 3701.20

M4 0.4 1206 2485.10 1206 2359.13 1203 4799.06

Avg. 1204.0 1203.2 1203.4

parent chromosomes. A larger initial population size (750 vs. 200) and a higher mutation rate

(0.2 vs. 0.05) will expedite this process and bring about more robust improvements on the

objective function value. Besides, because the cycle-merging operator has been proved to

generate an offspring that is a valid p-cycle, this operation does not require additional repair.

Filling two needs with one deed. Efficiency. Efficiency. Efficiency.

In order to investigate the effect of the cycle-merging mutation on the objective function

value during the process of GA-SCA (track and trend the results from generation to generation),

we conducted a set of follow-up GA-SCA tests on large test case networks ranging from 50 nodes

to 140 nodes. These tests use DDCD (developed from work completed in CHAPTER 6 of this

thesis) to generate candidate cycles. Results of DDCD + CIDA for each test case network are

used as a benchmark for the DDCD + GA-SCA results. The preferred GA operators from the

previous USA and 30n45s benchmark tests are applied, including tournament selection, two-

point crossover, an initial population of 750, a crossover rate of 0.35, and a mutation rate of

0.1. Results of these follow-up tests are presented below in Table 7.2. “Normalized Costs” for

DDCD + CIDA and columns 1-4 are calculated by dividing each cost value by the minimum cost

across the same row. A normalized cost of 1.000 indicates the best objective function value.

Table 7.2 Results of GA-SCA tests on large networks of 50n80s to 140n210s using DDCD to enumerate cycles.

 134

Network
Normalized

Costs of
DDCD+CIDA

1 2 3 4 Δ (1 - 2)% Δ (2 - 3)% Δ (3 - 4)%

Starting
Population

Generation
G10

Generation
G50

Final
Results

Start to
G10

G10 to
G50

G50 to
Final

50n80s 1.022 1.022 1.017 1.014 1.000 0.507% 0.243% 1.395%

60n96s 1.019 1.020 1.008 1.008 1.000 1.150% 0.070% 0.770%

70n105s 1.027 1.026 1.012 1.012 1.000 1.288% 0.021% 1.206%

80n128s 1.071 1.023 1.003 1.002 1.000 1.922% 0.127% 0.199%

90n135s 1.020 1.020 1.002 1.002 1.000 1.755% 0.050% 0.170%

100n150s 1.020 1.020 1.005 1.004 1.000 1.432% 0.175% 0.365%

110n165s 1.027 1.027 1.000 1.000 1.000 2.673% 0.000% 0.000%

120n180s 1.014 1.015 1.000 1.000 1.000 1.461% 0.004% 0.000%

130n195s 1.029 1.029 1.000 1.000 1.000 2.812% 0.001% 0.000%

140n210s 1.007 1.007 1.001 1.001 1.000 0.641% 0.000% 0.069%

Upon completing these tests, we collected results at the end of the 10th (column 2) and

the 50th generation (column 3) and compared them to the start (column 1) and final (column 4)

objective function values. By doing so, we are able to track and trend the progress of the

objective function values as the GA progresses. In Table 7.2, column 1 shows the objective

function values of starting populations before applying any GA operators, and columns 2 and 3

present the results at the end of the 10th generation (dented as G10) and 50th generation

(denoted as G50) for all test cases. Column 4 shows the final results after the termination

criteria is satisfied in all test cases (unchanged values for 60 consecutive generations). For all

test case networks presented in Table 7.2, Δ (1 - 2) calculates the percentage of changes in the

objective function values from the starting population to the end of the 10th generation. Δ (1 - 2)

shows the changes from the 10th to the 50th generations. Finally, Δ (3 - 4) records the changes

from the 50th generation onwards until the termination criteria are satisfied.

As shown in Column 2 of Table 7.2, the objective function values for all test case

networks appear to have surpassed those of DDCD + CIDA by the end of the 10th generation,

which indicates that the cycle-merging operator can jump start improvements on the objective

function values at early phase. Some smaller test cases show continuous improvements after the

50th generation, whereas most large-scale networks had no more improvement after the 50th

generation (e.g., 110n165s, 120n180s, 130n195s). All test cases except the 50n80s experienced

the most percentage of increase from start to the 10th generation, which slowed down

significantly after that.

These observations indicate that the cycle-merging operator provides a sharp increase on

the performance; however, the effectiveness of this mutation operator plateaus or declines as

GA-SCA progresses. The cycle-merging process will always result in a new cycle that is almost

double the size of the two constituent cycles; therefore, this mutation process will rarely

introduce small new p-cycles. Lack of introduction of a broader variety of new cycles may hinder

the GA’s ability to explore global optimum thoroughly.

To utilize the robust performance of cycle-merging in the early stage of a GA process and

to mitigate the shortfall of insufficient global exploration, a coupled mutation operator approach

will be introduced and tested. A coupled mutation operator approach is to apply a conventional

 135

mutation method first (e.g., one-point mutation, multi-point mutation, or gene insertion/

deletion) up to X number of generations where no changes on the objective function values

happen. Then, apply the cycle-merging mutation operator to “boost” the GA performance. The

entire GA process will terminate when no more improvement on the objective function values

occur for X number of generations up to a pre-defined total number of generations.

7.5.4 The Coupled Mutation Operator for GA-SCA

The coupled mutation operators for our GA-SCA model is implemented by modifying the

termination criteria of the previous test version. Instead of terminating the GA-SCA process

entirely when an unchanged objective function value is observed for 60 consecutive generations,

the coupled mutation operator approach will apply the cycle-merging mutation operator on the

population to boost GA performance. Suppose the objective function is still not improving for

the next 60 consecutive generations. In that case, the new GA-SCA model will then terminate

and return the best current objective function value as the final result.

New tests are conducted on the USA network to test the performance of this coupled

mutation operator approach. Three different sets of coupled mutation operators will be tested

(M1'+M2, M3+M2, and M4+M2). Various mutation rates, ranging between 0.05 and 0.4, will be

applied. The other GA operators remain the same as in previous tests, which include the

tournament selection, two-point crossover, an initial population of 750, a crossover rate of 0.35,

the maximum-matching repair for crossover and the minimum-cycle repair for mutation.

Details regarding these approaches are as follows:

- M1'+M2: Randomly select a member cycle from a chromosome and remove one

copy of this cycle from the chromosome (M1'). If the objective function value does

not improve for 60 generations, apply the cycle-merging method (M2).

- M3+M2: Randomly select a member cycle from a chromosome, remove one copy of

this cycle from the chromosome and add one copy of a new cycle from a global p-

cycle set that does not present in the chromosome (M3). If the objective function

value does not improve for 60 generations, apply the cycle-merging method (M2).

 136

- M4+M2: Rank and find out the bottom 10% of worst-performing member cycles

from a chromosome, remove one copy of each of these worst cycles. Then, add one

copy of 3 new cycles from the global p-cycle set that does not present in the

chromosome (M4). If the objective function value does not improve for 60

generations, apply the cycle-merging method (M2).

Results of the coupled mutation operator tests for the USA network are presented below

in Table 7.3. We conducted two repeats (“Test #1” and “Test #2” as shown in the table) using the

same testing conditions and GA operators to guide us in reaching a more reliable conclusion.

The best result in each set of tests is highlighted in blue using bolded fonts. The test results are

recorded under “Results” and test runtimes are converted to minutes and are recorded under

“RT(min)”. In these two sets of tests, we did not calculate an average value for any test set. This

is because an average value in this case may not accurately indicate a preferred coupled

mutation operator or properly evaluate the robustness of performance for any coupled mutation

operators.

Table 7.3 Results of GA-SCA tests using coupled muta0on operators on the USA network.

 137

Mutation
Mutation

Rate
Test #1 Test #2

Results RT (min) Results RT (min)

M1'+M2 0.05 1137 179.28 1145 108.60

M1'+M2 0.1 1145 152.70 1130 160.71

M1'+M2 0.2 1147 129.96 1102 249.84

M1'+M2 0.3 1146 141.85 1107 246.81

M1'+M2 0.4 1145 163.80 1093 241.54

M3+M2 0.05 1150 121.50 1147 101.53

M3+M2 0.1 1149 131.30 1147 97.58

M3+M2 0.2 1143 172.06 1149 100.96

M3+M2 0.3 1139 231.47 1142 194.06

M3+M2 0.4 1136 312.93 1147 141.96

M4+M2 0.05 1144 88.23 1140 80.12

M4+M2 0.1 1133 76.71 1126 178.84

M4+M2 0.2 1151 69.24 1110 150.10

M4+M2 0.3 1099 225.75 1094 232.79

M4+M2 0.4 1148 131.32 1151 135.65

 As shown in Table 7.3, “M4+M2” provided the best objective function value of 1099 with

a mutation rate of 0.3 in Test #1. However, in Test #2 with the same test conditions and

parameters, “M1'+M2” generated the best objective function value of 1093 using a mutation rate

of 0.4. These observations suggest that a GA model’s performance depends on the correlation

among various GA operators and factors. Adjusting the mutation method or the mutation rate

alone may not effectively obtain the best near-optimal solution. More extensive tests using

simulation techniques like the Monte Carlo Simulation [97] may be needed to find a more

accurate combination of mutation operator, mutation rate, and other GA operators with the

most robust performance.

 Comparing the “M1'+M2” from Table 7.3 with the “M2” (cycle-merging alone) from

Table 7.1 shows that the former approach generates a near-optimal result as good as 1093 with

an initial population of 750 and repair mechanism of minimum-cycle. In contrast, the latter

approach generated the best value of 1146 using the same GA operator conditions. Therefore, it

is apparent that a one-point mutation (M1') combined with the cycle-merging mutation (M2)

generates significantly better objective function values than the cycle-merging mutation alone.

Besides, the coupled mutation approach avoids the disadvantage of applying cycle-

merging alone, where the mutation operator’s global search power gradually diminishes after

the first few generations.

 Previous approaches using CIDA and ILP combined with different cycle enumeration

methods (Grow and CCDC), in CHAPTER 6 of this thesis, generated a near-optimal solution of

1112 by the DDCD + ILP approach for the USA network. Compared to the solution of DDCD +

ILP, some of the GA-SCA attempts using coupled mutation operators and various mutation rates

surpassed the performance of DDCD + ILP (e.g., 1099 and 1093). Therefore, the coupled

mutation operator approach has the potential to provide better solutions for the SCA problem

than the DDCD + ILP approach. However, total runtimes for a GA-SCA approach is significantly

longer (almost 100 times longer) than either the CIDA or the ILP approach.

 138

7.5.5 Recommended GA Operators for GA-SCA on Large Networks

Based on the previous test results and discussion from Section 7.5.1 to Section 7.5.4, we

will recommend the following GA operators for the final tests on large-scale networks vary from

50n80s to 100n150s. Due to considerations on extensive runtimes for these GA tests, a small

initial population of 50 will be used.

Other recommended GA operators for large-scale test cases are as following:

- Selection Method: tournament selection

- Crossover Method: two-point crossover

- Repair for Crossover: maximum-matching approach

- Mutation Method: remove one copy of one random cycle + cycle-merging

- Repair for Mutation: minimum-cycle approach

- Termination Criteria:

1. Terminate when a maximum of 1000 generation is reached, or

2. Apply cycle-merging operator when there is an unchanged objective function

value for 60 consecutive generations. After applying cycle-merging, if there is still

no improvement on the objective function value over the next 60 consecutive

generations, terminate the GA process and return the best current value.

7.5.6 GA-SCA vs. CIDA vs. ILP on Large-Scale Networks

Several large-scale test networks are tested using the GA-SCA model and refined GA

operators, as proposed in the Section 7.5.5 of this thesis. The test case networks used in this

study include 50n80s, 60n96s, 70n105s, 80n128, 90n135s and 100n150s topologies. A smaller

initial population size of 50 will be used in these tests to lessen the total runtimes. A crossover

rate of 0.35 and a mutation rate of 0.2 will be applied to these tests.

Results of the GA-SCA are compared to those using the CIDA algorithm and the ILP

model. Results of the tests using the Grow algorithm to generate candidate cycles are presented

in Table 7.4, and those using DDCD are presented in Table 7.5. “Normalized Costs” in both

tables are calculated by dividing each cost value by the minimum cost across the same row. A

 139

normalized cost of 1.000 indicates the best value among all three methods.“# Gens” indicates

the total number of generations the GA-SCA model is applied to a population before the

termination criteria are satisfied. It can show the suitability of a GA model for a test case. The

more suitable a GA model is, the further it can progress in exploring the search space for an

optimal solution. The runtime for each test is closely associated with the “# Gens Explored”

because the more generations a GA explores in a test case before the termination criteria are

satisfied, the longer the runtime may be. The runtimes in these tests are converted to minutes

and are reported under “RT(min)” in both Table 7.4 and 7.5. A total runtime that surpasses five

days is considered in these experiments and is denoted by “> 5 days” on both tables.

 Table 7.4 GA-SCA with cycles generated by Grow [39] on large networks ranging from 50n80s to 100n150s.

 Table 7.5 GA-SCA with cycles generated by DDCD on large networks ranging from 50n80s to 100n150s.

Grow + CIDA Grow + ILP Grow + GA-SCA

Normalized
Costs

RT (min)
Normalized

Costs
RT (min)

Normalized
Costs

RT (min) # Gens

50n80s 1.035 1.48 1.000 0.13 1.015 712.30 1000

60n96s 1.027 3.75 1.000 0.17 1.000 1215.79 607

70n105s 1.040 3.88 1.000 0.71 1.037 1180.81 1000

80n128s 1.033 26.90 1.001 1.07 1.000 > 5 days 1000

90n135s 1.026 29.91 1.000 0.84 1.024 7082.99 1000

100n150s 1.036 34.86 1.000 1.17 1.025 > 5 days 1000

DDCD + CIDA DDCD + ILP DDCD + GA-SCA

Normalized
Costs

RT (min)
Normalized

Costs
RT (min)

Normalized
Costs

RT (min) # Gens

50n80s 1.054 3.51 1.000 0.50 1.073 2193.66 836

60n96s 1.042 3.11 1.000 0.35 1.028 1298.44 1000

70n105s 1.051 6.28 1.000 1.98 1.029 2927.62 581

80n128s 1.084 2.89 1.040 0.29 1.000 > 5 days 1000

90n135s 1.051 2.69 1.000 0.29 1.040 1858.34 1000

100n150s 1.041 0.21 1.002 0.21 1.000 3317.32 1000

 140

As reported in Table 7.4 and Table 7.5, GA-SCA progressed through the entire 1000

generations in most test cases network topologies, indicating that the carefully designed GA

operators were suitable for this problem, preventing premature convergence of this GA model.

The DDCD + GA-SCA or Grow + GA-SCA results found better solutions to this problem than

those of DDCD + CIDA and Grow + CIDA, even with a small population size of 50. However, the

results did not compete with those of DDCD + ILP and Grow + ILP in most test cases (except for

the 80n128s network) regardless of the method used to enumerate candidate p-cycles. The most

concerning aspect associated with these GA tests is the extensively long runtimes. As shown in

both tables, the runtimes for some GA-SCA approaches are pressingly more expensive than

those of either CIDA or ILP. For example, in the case of 90n135s network using p-cycles

generated by Grow, the runtime of the GA-SCA (7082.99 mins) was almost 8000 times longer

than that of ILPs (0.84 mins).

 Using GA-SCA to find near-optimal solutions that are better than ILPs may be achieved

by adopting a larger population size, which allows the GA-SCA model to explore the search

space more extensively and more effectively before reaching termination criteria. Adopting a

simulation technique like Monte Carlo Simulation using the GA-SCA model may also find the

best near-optimal solutions. However, either of these two approaches may compromise the

runtime further, which may discourage using genetic algorithms for this type of problem.

7.6 Conclusions

 In this chapter, a scalable GA model for optimizing the p-cycle spare capacity allocation

problem was proposed, which was referred to as a GA-SCA model. The proposed GA-SCA has

been demonstrated through extensive testing in this study that the GA-SCA model applies to any

fully connected network topologies of any size, and it can be combined with any p-cycle

enumeration method.

 141

Based on the experimental results presented in CHAPTER 7.5, the following conclusions

can be drawn:

1) The GA-SCA model provides a better optimized spare capacity allocation solution

than that of CIDA. In all benchmark and large test case scenarios, GA-SCA

consistently shows better performance than Grow + CIDA and DDCD + CIDA.

2) GA operators that are specially designed to suit the problem can enhance the

performance of a GA model. In the GA-SCA model, maximum-matching and

minimum-cycle are two case-specific, objective function-focused repair mechanisms

developed to facilitate improvements of the objective function values.

3) Mutation operator design is pivotal for enhancing the performance of a GA model. In

the case of GA-SCA, a random one-point mutation is paired up with a specially

designed cycle-merging mutation approach, which generated a synergistic effect that

significantly enhanced the GA’s power to explore optimal solutions globally.

4) Although the GA-SCA is highly adaptive and flexible and has the potentials to

provide high-quality near-optimal solutions, it’s exceedingly long runtimes may

discourage adopting this method for studying p-cycle spare capacity allocation

problems. Especially when compared to those of DDCD + ILP, which provided better

and faster near-optimal solutions to the p-cycle spare capacity allocation problems.

 142

CHAPTER 8. CONCLUSION AND DISCUSSION

8.1 Summary of Thesis

 The primary research objective of this thesis is to study heuristic and meta-heuristic

methods in solving the p-cycle spare capacity allocation problem for large-scale network

topologies. An SCA is a two-step approach to solving p-cycle network protection problems. In an

SCA problem, the working routing is conducted first using a preferred shortest path method,

followed by protection path routing using a spare capacity allocation approach. In this case, a set

of eligible candidate p-cycles are enumerated before spare capacity allocation. In this thesis

research, two algorithmic approaches were taken to achieve this research objective: First, a

heuristic p-cycle enumeration algorithm was developed to generate efficient candidate cycles.

This algorithm focused on optimizing the cycle enumeration part of the SCA problem; Then, a

novel genetic algorithm model was developed for the p-cycle spare capacity allocation problem.

This GA approach pitched into optimizing the protection path routing part of the SCA problem.

Genetic algorithms have been implemented in solving various network survivability problems,

including p-cycle protection problems. However, to the best of our knowledge, there has not

been a problem specific GA model designed and tested for solving the SCA problems, nor has

there been a problem-specific repair or mutation mechanism proposed. This thesis research

addressed these gaps and provided extensive experiments on various test case networks.

 CHAPTER 2 of this thesis provided fundamental background knowledge and key

concepts in transport networks and graph theory. CHAPTER 3 introduced fundamental p-cycles

concepts, metrics, and designs. It also discussed relevant past research and studies on survivable

network designs and optimization using p-cycles. Fundamental genetic algorithm concepts,

genetic operator designs, and applications of genetic algorithm in p-cycle network survivability

problems were introduced in CHAPTER 4 of this thesis. These three chapters of this thesis

provided a solid foundation for developing later chapters.

In CHAPTER 6 of this thesis, a novel heuristic p-cycle enumeration algorithm called the

disjoint-paths Dijkstra cycle development (DDCD) algorithm was introduced, developed and

 143

discussed. It is an iterative cycle development method based on Dijkstra’s algorithm and has

been proved to enumerate high-performance candidate p-cycles in small and large networks

compared to prior studies. The design was first tested on two calibration networks (the USA

network and the France Network) and was later applied on network topologies of various sizes

ranging from 10 nodes to 140 nodes. Experimental results showed that the DDCD algorithm

outperformed either the Grow algorithm or the conventional DFS algorithm in small and large

networks. It is exceptionally favourable in large networks of over 80 nodes, where conventional

ILP and DFS methods fail to obtain an optimal or near-optimal solution within satisfactory

runtime. DDCD algorithm outperforms the Grow algorithm in large networks with shorter or

similar runtimes as Grow + CIDA and Grow + ILP. Lack of scalability may hinder the ILP

approach in solving large-scale network optimization problems; however, DDCD algorithm can

help ILP avoid the obstacles by producing highly efficient candidate cycles that significantly

lessen the search time.

In CHAPTER 7, a case-specific GA model for solving the SCA problem using p-cycles,

referred to as a GA-SCA model, was developed to optimize the p-cycle spare capacity allocation

while minimizing cycle allocation cost. This chapter introduced and discussed problem-specific

chromosome designs and GA operator designs, followed by extensive testing on defining the

most suitable GA operator using two calibration network topologies (the USA network and the

30n45s network). Preferred GA operators are used on various large-scale network topologies,

including 50n80s, 60n96s, 70n105s, 80n128, 90n135s, and 100n150s networks. In terms of

refining GA operators, this chapter particularly emphasized the process of developing a suitable

mutation operator. Extensive experiments were conducted on various mutation operator

designs. Experimental results showed that the final GA-SCA model provided better optimized

spare capacity allocation solutions than those of CIDA. Also, problem-specific GA operators

were found to enhance GA performance in all test cases. Despite the better performance of GA-

SCA in all test cases as compared to that of CIDA, it’s exceedingly long runtimes compared to

DDCD-ILP may discourage adopting this method for studying p-cycle spare capacity allocation

problems.

 144

8.2 Research Contributions

The primary research contributions of this thesis are the two algorithmic approaches

developed to solve the p-cycle spare capacity allocation (SCA) problem for large-scale network

topologies. These contributions are summarized as follows:

1. CHAPTER 6: Conducted extensive literature review of previous work on solving p-cycle

SCA problems and proposed a novel and state-of-the-art heuristic algorithm for

enumerating highly efficient candidate p-cycles, which was demonstrated to outperform

either the CIDA algorithm or conventional DFS algorithm.

2. CHAPTER 7: Developed a novel genetic algorithm model for the p-Cycle SCA problem,

which optimized the allocation of candidate p-cycles to fully protect a network topology

with a minimum cost of capacity allocation. Our contribution to this work also included

designing suitable GA operators for the p-cycle SCA problem, which allows better local

exploitation and global exploration of this GA model.

 Besides the main research contributions mentioned above, one conference paper

regarding the DDCD heuristic p-cycle enumeration method is ready to be submitted. The RNDM

2020 conference was cancelled due to the global pandemic; therefore, the thesis will be re-

submitted later time 2021.

T. Shi, T. Nakashima-Paniagua, J. Doucette, “A Heuristic Method for p-cycle Design in

Survivable WDM Mesh Network,” Resilient Network Design and Modeling (RNDM

2020), to be submitted: May 2021.

 145

References

[1] N. Mohan, A. Wason, and P. S. Sandhu, “Trends in survivability techniques of optical
 networks,” International Journal of Computer Science and Electronics Engineering
 (IJCSEE), vol. 1, no. 2, pp. 352-355, 2013.

[2] Telecommunications Industry Association, “2016-2020 ICT market review and
 forecast,” Telecommunications Industry Association, 2017. [Online]. Available:
 http://tr8.tiaonline.org/resources/tias-2016-2020-ict-market-review-and-forecast.
 [Accessed: Nov. 20, 2019].

[3] W. D. Grover, Mesh-based Survivable Networks: Options and Strategies for
 Optical, MPLS, SONET, and ATM Networking, Prentice Hall PTR, Upper Saddle
 River, NJ, 2004.

[4] Amazon AWS, “Summary of the Amazon EC2 and Amazon RDS service disruption in
 the US east region,” aws.amazon.com, 2011. [Online].
 Available: https://aws.amazon.com/message/65648/. [Accessed: Sep. 30, 2020].

[5] D. A. Schupke, “Guaranteeing service availability in optical network design,”
 ITG Symposium on Photonic Networks, pp. 1-3, Leipzig, Germany, May 2007.

[6] The International Working Group on Cloud Computing Resiliency (IWGCR), "Downtime
 statistics of current cloud solutions,” IWGCR, March 2014. [Online]. Available:
 http://iwgcr.org/wp-content/uploads/2014/03/downtime-statistics-current-1.3.pdf.
 [Accessed: Oct. 28, 2020].

[7] J. Doucette, “Advances on design and analysis of mesh-restorable networks,” Ph.D.
 Thesis, University of Alberta, Edmonton, Alberta, Canada, 2005.

[8] W. D. Grover, “Self-organizing broad-band transport networks,” Proceedings of
 the IEEE, vol. 85, no. 10, pp. 1582-1611, October 1997.

[9] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing, Kluwer Academic
 Publishers, November 1998.

[10] G. D. Morley, “Analysis and design of ring-based transport networks,” Ph.D. Thesis,
 University of Alberta, Edmonton, Alberta, Canada, February 2001.

[11] M. Herzberg and S. Bye, “An optimal spare-capacity assignment model for survivable
 networks with hop limits,” 1994 IEEE GLOBECOM. Communications: The Global
 Bridge, San Francisco, CA, USA, vol. 3, pp. 1601-1606, November-December 1994.

[12] R. R. Iraschko, M. H. MacGregor, and W. D. Grover, “Optimal capacity placement for
 path restoration in STM or ATM mesh-survivable networks,” IEEE/ACM Transactions
 on Networking, vol. 6, no. 3, pp. 325-336, June 1998.

[13] S. Sengupta and R. Ramamurthy, “Capacity efficient distributed routing of mesh-
 restored lightpaths in optical networks,” IEEE Global Telecommunications
 Conference (GlobeCom 2001), San Antonio, TX, pp. 2129-2133, November 2001.

 146

http://tr8.tiaonline.org/
https://aws.amazon.com/

[14] D. Stamatelakis and W. D. Grover, “Theoretical underpinnings for the efficiency of
 restorable networks using preconfigured cycles (“p-cycles”)”, IEEE Transactions on
 Communications, vol. 48, no. 8, pp. 1262-1265, August 2000.

[15] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed preconfiguration: ring-
 like speed with mesh-like capacity for self-planning network restoration”, Proceedings
 of IEEE International Conference on Communications (ICC 1998), Atlanta, GA,
 pp. 537-543, June 1998.

[16] W. D. Grover and D. Stamatelakis, “Bridging the ring-mesh dichotomy with p-cycles”,
 Proceedings of IEEE/VDE Workshop on Design of Reliable Communication Networks
 (DRCN 2000), pp. 92-104, April 2000.

[17] J. Doucette, “Advances on design and analysis of mesh-restorable networks,” Ph.D.
 Thesis, University of Alberta, Edmonton, Alberta, Canada, 2005.

[18] J. Clausen, “Branch and bound algorithms-principles and examples,” Department of
 Computer Science, University of Copenhagen, pp. 1-30, March 1999.

[19] T. W. Knowles, Management Science: Building and Using Models. Homewood, IL:
 IRWIN, 1989.

[20] A. Kasam, “Heuristic approaches for survivable network optimization,” Ph.D. Thesis,
 University of Alberta, Edmonton, Alberta, Canada, 2015.

[21] C. G. Han, “Survivable Networks,” in Encyclopedia of Optimization, C. Floudas and P.
 Pardalos, Eds. Boston, MA: Springer, 2001, pp- 431-434.

[22] S.V. Kartalopoulos, Introduction to DWDM Technology: Data In a Rainbow.
 Bellingham, WA: Wiley-IEEE Press, December 1999.

[23] K. Murakami and H. S. Kim, “Comparative study on restoration schemes of
 survivable ATM networks,” in Proceedings of IEEE Conference on Computer
 Communications (INFOCOM 1997), vol. 1, Kobe, Japan, 7-12 April 1997, pp. 345-352.

[24] Wu, Tsong-Ho. Fiber Network Service Survivability. Boston: Artech House, 1992.

[25] W. Wang, “Network design and availability analysis for large-scale mesh networks,”
 Ph.D. Thesis, University of Alberta, Edmonton, Alberta, Canada, 2018.

[26] R. Asthana, Y. N. Singh, and W. D. Grover, “p-Cycles: an overview”, in Communications
 Surveys & Tutorials IEEE, vol. 12, no. 1, pp. 97-111, First Quarter 2010.

[27] M. S. Kiaei, C. Assi, and B. Jaumard, “A survey on the p-cycle protection method”, in
 Communications Surveys & Tutorials IEEE, vol. 11, no. 3, pp. 53-70, 3rd Quarter 2009.

[28] B. Wu, K. L. Yeung, and P. -H. Ho, “A comparative study of fast protection schemes in
 WDM mesh networks,” 2008 IEEE International Conference on Communications,
 Beijing, 2008, pp. 5160-5164.

[29] Y. Wei, K. Xu, H. Zhao, and G. Shen, “Applying p-cycle technique to elastic optical
 networks”. 2014 International Conference on Optical Network Design and Modeling,
 Stockholm, 19-22 May 2014, pp. 1-6.

 147

[30] E. W. Dijkstra, “A note on two problems in connection with graphs”, Numerische
 Mathematik 1, pp. 269 - 271, 1959.

[31] D. Jungnickel, Graphs, Networks, and Algorithms. Berlin, Germany: Springer, 2008.

[32] H. Zhang and O. Yang, “Finding protection cycles in DWDM networks”, in Proceedings
 of IEEE International Conference on Communications (ICC 2002), April-May 2002,
 vol. 5, pp. 2756-2760.

[33] C. Liu and L. Ruan, “Finding good candidate cycles for efficient p-cycle network
 design,” in Proc. 13th International Conference on Computer Communications and
 Networks (IEEE Cat. No.04EX969), Chicago, IL, 2004, pp. 321-326.

[34] C. Liu and L. Ruan, “p-Cycle design in survivable WDM networks with shared risk link
 groups (SRLGs),” in Proc. 5th International Workshop on Design of Reliable
 Communication Networks, Ischia Island, Naples, Italy, October 2005, pp. 207-212.

[35] H. Drid, B. Cousin, S. Lahoud, and M. Molnar, “Multi-criteria p-cycle network design,”
 33rd IEEE Conference on Local Computer Networks (LCN), Montreal, Quebec, 2008,
 pp. 361-366.

[36] M. Ju, F. Zhou, Z. Zhu, and S. Xiao, “p-Cycle design without candidate cycle
 enumeration in mixed-line-rate optical networks,” 2015 IEEE 16th International
 Conference on High Performance Switching and Routing (HPSR), Budapest, Hungary,
 2015, pp. 1-6.

[37] D. A. Schupke, C. G. Gruber, and A. Autenrieth, “Optimal configuration of p-cycles
 in WDM networks", in Proceedings of IEEE International Conference on
 Communications (ICC), April-May 2002, vol. 5, pp. 2761-2765.

[38] T. H. Cormen, C. E. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms,
 Second Edition. Cambridge, MA: McGraw-Hill Higher Education, 2001.

[39] J. Doucette, D. He, W. D. Grover, and O. Yang, “Algorithmic approaches for efficient
 enumeration of candidate p-cycles and capacitated p-cycle network design,” in
 Proceedings of the 4th International Workshop on Design of Reliable Communication
 Networks (DRCN 2003), Banff, AB, Canada, 19-22 October 2003, pp. 212-220.

[40] Z. Zhang, W-D Zhong, and B. Mukherjee, “A heuristic method for design of
 survivable WDM networks with p-cycles,” Communications Letters IEEE, vol. 8,
 no. 7, pp. 467-469, 2004.

[41] L. S. Lasdon, Optimization Theory for Large Systems, Mineola, New York, USA: Dover
 Publications, Inc., 2002.

[42] K. Lo, D. Habibi, A. Rassan, Q. V. Phung, H. N. Nguyen, and B. Kang, "A hybrid p-cycle
 search algorithm for protection in WDM mesh networks," 2006 14th IEEE
 International Conference on Networks, Singapore, 2006, pp. 1-6.

[43] K. Lo, D. Habibi, A. Rassan, Q. V. Phung, and H. N. Nguyen, "Heuristic p-cycle selection
 design in survivable WDM mesh networks," 2006 14th IEEE International Conference
 on Networks, Singapore, 2006, pp. 1-6.

 148

[44] M. Herzberg, S. J. Bye, and A. Utano, “The hop-limit approach for spare-capacity
 assignment in survivable networks,” IEEE/ACM Transactions on Networking, vol.
 3, no. 6, pp. 775- 784, December 1995.

[45] P. Zhang, J. Li, P. Luo, J. Zhang, L. Zheng, and W. Gu, “Novel heuristic algorithms of
 candidate p-cycles in mesh WDM networks,” in Proceedings of SPIE Vol. 6354,
 Network Architectures, Management, and Applications IV, September 2006.

[46] W. D. Grover and J. E. Doucette, “Advances in optical network design with p-cycles:
 joint optimization and pre-selection of candidate p-cycles,” in Proc. of the IEEE-LEOS
 Summer Topical Meeting on All Optical Networking, Mont Tremblant, Quebec, Canada,
 July 2002, pp. WA2-49-WA2-50.

[47] A. Kodian, A. Sack, and W. D. Grover, “The threshold hop-limit effect in p-cycles:
 comparing hop- and circumference-limited design,” Optical Switching and
 Networking, vol. 2, no. 2, pp. 72–85, 2005.

[48] B. Kang, D. Habibi, K. Lo, Q. V. Phung, H. N. Nguyen, and A. Rassau, “An
 approach to generate an efficient set of candidate p-cycles in WDM mesh networks,”
 2006 Asia-Pacific Conference on Communications, Busan, 2006, pp. 1-5.

[49] K. Lo, D. Habibi, Q. V. Phung, A. Rassau, and H. N. Nguyen, “Efficient p-cycles
 design by heuristic p-cycle selection and refinement for survivable WDM Mesh
 Networks,” IEEE Globecom 2006, San Francisco, CA, 2006, pp. 1-5.

[50] T. Zhao, L. Li, H. Yu, and X. Zhang, “A heuristic method for optimal capacity design of
 WDM networks with p-cycles,” Optical Transmission, Switching, and Subsystems IV,
 2006.

[51] A. Smutnicki and K. Walkowiak, “A heuristic approach to working and spare capacity
 optimization for survivable anycast streaming protected by p-cycles,”
 Telecommunication Systems, vol. 56, no. 1, pp. 141–156, 2013.

[52] A. Konak, “Two-edge disjoint survivable network design problem with relays: a hybrid
 genetic algorithm and Lagrangian heuristic approach,” Engineering Optimization,
 vol. 46, no. 1, pp. 130–145, 2013.

[53] E. T. L. Pastor, H. A. F. Crispim, H. Abdalla, A. F. D. Rocha, A. J. M. Soares, and J. Prat,
 “A new heuristics/GA-based algorithm for the management of the S-DRWA in IP/
 WDM networks,” Managing Next Generation Networks and Services Lecture Notes in
 Computer Science, pp. 265–275, 2007.

[54] O. Bozorg-Haddad, M. Solgi, and H. A. Loaiciga, Meta-Heuristic and Evolutionary
 Algorithms for Engineering Optimization. Hoboken, New Jersey: Wiley Blackwell, 2017.

[55] S. A. Fernandez, A. A. Juan, J. D. A. Adrian, D. G. E. Silva, and D. R. Terren,
 “Metaheuristics in telecommunication systems: network design, routing, and
 allocation problems,” IEEE Systems Journal, vol. 12, no. 4, pp. 3948–3957, 2018.

[56] P. D. Choudhury, S. Bhadra, and T. De, “A brief review of protection based routing and
 spectrum assignment in elastic optical networks and a novel p-cycle based protection
 approach for multicast traffic demands,” Optical Switching and Networking, vol. 32,

 149

 pp. 67–79, 2019.

[57] A.S. Deshpande and R. B. Kelkar, “Advanced genetic operators and techniques: an
 analysis of dominance & diploidy, reordering operator in genetic search,” 9th WSEAS
 International Conference on Evolutionary Computing (EC’08), Sofia, Bulgaria,
 May 2-4 2008, pp. 27-33.

[58] J. V. Paez, A. Talia, E. D. Gimenez, and D. P. Roa, “Optimal selection of p-cycles on
 WDM optical networks with shared risk link group independent restorability using
 genetic algorithm,” IEEE Latin America Transactions, vol. 10, no. 1, pp. 1385–1390,
 2012.

[59] T. Cai, S. Huang, X. Li, S. Yin, J. Zhang, and W. Gu, “Dynamic survivable mapping
 algorithm based on ant colony optimization in IP over WDM networks,” Acta
 Photonica Sinica, vol. 41, no. 12, pp. 1400–1404, 2012.

[60] E. Kaldirim, F. C. Ergin, S. Uyar, and A. Yayimli, “Ant colony optimization for survivable
 virtual topology mapping in optical WDM networks,” 2009 24th International
 Symposium on Computer and Information Sciences, pp. 334–339, 2009.

[61] T. Weise, “Global Optimization Algorithms - Theory and Application,” Second. Self-
 Published, 2009. [Online]. Available: .
 [Accessed: Jan. 18, 2020].

[62] A. Kodian and W.D. Grover, “Failure-independent path-protecting pcycles: efficient and
 simple fully preconnected optical-path protection,” J. Lightwave Technology, vol. 23,
 no. 10, pp. 3241–3259, 2005

[63] G. Shen, and W.D. Grover, “Extending the p-cycle concept to path segment protection for
 span and node failure recovery,” IEEE J. Sel. Areas Commun., vol. 21, pp. 1306-1319,
 2003

[64] B. Jaumard, H. Li, and S. Sebbah, “Design of path-segment-protecting p-cycles in
 survivable WDM mesh networks,” 2010 14th International Telecommunications
 Network Strategy and Planning Symposium (NETWORKS), 2010.

[65] B. Jaumard and H. Li, “Segment p-cycle design with full node protection in WDM mesh
 networks,” 2011 18th IEEE Workshop on Local & Metropolitan Area Networks
 (LANMAN), 2011.

[66] B. Jaumard and H. Li, “Minimum CAPEX design of segment p-cycles with full node
 protection”. 16th International Conference on Optical Networking Design and
 Modelling,2012.

[67] J. Doucette, P. A. Giese, and W. D. Grover, “Combined node and span protection
 strategies with node-encircling p-cycles,” in Proc. 5th International Workshop on
 Design of Reliable Communication Networks, Ischia Island, Naples, Italy, October
 2005, pp. 213–221.

[68] C. C. Meixner, L. Campuzano, D. P. Roa, and E. Davalos, “A new p-cycle selection
 approach based on efficient restoration measure for WDM optical networks,” 2010
 Sixth Advanced International Conference on Telecommunications, 2010, pp. 542-548.

 150

http://www.it-weise.de/projects/book.pdf

[69] B. Wu, K. Yeung, and P.-H. Ho, “ILP formulations for p-cycle design without
 candidate cycle enumeration,” IEEE/ACM Transactions on Networking, vol. 18, no. 1,
 pp. 284–295, 2010.

[70] R. Morais, C. Pavan, A. Pinto, and C. Requejo, "Genetic algorithm for the topological
 design of survivable optical transport networks," in IEEE/OSA Journal of Optical
 Communications and Networking, vol. 3, no. 1, pp. 17-26, 2011.

[71] R. Morais and A. Pinto, “Topological design using genetic algorithms,” in Intelligent
 Systems for Optical Networks Design: Advancing Techniques, Y. Kavian and Z.
 Ghassemlooy, Eds. Hershey, PA: IGI Global, 2013, pp. 153-173.

[72] B. Dengiz, F. Altiparmak, and A. E. Smith, "Local search genetic algorithm for optimal
 design of reliable networks," in IEEE Transactions on Evolutionary Computation,
 vol. 1, no. 3, pp. 179-188, 1997.

[73] H. T. T. Binh and N. T. Duong, “Heuristic and genetic algorithms for solving survivability
 problem in the design of last mile communication networks,” Soft Computing, vol. 19,
 no. 9, pp. 2619–2632, 2014.

[74] C. W. Ahn and R. Ramakrishna, “A genetic algorithm for shortest path routing problem
 and the sizing of populations,” IEEE Transactions on Evolutionary Computation, vol. 6,
 no. 6, pp. 566–579, 2002.

[75] J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
 Press, Ann Arbor, MI, 1975.

[76] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning.
 Boston, MA: Addison-Wesley, 1989.

[77] K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: concepts and applications
 [in engineering design],” in IEEE Transactions on Industrial Electronics, vol. 43, no. 5,
 pp. 519-534, Oct. 1996.

[78] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms. Hoboken, NJ: John Wiley,
 2004.

[79] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used in
 genetic algorithms,” Foundations of Genetic Algorithms, pp. 69–93, 1991.

[80] B. L. Miller and D. E. Goldberg, “Genetic algorithms, selection schemes, and the
 varying effects of noise,” Evolutionary Computation, vol. 4, no. 2, pp. 113–131, 1996.

[81] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament selection, and the
 effects of noise,” Complex Systems, vol. 9, no. E, pp.193–212, 1995.

[82] M. Leeson, Y. Kavian, W. Ren, E. Hines, and M. Naderi, “Survivable wavelength-routed
 optical network design using genetic algorithms,” 2007 ICTON Mediterranean Winter
 Conference, pp. 247-255, 2007.

[83] X. Guo, J. Huang, H. Liu, and Y. Chen, “Efficient p-cycle combination protection strategy
 based on improved genetic algorithm in elastic optical networks,” IET Optoelectronics,
 vol. 12, no. 2, pp. 73–79, 2018.

 151

[84] C. Colmán, D. Pinto, and B. Barán, “Optimal selection of sigma-cycle for optical
 networks. An approach based on genetic algorithm,” CLEI Electronic Journal, vol. 12,
 no. 3, 2009.

[85] France Telecom, “France telecom Form 6-K,” France Telecom, April 12, 2013. [Online].
 Available:
 lft6k_registrationdocument.htm#_Toc353389444. [Accessed: Oct. 29, 2018]

[86] Python Software Foundation, The Python Language Reference, Version 3.7.6. [Online].
 Available: http://www.python.org. [Accessed: May 01, 2019].

[87] Microsoft Corp., Visual Studio Code User Guide, Version 1.47.0. [Online]. Available:
 https://code.visualstudio.com/docs. [Accessed: Mar. 01, 2019].

[88] R. Fourer, D. M. Gay, B. W. Kernighan, AMPL: A Modeling Language for Mathematical
 Programming, Cengage Learning, Boston, MA, USA, 2003.

[89] IBM Corp., IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, Version 12,
 Release 7, 2016. [Online]. Available: https://www.ibm.com/support/knowledgecenter /
 SSSA5P_12.6.1/ilog.odms.studio.help/pdf/usrcplex.pdf. [Accessed: Mar. 01, 2019].

[90] D. A. Schupke, “An ILP for optimal p-cycle selection without cycle enumeration,”
 in Proceedings 8th Conf. ONDM, 2004.

[91] B. Wu, K. L. Yeung, K.-S. Lui, and S. Xu, “A new ILP-based p-cycle construction
 algorithm without candidate cycle enumeration,” 2007 IEEE International Conference
 on Communications, Glasgow, 2007, pp. 2236-2241.

[92] J. Wu, Y. Liu, C. Yu, and Y. Wu, “Survivable routing and spectrum allocation algorithm
 based on p-cycle protection in elastic optical networks,” Optik, vol. 125, no. 16,
 pp. 4446–4451, 2014.

[93] D. P. Onguetou and W. D. Grover, “p-Cycle network design: from fewest in number to
 smallest in size,” 2007 6th International Workshop on Design and Reliable
 Communication Networks, 2007.

[94] J. Doucette and W. D. Grover, “PCycle-SCP-Algorithm.exe - Version 1.0,” TRLabs
 proprietary AMPL ILP model, Edmonton, Alberta, July 2003.

[95] J. Doucette and W. D. Grover, “PCycle-SCP-DatPrep.exe: p-Cycle Spare Capacity
 Placement AMPL Data File Preparation Software Version 1.0,” TRLabs proprietary
 software, Edmonton, Alberta, December 2001.

[96] J. Doucette and W. D. Grover, “pcycle-SCP.mod: p-Cycle SCP IP Model for AMPL -
 Version 1.0,” TRLabs proprietary AMPL ILP model, Edmonton, Alberta, December 2001.

[97] A. M. Law, Simulation Modeling and Analysis. New York, NY: McGraw-Hill, 2015.

 152

https://www.sec.gov/Archives/edgar/data/1038143/000130817913000202/

APPENDIX A
Network Topology Graphs

 153

France NetworkUSA Long-Haul Network

10n20s 20n34s

40n60s30n45s

 154

60n96s50n80s

70n105s 80n128s

90n135s 100n150s

 155

110n165s 120n180s

130n195s

140n210s

APPENDIX B
Network Topology Files (Nodes and Spans)

USA Long-Haul Backbone Network

Nodes (.node): NODE/ X/ Y

N1 113.369 21.39
N2 254.545 25.668
N3 381.818 45.989
N4 509.091 44.92
N5 80.214 83.422
N6 147.594 125.134
N7 226.738 144.385

N8 442.781 139.037
N9 80.214 194.652
N10 188.235 208.556
N11 303.743 209.626
N12 398.93 186.096
N13 601.07 67.38
N14 612.834 130.481

N15 525.134 207.487
N16 688.77 130.481
N17 765.775 54.545
N18 848.128 52.406
N19 780.749 108.021
N20 811.765 156.15
N21 631.016 206.417

N22 503.743 264.171
N23 620.321 310.16
N24 732.62 223.529
N25 244.92 289.84
N26 361.497 312.299
N27 483.422 379.679
N28 285.561 401.07

Spans (.spans): SPAN/ SOURCE/ SINK

S1 N1 N2
S2 N1 N5
S3 N2 N3
S4 N2 N7
S5 N3 N4
S6 N4 N8
S7 N4 N13
S8 N5 N6
S9 N5 N9
S10 N6 N7
S11 N6 N9
S12 N7 N8
S13 N7 N10
S14 N8 N12
S15 N8 N14
S16 N9 N10
S17 N10 N11
S18 N11 N12
S19 N11 N22
S20 N11 N25
S21 N12 N15
S22 N13 N14
S23 N14 N15

S24 N14 N16
S25 N14 N21
S26 N15 N21
S27 N16 N17
S28 N16 N19
S29 N16 N20
S30 N16 N21
S31 N17 N18
S32 N18 N19
S33 N18 N20
S34 N19 N20
S35 N20 N24
S36 N21 N22
S37 N21 N23
S38 N22 N23
S39 N22 N26
S40 N23 N24
S41 N23 N27
S42 N25 N26
S43 N26 N27
S44 N27 N28
S45 N26 N28
S1 N1 N2

S2 N1 N5
S3 N2 N3
S4 N2 N7
S5 N3 N4
S6 N4 N8
S7 N4 N13
S8 N5 N6
S9 N5 N9
S10 N6 N7
S11 N6 N9
S12 N7 N8
S13 N7 N10
S14 N8 N12
S15 N8 N14
S16 N9 N10
S17 N10 N11
S18 N11 N12
S19 N11 N22
S20 N11 N25
S21 N12 N15
S22 N13 N14
S23 N14 N15
S24 N14 N16

S25 N14 N21
S26 N15 N21
S27 N16 N17
S28 N16 N19
S29 N16 N20
S30 N16 N21
S31 N17 N18
S32 N18 N19
S33 N18 N20
S34 N19 N20
S35 N20 N24
S36 N21 N22
S37 N21 N23
S38 N22 N23
S39 N22 N26
S40 N23 N24
S41 N23 N27
S42 N25 N26
S43 N26 N27
S44 N27 N28

S45 N26 N28

 156

France Network

Nodes (.node): NODE/ X/ Y

N1 172.500 512.5

N2 285.833 499.167

N3 194.167 420

N4 359.167 359.167

N5 395 494.167

N6 415 460.833

N7 436.667 414.167

N8 448.333 450.833

N9 463.333 510.833

N10 487.500 521.667

N11 518.333 498.333

N12 543.333 480

N13 470 390

N14 480.833 369.167

N15 430 359.167

N16 405.833 377.5

N17 321.667 264.167

N18 276.667 355

N19 235 309.167

N20 155.833 296.667

N21 164.167 260

N22 250.833 256.667

N23 231.667 218.333

N24 155 211.667

N25 100 174.167

N26 55 213.333

N27 210.833 149.167

N28 272.5 135

N29 280 94.167

N30 320.833 104.167

N31 338.667 81.333

N32 354.667 60

N33 367.5 125.833

N34 398.667 158.667

N35 338.333 181.667

N36 307.5 228.333

N37 390.833 227.5

N38 431.667 260.833

N39 477.5 265.833

N40 515.833 237.5

N41 540.833 181.667

N42 474.167 172.5

N43 475 145.833

Spans (.spans): SPAN/ SOURCE/ SINK

S1 N1 N2
S2 N1 N3
S3 N2 N3
S4 N2 N18
S5 N3 N19
S6 N18 N4
S7 N2 N5
S8 N6 N8
S9 N8 N9
S10 N9 N10
S11 N10 N11
S12 N11 N12
S13 N7 N8
S14 N7 N15
S15 N4 N5
S16 N4 N17
S17 N12 N13
S18 N7 N13

S19 N13 N15
S20 N14 N15
S21 N15 N16
S22 N16 N4
S23 N17 N18
S24 N18 N19
S25 N19 N20
S26 N19 N22
S27 N17 N22
S28 N17 N36
S29 N15 N35
S30 N36 N37
S31 N15 N38
S32 N14 N38
S33 N14 N39
S34 N39 N40
S35 N40 N41
S36 N40 N42

S37 N41 N42
S38 N41 N43
S39 N42 N43
S40 N42 N34
S41 N34 N35
S42 N37 N35
S43 N35 N36
S44 N36 N22
S45 N35 N23
S46 N36 N28
S47 N22 N23
S48 N23 N21
S49 N20 N21
S50 N21 N26
S51 N25 N26
S52 N24 N25
S53 N24 N21
S54 N23 N24

S55 N23 N27
S56 N24 N27
S57 N27 N28
S58 N35 N28
S59 N28 N29
S60 N29 N30
S61 N35 N33
S62 N33 N34
S63 N32 N34
S64 N33 N32
S65 N30 N33
S66 N30 N31
S67 N31 N32
S68 N37 N38
S69 N38 N39
S70 N6 N5
S71 N5 N9

30n45s Network

Nodes (.node): NODE/ X/ Y/ SIZE

N01 445.00 58.00

N02 196.00 63.00

N03 608.00 65.00

N04 61.00 97.00

N05 352.00 105.00

N06 548.00 135.00

N07 424.00 198.00

N08 12.00 210.00

N09 220.00 234.00

N10 630.00 250.00

N11 358.00 295.00

N12 109.00 351.00

 157

N13 515.00 351.00

N14 653.00 396.00

N15 356.00 404.00

N16 97.00 483.00

N17 208.00 485.00

N18 564.00 499.00

N19 400.00 539.00

N20 649.00 562.00

N21 321.00 616.00

N22 133.00 652.00

N23 550.00 687.00

N24 36.00 770.00

N25 208.00 770.00

N26 398.00 770.00

N27 663.00 786.00

N28 117.00 871.00

N29 311.00 913.00

N30 497.00 921.00

Spans (.spans): SPAN/ SOURCE/ SINK

S01 N01 N02
S02 N01 N03
S03 N01 N07
S04 N02 N04
S05 N02 N05
S06 N03 N06
S07 N03 N10
S08 N04 N08
S09 N04 N09
S10 N05 N07
S11 N05 N09
S12 N06 N07

S13 N06 N10
S14 N08 N12
S15 N08 N24
S16 N09 N11
S17 N10 N14
S18 N11 N13
S19 N11 N17
S20 N12 N16
S21 N12 N17
S22 N13 N14
S23 N13 N15
S24 N14 N20

S25 N15 N18
S26 N15 N21
S27 N16 N17
S28 N16 N22
S29 N18 N19
S30 N18 N20
S31 N19 N21
S32 N19 N23
S33 N20 N27
S34 N21 N26
S35 N22 N24
S36 N22 N25

S37 N23 N27
S38 N23 N30
S39 N24 N28
S40 N25 N26
S41 N25 N28
S42 N26 N29
S43 N27 N30
S44 N28 N29
S45 N29 N30

40n60s Network

Nodes (.node): NODE/ X/ Y

N01 188.00 101.00

N02 391.00 114.00

N03 296.00 125.00

N04 572.00 125.00

N05 82.00 135.00

N06 483.00 149.00

N07 613.00 209.00

N08 203.00 214.00

N09 415.00 226.00

N10 299.00 252.00

N11 68.00 261.00

N12 522.00 285.00

N13 658.00 309.00

N14 386.00 319.00

N15 113.00 336.00

N16 263.00 372.00

N17 612.00 408.00

N18 403.00 421.00

N19 492.00 424.00

N20 66.00 444.00

N21 186.00 449.00

N22 639.00 495.00

N23 549.00 502.00

N24 343.00 504.00

N25 116.00 522.00

N26 242.00 546.00

N27 469.00 596.00

N28 82.00 636.00

N29 609.00 654.00

N30 345.00 668.00

N31 198.00 671.00

N32 538.00 742.00

N33 143.00 761.00

N34 418.00 785.00

N35 272.00 786.00

N36 621.00 819.00

N37 496.00 849.00

N38 88.00 885.00

N39 222.00 885.00

N40 361.00 921.00

Spans (.spans): SPAN/ SOURCE/ SINK

S01 N01 N03
S02 N01 N05
S03 N01 N08

S04 N02 N03
S05 N02 N04
S06 N02 N06

S07 N03 N10
S08 N04 N06
S09 N04 N07

S10 N05 N08
S11 N05 N11
S12 N06 N09

 158

S13 N07 N12
S14 N07 N13
S15 N08 N16
S16 N09 N10
S17 N09 N14
S18 N10 N14
S19 N11 N15
S20 N11 N20
S21 N12 N13
S22 N12 N19
S23 N13 N17
S24 N14 N18

S25 N15 N16
S26 N15 N20
S27 N16 N21
S28 N17 N19
S29 N17 N22
S30 N18 N19
S31 N18 N21
S32 N20 N25
S33 N21 N24
S34 N22 N23
S35 N22 N29
S36 N23 N24

S37 N23 N27
S38 N24 N26
S39 N25 N26
S40 N25 N28
S41 N26 N31
S42 N27 N29
S43 N27 N30
S44 N28 N33
S45 N28 N38
S46 N29 N36
S47 N30 N34
S48 N30 N35

S49 N31 N33
S50 N31 N35
S51 N32 N34
S52 N32 N36
S53 N32 N37
S54 N33 N38
S55 N34 N40
S56 N35 N39
S57 N36 N37
S58 N37 N40
S59 N38 N39
S60 N39 N40

50n80s Network

Nodes (.node): NODE/ X/ Y

N01 202.00 38.00

N02 473.00 46.00

N03 352.00 63.00

N04 55.00 68.00

N05 661.00 71.00

N06 552.00 107.00

N07 142.00 121.00

N08 295.00 159.00

N09 441.00 159.00

N10 608.00 182.00

N11 689.00 196.00

N12 69.00 222.00

N13 184.00 236.00

N14 459.00 267.00

N15 277.00 283.00

N16 590.00 285.00

N17 354.00 325.00

N18 146.00 339.00

N19 669.00 345.00

N20 495.00 357.00

N21 41.00 378.00

N22 301.00 410.00

N23 441.00 436.00

N24 606.00 450.00

N25 127.00 469.00

N26 535.00 519.00

N27 687.00 521.00

N28 263.00 539.00

N29 449.00 555.00

N30 616.00 596.00

N31 49.00 598.00

N32 190.00 632.00

N33 372.00 650.00

N34 505.00 661.00

N35 663.00 711.00

N36 253.00 745.00

N37 77.00 751.00

N38 451.00 760.00

N39 162.00 768.00

N40 612.00 830.00

N41 493.00 850.00

N42 354.00 859.00

N43 43.00 861.00

N44 174.00 881.00

N45 699.00 883.00

N46 546.00 931.00

N47 111.00 953.00

N48 453.00 962.00

N49 279.00 984.00

N50 639.00 994.00

Spans (.spans): SPAN/ SOURCE/ SINK

S01 N01 N03
S02 N01 N04
S03 N01 N08
S04 N02 N03
S05 N02 N05
S06 N02 N09
S07 N03 N09
S08 N04 N07
S09 N04 N12

S10 N05 N06
S11 N05 N11
S12 N06 N09
S13 N06 N10
S14 N07 N08
S15 N07 N13
S16 N08 N09
S17 N08 N14
S18 N10 N11

S19 N10 N14
S20 N11 N19
S21 N12 N13
S22 N12 N21
S23 N13 N15
S24 N14 N15
S25 N15 N17
S26 N16 N19
S27 N16 N20

S28 N16 N24
S29 N17 N20
S30 N17 N22
S31 N18 N21
S32 N18 N22
S33 N18 N28
S34 N19 N27
S35 N20 N23
S36 N21 N31

 159

S37 N22 N23
S38 N23 N24
S39 N23 N28
S40 N23 N29
S41 N24 N27
S42 N25 N28
S43 N25 N31
S44 N25 N32
S45 N26 N29
S46 N26 N30
S47 N26 N34

S48 N27 N30
S49 N28 N33
S50 N29 N33
S51 N29 N34
S52 N30 N35
S53 N31 N37
S54 N32 N37
S55 N32 N39
S56 N33 N36
S57 N33 N38
S58 N34 N38

S59 N34 N40
S60 N35 N40
S61 N35 N45
S62 N36 N39
S63 N36 N42
S64 N37 N43
S65 N38 N42
S66 N38 N48
S67 N39 N44
S68 N40 N41
S69 N40 N46

S70 N41 N46
S71 N41 N48
S72 N42 N49
S73 N43 N44
S74 N43 N47
S75 N44 N47
S76 N45 N46
S77 N45 N50
S78 N47 N49
S79 N48 N50
S80 N49 N50

60n96s Network

Nodes (.node): NODE/ X/ Y

N01 170.00 40.00

N02 299.00 80.00

N03 60.00 92.00

N04 413.00 100.00

N05 253.00 140.00

N06 136.00 151.00

N07 459.00 168.00

N08 347.00 185.00

N09 544.00 197.00

N10 70.00 205.00

N11 241.00 214.00

N12 439.00 225.00

N13 141.00 245.00

N14 261.00 291.00

N15 590.00 294.00

N16 410.00 297.00

N17 527.00 311.00

N18 336.00 314.00

N19 81.00 320.00

N20 190.00 348.00

N21 450.00 365.00

N22 127.00 391.00

N23 281.00 402.00

N24 573.00 402.00

N25 184.00 408.00

N26 493.00 434.00

N27 356.00 440.00

N28 73.00 451.00

N29 207.00 474.00

N30 296.00 477.00

N31 619.00 497.00

N32 139.00 514.00

N33 381.00 514.00

N34 550.00 514.00

N35 447.00 537.00

N36 296.00 545.00

N37 233.00 574.00

N38 484.00 597.00

N39 150.00 611.00

N40 570.00 622.00

N41 379.00 625.00

N42 270.00 657.00

N43 479.00 674.00

N44 373.00 685.00

N45 144.00 700.00

N46 576.00 700.00

N47 227.00 740.00

N48 296.00 751.00

N49 501.00 757.00

N50 359.00 762.00

N51 604.00 785.00

N52 413.00 797.00

N53 284.00 831.00

N54 473.00 840.00

N55 393.00 860.00

N56 530.00 874.00

N57 641.00 874.00

N58 439.00 925.00

N59 310.00 928.00

N60 527.00 945.00

Spans (.spans): SPAN/ SOURCE/ SINK

S01 N01 N02
S02 N01 N03
S03 N01 N06
S04 N02 N04
S05 N02 N05
S06 N03 N06
S07 N03 N10

S08 N04 N05
S09 N04 N07
S10 N05 N06
S11 N05 N11
S12 N06 N10
S13 N07 N08
S14 N07 N09

S15 N08 N11
S16 N08 N14
S17 N09 N12
S18 N09 N15
S19 N10 N13
S20 N11 N13
S21 N12 N16

S22 N12 N17
S23 N13 N19
S24 N14 N18
S25 N14 N20
S26 N15 N17
S27 N15 N24
S28 N16 N18

 160

S29 N16 N21
S30 N17 N21
S31 N18 N23
S32 N19 N20
S33 N19 N28
S34 N20 N25
S35 N21 N26
S36 N21 N27
S37 N22 N25
S38 N22 N28
S39 N22 N32
S40 N23 N25
S41 N23 N27
S42 N24 N31
S43 N24 N34
S44 N26 N27
S45 N26 N33

S46 N26 N34
S47 N27 N30
S48 N28 N39
S49 N29 N30
S50 N29 N32
S51 N29 N37
S52 N30 N36
S53 N31 N34
S54 N31 N40
S55 N31 N51
S56 N32 N39
S57 N33 N35
S58 N33 N41
S59 N34 N38
S60 N35 N38
S61 N35 N41
S62 N36 N37

S63 N36 N41
S64 N37 N39
S65 N37 N42
S66 N38 N40
S67 N39 N45
S68 N40 N43
S69 N40 N46
S70 N41 N44
S71 N42 N45
S72 N42 N47
S73 N43 N44
S74 N43 N49
S75 N44 N48
S76 N44 N50
S77 N45 N47
S78 N46 N51
S79 N46 N54

S80 N47 N48
S81 N48 N53
S82 N49 N50
S83 N49 N52
S84 N50 N53
S85 N51 N57
S86 N52 N54
S87 N52 N55
S88 N53 N59
S89 N54 N56
S90 N55 N58
S91 N55 N59
S92 N56 N57
S93 N56 N60
S94 N57 N60
S95 N58 N59
S96 N58 N60

70n105s Network

Nodes (.node): NODE/ X/ Y

N01 176.00 52.00

N02 305.00 74.00

N03 420.00 90.00

N04 530.00 96.00

N05 66.00 104.00

N06 259.00 152.00

N07 142.00 163.00

N08 490.00 175.00

N09 353.00 197.00

N10 596.00 202.00

N11 76.00 217.00

N12 247.00 226.00

N13 445.00 237.00

N14 147.00 257.00

N15 514.00 272.00

N16 32.00 279.00

N17 267.00 303.00

N18 596.00 306.00

N19 416.00 309.00

N20 87.00 332.00

N21 355.00 353.00

N22 196.00 360.00

N23 480.00 367.00

N24 657.00 384.00

N25 133.00 403.00

N26 287.00 414.00

N27 579.00 414.00

N28 190.00 420.00

N29 499.00 446.00

N30 362.00 452.00

N31 79.00 463.00

N32 213.00 486.00

N33 302.00 489.00

N34 625.00 509.00

N35 145.00 526.00

N36 387.00 526.00

N37 556.00 526.00

N38 453.00 549.00

N39 302.00 557.00

N40 39.00 576.00

N41 239.00 586.00

N42 490.00 609.00

N43 601.00 613.00

N44 156.00 623.00

N45 385.00 637.00

N46 63.00 659.00

N47 276.00 669.00

N48 485.00 686.00

N49 379.00 697.00

N50 150.00 712.00

N51 582.00 712.00

N52 673.00 713.00

N53 233.00 752.00

N54 302.00 763.00

N55 507.00 769.00

N56 365.00 774.00

N57 90.00 792.00

N58 610.00 797.00

N59 419.00 809.00

N60 193.00 827.00

N61 290.00 843.00

N62 479.00 852.00

N63 399.00 872.00

N64 536.00 886.00

N65 647.00 886.00

N66 137.00 896.00

N67 445.00 937.00

N68 316.00 940.00

N69 230.00 950.00

N70 533.00 957.00

 161

Spans (.spans): SPAN/ SOURCE/ SINK

S001 N01 N02
S002 N01 N05
S003 N01 N07
S004 N02 N03
S005 N02 N06
S006 N03 N04
S007 N03 N08
S008 N04 N10
S009 N04 N15
S010 N05 N11
S011 N05 N16
S012 N06 N09
S013 N06 N12
S014 N07 N12
S015 N07 N14
S016 N08 N09
S017 N08 N15
S018 N09 N17
S019 N10 N18
S020 N10 N24
S021 N11 N14
S022 N11 N20
S023 N12 N22
S024 N13 N15
S025 N13 N17
S026 N13 N19
S027 N14 N22

S028 N16 N20
S029 N16 N31
S030 N17 N26
S031 N18 N24
S032 N18 N27
S033 N19 N21
S034 N19 N23
S035 N20 N25
S036 N21 N26
S037 N21 N30
S038 N22 N28
S039 N23 N27
S040 N23 N29
S041 N24 N52
S042 N25 N31
S043 N25 N35
S044 N26 N28
S045 N27 N29
S046 N28 N32
S047 N29 N38
S048 N30 N32
S049 N30 N36
S050 N31 N40
S051 N32 N35
S052 N33 N36
S053 N33 N39
S054 N33 N41

S055 N34 N37
S056 N34 N43
S057 N34 N52
S058 N35 N44
S059 N36 N39
S060 N37 N38
S061 N37 N42
S062 N38 N45
S063 N39 N45
S064 N40 N44
S065 N40 N46
S066 N41 N44
S067 N41 N47
S068 N42 N45
S069 N42 N48
S070 N43 N51
S071 N43 N58
S072 N46 N50
S073 N46 N57
S074 N47 N49
S075 N47 N53
S076 N48 N49
S077 N48 N51
S078 N49 N54
S079 N50 N53
S080 N50 N60
S081 N51 N55

S082 N52 N65
S083 N53 N54
S084 N54 N60
S085 N55 N56
S086 N55 N59
S087 N56 N59
S088 N56 N61
S089 N57 N60
S090 N57 N66
S091 N58 N62
S092 N58 N64
S093 N59 N63
S094 N61 N66
S095 N61 N69
S096 N62 N63
S097 N62 N67
S098 N63 N68
S099 N64 N65
S100 N64 N70
S101 N65 N70
S102 N66 N69
S103 N67 N68
S104 N67 N70
S105 N68 N69

80n128s Network

Nodes (.node): NODE/ X/ Y

N01 370.00 48.00

N02 507.00 56.00

N03 267.00 60.00

N04 606.00 87.00

N05 408.00 107.00

N06 556.00 117.00

N07 311.00 125.00

N08 176.00 127.00

N09 91.00 133.00

N10 477.00 141.00

N11 243.00 174.00

N12 632.00 188.00

N13 362.00 192.00

N14 127.00 196.00

N15 477.00 224.00

N16 392.00 244.00

N17 216.00 246.00

N18 586.00 261.00

N19 283.00 273.00

N20 152.00 277.00

N21 61.00 285.00

N22 386.00 307.00

N23 277.00 355.00

N24 495.00 355.00

N25 81.00 368.00

N26 180.00 370.00

N27 590.00 372.00

N28 388.00 382.00

N29 297.00 412.00

N30 26.00 430.00

N31 505.00 444.00

N32 412.00 450.00

 162

N33 95.00 454.00

N34 184.00 463.00

N35 626.00 475.00

N36 293.00 493.00

N37 548.00 511.00

N38 41.00 529.00

N39 101.00 531.00

N40 210.00 541.00

N41 348.00 541.00

N42 445.00 551.00

N43 158.00 568.00

N44 604.00 590.00

N45 228.00 602.00

N46 89.00 624.00

N47 344.00 628.00

N48 277.00 652.00

N49 412.00 652.00

N50 501.00 659.00

N51 34.00 665.00

N52 626.00 673.00

N53 224.00 685.00

N54 89.00 695.00

N55 352.00 701.00

N56 148.00 719.00

N57 428.00 737.00

N58 287.00 739.00

N59 503.00 739.00

N60 572.00 747.00

N61 641.00 764.00

N62 57.00 772.00

N63 335.00 776.00

N64 210.00 780.00

N65 477.00 820.00

N66 570.00 824.00

N67 150.00 834.00

N68 382.00 844.00

N69 265.00 852.00

N70 89.00 854.00

N71 200.00 883.00

N72 618.00 895.00

N73 546.00 901.00

N74 445.00 903.00

N75 337.00 905.00

N76 150.00 949.00

N77 251.00 949.00

N78 392.00 958.00

N79 527.00 986.00

N80 325.00 994.00

Spans (.spans): SPAN/ SOURCE/ SINK

S001 N01 N02
S002 N01 N03
S003 N01 N05
S004 N02 N04
S005 N02 N10
S006 N03 N07
S007 N03 N08
S008 N04 N06
S009 N04 N12
S010 N05 N07
S011 N05 N10
S012 N06 N10
S013 N06 N12
S014 N06 N31
S015 N07 N13
S016 N08 N09
S017 N08 N11
S018 N09 N14
S019 N09 N21
S020 N10 N15
S021 N11 N13
S022 N11 N17
S023 N12 N18
S024 N12 N35
S025 N13 N16
S026 N14 N17
S027 N14 N21

S028 N15 N16
S029 N15 N18
S030 N15 N24
S031 N16 N22
S032 N17 N19
S033 N18 N27
S034 N19 N23
S035 N19 N26
S036 N20 N21
S037 N20 N25
S038 N20 N26
S039 N21 N30
S040 N22 N23
S041 N22 N24
S042 N23 N28
S043 N24 N31
S044 N25 N30
S045 N25 N33
S046 N26 N33
S047 N26 N34
S048 N27 N31
S049 N27 N35
S050 N28 N29
S051 N28 N32
S052 N29 N34
S053 N29 N36
S054 N30 N33

S055 N30 N38
S056 N31 N32
S057 N32 N36
S058 N32 N52
S059 N34 N39
S060 N34 N40
S061 N35 N37
S062 N35 N44
S063 N36 N40
S064 N36 N41
S065 N37 N42
S066 N37 N44
S067 N38 N39
S068 N38 N51
S069 N39 N46
S070 N40 N43
S071 N41 N42
S072 N41 N45
S073 N41 N47
S074 N42 N50
S075 N43 N46
S076 N43 N54
S077 N44 N52
S078 N45 N48
S079 N45 N54
S080 N46 N51
S081 N47 N48

S082 N47 N49
S083 N48 N53
S084 N49 N55
S085 N49 N59
S086 N50 N52
S087 N50 N59
S088 N51 N62
S089 N52 N61
S090 N53 N56
S091 N53 N64
S092 N54 N56
S093 N55 N57
S094 N55 N58
S095 N56 N67
S096 N57 N63
S097 N57 N65
S098 N58 N63
S099 N58 N69
S100 N59 N60
S101 N60 N65
S102 N60 N66
S103 N61 N66
S104 N61 N72
S105 N62 N67
S106 N62 N70
S107 N63 N75
S108 N63 N77

 163

S109 N64 N67
S110 N64 N69
S111 N65 N68
S112 N66 N73
S113 N68 N74

S114 N68 N75
S115 N69 N71
S116 N70 N71
S117 N70 N76
S118 N71 N76

S119 N72 N73
S120 N72 N79
S121 N73 N74
S122 N74 N79
S123 N75 N78

S124 N75 N80
S125 N76 N77
S126 N77 N80
S127 N78 N79
S128 N78 N80

90n135s Network

Nodes (.node): NODE/ X/ Y

N01 571.00 15.00

N02 147.00 40.00

N03 34.00 47.00

N04 370.00 48.00

N05 507.00 56.00

N06 267.00 60.00

N07 606.00 87.00

N08 408.00 107.00

N09 556.00 117.00

N10 311.00 125.00

N11 176.00 127.00

N12 689.00 127.00

N13 91.00 133.00

N14 477.00 141.00

N15 243.00 174.00

N16 13.00 177.00

N17 632.00 188.00

N18 362.00 192.00

N19 127.00 196.00

N20 477.00 224.00

N21 392.00 244.00

N22 216.00 246.00

N23 586.00 261.00

N24 283.00 273.00

N25 152.00 277.00

N26 61.00 285.00

N27 386.00 307.00

N28 681.00 324.00

N29 277.00 355.00

N30 495.00 355.00

N31 81.00 368.00

N32 180.00 370.00

N33 590.00 372.00

N34 388.00 382.00

N35 706.00 411.00

N36 297.00 412.00

N37 26.00 430.00

N38 505.00 444.00

N39 412.00 450.00

N40 95.00 454.00

N41 184.00 463.00

N42 626.00 475.00

N43 293.00 493.00

N44 548.00 511.00

N45 41.00 529.00

N46 101.00 531.00

N47 210.00 541.00

N48 348.00 541.00

N49 683.00 545.00

N50 445.00 551.00

N51 158.00 568.00

N52 604.00 590.00

N53 228.00 602.00

N54 89.00 624.00

N55 344.00 628.00

N56 277.00 652.00

N57 412.00 652.00

N58 501.00 659.00

N59 34.00 665.00

N60 626.00 673.00

N61 224.00 685.00

N62 89.00 695.00

N63 352.00 701.00

N64 148.00 719.00

N65 428.00 737.00

N66 287.00 739.00

N67 503.00 739.00

N68 572.00 747.00

N69 641.00 764.00

N70 57.00 772.00

N71 335.00 776.00

N72 210.00 780.00

N73 477.00 820.00

N74 570.00 824.00

N75 150.00 834.00

N76 382.00 844.00

N77 265.00 852.00

N78 89.00 854.00

N79 200.00 883.00

N80 618.00 895.00

N81 546.00 901.00

N82 445.00 903.00

N83 337.00 905.00

N84 26.00 911.00

N85 150.00 949.00

N86 251.00 949.00

N87 392.00 958.00

N88 527.00 986.00

N89 325.00 994.00

N90 183.00 1010.0

Spans (.spans): SPAN/ SOURCE/ SINK

S001 N01 N04
S002 N01 N05
S003 N01 N12
S004 N02 N03
S005 N02 N06

S006 N02 N10
S007 N03 N16
S008 N03 N26
S009 N04 N06
S010 N04 N09

S011 N05 N07
S012 N05 N09
S013 N06 N08
S014 N07 N17
S015 N07 N23

S016 N08 N14
S017 N08 N18
S018 N09 N20
S019 N10 N15
S020 N10 N24

 164

S021 N11 N13
S022 N11 N15
S023 N11 N22
S024 N12 N17
S025 N12 N28
S026 N13 N19
S027 N13 N26
S028 N14 N20
S029 N14 N21
S030 N15 N29
S031 N16 N26
S032 N16 N37
S033 N17 N33
S034 N18 N21
S035 N18 N24
S036 N19 N25
S037 N19 N31
S038 N20 N30
S039 N21 N27
S040 N22 N29
S041 N22 N32
S042 N23 N30
S043 N23 N33
S044 N24 N34
S045 N25 N32
S046 N25 N40
S047 N27 N34
S048 N27 N38
S049 N28 N33

S050 N28 N35
S051 N29 N36
S052 N30 N38
S053 N31 N37
S054 N31 N40
S055 N32 N36
S056 N34 N39
S057 N35 N42
S058 N35 N49
S059 N36 N43
S060 N37 N45
S061 N38 N42
S062 N39 N44
S063 N39 N48
S064 N40 N41
S065 N41 N43
S066 N41 N46
S067 N42 N44
S068 N43 N47
S069 N44 N52
S070 N45 N54
S071 N45 N59
S072 N46 N51
S073 N46 N54
S074 N47 N48
S075 N47 N51
S076 N48 N50
S077 N49 N60
S078 N49 N69

S079 N50 N52
S080 N50 N55
S081 N51 N61
S082 N52 N60
S083 N53 N55
S084 N53 N56
S085 N53 N61
S086 N54 N62
S087 N55 N57
S088 N56 N63
S089 N56 N66
S090 N57 N58
S091 N57 N63
S092 N58 N60
S093 N58 N67
S094 N59 N70
S095 N59 N75
S096 N61 N64
S097 N62 N64
S098 N62 N75
S099 N63 N65
S100 N64 N72
S101 N65 N67
S102 N65 N73
S103 N66 N71
S104 N66 N72
S105 N67 N68
S106 N68 N73
S107 N68 N74

S108 N69 N74
S109 N69 N80
S110 N70 N78
S111 N70 N84
S112 N71 N76
S113 N71 N77
S114 N72 N77
S115 N73 N74
S116 N75 N77
S117 N76 N82
S118 N76 N83
S119 N78 N79
S120 N78 N84
S121 N79 N83
S122 N79 N85
S123 N80 N81
S124 N80 N88
S125 N81 N82
S126 N81 N88
S127 N82 N87
S128 N83 N86
S129 N84 N90
S130 N85 N86
S131 N85 N90
S132 N86 N89
S133 N87 N88
S134 N87 N89
S135 N89 N90

100n150s Network

Nodes (.node): NODE/ X/ Y

N001 250.00 17.00

N002 458.00 17.00

N003 45.00 24.00

N004 557.00 39.00

N005 371.00 40.00

N006 642.00 44.00

N007 162.00 65.00

N008 306.00 70.00

N009 491.00 84.00

N010 239.00 88.00

N011 90.00 105.00

N012 673.00 114.00

N013 584.00 130.00

N014 24.00 131.00

N015 373.00 137.00

N016 299.00 145.00

N017 460.00 147.00

N018 203.00 150.00

N019 521.00 165.00

N020 673.00 183.00

N021 67.00 192.00

N022 127.00 194.00

N023 303.00 223.00

N024 393.00 225.00

N025 496.00 231.00

N026 573.00 232.00

N027 247.00 245.00

N028 184.00 248.00

N029 639.00 271.00

N030 41.00 285.00

N031 450.00 286.00

N032 356.00 297.00

 165

N033 124.00 305.00

N034 556.00 305.00

N035 675.00 323.00

N036 296.00 337.00

N037 210.00 360.00

N038 396.00 360.00

N039 56.00 368.00

N040 543.00 377.00

N041 464.00 382.00

N042 604.00 400.00

N043 284.00 411.00

N044 690.00 422.00

N045 9.00 425.00

N046 141.00 434.00

N047 436.00 454.00

N048 313.00 457.00

N049 564.00 465.00

N050 227.00 474.00

N051 510.00 494.00

N052 693.00 500.00

N053 44.00 508.00

N054 441.00 520.00

N055 141.00 528.00

N056 607.00 537.00

N057 379.00 540.00

N058 190.00 568.00

N059 87.00 574.00

N060 281.00 580.00

N061 701.00 582.00

N062 499.00 594.00

N063 19.00 620.00

N064 587.00 625.00

N065 395.00 629.00

N066 107.00 645.00

N067 244.00 645.00

N068 670.00 648.00

N069 337.00 682.00

N070 461.00 685.00

N071 270.00 705.00

N072 570.00 722.00

N073 44.00 728.00

N074 407.00 734.00

N075 156.00 744.00

N076 230.00 756.00

N077 664.00 768.00

N078 353.00 785.00

N079 473.00 805.00

N080 564.00 814.00

N081 23.00 820.00

N082 107.00 825.00

N083 407.00 837.00

N084 214.00 839.00

N085 676.00 842.00

N086 304.00 871.00

N087 184.00 888.00

N088 613.00 888.00

N089 524.00 905.00

N090 430.00 908.00

N091 48.00 912.00

N092 347.00 922.00

N093 661.00 951.00

N094 121.00 968.00

N095 393.00 968.00

N096 176.00 971.00

N097 259.00 974.00

N098 461.00 985.00

N099 553.00 994.00

N100 319.00 1022.0

Spans (.spans): SPAN/ SOURCE/ SINK

S001 N001 N003
S002 N001 N005
S003 N001 N007
S004 N002 N004
S005 N002 N005
S006 N002 N009
S007 N003 N011
S008 N003 N014
S009 N004 N006
S010 N004 N013
S011 N005 N015
S012 N006 N012
S013 N006 N013
S014 N007 N010
S015 N007 N022
S016 N008 N010
S017 N008 N015
S018 N008 N016
S019 N009 N015
S020 N009 N019
S021 N010 N018
S022 N011 N021

S023 N011 N022
S024 N012 N020
S025 N012 N026
S026 N013 N019
S027 N014 N021
S028 N014 N030
S029 N016 N023
S030 N016 N027
S031 N017 N019
S032 N017 N024
S033 N017 N025
S034 N018 N022
S035 N018 N028
S036 N020 N029
S037 N020 N035
S038 N021 N033
S039 N023 N024
S040 N023 N036
S041 N024 N031
S042 N025 N026
S043 N025 N034
S044 N026 N029

S045 N027 N028
S046 N027 N036
S047 N028 N033
S048 N029 N034
S049 N030 N039
S050 N030 N045
S051 N031 N034
S052 N031 N041
S053 N032 N038
S054 N032 N043
S055 N032 N048
S056 N033 N046
S057 N035 N042
S058 N035 N044
S059 N036 N037
S060 N037 N039
S061 N037 N046
S062 N038 N041
S063 N038 N047
S064 N039 N046
S065 N040 N041
S066 N040 N042

S067 N040 N051
S068 N042 N049
S069 N043 N050
S070 N043 N060
S071 N044 N049
S072 N044 N052
S073 N045 N053
S074 N045 N063
S075 N047 N054
S076 N047 N057
S077 N048 N057
S078 N048 N069
S079 N049 N056
S080 N050 N055
S081 N050 N058
S082 N051 N054
S083 N051 N062
S084 N052 N056
S085 N052 N061
S086 N053 N055
S087 N053 N063
S088 N054 N070

 166

S089 N055 N059
S090 N056 N064
S091 N057 N065
S092 N058 N059
S093 N058 N060
S094 N059 N066
S095 N060 N067
S096 N061 N068
S097 N061 N085
S098 N062 N064
S099 N062 N070
S100 N063 N073
S101 N064 N072
S102 N065 N069
S103 N065 N074
S104 N066 N067

S105 N066 N073
S106 N067 N071
S107 N068 N077
S108 N068 N080
S109 N069 N071
S110 N070 N074
S111 N071 N076
S112 N072 N079
S113 N072 N080
S114 N073 N081
S115 N074 N078
S116 N075 N076
S117 N075 N082
S118 N075 N084
S119 N076 N078
S120 N077 N085

S121 N077 N088
S122 N078 N079
S123 N079 N083
S124 N080 N089
S125 N081 N082
S126 N081 N091
S127 N082 N091
S128 N083 N086
S129 N083 N090
S130 N084 N086
S131 N084 N087
S132 N085 N093
S133 N086 N090
S134 N087 N092
S135 N087 N094
S136 N088 N089

S137 N088 N093
S138 N089 N098
S139 N090 N098
S140 N091 N094
S141 N092 N095
S142 N092 N097
S143 N093 N099
S144 N094 N096
S145 N095 N097
S146 N095 N100
S147 N096 N097
S148 N096 N100
S149 N098 N099
S150 N099 N100

110n165s Network

Nodes (.node): NODE/ X/ Y

N001 250.00 17.00

N002 458.00 17.00

N003 54.00 20.00

N004 357.00 37.00

N005 657.00 42.00

N006 541.00 49.00

N007 148.00 53.00

N008 459.00 80.00

N009 329.00 86.00

N010 239.00 88.00

N011 90.00 105.00

N012 590.00 106.00

N013 673.00 114.00

N014 24.00 131.00

N015 527.00 135.00

N016 373.00 137.00

N017 299.00 145.00

N018 203.00 150.00

N019 472.00 163.00

N020 673.00 183.00

N021 67.00 192.00

N022 127.00 194.00

N023 587.00 201.00

N024 262.00 212.00

N025 393.00 225.00

N026 472.00 238.00

N027 184.00 248.00

N028 304.00 258.00

N029 639.00 271.00

N030 41.00 285.00

N031 356.00 297.00

N032 556.00 305.00

N033 489.00 317.00

N034 135.00 319.00

N035 675.00 323.00

N036 296.00 337.00

N037 61.00 359.00

N038 210.00 360.00

N039 396.00 360.00

N040 543.00 377.00

N041 464.00 382.00

N042 604.00 400.00

N043 284.00 411.00

N044 136.00 415.00

N045 371.00 415.00

N046 690.00 422.00

N047 6.00 425.00

N048 436.00 454.00

N049 313.00 457.00

N050 196.00 462.00

N051 564.00 465.00

N052 394.00 489.00

N053 510.00 494.00

N054 55.00 495.00

N055 693.00 500.00

N056 263.00 506.00

N057 141.00 528.00

N058 607.00 537.00

N059 346.00 540.00

N060 439.00 544.00

N061 190.00 568.00

N062 87.00 574.00

N063 281.00 580.00

N064 701.00 582.00

N065 24.00 592.00

N066 499.00 594.00

N067 587.00 625.00

N068 339.00 634.00

N069 428.00 640.00

N070 244.00 645.00

N071 80.00 652.00

N072 685.00 680.00

N073 461.00 685.00

N074 556.00 687.00

N075 156.00 694.00

N076 270.00 705.00

N077 373.00 708.00

N078 41.00 712.00

N079 630.00 719.00

N080 516.00 751.00

N081 91.00 765.00

N082 244.00 768.00

N083 371.00 778.00

N084 662.00 792.00

 167

N085 473.00 805.00

N086 564.00 814.00

N087 115.00 837.00

N088 190.00 837.00

N089 407.00 837.00

N090 301.00 841.00

N091 18.00 845.00

N092 684.00 876.00

N093 613.00 888.00

N094 84.00 905.00

N095 226.00 905.00

N096 524.00 905.00

N097 430.00 908.00

N098 309.00 912.00

N099 146.00 942.00

N100 29.00 950.00

N101 476.00 952.00

N102 616.00 957.00

N103 393.00 968.00

N104 259.00 974.00

N105 553.00 994.00

N106 180.00 1006.0

N107 82.00 1012.0

N108 686.00 1012.0

N109 448.00 1017.0

N110 319.00 1022.0

Spans (.spans): SPAN/ SOURCE/ SINK

S001 N001 N004
S002 N001 N007
S003 N001 N009
S004 N002 N004
S005 N002 N006
S006 N002 N008
S007 N003 N007
S008 N003 N011
S009 N003 N014
S010 N004 N009
S011 N005 N006
S012 N005 N012
S013 N005 N013
S014 N006 N008
S015 N007 N010
S016 N008 N016
S017 N009 N010
S018 N010 N017
S019 N011 N021
S020 N011 N022
S021 N012 N015
S022 N012 N023
S023 N013 N020
S024 N013 N023
S025 N014 N021
S026 N014 N030
S027 N015 N019
S028 N015 N023
S029 N016 N017
S030 N016 N019
S031 N017 N018
S032 N018 N022

S033 N018 N024
S034 N019 N026
S035 N020 N029
S036 N020 N035
S037 N021 N030
S038 N022 N027
S039 N024 N025
S040 N024 N027
S041 N025 N026
S042 N025 N031
S043 N026 N033
S044 N027 N034
S045 N028 N031
S046 N028 N036
S047 N028 N038
S048 N029 N032
S049 N029 N035
S050 N030 N034
S051 N031 N039
S052 N032 N033
S053 N032 N040
S054 N033 N039
S055 N034 N037
S056 N035 N046
S057 N036 N043
S058 N036 N045
S059 N037 N038
S060 N037 N047
S061 N038 N043
S062 N039 N041
S063 N040 N041
S064 N040 N042

S065 N041 N048
S066 N042 N046
S067 N042 N051
S068 N043 N049
S069 N044 N047
S070 N044 N050
S071 N044 N061
S072 N045 N049
S073 N045 N052
S074 N046 N055
S075 N047 N054
S076 N048 N052
S077 N048 N053
S078 N049 N050
S079 N050 N056
S080 N051 N053
S081 N051 N058
S082 N052 N059
S083 N053 N059
S084 N054 N057
S085 N054 N065
S086 N055 N058
S087 N055 N064
S088 N056 N061
S089 N056 N063
S090 N057 N061
S091 N057 N062
S092 N058 N066
S093 N059 N060
S094 N060 N066
S095 N060 N069
S096 N062 N071

S097 N062 N075
S098 N063 N068
S099 N063 N070
S100 N064 N067
S101 N064 N072
S102 N065 N071
S103 N065 N091
S104 N066 N067
S105 N067 N074
S106 N068 N069
S107 N068 N077
S108 N069 N073
S109 N070 N075
S110 N070 N076
S111 N071 N078
S112 N072 N079
S113 N072 N084
S114 N073 N074
S115 N073 N080
S116 N074 N079
S117 N075 N081
S118 N076 N077
S119 N076 N082
S120 N077 N083
S121 N078 N081
S122 N078 N091
S123 N079 N086
S124 N080 N083
S125 N080 N085
S126 N081 N087
S127 N082 N083
S128 N082 N088

 168

S129 N084 N086
S130 N084 N092
S131 N085 N089
S132 N085 N096
S133 N086 N096
S134 N087 N088
S135 N087 N094
S136 N088 N090
S137 N089 N090
S138 N089 N097

S139 N090 N095
S140 N091 N100
S141 N092 N093
S142 N092 N108
S143 N093 N096
S144 N093 N102
S145 N094 N095
S146 N094 N100
S147 N095 N098
S148 N097 N098

S149 N097 N102
S150 N098 N101
S151 N099 N104
S152 N099 N106
S153 N099 N107
S154 N100 N107
S155 N101 N105
S156 N101 N109
S157 N102 N108
S158 N103 N104

S159 N103 N109
S160 N103 N110
S161 N104 N110
S162 N105 N108
S163 N105 N109
S164 N106 N107
S165 N106 N110

120n180s Network

Nodes (.node): NODE/ X/ Y

N001 220.00 15.00

N002 559.00 20.00

N003 117.00 24.00

N004 276.00 25.00

N005 61.00 35.00

N006 434.00 37.00

N007 496.00 54.00

N008 634.00 55.00

N009 357.00 57.00

N010 153.00 70.00

N011 536.00 87.00

N012 254.00 91.00

N013 693.00 102.00

N014 69.00 103.00

N015 13.00 107.00

N016 401.00 107.00

N017 641.00 132.00

N018 569.00 134.00

N019 204.00 142.00

N020 493.00 152.00

N021 104.00 157.00

N022 316.00 157.00

N023 399.00 165.00

N024 44.00 187.00

N025 169.00 194.00

N026 713.00 201.00

N027 569.00 207.00

N028 237.00 218.00

N029 391.00 218.00

N030 657.00 222.00

N031 446.00 227.00

N032 321.00 252.00

N033 506.00 252.00

N034 13.00 270.00

N035 73.00 270.00

N036 143.00 281.00

N037 389.00 285.00

N038 541.00 298.00

N039 246.00 302.00

N040 627.00 308.00

N041 684.00 325.00

N042 496.00 332.00

N043 339.00 335.00

N044 431.00 340.00

N045 16.00 355.00

N046 74.00 358.00

N047 147.00 368.00

N048 243.00 368.00

N049 601.00 392.00

N050 667.00 408.00

N051 391.00 410.00

N052 516.00 410.00

N053 36.00 415.00

N054 193.00 427.00

N055 300.00 427.00

N056 76.00 451.00

N057 453.00 457.00

N058 584.00 471.00

N059 141.00 475.00

N060 654.00 477.00

N061 230.00 482.00

N062 30.00 488.00

N063 336.00 492.00

N064 516.00 497.00

N065 459.00 515.00

N066 397.00 535.00

N067 83.00 540.00

N068 651.00 541.00

N069 603.00 558.00

N070 187.00 561.00

N071 13.00 582.00

N072 306.00 585.00

N073 481.00 588.00

N074 557.00 610.00

N075 674.00 614.00

N076 146.00 621.00

N077 49.00 630.00

N078 379.00 632.00

N079 237.00 654.00

N080 540.00 675.00

N081 447.00 682.00

N082 621.00 685.00

N083 319.00 691.00

N084 174.00 711.00

N085 109.00 722.00

N086 33.00 735.00

N087 663.00 738.00

N088 230.00 742.00

N089 289.00 744.00

N090 391.00 754.00

N091 480.00 754.00

N092 554.00 758.00

N093 221.00 795.00

N094 619.00 795.00

N095 26.00 815.00

N096 111.00 818.00

N097 316.00 820.00

N098 434.00 821.00

N099 530.00 821.00

N100 697.00 827.00

N101 611.00 867.00

N102 533.00 872.00

N103 364.00 877.00

N104 259.00 888.00

N105 159.00 892.00

N106 469.00 895.00

N107 46.00 897.00

N108 341.00 912.00

 169

N109 637.00 918.00

N110 256.00 947.00

N111 197.00 958.00

N112 434.00 958.00

N113 386.00 975.00

N114 579.00 980.00

N115 31.00 987.00

N116 299.00 987.00

N117 646.00 987.00

N118 133.00 1002.0

N119 476.00 1010.0

N120 244.00 1013.0

Spans (.spans): SPAN/ SOURCE/ SINK

S001 N001 N003
S002 N001 N004
S003 N001 N012
S004 N002 N007
S005 N002 N008
S006 N002 N011
S007 N003 N005
S008 N003 N010
S009 N004 N009
S010 N004 N012
S011 N005 N014
S012 N005 N015
S013 N006 N007
S014 N006 N009
S015 N006 N016
S016 N007 N020
S017 N008 N011
S018 N008 N013
S019 N009 N016
S020 N010 N012
S021 N010 N014
S022 N011 N018
S023 N013 N017
S024 N013 N026
S025 N014 N021
S026 N015 N024
S027 N015 N034
S028 N016 N020
S029 N017 N018
S030 N017 N030
S031 N018 N027
S032 N019 N021
S033 N019 N022
S034 N019 N028
S035 N020 N023
S036 N021 N025

S037 N022 N023
S038 N022 N032
S039 N023 N029
S040 N024 N034
S041 N024 N035
S042 N025 N028
S043 N025 N036
S044 N026 N040
S045 N026 N041
S046 N027 N030
S047 N027 N033
S048 N028 N039
S049 N029 N031
S050 N029 N032
S051 N030 N038
S052 N031 N033
S053 N031 N037
S054 N032 N039
S055 N033 N038
S056 N034 N045
S057 N035 N036
S058 N035 N046
S059 N036 N047
S060 N037 N043
S061 N037 N044
S062 N038 N042
S063 N039 N048
S064 N040 N041
S065 N040 N049
S066 N041 N050
S067 N042 N044
S068 N042 N049
S069 N043 N048
S070 N043 N051
S071 N044 N052
S072 N045 N046

S073 N045 N053
S074 N046 N047
S075 N047 N048
S076 N049 N052
S077 N050 N058
S078 N050 N060
S079 N051 N052
S080 N051 N055
S081 N053 N056
S082 N053 N062
S083 N054 N055
S084 N054 N056
S085 N054 N059
S086 N055 N061
S087 N056 N067
S088 N057 N063
S089 N057 N064
S090 N057 N065
S091 N058 N060
S092 N058 N069
S093 N059 N061
S094 N059 N070
S095 N060 N068
S096 N061 N063
S097 N062 N067
S098 N062 N071
S099 N063 N066
S100 N064 N065
S101 N064 N069
S102 N065 N066
S103 N066 N073
S104 N067 N070
S105 N068 N069
S106 N068 N075
S107 N070 N072
S108 N071 N076

S109 N071 N077
S110 N072 N073
S111 N072 N076
S112 N073 N074
S113 N074 N075
S114 N074 N080
S115 N075 N087
S116 N076 N079
S117 N077 N085
S118 N077 N086
S119 N078 N081
S120 N078 N083
S121 N078 N090
S122 N079 N083
S123 N079 N084
S124 N080 N081
S125 N080 N082
S126 N081 N090
S127 N082 N087
S128 N082 N092
S129 N083 N089
S130 N084 N085
S131 N084 N088
S132 N085 N096
S133 N086 N095
S134 N086 N096
S135 N087 N100
S136 N088 N089
S137 N088 N093
S138 N089 N097
S139 N090 N098
S140 N091 N092
S141 N091 N098
S142 N091 N099
S143 N092 N094
S144 N093 N096

 170

S145 N093 N097
S146 N094 N100
S147 N094 N101
S148 N095 N107
S149 N095 N115
S150 N097 N103
S151 N098 N112
S152 N099 N102
S153 N099 N106

S154 N100 N109
S155 N101 N102
S156 N101 N109
S157 N102 N117
S158 N103 N108
S159 N103 N112
S160 N104 N105
S161 N104 N108
S162 N104 N110

S163 N105 N107
S164 N105 N111
S165 N106 N112
S166 N106 N114
S167 N107 N115
S168 N108 N113
S169 N109 N117
S170 N110 N111
S171 N110 N116

S172 N111 N118
S173 N113 N116
S174 N113 N119
S175 N114 N117
S176 N114 N119
S177 N115 N118
S178 N116 N120
S179 N118 N120
S180 N119 N120

130n195s Network

Nodes (.node): NODE/ X/ Y

N001 358.00 3.00

N002 186.00 6.00

N003 123.00 8.00

N004 548.00 12.00

N005 250.00 17.00

N006 458.00 17.00

N007 45.00 24.00

N008 624.00 54.00

N009 393.00 57.00

N010 196.00 63.00

N011 513.00 65.00

N012 459.00 80.00

N013 304.00 86.00

N014 239.00 88.00

N015 678.00 103.00

N016 90.00 105.00

N017 144.00 122.00

N018 584.00 130.00

N019 24.00 131.00

N020 373.00 137.00

N021 460.00 147.00

N022 203.00 150.00

N023 521.00 165.00

N024 657.00 175.00

N025 67.00 192.00

N026 261.00 192.00

N027 127.00 194.00

N028 4.00 211.00

N029 393.00 225.00

N030 575.00 237.00

N031 472.00 238.00

N032 247.00 245.00

N033 101.00 248.00

N034 184.00 248.00

N035 708.00 252.00

N036 304.00 258.00

N037 639.00 271.00

N038 41.00 285.00

N039 356.00 297.00

N040 124.00 305.00

N041 556.00 305.00

N042 489.00 317.00

N043 4.00 327.00

N044 296.00 337.00

N045 616.00 340.00

N046 714.00 351.00

N047 210.00 360.00

N048 396.00 360.00

N049 56.00 368.00

N050 333.00 372.00

N051 543.00 377.00

N052 464.00 382.00

N053 604.00 400.00

N054 284.00 411.00

N055 397.00 416.00

N056 690.00 422.00

N057 500.00 425.00

N058 220.00 430.00

N059 141.00 434.00

N060 436.00 454.00

N061 313.00 457.00

N062 564.00 465.00

N063 8.00 470.00

N064 394.00 489.00

N065 500.00 496.00

N066 693.00 500.00

N067 263.00 506.00

N068 44.00 508.00

N069 141.00 528.00

N070 619.00 535.00

N071 379.00 540.00

N072 547.00 548.00

N073 190.00 568.00

N074 87.00 574.00

N075 281.00 580.00

N076 701.00 582.00

N077 499.00 594.00

N078 19.00 620.00

N079 587.00 625.00

N080 107.00 645.00

N081 244.00 645.00

N082 319.00 645.00

N083 387.00 645.00

N084 670.00 648.00

N085 461.00 685.00

N086 556.00 687.00

N087 156.00 694.00

N088 4.00 702.00

N089 270.00 705.00

N090 373.00 708.00

N091 709.00 710.00

N092 44.00 728.00

N093 513.00 744.00

N094 434.00 746.00

N095 244.00 768.00

N096 664.00 768.00

N097 136.00 782.00

N098 76.00 785.00

N099 353.00 785.00

N100 566.00 791.00

N101 292.00 803.00

N102 473.00 805.00

N103 190.00 837.00

N104 407.00 837.00

N105 6.00 839.00

N106 676.00 842.00

N107 499.00 849.00

N108 304.00 871.00

N109 374.00 877.00

N110 79.00 888.00

N111 184.00 888.00

N112 613.00 888.00

 171

N113 246.00 901.00

N114 524.00 905.00

N115 430.00 908.00

N116 711.00 910.00

N117 347.00 922.00

N118 661.00 951.00

N119 121.00 968.00

N120 377.00 968.00

N121 176.00 971.00

N122 259.00 974.00

N123 15.00 981.00

N124 461.00 985.00

N125 319.00 994.00

N126 553.00 994.00

N127 643.00 1009.0

N128 390.00 1015.0

N129 52.00 1018.0

N130 200.00 1018.0

Spans (.spans): SPAN/ SOURCE/ SINK

S001 N001 N005
S002 N001 N006
S003 N001 N013
S004 N002 N003
S005 N002 N005
S006 N002 N010
S007 N003 N007
S008 N003 N010
S009 N004 N006
S010 N004 N008
S011 N004 N011
S012 N005 N013
S013 N006 N009
S014 N007 N017
S015 N007 N019
S016 N008 N015
S017 N008 N018
S018 N009 N012
S019 N009 N020
S020 N010 N017
S021 N011 N012
S022 N011 N023
S023 N012 N021
S024 N013 N020
S025 N014 N017
S026 N014 N020
S027 N014 N022
S028 N015 N024
S029 N015 N035
S030 N016 N019
S031 N016 N025
S032 N016 N027
S033 N018 N023
S034 N018 N024

S035 N019 N028
S036 N021 N023
S037 N021 N029
S038 N022 N026
S039 N022 N027
S040 N024 N035
S041 N025 N027
S042 N025 N028
S043 N026 N029
S044 N026 N032
S045 N028 N043
S046 N029 N031
S047 N030 N031
S048 N030 N037
S049 N030 N041
S050 N031 N039
S051 N032 N034
S052 N032 N036
S053 N033 N034
S054 N033 N038
S055 N033 N040
S056 N034 N047
S057 N035 N046
S058 N036 N039
S059 N036 N044
S060 N037 N045
S061 N037 N046
S062 N038 N040
S063 N038 N043
S064 N039 N042
S065 N040 N047
S066 N041 N042
S067 N041 N045
S068 N042 N052

S069 N043 N063
S070 N044 N050
S071 N044 N058
S072 N045 N053
S073 N046 N056
S074 N047 N059
S075 N048 N050
S076 N048 N052
S077 N048 N055
S078 N049 N059
S079 N049 N063
S080 N049 N068
S081 N050 N054
S082 N051 N052
S083 N051 N053
S084 N051 N057
S085 N053 N056
S086 N054 N061
S087 N054 N067
S088 N055 N060
S089 N055 N061
S090 N056 N066
S091 N057 N060
S092 N057 N062
S093 N058 N059
S094 N058 N069
S095 N060 N064
S096 N061 N071
S097 N062 N066
S098 N062 N072
S099 N063 N078
S100 N064 N065
S101 N064 N071
S102 N065 N072

S103 N065 N077
S104 N066 N076
S105 N067 N073
S106 N067 N075
S107 N068 N069
S108 N068 N078
S109 N069 N073
S110 N070 N072
S111 N070 N076
S112 N070 N079
S113 N071 N075
S114 N073 N074
S115 N074 N080
S116 N074 N088
S117 N075 N081
S118 N076 N084
S119 N077 N079
S120 N077 N083
S121 N078 N088
S122 N079 N084
S123 N080 N087
S124 N080 N092
S125 N081 N082
S126 N081 N089
S127 N082 N083
S128 N082 N090
S129 N083 N085
S130 N084 N091
S131 N085 N093
S132 N085 N094
S133 N086 N093
S134 N086 N096
S135 N086 N100
S136 N087 N089

 172

S137 N087 N092
S138 N088 N105
S139 N089 N095
S140 N090 N094
S141 N090 N099
S142 N091 N096
S143 N091 N106
S144 N092 N098
S145 N093 N102
S146 N094 N102
S147 N095 N097
S148 N095 N099
S149 N096 N100
S150 N097 N098
S151 N097 N103

S152 N098 N105
S153 N099 N102
S154 N100 N107
S155 N101 N103
S156 N101 N104
S157 N101 N108
S158 N103 N110
S159 N104 N107
S160 N104 N109
S161 N105 N110
S162 N106 N112
S163 N106 N116
S164 N107 N112
S165 N108 N113
S166 N108 N117

S167 N109 N115
S168 N109 N117
S169 N110 N123
S170 N111 N113
S171 N111 N119
S172 N111 N121
S173 N112 N116
S174 N113 N122
S175 N114 N115
S176 N114 N124
S177 N114 N126
S178 N115 N124
S179 N116 N118
S180 N117 N120
S181 N118 N126

S182 N118 N127
S183 N119 N123
S184 N119 N129
S185 N120 N124
S186 N120 N125
S187 N121 N122
S188 N121 N130
S189 N122 N125
S190 N123 N129
S191 N125 N128
S192 N126 N127
S193 N127 N128
S194 N128 N130
S195 N129 N130

140n210s Network

Nodes (.node): NODE/ X/ Y

N001 478.00 5.00

N002 376.00 8.00

N003 134.00 9.00

N004 220.00 15.00

N005 45.00 17.00

N006 677.00 19.00

N007 559.00 20.00

N008 276.00 25.00

N009 434.00 37.00

N010 100.00 52.00

N011 496.00 54.00

N012 634.00 55.00

N013 357.00 57.00

N014 153.00 70.00

N015 536.00 87.00

N016 254.00 91.00

N017 19.00 96.00

N018 693.00 102.00

N019 69.00 103.00

N020 401.00 107.00

N021 459.00 109.00

N022 641.00 132.00

N023 569.00 134.00

N024 204.00 142.00

N025 493.00 152.00

N026 6.00 153.00

N027 104.00 157.00

N028 316.00 157.00

N029 399.00 165.00

N030 44.00 187.00

N031 169.00 194.00

N032 713.00 201.00

N033 569.00 207.00

N034 237.00 218.00

N035 391.00 218.00

N036 657.00 222.00

N037 446.00 227.00

N038 321.00 252.00

N039 506.00 252.00

N040 13.00 270.00

N041 73.00 270.00

N042 143.00 281.00

N043 389.00 285.00

N044 717.00 292.00

N045 541.00 298.00

N046 246.00 302.00

N047 627.00 308.00

N048 684.00 325.00

N049 496.00 332.00

N050 339.00 335.00

N051 431.00 340.00

N052 16.00 355.00

N053 74.00 358.00

N054 147.00 368.00

N055 243.00 368.00

N056 601.00 392.00

N057 667.00 408.00

N058 391.00 410.00

N059 516.00 410.00

N060 713.00 412.00

N061 36.00 415.00

N062 193.00 427.00

N063 300.00 427.00

N064 6.00 445.00

N065 76.00 451.00

N066 453.00 457.00

N067 584.00 471.00

N068 141.00 475.00

N069 654.00 477.00

N070 230.00 482.00

N071 30.00 488.00

N072 336.00 492.00

N073 516.00 497.00

N074 459.00 515.00

N075 703.00 531.00

N076 397.00 535.00

N077 83.00 540.00

N078 651.00 541.00

N079 603.00 558.00

N080 187.00 561.00

N081 13.00 582.00

N082 306.00 585.00

N083 481.00 588.00

N084 557.00 610.00

N085 674.00 614.00

N086 146.00 621.00

N087 49.00 630.00

N088 379.00 632.00

 173

N089 237.00 654.00

N090 4.00 674.00

N091 540.00 675.00

N092 447.00 682.00

N093 621.00 685.00

N094 319.00 691.00

N095 703.00 699.00

N096 174.00 711.00

N097 109.00 722.00

N098 33.00 735.00

N099 663.00 738.00

N100 230.00 742.00

N101 289.00 744.00

N102 391.00 754.00

N103 480.00 754.00

N104 554.00 758.00

N105 221.00 795.00

N106 619.00 795.00

N107 26.00 815.00

N108 111.00 818.00

N109 316.00 820.00

N110 434.00 821.00

N111 530.00 821.00

N112 697.00 827.00

N113 611.00 867.00

N114 533.00 872.00

N115 364.00 877.00

N116 259.00 888.00

N117 159.00 892.00

N118 469.00 895.00

N119 46.00 897.00

N120 341.00 912.00

N121 637.00 918.00

N122 527.00 928.00

N123 702.00 934.00

N124 256.00 947.00

N125 197.00 958.00

N126 434.00 958.00

N127 386.00 975.00

N128 579.00 980.00

N129 31.00 987.00

N130 299.00 987.00

N131 646.00 987.00

N132 246.00 998.00

N133 686.00 998.00

N134 133.00 1002.0

N135 486.00 1009.0

N136 64.00 1015.0

N137 396.00 1022.0

N138 291.00 1023.0

N139 570.00 1024.0

N140 181.00 1028.0

Spans (.spans): SPAN/ SOURCE/ SINK

S001 N001 N002
S002 N001 N007
S003 N001 N009
S004 N002 N008
S005 N002 N013
S006 N003 N004
S007 N003 N005
S008 N003 N010
S009 N004 N008
S010 N004 N014
S011 N005 N010
S012 N005 N017
S013 N006 N007
S014 N006 N012
S015 N006 N018
S016 N007 N011
S017 N008 N016
S018 N009 N011
S019 N009 N013
S020 N010 N019
S021 N011 N015
S022 N012 N015
S023 N012 N022
S024 N013 N016
S025 N014 N016
S026 N014 N027
S027 N015 N023

S028 N017 N019
S029 N017 N026
S030 N018 N022
S031 N018 N032
S032 N019 N027
S033 N020 N021
S034 N020 N028
S035 N020 N029
S036 N021 N023
S037 N021 N025
S038 N022 N036
S039 N023 N033
S040 N024 N027
S041 N024 N028
S042 N024 N031
S043 N025 N029
S044 N025 N033
S045 N026 N030
S046 N026 N040
S047 N028 N034
S048 N029 N035
S049 N030 N031
S050 N030 N041
S051 N031 N042
S052 N032 N036
S053 N032 N044
S054 N033 N036

S055 N034 N038
S056 N034 N046
S057 N035 N037
S058 N035 N038
S059 N037 N039
S060 N037 N043
S061 N038 N046
S062 N039 N045
S063 N039 N049
S064 N040 N041
S065 N040 N052
S066 N041 N042
S067 N042 N053
S068 N043 N050
S069 N043 N051
S070 N044 N048
S071 N044 N060
S072 N045 N047
S073 N045 N056
S074 N046 N054
S075 N047 N048
S076 N047 N057
S077 N048 N060
S078 N049 N051
S079 N049 N056
S080 N050 N055
S081 N050 N058

S082 N051 N058
S083 N052 N061
S084 N052 N064
S085 N053 N054
S086 N053 N061
S087 N054 N055
S088 N055 N062
S089 N056 N057
S090 N057 N069
S091 N058 N063
S092 N059 N066
S093 N059 N067
S094 N059 N073
S095 N060 N075
S096 N061 N065
S097 N062 N063
S098 N062 N065
S099 N063 N066
S100 N064 N065
S101 N064 N071
S102 N066 N073
S103 N067 N069
S104 N067 N084
S105 N068 N070
S106 N068 N077
S107 N068 N080
S108 N069 N079

 174

S109 N070 N072
S110 N070 N082
S111 N071 N077
S112 N071 N081
S113 N072 N074
S114 N072 N076
S115 N073 N074
S116 N074 N083
S117 N075 N078
S118 N075 N085
S119 N076 N082
S120 N076 N083
S121 N077 N087
S122 N078 N079
S123 N078 N091
S124 N079 N084
S125 N080 N082
S126 N080 N086
S127 N081 N087
S128 N081 N090
S129 N083 N084
S130 N085 N091
S131 N085 N095
S132 N086 N087
S133 N086 N089
S134 N088 N089

S135 N088 N092
S136 N088 N094
S137 N089 N096
S138 N090 N097
S139 N090 N098
S140 N091 N092
S141 N092 N103
S142 N093 N099
S143 N093 N104
S144 N093 N106
S145 N094 N096
S146 N094 N102
S147 N095 N099
S148 N095 N112
S149 N096 N097
S150 N097 N108
S151 N098 N107
S152 N098 N108
S153 N099 N106
S154 N100 N101
S155 N100 N105
S156 N100 N109
S157 N101 N102
S158 N101 N109
S159 N102 N103
S160 N103 N104

S161 N104 N106
S162 N105 N116
S163 N105 N117
S164 N107 N108
S165 N107 N119
S166 N109 N116
S167 N110 N111
S168 N110 N115
S169 N110 N118
S170 N111 N113
S171 N111 N114
S172 N112 N113
S173 N112 N123
S174 N113 N123
S175 N114 N118
S176 N114 N122
S177 N115 N120
S178 N115 N126
S179 N116 N125
S180 N117 N119
S181 N117 N129
S182 N118 N126
S183 N119 N129
S184 N120 N124
S185 N120 N127
S186 N121 N122

S187 N121 N131
S188 N121 N133
S189 N122 N128
S190 N123 N133
S191 N124 N125
S192 N124 N134
S193 N125 N134
S194 N126 N127
S195 N127 N130
S196 N128 N131
S197 N128 N139
S198 N129 N136
S199 N130 N132
S200 N130 N135
S201 N131 N133
S202 N132 N138
S203 N132 N140
S204 N134 N136
S205 N135 N137
S206 N135 N139
S207 N136 N140
S208 N137 N138
S209 N137 N139
S210 N138 N140

 175

APPENDIX C
Model and Data Files for Spare Capacity Allocation

Model File (.mod):

p-cycle SCP IP Model for AMPL - Version 1.0
11-December-2001 by John Doucette
Copyright (C) 2001 TRLabs, Inc. All Rights Reserved.

**
TRLabs
7th Floor
9107 116 Street NW
Edmonton, Alberta, Canada
T6G 2V4
+1 780 441-3800
www.trlabs.ca
**

This model, including any data and algorithms contained herein, is the
exclusive property of TRLabs, held on behalf of its sponsors. Except
as specifically authorized in writing by TRLabs, the recipient of this
model shall keep it confidential and shall protect it in whole or
in part from disclosure and dissemenation to all third parties, and the
associated readme file must accompany any such disclosure or dissemenation.
If any part of this model, including any data and algorithms contained
herein, is used in any derivative works or publications, TRLabs shall be
duly cited as a reference.Recommended citation is as follows:
J. Doucette, W. D. Grover, "pcycle.SCP.mod: p-Cycle SCP IP Model for
AMPL - Version 1.0," TRLabs proprietary AMPL ILP model, Edmonton, AB,
December 2001.
TRLabs makes no representation or warranties about the suitability of
this model, either express or implied, including but not limited to
implied warranties of merchantability, fitness for a particular purpose,
or non-infringement. TRLabs shall not be liable for any damages suffered
as a result of using, modifying or distributing this model or its derivatives.
#****************************
This is an AMPL model for determining the minimum-cost p-cycle network design.
This model optimizes p-cycles only... working capacity is provided as inputs.
#****************************

#****************************
SETS
#****************************
set SPANS;
Set of all spans.

set PCYCLES;
Set of all p-cycles.

#****************************
PARAMETERS
#****************************
param Cost{j in SPANS};
Cost of each unit of capacity on span j.

param Work{j in SPANS};
Number of working links placed on span j.

param Xpi{p in PCYCLES, i in SPANS} default 0;
Number of paths a single copy of p-cycle p provides for restoration of failure of

 176

span i (2 if straddling span, 1 if on-cycle span, 0 otherwise).

param pCrossesj{p in PCYCLES, j in SPANS} := sum{i in SPANS: i = j and Xpi[p,j] = 1}
1;
Equal to 1 if p-cycle p passes over span j, 0 otherwise.
i.e. if Xpi[p,j] = 1, then p-cycle p crosses span j.

#****************************
VARIABLES
#****************************
var p_cycle_usage{p in PCYCLES} >=0 integer, <=10000;
Number of copies of p-cycle p used.

var spare{j in SPANS} >=0 integer, <=10000;
Number of spare links placed on span j.

#****************************
OBJECTIVE FUNCTION
#****************************
minimize sparecost: sum{j in SPANS} Cost[j] * spare[j];

#****************************
CONSTRAINTS
#****************************
subject to full_restoration{i in SPANS}:
Work[i] <= sum{p in PCYCLES} Xpi[p,i] * p_cycle_usage[p];

subject to spare_capacity_placement{j in SPANS}:
spare[j] = sum{p in PCYCLES} pCrossesj[p,j] * p_cycle_usage[p];

Data File (.dat): p-cycles display only 10 out of 723

set SPANS :=
S01
S02
S03
S04
S05
S06
S07
S08
S09
S10
S11
S12

S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23
S24

S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36

S37
S38
S39
S40
S41
S42
S43
S44
S45
;

param Cost :=
S01 249.05
S02 163.15
S03 141.566
S04 139.216
S05 161.555
S06 92.195
S07 186.304
S08 123.167
S09 209.881
S10 117.614
S11 184.567
S12 139.086

S13 141.241
S14 171.143
S15 560.514
S16 150.881
S17 147.801
S18 166.688
S19 242.074
S20 132.544
S21 166.604
S22 145.152
S23 167.601
S24 166.048

S25 228.668
S26 214.87
S27 111.018
S28 172.792
S29 168.808
S30 105.802
S31 110.318
S32 210.723
S33 224.437
S34 172.177
S35 152.751
S36 139.818

S37 150.233
S38 239.927
S39 129.468
S40 190.0
S41 135.949
S42 167.386
S43 213.965
S44 198.494
S45 186.172
;

#Total Working Capacity Cost = 8993.000000

param Work :=
S01 209
S02 189
S03 43
S04 278

S05 85
S06 30
S07 190
S08 395

S09 195
S10 138
S11 197
S12 129

S13 151
S14 130
S15 382
S16 309

 177

S17 397
S18 450
S19 317
S20 42
S21 112
S22 342
S23 343
S24 384

S25 148
S26 237
S27 169
S28 157
S29 128
S30 120
S31 119
S32 88

S33 268
S34 251
S35 134
S36 188
S37 79
S38 81
S39 290
S40 210

S41 91
S42 105
S43 173
S44 265
S45 255
;

set PCYCLES :=
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26
P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50
P51 P52 P53 P54 P55 P56 P57 P58 P59 P60 P61 P62 P63 P64 P65 P66 P67 P68 P69 P70 P71 P72 P73 P74
P75 P76 P77 P78 P79 P80 P81 P82 P83 P84 P85 P86 P87 P88 P89 P90 P91 P92 P93 P94 P95 P96 P97 P98
P99 P100 P101 P102 P103 P104 P105 P106 P107 P108 P109 P110 P111 P112 P113 P114 P115 P116 P117
P118 P119 P120 P121 P122 P123 P124 P125 P126 P127 P128 P129 P130 P131 P132 P133 P134 P135 P136
P137 P138 P139 P140 P141 P142 P143 P144 P145 P146 P147 P148 P149 P150 P151 P152 P153 P154 P155
P156 P157 P158 P159 P160 P161 P162 P163 P164 P165 P166 P167 P168 P169 P170 P171 P172 P173 P174
P175 P176 P177 P178 P179 P180 P181 P182 P183 P184 P185 P186 P187 P188 P189 P190 P191 P192 P193
P194 P195 P196 P197 P198 P199 P200 P201 P202 P203 P204 P205 P206 P207 P208 P209 P210 P211 P212
P213 P214 P215 P216 P217 P218 P219 P220 P221 P222 P223 P224 P225 P226 P227 P228 P229 P230 P231
P232 P233 P234 P235 P236 P237 P238 P239 P240 P241 P242 P243 P244 P245 P246 P247 P248 P249 P250
P251 P252 P253 P254 P255 P256 P257 P258 P259 P260 P261 P262 P263 P264 P265 P266 P267 P268 P269
P270 P271 P272 P273 P274 P275 P276 P277 P278 P279 P280 P281 P282 P283 P284 P285 P286 P287 P288
P289 P290 P291 P292 P293 P294 P295 P296 P297 P298 P299 P300 P301 P302 P303 P304 P305 P306 P307
P308 P309 P310 P311 P312 P313 P314 P315 P316 P317 P318 P319 P320 P321 P322 P323 P324 P325 P326
P327 P328 P329 P330 P331 P332 P333 P334 P335 P336 P337 P338 P339 P340 P341 P342 P343 P344 P345
P346 P347 P348 P349 P350 P351 P352 P353 P354 P355 P356 P357 P358 P359 P360 P361 P362 P363 P364
P365 P366 P367 P368 P369 P370 P371 P372 P373 P374 P375 P376 P377 P378 P379 P380 P381 P382 P383
P384 P385 P386 P387 P388 P389 P390 P391 P392 P393 P394 P395 P396 P397 P398 P399 P400 P401 P402
P403 P404 P405 P406 P407 P408 P409 P410 P411 P412 P413 P414 P415 P416 P417 P418 P419 P420 P421
P422 P423 P424 P425 P426 P427 P428 P429 P430 P431 P432 P433 P434 P435 P436 P437 P438 P439 P440
P441 P442 P443 P444 P445 P446 P447 P448 P449 P450 P451 P452 P453 P454 P455 P456 P457 P458 P459
P460 P461 P462 P463 P464 P465 P466 P467 P468 P469 P470 P471 P472 P473 P474 P475 P476 P477 P478
P479 P480 P481 P482 P483 P484 P485 P486 P487 P488 P489 P490 P491 P492 P493 P494 P495 P496 P497
P498 P499 P500 P501 P502 P503 P504 P505 P506 P507 P508 P509 P510 P511 P512 P513 P514 P515 P516
P517 P518 P519 P520 P521 P522 P523 P524 P525 P526 P527 P528 P529 P530 P531 P532 P533 P534 P535
P536 P537 P538 P539 P540 P541 P542 P543 P544 P545 P546 P547 P548 P549 P550 P551 P552 P553 P554
P555 P556 P557 P558 P559 P560 P561 P562 P563 P564 P565 P566 P567 P568 P569 P570 P571 P572 P573
P574 P575 P576 P577 P578 P579 P580 P581 P582 P583 P584 P585 P586 P587 P588 P589 P590 P591 P592
P593 P594 P595 P596 P597 P598 P599 P600 P601 P602 P603 P604 P605 P606 P607 P608 P609 P610 P611
P612 P613 P614 P615 P616 P617 P618 P619 P620 P621 P622 P623 P624 P625 P626 P627 P628 P629 P630
P631 P632 P633 P634 P635 P636 P637 P638 P639 P640 P641 P642 P643 P644 P645 P646 P647 P648 P649
P650 P651 P652 P653 P654 P655 P656 P657 P658 P659 P660 P661 P662 P663 P664 P665 P666 P667 P668
P669 P670 P671 P672 P673 P674 P675 P676 P677 P678 P679 P680 P681 P682 P683 P684 P685 P686 P687
P688 P689 P690 P691 P692 P693 P694 P695 P696 P697 P698 P699 P700 P701 P702 P703 P704 P705 P706
P707 P708 P709 P710 P711 P712 P713 P714 P715 P716 P717 P718 P719 P720 P721 P722 P723;

param Xpi :=
[P1, *] S02 1 S03 1 S07 1 S12 1 S13 1 S06 2
[P2, *] S29 1 S30 1 S32 1 S33 1 S38 1 S43 1 S37 2
[P3, *] S01 1 S02 1 S05 1 S06 1 S10 1 S12 1 S03 2
[P4, *] S35 1 S36 1 S39 1 S40 1 S42 1 S44 1 S41 2
[P5, *] S01 1 S03 1 S04 1 S09 1 S10 1 S11 1 S05 2
[P6, *] S14 1 S15 1 S21 1 S27 1 S28 1 S35 1 S20 2
[P7, *] S08 1 S09 1 S14 1 S16 1 S19 1 S20 1 S27 1 S21 2 1
[P8, *] S25 1 S26 1 S30 1 S31 1 S32 1 S33 1 S37 1 S29
[P9, *] S22 1 S23 1 S24 1 S26 1 S29 1 S30 1 S31 1 S25
[P10, *] S31 1 S32 1 S34 1 S37 1 S42 1 S43 1 S45 1 S38 2
…
[P722, *] S31 1 S32 1 S34 1 S38 1 S42 1 S45 1;

 178

APPENDIX D.1
Python Model for DDCD

This code enumerate pcycles using DDCD method (Disjoit-paths Dijkstra Cycle Development)
Most recently revised on Oct 12, 2020

import random
import copy
import operator
import math
import datetime
import time
import sys
from collections import deque, defaultdict
from itertools import groupby
from Dijkstra_CIDA import *
 #To get shortest path: shortest_path(graph, 'A', 'D')

Input parameters to be entered in the cmd line
input_topo_name = ='30n45s'
ddcd_iteration_num = 4
output_file_name = "30n45s_DDD3"

start = time.time()

Graph Initiation
graph = Graph()

Caulcate euc distance given two nodes
def euc_distance(x, y):
 dist = math.sqrt((y[1]-x[1])**2 + (y[0]-x[0])**2)
 final_val = '%.3f' % dist
 return final_val

nodes = {} # all nodes with X, Y coordinates
with open(input_topo_name + '.node', 'r') as f:
 for line in f.readlines():
 comp = line.strip().split()
 assert len(comp) == 4
 nodes[comp[0]] = [float(comp[1]), float(comp[2])]

for node in nodes.keys():
 graph.add_node(node)

span_node = {} # span id : both end nodes
node_span = {} # both end nodes : span id
span_wt = {} # span id: value: cost
with open(input_topo_name + '.spans', 'r') as f:
 for line in f.readlines():
 comp = line.strip().split()
 assert len(comp) == 8
 # When span costs are 1:
 # dist = 1

 # When span costs are their euc distances:
 dist = euc_distance(nodes[comp[1]], nodes[comp[2]])
 graph.add_edge(comp[1], comp[2], float(dist))

 span_node[comp[0]] = [comp[1], comp[2]]
 node_span[comp[1] + " , " + comp[2]] = comp[0]
 node_span[comp[2] + " , " + comp[1]] = comp[0]
 span_wt[comp[0]] = float(dist)

 179

Enumerating set of pcycles/simple cycles
 # Generate shortest path and associated pcycles using Dijkstra's Algorithm
 # sindexer = {} # span id to pcycle id
def Enumerate_Start_Cycles(nodes, span_node, node_span):
 pcycles = {}
 new_id = 0
 for sid, spanner in span_node.items():
 N1 = spanner[0]
 N2 = spanner[1]
 cost_shortest, path_shortest, cost_shortest2, path_shortest2 = double_shortestPath(graph,
N1, N2)
 if cost_shortest == sys.maxsize:
 continue
 cycle_span_info = {}
 for node_start, node_end in zip(path_shortest[:-1], path_shortest[1:]):
 span_ider = node_span[node_start + " , " + node_end]
 cycle_span_info[span_ider] = 1
 cycle_span_info[sid] = 1
 cycle_id = "Cycle " + str(new_id) # new cycle id given
 # sindexer[sid] = cycle_id
 pcycles[cycle_id] = cycle_span_info
 new_id += 1

 if cost_shortest2 == sys.maxsize:
 continue
 cycle_span_info2 = {}
 for node_start2, node_end2 in zip(path_shortest2[:-1], path_shortest2[1:]):
 span_ider2 = node_span[node_start2 + " , " + node_end2]
 cycle_span_info2[span_ider2] = 1
 pcycle_info = {**cycle_span_info, **cycle_span_info2}
 pcycle_info[sid] = 2
 pcycle_id = "PCycle " + str(new_id) # new pcycle id given
 # sindexer[sid] = pcycle_id
 pcycles[pcycle_id] = pcycle_info
 new_id += 1
 return pcycles

Stronger grow function where more shortest paths are found from span i
def DDCD(input_cycle_set, graph, new_id2):
 # new_id2 = 0
 new_cycle_set = {}
 for sp in input_cycle_set.values():
 sp_p = sp
 remove_nodes = []
 for i in sp_p.keys():
 remove_nodes.append(span_node[i][0])
 remove_nodes.append(span_node[i][1])
 for ii, val in sp_p.items():
 if val == 2:
 continue
 remove_node_set = set(remove_nodes)
 Nor = span_node[ii][0]
 Ndt = span_node[ii][1]
 remove_node_set -= {Nor}
 remove_node_set -= {Ndt}
 remove_node_list = list(remove_node_set)

 if (Nor, Ndt) in graph.distances:
 graph.distances[(Nor, Ndt)] = sys.maxsize
 graph.distances[(Ndt, Nor)] = sys.maxsize
 else:
 raise ValueError("Not possible")

 while remove_node_list:
 visited2, paths2 = dijkstra_2(graph, Nor, remove_node_list)
 if not paths2 or visited2[Ndt] == sys.maxsize:
 break
 full_path2 = deque()
 _destination2 = paths2[Ndt]

 while _destination2 != Nor:
 full_path2.appendleft(_destination2)

 180

 _destination2 = paths2[_destination2]

 remove_node_list.extend(full_path2)
 remove_node_list = list(set(remove_node_list))
 full_path2.appendleft(Nor)
 full_path2.append(Ndt)
 shortPath2 = list(full_path2)

 cycle_span2 = {}
 for node_st2, node_ed2 in zip(shortPath2[:-1], shortPath2[1:]):
 sp_ider2 = node_span[node_st2 + " , " + node_ed2]
 cycle_span2[sp_ider2] = 1
 pcycle_inf = {**sp_p, **cycle_span2}
 pcycle_inf[ii] = 2
 pcyc_id = "PCycleGr " + str(new_id2) # new pcycle id given
 # sindexer[sid] = pcycle_id
 new_cycle_set[pcyc_id] = pcycle_inf
 new_id2 += 1

 if (Nor, Ndt) in graph.distances:
 graph.distances[(Nor, Ndt)] = 1
 graph.distances[(Ndt, Nor)] = 1
 else:
 raise ValueError("Not possible")
 return new_cycle_set

Adding all straddling links info to all the enumerated cycles
def Straddle_Link(cycles_set_update):
 updated_cycle_set = cycles_set_update
 for cycle_key, sp_info in updated_cycle_set.items():
 all_nodes_on_this_cycle = []
 for ss, jj in sp_info.items():
 if jj == 1:
 node1_for_ss = span_node[ss][0]
 node2_for_ss = span_node[ss][1]
 all_nodes_on_this_cycle.append(node1_for_ss)
 all_nodes_on_this_cycle.append(node2_for_ss)
 nodeset = set(all_nodes_on_this_cycle)
 nodes_on_this_cycle = list(nodeset)

 for nn, dd in node_span.items():
 nn_nodes = nn.split(' , ')
 if nn_nodes[0] in nodes_on_this_cycle and nn_nodes[1] in nodes_on_this_cycle and dd
not in sp_info:
 sp_info[dd] = 2
 updated_cycle_set[cycle_key] = sp_info

 return updated_cycle_set

Remove redundant pCycles from a collection of enumerated pcycles
def Remove_Redundancy_NEW(pcycles):
 # all_cycles_list_key = list(pcycles.keys())
 # all_cycles_list = list(pcycles.values())
 final_res = {}
 pcycle_cost_sum = defaultdict(int) #key: pcycle's key; value: cost

 for pkey, val in pcycles.items():
 for span_id, val_val in val.items():
 if val_val == 1:
 pcycle_cost_sum[pkey] += int(span_wt[span_id])

 keyfunc = lambda item: item[1]
 for k_len, same_pkey_group in groupby(sorted(pcycle_cost_sum.items(), key=keyfunc), keyfunc):
 lister = list(same_pkey_group)
 #print(lister)
 for ii, same_pkey1 in enumerate(lister):
 flag_dup = False
 item1 = set(spanid for spanid, ii in pcycles[same_pkey1[0]].items() if ii == 1)
 for same_pkey2 in lister[ii+1:]:
 item2 = set(spanid for spanid, ii in pcycles[same_pkey2[0]].items() if ii == 1)
 if item1 == item2:
 flag_dup = True

 181

 break
 if not flag_dup:
 final_res[same_pkey1[0]] = pcycles[same_pkey1[0]]
 return final_res

Main Function:

now = datetime.datetime.now()
print(now)

pcycles = Enumerate_Start_Cycles(nodes, span_node, node_span)
prev_limit = 0
ccc = 0
for ind in range(ddcd_iteration_num):
 cy_id1 = 0
 pcycles_from_Grow = DDCD(pcycles, graph, cy_id1)
 pcycles_set = {**pcycles_from_Grow, **pcycles}
 cy_id1 = cy_id1 + 1000000
 # Check and remove redundant cycles in the cycle set
 pcycles = Remove_Redundancy_NEW(pcycles_set)
 if len(pcycles) == prev_limit:
 print(f'No More New Cycles. Exit! at Iteration: {ind} | {len(pcycles)}')
 break

 prev_limit = len(pcycles)
Complete straddling link information on all pCycles
updated_cycle_set = Straddle_Link(pcycles)

Verify all enumerated pCycles
pCycle_Verify(updated_cycle_set, span_node, node_span)

Verify and remove duplicate cycles
updated_cycle_set = Remove_Redundancy_NEW(updated_cycle_set)

the_end = time.time()
print('Total Runtime = ' + str(the_end - start))

Print to .pcycle file
text_file = open(str(output_file_name) + '.pcycle', 'w')
for key, value in updated_cycle_set.items():
 text_file.write(key + ": ")
 for kk, tt in value.items():
 text_file.write(kk + " " + str(tt) + " ")
 text_file.write("\n")
text_file.close()

Write a .eucost file to save all euclidean distances as span costs
txt_file = open(str(output_file_name) + '.eucost', 'w')
for kk, val in span_wt.items():
 txt_file.write(kk + "\t" + str(val))
 txt_file.write("\n")
txt_file.close()

Dijkstra_CIDA.py (this is used in both DDCD & GA-SCA .py models)

from collections import defaultdict, deque
import sys
import copy

class Graph(object):
 def __init__(self):
 self.nodes = set()
 self.edges = defaultdict(list)
 self.distances = {}

 def add_node(self, value):
 self.nodes.add(value)

 182

 def add_edge(self, from_node, to_node, distance):
 self.edges[from_node].append(to_node)
 self.edges[to_node].append(from_node)
 self.distances[(from_node, to_node)] = distance
 self.distances[(to_node, from_node)] = distance

def dijkstra(graph, initial):
 visited = {initial: 0}
 path = {}

 nodes = set(graph.nodes)

 while nodes:
 min_node = None
 for node in nodes:
 if node in visited:
 if min_node is None:
 min_node = node
 elif visited[node] < visited[min_node]:
 min_node = node
 if min_node is None:
 break

 nodes.remove(min_node)
 current_weight = visited[min_node]

 for edge in graph.edges[min_node]:
 try:
 weight = current_weight + graph.distances[(min_node, edge)]
 except:
 raise ValueError("Sum error!")
 if edge not in visited or weight < visited[edge]:
 visited[edge] = weight
 path[edge] = min_node

 return visited, path

def dijkstra_2(graph, initial, remove_nodes):
 visited = {initial: 0}
 path = {}

 nodes = set(graph.nodes)
 for node_rm in remove_nodes:
 nodes.remove(node_rm)

 while nodes:
 min_node = None
 for node in nodes:
 if node in visited:
 if min_node is None:
 min_node = node
 elif visited[node] < visited[min_node]:
 min_node = node
 if min_node is None:
 break

 nodes.remove(min_node)
 current_weight = visited[min_node]

 for edge in graph.edges[min_node]:
 if edge in remove_nodes:
 continue
 try:
 weight = current_weight + graph.distances[(min_node, edge)]
 except:
 raise ValueError("Sum error!")
 if edge not in visited or weight < visited[edge]:
 visited[edge] = weight
 path[edge] = min_node

 return visited, path

 183

def shortest_path(graph, origin, destination):
 if (origin, destination) in graph.distances:
 graph.distances[(origin, destination)] = sys.maxsize
 graph.distances[(destination, origin)] = sys.maxsize
 else:
 raise ValueError("Not possible")

 visited, paths = dijkstra(graph, origin)
 full_path = deque()
 _destination = paths[destination]

 while _destination != origin:
 full_path.appendleft(_destination)
 _destination = paths[_destination]

 full_path.appendleft(origin)
 full_path.append(destination)

 if (origin, destination) in graph.distances:
 graph.distances[(origin, destination)] = 1
 graph.distances[(destination, origin)] = 1
 else:
 raise ValueError("Not possible")

 return visited[destination], list(full_path)

def double_shortestPath(graph, origin, destination):
 if (origin, destination) in graph.distances:
 graph.distances[(origin, destination)] = sys.maxsize
 graph.distances[(destination, origin)] = sys.maxsize
 else:
 raise ValueError("Not possible")

 visited, paths = dijkstra(graph, origin)
 full_path = deque()
 _destination = paths[destination]

 while _destination != origin:
 full_path.appendleft(_destination)
 _destination = paths[_destination]

 full_path.appendleft(origin)
 full_path.append(destination)

 remove_nodes = list(full_path)[1:-1]

 visited2, paths2 = dijkstra_2(graph, origin, remove_nodes)
 full_path2 = deque()
 _destination2 = paths2[destination]

 while _destination2 != origin:
 full_path2.appendleft(_destination2)
 _destination2 = paths2[_destination2]

 full_path2.appendleft(origin)
 full_path2.append(destination)

 if (origin, destination) in graph.distances:
 graph.distances[(origin, destination)] = 1
 graph.distances[(destination, origin)] = 1
 else:
 raise ValueError("Not possible")

 return visited[destination], list(full_path), visited2[destination], list(full_path2)

 184

APPENDIX D.2
Python Model for GA-SCA

import random
import time
import copy
import operator
import math
import datetime
import sys
from Dijkstra_CIDA import *
import cProfile

Input parameters to be entered in the cmd line
topo_name = '30n45s'
pcycle_file = '30n45s_DDD.pcycle'
Selection_Method = 'select_tournament'
Crossover_Type = 'two_point'
Mutation_Type = 'mutate1'
input_pop = 50
input_cr = 0.35
input_mr = 0.2
output_pcycle = 'Test30n45s.pcycle'

Graph Initiation
graph = Graph()

global mutation ID
new_id_mut = 0

Caulcate euc distance given two nodes
def euc_distance(x, y):
 dist = math.sqrt((y[1]-x[1])**2 + (y[0]-x[0])**2)
 return dist

All node information
nodes = {}
with open(topo_name + '.node', 'r') as f:
 for line in f.readlines():
 comp = line.strip().split()
 assert len(comp) == 4
 nodes[comp[0]] = [float(comp[1]), float(comp[2])]
for node in nodes.keys():
 graph.add_node(node)

All span-node correlations
span_node = {}
node_span = {}
span_dist = {}
with open(topo_name + '.spans', 'r') as f:
 for line in f.readlines():
 comp = line.strip().split()
 assert len(comp) == 8
 # When span costs are their euc distances:
 dist = euc_distance(nodes[comp[1]], nodes[comp[2]])
 span_dist[comp[0]] = float(format(dist, '.3f'))
 graph.add_edge(comp[1], comp[2], float(format(dist, '.3f'))) # comp[1] = origin, comp[2]
= destination, float(dist) = span weight or cost
 span_node[comp[0]] = [comp[1], comp[2]]
 node_span[comp[1] + " , " + comp[2]] = comp[0]
 node_span[comp[2] + " , " + comp[1]] = comp[0]

Open SOL file with detailed span information
span_ft = {}
with open(topo_name + '.eucspanft', 'r') as f:
 for line in f.readlines():
 comp = line.split()

 185

 assert len(comp) == 4
 # span_ft[comp[0]] = [float(comp[1]), float(comp[2])]
 span_ft[comp[0]] = [float(span_dist[comp[0]]), float(comp[2])]
spans = span_ft

Open p-cycles file generated from SOL file
pcycles = {}
n = 0
with open(pcycle_file, 'r') as f:
 for _line in f.readlines():
 item = _line.split(':')
 assert len(item) == 2
 cycle_span_info = {}
 span_info = item[1].split()
 assert len(span_info) % 2 == 0
 for n in range(len(span_info)):
 if n % 2 == 0:
 cycle_span_info[span_info[n]] = int(span_info[n+1])
 pcycles[item[0]] = cycle_span_info

def calculate_ew(spans, cycle_value):
 # return a ew value given a pcycle
 # calcuate (wi * xpi)/cost
 ew1 = 0
 ew2 = 0
 for _k, _v in cycle_value.items():
 wi = spans[_k][1]
 spi = _v
 ew1 = ew1 + wi * spi
 if _v == 1:
 ew2 = ew2 + spans[_k][0]
 ew = ew1/ew2
 return ew

def index_sspans_from_pcycles(spans, pcycles):
 span_pcycle_indexer = {}
 # Step 1 Calculate ew score for each pcycle
 pcycle_ew_dict = {}
 for p_id, p_val in pcycles.items():
 pcycle_ew_dict[p_id] = calculate_ew(spans, p_val)
 # Step 2 Get span_id's pcycle list
 for span_id in spans.keys():
 for key, value in pcycles.items():
 if span_id in value:
 if span_id not in span_pcycle_indexer:
 span_pcycle_indexer[span_id] = [(key, pcycle_ew_dict[key])]
 else:
 span_pcycle_indexer[span_id].append((key, pcycle_ew_dict[key]))
 # Step 3 Sort pcycle list for each span
 for span_id in span_pcycle_indexer.keys():
 # e is a tuple: (key, pcycle_ew_dict[key])
 span_pcycle_indexer[span_id] = sorted(span_pcycle_indexer[span_id], key=lambda e: e[1],
reverse=True)
 return span_pcycle_indexer, pcycle_ew_dict
span_pcycle_indexer, pcycle_ew_dict = index_spans_from_pcycles(spans, pcycles)

def index_straddle_from_pcycles(spans, pcycles):
 straddle_pcycle_indexer = {}
 # Step 1 Calculate ew score for each pcycle
 pcycle_ew_dict = {}
 for p_id, p_val in pcycles.items():
 pcycle_ew_dict[p_id] = calculate_ew(spans, p_val)
 # Step 2 Get span_id's pcycle list
 for span_id in spans.keys():
 for key, value in pcycles.items():
 if span_id in value and value[span_id] == 2:
 if span_id not in straddle_pcycle_indexer:
 straddle_pcycle_indexer[span_id] = [(key, pcycle_ew_dict[key])]
 else:
 straddle_pcycle_indexer[span_id].append((key, pcycle_ew_dict[key]))
 # Step 3 Sort pcycle list for each span
 for span_id in straddle_pcycle_indexer.keys():

 186

 straddle_pcycle_indexer[span_id] = sorted(straddle_pcycle_indexer[span_id], key=lambda e:
e[1], reverse=True)
 return straddle_pcycle_indexer, pcycle_ew_dict
straddle_pcycle_indexer, pcycle_ew2_dict = index_straddle_from_pcycles(spans, pcycles)

def calculate_p_cost(spans, pcycles):
 pcycle_costs = {}
 for k,v in pcycles.items():
 pcycle_cost = 0
 for kkk,vvv in v.items():
 if vvv == 1:
 _cost = int(spans[kkk][0])
 pcycle_cost = pcycle_cost + _cost
 pcycle_costs[k] = pcycle_cost
 return pcycle_costs
pcycle_costs_global = calculate_p_cost(spans, pcycles)

Methods for Repair Genome: ##
Minimum cycles for Repair Genome
def Min_Cycle_Repair(spans, pcycles, span_node, node_span):
 cycle_usage = {}
 new_id2 = 0
 for span_id in spans.keys():
 while spans[span_id][1] > 0:
 best_cycle_id = None
 N0 = span_node[span_id][0]
 N1 = span_node[span_id][1]
 cost_shortest1, path_shortest1 = shortest_path(graph, N0, N1)
 if cost_shortest1 == sys.maxsize:
 raise ValueError('Impossible, No shortest path found!')
 cycle_span_info = {}
 for node_start1, node_end1 in zip(path_shortest1[:-1], path_shortest1[1:]):
 span_ider1 = node_span[node_start1 + " , " + node_end1]
 cycle_span_info[span_ider1] = 1
 cycle_span_info[span_id] = 1

 ## Straddle checker : path=2
 all_nodes_on_this_cycle = []
 for ss, jj in cycle_span_info.items():
 if jj == 1:
 node1_for_ss = span_node[ss][0]
 node2_for_ss = span_node[ss][1]
 all_nodes_on_this_cycle.append(node1_for_ss)
 all_nodes_on_this_cycle.append(node2_for_ss)
 nodeset = set(all_nodes_on_this_cycle)
 nodes_on_this_cycle = list(nodeset)

 for nn, dd in node_span.items():
 nn_nodes = nn.split(' , ')
 if nn_nodes[0] in nodes_on_this_cycle and nn_nodes[1] in nodes_on_this_cycle and
dd not in cycle_span_info:
 cycle_span_info[dd] = 2

 ## Check if cycle_Span_info is a duplicate of a cycle in pcycles
 flagger = False
 for key, val in pcycles.items():
 if cycle_span_info == val:
 if key not in cycle_usage:
 cycle_usage[key] = 1
 else:
 cycle_usage[key] = cycle_usage[key] + 1
 flagger = True
 break
 if not flagger:
 new_id2 = new_id2 + 1
 best_cycle_id = "Rcyc " + str(new_id2) # new pcycle id given
 cycle_usage[best_cycle_id] = 1
 pcycles[best_cycle_id] = cycle_span_info

 for key, value in cycle_span_info.items():
 if value == 1:
 spans[key][1] = spans[key][1] - 1

 187

 if spans[key][1] < 0:
 spans[key][1] = 0
 for key, value in cycle_span_info.items():
 if value == 2:
 spans[key][1] = spans[key][1] - 2
 if spans[key][1] < 0:
 spans[key][1] = 0
 return cycle_usage, pcycles

Max_Overlap for Repair Genome
def Max_Overlap_Cost(spans, pcycles):
 cycle_usage = {}
 # counter to collect pid
 while True:
 pcycle_hit = {}
 max_pid_cc = 0
 max_pid = "-1"
 min_cost_pcycle = sys.maxsize

 for span_id in spans.keys():
 if spans[span_id][1] > 0:
 straddle_flag = False
 if span_id in straddle_pcycle_indexer:
 pcycle_list_with_this_spanid = straddle_pcycle_indexer[span_id]
 straddle_flag = True
 else:
 pcycle_list_with_this_spanid = span_pcycle_indexer[span_id]

 for pid, _ in pcycle_list_with_this_spanid:
 if pid not in pcycle_hit and straddle_flag:
 pcycle_hit[pid] = [pid, 1, 0]
 elif pid not in pcycle_hit and not straddle_flag:
 pcycle_hit[pid] = [pid, 0, 1]
 elif pid in pcycle_hit and straddle_flag:
 pcycle_hit[pid][1] += 1
 else:
 pcycle_hit[pid][2] += 1

 if pcycle_hit[pid][1] > max_pid_cc:
 max_pid_cc = pcycle_hit[pid][1]
 min_cost_pcycle = pcycle_costs_global[pid]
 max_pid = pid
 elif pcycle_hit[pid][1] == max_pid_cc:
 if pcycle_costs_global[pid] < min_cost_pcycle:
 max_pid_cc = pcycle_hit[pid][1]
 min_cost_pcycle = pcycle_costs_global[pid]
 max_pid = pid
 if max_pid == "-1":
 break

 best_cycle_id = max_pid # deterministic

 if best_cycle_id not in cycle_usage:
 cycle_usage[best_cycle_id] = 1
 else:
 cycle_usage[best_cycle_id] = cycle_usage[best_cycle_id] + 1

 for key, value in pcycles[best_cycle_id].items():
 if value == 1:
 spans[key][1] = spans[key][1] - 1
 if spans[key][1] < 0:
 spans[key][1] = 0
 elif value == 2:
 spans[key][1] = spans[key][1] - 2
 if spans[key][1] < 0:
 spans[key][1] = 0

 return cycle_usage, pcycles

Methods for generating initial population: #
Picking a random cycle
def pick_random_cycle(pcycles):

 188

 cycle_keys = list(pcycles.keys())
 cycle_picked = random.choices(population=cycle_keys, weights=None, k=1)
 return cycle_picked[0]

1. Non-deterministic CIDA: random picks by probs

Pick a Cycle from a pool
def pick_cycle_by_probs(spans, pcycles):
 pool = {}
 for cycle_key, cycle_value in pcycles.items():
 ew = calculate_ew(spans, cycle_value)
 pool[cycle_key] = ew
 sorted_pool = sorted(pool.items(), key=lambda x: x[1], reverse=True)
 top_ew_scores = []
 top_cycle_keys = []
 # initial value
 importance_score = 10000
 for key, _ in sorted_pool:
 top_ew_scores.append(importance_score)
 top_cycle_keys.append(key)
 # discount weighting
 importance_score = importance_score / 2
 total_sum = sum(top_ew_scores)
 normalized_probs = [float(item / total_sum) for item in top_ew_scores]
 res = random.choices(population=top_cycle_keys, weights=normalized_probs, k=1)
 return res[0]

def CIDA_pick_by_probs(spans, pcycles):
 cycle_usage = {}
 for span_id in spans.keys():
 while spans[span_id][1] > 0:
 best_cycle_id = None
 # Random Select Best Cycle By Probs
 best_cycle_id = pick_cycle_by_probs(spans, pcycles)
 if best_cycle_id not in cycle_usage:
 cycle_usage[best_cycle_id] = 1
 else:
 cycle_usage[best_cycle_id] = cycle_usage[best_cycle_id] + 1
 for key, value in pcycles[best_cycle_id].items():
 if value == 1:
 spans[key][1] = spans[key][1] - 1
 if spans[key][1] < 0:
 spans[key][1] = 0
 for key, value in pcycles[best_cycle_id].items():
 if value == 2:
 spans[key][1] = spans[key][1] - 2
 if spans[key][1] < 0:
 spans[key][1] = 0
 return cycle_usage

##Generate Initial Population ##
Deterministic:
 # init_pop_member = CIDA(spans, pcycles)
Non-Deterministic - Random pick by probability:
 # init_pop_member = CIDA_pick_by_probs(spans, pcycles)

Generate initial population: a list of dictionaries
 # each dictionary is an individual (key:value = pcycle_id : pcycle_num_usage) that provides
full pcycle protection to the network
def initial_population(popSize, pcycles):
 init_population = []
 for _ in range(popSize):
 spans_copy = copy.deepcopy(spans)
 init_pop_member = CIDA_pick_by_probs(spans_copy, pcycles)
 if init_pop_member not in init_population:
 init_population.append(init_pop_member)
 return init_population

START OF GENETIC ALGORITHM ###
start = time.time()

 189

FITNESS FUNCTION:
 # [minimum] cost of each individual (init_pop_member)
def calculate_fitness_cost(pcycle_costs, individual):
 ind_cost = 0
 for p_key, _usage in individual.items():
 cost_p = pcycle_costs[p_key]
 ind_cost += cost_p * _usage
 return ind_cost

def rankCost(pcycle_costs, population):
 fitness_results = {}
 for i in range(0, len(population)):
 fitness_results[i] = int(calculate_fitness_cost(pcycle_costs, population[i]))
 rank_pop = sorted(fitness_results.items(), key = operator.itemgetter(1))
 ranked_pop = [population[item[0]] for item in rank_pop]
 ranked_cost = [item[1] for item in rank_pop]
 return ranked_pop, ranked_cost

SELECTION METHODS:
def select_roulette(ranked_pop, pcycle_costs):
 cost_scores = []
 score_factor = 1200 # not very necessary but does not affect results
 for ccc in ranked_pop:
 cycle_cost = calculate_fitness_cost(pcycle_costs, ccc)
 cycle_score = (score_factor/cycle_cost)**2
 cost_scores.append(cycle_score)
 total_sum = sum(cost_scores)
 normalized_probs = [float(item / total_sum) for item in cost_scores]
 select_parent = random.choices(population=ranked_pop, weights=normalized_probs, k=1)
 return select_parent[0]

def select_tournament(ranked_pop, pcycle_costs):
 select_ind = random.choices(population=ranked_pop, weights=None, k=10)
 ranked_ind, _ = rankCost(pcycle_costs, select_ind)
 selected_parent = ranked_ind[0]
 return selected_parent

def select_tournament_adp(ranked_pop, pcycle_costs, popSize):
 select_ind = random.choices(population=ranked_pop, weights=None, k=int(popSize*0.05))
 ranked_ind, _ = rankCost(pcycle_costs, select_ind)
 selected_parent = ranked_ind[0]
 return selected_parent

def select_random(ranked_pop):
 random_index = random.randint(0,len(ranked_pop)-1)
 random_parent = ranked_pop[random_index]
 return random_parent

REPAIR MECHANISM:
def repair_genome_cross(child_genome, spans, pcycles):
 unprotected_span = {}
 protected_spans = {}
 for k, usage in child_genome.items():
 for _k in pcycles[k].keys():
 if _k not in protected_spans:
 if pcycles[k][_k] == 1:
 protected_spans[_k] = usage
 else:
 protected_spans[_k] = 2*usage
 else:
 if pcycles[k][_k] == 1:
 protected_spans[_k] += usage
 else:
 protected_spans[_k] += 2*usage
 for span in spans.keys():
 if span not in protected_spans.keys():
 unprotected_span[span] = int(spans[span][1])
 else:
 if spans[span][1] > protected_spans[span]:
 unprotected_span[span] = int(spans[span][1]) - int(protected_spans[span])
 spans_merge = {}
 for kkey, vval in unprotected_span.items():

 190

 spans_merge[kkey] = [spans[kkey][0], vval]
 for kkey, vval in spans.items():
 if kkey not in spans_merge:
 spans_merge[kkey] = [spans[kkey][0], 0]

 ## 3. Repair by Max_Match for cross-over operator:
 compensation_cycle, _ = Max_Overlap_Cost(spans_merge, pcycles)
 repaired_child = { k: child_genome.get(k, 0) + compensation_cycle.get(k, 0) for k in
set(child_genome) | set(compensation_cycle) }
 return repaired_child

def repair_genome_mut(child_genome, spans, pcycles):
 unprotected_span = {}
 protected_spans = {}
 new_pcycle_set = {}
 new_pcycle_costs_set = {}
 for k, usage in child_genome.items():
 for _k in pcycles[k].keys():
 if _k not in protected_spans:
 if pcycles[k][_k] == 1:
 protected_spans[_k] = usage
 else:
 protected_spans[_k] = 2*usage
 else:
 if pcycles[k][_k] == 1:
 protected_spans[_k] += usage
 else:
 protected_spans[_k] += 2*usage
 for span in spans.keys():
 if span not in protected_spans.keys():
 unprotected_span[span] = int(spans[span][1])
 else:
 if spans[span][1] > protected_spans[span]:
 unprotected_span[span] = int(spans[span][1]) - int(protected_spans[span])
 spans_merge = {}
 for kkey, vval in unprotected_span.items():
 spans_merge[kkey] = [spans[kkey][0], vval]
 for kkey, vval in spans.items():
 if kkey not in spans_merge:
 spans_merge[kkey] = [spans[kkey][0], 0]

 ## 2. Repair by Min_cycle:
 compensation_cycle, new_pcycle = Min_Cycle_Repair(spans_merge, pcycles, span_node, node_span)
 ## 3. Repair by Max_Match:
 #compensation_cycle, new_pcycle = Max_Overlap_Cost(spans_merge, pcycles)
 repaired_child = { k: child_genome.get(k, 0) + compensation_cycle.get(k, 0) for k in
set(child_genome) | set(compensation_cycle) }
 new_pcycle_set = {**new_pcycle_set, **new_pcycle} # useless for repair method 3
 new_pcycle_cost_dict = calculate_p_cost(spans, new_pcycle_set) # useless for repair method 3
 new_pcycle_costs_set = {**new_pcycle_costs_set, **new_pcycle_cost_dict} # useless for repair
method 3
 return repaired_child, new_pcycle_set, new_pcycle_costs_set

CROSSOVER FUNCTIONS:
Crossover 1: Two-point crossover
def two_point(parent1, parent2, pcycle_set):
 childP1 = {}
 childP2 = {}
 childP3 = {}
 childP4 = {}
 geneA1 = int(random.random() * len(parent1.items()))
 geneB1 = int(random.random() * len(parent1.items()))
 geneA2 = int(random.random() * len(parent2.items()))
 geneB2 = int(random.random() * len(parent2.items()))
 startGene1 = min(geneA1, geneB1)
 endGene1 = max(geneA1, geneB1)
 startGene2 = min(geneA2, geneB2)
 endGene2 = max(geneA2, geneB2)

 p1_list = []
 for key, value in parent1.items():
 temp = [key,value]

 191

 p1_list.append(temp)

 p2_list = []
 for key, value in parent2.items():
 temp = [key,value]
 p2_list.append(temp)

 for i in range(startGene1, endGene1):
 _pick = p1_list[i]
 childP1[_pick[0]] = _pick[1]

 for k,v in parent1.items():
 if k not in childP1:
 childP2[k] = v

 for i in range(startGene2, endGene2):
 _pick = p2_list[i]
 childP3[_pick[0]] = _pick[1]

 for k,v in parent2.items():
 if k not in childP3:
 childP4[k] = v

 child1 = {**childP1, **childP4}
 child2 = {**childP2, **childP3}
 repaired_child1 = repair_genome_cross(child1, spans, pcycle_set)
 repaired_child2 = repair_genome_cross(child2, spans, pcycle_set)

 return repaired_child1, repaired_child2

Crossover 2: one point crossover
def one_point(parent1, parent2, pcycle_set):
 childP1 = {}
 childP2 = {}
 childP3 = {}
 childP4 = {}

 p1_list = []
 for key, value in parent1.items():
 temp = [key,value]
 p1_list.append(temp)

 p2_list = []
 for key, value in parent2.items():
 temp = [key,value]
 p2_list.append(temp)

 gene1 = int(random.random() * len(parent1.items()))
 gene2 = int(random.random() * len(parent2.items()))

 for i in range(0, gene1):
 _pick = p1_list[i]
 childP1[_pick[0]] = _pick[1]

 for k,v in parent1.items():
 if k not in childP1:
 childP2[k] = v

 for i in range(0, gene2):
 _pick = p2_list[i]
 childP3[_pick[0]] = _pick[1]

 for k,v in parent2.items():
 if k not in childP3:
 childP4[k] = v

 child1 = {**childP1, **childP4}
 child2 = {**childP2, **childP3}
 repaired_child1 = repair_genome_cross(child1, spans, pcycle_set)
 repaired_child2 = repair_genome_cross(child2, spans, pcycle_set)

 return repaired_child1, repaired_child2

 192

Crossover 3: uniform crossover
 # Very simple and straightfoward Mask setting: chromosome-length with binary pattern of
[01010101010101...]
 # Not robust --> not in use any further

def breed_population3(selection, crossover, ranked_pop, pcycle_costs, cross_rate, pcycle_set,
popSize):
 children = []
 for _ in range(len(ranked_pop)):
 if random.random() < cross_rate:
 if selection == "select_tournament":
 pick1 = select_tournament(ranked_pop, pcycle_costs)
 pick2 = select_tournament(ranked_pop, pcycle_costs)
 elif selection == "select_roulette":
 pick1 = select_roulette(ranked_pop, pcycle_costs)
 pick2 = select_roulette(ranked_pop, pcycle_costs)
 elif selection == "select_tournament_adp":
 pick1 = select_tournament_adp(ranked_pop, pcycle_costs, popSize)
 pick2 = select_tournament_adp(ranked_pop, pcycle_costs, popSize)
 while pick1 == pick2:
 if selection == "select_tournament":
 pick2 = select_tournament(ranked_pop, pcycle_costs)
 elif selection == "select_roulette":
 pick2 = select_roulette(ranked_pop, pcycle_costs)
 elif selection == "select_tournament_adp":
 pick2 = select_tournament_adp(ranked_pop, pcycle_costs, popSize)
 if crossover == "one_point":
 child1, child2 = two_point(pick1, pick2, pcycle_set)
 elif crossover == "two_point":
 child1, child2 = two_point(pick1, pick2, pcycle_set)
 children.append(child1)
 children.append(child2)
 mutation_pop = ranked_pop + children
 return children, mutation_pop

MUTATION FUNCTION: 5 mutation methods
 # 1. Randomly remove one cycle (and all its copies used) --> repair it
 # 2. Cycle_merging:
 # 3. Randomly remove one copy of a cycle, and add one random cycle (one copy) --> repair it
 # 4. Randomly pick an ind, remove 10% cycles with largest costs, add 5 random cycle -->
repair it
 # 5. Randomly remove all copies of 1 cycle, add 1 copy 1 random cycle --> repair it

1. Randomly remove one copy of a cycle:
def mutate_rand_remove(individual, pcycles):
 individual_copy = copy.deepcopy(individual)
 individual_keys = list(individual_copy.keys())
 swappee = int(random.random() * len(individual_keys))
 individual_copy[individual_keys[swappee]] = int(individual_copy[individual_keys[swappee]])-1
remove one copy of a candidate cycle
 new_individual = { k:v for k,v in individual_copy.items() if v > 0 }
 # Need repair algorithm:
 repaired_individual, new_pcycle_set, new_pcycle_costs_set = repair_genome_mut(new_individual,
spans, pcycles)
 return repaired_individual, new_pcycle_set, new_pcycle_costs_set

2. Cycle Merging:
def mutation_span_merge(individual, pcycles):
 new_individual = copy.deepcopy(individual)
 new_pcycle = {}
 new_pcycle_usage = {}
 final_individual = {}
 global new_id_mut
 ind_keys_list = list(individual.keys())
 for index1, cycle1_id in enumerate(ind_keys_list):
 for index2, cycle2_id in enumerate(ind_keys_list):
 if index2 > index1:
 if cycle1_id == cycle2_id:
 continue
 cycle_1spans_dict = dict(pcycles[cycle1_id])
 cycle_2spans_dict = dict(pcycles[cycle2_id])

 193

 cycle_1node_list = []
 cycle_2node_list = []
 cycle_1usage = new_individual[cycle1_id]
 cycle_2usage = new_individual[cycle2_id]
 if cycle_1usage == 0 or cycle_2usage == 0:
 continue
 shared_items = [k for k in cycle_1spans_dict if k in cycle_2spans_dict and
cycle_1spans_dict[k] == 1 and cycle_2spans_dict[k] == 1]
 # check if no other nodes (other than the two nodes on the shared_items) are
ovelapping
 if len(shared_items) != 1:
 continue
 new_individual_span = {}
 shared_items_N1 = span_node[list(shared_items)[0]][0]
 shared_items_N2 = span_node[list(shared_items)[0]][1]
 for sp1 in cycle_1spans_dict.keys():
 sp1_N1 = span_node[sp1][0]
 sp1_N2 = span_node[sp1][1]
 cycle_1node_list.append(sp1_N1)
 cycle_1node_list.append(sp1_N2)
 for sp2 in cycle_2spans_dict.keys():
 sp2_N1 = span_node[sp2][0]
 sp2_N2 = span_node[sp2][1]
 cycle_2node_list.append(sp2_N1)
 cycle_2node_list.append(sp2_N2)
 shared_node = set(cycle_1node_list) & set(cycle_2node_list)
 shared_node -= {shared_items_N1}
 shared_node -= {shared_items_N2}
 shared_node_list = list(shared_node)
 if shared_node_list:
 continue
 # check if only share one span
 if len(shared_items) == 1:
 new_individual_span[shared_items[0]] = 2
 cycle_1spans_dict[shared_items[0]] = -1
 cycle_2spans_dict[shared_items[0]] = -1
 for kk, vv in cycle_1spans_dict.items():
 if vv != -1:
 new_individual_span[kk] = vv
 for kk, vv in cycle_2spans_dict.items():
 if vv != -1:
 new_individual_span[kk] = vv
 else:
 continue
 new_cycle_id = "Merged_CYL" + str(new_id_mut) # new pcycle id given
 new_pcycle[new_cycle_id] = new_individual_span
 usage_new_cycle = min(cycle_1usage, cycle_2usage)
 new_pcycle_usage[new_cycle_id] = int(usage_new_cycle)
 cycle_1usage -= int(usage_new_cycle)
 new_individual[cycle1_id] = cycle_1usage
 cycle_2usage -= int(usage_new_cycle)
 new_individual[cycle2_id] = cycle_2usage
 new_id_mut += 1
 new_individual_new_pcycles = {**new_individual, **new_pcycle_usage}
 for mkk, mvv in new_individual_new_pcycles.items():
 if mvv > 0:
 final_individual[mkk] = mvv
 return final_individual, new_pcycle

3. Remove one copy of a cycle , add one copy of a cycle:
def mutate_remove1_add1(individual, pcycles):
 individual_copy = copy.deepcopy(individual)
 individual_keys = list(individual_copy.keys())
 individual_added = {}
 swapper_id = None
 swappee = int(random.random() * len(individual_keys))
 individual_copy[individual_keys[swappee]] = int(individual_copy[individual_keys[swappee]])-1
remove one copy of a candidate cycle
 swapper_id = pick_random_cycle(pcycles) # add one random cycle
 if swapper_id not in individual_copy:
 individual_added[swapper_id] = 1
 individual_copy = { k:v for k,v in individual_copy.items() if v > 0 }

 194

 # Merge individual_copy and individual_added
 new_individual = { k: individual_copy.get(k, 0) + individual_added.get(k, 0) for k in
set(individual_added) | set(individual_copy) }
 repaired_individual, new_pcycle_set, new_pcycle_costs_set = repair_genome_mut(new_individual,
spans, pcycles)
 return repaired_individual, new_pcycle_set, new_pcycle_costs_set

4. Remove one copy of each worst 10% cycles, add 3 rand cycles:
def mutate_less10add3(individual, pcycles, pcycles_costs):
 individual_copy = copy.deepcopy(individual)
 individual_cost = []
 added_inds = {}
 pcycle_ids = []
 new_individual = {}
 for cycle_id, cycle_usage in individual_copy.items():
 if cycle_usage == 0:
 continue
 individual_cost.append((cycle_id, pcycles_costs[cycle_id])) # individual_cost is
[('cycle id', cycle cost), (,), (,)...]
 pcycle_ids.append(cycle_id)
 while True:
 rand_index = int(random.random() * len(pcycles))
 pick_rand_cyc = list(pcycles.keys())[rand_index]
 if pick_rand_cyc not in pcycle_ids:
 added_inds[pick_rand_cyc] = 1
 if len(added_inds) == 3: # add 3 random cycles
 break
 # Remove one copy from each bottom 10% (selecting top 90%)
 sorted_tup = sorted(individual_cost, key=lambda e:e[1]) # sort the list from small cost to
large cost
 for ind in range(int(len(sorted_tup)* 0.9), len(sorted_tup)):
 select_id = sorted_tup[ind][0]
 if int(individual_copy[select_id]) >= 1:
 individual_copy[select_id] = int(individual_copy[select_id])-1
 # Merge added_inds and individual_copy
 new_individual = { k: added_inds.get(k, 0) + individual_copy.get(k, 0) for k in
set(added_inds) | set(individual_copy) }
 new_individual = { k:v for k,v in new_individual.items() if v > 0 }
 repaired_individual, new_pcycle_set, new_pcycle_costs_set = repair_genome_mut(new_individual,
spans, pcycles)
 return repaired_individual, new_pcycle_set, new_pcycle_costs_set

5. Remove one cycle (all copies), add one cycle:
def mutate_remove1all_add1(individual, pcycles):
 individual_copy = copy.deepcopy(individual)
 individual_keys = list(individual_copy.keys())
 individual_added = {}
 swapper_id = None
 swappee = int(random.random() * len(individual_keys))
 individual_copy[individual_keys[swappee]] = -100
 swapper_id = pick_random_cycle(pcycles) # Adding one random cycle to new_individual:
 if swapper_id not in individual_copy:
 individual_added[swapper_id] = 1
 individual2 = { k:v for k,v in individual_copy.items() if v != -100 }
 # Remove one cycle: Merge individual2 and individual_added
 new_individual = { k: individual2.get(k, 0) + individual_added.get(k, 0) for k in
set(individual_added) | set(individual2) }
 repaired_individual, new_pcycle_set, new_pcycle_costs_set = repair_genome_mut(new_individual,
spans, pcycles)
 return repaired_individual, new_pcycle_set, new_pcycle_costs_set

Mutation 1. Randomly remove a cycle * copies of that cycle:
def mutate1(mutation_pop,mutation_rate, pcycle_costs, pcycles):
 mutated_children = []
 pcycle_set1 = pcycles
 pcycle_costs1 = pcycle_costs
 for _ in range(len(mutation_pop)):
 if random.random() < mutation_rate:
 pick_ii = select_random(mutation_pop)
 mutated_ind, new_pcycle_set, new_pcycle_costs_set = mutate_rand_remove(pick_ii,
pcycles)
 mutated_children.append(mutated_ind)

 195

 pcycle_set1 = {**pcycle_set1, **new_pcycle_set}
 pcycle_costs1 = {**pcycle_costs1, **new_pcycle_costs_set}
 return mutated_children, pcycle_set1, pcycle_costs1

Mutation 2. Cycle Merging:
def mutate2(mutation_pop,mutation_rate, pcycle_costs, pcycles):
 mutated_children = []
 new_pcycle_set = {}
 new_pcycle_costs_set = {}
 for _ind in range(len(mutation_pop)):
 if random.random() < mutation_rate:
 pick_ii = select_random(mutation_pop)
 mutated_ind, new_pcycle = mutation_span_merge(pick_ii, pcycles)
 mutated_children.append(mutated_ind.copy())
 new_pcycle_set = {**new_pcycle_set, **new_pcycle}
 new_pcycle_cost_dict = calculate_p_cost(spans, new_pcycle_set)
 new_pcycle_costs_set = {**new_pcycle_costs_set, **new_pcycle_cost_dict}
 return mutated_children, new_pcycle_set, new_pcycle_costs_set

Mutation 3. Remove one copy of a cycle , add one copy of a cycle:
def mutate3(mutation_pop,mutation_rate, pcycle_costs, pcycles):
 mutated_children = []
 pcycle_set3 = pcycles
 pcycle_costs3 = pcycle_costs
 for _ in range(len(mutation_pop)):
 if random.random() < mutation_rate:
 pick_ii = select_random(mutation_pop)
 mutated_ind, new_pcycle_set, new_pcycle_costs_set = mutate_remove1_add1(pick_ii,
pcycles)
 mutated_children.append(mutated_ind)
 pcycle_set3 = {**pcycle_set3, **new_pcycle_set}
 pcycle_costs3 = {**pcycle_costs3, **new_pcycle_costs_set}
 return mutated_children, pcycle_set3, pcycle_costs3

Mutation 4. Remove one copy of each worst 10% cycles, add 3 rand cycles:
def mutate4(mutation_pop,mutation_rate, pcycle_costs, pcycles):
 mutated_children = []
 pcycle_set4 = pcycles
 pcycle_costs4 = pcycle_costs
 for _ in range(len(mutation_pop)):
 if random.random() < mutation_rate:
 pick_ii = select_random(mutation_pop)
 mutated_ind, new_pcycle_set, new_pcycle_costs_set = mutate_less10add3(pick_ii,
pcycle_set4, pcycle_costs4)
 mutated_children.append(mutated_ind)
 pcycle_set4 = {**pcycle_set4, **new_pcycle_set}
 pcycle_costs4 = {**pcycle_costs4, **new_pcycle_costs_set}
 return mutated_children, pcycle_set4, pcycle_costs4

Mutation 5. Remove one cycle completely, add one copy of a cycle:
def mutate5(mutation_pop,mutation_rate, pcycle_costs, pcycles):
 mutated_children = []
 pcycle_set5 = pcycles
 pcycle_costs5 = pcycle_costs
 for _ in range(len(mutation_pop)):
 if random.random() < mutation_rate:
 pick_ii = select_random(mutation_pop)
 mutated_ind, new_pcycle_set, new_pcycle_costs_set = mutate_remove1all_add1(pick_ii,
pcycles)
 mutated_children.append(mutated_ind)
 pcycle_set5 = {**pcycle_set5, **new_pcycle_set}
 pcycle_costs5 = {**pcycle_costs5, **new_pcycle_costs_set}
 return mutated_children, pcycle_set5, pcycle_costs5

def mutate_pop(mutation, ranked_pop, mutation_rate, pcycle_costs, pcycle_set):
 if mutation == "mutate1":
 mutated_children, new_pcycles, new_pcycle_costs = mutate1(ranked_pop,mutation_rate,
pcycle_costs, pcycle_set)
 elif mutation == "mutate2":
 mutated_children, new_pcycles, new_pcycle_costs = mutate2(ranked_pop,mutation_rate,
pcycle_costs, pcycle_set)
 elif mutation == "mutate3":

 196

 mutated_children, new_pcycles, new_pcycle_costs = mutate3(ranked_pop,mutation_rate,
pcycle_costs, pcycle_set)
 elif mutation == "mutate4":
 mutated_children, new_pcycles, new_pcycle_costs = mutate4(ranked_pop,mutation_rate,
pcycle_costs, pcycle_set)
 elif mutation == "mutate5":
 mutated_children, new_pcycles, new_pcycle_costs = mutate5(ranked_pop,mutation_rate,
pcycle_costs, pcycle_set)
 return mutated_children, new_pcycles, new_pcycle_costs

NEXT GENERATION ##

Using all mutation methods:
def next_generation(selection, crossover, mutation, current_gen, cross_rate, mutation_rate,
pcycle_costs, pcycle_set, popSize):
 new_generation = []
 pop_copy = current_gen
 source_children = {}
 for nnn in current_gen:
 new_generation.append(nnn)
 children, _ = breed_population3(selection, crossover, pop_copy, pcycle_costs, cross_rate,
pcycle_set, popSize)
 for iii in children:
 if iii not in new_generation:
 new_generation.append(iii)
 source_children[frozenset(iii.items())] = 0
 # Options: mutate1, mutate2, mutate3, mutate4, mutate5
 mutated_children, new_pcycles, new_pcycle_costs = mutate_pop(mutation, pop_copy,
mutation_rate, pcycle_costs, pcycle_set)
 for ddd in mutated_children:
 if ddd not in new_generation:
 new_generation.append(ddd)
 source_children[frozenset(ddd.items())] = 1
 updated_pcycles = {**pcycle_set, **new_pcycles}
 updated_pcycle_costs = {**pcycle_costs, **new_pcycle_costs}

 new_pop_ranked, new_pop_scores = rankCost(updated_pcycle_costs, new_generation)
 return new_pop_ranked[:len(current_gen)], new_pop_scores[:len(current_gen)], updated_pcycles,
updated_pcycle_costs, source_children

When unchanged value reach gen = 60, use span_merge as mutation method:
def next_gen_mutation2(selection, crossover, current_gen, cross_rate, mutation_rate,
pcycle_costs, pcycle_set, popSize):
 new_generation = []
 source_children = {}
 pop_copy = current_gen
 for nnn in current_gen:
 new_generation.append(nnn)
 children, _ = breed_population3(selection, crossover, pop_copy, pcycle_costs, cross_rate,
pcycle_set, popSize)
 for iii in children:
 if iii not in new_generation:
 new_generation.append(iii)
 source_children[frozenset(iii.items())] = 0
 mutated_children, new_pcycles, new_pcycle_costs = mutate2(pop_copy, mutation_rate,
pcycle_costs, pcycle_set)
 for ddd in mutated_children:
 if ddd not in new_generation:
 new_generation.append(ddd)
 source_children[frozenset(ddd.items())] = 1
 updated_pcycles = {**pcycle_set, **new_pcycles}
 updated_pcycle_costs = {**pcycle_costs, **new_pcycle_costs}

 new_pop_ranked, new_pop_scores = rankCost(updated_pcycle_costs, new_generation)
 return new_pop_ranked[:len(current_gen)], new_pop_scores[:len(current_gen)], updated_pcycles,
updated_pcycle_costs, source_children

Initiate GA Process ###

def genetic_algorithm(selection, crossover, mutation, popSize, cross_rate, mutation_rate,
pcycle_set):
 pop = initial_population(popSize, pcycles)

 197

 pcycle_costs = calculate_p_cost(spans, pcycles) # Calculate fitness values
 pop_rank, pop_scores = rankCost(pcycle_costs, pop) # rank all ind from initial population
based on their fitness values
 print(pop_rank[0]) # And print out best ind from init_pop and its cost to compare with GA
result
 print(pop_scores[0])

 global_min_cost = math.inf
 stats_source = [0, 0] #counts for children from either cross or mutation
 gen_counter = 0
 for gen in range(0, 1000):
 best_current_gen, rank_cost, updated_pcycles, updated_pcycle_costs, source_children =
next_generation(selection, crossover, mutation, pop_rank, cross_rate, mutation_rate,
pcycle_costs, pcycle_set, popSize)
 #print(source_children.values())
 if rank_cost[0] < global_min_cost:
 ## increase!
 global_min_cost = rank_cost[0]
 optimal_res = best_current_gen[0]
 gen_counter = 0
 if frozenset(optimal_res.items()) in source_children:
 stats_source[source_children[frozenset(optimal_res.items())]] += 1
 else:
 print('NEW IMPROVEMENT')
 # print(optimal_res)
 print(f'{gen}: Better Global Min Cost {global_min_cost}')
 else:
 gen_counter += 1
 if gen_counter == 60:
 best_current_gen, rank_cost, updated_pcycles, updated_pcycle_costs,
source_children = next_gen_mutation2(selection, crossover, pop_rank, cross_rate, mutation_rate,
pcycle_costs, pcycle_set, popSize)
 if rank_cost[0] < global_min_cost:
 global_min_cost = rank_cost[0]
 optimal_res = best_current_gen[0]
 gen_counter = 0
 if frozenset(optimal_res.items()) in source_children:
 stats_source[source_children[frozenset(optimal_res.items())]] += 1
 else:
 print('NEW IMPROVEMENT')
 # print(optimal_res)
 print(f'{gen}: Cycle-Merge applied, Better Global Min Cost
{global_min_cost}')
 else:
 print(f'Process terminated at {gen} with final global min cost of
{global_min_cost}')
 break
 pop_rank = best_current_gen
 pcycle_set = updated_pcycles
 pcycle_costs = updated_pcycle_costs

 print(f'Improved children counts from {stats_source}')
 # print(optimal_res) # evaluate the result
 print('Total Cost = '+ str(global_min_cost)) # evaluate validity of this GA process -- is the
cost decreasing??
 return optimal_res, pcycle_set, global_min_cost

random.seed(666)
now = datetime.datetime.now()
print(now)

optimal_result, updated_pcycles, global_min_cost = genetic_algorithm(selection =
Selection_Method, crossover = Crossover_Type, mutation = Mutation_Type, popSize = input_pop,
cross_rate = input_cr, mutation_rate = input_mr, pcycle_set = pcycles)

the_end = time.time()
print('Total Runtime =' + str(the_end - start))

Write new pcycles to a new .pcycle file [for verification of full protection]
text_file = open(output_pcycle, "w")
for key, value in updated_pcycles.items():

 198

 text_file.write(key + ": ")
 for kk, tt in value.items():
 text_file.write(kk + " " + str(tt) + " ")
 text_file.write("\n")
text_file.close()

Calculate pcycle set SC, WC, EW&AP scores ###

ind_sc = 0
def pcycle_spare_capacity(spans, cycle_val):
 pcycle_sc_score = 0
 for _, vv in cycle_val.items():
 if vv == 1:
 pcycle_sc_score += 1
 return pcycle_sc_score
for cy_id, cy_use in optimal_result.items():
 cycle_sc = pcycle_spare_capacity(spans, updated_pcycles[cy_id])
 ind_sc = ind_sc + cycle_sc * cy_use

def pcycle_work_capacity(spans):
 pcycle_wc_score = 0
 pcycle_wc_cost = 0
 for _, comp in spans.items():
 pcycle_wc_score += comp[1]
 pcycle_wc_cost += comp[0] * comp[1]
 return pcycle_wc_score, pcycle_wc_cost
ind_wc, ind_wc_cost = pcycle_work_capacity(spans)

print('Total Spare Capacity = '+ str(ind_sc))
print('Total Spare Capacity Cost = ' + str(global_min_cost))
print('Total Working Capacity = '+ str(ind_wc))
print('Total Working Capacity Cost = '+ str(ind_wc_cost))
print('Redundancy = ' "{0:.2f}%".format(ind_sc/ind_wc * 100))

 199

