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Abstract

In this work we will construct the table of irreducible characters for the

group of unitary 2 x 2 matrices over a finite field. The table and the methods

for its construction will show interesting connections to the table and methods

of construction of the table of irreducible characters for the general linear

group.
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Chapter 1

Introduction

The irreducible characters of GL2(Fq) are well known, being given for example

in Fulton and Harris[FH]. Less well known are the irreducible characters of the

subgroup of unitary matrices; they are stated, tersely and without much expli-

cation, in the 1963 paper “On the Characters of the Finite Unitary Groups”

by Veikko Ennola[E], in Annales Academi Scientiarum Fennic Mathematica.

The aim of the present work will be to construct and fully justify the character

table for U2(Fq2), hereafter denoted G. One of the chief difficulties in this task

is the determination of the conjugacy classes, as in the unitary group we can-

not exploit the Jordan form or rational canonical form of a matrix. Although

there is no simple connection between the conjugacy classes of a group and

those of its subgroups, we will see a very close resemblance between the forms

of conjugacy class representatives of the general linear group and those of the

unitary group. In addition, we will find that characters of the two groups

have, in a loose sense, the same dimension, and that the character values of

conjugacy classes with similar forms are the same. Finally, we will see that

the methods used for discovering the characters for the general linear group
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have their almost exact counterparts for the unitary group.

Arguments concerning finite fields sometimes require special treatment

where the characteristic of the field is 2. In this work the several modifications

for p = 2 will be put in a separate chapter in order to preserve continuity of

the main argument.
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Chapter 2

Representations and Characters

We will begin by recalling some facts about representations and characters.

We follow Fulton and Harris here, and assume that in all cases G is a finite

group.

Let V be an n dimensional complex vector space. We define a representa-

tion of G on V to be a homomorphism ρ : G → GL(V ) from G into the group

of automorphisms of V . When ρ is understood, V itself is sometimes called

the representation. If W is a subspace of V such that for all g ∈ G,w ∈ W :

ρ(g)(w) ∈ W , then we say that W is a subrepresentation of G. A representa-

tion V is called irreducible if it has no proper non-trivial subrepresentations.

The concept of irreducible representation is important because it can be shown

that any representation is the direct sum of irreducible representations, so that

we need only seek irreducible representations of a group.

A tool that has proved useful in understanding representations is that of

characters. Given a representation V of G, we define the character of V to

be the complex function χV on the group given by χV (g) = Tr(ρ(g)), i.e. the

trace of ρ(g) on V . It is clear that the character value of g does not depend
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on a choice of basis, and also that character values are constant on conjugacy

classes of G, i.e. it is a class function of G. If we denote by C the space of

class functions on G, then we can define a Hermitian product on C. If α and

β are two class functions on G, we define (α, β) = 1
|G|

∑
g∈G α(g)β(g); it can

be shown that a representation V is irreducible if and only if its character χV

satisfies (χV ,χV ) = 1. In this work, we are aiming at the complete table of

irreducible characters of the unitary group; it can be shown that the number

of such characters is equal to the number of conjugacy classes of G.

Finally, we recall the concept of induced representations.1 Given a sub-

group H of G, we can restrict any representation V of G to a representation

of H, denoted ResGHV . We would like to be able to go the other way, i.e. given

a representation of H, to recover a representation of G. For the present work

we are specifically interested in taking a character on H and lifting it to a

character on G. To see how this might be done, suppose first that we already

have a character on G, and let us see what it might mean to lift ResGHV to

the original character on G. Let W ⊂ V be a subspace of V that is invariant

under the action of H. Given any g ∈ G, the subspace gW will depend only

on the coset gH that g lies in, since if g′ ∈ gH, then for some h ∈ H we have

g′W = (gh)W = g(hW ) = gW . If for some σ ∈ G/H we write σW for this

subspace, then it may be the case that every v ∈ V can be written uniquely

as a sum of elements of such subspaces, that is V =
⊕

σ∈G/H σW . If this is

the case, we say that V has been induced by W , and we write V = IndG
HW , or

IndW . In the present work, we will have three occasions to induce a character

on G from an existing one on some large subgroup. To find the character

values of IndW , we note that any g ∈ G maps σW to gσW , so that the trace

1This part is from section 3.3 of Fulton and Harris
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of g will be calculated using only those cosets σ fixed by g, i.e. if s ∈ σ, we

want gσ = σ, or s−1gs ∈ H so that we get:

χIndW (g) =
∑

gσ=σ

χW (s−1gs), s arbitrary in σ.
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Chapter 3

Hermitian Forms and Finite

Fields

On a complex vector space V , a Hermitian form is a map H : V × V → C

such that for all u, v, w ∈ V, a, b ∈ C.:

• H(u+ v, w) = H(u, w) +H(v, w)

• H(u, v + w) = H(u, v) +H(u, w)

• H(au, v) = aH(u, v) = H(u, av)

• H(v, u) = H(u, v)

The form is called non-degenerate if for all v ∈ V , there exists a w ∈ V such

that H(v, w) ̸= 0, and a vector space having a non-degenerate Hermitian form

is called a unitary space. In order to have such forms on vector spaces over a

finite field, there must be something like conjugation on the field, and it is not

obvious that this is always possible. Therefore in this chapter we will identify

those finite fields that admit a conjugation, and we will examine two important
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subgroups of the group of units of the field as well as homomorphisms onto

these subgroups, all of which will figure prominently in this work. In addition,

we will show that all non-degenerate Hermitian forms on finite dimensional

vector spaces of the same dimension are equivalent in a sense that will be de-

fined; this is important since we shall change forms at times for computational

convenience.

3.A The Field

In what follows, we shall assume the characteristic of the field is odd. Conju-

gation in C is an automorphism of order two, thus we must identify those finite

fields allowing such an automorphism. The order of a finite field F is necessar-

ily pk for some prime p and positive integer k, and the group of automorphisms

of the field is cyclic of order k; therefore F will have an automorphism of or-

der 2 if and only if k is even. To construct such a field, we begin with any

finite field Fq ; q = pk, and take a quadratic extension of it (unique up to

isomorphism) to get Fq2 . This is done by adjoining to Fq a square root of any

generator of F×
q .

Having formed the quadratic extension Fq2 of order q2, we have the auto-

morphism α : Fq2 → Fq2 given by α(x) = xq. That this is an automorphism

follows from the prime characteristic of the field; that it is of order two follows

from the fact that the group of units of Fq2 form a multiplicative group of

order q2 − 1.
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3.A.1 Two Important Homomorphisms on F×
q2

There are two important maps on F×
q2 that will come up frequently in this

work, and we briefly describe them here:

1. The norm map, N : F×
q2 → F×

q2 , is given by N(x) = xx, with kernel

denoted L = {x ∈ F×
q2 |xx = 1}. Recalling that F×

q2 is cyclic of order q
2−1,

let ϵ be a generator of this group; then L will be generated by ϵq−1,

since xx = 1 ⇔ xq+1 = 1, and therefore |L|= q + 1. We claim that

N(F×
q2) = F×

q : for any x ∈ F×
q2 , xx ∈ F×

q , and the norm map is onto

because N(ϵ) = ϵq+1, which has order q − 1 and so generates F×
q .

2. Another important map is Q : F×
q2 → L, given by Q(x) =

x

x
. Its kernel

F×
q is of order q − 1; this means there will be q + 1 cosets of the kernel,

and since the order of L is q + 1, we see that the map Q is surjective.

We will also find occasion to use the fact that there are q − 1 elements

of F×
q2 that map to any x ∈ L under Q.

3.B The Hermitian Form for Finite Vector Spaces

Over Finite Fields

Having shown which finite fields can admit order 2 automorphisms, we define

Hermitian forms on these vector spaces over such fields in the same way as for

complex vector spaces, and we recall a few facts about Hermitian forms that

will be important in the sequel:

• If we have chosen a basis β = {x1, x2, . . . , xn} for a finite dimensional

vector space V over a finite field, then each Hermitian form H will be
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associated with a Hermitian matrixM whose elements satisfymji = mij.

Then for any u, v ∈ V we will have H(u, v) = utMv.

• As is in the case of symmetric bilinear forms, if a Hermitian form H

is non-degenerate on a sub-space W of V , (i.e. if W ∩ W⊥ = 0) then

V = W ⊕W⊥.

• If we change to a new basis β′, with the change of basis matrix P :

β′ → β, then the matrix M of the Hermitian form H will change to

M ′ = P tMP . This motivates the following definition of equivalence

of Hermitian forms: given vector spaces V1, V2 with respective non-

degenerate Hermitian forms H1,H2, we call the forms H1 and H2 equiva-

lent if there exists an isomorphism τ : V1 → V2 such that for all v, w ∈ V1,

H1(v, w) = H2(τv, τw).

• The following fact is less elementary than the previous three, and thus

will need to be justified, using an argument from Grove (chapter 8) :

If V1, V2 are vector spaces of the same finite dimension, over

a finite field, with respective non-degenerate Hermitian forms

H1,H2, then the two forms are equivalent.

To show this , we begin with the quadratic (Hermitian) form: Q(v) =

H(v, v), and show that if H is non-zero then for some v ∈ V , Q(v) ̸= 0.

Suppose the contrary. As H is non-zero, we can choose v, w ∈ V with

H(v, w) = 1. Then supposingQ(v) = 0 for all v ∈ V , let a be arbitrary in

F×
q2 , so that calculation gives 0 = Q(v+aw) = a+a. Setting a = 1 implies

that the field characteristic must be 2, but then we have a = −a = a ,

which is a contradiction since the conjugation map was to have order 2.
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Now we can show that a unitary space has an orthogonal basis {vi} with

Q(vi) = ci ∈ F×
q , so that the the matrix for H is diagonal with mii = ci.

We choose v1 with Q(v1) = c1 ∈ F×
q , and let W1 =< v1 >. It is clear

that H is non-degenerate on W1, so that V = W1 ⊕ W⊥
1 . Proceeding

inductively on W⊥
1 gives the result.

Next we show that a basis exists for V such that the matrix for H will

be the identity matrix. We have shown that the norm map is onto F×
q ,

thus we take di ∈ F×
q2 and didi = c−1

i , so that Q(divi) = 1. Finally,

to show the equivalence of forms, suppose that we have unitary spaces

V1, V2 with corresponding Hermitian forms H1,H2 . We choose bases

so that the matrices for both forms are identity matrices. Now if P is

any matrix (of the right size of course) such that P tP = I, then P ,

together with the identification of the elements of V1 and V2 with their

coordinate vectors, will provide an isomorphism from V1 to V2 such that

for vectors v, w in V1, H1(v, w) = H2(Pv, Pw), and thus the two forms

are equivalent.

All of this justifies our intended use of two forms in this work. The first given

by the matrix ( 0 1
1 0 ), and the second by ( 1 0

0 1 ). The notion of equivalence of

forms means that switching between one and the other is only a matter of

changing bases.

It is worth mentioning that, using the first form, ( a b
c d ) will be unitary if and

only if:

ad+ cb = 1

ac+ ac = 0 = bd+ bd
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while for the second form we require:

aa+ bb = 1 = cc+ dd

ab+ cd = 0

Finally we note that the great advantage of the form ( 0 1
1 0 ) is that it permits

the use of the upper triangular subgroup of G (the Borel subgroup); the other

form does not.
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Chapter 4

The Conjugacy Classes of U2(Fq2)

4.A Counting the Unitary Group

Let V be a 2 dimensional vector space over Fq2 and let G be the group of

unitary 2 × 2 matrices over the same field. We begin by finding |G|: if we

take ( 1 0
0 1 ) as the matrix of our Hermitian form, then A ∈ G will be unitary if

and only if for any u, v ∈ V :

(Au)t( 1 0
0 1 )(Av) = ut( 1 0

0 1 )v

which implies:

A
t
A = ( 1 0

0 1 )

So that A
t
is the inverse of A. Writing A as ( a b

c d ) , the determinant of A as

D, and equating the conjugate transpose with the inverse gives:
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⎛

⎜⎝
a c

b d

⎞

⎟⎠ =
1

D

⎛

⎜⎝
d −b

−c a

⎞

⎟⎠ ,

so that d = aD, and c = −bD. Calculating the determinant in the usual

way gives D = ad − bc = aaD + bbD ⇒ aa + bb = 1. Furthermore, since

the determinant of A
t
is the conjugate of the determinant of A, we see that

DD = 1 ( and that there are therefore q + 1 choices for the determinants of

unitary matrices in G). Thus using the standard Hermitian form ( 1 0
0 1 ), A will

unitary if and only if it is of the form:

⎛

⎜⎝
a b

−bD aD

⎞

⎟⎠

where D is of norm 1, and aa+ bb = 1. We count |G|, by taking the following

cases:

• if a = 0, then aa + bb = 1 implies that b is of norm 1, hence there are

(q+1) choices for b. Since there are (q+1) choices for the determinant,

there are (q + 1)2 such matrices.

• similarly, if b = 0 there are (q + 1)2 matrices.

• if a and b are both not zero then aa ∈ Fq\{0, 1}, so there are q−2 choices

for aa, and this determines bb. Then there are q + 1 choices for a (the

size of the cosets of the kernel of the norm map), and q + 1 choices for

b. We still have (q + 1) choices for the determinant, therefore there are

(q − 2)(q + 1)3 choices in this case.

Totalling the three cases, we get |G|= 2(q+1)2+(q−2)(q+1)3 = (q−1)q(q+1)2.
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4.B The Conjugacy Classes

Presently, we will show that the eigenvalues of any element of G lie conve-

niently in Fq2 ; for now we note that it allows us to organize the search for

conjugacy class representatives by partitioning the elements of G according to

their eigenvalues thus:

1. one eigenvalue, and diagonalizable

2. one eigenvalue, but not diagonalizable1

3. two eigenvalues, neither of norm 1

4. two eigenvalues, both of norm 1

Two observations here before proceeding:

• Since the product of distinct eigenvalues equals the determinant which

lies in the subgroup L , then distinct eigenvalues must either both be

norm 1, or both not norm 1.

• In order that the above partition be exhaustive of G, we need to show

that all eigenvalues of unitary 2× 2 matrices over Fq2 lie in Fq2 . We can

represent an element of G by

⎛

⎜⎝
a b

−bD aD

⎞

⎟⎠

thus it suffices to show that the discriminant of the characteristic equa-

tion is a square in Fq2 . It is clear that the discriminant is (a+aD)2−4D.

1In the general linear group, this would imply a Jordan form; in the unitary group this
is not so.
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Since D ∈ L, it is equal2 to x
x for some x in Fq2 . Thus we can rewrite

the discriminant as:

(ax+ ax)2 − 4xx

x2

The denominator of the fraction is a square, and since the numerator is

invariant under conjugation it lies in Fq and is thus also a square. There-

fore the discriminant is a square, and the eigenvalues of every element

of G lie in Fq2 .

Now we list some conjugacy class representatives, using the Hermitian form

( 0 1
1 0 ) unless otherwise indicated. We cannot say at this point that our list is

exhaustive; for example in item 2 below there could be matrices with one

eigenvalue, not diagonalizable that are not conjugate in the unitary subgroup

to an element of the form ( x y
0 x ). We will know that we have an exhaustive list

only when we have accounted for all of the elements in G.

1. A = ( x 0
0 x ) This requires xx = 1, so that x ∈ L. Therefore there are

q + 1 such class representatives. Since each of these is in the center of

G, the size of each conjugacy class is 1, and we have accounted for q+1

elements.

2. A = ( x y
0 x ) , y ̸= 0. In order for A to be unitary we must have x of

norm 1, and y
y = −x

x (from the remark at the bottom of page 11). This

last equality means that y must map to −x
x under the map Q mentioned

in the previous chapter, and we have remarked that this gives q − 1

choices for y . Thus naively we have (q + 1)(q − 1) choices for this type

2This is because the map Q in the previous chapter was surjective
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of conjugacy class representative. We will show, however, that ( x y
0 x ) ∼

( x z
0 x ) if and only if y and z are both sent to the same element under

the map Q : F×
q2 → L, that is, they are both in the same coset of F×

q ,

the kernel of the map . As a result there will be only q + 1 such class

representatives:

First let z = ky, k ∈ F×
q . Then k = aa for some a ∈ Fq2 since it is

in the image of the norm map. Then we will have ( x y
0 x ) ∼ ( x z

0 x ),

using conjugation by (
a 0
0 1

a
).

Next, suppose that ( x y
0 x ) ∼ ( x z

0 x ). Then for some P = ( a b
c d ) ∈ G,

P−1( x y
0 x )P = ( x z

0 x ) , implying that c = 0 , and also that d = 1
a .

Then P−1( x y
0 x )P = ( x ddy

0 x
) = ( x z

0 x ), so that z = ky, k ∈ F×
q , with

k = dd.

The centralizer of ( x y
0 x ) is easily seen to be ( a b

0 a ) where b is allowed to be

zero, giving q choices for b(since either b = 0 or b and a map to the same

element under Q), and q + 1 choices for a, since it is in L. Therefore

the centralizer has q(q + 1) elements, so that each conjugacy class has

|G|/q(q + 1) = (q− 1)(q + 1) elements. This type of class representative

therefore accounts for (q − 1)(q + 1)2 elements.

3. A = ( x 0
0 y ) , y ̸= x. Since x ̸= 0, and xx ̸= 1, (y ̸= x and xy = 1 means

xx cannot be equal to 1) there are (q + 1)(q − 2) choices for x, and y is

determined by x. Now since ( x 0
0 y ) ∼ ( y 0

0 x ) in G, using P = ( 0 1
1 0 ) then

we have (q+1)(q−2)
2 such class representatives.

The centralizer of A is the set of unitary matrices of the form ( a 0
0 d ) of

which there are q2−1 as a ̸= 0 , and d is determined by a. Thus the size
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of each conjugacy class is |G|/(q2 − 1) = q(q + 1), so that this type of

conjugacy class representative accounts for (q+1)(q−2)
2 q(q+1) = (q−2)q(q+1)2

2

elements.

4. A = ( x y
y x ), y ̸= 0 (if y = 0 we have a scalar matrix) A has distinct

eigenvalues x ± y, and they are norm 1 since, from page 12 we have

xx + yy = 1 and xy + yx = 0; summing these equations shows that

x + y ∈ L, while subtracting them shows x − y ∈ L. To count these

class representatives we assume first that x = 0; this gives q + 1 choices

for y ∈ L. If x and y are not zero, we choose two elements u1, u2 ∈ L,

and let x = u1+u2
2 , y = u1−u2

2 so that x ± y ∈ L. Since x ̸= 0 ̸= y, then

u2 ̸= ±u1, giving (q+1)(q−1) choices for this case. In all we have q(q+1)

representatives, but we note that ( x y
y x ) ∼ ( x −y

−y x ) using conjugation

by ( a 0
0 −a ) where aa = −1, and so we have q(q + 1)/2 conjugacy class

representatives of this type.

The centralizer of A is the set of elements of the form ( a b
b a ) where a or b

(but not both) can be zero. Taking cases where only a = 0, only b = 0,

and neither a nor b is zero, we see the order of the centralizer is (q+1)2,

so that the number of elements in each conjugacy class of this type is

|G|/(q + 1)2 = (q − 1)q. Therefore this type of conjugacy class accounts

for (q − 1)q2(q + 1)/2 elements.

Totalling the number of elements from our 4 types of conjugacy classes

gives:

(q+1)+(q−1)(q+1)2+
(q − 2)q(q + 1)2

2
+
(q − 1)q2(q + 1)

2
= (q−1)q(q+1)2 = |G|
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Since we have accounted for the number of elements in G, we can say

now that our list of conjugacy class representatives was complete.

Therefore we have shown that the conjugacy classes of the unitary 2 x 2

matrices over a finite field, together with the number of elements in each

class are:

representative no. elements no. classes total elements

ax = ( x 0
0 x ) 1 q + 1 q + 1

bx,y = ( x y
0 x ), y ̸= 0 (q − 1)(q + 1) q + 1 (q − 1)(q + 1)2

cx,y = ( x 0
0 y ), y ̸= x q(q + 1)

(q − 2)(q + 1)

2

(q − 2)q(q + 1)2

2

dx,y = ( x y
y x ), y ̸= 0 (q − 1)q

q(q + 1)

2

(q − 1)q2(q + 1)

2

Table 4.1: Conjugacy Class Representatives of G

From the chart the total number of conjugacy classes is (q + 1)2, hence this is

the number of irreducible characters that we must find.
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Chapter 5

The Irreducible Characters of

U2(Fq2)

If α : F×
q2 → C× is a 1 dimensional character on F×

q2 , we can form a 1 di-

mensional character on G by sending any A ∈ G to α(det(A)). Since the

determinant of a unitary matrix is of norm 1, there will be q + 1 such 1 di-

mensional characters, Uα on G:

representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

Uα: α(x)2 α(x)2 α(x)α(y) α(x2 − y2)

Next we consider the permutation representation of the coset space of the

Borel subgroup of G: B = {( a b
0 d )|( a b

0 d ) ∈ G}. If b = 0 there are q2 − 1 choices

for a (it just needs to be in F×
q2), determining d . If b ̸= 0, there are q2 − 1

choices for a , determining d, and q− 1 choices for b, since bd+ bd = 0 implies
b

b
= −d

d
; this means (using the map Q from page 9) that Q(b) = −d

d
∈ L,

so there are q − 1 choices for b. This gives |B|= (q2 − 1) + (q2 − 1)(q − 1) =

(q − 1)q(q + 1), so that [G : B] = q + 1. The coset representatives for B
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will be elements of the form ( 1 0
t 1 ), together with the element ( 0 1

1 0 ). Since

we are using the Hermitian form with matrix ( 0 1
1 0 ) we must have t + t = 0.

Thus t = 0 or Q(t) = −1 , so there are q choices in all for t , giving the

required number of coset representatives. To show that these representatives

lie in distinct cosets of B, suppose first, that for coset representatives ( 1 0
r 1 ) and

( 1 0
s 1 ), (

1 0
r 1 )

−1( 1 0
s 1 ) = ( 1 0

r−s 1 ) ∈ B. This implies that r = s. Next we note that

( 1 0
t 1 )

−1( 0 1
1 0 ) = ( 0 1

1 −t ) ∈ B, is impossible; therefore the previously mentioned

elements form a transversal for B.

In the permutation representation of the coset space of B, the character

value of g ∈ G will be the number of cosets σ that g fixes, and gσ = σ is

equivalent to s−1gs ∈ B where s is arbitrary in σ. For convenience, we will

use the coset representative for s. We now consider the fixed point set of each

type of conjugacy class representative:

1. ( x 0
0 x ) : This element is in B, and also in the center of G; thus for all

coset representatives s,

s−1( x 0
0 x )s = ( x 0

0 x ) ∈ B

so that this element fixes all q + 1 cosets of B.

2. ( x y
0 x ), y ̸= 0: Since this element is in B, it certainly fixes B (with con-

jugation returning the original element, since we can take the identity

matrix as the coset representative); to show that it fixes no other coset,

we consider two cases:

• if s = ( 1 0
t 1 ) t ̸= 0, then s−1 = ( 1 0

−t 1 ), and s−1( x y
0 x )s =
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⎛

⎜⎝
x+ yt y

−yt2 x− yt

⎞

⎟⎠

This is not in B, since both y and t are not zero.

• if s = ( 0 1
1 0 ), then s−1 = s, and s−1( x y

0 x )s = ( x 0
y x ) which is not in B

since y ̸= 0.

Therefore this type of element fixes 1 coset of B.

3. ( x 0
0 y ), y ̸= x : This element is in B, and therefore fixes it, and conjugation

(by say, the identity matrix) just returns ( x 0
0 y ). But if s = ( 0 1

1 0 ) then

s−1( x 0
0 y )s = ( y 0

0 x ), which is in B. On the other hand if t ̸= 0:

( 1 0
−t 1 )(

x 0
0 y )( 1 0

t 1 ) =

⎛

⎜⎝
x 0

yt− xt y

⎞

⎟⎠

which is not in B since yt− xt = 0 implies y = x. Therefore this type of

conjugacy class representative fixes 2 cosets of B.

4. ( x y
y x ), y ̸= 0: This element has distinct norm 1 eigenvalues, as will

s−1( x y
y s )s for any coset representative s. This last expression cannot

be in B then, since for ( a b
0 d ) ∈ B, if aa = 1, then d = 1

a = a. Therefore

this element fixes no cosets of B

We subtract the character of the trivial representation from that of this per-

mutation representation to get an irreducible character V , of dimension q:

( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

V: q 0 1 −1
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Now we can tensor1 V with Uα to get an irreducible character of dimension q:

Vα = V ⊗ Uα :

representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

Vα: qα(x)2 0 α(x)α(y) −α(x2 − y2)

There are q + 1 such characters because there are q + 1 of the form Uα.

The next character comes from inducing a 1 dimensional character on B.

We start with 1 dimensional characters α, β on F×
q2 . Using these, we get a 1

dimensional character φ, on the diagonal subgroup {( a 0
0 d )|( a 0

0 d ) ∈ G} where

φ[( a 0
0 d )] = α(a)β(d). This character can be lifted to B by sending ( a b

0 d ) to

α(a)β(d); calculation shows that this is indeed a character on B, and it is this

character that will be induced to G. From previous work we know :

• ( x 0
0 x ) fixes all q + 1 cosets of B, and for any coset representative s,

s−1( x 0
0 x )s = ( x 0

0 x ) since this conjugacy class representative is in B and

in the center of G, therefore the induced character value of ( x 0
0 x ) is

(q + 1)α(x)β(x).

• ( x y
0 x ) fixes only B and s−1( x y

0 x )s = ( x y
0 x ), so that it will have an induced

character value of α(x)β(x).

• ( x 0
0 y ) fixes B (with conjugation giving the original element) and ( 0 1

1 0 )B,

and in the latter case, it becomes ( y 0
0 x ) after conjugation, so that the

induced character value here is α(x)β(y) + α(y)β(x).

• ( x y
y x ) fixes no cosets of B, and so has an induced character value of 0.

We will call this character Wα,β, and its values are summarized below:

1Here we are following Fulton and Harris, section 5.2, in their development of the char-
acter table for the general linear group.
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representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

Wα,β: (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

To give conditions on α, β that make Wα,β irreducible, we recall that they are

1 dimensional characters on F×
q2 . Let ϵ be the generator of F×

q2 , and let µ be

any (q + 1)st root of unity. We claim that Wα,β is irreducible if and only if

β(ϵ) ̸= µα(ϵ).

To see this, we work out the Hermitian product of the character with

itself, multiplying the value in the third column by its complex conjugate, to

get g(k) = 2+ψ(k)+ψ(k−1) where ψ = α
β is a 1 dimensional character on F×

q2 ,

and k = xx ∈ F×
q . Now if β(ϵ) = µα(ϵ), then since F×

q is generated by ϵ(q+1),

ψ is trivial on F×
q and g(k) = 4 for every element in the third column. Thus

the Hermitian product will be:

1

|G| [(q + 1)2(q + 1) + (q − 1)(q + 1)2 +
4(q − 2)q(q + 1)2

2
] = 2

so that Wα,β is not irreducible; in fact inspection shows in this case that

Wα,β = Uα ⊕ Vα.

On the other hand if β(ϵ) ̸= µα(ϵ) then ψ is not trivial on F×
q . We will

show presently that this implies
∑

x∈F×
q
ψ(x) = 0, or

∑
x∈F×

q \{1} ψ(x) = −1.

Supposing this to be true, we calculate the contribution of the third column to

the Hermitian product indirectly: in summing g(k) over the conjugacy class

representatives ( x 0
0 y ), we include an extra element from each conjugacy class:

( y 0
0 x ). This doubles the sum, because g(k) is the same for both ( y 0

0 x ) and ( x 0
0 y )

(the k values of these elements are inverses of each other, but g(k) = g(k−1)).

The reason for including these extra elements is that it allows the following

grouping argument.
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We are summing g(k) = 2 + ψ(k) + ψ(k−1) over all matrices of the form

( x 0
0 y ) where k = xx and x ∈ F×

q2\{L}. These elements are determined by

the value of x, so there are (q2 − 1) − (q + 1) = (q − 2)(q + 1) of them, and

they can be put into q + 1 sets of size (q − 2), in each of which k ranges

over all values in F×
q \{1}. To construct such a set, for each k ∈ F×

q \{1}, we

include one element ( x 0
0 y ) where xx = k; there will be q + 1 of these sets

because that is the order of the kernel of the norm map. Summing g(k) over

the elements in one of these sets will give 2(q − 2)− 1− 1 = 2(q − 3) because
∑

k∈F×
q \{1} ψ(k) =

∑
k∈F×

q \{1} ψ(k
−1) = −1. We have q + 1 such sets giving a

total of 2(q − 3)(q + 1), but we doubled our sum by including extra elements,

so the contribution of the conjugacy class representatives of the third column

is (q − 3)(q + 1). The Hermitian product is:

1

|G| [(q + 1)2(q + 1) + (q − 1)(q + 1)2 + (q − 3)q(q + 1)2 + 0] = 1

and Wα,β is irreducible when β(ϵ) ̸= µα(ϵ).

Now we justify the claim that if ψ is not trivial on F×
q , then

∑
x∈F×

q
ψ(x) =

0. More generally, let G be a finite group, and let ψ be a 1 dimensional non-

trivial character on G. Since ψ is 1 dimensional it is a homomorphism, and

since it is non-trivial, there exists y ∈ G such that ψ(y) ̸= 0. Therefore we

can write:
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∑

g∈G

ψ(g) =
∑

g∈G

ψ(yg)

=
∑

g∈G

ψ(y)ψ(g)

= ψ(y)
∑

g∈G

ψ(g)

so that (1−ψ(y))
∑

g∈G ψ(g) = 0, and since ψ(y) ̸= 1, then
∑

g∈G ψ(g) = 0.

To count the number of characters Wα,β, we recall that we began with

the one dimensional character on the diagonal subgroup that sent ( a 0
0 d ) to

α(a)β(d) where α and β were one dimensional characters on F×
q2 . We lifted

it to B, then induced to G. There are q2 − 1 one dimensional characters on

the diagonal subgroup, because it is isomorphic to F×
q2 . We can form all of

these characters by holding α fixed, and letting β vary over the entire group

of characters. However we cannot have β(ϵ) = µα(ϵ), and this eliminates

q + 1 characters, since there are that many (q + 1)st roots of unity. This gives

q2 − 1− (q + 1) = (q + 1)(q − 2), but when we induce to G, switching α and

β makes no difference. Thus we get (q + 1)(q − 2)/2 irreducible characters of

this form.

Thus to this point we have found

(q + 1) + (q + 1) +
(q − 2)(q + 1)

2
=

(q + 1)(q + 2)

2
irreducible characters
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Subtracting this from the required total of (q + 1)2 gives q(q + 1)/2 remain-

ing. To find these we begin by inducing a representation from another large

subgroup of G.

Let H ⊆ G be the subgroup of all matrices of the form ( x y
y x ). We note

that in an element of this subgroup, unlike a conjugacy class representative

of the same form, y can be zero. Note also that, as we saw on page 18, the

eigenvalues of every element of this subgroup will have norm 1. The order of

H is readily seen2 to be (q + 1)2, so that [G : H] = (q − 1)q. To find coset

representatives, we define an equivalence relation on the Borel subgroup: let

two elements in this subgroup be similar if and only if one is a scalar multiple

of the other by a norm 1 element. Since |B|= (q − 1)q(q + 1) , and there are

q + 1 elements of norm 1, we get (q − 1)q equivalence classes. We claim that

the set formed by taking an arbitrary element from each of these equivalence

classes will be a transversal for H.

To see this, suppose first that ( a b
0 d ) ∈ ( e f

0 h )H. Then we have

⎛

⎜⎝
e f

0 h

⎞

⎟⎠

−1⎛

⎜⎝
a b

0 d

⎞

⎟⎠ ∈ H ⇒

⎛

⎜⎝
a
e

b
e −

df
eh

0 d
h

⎞

⎟⎠ ∈ H ⇒ a

e
=

b

f
=

d

h
= x, for some x ∈ Fq2

These equalities hold since, for the matrix on the right to be in H, a
e must

equal d
h , and

b
e −

df
eh must be equal to zero, which implies that b

f = d
h . Thus

we have: ( a b
0 d ) = x( e f

0 h ), and 1 = ad = 1(ex)(hx) = (eh)xx = xx

Next, suppose that ( e f
0 h ) = x( a b

0 d ) with xx = 1. Then

2This follows from the ideas used to count the conjugacy classes with representatives of
this form, while also accounting for the case where y = 0.
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⎛

⎜⎝
e f

0 h

⎞

⎟⎠

−1 ⎛

⎜⎝
a b

0 d

⎞

⎟⎠ =
1

x

⎛

⎜⎝
a b

0 c

⎞

⎟⎠

−1⎛

⎜⎝
a b

0 d

⎞

⎟⎠ =

⎛

⎜⎝
1

x
0

0
1

x

⎞

⎟⎠

which is in H since
1

x
is of norm 1.

Therefore the number of elements of B in any coset of H must be either 0

or q+1, but as there are (q−1)q cosets of H, then there must be q+1 elements

of B in each coset in order to account for the order of B in the partition of G

into the cosets of H. Now for each conjugacy class representative g of G, we

find all σ ∈ G/H such that gσ = σ or s−1gs ∈ H, with s arbitrary in σ:

• ( x 0
0 x ): as this element is in both H and the center of G, it fixes all cosets

and s−1( x 0
0 x )s = ( x 0

0 x ) for any s, a coset representative of H.

• ( x y
0 x ): for any coset representative s = ( a b

0 d ), s
−1( x y

0 x )s = ( x dy
a

0 x
), and

this is not in H since d, y ̸= 0 ⇒ dy/a ̸= 0. Therefore this representative

fixes no cosets.

• ( x 0
0 y ): the eigenvalues of this element are both not norm 1; therefore for

any coset representative s, s−1( x 0
0 y )s cannot lie in H, and this element

fixes no cosets.

• ( x y
y x ): for any coset representative s = ( a b

0 d ) we have

s−1( x y
y x )s =

⎛

⎜⎝
x− by

d

−b2y

ad
+

dy

a
ay

d
x+

by

d

⎞

⎟⎠

For this to be in H we require first, that
by

d
=

−by

d
⇒ b = 0, since y ̸= 0.

This gives:
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⎛

⎜⎝
x

dy

a
ay

d
x

⎞

⎟⎠

.

Now we require that
a

d
=

d

a
⇒ d = ±a. Thus the coset representative s

will be either:

( a 0
0 a ) ∈ ( 1 0

0 1 )H = H, or

( a 0
0 −a ), with aa = −1; there are q+1 such elements of G, all in the

same coset of H.

Therefore ( x y
y x ) fixes two cosets of H, and we note that:

for s = ( a 0
0 a ), s

−1( x y
y x )s = ( x y

y x ), whereas

for s = ( a 0
0 −a ), s

−1( x y
y x )s = ( x −y

−y x ).

Next we take a 1 dimensional character on H as follows: if α, β are distinct

1 dimensional characters on the subgroup L, then we have a 1 dimensional

character φ on H by sending ( x y
y x ) to α(x + y)β(x − y). Inducing this to G,

and writing m for x+ y and n for x− y, we get:

representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

IndG
Hφ: (q − 1)qα(x)β(x) 0 0 α(m)β(n) + α(n)β(m)

To calculate the Hermitian product of this character with itself, we multiply

the value in the fourth column by its complex conjugate to get: 2 + γ(k) + γ(k−1)

where γ =
α

β
is a non-trivial character on L (since α and β were distinct),

and k =
m

n
∈ L\{1} since m = n ⇒ y = 0 which is not possible . Now we

want to sum g(k) = 2+γ(k)+γ(k−1) over the conjugacy class representatives
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( x y
y x ), but in order to facilitate a convenient grouping in the sum, we include

elements of the form ( x −y
−y x ), which is conjugate to ( x y

y x ) . Since there are

q(q + 1)/2 conjugacy class representatives of the form ( x y
y x ), we are summing

over q(q+1) matrices in all. We form sets of q elements each such that in each

set any k = m/n will take on all values in L\{1}. There will be q+1 such sets,

since for any such k, m ∈ L can be chosen freely, determining n . Summing

over such a set of q matrices will give 2q − 1− 1 = 2q − 2, and summing over

the q+1 such sets gives 2(q− 1)(q+1). We divide this by 2, because g(k) for

( x −y
−y x ) equals g(k) for ( x y

y x ). The Hermitian product is:

1

|G| [(q − 1)2q2(q + 1) + (q − 1)2q(q + 1)] = q − 1

so that IndG
Hφ is not irreducible.

At this point we observe that the forms of the conjugacy class represen-

tatives for G resemble those of G2(Fq) , and also that the dimensions of the

irreducible characters found so far for G are the same3 as the dimensions of

the first 3 irreducible characters for G2(Fq): 1, q, q + 1. Since the fourth ir-

reducible character of the general linear group has dimension q − 1, it seems

worthwhile to try to get a character of that dimension for the unitary group

as well. To this end we first tensor the characters V and Wα,β to get:

representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

V ⊗Wα,β: q(q + 1)α(x)β(x) 0 α(x)β(y) + α(y)β(x) 0

3We are using ”same” in a loose sense here, since q is the order of the field in one case
but not the other.
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The point of this is that we may now imitate the method of Fulton and

Harris (p 70), and consider the following virtual character Xα,β :

Xα,β = V ⊗Wα,β −Wα,β − IndG
Hφ

with dimension: q(q+1)−(q+1)−q(q−1) = q−1. Its values on the conjugacy

class representatives are:

representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

Xα,β: (q − 1)α(x)β(x) −α(x)β(x) 0 −[α(m)β(n) + α(n)β(m)]

and, recalling the contribution from the fourth column that we have already

worked out, we find the Hermitian product of this character with itself to be:

1

|G| [(q − 1)2(q + 1) + (q − 1)(q + 1)2 + (q − 1)2q(q + 1)] = 1

Therefore since the dimension is an integer greater than zero and the Her-

mitian product is 1, Xα,β is irreducible . Since α and β are distinct characters

on L, and after inducing to G, switching α and β makes no difference, there

are
q(q + 1)

2
such characters. Summing all of the irreducible characters that

we have found gives a total of :

(q + 1) + (q + 1) +
(q + 1)(q − 2)

2
+

q(q + 1)

2
= (q + 1)2

which is the number of irreducible characters of G, since it is the number of

conjugacy classes. We summarize the irreducible characters of G = U2(Fq2)

below, writing m for x+ y and n for x− y:
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( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

Uα: α(x)2 α(x)2 α(x)α(y) α(x2 − y2)

Vα: qα(x)2 0 α(x)α(y) −α(x2 − y2)

Wα,β: (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

Xα,β: (q − 1)α(x)β(x) −α(x)β(x) 0 −[α(m)β(n) + α(n)β(m)]

Table 5.1: Irreducible Characters of G

There is another way4 to get the final irreducible character, that does not

use the somewhat unmotivated virtual character above. We have a character

induced from the subgroup H:

representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

IndG
Hφ: (q − 1)qα(x)β(x) 0 0 α(m)β(n) + α(n)β(m)

We will now induce another character from the subgroup K = {( x y
0 x )} and

combine it with the one induced from H to get Xα,β.

We begin by finding the order of K. Since y can be zero, we have q + 1

choices for x, and q choices for y5. Thus |K|= q(q+1), and [G : K] = (q−1)(q+

1). For the conjugacy class representatives, we first consider equivalence classes

of matrices of the form ( a 0
c d ) and ( 0 b

c 0 ), where two matrices are equivalent if

one is a multiple of the other by an element of Fq2 of norm 1. We will take

an arbitrary element from each equivalence class to form the transversal of

G/K. We note that from the q(q2 − 1) matrices of the form ( a 0
c d ) we get

q2 − q equivalence classes, and from the q2 − 1 matrices of the form ( 0 b
c 0 ) we

get q − 1 equivalence classes. The total number of equivalence classes is thus

(q − 1)(q + 1) as required.

4Here we are following an idea of C. Bushnell and G. Henniart pp. 47–48, in the case of
GL2

5For the reasons mentioned when we counted the Borel subgroup
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Next we show that matrices from distinct equivalence classes lie in different

cosets of K:

• claim: ( a 0
c d ) ∈ ( e 0

g h )K ⇔ ( a 0
c d ) = x( e 0

g h ), xx = 1. proof:

”⇒”: ( e 0
g h )

−1( a 0
c d ) ∈ K ⇒ (

a
e 0

−ag
eh + c

h
d
h
) ∈ K

This implies6 that a
e = d

h = c
g = x ∈ Fq2 , and ad = 1 ⇒ (ex)(hx) =

ehxx = xx = 1

”⇐”: ( e 0
g h ) = x( a 0

c d ), xx = 1 ⇒ ( e 0
g h )

−1( a 0
c d ) = 1

x(
a 0
c d )

−1( a 0
c d ) =

(
1
x 0

0 1
x

) ∈ K

• claim: ( 0 b
c 0 ) ∈ ( 0 f

g 0 )K ⇔ ( 0 b
c 0 ) = x( 0 f

g 0 ), xx = 1. proof:

”⇒”: ( 0 f
g 0 )

−1( 0 b
c 0 ) = (

c
g 0

0 b
f
) ∈ K ⇒ b

f = c
g = x ∈ Fq2 , and 1 = bc =

(fx)(gx) = fgxx = xx.

”⇐”: ( 0 b
c 0 ) = x( 0 f

g 0 ), xx = 1 ⇒ ( 0 f
g 0 )

−1( 0 b
c 0 ) = ( 0 f

g 0 )
−1( 0 f

g 0 )x =

( x 0
0 x ) ∈ K

• Finally, ( a 0
c d ) /∈ ( 0 n

m 0 )K, since ( 0 n
m 0 )

−1( a 0
c d ) = (

c
n

d
n

a
m 0

), which is not in

K. Therefore the transversal is as was claimed.

Next we find the cosets σ ∈ K such that for a conjugacy class representative

g, we get gσ = σ, or s−1gs ∈ K for an arbitrary s in σ:

1. g = ( x 0
0 x ). Here, g is in K and in the center of G, so it fixes all of the

(q − 1)(q + 1) cosets of K.

6The cases with c or g = 0 are omitted here for simplicity; they follow in the same way.
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2. g = ( x y
0 x ), y ̸= 0. First, let σ = ( a 0

c d )K; we will show that g fixes this

coset if and only if c = 0. Letting s = ( a 0
c d ), we find that

s−1gs =

⎛

⎜⎝
x+ cy

a
dy
a

−c2y
ad x− cy

a

⎞

⎟⎠

and this is in K if and only if c = 0, in which case we get

s−1gs =

⎛

⎜⎝
x ddy

0 x

⎞

⎟⎠

where ad = 1 ⇒ d
a = dd. Therefore g fixes cosets of the form ( a 0

0 d )K.

There are (q − 1) such cosets because there are q2 − 1 unitary matrices

of the form ( a 0
0 d ), in equivalence classes each of size q + 1. As we range

over all these cosets, dd of the coset representative ( a 0
0 d ) will take on all

values in F×
q ; this will be important later. Next we show that g fixes no

cosets of the form g = ( 0 b
c 0 )K. In this case we have

s−1gs =

⎛

⎜⎝
x 0

cy
b x

⎞

⎟⎠

which cannot be in K because y ̸= 0 ̸= c.

3. g = ( x 0
0 y ), y ̸= x. Here g has two eigenvalues, and every coset repre-

sentative s is invertible. Thus s−1gs will have two eigenvalues, and so

cannot be in K. Thus g fixes no cosets.

4. g = ( x y
y x ), y ̸= 0. Here again, g has two eigenvalues, so that s−1gs /∈ K,

implying that g fixes no cosets.

34



Now we create a character on K as follows: let ψ : F×
q2 → C×, and

φ : F+
q2 → C× be 1 dimensional characters. We also require that φ be

nontrivial on the additive subgroup {t ∈ F+
q2 | t+ t = 0} ⊆ F+

q2 . Then we

define a 1 dimensional character γ : K → C× by γ[( x y
0 x )] = φ( yx)ψ(x).

This seems a bit contrived, but it carries information about y, and will

be just what we need. First we show that it is in fact a character:

γ( 1 0
0 1 ) = φ(0)ψ(1) = (1)(1) = 1.

γ[( x y
0 x )(

p q
0 p )] = γ( px py+qx

0 px )

= φ(
py + qx

px
)ψ(px)

= φ(
y

x
+

q

p
)ψ(px)

= φ(
y

x
)φ(

q

p
)ψ(p)ψ(x)

= φ(
y

x
)ψ(x)φ(

q

p
)ψ(p)

= γ( x y
0 x )(

p q
0 p )

Now we give the character values for the conjugacy class representatives.

For g = ( x 0
0 x ) we have χIndG

Kg = (q − 1)(q + 1)ψ(x). For g = ( x y
0 x ) we get

∑
k∈F×

q
γ( x ky

0 x )(see the bottom of p 34). We can write this as
∑

k∈F×
q
φ(kyx )ψ(x) =

ψ(x)
∑

k∈F×
q
φ(kyx ). To evaluate this, we write z for y

x , noting that z + z = 0,

so that 0, k1z, k2z, . . . kq−1z, (where all ki are distinct in F×
q ) is the subgroup

{t ∈ F+
q2 | t+ t = 0} of F+

q2 of order q, so that φ is nontrivial on this subgroup,

which means φ(k1z) + · · · + φ(kq−1z) = −1. Therefore χIndG
Kg = −ψ(x), and

we have:
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representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

IndG
Kγ: (q − 1)(q + 1)ψ(x) −ψ(x) 0 0

If we now recall the character induced from H:

representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

IndG
Hφ: (q − 1)qα(x)β(x) 0 0 α(m)β(n) + α(n)β(m)

we might note that the difference of the dimensions is q − 1. In fact, if we

take for ψ the 1 dimensional character αβ used in H, then defining Xαβ =

IndG
Kγ − IndG

Hφ gives

representative: ( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

Xα,β: (q − 1)α(x)β(x) −α(x)β(x) 0 −[α(m)β(n) + α(n)β(m)]

and we have the fourth irreducible character. To count these representations,

we note that using a different nontrivial φ will not make a difference; but α

and β were distinct characters on L, and inducing to G means switching α

and β makes no difference, so we have q(q + 1)/2 representations of this type,

confirming our result from before.
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Chapter 6

Characteristic 2

In this chapter we will address those parts of the main argument that fail for

the case p = 2 . The central problem is the matrix ( x y
y x ), which serves both as

a conjugacy class representative (in which case y cannot be zero), and as the

form of the matrices in the subgroup denoted H (in which case y or x but not

both can be zero). When it was necessary to merely count this element as a

conjugacy class representative, the count was done easily using the Hermitian

form ( 1 0
0 1 ), but beginning with the listing of the first character on G, we

omitted many quirks about this matrix that arise in characteristic 2, and we

will address these here. However we shall begin at the beginning, modifying

the problematic arguments in the same order that they appear in the main

work. The assumption throughout this section is that the characteristic of the

field is 2.

The Quadratic Field Extension: In characteristic 2 all elements of a

finite field are squares, thus we cannot adjoin the square root of some element

in Fq in order to get a quadratic extension. On the other hand, the map g(x) =

x2 + x from Fq to itself is not injective since for any a ∈ Fq g(a) = g(a + 1).
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This implies (since the field is finite) that the map is not surjective, and that

we can therefore find some m ∈ Fq such that x2+x+m = 0 will have no roots

in the field. Thus if θ is a root of this equation (in some algebraic closure)

then adjoining θ gives a quadratic extension.

Conjugation in Fq2: Each x in Fq2 will be x = a+ bθ for a, b ∈ Fq. Since

θ is a root of x2 + x +m = 0, the sum of θ and θ is 1, so that θ = θ + 1. It

follows that a+ bθ = (a+ b) + bθ.

Eigenvalues: It was easy to show that the eigenvalues of 2 x 2 unitary

matrices lie in Fq2 by looking at the discriminant of the characteristic equation.

In characteristic 2 however, the quadratic formula is not available, and it will

take a bit more work to prove the result in this case.

The characteristic equation for A ∈ G is λ2 + Tr(A)λ + det(A) = 0. If

Tr(A) = 0, the square root of det(A) (which is in Fq2) is a root. If Tr(A) ̸= 0,

then we make the substitution y =
λ

Tr(A)
to rewrite the characteristic equation

as y2 + y + d = 0, where d =
det(A)

(Tr(A))2
. We note that d ∈ Fq since with

det(A) = D = x
x for some x ∈ Fq2

d =
D

(a+ aD)2
=

xx

(ax+ ax)2

which is invariant under conjugation and so in Fq. This implies that any root

u, of y2+y+d = 0, lies in the unique (up to isomorphism) quadratic extension

of Fq, which is just Fq2 . But now any root w of λ2 +Tr(A)λ+det(A) = 0 will

be equal to uTr(A) and so will be in F2
q.

The Conjugacy Class ( x y
y x ), y ̸= 0: This conjugacy class is meant to

comprise the elements of G having distinct, norm 1 eigenvalues, but when

p = 2, ( x y
y x ) has trace zero, and will therefore have 1 eigenvalue. The solution
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here is to use the Hermitian form ( 1 0
0 1 ) (effectively changing bases) so that

the conjugacy class representative will be ( x 0
0 y ), y ̸= x where in this case the

eigenvalues are x and y. This allows us to count the number of such conjugacy

class representatives, though as we will see below, for some calculations, this

conjugacy class representative must be written in a more complicated way.

Character Values: For the representations Uα and V α the character

values for the fourth conjugacy class were given as α(x2−y2) and −α(x2−y2)

respectively. For p = 2, these character values are changed to α(xy) and

−α(xy), since the value was based on the determinant.

The Permutation Representation of G/B: The representation de-

noted V was derived from a permutation representation of the coset space of

the Borel subgroup. A part of this argument involved showing that the con-

jugacy class representative ( x y
y x ), y ̸= 0 fixed no cosets of B, and since ( x y

y x )

cannot be used when p = 2 this argument must be modified. If we use the

other Hermitian form as we did when counting the conjugacy class represen-

tatives we face the problem that this form does not allow upper triangular

matrices (apart from diagonal matrices), therefore our procedure must be a

bit indirect: we begin using the form ( 1 0
0 1 ) so that the class representative

is ( x 0
0 y ), y ̸= x, then we use the change of basis matrix1 ( 1 θ

1 θ+1 ) to change

( x 0
0 y ), y ̸= x into :

⎛

⎜⎝
(x+ y)θ + x (x+ y)(θ2 + θ)

(x+ y) (x+ y)θ + y

⎞

⎟⎠

with y ̸= x. This will be the conjugacy class representative in place of

( x y
y x ), y ̸= 0. Now we can check all cosets of B. Denoting the above rep-

1This is the change of basis matrix that takes us from the form ( 1 0
0 1 ) to the form ( 0 1

1 0 )
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resentative as A, we see:

1. if the coset representative is s = ( 1 0
0 1 ) or (

0 1
1 0 ) ,then s−1As is not in B

because the entries of A in the upper right and lower left positions are

necessarily non-zero.

2. if s = ( 1 0
t 1 ), t ̸= 0, then s−1As gives a value in the lower left element of

(x+ y)(mt2 + t+ 1), where m = θ2 + θ. This expression cannot be zero

because y ̸= x, and because we can show that mt2 + t + 1 = 0 requires

t /∈ Fq, whereas in characteristic 2 ( 1 0
t 1 ) is unitary if and only if t ∈ Fq,

since we will have t + t = 0 ⇒ t = t ⇒ t ∈ Fq. To see that no t ∈ Fq is

a root of mt2 + t + 1 = 0, let mt = y, multiply the equation by m, and

then write it as y2 + y + m = 0. By construction any solution of this

equation is not in Fq, thus t must not be in Fq.

Therefore A fixes no cosets of B as required.

Induction from H: The subgroup H, ( x y
y x ), xy ̸= 0 that was used in

this work is the subgroup consisting of elements of G that have eigenvalues of

norm 1. In characteristic 2 we must write this subgroup differently; we start

by using the Hermitian form whose matrix is the identity. In this way, H will

be ( x 0
0 y ) where y can be equal to x. Now we use the change of basis matrix

( 1 θ
1 θ+1 ) ( we change bases in order to be able to use matrices from the Borel

subgroup) to get ⎛

⎜⎝
(x+ y)θ + x (x+ y)(θ2 + θ)

(x+ y) (x+ y)θ + y

⎞

⎟⎠

where y can be equal to x. The character t on H that we induced used α and

β, 1 dimensional characters on L, and sent the conjugacy class representative
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( x y
y x ) to α(m)β(n), while the induced value was α(m)β(n)+α(n)β(m), where

m,n were the eigenvalues. When we rewrite the conjugacy class representative

for characteristic 2, the eigenvalues are now x, y, so that we should expect the

induced value to be α(x)β(y) + α(y)β(x).

Recall that the conjugacy class representative looks like the subgroup, with

the condition that y ̸= x. Now when we check the fix of this conjugacy class

representative on cosets of H, we find that (writing S for (x+y)) for any coset

representative s = ( a b
0 d ), s

−1As is :

⎛

⎜⎝
Sθ + x+ bS

d
d
a [S(θ

2 + θ)]

aS
d Sθ + y + bS

d

⎞

⎟⎠

if this is to be in H, then from the lower left entry we have a = d, and from

the entries on the main diagonal we have either of the following possibilities:

• b = 0, so that the coset representative will be (without loss of generality)

( 1 0
0 1 ) so that this class representative fixes H itself; to be expected , as

this representative is in H.

• b = d, for then the upper left entry becomes Sθ+ y, and the lower right

becomes Sθ + x. This makes the coset representative (without loss of

generality) ( 1 1
0 1 ) which, incidentally, is unitary only for p = 2. Finally, we

note that the character value for this class representative upon induction

to G will be α(x)β(y) + α(y)β(x) as required.

Induction From K: In the induction from the subgroup K, we again

used the conjugacy class representative ( x y
y x ), y ̸= 0. For characteristic 2 we
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replace it again by

⎛

⎜⎝
(x+ y)θ + x (x+ y)(θ2 + θ)

(x+ y) (x+ y)θ + y

⎞

⎟⎠

where y ̸= x. Now to show that this fixes no cosets of K, we note that it has

distinct eigenvalues, so that no conjugate of it can lie in K.
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Chapter 7

Conclusion

We conclude with some observations about the similarities between the char-

acters of the general linear group, and those of the unitary subgroup. For the

general linear group of 2 x 2 matrices over a finite field of order q we have from

Harris:

( x 0
0 x ) ( x 1

0 x ) ( x 0
0 y ) ( x ϵy

y x )

Uα: α(x)2 α(x)2 α(x)α(y) α(x2 − ϵy2)

Vα: qα(x)2 0 α(x)α(y) −α(x2 − ϵy2)

Wα,β: (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

Xφ: (q − 1)φ(x) −φ(x) 0 −(φ(ζ) + φ(ζq))

Table 7.1: Irreducible Characters of GL2(Fq)

In the fourth row ζ is essentially one of the eigenvalues of ( x ϵy
y x ), ζq is the other

eigenvalue1, and φ is a 1 dimensional character on Fq2 . These correspond,

respectively, to m, n, and αβ in the fourth row of table 4.1.

Let us now compare this to our table of the characters of the unitary group:

1More precisely, ζ = x+ y
√
ϵ, and ζq = x− y

√
ϵ.
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( x 0
0 x ) ( x y

0 x ) ( x 0
0 y ) ( x y

y x )

Uα: α(x)2 α(x)2 α(x)α(y) α(x2 − y2)

Vα: qα(x)2 0 α(x)α(y) −α(x2 − y2)

Wα,β: (q + 1)α(x)β(x) α(x)β(x) α(x)β(y) + α(y)β(x) 0

Xα,β: (q − 1)α(x)β(x) −α(x)β(x) 0 −[α(m)β(n) + α(n)β(m)]

Table 7.2: Irreducible Characters of G

We notice first, that the dimensions in each case are 1, q, q+1, q− 1, though q

is the group order only in the general linear group. Next we see that the forms

of the corresponding conjugacy class representatives are almost identical. The

fourth columns differ only in the presence of the epsilon in the general group,

and in the second column the difference arises from the fact that matrices in

the unitary subgroup having one eigenvalue do not necessarily have a Jordan

form. Turning to the character values themselves, we note that almost all

corresponding values are the same; the exceptions arising from the epsilon,

and the different form of the eigenvalues in the fourth column of the last

character. We recall also, that in both tables Wα,β is irreducible if and only if

α ̸= β, and also that when α = β, Wα,β = Uα ⊕ Vα.

Next we compare the methods of construction. The first row in each table

comes from mapping the determinant of each element by a 1 dimensional

character. The second rows are both tensor products of the first row together

with the character formed by subtracting the trivial representation from the

permutation representation on the corresponding borel subgroup. The third

rows are both formed by inducing a character on the Borel subgoup, and the

fourth rows are found by inducing characters from subgroups having almost

identical forms: ( x ϵy
y x ) in the case of the general group, and ( x y

y x ) in that of
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the unitary group. In addition, the characters induced from each of these

subgroups could be combined with others to form a virtual character that

turned out to be the final one.
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