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ABSTRACT 

Optical transport network failures are destructive, costly and inevitable. Therefore, 

extensive work has been conducted on survivable network designs. Survivable network 

designs are primarily built around network span failures, and a common approach for 

improving network resilience against span failures is by adding redundancy in span 

capacities. In recent years, a relatively new p-cycle survivable network design has drawn 

much attention due to its ring-mesh dichotomy that allows p-cycles to provide ring-like 

restoration speed with mesh-like protection efficiency. One approach to enhancing the p-

cycle survivable network design is by optimizing allocation of its spare capacities. The spare 

capacity allocation problem optimizes spare capacity designs by placing selective pre-

enumerated candidate cycles onto the network to achieve 100% network survivability with 

minimal allocation cost. Integer linear programming (ILP), heuristics, and meta-heuristics 

are commonly-adopted approaches for optimizing the p-cycle spare capacity allocation 

problem. Although extensive work has been conducted on p-cycle survivable network 

designs and p-cycle SCA problems using either linear programming or heuristic methods, 

there are still great opportunities for enhancement. For example, to the best of our 

knowledge, there has not been a p-cycle spare capacity allocation method proposed and 

tested particularly for large-scale networks.   

 The work herein addresses the problem of p-cycle spare capacity allocation by 

developing and evaluating two new algorithms. The first algorithm is a novel heuristic 

algorithm for generating efficient candidate p-cycles, referred to as the disjoint-paths 

Dijkstra cycle development (DDCD) algorithm. The DDCD is an iterative cycle development 
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method that is capable of generating high-performance candidate p-cycles in networks of 

any size. The DDCD outperforms some conventional cycle enumeration methods in small 

and large networks and is particularly desirable for large-scale networks that are over 80 

nodes. The second algorithm is a novel GA model for optimizing the p-cycle spare capacity 

allocation problem, referred to as a GA-SCA model. The GA-SCA model provides a better 

optimized spare capacity allocation solution than that of CIDA. The GA operators, especially 

the mutation operator, are specifically designed and tuned to enhance the performance of 

the GA-SCA model. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Network survivability is the capability of a network to maintain proper functioning in 

the event of a network failure [1]. It is a fascinating topic to consider due to our growing social 

dependency on telecommunication and a pivotal aspect to consider when designing optical 

transport networks due to their ultra-high capacities [1]. With the advent of 5G technologies, 

artificial intelligence, cloud computing, etc., modern life and business transactions depend 

increasingly heavily on faster and more reliable network traffic. In the 2016-2020 ICT Market 

Review and Forecast released by the Telecommunication Industry Associated (TIA), it was 

reported that some rapidly growing markets would experience an increase of 13.7% compound 

annual growth rate from 2015 to 2020. These markets include cloud computing services, 

business ethernet, Internet of Things (IoT), network virtualization, and intelligent 

transportation services, where IoT and network virtualization will experience more than 30% 

compound annual growth rate [2]. This prediction indicates a significant increase in the Internet 

demands in recent years and dramatic internet traffic growth that will continue in the years to 

come. To support increasing volumes of data traffic, the Internet Protocol (IP) and optical 

transport networks have become dominant forms of transmission [3]. 

Because significant volumes of data is carried on network traffic, any failures or 

disruptions on the transport network may lead to tremendous financial loss and social impacts 

on the services and transactions that rely on these infrastructures. For example, Amazon Web 

Services (AWS) experienced a significant outage in their US East region that lasted over 20 

hours in April 2011 [4]. Since AWS is a major cloud computing platform that provides cloud 

services to a number of online sites and services, this major outage caused downtimes and 

service interruptions to various popular online sites including Reddit, Quora, SCVNGR (now 

known as LevelUp), Foursquare, etc. [5]. Based on a study by Cérin et al. [6] from the 

International Working group on Cloud Computing Resiliency (IWGCR), some major cloud 

service providers experienced an increase on annual downtime from 2012 to 2013. For example, 

the downtimes at SalesForce and Microsoft Windows Azure almost tripled from 2012 to 2013 
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(34.36 hours and 111.5 hours in 2012 to 84.72 hours and 272.04 hours in 2013, respectively) [6]. 

Therefore, designing networks with faster data transmission and better survivability are highly 

desirable [2]-[3]. 

Despite the fact that optical transport network failures or disruptions are destructive and 

costly, studies have shown that optical network outages and cable cuts are inevitable despite a 

considerable amount of effort taken to physically protect the cables [3], [7]. A network failure 

can occur at various network components, e.g., a node of a network, or a span of a network [1]. 

Because nodes of a network are often considered perfect, survivable network designs are 

primarily built around network span failures [1], [5]. A common approach for improving 

network resilience against span failures is by adding redundancy in span capacities, such as 

adding spare capacity units on each network span. These spare capacity units do not carry any 

traffic and are not cross-connected until restoration of a failure is needed [8]. Examples of such 

survivable network designs include 1+1 automatic protection switching (APS) [9], survivable 

rings [10], span restoration [11], path restoration [12], shared backup path protection (SBPP) 

[13], and p-cycles [14]-[16]. Except for the 1+1 APS and survivable ring designs, allocation of 

spare capacity is carefully optimized when designing survivable networks [17]. 

In recent years, the relatively new p-cycles survivable network design has drawn a lot of 

attention. The p-cycles concept was proposed in the late 1990s [14]-[16] and has been widely 

studied due to its ring-mesh dichotomy, which allows p-cycles to provide ring-like restoration 

speed with mesh-like protection efficiency. Various studies have been conducted on p-cycle 

designs and selection methods which will be elaborated further in CHAPTER 3 of this thesis. 

Integer linear programming (ILP), heuristics, and meta-heuristics are commonly-adopted 

approaches for optimizing p-cycle survivable network design problems [3]. Integer linear 

programming is a type of linear programming where some decision variables are integers. It is 

often solved by the branch-and-bound method, where a branching process explores the entire 

solution space by creating new sub-problems with new bounds [18]. An ILP can provide an 

optimal solution to a problem, however, the computational runtime increases extensively as a 

problem gets more complicated [19]. A heuristic method is a problem-specific method that is 

used for all or part of a problem [20]. Compared to LP or ILP, a heuristic method generally 

provides sub-optimal solutions; however,  it can solve a complex problem within a relatively 
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shorter run time. Meta-heuristics are a type of heuristic method that are not problem-specific, 

and that can be widely used in a wide variety of optimization problems [3]. They are high-level 

structures or processes for solving optimization problems and can easily be customized into 

case-specific problems.  

1.2 Motivation & Goals 

Although extensive work has been conducted on p-cycle survivable network designs 

using either linear programming or heuristic methods, there are still great opportunities for 

further exploration of this topic. For example, to the best of our knowledge, there has not been a 

design proposed in particular for large-scale networks and tested using large test networks that 

are over 100 nodes. Therefore, the primary focus of this work herein is to scale up and advance 

the p-cycle protection design optimization problem for large-scale networks. In this thesis, we 

will challenge and scale up the p-cycles designing problem for large networks using heuristic 

and meta-heuristic methods. To be specific, a novel heuristic algorithm will be developed for 

enumerating highly efficient p-cycles in large-scale networks. Also, a suitable genetic algorithm 

model will be proposed for optimizing p-cycle network protection against single-span failures.  

The research goals of this thesis can be generalized as the following: 

1) Develop a novel heuristic p-cycle enumeration algorithm with strong performance 

2)Propose a genetic algorithm model for p-cycle spare capacity allocation, including: 

• Proposing suitable chromosome encoding and optimal GA operators 

• Developing suitable repair mechanism for disrupted chromosomes 

• Developing effective and problem-specific mutation operation 

1.3 Thesis Outline 

  

 The remainder of this thesis will provide a thorough discussion of relevant background 

concepts regarding p-cycles and relevant mathematical tools, followed by experimental and 
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computational set-ups, and two main contributions to the p-cycle network protection design 

problem for large-scale network topologies. 

 CHAPTER 2 introduces fundamental concepts and terminologies in transport network, 

graph theory and network survivability which will be used extensively throughout this thesis. 

This chapter also highlights some mathematical tools and algorithms (e.g., key search 

algorithms, linear programming, heuristics and meta-heuristics), which will build a solid 

foundation for developing our heuristic algorithm and GA model in later chapters of this thesis.  

In CHAPTER 3, p-cycles fundamental concepts and metrics, and relevant previous 

research and studies will be presented. Previous work on p-cycle pre-selection methods, p-cycle 

enumeration methods, p-cycle protection design and optimization methods will be discussed in 

detail in this chapter.  

CHAPTER 4 will introduce a key meta-heuristic method called a genetic algorithm (GA). 

Fundamental GA concepts, genetic operators designs, and applications of genetic algorithm in 

optimizing p-cycle protection in network survivability will also be discussed.  

CHAPTER 5 is devoted to introducing the experimental methods and computational set-

ups. The calibration network topologies (also referred to as “calibration networks”) and test case 

network topologies used in the experiments conducted for this thesis works will also be 

introduced in this chapter.  

CHAPTER 6 will propose a new heuristic p-cycle design method, which is referred to as 

disjoint-path Dijkstra cycle development (DDCD). Detailed case-specific experimental designs 

and set-ups will be presented. The experimental results will be compared to a benchmark 

heuristic method from the literature and a conventional depth-first search (DFS) approach. 

CHAPTER 7 will present a meta-heuristic approach to solving the p-cycle spare capacity 

allocation problem using genetic algorithm (GA). This novel GA design developed for this thesis 

work is referred to as a GA-SCA model. Specific chromosome encoding and GA operator design 

rationales (selection, crossover, mutation) will be explained in detail. The proposed GA-SCA 

model will be applied to various test case network topologies that are up to 140 nodes. 

Comprehensive experimental results and discussions will follow. 

Finally, in CHAPTER 8, this thesis will conclude with a summary discussion of the main 

contributions of this thesis work, as well as recommendations for future studies.  
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CHAPTER 2. TRANSPORT NETWORK BASICS & METHODS 

2.1 Graph Theory in Transport Networks 

A graph can be denoted as G = (V, E), which has a finite set of vertices V = {v1, v2, v3, ...}, 

and a finite set of edges E = {e1, e2, e3, …} [21]. Each edge in E connects two vertices in V and can 

be referred to as e1 = {v1, v2}. An edge in E (e.g., e1) connects two adjacent vertices in V (e.g., v1, 

v2). If v1 is considered the origin of the edge e1 and v2 is the destination, and swapping these 

designations will change properties of the edge, then e1  is a directed edge. A directed edge is 

drawn using an arrowhead pointing its direction. A graph with at least one directed edge is 

referred to as a directed graph. An undirected graph is a graph with no directed edge. In the 

case of an optical transport network, the terms nodes and spans are used to refer to vertices and 

edges, respectively [3]. In the context of this thesis, all transport network models are illustrated 

and treated as undirected network graphs. 

A graph is considered a weighted graph if a value wei is associated with each edge ei, and 

wei is considered the weight of the edge. In transport networks, weights of edges may be span 

costs, distances, capacities, etc. [3] Where edge weights indicates span capacities, the graph is 

considered a capacitated graph.  

The number of edges incident on a vertex is referred to as the degree of the vertex. In 

transport networks, degrees of vertices are referred to as nodal degrees. The degree of a node is 

determined by the number of spans traverses that node. A network’s average nodal degree can 

be calculated by  = , where |E| is the total number of edges (spans) and |V| is the total 

number of vertices (nodes) [3]. 

Figure 2.1. illustrates two key terms used in transport networks, a link and a span. A link 

is the fundamental unit of capacity where nodal switching devices (OXC, ADM) function to 

interconnect capacity [7]. A span refers to a physical unity of a collection of such links in parallel 

between a pair of adjacent nodes. A failure of a span will cause the failure of all the links 

associated with the span simultaneously [3].  

d̄ 2 *  |E |
|V |
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   Figure 2.1. Illustra0on of a link and a span. 

Figure 2.2 distinguishes a route from a path in the context of transport networks. A route 

refers to a general outline of the sequence of connected spans, whereas a path is a particular 

cross-connected sequence of links that are embedded within a route. Therefore, a route can 

consist of multiple paths. As shown in Figure 2.2, there are two paths on the same route. 

 

   Figure 2.2. Illustra0on of a path and a route. 

Disjoint Routes 

Two routes are considered disjointed if they do not share any element in common. Two 

span-disjoint routes do not share any span; however, they may share common nodes other than 

their end nodes (as shown in Figure 2.3(a)). In the case of node-disjoint routes, two routes share 

no common nodes except the two end nodes (as shown in Figure 2.3(b)). In an undirected graph 

G = (V, E), survivability of the graph is determined by the number of node-disjoint paths (xij) 

 6



between pair of nodes i, j. To be specific, transmission is ensured between i and j until xij -1 of 

nodes fail [21].  

 

       Figure 2.3 Illustra0ons of a span-disjoint route (a) and a node-disjoint route (b) between an  
       origin node and des0na0on nodes. 

Two-connectivity vs. Bi-connectivity 

As was explained in [3], a network graph is a valid two-connected graph if there are at 

least two span-disjoint routes between every pair of nodes (see Figure 2.4 (a)). Compared to a 

two-connected graph,  a valid bi-connected graph has at least two node-disjoint routes between 

every node pair (see Figure 2.4 (b)). In the context of transport networks, two-connectivity is 

required for any single span failure survivability in a transport network, whereas bi-connectivity 

is required for survivability of any single-node failure. 

 Figure 2.4 Examples of (a) a two-connected graph and (b) a bi-connected graph. 
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Hamiltonian Cycle vs. Eulerian Cycle 

A Hamiltonian cycle is a cycle that traverses all the nodes in a graph where each node is 

passed through once and only once, whereas a Eulerian cycle is a cycle that visits all the spans 

once and only once [3] (see Figure 2.5). In a Eulerian cycle, a node may be traversed more than 

once. As shown in Figure 2.5, the Eulerian cycle F-G-D-B-F-E-A-B-C-D-F passes through nodes 

B and D twice. A Eulerian cycle protects every span of a network with an on-cycle relationship. A 

Hamiltonian cycle also has the potential to protect every span of a graph, however, through both 

on-cycle and off-cycle protection relationships [3]. This is a particularly important concept in p-

cycle network protections. As shown in Figure 2.5, the Hamiltonian cycle F-G-D-C-B-A-E-F can 

also protect the spans B-F and B-D which straddle the cycle. CHAPTER 3 of this thesis will 

further discuss the concepts and mechanisms of p-cycles and straddling spans. 

 Figure 2.5 Examples of a Hamiltonian cycle F-G-D-C-B-A-E-F (leL) and a Eulerian cycle  
                F-G-D-B-F-E-A-B-C-D-F (right). 

2.2 Optical Transport Network Basics 

A transport network (also known as a backbone network) provides fast and efficient 

network data transmission for various types of data, such as voice, images, videos, etc. Sets of 

multi-channel point-to-point data transmissions are managed through transport networking, in 

order to create a virtual network domain for other services to operate on [22]. Current optical 

transport networks, using dense wavelength division multiplexing (DWDM) [22] and optical 
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cross-connects (OXC) [17], allow a massive amount of data to be transmitted at ultra-high speed 

[3]. A transport network consists of nodes and spans that connect two neighbouring nodes. In 

the case of an optical transport network, a node can be an OXC device, an add/drop multiplexer 

(ADM) device, or an Internet Protocol (IP) router. A span generally refers to an optical fibre 

cable. Figure 2.6 illustrates an example of an optical transport network topology, which is the 

US long haul network with 28 nodes and 45 spans [78]. The nodes and spans represent various 

cities and connecting fibres, respectively.  

In transport network operations, various network components play crucial roles. 

Although a detailed introduction of all these key components is beyond the scope of this thesis, 

some key terms and definitions regarding high-level optical transport networks, which will be 

referenced throughout this thesis, are explained in detail as follows: 

  

 Wavelength Division Multiplexing (WDM) 

 Wavelength division multiplexing (WDM) is an optical transport network technology 

that has favourable long-haul network transport capacity efficiency. In WDM, each optical fibre 

is capable of carrying multiple optical carrier wavelengths [22]. Each wavelength has its distinct 
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payload (for instance, a formatted signal). Different payloads are appropriately spaced apart and 

are modulated onto each optical carrier. With growing service demands over long haul 

transportation, it is suggested installing WDM systems are more economical than installing and 

upgrading fibre systems [3].  

A preferred such system is called dense wavelength division multiplexing (DWDM), 

where a larger amount (> 40) of wavelengths are carried on each fibre with tighter frequency 

spacing [80]. In contrast to DWDM, an earlier technology which is referred to as a coarse 

wavelength division multiplexing (CWDM) allows only two to four wavelengths with wider 

frequency spacing [3]. 

Add/Drop Multiplexer (ADM) vs. Optical Cross-Connect (OXC) 

The ADM and the OXC systems are two types of nodal switching devices in optical 

transport networks, where fibre optic cables are connected to [17]. An ADM line-terminating 

device has two line-rate interfaces, East and West lines. An ADM also has local add/drop ports 

to allow tributary signals to enter (add) or exit (drop) the main line-signals that pass through the 

device from West and East lines. ADMs are generally used in survivable ring designs, such as in 

bidirectional line-switched rings (BLSR) [10] and unidirectional path-switched rings (UPSR) 

[10]. An OXC terminates and switches optical signals in a fibre optic network, and are usually 

used in mesh-based survivable networks.  

Network Demands 

Demands on a transport network refer to an aggregation of all traffic flows from an 

origin node to a destination node of the transport network [24]. A demand unit is expressed in 

terms of the number of transmission capacity units required by the traffic flow aggregates, such 

as whole lightpaths and OC-48 [24].  OC-48 standards for a particular category of Optical 

Carrier (hence, OC-n) line with transmission rate of 2488.32 Mb/s (48 multiplies the base rate 

of 51.84 Mb/s), where an optical backbone network is usually managed [24]. In the context of 

this thesis, one unit of traffic demand takes on a whole lightpath, hence one unit of working 
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capacity on a span between an origin node and a destination node of a network. In addition, 

only integer units of optical network traffic demands will be considered in this thesis unless 

stated otherwise.  

Working Path vs Spare Path  

A working path is a path that carries traffic demands (or, units of working capacity) 

during normal operations. A protection path, however, carries spare traffic capacity (or units of 

spare capacity) that is available for deployment when a failure occurs [25]. In general, spare 

capacities may refer to protections fibres in APS or rings or spare channels designed in mesh-

based restorable networks [3]. Lengths of the working and spare paths vary based on the 

number of spans along the path between the origin node and the destination node. A network’s 

working capacity status and spare capacity status will be looked at while assessing a network’s 

capacity efficiency, which is the reciprocal of the network redundancy. 

Figure 2.7 illustrates a working path of D-C-B and outlines a spare path of D-G-F-B that 

can be used to restore the working path in case of a failure. The spans D-C and C-B carries 4 and 

3 units of working capacity, respectively. The spans D-G, G-F and F-B carry 4, 4, and 5 units of 

spare capacity that are available for restoring a failure. 

 Figure 2.7 Example of a working path (and units of working capacity) and a spare  
 path (and units of spare capacity) in a network. 
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Network Redundancy 

In the context of this thesis, a redundancy calculation is used to measure a network’s 

efficiency. When all span costs (ci) are equal (c1 = c2 = c3 = c4 = ...) or are not available for 

efficiency calculation, redundancy of a transport network is calculated as a capacity redundancy 

(Rcap) of the network. Rcap is defined as the total units of all the spare capacity (Si) allocated on 

all spans (S) divided by the total units of all the working capacity (Wi) across all spans of the 

transport network [7], as shown below in Eq. 2.1.  

   (Eq. 2.1)  

When capacity costs are considered, and span costs are not identical, capacity cost redundancy 

(Rcost) is calculated for transport network design efficiency. The Rcost is defined as the total cost 

of spare capacity (summation of costs of spare capacity on each span) divided by the total cost of 

working capacity (summation of costs of working capacity on each span)(Eq. 2.2) [7].  

  (Eq. 2.2)  

While designing a survivable transport network in this thesis, network redundancy 

calculation will be taken into consideration (Rcap or Rcost depending on the design of the span 

costs in test networks) because the calculation indicates how efficient the design is in terms of 

using its spare capacity.  A lower redundancy indicates a lower total spare capacity is used to 

protect the total working wavelengths, hence better efficiency. For the same network topology 

and the same set of network traffic demands, a survivable ring network design will have higher 

redundancy than a mesh-based design or a p-cycle design. 

2.3 Network Survivability 

 As mentioned in CHAPTER 1, Network survivability is the capability of a network to 

maintain proper functioning in the event of a network failure [1].  A network failure event can be 

either a node failure or a span failure [21]. In practice, a node failure of a network can be a 

Rcap  =  ΣSi /  Σ Wi,   ∀i ∈ S 

Rcost  =  Σ(Si × ci ) /  Σ(Wi × ci ),   ∀i ∈ S 
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failure of a data centre, a city, or a switching point. A span failure, however, is a complete cable 

cut between two nodes [21]. Failure of a node will cause the failure of all spans that traverse that 

node simultaneously. As discussed previously in this thesis, network failures are costly and 

inevitable; therefore, studying and advancing survivable network designs that restore or protect 

network failures is much needed [17]. Over the past two decades, various types of network 

restoration and protection mechanisms have been studies by researchers [9]-[13], [17]. In this 

section herein, we will introduce some common survivable network schemes. 

2.3.1 Survivable Rings 

Survivable rings are pre-configured closed-loop structures (ring-like) that use ADM 

nodal devices to switch optical signals. In a survivable ring structure, half of the transmission 

capacity can be used for working lightpath traffic routing [10]. In contrast, the other half is 

reserved as a backup channel for rerouting disrupted lightpath when a failure occurs.  

There are two types of survivable rings: unidirectional path-switched rings (UPSR) and 

bidirectional line-switched rings (BLSR) [3]. A UPSR contains a working fibre and a protection 

fibre. The working fibre transmits the working signals in one direction, and the protection fibre 

transmits the backup signal in the opposite direction. In the event of a single span failure, two 

end nodes next to the failure perform a tail-end transfer and switch the signals to the backup 

channel to reroute the signal around the ring [7]. Figure 2.8 shows a UPSR during normal 

operation (left) and its protection switching operation after a failure occurs (right). 

 Figure 2.8 Illustra0on of UPSR protec0on mechanism aLer a failure occurs.  
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In a bidirectional line-switched ring, a failure may involve a span or several spans. When 

a failure occurs, working demands are protected through a loop-back mechanism. Figure 2.9 

shows a 4-fibre BLSR where a pair of bidirectional fibres is designated for working demands and 

a separate pair is for protection. When a failure occurs, the entire working demands are looped 

back from working fibres to the protection fibres at the nodes on both ends of the failed section 

[3]. Because the protection signal is share across the entire ring and the same path (unoccupied 

spans) can be reused for other demand units, a BLSR is more capacity-efficient than a UPSR 

under general demand patterns [3], [10].   

 

  Figure 2.9 Illustra0on of BLSR protec0on mechanism aLer a failure occurs. 
  

2.3.2 Mesh Network Survivability 

Mesh network survivability is a type of network survivability scheme, where protection 

or restoration of paths utilizes spare capacities distributed across entire network instead of 

following pre-constructed capacity structure (as in survivable rings) [17]. Sharing of spare 

capacities allows survivable network designs with lower capacity redundancy [17]. The working 

paths routing in mesh network survivability usually follow a shortest path method [3]. 

Mesh network survivability mechanisms can be further categorized under localized and 

end-to-end restoration and protection mechanisms [25]. Localized restoration refers to the 
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survivability mechanism where the restoration paths are constructed between the two end nodes  

that are adjacent to the failure itself [17]. Span restoration is an example of a localized mesh 

restoration mechanism [11], where a set of local restoration paths are formed between 

immediate end nodes of a failed span to re-route the demands as illustrated in Figure 2.10.  

   Figure 2.10 An illustra0on of span restora0on. 

End-to-end restoration or protection mechanisms establish spare routes between origin 

and destination nodes for any affected demand units [17]. This approach effectively deploys 

more network resources (e.g., exploring more disjoint routes or utilizing unoccupied existing-

working routes). Therefore, an end-to-end restoration or protection scheme tends to be more 

capacity-efficient than a localized restoration mechanism [17], [25]. Shared backup path 

protection (SBPP) [13] and path restoration (PR) [12] are examples of end-to-end restoration or 

protection schemes. In SBPP, a set of end-to-end backup routes are formed and are fully disjoint 

from corresponding working routes. By doing so, capacity efficiency may be compromised. 

However, SBPP allows the sharing of spare capacities on the backup routes and allows activation 

of signal switchover by affected end nodes without prior knowledge of a failure [13]. Therefore, 

SBPP is considered “failure-independent” and is also referred to as failure independent path 

protection (FIPP). As shown in Figure 2.11, node pairs C-E and D-G route their demands via 

completely disjoint working paths (C-A-E and D-G, respectively) as drawn in solid lines. 

Therefore, no single-span failure will trigger both working paths (C-A-E and D-G) to fail at the 

same time so that their backup paths (dotted lines) will be occupied simultaneously. In this case, 

both backup paths can share the spare capacity on their common span B-F. 
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  Figure 2.11 An illustra0on of shared backup path protec0on. 
 

Path restoration (PR) is also an end-to-end restoration scheme. However, unlike in the 

case of an SBPP, the formation of end-to-end backup routes occurs in real-time in response to 

an actual failure occurs on a working path [12]. Therefore, PR is considered “failure-dependent”. 

Because the failure is known prior to restoration, it is possible to re-use the working capacity on 

the surviving segments of the affected working route. This special mechanism of “releasing” the 

surviving “stub” portions to be re-used for restoration is referred to as “stub-release“, which 

makes it the most capacity-efficient survivability mechanism [12]. Figure 2.12 shows a path 

restoration with sub-release. C-B-F and C-B-A-E are two working paths that share a common 

failure (a cut on span C-B). With stub-release, the restoration paths C-D-B-F and C-A-E each 

picks up a portion of the surviving working paths (B-F and A-E, respectively) and re-use their 

working capacities for restoration.  

  Figure 2.12 An illustra0on of path restora0on with stub-release. 
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2.3.3 p-Cycles 

As discussed in previous sections, survivable rings may be preferred due to simpler 

mechanisms and faster restoration processes; however, they are less capacity-efficient than 

mesh-restorable network designs. Mesh network survivability schemes are favoured for their 

enhanced capacity efficiency, despite relatively longer restoration time [17].  

p-Cycle protection is based on the optimal formation of p-cycles in the spare capacity of a 

mesh-restorable network, which was proposed in [14]-[16]. The p-cycles are formed prior to any 

network failures and are formed out of the previously un-connected spare links of a mesh-

restorable network [14]. Figure 2.13 (a) illustrates a p-cycle (bolded), where the spans traversed 

by the p-cycle are on-cycle spans. A p-cycle provides one unit of spare capacity to all the on-cycle 

spans and offers two units of spare capacity for the spans that straddle over the cycle. This type 

of spans, which has its two end nodes on the cycle but not the span itself, is referred to as 

straddling spans to the p-cycle. Straddling spans carry two working paths for each protection 

path on the p-cycle they straddle, but they do not retain any spare capacity themselves [3]. 

Figure 2.13(b)-2.13(c) indicate two scenarios where a p-cycle can protect a span failure. When an 

on-cycle span fails (as shown in Figure 3.2(b)), the surviving portion forms one restoration path 

between both nodes adjacent to the failure. This protection operation is similar to that of a 

bidirectional line-switched ring. In Figure 3.2(c), if a failure occurs not on any part of the p-cycle 

but on a span that straddles the p-cycle, two restoration paths will be available for restoring the 

failure around the failed spans. 

  
Figure 2.13 (a) a p-cycle. (b) a failure occurs on an on-cycle span, and (c) a failure occurs on  
a straddle span. 
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p-Cycle is a relatively new network survivability scheme that combines both ring-like 

restoration speed and mesh-like protection efficiency [14]-[16]. It is “ring-like” mostly because 

the topology of a p-cycle is similar to that of a ring. Additionally, the signal switching 

mechanism of a p-cycle is functionally similar to that of a BLSR. The restoration speed of a p-

cycle depends on the time taken for two end nodes to perform signal switching from a failed 

working path to a pre-cross-connect protection path. This resembles the mechanism of a 

survivable ring where routing of the protection path is determined before a failure occurs. 

Despite its ring-like signal switching mechanism and restoration time, a p-cycle is more 

structurally accessible for restoration in more ways, which contributes to its “mesh-like” 

efficiency [14]. Details regarding p-cycles will be further discussed in CHAPTER 3 of this thesis. 

2.3.4 p-Cycles vs. Survivable Rings 

Even though rings and p-cycles share some similarities topologically and functionally, 

various studies have discussed the comparison between rings and p-cycles in optical networks 

[26]-[28]. Some studies have suggested more efficient spare capacity utilization in p-cycles 

protection as compared to that of ring protections [29]. In general, a p-cycle protection scheme 

is a more plausible protection mechanism in the following aspects: 

Firstly, when a span on a p-cycle fails, two end nodes adjacent to the failure are involved 

in switching the traffic signals to the protection path. No real-time signalling is needed between 

the two end nodes for the switching (unlike in rings) [26]. Secondly, in survivable rings, the 

protection path routing must comply with the working routing and is structurally restricted by 

it. However, compared to rings, p-cycles are formed in the sparing capacity pool of a network, 

which does not collide with the routing of working paths [26]. Additionally, p-cycles have the 

flexibility to be restructured and modified, whereas rings cannot be modified once they are 

deployed [27]. Finally, p-cycles can provide network protection with redundancy less than 

100%, whereas ring-based protection has a redundancy of at least 100%. With its capability to 

protect straddling spans, p-cycles can provide more efficient overall protection to the whole 

network [27]. 
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2.3.5 Network Protection vs. Network Restoration 

Previously, there have been two types of survivability mechanisms against network 

failures that we used to differentiate from one another: network protection and network 

restoration. "Network protection” refers to the type of network survivability mechanism where 

the cross-connections and allocation of spare capacities are pre-determined. The backup routes 

are determined prior to a failure [14]. Some survivable network schemes provide dedicated 

protection where each traffic demand is protected by a dedicated backup path (e.g., in 1:1 APS), 

whereas some provide shared protection (e.g., in SBPP). “Network restoration” does not require 

the provision of spare capacity in advance. In response to a network failure, network restoration 

schemes allow an alternative route to be configured in real-time to restore each failed 

connection (e.g., in span restoration and path restoration).  

In recent years, “network protection” and “network restoration” are often used 

interchangeably. Going forward in this thesis, we will be using these two terms interchangeably. 

2.4 Mathematical Tools - Selected Search Algorithms 

2.4.1 Finding the Shortest Path - Dijkstra’s Algorithm 

  

Dijkstra’s algorithm is a search algorithm that finds the shortest path between a pair of 

nodes in a weighted network with non-negative edge weights, and it can be applied in either a 

directed or an undirected graph [30]. The problems discussed in this thesis will simulate the 

real-world network cases with non-negative edge weights (e.g., Euclidean distances). Therefore, 

studies conducted in this thesis will be using Dijkstra’s algorithm to find the shortest path from 

an origin node to a destination node [30]-[31]. Dijkstra’s algorithm starts at a node of origin and 

explores the entire network in a process as outlined in the following steps [30]-[31]: 
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Step 1: The process starts at a node of origin. Scanning all the neighbouring nodes that 

are adjacent to the node of origin (also referred to as the predecessor node) and assign them 

temporary labels in the format of {T, total distance to the node of origin, predecessor node ID}, 

where “T” represents a temporary label. 

Step 2: Choose the temporarily labelled node with the smallest total distance from the 

node of origin and replace the temporary label with a permanent label in the format of {P, total 

distance to the node of origin, predecessor node ID}, where “P” stands for a permanent label. If 

more than one temporarily labelled node has the same smallest total distance, which indicates 

more than one shortest path, we can randomly pick one of them. If the permanently labelled 

node has no neighbouring nodes, skip it and move on to the next permanently labelled node. 

Step 3: Continue scanning all the adjacent nodes of the newly permanently labelled node. 

Assign temporary labels to the nodes that are not yet labelled and skip the ones with permanent 

labels. For previously labelled nodes, update their temporary labels if the new total distances to 

the node of origin are smaller than previously assigned values. 

Step 4: Repeat Steps 2 and 3 until the node of destination is permanently labelled. 

Obtain the shortest path from the node of origin to the node of destination by following along all 

predecessor nodes in permanent labels. 

Figure 2.14 illustrates an example of finding the shortest path between Node 1 to Node 

10 using Dijkstra’s algorithm in a network with 10 nodes and 20 spans (10n20s). Figure 2.14(a) 

presents the network topology where each span weight (Euclidean distance between two end 

nodes of a span) is indicated next to each span. Figure 2.14(b) tabulates the scanning process as 

described above in Steps 1-4. Therefore, the shortest path between Node 1 to Node 10 in the 

10n20s network is {Node 1 → Node 4 → Node 8 → Node 10} with the shortest distance of 7. 

 20



Figure 2.14 Example of Dijkstra’s algorithm in a network with 10 nodes and 20 spans. 

A pseudo-code for Dijkstra's algorithm [30] can be generalized as follows: 

function Dijkstra(Graph, source): 

    initialize node set N 

    for each vertex v in Graph:              

        initialize distance[v], visited[v] as empty               

        add v to N                       

    distance[source] ← 0                         
    while N is not empty: 

        u ← node in N with min distance[u]                                                  
        remove u from N  

        for each neighbour v of u:   
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            distance2 ← distance[u] + length(u, v) 
            if distance2 < distance[v]:                

                distance[v] = distance2  

                visited[v] = u  

return distance[], visited[] 

In p-cycle enumeration problems, Dijkstra’s algorithm can be used to generate eligible p-

cycles [32]-[34] by applying the algorithm twice between a pair of nodes. For example, Zhang 

and Yang [32] proposed a heuristic p-cycles generation algorithm where a p-cycles is formed by 

running Dijkstra’s algorithm twice consecutively on a pair of origin-destination (O-D) nodes to 

generate two node-disjoint paths. The two node-disjoint paths are then joined to form a bi-

connected cycle with one straddling link. Dijkstra’s algorithm is also used for working path 

routing in various p-cycle protection optimization studies [32]-[37]. 

2.4.2 Finding All Distinct Routes - Depth-First Search (DFS) Algorithm 

Depth-first search (DFS) algorithm is a search algorithm used for a thorough exploration 

of all the reachable vertices of an undirected or directed graph. The algorithm starts at an 

arbitrary root node on a graph, exploring all neighbouring nodes (either towards the left side of 

the graph or to the right side of the graph) and spans as “deep” as possible until all the nodes 

and spans on the current path are explored [38]. If there is any unexplored nodes remain in the 

graph, the DFS process will start to backtrack to the next reachable unexplored node. The entire 

search process is repeated until all the nodes in the graph are explored. During the search, nodes 

in a graph can be “marked” with different colours indicating their status [38]. For example, all 

nodes are white initially (“unexplored”) and are marked grey once they are “discovered”. Once 

exploration of a node and its adjacency list is completed, the node will be coloured black. The 

output of a DFS algorithm is a depth-first forest with a collection of spanning tree [38]. 

Figure 2.15 illustrates an overall search process of a DFS algorithm. In this example, the 

search process starts at Node A in the original graph (as shown in Figure 2.15(a)) and explores 

the network from the left side (Node A → Node B). Figure 2.15(b) outlines the full details of the 

search process. The solid directed lines marks the forward edges that point from a node of 
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origin to a descendant node, whereas the dotted directed lines indicates the back edges which 

point from a node to its ancestor node. The numbers next to the directed lines indicate its 

search sequence. For example, the forward edge of “Node A → Node B” is the first edge explored 

during the process whereas the back edge of “Node B → Node A” is explored at the 12th step. 
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Figure 2.15 Example of the depth-first search algorithm.



Pseudo-code for a classic DFS algorithm [38] is outlined as follows, where the graph G 

can be either a directed graph or an undirected graph: 

function DFS(G): 

 for each vertex u ← V[G]: 
       do colour[u] ← WHITE 
           pred[u] ← null 
  for each vertex u ← V[G]: 
       if colour[u] == WHITE: 

            do DFS-Visit(u) 

function DFS-Visit(u): 
   colour[u] ← GREY 
   for each v adjacent to [u]: 

       if colour[v] == WHITE: 

            pred[v] ← u 
                DFS-Visit(v) 

colour[u] ← BLACK 

In the above pseudo-code, whenever a vertex v is discovered as a result of scanning the 
adjacency list of a predecessor vertex u (already explored), this action is recorded as setting the 
predecessor field of pred[v] to u (pred[v] ← u). In addition, all vertices are initialized with 
colour WHITE and are updated as GREY once they are “discovered”. Once exploration of a 
vertex is completed, the vertex is labelled as BLACK.  

In p-cycle protection design problems, DFS algorithms can be used to enumerate sets of 

candidate cycles as a preparatory step for the subsequent cycle placement process[33]-[34], 

[39]-[40] or for the working path routing [39]. In addition, DFS algorithm can also be used find 

the kth shortest path by conducting a topological sorting because it is capable of finding all the 

paths in a network [3], [25]. In this thesis herein, the depth-first search algorithm will be 

implemented to enumerate candidate cycles in CHAPTER 6 as one of the benchmark algorithms 

to be compared with our novel heuristic algorithm. 
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2.5 Mathematical Tools - Linear Programming 

  

 2.5.1 Key Terminology 

 A linear programming (LP) method is a type of mathematical programming method 

used for planning decisions, where an objective function is optimized (e.g., maximized or 

minimized) and one or more constraints are satisfied [19]. A linear programming model is a 

constrained optimization model which include decision variables, an objective function, and 

constraints [19]. Optimization is a process of searching for the best solution(s) to a particular 

operations research problem; operations research refers to a scientific decision making process 

that aims at pursuing the best way to plan and operate a system [19], [41]. 

In a linear programming model: 

 An objective function is a function that represents a problem to be either maximized or 

minimized, and it reveals how much each decision variable contributes to the value to be 

optimized [19]. The contribution to the objective function from each decision variable is 

proportional to its value [3]. An objective function is usually denoted by f (x). 

 Constraints are the limitations and conditions that must be satisfied in search of 

solutions [19]. Each constraint of a LP model includes one of the three relationships: “≤”, “≥” or 

“=” [19]. “≤” means that the constraint function on the left-hand side (LHS) of the relationship is 

less than or equal to the right-hand side (RHS). “≥” indicates that the LHS of the constraint 

relationship appears to be greater than or equal to the RHS. Whereas, in a “=” relationship, the 

LHS and RHS are equal. For example, a constraint may look like f1 (x) ≥ a1 or f2 (x) ≤ b1. 

 Decision variables are values that must be determined to solve an optimization problem. 

They are under our control and their values have direct impacts on performance of an LP model 

[3]. Decision variables are usually represented by xi = {x1, x2, x3, …, xn} for a problem with n 

variables. A continuous decision variable refers to a decision variable that can take on either a 

fractional value or an integer value [19]. 

 The objective function and all constraints in a LP model are linear, and the decision 

variables are continuous [3]. LP models can be solved using the simplex method, which finds the 
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optimal feasible solution in a cascade of pivot moves and matrix operations [19]. A feasible 

solution satisfies all constraints on the variable values [3]. An optimal solution for a LP model is 

the feasible solution that provides the best value to the problem’s objective function [19].  

 A decision-making environment for LP models can be either deterministic or 

probabilistic. In a deterministic decision-making environment, the uncertainty about the 

decision outcome is so trivial that it can be ignored [19]. On the contrary, a probabilistic 

environment is where the uncertainty about the decision outcome is significant enough that it 

requires special consideration [19].  

  

 2.5.2 Integer Linear Programming 

  When one or more of the decision variables are required to be integers, the mathematical 

programming problem is referred to as an integer linear program (ILP) [3]. A pure integer 

programming problem is an ILP where all decision variables are integers. A mixed integer 

programming (MIP) problem, however, refers to an ILP where some decision variables are 

integers and some are continuous. Integer variables are the variables that must have integer 

values, whereas, binary variables are a type of variables whose value must be either 1 or 0. 

 An ILP or LP can be reduced to a standard algebraic form as shown in Figure 2.16. 

Unless otherwise specified, all LPs discussed in this thesis are ILPs, and they are pure ILPs in 

most cases. 
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Figure 2.16 Example of a standard algebraic form for an ILP.



 As mentioned briefly in the CHAPTER 1 of this thesis, an ILP model is typically solved by 

the branch-and-bound method. In the branch-and-bound method [18], the “branching” process 

creates new sub-problems with new bounds. The “bounds” are used to snip off any branch LPs 

that do not contain an overall optimal solution. Branching continues down on each sub-problem 

until all the branches are explored, and the best integer solution is found. 

 2.5.3 ILP Formulation in Survivable Network Design 

  

 ILPs are formulated to solve optimization problems in various survivable transport 

network designs (i.e., span restoration [11], path restoration [12], SBPP [13], p-cycles [14]). 

Given a network topology, a set of working traffic demands, and any constraints that must be 

satisfied, this type of ILP formulations finds the minimum cost associated with working and 

spare capacity distribution. In these formulations, the cost of placing the required capacity units 

in the network is minimized. Constraints that must be satisfied include: ensuring full working 

lightpath routing and achieving 100% restorability to single-span failures [3].  

 To optimize this type of network design problem, we can adopt either a single-step or 

two-step approach. The single-step approach to optimizing a survivable network design problem 

is generally referred to as a joint capacity allocation (JCA) problem. The JCA optimizes the 

working units routing in conjunction with the allocation of spare capacities, so that the total 

capacity cost (working capacity plus spare capacity) will be minimized [17], [26]. The spare 

capacity allocation (SCA) problem, on the other hand, is a two-step approach where the 

working paths are usually routed in advance via preferred routing methods, such as the shortest 

path method [26] or the DFS algorithm [32]-[39], [42]-[43]. Given the working capacities, the 

allocation of spare capacities with minimum cost will be determined to ensure 100% protection 

for all working paths. 

 To demonstrate how an ILP may be formulated to optimize a survivable network design, 

we will provide an example of  a SCA problem in a span-restorable network. The SCA problem in 

a span-restorable network can be formulated using an arc-path approach [11], [44]. An arc-path 

approach assumes that all distinct eligible restoration routes are already enumerated and 

working demands are routed. Based on specific spare capacity values on each span , the model 
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optimizes assignment of restoration flows over eligible restoration routes that crosses each span 

in a network topology so that the total cost of spare capacity allocation is minimized. The ILP 

formulation of arc-path approach of SCA in span-restorable network is as shown below.   

Objective function:          Minimize       (Eq. 2.1) 

Subject to:     sj   ≥      Ɐ(i,j) ∈ S2 i≠j  (Eq. 2.2) 

     wi  =      (Eq. 2.3) 

All variables are non-negative and integer 

In the model presented above, S is a set of all network spans and Pi  is a set of distinct 

eligible routes available to carry restoration flow for failure on span i (Ɐi∈ S). i is a failed span in 

a network scenario, whereas j refers to a span on an eligible restoration route p. In the objective 

function (Eq. 2.1), ci and sj  are the cost of each unit capacity and the number of spare capacity 

on span i, respectively. The objective function minimizes the cost of placing spare capacities to 

restore a failed span i. In the first constraint (Eq. 2.2), xi,j,p is a binary parameter that equals one 

if span j on the restoration route p traverses the failed span i, zero otherwise. fi,p is the number of 

restoration flow assigned to the eligible restoration route p for failure of span i. The sj on the left 

hand side indicates the number of total spare capacities on span j. This constraint ensures that 

the spare capacities on span j can support all the eligible restoration routes that cross the span i. 

The second constraint (Eq. 2.3) ensures that the total protection provided by the restoration 

route p for each failed span i is enough to fully restore the working capacity on the failed span. 

The total number of working capacity to be protected on span i is denoted by wi. Number of 

restoration flow on restoration route p for failure of span i is denoted by fi,p. The arc-path ILP 

formulation provides a detailed specification of restoration routes and flows. 

∑
Ɐi∈ S

ci ∙ si

∑
Ɐp∈ Pi

xi, j,p ∙ fi,p

∑
Ɐp∈ Pi

fi,p

 28



2.6 Mathematical Tools - Heuristics & Meta-Heuristics 

  

 2.6.1 Heuristics vs. Meta-Heuristics 

 Apart from the ILP method, which provides the optimal solution to a problem, heuristic 

methods were also adopted in some studies to optimize survivable network design problems. 

Heuristic methods are problem-specific, purpose-specific methods to be used for all or part of a 

problem [20]. Compared to LP or ILP methods, heuristic methods generally provide sub-

optimal solutions; however, they can solve a complex problem within a relatively shorter run 

time. In reality, large-scale problems may take exceedingly long runtime for an ILP solver to 

reach an optimal solution, and a sub-optimal solution with significantly shorter runtime may be 

preferred. Depending on the details of a heuristic algorithm and the problem it is applied, the 

result of a heuristic algorithm may be very close to an optimal solution. However, in reality, one 

may never know how close it actually is to the optimum [26]. Heuristic algorithms may be 

proposed and implemented in various aspects of a survivable network design problem, such as 

cycle enumeration [32], [39], [45], candidate cycle selection and refinement [46]-[49], optimal 

capacity design and optimization[39], [50]-[52], wavelength assignment [53], etc.  

 Like a heuristic method, a meta-heuristic method also does not guarantee to find an 

optimal solution to a problem. However, unlike a heuristic algorithm, a meta-heuristic 

algorithm is not a problem-specific algorithm but a general problem-formulating framework 

that can be implemented in any optimization problem [20]. 

 2.6.2 Meta-Heuristics Basics & Overview 

 A meta-heuristic method is a highly general framework for solving optimization 

problems. The prefix “meta-” is derived from a Greek word which means high-level 

methodologies. Therefore, a meta-heuristic approach is not specific to a single problem but can 

be customized and applied to many optimization problems. Typically, meta-heuristics are 

applied to complex, computationally-intensive problems that cannot be easily solved by other 

techniques like ILPs or LPs. Meta-heuristics do not guarantee optimal results; however, they can 
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find near-optimal results for complex optimization problems more effectively and efficiently as 

compared to ILP/LPs [54]. As compared to ILP/LPs, meta-heuristic methods are exploration-

focused and are suitable for handling computational-intensive problems. They also have the 

advantage of handling non-linear constraints or objectives [3]. 

In general, a meta-heuristic algorithm optimizes the objective function value by 

randomly explores a search space to find the most appropriate solution for the decision variable. 

Figure 2.17 depicts the schematic of a generic meta-heuristic algorithm process, which involves 

the following key elements and factors [54]: 

Initial State and Input Data. All meta-heuristic algorithms start from an initial state, 

which can be predefined, calculated or randomly generated. The input data include the input 

information data that is critical for solving the optimization problem and the input parameters 

that are required to execute the algorithm.  

Objective Function. An objective function delineates the goal of an optimization 

problem. The objective function values are either minimized or maximized over a set of various 

feasible solutions to the optimization problem.  

Decision Variables. Decision variables are calculated when an algorithm is executed. 

The values of decision variables reflect the solutions to an objective function.  

Fitness Functions. A fitness function is generated to evaluate the suitability or 

desirability of a possible solution. It advances a search process by promoting more desirable 

solutions or inhibiting less-desirable solutions.   

Iterations. Meta-heuristic algorithms are executed iteratively when exploring a solution 

in the search space. At each iteration, a new solution to the objective function is generated, 

which will be used as the initial value for the next iteration. The number of iterations can serve 

as a termination condition.  

Constraints. In optimization problems, constraints determine the boundaries of the 

search space for feasible solutions. All constraints must be satisfied for a solution to be feasible.  

Final State and Termination Criteria. Termination criteria delineate the conditions 

required to terminate a meta-heuristic search process. Once the termination criteria are 

satisfied, the search process will stop and return the best available solution, showing the final 

state of the problem. 

 30



 

  Figure 2.17 Overview of a meta-heuris0c algorithmic process from start to end. 

Some optimization problems are highly complex and are considered to be NP-hard [3]. 

NP stands for non-deterministic polynomial problems. These problems can be solved and then 

validated by a non-deterministic algorithm within polynomial time. NP-hard problems are the 

ones that are at least as hard as the hardest NP problems. In the telecommunication industry, 
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various optimization problems are considered to be NP-hard, hence cannot be solved and 

validated within polynomial time. For example, the network design problem, the routing 

problems, and the frequency assignment problems are all categorized as NP-hard problems. 

Among these problems, the network design problem is one of the most robust and crucial 

combinatorial optimization problems (COPs) [55]. Meta-heuristics and heuristics have been the 

preferred approaches for solving NP-hard combinatorial optimization problems [55].  

2.6.3 Meta-heuristics in Survivable Network Optimization  

Various meta-heuristic optimization methods have been proposed in the literature to 

solve network optimization problems, such as genetic algorithms (GAs) [56]-[57], simulated 

annealing (SA) [51], ant colony optimization (ACO) [58]-[59], Tabu Search (TS) [54], [60], etc. 

Genetic algorithms are developed based on the Darwinian theory on natural selection, where 

individuals with the most advantageous variations are selected and reproduced in subsequent 

generations. Simulated annealing (SA) mimics the slow metal cooling process (“annealing”) in 

metallurgy. The algorithm randomly explores a solution at each iteration while the temperature 

decreases progressively. It is a stochastic algorithm for exploring the global optimal solution. 

Ant colony optimization (ACO) is a meta-heuristic method that imitates the social behaviour of 

ant colonies, where the quality of a possible solution is evaluated based on the associated 

amount of pheromone during the search process. Tabu Search (TS) is inspired by conventional 

“hill-climbing” that only accepts “uphill” moves after a local optimum is discovered. A backward 

step is considered “tabu” for a defined period of time.   

These meta-heuristic methods can be categorized in several ways [54]-[55], which 

include single-solution meta-heuristics, population-based meta-heuristics, hybrid meta-

heuristics, nature-inspired vs. Non-nature-inspired. 

Single-solution meta-heuristics involve one solution in the search process. TS and SA 

are good examples of single-solution meta-heuristics. TS is deterministic, and SA is stochastic.  

Population-based meta-heuristics are in search for a population of search points at 

each iteration. GA and ACO are examples of population-based meta-heuristics.  
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Hybrid meta-heuristics is an approach taken to combine meta-heuristics with other 

methods to achieve a synergistic performance. For example, a hybrid heuristic-GA (HGA) is 

proposed in [53] for survivability dynamic routed and wavelength assignment problems on IP/

WDM transport networks. At first, a heuristic algorithm was executed to generate an optimized 

searching space for GA. Then, a GA was applied to find the best near-optimal solution within the 

search space. In a survivable network design problem with relays [52], the author solved the 

problem in two steps using a hybrid GA-Lagrangian heuristic approach. GA was used in the first 

step to search for paths, and the Lagrangian heuristic was used for relay assignment in the 

second step.  

Some meta-heuristic algorithms are designed based on behaviours of certain organisms 

(such as ACO) or biological theory (such as GA). As mentioned in Fernandez et al. [53], nature-

inspired meta-heuristics are suitable for solving optimization problems regarding planning, 

designing and controlling. These approaches search for the global optimum by manipulating a 

population of possible solutions in a competitive manner using well-designed operators.  

In Fernandez et al. [55], the authors conducted an extensive review of meta-heuristics in 

telecommunication applications. This paper indicated the increasing popularity of meta-

heuristics in the past two decades in solving various large-scale telecommunication optimization 

problems, especially for addressing the population-based meta-heuristics (e.g., GA and ACO).  

In our research in this thesis, we will be implementing the GA technique to optimize p-

cycle spare capacity allocation problem. More details regarding GA and its implementation in 

the problem will be further elaborated in CHAPTER 4 of this thesis.  
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CHAPTER 3. p-Cycles Basics and Studies 

3.1 Introduction to p-Cycles 

Before the p-cycle protection mechanism was proposed, there had been two basic 

approaches to survivable network designs: survivable rings mechanism and mesh network 

survivability mechanism. As introduced in CHAPTER 2 of this thesis, the mesh-based 

survivability mechanism has a more favourable capacity efficiency than a ring-based protection 

mechanism. However, a real-time mesh-based restoration scheme requires longer restoration 

time than a ring-based survivability mechanism, which is undesirable. Therefore, a cycle-

orientated pre-configuration of spare capacity was introduced in the mesh network restoration 

scheme, and a ring-mesh hybrid protection scheme was proposed to allow the faster protection 

speed of a ring as well as the higher protection efficiency of a mesh [14]-[16]. This novel design 

was named a p-cycle, meaning a pre-configured protection cycle.   

  Figure 3.1 Illustra0on of a p-cycle (bolded lines). 

p-Cycle protection is based on the optimal formation of p-cycles in the spare capacity of a 

mesh-restorable network and is a type of shared link protection, first proposed in late 1990s 

[14]-[16]. The p-cycles are formed prior to any network failures and are formed out of the 

previously un-connected spare links of a mesh-restorable network [14]. Two immediate end 

nodes on a failed span perform real-time optical signal switching for restoration to happen. An 
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exceptional feature of a  p-cycle is that it not only provides one unit of spare capacity to all the 

on-cycle spans but also offers two units of spare capacity for the spans that straddle over the 

cycle. This type of spans, which has its two end nodes on the cycle but not the span itself, is 

referred to as straddling spans to the p-cycle. Straddling spans carry two working paths for each 

protection path on the p-cycle that they straddle, but they do not retain any spare capacity 

themselves [3]. Figure 3.1 shows an example of a p-cycle, where the spans traversed by the 

bolded p-cycle are on-cycle spans. 

 

     Figure 3.2 Illustra0on of a p-cycle in a network (a). (b) shows a failure on an on-cycle span,  
       and (c) shows a failure on a straddle span. 

Figure 3.2 was presented previously in section 2.3.3. The figure demonstrates examples 

of different failure scenarios occur on a p-cycle. As illustrated in Figure 3.2(b), when an on-cycle 

span fails, the surviving portion forms one restoration path between both nodes adjacent to the 

failure. This protection operation is similar to that of a bidirectional line-switched ring. In 

Figure 3.2(c), if a failure occurs not on any part of the  p-cycle but on a span that straddles the p-

cycle, two restoration paths around the failed spans are available for restoring the failure. 

Therefore, the p-cycle in Figure 3.2(a) provides one protection path for 9 of the on-cycle spans, 

and it provides two protection paths for each of the three straddling spans (six units of 

protection). Hence, the p-cycle provides a total of 15 units of protection from 9 units of spare 

capacity, a redundancy of 9/15 = 60%.  
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3.2 Types of p-Cycles 

There have been various types of p-cycles discussed in the literature[26]-[28], [56]. They 

can be categorized either based on their structural relationship with the network they are in or 

based on specific protection functionality that they provide to the network.  

p-Cycles that are named based on their structural relationship with the network are 

Hamiltonian p-cycles, simple p-cycles, and non-simple p-cycles [26]. Hamiltonian p-cycles are 

the ones that pass through all the nodes of the network once and only once (see Figure 3.3(a)). 

Simple p-cycles refer to p-cycles that do not pass through any nodes or spans more than once 

(see Figure 3.3(a)). A non-simple p-cycle, on the other hand, is a p-cycle that passes through a 

node or a span more than once (see Figure 3.3(b)). The type of p-cycles that are going to be 

studied in this thesis herein are the simple p-cycles.  

   Figure 3.3 Examples of a Hamiltonian and simple p-cycle (leL), and a non-simple p-cycle (right).  

 p-Cycles that have different protection functionalities (e.g., protecting spans, paths, 

nodes, or path segments against failures) are named differently. Based on their specific 

functionalities, these p-cycles are referred to in the literature as span p-cycles, path protecting 

p-cycles, node encircling p-cycles, and flow p-cycles [26]. 

A span p-cycle protects a particular span of a network. It refers to a p-cycle that allows 

protection to a span that is either on the cycle or straddles the cycle [26]. The p-cycle illustrated 

in Figure 3.3(a) is also a span p-cycle. 
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A path-protecting p-cycle protects an entire path on which its origin node and 

destination node incident. A failure independent path protection (FIPP) p-cycle is an example 

of a path-protecting p-cycle, which offer protection to a set of end-to-end disjoint paths whose 

end nodes are located on the cycle [62]. FIPPs have similar capacity efficiency than that of 

SBPP, and they can protect failures on both node and span[27], [62]. An important pre-requisite 

for FIPP p-cycles is that all paths to be protected must be all mutually disjoint to share spare 

channels, which is similar to that of SBPP [62]. In a FIPP p-cycle protection, a real-time cross-

connection is not needed to form protection paths, and protection switching is controlled by end 

nodes and is entirely failure-independent [62]. As shown in Figure 3.4, the FIPP p-cycle in blue 

dotted lines protects a set of disjoint paths (green double-arrowhead lines) with their end nodes 

on the FIPP p-cycle. 

Flow p-cycles are a type of path segment-protecting p-cycles [63]. The section of a traffic 

flow that lies between two intersecting nodes of the flow and the associated p-cycle is referred to 

as a flow or path segment. The p-cycle that protects these flows is known as a flow p-cycle. Flow 

p-cycles can provide both path protection (if the origin and destination nodes incident on the p-

cycle) and node protection and are shown to be capacity efficient [27]. As demonstrated in 

Figure 3.4, the flow p-cycle (in blue dotted lines) can provide path and node protections to the 

flows or path segments (red double-arrowhead lines). Flow p-cycles and their designs for path- 

and node-protection are extensively studied in [63]-[66]. 

   Figure 3.4 Examples of a failure-independent path protec0on (FIPP) p-cycle (leL) in doZed lines, 
    and a flow p-cycle (right) in doZed lines.  
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p-Cycles can also provide node protection by adopting the node-encircling p-cycle 

(NEPC) scheme [67]. An NEPC traverses all the neighbouring nodes of a failed node but not the 

failed node itself. It can protect all the traffic flows that pass through the failed node, hence 

protecting the failed node. The NEPC protection is illustrated in Figure 3.5; its design and 

mechanism are discussed extensively in [67]. As shown in Figure 3.5, the nodes that are 

highlighted in orange circles (Node B and Node E, respectively) are not part of the p-cycles, 

however, they are protected by the NEPC protection scheme. An NEPC can be either a simple 

cycle (Figure 3.5 on the left) or a non-simple cycle (Figure 3.5 on the right) [27]. 

  Figure 3.5 Examples of a simple node-encircling p-cycle (leL) and a non-simple node-encircling p- 
    cycle (right) in doZed lines. Circled nodes (orange) are the nodes protected by NEPC protec0on. 

3.3 Determining p-Cycle Efficiency 

An efficient p-cycle is capable of providing more units of protection per spare capacity 

used. Finding and selecting efficient p-cycles for network protection is getting more beneficial as 

network size increases. The most fundamental efficiency metrics which have been deployed in 

the literature include the topological score (TS), and A Priori efficiency score (AE). These 

metrics laid the foundation for the development of several other advanced efficiency metrics, 

such as the actual efficiency (Ew), the demand weighted efficiency (DWE), the efficiency ratio 

(ER), and the efficiency of restoration (EoR).  
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Topological Score (TS)  

The topological score (TS) of a candidate p-cycle is a basic metric that measures the 

amount of protection a p-cycle provides to the network [46]. It is defined as TS(j) = ∑Xi,j for all 

spans i on p-cycle j. Xi,j takes a value of 1,2 or 0 depending upon whether the link is on the cycle, 

straddles the cycle, or is not a part of the cycle. However, TS only takes into account the 

topological structure of a cycle and does not consider the cost of using that cycle.  

A Priori Efficiency (AE)  

A priori efficiency (AE) score measures the potential efficiency of using a p-cycle [26], 

[46]. It calculates the total number of protections a p-cycle provides relative to the cost of 

constructing the p-cycle. Therefore, a p-cycle with a higher AE score has higher numbers of on-

cycle and straddling spans per unit of the cost; hence, higher protection capacity efficiency. 

However, neither AE nor TS considers the actual set of demands of a network. Therefore, AE 

and TS both calculate only the potential efficiency of a p-cycle, not the weighted actual efficiency 

of a p-cycle. For a candidate p-cycle j in a p-cycle set, AE(j) is defined as in Eq. 3.1. 

AE(j)  =   , Ɐi ∈ S,  Ɐk ∈ S (Eq. 3.1)  

In Eq. 3.1,  Xi,j is the same as in TS which equals to 1,2 or 0; ∂k,j equals to 1 if span k traverses 

cycle j, and zero otherwise. Ck refers to the cost of using span k. S is set of all spans. 

Demand Weighted Efficiency (DWE) 

The third metric, demand weighted efficiency (DWE) [26], takes into account the actual 

demands in a network. For a given network, the DWE assigns actual units of demands on each 

link and calculates the protection provided by the cycle in the presence of those demands. For 

example, a cycle may protect n straddling links in a network. However, if there is no actual 

∑ Xi, j 
∑ ∂k , j   ∙  ∑ Ck
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traffic flowing through those n links, the actual protection provided by the cycle to the network 

will not factor in those n links.  

For a candidate p-cycle j in a p-cycle set, DWE is defined as below in Eq. 3.2. 

DWE(j)  =   , Ɐi ∈ S,  Ɐk ∈ S (Eq. 3.2)  

Xi,j  is the same as in Eq. 3.1, and wi is the working capacity of span i. ∂k,j equals to 1 if span k 

traverses cycle j, and zero otherwise. Ck is the cost of using span k. S is set of all spans. 

Actual Efficiency (Ew) in Capacitated Iterative Design Algorithm (CIDA) 

The actual efficiency metric which was proposed by Doucette et al. [39] considers 

current working capacity status (number of unprotected working capacity) on the span i and the 

protection relationship of span i relative to the cost of using the p-cycle. The Ew score provides 

not only an indication of a p-cycle’s ability to protect current working capacity but also a 

suggestion of a p-cycle’s actual suitability in a specific working capacity state. The capacitated 

iterative design algorithm (CIDA) calculates and ranks current working capacity state at each 

iteration and conducts iterative placement of p-cycles based on the highest-ranked actual 

efficiency (see details in CHAPTER 3 regarding CIDA).  

The Ew of a candidate p-cycle p is defined as shown in Eq. 3.3. 

   Ew(p)  =   , Ɐi ∈ S,  Ɐk ∈ S  (Eq. 3.3)  

Xi,j  equals to 1,2 or 0 as in previous metrics, and wi is the unprotected working capacity on span 

i. The binary ∂k,j equals to 1 if span k traverses cycle j, and zero otherwise. Ck is the cost of using 

span k. S is set of all spans. 

∑ min(Xi, j  ∙  wi ) 
∑ ∂k , j  ∙  Ck

∑ Xi, j  ∙  wi 
∑ ∂k , j  ∙  Ck
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Efficiency Ratio (ER)  

Efficiency Ratio is an efficiency metric for a unity p-cycle that was proposed by Zhang et 

al. [40]. A unity p-cycle refers to a p-cycle that has one unit of capacity on each of its spans. An 

ER is the ratio of the number of working capacity units that are protected by a p-cycle to the 

number of spare capacity units of the p-cycle. ER sounds similar to the Ew score, but instead of 

looking at unprotected working capacity, ER brings protected working capacity into the ratio 

calculation. A higher ER indicates a higher spare capacity utilization efficiency of a p-cycle. 

Unlike TS and AE scores, where only topology of a p-cycle is considered, an ER value indicates 

both a p-cycle topology and the working capacities protected by the said p-cycle.  

Efficiency of Restoration (EoR):  

This efficiency metric was proposed by Meixner et al. [68] to be used in conjunction with 

a heuristic method for a scalable p-cycle selection method. The metric can be used in both ILP 

and Genetic Algorithm models. Calculation of EoR involves the following parameters: average p-

cycle length (%), the standard deviation of p-cycle length (&), the total cost of a p-cycle (TC), and 

total protection a p-cycle provides (TS). A set S refers to all the spans in the network. This metric 

is based on the TS, but with consideration of p-cycle lengths.  

EoR(S)  =     (Eq. 3.4)  
TS(S )

TC(S )  ∙  β(S )  ∙  (η(S ) + 1)  
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3.4 p-Cycle Network Design and Optimization 

 3.4.1 Candidate p-Cycles Enumeration 

The depth-first search (DFS )algorithm is commonly used to generate sets of candidate 

cycles [12]-[14]; however, the DFS algorithm is a greedy approach and is not runtime-efficient in 

large-scale network problems. Therefore, some studies have proposed various problem-specific 

heuristics to find eligible candidate p-cycles that are high-merit [32]-[33], [45]. The following 

algorithms are commonly used in the literature, which has also inspired the novel heuristic 

cycle-enumeration method that will be proposed and discussed in CHAPTER 6 of this thesis.  

Straddling Link Algorithm (SLA) 

In Zhang and Yang’s research [32], a heuristic method called straddling link algorithm 

(SLA) was proposed to find protection cycles in a network. For each span i of a network, the SLA 

algorithm finds two other node-disjoint paths (if any) that originate from one end node (Oi) of 

span i and terminate at the other end node (Di). An eligible p-cycle is formed by merging the 

second and third node-disjoint paths at node Oi and node Di. The shortest path calculation of 

the node-disjoint paths is based on Dijkstra’s algorithm. The multiple node-disjoint paths 

between two nodes are found by executing Dijkstra’s algorithm iteratively, with the previously 

found paths (and all nodes along the paths, except Oi and Di) being labelled and hidden before 

the next one is found. 

As shown in Figure 3.6 below, two node-disjoint paths between span Oi-Di are illustrated 

and highlighted. To be specific, for the span Oi-Di (the dotted line as shown in the Figure 3.6), 

the SLA algorithm finds two node-disjoint paths: A-B-C-Di-Oi (orange arrow) and Oi-E-Di  

(green arrow). Merging these two paths and removing span Oi-Di will yield a new p-cycle A-B-C-

Di-E-Oi. In this case, span Oi-Di becomes a straddle link of the new p-cycle.  
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 Figure 3.6 Illustra0on of genera0ng a new p-cycle (A-B-C-Di-E-Oi) using SLA.  

Add and Join Algorithms 

Based upon the SLA, two cycle-merging operations were proposed in [39] to create p-

cycles with more straddling spans (hence, higher efficiency). The Add and Join algorithms are 

operations that can be applied to the primary cycles generated by SLA. In the Add algorithm, 

two primary cycles can be merged if they meet the following criteria: 

1) Span i is a straddling span of Cycle A, but an on-cycle span to Cycle B; 

2) Span j is a straddling span of Cycle B, but an on-cycle span to Cycle A; 

3) Cycle A and Cycle B are not adjacent to one another in the network 

 When the Add algorithm is applied, Cycle A and Cycle B are merged into one. The 

resulting new p-cycle will include all the on-cycle spans of both Cycle A and Cycle B (except 

Span i and Span j), and Span i and Span j will be straddling spans to the new cycle. As shown in 

Figure 3.7, Cycle A is cycle A-B-C-K-P, and Cycle B is cycle A-C-K-P. Span i refers to span A-C, 

and Span j is span P-K. The resulting cycle after applying the Add algorithm is A-B-C-K-E-P. 

  

Figure 3.7 Illustra0on of genera0ng a new p-cycle using the Add algorithm. 
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In the Join algorithm, two primary p-cycles have one and only one common span, and 

that span has to be an on-cycle span (not a straddling span of any of these two p-cycles). As 

shown in Figure 3.8, Cycle A (cycle A-B-C-K-P) and Cycle C (cycle P-K-G-F-E) share only one 

common span, the span P-K (Span k). The resulting cycle (cycle A-B-C-K-G-F-E-P) contains the 

straddling spans of both Cycle A and Cycle C, as well as their common span (Span k).  

     Figure 3.8 Illustra0on of genera0ng a new p-cycle using the Join algorithm. 

Expand and Grow Algorithms 

Doucette et al. [39] proposed two advanced algorithms that transform primary p-cycles 

with one straddling span to larger p-cycles with more straddling span, hence higher efficiency. 

Unlike the Add or Join algorithm, either Expand or Grow algorithm takes just one primary p-

cycle as an input cycle. In the Expand algorithm, an on-cycle span is expanded and replaced 

with a node-disjoint path that connects the same origin and destination nodes as the said on-

cycle span. The newly formed p-cycle will then be added to the cycle set. The operation repeats 

recursively until all on-cycle spans of the original primary p-cycle are visited and replaced by a 

node-disjoint path (if existed). As shown in Figure 3.9, the Expand algorithm can generate 

multiple new p-cycles from the original primary p-cycle. In Figure 3.9 (a), span B-F (left) is 

replaced by path B-H-F (right), and generate a new p-cycle B-H-F-G-K-C. In Figure 3.9 (b), 

span B-C (left) is replaced by path B-A-C (right), resulting in a new p-cycle B-H-F-G-K-C-A. In 

Figure 3.9 (c), span C-K (left) is replaced by path C-A-P-K (right), which forms a new p-cycle B-

F-G-K-P-A-C. 
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Figure 3.9 Illustra0on of genera0ng new p-cycles using the Expand algorithm. The double-arrowhead 
lines Indicate transi0ons of the spans from leL side of a figure to the right side of a figure. 

The Grow algorithm is a more extensive approach that generates p-cycles of various 

sizes. The Add algorithm is first applied to the primary cycles to generate a set of intermediate p-

cycles. The Grow operation then takes place on the new intermediate cycle set. For each cycle in 

the intermediate cycle set, pick one on-cycle span (span s) and replace it with a node-disjoint 

path (path p) that connects end nodes of the said on-cycle span. This node-disjoint path is 

generated using the shortest path method. If such a path exists, span s is removed from the cycle 

and path p is added to the cycle, resulting in a new p-cycle (say, Cycle M). The algorithm will 

then start on the first span of Cycle M and repeat the same path-finding process until no more 

node-disjoint paths can be found on any of the spans on any of the newly-formed cycles.  During 
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this process, each p-cycle that is incrementally generated will be retained and added to the total 

p-cycle set. Therefore, the resulting total p-cycle set will contain an extensive profile of various 

small and large p-cycles, including primary p-cycles, intermediate p-cycles, and new p-cycles 

that are incrementally grown out of previous p-cycles. Having a wide range of p-cycles is very 

beneficial for the later stage of cycle placement.  

The pseudo-code for Grow algorithm is as follows: 

function Grow(OriginalCycleSetA): 

    initialize SPAddCycleSetB 

    AddCycleSetB = Add(OriginalCycleSetA) 

    initialize NewCycleSet 

    for each cycle p in SPAddCycleSetB: 

        let cycle p’ = cycle p 

        for each span i on cycle p’: 

            mark all spans and nodes on cycle p’ 

            Dijkstra(i, unmarked spans/nodes) → r 

            if returns a route r: 

                add route r to cycle p’ 

                remove span i from cycle p’ 

                add cycle p’ to NewCycleSet 

                restart count of i to first span in p’ 

            unmark all spans and nodes 

    add OriginalCycleSetA to NewCycleSet 

    add SPAddCycleSetB to NewCycleSet 

    for each span i: 

        mark span i 

        Dijkstra(i, unmarked spans/nodes) → r 

        if returns a route r: 

            let cycle x = span i and spans on route r 

            add cycle x to NewCycleSet 

        unmark span i 

    return NewCycleSet 
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Weighted DFS-Based Cycle Search Algorithm (WDCS) 

The weighted DFS-based cycle search (WDCS) algorithm is a DFS-inspired cycle finding 

algorithm that was proposed in Liu and Ruan [33], where the WDCS algorithm finds a 

controlled number of cycles in the graph. The algorithm explores the graph from a root node v, 

extending the path along the way until the root node is reached again and a new cycle is formed. 

While exploring, the algorithm finds a neighbouring span with the highest weight so that cycles 

with higher efficiency are likely to be found earlier in the process.  

 3.4.2 Candidate p-Cycles Selection 

Prior studies on p-cycle designs and selection suggested two approaches to selecting 

candidate p-cycles, where candidate p-cycles are selected by limiting either the maximum hop-

limits (or route length-limit) or the circumference-limits of all candidate p-cycles to reduce the 

complexity of a problem [14]-[16], [47]. When considering hop-limits as a constraint, p-cycles of 

any length may be used; however, the lengths of actual paths are restricted to a defined limit. In 

a circumference-limit approach, however, the length of a p-cycle is constrained. A comparison of 

hop-limit versus circumference-limit in terms of their effect on p-cycle capacity efficiency was 

studied by Kodian et al. [47]. This research indicated that a hop-limiting factor (limit of 3 or 4 

hops) brings about a positive effect on providing better capacity efficiency in their test cases of a 

13-node network and a 19-node network. Another approach to selecting good eligible p-cycle 

candidates is to exhaustively find all the p-cycles in a network, rank them based on a particular 

selection metric, and then select the top few candidates [46], [48]. For example, in the study by 

Doucette et al. [46], all the candidate cycles were first ranked using TS or AE scores, from which 

a limited number of top candidate cycles were chosen.  

Both of these two approaches are greedy and runtime-consuming, as both will require 

exhaustively enumerating all cycles. This will be counter-efficient when it comes to studying 

large networks. When network size increases, finding all cycles in a network can get explicitly 
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calculation intensive. Some score-based approaches or heuristic approaches, however, do not 

require finding all the cycles and are more runtime-efficient [49], [68].  

Score-based p-cycle selection utilizes the efficiency metrics discussed earlier in the 

CHAPTER 3. These metrics are used to rank p-cycles based on their protection efficiency. 

Selecting or pre-selecting a lesser amount of highly efficient p-cycles using an efficiency metric 

has shown to provide at least equally good results, and in the meantime, significantly reduce 

cycle enumeration time [32]-[34], [39]-[40], [68]. In addition, some heuristic p-cycle selection 

methods avoid greedy searching of cycles and suitable for solving large-scale network problems 

[49]. For example, Lo et al. designed a two-step heuristic method in selecting and grooming 

high-quality candidate p-cycles, which does not require enumeration of all cycles. However, the 

selection part of the heuristics can increase capacity inefficiency whereas the grooming part of 

this approach may prolong the program runtime [49]. To be specific, the selection approach 

taken in the first step can result in a considerable amount of idle capacities (“wastes”) which 

impede the overall capacity efficiency. The second step of grooming (“refining”) is to conduct a 

secondary search of cycles in order to replace any inefficient cycle pairs from step one. This 

grooming step can significantly increase program runtime, especially in large networks. 

 3.4.3 p-Cycle Protection Capacity Optimization: LP/ILP Approach 

  

As mentioned earlier in CHAPTER 2, there are two algorithmic approaches to designing 

a fully restorable p-cycle protection: a one-step approach and a two-step approach. The one-step 

approach refers to the  joint capacity allocation (JCA) approach, where working path routing 

and spare capacity placement are optimized jointly [36]. The one-step approach to solving a p-

cycle protection optimization problem is the spare capacity allocation (SCA) approach. The SCA 

optimizes the allocation of spare capacities so that the total cost of capacity placement will be 

minimized, regardless of working path routing. Optimization of p-cycle protection capacity may 

be solved by either ILP models or case-specific heuristic algorithms. 
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Joint Capacity Allocation (JCA) Model 

In the JCA model, the total capacity (spare capacity plus working capacity) is optimized 

as a whole. For each origin-destination node pair in the network, several eligible working routes 

are available. Working paths are selected concurrently with spare capacity allocation to 

minimize the cost of the operation. The ILP formulation of JCA problem, as well as the 

definitions of specific parameters and variables are presented as follows [12]: 

  

S = set of network spans 

C = set of eligible cycles 

D = set of non-zero demands 

Et = set of eligible working routes for demand t 

sj = number of spare capacity on span j,  Ɐj∈ S 

wj = number of working capacity on span j,   Ɐj∈ S 

cj = cost or length of span j,     Ɐj∈ S 

pi,j = number of spare links needed on span j to form a copy of p-cycle i,   Ɐi∈ C, Ɐj∈ S 

(pi,j =1 if cycle i traverses span j, 0 otherwise) 

ni = number of copies of p-cycle i,     Ɐi∈ C 

xi,j = number of paths that a p-cycle i provide to restore span j,       Ɐi∈ C, Ɐj∈ S 

(xi,j = 0 if span j not on p-cycle i, xi,j = 1 if span j on p-cycle i, xi,j = 2 span j straddles i) 

dt = an integer values of demand for demand pair t 

ft,e = integer number of demand for tth demand allocated to the eth eligible route,   Ɐe∈ Et 

 = 1, if the eth working route for the tth demand traverses span j, 0 otherwise γ t,e
j
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Objective function:    Minimize     (Eq. 3.1) 

Subject to:     dt =  ,  Ɐt∈ D    (Eq. 3.2) 

     wj = ,    Ɐj∈ S  (Eq. 3.3) 

     sj   =      (Eq. 3.4) 

     wj  ≤      (Eq. 3.5) 

     ≥ 0,      Ɐi∈ C    (Eq. 3.6) 

All variables are non-negative and integer 

 The objective function of this JCA model (Eq. 3.1) minimizes the cost of both working 

routing and placing spare capacities to restore failed span j. The first constraint, as shown in the 

Eq. 3.2, makes sure that all the demands are routed. The second constraint (Eq. 3.3) indicates 

the amount of working capacity on span j will support routing of all demands. The constraint in 

Eq. 3.4 ensures that the spare capacity on span j can support all the p-cycle i that cross the span. 

Eq. 3.5 is the constraint that ensures total protection provided by the p-cycle i for each failed 

span j is sufficient to restore the working capacity on the span j fully. In reality, all variables 

must be non-negative and integer, as indicated in Eq. 3.6. 

Spare Capacity Allocation (SCA) Model 

In the case of a two-step p-cycle SCA model, working paths are routed in advance via 

preferred routing methods, such as the shortest path method [26] or the DFS algorithm [32], 

[35]-[39]. Given the working capacities, the allocation of spare capacities with minimum cost 

∑
Ɐj∈ S

cj ∙ (wj + sj)
E
∑

Ɐe∈ E
f t,e

∑
Ɐt∈ D

∑
Ɐe∈ E

f t,e ∙ γ t,e
j

∑
Ɐi∈ C

pi, j ∙ ni

∑
Ɐi∈ C

xi, j ∙ ni

ni 
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will be determined to ensure 100% protection for all working paths. The p-cycle SCA ILP can be 

formulated by modifying the above mentioned JCA model by eliminating a few sets, parameters, 

variables and constraints. The resulting ILP formulation for a p-cycle SCA problem will be as 

shown below in equations 3.7 - 3.10, where the objective function (Eq. 3.7) will simply be to 

minimize the cost of placing spare capacities to restore failed span j:  

Objective function:          Minimize       (Eq. 3.7) 

Subject to:     sj   =      (Eq. 3.8) 

     wj  ≤      (Eq. 3.9) 

     ≥ 0,      Ɐi∈ C    (Eq. 3.10) 

All variables are non-negative and integer 

Apart from the above two-step approach, an SCA problem may also be formulated 

without enumerating candidate cycles (step one) using ILP [69], [90]-[91]. For example, Wu et 

al. [69] proposed three ILP models to solve the p-cycle SCA design problem. These three ILP 

models were based upon recursion, flow conservation, and cycle exclusion. The study showed a 

linear correlation between the number of ILP variables and constraints versus network size in 

the flow conservation approach [69].  

 3.4.4 p-Cycle Protection Capacity Optimization: Heuristics/Meta-Heuristics 

Several prior studies have proposed heuristic or meta-heuristic algorithms in solving p-

cycle capacity optimization problems [39]-[40]. The following are some problem-specific 

heuristic algorithms and a meta-heuristic approach (genetic algorithm) that were proposed in 

the some prior studies. 

∑
Ɐj∈ S

cj ∙ sj

∑
Ɐi∈ C

pi, j ∙ ni

∑
Ɐi∈ C

xi, j ∙ ni

ni 
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Capacitated Iterative Design Algorithm (CIDA) 

Capacitated Iterative Design Algorithm (CIDA) was a p-cycle placement operation 

proposed by Doucette et al. [39]. CIDA selects and places a set of p-cycles that provide full 

network protection with near-minimal spare capacity. The process starts by generating a set of 

eligible candidate cycles using a preferred cycle enumeration method, such as Add, Expand, 

Grow, SLA, etc. The current efficiency of candidate cycles will be calculated using capacity-

weighted efficiencies, also known as the actual efficiencies, Ew (see details in CHAPTER 3). p-

Cycles with the highest Ew score will be selected and placed in the network. The network traffic 

flows protected by this p-cycle is deducted from existing working capacity values. To be specific, 

subtracting one unit of working capacity from each on-cycle span of the p-cycle just placed, and 

two units on each straddling span (if present). Then, update the working capacity values of the 

current network so that they always reflect the current actual efficiency status at each iteration. 

The process is repeated recursively until all the network working capacities are protected. 

The pseudo-code for CIDA is shown below: 

function CIDA(OriginalCycleSet, i): 
    initialize CycleSet, work[], and CycleUse[] 
    CycleSet = Grow(OriginalCycleSet) 
    while work[i] > 0 for all spans i:  

                   BestCycle = 0 
        for each cycle p in CycleSet: 
            calculate Ew(p) 
            if Ew(p) > Ew(BestCycle): 
    BestCycle = p 

        if BestCycle not in CycleUse ! add BestCycle to CycleUse 

        else if BestCycle in CycleUse: 
            CycleUse[BestCycle] = CycleUse[BestCycle] + 1 
    for each on-cycle span i in BestCycle: 
        work[i]= work[i] - 1 
    for each straddling span i in BestCycle: 
        work[i]= work[i] - 2 
    return CycleUse 
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ER-Based Unity p-Cycle Design  

  

Another example of heuristics is an ER-Based Unity p-cycle Design proposed in [40]. A 

unity-p-cycle refers to a unidirectional p-cycle with capacity equals to one unit of wavelength on 

each span. A unity-p-cycle provides one unit of protection in the opposite direction for an on-

cycle span, and two units of protection for each straddling span (one unit in each direction). The 

ER refers to efficiency ratio (as previously described in Section 3.3), which is the ratio of the 

number of protected working units by a p-cycle to the number of spare capacities provided by 

that same p-cycle. This algorithm starts by enumerating all candidate cycles in the network, 

given network topology and traffic demand. Determine working capacity on each span of the 

network based on working path routing performed in advance. Then, determine the ER value of 

each candidate cycles. Place the cycle with the largest ER value into the network and deducting 

the number of working units protected by this p-cycle from the network. Repeat the process by 

selecting the second cycle with the largest ER value, and so on. If multiple cycles share the same 

ER value, then they can all be selected at the same time as long as they are span-disjoint to one 

another. The algorithm will terminate when working capacity on each span is reduced to zero, 

which means full protection to the network has achieved.   

Genetic Algorithm  

  

Genetic algorithms may be implemented in conjunction with heuristics in solving 

network survivability problems [53]. In work conducted by Pastor et al. [53], a hybrid heuristic-

GA (HGA) approach was proposed to optimize a network routing and wavelength assignment 

(RWA) problem. Genetic algorithms can also be applied as a standalone method to solve various 

aspects of communication network survivability and optimization problems, including 

survivable network topology designs [70]-[72], network service reliability [73], shortest path 

routing in survivable networks [74], etc.  

 Detailed examples and discussions regarding past GA implementation in survivable 

network designs and p-cycle protection optimization will be further elaborated in CHAPTER 4 

of this thesis. 
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CHAPTER 4. GENETIC ALGORITHMS BASICS & STUDIES 

4.1 Introduction to Genetic Algorithms  

Genetic algorithms (GAs) are stochastic, discrete search algorithms that are inspired by 

Darwin’s theory of evolution. They solve problems by using an evolutionary process, where elite 

chromosomes are selected from a population (parents) for crossover and mutation processes to 

generate a new population (offspring). The more elite (better fitness) a chromosome is, the 

higher the probability it is to be selected for reproduction. The new population is expected to fit 

the objective function better than the predecessor population. This process is repeated until 

some predefined termination conditions are satisfied. The idea behind it is that the fittest 

individuals will be more likely to adapt to the evolving circumstances and have a better chance 

of survival. The offspring of these individuals will likely inherit these traits and evolve into even 

fitter descendants who are more likely to survive and reproduce.  

4.1.1 GA Process Overview 

Genetic algorithms start with a random population of chromosomes. Each chromosome 

is a possible solution to the optimization problem. Some of these chromosomes will be selected 

for reproduction based on their fitness values. Selected chromosomes will go through crossover 

and mutation operations to form a new population of offspring. The newer offspring is expected 

to have better performance (fitter) than the predecessor. The new generation of offspring will 

contain newly-produced offspring chromosomes as well as the parent chromosomes. This 

reproduction process will continue until the termination criteria are satisfied. 

For a given optimization problem, a genetic algorithm process will first define its 

objective function and associated variables.  Then, the genetic algorithm will commence with the 

following steps: generating the initial population and encoding the chromosomes, creating an 

evaluation mechanism (fitness function), selecting individuals for reproduction, the crossover 
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and mutation operations on chosen individuals, termination and decoding of the results. Figure 

4.1 illustrates a flowchart of a generic GA process and its components. 

 

  Figure 4.1 Overview of a gene0c algorithmic process from start to end. 

An initial population is created by generating a group of random feasible solutions 

(chromosomes) for the problem. Encoding a chromosome is to create a particular genetic code 

to represent a possible solution and to make sure it contains the required information for 
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solving the problem. Designing a suitable fitness function is crucial for evaluating elitism 

(fitness) of a solution. Based on the fitness values, two individual chromosomes will be selected 

for crossover using a predetermined selection method. An individual (chromosome) with a 

better fitness value will have a higher probability of being selected from mating, hence the 

survival of the fittest. For the reproduction process, a crossover operation takes place on a pair 

of individuals to allow the exchange of genetic information between the two chromosomes and 

to yield two new individuals (offspring). Besides, a mutation operator will be applied on a 

random chromosome and alters its genetic information at a random locus to generate a new 

individual. These GA operators are used to increase the diversity of a population and to prevent 

an algorithm from falling into local optima. Newly formed offspring from crossover and 

mutation and the existing parent chromosomes will create a new population, which will be used 

as the starting population for the next generation (iteration). This process continues iteratively 

until a predetermined termination condition is met, and the GA will then stop and return the 

best current solution. The results will be decoded to reveal the real solution to the problem.  

 A pseudocode for a GA is shown below, where generate candidate individuals is 

simply a space holder for any problem-specific initiation function: 

 function Genetic_Algorithm(popSize, cross_rate, mutation_rate): 
     initialize spans, nodes, p-cycle sets → input_param 
     generate candidate individuals → individual 

     generate initial population(popSize, individuals) → init_pop 
     calculate fitness values → fit_val 
     rank population using fit_val → ranked_pop 
     while termination condition not met: 

        Initialize new set → new_pop 
        Selection(ranked_pop, fit_val) → selected_parent 

        Crossover(selected_parents, cross_rate) → crossover_child 

        Mutation(crossover_child, mutation_rate) → mutated_child 
                   add crossover_child, mutated_child to new_pop 
        update population, fit_val, ranked_pop for new_pop 
        best_ind = ranked_pop[0] 

return best_ind 
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4.2 Key Concepts in Genetic Algorithms 

4.2.1 Genomes and Chromosomes  

In cell biology, genetic contents of a cell are structured into a pair of deoxyribonucleic 

acid (DNA) double helixes known as chromosomes. A complete genetic package of a cell is 

referred to as a genome. In genetic algorithms, genomes represent the search spaces [75]. The 

chromosomes are strings of one consistent data type (bits or real values), which represent the 

feasible solutions to a problem. A string chromosome can be either fixed-length or variable-

length [75]. A chromosome is often referred to as an individual to a population. In this thesis, 

the terms chromosome and individual are used interchangeably. Two relevant concepts that are 

worth mentioning are locus and allele.  A locus is the location of a gene in a chromosome. An 

allele is the value of a gene. In terms of genetic algorithms, the term locus means a string 

position which may be used to specify the location where a crossover or mutation operation 

takes place.  

4.2.2 Schema and Schemata  

According to Holland’s Schema Theorem [75], a schema refers to a subset of a string 

chromosome with common features at certain positions (loci) among all chromosomes. It is 

composed of some common elements, and the don’t care symbol (*) [76]. A schema serves as a 

masking template for a chromosome. It matches a specific string at every position (locus) other 

than the *. For example, a schema *110* would match these four strings {11101, 01101, 11100, 

01100}. A schemata refers to sets of encoded string chromosomes that share one or more 

elements in common.  
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4.2.3 Encoding Chromosomes 

Encoding a chromosome is a process of assigning an artificial data structure to each 

feasible solution (chromosome). Chromosome encoding allows the information of a 

chromosome to be processed and analyzed in a genetic algorithm. A suitable and robust 

chromosome design should contain essential information that is critical for resolving the 

objective function and evaluating fitness values. It should also be accessible to GA operators 

(crossover and mutation).  

A common approach to encode a chromosome is a bit string (binary) encoding, which is 

relatively unsophisticated and traceable [76]-[77]. As shown in Figure 4.2, a 1 or 0 stands for two 

distinct features of a solution in each binary string. Another popular approach to chromosome 

representation is real-value chromosomes [77] (or continuous chromosomes [78]), where the bit 

strings are replaced with real values. Real-value encoding is a more plausible option for solving 

practical problems with actual parameters. For problems that involve sequencing, a 

permutation encoding may be more suitable. In a permutation encoding, each chromosome is a 

list of numbers that stand for their logical position in a sequence (see Figure 4.3). Permutation 

encoding is exceptionally suitable for optimization problems like the travelling salesman 

problem, where a chromosome stands for a trail of cities visited. 

  Figure 4.2 Example of two binary encoded chromosomes, where Pi and Pi’ refer 
  to the loci in Chromosome #1 and Chromosome #2, respec0vely. 
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  Figure 4.3 Example of two chromosomes with permuta0on encoding, where each  
  string on a chromosome refers to its posi0on in a sequence. 

4.2.4 Population and Generation 

 Once chromosomes are encoded, a set of individual string chromosomes (feasible 

solutions) will randomly form an initial population. A population can also be created by 

including better-fit individuals that are generated and evaluated previously. The predetermined 

population size will decide the number of individuals in a population. The performance of a 

population is improved iteratively. The current population will then serve as a starting 

population to reproduce a successor population in the next generation.  

GA populations can be constructed in various ways. An example, as provided by 

Goldberg [76], is to implement a population as a series of individual string chromosomes where 

each chromosome contains binary strings (genotype), key variable (phenotype), and 

corresponding objective function value (fitness value) (see Figure 4.4).  
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Figure 4.4 Example of a popula0on of encoded chromosomes. Popula0on size is n. x is a key  
variable that is plugged into the fitness func0on to generate corresponding fitness value f(x). 

Population design, population size and the number of generations play pivotal roles in 

enhancing the search power of a genetic algorithm and are problem-specific. If a suboptimal 

population size or the number of generations is used in a genetic algorithm, the algorithm may 

encounter insufficient exploration for a global optimum and reach a premature convergence. 

Alternatively, the algorithm may plateau over numbers of iterations and extend the 

computational runtime with no performance improvement. Typically, GA operations will 

significantly increase the population size, and then individuals with the lowest fitness values 

from both prior generation and newly generated individuals will be removed from further 

reproduction. By doing so, population size will remain constant in each generation.  

Individual  
Identification

Individuals (String Chromosomes)

String Variable, x Fitness Value, f(x)

Ind #1 101101 3 82

Ind #2 001110 28 353

Ind #3 001010 11 198
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4.2.5 Fitness Function and Objective Function 

 The Darwinian theory regarding the survival of the fittest can be translated into 

reproduction based on values of fitness, where individuals with higher values of fitness have 

higher probabilities to be selected for breeding. A problem’s fitness function is designed to 

evaluate the level of fitness of each individual in a population-based on its power to provide a 

favourable solution. It is designed based on the problem’s objective function, and the fitness 

value of an individual reflects its objective function value. Therefore, a fitness function links a 

genetic algorithm to its problem system by taking an input chromosome and generating a 

number that is related to its level of fitness. For example, fitness functions can be designed as 

measures of profits to be maximized or costs to be minimized.  

 Scaling of the fitness values is a commonly used practice in genetic algorithms to 

standardize objective function values across various problems and to maintain uniformity 

during the simulation process [76]. Scaling fitness values is implemented by converting a range 

of raw fitness values into an acceptable range that is suitable for the problem. The scaled fitness 

scores will assist the selection operation in picking the fittest individuals for reproduction. 

Without scaling of fitness values and the fitness values vary over a broad range, some 

outstanding super-individuals may be predominant over the selection process at the early stages 

of GA, which will lead to premature convergence. At later stages of GA, where the population is 

extensively diverse, and the fitness values vary too little, competitions among individuals will 

become unnoticeable. In which case, scaling up fitness values will boost rewarding the top 

performers [76]. There are three approaches generally adopted in literature for scaling fitness 

values: linear scaling, power-law scaling, and sigma truncation [76]-[77]. 

4.2.6 Selection and Elitism 

Elitism is a strategy that allows the fittest individuals to survive and reproduce in the 

succeeding generations by retaining it from generation to generation. It is implemented by 

copying the best-performing individuals directly to a new population without any alterations. 
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Protecting the fittest individuals may enhance the performance of a GA rapidly for a local 

search; however, elitism sacrifices a GA’s potential to explore a globally optimal solution [76]. 

Selection operation, however, chooses competent individuals from a population-based on their 

fitness values and places them into a new population. Selection plays a crucial role in directing a 

GA convergence as it determines whether an individual is to be born, and live or die [79].  

A critical factor that determines the convergence rate of a GA is selection pressure. 

Selection pressure refers to the probability an individual with a higher fitness value is selected. 

To calculate the selection pressure, taking the ratio of the likelihood that the best individual is 

chosen to the probability that the average individual is selected. A higher selection pressure will 

result in a higher convergence rate, and a better individual will be more likely to be chosen. 

Therefore, a higher selection pressure will expedite convergence, whereas a low selection 

pressure may impede the process as convergence rate gets slow [80].  

Various selection mechanisms have been proposed and discussed in the literature, such 

as fitness proportionate selection (also known as roulette wheel selection), tournament 

selection, ranking selection, and steady-state selection [79]. In this thesis herein (see details in 

CHAPTER 7), we will be implementing the two most commonly discussed selection methods: 

roulette wheel selection and tournament selection.  

 Fitness Proportionate Selection (Roulette Wheel Selection) 

The fitness proportionate selection (also known as roulette wheel selection) was 

introduced in Holland [75] and is one of the oldest selection mechanisms. As implied by its 

name, the probability of an individual being selected is proportional to its standardized fitness 

value as compared to the sum of all fitness values. Imagine all individuals are placed on a 

roulette wheel. The slot sizes of the individuals are directly proportional to their fitness values, 

where a higher fitness value indicates a larger slot size on the wheel (as shown in Figure 4.5). 

The selection process starts like a marble tossed on a spinning roulette wheel. Clearly, the 

marble has a higher chance of stopping and pick the individual with a larger slot size on the 

wheel. This process will continue iteratively until a desired amount of individuals are selected. 
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The probability (P) for an individual i with a fitness value of f to be selected from a population 

(Pop)  is calculated as per the following equation (Eq. 4.1): 

  ,    Ɐj∈ Pop (Eq. 4.1)  

  

 Figure 4.5 Example of a rouleZe wheel selec0on on a popula0on with four individuals. 
 Fitness values of these individuals are indicated in the brackets aLer their names.  

 Tournament Selection 

Tournament selection starts by randomly choosing a small subset of chromosomes from 

the current population, where each chromosome is considered a tournament participant. The 

chromosome with the best fitness value in the subgroup is declared to be the winner and will be 

selected for reproduction. The best chromosome has a probability of p to become the winner. 

The second best chromosome has a probability of p(1-p), while the third has a probability of p(1-

p)2, and so on. The size of the subset in a tournament selection will affect its selection pressure. 

To be specific, the more individuals in a subgroup (more competitors), the higher the selection 

Pi  =   fi
∑ fj
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pressure will be [81]. Some research suggested that tournament selection is more desirable for 

problems with population size, where sorting gets exceedingly time-consuming [78]. 

  

 Linear Ranking Selection 

Linear ranking selection is the most common and straightforward type of ranking 

selection, where a linear equation is used as an assignment function [78]. A linear ranking 

selection requires sorting the population from the fittest to worst based on each individual’s 

fitness value, extrapolating a linear function, and then assigning a number to each individual 

based on the linear function. The process is then followed by a proportionate selection. In a 

linear ranking selection, the probability of an individual being selected is directly proportional to 

its ranking in the sorted list of all individuals in a population [61]. 

Steady-State Selection 

The steady-state selection evaluates an individual’s fitness based on its linear ranking. It 

proceeds by choosing an individual with a higher fitness value for reproduction, and in the 

meantime, replacing the current worst individual with a newly generated one. Results of steady-

state selection are found to follow an exponential growth, which stops when the desired 

population size is filled [79].  

4.2.7 Crossover 

The two most fundamental GA operators are crossover and mutation. Crossover is a GA 

operator that mimics the biological reproduction process, where two parent chromosomes 

exchange and combine their genetic contents to generate a new pair of offspring chromosomes. 

It is a stochastic process where the crossover point(s) is/are selected randomly.  

There are three primary types of crossover: one-point crossover, two-point crossover, 

and uniform crossover. In a one-point crossover, each of the pairs of parent chromosomes 
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splices at the same randomly-picked crossover point along the chromosome. Then, the two 

parent chromosomes exchange their contents by mix-matching the portions of their genetic 

materials before and after the crossover point (see details in Figure 4.6).   

Two-point crossover is similar to one-point crossover but with two random crossover 

points in each chromosome. Again, the two parent chromosomes are slitted at the same 

crossover points. As demonstrated in Figure 4.7, the sections between the two crossover points 

are swapped and combined with the remaining genetic contents in their counterpart. 

 

     Figure 4.6 One-point crossover applied on Parent #1 and Parent #2 to generate Child #1 and  
      Child #2. The crossover occurred at the crossover point, as indicated by the doZed line. 
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     Figure 4.7 Two-point crossover applied on Parent #1 and Parent #2 to generate Child #1 and  
      Child #2. The crossover occurred at the crossover points as indicated by the doZed lines. 

Uniform crossover involves multiple crossover points in each parent chromosome. This 

is implemented by designing a randomly generated binary crossover mask which has the same 

length as the parent chromosomes. This crossover process looks at each gene on each parent 

chromosome individually and allocates it based on the “0” and “1” pattern along with the 

crossover mask. As shown in Figure 4.8, where it is a “0” on the mask, the corresponding gene in 

parent #1 is assigned to child #1 and parent #2 to child #2. Where it is a “1” on the mask, the 

corresponding gene in parent #1 will be passed on to child #2, and the gene in parent #2 goes to 

child #1. Therefore, the resultant pair of offspring chromosomes will contain mixed contents 

from both parents. The number of crossover points varies in a uniform crossover; however, the 

average length of a mask is found to be around half of the length of parent chromosomes [78].  
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 Figure 4.8 Example of uniform crossover applied on Parent #1 and Parent #2 to generate Child #1 and  
 Child #2. The crossover mask is indicated as a binary string with the length of the parent chromosomes. 

As mentioned previously, a string chromosome can be either a fixed-length string 

chromosome or a variable-length string chromosome. In both cases, the same types of crossover 

operation can be implemented (one-point, two-point or uniform); however, the crossover points 

vary. In the fixed-length string chromosome, the crossover points always occur at the same loci 

position, as shown in Figure 4.6 and 4.8.  Whereas, in variable-length string chromosomes, the 

crossover points may shift during the reproduction process [61]. The lengths of the child 

chromosomes may, therefore, differ from the lengths of the parent chromosomes (as shown in 

Figure 4.9).  
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 Figure 4.9 Example of one-point crossover applied on a pair of variable-length string chromosomes. 

Crossover Rate 

  

The crossover rate indicates the frequency (in percentage) a crossover operator is applied 

to a particular population. It determines the number of individuals from a population that is 

going to participate in the reproduction process. Therefore, assigning an appropriate crossover 

rate is critical for a valid GA. To be specific, if the crossover rate is too large, too many 

individuals will be disrupted by the crossover operation, and that competent individuals are less 

likely to be retained [78]. A GA with a small crossover rate, on the other hand, may impede the 

GA’s search power and fail to find a local near-optimal solution.    

4.2.8 Mutation  

After crossover has taken place, the mutation operator is applied to each chromosome 

individually by altering the genes in a chromosome in a random fashion. It is executed on a 

population with a relatively small probability. Traditionally, a crossover has been the primary 

and most desirable GA operator to exploit a desirable search region by recombining highly 

potential chromosomes. In contrast, a mutation has been considered merely the secondary 

operator. However, some research has suggested that a well-designed mutation operator has the 
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potential to reach a different region of the search space [78]. Studies have also indicated that 

tailoring the population size and mutation rate has a paramount influence on enhancing GA’s 

capability to find the local optima [78]. 

There are various ways to implement mutation in a GA, such as modifying values, 

permutation, and deletion/insertion. A more general approach to implement a mutation 

operator is by randomly altering genes in a chromosome. The genetic alteration may be handled 

as a one-point mutation or a multi-point mutation (see details in Figure 4.10). Permutation 

mutation is where two genes on a string chromosome are swapped (as shown in Figure 4.11)., 

which requires the data type of all genes to be consistent. These two approaches can be applied 

to the fixed-length string chromosomes [61].  

 

 Figure 4.10 Examples of value-modifying muta0on on a fixed-length string chromosome (Parent), 
 where (a) shows a one-point muta0on, and (b) shows a mul0-point muta0on. 

 

 Figure 4.11 Examples of permuta0on muta0on on a fixed-length string chromosome (Parent), where  
 the gene at P1 locus is swapped to C2 locus in the Child chromosome, and the one at P2 traded to C1. 
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In the case of variable-length string chromosomes, a mutation can be implemented by 

either randomly inserting or deleting a few genes at random positions along a chromosome (see 

details in Figure 4.12). 

 

 Figure 4.12 Examples of inser0on (a) and dele0on (b) as muta0on operator on a variable-length  
 string chromosome (Parent A, Parent B). 

Mutation Operator vs Chromosome Encoding 

Choosing a suitable type of mutation operator for a problem is closely associated with 

how the chromosomes are encoded. For binary encoded chromosomes, permutation can be 

applied to swap two different genes in a chromosome (a “1” and a “0”). The deletion/insertion of 

a specific gene will also work in this case. Alternatively, bit inversion is also a suitable mutation 

operator where a selected gene is replaced by its opposite value (a “1” substituted with a “0”, or 

vice versa). For real-value encoded chromosomes, implementing a one-point or multi-point 

value modification mutation is a desirable approach. For permutation encoded chromosomes, 

selecting two genes and exchanging their orders in a chromosome using permutation mutation 

is an appropriate approach. 
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Mutation Rate 

A mutation rate indicates the percentage of genes in a population that is going to be 

mutated (altered) to create new individuals. As compared to crossover rates, mutation rates are 

usually lower (no more than 0.1) [77]. If a high mutation rate is applied to a GA, then the GA 

search will ultimately be converted into a random search.  

4.2.9 Other GA Operations 

Various studies in the literature have discussed other advanced genetic algorithm 

operations reported and studied. For example, Deshpande and Kelkar [57] studied advanced 

genetic algorithm operator Dominance & Diploidy in binary string chromosomes, where new 

binary strings are structured regarding expressions of dominant (apparent) or recessive 

(hideous) alleles. Reordering operation is another example of advanced GA operations, which 

involves the movement of gene positions in a chromosome [57], [77]. It is beneficial in situations 

where the order of genes in a chromosome is crucial and that changing order of genes will alter 

phenotypic expressions. Inversion is a type of reordering operation where two randomly 

selected loci in a chromosome are reversed [77].  

Detailed mechanisms of Dominance & Diploidy, reordering or inversion will not be in 

the scope of this research since none of these operations applies to the research problem we are 

going to study. For example, changing the ordering of genes in the chromosomes in our design 

will not affect altering the decoded string structure.  
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4.2.10 Termination Criteria 

The GA process is repeated until predetermined termination criteria are satisfied. There 

are various ways to define termination criteria:  a predefined fitness value [77], a total number of 

evolutionary iterations, a predetermined level of variations between different generations, a 

specific total computational runtime [54]. When the termination criteria are reached, the GA 

will exit the current program loop and return the best current solution.  

4.3 Genetic Algorithms in Network Survivability 

As mentioned previously in this chapter, genetic algorithms are capable of delivering 

results for NP-hard problems like network optimization problems. In fact, genetic algorithms 

have been applied to various aspects of communication networks survivability and optimization. 

Examples of typical applications include survivable network topology designs, network service 

reliability, shortest path routing in survivable networks, and network routing and wavelength 

assignment (RWA) problems. 

 Telecommunication network topology optimization has been studied in various research 

using genetic algorithms. An early study by Dengiz et al. [72] set the stage for optimizing 

communication network topology designs using genetic algorithms. Their research with 70 

randomly generated test networks has proved substantial flexibility and scalability of a genetic 

algorithm approach in handling NP-hard problems. In this work, Dengiz et al. [72] presented a 

GA model to minimize the cost of a network placement. The study used variable-length string 

encoding of the chromosomes, uniform crossover and an effective mutation design with local 

search operators. For repairing disrupted chromosomes, this GA model used a repair 

mechanism that checks and fixes any non-two-connectivity in a candidate network.  

In recent years, Morais et al. [70]-[71] developed a genetic algorithm for optimizing the 

topological designs of survivable optical transport networks with minimum capital expenditure 

(CAPEX). In this work, the chromosomes were encoded as binary strings with information 

regarding an adjacency matrix. The binary adjacency matrix carries information on node-span 
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correlations in a particular network. The GA model was tested with various combinations of 

initialization methods and GA operators. To be specific, the authors tested two initial population 

generators (random topology generator vs. a realistic optical network topology generator), two 

selection methods (roulette wheel selection vs. tournament selection), two crossover operators 

(one-point crossover vs. uniform crossover), and two population sizes (100 vs. 500). Simulation 

tests were conducted on nine test networks ranging from 9 nodes to 17 nodes.  

Some studies use genetic algorithms to optimize optical network reliability for real-world 

communication networks, where maintaining reliable network connections and survivability 

against failures are critical to customer satisfaction. This type of problem focuses on connecting 

all customers (nodes) to infrastructure connecting points with the lowest cost while ensuring 

network survivability against single-span failures. To tackle this problem, Binh and Duong [73] 

proposed a genetic algorithm, also referred to as GA-EDP, for optimizing survivable network 

design problems (SNDP) to minimize network cost. The GA model was implemented with three 

different case-specific initialization methods, two customized crossover methods. Mutation 

operation for GA-EDP was conducted by adding an extraneous node and its associated spans to 

a selected chromosome. The proposed GA-EDP algorithm was proven to obtain promising 

results on both real-world and random examples. 

Genetic algorithms were also used to solve the shortest path routing in network 

survivability. Ahn and Ramakrishna [74] developed a GA model for solving the shortest path 

problem in wireless networks with dynamic changes in a network topology. This study applied a 

GA model to the classic shortest path routing problem. It used variable-length string 

chromosomes to encode the problem. This design also included a simple repair mechanism to 

fix infeasible chromosomes after the crossover and mutation. The repair mechanism will find 

and remove the lethal genes (a loop) in a disrupted chromosome. This study also developed a 

scalable population-sizing algorithm that can be used to customize a suitable population size for 

a GA model, which will enhance the solution with desirable quality.  

In terms of solving the routing and wavelength assignment (RWA) problems, Kavian et 

al. [82] presented a genetic algorithm for optimizing survivable optical networks that can 

survive single link failures. The objective function of this problem was to minimize wavelength 

utilization by the working and spare lightpaths while servicing the demands. The GA encoded 
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the chromosomes as variable-length binary strings. A single-point crossover and a binary 

mutation operator were used as GA operators. The GA terminated when the process reached a 

predetermined number of generations. This proposed approach was implemented on both 

dedicated path protection and shared path protection on a Pan European network with 18 nodes 

and 35 spans. 

4.3.1 Genetic Algorithms in p-Cycle Protection 

A recent study by Guo et al. [83] introduced an improved genetic algorithm using a 

genetic p-cycle combination protection strategy (GPCPS) to produce a set of p-cycle 

combinations that can fully protect the entire network topology. This result is used in secondary 

algorithms to optimize network spectrum allocation. The GPCPS utilizes the improved GA to 

optimize the arrangement of primary candidate p-cycle so that an effective p-cycle protection 

combination can be achieved, which fully protects the whole optical network topology with a 

minimum cost. The algorithm takes in network topology, a request (demand), and the number 

of requests to be processed, and it returns an optimized working path, a protection path and an 

assigned spectrum index for the particular request. The process started by generating all the 

primary cycles in a network topology using DFS. Then, cycles under a predetermined hop limit 

were selected. Individual chromosomes were encoded using a variable-length decimal encoding 

method where each gene is denoted with a serial number that reflects the identification of a p-

cycle. In terms of GA operators, this study adopted the roulette-wheel selection, two-point 

crossover, and an adaptive mutation function. The process terminates when the maximum 

allowed number of generations is reached or when the objective function value remains 

unchanged for the maximum allowable generations. The results are verified for whether full 

protection has reached. For any unprotected spans, an additional minimum p-cycle will be 

formed to protect those spans, and the newly formed minimum p-cycle will be added to the total 

p-cycle combination. The simulation results indicated that this proposed method was effective. 

This study did not look at optimizing the cost-efficiency in placing p-cycle. To be specific, the 

proposed improved GA used a fitness function that calculates the total number of unit 

protection that a p-cycle can offer. This fitness function does not reflect the cost-efficiency of 
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protection (total protection versus the cost of cycle placement), nor does it consider how real-

world demands may affect p-cycle protection effectiveness.  

Genetic algorithms have also been effectively implemented in optimizing p-cycle 

selection for maximizing p-cycle protection efficiency [68], [84]. For example, Colmán et al. 

[84] proposed a GA model that takes a set of previously generated candidate p-cycle and 

calculates an optimized set of p-cycle with maximum protection efficiency. The chromosomes in 

this problem had dynamic sizes, which enveloped multiple information (a p-cycle ID and a value 

indicating the number of cycles). All required information regarding features of all candidate p-

cycles is tabulated into a Protection Table, which can be used to decode chromosomes. This 

work implements a binary tournament selection and a mutation operator that involves replacing 

individuals. At each generation, the GA model retained the top performer by directly passing the 

best individual onto the next generation with no genetic alterations. Simulation tests were 

conducted with eleven test networks, ranging from 11 nodes to 66 nodes. This work did not 

consider demands as a relevant factor that may influence p-cycle selections. 

Meixner et al. [68] adopted the GA model developed in [84] and incorporated a novel p-

cycle efficiency metric as a fitness function. The novel p-cycle efficiency metric proposed in this 

study was referred to as Efficiency of Restoration (EoR). The metric assesses a p-cycle’s 

efficiency based on its total protection, total hop count, average p-cycle length and fairness of 

cycles (standard deviation of cycle length). This study also proposed a new heuristic algorithm 

called Efficient Restoration Algorithm (ERA). GA was implemented as a benchmark, and the 

results were compared to the results of the ERA.  

Genetic algorithms were also adopted to solve the shared risk link group problems in p-

cycle network protection. Shared risk link groups (SRLG) refer to sets of optical links on a cycle 

that are grouped together and, therefore, will fail simultaneously in the event of a node or duct 

failure [58]. In the research conducted by Paez et al. [58], a GA design was proposed to find the 

best set of p-cycles that are capable of enhancing the survivability of network traffic flows 

against SRLG. The proposed algorithm was also capable of restoring network failure faster and 

more efficiently.  
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This thesis herein will be devoted to developing a novel heuristic algorithm and a GA 

model for solving the p-cycle spare capacity allocation problem with given demands. The details 

regarding these two novel design will unfold in CHAPTER 6 and 7 of this thesis. For the 

heuristic algorithm, a scalable cost-efficient and computational memory-efficient model is 

proposed that targets solving the spare capacity allocation problem in large-scale networks. A 

selection of network topologies with up to 140 nodes will be used in testing this model, which is 

avant-garde. For the GA approach, a problem-specific chromosome encoding method is 

proposed that adequately reflects all genetic information. Two efficient and objective-driven 

repair mechanisms are developed for this problem. Also, an additional contribution of this work 

includes an extensive study on novel mutation operator design and refining for this problem. To 

the best of our knowledge, there has not been a study conducted on designing and testing a 

suitable GA model for minimizing the cost of p-cycle spare capacity allocation with given 

demands, nor has there been a similar problem-specific repair or mutation method proposed.  
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CHAPTER 5. EXPERIMENTAL SET-UP & BENCHMARKING 

So far in this thesis, key concepts regarding survivable networks and p-cycle protection 

in survivable network design have been introduced. Fundamental concepts and background 

information regarding heuristics, meta-heuristics and genetic algorithms, as well as their 

applications in network survivability and p-cycle protection, have also been reviewed and 

discussed. To the best of our knowledge, there has not been a heuristic method proposed in 

particular for large-scale networks and tested using multiple large test networks that are over 

100 nodes. Besides,, there has not been a GA model explicitly proposed for optimizing p-cycle 

spare capacity allocation problem. In this thesis, we would like to challenge and scale up the p-

cycle survivability problem for large networks using heuristic and meta-heuristic methods. A 

novel heuristic algorithm will be developed for enumerating highly efficient p-cycle in large-

scale networks. In addition, a scalable GA model will be proposed for optimizing the p-cycle 

spare capacity allocation problem. This chapter is devoted to providing details regarding the 

experimental and computational set-up and test network topologies. 

5.1 Experimental Network Models 

For the WDM optical mesh networks discussed in this thesis, a network topology can be 

denoted as G(N, E) where N stands for the set of nodes and E is the set of edges (spans). |N|

 and |E| represent the number of nodes and the number of edges, respectively. All the network 

graphs used in this research are weighted and undirected, and their topologies are known in 

advance. Each span's weight is uniformly one for all the calibration networks (the USA network 

and the France network) to allow comparison between the experimental results from this study 

with those in Doucette et al. [39]. However, to simulate real-world problems, the weight of each 

span in all other test case networks (10n20s to 140s220s) will be adopting the Euclidean 

distance between two end nodes of the said span.  
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5.1.1 Calibration Networks 

Since we will conduct comparison studies on our novel heuristic algorithm versus the 

Grow algorithm, we will be using the USA network [78] and the France network[4], [79] used in 

Doucette et al.[39] as our calibration networks in CHAPTER 6. The USA network and the 

France network have average nodal degrees of 3.2 and 3.3, respectively. As mentioned in 

CHAPTER 2 of this thesis, a network’s average nodal degree is calculated as per the formulae: d 

= 2 * |E||V|. The USA network will again be used as a calibration network for designing and 

calibrating the GA model in CHAPTER 7. 

 Figure 5.1 (a) USA long-haul network [78]; (b) France network [4], [79]. 

The two calibration network topologies are illustrated in Figure 5.1, which are generated 

using the networkx package in Python version 3.7.6. The nodes and spans features of these two 

topologies are listed in Table 5.1. 

Table 5.1  Features of Calibra0on networks: USA and France networks 

Networks Number of Nodes Number of Spans Avg. Nodal Degrees

USA 28 45 3.2

France 43 71 3.3
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5.1.2 Test Case Networks 

A total of 14 test case network topologies will be used in the experiments conducted in 

this thesis, which were selected from [25]. Each of the test case networks was modified from a 

master network (same nodes but difference spans, average nodal degree equals to 4) by 

removing random span(s). By doing so, the average nodal degrees of these test cases decreased 

from 4 to 3 progressively. All the test case networks in this study are bi-connected and have 

average nodal degrees between 3 and 4. Table 5.2 presents nodes and spans features for all 14 

test case networks. Network notations follow the pattern of X-n-Y-s, where X stands for the 

number of nodes, and Y is the number of spans. For example, 10n20s refers to the test network 

topology with 10 nodes and 20 spans. The weight of each span of all test case networks (10n20s 

to 140s220s) is determined using the Euclidean distance between two end nodes of the said 

span. The network topology graphs for all 14 test case networks will be provided in the Appendix 

I, which are generated using the networkx package in Python 3.7.6 [86]. 

Table 5.2 Features of all 14 test networks. Span costs are equivalent to Euclidean distances. 

Network Number of Nodes Number of Spans Avg. Nodal Degree

10n20s 10 20 4

20n34s 20 34 3.4

30n45s 30 45 3

40n60s 40 60 3

50n80s 50 80 3.2

60n96s 60 96 3.2

70n105s 70 105 3

80n128s 80 128 3.2

90n135s 90 135 3

100n150s 100 150 3

110n165s 110 165 3

120n180s 120 180 3

130n195s 130 195 3

140n210s 140 210 3
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5.2 Demand Models and Working Routing 

Demands of a transport network refer to an aggregation of all traffic flows from an origin 

node to a destination node of the transport network [3]. Working capacity on every span can be 

determined based on traffic demands. A working path carries traffic demands during regular 

operation. In this thesis, one unit of traffic demand takes on one unit of working capacity on 

each span between an origin node and a destination node of a network. Also, only integer units 

of traffic demands will be considered in this thesis unless stated otherwise. Usually, network 

traffic demands of optical WDM networks can be forecasted or determined beforehand [50], and 

the information can then be used for working capacity routing.  

For the algorithms in this thesis, working capacity routing was conducted beforehand 

using the shortest path method in all test networks, i.e., probably solved in an SCA fashion. 

Therefore, the working capacity on every span of each test network is considered an input 

parameter for the algorithms. 

5.3 Computational Set-Up 

All the heuristic algorithms (e.g., DDCD and CIDA) and genetic algorithm models 

generated in this thesis work are programmed using Python 3.7.6 [86]. All the Python coding is 

conducted, compiled and debugged using the Visual Studio Code [87]. All ILP models in this 

thesis herein are compiled using a third party software called AMPL [88] and are solved using 

IBM ILOG CPLEX Interactive Optimizer 12.6.1.0 [89]. AMPL is an LP modelling language used 

to describe mathematical programming formulations in general algebraic forms. AMPL reads an 

LP model and case-specific data and generates a readable standard file format imported to an 

LP solver (i.e., CPLEX) to find the optimal solution of the LP [17]. All experiments are programs 

run on a server with 12-core ACPI multiprocessor X64-based PC with Intel Xeon® CPU 

E5-2430 running at 2.2 GHz with 96 GB RAM. All ILP results include a default mipgap of 

0.0001 (unless specified otherwise), which indicates that the results are ensured to be within 

0.01% of optimal. 
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5.4 Experiment Benchmarking 

Studies in this thesis will be using the experimental results presented in [39] as 

benchmarks, where Doucette et al. compared performances of the CIDA-Grow and pure ILP 

models on both the USA and France networks. The experimental results from [39] are 

presented in the Table 5.3 below. In this table, “# of p-cycles” indicates the total number of 

candidate p-cycles generated using either the Grow algorithm or the ILP model. The “Work” 

and “Spare” stand for the total working capacity and total spare capacity of a network design, 

respectively. “Redundancy” is the percentage of spare capacity over the working capacity. The 

lower the redundancy, the better the efficiency a design resembles. “% Difference” indicates how 

much (in %) the CIDA-Grow result deviates from the pure ILP approach (the true optimal or 

near-optimal results). “RT” stands for the total runtime of a model, which includes the time 

taken to generate eligible cycles plus the time taken to solve the ILP model using CPLEX 7.5 

[39]. In the USA network, a “Pure ILP” approach is where all the eligible cycles from the 

network topology are enumerated and used as possible candidate cycles when optimizing the 

capacity cost, therefore, the resulting “Redundancy” value is the true optimal result. In the 

France network, Doucette et al. generated the shortest 15,000 eligible p-cycles out of over 

500,000 possible cycles using DFS, which is used as a near-optimal solution for this problem.  

    Table 5.3 Test results as reported in DouceZe et al. [39] for the USA and France networks 

* The shortest 15,000 eligible p-cycles out of over 500,000 possible cycles generated by DFS [39] 

USA Network France Network

Grow 
+ CIDA

Grow 
+ ILP

Pure  
ILP

Grow + 
CIDA

Grow 
+ ILP

Pure  
ILP

# of p-Cycles 839 839 7321 2407 2407 15000*

Work 1273 1273 1273 4043 4043 4043

Spare 1212 1164 1064 3890 3692 3675

Redundancy 95.2% 91.4% 83.6% 96.2% 91.3% 90.9%

% Difference 13.9% 9.4% 0.0% 5.9% 0.5% 0.0%

RT (sec) 0.32 1.70 17.29 1.93 8.25 541.08
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CHAPTER 6. A NOVEL HEURISTIC METHOD FOR p-CYCLE DESIGN  

6.1 Introduction 

As discussed previously, the p-cycle is a promising network protection mechanism in 

WDM mesh networks due to its ring-mesh dichotomy and its capability to protect off-cycle 

straddling spans. In a non-joint approach to design a fully restorable p-cycle network protection 

in WDM mesh networks, the first step is to generate a set of eligible and efficient candidate p-

cycles that can provide full protection across the entire weighted network. The second step is to 

optimize the allocation of selected p-cycle spare capacities to achieve 100% network survival 

with the minimum spare capacity cost. Since p-cycles are constructed in the spare capacity of a 

network, solving a p-cycle spare capacity allocation problem does not interfere with working 

capacity routing.  

As stated previously, heuristic methods refrain from searching cycles exhaustively and 

are suitable for solving large-scale network problems. Prior studies on heuristics in p-cycle 

designs, as discussed in CHAPTER 3 of this thesis, have shown promising results in various 

network topologies that have less than 50 nodes. Among these studies, the Grow algorithm for 

cycle enumeration and the CIDA for cycle placement by Doucette et al. [39] were the most 

frequently referenced benchmark methods. The experiments conducted in this chapter of the 

thesis will use the Grow algorithm as the benchmark to the proposed novel heuristic method. 

The CIDA algorithm will be implemented as one of the spare capacity allocation methods in this 

research. The Grow algorithm starts by enumerating some small primary p-Cycles using the 

straddling link algorithm (SLA) proposed in [32]. By doing so, it generates a wide range of p-

cycles in various sizes (small p-cycles, intermediate p-cycles, and very large p-cycles) based on 

the primary cycles. CIDA selects p-cycles with the highest current actual efficiency (Ew) scores 

and places them in the network. Once a cycle is placed onto the network, working capacity 

values are updated by subtracting one unit of working capacity from each on-cycle span of the 

selected p-cycle, and two units on each straddling span (if present). Working capacity values are 

updated at each iteration. This process is repeated iteratively until all the working capacities are 

protected (meaning all working capacity values are reduced to zero).  
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A review of prior work indicates that the majority of previous studies have conducted 

simulation tests using networks that have less than 40 nodes (see details in Table 6.1). Among 

which, COST239 with 11 nodes and 26 spans and USA long-haul network of 28 nodes and 45 

spans are the most frequently tested network topologies. Some studies used network topologies 

that have more than 60 nodes [64]-[69], [90]-[93]. However, these methods expedited the 

eligible cycle searching process using genetic algorithms, which is an alternative approach that 

we will implement in the next chapter. As mentioned in [25], there is no explicit definition for a 

large network. However, since the majority of the test case networks in prior work are no larger 

than 40-node networks, network topologies that have 50 nodes or more with nodal degrees of 

three and above will be referred to as large networks in this study.  

Table 6.1 Test networks used in selec0ve literature which adopted heuris0c or ILP approach in p-cycles designs and 
pre-selec0ons against single network failure. * indicates studies that used gene0c algorithm. 
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Reviewed Literature Test Network Used

[56] 6n8s, 17-node GERMAN network

[42] 8n13s

[28] 9n16s

[14][15][29][69][91] SmallNet network (10n22s)

[14][16][17][29][35]-[37][42] 

[45][46][48][50][69][91]
COST239 network (11n26s)

[47] 12n19s, 13n23s, 15n26s

[34][42][43][45][47][56][68]* NSFNET network (14n21s)

[92] 15n27s

[14][15][35][40] KL Network (15n28s)

[68]* European Core Network (ECN)(18n39s)

[40][42][43][49] EON network (19n38n)

[14][15] 20n31s, 30n59s

[60] 28-node EUROPEAN network

[32][33][36][39][43][48][49][68]* USA long-haul network (28n45s)

[69] 30n62s

[32][39] France network (45n71s)

[14][15] 53n79s

[68]* China National Backbone Network (CNBN)(66n120s)



To the best of our knowledge, there has not been a study that experimented with 

heuristic cycle enumeration algorithms on large networks in particular. With the rapid 

advancement of and growing demands for network technologies, we are motivated to pursue 

this study to develop methods that can effectively scale up and solve large-scale network 

problems. In this chapter, we will introduce and test a novel heuristic method for highly efficient 

candidate cycle enumeration that is proved to be effective in large networks, which is referred to 

as the disjoint-paths Dijkstra cycle development (DDCD) algorithm. The DDCD approach starts 

by generating short primary p-cycles using a double shortest path approach inspired by [33]. In 

the next step, a heuristic algorithm is proposed to iteratively develop an extensive set of p-cycles 

of various sizes using the short primary p-cycles.  

 The remainder of this chapter is organized as follows. Introduction and design 

consideration of the novel disjoint-paths Dijkstra cycle development (DDCD) algorithm will be 

presented in Section 6.2. Section 6.3 includes detailed descriptions of the experimental set-ups. 

The experimental results and algorithm performance will be presented in Section 6.4, which 

includes the results of calibration networks and all test case networks with sizes ranging from 10 

nodes to 140 nodes will be presented. Finally, Section 6.5 will wrap up this chapter with key 

findings and conclusions. 

6.2 A Novel Heuristic p-Cycle Enumeration Algorithm 

6.2.1 Design Considerations 

  

The heuristic cycle enumeration algorithm is referred to as the disjoint-paths Dijkstra 

cycle development (DDCD). It is a recursive cycle enumeration method which is capable of 

“developing” efficient p-cycles in small and large networks (over 100 nodes). This algorithm is 

designed based on the following considerations:  

First, the DDCD algorithm will be generating p-cycles of various sizes. Liu and Ruan [33] 

stated in their research that a good candidate cycle set should incorporate both large cycles with 

multiple straddling spans as well as small-sized candidate cycles. Analyzing the set of p-cycles 

generated by Grow from [39] also indicated that the resulting candidate p-cycles contained a 
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diverse profile of p-cycles: very small p-cycles, intermediate p-cycles, and very large p-cycles. As 

discussed in [21], p-cycle sets with higher average cycle length (meaning more larger p-cycles) 

provide better average protection efficiency. In the meantime, small p-cycles are essential for 

preventing excessive capacity redundancies. In a situation where the working capacities of most 

spans are protected, short p-cycles are needed to protect the remaining working capacities with 

a lower spare capacity cost [33]. 

Second, the DDCD algorithm avoids duplicate p-cycles and is more memory-efficient, 

especially when applied on large-scale networks. In the Grow algorithm, a significant amount of 

duplicate cycles were generated and retained during the process. For example, the Grow 

algorithm created 839 candidate cycles for the USA network and 2407 cycles for the France 

network as reported in [39]. However, after duplicate p-cycles in both cycle sets are eliminated, 

only 309 and 863 candidate cycles remain in each cycle set, respectively. The DDCD algorithm is 

designed to check and remove duplicate cycles, and avoid the accumulation of duplicate cycles 

during the process as well as in the final cycle set. 

Finally, the amount of p-cycles to be enumerated is controllable in the DDCD algorithm. 

The DDCD algorithm finds new p-cycles repetitively, and the number of iterations is an input 

parameter for the algorithm. While some network topologies may require more cycles, some 

may need less to provide equally good results (if not better) as compared to the benchmark. By 

controlling the number of iterations, the number of output cycles will be customized as per the 

input test network topologies. Correlations between the input number of iterations versus 

network sizes will be discussed later in this chapter. 

6.2.2 Disjoint-Paths Dijkstra Cycle Development (DDCD) 

Figure 6.1 shows an overview of the mechanism involved in the DDCD algorithm 

mechanism that is applied on a network topology as shown in Figure 6.1 (a). In general, there 

are three steps involved in the DDCD algorithm:  

1) Generating starting cycles based on each span i in a network (see Figure 6.1 (b));  

2) Larger p-cycles by converting on-cycle spans to straddling spans (Figure 6.1 (c));  

3) Post-enumeration procedure to verify straddling spans (Figure 6.1 (d)).  

 85



The first two steps will yield a set of high-merit candidate p-cycles with a wide range of 

sizes. The last step ensures computational soundness, memory efficiency, and data correctness. 

All the network topologies used herein are undirected and bi-connected.  

 

Figure 6.1 Overview of the DDCD algorithm mechanism applied on a topology shown in (a).  

Step One: Generating Starting Cycles 

Similar to the Expand and Grow algorithms in [39], the DDCD algorithm operates on an 

initial set of short p-cycles. These starting cycles are crucial for developing eligible and capacity-

efficient p-cycles at later stages. Each of the short cycles generated at this step will be an input 

cycle for the DDCD algorithm, where further operations will be conducted to generate larger p-

cycles with higher capacity efficiency. The starting cycles are generated using the short cycle 

enumeration method proposed in [33], which is referred to as a double-shortest-path method in 

our implementation. For each span i of a network, the double-shortest-path algorithm will find a 
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minimum cycle that protects i as an on-cycle span and a short p-cycle if such a cycle exists. 

Figure 6.2 demonstrates how double-shortest-path algorithm is used to generate minimum cycle 

and short p-cycle. An overview of the process can be described as follows:  

1) Initialize a new cycle set where all newly enumerated short cycles will be saved:  

New_Cycle_Set = {} 

Note that in our python implementation, each item in the New_Cycle_Set is an eligible 

cycle that is distinguished by a specific cycle ID plus the cycle’s span information (span 

ID + span relation values). The span relation values are represented as either 1 or 2, 

where 1 represents an on-cycle span, and 2 represents a straddling span. 

2) For each span i of a network N, locate the two end nodes (N1 and N2) of span i. Using 

Dijkstra’s algorithm, find two shortest paths r1 and r2 between N1 and N2 that are node-

disjoint from span i.  

3) If only r1 exists for span i (illustrated in Figure 6.2(a) and displayed in the pseudo-code 

below as distance(r1) != MAX), then connect r1 with i to form a minimum cycle a that 

includes span i as an on-span cycle. The algorithm will proceed no further and the cycle a 

is saved to the New_Cycle_Set. As shown in Figure 6.2 (a), only one shortest path (r1) 

exists between two end node of span i (Node 1 → Node 2). Therefore, only one minimum 

cycle is formed by joining r1 with span i. 

4) If both r1 and r2 exist for span i, the algorithm will first form and keep the minimum 

cycle a. Then, a p-cycle b will be formed by joining the r1 and r2 at their end nodes, where 

span i is a straddling span to the cycle b. Save the cycle b to the New_Cycle_Set. This is 

shown in Figure 6.2 (b) and displayed in the pseudo-code below as distance(r1)!= MAX 

and distance(r2)!= MAX. As illustrated in Figure 6.2 (b), two node-disjoint shortest 

paths (r1 and r2) are found for span i (Node 4 → Node 7). In this case, a minimum cycle 

is formed by joining r1 with span i. In addition, a short p-cycle is formed by joining r1 and 

r2, with span i straddles over this cycle. 

5) This process continues until all the spans in the network N is explored. The process will 

then terminate and return the New_Cycle_Set. 
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Figure 6.2 Genera0ng star0ng cycles (and p-cycles) using double-shortest-path method.  
(a) a minimum cycle is formed by joining r1 + i, (b) a small p-cycle is formed by joining r1 + r2. 

The pseudo-code for generating starting cycles and double-shortest-path are as follows: 

# all_spans is a set of all spans in the network N; 

function StartCycles(all_spans): 

    initialize New_Cycle_Set       

    for each span i in all_spans: 

        N1 = origin_node(i)  

        N2 = destination_node(i) 

        double_ShortPath(Graph, N1, N2) → r1, distance(r1), r2,  

    distance(r2) 

        if distance(r1) != MAX: 

            add all the spans of r1 to span i → cycle a 

            save cycle a to New_Cycle_Set 

        if distance(r2) != MAX: 

            add all the spans of r2 to r1 → cycle b 

            remove duplicate spans 

            mark span i as a straddling span 

            save cycle b to New_Cycle_Set 

return New_Cycle_Set 
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function double_ShortPath(Graph, origin, destination): 

    set graph distance between origin & destination to MAX 

    for each span i on Graph: 

        Dijkstra(i, unmarked spans/nodes) → r1, distance(r1) 

        if distance(r1) != MAX: 

            mark visited nodes 

            Dijkstra(i, unmarked spans/nodes) → r2, distance(r2) 

        unmark all spans/nodes 

    reset graph.distances() 

    return r1, distance(r1), r2, distance(r2) 

Step Two: Disjoint-Paths Dijkstra Cycle Development (DDCD) 

The DDCD algorithm takes the starting cycles that were generated at the previous step 

and develops various larger p-cycles with higher capacity efficiency (more straddling spans). 

The DDCD algorithm adopts Dijkstra’s algorithm to replace each span of a selected cycle 

progressively by a node-disjoint path. The DDCD algorithm starts at an arbitrary span i on a 

starting cycle p. The algorithm finds the shortest node-disjoint path that connects the end nodes 

of span i (if existed) and then connects this path with the remaining portion of cycle p to form a 

new p-cycle. Span i is then removed from the newly-formed cycle. Therefore, span i will be 

transformed from a on-cycle span of the old p-cycle to a straddling span to the newly generated 

p-cycle. Note that in the python code implementation for the DDCD algorithm, straddling spans 

are “marked” as straddling spans to be distinguished from on-cycle spans and other off-cycle 

spans. If such a node-disjoint path does not exist, the algorithm will move on to the next span on 

cycle p and start over. If such a path does exist, a new p-cycle is generated. The visited nodes 

along the path are then “marked” and hidden, so the same path will not be explored again. The 

algorithm will then find the second shortest node-disjoint path for span i, and the process will 

continue as above. If no more node-disjoint paths can be found to connect the end nodes of span 

i, the algorithm will jump to the next span on the cycle and repeat the same procedure. The 

algorithm will terminate when all the spans on the cycle p are explored.   
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Figure 6.3 illustrates the process of developing larger p-cycles using the DDCD 

algorithm. Figure 6.3(1) shows a starting small p-cycle enumerated from Step one of the DDCD 

algorithm. This starting p-cycle has four on-cycle spans, denoted as Span 1, Span 2, Span 

3, and Span 4. Figure 6.3(2) illustrates the scenario when the cycle development process starts 

at Span 1. As shown in Figure 6.3(2), there exist more than one node-disjoint paths between the 

two end nodes of Span 1, including but not limited to p1 (grey), p2 (green), p3 (yellow), and 

p4 (orange). Figure 6.3(3a)-Figure 6.3(3d) presents the resulting newly formed p-cycles by 

replacing Span 1 with the node-disjoint paths p1 - p4, respectively. In these newly formed p-

cycles, Span 1 becomes a straddling span. Therefore, Step two of the DDCD algorithm generates 

larger candidate p-cycles with at least one more straddling span (better protection efficiency). 

Every time when a node-disjoint path is explored, it will be “hidden” so it will not be explored 

again. Once a span (e.g., Span 1) is fully explored, the algorithm will move on to the next spans 

(Span 2, Span 3, and Span 4) on the topology until all spans are explored. Each new p-cycle 

formed will be saved to the New_Cycle_Set as a valid candidate. 

Unlike the Grow algorithm, DDCD finds all possible node-disjoint paths for each chosen 

span (if existed). Therefore, more than one new p-cycles (if existed) are generated for each span 

explored on a starting cycle. As in the Expand and Grow algorithms, all the newly generated p-

cycles are saved and added to the total p-cycle pool to be used in a later cycle allocation 

optimization process (e.g., CIDA). Therefore, the resulting total p-cycle pool from DDCD will 

incorporate a diverse set of cycles that includes minimum cycles, short p-cycles, medium-sized 

p-cycles and very large p-cycles. 

The pseudo-code for developing larger p-cycles using DDCD is provided in the section 

below. 
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Figure 6.3 Overview of developing larger p-cycles from a start cycle (a) using DDCD algorithm.  

function DDCD(input_cycle_set, Graph, new_cycle_id): 

    initialize New_pCycle_Set 

    for each cycle c in input_cycle_set: 

        initialize marked_nodes_list 

        let cycle c’ = cycle c 
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        for on-cycle span i on cycle c’: 

            mark all nodes except end nodes → marked_nodes_list 
            while marked_nodes_list: 

                Dijkstra(i, unmarked spans/nodes) → pi, dist(pi) 
                if path pi exists: 

                    add path pi to cycle c’ → cycle c” 
                    mark span i as straddling span 

                    add cycle c” to New_pCycle_Set 

                    add nodes on path pi to marked_nodes_list 

                Dijkstra(i, unmarked spans/nodes) → pi’, dist(pi’) 
                if Dijkstra() does not return pi’: 

                   break 

            unmark all nodes and spans 

return New_pCycle_Set 

In the above pseudo-code, note that the data structure in our python implementation for 

each p-cycle in the New_pCycle_Set contains a p-cycle ID and its span information (span ID + 

span relation values). The span relation takes on a value of either 1 or 2, where 1 represents an 

on-cycle span, and 2 represents a straddling span. 

As stated previously, The DDCD algorithm searches cycles iteratively in a network 

topology, where the number of iterations (k) is a controllable input parameter. Note that k can 

take on any integer values from 1 to ∞. As the value shifts from 1 to ∞, the DDCD algorithm will 

find as many candidate cycles as possible. Once no more can be found, the DDCD algorithm will 

exit and return the most recent collection of p-Cycles. The entire DDCD process is demonstrated 

by the following pseudo-code (the *asterisk part will be presented later in Step Three): 

start_cycles = startCycles(all_spans) 

for k ∈ [1,∞), do: 
    initialize new_cycle_id 

    new_pcycles = DDCD(start_cycles, Graph, new_cycle_id) 

    remove duplicate cycles* → no_dup_pcycles 
    add no_dup_pcycles to start_cycles → New_pCycle_Set 
    if no new cycle found → break 
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Step Three: Duplicates Removal and Validity Checks 

After p-cycle enumeration, there are a few miscellaneous cleaning and verification steps 

that we take to ensure excellent memory efficiency and data correctness.  

a) Remove Cycle Duplicates. At the end of each DDCD iteration, all the candidate 

cycles in the total cycle pool (e.g., input_cycle_set) are checked for possible duplicates. This 

duplicate removal step is implemented by first calculating all candidate cycles' costs and sorting 

the cycles based on their costs. Cycles with different costs are considered non-duplicates by 

default. Cycles with the same costs, however, are grouped together where their span information 

will be investigated to find out whether these cycles are identical or not. We compare the on-

cycle spans of each cycle within each group with those of other cycles within the same group. 

Non-duplicate cycles are added to a new list (e.g., a new p-cycle set called no_dup_cycle_set), 

whereas the duplicates are flagged and dropped. The resulting p-cycle set (no_dup_cycle_set) 

will contain no duplicates. This duplicate removal step is conducted at the end of an iteration 

(see the asterisk* part in previous pseudo-code for Step Two), as well as after the Step b) below. 

The pseudo-code for removing duplicate p-cycles is as shown below:  

function Remove_Duplicates(input_cycle_set): 

    initialize no_dup_cycle_set, cycle_costs_set 

    for cycle c in input_cycle_set: 

        calculate cycle costs → cycle_costs_set 
    sorted_cycles = groupby(cycle_costs_set, cycle costs) 

    for cycle c’ in group i in sorted_cycles: 

        if set(on-cycle span)for c’ = set(on-cycle span)for c+1: 

            flag duplicates 

            break 

        if not duplicates: 

            add cycle c’ to no_dup_cycle_set 

        i = i+1  

    return no_dup_cycle_set  
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b) Straddling Span Check. During the process of DDCD, when a new p-cycle is 

formed, only the selected span i was marked as a straddling span. As the size of the node-

disjoint paths grows, larger cycles will be generated that may contain multiple additional bonus 

straddling spans that are not explicitly expressed during the process. Therefore, an additional 

check on all the cycles is performed to capture any missed straddling spans. If a span is found to 

straddle the cycle but is not previously identified, it will be “marked” as a straddling span. Since 

we assign values of 1 or 2 to each span on a p-cycle, “marking” a straddling span means to assign 

a value of 2 as its span relation, whereas an on-cycle span will retain a value of 1 for its span 

relation. This step is conducted by scanning all spans and nodes information is all candidate 

cycles in a p-cycle set (input_cycle_set).  

For example, say a cycle p from input_cycle_set is structured as follows: 

{cycle p: {span 1: 1, span 2: 1, span 3: 2, …, span i: 1}, …}  

where cycle p is the cycle ID and {span 1: 1, span 2: 1, span 3: 2, …, span i: 1} 

is the cycle span information (span ID : span relation). For any two arbitrary nodes on the 

cycle p, if there exists a span s in the network graph G, which is not included in the span 

information. The span s is an additional straddling span to the cycle p, which should be added 

to the cycle span information and assigned a span relation of 2. 

 As illustrated in Figure 6.4, the p-cycle in Figure 6.4(1) is a newly formed p-cycle 

developed by Step two of the DDCD algorithm. This step only identified the straddling span 1 at 

which the new p-cycle was formed. We may notice that there is still a straddling span (span j) in 

this newly formed p-cycle that is not identified yet. Span j is identified during this verification 

step and is “marked” in the cycle’s span information. 

Figure 6.4 Upda0ng span informa0on for a newly formed p-cycle (1) at the DDCD verifica0on step.  
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The pseudo-code for this step is shown as follows: 

function Straddle_Spans(input_cycle_set, Graph): 

    for (cycle p, cycle_p_span_info) in input_cycle_set: 

        initialize cycle_node_set, updated_pcycle_set 

        save all nodes on cycle p → cycle_node_set 

       for each node pair from cycle_node_set: 

           if span s ∈ Graph and span s ∉ cycle_p_span_info: 

               add span s to cycle_p_span_info as straddling span 

               update cycle p information in updated_pcycle_set 

    Return updated_pcycle_set 

c) Save to a .pcycle File. Last but not least, for accessibility of these p-cycle data at 

later stages of our experiments  (e.g., CIDA optimization and genetic algorithms operation), all 

the p-cycle data are saved to a .pcycle file, which can be imported into other algorithms.  

6.3 Experimental Set-Up 

As mentioned earlier, the SCA approach will be implemented to solve the p-cycle 

protection design problem. The candidate p-cycles are generated using the novel DDCD 

algorithm. In addition, the Grow algorithm [39] and the conventional depth-first search (DFS) 

algorithm are implemented as our benchmark cycle enumeration methods. After the p-cycles are 

enumerated, both a heuristic algorithm (CIDA) and an ILP model are used for spare capacity 

allocation optimization. These two methods are used to select a set of p-cycles to protect the 

network's working capacities entirely while minimizing the cost of spare capacity.  

The DDCD algorithm is programmed using Python 3.7.6. The Grow algorithm is from 

[94], which was programmed previously in C++ (see pseudo-code in Section 3.4.1 of this thesis). 

The DFS approach is from [95] and was also programmed in C++ (see pseudo-code in Section 

2.4.2 of this thesis). The CIDA is implemented based on the pseudo-code provided in [39]. It is 
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programmed using Python 3.7.6 (see pseudo-code in Section 3.4.4 of this thesis). The ILP spare 

capacity allocation model is from [96] and was presented and discussed in Section 3.4.3. The 

three cycle-enumeration methods and two spare capacity allocation methods are paired up as 

follows: DDCD + CIDA, DDCD + ILP, Grow + CIDA, Grow + ILP, DFS + CIDA, DFS + ILP. The 

result of each pair will be presented and compared against one another in the experimental 

results section in this chapter. Where applicable, all eligible cycles in a network topology will be 

enumerated using DFS which will be followed by SCA ILP model to find the optimal solution. 

There are various input files and parameters, algorithmic models, and output files and 

information that are associated with developing these experiments. Detailed lists of these items 

(item names and explanations) can be found in the Appendix section of this thesis. 

6.3.1 Benchmarks and Test Cases 

 As mentioned in CHAPTER 5, the calibration network topologies for this study are the 

USA long-haul network and the France network from [39]. Other test network topologies vary 

from 10 nodes with 25 spans to 140 nodes with 210 spans. The number of working capacity units 

on each span is determined by the shortest-path routing of all traffic demands in [94]-[96]. 

Since a uniform span weight of one is used in [39], we will continue adopting the same span 

weight in our experiments using the USA and France network to facilitate results comparison. 

For any experiments conducted on other test case networks, however, we will be using the 

Euclidean distances between two end nodes of a span as the span weights.  

 In our implementation and experimentation, three consecutive sets of experiments will 

be conducted. First, experiments will be performed on the two calibration networks using a 

uniform span weight of one. To be specific, the process will start by enumerating eligible p-

cycles using the Grow algorithm, DDCD algorithm, and DFS, and then follow up with spare 

capacity allocation using CIDA and ILP. The results will be compared against the benchmark 

results as reported in Doucette et al. [39] for the USA and France networks, which is listed in 

Table 5.3 in Section 5.5 of this thesis. These benchmarking tests are conducted on our server, 

therefore, the runtimes are updated to reflect our current computational set-ups. Once 

benchmarking tests are completed, the same sets of combined algorithms will be applied on 
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small test networks between 10 nodes and 40 nodes using Euclidean distances as the span 

weights. For these small test networks, the DFS algorithm is capable of finding all eligible 

candidate cycles in a network topology within three days of runtime, which provide the optimal 

solutions to these test cases. Finally, all sets of combined algorithms will be applied to larger 

networks with sizes of 50 nodes up to 140 nodes using Euclidean distances as the span weights. 

In these network topologies, ILP is unable to provide an optimal result within three days of 

runtime. In this study, tests that take longer than three days of runtimes to obtain results will be 

considered unsatisfactory and unfavourable.   

6.4 Experimental Results and Discussion 

6.4.1 Calibration network Models 

As explained in the previous section, a set of eligible p-cycles will be generated using a 

specific cycle enumeration algorithm (Grow, DDCD, or DFS). Then the set of cycles will be used 

in either the CIDA or ILP model for spare capacity optimization. Table 6.2 presents the results 

of such benchmark tests on the USA network and the France network. As shown in the table, 

three cycle enumeration algorithms were used to generate candidate cycles: Grow, DFS, and 

DDCD. Each set of candidates are then combined with either CIDA or SCA ILP model for the 

spare capacity allocation. Experimental result generated from each test is a minimum total cost 

of capacity placement for 100% network survivability that each combined algorithm is capable 

of achieving. Since all span costs are assumed to be one, the working capacity costs will equal to 

the working capacity units, and the spare capacity costs equal to the spare capacity units. 

Results of the “CIDA + Grow” and  “ILP + Grow” are the repeats of the tests as reported in 

Doucette et al. [39] with updated experimental runtimes that reflect our current computational 

set-up. DFS algorithm in our implementation finds the shortest X number of cycles given 

network topology. Therefore, our DFS cycle finding algorithm is executed with a controllable 

input parameter, the number of output cycles. This input parameter is set to be the same as the 

number of candidate cycles generated by DDCD, which will allow us to compare the robustness 

of the results by DDCD to those by DFS. Therefore, DFS and DDCD enumerate the same amount 
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of eligible cycles; however, member cycles in each candidate pool are different due to distinct 

cycle finding methodologies. Resulting cycle pools are combined with either CIDA (“DFS + 

CIDA”, “DDCD + CIDA”) or SCA ILP model (“DFS + ILP”, “DDCD + ILP”). DFS is again used to 

find all eligible cycles in a network topology (“All”) which is used in the SCA ILP model to obtain 

the optimal solution. This result is reported as “(Near) Optimal” in the last column of Table 6.2, 

where the result for USA is the true optimal solution using a complete set of 7,321 eligible cycles, 

and the result for France is a near optimal solution using the shortest 50,000 p-cycles out of 

over 500,000 total possible cycles [39].  

For each column of a test method in Table 6.2, the “# of cycles” shows the total number 

of eligible cycles generated by a corresponding cycle enumeration algorithm. Each test result 

yields a minimal total cost of capacity placement. The “Normalized Cost” is obtained by dividing 

all the capacity costs by the minimum cost among all. “Total RT” is the summation of the 

runtime taken to enumerate candidate cycles plus the runtime taken to optimize the spare 

capacity allocation by either the CIDA or ILP model.  

* Equal amount of p-Cycles as those of DDCD but different member cycles in each set 
** Using DFS to generate the shortest 50,000 p-cycles instead of 15,000 as reported in [39] 

When comparing normalized costs, the lower the value indicates better capacity 

efficiency. The lowest capacity cost has a normalized value of 1.000. As shown in Table 6.2, for 

the same spare capacity allocation method (CIDA or ILP), candidate p-cycles generated by the 

DDCD algorithm provided full network protection with the lowest spare capacity cost compared 

Table 6.2 Comparing DDCD with Grow and DFS for cycle enumeration in the USA and France networks

Network Topologies
CIDA ILP (Near) Optimal

Grow DFS DDCD Grow DFS DDCD All + ILP

USA 
(28n45s) 

# of cycles 839 1028* 1028 839 1028* 1028 7321

Normalized Cost 1.139 1.117 1.110 1.094 1.048 1.045 1.000

Total RT (s) 0.06 1.23 4.13 0.39 0.64 2.46 3.26

France 
(43n71s)

# of cycles 2407 28810* 28810 2407 28810* 28810 50000**

Normalized Cost 1.130 1.127 1.072 1.072 1.043 1.000 1.026

Total RT (s) 0.98 361.31 966.16 1.62 295.25 887.52 760.28
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to those by Grow or DFS. Among all the tests by combined algorithms, “DDCD + ILP” generates 

the best near-optimal solutions in either test network. In the USA network, the “DDCD + ILP” 

result deviates from the true optimal solution by 4.5%. In the France network, the “DDCD + 

ILP” result is 2.6% better than the near optimal solution provided by the 50,000 shortest cycles 

in the last column. In our implementation, we generated the shortest 50,000 eligible p-cycles 

instead of the shortest 15,000 as reported in [39]. This is because the “DDCD-ILP” capacity was 

found to have outperformed that of the shortest 15,000 p-cycles, and the number of cycles 

generated by DDCD (28,810) has surpassed 15,000. When comparing the total runtimes for all 

the tests, DDCD creates a better near-optimal solution with an approximately four times longer 

runtime than those of Grow or DFS. However, the runtimes are comparable to the (near) 

optimal solution provided in the last column (e.g., 4.13s and 2.46s vs. 3.26s for USA network, 

966.16s and 887.52s vs. 760.28s for France network). These results suggest promising results 

for application in larger networks, where ILP runtimes grow exponentially as network size grow.   

6.4.2 Small Test Case Networks (10 Nodes to 40 Nodes) 

We now apply the DDCD algorithm on networks with the sizes of 10 nodes to 40 nodes. 

Again, CIDA and ILP models are used for spare capacity allocation, and the results of DDCD are 

compared to those of Grow and DFS. In all the test case networks here, we use the actual 

Euclidean distances between two end nodes of spans as the cost of these spans. The optimal 

solution to each test case network is determined by the spare capacity allocation ILP model 

using the complete set of eligible cycles enumerated by DFS. Same as in the calibration network 

models discussed in Section 6.4.1, DFS and DDCD generates the same amount of eligible cycles; 

however, member cycles in each cycle pool are different due to distinct cycle finding approaches. 

Results of all small test case networks are presented below in Table 6.3.  

Same as performed previously, the resulting candidate cycle pools are combined with 

either CIDA (results reported as “DFS + CIDA”, “DDCD + CIDA”) or SCA ILP model (results 

reported as “DFS + ILP”, “DDCD + ILP”). DFS is again used to find complete sets of cycles in 

each network topology ,which is combined with the SCA ILP model to generate the optimal 

solution in each of the small network case. These results are reported as “Optimal” in the last 
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column of Table 6.3. For each column of a combined test method, the “# of cycles” shows the 

total number of eligible cycles generated by a corresponding cycle enumeration algorithm. The 

last column (“All + ILP”) indicates the total numbers of all the eligible cycles in a network 

topology. “Normalized Costs” are calculated by dividing all the capacity costs by the minimum 

cost among all, which indicate quality of a result. The lower the normalized cost, the better the 

solution. A normalized cost is 1.000 indicates a minimum capacity cost across all data. “Total 

RT” is the summation of the runtime taken to enumerate candidate cycles plus the runtime 

taken to optimize the spare capacity allocation by either the CIDA or ILP model. 

* Equal amount of p-cycles as those of DDCD but different member cycles in each set 

Table 6.3 indicates that “DDCD + CIDA” and “DDCD + ILP” outperformed both “Grow 

+ CIDA” and “Grow + ILP” in all four small test case networks. Especially in the cases of 10n20s 

and 20n34s, the “DDCD + ILP” method was able to find the optimal solution (normalized costs 

of 1.000) within comparable runtime as compared to the normalized costs and runtimes as 

reported under “Optimal”. Therefore, the DDCD-CIDA and DDCD-ILP are proven to show 

Table 6.3 Comparing DDCD with Grow and DFS for cycle enumeration in small test networks (10n20s to 40n60s)

Network Topologies
CIDA ILP Optimal

Grow DFS DDCD Grow DFS DDCD All + ILP

10n20s

# of cycles 449 376* 376 449 376* 376 416

Normalized Cost 1.058 1.141 1.056 1.004 1.061 1.000 1.000

Total RT (s) 0.16 0.08 0.42 0.19 2.04 0.67 0.48

20n34s

# of cycles 1018 699* 699 1018 699* 699 2794

Normalized Cost 1.079 1.062 1.037 1.025 1.035 1.000 1.000

Total RT (s) 2.35 1.31 2.11 0.22 0.27 0.78 1.03

30n45s

# of cycles 723 1138* 1138 723 1138* 1138 15818

Normalized Cost 1.131 1.242 1.093 1.099 1.175 1.023 1.000

Total RT (s) 4.49 5.74 7.00 0.46 3.98 4.89 10.58

40n60s

# of cycles 1158 1692* 1692 1158 1692* 1692 234065

Normalized Cost 1.156 1.191 1.125 1.104 1.144 1.064 1.000

Total RT (s) 15.28 20.11 23.25 0.84 7.06 5.32 357801.11

 100



robust performance in optimizing the capacity allocation with 100% survivability in these test 

cases. The DFS, on the other hand, shows the least favourable performance in almost all test 

cases. Compared to the optimal solution in the last column, “DDCD + ILP” is proven to provide 

the best near-optimal solution. For example, “DDCD + ILP” obtained the optimal solutions in 

both 10n20s and 20n34s. In the 30n45s and 40n60s networks, “DDCD + ILP” provided near-

optimal solutions that deviate from the optimal solutions by only 2.3% and 6.4%, respectively. 

In terms of the test runtimes as shown in Table 6.3, all tests combined with CIDA show 

an increase in runtimes as the network size grows. Although DFS-ILP is still able to find the 

optimal solutions for these networks (results reported under “All + ILP” in the last column), we 

observe a significant increase in ILP runtime as the network size grows from 10n20n to 40n60s. 

In the 40n60s network, test runtime soared up to 357,801.11s, which is almost 7,000 times 

longer than the runtime of DDCD-ILP (5.32s). The sharp increase of runtime may be associated 

with the tremendous amount of candidate cycles involved (234,065 candidate cycles) in 

generating the optimal solution. In contrast, only 1,692 candidate cycles are involved in DDCD-

ILP to provide a near-optimal solution that only deviates from the optimal solution by 6.40%. As 

network size grows, finding the optimal solution within a satisfactory time frame (e.g., three 

days in our experiments) will be more challenging. Finding the best near-optimal solution 

within an acceptable runtime will be the primary concern in large networks, where DDCD shows 

promising results. Although Grow-CIDA and Grow-ILP took shorter runtimes as compared to 

those of DDCD-CIDA and DDCD-ILP in most cases, their normalized costs indicate much 

weaker performance in all test networks. 

6.4.3 Large Test Case Networks (50 Nodes to 140 Nodes) 

 As the results of DDCD combined with either CIDA or ILP have been proved to be 

promising on the calibration networks and the small test case networks, we will now be 

implementing these methods on large test case networks that are over 50 nodes. In these 

networks, DFS-ILP cannot find an optimal solution within acceptable runtime (e.g., over three 

days of runtime). Therefore, it is our primary interest to find the best near-optimal results for 
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these test case networks. All span costs are the Euclidean distances between two end nodes. 

Results of DDCD with CIDA and ILP are again compared to those with Grow and DFS.  

As shown in Table 6.4, the lowest spare capacity costs are highlighted with bolded font 

and compared with other test results. Same as previous tests, the “# of cycles” is the total 

number of eligible cycles generated by a specific cycle enumeration algorithm (Grow, DFS, or 

DDCD). “Normalized Costs” are assessed by dividing all capacity costs by the minimum cost 

among all, which indicate the quality of a result. Therefore, the lower the normalized cost, the 

better the solution. As mentioned before, a normalized cost is 1.000 indicates a minimum 

capacity cost (hence, best result) across all data. “Total RT” includes both the runtime taken to 

enumerate candidate cycles plus the runtime taken to optimize the spare capacity allocation by 

either the CIDA or ILP model. For tests that fail to provide results within three days of runtime, 

their normalized costs are voided (“/”), and corresponding “Total RT” is recorded as “> 3 days”. 

These tests are considered undesirable due to long runtimes. 

 As demonstrated in Table 6.4, DDCD-ILP still generates the best results with the lowest 

spare capacity costs among all six tests in every test case network. When looking at the sets of 

experiments with the same spare capacity allocation methods (using either CIDA or ILP), tests 

using DDCD as the cycle enumeration method outperformed Grow or DFS. Among these, DFS 

provides the weakest-performing candidate cycles in every test case network. Especially when 

the network size reaches 80 nodes and above, DFS failed to generate the same amount of 

candidate cycles as DDCD within three days of runtime in almost all cases. Therefore, DFS is the 

least desirable cycle enumeration method as compared to Grow and DDCD in large networks, 

whereas DDCD is the most plausible method for large-scale networks. 
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* Equal amount of p-cycles as those of DDCD but different member cycles in each set 

Table 6.4 Comparing DDCD with Grow and DFS for cycle enumeration in large test networks (50n80s to 140n210s)

Network Topologies
CIDA ILP

Grow DFS DDCD Grow DFS DDCD

50n80s

# of cycles 4104 13550* 13550 4104 13550* 13550

Normalized Cost 1.094 1.143 1.054 1.058 1.096 1.000

Total RT (s) 88.74 469.74 210.32 7.92 353.51 29.79

60n96s

# of cycles 6626 6708* 6708 6626 6708* 6708

Normalized Cost 1.072 1.115 1.042 1.044 1.068 1.000

Total RT (s) 225.18 7880.98 186.76 9.90 7712.29 21.15

70n105s

# of cycles 3974 10671* 10671 3974 10671* 10671

Normalized Cost 1.099 1.155 1.051 1.057 1.107 1.000

Total RT (s) 232.52 612.62 376.84 42.54 192.51 119.03

80n128s

# of cycles 11018 3629* 3629 11018 3629* 3629

Normalized Cost 1.083 / 1.042 1.049 / 1.000

Total RT (s) 1613.81 > 3 days 173.37 64.18 > 3 days 17.49

90n135s

# of cycles 7548 2953* 2953 7548 2953* 2953

Normalized Cost 1.103 1.408 1.051 1.075 1.337 1.000

Total RT (s) 1794.62 6444.63 161.36 50.65 6178.02 17.66

100n150s

# of cycles 7114 4278* 4278 7114.00 4278* 4278

Normalized Cost 1.122 / 1.039 1.083 / 1.000

Total RT (s) 2091.85 > 3 days 12.74 69.92 > 3 days 12.74

110n165s

# of cycles 9669 3278* 3278 9669 3278* 3278

Normalized Cost 1.068 / 1.033 1.028 / 1.000

Total RT (s) 4543.99 > 3 days 315.55 150.65 > 3 days 16.22

120n180s

# of cycles 8485 5353* 5353 8485 5353* 5353

Normalized Cost 1.167 / 1.040 1.131 / 1.000

Total RT (s) 6545.41 > 3 days 1082.25 333.34 > 3 days 27.42

130n195s

# of cycles 11531 4675* 4675 11531 4675* 4675

Normalized Cost 1.058 / 1.034 1.037 / 1.000

Total RT (s) 12473.49 > 3 days 1228.40 532.04 > 3 days 30.6

140n210s

# of cycles 7155 7450* 7450 7155 7450* 7450

Normalized Cost 1.251 / 1.029 1.272 / 1.000

Total RT (s) 10212.74 > 3 days 2085.01 804.79 > 3 days 47.41
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6.4.4 Runtimes vs. Network Sizes 

 Let us now have a look at how the runtime changes for the DDCD tests (“DDCD + CIDA” 

and “DDCD + ILP”) versus the Grow tests (“Grow + CIDA” and “Grow + ILP”) as the network 

sizes increase from 50n80s to 140n210s. All the test results are obtained from Table 6.7 and are 

plotted using line charts. 

Figure 6.5 illustrates the comparison between the “DDCD + CIDA” tests runtimes and 

the “Grow + CIDA” tests runtimes in test cases from 50n80s to 140n210s, as outlined in Table 

6.7. It is shown in the figure that the Grow-CIDA runtime inclines as the network size grows; 

however, the DDCD-CIDA runtimes are maintained at below 2,500s for all network sizes and 

only start to incline from 110n165s slightly. The runtime differences are especially significant for 

networks larger than 80n128s, where “Grow + CIDA” starts to show a rapid increase in runtime 

and “DDCD + CIDA” remains relatively steady. Therefore, the DDCD-CIDA approach is proven 

to be a much more runtime-efficient heuristic approach for large networks than Grow-CIDA. 

 

Figure 6.5 Comparing DDCD-CIDA run0mes with Grow-CIDA run0mes in 50n80s to 140n210s.  
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ILP test results are also plotted using a line chart and are presented in Figure 6.6. Figure 

6.6 presents the trending of ILP test runtimes for both DDCD-ILP and Grow-ILP in test case 

networks from the 50n80s to 140n210s. As shown in the figure, all the ILP tests (maximum 

804.79s) show much shorter runtimes (about 1/15) as compared to those of CIDA tests 

(maximum 12,473s). From 50n80s to 70n105, the DDCD-ILP test runtimes appeared less 

plausible than those of the Grow-ILP. However, starting from 80n128s, the DDCD-ILP 

runtimes dropped to much lower values (119.07s to 17.49s) and remained relatively steady at 

less than 50s regardless of the network size. However, the runtimes of Grow-ILP tests start to 

jump significantly since 80n128s. Therefore, it may be concluded that the DDCD-ILP approach 

is exceptionally robust in large-scale networks. The DDCD-ILP is the most preferred approach 

in solving the p-cycle SCA problem among Grow-ILP, DFS-ILP, Grow-CIDA, DFS-CIDA, and 

DDCD-CIDA.  

Our experiments demonstrated that DDCD is the more robust cycle enumeration method 

than Grow or DFS. The DDCD-ILP combined algorithmic approach can provide 100% 

survivability with much lower spare capacity costs with much shorter runtimes than Grow-ILP 

and other methods used in this study, especially in large-scale networks.  

 

Figure 6.6 Comparing DDCD-ILP run0mes with Grow-ILP run0mes in 50n80s to 140n210s.  
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6.5 Conclusions 

  

In this chapter, a novel heuristic algorithm for the p-cycle design was presented and 

discussed, which is the disjoint-paths Dijkstra cycle development (DDCD) algorithm. The DDCD 

is an iterative cycle development method capable of generating high-performance candidate p-

cycles efficiently in small and large-scale networks. Various experiments were conducted, which 

demonstrated the DDCD algorithm's robust performance in solving the spare capacity allocation 

problem in large-scale networks compared to either Grow or DFS algorithm.  

Based on the experimental results discussed in the previous sections, we can reach the 

following conclusions: 

1) The DDCD algorithm outperforms either the Grow algorithm or conventional DFS 

algorithm in both small and large networks in terms of generating highly efficient 

candidate p-cycles; 

2) The DDCD algorithm is most desirable for large-scale networks that are over 80 nodes, 

where the traditional spare capacity allocation ILP model fails to find an optimal 

solution, and the conventional DFS fails to provide a near-optimal solution within a 

satisfactory timeframe; 

3) In terms of test runtimes with an increase of network sizes, the DDCD algorithm 

demonstrates much more robust results than the Grow algorithm in networks larger 

than 80 nodes when combined with either CIDA algorithm or the spare capacity 

allocation ILP model; 

4) In large-scale networks over 80 nodes, DDCD-ILP is the best-performing combined 

algorithm in solving the p-cycle protection optimization problem with the best capacity 

costs and the least solution runtimes. 
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CHAPTER 7. GENETIC ALGORITHMS FOR p-CYCLE SPARE 
CAPACITY ALLOCATION 

7.1 Introduction 

  

Various real-world optimization problems in the telecommunication industry are 

considered NP-hard, which refer to complex problems that are unable to be solved and 

validated within polynomial time, such as network design problems, and network routing 

problems. Meta-heuristic methods like genetic algorithms (GAs) are preferred methods for 

handling highly complex NP-hard problems. GAs do not guarantee optimal results. However, as 

compared to ILP/LPs, GAs are exploration-focused search algorithms that can find near-optimal 

results more effectively and efficiently for the computational-intensive optimization problems.  

As discussed in CHAPTER 4 of this thesis, GAs have been successfully implemented in 

various research and studies regarding network survivability and reliability [70]-[74]. GAs have 

also been adopted to solve p-cycle protection optimization problems like p-cycle selection 

problems and p-cycle placement problems [58], [83]-[84]. A p-cycle spare capacity allocation 

(SCA) problem optimizes the placement of a selective set of p-cycles from a given set of 

candidate p-cycles. Therefore, a well-designed GA model for SCA problems is expected to have 

the flexibility to be compatible with various p-cycle enumeration methods. A review of past 

literature, as presented in CHAPTER 4, indicated that there had not been a scalable GA model 

proposed for optimizing the p-cycle SCA problem with minimum allocation cost. An improved 

GA model was proposed in [83] that finds a combination of various candidate p-cycles with 

optimal protection ability to protect the entire network topology. This method is referred to as a 

genetic p-cycle combination protection strategy (GPCPS), which includes a working path 

routing sub-problem, and a protection path configuration sub-problem. The protection path 

configuration part of the GPCPS proposed an improved GA for allocating a combination of 

various p-cycles. However, the objective function of the GPCPS is to maximize the protection 

ability of a p-cycle combination and not to minimize the cost of allocating the cycles. Therefore, 

the GPCPS does not look at the cost-efficiency of placing the p-cycles, nor does it consider how 

demands may affect p-cycle protection effectiveness. Allocating proper candidate cycles with 
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minimum possible capital expenditure while fulfilling service demands are crucial factors to 

consider in the real-world telecommunication industry. Therefore, it is the primary purpose of 

this study to propose a scalable GA design to address these gaps.  

This chapter will introduce a novel genetic algorithm design for optimizing the p-cycle 

spare capacity allocation optimization problem with minimal cycle allocation cost, which is 

referred to as a GA-SCA model. The proposed GA-SCA is designed to be used in conjunction 

with any p-cycle enumeration method, and it can be applied to any fully connected network 

topologies of any size. In addition to proposing a model, this study also focuses on designing and 

tuning problem-specific GA operators to enhance the effectiveness of this GA-SCA model. 

The remainder of this chapter is organized as follows. Section 7.2 will analyze the 

problem formulation as well as design considerations of the GA-SCA. Section 7.3 will introduce 

the design of GA-SCA in extensive details, including the development of the case-specific 

chromosome representation and GA operators (selection, crossover, and mutation). The GA-

SCA experimental set-up, network topologies, computational set-up and experiment overviews 

will be presented in Section 7.4. The experimental results and performance of the GA-SCA 

model will be presented in Section 7.5, where GA results will also be compared against those of 

the classic CIDA and ILP. Finally, Section 7.6 will wrap up this chapter with key research 

contributions and conclusions. 

7.2 Statement of the Problem and Design Considerations 

The formulation of a p-cycle spare capacity allocation (SCA) problem was discussed in 

CHAPTER 3 of this thesis. Let me start the GA implementation of this problem by reviewing the 

objective function, constraints, parameters, and variables of the SCA problem. In Section 3.4.3 

of this thesis, all the relevant sets, parameters, and variables in a p-cycle SCA problem were 

presented. These will be considered again in this section when we design and implement the GA 

model. The set of eligible cycles (C) is an input to the GA model, which can be generated using 

any cycle enumeration method (e.g., the Grow algorithm, DFS algorithm, or the DDCD 

algorithm as proposed in the previous chapter). The information on the set of network spans (S) 
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will be collected based on the input network topology. Its data structure can be expressed as lists 

of on-cycle spans and straddling spans given the network topology. The relevant parameters (ni, 

cj, xi,j, pi,j) will be incorporated into the chromosome representation so that the chromosome 

encoding can best reflect the SCA problem formulation. ni is the number of copies of p-

cycle i (Ɐi ∈ C). cj is the cost or length of span j (Ɐj ∈ S). xi,j is a binary parameter that equals 1 

when p-cycle i traverses span j and zero otherwise (Ɐi ∈ C, Ɐj ∈ S). pi,j equals to 1 if span j is 

on p-cycle and is 2 if span j straddles p-cycle i  (Ɐi ∈ C, Ɐj ∈ S). pi,j equals to zero if 

span j neither traverses nor straddles p-cycle i. There are two variables used in the p-cycle SCA 

formulation. The variable wj is not determined in the GA-SCA design because it is determined 

by the working capacity routing before the SCA. The working capacity routing is formulated 

using the shortest path routing and is not part of the GA-SCA design. Therefore, the wj will be 

treated as an input parameter in this problem. The sj is what the GA-SCA model optimizes and, 

therefore, is an output of the GA-SCA model in addition to the objective function value.  

An objective function value reflects the quality of a feasible solution, thereby assessing 

the level of fitness of an individual in a population. Therefore, the objective function will be used 

while determining the fitness function for the GA-SCA model. The objective function of this GA-

SCA problem is to minimize the total cost of placing the candidate p-cycles onto a network. As 

previously defined in the Eq. 3.7 in Section 3.4.3 of this thesis, the objective function is to 

minimize the function  .     

 7.2.1 Design Considerations 

The GA-SCA model is developed based on the following key design considerations: 

1) An appropriate chromosome encoding design is required for the GA-SCA, which should 

be accessible for calculating and assessing the fitness values of individuals. 

2) The fitness function design must best reflect the problem’s objective function. 

∑
Ɐj∈ S

cj ∙ sj

 109



3) Proper initiation of the first population must be proposed to allow access to the GA 

operators and to jump-start the performance of GA-SCA. 

4) Choosing an appropriate selection mechanism, with sound selection pressure and proper 

elitism strategy, so that the most suitable individuals will be selected for subsequent 

reproduction processes. 

5) Choosing a suitable crossover method for the chromosome encoding design and 

designing an effective repair mechanism for any disrupted chromosomes. 

6) Designing a problem-specific mutation mechanism design that is can effectively improve 

the objective function value and can facilitate the exploration of solution space. 

7) Determine an appropriate termination criterion for the GA-SCA. 

7.3 Genetic Algorithm for p-Cycle Spare Capacity Allocation (GA-SCA) 

 This section will unfold the details regarding the novel GA-SCA design for solving the p-

cycle spare capacity allocation problem. As emphasized previously, this algorithm is designed to 

minimize the cost of p-cycle spare capacity allocation while adequately protecting a network 

topology. Adopting the GA concept and schematic, the GA-SCA model is expected to generate 

offspring with progressively enhanced objective function values.  

 7.3.1 Chromosome Representation 

The chromosome representation in a GA is a process of designing an artificial data 

structure to each chromosome, which facilitates critical information of a chromosome to be 

accessed and processed in a genetic algorithm model. An adequately encoded chromosome must 

also be accessible for fitness value calculation. The GA-SCA model in this study adopts a 

variable-length string encoding approach to design the chromosomes. Each chromosome 

represents an individual feasible solution to the objective function, which consists of a 

combination of various p-cycles that altogether protect the entire network topology. A schematic 

of the chromosome design (with locations of genes) is shown in Figure 7.1. 
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Figure 7.1 Chromosome encoding for GA-SCA. (a) shows a chromosome and (b) indicates input parameters.   

Figure 7.1(a) shows a hierarchical view of the chromosome design and pi indicates the 

location (locus) of each gene in a chromosome. Figure 7.1(b) illustrates how each parameter and 

variable is incorporated into the chromosome design. It shows how input parameters are 

applied in calculating the objective function values for each individual. The binary parameter xi,j 

is interpreted as whether a cycle is present in an individual’s chromosome. If a cycle is not 

present in a chromosome (xi,j = 0), the cycle and its span information are excluded from the 

chromosome. Therefore, each chromosome does not necessarily carry all the span information 

of all the candidate cycles. As shown in Figure 7.1 (a), the cycles that are present in the 
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Chromosome #1 have xi,j values equal to one. The parameter ni indicates the numbers of copies 

of corresponding candidate cycles used in a chromosome. The parameter pi,j is included as part 

of a cycle’s span information, which indicates whether a span is on the cycle or straddles the 

cycle. Note that spans that are neither on a cycle or straddle a cycle (pi,j = 0) are not present in 

the chromosomes. This detailed span information is reflected in the data structure of p-cycles 

and is carried over to a chromosome when a cycle is picked to form the chromosome. The ci is 

used when calculating the cost of each chromosome (the objective function value), as illustrated 

in Figure 7.1 (b). 

Pseudo-code for p-cycles and chromosomes can be illustrated as shown below: 

Input_pcycle_set = {cycle_1 : {span_1 : 1, span_3 : 2, span_4 : 1, … , span_i 

: 2}, cycle_2 : {span_1 : 2, span_2 : 1, span_5 : 1, span_7 : 2, … , span_i : 

1}, … , cycle_n : {span_5 : 1, span_6 : 1 , span_9 : 2, … , span_i : 1} } 

Chromosome1 = {cycle_1 : 5, cycle_8 : 22, cycle_9 : 10, …, cycle_n : 9} 

Chromosome Decoding 

Given the genetic code of a feasible solution, the genetic decoding of a solution 

chromosome will be the inverse operation of what was presented above. 

 7.3.2 Initial Population for GA-SCA 

A group of various encoded chromosomes will form an initial population. There are two 

key elements to consider while initiating a GA population. Firstly, designing a suitable approach 

to generate an excellent initial population for the GA-SCA problem. Secondly, determining an 

appropriate population size for the GA-SCA problem.  

Generating a good initial population is crucial for enhancing the performance of GA 

operations. As discussed in previous chapters, CIDA [39] is a robust p-cycle placement 

operation that selects and places a set of p-cycles that provide full network protection with near-
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minimal spare capacity. Therefore, GA-SCA modifies the classic CIDA by adding a randomness 

factor, so it finds distinct relatively better-performing p-cycles at each execution. The 

randomized CIDA is referred to as a CIDA_rand algorithm in the pseudo-code below. In the 

classic CIDA, as presented in CHAPTER 3.5.2.2, the algorithm calculates current actual 

efficiency (Ew) scores for all cycles in a cycle pool, and it selects the best cycle with the highest 

Ew score. In the CIDA_rand, however, all cycles are assigned weight scores based on their Ew 

scores (the higher the Ew score, the higher weight). The cycles with higher weight scores will 

have better chances of being selected and vice versa. By doing so, CIDA_rand finds a different 

relatively good candidate cycle at each execution, which will eventually form a population for 

GA-SCA.  

The pseudo-code for CIDA_rand and inital_population are as follows:  

function CIDA_rand(CycleSet, i): 

    initialize CycleEw[], work[], CycleUse[] 

    while work[i] > 0 for all span i: 

        CandCycle = 0 

        for each cycle p in CycleSet: 

            calculate Ew(p) 

            save all cycle_id : cycle_ew → CycleEw 

            rank CycleEw from high Ew to low Ew → assign weights 

        pick p from CycleEw: higher weight more likely picked 

        CandCycle = p 

        if CandCycle not in CycleUse[]: 

            add CandCycle to CycleUse[] 

        else if CandCycle in CycleUse[]: 

            CycleUse[CandCycle] = CycleUse[CandCycle] + 1 

    for each on-cycle span i in CandCycle: 

        work[i]= work[i] - 1 

    for each straddling span i in CandCycle: 

        work[i]= work[i] - 2 

    return CycleUse 
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function initial_population(popSize, CycleSet, Spans): 

    init_population = [] 

    for n in range(popSize): 

        init_individual = CIDA_rand(CycleSet, Spans) 

        if init_individual not in init_population: 

            add init_population to init_pop_member 

    return init_population 

In terms of the population size for GA-SCA, various population sizes will be tested on the 

two calibration networks (USA Network and 30n45s network). The best-performing population 

size determined in the benchmark tests will be applied to other test case networks. It is expected 

that larger population sizes may increase computational runtimes; however, they can enhance a 

GA’s search power by extending the search space. On the contrary, smaller population sizes will 

shorten the runtime with a higher likelihood of reaching premature convergence of the GA.  

 7.3.3 Fitness Function for GA-SCA 

As discussed previously in CHAPTER 4, a suitable fitness function accurately evaluates 

the level of fitness of each individual in a population, based on its power to provide a favourable 

solution to a problem. It also must reflect the objective function of the problem. In the SCA 

problem, the objective function is to minimize the total cost of allocating the spare capacities 

across an entire network. Therefore, the fitness function for the GA-SCA problem is to calculate 

the total cost of allocating a particular set of p-cycles onto a network, which is defined as: 

       (Eq. 7.1)   

calculates the cost of individual cycle i by summing up costs of all span j that 

traverse cycle i. This fitness function will be applied to all the individuals in a population, and 

the fitness values will be utilized in the GA selection operation.  

∑
Ɐi∈C, Ɐj∈S

(∑ ci*p
i, j

)*ni

∑ ci* pi, j 
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 7.3.4 Selection & Elitism for GA-SCA 

Three selection methods are implemented and tested in this work: roulette wheel 

selection, tournament selection, and random selection. Preliminary tests on USA network 

indicate that the random selection is ineffective for the GA-SCA problem; therefore, only 

roulette wheel selection and tournament selection methods will be tested extensively on the 

calibration networks. 

In the roulette wheel selection implemented in this work, the probability of an individual 

being selected is proportional to its fitness value as compared to the sum of all fitness values in 

the population. Inversion of the proportionate probabilities is used as the fitness score so that 

individuals with higher fineness value (higher cost) have lower probabilities to be selected. The 

fitness scores are then normalized and assigned to corresponding individuals. The fitness scores 

are then squared so that more weights are allocated to better-performing individuals. By doing 

so,  the selection pressure of this selection method will be enhanced. As mentioned previously in 

CHAPTER 4, selection pressure affects how likely a better individual is favoured, and is a crucial 

factor that regulates the convergence rate of a GA. 

For the tournament selection method in this study, two subset sizes are implemented to 

find out a more suitable selection pressure for the tournament selection. As discussed in [81], 

the selection pressure of a tournament selection is determined by its tournament subset size. A 

higher tournament subset size will increase the selection pressure, and vice versa. The first 

subset size applied in this work is a fixed number of ten chromosomes for any population size. 

Because a diverse set of population sizes are tested in this work (e.g., 250, 500, 750, and 1000), 

an adaptive tournament subset size is applied where 5% of population size is used as the size of a 

tournament subset. An adaptive tournament selection approach allows variation of tournament 

subset according to changes in chromosome sizes.  

Finally, a random selection is to simply select an arbitrary chromosome from a 

population, where every individual has an equal opportunity to be picked for subsequent 

breeding. Interestingly, preliminary tests on the three selection methods in the GA-SCA model 

do not show satisfactory results when random selection is applied. Therefore, random selection 

will not be further discussed in this study or tested on any other test cases. 
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Elitism strategy is also implemented in the GA-SCA model, where the top-performing 

individuals are retained and carried over to the next generation. Details of this elitism strategy 

will be further explained in Section 7.3.8. 

 7.3.5 Crossover for GA-SCA 

A pair of selected individuals (parent chromosomes) will go through crossover operation 

to generate a pair of offspring chromosomes. Two types of crossover operations are 

implemented and compared in the GA-SCA: one-point crossover, and two-point crossover.  

In the one-point crossover, each parent chromosome is spliced at one arbitrary crossover 

point. This is followed by the two parent chromosomes exchanging portions of their genetic 

contents to form a pair of offspring chromosomes. Therefore, each offspring chromosome 

retains parts of each parent’s genes. Figure 7.2 illustrates how the one-point crossover is applied 

in the GA-SCA problem. In a situation where duplicate cycles with different cycle usage values 

(ni) occur, the one with higher ni is retained. In contrast, the other one is removed from the 

offspring chromosome (as demonstrated in Figure 7.3). The two-point crossover is carried out in 

a similar approach, but with two crossover points on each parent chromosome. 

Various crossover rates will be tested in this study, including 0.1, 0.2, 0.3, and 0.4, to 

find an optimal crossover rate for the GA-SCA problem. The crossover operation will result in 

infeasible chromosomes that will require a repair mechanism; therefore, increasing the 

crossover rate will extend the computational runtime drastically. Crossover rates higher than 

0.4 are not preferred in this study due to extensively long runtime. 
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  Figure 7.2 Implementa0on of one-point crossover in GA-SCA.  

 

Figure 7.3 One-point crossover in GA-SCA where duplicate cycles occur in an offspring.  
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 7.3.6 Mutation for GA-SCA 

Another critical GA operator which will be extensively discussed in this study is the GA-

SCA mutation operator. A mutation operation occurs on individual chromosomes in a 

population; it increases the diversity of a GA population and enhances GA’s capability to find the 

global optimum. Various types of commonly used mutation operations were introduced in 

CHAPTER 4 of this thesis, which included one-point mutation, multi-point mutation, insertion/

deletion, and permutation mutation. In the case of a GA-SCA problem, a one-point mutation 

operator can be applied to mutate one of the member cycles in a chromosome. In contrast, a 

multi-point mutation can mutate multiple member cycles concurrently. A deletion can be 

implemented by completely removing a random member cycle from a chromosome. Any of 

these mutation operations will result in infeasible solutions (a disrupted chromosome) that 

must be fixed by a repair mechanism. A permutation mutation, however, will have no effect on 

the chromosomes in the GA-SCA problem and will not be considered in this study.  

Several mutation approaches will be implemented and tested out in this GA-SCA study, 

which includes removing a random cycle, removing one or multiple lowest-performing cycles, 

removing a random cycle and add another random cycle, etc. Since these mutation approaches 

will result in disrupted chromosomes, therefore, problem-specific repair methods will be 

designed to repair the resultant chromosomes.  

In addition to these conventional mutation operators, a novel problem-specific mutation 

operator is designed for the GA-SCA problem, which is referred to as Cycle-Merging mutation 

operator. The Cycle-Merging mutation operator is designed based on two considerations:  

1) To ensure enhanced performance of the offspring over the parent chromosomes.  

2) To avoid repairing the resultant chromosomes to shorten computational runtimes.  

 7.3.6.1 Problem-Specific Mutation Design Without Repairs - Cycle-Merging 

To ensure enhanced operator performance and to avoid extensive runtime, a problem-

specific mutation operator is designed for the GA-SCA model, which is referred to as the cycle-

merging mutation operator. Compared to those commonly used mutation operators mentioned 
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previously, The cycle-merging mutation operator can benefit the GA-SCA problem in the 

following aspects: 1. cycle-merging fuses two candidate p-cycles to yield a larger but valid p-

cycle that will not require any repair; 2. fusing two p-cycles ensures will eliminate one span, 

hence reduced cost and improved objective function value.  

The cycle-merging mutation proceeds as follows: For all the genes (individual p-cycles 

and their numbers of copies) in a chromosome, the cycle-merging operator finds two cycles that 

share one and only one common span and merges them to form a new larger cycle. The common 

span is then removed and labelled as a straddling span to the new cycle. It is important to note 

that, other than the merged common span and its two end nodes, the two cycles must not share 

any other common spans or common nodes. As shown in Figure 7.4, cycle A-B-C-D-E and cycle 

A-B-K-H-G-F are two p-cycles on a 10n20s network topology that share one and only one span 

(span i). Upon applying the cycle-merging operator, the two cycles are joined at span i and a new 

cycle is formed. The common span i is then removed from the new cycle and is marked as a 

straddling span.  

 

Figure 7.4 Illustra0on of the cycle-merging muta0on operator for the GA-SCA on a 10n20s network.  

Subsequently, the newly generated p-cycle is added to the chromosome, with the number of 

copies being the value of the two predecessor p-cycles with fewer copies. The two predecessor p-

cycles are either completely removed or subtracted from the chromosome.  

The cycle-merging mutation operator guarantees that the resultant new p-cycle is a 

feasible solution to the problem and that the overall cost of spare capacity placement is reduced 

(removal of a span reduces costs).  
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 The pseudo-codes for the Cycle_Merging mutation operator is as follows: 

function Cycle_Merging(input_genome, CycleSet): 
    initiate newCycle[], newCycle_num[], mutated_ind[] 
    new_individual = copy.input_genome 
    new_id = 0 
    for cycles in input_genome: 
        pick Cycle1, Cycle2, where Cycle1 != Cycle2 
        Cycle1_num = number of copies of Cycle1 
        Cycle2_num = number of copies of Cycle2 
        if Cycle1 and Cycle2 share one and only one span i: 
            mark span i as straddling span 
            assign new cycle id → Merged_CYL + str(new_id) 
            assign all spans to new cycle → {Merged_CYL1:span_info} 
            newCycle_num = min(Cycle1_num, Cycle2_num) 
            add new cycle id and newCycle_num to newCycle[] 
            updated and add Cycle1_num, Cycle2_num to newCycle[] 
            new_id += 1 
    mutated_ind = new_individual + newCycle  
    return mutated_ind, newCycle 

Several mutation rates will be tested in this study (0.05,  0.1, 0.2, 0.3, and 0.4) in order 

to find a suitable mutation rate for the GA-SCA problem. Since it is not common to find two 

cycles in a population that share one and only one span, the actual mutation operation is 

expected to occur on a chromosome at a lower rate than the applied mutation rate. Therefore, 

very low mutation rates (e.g., lower than 0.05) may not be beneficial to this problem and will not 

be considered in this study.  

 7.3.7 Repair Mechanism for GA-SCA 

Repair mechanisms are crucial for fixing the infeasible solutions generated from 

crossover and mutation. As mentioned above, the one-point or two-point crossover operators 

and most mutation operators in this study will generate infeasible solutions that are unable to 
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provide full protection to the network topology. Therefore, the offspring chromosomes 

generated by these operators must be repaired to satisfy the desired protection efficiency while 

minimizing protection cost entirely.  

One repair operator option for an SCA problem is CIDA. Previous chapters have 

discussed the effectiveness of CIDA in providing full network protection with near-minimal 

spare capacity. Therefore, CIDA can be used to repair an interrupted chromosome by 

complementing a set of cycles to protect any unprotected working capacities. However, CIDA 

calculates the capacity-weighted efficiencies iteratively, which will be runtime-inefficient in a GA 

problem with large population size and large numbers of generation. This assumption is tested 

and proved in preliminary tests using the USA network topology, where extensively long 

runtimes were observed due to repetitive calculation of current actual efficiency scores (Ew) with 

only minimal improvement on the objective function.  

Apart from runtime-efficiency, another critical factor to consider while designing a 

suitable repair mechanism is its power to allow a GA to explore a globally optimum solution. For 

example, if repairing a chromosome can introduce new genes to a chromosome that does not 

previously exist in that chromosome. The repair operator helps expand the search space and 

enables the GA to explore an optimal solution globally.    

To enhance the runtime-efficiency of a GA model and to boost the model’s ability to 

explore an optimal solution globally, two problem-specific repair mechanisms are developed for 

the GA-SCA model. They are referred to as the maximum-matching repair method and the 

minimum-cycle repair method. The former one focuses on a faster way to generate results with 

as many straddling spans as possible (higher protection efficiency). In contrast, the latter 

focuses on a quick and easy way to repair with smallest possible local cycles (minimum costs). 

 7.3.7.1 Problem-Specific Repair Mechanism - Maximum-Matching 

 The maximum-matching repair mechanism starts by scanning a disrupted chromosome 

to collect information on all the unprotected working capacities (the spans they are located on, 

and the number of unprotected working capacity units). For the unprotected working capacities, 

maximum-matching will allocate a candidate cycle that matches the maximum possible 
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unprotected working capacities with the most straddling spans. If there are more than one p-

cycles that offer the same level of protection (same amount of working capacities with the same 

number of straddling spans), the p-cycle with the least cost will be favoured. To accurately track 

these protection relations, two types of matrices are required: a cycle-span relation matrix, 

and a cycle protection matrix. The cycle-span relation matrix displays information 

regarding all the p-cycles from the cycle pool that can protect a particular span either as an on-

cycle span or a straddling span. The cycle protection matrix indicates the number of 

straddling span protection and on-cycle span protection a particular p-cycle can offer. The two 

matrices are designed as follows: 

Cycle-span relation matrix = {span_1 : [(cycle1, Ew[cycle1]),([cycle3, 

Ew[cycle3]),…, (cyclep, Ew[cyclep])], span_2 : [(cycle2, Ew[cycle2]), 

([cycle4, Ew[cycle4]),…, (cyclep’, Ew[cyclep’])], …, span_i : [(cycle1, 

Ew[cycle1]),([cycle3, Ew[cycle3]),…, (cyclep, Ew[cyclep])]} 

Cycle protection matrix = {cycle_1 : [cycle_1, straddle#, on-cycle#], cycle_2 

: [cycle_2, straddle#, on-cycle#], …, cycle_p : [cycle_p, straddle#, on-

cycle#]}  

The straddle# indicates the number of straddling spans the corresponding cycle can protect, 

and on-cycle# refers to the number of on-cycle spans that the same cycle can protect. 

When a p-cycle is placed onto the network, the network protection status is updated by 

subtracting one unit of each on-cycle span and two units of each straddling span (if present). 

This process continues iteratively until all the unprotected working capacities are fulfilled in 

such a way. Once the maximum-matching function terminates, a complementary set of 

protection cycles are returned. The complementary cycles are subsequently combined with the 

input disrupted chromosome to form a repaired offspring chromosome.  

 The pseudo-codes for the Max-Matching function and the overall repair mechanism 

(Repair_Genome) are as follows: 
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function Max-Matching(CycleSet, i): 

    initialize Complement_cyc[] 

    max_straddle_count = 0 

    min_cycle_cost = sys.maxsize 

    for each unprotected span i: 

        find cycle-span relation matrix for i → list(pcycles[i]) 

        for each pcycle in list(pcycles[i]): 

            find corresponding cycle protection matrix →  

    pcycle[i] = [pcycle_id, straddle#, on-cycle#] 

            if straddle# > max_straddle_count: 

                 max_straddle_count = straddle# 

                 min_cycle_cost = global_cost[pcycle_id] 

                 BestCycle = pcycle_id 

             else if straddle# = max_straddle_count: 

                if global_cost[pcycle_id] < min_cycle_cost: 

                    max_straddle_count = straddle# 

                     min_cycle_cost = global_cost[pcycle_id] 

                     BestCycle = pcycle_id 

        if BestCycle not in Complement_cyc: 

            add BestCycle to Complement_cyc 

        else if BestCycle in Complement_cyc: 

            update BestCycle in Complement_cyc  

    for each on-cycle span i in BestCycle: 

        work[i]= work[i] - 1 

    for each straddling span i in BestCycle: 

        work[i]= work[i] - 2 

    return Complement_cyc 

function Repair_Genome(input_genome, Spans, CycleSet): 

    initiate unprotected_spans[], protected_spans[] 

    for gene in input_genome: 

        collect protected_spans[] 

        collect unprotected_spans[] 

    complement_cycles = Max-Matching(CycleSet, unprotected_spans) 

    repaired_child = input_genome + complement_cycles 

return repaired_child 
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 7.3.7.2 Problem-Specific Repair Mechanism – Minimum-Cycle 

The minimum-cycle repair mechanism generates a minimum (smallest) protection cycle 

for each unprotected span identified. This repair process starts by identifying all the unprotected 

working capacities in a disrupted chromosome. Then, for each unprotected span, the minimum-

cycle operator generates the shortest path that is node-disjoint from the unprotected span to 

form the smallest protection cycle for the span. If this minimum protection cycle is a duplicate 

cycle of an existing cycle in the chromosome, the cycle count for the existing cycle id is updated. 

If this is a new cycle, it will be added to the chromosome with a newly generated cycle id. This 

process will repeat iteratively until all spans are protected.  

The pseudo-codes for the minimum-cycle repair function is as follows: 

function Min-Cycle(CycleSet, i, Graph): 

    initialize Complement_cyc[] 

    for each unprotected span i on Graph: 

        Dijkstra(i, unmarked spans/nodes) → r1, distance(r1) 
        if distance(r1) != MAX: 

            add all the spans of r1 to span i → cycle a 
            if cycle a not in Graph, add cycle a to Complement_cyc 

  else: update BestCycle in CycleSet 

       for each on-cycle span i in cycle a: 

            work[i]= work[i] - 1 

        for each straddling span i in cycle a: 

            work[i]= work[i] - 2 

    return Complement_cyc 

 7.3.8 Next Generation  

The fittest will survive. At the end of a generation, the population will include original 

individuals (reserved for the purpose of elitism), as well as individuals generated from crossover 

and mutation operations, and the size of the population will enlarge to almost double of original 

population size. Therefore, all the individuals will be ranked based on their fitness values, and 
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the bottom low-performing individuals with low fitness values will be eliminated. The size of the 

population reduced to the original size. From generation to generation, only the top-performing 

individuals from predecessor generation will be retained and carried over to the next generation 

(an elitism strategy), which allows survival of the fittest individuals. 

 7.3.9 Termination Criteria for GA-SCA 

Two termination criteria will be implemented in the GA-SCA model in this study:  

1) Terminate when a predetermined fixed number of total generations has reached (e.g., 

terminate after the 1000th generation), or  

2) Terminate when there is an unchanged objective function value for x iterations. 

When any one of these two termination criteria is satisfied, the GA-SCA process will stop and 

return the best current solution.  

7.4 Experimental Set-Up 

The GA-SCA model takes a set of candidate p-cycles, a set of given demands, and a 

network topology to generate an optimized p-cycle combination and an updated set of p-cycles. 

The resulting p-cycle combination will provide full network protection to the given network 

topology with near-optimal minimal cost of allocating the spare capacities. The updated set of p-

cycles excludes low-performance candidate cycles (removed by GA selection and elitism 

mechanism). It will include new p-cycles that are generated by the GA's reproduction 

mechanism. Eligible starting candidate p-cycles are generated before the GA-SCA and are 

brought into the GA-SCA model as input information. The candidate cycles can be generated in 

any method. In this study, both the Grow algorithm [39] and DDCD (developed in CHAPTER 6 

of this thesis) are applied to generate different candidate p-cycle pools to test the GA-SCA 

model's consistency on different sets of cycle pools. Results of the GA-SCA will be compared to 

those of Grow + CIDA and DDCD + CIDA in the experimental results section of this chapter.  
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Extensive experiments will be conducted to explore various portions of the GA elements 

(initial population size, crossover method and repair, mutation method and repair, crossover 

and mutation rates, etc.). The study will also emphasize the development of an appropriate 

mutation method and proper repair mechanisms due to the significant impact of these elements. 

Once optimal GA operators are determined for the GA-SCA model, they will be applied on 

various test case networks with sizes ranging from 50 nodes to 100 nodes. Results of GA-SCA 

will be compared to those of CIDA and ILP.  

The GA-SCA model is programmed using Python 3.7.6 in the Visual Studio Code. AMPL 

is used to generate ILP .mps files using the ILP SCA model file (.mod) and specific data files 

(.dat), which are solved using IBM ILOG CPLEX Interactive Optimizer 12.6.1.0. All experiments 

are run on a server with 12-core ACPI multiprocessor X64-based PC with Intel Xeon® CPU 

E5-2430 running at 2.2 GHz with 96 GB RAM. All ILP test results include a default mipgap of 

0.01% (unless specified otherwise).  

7.4.1 Test Networks for GA-SCA 

In this study, the USA Long-Haul network with 28 nodes and 45 spans (as shown in 

Figure 7.5 (a)) is used as the primary calibration network where an extensive number of tests are 

conducted to explore possible combinations of GA operators. As mentioned in previous 

chapters, a uniform span weight of one for USA network was used in [39]. We will continue 

adopting the same span weight in our experiments using the USA network to allow results 

comparison. To best represent the real-life examples where costs of network spans are usually 

different, a 30n45s network with 30 nodes and 45 spans (as illustrated in Figure 7.5 (b)) with 

weighted spans will be used as a secondary test network. The 30n45s network has span costs 

equal to their Euclidean distances and is tested using preferred GA operator combinations 

determined based on the USA test results. The most suitable option is subsequently used for 

tuning mutation operators for this problem. More extensive real case test networks will be used 

in this study to verify the suitability and scalability of the GA-SCA model, including the 50n80s, 

60n96s, 70n105s, 80n128, 90n135s, 100n150s networks from CHAPTER 6 of this thesis. The 

topologies of these test case networks can be found in the Appendix A of this thesis.  
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       Figure 7.5 Test networks for GA-SCA: (a) USA network and (b) 30n45s Network. 

 7.4.2 Overview of GA-SCA Tests for GA Operators Study 

To obtain an optimal GA operator combination for the GA-SCA model, various tests are 

conducted on both the USA network and the 30n45s network. The GA operator combinations to 

be tested in this study include mixing and match of four selection methods (tournament 

selection, roulette wheel selection, random selection, and a customized adaptive tournament 

selection), three crossover methods (one-point crossover, two-point crossover, and uniform 

crossover), various initial population sizes, various crossover and mutation rates. Two 

termination criteria will be tested: a total of X generations, or an unchanged objective function 

value over Y generations (where X, Y are predetermined fixed number). The tests can be 

summarized into two stages: the first stage of tests is conducted on the USA network, and the 

second stage of tests is conducted on the 30n45s network. Note that a consistent mutation 

method is applied across all sets of tests here, which is the cycle-merging mutation method. 

Various mutation methods will be extensively tested at a separate study later.  

A summary of GA-SCA test parameters that will initiate this study is as follows: 

- Initial population sizes: 100, 200, 400, 600, 800, 1000 

- Total number of generations (termination condition): 100, 200, 500, 1000  

- Selection Methods: tournament selection(S1), roulette wheel selection (S1), random 

selection (S3), adaptive tournament selection (S4) 

- Crossover Methods: one-point (C1), two-point (C2), uniform (C3) 

- Crossover & Mutation Rate: 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 
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7.4.3 Overview of GA-SCA Mutation Operators Study 

The study of suitable mutation operators for a GA problem has a profound impact on the 

performance of a model. A crossover operation primarily focuses on the exploitation of local 

optima, whereas a mutation operation empowers the global exploration of a search space. To 

study the best-performing mutation operators in the GA-SCA model, a set of best-performing 

combination of GA operators will be applied, which were discovered from the previous GA-SCA 

tests for GA operators tuning. The mutation tests are carried out with consistent initial 

population size, selection method, crossover method (and designated repair mechanism for a 

crossover), crossover rate, and termination criteria. These factors are considered input 

parameters for the mutation tests. Five different mutation approaches will be tested in this 

study (which will be denoted as M1, M1’, M2, M3, M4, and M5). Details regarding these 

approaches are as follows: 

- In M1, randomly select a member cycle from a chromosome (consists of n copies of 

various member cycles) and remove all copies of this cycle from the chromosome. 

- In M1’, randomly select a member cycle from a chromosome and only remove one 

copy of this cycle from the chromosome (n-1 copies remaining). 

- In M2, the problem-specific cycle-merging mutation operator is applied. 

- In M3, randomly select a member cycle from a chromosome, remove only one copy 

of this cycle from the chromosome and add one copy of a new cycle from a global p-

cycle set that does not present in the chromosome. 

- In M4, rank and find out the bottom 10% of worst-performing member cycles from a 

chromosome, remove one copy of each of these worst cycles. Then, add one copy of 3 

new cycles from the global p-cycle set that does not present in the chromosome. 

- In M5, randomly select a member cycle from a chromosome and remove all the 

copies of this cycle from the chromosome. Add one copy of a new cycle from a global 

p-cycle set that does not present in the chromosome. 

Three repair mechanisms will be tested for repairing mutated chromosomes, which are 

the minimum-cycle repair (R1), maximum-matching repair (R2), and CIDA (R3). Mutation rates 

in the tests will range from 0.05 to 0.4. 
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7.5 Experimental Results and Discussion 

7.5.1 GA Operators Study 

Figure 7.6 depicts an overview of experimental designs and various preliminary tests for 

tuning the GA operators in the GA-SCA problem, mentioned briefly in Section 7.4.2. Among all 

selection methods, the random selection method was eliminated first due to poor performance. 

Adaptive tournament mutation allows variation of tournament subset according to changes in 

chromosome sizes. It was introduced to study how a dynamic, non-fixed tournament subset size 

will perform in a problem with dynamic chromosome sizes compared to a fixed small 

tournament size. However, test results indicate that a fixed small tournament size has better 

performance (better objective function value) than a dynamic tournament size. Crossover and 

mutation rates of 0.01, 0.05 and 0.5 are eliminated due to poor performance. A crossover rate of 

0.35 (between 0.3 and 0.4) was added to the tests. For the next sets of tests, all possible 

combinations of selection and crossover methods are tested. The best-performing combination 

is found to be the tournament selection coupled with a two-point crossover. This operator pair is 

carried over to the next round of tests with various initial population sizes (500, 750, 1000), 

crossover rate (0.2, 0.3, 0.35, 0.4) and mutation rate (0.1, 0.2, 0.3, 0.4). Our case-specific cycle-

merging method was used as the mutation operator for all these tests; therefore, no repair 

mechanism is needed at this testing phase. 

Based on the results obtained from our preliminary and second round of tests (see 

Figure 7.6), re-test and second re-test are conducted on the USA network. These re-tests 

indicated that a larger population size (750 or 1000) is beneficial for generating better results 

because it enhances a GA’s search power. A relatively higher crossover rate (0.35) and a 

relatively lower mutation rate (0.1 or 0.2) are preferred to allow extensive local search and 

sporadic global search. As a result, the following parameters are selected for the next sets of 

tests: initial population size of 750, a crossover rate of 0.35 and a mutation rate of 0.1. A 

population size of 1000 provides similar results on the USA network, but with longer runtime.   
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Figure 7.6 Overview of GA-SCA tes0ng process on the USA and 30n45s networks for operator tuning. 
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7.5.2 GA-SCA Mutation Operators Study 

Based on the tests completed at the previous phase (Section 7.5.1), the following input 

parameters and GA operators are selected for the GA-SCA mutation operators study (conducted 

as outlined previously in Section 7.4.2):  

- Initial population size: 750 

- Selection method: tournament selection 

- Crossover method: two-point crossover 

- Mutation methods: M1, M1’, M2, M3, M4, and M5 (details see Section 7.4.3) 

- Crossover rate: 0.35 

- Repair for crossover: maximum-matching repair 

- Repair for mutation: minimum-cycle repair (M2 does not require any repairs) 

- Termination criteria: total 1000 generations, or unchanged values for 60 generations 

  

Figure 7.7 outlines the experimental process for the mutation operators tests in the GA-

SCA problem using various mutation methods introduced previously in Section 7.4.2. Among all 

mutation methods, removing all copies of a random cycle showed more mediocre performance 

(M5 and M1’) than those that only remove one copy of a cycle (M3 and M1’). Our case-specific 

cycle-merging method (M2) demonstrated to have the most robust performance than any other 

mutation operator in this study. A smaller mutation rate, 0.1 or 0,2, appeared to provide more 

satisfactory results with relatively shorter runtimes.  
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      Figure 7.7 Overview of GA-SCA muta0on operator tes0ng process on USA Network. 

Test results of the 3rd set of mutation tests using various mutation operators (M1', M2, 

M3, M4) and two different repair methods (R1 and R2) and various mutation rates (MR = 0.05–

0.4) are presented in Table 7.1. A larger initial population of 1500 was included in the tests. The 

average value of each set of tests (denoted in the table as "Avg.") is calculated and compared to 

show each mutation method's average quality. The lower the result, the better the quality. As 

indicated in Table 7.1, all test results (bolded fonts) by the cycle-merging mutation (M2), 

regardless of mutation rate, appear to be better than those of other mutation methods. When 

comparing population sizes or 750 vs. 1500, it is evident that a larger population size generates 

relatively better results with compromised runtimes (at least 1.5 times more runtime). When 

comparing the performance of repair mechanisms, with the same initial population of 750, 

results of minimum-cycle repair (R1) are generally better than those of maximum-matching 

repair (R2) in the majority of the tests (except in the case of M2, which does not require any 

repair mechanism). Therefore, the minimum-cycle repair is generally a more suitable repair 

mechanism for a mutated individual. Small protection cycles generated from minimum cycle 

repair mechanism introduce fewer costs to an individual, hence better objective function value. 
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7.5.3 Cycle-Merging Mutation: Benefits, Shortfalls, and Mitigation Plan 

Previous tests have indicated a robust performance of the cycle-merging mutation 

operator compared to any other mutation operator. This strong performance is because 

whenever the cycle-merging operator is applied on a chromosome and a pair of valid cycles are 

found, and a guaranteed cost reduction will occur (by removing the cost of the common span). 

Therefore, the resultant offspring will be guaranteed to perform better (less cost) than the 
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Table 7.1 GA-SCA mutation operators tests on USA Network using various repairs and initial population size.

Mutation
Mutation 

Rate

Repair: Max-Match 
Init.pop = 750

Repair: Min.Cycle 
Init.pop = 750

Repair: Max-Match 
Init.pop = 1500

Results RT (s) Results RT (s) Results RT (s)

M1' 0.05 1206 1966.51 1198 5554.98 1200 7920.27

M1' 0.1 1197 4722.53 1200 4549.22 1201 7647.39

M1' 0.2 1203 3419.90 1203 2577.60 1199 11402.89

M1' 0.3 1200 2978.68 1200 3942.75 1203 5559.47

M1' 0.4 1202 3726.08 1201 3620.35 1200 7874.34

Avg. 1201.6 1200.4 1200.6

M2 0.05 1147 4793.15 1146 3436.32 1146 7377.16

M2 0.1 1146 3311.13 1147 3611.29 1145 19520.31

M2 0.2 1143 3310.56 1147 3474.66 1141 25136.73

M2 0.3 1146 3494.67 1149 2967.55 1145 19746.20

M2 0.4 1146 2853.67 1147 3052.44 1146 29206.82

Avg. 1145.6 1147.2 1144.6

M3 0.05 1206 2138.23 1204 2907.57 1198 12252.75

M3 0.1 1206 3872.17 1199 6497.77 1200 6129.27

M3 0.2 1206 2158.60 1196 4653.70 1198 9883.58

M3 0.3 1205 3015.07 1199 6183.84 1205 3556.57

M3 0.4 1201 4149.55 1202 5542.53 1196 8911.75

Avg. 1204.8 1200.0 1199.4

M4 0.05 1206 2363.49 1203 3883.44 1205 3644.17

M4 0.1 1200 4479.34 1201 3090.22 1201 6134.17

M4 0.2 1202 2889.05 1202 2610.04 1203 4465.00

M4 0.3 1206 2356.05 1204 3867.60 1205 3701.20

M4 0.4 1206 2485.10 1206 2359.13 1203 4799.06

Avg. 1204.0 1203.2 1203.4



parent chromosomes. A larger initial population size (750 vs. 200) and a higher mutation rate 

(0.2 vs. 0.05) will expedite this process and bring about more robust improvements on the 

objective function value. Besides, because the cycle-merging operator has been proved to 

generate an offspring that is a valid p-cycle, this operation does not require additional repair. 

Filling two needs with one deed. Efficiency. Efficiency. Efficiency.  

In order to investigate the effect of the cycle-merging mutation on the objective function 

value during the process of GA-SCA (track and trend the results from generation to generation), 

we conducted a set of follow-up GA-SCA tests on large test case networks ranging from 50 nodes 

to 140 nodes. These tests use DDCD (developed from work completed in CHAPTER 6 of this 

thesis) to generate candidate cycles.  Results of DDCD + CIDA for each test case network are 

used as a benchmark for the DDCD + GA-SCA results. The preferred GA operators from the 

previous USA and 30n45s benchmark tests are applied, including tournament selection, two-

point crossover, an initial population of 750, a crossover rate of 0.35, and a mutation rate of 

0.1. Results of these follow-up tests are presented below in Table 7.2. “Normalized Costs” for 

DDCD + CIDA and columns 1-4 are calculated by dividing each cost value by the minimum cost 

across the same row. A normalized cost of 1.000 indicates the best objective function value.  

Table 7.2 Results of GA-SCA tests on large networks of 50n80s to 140n210s using DDCD to enumerate cycles. 
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Network
Normalized 

Costs of 
DDCD+CIDA

1 2 3 4 Δ (1 - 2)% Δ (2 - 3)% Δ (3 - 4)%

Starting 
Population

Generation 
G10

Generation 
G50

Final 
Results

Start to 
G10

G10 to 
G50

G50 to 
Final

50n80s 1.022 1.022 1.017 1.014 1.000 0.507% 0.243% 1.395%

60n96s 1.019 1.020 1.008 1.008 1.000 1.150% 0.070% 0.770%

70n105s 1.027 1.026 1.012 1.012 1.000 1.288% 0.021% 1.206%

80n128s 1.071 1.023 1.003 1.002 1.000 1.922% 0.127% 0.199%

90n135s 1.020 1.020 1.002 1.002 1.000 1.755% 0.050% 0.170%

100n150s 1.020 1.020 1.005 1.004 1.000 1.432% 0.175% 0.365%

110n165s 1.027 1.027 1.000 1.000 1.000 2.673% 0.000% 0.000%

120n180s 1.014 1.015 1.000 1.000 1.000 1.461% 0.004% 0.000%

130n195s 1.029 1.029 1.000 1.000 1.000 2.812% 0.001% 0.000%

140n210s 1.007 1.007 1.001 1.001 1.000 0.641% 0.000% 0.069%



Upon completing these tests, we collected results at the end of the 10th (column 2) and 

the 50th generation (column 3) and compared them to the start (column 1) and final (column 4) 

objective function values. By doing so, we are able to track and trend the progress of the 

objective function values as the GA progresses. In Table 7.2, column 1 shows the objective 

function values of starting populations before applying any GA operators, and columns 2 and 3 

present the results at the end of the 10th generation (dented as G10) and 50th generation 

(denoted as G50) for all test cases. Column 4 shows the final results after the termination 

criteria is satisfied in all test cases (unchanged values for 60 consecutive generations). For all 

test case networks presented in Table 7.2, Δ (1 - 2) calculates the percentage of changes in the 

objective function values from the starting population to the end of the 10th generation. Δ (1 - 2) 

shows the changes from the 10th to the 50th generations. Finally, Δ (3 - 4) records the changes 

from the 50th generation onwards until the termination criteria are satisfied.  

As shown in Column 2 of Table 7.2, the objective function values for all test case 

networks appear to have surpassed those of DDCD + CIDA by the end of the 10th generation, 

which indicates that the cycle-merging operator can jump start improvements on the objective 

function values at early phase. Some smaller test cases show continuous improvements after the 

50th generation, whereas most large-scale networks had no more improvement after the 50th 

generation (e.g., 110n165s, 120n180s, 130n195s). All test cases except the 50n80s experienced 

the most percentage of increase from start to the 10th generation, which slowed down 

significantly after that.  

These observations indicate that the cycle-merging operator provides a sharp increase on 

the performance; however, the effectiveness of this mutation operator plateaus or declines as 

GA-SCA progresses. The cycle-merging process will always result in a new cycle that is almost 

double the size of the two constituent cycles; therefore, this mutation process will rarely 

introduce small new p-cycles. Lack of introduction of a broader variety of new cycles may hinder 

the GA’s ability to explore global optimum thoroughly.  

To utilize the robust performance of cycle-merging in the early stage of a GA process and 

to mitigate the shortfall of insufficient global exploration, a coupled mutation operator approach 

will be introduced and tested. A coupled mutation operator approach is to apply a conventional 
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mutation method first (e.g., one-point mutation, multi-point mutation, or gene insertion/

deletion) up to X number of generations where no changes on the objective function values 

happen. Then, apply the cycle-merging mutation operator to “boost” the GA performance. The 

entire GA process will terminate when no more improvement on the objective function values 

occur for X number of generations up to a pre-defined total number of generations.  

7.5.4 The Coupled Mutation Operator for GA-SCA 

The coupled mutation operators for our GA-SCA model is implemented by modifying the 

termination criteria of the previous test version. Instead of terminating the GA-SCA process 

entirely when an unchanged objective function value is observed for 60 consecutive generations, 

the coupled mutation operator approach will apply the cycle-merging mutation operator on the 

population to boost GA performance. Suppose the objective function is still not improving for 

the next 60 consecutive generations. In that case, the new GA-SCA model will then terminate 

and return the best current objective function value as the final result. 

New tests are conducted on the USA network to test the performance of this coupled 

mutation operator approach. Three different sets of coupled mutation operators will be tested 

(M1'+M2, M3+M2, and M4+M2). Various mutation rates, ranging between 0.05 and 0.4, will be 

applied. The other GA operators remain the same as in previous tests, which include the 

tournament selection, two-point crossover, an initial population of 750, a crossover rate of 0.35, 

the maximum-matching repair for crossover and the minimum-cycle repair for mutation. 

Details regarding these approaches are as follows: 

- M1'+M2: Randomly select a member cycle from a chromosome and remove one 

copy of this cycle from the chromosome (M1'). If the objective function value does 

not improve for 60 generations, apply the cycle-merging method (M2). 

- M3+M2: Randomly select a member cycle from a chromosome, remove one copy of 

this cycle from the chromosome and add one copy of a new cycle from a global p-

cycle set that does not present in the chromosome (M3). If the objective function 

value does not improve for 60 generations, apply the cycle-merging method (M2). 
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- M4+M2: Rank and find out the bottom 10% of worst-performing member cycles 

from a chromosome, remove one copy of each of these worst cycles. Then, add one 

copy of 3 new cycles from the global p-cycle set that does not present in the 

chromosome (M4). If the objective function value does not improve for 60 

generations, apply the cycle-merging method (M2). 

Results of the coupled mutation operator tests for the USA network are presented below 

in Table 7.3. We conducted two repeats (“Test #1” and “Test #2” as shown in the table) using the 

same testing conditions and GA operators to guide us in reaching a more reliable conclusion. 

The best result in each set of tests is highlighted in blue using bolded fonts. The test results are 

recorded under “Results” and test runtimes are converted to minutes and are recorded under 

“RT(min)”. In these two sets of tests, we did not calculate an average value for any test set. This 

is because an average value in this case may not accurately indicate a preferred coupled 

mutation operator or properly evaluate the robustness of performance for any coupled mutation 

operators.  

Table 7.3 Results of GA-SCA tests using coupled muta0on operators on the USA network. 
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Mutation
Mutation 

Rate
Test #1 Test #2

Results RT (min) Results RT (min)

M1'+M2 0.05 1137 179.28 1145 108.60

M1'+M2 0.1 1145 152.70 1130 160.71

M1'+M2 0.2 1147 129.96 1102 249.84

M1'+M2 0.3 1146 141.85 1107 246.81

M1'+M2 0.4 1145 163.80 1093 241.54

M3+M2 0.05 1150 121.50 1147 101.53

M3+M2 0.1 1149 131.30 1147 97.58

M3+M2 0.2 1143 172.06 1149 100.96

M3+M2 0.3 1139 231.47 1142 194.06

M3+M2 0.4 1136 312.93 1147 141.96

M4+M2 0.05 1144 88.23 1140 80.12

M4+M2 0.1 1133 76.71 1126 178.84

M4+M2 0.2 1151 69.24 1110 150.10

M4+M2 0.3 1099 225.75 1094 232.79

M4+M2 0.4 1148 131.32 1151 135.65



  

 As shown in Table 7.3, “M4+M2” provided the best objective function value of 1099 with 

a mutation rate of 0.3 in Test #1. However, in Test #2 with the same test conditions and 

parameters, “M1'+M2” generated the best objective function value of 1093 using a mutation rate 

of 0.4. These observations suggest that a GA model’s performance depends on the correlation 

among various GA operators and factors. Adjusting the mutation method or the mutation rate 

alone may not effectively obtain the best near-optimal solution. More extensive tests using 

simulation techniques like the Monte Carlo Simulation [97] may be needed to find a more 

accurate combination of mutation operator, mutation rate, and other GA operators with the 

most robust performance.  

 Comparing the “M1'+M2” from Table 7.3 with the “M2” (cycle-merging alone) from 

Table 7.1 shows that the former approach generates a near-optimal result as good as 1093 with 

an initial population of 750 and repair mechanism of minimum-cycle. In contrast, the latter 

approach generated the best value of 1146 using the same GA operator conditions. Therefore, it 

is apparent that a one-point mutation (M1') combined with the cycle-merging mutation (M2) 

generates significantly better objective function values than the cycle-merging mutation alone. 

Besides, the coupled mutation approach avoids the disadvantage of applying cycle-

merging alone, where the mutation operator’s global search power gradually diminishes after 

the first few generations. 

 Previous approaches using CIDA and ILP combined with different cycle enumeration 

methods (Grow and CCDC), in CHAPTER 6 of this thesis, generated a near-optimal solution of 

1112 by the DDCD + ILP approach for the USA network. Compared to the solution of DDCD + 

ILP, some of the GA-SCA attempts using coupled mutation operators and various mutation rates 

surpassed the performance of DDCD + ILP (e.g., 1099 and 1093). Therefore, the coupled 

mutation operator approach has the potential to provide better solutions for the SCA problem 

than the DDCD + ILP approach. However, total runtimes for a GA-SCA approach is significantly 

longer (almost 100 times longer) than either the CIDA or the ILP approach.  
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7.5.5 Recommended GA Operators for GA-SCA on Large Networks 

Based on the previous test results and discussion from Section 7.5.1 to Section 7.5.4, we 

will recommend the following GA operators for the final tests on large-scale networks vary from 

50n80s to 100n150s. Due to considerations on extensive runtimes for these GA tests, a small 

initial population of 50 will be used.  

Other recommended GA operators for large-scale test cases are as following: 

- Selection Method: tournament selection 

- Crossover Method: two-point crossover 

- Repair for Crossover: maximum-matching approach 

- Mutation Method: remove one copy of one random cycle + cycle-merging 

- Repair for Mutation: minimum-cycle approach 

- Termination Criteria:  

1. Terminate when a maximum of 1000 generation is reached, or 

2. Apply cycle-merging operator when there is an unchanged objective function 

value for 60 consecutive generations. After applying cycle-merging, if there is still 

no improvement on the objective function value over the next 60 consecutive 

generations, terminate the GA process and return the best current value. 

7.5.6  GA-SCA vs. CIDA vs. ILP on Large-Scale Networks 

Several large-scale test networks are tested using the GA-SCA model and refined GA 

operators, as proposed in the Section 7.5.5 of this thesis. The test case networks used in this 

study include 50n80s, 60n96s, 70n105s, 80n128, 90n135s and 100n150s topologies. A smaller 

initial population size of 50 will be used in these tests to lessen the total runtimes. A crossover 

rate of 0.35 and a mutation rate of 0.2 will be applied to these tests.  

Results of the GA-SCA are compared to those using the CIDA algorithm and the ILP 

model. Results of the tests using the Grow algorithm to generate candidate cycles are presented 

in Table 7.4, and those using DDCD are presented in Table 7.5. “Normalized Costs” in both 

tables are calculated by dividing each cost value by the minimum cost across the same row. A 
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normalized cost of 1.000 indicates the best value among all three methods.“# Gens” indicates 

the total number of generations the GA-SCA model is applied to a population before the 

termination criteria are satisfied. It can show the suitability of a GA model for a test case. The 

more suitable a GA model is, the further it can progress in exploring the search space for an 

optimal solution. The runtime for each test is closely associated with the “# Gens Explored” 

because the more generations a GA explores in a test case before the termination criteria are 

satisfied, the longer the runtime may be. The runtimes in these tests are converted to minutes 

and are reported under “RT(min)” in both Table 7.4 and 7.5. A total runtime that surpasses five 

days is considered in these experiments and is denoted by  “> 5 days” on both tables. 

    Table 7.4 GA-SCA with cycles generated by Grow [39] on large networks ranging from 50n80s to 100n150s. 

         
    Table 7.5 GA-SCA with cycles generated by DDCD on large networks ranging from 50n80s to 100n150s. 

Grow + CIDA Grow + ILP Grow + GA-SCA

Normalized 
Costs

RT (min)
Normalized 

Costs
RT (min)

Normalized 
Costs

RT (min) # Gens

50n80s 1.035 1.48 1.000 0.13 1.015 712.30 1000

60n96s 1.027 3.75 1.000 0.17 1.000 1215.79 607

70n105s 1.040 3.88 1.000 0.71 1.037 1180.81 1000

80n128s 1.033 26.90 1.001 1.07 1.000 > 5 days 1000

90n135s 1.026 29.91 1.000 0.84 1.024 7082.99 1000

100n150s 1.036 34.86 1.000 1.17 1.025 > 5 days 1000

DDCD + CIDA DDCD + ILP DDCD + GA-SCA

Normalized 
Costs

RT (min)
Normalized 

Costs
RT (min)

Normalized 
Costs

RT (min) # Gens

50n80s 1.054 3.51 1.000 0.50 1.073 2193.66 836

60n96s 1.042 3.11 1.000 0.35 1.028 1298.44 1000

70n105s 1.051 6.28 1.000 1.98 1.029 2927.62 581

80n128s 1.084 2.89 1.040 0.29 1.000 > 5 days 1000

90n135s 1.051 2.69 1.000 0.29 1.040 1858.34 1000

100n150s 1.041 0.21 1.002 0.21 1.000 3317.32 1000
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As reported in Table 7.4 and Table 7.5, GA-SCA progressed through the entire 1000 

generations in most test cases network topologies, indicating that the carefully designed GA 

operators were suitable for this problem, preventing premature convergence of this GA model. 

The DDCD + GA-SCA or Grow + GA-SCA results found better solutions to this problem than 

those of DDCD + CIDA and Grow + CIDA, even with a small population size of 50. However, the 

results did not compete with those of DDCD + ILP and Grow + ILP in most test cases (except for 

the 80n128s network) regardless of the method used to enumerate candidate p-cycles. The most 

concerning aspect associated with these GA tests is the extensively long runtimes. As shown in 

both tables, the runtimes for some GA-SCA approaches are pressingly more expensive than 

those of either CIDA or ILP. For example, in the case of 90n135s network using p-cycles 

generated by Grow, the runtime of the GA-SCA (7082.99 mins) was almost 8000 times longer 

than that of ILPs (0.84 mins). 

 Using GA-SCA to find near-optimal solutions that are better than ILPs may be achieved 

by adopting a larger population size, which allows the GA-SCA model to explore the search 

space more extensively and more effectively before reaching termination criteria. Adopting a 

simulation technique like Monte Carlo Simulation using the GA-SCA model may also find the 

best near-optimal solutions. However, either of these two approaches may compromise the 

runtime further, which may discourage using genetic algorithms for this type of problem. 

7.6 Conclusions 

 In this chapter, a scalable GA model for optimizing the p-cycle spare capacity allocation 

problem was proposed, which was referred to as a GA-SCA model. The proposed GA-SCA has 

been demonstrated through extensive testing in this study that the GA-SCA model applies to any 

fully connected network topologies of any size, and it can be combined with any p-cycle 

enumeration method.  
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Based on the experimental results presented in CHAPTER 7.5, the following conclusions 

can be drawn: 

1) The GA-SCA model provides a better optimized spare capacity allocation solution 

than that of CIDA. In all benchmark and large test case scenarios, GA-SCA 

consistently shows better performance than Grow + CIDA and DDCD + CIDA.  

2) GA operators that are specially designed to suit the problem can enhance the 

performance of a GA model. In the GA-SCA model, maximum-matching and 

minimum-cycle are two case-specific, objective function-focused repair mechanisms 

developed to facilitate improvements of the objective function values. 

3) Mutation operator design is pivotal for enhancing the performance of a GA model. In 

the case of GA-SCA, a random one-point mutation is paired up with a specially 

designed cycle-merging mutation approach, which generated a synergistic effect that 

significantly enhanced the GA’s power to explore optimal solutions globally. 

4) Although the GA-SCA is highly adaptive and flexible and has the potentials to 

provide high-quality near-optimal solutions, it’s exceedingly long runtimes may 

discourage adopting this method for studying p-cycle spare capacity allocation 

problems. Especially when compared to those of DDCD + ILP, which provided better 

and faster near-optimal solutions to the p-cycle spare capacity allocation problems. 
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CHAPTER 8. CONCLUSION AND DISCUSSION 

8.1 Summary of Thesis 

 The primary research objective of this thesis is to study heuristic and meta-heuristic 

methods in solving the p-cycle spare capacity allocation problem for large-scale network 

topologies. An SCA is a two-step approach to solving p-cycle network protection problems. In an 

SCA problem, the working routing is conducted first using a preferred shortest path method, 

followed by protection path routing using a spare capacity allocation approach. In this case, a set 

of eligible candidate p-cycles are enumerated before spare capacity allocation. In this thesis 

research, two algorithmic approaches were taken to achieve this research objective: First, a 

heuristic p-cycle enumeration algorithm was developed to generate efficient candidate cycles. 

This algorithm focused on optimizing the cycle enumeration part of the SCA problem; Then, a 

novel genetic algorithm model was developed for the p-cycle spare capacity allocation problem. 

This GA approach pitched into optimizing the protection path routing part of the SCA problem. 

Genetic algorithms have been implemented in solving various network survivability problems, 

including p-cycle protection problems. However, to the best of our knowledge, there has not 

been a problem specific GA model designed and tested for solving the SCA problems, nor has 

there been a problem-specific repair or mutation mechanism proposed. This thesis research 

addressed these gaps and provided extensive experiments on various test case networks. 

 CHAPTER 2 of this thesis provided fundamental background knowledge and key 

concepts in transport networks and graph theory. CHAPTER 3 introduced fundamental p-cycles 

concepts, metrics, and designs. It also discussed relevant past research and studies on survivable 

network designs and optimization using p-cycles. Fundamental genetic algorithm concepts, 

genetic operator designs, and applications of genetic algorithm in p-cycle network survivability 

problems were introduced in CHAPTER 4 of this thesis. These three chapters of this thesis 

provided a solid foundation for developing later chapters.  

In CHAPTER 6 of this thesis, a novel heuristic p-cycle enumeration algorithm called the 

disjoint-paths Dijkstra cycle development (DDCD) algorithm was introduced, developed and 
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discussed. It is an iterative cycle development method based on Dijkstra’s algorithm and has 

been proved to enumerate high-performance candidate p-cycles in small and large networks 

compared to prior studies. The design was first tested on two calibration networks (the USA 

network and the France Network) and was later applied on network topologies of various sizes 

ranging from 10 nodes to 140 nodes. Experimental results showed that the DDCD algorithm 

outperformed either the Grow algorithm or the conventional DFS algorithm in small and large 

networks. It is exceptionally favourable in large networks of over 80 nodes, where conventional 

ILP and DFS methods fail to obtain an optimal or near-optimal solution within satisfactory 

runtime. DDCD algorithm outperforms the Grow algorithm in large networks with shorter or 

similar runtimes as Grow + CIDA and Grow + ILP. Lack of scalability may hinder the ILP 

approach in solving large-scale network optimization problems; however, DDCD algorithm can 

help ILP avoid the obstacles by producing highly efficient candidate cycles that significantly 

lessen the search time.    

In CHAPTER 7, a case-specific GA model for solving the SCA problem using p-cycles, 

referred to as a GA-SCA model, was developed to optimize the p-cycle spare capacity allocation 

while minimizing cycle allocation cost. This chapter introduced and discussed problem-specific 

chromosome designs and GA operator designs, followed by extensive testing on defining the 

most suitable GA operator using two calibration network topologies (the USA network and the 

30n45s network). Preferred GA operators are used on various large-scale network topologies, 

including 50n80s, 60n96s, 70n105s, 80n128, 90n135s, and 100n150s networks. In terms of 

refining GA operators, this chapter particularly emphasized the process of developing a suitable 

mutation operator. Extensive experiments were conducted on various mutation operator 

designs. Experimental results showed that the final GA-SCA model provided better optimized 

spare capacity allocation solutions than those of CIDA. Also, problem-specific GA operators 

were found to enhance GA performance in all test cases. Despite the better performance of GA-

SCA in all test cases as compared to that of CIDA, it’s exceedingly long runtimes compared to 

DDCD-ILP may discourage adopting this method for studying p-cycle spare capacity allocation 

problems.  

 144



8.2 Research Contributions 

The primary research contributions of this thesis are the two algorithmic approaches 

developed to solve the p-cycle spare capacity allocation (SCA) problem for large-scale network 

topologies. These contributions are summarized as follows:  

1. CHAPTER 6: Conducted extensive literature review of previous work on solving p-cycle 

SCA problems and proposed a novel and state-of-the-art heuristic algorithm for 

enumerating highly efficient candidate p-cycles, which was demonstrated to outperform 

either the CIDA algorithm or conventional DFS algorithm. 

2. CHAPTER 7: Developed a novel genetic algorithm model for the p-Cycle SCA problem, 

which optimized the allocation of candidate p-cycles to fully protect a network topology 

with a minimum cost of capacity allocation. Our contribution to this work also included 

designing suitable GA operators for the p-cycle SCA problem, which allows better local 

exploitation and global exploration of this GA model. 

 Besides the main research contributions mentioned above, one conference paper 

regarding the DDCD heuristic p-cycle enumeration method is ready to be submitted. The RNDM 

2020 conference was cancelled due to the global pandemic; therefore, the thesis will be re-

submitted later time 2021.  

T. Shi, T. Nakashima-Paniagua, J. Doucette, “A Heuristic Method for p-cycle Design in  

Survivable WDM Mesh Network,” Resilient Network Design and Modeling (RNDM  

2020), to be submitted: May 2021. 
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APPENDIX A 
Network Topology Graphs 
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APPENDIX B 
Network Topology Files (Nodes and Spans) 

USA Long-Haul Backbone Network 

Nodes (.node): NODE/ X/ Y 

N1   113.369  21.39 
N2   254.545  25.668 
N3   381.818  45.989 
N4   509.091  44.92 
N5   80.214   83.422 
N6   147.594  125.134 
N7   226.738  144.385 

N8   442.781  139.037 
N9   80.214   194.652 
N10  188.235  208.556 
N11  303.743  209.626 
N12  398.93   186.096 
N13  601.07   67.38  
N14  612.834  130.481 

N15  525.134  207.487 
N16  688.77   130.481 
N17  765.775  54.545 
N18  848.128  52.406 
N19  780.749  108.021 
N20  811.765  156.15 
N21  631.016  206.417 

N22  503.743  264.171 
N23  620.321  310.16 
N24  732.62   223.529 
N25  244.92   289.84  
N26  361.497  312.299 
N27  483.422  379.679 
N28  285.561  401.07  

Spans (.spans): SPAN/ SOURCE/ SINK 

S1    N1   N2   
S2    N1   N5   
S3    N2   N3   
S4    N2   N7   
S5    N3   N4   
S6    N4   N8   
S7    N4   N13  
S8    N5   N6   
S9    N5   N9   
S10   N6   N7   
S11   N6   N9   
S12   N7   N8   
S13   N7   N10  
S14   N8   N12  
S15   N8   N14  
S16   N9   N10  
S17   N10  N11  
S18   N11  N12  
S19   N11  N22  
S20   N11  N25  
S21   N12  N15  
S22   N13  N14  
S23   N14  N15  

S24   N14  N16  
S25   N14  N21  
S26   N15  N21  
S27   N16  N17  
S28   N16  N19  
S29   N16  N20  
S30   N16  N21  
S31   N17  N18  
S32   N18  N19  
S33   N18  N20  
S34   N19  N20  
S35   N20  N24  
S36   N21  N22  
S37   N21  N23  
S38   N22  N23  
S39   N22  N26  
S40   N23  N24  
S41   N23  N27  
S42   N25  N26  
S43   N26  N27  
S44   N27  N28  
S45   N26  N28  
S1    N1   N2   

S2    N1   N5   
S3    N2   N3   
S4    N2   N7   
S5    N3   N4   
S6    N4   N8   
S7    N4   N13  
S8    N5   N6   
S9    N5   N9   
S10   N6   N7   
S11   N6   N9   
S12   N7   N8   
S13   N7   N10  
S14   N8   N12  
S15   N8   N14  
S16   N9   N10  
S17   N10  N11  
S18   N11  N12  
S19   N11  N22  
S20   N11  N25  
S21   N12  N15  
S22   N13  N14  
S23   N14  N15  
S24   N14  N16  

S25   N14  N21  
S26   N15  N21  
S27   N16  N17  
S28   N16  N19  
S29   N16  N20  
S30   N16  N21  
S31   N17  N18  
S32   N18  N19  
S33   N18  N20  
S34   N19  N20  
S35   N20  N24  
S36   N21  N22  
S37   N21  N23  
S38   N22  N23  
S39   N22  N26  
S40   N23  N24  
S41   N23  N27  
S42   N25  N26  
S43   N26  N27  
S44   N27  N28  

S45   N26  N28     
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France Network 

Nodes (.node): NODE/ X/ Y 

N1   172.500 512.5 

N2   285.833 499.167 

N3   194.167 420 

N4   359.167 359.167 

N5   395  494.167 

N6   415  460.833 

N7   436.667 414.167 

N8   448.333 450.833 

N9   463.333 510.833 

N10  487.500 521.667 

N11  518.333 498.333 

N12   543.333 480 

N13   470 390 

N14   480.833 369.167 

N15   430 359.167 

N16   405.833 377.5 

N17   321.667 264.167 

N18   276.667 355 

N19   235 309.167 

N20   155.833 296.667 

N21   164.167 260 

N22   250.833 256.667 

N23   231.667 218.333 

N24   155 211.667 

N25   100 174.167 

N26   55 213.333 

N27   210.833 149.167 

N28   272.5 135 

N29   280 94.167 

N30   320.833 104.167 

N31   338.667 81.333 

N32   354.667 60 

N33   367.5 125.833 

N34   398.667 158.667 

N35   338.333 181.667 

N36   307.5 228.333 

N37   390.833 227.5 

N38   431.667 260.833 

N39   477.5 265.833 

N40   515.833 237.5 

N41   540.833 181.667 

N42   474.167 172.5 

N43   475 145.833 

 

Spans (.spans): SPAN/ SOURCE/ SINK 

S1     N1   N2   
S2     N1   N3   
S3     N2   N3   
S4     N2   N18  
S5     N3   N19  
S6     N18  N4   
S7     N2   N5   
S8     N6   N8   
S9     N8   N9   
S10    N9   N10  
S11    N10  N11  
S12    N11  N12  
S13    N7   N8   
S14    N7   N15  
S15    N4   N5   
S16    N4   N17  
S17    N12  N13  
S18    N7   N13  

S19    N13  N15  
S20    N14  N15  
S21    N15  N16  
S22    N16  N4   
S23    N17  N18  
S24    N18  N19  
S25    N19  N20  
S26    N19  N22  
S27    N17  N22  
S28    N17  N36  
S29    N15  N35  
S30    N36  N37  
S31    N15  N38  
S32    N14  N38  
S33    N14  N39  
S34    N39  N40  
S35    N40  N41  
S36    N40  N42  

S37    N41  N42  
S38    N41  N43  
S39    N42  N43  
S40    N42  N34  
S41    N34  N35  
S42    N37  N35  
S43    N35  N36  
S44    N36  N22  
S45    N35  N23  
S46    N36  N28  
S47    N22  N23  
S48    N23  N21  
S49    N20  N21  
S50    N21  N26  
S51    N25  N26  
S52    N24  N25  
S53    N24  N21  
S54    N23  N24  

S55    N23  N27  
S56    N24  N27  
S57    N27  N28  
S58    N35  N28  
S59    N28  N29  
S60    N29  N30  
S61    N35  N33  
S62    N33  N34  
S63    N32  N34  
S64    N33  N32  
S65    N30  N33  
S66    N30  N31  
S67    N31  N32  
S68    N37  N38  
S69    N38  N39  
S70    N6   N5   
S71    N5   N9  

30n45s Network 

Nodes (.node): NODE/ X/ Y/ SIZE 

N01 445.00 58.00 

N02 196.00 63.00 

N03 608.00 65.00 

N04 61.00 97.00 

N05 352.00 105.00 

N06 548.00 135.00 

N07 424.00 198.00 

N08 12.00 210.00 

N09 220.00 234.00 

N10 630.00 250.00 

N11 358.00 295.00 

N12 109.00 351.00 
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N13 515.00 351.00 

N14 653.00 396.00 

N15 356.00 404.00 

N16 97.00 483.00 

N17 208.00 485.00 

N18 564.00 499.00 

N19 400.00 539.00 

N20 649.00 562.00 

N21 321.00 616.00 

N22 133.00 652.00 

N23 550.00 687.00 

N24 36.00 770.00 

N25 208.00 770.00 

N26 398.00 770.00 

N27 663.00 786.00 

N28 117.00 871.00 

N29 311.00 913.00 

N30 497.00 921.00 

  

Spans (.spans): SPAN/ SOURCE/ SINK 

S01 N01 N02 
S02 N01 N03 
S03 N01 N07 
S04 N02 N04 
S05 N02 N05 
S06 N03 N06 
S07 N03 N10 
S08 N04 N08 
S09 N04 N09 
S10 N05 N07 
S11 N05 N09 
S12 N06 N07 

S13 N06 N10 
S14 N08 N12 
S15 N08 N24 
S16 N09 N11 
S17 N10 N14 
S18 N11 N13 
S19 N11 N17 
S20 N12 N16 
S21 N12 N17 
S22 N13 N14 
S23 N13 N15 
S24 N14 N20 

S25 N15 N18 
S26 N15 N21 
S27 N16 N17 
S28 N16 N22 
S29 N18 N19 
S30 N18 N20 
S31 N19 N21 
S32 N19 N23 
S33 N20 N27 
S34 N21 N26 
S35 N22 N24 
S36 N22 N25 

S37 N23 N27 
S38 N23 N30 
S39 N24 N28 
S40 N25 N26 
S41 N25 N28 
S42 N26 N29 
S43 N27 N30 
S44 N28 N29 
S45 N29 N30 

 

40n60s Network 

Nodes (.node): NODE/ X/ Y  

N01 188.00 101.00 

N02 391.00 114.00 

N03 296.00 125.00 

N04 572.00 125.00 

N05 82.00 135.00 

N06 483.00 149.00 

N07 613.00 209.00 

N08 203.00 214.00 

N09 415.00 226.00 

N10 299.00 252.00 

N11 68.00 261.00 

N12 522.00 285.00 

N13 658.00 309.00 

N14 386.00 319.00 

N15 113.00 336.00 

N16 263.00 372.00 

N17 612.00 408.00 

N18 403.00 421.00 

N19 492.00 424.00 

N20 66.00 444.00 

N21 186.00 449.00 

N22 639.00 495.00 

N23 549.00 502.00 

N24 343.00 504.00 

N25 116.00 522.00 

N26 242.00 546.00 

N27 469.00 596.00 

N28 82.00 636.00 

N29 609.00 654.00 

N30 345.00 668.00 

N31 198.00 671.00 

N32 538.00 742.00 

N33 143.00 761.00 

N34 418.00 785.00 

N35 272.00 786.00 

N36 621.00 819.00 

N37 496.00 849.00 

N38 88.00 885.00 

N39 222.00 885.00 

N40 361.00 921.00 
 

Spans (.spans): SPAN/ SOURCE/ SINK 

S01 N01 N03
S02 N01 N05
S03 N01 N08

S04 N02 N03
S05 N02 N04
S06 N02 N06

S07 N03 N10
S08 N04 N06
S09 N04 N07

S10 N05 N08
S11 N05 N11
S12 N06 N09
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S13 N07 N12
S14 N07 N13
S15 N08 N16
S16 N09 N10
S17 N09 N14
S18 N10 N14
S19 N11 N15
S20 N11 N20
S21 N12 N13
S22 N12 N19
S23 N13 N17
S24 N14 N18

S25 N15 N16
S26 N15 N20
S27 N16 N21
S28 N17 N19
S29 N17 N22
S30 N18 N19
S31 N18 N21
S32 N20 N25
S33 N21 N24
S34 N22 N23
S35 N22 N29
S36 N23 N24

S37 N23 N27
S38 N24 N26
S39 N25 N26
S40 N25 N28
S41 N26 N31
S42 N27 N29
S43 N27 N30
S44 N28 N33
S45 N28 N38
S46 N29 N36
S47 N30 N34
S48 N30 N35

S49 N31 N33
S50 N31 N35
S51 N32 N34
S52 N32 N36
S53 N32 N37
S54 N33 N38
S55 N34 N40
S56 N35 N39
S57 N36 N37
S58 N37 N40
S59 N38 N39
S60 N39 N40 

50n80s Network 

Nodes (.node): NODE/ X/ Y  

N01 202.00 38.00

N02 473.00 46.00

N03 352.00 63.00

N04 55.00 68.00

N05 661.00 71.00

N06 552.00 107.00

N07 142.00 121.00

N08 295.00 159.00

N09 441.00 159.00

N10 608.00 182.00

N11 689.00 196.00

N12 69.00 222.00

N13 184.00 236.00

N14 459.00 267.00

N15 277.00 283.00

N16 590.00 285.00

N17 354.00 325.00

N18 146.00 339.00

N19 669.00 345.00

N20 495.00 357.00

N21 41.00 378.00

N22 301.00 410.00

N23 441.00 436.00

N24 606.00 450.00

N25 127.00 469.00

N26 535.00 519.00

N27 687.00 521.00

N28 263.00 539.00

N29 449.00 555.00

N30 616.00 596.00

N31 49.00 598.00

N32 190.00 632.00

N33 372.00 650.00

N34 505.00 661.00

N35 663.00 711.00

N36 253.00 745.00

N37 77.00 751.00

N38 451.00 760.00

N39 162.00 768.00

N40 612.00 830.00

N41 493.00 850.00

N42 354.00 859.00

N43 43.00 861.00

N44 174.00 881.00

N45 699.00 883.00

N46 546.00 931.00

N47 111.00 953.00

N48 453.00 962.00

N49 279.00 984.00

N50 639.00 994.00 

Spans (.spans): SPAN/ SOURCE/ SINK 

S01 N01 N03 
S02 N01 N04 
S03 N01 N08 
S04 N02 N03 
S05 N02 N05 
S06 N02 N09 
S07 N03 N09 
S08 N04 N07 
S09 N04 N12 

S10 N05 N06 
S11 N05 N11 
S12 N06 N09 
S13 N06 N10 
S14 N07 N08 
S15 N07 N13 
S16 N08 N09 
S17 N08 N14 
S18 N10 N11 

S19 N10 N14 
S20 N11 N19 
S21 N12 N13 
S22 N12 N21 
S23 N13 N15 
S24 N14 N15 
S25 N15 N17 
S26 N16 N19 
S27 N16 N20 

S28 N16 N24 
S29 N17 N20 
S30 N17 N22 
S31 N18 N21 
S32 N18 N22 
S33 N18 N28 
S34 N19 N27 
S35 N20 N23 
S36 N21 N31 
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S37 N22 N23 
S38 N23 N24 
S39 N23 N28 
S40 N23 N29 
S41 N24 N27 
S42 N25 N28 
S43 N25 N31 
S44 N25 N32 
S45 N26 N29 
S46 N26 N30 
S47 N26 N34 

S48 N27 N30 
S49 N28 N33 
S50 N29 N33 
S51 N29 N34 
S52 N30 N35 
S53 N31 N37 
S54 N32 N37 
S55 N32 N39 
S56 N33 N36 
S57 N33 N38 
S58 N34 N38 

S59 N34 N40 
S60 N35 N40 
S61 N35 N45 
S62 N36 N39 
S63 N36 N42 
S64 N37 N43 
S65 N38 N42 
S66 N38 N48 
S67 N39 N44 
S68 N40 N41 
S69 N40 N46 

S70 N41 N46 
S71 N41 N48 
S72 N42 N49 
S73 N43 N44 
S74 N43 N47 
S75 N44 N47 
S76 N45 N46 
S77 N45 N50 
S78 N47 N49 
S79 N48 N50 
S80 N49 N50 

60n96s Network 

Nodes (.node): NODE/ X/ Y 

N01 170.00 40.00 

N02 299.00 80.00 

N03 60.00 92.00 

N04 413.00 100.00 

N05 253.00 140.00 

N06 136.00 151.00 

N07 459.00 168.00 

N08 347.00 185.00 

N09 544.00 197.00 

N10 70.00 205.00 

N11 241.00 214.00 

N12 439.00 225.00 

N13 141.00 245.00 

N14 261.00 291.00 

N15 590.00 294.00 

N16 410.00 297.00 

N17 527.00 311.00 

N18 336.00 314.00 

N19 81.00 320.00 

N20 190.00 348.00 

N21 450.00 365.00 

N22 127.00 391.00 

N23 281.00 402.00 

N24 573.00 402.00 

N25 184.00 408.00 

N26 493.00 434.00 

N27 356.00 440.00 

N28 73.00 451.00 

N29 207.00 474.00 

N30 296.00 477.00 

N31 619.00 497.00 

N32 139.00 514.00 

N33 381.00 514.00 

N34 550.00 514.00 

N35 447.00 537.00 

N36 296.00 545.00 

N37 233.00 574.00 

N38 484.00 597.00 

N39 150.00 611.00 

N40 570.00 622.00 

N41 379.00 625.00 

N42 270.00 657.00 

N43 479.00 674.00 

N44 373.00 685.00 

N45 144.00 700.00 

N46 576.00 700.00 

N47 227.00 740.00 

N48 296.00 751.00 

N49 501.00 757.00 

N50 359.00 762.00 

N51 604.00 785.00 

N52 413.00 797.00 

N53 284.00 831.00 

N54 473.00 840.00 

N55 393.00 860.00 

N56 530.00 874.00 

N57 641.00 874.00 

N58 439.00 925.00 

N59 310.00 928.00 

N60 527.00 945.00 

Spans (.spans): SPAN/ SOURCE/ SINK 

S01 N01 N02 
S02 N01 N03 
S03 N01 N06 
S04 N02 N04 
S05 N02 N05 
S06 N03 N06 
S07 N03 N10 

S08 N04 N05 
S09 N04 N07 
S10 N05 N06 
S11 N05 N11 
S12 N06 N10 
S13 N07 N08 
S14 N07 N09 

S15 N08 N11 
S16 N08 N14 
S17 N09 N12 
S18 N09 N15 
S19 N10 N13 
S20 N11 N13 
S21 N12 N16 

S22 N12 N17 
S23 N13 N19 
S24 N14 N18 
S25 N14 N20 
S26 N15 N17 
S27 N15 N24 
S28 N16 N18 
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S29 N16 N21 
S30 N17 N21 
S31 N18 N23 
S32 N19 N20 
S33 N19 N28 
S34 N20 N25 
S35 N21 N26 
S36 N21 N27 
S37 N22 N25 
S38 N22 N28 
S39 N22 N32 
S40 N23 N25 
S41 N23 N27 
S42 N24 N31 
S43 N24 N34 
S44 N26 N27 
S45 N26 N33 

S46 N26 N34 
S47 N27 N30 
S48 N28 N39 
S49 N29 N30 
S50 N29 N32 
S51 N29 N37 
S52 N30 N36 
S53 N31 N34 
S54 N31 N40 
S55 N31 N51 
S56 N32 N39 
S57 N33 N35 
S58 N33 N41 
S59 N34 N38 
S60 N35 N38 
S61 N35 N41 
S62 N36 N37 

S63 N36 N41 
S64 N37 N39 
S65 N37 N42 
S66 N38 N40 
S67 N39 N45 
S68 N40 N43 
S69 N40 N46 
S70 N41 N44 
S71 N42 N45 
S72 N42 N47 
S73 N43 N44 
S74 N43 N49 
S75 N44 N48 
S76 N44 N50 
S77 N45 N47 
S78 N46 N51 
S79 N46 N54 

S80 N47 N48 
S81 N48 N53 
S82 N49 N50 
S83 N49 N52 
S84 N50 N53 
S85 N51 N57 
S86 N52 N54 
S87 N52 N55 
S88 N53 N59 
S89 N54 N56 
S90 N55 N58 
S91 N55 N59 
S92 N56 N57 
S93 N56 N60 
S94 N57 N60 
S95 N58 N59 
S96 N58 N60 

70n105s Network 

Nodes (.node): NODE/ X/ Y 

N01 176.00 52.00 

N02 305.00 74.00 

N03 420.00 90.00 

N04 530.00 96.00 

N05 66.00 104.00 

N06 259.00 152.00 

N07 142.00 163.00 

N08 490.00 175.00 

N09 353.00 197.00 

N10 596.00 202.00 

N11 76.00 217.00 

N12 247.00 226.00 

N13 445.00 237.00 

N14 147.00 257.00 

N15 514.00 272.00 

N16 32.00 279.00 

N17 267.00 303.00 

N18 596.00 306.00 

N19 416.00 309.00 

N20 87.00 332.00 

N21 355.00 353.00 

N22 196.00 360.00 

N23 480.00 367.00 

N24 657.00 384.00 

N25 133.00 403.00 

N26 287.00 414.00 

N27 579.00 414.00 

N28 190.00 420.00 

N29 499.00 446.00 

N30 362.00 452.00 

N31 79.00 463.00 

N32 213.00 486.00 

N33 302.00 489.00 

N34 625.00 509.00 

N35 145.00 526.00 

N36 387.00 526.00 

N37 556.00 526.00 

N38 453.00 549.00 

N39 302.00 557.00 

N40 39.00 576.00 

N41 239.00 586.00 

N42 490.00 609.00 

N43 601.00 613.00 

N44 156.00 623.00 

N45 385.00 637.00 

N46 63.00 659.00 

N47 276.00 669.00 

N48 485.00 686.00 

N49 379.00 697.00 

N50 150.00 712.00 

N51 582.00 712.00 

N52 673.00 713.00 

N53 233.00 752.00 

N54 302.00 763.00 

N55 507.00 769.00 

N56 365.00 774.00 

N57 90.00 792.00 

N58 610.00 797.00 

N59 419.00 809.00 

N60 193.00 827.00 

N61 290.00 843.00 

N62 479.00 852.00 

N63 399.00 872.00 

N64 536.00 886.00 

N65 647.00 886.00 

N66 137.00 896.00 

N67 445.00 937.00 

N68 316.00 940.00 

N69 230.00 950.00 

N70 533.00 957.00 
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Spans (.spans): SPAN/ SOURCE/ SINK 

S001 N01 N02 
S002 N01 N05 
S003 N01 N07 
S004 N02 N03 
S005 N02 N06 
S006 N03 N04 
S007 N03 N08 
S008 N04 N10 
S009 N04 N15 
S010 N05 N11 
S011 N05 N16 
S012 N06 N09 
S013 N06 N12 
S014 N07 N12 
S015 N07 N14 
S016 N08 N09 
S017 N08 N15 
S018 N09 N17 
S019 N10 N18 
S020 N10 N24 
S021 N11 N14 
S022 N11 N20 
S023 N12 N22 
S024 N13 N15 
S025 N13 N17 
S026 N13 N19 
S027 N14 N22 

S028 N16 N20 
S029 N16 N31 
S030 N17 N26 
S031 N18 N24 
S032 N18 N27 
S033 N19 N21 
S034 N19 N23 
S035 N20 N25 
S036 N21 N26 
S037 N21 N30 
S038 N22 N28 
S039 N23 N27 
S040 N23 N29 
S041 N24 N52 
S042 N25 N31 
S043 N25 N35 
S044 N26 N28 
S045 N27 N29 
S046 N28 N32 
S047 N29 N38 
S048 N30 N32 
S049 N30 N36 
S050 N31 N40 
S051 N32 N35 
S052 N33 N36 
S053 N33 N39 
S054 N33 N41 

S055 N34 N37 
S056 N34 N43 
S057 N34 N52 
S058 N35 N44 
S059 N36 N39 
S060 N37 N38 
S061 N37 N42 
S062 N38 N45 
S063 N39 N45 
S064 N40 N44 
S065 N40 N46 
S066 N41 N44 
S067 N41 N47 
S068 N42 N45 
S069 N42 N48 
S070 N43 N51 
S071 N43 N58 
S072 N46 N50 
S073 N46 N57 
S074 N47 N49 
S075 N47 N53 
S076 N48 N49 
S077 N48 N51 
S078 N49 N54 
S079 N50 N53 
S080 N50 N60 
S081 N51 N55 

S082 N52 N65 
S083 N53 N54 
S084 N54 N60 
S085 N55 N56 
S086 N55 N59 
S087 N56 N59 
S088 N56 N61 
S089 N57 N60 
S090 N57 N66 
S091 N58 N62 
S092 N58 N64 
S093 N59 N63 
S094 N61 N66 
S095 N61 N69 
S096 N62 N63 
S097 N62 N67 
S098 N63 N68 
S099 N64 N65 
S100 N64 N70 
S101 N65 N70 
S102 N66 N69 
S103 N67 N68 
S104 N67 N70 
S105 N68 N69 

80n128s Network 

Nodes (.node): NODE/ X/ Y  

N01 370.00 48.00 

N02 507.00 56.00 

N03 267.00 60.00 

N04 606.00 87.00 

N05 408.00 107.00 

N06 556.00 117.00 

N07 311.00 125.00 

N08 176.00 127.00 

N09 91.00 133.00 

N10 477.00 141.00 

N11 243.00 174.00 

N12 632.00 188.00 

N13 362.00 192.00 

N14 127.00 196.00 

N15 477.00 224.00 

N16 392.00 244.00 

N17 216.00 246.00 

N18 586.00 261.00 

N19 283.00 273.00 

N20 152.00 277.00 

N21 61.00 285.00 

N22 386.00 307.00 

N23 277.00 355.00 

N24 495.00 355.00 

N25 81.00 368.00 

N26 180.00 370.00 

N27 590.00 372.00 

N28 388.00 382.00 

N29 297.00 412.00 

N30 26.00 430.00 

N31 505.00 444.00 

N32 412.00 450.00 
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N33 95.00 454.00 

N34 184.00 463.00 

N35 626.00 475.00 

N36 293.00 493.00 

N37 548.00 511.00 

N38 41.00 529.00 

N39 101.00 531.00 

N40 210.00 541.00 

N41 348.00 541.00 

N42 445.00 551.00 

N43 158.00 568.00 

N44 604.00 590.00 

N45 228.00 602.00 

N46 89.00 624.00 

N47 344.00 628.00 

N48 277.00 652.00 

N49 412.00 652.00 

N50 501.00 659.00 

N51 34.00 665.00 

N52 626.00 673.00 

N53 224.00 685.00 

N54 89.00 695.00 

N55 352.00 701.00 

N56 148.00 719.00 

N57 428.00 737.00 

N58 287.00 739.00 

N59 503.00 739.00 

N60 572.00 747.00 

N61 641.00 764.00 

N62 57.00 772.00 

N63 335.00 776.00 

N64 210.00 780.00 

N65 477.00 820.00 

N66 570.00 824.00 

N67 150.00 834.00 

N68 382.00 844.00 

N69 265.00 852.00 

N70 89.00 854.00 

N71 200.00 883.00 

N72 618.00 895.00 

N73 546.00 901.00 

N74 445.00 903.00 

N75 337.00 905.00 

N76 150.00 949.00 

N77 251.00 949.00 

N78 392.00 958.00 

N79 527.00 986.00 

N80 325.00 994.00 

Spans (.spans): SPAN/ SOURCE/ SINK 

S001 N01 N02 
S002 N01 N03 
S003 N01 N05 
S004 N02 N04 
S005 N02 N10 
S006 N03 N07 
S007 N03 N08 
S008 N04 N06 
S009 N04 N12 
S010 N05 N07 
S011 N05 N10 
S012 N06 N10 
S013 N06 N12 
S014 N06 N31 
S015 N07 N13 
S016 N08 N09 
S017 N08 N11 
S018 N09 N14 
S019 N09 N21 
S020 N10 N15 
S021 N11 N13 
S022 N11 N17 
S023 N12 N18 
S024 N12 N35 
S025 N13 N16 
S026 N14 N17 
S027 N14 N21 

S028 N15 N16 
S029 N15 N18 
S030 N15 N24 
S031 N16 N22 
S032 N17 N19 
S033 N18 N27 
S034 N19 N23 
S035 N19 N26 
S036 N20 N21 
S037 N20 N25 
S038 N20 N26 
S039 N21 N30 
S040 N22 N23 
S041 N22 N24 
S042 N23 N28 
S043 N24 N31 
S044 N25 N30 
S045 N25 N33 
S046 N26 N33 
S047 N26 N34 
S048 N27 N31 
S049 N27 N35 
S050 N28 N29 
S051 N28 N32 
S052 N29 N34 
S053 N29 N36 
S054 N30 N33 

S055 N30 N38 
S056 N31 N32 
S057 N32 N36 
S058 N32 N52 
S059 N34 N39 
S060 N34 N40 
S061 N35 N37 
S062 N35 N44 
S063 N36 N40 
S064 N36 N41 
S065 N37 N42 
S066 N37 N44 
S067 N38 N39 
S068 N38 N51 
S069 N39 N46 
S070 N40 N43 
S071 N41 N42 
S072 N41 N45 
S073 N41 N47 
S074 N42 N50 
S075 N43 N46 
S076 N43 N54 
S077 N44 N52 
S078 N45 N48 
S079 N45 N54 
S080 N46 N51 
S081 N47 N48 

S082 N47 N49 
S083 N48 N53 
S084 N49 N55 
S085 N49 N59 
S086 N50 N52 
S087 N50 N59 
S088 N51 N62 
S089 N52 N61 
S090 N53 N56 
S091 N53 N64 
S092 N54 N56 
S093 N55 N57 
S094 N55 N58 
S095 N56 N67 
S096 N57 N63 
S097 N57 N65 
S098 N58 N63 
S099 N58 N69 
S100 N59 N60 
S101 N60 N65 
S102 N60 N66 
S103 N61 N66 
S104 N61 N72 
S105 N62 N67 
S106 N62 N70 
S107 N63 N75 
S108 N63 N77 
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S109 N64 N67 
S110 N64 N69 
S111 N65 N68 
S112 N66 N73 
S113 N68 N74 

S114 N68 N75 
S115 N69 N71 
S116 N70 N71 
S117 N70 N76 
S118 N71 N76 

S119 N72 N73 
S120 N72 N79 
S121 N73 N74 
S122 N74 N79 
S123 N75 N78 

S124 N75 N80 
S125 N76 N77 
S126 N77 N80 
S127 N78 N79 
S128 N78 N80 

90n135s Network 

Nodes (.node): NODE/ X/ Y  

N01 571.00 15.00 

N02 147.00 40.00 

N03 34.00 47.00 

N04 370.00 48.00 

N05 507.00 56.00 

N06 267.00 60.00 

N07 606.00 87.00 

N08 408.00 107.00 

N09 556.00 117.00 

N10 311.00 125.00 

N11 176.00 127.00 

N12 689.00 127.00 

N13 91.00 133.00 

N14 477.00 141.00 

N15 243.00 174.00 

N16 13.00 177.00 

N17 632.00 188.00 

N18 362.00 192.00 

N19 127.00 196.00 

N20 477.00 224.00 

N21 392.00 244.00 

N22 216.00 246.00 

N23 586.00 261.00 

N24 283.00 273.00 

N25 152.00 277.00 

N26 61.00 285.00 

N27 386.00 307.00 

N28 681.00 324.00 

N29 277.00 355.00 

N30 495.00 355.00 

N31 81.00 368.00 

N32 180.00 370.00 

N33 590.00 372.00 

N34 388.00 382.00 

N35 706.00 411.00 

N36 297.00 412.00 

N37 26.00 430.00 

N38 505.00 444.00 

N39 412.00 450.00 

N40 95.00 454.00 

N41 184.00 463.00 

N42 626.00 475.00 

N43 293.00 493.00 

N44 548.00 511.00 

N45 41.00 529.00 

N46 101.00 531.00 

N47 210.00 541.00 

N48 348.00 541.00 

N49 683.00 545.00 

N50 445.00 551.00 

N51 158.00 568.00 

N52 604.00 590.00 

N53 228.00 602.00 

N54 89.00 624.00 

N55 344.00 628.00 

N56 277.00 652.00 

N57 412.00 652.00 

N58 501.00 659.00 

N59 34.00 665.00 

N60 626.00 673.00 

N61 224.00 685.00 

N62 89.00 695.00 

N63 352.00 701.00 

N64 148.00 719.00 

N65 428.00 737.00 

N66 287.00 739.00 

N67 503.00 739.00 

N68 572.00 747.00 

N69 641.00 764.00 

N70 57.00 772.00 

N71 335.00 776.00 

N72 210.00 780.00 

N73 477.00 820.00 

N74 570.00 824.00 

N75 150.00 834.00 

N76 382.00 844.00 

N77 265.00 852.00 

N78 89.00 854.00 

N79 200.00 883.00 

N80 618.00 895.00 

N81 546.00 901.00 

N82 445.00 903.00 

N83 337.00 905.00 

N84 26.00 911.00 

N85 150.00 949.00 

N86 251.00 949.00 

N87 392.00 958.00 

N88 527.00 986.00 

N89 325.00 994.00 

N90 183.00 1010.0 

Spans (.spans): SPAN/ SOURCE/ SINK 

S001 N01 N04 
S002 N01 N05 
S003 N01 N12 
S004 N02 N03 
S005 N02 N06 

S006 N02 N10 
S007 N03 N16 
S008 N03 N26 
S009 N04 N06 
S010 N04 N09 

S011 N05 N07 
S012 N05 N09 
S013 N06 N08 
S014 N07 N17 
S015 N07 N23 

S016 N08 N14 
S017 N08 N18 
S018 N09 N20 
S019 N10 N15 
S020 N10 N24 
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S021 N11 N13 
S022 N11 N15 
S023 N11 N22 
S024 N12 N17 
S025 N12 N28 
S026 N13 N19 
S027 N13 N26 
S028 N14 N20 
S029 N14 N21 
S030 N15 N29 
S031 N16 N26 
S032 N16 N37 
S033 N17 N33 
S034 N18 N21 
S035 N18 N24 
S036 N19 N25 
S037 N19 N31 
S038 N20 N30 
S039 N21 N27 
S040 N22 N29 
S041 N22 N32 
S042 N23 N30 
S043 N23 N33 
S044 N24 N34 
S045 N25 N32 
S046 N25 N40 
S047 N27 N34 
S048 N27 N38 
S049 N28 N33 

S050 N28 N35 
S051 N29 N36 
S052 N30 N38 
S053 N31 N37 
S054 N31 N40 
S055 N32 N36 
S056 N34 N39 
S057 N35 N42 
S058 N35 N49 
S059 N36 N43 
S060 N37 N45 
S061 N38 N42 
S062 N39 N44 
S063 N39 N48 
S064 N40 N41 
S065 N41 N43 
S066 N41 N46 
S067 N42 N44 
S068 N43 N47 
S069 N44 N52 
S070 N45 N54 
S071 N45 N59 
S072 N46 N51 
S073 N46 N54 
S074 N47 N48 
S075 N47 N51 
S076 N48 N50 
S077 N49 N60 
S078 N49 N69 

S079 N50 N52 
S080 N50 N55 
S081 N51 N61 
S082 N52 N60 
S083 N53 N55 
S084 N53 N56 
S085 N53 N61 
S086 N54 N62 
S087 N55 N57 
S088 N56 N63 
S089 N56 N66 
S090 N57 N58 
S091 N57 N63 
S092 N58 N60 
S093 N58 N67 
S094 N59 N70 
S095 N59 N75 
S096 N61 N64 
S097 N62 N64 
S098 N62 N75 
S099 N63 N65 
S100 N64 N72 
S101 N65 N67 
S102 N65 N73 
S103 N66 N71 
S104 N66 N72 
S105 N67 N68 
S106 N68 N73 
S107 N68 N74 

S108 N69 N74 
S109 N69 N80 
S110 N70 N78 
S111 N70 N84 
S112 N71 N76 
S113 N71 N77 
S114 N72 N77 
S115 N73 N74 
S116 N75 N77 
S117 N76 N82 
S118 N76 N83 
S119 N78 N79 
S120 N78 N84 
S121 N79 N83 
S122 N79 N85 
S123 N80 N81 
S124 N80 N88 
S125 N81 N82 
S126 N81 N88 
S127 N82 N87 
S128 N83 N86 
S129 N84 N90 
S130 N85 N86 
S131 N85 N90 
S132 N86 N89 
S133 N87 N88 
S134 N87 N89 
S135 N89 N90 

100n150s Network 

Nodes (.node): NODE/ X/ Y  

N001 250.00 17.00 

N002 458.00 17.00 

N003 45.00 24.00 

N004 557.00 39.00 

N005 371.00 40.00 

N006 642.00 44.00 

N007 162.00 65.00 

N008 306.00 70.00 

N009 491.00 84.00 

N010 239.00 88.00 

N011 90.00 105.00 

N012 673.00 114.00 

N013 584.00 130.00 

N014 24.00 131.00 

N015 373.00 137.00 

N016 299.00 145.00 

N017 460.00 147.00 

N018 203.00 150.00 

N019 521.00 165.00 

N020 673.00 183.00 

N021 67.00 192.00 

N022 127.00 194.00 

N023 303.00 223.00 

N024 393.00 225.00 

N025 496.00 231.00 

N026 573.00 232.00 

N027 247.00 245.00 

N028 184.00 248.00 

N029 639.00 271.00 

N030 41.00 285.00 

N031 450.00 286.00 

N032 356.00 297.00 
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N033 124.00 305.00 

N034 556.00 305.00 

N035 675.00 323.00 

N036 296.00 337.00 

N037 210.00 360.00 

N038 396.00 360.00 

N039 56.00 368.00 

N040 543.00 377.00 

N041 464.00 382.00 

N042 604.00 400.00 

N043 284.00 411.00 

N044 690.00 422.00 

N045 9.00 425.00 

N046 141.00 434.00 

N047 436.00 454.00 

N048 313.00 457.00 

N049 564.00 465.00 

N050 227.00 474.00 

N051 510.00 494.00 

N052 693.00 500.00 

N053 44.00 508.00 

N054 441.00 520.00 

N055 141.00 528.00 

N056 607.00 537.00 

N057 379.00 540.00 

N058 190.00 568.00 

N059 87.00 574.00 

N060 281.00 580.00 

N061 701.00 582.00 

N062 499.00 594.00 

N063 19.00 620.00 

N064 587.00 625.00 

N065 395.00 629.00 

N066 107.00 645.00 

N067 244.00 645.00 

N068 670.00 648.00 

N069 337.00 682.00 

N070 461.00 685.00 

N071 270.00 705.00 

N072 570.00 722.00 

N073 44.00 728.00 

N074 407.00 734.00 

N075 156.00 744.00 

N076 230.00 756.00 

N077 664.00 768.00 

N078 353.00 785.00 

N079 473.00 805.00 

N080 564.00 814.00 

N081 23.00 820.00 

N082 107.00 825.00 

N083 407.00 837.00 

N084 214.00 839.00 

N085 676.00 842.00 

N086 304.00 871.00 

N087 184.00 888.00 

N088 613.00 888.00 

N089 524.00 905.00 

N090 430.00 908.00 

N091 48.00 912.00 

N092 347.00 922.00 

N093 661.00 951.00 

N094 121.00 968.00 

N095 393.00 968.00 

N096 176.00 971.00 

N097 259.00 974.00 

N098 461.00 985.00 

N099 553.00 994.00 

N100 319.00 1022.0 

Spans (.spans): SPAN/ SOURCE/ SINK 

S001 N001 N003 
S002 N001 N005 
S003 N001 N007 
S004 N002 N004 
S005 N002 N005 
S006 N002 N009 
S007 N003 N011 
S008 N003 N014 
S009 N004 N006 
S010 N004 N013 
S011 N005 N015 
S012 N006 N012 
S013 N006 N013 
S014 N007 N010 
S015 N007 N022 
S016 N008 N010 
S017 N008 N015 
S018 N008 N016 
S019 N009 N015 
S020 N009 N019 
S021 N010 N018 
S022 N011 N021 

S023 N011 N022 
S024 N012 N020 
S025 N012 N026 
S026 N013 N019 
S027 N014 N021 
S028 N014 N030 
S029 N016 N023 
S030 N016 N027 
S031 N017 N019 
S032 N017 N024 
S033 N017 N025 
S034 N018 N022 
S035 N018 N028 
S036 N020 N029 
S037 N020 N035 
S038 N021 N033 
S039 N023 N024 
S040 N023 N036 
S041 N024 N031 
S042 N025 N026 
S043 N025 N034 
S044 N026 N029 

S045 N027 N028 
S046 N027 N036 
S047 N028 N033 
S048 N029 N034 
S049 N030 N039 
S050 N030 N045 
S051 N031 N034 
S052 N031 N041 
S053 N032 N038 
S054 N032 N043 
S055 N032 N048 
S056 N033 N046 
S057 N035 N042 
S058 N035 N044 
S059 N036 N037 
S060 N037 N039 
S061 N037 N046 
S062 N038 N041 
S063 N038 N047 
S064 N039 N046 
S065 N040 N041 
S066 N040 N042 

S067 N040 N051 
S068 N042 N049 
S069 N043 N050 
S070 N043 N060 
S071 N044 N049 
S072 N044 N052 
S073 N045 N053 
S074 N045 N063 
S075 N047 N054 
S076 N047 N057 
S077 N048 N057 
S078 N048 N069 
S079 N049 N056 
S080 N050 N055 
S081 N050 N058 
S082 N051 N054 
S083 N051 N062 
S084 N052 N056 
S085 N052 N061 
S086 N053 N055 
S087 N053 N063 
S088 N054 N070 
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S089 N055 N059 
S090 N056 N064 
S091 N057 N065 
S092 N058 N059 
S093 N058 N060 
S094 N059 N066 
S095 N060 N067 
S096 N061 N068 
S097 N061 N085 
S098 N062 N064 
S099 N062 N070 
S100 N063 N073 
S101 N064 N072 
S102 N065 N069 
S103 N065 N074 
S104 N066 N067 

S105 N066 N073 
S106 N067 N071 
S107 N068 N077 
S108 N068 N080 
S109 N069 N071 
S110 N070 N074 
S111 N071 N076 
S112 N072 N079 
S113 N072 N080 
S114 N073 N081 
S115 N074 N078 
S116 N075 N076 
S117 N075 N082 
S118 N075 N084 
S119 N076 N078 
S120 N077 N085 

S121 N077 N088 
S122 N078 N079 
S123 N079 N083 
S124 N080 N089 
S125 N081 N082 
S126 N081 N091 
S127 N082 N091 
S128 N083 N086 
S129 N083 N090 
S130 N084 N086 
S131 N084 N087 
S132 N085 N093 
S133 N086 N090 
S134 N087 N092 
S135 N087 N094 
S136 N088 N089 

S137 N088 N093 
S138 N089 N098 
S139 N090 N098 
S140 N091 N094 
S141 N092 N095 
S142 N092 N097 
S143 N093 N099 
S144 N094 N096 
S145 N095 N097 
S146 N095 N100 
S147 N096 N097 
S148 N096 N100 
S149 N098 N099 
S150 N099 N100 

110n165s Network 

Nodes (.node): NODE/ X/ Y  

N001 250.00 17.00 

N002 458.00 17.00 

N003 54.00 20.00 

N004 357.00 37.00 

N005 657.00 42.00 

N006 541.00 49.00 

N007 148.00 53.00 

N008 459.00 80.00 

N009 329.00 86.00 

N010 239.00 88.00 

N011 90.00 105.00 

N012 590.00 106.00 

N013 673.00 114.00 

N014 24.00 131.00 

N015 527.00 135.00 

N016 373.00 137.00 

N017 299.00 145.00 

N018 203.00 150.00 

N019 472.00 163.00 

N020 673.00 183.00 

N021 67.00 192.00 

N022 127.00 194.00 

N023 587.00 201.00 

N024 262.00 212.00 

N025 393.00 225.00 

N026 472.00 238.00 

N027 184.00 248.00 

N028 304.00 258.00 

N029 639.00 271.00 

N030 41.00 285.00 

N031 356.00 297.00 

N032 556.00 305.00 

N033 489.00 317.00 

N034 135.00 319.00 

N035 675.00 323.00 

N036 296.00 337.00 

N037 61.00 359.00 

N038 210.00 360.00 

N039 396.00 360.00 

N040 543.00 377.00 

N041 464.00 382.00 

N042 604.00 400.00 

N043 284.00 411.00 

N044 136.00 415.00 

N045 371.00 415.00 

N046 690.00 422.00 

N047 6.00 425.00 

N048 436.00 454.00 

N049 313.00 457.00 

N050 196.00 462.00 

N051 564.00 465.00 

N052 394.00 489.00 

N053 510.00 494.00 

N054 55.00 495.00 

N055 693.00 500.00 

N056 263.00 506.00 

N057 141.00 528.00 

N058 607.00 537.00 

N059 346.00 540.00 

N060 439.00 544.00 

N061 190.00 568.00 

N062 87.00 574.00 

N063 281.00 580.00 

N064 701.00 582.00 

N065 24.00 592.00 

N066 499.00 594.00 

N067 587.00 625.00 

N068 339.00 634.00 

N069 428.00 640.00 

N070 244.00 645.00 

N071 80.00 652.00 

N072 685.00 680.00 

N073 461.00 685.00 

N074 556.00 687.00 

N075 156.00 694.00 

N076 270.00 705.00 

N077 373.00 708.00 

N078 41.00 712.00 

N079 630.00 719.00 

N080 516.00 751.00 

N081 91.00 765.00 

N082 244.00 768.00 

N083 371.00 778.00 

N084 662.00 792.00 
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N085 473.00 805.00 

N086 564.00 814.00 

N087 115.00 837.00 

N088 190.00 837.00 

N089 407.00 837.00 

N090 301.00 841.00 

N091 18.00 845.00 

N092 684.00 876.00 

N093 613.00 888.00 

N094 84.00 905.00 

N095 226.00 905.00 

N096 524.00 905.00 

N097 430.00 908.00 

N098 309.00 912.00 

N099 146.00 942.00 

N100 29.00 950.00 

N101 476.00 952.00 

N102 616.00 957.00 

N103 393.00 968.00 

N104 259.00 974.00 

N105 553.00 994.00 

N106 180.00 1006.0 

N107 82.00 1012.0 

N108 686.00 1012.0 

N109 448.00 1017.0 

N110 319.00 1022.0 

  

Spans (.spans): SPAN/ SOURCE/ SINK 

S001 N001 N004 
S002 N001 N007 
S003 N001 N009 
S004 N002 N004 
S005 N002 N006 
S006 N002 N008 
S007 N003 N007 
S008 N003 N011 
S009 N003 N014 
S010 N004 N009 
S011 N005 N006 
S012 N005 N012 
S013 N005 N013 
S014 N006 N008 
S015 N007 N010 
S016 N008 N016 
S017 N009 N010 
S018 N010 N017 
S019 N011 N021 
S020 N011 N022 
S021 N012 N015 
S022 N012 N023 
S023 N013 N020 
S024 N013 N023 
S025 N014 N021 
S026 N014 N030 
S027 N015 N019 
S028 N015 N023 
S029 N016 N017 
S030 N016 N019 
S031 N017 N018 
S032 N018 N022 

S033 N018 N024 
S034 N019 N026 
S035 N020 N029 
S036 N020 N035 
S037 N021 N030 
S038 N022 N027 
S039 N024 N025 
S040 N024 N027 
S041 N025 N026 
S042 N025 N031 
S043 N026 N033 
S044 N027 N034 
S045 N028 N031 
S046 N028 N036 
S047 N028 N038 
S048 N029 N032 
S049 N029 N035 
S050 N030 N034 
S051 N031 N039 
S052 N032 N033 
S053 N032 N040 
S054 N033 N039 
S055 N034 N037 
S056 N035 N046 
S057 N036 N043 
S058 N036 N045 
S059 N037 N038 
S060 N037 N047 
S061 N038 N043 
S062 N039 N041 
S063 N040 N041 
S064 N040 N042 

S065 N041 N048 
S066 N042 N046 
S067 N042 N051 
S068 N043 N049 
S069 N044 N047 
S070 N044 N050 
S071 N044 N061 
S072 N045 N049 
S073 N045 N052 
S074 N046 N055 
S075 N047 N054 
S076 N048 N052 
S077 N048 N053 
S078 N049 N050 
S079 N050 N056 
S080 N051 N053 
S081 N051 N058 
S082 N052 N059 
S083 N053 N059 
S084 N054 N057 
S085 N054 N065 
S086 N055 N058 
S087 N055 N064 
S088 N056 N061 
S089 N056 N063 
S090 N057 N061 
S091 N057 N062 
S092 N058 N066 
S093 N059 N060 
S094 N060 N066 
S095 N060 N069 
S096 N062 N071 

S097 N062 N075 
S098 N063 N068 
S099 N063 N070 
S100 N064 N067 
S101 N064 N072 
S102 N065 N071 
S103 N065 N091 
S104 N066 N067 
S105 N067 N074 
S106 N068 N069 
S107 N068 N077 
S108 N069 N073 
S109 N070 N075 
S110 N070 N076 
S111 N071 N078 
S112 N072 N079 
S113 N072 N084 
S114 N073 N074 
S115 N073 N080 
S116 N074 N079 
S117 N075 N081 
S118 N076 N077 
S119 N076 N082 
S120 N077 N083 
S121 N078 N081 
S122 N078 N091 
S123 N079 N086 
S124 N080 N083 
S125 N080 N085 
S126 N081 N087 
S127 N082 N083 
S128 N082 N088 
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S129 N084 N086 
S130 N084 N092 
S131 N085 N089 
S132 N085 N096 
S133 N086 N096 
S134 N087 N088 
S135 N087 N094 
S136 N088 N090 
S137 N089 N090 
S138 N089 N097 

S139 N090 N095 
S140 N091 N100 
S141 N092 N093 
S142 N092 N108 
S143 N093 N096 
S144 N093 N102 
S145 N094 N095 
S146 N094 N100 
S147 N095 N098 
S148 N097 N098 

S149 N097 N102 
S150 N098 N101 
S151 N099 N104 
S152 N099 N106 
S153 N099 N107 
S154 N100 N107 
S155 N101 N105 
S156 N101 N109 
S157 N102 N108 
S158 N103 N104 

S159 N103 N109 
S160 N103 N110 
S161 N104 N110 
S162 N105 N108 
S163 N105 N109 
S164 N106 N107 
S165 N106 N110 
  

120n180s Network 

Nodes (.node): NODE/ X/ Y  

N001 220.00 15.00 

N002 559.00 20.00 

N003 117.00 24.00 

N004 276.00 25.00 

N005 61.00 35.00 

N006 434.00 37.00 

N007 496.00 54.00 

N008 634.00 55.00 

N009 357.00 57.00 

N010 153.00 70.00 

N011 536.00 87.00 

N012 254.00 91.00 

N013 693.00 102.00 

N014 69.00 103.00 

N015 13.00 107.00 

N016 401.00 107.00 

N017 641.00 132.00 

N018 569.00 134.00 

N019 204.00 142.00 

N020 493.00 152.00 

N021 104.00 157.00 

N022 316.00 157.00 

N023 399.00 165.00 

N024 44.00 187.00 

N025 169.00 194.00 

N026 713.00 201.00 

N027 569.00 207.00 

N028 237.00 218.00 

N029 391.00 218.00 

N030 657.00 222.00 

N031 446.00 227.00 

N032 321.00 252.00 

N033 506.00 252.00 

N034 13.00 270.00 

N035 73.00 270.00 

N036 143.00 281.00 

N037 389.00 285.00 

N038 541.00 298.00 

N039 246.00 302.00 

N040 627.00 308.00 

N041 684.00 325.00 

N042 496.00 332.00 

N043 339.00 335.00 

N044 431.00 340.00 

N045 16.00 355.00 

N046 74.00 358.00 

N047 147.00 368.00 

N048 243.00 368.00 

N049 601.00 392.00 

N050 667.00 408.00 

N051 391.00 410.00 

N052 516.00 410.00 

N053 36.00 415.00 

N054 193.00 427.00 

N055 300.00 427.00 

N056 76.00 451.00 

N057 453.00 457.00 

N058 584.00 471.00 

N059 141.00 475.00 

N060 654.00 477.00 

N061 230.00 482.00 

N062 30.00 488.00 

N063 336.00 492.00 

N064 516.00 497.00 

N065 459.00 515.00 

N066 397.00 535.00 

N067 83.00 540.00 

N068 651.00 541.00 

N069 603.00 558.00 

N070 187.00 561.00 

N071 13.00 582.00 

N072 306.00 585.00 

N073 481.00 588.00 

N074 557.00 610.00 

N075 674.00 614.00 

N076 146.00 621.00 

N077 49.00 630.00 

N078 379.00 632.00 

N079 237.00 654.00 

N080 540.00 675.00 

N081 447.00 682.00 

N082 621.00 685.00 

N083 319.00 691.00 

N084 174.00 711.00 

N085 109.00 722.00 

N086 33.00 735.00 

N087 663.00 738.00 

N088 230.00 742.00 

N089 289.00 744.00 

N090 391.00 754.00 

N091 480.00 754.00 

N092 554.00 758.00 

N093 221.00 795.00 

N094 619.00 795.00 

N095 26.00 815.00 

N096 111.00 818.00 

N097 316.00 820.00 

N098 434.00 821.00 

N099 530.00 821.00 

N100 697.00 827.00 

N101 611.00 867.00 

N102 533.00 872.00 

N103 364.00 877.00 

N104 259.00 888.00 

N105 159.00 892.00 

N106 469.00 895.00 

N107 46.00 897.00 

N108 341.00 912.00 
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N109 637.00 918.00 

N110 256.00 947.00 

N111 197.00 958.00 

N112 434.00 958.00 

N113 386.00 975.00 

N114 579.00 980.00 

N115 31.00 987.00 

N116 299.00 987.00 

N117 646.00 987.00 

N118 133.00 1002.0 

N119 476.00 1010.0 

N120 244.00 1013.0 
  

Spans (.spans): SPAN/ SOURCE/ SINK 

S001 N001 N003 
S002 N001 N004 
S003 N001 N012 
S004 N002 N007 
S005 N002 N008 
S006 N002 N011 
S007 N003 N005 
S008 N003 N010 
S009 N004 N009 
S010 N004 N012 
S011 N005 N014 
S012 N005 N015 
S013 N006 N007 
S014 N006 N009 
S015 N006 N016 
S016 N007 N020 
S017 N008 N011 
S018 N008 N013 
S019 N009 N016 
S020 N010 N012 
S021 N010 N014 
S022 N011 N018 
S023 N013 N017 
S024 N013 N026 
S025 N014 N021 
S026 N015 N024 
S027 N015 N034 
S028 N016 N020 
S029 N017 N018 
S030 N017 N030 
S031 N018 N027 
S032 N019 N021 
S033 N019 N022 
S034 N019 N028 
S035 N020 N023 
S036 N021 N025 

S037 N022 N023 
S038 N022 N032 
S039 N023 N029 
S040 N024 N034 
S041 N024 N035 
S042 N025 N028 
S043 N025 N036 
S044 N026 N040 
S045 N026 N041 
S046 N027 N030 
S047 N027 N033 
S048 N028 N039 
S049 N029 N031 
S050 N029 N032 
S051 N030 N038 
S052 N031 N033 
S053 N031 N037 
S054 N032 N039 
S055 N033 N038 
S056 N034 N045 
S057 N035 N036 
S058 N035 N046 
S059 N036 N047 
S060 N037 N043 
S061 N037 N044 
S062 N038 N042 
S063 N039 N048 
S064 N040 N041 
S065 N040 N049 
S066 N041 N050 
S067 N042 N044 
S068 N042 N049 
S069 N043 N048 
S070 N043 N051 
S071 N044 N052 
S072 N045 N046 

S073 N045 N053 
S074 N046 N047 
S075 N047 N048 
S076 N049 N052 
S077 N050 N058 
S078 N050 N060 
S079 N051 N052 
S080 N051 N055 
S081 N053 N056 
S082 N053 N062 
S083 N054 N055 
S084 N054 N056 
S085 N054 N059 
S086 N055 N061 
S087 N056 N067 
S088 N057 N063 
S089 N057 N064 
S090 N057 N065 
S091 N058 N060 
S092 N058 N069 
S093 N059 N061 
S094 N059 N070 
S095 N060 N068 
S096 N061 N063 
S097 N062 N067 
S098 N062 N071 
S099 N063 N066 
S100 N064 N065 
S101 N064 N069 
S102 N065 N066 
S103 N066 N073 
S104 N067 N070 
S105 N068 N069 
S106 N068 N075 
S107 N070 N072 
S108 N071 N076 

S109 N071 N077 
S110 N072 N073 
S111 N072 N076 
S112 N073 N074 
S113 N074 N075 
S114 N074 N080 
S115 N075 N087 
S116 N076 N079 
S117 N077 N085 
S118 N077 N086 
S119 N078 N081 
S120 N078 N083 
S121 N078 N090 
S122 N079 N083 
S123 N079 N084 
S124 N080 N081 
S125 N080 N082 
S126 N081 N090 
S127 N082 N087 
S128 N082 N092 
S129 N083 N089 
S130 N084 N085 
S131 N084 N088 
S132 N085 N096 
S133 N086 N095 
S134 N086 N096 
S135 N087 N100 
S136 N088 N089 
S137 N088 N093 
S138 N089 N097 
S139 N090 N098 
S140 N091 N092 
S141 N091 N098 
S142 N091 N099 
S143 N092 N094 
S144 N093 N096 
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S145 N093 N097 
S146 N094 N100 
S147 N094 N101 
S148 N095 N107 
S149 N095 N115 
S150 N097 N103 
S151 N098 N112 
S152 N099 N102 
S153 N099 N106 

S154 N100 N109 
S155 N101 N102 
S156 N101 N109 
S157 N102 N117 
S158 N103 N108 
S159 N103 N112 
S160 N104 N105 
S161 N104 N108 
S162 N104 N110 

S163 N105 N107 
S164 N105 N111 
S165 N106 N112 
S166 N106 N114 
S167 N107 N115 
S168 N108 N113 
S169 N109 N117 
S170 N110 N111 
S171 N110 N116 

S172 N111 N118 
S173 N113 N116 
S174 N113 N119 
S175 N114 N117 
S176 N114 N119 
S177 N115 N118 
S178 N116 N120 
S179 N118 N120 
S180 N119 N120 

 

130n195s Network 

Nodes (.node): NODE/ X/ Y  

N001 358.00 3.00 

N002 186.00 6.00 

N003 123.00 8.00 

N004 548.00 12.00 

N005 250.00 17.00 

N006 458.00 17.00 

N007 45.00 24.00 

N008 624.00 54.00 

N009 393.00 57.00 

N010 196.00 63.00 

N011 513.00 65.00 

N012 459.00 80.00 

N013 304.00 86.00 

N014 239.00 88.00 

N015 678.00 103.00 

N016 90.00 105.00 

N017 144.00 122.00 

N018 584.00 130.00 

N019 24.00 131.00 

N020 373.00 137.00 

N021 460.00 147.00 

N022 203.00 150.00 

N023 521.00 165.00 

N024 657.00 175.00 

N025 67.00 192.00 

N026 261.00 192.00 

N027 127.00 194.00 

N028 4.00 211.00 

N029 393.00 225.00 

N030 575.00 237.00 

N031 472.00 238.00 

N032 247.00 245.00 

N033 101.00 248.00 

N034 184.00 248.00 

N035 708.00 252.00 

N036 304.00 258.00 

N037 639.00 271.00 

N038 41.00 285.00 

N039 356.00 297.00 

N040 124.00 305.00 

N041 556.00 305.00 

N042 489.00 317.00 

N043 4.00 327.00 

N044 296.00 337.00 

N045 616.00 340.00 

N046 714.00 351.00 

N047 210.00 360.00 

N048 396.00 360.00 

N049 56.00 368.00 

N050 333.00 372.00 

N051 543.00 377.00 

N052 464.00 382.00 

N053 604.00 400.00 

N054 284.00 411.00 

N055 397.00 416.00 

N056 690.00 422.00 

N057 500.00 425.00 

N058 220.00 430.00 

N059 141.00 434.00 

N060 436.00 454.00 

N061 313.00 457.00 

N062 564.00 465.00 

N063 8.00 470.00 

N064 394.00 489.00 

N065 500.00 496.00 

N066 693.00 500.00 

N067 263.00 506.00 

N068 44.00 508.00 

N069 141.00 528.00 

N070 619.00 535.00 

N071 379.00 540.00 

N072 547.00 548.00 

N073 190.00 568.00 

N074 87.00 574.00 

N075 281.00 580.00 

N076 701.00 582.00 

N077 499.00 594.00 

N078 19.00 620.00 

N079 587.00 625.00 

N080 107.00 645.00 

N081 244.00 645.00 

N082 319.00 645.00 

N083 387.00 645.00 

N084 670.00 648.00 

N085 461.00 685.00 

N086 556.00 687.00 

N087 156.00 694.00 

N088 4.00 702.00 

N089 270.00 705.00 

N090 373.00 708.00 

N091 709.00 710.00 

N092 44.00 728.00 

N093 513.00 744.00 

N094 434.00 746.00 

N095 244.00 768.00 

N096 664.00 768.00 

N097 136.00 782.00 

N098 76.00 785.00 

N099 353.00 785.00 

N100 566.00 791.00 

N101 292.00 803.00 

N102 473.00 805.00 

N103 190.00 837.00 

N104 407.00 837.00 

N105 6.00 839.00 

N106 676.00 842.00 

N107 499.00 849.00 

N108 304.00 871.00 

N109 374.00 877.00 

N110 79.00 888.00 

N111 184.00 888.00 

N112 613.00 888.00 
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N113 246.00 901.00 

N114 524.00 905.00 

N115 430.00 908.00 

N116 711.00 910.00 

N117 347.00 922.00 

N118 661.00 951.00 

N119 121.00 968.00 

N120 377.00 968.00 

N121 176.00 971.00 

N122 259.00 974.00 

N123 15.00 981.00 

N124 461.00 985.00 

N125 319.00 994.00 

N126 553.00 994.00 

N127 643.00 1009.0 

N128 390.00 1015.0 

N129 52.00 1018.0 

N130 200.00 1018.0 

Spans (.spans): SPAN/ SOURCE/ SINK 

S001 N001 N005 
S002 N001 N006 
S003 N001 N013 
S004 N002 N003 
S005 N002 N005 
S006 N002 N010 
S007 N003 N007 
S008 N003 N010 
S009 N004 N006 
S010 N004 N008 
S011 N004 N011 
S012 N005 N013 
S013 N006 N009 
S014 N007 N017 
S015 N007 N019 
S016 N008 N015 
S017 N008 N018 
S018 N009 N012 
S019 N009 N020 
S020 N010 N017 
S021 N011 N012 
S022 N011 N023 
S023 N012 N021 
S024 N013 N020 
S025 N014 N017 
S026 N014 N020 
S027 N014 N022 
S028 N015 N024 
S029 N015 N035 
S030 N016 N019 
S031 N016 N025 
S032 N016 N027 
S033 N018 N023 
S034 N018 N024 

S035 N019 N028 
S036 N021 N023 
S037 N021 N029 
S038 N022 N026 
S039 N022 N027 
S040 N024 N035 
S041 N025 N027 
S042 N025 N028 
S043 N026 N029 
S044 N026 N032 
S045 N028 N043 
S046 N029 N031 
S047 N030 N031 
S048 N030 N037 
S049 N030 N041 
S050 N031 N039 
S051 N032 N034 
S052 N032 N036 
S053 N033 N034 
S054 N033 N038 
S055 N033 N040 
S056 N034 N047 
S057 N035 N046 
S058 N036 N039 
S059 N036 N044 
S060 N037 N045 
S061 N037 N046 
S062 N038 N040 
S063 N038 N043 
S064 N039 N042 
S065 N040 N047 
S066 N041 N042 
S067 N041 N045 
S068 N042 N052 

S069 N043 N063 
S070 N044 N050 
S071 N044 N058 
S072 N045 N053 
S073 N046 N056 
S074 N047 N059 
S075 N048 N050 
S076 N048 N052 
S077 N048 N055 
S078 N049 N059 
S079 N049 N063 
S080 N049 N068 
S081 N050 N054 
S082 N051 N052 
S083 N051 N053 
S084 N051 N057 
S085 N053 N056 
S086 N054 N061 
S087 N054 N067 
S088 N055 N060 
S089 N055 N061 
S090 N056 N066 
S091 N057 N060 
S092 N057 N062 
S093 N058 N059 
S094 N058 N069 
S095 N060 N064 
S096 N061 N071 
S097 N062 N066 
S098 N062 N072 
S099 N063 N078 
S100 N064 N065 
S101 N064 N071 
S102 N065 N072 

S103 N065 N077 
S104 N066 N076 
S105 N067 N073 
S106 N067 N075 
S107 N068 N069 
S108 N068 N078 
S109 N069 N073 
S110 N070 N072 
S111 N070 N076 
S112 N070 N079 
S113 N071 N075 
S114 N073 N074 
S115 N074 N080 
S116 N074 N088 
S117 N075 N081 
S118 N076 N084 
S119 N077 N079 
S120 N077 N083 
S121 N078 N088 
S122 N079 N084 
S123 N080 N087 
S124 N080 N092 
S125 N081 N082 
S126 N081 N089 
S127 N082 N083 
S128 N082 N090 
S129 N083 N085 
S130 N084 N091 
S131 N085 N093 
S132 N085 N094 
S133 N086 N093 
S134 N086 N096 
S135 N086 N100 
S136 N087 N089 
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S137 N087 N092 
S138 N088 N105 
S139 N089 N095 
S140 N090 N094 
S141 N090 N099 
S142 N091 N096 
S143 N091 N106 
S144 N092 N098 
S145 N093 N102 
S146 N094 N102 
S147 N095 N097 
S148 N095 N099 
S149 N096 N100 
S150 N097 N098 
S151 N097 N103 

S152 N098 N105 
S153 N099 N102 
S154 N100 N107 
S155 N101 N103 
S156 N101 N104 
S157 N101 N108 
S158 N103 N110 
S159 N104 N107 
S160 N104 N109 
S161 N105 N110 
S162 N106 N112 
S163 N106 N116 
S164 N107 N112 
S165 N108 N113 
S166 N108 N117 

S167 N109 N115 
S168 N109 N117 
S169 N110 N123 
S170 N111 N113 
S171 N111 N119 
S172 N111 N121 
S173 N112 N116 
S174 N113 N122 
S175 N114 N115 
S176 N114 N124 
S177 N114 N126 
S178 N115 N124 
S179 N116 N118 
S180 N117 N120 
S181 N118 N126 

S182 N118 N127 
S183 N119 N123 
S184 N119 N129 
S185 N120 N124 
S186 N120 N125 
S187 N121 N122 
S188 N121 N130 
S189 N122 N125 
S190 N123 N129 
S191 N125 N128 
S192 N126 N127 
S193 N127 N128 
S194 N128 N130 
S195 N129 N130 

140n210s Network 

Nodes (.node): NODE/ X/ Y  

N001 478.00 5.00 

N002 376.00 8.00 

N003 134.00 9.00 

N004 220.00 15.00 

N005 45.00 17.00 

N006 677.00 19.00 

N007 559.00 20.00 

N008 276.00 25.00 

N009 434.00 37.00 

N010 100.00 52.00 

N011 496.00 54.00 

N012 634.00 55.00 

N013 357.00 57.00 

N014 153.00 70.00 

N015 536.00 87.00 

N016 254.00 91.00 

N017 19.00 96.00 

N018 693.00 102.00 

N019 69.00 103.00 

N020 401.00 107.00 

N021 459.00 109.00 

N022 641.00 132.00 

N023 569.00 134.00 

N024 204.00 142.00 

N025 493.00 152.00 

N026 6.00 153.00 

N027 104.00 157.00 

N028 316.00 157.00 

N029 399.00 165.00 

N030 44.00 187.00 

N031 169.00 194.00 

N032 713.00 201.00 

N033 569.00 207.00 

N034 237.00 218.00 

N035 391.00 218.00 

N036 657.00 222.00 

N037 446.00 227.00 

N038 321.00 252.00 

N039 506.00 252.00 

N040 13.00 270.00 

N041 73.00 270.00 

N042 143.00 281.00 

N043 389.00 285.00 

N044 717.00 292.00 

N045 541.00 298.00 

N046 246.00 302.00 

N047 627.00 308.00 

N048 684.00 325.00 

N049 496.00 332.00 

N050 339.00 335.00 

N051 431.00 340.00 

N052 16.00 355.00 

N053 74.00 358.00 

N054 147.00 368.00 

N055 243.00 368.00 

N056 601.00 392.00 

N057 667.00 408.00 

N058 391.00 410.00 

N059 516.00 410.00 

N060 713.00 412.00 

N061 36.00 415.00 

N062 193.00 427.00 

N063 300.00 427.00 

N064 6.00 445.00 

N065 76.00 451.00 

N066 453.00 457.00 

N067 584.00 471.00 

N068 141.00 475.00 

N069 654.00 477.00 

N070 230.00 482.00 

N071 30.00 488.00 

N072 336.00 492.00 

N073 516.00 497.00 

N074 459.00 515.00 

N075 703.00 531.00 

N076 397.00 535.00 

N077 83.00 540.00 

N078 651.00 541.00 

N079 603.00 558.00 

N080 187.00 561.00 

N081 13.00 582.00 

N082 306.00 585.00 

N083 481.00 588.00 

N084 557.00 610.00 

N085 674.00 614.00 

N086 146.00 621.00 

N087 49.00 630.00 

N088 379.00 632.00 
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N089 237.00 654.00 

N090 4.00 674.00 

N091 540.00 675.00 

N092 447.00 682.00 

N093 621.00 685.00 

N094 319.00 691.00 

N095 703.00 699.00 

N096 174.00 711.00 

N097 109.00 722.00 

N098 33.00 735.00 

N099 663.00 738.00 

N100 230.00 742.00 

N101 289.00 744.00 

N102 391.00 754.00 

N103 480.00 754.00 

N104 554.00 758.00 

N105 221.00 795.00 

N106 619.00 795.00 

N107 26.00 815.00 

N108 111.00 818.00 

N109 316.00 820.00 

N110 434.00 821.00 

N111 530.00 821.00 

N112 697.00 827.00 

N113 611.00 867.00 

N114 533.00 872.00 

N115 364.00 877.00 

N116 259.00 888.00 

N117 159.00 892.00 

N118 469.00 895.00 

N119 46.00 897.00 

N120 341.00 912.00 

N121 637.00 918.00 

N122 527.00 928.00 

N123 702.00 934.00 

N124 256.00 947.00 

N125 197.00 958.00 

N126 434.00 958.00 

N127 386.00 975.00 

N128 579.00 980.00 

N129 31.00 987.00 

N130 299.00 987.00 

N131 646.00 987.00 

N132 246.00 998.00 

N133 686.00 998.00 

N134 133.00 1002.0 

N135 486.00 1009.0 

N136 64.00 1015.0 

N137 396.00 1022.0 

N138 291.00 1023.0 

N139 570.00 1024.0 

N140 181.00 1028.0 

Spans (.spans): SPAN/ SOURCE/ SINK 

S001 N001 N002 
S002 N001 N007 
S003 N001 N009 
S004 N002 N008 
S005 N002 N013 
S006 N003 N004 
S007 N003 N005 
S008 N003 N010 
S009 N004 N008 
S010 N004 N014 
S011 N005 N010 
S012 N005 N017 
S013 N006 N007 
S014 N006 N012 
S015 N006 N018 
S016 N007 N011 
S017 N008 N016 
S018 N009 N011 
S019 N009 N013 
S020 N010 N019 
S021 N011 N015 
S022 N012 N015 
S023 N012 N022 
S024 N013 N016 
S025 N014 N016 
S026 N014 N027 
S027 N015 N023 

S028 N017 N019 
S029 N017 N026 
S030 N018 N022 
S031 N018 N032 
S032 N019 N027 
S033 N020 N021 
S034 N020 N028 
S035 N020 N029 
S036 N021 N023 
S037 N021 N025 
S038 N022 N036 
S039 N023 N033 
S040 N024 N027 
S041 N024 N028 
S042 N024 N031 
S043 N025 N029 
S044 N025 N033 
S045 N026 N030 
S046 N026 N040 
S047 N028 N034 
S048 N029 N035 
S049 N030 N031 
S050 N030 N041 
S051 N031 N042 
S052 N032 N036 
S053 N032 N044 
S054 N033 N036 

S055 N034 N038 
S056 N034 N046 
S057 N035 N037 
S058 N035 N038 
S059 N037 N039 
S060 N037 N043 
S061 N038 N046 
S062 N039 N045 
S063 N039 N049 
S064 N040 N041 
S065 N040 N052 
S066 N041 N042 
S067 N042 N053 
S068 N043 N050 
S069 N043 N051 
S070 N044 N048 
S071 N044 N060 
S072 N045 N047 
S073 N045 N056 
S074 N046 N054 
S075 N047 N048 
S076 N047 N057 
S077 N048 N060 
S078 N049 N051 
S079 N049 N056 
S080 N050 N055 
S081 N050 N058 

S082 N051 N058 
S083 N052 N061 
S084 N052 N064 
S085 N053 N054 
S086 N053 N061 
S087 N054 N055 
S088 N055 N062 
S089 N056 N057 
S090 N057 N069 
S091 N058 N063 
S092 N059 N066 
S093 N059 N067 
S094 N059 N073 
S095 N060 N075 
S096 N061 N065 
S097 N062 N063 
S098 N062 N065 
S099 N063 N066 
S100 N064 N065 
S101 N064 N071 
S102 N066 N073 
S103 N067 N069 
S104 N067 N084 
S105 N068 N070 
S106 N068 N077 
S107 N068 N080 
S108 N069 N079 
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S109 N070 N072 
S110 N070 N082 
S111 N071 N077 
S112 N071 N081 
S113 N072 N074 
S114 N072 N076 
S115 N073 N074 
S116 N074 N083 
S117 N075 N078 
S118 N075 N085 
S119 N076 N082 
S120 N076 N083 
S121 N077 N087 
S122 N078 N079 
S123 N078 N091 
S124 N079 N084 
S125 N080 N082 
S126 N080 N086 
S127 N081 N087 
S128 N081 N090 
S129 N083 N084 
S130 N085 N091 
S131 N085 N095 
S132 N086 N087 
S133 N086 N089 
S134 N088 N089 

S135 N088 N092 
S136 N088 N094 
S137 N089 N096 
S138 N090 N097 
S139 N090 N098 
S140 N091 N092 
S141 N092 N103 
S142 N093 N099 
S143 N093 N104 
S144 N093 N106 
S145 N094 N096 
S146 N094 N102 
S147 N095 N099 
S148 N095 N112 
S149 N096 N097 
S150 N097 N108 
S151 N098 N107 
S152 N098 N108 
S153 N099 N106 
S154 N100 N101 
S155 N100 N105 
S156 N100 N109 
S157 N101 N102 
S158 N101 N109 
S159 N102 N103 
S160 N103 N104 

S161 N104 N106 
S162 N105 N116 
S163 N105 N117 
S164 N107 N108 
S165 N107 N119 
S166 N109 N116 
S167 N110 N111 
S168 N110 N115 
S169 N110 N118 
S170 N111 N113 
S171 N111 N114 
S172 N112 N113 
S173 N112 N123 
S174 N113 N123 
S175 N114 N118 
S176 N114 N122 
S177 N115 N120 
S178 N115 N126 
S179 N116 N125 
S180 N117 N119 
S181 N117 N129 
S182 N118 N126 
S183 N119 N129 
S184 N120 N124 
S185 N120 N127 
S186 N121 N122 

S187 N121 N131 
S188 N121 N133 
S189 N122 N128 
S190 N123 N133 
S191 N124 N125 
S192 N124 N134 
S193 N125 N134 
S194 N126 N127 
S195 N127 N130 
S196 N128 N131 
S197 N128 N139 
S198 N129 N136 
S199 N130 N132 
S200 N130 N135 
S201 N131 N133 
S202 N132 N138 
S203 N132 N140 
S204 N134 N136 
S205 N135 N137 
S206 N135 N139 
S207 N136 N140 
S208 N137 N138 
S209 N137 N139 
S210 N138 N140 
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APPENDIX C 
Model and Data Files for Spare Capacity Allocation 

Model File (.mod):  

# p-cycle SCP IP Model for AMPL - Version 1.0 
# 11-December-2001 by John Doucette 
# Copyright (C) 2001 TRLabs, Inc. All Rights Reserved. 

# ******************************************************** 
# TRLabs 
# 7th Floor  
# 9107 116 Street NW 
# Edmonton, Alberta, Canada 
# T6G 2V4 
# +1 780 441-3800 
# www.trlabs.ca 
# ******************************************************** 

# This model, including any data and algorithms contained herein, is the 
# exclusive property of TRLabs, held on behalf of its sponsors. Except 
# as specifically authorized in writing by TRLabs, the recipient of this 
# model shall keep it confidential and shall protect it in whole or 
# in part from disclosure and dissemenation to all third parties, and the 
# associated readme file must accompany any such disclosure or dissemenation. 
# If any part of this model, including any data and algorithms contained 
# herein, is used in any derivative works or publications, TRLabs shall be 
# duly cited as a reference.Recommended citation is as follows:  
# J. Doucette, W. D. Grover, "pcycle.SCP.mod: p-Cycle SCP IP Model for  
# AMPL - Version 1.0," TRLabs proprietary AMPL ILP model, Edmonton, AB,  
# December 2001. 
# TRLabs makes no representation or warranties about the suitability of 
# this model, either express or implied, including but not limited to 
# implied warranties of merchantability, fitness for a particular purpose, 
# or non-infringement. TRLabs shall not be liable for any damages suffered 
# as a result of using, modifying or distributing this model or its derivatives. 
#**************************** 
# This is an AMPL model for determining the minimum-cost p-cycle network design.  
# This model optimizes p-cycles only... working capacity is provided as inputs. 
#**************************** 

#**************************** 
# SETS 
#**************************** 
set SPANS; 
# Set of all spans. 

set PCYCLES; 
# Set of all p-cycles. 

#**************************** 
# PARAMETERS 
#**************************** 
param Cost{j in SPANS}; 
# Cost of each unit of capacity on span j. 

param Work{j in SPANS}; 
# Number of working links placed on span j. 

param Xpi{p in PCYCLES, i in SPANS} default 0; 
# Number of paths a single copy of p-cycle p provides for restoration of failure of 
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# span i (2 if straddling span, 1 if on-cycle span, 0 otherwise). 

param pCrossesj{p in PCYCLES, j in SPANS} := sum{i in SPANS: i = j and Xpi[p,j] = 1} 
1; 
# Equal to 1 if p-cycle p passes over span j, 0 otherwise. 
# i.e. if Xpi[p,j] = 1, then p-cycle p crosses span j. 

#**************************** 
# VARIABLES 
#**************************** 
var p_cycle_usage{p in PCYCLES} >=0 integer, <=10000; 
# Number of copies of p-cycle p used. 

var spare{j in SPANS} >=0 integer, <=10000; 
# Number of spare links placed on span j. 

#**************************** 
# OBJECTIVE FUNCTION 
#**************************** 
minimize sparecost: sum{j in SPANS} Cost[j] * spare[j]; 

#**************************** 
# CONSTRAINTS 
#**************************** 
subject to full_restoration{i in SPANS}:  
Work[i] <= sum{p in PCYCLES} Xpi[p,i] * p_cycle_usage[p]; 

subject to spare_capacity_placement{j in SPANS}: 
spare[j] = sum{p in PCYCLES} pCrossesj[p,j] * p_cycle_usage[p]; 

Data File (.dat): p-cycles display only 10 out of 723 

set SPANS := 
S01 
S02 
S03 
S04 
S05 
S06 
S07 
S08 
S09 
S10 
S11 
S12 

S13 
S14 
S15 
S16 
S17 
S18 
S19 
S20 
S21 
S22 
S23 
S24 

S25 
S26 
S27 
S28 
S29 
S30 
S31 
S32 
S33 
S34 
S35 
S36 

S37 
S38 
S39 
S40 
S41 
S42 
S43 
S44 
S45 
; 

param Cost := 
S01 249.05 
S02 163.15 
S03 141.566 
S04 139.216 
S05 161.555 
S06 92.195 
S07 186.304 
S08 123.167 
S09 209.881 
S10 117.614 
S11 184.567 
S12 139.086 

S13 141.241 
S14 171.143 
S15 560.514 
S16 150.881 
S17 147.801 
S18 166.688 
S19 242.074 
S20 132.544 
S21 166.604 
S22 145.152 
S23 167.601 
S24 166.048 

S25 228.668 
S26 214.87 
S27 111.018 
S28 172.792 
S29 168.808 
S30 105.802 
S31 110.318 
S32 210.723 
S33 224.437 
S34 172.177 
S35 152.751 
S36 139.818 

S37 150.233 
S38 239.927 
S39 129.468 
S40 190.0 
S41 135.949 
S42 167.386 
S43 213.965 
S44 198.494 
S45 186.172 
; 

#Total Working Capacity Cost = 8993.000000 

param Work := 
S01 209 
S02 189 
S03 43 
S04 278 

S05 85 
S06 30 
S07 190 
S08 395 

S09 195 
S10 138 
S11 197 
S12 129 

S13 151 
S14 130 
S15 382 
S16 309 
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S17 397 
S18 450 
S19 317 
S20 42 
S21 112 
S22 342 
S23 343 
S24 384 

S25 148 
S26 237 
S27 169 
S28 157 
S29 128 
S30 120 
S31 119 
S32 88 

S33 268 
S34 251 
S35 134 
S36 188 
S37 79 
S38 81 
S39 290 
S40 210 

S41 91 
S42 105 
S43 173 
S44 265 
S45 255 
; 

set PCYCLES :=  
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 
P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 
P51 P52 P53 P54 P55 P56 P57 P58 P59 P60 P61 P62 P63 P64 P65 P66 P67 P68 P69 P70 P71 P72 P73 P74 
P75 P76 P77 P78 P79 P80 P81 P82 P83 P84 P85 P86 P87 P88 P89 P90 P91 P92 P93 P94 P95 P96 P97 P98 
P99 P100 P101 P102 P103 P104 P105 P106 P107 P108 P109 P110 P111 P112 P113 P114 P115 P116 P117 
P118 P119 P120 P121 P122 P123 P124 P125 P126 P127 P128 P129 P130 P131 P132 P133 P134 P135 P136 
P137 P138 P139 P140 P141 P142 P143 P144 P145 P146 P147 P148 P149 P150  P151 P152 P153 P154 P155 
P156 P157 P158 P159 P160 P161 P162 P163 P164 P165 P166 P167 P168 P169 P170 P171 P172 P173 P174 
P175 P176 P177 P178 P179 P180 P181 P182 P183 P184 P185 P186 P187 P188 P189 P190 P191 P192 P193 
P194 P195 P196 P197 P198 P199 P200 P201 P202 P203 P204 P205 P206 P207 P208 P209 P210 P211 P212 
P213 P214 P215 P216 P217 P218 P219 P220 P221 P222 P223 P224 P225 P226 P227 P228 P229 P230 P231 
P232 P233 P234 P235 P236 P237 P238 P239 P240 P241 P242 P243 P244 P245 P246 P247 P248 P249 P250 
P251 P252 P253 P254 P255 P256 P257 P258 P259 P260 P261 P262 P263 P264 P265 P266 P267 P268 P269 
P270 P271 P272 P273 P274 P275 P276 P277 P278 P279 P280 P281 P282 P283 P284 P285 P286 P287 P288 
P289 P290 P291 P292 P293 P294 P295 P296 P297 P298 P299 P300 P301 P302 P303 P304 P305 P306 P307 
P308 P309 P310 P311 P312 P313 P314 P315 P316 P317 P318 P319 P320 P321 P322 P323 P324 P325 P326 
P327 P328 P329 P330 P331 P332 P333 P334 P335 P336 P337 P338 P339 P340 P341 P342 P343 P344 P345 
P346 P347 P348 P349 P350 P351 P352 P353 P354 P355 P356 P357 P358 P359 P360 P361 P362 P363 P364 
P365 P366 P367 P368 P369 P370 P371 P372 P373 P374 P375 P376 P377 P378 P379 P380 P381 P382 P383 
P384 P385 P386 P387 P388 P389 P390 P391 P392 P393 P394 P395 P396 P397 P398 P399 P400 P401 P402 
P403 P404 P405 P406 P407 P408 P409 P410 P411 P412 P413 P414 P415 P416 P417 P418 P419 P420 P421 
P422 P423 P424 P425 P426 P427 P428 P429 P430 P431 P432 P433 P434 P435 P436 P437 P438 P439 P440 
P441 P442 P443 P444 P445 P446 P447 P448 P449 P450 P451 P452 P453 P454 P455 P456 P457 P458 P459 
P460 P461 P462 P463 P464 P465 P466 P467 P468 P469 P470 P471 P472 P473 P474 P475 P476 P477 P478 
P479 P480 P481 P482 P483 P484 P485 P486 P487 P488 P489 P490 P491 P492 P493 P494 P495 P496 P497 
P498 P499 P500 P501 P502 P503 P504 P505 P506 P507 P508 P509 P510 P511 P512 P513 P514 P515 P516 
P517 P518 P519 P520 P521 P522 P523 P524 P525 P526 P527 P528 P529 P530 P531 P532 P533 P534 P535 
P536 P537 P538 P539 P540 P541 P542 P543 P544 P545 P546 P547 P548 P549 P550 P551 P552 P553 P554 
P555 P556 P557 P558 P559 P560 P561 P562 P563 P564 P565 P566 P567 P568 P569 P570 P571 P572 P573 
P574 P575 P576 P577 P578 P579 P580 P581 P582 P583 P584 P585 P586 P587 P588 P589 P590 P591 P592 
P593 P594 P595 P596 P597 P598 P599 P600 P601 P602 P603 P604 P605 P606 P607 P608 P609 P610 P611 
P612 P613 P614 P615 P616 P617 P618 P619 P620 P621 P622 P623 P624 P625 P626 P627 P628 P629 P630 
P631 P632 P633 P634 P635 P636 P637 P638 P639 P640 P641 P642 P643 P644 P645 P646 P647 P648 P649 
P650 P651 P652 P653 P654 P655 P656 P657 P658 P659 P660 P661 P662 P663 P664 P665 P666 P667 P668 
P669 P670 P671 P672 P673 P674 P675 P676 P677 P678 P679 P680 P681 P682 P683 P684 P685 P686 P687 
P688 P689 P690 P691 P692 P693 P694 P695 P696 P697 P698 P699 P700 P701 P702 P703 P704 P705 P706 
P707 P708 P709 P710 P711 P712 P713 P714 P715 P716 P717 P718 P719 P720 P721 P722 P723; 

param Xpi := 
[P1, *] S02 1 S03 1 S07 1 S12 1 S13 1 S06 2 
[P2, *] S29 1 S30 1 S32 1 S33 1 S38 1 S43 1 S37 2 
[P3, *] S01 1 S02 1 S05 1 S06 1 S10 1 S12 1 S03 2 
[P4, *] S35 1 S36 1 S39 1 S40 1 S42 1 S44 1 S41 2 
[P5, *] S01 1 S03 1 S04 1 S09 1 S10 1 S11 1 S05 2 
[P6, *] S14 1 S15 1 S21 1 S27 1 S28 1 S35 1 S20 2 
[P7, *] S08 1 S09 1 S14 1 S16 1 S19 1 S20 1 S27 1 S21 2 1 
[P8, *] S25 1 S26 1 S30 1 S31 1 S32 1 S33 1 S37 1 S29 
[P9, *] S22 1 S23 1 S24 1 S26 1 S29 1 S30 1 S31 1 S25 
[P10, *] S31 1 S32 1 S34 1 S37 1 S42 1 S43 1 S45 1 S38 2 
… 
[P722, *] S31 1 S32 1 S34 1 S38 1 S42 1 S45 1; 
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APPENDIX D.1 
Python Model for DDCD 

################################################################################## 
# This code enumerate pcycles using DDCD method (Disjoit-paths Dijkstra Cycle Development)  
# Most recently revised on Oct 12, 2020  
################################################################################## 

import random 
import copy 
import operator 
import math 
import datetime 
import time 
import sys 
from collections import deque, defaultdict 
from itertools import groupby 
from Dijkstra_CIDA import * 
    #To get shortest path: shortest_path(graph, 'A', 'D')  

################################################################################### 
# Input parameters to be entered in the cmd line 
input_topo_name = ='30n45s' 
ddcd_iteration_num = 4 
output_file_name = "30n45s_DDD3" 
################################################################################### 

start = time.time() 

### Graph Initiation 
graph = Graph() 

# Caulcate euc distance given two nodes 
def euc_distance(x, y): 
   dist = math.sqrt((y[1]-x[1])**2 + (y[0]-x[0])**2) 
   final_val = '%.3f' % dist 
   return final_val 

nodes = {} # all nodes with X, Y coordinates 
with open(input_topo_name + '.node', 'r') as f:  
    for line in f.readlines(): 
        comp = line.strip().split() 
        assert len(comp) == 4 
        nodes[comp[0]] = [float(comp[1]), float(comp[2])] 

for node in nodes.keys(): 
    graph.add_node(node) 

span_node = {} # span id : both end nodes 
node_span = {} # both end nodes : span id 
span_wt = {} # span id: value: cost 
with open(input_topo_name + '.spans', 'r') as f:  
    for line in f.readlines(): 
        comp = line.strip().split() 
        assert len(comp) == 8 
        # When span costs are 1: 
        # dist = 1 
         
        # When span costs are their euc distances: 
        dist = euc_distance(nodes[comp[1]], nodes[comp[2]]) 
        graph.add_edge(comp[1], comp[2], float(dist)) 
         
        span_node[comp[0]] = [comp[1], comp[2]] 
        node_span[comp[1] + " , " + comp[2]] = comp[0] 
        node_span[comp[2] + " , " + comp[1]] = comp[0] 
        span_wt[comp[0]] = float(dist) 
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### Enumerating set of pcycles/simple cycles 
    # Generate shortest path and associated pcycles using Dijkstra's Algorithm 
    # sindexer = {} # span id to pcycle id 
def Enumerate_Start_Cycles(nodes, span_node, node_span): 
    pcycles = {} 
    new_id = 0 
    for sid, spanner in span_node.items(): 
        N1 = spanner[0] 
        N2 = spanner[1] 
        cost_shortest, path_shortest, cost_shortest2, path_shortest2 = double_shortestPath(graph, 
N1, N2) 
        if cost_shortest == sys.maxsize: 
            continue 
        cycle_span_info = {} 
        for node_start, node_end in zip(path_shortest[:-1], path_shortest[1:]): 
            span_ider = node_span[node_start + " , " + node_end] 
            cycle_span_info[span_ider] = 1 
        cycle_span_info[sid] = 1 
        cycle_id = "Cycle " + str(new_id) # new cycle id given 
        # sindexer[sid] = cycle_id 
        pcycles[cycle_id] = cycle_span_info 
        new_id += 1 

        if cost_shortest2 == sys.maxsize: 
            continue 
        cycle_span_info2 = {} 
        for node_start2, node_end2 in zip(path_shortest2[:-1], path_shortest2[1:]): 
            span_ider2 = node_span[node_start2 + " , " + node_end2] 
            cycle_span_info2[span_ider2] = 1 
        pcycle_info = {**cycle_span_info, **cycle_span_info2} 
        pcycle_info[sid] = 2 
        pcycle_id = "PCycle " + str(new_id) # new pcycle id given 
        # sindexer[sid] = pcycle_id 
        pcycles[pcycle_id] = pcycle_info 
        new_id += 1 
    return pcycles 

# Stronger grow function where more shortest paths are found from span i 
def DDCD(input_cycle_set, graph, new_id2): 
    # new_id2 = 0 
    new_cycle_set = {} 
    for sp in input_cycle_set.values(): 
        sp_p = sp 
        remove_nodes = [] 
        for i in sp_p.keys(): 
            remove_nodes.append(span_node[i][0]) 
            remove_nodes.append(span_node[i][1]) 
        for ii, val in sp_p.items(): 
            if val == 2: 
                continue 
            remove_node_set = set(remove_nodes) 
            Nor = span_node[ii][0] 
            Ndt = span_node[ii][1] 
            remove_node_set -= {Nor} 
            remove_node_set -= {Ndt} 
            remove_node_list = list(remove_node_set) 
             
            if (Nor, Ndt) in graph.distances: 
                graph.distances[(Nor, Ndt)] = sys.maxsize 
                graph.distances[(Ndt, Nor)] = sys.maxsize 
            else: 
                raise ValueError("Not possible") 

            while remove_node_list: 
                visited2, paths2 = dijkstra_2(graph, Nor, remove_node_list) 
                if not paths2 or visited2[Ndt] == sys.maxsize: 
                    break 
                full_path2 = deque() 
                _destination2 = paths2[Ndt] 

                while _destination2 != Nor: 
                    full_path2.appendleft(_destination2) 
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                    _destination2 = paths2[_destination2] 
                 
                remove_node_list.extend(full_path2) 
                remove_node_list = list(set(remove_node_list)) 
                full_path2.appendleft(Nor) 
                full_path2.append(Ndt) 
                shortPath2 = list(full_path2) 

                cycle_span2 = {} 
                for node_st2, node_ed2 in zip(shortPath2[:-1], shortPath2[1:]): 
                    sp_ider2 = node_span[node_st2 + " , " + node_ed2] 
                    cycle_span2[sp_ider2] = 1 
                pcycle_inf = {**sp_p, **cycle_span2} 
                pcycle_inf[ii] = 2 
                pcyc_id = "PCycleGr " + str(new_id2) # new pcycle id given 
                # sindexer[sid] = pcycle_id 
                new_cycle_set[pcyc_id] = pcycle_inf 
                new_id2 += 1 

            if (Nor, Ndt) in graph.distances: 
                graph.distances[(Nor, Ndt)] = 1 
                graph.distances[(Ndt, Nor)] = 1 
            else: 
                raise ValueError("Not possible") 
    return new_cycle_set 
   
# Adding all straddling links info to all the enumerated cycles 
def Straddle_Link(cycles_set_update): 
    updated_cycle_set = cycles_set_update 
    for cycle_key, sp_info in updated_cycle_set.items(): 
        all_nodes_on_this_cycle = [] 
        for ss, jj in sp_info.items(): 
            if jj == 1: 
                node1_for_ss = span_node[ss][0] 
                node2_for_ss = span_node[ss][1] 
                all_nodes_on_this_cycle.append(node1_for_ss) 
                all_nodes_on_this_cycle.append(node2_for_ss) 
        nodeset = set(all_nodes_on_this_cycle) 
        nodes_on_this_cycle = list(nodeset) 

        for nn, dd in node_span.items(): 
            nn_nodes = nn.split(' , ') 
            if nn_nodes[0] in nodes_on_this_cycle and nn_nodes[1] in nodes_on_this_cycle and dd 
not in sp_info: 
                sp_info[dd] = 2 
                updated_cycle_set[cycle_key] = sp_info 

    return updated_cycle_set     

# Remove redundant pCycles from a collection of enumerated pcycles 
def Remove_Redundancy_NEW(pcycles): 
    # all_cycles_list_key = list(pcycles.keys()) 
    # all_cycles_list = list(pcycles.values()) 
    final_res = {} 
    pcycle_cost_sum = defaultdict(int) #key: pcycle's key; value: cost 
     
    for pkey, val in pcycles.items(): 
        for span_id, val_val in val.items(): 
            if val_val == 1: 
                pcycle_cost_sum[pkey] += int(span_wt[span_id]) 
     
    keyfunc = lambda item: item[1] 
    for k_len, same_pkey_group in groupby(sorted(pcycle_cost_sum.items(), key=keyfunc), keyfunc): 
        lister = list(same_pkey_group) 
        #print(lister) 
        for ii, same_pkey1 in enumerate(lister): 
            flag_dup = False 
            item1 = set(spanid for spanid, ii in pcycles[same_pkey1[0]].items() if ii == 1) 
            for same_pkey2 in lister[ii+1:]:         
                item2 = set(spanid for spanid, ii in pcycles[same_pkey2[0]].items() if ii == 1) 
                if item1 == item2: 
                    flag_dup = True 
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                    break 
            if not flag_dup: 
                final_res[same_pkey1[0]] = pcycles[same_pkey1[0]] 
    return final_res 

### Main Function:  

now = datetime.datetime.now() 
print(now) 

pcycles = Enumerate_Start_Cycles(nodes, span_node, node_span) 
prev_limit = 0 
# ccc = 0 
for ind in range(ddcd_iteration_num): 
    cy_id1 = 0 
    pcycles_from_Grow = DDCD(pcycles, graph, cy_id1) 
    pcycles_set = {**pcycles_from_Grow, **pcycles} 
    cy_id1 = cy_id1 + 1000000 
    # Check and remove redundant cycles in the cycle set 
    pcycles = Remove_Redundancy_NEW(pcycles_set) 
    if len(pcycles) == prev_limit: 
        print(f'No More New Cycles. Exit! at Iteration: {ind} | {len(pcycles)}') 
        break 
     
    prev_limit = len(pcycles) 
# Complete straddling link information on all pCycles 
updated_cycle_set = Straddle_Link(pcycles) 

### Verify all enumerated pCycles 
# pCycle_Verify(updated_cycle_set, span_node, node_span) 

### Verify and remove duplicate cycles 
updated_cycle_set = Remove_Redundancy_NEW(updated_cycle_set) 

the_end = time.time() 
print('Total Runtime = ' + str(the_end - start)) 

### Print to .pcycle file 
text_file = open(str(output_file_name) + '.pcycle', 'w') 
for key, value in updated_cycle_set.items(): 
    text_file.write(key + ": ") 
    for kk, tt in value.items(): 
        text_file.write(kk + " " + str(tt) + " ") 
    text_file.write("\n") 
text_file.close() 

### Write a .eucost file to save all euclidean distances as span costs 
txt_file = open(str(output_file_name) + '.eucost', 'w') 
for kk, val in span_wt.items(): 
    txt_file.write(kk + "\t" + str(val)) 
    txt_file.write("\n") 
txt_file.close() 

Dijkstra_CIDA.py (this is used in both DDCD & GA-SCA .py models) 

from collections import defaultdict, deque 
import sys 
import copy 

class Graph(object): 
    def __init__(self): 
        self.nodes = set() 
        self.edges = defaultdict(list) 
        self.distances = {} 

    def add_node(self, value): 
        self.nodes.add(value) 
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    def add_edge(self, from_node, to_node, distance): 
        self.edges[from_node].append(to_node) 
        self.edges[to_node].append(from_node) 
        self.distances[(from_node, to_node)] = distance 
        self.distances[(to_node, from_node)] = distance 

def dijkstra(graph, initial): 
    visited = {initial: 0} 
    path = {} 

    nodes = set(graph.nodes) 

    while nodes: 
        min_node = None 
        for node in nodes: 
            if node in visited: 
                if min_node is None: 
                    min_node = node 
                elif visited[node] < visited[min_node]: 
                    min_node = node 
        if min_node is None: 
            break 

        nodes.remove(min_node) 
        current_weight = visited[min_node] 

        for edge in graph.edges[min_node]: 
            try: 
                weight = current_weight + graph.distances[(min_node, edge)] 
            except: 
                raise ValueError("Sum error!") 
            if edge not in visited or weight < visited[edge]: 
                visited[edge] = weight 
                path[edge] = min_node 

    return visited, path 

def dijkstra_2(graph, initial, remove_nodes): 
    visited = {initial: 0} 
    path = {} 

    nodes = set(graph.nodes) 
    for node_rm in remove_nodes: 
        nodes.remove(node_rm) 

    while nodes: 
        min_node = None 
        for node in nodes: 
            if node in visited: 
                if min_node is None: 
                    min_node = node 
                elif visited[node] < visited[min_node]: 
                    min_node = node 
        if min_node is None: 
            break 

        nodes.remove(min_node) 
        current_weight = visited[min_node] 

        for edge in graph.edges[min_node]: 
            if edge in remove_nodes: 
                continue 
            try: 
                weight = current_weight + graph.distances[(min_node, edge)] 
            except: 
                raise ValueError("Sum error!") 
            if edge not in visited or weight < visited[edge]: 
                visited[edge] = weight 
                path[edge] = min_node 

    return visited, path 
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def shortest_path(graph, origin, destination): 
    if (origin, destination) in graph.distances: 
        graph.distances[(origin, destination)] = sys.maxsize 
        graph.distances[(destination, origin)] = sys.maxsize 
    else: 
        raise ValueError("Not possible") 
     
    visited, paths = dijkstra(graph, origin) 
    full_path = deque() 
    _destination = paths[destination] 

    while _destination != origin: 
        full_path.appendleft(_destination) 
        _destination = paths[_destination] 

    full_path.appendleft(origin) 
    full_path.append(destination) 

    if (origin, destination) in graph.distances: 
        graph.distances[(origin, destination)] = 1 
        graph.distances[(destination, origin)] = 1 
    else: 
        raise ValueError("Not possible") 
     
    return visited[destination], list(full_path) 

def double_shortestPath(graph, origin, destination): 
    if (origin, destination) in graph.distances: 
        graph.distances[(origin, destination)] = sys.maxsize 
        graph.distances[(destination, origin)] = sys.maxsize 
    else: 
        raise ValueError("Not possible") 
     
    visited, paths = dijkstra(graph, origin) 
    full_path = deque() 
    _destination = paths[destination] 

    while _destination != origin: 
        full_path.appendleft(_destination) 
        _destination = paths[_destination] 

    full_path.appendleft(origin) 
    full_path.append(destination) 

    remove_nodes = list(full_path)[1:-1] 
     
    visited2, paths2 = dijkstra_2(graph, origin, remove_nodes) 
    full_path2 = deque() 
    _destination2 = paths2[destination] 

    while _destination2 != origin: 
        full_path2.appendleft(_destination2) 
        _destination2 = paths2[_destination2] 

    full_path2.appendleft(origin) 
    full_path2.append(destination) 

    if (origin, destination) in graph.distances: 
        graph.distances[(origin, destination)] = 1 
        graph.distances[(destination, origin)] = 1 
    else: 
        raise ValueError("Not possible") 

    return visited[destination], list(full_path), visited2[destination], list(full_path2) 
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APPENDIX D.2 
Python Model for GA-SCA 

import random 
import time 
import copy 
import operator 
import math 
import datetime 
import sys 
from Dijkstra_CIDA import * 
import cProfile 

# Input parameters to be entered in the cmd line 
topo_name = '30n45s'     
pcycle_file = '30n45s_DDD.pcycle'      
Selection_Method = 'select_tournament'   
Crossover_Type = 'two_point'   
Mutation_Type = 'mutate1'   
input_pop = 50     
input_cr = 0.35     
input_mr = 0.2   
output_pcycle = 'Test30n45s.pcycle' 

# Graph Initiation 
graph = Graph() 

# global mutation ID 
new_id_mut = 0 

# Caulcate euc distance given two nodes 
def euc_distance(x, y): 
   dist = math.sqrt((y[1]-x[1])**2 + (y[0]-x[0])**2) 
   return dist 

# All node information 
nodes = {} 
with open(topo_name + '.node', 'r') as f:  
    for line in f.readlines(): 
        comp = line.strip().split() 
        assert len(comp) == 4 
        nodes[comp[0]] = [float(comp[1]), float(comp[2])] 
for node in nodes.keys(): 
    graph.add_node(node) 

# All span-node correlations 
span_node = {}  
node_span = {} 
span_dist = {} 
with open(topo_name + '.spans', 'r') as f:  
    for line in f.readlines(): 
        comp = line.strip().split() 
        assert len(comp) == 8 
        # When span costs are their euc distances: 
        dist = euc_distance(nodes[comp[1]], nodes[comp[2]]) 
        span_dist[comp[0]] = float(format(dist, '.3f')) 
        graph.add_edge(comp[1], comp[2], float(format(dist, '.3f'))) # comp[1] = origin, comp[2] 
= destination, float(dist) = span weight or cost 
        span_node[comp[0]] = [comp[1], comp[2]] 
        node_span[comp[1] + " , " + comp[2]] = comp[0] 
        node_span[comp[2] + " , " + comp[1]] = comp[0] 

# Open SOL file with detailed span information 
span_ft = {} 
with open(topo_name + '.eucspanft', 'r') as f:  
    for line in f.readlines(): 
        comp = line.split() 
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        assert len(comp) == 4 
        # span_ft[comp[0]] = [float(comp[1]), float(comp[2])] 
        span_ft[comp[0]] = [float(span_dist[comp[0]]), float(comp[2])] 
spans = span_ft 

# Open p-cycles file generated from SOL file 
pcycles = {} 
n = 0 
with open(pcycle_file, 'r') as f:  
    for _line in f.readlines(): 
        item = _line.split(':') 
        assert len(item) == 2 
        cycle_span_info = {} 
        span_info = item[1].split() 
        assert len(span_info) % 2 == 0 
        for n in range(len(span_info)): 
            if n % 2 == 0: 
                cycle_span_info[span_info[n]] = int(span_info[n+1]) 
        pcycles[item[0]] = cycle_span_info 

def calculate_ew(spans, cycle_value): 
    # return a ew value given a pcycle  
    # calcuate (wi * xpi)/cost  
    ew1 = 0 
    ew2 = 0 
    for _k, _v in cycle_value.items(): 
        wi = spans[_k][1] 
        spi = _v 
        ew1 = ew1 + wi * spi 
        if _v == 1: 
            ew2 = ew2 + spans[_k][0] 
    ew = ew1/ew2 
    return ew 

def index_sspans_from_pcycles(spans, pcycles): 
    span_pcycle_indexer = {} 
    # Step 1 Calculate ew score for each pcycle 
    pcycle_ew_dict = {} 
    for p_id, p_val in pcycles.items(): 
        pcycle_ew_dict[p_id] = calculate_ew(spans, p_val)     
    # Step 2 Get span_id's pcycle list 
    for span_id in spans.keys(): 
        for key, value in pcycles.items(): 
            if span_id in value: 
                if span_id not in span_pcycle_indexer: 
                    span_pcycle_indexer[span_id] = [(key, pcycle_ew_dict[key])] 
                else: 
                    span_pcycle_indexer[span_id].append((key, pcycle_ew_dict[key]))     
    # Step 3 Sort pcycle list for each span 
    for span_id in span_pcycle_indexer.keys(): 
        # e is a tuple: (key, pcycle_ew_dict[key]) 
        span_pcycle_indexer[span_id] = sorted(span_pcycle_indexer[span_id], key=lambda e: e[1], 
reverse=True) 
    return span_pcycle_indexer, pcycle_ew_dict 
span_pcycle_indexer, pcycle_ew_dict = index_spans_from_pcycles(spans, pcycles) 

def index_straddle_from_pcycles(spans, pcycles): 
    straddle_pcycle_indexer = {} 
    # Step 1 Calculate ew score for each pcycle 
    pcycle_ew_dict = {} 
    for p_id, p_val in pcycles.items(): 
        pcycle_ew_dict[p_id] = calculate_ew(spans, p_val)     
    # Step 2 Get span_id's pcycle list 
    for span_id in spans.keys(): 
        for key, value in pcycles.items(): 
            if span_id in value and value[span_id] == 2: 
                if span_id not in straddle_pcycle_indexer: 
                    straddle_pcycle_indexer[span_id] = [(key, pcycle_ew_dict[key])] 
                else: 
                    straddle_pcycle_indexer[span_id].append((key, pcycle_ew_dict[key]))    
    # Step 3 Sort pcycle list for each span 
    for span_id in straddle_pcycle_indexer.keys(): 

 186



        straddle_pcycle_indexer[span_id] = sorted(straddle_pcycle_indexer[span_id], key=lambda e: 
e[1], reverse=True) 
    return straddle_pcycle_indexer, pcycle_ew_dict 
straddle_pcycle_indexer, pcycle_ew2_dict = index_straddle_from_pcycles(spans, pcycles) 

def calculate_p_cost(spans, pcycles): 
    pcycle_costs = {} 
    for k,v in pcycles.items(): 
        pcycle_cost = 0 
        for kkk,vvv in v.items(): 
            if vvv == 1: 
                _cost = int(spans[kkk][0]) 
                pcycle_cost = pcycle_cost + _cost 
        pcycle_costs[k] = pcycle_cost 
    return pcycle_costs 
pcycle_costs_global = calculate_p_cost(spans, pcycles) 

## Methods for Repair Genome: ## 
# Minimum cycles for Repair Genome 
def Min_Cycle_Repair(spans, pcycles, span_node, node_span): 
    cycle_usage = {} 
    new_id2 = 0 
    for span_id in spans.keys(): 
        while spans[span_id][1] > 0: 
            best_cycle_id = None 
            N0 = span_node[span_id][0] 
            N1 = span_node[span_id][1] 
            cost_shortest1, path_shortest1 = shortest_path(graph, N0, N1) 
            if cost_shortest1 == sys.maxsize: 
                raise ValueError('Impossible, No shortest path found!') 
            cycle_span_info = {} 
            for node_start1, node_end1 in zip(path_shortest1[:-1], path_shortest1[1:]): 
                span_ider1 = node_span[node_start1 + " , " + node_end1] 
                cycle_span_info[span_ider1] = 1 
            cycle_span_info[span_id] = 1 

            ## Straddle checker : path=2 
            all_nodes_on_this_cycle = [] 
            for ss, jj in cycle_span_info.items(): 
                if jj == 1: 
                    node1_for_ss = span_node[ss][0] 
                    node2_for_ss = span_node[ss][1] 
                    all_nodes_on_this_cycle.append(node1_for_ss) 
                    all_nodes_on_this_cycle.append(node2_for_ss) 
            nodeset = set(all_nodes_on_this_cycle) 
            nodes_on_this_cycle = list(nodeset) 

            for nn, dd in node_span.items(): 
                nn_nodes = nn.split(' , ') 
                if nn_nodes[0] in nodes_on_this_cycle and nn_nodes[1] in nodes_on_this_cycle and 
dd not in cycle_span_info: 
                    cycle_span_info[dd] = 2 

            ## Check if cycle_Span_info is a duplicate of a cycle in pcycles 
            flagger = False 
            for key, val in pcycles.items(): 
                if cycle_span_info == val: 
                    if key not in cycle_usage: 
                        cycle_usage[key] = 1 
                    else: 
                        cycle_usage[key] = cycle_usage[key] + 1 
                    flagger = True 
                    break                         
            if not flagger: 
                new_id2 = new_id2 + 1 
                best_cycle_id = "Rcyc " + str(new_id2) # new pcycle id given 
                cycle_usage[best_cycle_id] = 1 
                pcycles[best_cycle_id] = cycle_span_info 
             
            for key, value in cycle_span_info.items(): 
                if value == 1: 
                    spans[key][1] = spans[key][1] - 1 
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                    if spans[key][1] < 0: 
                        spans[key][1] = 0 
            for key, value in cycle_span_info.items(): 
                if value == 2: 
                    spans[key][1] = spans[key][1] - 2 
                    if spans[key][1] < 0: 
                        spans[key][1] = 0 
    return cycle_usage, pcycles 

# Max_Overlap for Repair Genome 
def Max_Overlap_Cost(spans, pcycles): 
    cycle_usage = {} 
    # counter to collect pid 
    while True: 
        pcycle_hit = {} 
        max_pid_cc = 0 
        max_pid = "-1" 
        min_cost_pcycle = sys.maxsize 

        for span_id in spans.keys(): 
            if spans[span_id][1] > 0: 
                straddle_flag = False 
                if span_id in straddle_pcycle_indexer: 
                    pcycle_list_with_this_spanid = straddle_pcycle_indexer[span_id] 
                    straddle_flag = True 
                else: 
                    pcycle_list_with_this_spanid = span_pcycle_indexer[span_id] 

                for pid, _ in pcycle_list_with_this_spanid: 
                    if pid not in pcycle_hit and straddle_flag: 
                        pcycle_hit[pid] = [pid, 1, 0] 
                    elif pid not in pcycle_hit and not straddle_flag: 
                        pcycle_hit[pid] = [pid, 0, 1] 
                    elif pid in pcycle_hit and straddle_flag: 
                        pcycle_hit[pid][1] += 1 
                    else: 
                        pcycle_hit[pid][2] += 1 

                    if pcycle_hit[pid][1] > max_pid_cc: 
                        max_pid_cc = pcycle_hit[pid][1] 
                        min_cost_pcycle = pcycle_costs_global[pid] 
                        max_pid = pid 
                    elif pcycle_hit[pid][1] == max_pid_cc: 
                        if pcycle_costs_global[pid] < min_cost_pcycle: 
                            max_pid_cc = pcycle_hit[pid][1] 
                            min_cost_pcycle = pcycle_costs_global[pid] 
                            max_pid = pid         
        if max_pid == "-1": 
            break 
         
        best_cycle_id = max_pid # deterministic 
        
        if best_cycle_id not in cycle_usage: 
            cycle_usage[best_cycle_id] = 1 
        else: 
            cycle_usage[best_cycle_id] = cycle_usage[best_cycle_id] + 1 
         
        for key, value in pcycles[best_cycle_id].items(): 
            if value == 1: 
                spans[key][1] = spans[key][1] - 1 
                if spans[key][1] < 0: 
                    spans[key][1] = 0 
            elif value == 2: 
                spans[key][1] = spans[key][1] - 2 
                if spans[key][1] < 0: 
                    spans[key][1] = 0 
     
    return cycle_usage, pcycles 

## Methods for generating initial population: # 
# Picking a random cycle 
def pick_random_cycle(pcycles): 
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    cycle_keys = list(pcycles.keys()) 
    cycle_picked = random.choices(population=cycle_keys, weights=None, k=1) 
    return cycle_picked[0] 

# 1. Non-deterministic CIDA: random picks by probs 

# Pick a Cycle from a pool 
def pick_cycle_by_probs(spans, pcycles): 
    pool = {} 
    for cycle_key, cycle_value in pcycles.items(): 
        ew = calculate_ew(spans, cycle_value) 
        pool[cycle_key] = ew 
    sorted_pool = sorted(pool.items(), key=lambda x: x[1], reverse=True) 
    top_ew_scores = [] 
    top_cycle_keys = [] 
    # initial value 
    importance_score = 10000 
    for key, _ in sorted_pool: 
        top_ew_scores.append(importance_score) 
        top_cycle_keys.append(key) 
        # discount weighting 
        importance_score = importance_score / 2 
    total_sum = sum(top_ew_scores) 
    normalized_probs = [float(item / total_sum) for item in top_ew_scores] 
    res = random.choices(population=top_cycle_keys, weights=normalized_probs, k=1) 
    return res[0] 

def CIDA_pick_by_probs(spans, pcycles): 
    cycle_usage = {}  
    for span_id in spans.keys(): 
        while spans[span_id][1] > 0: 
            best_cycle_id = None 
            # Random Select Best Cycle By Probs 
            best_cycle_id = pick_cycle_by_probs(spans, pcycles) 
            if best_cycle_id not in cycle_usage: 
                cycle_usage[best_cycle_id] = 1 
            else: 
                cycle_usage[best_cycle_id] = cycle_usage[best_cycle_id] + 1 
            for key, value in pcycles[best_cycle_id].items(): 
                if value == 1: 
                    spans[key][1] = spans[key][1] - 1 
                    if spans[key][1] < 0: 
                        spans[key][1] = 0 
            for key, value in pcycles[best_cycle_id].items(): 
                if value == 2: 
                    spans[key][1] = spans[key][1] - 2 
                    if spans[key][1] < 0: 
                        spans[key][1] = 0 
    return cycle_usage 

##Generate Initial Population ## 
# Deterministic: 
    # init_pop_member = CIDA(spans, pcycles) 
# Non-Deterministic - Random pick by probability: 
    # init_pop_member = CIDA_pick_by_probs(spans, pcycles) 

# Generate initial population: a list of dictionaries 
    # each dictionary is an individual (key:value = pcycle_id : pcycle_num_usage) that provides 
full pcycle protection to the network 
def initial_population(popSize, pcycles): 
    init_population = [] 
    for _ in range(popSize): 
        spans_copy = copy.deepcopy(spans) 
        init_pop_member = CIDA_pick_by_probs(spans_copy, pcycles) 
        if init_pop_member not in init_population: 
            init_population.append(init_pop_member) 
    return init_population 

### START OF GENETIC ALGORITHM ### 
start = time.time() 
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## FITNESS FUNCTION: 
    # [minimum] cost of each individual (init_pop_member) 
def calculate_fitness_cost(pcycle_costs, individual): 
    ind_cost = 0 
    for p_key, _usage in individual.items(): 
        cost_p = pcycle_costs[p_key] 
        ind_cost += cost_p * _usage 
    return ind_cost 

def rankCost(pcycle_costs, population): 
    fitness_results = {} 
    for i in range(0, len(population)): 
        fitness_results[i] = int(calculate_fitness_cost(pcycle_costs, population[i])) 
    rank_pop = sorted(fitness_results.items(), key = operator.itemgetter(1)) 
    ranked_pop = [population[item[0]] for item in rank_pop] 
    ranked_cost = [item[1] for item in rank_pop] 
    return ranked_pop, ranked_cost 

## SELECTION METHODS:  
def select_roulette(ranked_pop, pcycle_costs): 
    cost_scores = [] 
    score_factor = 1200 # not very necessary but does not affect results 
    for ccc in ranked_pop: 
        cycle_cost = calculate_fitness_cost(pcycle_costs, ccc) 
        cycle_score = (score_factor/cycle_cost)**2 
        cost_scores.append(cycle_score) 
    total_sum = sum(cost_scores) 
    normalized_probs = [float(item / total_sum) for item in cost_scores] 
    select_parent = random.choices(population=ranked_pop, weights=normalized_probs, k=1) 
    return select_parent[0] 

def select_tournament(ranked_pop, pcycle_costs): 
    select_ind = random.choices(population=ranked_pop, weights=None, k=10) 
    ranked_ind, _ = rankCost(pcycle_costs, select_ind) 
    selected_parent = ranked_ind[0] 
    return selected_parent 

def select_tournament_adp(ranked_pop, pcycle_costs, popSize): 
    select_ind = random.choices(population=ranked_pop, weights=None, k=int(popSize*0.05)) 
    ranked_ind, _ = rankCost(pcycle_costs, select_ind) 
    selected_parent = ranked_ind[0] 
    return selected_parent 

def select_random(ranked_pop): 
    random_index = random.randint(0,len(ranked_pop)-1) 
    random_parent = ranked_pop[random_index] 
    return random_parent 

# REPAIR MECHANISM:  
def repair_genome_cross(child_genome, spans, pcycles): 
    unprotected_span = {} 
    protected_spans = {} 
    for k, usage in child_genome.items(): 
        for _k in pcycles[k].keys(): 
            if _k not in protected_spans: 
                if pcycles[k][_k] == 1: 
                    protected_spans[_k] = usage 
                else: 
                    protected_spans[_k] = 2*usage 
            else: 
                if pcycles[k][_k] == 1: 
                    protected_spans[_k] += usage 
                else: 
                    protected_spans[_k] += 2*usage 
    for span in spans.keys(): 
        if span not in protected_spans.keys(): 
            unprotected_span[span] = int(spans[span][1]) 
        else: 
            if spans[span][1] > protected_spans[span]: 
                unprotected_span[span] = int(spans[span][1]) - int(protected_spans[span])    
    spans_merge = {} 
    for kkey, vval in unprotected_span.items(): 
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        spans_merge[kkey] = [spans[kkey][0], vval] 
    for kkey, vval in spans.items(): 
        if kkey not in spans_merge: 
            spans_merge[kkey] = [spans[kkey][0], 0] 

    ## 3. Repair by Max_Match for cross-over operator: 
    compensation_cycle, _ = Max_Overlap_Cost(spans_merge, pcycles) 
    repaired_child = { k: child_genome.get(k, 0) + compensation_cycle.get(k, 0) for k in 
set(child_genome) | set(compensation_cycle) } 
    return repaired_child 

def repair_genome_mut(child_genome, spans, pcycles): 
    unprotected_span = {} 
    protected_spans = {} 
    new_pcycle_set = {} 
    new_pcycle_costs_set = {} 
    for k, usage in child_genome.items(): 
        for _k in pcycles[k].keys(): 
            if _k not in protected_spans: 
                if pcycles[k][_k] == 1: 
                    protected_spans[_k] = usage 
                else: 
                    protected_spans[_k] = 2*usage 
            else: 
                if pcycles[k][_k] == 1: 
                    protected_spans[_k] += usage 
                else: 
                    protected_spans[_k] += 2*usage 
    for span in spans.keys(): 
        if span not in protected_spans.keys(): 
            unprotected_span[span] = int(spans[span][1]) 
        else: 
            if spans[span][1] > protected_spans[span]: 
                unprotected_span[span] = int(spans[span][1]) - int(protected_spans[span])    
    spans_merge = {} 
    for kkey, vval in unprotected_span.items(): 
        spans_merge[kkey] = [spans[kkey][0], vval] 
    for kkey, vval in spans.items(): 
        if kkey not in spans_merge: 
            spans_merge[kkey] = [spans[kkey][0], 0] 
    
    ## 2. Repair by Min_cycle: 
    compensation_cycle, new_pcycle = Min_Cycle_Repair(spans_merge, pcycles, span_node, node_span) 
    ## 3. Repair by Max_Match: 
    #compensation_cycle, new_pcycle = Max_Overlap_Cost(spans_merge, pcycles) 
    repaired_child = { k: child_genome.get(k, 0) + compensation_cycle.get(k, 0) for k in 
set(child_genome) | set(compensation_cycle) } 
    new_pcycle_set = {**new_pcycle_set, **new_pcycle} # useless for repair method 3 
    new_pcycle_cost_dict = calculate_p_cost(spans, new_pcycle_set) # useless for repair method 3 
    new_pcycle_costs_set = {**new_pcycle_costs_set, **new_pcycle_cost_dict} # useless for repair 
method 3 
    return repaired_child, new_pcycle_set, new_pcycle_costs_set 

## CROSSOVER FUNCTIONS:  
# Crossover 1: Two-point crossover 
def two_point(parent1, parent2, pcycle_set): 
    childP1 = {} 
    childP2 = {} 
    childP3 = {} 
    childP4 = {} 
    geneA1 = int(random.random() * len(parent1.items())) 
    geneB1 = int(random.random() * len(parent1.items())) 
    geneA2 = int(random.random() * len(parent2.items())) 
    geneB2 = int(random.random() * len(parent2.items())) 
    startGene1 = min(geneA1, geneB1) 
    endGene1 = max(geneA1, geneB1) 
    startGene2 = min(geneA2, geneB2) 
    endGene2 = max(geneA2, geneB2) 

    p1_list = [] 
    for key, value in parent1.items(): 
        temp = [key,value] 
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        p1_list.append(temp) 

    p2_list = [] 
    for key, value in parent2.items(): 
        temp = [key,value] 
        p2_list.append(temp) 

    for i in range(startGene1, endGene1): 
        _pick = p1_list[i] 
        childP1[_pick[0]] = _pick[1] 

    for k,v in parent1.items(): 
        if k not in childP1: 
            childP2[k] = v 
     
    for i in range(startGene2, endGene2): 
        _pick = p2_list[i] 
        childP3[_pick[0]] = _pick[1] 

    for k,v in parent2.items(): 
        if k not in childP3: 
            childP4[k] = v 
     
    child1 = {**childP1, **childP4} 
    child2 = {**childP2, **childP3} 
    repaired_child1 = repair_genome_cross(child1, spans, pcycle_set) 
    repaired_child2 = repair_genome_cross(child2, spans, pcycle_set) 
     
    return repaired_child1, repaired_child2 

# Crossover 2: one point crossover 
def one_point(parent1, parent2, pcycle_set): 
    childP1 = {} 
    childP2 = {} 
    childP3 = {} 
    childP4 = {} 

    p1_list = [] 
    for key, value in parent1.items(): 
        temp = [key,value] 
        p1_list.append(temp) 

    p2_list = [] 
    for key, value in parent2.items(): 
        temp = [key,value] 
        p2_list.append(temp) 

    gene1 = int(random.random() * len(parent1.items())) 
    gene2 = int(random.random() * len(parent2.items())) 

    for i in range(0, gene1): 
        _pick = p1_list[i] 
        childP1[_pick[0]] = _pick[1] 

    for k,v in parent1.items(): 
        if k not in childP1: 
            childP2[k] = v 
     
    for i in range(0, gene2): 
        _pick = p2_list[i] 
        childP3[_pick[0]] = _pick[1] 

    for k,v in parent2.items(): 
        if k not in childP3: 
            childP4[k] = v 
     
    child1 = {**childP1, **childP4} 
    child2 = {**childP2, **childP3} 
    repaired_child1 = repair_genome_cross(child1, spans, pcycle_set) 
    repaired_child2 = repair_genome_cross(child2, spans, pcycle_set) 
     
    return repaired_child1, repaired_child2 
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# Crossover 3: uniform crossover 
    # Very simple and straightfoward Mask setting: chromosome-length with binary pattern of 
[01010101010101...] 
    # Not robust --> not in use any further 

def breed_population3(selection, crossover, ranked_pop, pcycle_costs, cross_rate, pcycle_set, 
popSize): 
    children = [] 
    for _ in range(len(ranked_pop)): 
        if random.random() < cross_rate: 
            if selection == "select_tournament": 
                pick1 = select_tournament(ranked_pop, pcycle_costs) 
                pick2 = select_tournament(ranked_pop, pcycle_costs) 
            elif selection == "select_roulette": 
                pick1 = select_roulette(ranked_pop, pcycle_costs) 
                pick2 = select_roulette(ranked_pop, pcycle_costs) 
            elif selection == "select_tournament_adp": 
                pick1 = select_tournament_adp(ranked_pop, pcycle_costs, popSize) 
                pick2 = select_tournament_adp(ranked_pop, pcycle_costs, popSize) 
            while pick1 == pick2: 
                if selection == "select_tournament": 
                    pick2 = select_tournament(ranked_pop, pcycle_costs) 
                elif selection == "select_roulette": 
                    pick2 = select_roulette(ranked_pop, pcycle_costs) 
                elif selection == "select_tournament_adp": 
                    pick2 = select_tournament_adp(ranked_pop, pcycle_costs, popSize) 
            if crossover == "one_point": 
                child1, child2 = two_point(pick1, pick2, pcycle_set) 
            elif crossover == "two_point": 
                child1, child2 = two_point(pick1, pick2, pcycle_set) 
            children.append(child1) 
            children.append(child2)   
    mutation_pop = ranked_pop + children 
    return children, mutation_pop 

## MUTATION FUNCTION:  5 mutation methods 
    # 1. Randomly remove one cycle (and all its copies used) --> repair it   
    # 2. Cycle_merging:  
    # 3. Randomly remove one copy of a cycle, and add one random cycle (one copy) --> repair it  
    # 4. Randomly pick an ind, remove 10% cycles with largest costs, add 5 random cycle --> 
repair it  
    # 5. Randomly remove all copies of 1 cycle, add 1 copy 1 random cycle --> repair it 

# 1. Randomly remove one copy of a cycle: 
def mutate_rand_remove(individual, pcycles): 
    individual_copy = copy.deepcopy(individual) 
    individual_keys = list(individual_copy.keys()) 
    swappee = int(random.random() * len(individual_keys)) 
    individual_copy[individual_keys[swappee]] = int(individual_copy[individual_keys[swappee]])-1 
# remove one copy of a candidate cycle 
    new_individual = { k:v for k,v in individual_copy.items() if v > 0 }  
    # Need repair algorithm: 
    repaired_individual, new_pcycle_set, new_pcycle_costs_set = repair_genome_mut(new_individual, 
spans, pcycles) 
    return repaired_individual, new_pcycle_set, new_pcycle_costs_set 

# 2. Cycle Merging:  
def mutation_span_merge(individual, pcycles): 
    new_individual = copy.deepcopy(individual) 
    new_pcycle = {} 
    new_pcycle_usage = {} 
    final_individual = {} 
    global new_id_mut 
    ind_keys_list = list(individual.keys()) 
    for index1, cycle1_id in enumerate(ind_keys_list): 
        for index2, cycle2_id in enumerate(ind_keys_list): 
            if index2 > index1: 
                if cycle1_id == cycle2_id: 
                    continue 
                cycle_1spans_dict = dict(pcycles[cycle1_id]) 
                cycle_2spans_dict = dict(pcycles[cycle2_id]) 
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                cycle_1node_list = []  
                cycle_2node_list = []  
                cycle_1usage = new_individual[cycle1_id] 
                cycle_2usage = new_individual[cycle2_id] 
                if cycle_1usage == 0 or cycle_2usage == 0: 
                    continue 
                shared_items = [k for k in cycle_1spans_dict if k in cycle_2spans_dict and 
cycle_1spans_dict[k] == 1 and cycle_2spans_dict[k] == 1] 
                # check if no other nodes (other than the two nodes on the shared_items) are 
ovelapping 
                if len(shared_items) != 1: 
                    continue 
                new_individual_span = {} 
                shared_items_N1 = span_node[list(shared_items)[0]][0] 
                shared_items_N2 = span_node[list(shared_items)[0]][1] 
                for sp1 in cycle_1spans_dict.keys(): 
                    sp1_N1 = span_node[sp1][0] 
                    sp1_N2 = span_node[sp1][1] 
                    cycle_1node_list.append(sp1_N1) 
                    cycle_1node_list.append(sp1_N2) 
                for sp2 in cycle_2spans_dict.keys(): 
                    sp2_N1 = span_node[sp2][0] 
                    sp2_N2 = span_node[sp2][1] 
                    cycle_2node_list.append(sp2_N1) 
                    cycle_2node_list.append(sp2_N2) 
                shared_node = set(cycle_1node_list) & set(cycle_2node_list) 
                shared_node -= {shared_items_N1} 
                shared_node -= {shared_items_N2} 
                shared_node_list = list(shared_node) 
                if shared_node_list: 
                    continue 
                # check if only share one span 
                if len(shared_items) == 1: 
                    new_individual_span[shared_items[0]] = 2 
                    cycle_1spans_dict[shared_items[0]] = -1 
                    cycle_2spans_dict[shared_items[0]] = -1 
                    for kk, vv in cycle_1spans_dict.items(): 
                        if vv != -1: 
                            new_individual_span[kk] = vv 
                    for kk, vv in cycle_2spans_dict.items(): 
                        if vv != -1: 
                            new_individual_span[kk] = vv 
                else: 
                    continue 
                new_cycle_id = "Merged_CYL" + str(new_id_mut) # new pcycle id given 
                new_pcycle[new_cycle_id] = new_individual_span 
                usage_new_cycle = min(cycle_1usage, cycle_2usage) 
                new_pcycle_usage[new_cycle_id] = int(usage_new_cycle) 
                cycle_1usage -= int(usage_new_cycle) 
                new_individual[cycle1_id] = cycle_1usage 
                cycle_2usage -= int(usage_new_cycle) 
                new_individual[cycle2_id] = cycle_2usage 
                new_id_mut += 1 
    new_individual_new_pcycles = {**new_individual, **new_pcycle_usage} 
    for mkk, mvv in new_individual_new_pcycles.items(): 
        if mvv > 0: 
            final_individual[mkk] = mvv 
    return final_individual, new_pcycle 

# 3. Remove one copy of a cycle , add one copy of a cycle: 
def mutate_remove1_add1(individual, pcycles): 
    individual_copy = copy.deepcopy(individual) 
    individual_keys = list(individual_copy.keys()) 
    individual_added = {} 
    swapper_id = None 
    swappee = int(random.random() * len(individual_keys)) 
    individual_copy[individual_keys[swappee]] = int(individual_copy[individual_keys[swappee]])-1 
# remove one copy of a candidate cycle 
    swapper_id = pick_random_cycle(pcycles) # add one random cycle 
    if swapper_id not in individual_copy: 
        individual_added[swapper_id] = 1 
    individual_copy = { k:v for k,v in individual_copy.items() if v > 0 }         

 194



    # Merge individual_copy and individual_added 
    new_individual = { k: individual_copy.get(k, 0) + individual_added.get(k, 0) for k in 
set(individual_added) | set(individual_copy) } 
    repaired_individual, new_pcycle_set, new_pcycle_costs_set = repair_genome_mut(new_individual, 
spans, pcycles) 
    return repaired_individual, new_pcycle_set, new_pcycle_costs_set 

# 4. Remove one copy of each worst 10% cycles, add 3 rand cycles: 
def mutate_less10add3(individual, pcycles, pcycles_costs): 
    individual_copy = copy.deepcopy(individual) 
    individual_cost = [] 
    added_inds = {} 
    pcycle_ids = [] 
    new_individual = {} 
    for cycle_id, cycle_usage in individual_copy.items(): 
        if cycle_usage == 0: 
            continue 
        individual_cost.append((cycle_id, pcycles_costs[cycle_id]))  # individual_cost is 
[('cycle id', cycle cost), (,), (,)...] 
        pcycle_ids.append(cycle_id) 
    while True: 
        rand_index = int(random.random() * len(pcycles)) 
        pick_rand_cyc = list(pcycles.keys())[rand_index] 
        if pick_rand_cyc not in pcycle_ids: 
            added_inds[pick_rand_cyc] = 1 
        if len(added_inds) == 3: # add 3 random cycles 
            break 
    # Remove one copy from each bottom 10% (selecting top 90%) 
    sorted_tup = sorted(individual_cost, key=lambda e:e[1])  # sort the list from small cost to 
large cost 
    for ind in range(int(len(sorted_tup)* 0.9), len(sorted_tup)): 
        select_id = sorted_tup[ind][0] 
        if int(individual_copy[select_id]) >= 1: 
            individual_copy[select_id] = int(individual_copy[select_id])-1         
    # Merge added_inds and individual_copy 
    new_individual = { k: added_inds.get(k, 0) + individual_copy.get(k, 0) for k in 
set(added_inds) | set(individual_copy) } 
    new_individual = { k:v for k,v in new_individual.items() if v > 0 }     
    repaired_individual, new_pcycle_set, new_pcycle_costs_set = repair_genome_mut(new_individual, 
spans, pcycles) 
    return repaired_individual, new_pcycle_set, new_pcycle_costs_set 

# 5. Remove one cycle (all copies), add one cycle: 
def mutate_remove1all_add1(individual, pcycles): 
    individual_copy = copy.deepcopy(individual) 
    individual_keys = list(individual_copy.keys()) 
    individual_added = {} 
    swapper_id = None 
    swappee = int(random.random() * len(individual_keys)) 
    individual_copy[individual_keys[swappee]] = -100 
    swapper_id = pick_random_cycle(pcycles) # Adding one random cycle to new_individual: 
    if swapper_id not in individual_copy: 
        individual_added[swapper_id] = 1 
    individual2 = { k:v for k,v in individual_copy.items() if v != -100 } 
    # Remove one cycle: Merge individual2 and individual_added 
    new_individual = { k: individual2.get(k, 0) + individual_added.get(k, 0) for k in 
set(individual_added) | set(individual2) } 
    repaired_individual, new_pcycle_set, new_pcycle_costs_set = repair_genome_mut(new_individual, 
spans, pcycles) 
    return repaired_individual, new_pcycle_set, new_pcycle_costs_set 

# Mutation 1. Randomly remove a cycle * copies of that cycle: 
def mutate1(mutation_pop,mutation_rate, pcycle_costs, pcycles): 
    mutated_children = [] 
    pcycle_set1 = pcycles 
    pcycle_costs1 = pcycle_costs 
    for _ in range(len(mutation_pop)): 
        if random.random() < mutation_rate: 
            pick_ii = select_random(mutation_pop) 
            mutated_ind, new_pcycle_set, new_pcycle_costs_set = mutate_rand_remove(pick_ii, 
pcycles) 
            mutated_children.append(mutated_ind) 
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            pcycle_set1 = {**pcycle_set1, **new_pcycle_set} 
            pcycle_costs1 = {**pcycle_costs1, **new_pcycle_costs_set} 
    return mutated_children, pcycle_set1, pcycle_costs1 

# Mutation 2. Cycle Merging:      
def mutate2(mutation_pop,mutation_rate, pcycle_costs, pcycles): 
    mutated_children = [] 
    new_pcycle_set = {} 
    new_pcycle_costs_set = {} 
    for _ind in range(len(mutation_pop)): 
        if random.random() < mutation_rate: 
            pick_ii = select_random(mutation_pop) 
            mutated_ind, new_pcycle = mutation_span_merge(pick_ii, pcycles) 
            mutated_children.append(mutated_ind.copy()) 
            new_pcycle_set = {**new_pcycle_set, **new_pcycle} 
            new_pcycle_cost_dict = calculate_p_cost(spans, new_pcycle_set) 
            new_pcycle_costs_set = {**new_pcycle_costs_set, **new_pcycle_cost_dict} 
    return mutated_children, new_pcycle_set, new_pcycle_costs_set 

# Mutation 3. Remove one copy of a cycle , add one copy of a cycle: 
def mutate3(mutation_pop,mutation_rate, pcycle_costs, pcycles): 
    mutated_children = [] 
    pcycle_set3 = pcycles 
    pcycle_costs3 = pcycle_costs 
    for _ in range(len(mutation_pop)): 
        if random.random() < mutation_rate: 
            pick_ii = select_random(mutation_pop) 
            mutated_ind, new_pcycle_set, new_pcycle_costs_set = mutate_remove1_add1(pick_ii, 
pcycles) 
            mutated_children.append(mutated_ind) 
            pcycle_set3 = {**pcycle_set3, **new_pcycle_set} 
            pcycle_costs3 = {**pcycle_costs3, **new_pcycle_costs_set} 
    return mutated_children, pcycle_set3, pcycle_costs3 

# Mutation 4. Remove one copy of each worst 10% cycles, add 3 rand cycles: 
def mutate4(mutation_pop,mutation_rate, pcycle_costs, pcycles): 
    mutated_children = [] 
    pcycle_set4 = pcycles 
    pcycle_costs4 = pcycle_costs 
    for _ in range(len(mutation_pop)): 
        if random.random() < mutation_rate: 
            pick_ii = select_random(mutation_pop) 
            mutated_ind, new_pcycle_set, new_pcycle_costs_set = mutate_less10add3(pick_ii, 
pcycle_set4, pcycle_costs4) 
            mutated_children.append(mutated_ind) 
            pcycle_set4 = {**pcycle_set4, **new_pcycle_set} 
            pcycle_costs4 = {**pcycle_costs4, **new_pcycle_costs_set} 
    return mutated_children, pcycle_set4, pcycle_costs4 

# Mutation 5. Remove one cycle completely, add one copy of a cycle: 
def mutate5(mutation_pop,mutation_rate, pcycle_costs, pcycles): 
    mutated_children = [] 
    pcycle_set5 = pcycles 
    pcycle_costs5 = pcycle_costs 
    for _ in range(len(mutation_pop)): 
        if random.random() < mutation_rate: 
            pick_ii = select_random(mutation_pop) 
            mutated_ind, new_pcycle_set, new_pcycle_costs_set = mutate_remove1all_add1(pick_ii, 
pcycles) 
            mutated_children.append(mutated_ind) 
            pcycle_set5 = {**pcycle_set5, **new_pcycle_set} 
            pcycle_costs5 = {**pcycle_costs5, **new_pcycle_costs_set} 
    return mutated_children, pcycle_set5, pcycle_costs5 

def mutate_pop(mutation, ranked_pop, mutation_rate, pcycle_costs, pcycle_set): 
    if mutation == "mutate1": 
        mutated_children, new_pcycles, new_pcycle_costs = mutate1(ranked_pop,mutation_rate, 
pcycle_costs, pcycle_set) 
    elif mutation == "mutate2": 
        mutated_children, new_pcycles, new_pcycle_costs = mutate2(ranked_pop,mutation_rate, 
pcycle_costs, pcycle_set) 
    elif mutation == "mutate3": 
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        mutated_children, new_pcycles, new_pcycle_costs = mutate3(ranked_pop,mutation_rate, 
pcycle_costs, pcycle_set) 
    elif mutation == "mutate4": 
        mutated_children, new_pcycles, new_pcycle_costs = mutate4(ranked_pop,mutation_rate, 
pcycle_costs, pcycle_set) 
    elif mutation == "mutate5": 
        mutated_children, new_pcycles, new_pcycle_costs = mutate5(ranked_pop,mutation_rate, 
pcycle_costs, pcycle_set) 
    return mutated_children, new_pcycles, new_pcycle_costs 

## NEXT GENERATION ##  

# Using all mutation methods: 
def next_generation(selection, crossover, mutation, current_gen, cross_rate, mutation_rate, 
pcycle_costs, pcycle_set, popSize): 
    new_generation = [] 
    pop_copy = current_gen 
    source_children = {} 
    for nnn in current_gen: 
        new_generation.append(nnn) 
    children, _ = breed_population3(selection, crossover, pop_copy, pcycle_costs, cross_rate, 
pcycle_set, popSize)    
    for iii in children: 
        if iii not in new_generation: 
            new_generation.append(iii) 
            source_children[frozenset(iii.items())] = 0 
    # Options: mutate1, mutate2, mutate3, mutate4, mutate5  
    mutated_children, new_pcycles, new_pcycle_costs = mutate_pop(mutation, pop_copy, 
mutation_rate, pcycle_costs, pcycle_set) 
    for ddd in mutated_children: 
        if ddd not in new_generation: 
            new_generation.append(ddd) 
            source_children[frozenset(ddd.items())] = 1 
    updated_pcycles = {**pcycle_set, **new_pcycles} 
    updated_pcycle_costs = {**pcycle_costs, **new_pcycle_costs} 

    new_pop_ranked, new_pop_scores = rankCost(updated_pcycle_costs, new_generation) 
    return new_pop_ranked[:len(current_gen)], new_pop_scores[:len(current_gen)], updated_pcycles, 
updated_pcycle_costs, source_children 

# When unchanged value reach gen = 60, use span_merge as mutation method: 
def next_gen_mutation2(selection, crossover, current_gen, cross_rate, mutation_rate, 
pcycle_costs, pcycle_set, popSize): 
    new_generation = [] 
    source_children = {} 
    pop_copy = current_gen 
    for nnn in current_gen: 
        new_generation.append(nnn) 
    children, _ = breed_population3(selection, crossover, pop_copy, pcycle_costs, cross_rate, 
pcycle_set, popSize)    
    for iii in children: 
        if iii not in new_generation: 
            new_generation.append(iii) 
            source_children[frozenset(iii.items())] = 0 
    mutated_children, new_pcycles, new_pcycle_costs = mutate2(pop_copy, mutation_rate, 
pcycle_costs, pcycle_set) 
    for ddd in mutated_children: 
        if ddd not in new_generation: 
            new_generation.append(ddd) 
            source_children[frozenset(ddd.items())] = 1 
    updated_pcycles = {**pcycle_set, **new_pcycles} 
    updated_pcycle_costs = {**pcycle_costs, **new_pcycle_costs} 

    new_pop_ranked, new_pop_scores = rankCost(updated_pcycle_costs, new_generation) 
    return new_pop_ranked[:len(current_gen)], new_pop_scores[:len(current_gen)], updated_pcycles, 
updated_pcycle_costs, source_children 

### Initiate GA Process ### 

def genetic_algorithm(selection, crossover, mutation, popSize, cross_rate, mutation_rate, 
pcycle_set): 
    pop = initial_population(popSize, pcycles) 
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    pcycle_costs = calculate_p_cost(spans, pcycles) # Calculate fitness values 
    pop_rank, pop_scores = rankCost(pcycle_costs, pop) # rank all ind from initial population 
based on their fitness values 
    print(pop_rank[0]) # And print out best ind from init_pop and its cost to compare with GA 
result 
    print(pop_scores[0]) 

    global_min_cost = math.inf 
    stats_source = [0, 0] #counts for children from either cross or mutation 
    gen_counter = 0 
    for gen in range(0, 1000): 
        best_current_gen, rank_cost, updated_pcycles, updated_pcycle_costs, source_children = 
next_generation(selection, crossover, mutation, pop_rank, cross_rate, mutation_rate, 
pcycle_costs, pcycle_set, popSize) 
        #print(source_children.values()) 
        if rank_cost[0] < global_min_cost: 
            ## increase! 
            global_min_cost = rank_cost[0] 
            optimal_res = best_current_gen[0] 
            gen_counter = 0 
            if frozenset(optimal_res.items()) in source_children: 
                stats_source[source_children[frozenset(optimal_res.items())]] += 1 
            else: 
                print('NEW IMPROVEMENT') 
                # print(optimal_res) 
            print(f'{gen}: Better Global Min Cost {global_min_cost}') 
        else: 
            gen_counter += 1 
            if gen_counter == 60: 
                best_current_gen, rank_cost, updated_pcycles, updated_pcycle_costs, 
source_children = next_gen_mutation2(selection, crossover, pop_rank, cross_rate, mutation_rate, 
pcycle_costs, pcycle_set, popSize) 
                if rank_cost[0] < global_min_cost: 
                    global_min_cost = rank_cost[0] 
                    optimal_res = best_current_gen[0] 
                    gen_counter = 0  
                    if frozenset(optimal_res.items()) in source_children: 
                        stats_source[source_children[frozenset(optimal_res.items())]] += 1 
                    else: 
                        print('NEW IMPROVEMENT') 
                        # print(optimal_res) 
                    print(f'{gen}: Cycle-Merge applied, Better Global Min Cost 
{global_min_cost}') 
                else: 
                    print(f'Process terminated at {gen} with final global min cost of 
{global_min_cost}') 
                    break 
        pop_rank = best_current_gen 
        pcycle_set = updated_pcycles 
        pcycle_costs = updated_pcycle_costs 
         
    print(f'Improved children counts from {stats_source}') 
    # print(optimal_res) # evaluate the result 
    print('Total Cost = '+ str(global_min_cost)) # evaluate validity of this GA process -- is the 
cost decreasing?? 
    return optimal_res, pcycle_set, global_min_cost 

random.seed(666) 
now = datetime.datetime.now() 
print(now) 

optimal_result, updated_pcycles, global_min_cost = genetic_algorithm(selection = 
Selection_Method, crossover = Crossover_Type, mutation = Mutation_Type, popSize = input_pop, 
cross_rate = input_cr, mutation_rate = input_mr, pcycle_set = pcycles) 

the_end = time.time() 
print('Total Runtime =' + str(the_end - start)) 

## Write new pcycles to a new .pcycle file [for verification of full protection] 
text_file = open(output_pcycle, "w") 
for key, value in updated_pcycles.items(): 
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    text_file.write(key + ": ") 
    for kk, tt in value.items(): 
        text_file.write(kk + " " + str(tt) + " ") 
    text_file.write("\n") 
text_file.close() 

### Calculate pcycle set SC, WC, EW&AP scores ### 

ind_sc = 0 
def pcycle_spare_capacity(spans, cycle_val): 
    pcycle_sc_score = 0 
    for _, vv in cycle_val.items(): 
        if vv == 1: 
            pcycle_sc_score += 1 
    return pcycle_sc_score 
for cy_id, cy_use in optimal_result.items(): 
    cycle_sc = pcycle_spare_capacity(spans, updated_pcycles[cy_id]) 
    ind_sc = ind_sc + cycle_sc * cy_use 

def pcycle_work_capacity(spans): 
    pcycle_wc_score = 0 
    pcycle_wc_cost = 0 
    for _, comp in spans.items(): 
        pcycle_wc_score += comp[1] 
        pcycle_wc_cost += comp[0] * comp[1] 
    return pcycle_wc_score, pcycle_wc_cost     
ind_wc, ind_wc_cost = pcycle_work_capacity(spans) 

     
print('Total Spare Capacity = '+ str(ind_sc)) 
print('Total Spare Capacity Cost = ' + str(global_min_cost)) 
print('Total Working Capacity = '+ str(ind_wc)) 
print('Total Working Capacity Cost = '+ str(ind_wc_cost)) 
print('Redundancy = ' "{0:.2f}%".format(ind_sc/ind_wc * 100)) 
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