
Modeling and Optimization of CO2 Fixation using Microalgae
Cultivated in Oil Sands Process Water

by

Sepideh Kasiri

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Process Control

Department of Chemical and Materials Engineering

University of Alberta

c©Sepideh Kasiri, 2015



Abstract

Biological fixation of CO2 using microalgae is a potential CO2 reduction strategy which

can be applied to the oil sands operations in Alberta. These operations also produce

large amounts of oil sands process water (OSPW), which can act as a growth medium for

the microalgae. In this thesis, three different microalgae: Botryococcus braunii, Chlorella

pyrenoidosa and Chlorella kessleri were investigated for their ability to grow in OSPW,

and to uptake CO2. Also, the effect of phosphate, nitrate, CO2 concentrations and

light intensity were studied using a fractional two-level and a full two-level factorial de-

signs. These investigations eliminated Botryococcus braunii as it cannot grow in OSPW,

and demonstrated that Chlorella kessleri has a higher CO2 uptake rate than Chlorella

pyrenoidosa. Moreover, CO2 concentration, light intensity and phosphate concentration

proved to have the strongest effects (in that order) on the growth and CO2 uptake rate of

Chlorella kessleri. To make biological fixation of CO2 economically competitive compared

to other CO2 capture techniques, it is necessary to optimize CO2 fixation rate and operate

the algal culture at the optimal process conditions. Response surface methodology (RSM)

was also used to develop statistical models for the CO2 uptake rate and specific growth

rate of Chlorella kessleri. The quadratic models developed were used to determine the

optimal sets of CO2 concentration, phosphate concentration and light intensity for CO2

uptake rate and specific growth rate in batch operation. A multi-objective optimization

technique was then used to maximize the CO2 uptake rate and specific growth rate simul-
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taneously. Moreover, to have a better understanding of microalgal dynamic behaviour,

data generated using a central composite experimental design (CCD) with varying light

intensity, CO2 and phosphate concentration was used to develop a mathematical model

that describes the kinetics of algal growth and CO2, phosphate, nitrate and ammonium

uptake rate of Chlorella kessleri cultivated in OSPW. This nonlinear dynamic model was

used to determine the optimal CO2 concentration, phosphate concentration and light

intensity for CO2 uptake and algal growth over a period of time in a batch culture us-

ing a multi-objective optimization technique to maximize CO2 fixation and algal growth

simultaneously. Finally, a lab-scale closed raceway photobioreactor was designed and

assembled for cultivation of Chlorella kessleri in OSPW with the aim of combining CO2

capture and algal production. A fed-batch model describing the dynamics of microalgae

growth and CO2, phosphate and ammonium uptake rate was developed based on the

modification of a previously developed model for batch cultures, and was successfully

validated against experimental data. The CO2 uptake rate and algal growth can be max-

imized by properly manipulating the CO2 and phosphate concentrations and availability

and intensity of light. A model-based optimization method was used to calculate the

optimal feeding strategies for CO2, phosphate and light intensity.
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Chapter 1

Introduction

1.1 Introduction

The amount of atmospheric CO2 has been increasing significantly in recent years, thus

causing climate change. In 1997, 7.4 billion tons of CO2 were released into the atmosphere

from anthropogenic sources. By the year 2100, this number was estimated at 26 billion

tons (Kane et al., 1999). Options for capturing and reducing CO2 emissions include

(1) utilizing carbon dioxide in value-added products such as plastics, paint, construction

materials, solvents, cleaning compounds, and packaging (Lipinsky, 1992); (2) removing

CO2 from power plant flue gas using chemical absorbents (Stepan et al., 2002); (3) using

alternative or renewable energy sources such as wind, solar, nuclear, and geothermal

sources (Stepan et al., 2002); (4) converting CO2 to chemicals (e.g., dry reforming with

methane to produce syngas); and (5) biological fixation of carbon dioxide (Stepan et al.,

2002). The first four options have high capital and/or operating costs; new waste streams

requiring disposal, and/or minimum achievement of carbon dioxide offset versus energy

input (Lipinsky, 1992; Stepan et al., 2002). However, biological fixation of CO2 is an

environmentally sustainable option because it puts carbon dioxide back into the natural

carbon cycle through the photosynthetic process (Kumar et al., 2010; Stepan et al., 2002).

Photosynthesis is a slow reaction in larger plants since significant amounts of energy

1



1.1: Introduction 2

must be expended to build their structure. However, smaller plants carry out photosyn-

thesis at a higher efficiency, as they do not need to invest as much energy in building

large structures. Single-celled algal organisms are the smallest and simplest forms of

plants that can put nearly all of their energy into reproduction by not having to invest

energy in growing roots, leaves and flowers (Freeman and Rhudy, 2007). In addition, mi-

croalgae have high proliferation rates, wide tolerance to extreme environments (Stepan

et al., 2002), and the capability to assimilate CO2 into other valuable materials such as

carbohydrates and lipids (Murakami and Ikenouchi, 1997).

The tolerance of various microalgal strains to the concentration of CO2 depends on

the pH and the CO2 concentration (Kumar et al., 2010). An early review on flue gas

tolerance by microalgae showed that many microalgae can tolerate high levels of CO2

and medium levels of SOx and NOx (up to 150 ppm) (Wang et al., 2008). Table 1.1,

shows more than ten microalgae strains that have been studied for CO2 fixation by

Wang et al. (2008). de Morais and Costa (2007c) reported that Scenedesmus obliquus

and Chlorella kessleri presented a good tolerance when exposed to 6%, 12% and 18%

CO2 (v/v). Chlorella kessleri showed maximum specific growth rates of 0.267 per day

and biomass productivity of approximately 0.087 g/L per day when cultivated with 6%

(v/v) and 12% (v/v) CO2. Also, it grew well when the culture was exposed to 18% (v/v)

CO2 (Wang et al., 2008), which is a very high level for CO2 streams from sources such

as flue gases.

Murakami and Ikenouchi (1997) cultivated Botryococcus braunii SI-30 in a specific

medium for hydrocarbon accumulation since it has high CO2 fixation rates and hydrocar-

bon content. Sydney et al. (2010) then evaluated Chlorella vulgaris LEB-104, Botryococ-

cus braunii SAG-30.81, Spirulina platensis LEB-52 and Dunaliella tertiolecta SAG-13.86

for CO2 fixation. As shown in Table 1.2, Botryococcus braunii showed the highest CO2

fixation rate and reached a biomass concentration of 3.11 g/L after 15 days cultivation.
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Table 1.1: Selected microalgal strains studied for CO2 bio-mitigation (Wang et al., 2008).

Microalgae CO2 % P g/L.day PCO2
g/L.day Notes

Chlorococcum littorale 40 N/A 1.0

Chlorella kessleri 18 0.087 0.163*

Chlorella sp. UK001 15 N/A >1

Chlorella vulgaris 15 N/A 0.624 Artificial wastewater

Chlorella vulgaris Air 0.04 0.075* Watanabe’s Medium

Chlorella vulgaris Air 0.024 0.045* Low-N medium

Chlorella sp. 40 N/A 1.0

Dunaliella 3 0.17 0.313* High salinity, β-carotene

Haematococcus pluvialis 16-34 0.076 0.143 Commercial scale

Scenedesmus obliquus Air 0.009 0.016 Wastewater, winter

Scenedesmus obliquus Air 0.016 0.031 Wastewater, summer

Botryococcus braunii - 1.1 >1.0 Accumulating hydrocarbon

Scenedesmus obliquus 18 0.14 0.26

Note: En-dash not specified or not controlled.

CO2% is the percentage of CO2 (v/v) at the inlet.

P is biomass productivity and PCO2
is CO2 fixation rate.

*Calculated from the biomass productivity according to equation, PCO2
=1.88×P, which is derived from the

typical molecular formula of microalgal biomass, C0.48H1.83N0.11P0.01(Chisti, 2007).

However, it might be difficult to compare the various results in the literature, because of

the different media and conditions under which the microalgae were grown. For example,

Scragg et al. (2002) presented low biomass productivity in low nitrogen medium and did

not use CO2 enrichment. These conditions are different from those used in Sydney et al.

(2010). On the other hand, Kishimoto et al. (1994) and de Morais and Costa (2007c)

presented the CO2 fixation rate of Dunaliella tertiolecta and Spirulina platensis grown in

different conditions with the ones in Sydney et al. (2010). However, the results did not

change significantly. Furthermore, Tang et al. (2011) investigated CO2 fixation rates and

lipids production of Scenedesmus obliquus SJTU-3 and Chlorella pyrenoidosa SJTU-2

grown with different CO2 concentration from 0.03% to 50% (v/v). The maximum CO2

biofixation rate and biomass concentration were found to be 10% CO2 concentration for

both microalgae. However, high CO2 concentrations (30%-50%) were favorable for lipids

accumulation.
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Table 1.2: Comparison between carbon fixation rates indicated in Sydney et al. (2010)
and other literature (modified from Sydney et al. (2010)

Microalgae
Literature

Reference
Sydney et al. (2010)

mgCO2
/L.day mgCO2

/L.day

Chlorella vulgaris LEB-104 624 Yun and Park (2003) 252

Botryococcus braunii SAG-30.81 1100 Murakami and Ikenouchi (1997) 497

Spirulina platensis LEB-52 413* de Morais and Costa (2007c) 318

Dunaliella tertiolecta SAG-13.86 313* Kishimoto et al. (1994) 272

*Calculated from the biomass productivity (Wang et al., 2008).

Microalgal cultivation for CO2 fixation can be integrated with wastewater treatment

to reduce the cost of water and chemicals required for the growth medium (Yewalkar et al.,

2011). Wastewater can be industrial wastewater from oil sands operations. The oil sands

deposits in northern Alberta, Canada, are one of the largest sources of oil sands in the

world. This makes Alberta one of the largest sources of oil sands process water (OSPW)

since the steam assisted gravity drainage (SAGD) operation and the hot water extraction

process (which separate bitumen from sand and clay), are processes that use water as a

main constituent. The resulting process water contains a wide range of chemicals. OSPW

is relatively hard with a pH of 8.0-8.4 and an alkalinity of approximately 800-1000 mg/L.

OSPW contains a variety of inorganic compounds that are shown in Table 1.3 (Allen,

2008).

Since OSPW contains several nutrients, it may be suitable for growth of some microal-

gae (Yewalkar et al., 2011). Also, much of the OSPW is at moderate temperatures that

are suitable for microalgal growth. Leung et al. (2001) identified several algae includ-

ing Botryococcus braunii, Gloeococcus schroeteri, Cosmarium depressum, Chrysococcus

rufescens, Chromulina spp., Ochromonas spp., and Keratococcus spp. in tailings ponds.

Furthermore, Yewalkar et al. (2011) investigated the potential for microalgae growth

in OSPW with the aim of CO2 fixation. Chlorella pyrenoidosa, obtained from the Cana-

dian Centre for Culture of Microorganisms (CCCM), was cultivated in a medium con-
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Table 1.3: Inorganic water chemistry of oil sands process waters (modified from Allen
(2008)).

Variables (mg/L) Syncrude MLSB (2003) Suncor TPW (2000)
Total Dissolved Solids 2221 1887

Conductivity 2400 1113-1160

pH 8.2 8.4

Sodium 659 520

Calcium 17 25

Magnesium 8 12

Chloride 540 80

Bicarbonate 775 950

Sulphate 218 290

Ammonia 14 14

Note: MLSB, Mildred Lake Settling Basin and TPW, Tailings Pond Water.

taining 95% OSPW and different concentrations of Fe-ethylenediaminetetraacetic acid

(EDTA), nitrate, and phosphate (Yewalkar et al., 2011).

Beside CO2 fixation, the utilization of OSPW for microalgae cultivation has other

benefits such as (1) the possibility of degrading unwanted dissolved contaminants, (2) re-

ducing the use of water for algal cultivation, and (3) minimizing the use of algal nutrients

such as metal ions and nitrogen (Sawayama et al., 1995; Wang et al., 2008).

1.2 Objective

The main objective of this research project is to maximize the CO2 uptake rate and

growth of microalgae cultivated in OSPW. The optimization of algal cultures is difficult

due to the lack of appropriate mathematical models for many microalgal cultures. There-

fore, identifying manipulating variables and developing a model of the algal system leads

to a better understanding of the behavior of microalgae and eventually a method to find

the optimal operation conditions. In order to achieve this goal, the following objectives

have been established:
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• Select the best microalgae strain based on its ability to grow in OSPW and capacity

to uptake CO2

• Identify the parameters that significantly affect CO2 uptake and growth rate of the

selected microalgae

• Develop statistical models of CO2 uptake rate and growth rate of the selected

microalgae by manipulating effective parameters and inputs and find the optimal

initial conditions

• Develop a kinetic model of algal batch culture to describe algal growth, CO2 and

nutrient uptake rate and find the optimal initial conditions

• Modify the dynamic model for fed-batch culture and find the optimal feeding strate-

gies to manipulate parameters

1.3 Research Questions

1.3.1 What is The Best Microalgal Strain for Our Purpose?

Three strains of Botryococcus braunii, Chlorella pyrenoidosa and Chlorella kessleri were

investigated to find the best microalgal strain based on their ability to grow in OSPW

and capacity to uptake CO2. These strains were selected because 1) previous studies have

demonstrated that Botryococcus braunii can grow in the presence of high concentrations

of CO2, and is capable of one of the highest CO2 fixation rates reported in the literature,

although no study has reported its cultivation in OSPW (Sydney et al., 2010); 2) Chlorella

pyrenoidosa is not indigenous to OSPW but it has been cultivated in 95% OSPW by

Yewalkar et al. (2011); and 3) Chlorella kessleri has been identified in OSPW by our

research group (Mahdavi et al., 2012).
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1.3.2 What are The Most Effective Parameters on CO2 Uptake

and Algal Growth?

The microalgal biomass production and CO2 fixation are affected by a large number of

factors. Therefore, different microalgae species have different ability of CO2 fixation.

Besides the inherent potential of algal species in CO2 fixation, operating and cultivation

conditions, such as light, availability of nutrient sources, pH, temperature, and mixing

also influence algal growth and CO2 fixation (Stepan et al., 2002; Chisti, 2007; Kumar

et al., 2010; Singh and Dhar, 2011).

Light

The energy absorption by photosynthetic organisms depends on the chemical nature of

their constitutive pigments. Chlorophylls, phycobilins, and carotenoids are the major

pigment groups present in microalgae (Carvalho et al., 2011). Chlorophylls are the most

important group amongst these, they absorb light and transfer that light energy to a

specific chlorophyll pair in the reaction center of the photosystem. As shown in Figure

1.1, there are two photosystem units: photosystem I (with almost pure chlorophyll a) and

photosystem II (with significant level of chlorophyll b). These two photosystems work

together to transfer electrons from water to NADPH (Carvalho et al., 2011). Chloro-

phyll a is the most important molecule since the photosynthesis process starts when a

photon impacts a chlorophyll a molecule. Chlorophyll b, chlorophyll c and carotenoids

are accessory pigments. Since carotenoids are usually red, yellow or orange, they do

not absorb light in those regions (Carvalho et al., 2011). The photosynthetic process

has two main stages: light-dependent reactions, with adenosine triphosphate (ATP) and

NADPH as intermediates, create energy and reduce power, respectively; and dark reac-

tions, which compose the Calvin cycle, in which those intermediates react with CO2 to
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produce glucose as shown in Figure 1.2 (Carvalho et al., 2011).

Figure 1.1: Light-dependent reactions of photosynthesis at the thylakoid membrane(CK-
12 Foundation, 2014)

Therefore, light intensity is the most important factor in controlling photosynthetic

growth in any algal system (Fan et al., 2007). The increase in the light intensity only

corresponds to an increase in algal photosynthesis up to a certain value where the growth

rate is the maximum attainable (saturation point). Increasing the light intensity beyond

this point results in no increase and finally a reduction in the biomass productivity

due to biochemical damage to the photosynthetic apparatus, as a result of excessive

light (photoinhibition) (Camacho et al., 2003; Chisti, 2007; Fan et al., 2007; Lee, 1999;

Richmond, 1996; Singh and Dhar, 2011; Zeng et al., 2011).

The light intensity available to microalgae is significantly attenuated in high-density

cultures. Lee (1999) reported that saturated light can penetrate no more than 10 mm

into dense algal liquid. Therefore, bioreactors should be designed with a high surface
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Figure 1.2: The Calvin cycle and carbon fixation (CK-12 Foundation, 2014)

area-to-volume ratio, as well as with a short light path (Kumar et al., 2010). At a given

temperature, each type of microalga has a specific curve to correlate its growth rate

to light intensity. Typically, the saturation light intensity increases with temperature

(Carvalho et al., 2011). Usually, microalgal metabolic activity rates rise by increasing

light intensity up to 400 μmol photons.m−2.s−1. For example, Chlorella and Scenedesmus

sp. have a saturating light intensity of 200 μmol photons.m−2.s−1. The thermophilic

Chlorogleopsis sp. shows high adaptability to light intensity; it grows well under both

high light intensity (246.1 μmol photons.m−2.s−1) and low light intensity (36.9 μmol

photons.m−2.s−1) (Zeng et al., 2011). Microalgae have an amazing capacity for photo-
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acclimation in response to relatively quick and large changes in environmental light.

The photo-acclimation process consists of a series of interrelated physical, biophysical,

biochemical and physiological changes that help microalgal cells optimize their use of

available light (Carvalho et al., 2011). Since microalgae are in the dark at night naturally,

consideration of the dark period is essential. There is no agreement on what is the

appropriate duration for a dark/light cycle. Long dark periods (e.g. several hours) cause

biomass loss and drop in growth rates, because microalgae switch to respiration processes

(Carvalho et al., 2011). Khoeyi et al. (2011) reported the biomass production of Chlorella

vulgaris when it was cultivated under different light intensities (37.5, 62.5, and 100 µmol

photons.m−2.s−1) and light/dark cycles (8:16, 12:12, and 16:8 h). They concluded that

under different light intensities a light/dark cycle of 16:8h lead to increased specific

growth rates. Also, the maximum growth rate was obtained at an irradiance of 100 µmol

photons.m−2.s−1 in 16:8 h light duration.

Carbon Dioxide

The photosynthetic characteristics of microalgal species are influenced by the ambient

CO2 concentration throughout growth (Sato et al., 2003). Generally, increasing CO2

levels (up to the maximum levels that species can tolerate) increases photosynthesis in

many species because more CO2 from the external bulk medium diffuses to the active site

of Rubisco; however, most of them have CO2 concentrating mechanisms (CCMs) that

facilitate CO2 supply to Rubisco and most utilize HCO−3 (Sato et al., 2003; Xu et al.,

2010; Spalding, 2008). CCM consists of an active inorganic carbon (Ci; CO2 and/or

HCO−3 ) transport system for intracellular HCO−3 accumulation and internal carbonic

anhydrase (CA) to supply CO2 to Rubisco by dehydration of the accumulated HCO−3

(Colman et al., 2002; Sato et al., 2003; Spalding, 2008). CA is a zinc metalloprotein,

often located in the periplasmic space of the cell, that catalyzes the interconversion of
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CO2 and HCO−3 according to the following reactions (Moroney and Somanchi, 1999):

CO2 +H2O 
 H2CO3 
 H+ +HCO−3

Phosphorus

Phosphorus is another important nutrient that has a major effect on microalgal growth

and metabolism. Since not all phosphorus compounds are bioavailable, they have to

be supplied in excess as inorganic phosphorus (Pi; phosphate) (Kumar et al., 2010).

High levels of phosphorus are necessary for the generation of ATP and phosphorylation

of photosynthetic proteins and enzymes. It provides the energy requirement for active

transport of Ci, and for synthesis of proteins involved in Ci utilization, and thus influences

the capacity of algae to drive CCMs, which also costs energy (Geider et al., 1998a; Xu

et al., 2010). It has been reported that increasing Pi supply results in microalgal growth

enhancement. High Pi levels (i.e. 30 µM) increase the uptake rate of phosphorus, increase

photosynthesis and raise the pigments content (Xu et al., 2010). Xu et al. (2010) reported

that elevated CO2 at high Pi levels improved the photosynthetic capability of Gracilaria

lemaneiformis. Hence, enrichment of Pi may change the photosynthetic response of

Gracilaria lemaneiformis to high CO2 levels (i.e. 0.072%).

Nitrogen

Nitrogen is one of the most important nutrients required for microalgal growth and it

is a component of both nucleic acids and proteins directly associated with the primary

metabolism of microalgae. Variations in nitrogen supply cause changes in the partitioning

of the reductant and photosynthate between synthesis of amino acids and carbohydrates.

Nitrogen deficiency causes parallel reductions in the catalysts of photosynthetic electron

transfer and carbon fixation in vascular plant chloroplasts because it leads to reductions
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in the cellular content of chlorophyll a and increases in the content of non-photosynthetic

carotenoids (Geider et al., 1998a; Kumar et al., 2010). Nitrate, ammonium, and urea (or

combinations of them) are the most common nitrogen sources. It should be noted that

ammonium is assimilated by microalgae in preference to other forms of nitrogen because

unlike nitrate, it does not need reduction before being assimilated into amino acids (Mol-

loy and Syrett, 1988; Wang et al., 2008). However, ammonium at high concentration has

toxic effects on microalgal growth (Wang et al., 2008). OSPW contains high amounts

of ammonia and to meet surface water guidelines, ammonia removal rates of 64%-93%

would be required (Allen, 2008).

To achieve a high growth rate and CO2 fixation rate, the maintenance of the exponen-

tial growth phase for a long period of time is essential (Jin et al., 2006). Jin et al. (2006)

fed and controlled nitrogen intermittently into a fed-batch photobioreactor to describe

the effect of the maintenance of nitrogen over the limiting level during carbon fixation.

They then concluded that intermittent nitrate feeding methods might be a good option

for increasing carbon fixation efficiency, and also prolonging the duration of carbon fix-

ation in a given photobioreactor system. Lee and Lee (2002) studied nitrogen removal

in wastewaters with low (approximately 0.015 to close to zero) carbon/nitrogen ratios,

exploiting the photosynthetic ability of Chlorella kessleri. Therefore, Chlorella kessleri

cultures removed excess nitrogen and utilized CO2 from air or HCO−3 ions. The results

showed that Chlorella kessleri could successfully remove nitrogen from wastewater, as

long as the mass transfer of CO2 was not limited.

Oxygen

Algal growth and photosynthesis are affected by oxygen concentration. Inside the chloro-

plast, Rubisco (1,5-bisphosphate carboxylase oxygenase) can fix CO2 and produce two

molecules of 3-phosphoglycerate. Through a series of reactions, these two 3-carbon or-
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ganic acids are synthetized as substrates for starch and oil production. Conversely, oxygen

can compete with CO2 to participate in the Calvin Cycle for Rubisco. Products of the

oxygenase reaction are 3-phosphoglycerate and 2-phosphoglycolate. 2-Phosphoglycolate

is consequently metabolized to glycine, which, when condensed with another glycine

molecule to produce serine, causes the loss of CO2. This carbon loss reduces the ability

of the Calvin cycle to regenerate the 5-carbon sugar substrate (ribulose bisphosphate)

required for the Calvin cycle by Rubisco, further decreasing the efficiency of photosyn-

thesis. This overall process is called photorespiration, because it happens mainly in the

presence of light. The photorespiration process decreases photosynthetic carbon fixation

efficiency by 20-30%. To reduce the competitive inhibition of oxygen on the Calvin cycle

by Rubisco, microalgae can actively pump and store sufficient CO2 to elevate internal

CO2 concentrations above equilibrium levels with air (Zeng et al., 2011). Photosynthetic

oxygen evolution of microalgae causes an increase of dissolved oxygen (DO) concentra-

tion in the culture medium, especially when the rate of photosynthesis is high. DO

levels that are higher than air saturation values will cause formation of gas bubbles in

the media, which can interfere with light absorption. Therefore, it is necessary to effi-

ciently remove the photoinhibited effect of accumulative oversaturated DO on microalgal

photosynthesis. In addition, excess oxygen combined with intense sunlight can cause

photo-oxidative damage to the chlorophyll reaction centers of algal cells inhibiting pho-

tosynthesis and reducing productivity (Chisti, 2008; Singh and Dhar, 2011). An adequate

degassing mechanism must be in place to readily rid the bioreactor of oxygen bubbles.

However, the bubbles formed by aeration absorb DO which then moves to the surface

and is subsequently exhausted out.
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pH

pH is another factor that affects microalgal growth. Most microalgal species prefer neutral

pH; however, some species have optimum growth under acidic or alkaline conditions. For

example, the optimal pH of Spirulina platensis is 9 and the optimal pH of Chlorococcum

littorale is 4 (Kumar et al., 2010; Zeng et al., 2011). There is a complex relationship

between CO2 concentration and pH in microalgal bioreactor systems, because of chemical

equilibrium among chemical species such as CO2, H2CO3, HCO−3 and carbonate. First

CO2 combines H2O to form H2CO3, which dissociates into HCO−3 and H+. HCO−3 further

dissociates into CO2 or carbonate depending on the pH of the medium (de Morais and

Costa, 2007b). CO2 can enter into microalgal cells through active transport and then

be biofixed. In open cultivation, the pH value quickly increases from 8.2 to 9.6 after

a lag period of microalgal growth. In this case, the chemical equilibrium moves to the

direction of consuming H+ to carry out photosynthesis and growth. However, in closed

cultivation, aeration of air containing CO2 raises the H+ concentration in the medium

and decreases the pH value (Zhao et al., 2011). Increasing CO2 concentrations leads to

higher biomass productivity, but will also reduce pH (Kumar et al., 2010). A low pH value

usually inhibits the microalgal growth, though different microalgae can tolerate different

ranges of pH. For example, the microalga Chlorella vulgaris retained its maximum growth

rate over a wide range of pH between 6.0 and 9.0, but started to be inhibited from pH

5.0. However, Chlorella strain KR-1 had a constant growth at pH 4.2 but was completely

inhibited at pH 3.5 (Zhao et al., 2011). pH regulation is necessary to control CO2 transfer

in microalgal bioreactors. The most common system for controlling pH is the on-off type

system in which CO2 is injected into the culture when the pH exceeds a specific set

point. Hence, CO2 is used as a nutrient and also as a buffer for the medium (Kumar

et al., 2010).
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Temperature

Temperature is one of the main factors in microalgal growth. Temperature affects the

growth rate by impacting the rate of enzyme-catalyzed reactions in the cell. Generally,

an increase in temperature leads to exponential increase in algal growth due to increase

in metabolic rates of microalgae until an optimum level is achieved, after which growth

decreases (Singh and Dhar, 2011; Tansey and Brock, 1972); in addition increasing tem-

perature decreases gas solubility in water (Stepan et al., 2002). The optimal temperature

varies for different species, and is affected by other environmental parameters, such as

light intensity. The optimal temperatures for many species have been reported as being

between 25◦C and 35◦C. However, for some species, it has been reported to be between

15◦C and 26◦C (Kumar et al., 2010).

Mixing

A mixing system is required to maintain cells in suspension, to prevent thermal stratifi-

cation, to disperse nutrients, and to ensure that the algal matter gets equal levels of light

exposure. Also, mixing decreases the boundary layer around cells facilitating the uptake

and excretion of metabolic products (Singh and Dhar, 2011). There are three options for

mixing in microalgal bioreactors: pumping, mechanical stirring and gas injection. Pump-

ing provides good mixing efficiency, but low gas transfer rates; the hydrodynamic stress

increases with the rotation speed of the pumps, or the number of passes of the microalgal

suspension through the pump units. Mechanical stirring provides good mixing efficiency

and gas transfer; however, it may produce significant hydrodynamic stress. Gas injec-

tion (bubbling) provides reasonable mixing efficiency, and a good gas transfer rate while

producing lower hydrodynamic stress; however, the gas sparging of culture increases cell

damage as the biomass concentration increases (Kumar et al., 2010). Despite this, gas
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injection is still the preferred option because sparging is a healthy method of supplying

oxygen (Chisti, 2000).

It should be noted that the effects of CO2 concentration, light intensity, phosphate

and nitrate have been investigated in this study. These factors were selected because 1)

it has been reported that phosphate and nitrate concentrations have significant effect on

algal growth (de la Hoz Siegler, 2012; Yewalkar et al., 2011); 2) it has been reported that

CO2 concentration significantly affect algal growth and CO2 uptake rate (Sydney et al.,

2010; de Morais and Costa, 2007b); and 3) not many studies have evaluated the effect of

light intensity on CO2 uptake rate.

1.3.3 What are The Techniques to Optimize CO2 Fixation and

Algal Growth?

In order to make biological fixation of CO2 economically competitive in comparison with

carbon capture and storage (CCS) technologies, it is necessary to optimize CO2 fixation

rate and operate the algal culture at the optimal process conditions (de la Hoz Siegler

et al., 2012). The optimization of algal cultures is difficult due to the lack of appropri-

ate mathematical models for many microalgal cultures (de la Hoz Siegler et al., 2011).

Therefore, developing a proper model of algal systems that describes the behavior of

microalgal system can lead to estimated the optimal operation conditions. The statisti-

cal and mathematical approaches can be used to develop a model the algal systems and

eventually find the optimal conditions.

Statistical Approach

Statistical approaches to optimal experimental designs are usually classified under re-

sponse surface methodology (RSM). A few studies have been performed on optimal ex-
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perimental designs to optimize algal growth and subsequently optimize the CO2 fixation

rate. Zheng et al. (2011) used RSM and the desirability function approach to vary the ini-

tial biomass concentration, the gas flow rate and different carbon dioxide concentrations

to maximize the CO2 fixation rate and intracellular starch productivity of Tetraselmis

subcordiformis in a rectangular airlift photobioreactor. Ho et al. (2012) also used RSM to

maximize the CO2 fixation rate and specific growth rate of Scenedesmus obliquus CNW-

N by manipulating the CO2 concentration, CO2 flow rate, magnesium concentration, and

light intensity. In addition, Yewalkar et al. (2011) used RSM to find the optimum con-

centration of nitrate, phosphate, Fe-ethylenediaminetetraacetic acid (EDTA), and trace

metal for Chlorella pyrenoidosa cultivated in 95% OSPW.

Mathematical Approach: Batch Mode

Several studies have been performed on mathematical modeling of algal systems in which

the algal growth rate is considered to be a function of the nutrient concentration or a

function of the cellular content (or quota) of the limiting nutrient using the Monod equa-

tion and nutrient uptake kinetics described by a Michaelis-Menten model (Droop, 1973;

Morel, 1987; Zonneveld, 1996). The influence of light is explained by a number of equa-

tions including a modification of the Monod equation and a hyperbolic tangent (Jassby

and Platt, 1976). However, the influences of different resources should be combined to

better describe growth as a function of these multiple resources. Some studies have been

performed on dynamic modeling of algal systems to describe the response of microalgal

systems to light intensity as well as available nutrients (Bernard, 2011; Flynn, 2003; Gei-

der et al., 1998b; de la Hoz Siegler et al., 2011; Packer et al., 2011). Geider et al. (1996)

developed a new dynamic model to predict the chlorophyll a:carbon ratio and growth

rate of phytoplankton at constant and varying irradiance. Later, they modified the model

to predict the effects of irradiance, daylength, temperature and nutrient availability on
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chlorophyll a:carbon ratio and growth rate (Geider et al., 1997). They also modified the

former model to describe the nitrogen: carbon ratio in the algae (Geider et al., 1998b).

Flynn (2003) developed mechanistic models to describe the growth of microalgae as func-

tions of ammonium, nitrate, light, iron, silicon, phosphorus and temperature. A model

was also developed by Packer et al. (2011) to describe the growth dynamics and neutral

lipid production of microalgae when cultured in nitrogen-limited or high light conditions.

Mathematical Approach: Fed-Batch Mode

Furthermore, the choice of cultivation systems is an important aspect that significantly

affects the efficiency and effectiveness of a microalgal production process (Singh and

Dhar, 2011). Several studies have been done on different reactor configurations and

cultivation modes to improve biomass growth with flue gas (Kumar et al., 2010; Schenk

et al., 2008; Zhao et al., 2011). Generally, there are two environments used for the

cultivation of microalgae: open raceway ponds and closed photobioreactors. Open ponds

are easy and inexpensive to construct and operate, although they are limited in the

ability to control of culture conditions and have a high risk of culture contamination.

On the other hand, closed photobioreactors allow for better control of the cultivation

conditions than open systems (Sanchez et al., 2011). For example, Zhao et al. (2011)

reported that the specific growth rate and CO2 fixation rate of Chlorella sp. in the

aerated closed cultivation were 1.78 and 5.39 times of those in the open cultivation,

respectively. Therefore, most of the modeling studies carried out so far have focused on

the influence of culture conditions and nutrient avalability on biomass growth (Geider

et al., 1998b; Flynn, 2003; Packer et al., 2011; Costache et al., 2013; Pruvost et al., 2011;

Sforza et al., 2014). For example, Costache et al. (2013) developed an overall model

that allows the simulation of the photosynthesis rate under different culture conditions

(irradiance, temperature, pH, and dissolved oxygen). The model has then been validated
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against experimental data obtained at different culture conditions. Sforza et al. (2014)

developed a mathematical model to explain the biomass concentration and irradiation in

a photobioreactor. Bernard and Remond (2012) also developed a model to describe the

effect of temperature and light on microalgal growth, and predict productivity in outdoor

photobioreactors or raceways. Using the bioprocess model, the states and inputs can be

determined and used for optimization. He et al. (2012) developed a kinetic model for

algal CO2 utilization to describe the CO2 uptake and algal growth as a function of CO2

and light intensity in a fed-batch culture, and then determined the dynamic CO2 inlet

partial pressure using control vector parameterization to optimize the growth of algae fed

by flue gases. A more complex model containing a set of six differential equations was

proposed by de la Hoz Siegler et al. (2011) to model growth and oil production rates as

a function of carbon and nitrogen sources in a photobioreactor. Later, de la Hoz Siegler

et al. (2012) determined the optimal feeding strategies that maximize algal growth and

experimentally compared the performance of the model-based optimization strategies

against the performance of non-optimal fed-batch and batch cultures. Also, Abdollahi

and Dubljevic (2012) established an optimal feeding strategy for lipid production using

a state-of-the-art interior point optimizer (IPOPT) solver for the model developed by de

la Hoz Siegler et al. (2011).

1.4 Thesis Outline

This thesis consists of 5 chapters focusing on answering the above questions. After the

Introduction, in Chapter 2, fractional and full factorial designs were used as screening

tools to select the best microalgal strain among Botryococcus braunii, Chlorella pyrenoi-

dosa and Chlorella kessleri based on their ability to grow in OSPW and capacity to

uptake CO2 and also to select the factors which have significant effects on algal growth
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and CO2 fixation. This chapter focuses on answering the Question 1.3.1 and Question

1.3.2.

Chapter 3 focuses on development of quadratic regression models using a Box-Behenken

response surface design and subsequently determining the optimum levels of the manip-

ulated variables for CO2 fixation and algal growth both individually and simultaneously,

in response to Question 1.3.3. The details of response surface methodology (RSM) and

multi-objective optimization techniques are also explained in this chapter.

Development of a kinetic model for describing the behavior of microalgae in batch

mode and subsequently calculating the optimal operating conditions are presented in

Chapter 4 to answer Question 1.3.3. The description of all possible kinetics and criteria

for selection of the best model are detailed in this chapter. Also, particle swarm opti-

mization (PSO) algorithm as a technique for parameter estimation and multi-objective

optimization is comprehensively explained.

Chapter 5 focuses on modification of the previously developed batch model based on

experimental data generated by a lab-scale raceway photobioreactor and subsequently

calculation of the best feeding strategies, to answer Question 1.3.3. Also, the details of

the photobioreactor design and experimental conditions are explained in this chapter.

Finally, Chapter 6 summarizes and concludes the thesis.
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Chapter 2

Strain and Factor Selection for
Carbon Dioxide Fixation Using
Microalgae Cultivated in Oil Sands
Process Water

2.1 Introduction

A review of the literature indicates that microalgae can grow in the presence of high

concentrations of CO2 (up to 40%) and medium concentrations of SOx and NOx (up to

150 ppm each) (Wang et al., 2008) while also exhibiting a range of CO2 uptake rates

(de Morais and Costa, 2007; Murakami and Ikenouchi, 1997; Sydney et al., 2010; Tang

et al., 2011; Wang et al., 2008). These reported successes in using microalgae for CO2

sequestration could be applied to Canada’s oil sands industry, one of the largest oil

sands operations in the world. These operations are one of the largest contributors to

CO2 emissions in Alberta (Yewalkar et al., 2011). In addition, these operations produce

large amounts of oil sands process water (OSPW). OSPW is relatively hard (15-25 mg/L

Ca2+, 5-10 mg/L Mg2+) with a pH of 8.0-8.4 and an alkalinity of approximately 800-1000

mg/L HCO−3 (Allen, 2008). Additionally, OSPW contains a variety of organic (residual

bitumen, naphthenic acids, etc.) and inorganic (sodium, calcium, magnesium, chloride,

26
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sulphate, ammonia, etc.) compounds (Allen, 2008).

Extensive efforts have been dedicated to the development of high efficiency production

and low-cost culturing systems for microalgae (Rosenberg et al., 2011; Wang and Lan,

2011). Along with CO2 as a source of carbon, microalgal growth also requires the pres-

ence of essential nutrients and appropriate environmental conditions (e.g., light intensity,

nitrogen, phosphorus, calcium, magnesium, potassium). For example, light intensity is

the most important factor in controlling photosynthetic growth in any algal system, ni-

trogen is required for microalgal growth and is a component of nucleic acids and proteins

directly associated with the primary metabolism of microalgae, and phosphorus has a

major effect on microalgal growth and metabolism (Fan et al., 2007; Geider et al., 1998;

Kumar et al., 2010).

Since OSPW contains several components necessary for microalgal growth, it can act

as a growth medium for microalgae during CO2 fixation. However, only a handful of mi-

croalgae have been found to survive in tailings ponds. For example, Leung et al. (2001)

identified a few algal species in tailings ponds. Beside CO2 fixation, the utilization of

OSPW for microalgae cultivation has other benefits such as (1) the possibility of degrad-

ing unwanted dissolved contaminants, (2) reducing the use of water for algal cultivation,

and (3) minimizing the use of algal nutrients such as metal ions and nitrogen (Sawayama

et al., 1995; Wang et al., 2008).

The first objective of this study is to select the best microalgal strain among Botry-

ococcus braunii, Chlorella pyrenoidosa and Chlorella kessleri based on their ability to

grow in OSPW and capacity to uptake CO2. These strains were selected because 1)

previous studies have demonstrated that Botryococcus braunii can grow in the presence

of high concentrations of CO2, and is capable of one of the highest CO2 fixation rates re-

ported in the literature, although no study has been reported on its cultivation in OSPW

(Sydney et al., 2010); 2) Chlorella pyrenoidosa is not indigenous to OSPW but it has
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been cultivated in 95% OSPW by Yewalkar et al. (2011); and 3)Chlorella kessleri has

been identified in OSPW by our research group (Mahdavi et al., 2012). To the best of

our knowledge, no study has been performed on CO2 fixation by native microalgae in

OSPW.

The second objective of this study is to determine the manipulated variables that

significantly affect the growth and the CO2 uptake rate of the microalgae. The manipu-

lated variables considered include CO2 concentration, phosphorus concentration, nitrate

concentration and light intensity. These key cultivation parameters can be manipulated

to achieve higher growth and CO2 uptake rate. Since modelling of biological systems is

inherently complex, fractional and full factorial designs were used as screening tools in

this study to identify the best strain for CO2 uptake and which factors have significant

effects on the response.

2.2 Materials and Methods

2.2.1 Strains and Culture Conditions

The Botryococcus braunii strain was obtained from UTEX, the culture collection of algae

at the University of Texas (UTEX 2441, USA). The Chlorella pyrenoidosa strain was

obtained from the Canadian Center for the Culture of Microorganisms (CCCM 7066,

Department of Botany, University of British Columbia, Canada). Chlorella kessleri was

obtained from our laboratory culture collection (Mahdavi et al., 2012).

2.2.2 Media Composition

The composition of modified bold 3N medium for Botryococcus braunii cultivation was

NaNO3 (750 mg/L), CaCl2.2H2O (25 mg/L), MgSO4.7H2O (74 mg/L), K2HPO4 (75
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mg/L), KH2PO4 (175.5 mg/L), NaCl (25 mg/L), Na2EDTA.2H2O (4.5 mg/L), FeCl3.6H2O

(0.582 mg/L), MnCl2.4H2O (0.246 mg/L), CoCl2.6H2O (0.012 mg/L), Na2MoO4.2H2O

(24 µg/L), ZnCl2 (0.03 mg/L), Vitamin B12 (0.135 mg/L), Biotin (25 µg/L), Thiamine

(1.1 mg/L), and Soilwater (40 mL/L). The pH of the growth medium was adjusted to

6.2.

The composition of MES-Volvex medium for Chlorella pyrenoidosa cultivation was

Ca(NO3)2 (118 mg/L), Na2glycerophosphate.5H2O (60 mg/L), MgSO4.7H2O (40 mg/L),

KCl (50 mg/L), NH4Cl (26.7 mg/L), Na2EDTA.2H2O (4.5 mg/L), FeCl3.6H2O (0.582

mg/L), MnCl2.4H2O (0.246 mg/L), ZnCl2 (0.03 mg/L), Na2MoO4.2H2O (0.024 mg/L),

CoCl2.6H2O (0.012 mg/L), Vitamin B12 (0.15 µg/L), Biotin (0.25 µg/L) and MES hy-

drate (1950 mg/L). The pH of the growth medium was adjusted to 6.7 using 1 N NaOH.

Chlorella kessleri is indigenous to OSPW; thus, it was maintained in this environment

and no other medium was used. The OSPW media consist of 100% OSPW with different

concentrations of phosphate (KH2PO4) and nitrate (NaNO3). Since the concentration of

phosphate and nitrate in OSPW is insufficient (about 1 and 3 mg/L, respectively), they

were added to the media to provide these nutrients which are required for microalgal

growth.

Also, the control media used in the experiments were OSPW autoclaved three times in

three consecutive days with the same KH2PO4 and NaNO3 concentrations as the OSPW

media described above. No significant changes in cell counts, phosphate and nitrate

concentration were observed in the control flasks.

All the experiments were conducted in 500 mL baffled Erlenmeyer flasks with 200 mL

working volume. Flasks were incubated at 21±0.5◦C, in a shaker at 150 rpm.
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Experimental Design

In order to select an algal strain appropriate for fixing CO2 while growing in OSPW, three

experiments were performed. In the first experiment, two previously uncharacterized

strains of interest (Botryococcus braunii and Chlorella pyrenoidosa) were screened for

their ability to grow in OSPW. To accomplish this, the Botryococcus braunii and Chlorella

pyrenoidosa were grown in modified bold 3N and MES-Volvex medium, respectively, as

well as in OSPW medium (described above) with phosphate and nitrate concentrations

of 1 mM each. They were exposed to a light intensity of 80 µmol photons.m−2.s−1 for 15

days, at which time growth was measured.

In the second experiment, a factorial design was used to assess the effects of CO2,

light, and phosphate on the growth and CO2 uptake of each strain. It is worth mentioning

that while some studies have been performed on determining the effect of phosphate and

nitrate on algal growth (de la Hoz Siegler et al., 2012; Yewalkar et al., 2011), not many

studies have employed factorial designs to evaluate the effects of light intensity and CO2

on algal growth and CO2 uptake rate. Also, based on our preliminary experiments and

studies from the literature (Yewalkar et al., 2011), phosphate was selected rather than

nitrate in this design as it showed the potential to have a stronger effect on algal growth

compared to nitrate.

A full factorial design for this system requires 8 (23) different treatments for each

of Chlorella kessleri, Chlorella pyrenoidosa and the control; however, as presented in

Table 2.1, a fractional two-level factorial design with 4 (23−1) treatments was employed

in this experiment to have a manageable number of runs thus allowing for high quality

data collection. Thus, with this design, the effect of the phosphate concentration was

confounded by the interaction effects of the CO2 concentration and light intensity. This

design was used with varying phosphate concentration (PL=1 mM and PH=15 mM), CO2
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concentration (CL=0.03% (CO2 content in the air) and CH=10%), and light intensity

(IL=20 and IH=100 µmol photons.m−2.s−1) and nitrate concentration of 1 mM to evaluate

the main effects on algal growth and CO2 uptake. Air, enriched with 0 or 10% CO2 with

a flow-rate of 1 L/min, was bubbled into each flask for 3 min. The concentration of gas in

the headspace was measured using a CO2 gas sensor (Vernier CO2 gas sensor, CO2-BTA,

Beaverton, Oregon ,USA). The flasks were then topped with a rubber stopper for 8 days,

and the concentration of CO2 was then measured again to estimate the uptake rate of

CO2.

Table 2.1: Fractional two-level factorial design to estimate the effects of CO2 concentra-
tion, light intensity, and phosphate concentration on the growth and CO2 uptake of each
strain

Strain
Treatment

Symbol
CO2(x1) Light(x3) Phosphate (x2)

Coded % Coded Photons Coded mM
Chlorella kessleri

Chlorella pyrenoidosa
CH IHPH +1 10 +1 100 +1 15

Chlorella kessleri
Chlorella pyrenoidosa

CLIHPL -1 Air +1 100 -1 1

Chlorella kessleri
Chlorella pyrenoidosa

CH ILPL +1 10 -1 20 -1 1

Chlorella kessleri
Chlorella pyrenoidosa

CLILPH -1 Air -1 20 +1 15

A full factorial design with 4 (22) runs was employed in the third experiment, which

investigated the effect of nitrate and phosphate concentration on the growth and CO2

uptake of Chlorella kessleri and the control culture, as presented in Table 2.2. This

design was used with varying phosphate concentration (PL=1 mM and PH=15 mM) and

nitrate concentration (NL=1 mM and NH=20 mM). Air, enriched with 10% CO2 with a

flow-rate of 1 L/min was bubbled into each flask for 3 min. The concentration of gas in

the headspace was measured using a CO2 gas sensor. Then, the flasks were sealed and

incubated for 8 days at light intensity of 70 µmol photons.m−2.s−1. The concentration of

CO2 was measured at the end of the experiment to estimate the uptake rate of CO2.
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Table 2.2: Full two-level factorial design to estimate the effects of nitrate and phosphate
concentration on the growth and CO2 uptake of Chlorella kessleri

Strain
Treatment

Symbol
Phosphate(x2) Nitrate(x4)
Coded mM Coded mM

Chlorella kessleri

PHNH +1 15 +1 20
PLNH -1 1 +1 20
PHNL +1 15 -1 1
PLNL -1 1 -1 1

It should be noted that the levels of the independent variables, Xi, were coded as xi

according to Eq. 2.1 (Zheng et al., 2011):

xi =
Xi −X0

4Xi

, i = 1, 2, . . . , 4 (2.1)

where X0 is the value of an independent variable at the center point of its range and

4Xi is the step change used in this design.

2.2.3 Analytical Methods

Growth Analysis: Algal biomass was determined using direct cell counts of 1 mL of

the samples from each flask using a BD FACSCalibur flow cytometer (BD Biosciences,

San Jose, California, USA). The number of algal cells at each condition was calculated as

the average of three counts. In our preliminary experiments, the algal strains exhibited

exponential growth with possibility of being linear after day 3. Therefore, the specific

growth rate (SGR) was calculated based on the following equation (de la Hoz Siegler

et al., 2011; Yewalkar et al., 2011):

SGR [1/day] =
ln(N2/N1)

(t2 − t1)
(2.2)
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where N1 and N2 are the number of cells at the initial time (t1) and final time (t2),

respectively.

Carbon Dioxide Data Acquisition : At the inlet, the carbon dioxide and air flows

were monitored using Dwyer Instruments variable area flowmeters (VFA-21, Michigan

City, Indiana, USA). The percentage of CO2 in the headspace of each flask was measured

using a Vernier CO2 gas sensor (CO2-BTA, Beaverton, Oregon, USA) at the beginning

and the end of the experiment. The CO2 concentration in the headspace of control flasks

changed approximately 1.5% and 10% for low and high initial CO2 concentration treat-

ments, respectively, due to leakage; thus, the final CO2 concentration in the headspace

of each flask containing algae was adjusted by adding an amount equal to the changes in

the corresponding control flask.

Light Intensity : Two 40W fluorescent lamps were used to provide illumination to the

culture. The photoperiod was 24 h to reach higher biomass productivity and CO2 fixation

(Jacob-Lopes et al., 2009). A high light intensity (100 µmol photons.m−2.s−1) and a low

light intensity (20 µmol photons.m−2.s−1) was achieved by adjusting the distance of the

flasks from the light source. The light intensity was measured using a Sper Scientific

Light Meter LUX/FC model 840020 (Scottsdale, Arizona, USA).

Water Chemistry : Phosphorus was determined by taking a 2 mL sample from each

culture and centrifuging it at relative centrifugal force (RCF) of 10000g for 10 min. The

resulting supernatant was used to determine the amount of phosphorus, which was mea-

sured as orthophosphate (P-PO3−
4 ) using the colorimetric method of 4500-P (Standard

Methods for the Examination of Water and Wastewater (Eaton et al., 1999)) with the

NanoDrop 2000C UV-Vis Spectrophotometer (Thermo Scientific, Wilmington, Delaware,

USA). Alkalinity was determined by taking a 1 mL sample, centrifuging at RCF of 10000g

for 10 min, and measuring the cell-free supernatant by titration with a 0.02 N H2SO4 so-

lution using a Mettler Toledo DL53 titrator (Mississauga, Ontario, Canada). The amount
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of nitrate, nitrite and ammonium of samples were measured using the colorimetric meth-

ods of 4500-NH3 and 4500-NO3 (Standard Methods for the Examination of Water and

Wastewater (Eaton et al., 1999)) in the Biogeochemical Analytical Service Laboratory

(BASL) at the University of Alberta.

2.3 Results and Discussion

2.3.1 Strain Selection

The best microalgae strain among Botryococcus braunii, Chlorella pyrenoidosa and Chlorella

kessleri was selected based on its ability to grow in OSPW and its capacity to uptake

CO2.

A comparison of specific growth rates for Botryococcus braunii, Chlorella pyrenoidosa

and Chlorella kessleri (already known to proliferate in OSPW) is presented in Table 2.3.

The results indicate that after 15 days, no algal growth was observed for Botryococcus

braunii cultivated in OSPW media, indicating that it is unable to grow in OSPW and is

therefore not a suitable candidate for this study. For this reason, only Chlorella pyrenoi-

dosa and Chlorella kessleri were investigated further. It should be noted that the culture

purity was confirmed by extracting the DNA from each sample, completing denatur-

ing gradient gel electrophoresis (DGGE) analysis and sequencing bands that confirmed

Chlorella pyrenoidosa and Chlorella kessleri as the only algal species in their samples.

To narrow down our candidate strains further, their ability to uptake CO2 was as-

sessed, as was the influence of a variety of factors including CO2, phosphate levels, and

light intensity.

The specific growth rates of Chlorella kessleri and Chlorella pyrenoidosa in each

treatment are calculated based on the algal cell density in day 0 and day 7 (Figure 2.1)
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Table 2.3: The specific growth rate of strains in different media

Strain Medium SGR(1/day)

Botryococcus braunii

modified bold 3N medium 0.126
OSPW pH=8.6 0.009
OSPW pH=6.2 -0.014

Autoclaved OSPW pH=9.7 -0.007

Chlorella pyrenoidosa
MES-Volvex Medium 0.145

OSPW pH=8.6 0.114
OSPW pH=6.7 0.119

Chlorella kessleri OSPW pH=8.6 0.143

and presented in Table 2.4. Chlorella kessleri cultivated at a high CO2 concentration,

high light intensity and high phosphate concentration showed the highest specific growth

rate of 0.205/day. In addition, a higher growth rate was observed for Chlorella kessleri

in comparison with Chlorella pyrenoidosa cultivated in the same treatment, except when

cultivated at a high CO2 and a low phosphate concentration and exposed to low light

intensity; for that condition, Chlorella pyrenoidosa showed a specific growth rate of

0.172/day, which is higher than the specific growth rate of Chlorella kessleri (0.127/day).

Table 2.4: The specific growth rate, CO2 and phosphate uptake rates of strains at the
different experimental treatments defined in Table 2.1. Values of CO2 and phosphate
uptake rates indicate mean ± standard deviation of ten and three measurements in each
flask, respectively.

Treatment Strain SGR
1/day

CO2

Uptake Rate
mg/L/day

Phosphate
Uptake Rate
mg/L/day

1 CH IHPH
Chlorella kessleri 0.205 31.02 ± 0.12 2.52 ± 0.07

Chlorella pyrenoidosa 0.154 29.64 ± 0.05 0.51 ± 0.03

2 CLIHPL
Chlorella kessleri 0.120 7.07 ± 0.00 0.95 ± 0.02

Chlorella pyrenoidosa 0.092 6.81 ± 0.00 0.17 ± 0.02

3 CH ILPL
Chlorella kessleri 0.127 15.54 ± 0.14 0.90 ± 0.02

Chlorella pyrenoidosa 0.172 15.43 ± 0.14 0.30 ± 0.04

4 CLILPH
Chlorella kessleri 0.053 4.25 ± 0.00 5.43 ± 0.06

Chlorella pyrenoidosa 0.035 3.19 ± 0.00 1.12 ± 0.03

Generally, increasing CO2 levels (up to the levels that species can tolerate) increases

photosynthesis in many species because more CO2 from the external bulk medium diffuses

to the active site of the chloroplast where Rubisco (1,5-bisphosphate carboxylase oxyge-
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Figure 2.1: Change in cell density for Chlorella kessleri and Chlorella pyrenoidosa from
day 0 to day 7. Data are means ± standard deviation of three measurements in each
flask. Treatments were developed using the following parameters: CH/CL: high/low
CO2; IH/IL: high/low light intensity; PH/PL: high/low phosphate concentration.

nase) can fix CO2 (Xu et al., 2010). The increase in the light intensity also corresponds

to an increase in algal photosynthesis up to a certain value, after which a further increase

in the light level results in no increase and finally a reduction in the biomass growth rate.

Similarly, high phosphate levels increase algal growth up to a specific value after which

a further increase in phosphate concentration causes growth inhibition. The mechanism

can have several pathways, which includes inhibition of the phosphate transporter gene

(TpPHO) transcription, the electron transport chain or the anti-oxidative defence system

of the algal strain (Chefurka et al., 1976; Fu et al., 2013; Noctor and Foyer, 1998). The

phosphate concentration that causes inhibition varies with different algae strains (Xu

et al., 2010). The inhibition effect of phosphate on Chlorella pyrenoidosa growth rate
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can be seen in this study where its specific growth rate in a low phosphate environment

is higher than in a high phosphate environment. In contrast, phosphate has no inhibi-

tion effect on the growth of Chlorella kessleri, where the specific growth rate in a low

phosphate environment is lower than in a high phosphate environment.

In general, Chlorella kessleri showed the highest SGR in comparison to Chlorella

pyrenoidosa, which makes it a promising candidate for cultivation in OSPW.

The CO2 uptake rate of each strain is presented in Table 2.4. It should be noted that

the CO2 uptake rate was calculated based on the change in the CO2 concentration in the

headspace of the each flask (Figure 2.2) and minimal change in alkalinity (Table 2.5) at

the beginning and end of the experiments. Since the culture was pure, it was assumed

that the changes in the CO2 concentration are due to CO2 consumption by each algal

strain. As shown in Table 2.4, Chlorella kessleri exhibited the maximum CO2 uptake

rate of 31.02 mg/L/day when cultivated at high CO2 and high phosphate concentration

and high light intensity. Similar to the growth results described above, Chlorella kessleri

cultured under the same treatments as Chlorella pyrenoidosa exhibited a higher CO2

uptake rate in comparison. It can be seen that the CO2 uptake rate of Chlorella kessleri

and Chlorella pyrenoidosa cultivated at high CO2 concentration were higher than those

cultivated at low CO2 concentration. This can be explained by luxury consumption of

CO2 that is in agreement with Droop (1973), Erifi and Turpin (1985) and Lai et al.

(2011), who found that several algal strains store excess nutrients in intracellular pools

to use during times of limited nutrient availability.

To summarize, Chlorella kessleri showed a higher CO2 uptake rate and specific growth

rate than Chlorella pyrenoidosa, and only Chlorella kessleri was investigated further.
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Figure 2.2: Change in CO2 concentration in the headspace of Chlorella kessleri and
Chlorella pyrenoidosa culture flasks from day 0 to day 7. Data are means ± standard de-
viation of ten measurements in each flask. Treatments were developed using the following
parameters: CH/CL: high/low CO2; IH/IL: high/low light intensity; PH/PL: high/low
phosphate concentration.

Table 2.5: pH and alkalinity of Chlorella kessleri and Chlorella pyrenoidosa at day 0 and
day 7

Treatment Strain
pH Alkalinity (mmol/L)

Day 0 Day 7 Day 0 Day 7

1 CH IHPH
Chlorella kessleri 7.17 6.98 13.1 13.7

Chlorella pyrenoidosa 7.24 7.26 13.2 13.6

2 CH IHPH
Chlorella kessleri 9.11 9.54 11.8 12.5

Chlorella pyrenoidosa 9.15 9.68 11.9 12.8

3 CH IHPH
Chlorella kessleri 8.94 8.12 11.8 12.2

Chlorella pyrenoidosa 9.02 7.86 11.7 12.4

4 CH IHPH
Chlorella kessleri 7.22 7.21 13.1 13.5

Chlorella pyrenoidosa 7.21 7.17 13.0 13.4
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2.3.2 Manipulated Variable Selection

Effects of Manipulated Variables on Algal Growth

Based on the results of SGR presented in Table 2.4, the main effects of light intensity,

initial CO2 and phosphate concentrations on the specific growth rate of Chlorella kessleri

and Chlorella pyrenoidosa can be described by the following linear regression model,

obtained by fitting the data obtained using the fractional factorial design:

SGR of Chlorella kessleri = 0.126 + 0.039x1 + 0.003x2 + 0.036x3 (2.3)

SGR of Chlorella pyrenoidosa = 0.113 + 0.050x1 − 0.019x2 + 0.010x3 (2.4)

where x1, x2 and x3 are the coded values of the CO2 concentration, phosphate concen-

tration, and light intensity defined in Table 2.1 and calculated based on Eq. 2.1.

In this design, the effect of the phosphate concentration was confounded by the in-

teraction effect of the CO2 concentration and the light intensity. It was assumed that

the main effects are larger than the two-factor interactions effects and that higher-order

interactions are negligible.

Eq. 2.3 reveals that the initial CO2 concentration had the strongest effect on the

specific growth rate of Chlorella kessleri, followed by light intensity. As mentioned before,

increasing CO2 levels and light intensity (up to a certain level) increases photosynthesis

in many species (Xu et al., 2010). These results are supported by Ruan et al. (2012),

who reported that both CO2 concentration and light intensity had a significant effect on

Chlorella kessleri growth and nutrient removal from wastewater and by Li et al. (2012),

who found that the light intensity had a significant effect on biomass accumulation for

both Chlorella kessleri and Chlorella protothecoide. The initial CO2 concentration also

had the strongest effect on the specific growth rate of Chlorella pyrenoidosa (Eq. 2.4);
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however, increasing phosphate concentration from 1 mM to 15 mM decreased the specific

growth rate of Chlorella pyrenoidosa by 0.038 (1/day) likely due to phosphate inhibition.

The specific growth rates of Chlorella kessleri for each of the specific treatments are

calculated based on the algal cell density in day 0 and day 7 (Figure 2.3) and presented

in Table 2.7. Chlorella kessleri cultivated at a high phosphate concentration showed no

difference in the maximum specific growth rate regardless of nitrate concentrations. In

contrast, at low levels of phosphate, nitrate enrichment increased the specific growth rate

of Chlorella kessleri.

The main and interaction effects of the phosphate and nitrate concentrations on the

specific growth rate of Chlorella kessleri can be described by the following model:

SGR = 0.161 + 0.011x2 + 0.007x4 − 0.005x2x4 (2.5)

where x2 and x4 are the coded values of the phosphate and nitrate concentrations defined

in Table 2.2 and calculated based on Eq. 2.1.

As illustrated in Eq. 2.5, phosphate concentration had a stronger effect on the spe-

cific growth rate of Chlorella kessleri than the nitrate concentration. A number of factors

could have contributed to this effect, including 1) OSPW contains about 4 mg/L of am-

monium (based on day 0 measurement), which is assimilated by microalgae in preference

to nitrate or nitrite (Wang et al., 2008). The algal cells likely receive all the necessary

nitrogen from the ammonium present in OSPW and do not require the additional ni-

trate. 2) Different algal strains have varying eco-physiological strategies in responding

to nutrient limitation with regard to nitrogen and phosphorus. The literature shows

that our understanding of the reason for these differences is incomplete; however, several

researchers have observed different effects of phosphate and nitrate on algal growth. For

example, Fried et al. (2003), Hu and Gao (2006) and Lai et al. (2011) found that nitrate
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Figure 2.3: Change in (a) cell density and (b) CO2 concentration in the headspace, for
Chlorella kessleri from day 0 to day 7. Data are means ± standard deviation of three
and ten measurements in each flask, respectively. Treatments were developed using the
following parameters: PH/PL: high/low phosphate concentration; NH/NL: high/low
nitrate concentration.
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and phosphate levels have a significant effect on algal growth. These results are also con-

tradicted by Tubea et al. (1981) and Zhang and Hong (2014), who found that phosphate

levels had no significant effect on algal growth, and by Encarnacao et al. (2012), who

found that nitrate levels had an inhibitory effect on algal growth.

Effects of Manipulated Variables on CO2 Uptake

According to the results of the CO2 uptake rate presented in Table 2.4, the main effects

of CO2, light intensity, and phosphate concentration on the CO2 uptake rate for each

culture can be described by the following empirical models:

CO2 uptake rate of Chlorella kessleri = 14.48 + 8.81x1 + 3.17x2 + 4.57x3 (2.6)

CO2 uptake rate of Chlorella pyrenoidosa = 13.77 + 8.76x1 + 2.65x2 + 4.46x3 (2.7)

As illustrated in Eqs. 2.6 and 2.7, it can be concluded that initial CO2 concentration

was the strongest factor affecting CO2 uptake rate and growth rate of Chlorella kessleri

and Chlorella pyrenoidosa, followed by light intensity and then phosphate concentration.

The CO2 uptake rates for Chlorella kessleri with each treatment in the full factorial

experiment are calculated based on the change in the CO2 concentration in the headspace

of the flask from day 0 to day 7 (Figure 2.3) and minimal change in the alkalinity

(Table 2.6) and presented in Table 2.7. Chlorella kessleri exhibited the maximum CO2

uptake rate of 43.73 mg/L/day when cultivated at high phosphate and high nitrate

concentrations. CO2 uptake rate of 24.58 mg/L/day was observed at high phosphate and

low nitrate concentration, and this rate was slightly higher than the rate at low phosphate

concentrations. These results showed that at low phosphate levels, nitrate enrichment

decreased the CO2 uptake rate of Chlorella kessleri ; however, at high phosphate levels,

it increased the CO2 uptake rate.
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Table 2.6: pH and Alkalinity of Chlorella kessleri at day 0 and day 7

Treatment Strain
pH Alkalinity (mmol/L)

Day 0 Day 7 Day 0 Day 7
1 PHNH Chlorella kessleri 6.52 7.49 13.8 15.1
2 PLNH Chlorella kessleri 7.75 7.61 12.6 13.8
3 PHNL Chlorella kessleri 6.53 7.15 13.3 13.9
4 PLNL Chlorella kessleri 7.79 7.53 12.8 13.2

Table 2.7: The specific growth rate, CO2 and phosphate uptake rates of Chlorella kessleri
at the different experimental treatments defined in Table 2.2. Values of CO2 and phos-
phate uptake rates indicate mean ± standard deviation of ten and three measurements
in each flask, respectively.

Treatment SGR
1/day

CO2

Uptake Rate
mg/L/day

Phosphate
Uptake Rate
mg/L/day

Total Nitrogen
Uptake Rate
mg/L/day

1 PHNH 0.175 43.73 ± 0.27 6.04 ± 0.05 12.0
2 PLNH 0.162 17.63 ± 0.28 0.85 ± 0.01 12.3
3 PHNL 0.170 24.58 ± 0.27 3.31 ± 0.03 1.0
4 PLNL 0.138 23.59 ± 0.26 0.74 ± 0.00 0.57

The main and interaction effects of the phosphate and nitrate concentrations on the

CO2 uptake rate can be described by the following equation:

CO2 uptake rate = 27.39 + 6.77x2 + 3.30x4 + 6.27x2x4 (2.8)

Based on this equation, it can be seen that the phosphate concentration had a stronger

effect on the CO2 uptake rate of Chlorella kessleri compared to the nitrate concentration.;

this can be explained by the fact that high levels of phosphorus are necessary for the

generation of ATP and phosphorylation of photosynthetic proteins and enzymes (Kumar

et al., 2010).
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2.3.3 Nutrient Uptake

Phosphate Uptake

As shown in Table 2.4, the maximum phosphate uptake rate of 5.43 mg/L/day was

observed for Chlorella kessleri when it was exposed to high phosphate, low CO2 con-

centration and low light intensity. Also, it exhibited a higher phosphate uptake rate

than Chlorella pyrenoidosa when they were exposed to the same treatments. It can be

concluded that both microalgae cultivated at high phosphate levels had a faster uptake

rate of phosphate than at low phosphate levels and can be explained by luxury con-

sumption of phosphate in the excess of phosphate. Also, enhancement of CO2 and light

intensity increased the phosphate uptake rate significantly. At high phosphate and high

nitrate concentrations, Chlorella kessleri showed the maximum phosphate uptake rate of

6.04 mg/L/day as presented in Table 2.7. It exhibited a phosphate uptake rate of 3.31

mg/L/day when cultivated at high phosphate and low nitrate concentrations. Chlorella

kessleri cultivated at a high phosphate level also had a faster uptake rate of phosphate,

and enhancement of the nitrate level increased the phosphate uptake rate significantly.

Nitrogen Uptake

As shown in Table 2.7, Chlorella kessleri exposed to a low phosphate and a high nitrate

concentration showed the maximum nitrogen uptake rate of 12.3 mg/L/day. The total

nitrogen uptake is the sum of ammonium uptake, nitrate uptake and nitrite excretion

(Table 2.8). The uptake rate of nitrate increased about 10 times in media containing

high levels of nitrate because of the luxury consumption of nitrate in the presence of high

concentrations of nitrate. The nitrite uptake rate was negative, this observation appears

to be widespread in microalgae and depends on nitrate uptake (Collos, 1998).

The ammonium uptake rate is almost the same for all treatments. The ammonium



2.3: Results and Discussion 45

analysis showed that all culture flasks were depleted in ammonium. This is because

ammonium is preferentially assimilated by microalgae over other forms of nitrogen, and

unlike nitrate, ammonium does not need reduction before being assimilated into amino

acids (Molloy and Syrett, 1988; Wang et al., 2008). OSPW contains high amounts of

ammonia and to meet surface water guidelines, ammonia removal rates of 64% − 93%

would be required (Allen, 2008); based on these results, it seems that algal cultivation in

OSPW is a promising option to reduce the amount of ammonia.

Table 2.8: Ammonium, nitrate and nitrite uptake rate of Chlorella kessleri at the different
experimental treatments defined in Table 2.2

Treatment
Ammonium
Uptake Rate
mg/L/day

Nitrate
Uptake Rate
mg/L/day

Nitrite
Uptake Rate
mg/L/day

1 PHNH 0.39 11.6 -0.01
2 PLNH 0.27 12.0 -0.01
3 PHNL 0.26 0.75 0.00
4 PLNL 0.27 0.30 0.00

2.3.4 Comparison of Models

Based on the results of SGR and CO2 uptake rates obtained from all factorial experiments,

the following regression models can be developed to describe the SGR and CO2 uptake

rates of Chlorella kessleri. The first two models can be used to explain the SGR and

CO2 uptake rate of Chlorella kessleri by considering light intensity, CO2, phosphate and

nitrate concentrations as factors. Note that the interaction effects of CO2 and light

intensity and those of phosphate and nitrate were included in these models.

SGR = 0.125 + 0.036x1 + 0.012x2 + 0.035x3 + 0.003x4 − 0.016x1x3 − 0.006x2x4 (2.9)

CO2 uptake rate = 17.46 + 8.66x1 + 6.80x2 + 4.54x3 + 3.15x4 + 2.58x1x3 + 6.24x2x4

(2.10)
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x1, x2, x3 and x4 are the coded values of the CO2 concentration, phosphate concentration,

light intensity, and nitrate concentration as defined in Table 2.1 and 2.2. Based on the

values of the coefficient of determination of R2
SGR=0.98 and R2

CO2
=0.99 obtained from

the regression models, it can be concluded that both the SGR and the CO2 uptake rate

can be described adequately by Eqs. 2.9 and 2.10 in the range of performed experiments,

respectively. Also, nitrate showed the lowest main effect on the SGR and CO2 uptake

rate. Therefore, the effect of nitrate was excluded from further analysis to develop two

new regression models to explain SGR and CO2 uptake rate (Eqs. 2.11 and 2.12).

SGR = 0.123 + 0.036x1 + 0.012x2 + 0.035x3 − 0.010x1x3 (2.11)

CO2 uptake rate = 15.72 + 10.07x1 + 6.51x2 + 4.83x3 − 3.10x1x3 (2.12)

SGR can still be adequately described by Eq. 2.11 (R2
SGR=0.97), while the CO2

uptake rate cannot be described as well by Eq. 2.12 (R2
CO2

=0.81).

The errors associated with including and excluding nitrate in the SGR and CO2

uptake rate regression models, respectively, are presented in Table 2.9. The differences

between the errors obtained from two models of SGR are relatively small and including

nitrate does not improve the model significantly. However, Table 2.9 indicates that the

errors in predicting CO2 uptake obtained using Eq. 2.10 are lower than that of Eq. 2.12.

It should be noted that Eqs. 2.3 and 2.5 and also Eqs. 2.6 and 2.8 (original models)

were used to predict the specific growth and CO2 uptake rate of Chlorella kessleri for

all factorial treatments, respectively. As shown in Table 2.10 the specific growth rate

and the CO2 uptake rate are well explained by the original models in some treatments;

however, the error associated with some of the treatments that were excluded from model

development is very high.

Given that we plan on exploring the use of response surface designs in the future to
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optimize the SGR and CO2 uptake, reducing the number of factors to be considered in

these designs keeps the number of experiments to be performed at manageable levels,

suggesting that we ignore the effect of nitrate in further investigations.

2.4 Conclusions

Our investigations indicate that Chlorella kessleri is the most promising of the three

strains of microalgae considered for CO2 uptake in OSPW, having a CO2 uptake rate

between 0.7 − 33% higher than that of Chlorella pyrenoidosa at the same conditions.

Also, its specific growth rate was significantly higher at most of the conditions explored.

Further, an investigation into the factors that influence growth and CO2 uptake rate

revealed that CO2 concentration, light intensity and phosphate concentration (in that

order) had the strongest effects. To maximize the in situ CO2 uptake rate of Chlorella

kessleri the following modifications to OSPW are suggested: (1) increasing CO2 levels

by bubbling waste CO2 from stacks, and (2) increasing phosphate levels by adding waste

fertilizer or agricultural run-off. This study is part of a larger study which includes the

development of statistical quadratic regression models and mechanistic models to better

understanding the algal system and eventually find the optimal operation conditions

(de la Hoz Siegler et al., 2011). Therefore, the optimization of algal growth and CO2

uptake of Chlorella kessleri using response surface methodology is investigated in the

next chapter.
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Chapter 3

Optimization of CO2 Fixation by
Chlorella kessleri using Response
Surface Methodology

3.1 Introduction

Several studies have been performed to optimize the CO2 fixation rate in microalgae in an

effort to make biological fixation competitive with carbon capture and storage technolo-

gies. Parameters that significantly affect the performance of CO2 fixation by microalgae

include the nutrients ratio, light intensity, temperature, pH, CO2 concentration, flow

rate, photobioreactor type and microalgae species (Cheng et al., 2013; Ho et al., 2012).

Purba and Taharuddin (2010) optimized the CO2 fixation of Nannochloropsis oculata and

Tetraselmis chuii by manipulating CO2 concentration (3, 6, and 9 %) and light intensity

(360 and 1250 lumen). Also, the molar ratios of nitrogen to carbon, phosphorus to car-

bon, and magnesium to carbon in the culture as well as light intensity were optimized

for Chlorella PY-ZU1 (Cheng et al., 2013).

A few studies have also been performed on optimal experimental designs to opti-

mize algal growth and subsequently optimize the CO2 fixation rate (Ho et al., 2012;

Yewalkar et al., 2011; Zheng et al., 2011). Statistical approaches to optimal experimen-

53
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tal designs are usually classified under response surface methodology (RSM). Response

surface methodology and the desirability function approach were used to vary the ini-

tial biomass concentration, the gas flow rate and different carbon dioxide concentrations

to maximize the CO2 fixation rate and intracellular starch productivity of Tetraselmis

subcordiformis in a rectangular airlift photobioreactor (Zheng et al., 2011). Ho et al.

(2012) employed RSM to maximize the CO2 fixation rate and specific growth rate of

Scenedesmus obliquus CNW-N by manipulating the CO2 concentration, CO2 flow rate,

magnesium concentration, and light intensity. Yewalkar et al. (2011) also used RSM to

find the optimum concentration of nitrate, phosphate, Fe-ethylenediaminetetraacetic acid

(EDTA), and trace metals for Chlorella pyrenoidosa cultivated in 95% oil sands process

water (OSPW).

Many previous studies related to CO2 fixation by microalgae have focused on the

cell growth rate and biomass productivity, since the CO2 fixation rate of micoalgae is

considered to be positively correlated to these parameters (Anjos et al., 2013; Cheng

et al., 2013; Ho et al., 2012; Zheng et al., 2011). A few studies have also focused on direct

evaluation of the CO2 uptake rate in the system (Purba and Taharuddin, 2010). However,

to the best of our knowledge, no study has been performed on optimal experimental

design of native microalgae cultivated in OSPW to maximize the CO2 uptake rate based

on directly measured CO2 concentrations; also, no studies have focused on simultaneous

optimization of the CO2 fixation rate and the specific growth rate.

In this chapter, a Box-Behnken response surface design varying the initial CO2 con-

centration, the phosphate concentration and the light intensity was used to model the

CO2 uptake rate and the specific growth rate of Chlorella kessleri, a microalgal strain

that is indigenous to OSPW, in batch operation. Chlorella kessleri exhibited the highest

CO2 fixation rate and specific growth rate among three strains, Botryococcus braunii,

Chlorella pyrenoidosa and Chlorella kessleri, explained in the previous chapter (Kasiri
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et al., 2014a). The quadratic regression models developed from the Box-Behnken design

were validated against experimental data obtained by an alternate central composite

design (CCD). The objectives of the study were to maximize the CO2 uptake rate and

the specific growth rate and determine the optimum levels of the manipulated variables

based on multi-objective optimization.

3.2 Materials and Methods

3.2.1 Strains and Culture Conditions

Chlorella kessleri was obtained from our laboratory culture collection (Mahdavi et al.,

2012). Since Chlorella kessleri is indigenous to OSPW, it is maintained in this environ-

ment and no other media is used. The OSPW media were made of 100% OSPW and

nitrate (NaNO3, 1mM) with different concentrations of phosphate (KH2PO4). Phosphate

and nitrate were added as nutrients required for microalgal growth. All experiments were

conducted in 500 mL baffled Erlenmeyer flasks with 250 mL working volume. Flasks were

topped with septum DuoCAP R© (TriForest labware, Irvine, USA) and then different con-

centrations of CO2 were added to the sealed flasks. The flasks were then incubated at

21±0.5◦C, in a shaker at 150 rpm for 8 days.

3.2.2 Analytical Methods

Growth Analysis : Biomass concentration was determined as total suspended solids

(TSS) by centrifuging 2 mL of cell suspension with a relative centrifugal force (RCF) of

2500g for 15 min. Pellets were washed with Milli-Q water and recentrifuged. The final

precipitate was dried at 105◦C for 24 hours. In our preliminary experiments, Chlorella

kessleri exhibited exponential growth; therefore, the specific growth rate (SGR) was
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calculated based on:

µ =
ln(N2/N1)

t2 − t1
(3.1)

where N1 and N2 are the biomass concentration at time t1 and time t2, respectively.

Carbon Dioxide Measurement : A 200 µL gas sample was taken and injected into

an Agilent 7890A gas chromatograph with a thermal conductivity detector (GC-TCD)

that was accompanied by a HayeSep R stainless steel column 80/100 (3.048 m×3.175 mm

OD). Helium with a flow rate of 25 mL/min was used as the carrier gas. The oven was

programmed to maintain a constant temperature of 140◦C for 6 min. The CO2 concen-

tration was calculated using the CO2 percentage and the headspace pressure measured

by a Cecomp Electronics digital pressure gauge DPG1000B (Libertyville, Illinois, USA).

It should be noted that the alkalinity (bicarbonate concentration) and pH are almost

constant in each flask during the experiment. Therefore, it can be assumed with reason-

able certainty that the changes in the CO2 concentration at the headspace are due to the

CO2 consumption by Chlorella kessleri.

Water Chemistry : A 200 µL of clear supernatant from the centrifugation was used to

determine the amount of phosphate and nitrate using Dionex DX600 Ion Chromatography

(Dionex, Sunnyvale, CA, USA) in the Biogeochemical Analytical Service Laboratory

(BASL) at the University of Alberta. The amount of nitrite and ammonium of samples

were measured using the colorimetric methods of 4500-NH3 and 4500-NO3 (Eaton et al.,

1999) in the Biogeochemical Analytical Service Laboratory (BASL) at the University of

Alberta. The alkalinity of the cell-free supernatant was measured by titration with a 0.02

N H2SO4 solution using a Mettler Toledo DL53 titrator (Mississauga, Ontario, Canada).

Light Intensity : Four 40W fluorescent lamps were used to provide illumination to the

culture. Different light intensity to the culture was achieved by adjusting the distance

from the light sources. The light intensity was measured using a Sper Scientific Light
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Meter LUX/FC model 840020 (Scottsdale, Arizona, USA).

3.2.3 Response Surface Methodology

Response Surface Methodology (RSM) is used to identify the relationship between the

controllable input factors and the outputs, and to find the optimal set of inputs that

maximize or minimize the response of the output. Typically, a second-order model of the

form given in Eq. 3.2 is used in RSM (Aslan and Cebeci, 2007).

y = β0 +
k∑
i=1

βixi +
k−1∑
i=1

k∑
j=i+1

βijxixj +
k∑
i=1

βiix
2
i (3.2)

where x1, x2, . . ., xk are the coded value of input factors (independent variables) which

influence the response y, and β0, βi,βii and βij are unknown parameters which are deter-

mined using least squares regression. The levels of the independent variables, Xi, were

coded as xi according to Eq. 3.3 (Zheng et al., 2011):

xi =
Xi −X0

4Xi

, i = 1, 2, . . . , k (3.3)

where X0 is the value of an independent variable at the center point of its range, and

4Xi is the step change used in the RSM design.

The two most common RSM designs employed are Box-Behnken and central com-

posite designs. While both methods employ quadratic models, the Box-Behnken designs

place experimental points on the edge-centers of the bounding box of the range of input

factors. In contrast, the most common version of the central composite design (CCD)

places experimental points on the face centers of the bounding box (Ogunnaike, 2010).

Box-Behnken designs are often used when corner points are infeasible or unimportant to

explore.
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In this study, a Box-Behnken experimental design (Table 3.1) was used to develop

quadratic regression models for the CO2 uptake rate and the specific growth rate of

Chlorella kessleri and subsequently find the optimal levels of CO2 and phosphate con-

centrations and light intensity. This design was used to vary the initial CO2 concentration

(CL=5% and CH=35%), phosphate concentration (PL=1 mM and PH=29 mM), and light

intensity (IL=10 and IH=70 µmol photons.m−2.s−1), since these factors showed the most

significant effects on CO2 uptake and algal growth in our previous studies.

Table 3.1: Box-Behnken experimental design for optimizing CO2 concentration, phos-
phate concentration and light intensity.

Experiment CO2(x1) Phosphate (x2) Light(x3)
Number Coded Actual(%) Coded Actual(mM) Coded Actual(Photons)

1 - 5 - 1 0 40
2 + 35 - 1 0 40
3 - 5 + 29 0 40
4 + 35 + 29 0 40
5 - 5 0 15 - 10
6 + 35 0 15 - 10
7 - 5 0 15 + 70
8 + 35 0 15 + 70
9 0 20 - 1 - 10
10 0 20 + 29 - 10
11 0 20 - 1 + 70
12 0 20 + 29 + 70
13 0 20 0 15 0 40
14 0 20 0 15 0 40
15 0 20 0 15 0 40

The central composite experimental design presented in Table 3.2 was also used to

validate the quadratic regression models obtained from the Box-Behnken design. This

design was used to vary the initial CO2 concentration (CL=8% and CH=42%), phosphate

concentration (PL=1 mM and PH=39 mM), and light intensity (IL=7 and IH=81 µmol

photons.m−2.s−1). The central composite design always contains star points representing

new extreme values (-α,α) for each factor in the design. The value of α depends on the

number of experimental runs in the factorial portion of the central composite design (23);

α=(23/4)=1.68 in our case (Myers and Montgomery, 2002; Wang, 2006). Using the CCD



3.2: Materials and Methods 59

to validate the model developed using the Box-Behnken design provides a reasonable

estimate of its accuracy over the entire range of possible experimental conditions.

Table 3.2: Central composite experimental design for optimizing CO2 concentration,
phosphate concentration and light intensity.

Experiment CO2(x1) Phosphate (x2) Light(x3)
Number Coded Actual(%) Coded Actual(mM) Coded Actual(Photons)

1 - 15 - 9 - 22
2 + 35 - 9 - 22
3 - 15 + 31 - 22
4 + 35 + 31 - 22
5 - 15 - 9 + 66
6 + 35 - 9 + 66
7 - 15 + 31 + 66
8 + 35 + 31 + 66
9 −α 8 0 20 0 44
10 +α 42 0 20 0 44
11 0 25 −α 1 0 44
12 0 25 +α 39 0 44
13 0 25 0 20 −α 7
14 0 25 0 20 +α 81
15 0 25 0 20 0 44
16 0 25 0 20 0 44
17 0 25 0 20 0 44
18 0 25 0 20 0 44
19 0 25 0 20 0 44
20 0 25 0 20 0 44

3.2.4 Multi-objective Optimization and Pareto Optimal Solu-

tions

Pareto optimal solutions are invoked when the desired optimization involves multiple

objectives that may conflict each other and thus involve trade-offs (Niu et al., 2013).

The image or trajectory of all optimal solution sets is called the Pareto curve or surface;

it indicates the nature of the trade-off between the different objective functions. The

characteristic of the Pareto optimal set is that none of the objective functions can be

improved in value without losing value in some of the other objective functions; thus,

each of Pareto optimal solutions represents a particular choice of trade-off between the

multiple objective functions.
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A simple way to solve the multi-objective optimization problems is using weighted-

sum or scalarization; this combines the multiple objectives into a single scalar objective

function by assigning importance factors wi>0 to each objective:

min
x

n∑
i=1

wifi(x)

n∑
i=1

wi = 1 (3.4)

x ∈ S

where fi, (i = 1, . . . , n) are the individual objective functions and S is the set of applicable

equality and inequality constraints.

S = {x| ∈ Rm : h(x) = 0, g(x) ≥ 0} (3.5)

An alternate technique for multi-objective optimization is the ε-constraint method.

In this method, one objective out of n is minimized and the remaining objectives are

constrained to be less than or equal to specified target values.

min
x
fj(x)

fi(x) ≤ εi,∀i ∈ {1, . . . , n}\{j} (3.6)

x ∈ S

where fj(x) is the objective to be minimized and εi are the upper bounds of fi(x). The

Pareto optimal set is generated by systematically varying the constraint values.

Several techniques exist to identify a single optimal solution from the members of

the Pareto set. The most widely used method is to use the Lp norm. This technique
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minimizes the distance from the Pareto set to an ideal solution (i.e. utopia point, f ∗i )

based on (Kasprzak and Lewis, 2001):

min

(
n∑
i=1

(fi(x)− f ∗i )p
)1/p

(3.7)

In this study, the L2 norm was used to determine the optimal Pareto set. The optimal

compromise Pareto design is the member of the Pareto set which lies geometrically closest

to the utopia point, calculated in terms of vector distance in the performance space. The

utopia point has been generated by combining the maximum attainable CO2 uptake rate

and the maximum attainable specific growth rate.

3.3 Results and Discussion

The quadratic models developed based on the experiments conducted as described in

Section 3.2.3 are presented in Section 3.3.1. The validation of the Box-Behnken models

against central composite experimental data is presented in Section 3.3.2. Finally, the

validation of the optimal sets of CO2 and phosphate concentrations and light intensities

are presented in Section 5.3.3.

3.3.1 Model Development

Table 3.3 presents the data for the CO2 uptake rate and the specific growth rate of

Chlorella kessleri obtained from the Box-Behnken experiments. Using the data, the

following quadratic regression models are estimated to describe the CO2 uptake rate and
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the specific growth rate:

CO2 uptake rate = 48.35 + 13.89x1 + 2.62x2 + 9.40x3 − 1.07x1x3

+ 11.37x2x3 − 6.66x2
1 − 5.83x2

2 − 9.18x2
3 (3.8)

Specific growth rate = 0.232− 0.014x1 + 0.033x2 + 0.028x3 + 0.0.018x1x2

− 0.002x1x3 + 0.012x2x3 − 0.008x2
1 − 0.005x2

2 + 0.010x2
3 (3.9)

where x1, x2, and x3 are the coded values of the initial CO2 concentration, phosphate

concentration and light intensity, as calculated based on Eq. 3.3 and defined in Table

3.1.

Table 3.3: CO2 uptake rate and specific growth rate obtained in the Box-Behnken ex-
periments (shown as mean value ± one standard deviation).

Experiment CO2 Uptake Rate Specific Growth Rate Phosphate Uptake Rate Nitrogen Uptake Rate
Number (mg/L/day) (1/day) (mg/L/day) (mg/L/day)

1 22.75±0.33 0.190±0.025 2.96 3.84
2 42.02±13.97 0.147±0.009 5.69 2.92
3 37.09±0.19 0.277±0.016 36.82 9.49
4 47.39±13.53 0.273±0.010 36.41 7.23
5 13.05±0.47 0.198±0.037 6.52 4.60
6 46.19±10.89 0.190±0.025 6.07 2.06
7 20.93±0.17 0.235±0.044 22.15 11.11
8 57.57±5.85 0.229±0.016 23.48 9.51
9 29.42±2.98 0.171±0.025 3.88 1.60
10 11.19±2.25 0.213±0.007 2.39 5.24
11 34.39±0.77 0.214±0.036 9.59 6.34
12 61.51±0.76 0.293±0.019 28.45 12.55
13 44.88±6.32 0.246±0.009 13.37 6.36
14 54.20±4.29 0.207±0.025 12.34 5.92
15 48.53±5.02 0.227±0.004 14.59 5.90

The coefficients of determination (R2) of the regression equations for the CO2 uptake

rate and the specific growth rate were 0.87 and 0.90, respectively, indicating that the

quadratic equations can adequately describe the relationship between the factors and

responses. It should be noted that the term x1x2 is excluded in this regression model
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because including this term decreases the R2 of the regression equation for the CO2 uptake

rate. The adequacy of these models is also shown in Figure 3.1, which shows reasonably

good agreement between the model predictions and the corresponding experimental data.

There was no discernible trend or pattern in the variation in the residuals.

Tests of significance for the quadratic models for the CO2 uptake rate and the specific

growth rate were conducted using analysis of variance (ANOVA); the results are presented

in Table 3.4 and 3.5, respectively. In this analysis, a model term is considered to be

significant when the corresponding p-value is less than 0.05. As shown in Table 3.4, the

CO2 concentration (x1, p= 0.0053) and the light intensity (x3, p=0.0213) are significant

factors for the CO2 uptake rate, while the effect of phosphate concentration (x2) on the

CO2 uptake rate is less than significant in the tested range. Furthermore, the interaction

term between the phosphate concentration (x2) and the light intensity (x3) shows a

significant effect on the CO2 uptake rate. As shown in Table 3.5, when considering

the specific growth rate as the response, the phosphate concentration (x2, p= 0.0060)

and the light intensity (x3, p=0.0114) are the significant factors, while the initial CO2

concentration (x1) exhibited a less significant effect.

Table 3.4: Analysis of variance (ANOVA) for the CO2 uptake rate from the Box-Behnken
design.

Source Coefficient (β) Standard Error t-Value p-Value
Intercept 48.3492 4.9242 9.8187 0.0001*

x1 13.8872 3.2576 4.2629 0.0053*

x2 2.6209 3.0344 0.8637 0.4209

x3 9.4023 3.0393 3.0936 0.0213*

x1x3 1.0747 4.6351 0.2319 0.8243

x2x3 11.3712 4.2817 2.6558 0.0377*

x2
1 -6.6628 4.9873 -1.3360 0.2300

x2
2 -5.8313 4.4414 -1.3129 0.2372

x2
3 -9.1794 4.4659 -2.0554 0.0856

* Significant at p-Value <0.05
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Figure 3.1: Model predictions, Box-Behnken and central composite design experimental
data for (a) the CO2 uptake rate and (b) the specific growth rate.
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Table 3.5: Analysis of variance (ANOVA) for the specific growth rate from the Box-
Behnken design.

Source Coefficient (β) Standard Error t-Value p-Value
Intercept 0.2317 0.0117 19.8469 <0.0001*

x1 -0.0136 0.0077 -1.7531 0.1400

x2 0.0330 0.0072 4.5657 0.0060*

x3 0.0280 0.0072 3.8979 0.0114*

x1x2 0.0178 0.0107 1.6620 0.1574

x1x3 -0.0019 0.0110 -0.1748 0.8681

x2x3 0.0124 0.0101 1.2251 0.2751

x2
1 -0.0081 0.0119 -0.6803 0.5265

x2
2 -0.0051 0.0105 -0.4804 0.6512

x2
3 0.0100 0.0106 0.9475 0.3869

* Significant at p-Value <0.05

Three-dimensional (3D) response surfaces and the 2D contour plot shown in Figure 3.2

and 3.3 were generated using Eqs. 3.8 and 3.9, respectively, to visualize the interaction

effects on the CO2 uptake rate and the specific growth rate. It should be noted that

when the response surface for the effect of two factors was plotted, the other factor was

set at level zero as described in Table 3.1. The blue stars in the 3D and 2D plots are the

actual values obtained from Box-Behnken experiments.

Figure 3.2 (a) and (b) show the effects of CO2 and phosphate concentrations on

the CO2 uptake rate. There is an increase in the CO2 uptake rate with increased CO2

concentration. This increase can be explained by the luxury consumption of CO2 at

high CO2 concentrations. We hypothesize that the Chlorella kessleri attempts to store

excess nutrients in intracellular pools for usage during times of nutrient limitation; this

behaviour has been exhibited by many algal strains (Droop, 1973; Erifi and Turpin, 1985;

Lai et al., 2011). The effects of CO2 concentration and light intensity on the CO2 uptake

rate are shown in Figure 3.2 (c) and (d). The CO2 uptake rate increases with increasing

CO2 concentration and light intensity; this is in agreement with Purba and Taharuddin

(2010), who reported lower CO2 amounts in the atmosphere (i.e., greater uptake) as the



3.3: Results and Discussion 66

CO2 concentration and light intensity increase. Figure 3.2 (e) and (f) show the effects

of phosphate concentration and light intensity on the CO2 uptake rate when the CO2

concentration is set to zero. At low light intensities, the CO2 uptake rate is relatively

constant at low phosphate concentrations; however, at higher phosphate concentrations,

a decline in CO2 uptake rate occurred, indicating an inhibitory response with respect to

phosphate. However, this inhibitory response was not seen at higher light intensities; as

shown in Figure 3.2 (f), the interaction effect of phosphate and light intensity significantly

increases the CO2 uptake rate.

As the CO2 uptake rate is a function of algal growth, one might expect a similar

response of the specific growth rate to increases in the CO2 and phosphate concentrations

and light intensity. However, this was not found to be the case. Figure 3.3 (a) and

(b) show the effects of the CO2 and phosphate concentrations on specific growth rate.

The specific growth rate increases slightly as the phosphate concentration increases and

decreases slightly as the CO2 concentration increases at low phosphate concentrations.

The tendency of the specific growth rate to increase slightly with increasing light intensity

is shown in Figure 3.3 (c) and (d); this is in agreement with the ANOVA test. Figure

3.3 (e) and (f) show the effect of the phosphate concentration and light intensity on the

specific growth rate. The specific growth rate increases when the phosphate concentration

and light intensity are both high, even though the effect of light intensity is relatively

insignificant by itself.

3.3.2 Model Validation

A set of central composite design experiments was performed to more comprehensively

validate the models obtained by Box-Behnken design. The model predictions and data

of the CO2 uptake rate and specific growth rate for these validation experiments are pre-
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Figure 3.2: 3D response surface, the contour lines and the Box-Behnken experimental
data (∗) for the CO2 uptake rate; (a)&(b) effects of CO2 and phosphate concentrations,
(c)&(d) effects of CO2 concentration and light intensity, (e)&(f) effects of phosphate
concentration and light intensity.
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Figure 3.3: 3D response surface, the contour lines and the Box-Behnken experimental
data (∗) for the specific growth rate; (a)&(b) effects of CO2 and phosphate concentrations,
(c)&(d) effects of CO2 concentration and light intensity, (e)&(f) effects of phosphate
concentration and light intensity.
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sented in Table 3.6. The CO2 uptake rate model (Eq. 3.8) exhibits good agreement with

the experimental data at the medium levels for all three factors (#15 to 20). However,

it shows high error in the treatments that either have a very low concentration of CO2

(8%, # 9) or very low light intensity (7 µmol photons.m−2.s−1, #13). It can be inferred

that this model is unable to exhibit accurate prediction in very low treatments (-α). The

adequacy of the models is also shown in Figure 3.1 (a), which shows good correlation

between the model predictions of CO2 uptake rate and the corresponding experimental

data.

The specific growth rate model shows satisfactory agreement with experimental data

for all treatments except in the combination of high light intensity and low CO2 and

phosphate concentrations (# 5). Similar to the CO2 uptake rate model, this model

shows high prediction accuracy in the medium level of all three factors (#15 to 20). As

illustrated in Figure 3.1 (b), there is a good agreement between model predictions and

experimental data.

It should be noted that the number of experiments performed was not large, which

resulted in a relatively wide 95% confidence interval on the model predictions. The

inclusion of more experimental data will decrease this interval.

Also, the models showed poor predictions in some treatments because these models

are quadratic models and are perhaps unable to describe the dynamics of CO2 fixation

and algal growth in all kinetic regimes. Therefore, a mathematical model that describes

the kinetics of algal growth and CO2, phosphate, nitrate and ammonium uptake rate of

Chlorella kessleri will be developed in the next chapter.
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Table 3.6: The predicted CO2 uptake rate and the specific growth rate for the central
composite design (shown as mean value ± 95% confidence interval) and the corresponding
experimental data.

CO2 Uptake Rate (mg/L/day) Specific Growth Rate (1/day)
Experiment

Number
Model

Prediction
Experimental

Data
error

%
Model

Prediction
Experimental

Data
error

%
1 33.59±18.82 27.35 22.8 0.212±0.046 0.201 5.5
2 46.18±20.37 62.61 26.2 0.177±0.051 0.173 2.1
3 21.38±21.56 30.40 29.7 0.237±0.054 0.243 2.4
4 32.10±22.55 55.59 42.3 0.241±0.059 0.224 7.6
5 37.04±19.32 30.46 21.6 0.250±0.048 0.201 24.1
6 50.84±20.93 65.38 22.2 0.214±0.052 0.224 4.6
7 52.61±22.64 37.15 41.6 0.306±0.056 0.267 14.4
8 64.48±25.55 68.28 5.6 0.303±0.067 0.268 13.4
9 34.73±19.19 17.97 93.2 0.248±0.048 0.234 5.8
10 55.98±25.58 72.27 22.5 0.217±0.063 0.224 3.1
11 43.37±19.73 50.29 13.7 0.185±0.049 0.173 6.5
12 43.36±29.09 54.40 20.3 0.285±0.072 0.260 9.4
13 25.65±20.83 46.65 45.0 0.215±0.051 0.201 6.7
14 55.17±23.64 53.65 2.8 0.301±0.058 0.266 13.0
15 54.52±18.81 52.77 3.3 0.243±0.046 0.243 0.3
16 54.64±18.80 52.70 3.7 0.242±0.046 0.243 0.3
17 54.47±18.81 52.95 2.9 0.243±0.046 0.247 1.6
18 54.28±18.83 48.20 12.6 0.243±0.046 0.243 0.1
19 54.22±18.83 51.21 5.9 0.243±0.046 0.248 2.2
20 53.81±18.86 49.59 8.5 0.244±0.046 0.245 0.6

3.3.3 Optimization

Optimization of the CO2 Uptake Rate

The quadratic model presented in Eq. 3.8 can be used to find the optimal set of exper-

imental parameters in the range considered that maximize the CO2 uptake rate. The

maximum CO2 uptake rate is predicted to be 65.03 mg/L/day and the optimal CO2 and

phosphate concentrations and the light intensity are estimated to be 35%, 29 mM and

70 µmol photons.m−2.s−1, respectively.

Specific Growth Rate Optimization

Similarly, the maximum specific growth rate of 0.310 per day is calculated by optimization

of the model described by Eq. 3.9. The optimal CO2, phosphate concentration and

initial light intensity are estimated to be 22%, 29 mM and 70 µmol photons.m−2.s−1,
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respectively.

Generally, an increase in the light intensity corresponds to an increase in algal photo-

synthesis (Chisti, 2007; Fan et al., 2007); also, high phosphate levels increase the uptake

rate of phosphorus, increase photosynthesis and raise the pigment content and eventually

increase algal growth (Xu et al., 2010). Therefore, the maximum specific growth rate

was obtained at high phosphate concentrations (29 mM) and light intensity (70 µmol

photons.m−2.s−1).

Similarly, increasing CO2 levels increase algal growth because more CO2 from the

external bulk medium diffuses to the active site of Rubisco; however, beyond a specific

level (that varies with different algal strains), a further increase in the CO2 concentration

causes inhibition in algal growth due to a reduction in the efficiency of the CO2 concen-

trating mechanisms (CCMs) that facilitate CO2 supply to Rubisco by dehydration of the

accumulated bicarbonate (Spalding, 2008; Wang et al., 2008; Xu et al., 2010). Moreover,

microalgal cells in response to nutrient availability undergo a series of metabolic accli-

mations that regulate the growth of algal cells and their reproduction, and a trade-off

exists between algal growth and nutrient storage (Bender et al., 2014; Lai et al., 2011).

It would seem that CO2 injection at a concentration higher than 22% should inhibit the

reproduction of algal cells and decrease the cell number. However, the cells exploit high

concentrations of CO2 by luxury consumption of CO2 and storage in intracellular pools,

which results in the maximum CO2 uptake rate occurring at 35% CO2.

Multi-objective Optimization

The scalarization method described in Section 4.2.7 was used to maximize the CO2 uptake

rate and the specific growth rate simultaneously. The Pareto curve, the utopia point and

the optimal Pareto set (*) are shown in Figure 3.4 (a). To emphasize that this is, indeed,

the closest point, a circle centered on the utopia point with the radius of the vector is
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drawn. Since no other points on the Pareto set appear within this circle, this point is

the closest to the utopia point.

The optimal Pareto set is found to occur at a CO2 uptake rate of 62.98 mg/L/day

and a specific growth rate of 0.309 per day. The x∗ is estimated to be 28% initial CO2,

29 mM phosphate concentration and 70 µmol photons.m−2.s−1 light intensity.

These results are in adequate agreement with de Morais and Costa (2007c) who re-

ported that Chlorella kessleri showed maximum specific growth rates of 0.267 per day

and maximum CO2 fixation of 163 mg/L/day when cultivated with 6% (v/v) and 12%

(v/v) CO2. It should be noted that de Morais and Costa (2007c) calculated the CO2 fix-

ation from the biomass productivity according to equation, CO2 fixation=1.88×biomass

productivity, which is derived from the typical molecular formula of microalgal biomass,

C0.48H1.83N0.11P0.01 (Chisti, 2007). However, it might be difficult to compare the various

results in the literature, because of the different media and conditions under which the

Chlorella kessleri was grown.

Validation of Optimal Points

These optimum treatments were applied to duplicate experiments to validate the optimal

model predictions of the CO2 uptake rate and specific growth rate as well as the Pareto

optimal point.

The experimental CO2 uptake rate and model predictions of all three optimal points

are presented in Table 3.7. The model exhibits its highest prediction error of 5.0% for

the CO2 uptake rate at the Pareto optimal point. The specific growth rate and model

predictions of all three optimal points are also presented in Table 3.7. The maximum

prediction error of 8.8% in the specific growth rate is also obtained at the Pareto optimal

point. It can also be seen that the 95% confidence intervals (CI) of the predictions of the

CO2 uptake rate and specific growth rate models encompass the experimental data at the
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Figure 3.4: (a) Pareto curve based on the scalarization method, the Pareto optimal set
and the utopia point, (b) The Box-Behnken experiments, the model-predicted and the
experimentally determined optima (shown as mean value ± one standard deviation).
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optimal points, and the prediction errors of both models are relatively low. Figure 3.4 (b)

shows the CO2 uptake rate and the specific growth rate for the predicted optimal points

and the experimental optima along with the Box-Behnken experimental data. It can

be concluded that there is good agreement between model predictions and experimental

data, and the models can adequately describe the CO2 uptake rate and specific growth

rate of Chlorella kessleri.

3.4 Conclusions

The CO2 uptake rate and the specific growth rate of Chlorella kessleri can be ade-

quately described by quadratic models developed using Box-Behnken experimental de-

signs. Model validation using experimental data generated with a central composite

design demonstrated that there is good agreement between model predictions and ex-

perimental data. 35% CO2 concentration, 29 mM phosphate concentration and 70 µmol

photons.m−2.s−1 light intensity maximized CO2 uptake rate to 65.03 mg/L/day. Also,

22% CO2 concentration, 29 mM phosphate concentration and 70 µmol photons.m−2.s−1

light intensity maximized specific growth rate to 0.310 per day. Multi-objective Pareto

optimization resulted in a CO2 uptake rate of 62.98 mg/L/day and a specific growth rate

of 0.309 per day at 28% CO2 concentration, 29 mM phosphate concentration and 70 µmol

photons.m−2.s−1 light intensity. The results from this study formed the basis for the in-

vestigations on the dynamics and kinetics of CO2 uptake and algal growth explained in

the next chapter.
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Chapter 4

Kinetic Modeling and Optimization
of Carbon Dioxide Fixation Using
Microalgae Cultivated in Oil-Sands
Process Water

4.1 Introduction

Developing a dynamic model of algal systems can lead to a better understanding of the

behavior of microalgae and eventually to find the optimal operation conditions. Thus,

several studies have been performed on mathematical modeling of algal systems. For

example, Jassby and Platt (1976) explained the effect of light using a number of equations

including a modification of the Monod equation and a hyperbolic tangent. Also Bernard

(2011); Flynn (2001); Geider et al. (1998); de la Hoz Siegler et al. (2011); Packer et al.

(2011) combined the effects of different resources to better describe growth as a function of

these multiple resources. A new dynamic model was developed by Geider et al. (1996) to

predict the chlorophyll a:carbon ratio and growth rate of phytoplankton at constant and

varying irradiance. Later, Geider et al. (1997) modified the model to predict the effects

of irradiance, daylength, temperature and nutrient availability on chlorophyll a:carbon

ratio and growth rate. They also modified the former model to describe the nitrogen:

78
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carbon ratio in the algae (Geider et al., 1998). A mechanistic model for describing the

growth of microalgae as functions of ammonium, nitrate, light, iron, silicon, phosphorus

and temperature was developed by Flynn (2001). Also, Packer et al. (2011) developed

a model to describe the growth dynamics and neutral lipid production of microalgae

when cultured in nitrogen-limited or high light conditions. However, to the best of our

knowledge, no mathematical model has been developed to describe algal growth, CO2

uptake, phosphate uptake, nitrate and ammonium uptake rates of Chlorella kessleri that

is indigenous to oil sands process water (OSPW).

In this study, a central composite experimental design with varying initial CO2 con-

centration, phosphate concentration and light intensity was used to develop a nonlinear

dynamic model that describes algal growth and CO2, phosphate, nitrate and ammonium

uptake rates of Chlorella kessleri cultivated in OSPW. The changes in algal growth,

medium composition (phosphate, nitrate, ammonium and nitrite concentrations, pH and

alkalinity) and gas content (CO2 concentration) were monitored in batch cultures over

a period of 21 days. The model parameters were estimated by minimizing the weighted

sum of squared errors between model predictions and experimental data. The model

then was validated against independent experimental data. Finally, the model was used

to find the initial CO2 concentration, phosphate concentration and light intensity that

maximized CO2 fixation and algal growth both individually and simultaneously.

4.2 Materials and Methods

4.2.1 Strain and Culture Conditions

Chlorella kessleri was obtained from our laboratory culture collection (Mahdavi et al.,

2012). Since Chlorella kessleri is indigenous to OSPW, it is maintained in this envi-
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ronment and no other media is used. The OSPW media was made of 100% OSPW and

nitrate (NaNO3, 1mM) with different concentrations of phosphate (KH2PO4). Phosphate

and nitrate were added to provide phosphorus and nitrogen, the most important nutrients

required for microalgal growth. All experiments were conducted in 500 mL baffled Erlen-

meyer flasks with 250 mL working volume. Flasks were topped with septum DuoCAP R©

( TriForest labware, Irvine, USA) and then incubated at 21±0.5◦C in a shaker at 150

rpm for 21 days.

4.2.2 Central Composite Experimental Design

In this study, a central composite experimental design (CCD, Table 4.1) was used to

generate data to develop and validate a set of differential equations to describe algal

growth and CO2, phosphate, nitrate and ammonium uptake rates of Chlorella kessleri

at different conditions. This design was used with varying initial CO2 concentrations

(CL=8% and CH=42%), phosphate concentrations (PL=1mM and PH=39 mM), and

light intensity (IL=7 and IH=81 µmol photons.m−2.s−1), since these factors showed the

most significant effects on CO2 uptake and algal growth in our previous studies (Kasiri

et al., 2014b,a) explained in Chapters 2 and 3. The central composite design always

contains star points representing new extreme values (-α,α) for each factor in the design.

The value of α depends on the number of experimental runs in the factorial portion of

the central composite design (23); α=(23/4)=1.68 in our case (Myers and Montgomery,

2002; Wang, 2006).

4.2.3 Analytical Methods

Growth Analysis : Biomass concentration was determined as total suspended solids

(TSS) by centrifuging 2 mL of cell suspension with a relative centrifugal force (RCF) of
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Table 4.1: Central composite experimental design with varying CO2 concentration, phos-
phate concentration and light intensity. α=1.68 in this design.

Flask CO2 Phosphate Light
Number Coded Actual(%) Coded Actual(mM) Coded Actual(Photons)

1 - 15 - 9 - 22
2 + 35 - 9 - 22
3 - 15 + 31 - 22
4 + 35 + 31 - 22
5 - 15 - 9 + 66
6 + 35 - 9 + 66
7 - 15 + 31 + 66
8 + 35 + 31 + 66
9 −α 8 0 20 0 44
10 +α 42 0 20 0 44
11 0 25 −α 1 0 44
12 0 25 +α 39 0 44
13 0 25 0 20 −α 7
14 0 25 0 20 +α 81
15 0 25 0 20 0 44
16 0 25 0 20 0 44
17 0 25 0 20 0 44
18 0 25 0 20 0 44
19 0 25 0 20 0 44
20 0 25 0 20 0 44

2500g for 15 min. Pellets were washed with autoclaved Milli-Q water and recentrifuged.

The final precipitate was dried at 105◦C for 24 hours and then weighed using a Mettler

Toledo XP205 microbalance (Mississauga, Ontario, Canada).

Carbon Dioxide Measurement : A 200 µL gas sample was taken and injected into

an Agilent 7890A gas chromatograph with a thermal conductivity detector (GC-TCD)

that was accompanied by a HayeSep R stainless steel column 80/100 (3.048 m×3.175

mm OD). Helium with a flow rate of 25 mL/min was used as the carrier gas. The oven

temperature was programmed to be constant at 140◦C for 6 min. The CO2 concentration

was calculated using the CO2 percentage and the headspace pressure measured using a

Cecomp Electronics digital pressure gauge DPG1000B (Libertyville, Illinois, USA).

Water Chemistry : A 200 µL sample of clear supernatant from the centrifugation was

used to determine the amount of phosphate and nitrate using Dionex DX600 Ion Chro-

matography (Dionex, Sunnyvale, CA, USA) in the Biogeochemical Analytical Service
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Laboratory (BASL) at the University of Alberta. The amount of nitrite and ammonium

of the sample was measured using the colorimetric methods of 4500-NH3 and 4500-NO3

(Eaton et al., 1999) in the Biogeochemical Analytical Service Laboratory (BASL) at the

University of Alberta. The alkalinity of the cell-free supernatant was measured by titra-

tion with a 0.02 N H2SO4 solution using a Mettler Toledo DL53 titrator (Mississauga,

Ontario, Canada).

Light Intensity : Four 40W fluorescent lamps were used to provide illumination to

the culture to mimic natural light conditions. Different light intensities to the culture

were obtained by adjusting the distance from the light sources. The light intensity

was measured using a Sper Scientific Light Meter LUX/FC model 840020 (Scottsdale,

Arizona, USA).

4.2.4 Kinetic Models

In order to develop a kinetic model for the algal system, the effect of significant factors and

nutrients on the algal growth and the uptake rate of these nutrients should be modeled.

Algal Growth

The algal growth rate can be calculated from:

dX

dt
= µX − kdX (4.1)

where X is the biomass concentration, µ is the specific growth rate and kd is the decay

coefficient. There are some parameters that significantly affect the specific growth rate of

microalgae including nutrient concentrations, light intensity, temperature and pH (Cheng

et al., 2013; Ho et al., 2012). Therefore, the specific growth rate is commonly expressed

by the multiplication of rate expressions for each of the influencing factors (Bastin and
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Dochain, 1990).

µ(t) = µ(S1).µ(S2).µ(I).µ(T ).µ(pH).... (4.2)

where S1 and S2 are the substrates, I is the light intensity and T is the temperature.

Several models have been proposed to describe the specific growth rate. The most com-

mon specific growth rate model is the Michaelis-Menten model (1949), that is also called

the Monod model (Bastin and Dochain, 1990).

µ = µm
S

KS + S
(4.3)

where µm is the maximum growth rate, S is the substrate concentration and KS is the

half-substrate saturation constant. A downside of the Monod model is that it displays

monotonic behavior and it does not consider any possible inhibition at high substrate

concentrations (Bastin and Dochain, 1990). The Haldane-like model is non-monotonic

and describes inhibition at high substrate concentrations (Pic-Marco et al., 2006):

µ = µm
S

KS + S + S2/KI

(4.4)

where KI is the inhibition parameter.

Substrate Uptake Rate

The substrate uptake rate by microalgae can be expressed using several models to uncou-

ple the uptake of nutrients from growth. The model used most commonly was proposed

by Droop (1973), in which the substrate uptake is described by conventional Michaelis-
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Menten type kinetics.

ρ = ρm
S

Kρ + S
(4.5)

where ρ is the substrate uptake rate, ρm is the maximum uptake rate and Kρ is the uptake

half-saturation constant. Also, Caperon and Meyer (1972) observed that the uptake rate

of some nutrients fall to zero at a specific concentration, S0. Therefore, they introduced

a parameter S0 in the kinetic expression and proposed the following model (the so-called

Caperon-Meyer Model):

ρ = ρm
S − S0

Kρ + S − S0

(4.6)

4.2.5 Parameter Estimation

Parameters involved in the models were estimated by minimizing the weighted sum of

squared errors (WSSE) of the states of the model, i.e., biomass, CO2, phosphate, nitrate

and ammonium concentrations. The WSSE for a set of model parameters (P ) can be

calculated as (de la Hoz Siegler et al., 2011):

WSSE(P ) =
M∑
i=1

N∑
j=1

(
Yij − Ŷij

)T
W−1
i

(
Yij − Ŷij

)
(4.7)

where N is the number of experimental data points used to estimate the model, M is

the number of measurable states, Yij is the measured value of state i at time j and Ŷij

is the value of state i at time j as predicted by the model and Wi is the weight factor of

state i equal to the variance of the experimental data.
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4.2.6 Model Selection

Several models can often explain the same data; therefore, objective criteria are needed to

choose among these models. The criteria to select a model should consider the trade-off

between increased information and cost. The parsimony principle says that out of two or

more competing models that explain the data well, the model with the smallest number

of independent parameters should be chosen (de la Hoz Siegler et al., 2011). Two model

discrimination criteria were considered in this study. The first criterion is the Akaike

information criterion (AIC), which can be calculated as (de la Hoz Siegler et al., 2011):

AIC = 2nP +N

{
ln

(
2πWSSE(P̂ )

N

)
+ 1

}
(4.8)

where nP is the number of estimated parameters. The second criterion is the Bayesian

information criterion (BIC), which can be calculated from (de la Hoz Siegler et al., 2011):

BIC = N

{
ln

(
2πWSSE(P̂ )

N

)}
+ nP ln(N) (4.9)

The best model was chosen based on the lowest AIC and BIC calculated for the same

data-set. It should be noted that the difference between these two criteria is that free

parameters are more strongly penalized in the BIC than in the AIC.

4.2.7 Optimization

A wide variety of evolutionary algorithms (EAs) have been used to solve different types of

optimization problems. Particle swarm optimization (PSO) algorithm, one of the major

evolutionary global optimization algorithms, was used to minimize the objective function

(f) since it has shown a high convergence rate in multivariable problems (Cabrera and
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Coello, 2007; Chu et al., 2011; Zhang et al., 2004).

min
x
f(x) (4.10)

x ∈ S ⊂ Rn

The PSO algorithm, first proposed by Kennedy and Eberhart (1995), starts with a

randomly selected initial population and then successively evolves the individuals in a

swarm:

xi = xi−1 + vi (4.11)

vi = c0vi−1 + c1r1⊗ (x̂i − xi−1) + c2r2 ⊗ (ĝ − xi−1)

where x is the position of an individual particle, v is the velocity that determines the

displacement of the particle, i is the index for current iteration, c0 is the inertia weight,

c1 and c2 are the acceleration constants that control the influence of each of the velocity

components, r1 and r2 are random vectors with the dimensionality of the search space, x̂

is the particle’s best-ever position, ĝ is the swarm’s best-ever position and ⊗ stands for

element-by-element vector multiplication. In other words, the position of an individual

particle is updated by a displacement that depends on the particle’s velocity of previous

iteration, the best previous location of the particle (pbest) and the best-ever location of

the particle among all particles (gbest) (Chu et al., 2011; Zhang et al., 2004).

However, the particles tend to move outside of the feasible boundary in the first few

iterations (Chu et al., 2011). Therefore, handling boundary constraints is required to

achieve the best performance with PSO. Several methods for handling boundary con-

straints including random, reflecting and absorbing methods have been proposed in the

literature (Chu et al., 2011). In this study, we have bounds on the values of the estimated
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parameters (they should be greater than zero). In order to handle these bounds, a new

method was proposed. In this method, when the particle flies outside of the boundary,

the calculated displacement is divided by a factor, b, which is dynamically modified until

the particle lies inside of the boundary based on the following equation:

xi = xi−1 + vi/bij (4.12)

bij = λbij−1

where λ is a constant value and is problem dependent.

Evolutionary algorithms also require an additional mechanism to account for con-

straints that are not simple bounds, such as linear or nonlinear inequality constraints

(Cabrera and Coello, 2007).

gi(x) ≤ 0, i = 1, . . . ,m (4.13)

Penalty functions are the most commonly used techniques used with evolutionary op-

timization, and they solve the constrained optimization problem via a sequence of uncon-

strained optimization problems. Penalty functions can be stationary or non-stationary.

Stationary penalty functions use fixed penalty values throughout the minimization; how-

ever, the penalty values are dynamically modified in non-stationary penalty functions.

The results obtained by non-stationary penalty functions are almost always superior

to those obtained through stationary functions (Parsopoulos and Vrahatis, 2002), and

we employed this technique in our work. Parsopoulos and Vrahatis (2002) proposed a

non-stationary multi-stage assignment penalty function technique to transform a con-

strained problem to an unconstrained one. They defined a penalty function of the form
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(Parsopoulos and Vrahatis, 2002):

F (x) = f(x) + h(k)H(x) (4.14)

where f(x) is the original objective function of the constrained optimization problem in

Eq. 4.10, h(k) is a dynamically modified penalty value, where k is the algorithm’s current

iteration number and H(x) is a penalty factor, defined as:

H(x) =
m∑
i=1

θ (qi(x)) qi(x)γ(qi(x)) (4.15)

where qi(x) = max{0; gi(x)}, i = 1, . . . ,m. θ (qi(x)) is a multistage assignment function;

γ (qi(x)) is the power of the penalty function; and gi(x) are the constraints (Eq. 4.13).

The functions h(·), θ(·) and γ(·) are problem dependent. Details of the penalty function

used in this study are presented in Section 4.3.3.

Multi-objective Optimization and the Pareto-optimal Solution

Sometimes, optimization problems involve multiple, conflicting objective functions and

the optimal decisions involve trade-offs between two or more conflicting objectives. In

that case, there exist (a possibly infinite number of) Pareto optimal solutions that satisfy

the different objectives (Niu et al., 2013). The image of all optimal solution sets is called

Pareto curve or surface that indicates the nature of the trade-offs between the different

objective functions. The goal is to find a set of optimal trade-off, the so-called Pareto-

optimal set.

A simple way to solve the multi-objective optimization problem is the ε-constraints

method. In this method, one objective out of n is minimized and the remaining objectives
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are constrained to be less than or equal to given target values.

min
x
fj(x)

fi(x) ≤ εi,∀i ∈ {1, . . . , n}\{j} (4.16)

x ∈ S ⊂ Rn

where fj(x) is the objective to be minimized and εi are the upper bounds of fi(x).

Several techniques exist to determine which member of the Pareto set is the optimal

solution. The most widely used method employs Lp norms. This technique minimizes

the distance from the Pareto set to an ideal solution (i.e. the utopia point, f ∗i ) to find

the optimal solution based on the following equation (Kasprzak and Lewis, 2000):

min

(
n∑
i=1

(fi(x)− f ∗i )p
)1/p

(4.17)

Typical applications of the Lp norm are the L1, L2 and L∞ norms where p = 1, 2 and

∞, respectively. In this study, the L2 norm was used to determine the optimal Pareto

set. According to the L2 norm method, the optimal compromise Pareto design is the

member of the Pareto set which lies geometrically closest to the utopia point, calculated

in terms of vector distance in the performance space.

4.3 Results and Discussion

4.3.1 Model Formulation

The data obtained from the CCD experiment was divided into two parts: estimation and

validation data, because once a model is built based on data, validation of the model
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is necessary. In this study, the data of 14 flasks was used for model formulation and

parameter estimation and the rest (flasks 4, 5, 7, 9, 12, 18) were used for validation

of the model. The estimation and validation sets were chosen such that each included

sufficient variation in the levels of each factor to provide enough variability in the data

for accurate modeling.

Several models were examined to describe the algal growth and CO2, phosphate,

nitrate and ammonium uptake rates of Chlorella kessleri. The best model was then

selected based on the lowest AIC and BIC, and the results are presented in Table 4.2.

Table 4.2: Comparison between competing kinetic expressions to model the algal growth
rate and nutrient (CO2, phosphate, nitrate and ammonium) uptake rate. WSSE, AIC
and BIC are calculated based on Eq. 4.7, Eq. 4.8 and Eq. 4.9, respectively.

Kinetic Model WEES×104 AIC×103 BIC×103

Algal Growth
Rate

µCO2

Monod (Eq. 4.3) 5.01 6.18 5.35
Haldane-like (Eq. 4.4) 5.00 6.18 5.35

Haldane-like &Caperon-Meyer (Eq. 4.19) 2.19 5.44 4.61

µ
PO−3

4

Monod (Eq. 4.3) 2.51 5.55 4.73
Haldane-like (Eq. 4.4) 2.19 5.44 4.61

µI
Monod (Eq. 4.3) 2.19 5.44 4.61

Haldane-like (Eq. 4.4) 2.76 5.64 4.82

Nutrient
Uptake Rate

ρCO2

Droop (Eq. 4.5) 6.01 6.34 5.52
Caperon-Meyer (Eq. 4.6) 2.19 5.44 4.61

ρ
PO−3

4

Droop (Eq. 4.5) 2.79 5.65 4.83
Caperon-Meyer (Eq. 4.6) 2.19 5.44 4.61

ρ
NO−

3

Droop (Eq. 4.5) 4.26 6.03 5.21
Caperon-Meyer (Eq. 4.6) 2.19 5.44 4.61

ρ
NH+

4

Droop (Eq. 4.5) 2.19 5.44 4.61
Caperon-Meyer (Eq. 4.6) 2.69 5.62 4.80

Algal Growth

As mentioned in Section 4.2.4, the specific growth rate can be expressed in terms of the

multiplication of the influencing factors. In this study, pH and temperature are constant;

therefore, the specific growth rate can be written as:

µ(t) = µm.µCO2 .µPO−3
4
.µI (4.18)
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where µCO2 , µPO−3
4

and µI are the growth rates influenced by the CO2 concentration,

phosphate concentration and the light intensity, respectively.

Influence of CO2 Concentration : As presented in Table 4.2, Monod and Haldane-

like models were found to be unsuitable to explain the influence of CO2 concentration

on the growth of Chlorella kessleri. Therefore, a new model combining Haldane-like and

Caperon-Meyer models was proposed to consider only the influence of the effective CO2

concentration ([CO2]-[CO2]0):

µCO2 =
[CO2]− [CO2]0

KSCO2
+ [CO2]− [CO2]0 + [CO2]2 /KICO2

(4.19)

where [CO2] is the concentration of CO2 (mg/L) in the headspace, [CO2]0 is the minimum

concentration of CO2 in the headspace below which no CO2 can be taken up by the

microalgae, KSCO2
is the half-substrate saturation constant and KICO2

is an inhibition

parameter.

Influence of Phosphate Concentration : The influence of phosphate concentration

can be adequately explained by both Monod and Haldane-like models; however, the

Haldane-like model showed a slightly lower AIC and BIC than the Monod model (Table

4.2):

µPO−3
4

=

[
PO−3

4

]
KS

PO−3
4

+
[
PO−3

4

]
+
[
PO−3

4

]2
/KI

PO−3
4

(4.20)

where
[
PO−3

4

]
is the concentration of PO−3

4 (mg/L) at the culture, KS
PO−3

4

is the half-

substrate saturation constant and KI
PO−3

4

is the inhibition parameter.

Influence of Light Intensity : In several studies (Bechet et al., 2013; Bordel et al.,

2009; Post et al., 1985), the algal specific growth rate was adequately explained by a

Monod model based on the average light intensity; however, Haario et al. (2009) and
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Bernard (2011) used Monod and Haldane-like models, respectively, to express the in-

fluence of incident light intensity on the algal specific growth rate. In this study, as

presented in Table 4.2, the Monod model was found to be suitable enough to capture the

effect of incident light intensity on the growth of Chlorella kessleri.

µI =
I

KSI + I
(4.21)

where I is the light intensity (µmol photons.m−2.s−1).

Nutrient Uptake Rate

CO2 Uptake Rate : The CO2 in the gas phase and liquid phase are in equilibrium with

each other in this closed batch experiment:

CO2(gas)

 CO2(aq)

(4.22)

and based on Henry’s law:

[dCO2]

[CO2]
= kHcc (4.23)

where [CO2] is CO2 concentration in gas phase, [dCO2] is dissolved CO2 concentration

in liquid phase and kHcc is the dimensionless Henry’s constant.

Also, the dissolved CO2 is in chemical equilibrium with carbonic acid:

CO2(aq)
+H2O 
 H2CO3 (4.24)
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with

[dCO2]

[H2CO3]
= KD (4.25)

However, the hydration equilibrium constant (KD) ranges between 350 and 990 (Kern,

1960). Therefore, only a small fraction of aqueous CO2 is converted into carbonic acid;

also, the conversion of aqueous CO2 to carbonic acid is slow and can be written as:

CO2(aq)
+H2O → H2CO3 (4.26)

In this experiment, the pH and alkalinity (as bicarbonate concentration) are almost

constant in each flask. Moreover, the dissociation of carbonic acid to bicarbonate is

instantaneous at pH<8. Therefore, the changes in aqueous CO2 can be written as:

d [dCO2]

dt
= KLa

(
[CO2](saturation) − [dCO2]

)
− ρdCO2X (4.27)

whereKLa is the volumetric CO2 mass transfer coefficient, [CO2](saturation) is the dissolved

CO2 saturation concentration in the liquid phase, and ρdCO2 is the microalgal CO2 uptake

rate. Since the system is in equilibrium, [CO2](saturation) is equal to [dCO2] at each time

and the first term on the right hand side of Eq. 4.27 is equal to zero. This simplifies the

dissolved CO2 dynamics to:

d [dCO2]

dt
= −ρdCO2X (4.28)

The Caperon-Meyer model (Eq. 4.6) estimates the CO2 uptake rate as:

ρdCO2 = ρmdCO2

[dCO2]− [dCO2]0
KρdCO2

+ [dCO2]− [dCO2]0
(4.29)
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where ρdCO2 is the uptake rate of dissolved CO2, ρmdCO2
is the maximum uptake rate

of dissolved CO2, KρdCO2
is the uptake half-saturation constant of dissolved CO2 and

[dCO2]0 is the dissolved CO2 concentration at which the uptake rate is zero.

Based on Eq. 4.23, Eq. 4.29 can be rearranged by substituting [dCO2] with [CO2] as

follows:

ρCO2 = ρmdCO2
kHcc

[CO2]− [CO2]0
KρdCO2

/kHcc + [CO2]− [CO2]0
(4.30)

Also, ρmdCO2
kHcc and KρdCO2

/kHcc can be reparameterized to:

ρCO2 = ρmCO2

[CO2]− [CO2]0
KρCO2

+ [CO2]− [CO2]0
(4.31)

where ρCO2 is the uptake rate of CO2, ρmCO2
is the maximum uptake rate of CO2, KρCO2

is the uptake half-saturation constant of CO2 and [CO2]0 is the CO2 concentration at

which the uptake rate is zero. As presented in Table 4.2, the Droop model could not

adequately explain CO2 uptake rate; thus, the Caperon-Meyer model (Eq. 4.6) was used

to estimated the CO2 uptake rate.

Phosphate Uptake Rate : The Droop and Caperon-Meyer models were compared to

describe the phosphate uptake rate. As shown in Table 4.2, Caperon-Meyer model showed

better performance in describing the experimental data (Eq. 4.5):

ρPO−3
4

= ρm
PO−3

4

[
PO−3

4

]
−
[
PO−3

4

]
0

Kρ
PO−3

4

+
[
PO−3

4

]
−
[
PO−3

4

]
0

(4.32)

where ρPO−3
4

is the uptake rate of phosphate, ρm
PO−3

4

is the maximum uptake rate of

phosphate and Kρ
PO−3

4

is the uptake half-saturation constant of phosphate and
[
PO−3

4

]
0

is the phosphate concentration at which the uptake rate is zero.

Nitrogen Uptake Rate : The dynamics of nitrate concentration were better described



4.3: Results and Discussion 95

by the Caperon-Meyer model; however, the Droop model (Eq. 4.5) was found to be

adequate to estimate the ammonium uptake rate (Table 4.2):

ρNO−
3

= ρm
NO−

3

[
NO−3

]
−
[
NO−3

]
0

Kρ
NO−

3

+
[
NO−3

]
−
[
NO−3

]
0

(4.33)

ρNH+
4

= ρm
NH+

4

[
NH+

4

]
Kρ

NH+
4

+
[
NH+

4

] (4.34)

where ρNO−
3

is the uptake rate of nitrate, ρm
NO−

3

is the maximum uptake rate of nitrate,

Kρ
NO−

3

is the uptake half-saturation constant of nitrate,
[
NO−3

]
0

is the nitrate concentra-

tion at which the uptake rate is zero, ρNH+
4

is the uptake rate of ammonium, ρm
NH+

4

is the

maximum uptake rate of ammonium and Kρ
NH+

4

is the uptake half-saturation constant

of ammonium.

Overally, the dynamics of the system can be described by a set of following differential

equations:

dX

dt
= µm

[CO2]− [CO2]0
KSCO2

+ [CO2]− [CO2]0 + [CO2]2 /KICO2[
PO−3

4

]
KS

PO−3
4

+
[
PO−3

4

]
+
[
PO−3

4

]2
/KI

PO−3
4

I

KSI + I
X − kdX (4.35)

d [CO2]

dt
= −ρmCO2

[CO2]− [CO2]0
KρCO2

+ [CO2]− [CO2]0
X (4.36)

d
[
PO−3

4

]
dt

= −ρm
PO−3

4

[
PO−3

4

]
−
[
PO−3

4

]
0

Kρ
PO−3

4

+
[
PO−3

4

]
−
[
PO−3

4

]
0

X (4.37)



4.3: Results and Discussion 96

d
[
NO−3

]
dt

= −ρm
NO−

3

[
NO−3

]
−
[
NO−3

]
0

Kρ
NO−

3

+
[
NO−3

]
−
[
NO−3

]
0

X (4.38)

d
[
NH+

4

]
dt

= −ρm
NH+

4

[
NH+

4

]
Kρ

NH+
4

+
[
NH+

4

]X (4.39)

The model parameters were estimated by minimizing the WSSE using PSO with 20

particles (λ=10), and they are presented in Table 4.3. It should be noted that all the

parameters were subjected to a lower boundary constraint (P>0) which was handled

using Eq. 4.12.

Table 4.3: The estimated values of model parameters (Eqs. 4.35 to 4.39) based on data
from flasks 1, 2, 3, 6, 8, 10, 11, 13-17, 19 and 20.

Parameter Estimated Value Unit Parameter Estimated Value Unit
µm 3.01×10−2 1/h kd 2.32×10−5 1/h

KSCO2
10.2 mgCO2

/L KICO2
1.41×103 mgCO2

/L

KS
PO

−3
4

760 mg
PO−3

4
/L KI

PO
−3
4

9.92×103 mg
PO−3

4
/L

KSI
6.70 µmol photons.m−2.s−1

ρmCO2
0.175 mgCO2

/(mgBiomass.h) KρCO2
2.58×103 mgCO2

/L

ρm
PO

−3
4

8.62×10−2 mg
PO−3

4
/(mgBiomass.h) Kρ

PO
−3
4

233 mg
PO−3

4
/L

ρm
NO

−
3

4.64×10−3 mg
NO−

3
/(mgBiomass.h) Kρ

NO
−
3

930 mg
NO−

3
/L

ρm
NH

+
4

1.39×10−2 mg
NH+

4
/(mgBiomass.h) Kρ

NH
+
4

127 mg
NH+

4
/L

4.3.2 Model Validation

It is necessary to validate the model against experimental data obtained under different

conditions. Therefore, data obtained from flasks 4, 5, 7, 9, 12, 18 was used to validate the

developed model. The WSSE of each state for these flasks was calculated and is presented

in Table 4.4. In flask 4, the model showed the best fit for biomass and nitrate against

experimental data; however, it represented the worst fit for ammonium concentration.

The model demonstrated the best fit for CO2 and phosphate in flask 7 and flask 5,
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respectively. It can be concluded that the model can satisfactorily predict the dynamics

of CO2 and phosphate concentration when their initial concentrations are low. However,

the model demonstrated the best fit for ammonium in flask 5 as well. Totally, the

model showed the best fit against experimental data for flask 18 as expected because of

multiple runs in the center point. Model predictions and experimental data for flasks 4,

5, 7, 9, 12 and 18 are also shown in Figures 4.1-4.6 to demonstrate the accuracy of the

model. Overall, in the validation, the best accuracy of model predictions was achieved

for CO2, phosphate and ammonium, and reasonable accuracy was achieved for biomass

and nitrate. Based on this, we concluded that the accuracy of the model was sufficient

for use in optimization studies.

Table 4.4: The WSSE for each state in the model and the total WSSE calculated based
on Eq. 4.7 for the validation flasks

Flask WSSE×102

Number Biomass Carbon Dioxide Phosphate Nitrate Ammonium Total
4 1.45 1.35 0.901 1.38 5.48 10.6
5 16.1 0.163 0.065 8.12 0.739 25.1
7 3.81 0.049 0.335 22.5 3.94 30.6
9 13.0 0.118 0.122 6.10 1.83 21.2
12 15.1 0.256 0.958 46.1 2.56 65.0
18 4.75 0.524 0.361 2.69 1.02 9.35

4.3.3 Optimization

The validated dynamic model of microalgal culture presented in Eqs. 4.35 to 4.39 can

be used to find optimal initial conditions, ξ(t0)∗, to maximize the objective function.

ξ(t0)∗ = argmax
ξ(t0)

J (ξ(t0); tf ) (4.40)
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Figure 4.1: Validation of the model in flask 4 (conditions of high CO2 concentration,
high phosphate concentration and low light intensity)
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Figure 4.2: Validation of the model in flask 5 (conditions of low CO2 concentration, low
phosphate concentration and high light intensity)



4.3: Results and Discussion 100

0 2 4 6 8 10 12 14 16 18 20
100

200

300

400

500

600

700

800

900

Culture Time (day)

B
io

m
a
ss

 (
m

g
/L

)

0 2 4 6 8 10 12 14 16 18 20
50

100

150

200

250

300

350

Culture Time (day)

C
a
rb

o
n

 D
io

x
id

e 
(m

g
/L

)

0 2 4 6 8 10 12 14 16 18 20
2700

2750

2800

2850

2900

2950

3000

3050

3100

Culture Time (day)

P
h

o
sp

h
a
te

 (
m

g
/L

)

0 2 4 6 8 10 12 14 16 18 20
40

45

50

55

60

65

70

75

80

85

90

Culture Time (day)

N
it

ra
te

 (
m

g
/L

)

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Culture Time (day)

A
m

m
o

n
iu

m
 (

m
g

/L
)

 

 

Model Prediction

Experimental Data

Figure 4.3: Validation of the model in flask 7 (conditions of low CO2 concentration, high
phosphate concentration and high light intensity)
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Figure 4.4: Validation of the model in flask 9 (conditions of very low CO2 concentration,
intermediate phosphate concentration and intermediate light intensity)
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Figure 4.5: Validation of the model in flask 12 (conditions of intermediate CO2 concen-
tration, very high phosphate concentration and intermediate light intensity)
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Figure 4.6: Validation of the model in flask 18 (conditions of intermediate CO2 concen-
tration, intermediate phosphate concentration and intermediate light intensity)
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where ξ is a vector of manipulated variables including CO2 concentration, phosphate

concentration and light intensity. J is the objective function defined as:

J = [CO2]t0 −
1

tf − t0

∫ tf

t0

[CO2]t dt (4.41)

or

J =
1

tf − t0

∫ tf

t0

Xtdt (4.42)

where [CO2]t0 is the initial concentration of CO2, [CO2]t is the concentration of CO2

at each time step, Xt is the biomass concentration at each time step and tf is a given

culture time (21 days).

Note that Chlorella kessleri exhibited no growth at CO2 concentrations above 42%.

Also, due to limitations of our experimental apparatus, providing light intensity greater

than 81 µmol photons.m−2.s−1 was not possible. Therefore, beside the lower boundary

constraints (ξ>0), there is an upper boundary constraint for CO2 concentration and light

intensity which can be handled by Eq. 4.12.

CO2 Fixation

Considering CO2 uptake as the objective function subjected to optimization results in

optimal initial conditions of 42% CO2, 29 mM phosphate and 81 µmol photons.m−2.s−1

light intensity to achieve average CO2 fixation of 477 mg/L over 21 days.

Algal Growth

The maximum biomass production is estimated to be 676 mg/L over 21 days. Also, the

optimal CO2, phosphate concentration and light intensity are found to be 16%, 30 mM
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Figure 4.7: Pareto curve for CO2 uptake and growth rate, the Pareto optimal set and
the utopia point.

and 81 µmol photons.m−2.s−1, respectively.

Multi-objective Optimization

The ε-constraints method described in Section 4.2.7 was used to maximize CO2 fixation

and algal growth simultaneously.

A dynamic penalty function method proposed by Parsopoulos and Vrahatis (2002)

was used to deal with the inequality constraints. In this study, the objective function is

the algal growth that is subjected to an inequality constraint of CO2 fixation (g(x) ≤ ε).

Details of the penalty function used in this study based on the range of CO2 fixation

and ε and the problem requirements, are: 1) the function h(.) is set to h(k) =
√
k in
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Eq. 4.14, where k is the algorithm’s current iteration number; 2) In Eq. 4.15, q(x) =

max{0; g(x)}. If q(x)<100, then γ (q(x)) = 1; if 100≤ q(x)<500, then γ (q(x)) = 5;

otherwise γ (q(x)) = 10. Further, if q(x)<100, then θ (q(x)) = 1; if q(x) ≤ 200, then

θ (q(x)) = 100; if q(x) ≤ 300, then θ (q(x)) = 1000, otherwise θ (q(x)) = 10000.

The Pareto curve, the utopia point and the optimal Pareto set (*) are shown in Figure

4.7. To emphasize that this is, indeed, the closest point, a circle centered on the utopia

point with a radius equal to length of the vector between the utopia point and the optimal

Pareto set is drawn. Since no other points in the Pareto set appear within this circle,

this point is the closest to the utopia point.

The optimal Pareto set is found to have an average CO2 fixation of 327 mg/L and

algal growth of 635 mg/L over 21 days. The ξ(t0)∗ is estimated to be 28% initial CO2,

32 mM phosphate concentration and 81 µmol photons.m−2.s−1 light intensity.

It can be concluded that high phosphate concentrations and very high light intensities

are required in order to maximize each of mentioned objective functions and the concen-

tration of CO2 plays an important role to maximize each individual objective function.

A normalized sensitivity analysis ( (∂Y/Y )
(∂P/P )

) has been performed on the model parame-

ters to determine the effect of parameter values (P ) on the average CO2 fixation and algal

growth (Y ) at ξ(t0)∗ (the initial condition). The significance of the effects of parameters

on CO2 fixation at this condition can be ordered as ρmCO2
>µm>KρCO2

>KICO2
>KI

PO−3
4

>

KS
PO−3

4

>KSI>KSCO2
>kd>ρm

PO−3
4

>Kρ
PO−3

4

>ρm
NH+

4

>Kρ
NH+

4

. Also, ρm
NO−

3

and Kρ
NO−

3

have almost no effect on CO2 fixation at these conditions. Similarly, the significance of the

effects of parameters on algal growth can be written as µm>ρmCO2
>KρCO2

>KICO2
>KI

PO−3
4

>KS
PO−3

4

>KSCO2
>KSI>kd>ρmPO−3

4

>Kρ
PO−3

4

>ρm
NH+

4

>Kρ
NH+

4

. ρm
NO−

3

and Kρ
NO−

3

seem

to have no effect on algal growth as well. Since nitrate concentration showed no signif-

icant effect on CO2 uptake and algal growth, it has not been considered in our future

investigations.
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Model Prediction

Experimental Data

Figure 4.8: Model predictions and experimental data at (a) 42% CO2, 29 mM phosphate
and 81 µmol photons.m−2.s−1 light intensity to maximize the CO2 uptake; (b) 16%
CO2, 30 mM phosphate and 81 µmol photons.m−2.s−1 light intensity to maximize the
biomass ; (c) 28% CO2, 32 mM phosphate and 81 µmol photons.m−2.s−1 light intensity
to simultaneously maximize the CO2 uptake and algal growth over 21 days. Data are
means ± one standard deviation of duplicate runs.
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Validation of Optimal Points

A set of experiments with duplicate runs including three sets of initial conditions: 1)

42% CO2, 29 mM phosphate and 81 µmol photons.m−2.s−1 light intensity, 2) 16% CO2,

30 mM phosphate and 81 µmol photons.m−2.s−1 light intensity, and 3) 28% CO2, 32 mM

phosphate and 81 µmol photons.m−2.s−1 light intensity, was performed to validate the

optimal model predictions of CO2 uptake, algal growth and the Pareto optimal set.

The model predictions and experimental data at these three initial conditions are

presented in Figure 4.8. It can be concluded that the dynamics of CO2 concentration

can be adequately explained by the model; however, the experimental algal growth is

slower than that predicted by the model at these conditions, although the final biomass

concentration is very close to the model predictions in each condition. A number of factors

could have contributed to this, including the fact that 1) OSPW is from the same pond

but it was taken in a different year than the one used for the previous experiments; 2)

The inoculation culture for Chlorella kessleri was different from the previous experiments;

and 3) Providing exactly the same conditions as the base experiment is impossible.

4.4 Conclusions

The proposed mathematical model adequately described the algal growth, CO2 uptake,

phosphate uptake, nitrate uptake and ammonium uptake rate of Chlorella kessleri culti-

vated in oil sands process water (OSPW). The optimal initial CO2 concentration, phos-

phate concentration and light intensity was determined using this nonlinear time varying

model to maximize algal growth and CO2 uptake over a period of 21 days. Moreover, a

multi-objective optimization technique was used to maximize the CO2 fixation and algal

growth simultaneously. The maximum average CO2 uptake of 477 mg/L was obtained

at very high CO2 concentration and light intensity and at high phosphate concentration.
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Also, low CO2 concentrations, high phosphate concentrations and very high light inten-

sity maximized algal growth to 676 mg/L. Finally, the Pareto optimization resulted in

CO2 uptake of 327 mg/L and algal growth of 635 mg/L at intermediate CO2 concentra-

tion, high phosphate concentration and very high light intensity. In the next chapter, a

raceway photobioreactor (as it is the most feasible and the foremost reactor configuration

for large-scale cultivation of microalgal biomass (Mata et al., 2010)) is designed and built

to calculate the optimal feeding strategy for fed-batch operation at larger scales.
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Chapter 5

Optimization of CO2 Fixation by
Chlorella kessleri in a Closed
Raceway Photo-bioreactor

5.1 Introduction

The optimization of CO2 fixation by microalgae is difficult due to the lack of appropri-

ate mathematical models describing the dynamics of CO2 in microalgal cultures. Most

of the modeling studies carried out so far have focused on the influence of culture con-

ditions and nutrient avalability on biomass growth (Geider et al., 1998; Flynn, 2001;

Packer et al., 2011; Costache et al., 2013; Pruvost et al., 2011; Sforza et al., 2014). For

example, Costache et al. (2013) developed an overall model that allows the simulation

of the photosynthesis rate under different culture conditions (irradiance, temperature,

pH, and dissolved oxygen). The model has then been validated against experimental

data obtained at different culture conditions. Sforza et al. (2014) developed a mathe-

matical model to explain the biomass concentration and irradiation in a photobioreactor.

Bernard and Remond (2012) also developed a model to describe the effect of temperature

and light on microalgal growth, and predict productivity in outdoor photobioreactors or

raceways. Using the bioprocess model, the evolution of states and inputs can be deter-

112
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mined and used for optimization. He et al. (2012) developed a kinetic model for algal

CO2 utilization to describe the CO2 uptake and algal growth as a function of CO2 and

light intensity in a fed-batch culture, and then determined the dynamic CO2 inlet par-

tial pressure using control vector parameterization to optimize the growth of algae fed

by flue gases. A more complex model containing a set of six differential equations was

proposed by de la Hoz Siegler et al. (2011) to model growth and oil production rates as

a function of carbon and nitrogen sources in a photobioreactor. Later, de la Hoz Siegler

et al. (2012) determined the optimal feeding strategies that maximize algal growth and

experimentally compared the performance of the model-based optimization strategies

against the performance of non-optimal fed-batch and batch cultures. Also, Abdollahi

and Dubljevic (2012) established an optimal feeding strategy for lipid production using

a state-of-the-art interior point optimizer (IPOPT) solver for the model developed by de

la Hoz Siegler et al. (2011).

Reactor configuration and cultivation techniques to improve biomass growth with flue

gas have also received attention in the literature (Kumar et al., 2010; Schenk et al., 2008;

Zhao et al., 2011). Generally, there are two environments used for the cultivation of

microalgae: open raceway ponds and closed photobioreactors. Open ponds are easy and

inexpensive to construct and operate, although they are limited in the ability to control

culture conditions and have a high risk of culture contamination. On the other hand,

closed photobioreactors allow for better control of the cultivation conditions than open

systems (Sanchez et al., 2011). For example, Zhao et al. (2011) reported that the specific

growth rate and CO2 fixation rate of Chlorella sp. in aerated closed cultivation were 1.78

and 5.39 times of those in the open cultivation, respectively. For that reason, we have de-

signed and built a closed raceway photobioreactor aerated with different concentrations

of CO2 for Chlorella kessleri cultivation in OSPW; this allowed us to have better control

on culture conditions and also be able to monitor CO2 dynamics in the photobioreactor.
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In addition, the raceway bioreactor operates under conditions that are directly scalable

to large-scale installation (Brennan and Owende, 2010; James and Boriah, 2010; Sanchez

et al., 2011; Schenk et al., 2008; Singh and Dhar, 2011). The changes in algal growth,

medium composition (phosphate, ammonium, dissolved CO2, dissolved O2, pH and al-

kalinity) and gas content (CO2 concentration) at the inlet and outlet were monitored in

fed-batch cultures over a period of 18 days (432 h). The experimental data generated was

used to modify a nonlinear kinetic model developed by us for batch cultures of Chlorella

kessleri in OSPW, include mass transfer and flow considerations, and develop a model for

the closed bench-scale raceway photobioreactor. The model considers the dilution rate

due to inlet streams and includes the effect of outlet flow (sampling). It also considers

CO2 mass transfer between liquid and gas phase. A model-based optimization method

was then applied to calculate the optimal feeding strategies for CO2 and phosphate and

light intensity to maximize biomass growth and CO2 fixation.

To the best of our knowledge, this is the first study that optimizes CO2 fixation by

microalgae grown in OSPW under scalable fed-batch conditions.

5.2 Materials and Methods

5.2.1 Strain and Media Composition

Chlorella kessleri was obtained from our laboratory culture collection (Mahdavi et al.,

2012). Since Chlorella kessleri is indigenous to OSPW, it is maintained in this envi-

ronment and no other media is used. The OSPW medium was made of 100% OSPW,

phosphate (KH2PO4, 1mM) and ammonium (NH4Cl, 1mM). Phosphate and ammonium

were added to provide phosphorus and nitrogen, the most important nutrients required

for microalgal growth.
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5.2.2 Equipment Design and Process Condition

Raceway Photobioreactor

The bench-scale raceway photobioreactor was fabricated out of plexiglass (poly methyl

methacrylate) with the thickness of 0.5 cm. The size of the photobioreactor and the

central partition is shown in Figure 5.1. The bioreactor set up shown in Figure 5.2

consists of:

Paddlewheel : A paddlewheel made of plexiglass is used to recirculate the biomass

and the growth media (nutrients and OSPW) to avoid concentration gradients and the

shadowing effect of the microalgae cells (Sanchez et al., 2011). The movement is produced

by a US425-401U2/4GN25RAA speed control AC motor (Oriental Motor, Tokyo, Japan).

The speed can be controlled from 3.6 to 64 rpm. Mixing is obtained by a combination of

the motion of the paddlewheel and the interaction of the flow with the bottom and sides

of the raceway.

Sensors : There are five sensors located inside the photobioreactor; each is immersed

in the culture. A Mettler Toledo Ingold 5000i dissolved CO2 probe (Mississauga, On-

tario, Canada) is used to measure the concentration of dissolved CO2 in the culture, a

Mettler Toledo Ingold 6850i dissolved O2 probe (Mississauga, Ontario, Canada) is used

to monitor the concentration of dissolved O2, a Mettler Toledo Ingold 3253i pH/Temp

probe (Mississauga, Ontario, Canada) is used to measure the pH and temperature of the

culture, and Gems ELS-900 high and low level sensors (Plainville, Connecticut, USA)

are used to monitor the level of the algal culture and prevent any overflow or low level

in the bioreactor.

Heater : A Marina mini 50 W submersible aquarium heater (Montreal, Quebec, Canada)

is used to control the temperature of the algal culture based on the temperature indicated

by pH/Temp probe.
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Figure 5.1: Top and side views of the closed raceway photobioreactor
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Lighting System : The lighting system is located over the pond. This system consists

of two high power LED strips (LED Supply, Randolph, Vermont, USA) with controllable

dimmers to change the light intensity between 0 and 140 µmol photons.m−2.s−1. The

light intensity is measured using a Sper Scientific Light Meter LUX/FC model 840020

(Scottsdale, Arizona, USA).

Inlet Streams: There are four liquid inlet streams and one gas inlet. The liquid

streams are controlled by four two-way normally closed solenoid pinch valves (Cole-

Parmer, Montreal, Quebec, Canada). The first stream contains OSPW to feed a fresh

medium to the culture and also compensate for the amount taken for sampling; the second

stream contains phosphate to be able to manipulate the concentration of phosphate in

the culture; the third and fourth streams contain acid and base to control the pH of

the culture. As shown in Figure 5.2, a mixture of air and CO2 with a flowrate of 500

mL/min is sparged from the bottom of the pond to create bubbles. The gas mixture

is regulated by two Brooks Instrument SLA 5800 series thermal mass flow controllers

(Hatfield, Pennsylvania, USA) to provide different concentrations of CO2 varying from

0.03 to 10%.

Outlet Stream : The gas outlet stream from the top of the photobioreactor is pumped

(500 mL/min) to the Rapidox 3100ZA CO2 and O2 gas analyzer (Cambridge Sensotec

Ltd., Cambridgeshire, United Kingdom) to monitor the composition of the outlet gas.

Auto-Sampling Line : An auto-sampler was built using a Masterflex peristaltic pump

(C/L variable-speed pump, Cole-Parmer, Montreal, Quebec, Canada), six two-way nor-

mally closed, one two-way normally open solenoid pinch valves (Cole-Parmer, Montreal,

Quebec, Canada) and three three-way solenoid pinch valves (Cole-Parmer, Montreal,

Quebec, Canada) to take 15 mL of sample every 4 h and store it in a refrigerator at 4◦C

for further analysis. Recycling starts 5 min before each sampling to pump a part of the

algal culture from tank to tank and after 5 min pump to the sampling tube. The culture
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usually is fed ahead of the paddlewheel and is sampled behind the paddlewheel (James

and Boriah, 2010). The full sample tubes are then replaced by empty tubes every day.

Data Acquisition and Control System : A National Instrument data acquisition

system (Austin, Texas, USA) was used to log the output from all sensors, analyzers, and

mass flow controllers every 5 min and to manipulate the inputs. National Instrument

LabView programming (Austin, Texas, USA) was used to interface the computer to the

experimental apparatus and manipulate and regulate variables and conditions.

5.2.3 Fed-Batch Experiment

Fed-batch experiments were conducted in the raceway photobioreactor. OSPW medium

was used as the start-up medium; also every 1 h, 6 mL of fresh medium was added to

the raceway photobioreactor to replenish the culture and replace the amount withdrawn

during sampling. CO2 and phosphate were added in two different streams as nutrients.

The first stream contained air enriched with stepwise changes in concentration of CO2.

The second stream contained KH2PO4 at a concentration of 1 mM. Also, light, which is

another important component for algal photosynthesis, was provided to the culture at

regular intervals. The periodic feeding profiles of CO2 and phosphate along with light

intensity are presented in Figure 5.3. As shown in this figure, the concentration of CO2

at the inlet was changed in very short time intervals. The first section of this periodic

feeding (day 3-4) indicates 30 min injection of air enriched with 15% CO2 and then 90

min injection of air. The second section (day 4-5) indicates shorter time intervals of 5

min injection of air enriched with 15% CO2 and then 15 min injection of air. A 12 mL

dose of phosphate feed was added at once every 100 min on day 12 and can be considered

to be an impulse excitation. Also, light intensity profile exhibits light/dark cycle of 16/8

h from day 7 to day 10.
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Figure 5.3: Periodic feeding profiles, (a) CO2; (b) phosphate; (c) light intensity
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The level of the medium in the bioreactor was set to 10 cm to provide the light more

homogeneously to the microalgae, and the temperature of the bioreactor was controlled

at 23±0.5◦C; the speed of the electric motor was kept constant at 20 rpm.

5.2.4 Analytical Methods

Growth Analysis : Biomass concentration was determined as total suspended solids

(TSS) by centrifuging 12 mL of cell suspension with a relative centrifugal force (RCF)

of 2500g for 15 min. The pellets were washed with autoclaved Milli-Q water and recen-

trifuged. The final precipitate was dried at 105◦C for 24 hours and then weighed by a

Mettler Toledo XP205 microbalance (Mississauga, Ontario, Canada).

Water Chemistry : A 500µL sample of clear supernatant from the centrifugation was

used to determine the amount of phosphate and nitrate using Dionex ICS-2100 Ion Chro-

matography with an IonPac AS18 hydroxide-selective anion-exchange column (Dionex,

Sunnyvale, CA, USA). The amount of ammonium was measured using the colorimetric

methods of 4500-NH3 and 4500-NO3 (Eaton et al., 1999) in the Biogeochemical Ana-

lytical Service Laboratory (BASL) at the University of Alberta. The alkalinity of the

cell-free supernatant was measured by titration with a 0.02 N H2SO4 solution using a

Mettler Toledo DL53 titrator (Mississauga, Ontario, Canada).

5.3 Results and Discussion

5.3.1 Model Formulation

The data obtained from the experiment with the periodic feeding strategy was used to

develop a mathematical model that can describe the dynamics of biomass, dissolved CO2,

phosphate and ammonium in a fed-batch photobioreactor.
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Kinetics

As mentioned before, a nonlinear kinetic model was developed by us in a previous study

based on data from batch cultures (Chapter 4) (Kasiri et al., 2014c). In this study,

the same kinetic expressions were used for describing the algal growth rate and CO2,

phosphate and ammonium uptake rates since they have already been validated. The

important details of the expressions are reported here for clarity of exposition:

Specific Growth Rate :

µ =µm
[dCO2]− [dCO2]0

KSdCO2
+ [dCO2]− [dCO2]0 + [dCO2]2 /KIdCO2[

PO−3
4

]
KS

PO−3
4

+
[
PO−3

4

]
+
[
PO−3

4

]2
/KI

PO−3
4

I

KSI + I
(5.1)

where µ is the specific growth rate, µm is the maximum growth rate, [dCO2] is the

concentration of dissolved CO2 (mg/L), [dCO2]0 is the dissolved CO2 concentration at

which the uptake rate is zero, KSdCO2
is the half-substrate saturation constant, KICO2

is an inhibition parameter,
[
PO−3

4

]
is the concentration of PO−3

4 (mg/L), KS
PO−3

4

is

the half-substrate saturation constant, KI
PO−3

4

is the inhibition parameter, I is the light

intensity (µmol photons.m−2.s−1) and KSI is the half-light saturation constant.

CO2 Uptake Rate :

ρdCO2 = −ρmdCO2

[dCO2]− [dCO2]0
KρdCO2

+ [dCO2]− [dCO2]0
(5.2)

where ρdCO2 is the uptake rate of dissolved CO2, ρmdCO2
is the maximum uptake rate of

dissolved CO2, KρdCO2
is the uptake half-saturation constant of dissolved CO2.
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Phosphate Uptake Rate :

ρPO−3
4

= −ρm
PO−3

4

[
PO−3

4

]
−
[
PO−3

4

]
0

Kρ
PO−3

4

+
[
PO−3

4

]
−
[
PO−3

4

]
0

(5.3)

where ρPO−3
4

is the uptake rate of phosphate, ρm
PO−3

4

is the maximum uptake rate of

phosphate and Kρ
PO−3

4

is the uptake half-saturation constant of phosphate and
[
PO−3

4

]
0

is the phosphate concentration at which the uptake rate is zero.

Ammonium Uptake Rate :

ρNH+
4

= −ρm
NH+

4

[
NH+

4

]
Kρ

NH+
4

+
[
NH+

4

]X (5.4)

where ρNH+
4

is the uptake rate of ammonium, ρm
NH+

4

is the maximum uptake rate of

ammonium and Kρ
NH+

4

is the uptake half-saturation constant of ammonium.

Fed-Batch Culture Considerations

Liquid Inlet Streams : OSPW medium and phosphate feeds were added to the photo-

bioreactor and diluted the culture. This dilution rate was considered in formulating the

model and is defined as:

D =
QIn

1 +QIn
2

V
(5.5)

where QIn
1 is the volumetric flow rate of the OSPW, QIn

2 is the volumetric flow rate of

the phosphate stream and V is the working volume of the photobioreactor.

CO2 Inlet Stream : CO2 significantly affects the algal growth in the photobioreactors

and it is dynamically exchanged between different phases and chemical forms. In order

to explain the dynamics of CO2 exchange between the liquid and gas phases and its
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hydration, we have modified a model developed by Nedbal et al. (2010). This is coupled

with our expression for the uptake of CO2 by microalgae to explain fully the behavior of

CO2 in the photobioreactor. The model considers mass transfer from a stream of bubbles

of air enriched with CO2 and the photobioreactor headspace to the algal culture. It also

includes the hydration of dissolved CO2 to bicarbonate ions. In this study the above

model was modified to become:

d [dCO2]

dt
=− ρdCO2X +

J

RT

h

V

(
P In
CO2

h
− [dCO2]

){
1− exp

[
−
(
kLaBRT

h
τ

)]}

+ kL
SH
V

(
POut
CO2

h
− [dCO2]

)
+ l
[
HCO−3

] [
H+
]
− k [dCO2]

+
QIn

1

V
[dCO2]In −D [dCO2] (5.6)

where X is the biomass concentration, J is the aeration rate (L/min), R is the uni-

versal gas constant (L.atm/K.mol), T is the temperature (K), h is the Henry’s constant

(L.atm/mg), P In
CO2

is the partial pressure of CO2 in the gas entering the bioreactor (atm),

POut
CO2

is the partial pressure of CO2 in the gas leaving the bioreactor (atm), kL is the

liquid-phase mass transfer coefficient (m/min), aB is the specific gas-liquid interfacial

bubble area (m−1), τ is the bubble lifetime (min), SH is the interfacial surface between

the liquid and the headspace (m2), k is the rate of CO2 hydration, l is the rate of HCO−3

dehydration,
[
HCO−3

]
is the concentration of HCO−3 ions, [H+] is the concentration of

H+ ions, QIn
1 is the volumetric flow rate of OSPW and [dCO2]In is the concentration of

dissolved CO2 in the OSPW medium.
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Overall Model

Overall, the dynamics of the system can be described by the following set of differential

equations:

dX

dt
= µX − kdX −DX (5.7)

d [dCO2]

dt
= −ρdCO2X +

J

RT

h

V

(
P In
CO2

h
− [dCO2]

){
1− exp

[
−
(
kLaBRT

h
τ

)]}

+ kL
SH
V

(
POut
CO2

h
− [dCO2]

)
+ l
[
HCO−3

] [
H+
]
− k [dCO2]

+
QIn

1

V
[dCO2]In −D [dCO2] (5.8)

d
[
PO−3

4

]
dt

= −ρPO−3
4
X +

QIn
1

V

[
PO−3

4

]In
1

+
QIn

2

V

[
PO−3

4

]In
2
−D

[
PO−3

4

]
(5.9)

d
[
NH+

4

]
dt

= −ρNH+
4
X +

QIn
1

V

[
NH+

4

]In
1
−D

[
NH+

4

]
(5.10)

dV

dt
= V D −QOut (5.11)

where kd is the decay coefficient of biomass,
[
PO−3

4

]In
1

is the concentration of phosphate

in the OSPW feed,
[
PO−3

4

]In
2

is the concentration of phosphate in the phosphate feed,[
NH+

4

]In
1

is the concentration of ammonium in the OSPW feed and QOut is the flow rate

of the outlet stream (which is only non-zero when samples are being drawn).

5.3.2 Parameter Estimation and Model Validation

The parameters involved in the model were estimated by minimizing the weighted sum of

squared errors (WSSE). The WSSE for a set of model parameters (P ) can be calculated
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as (de la Hoz Siegler et al., 2011):

WSSE(P ) =
M∑
i=1

N∑
j=1

(
Yij − Ŷij

)T
W−1
i

(
Yij − Ŷij

)
(5.12)

where N is the number of experimental data points used to estimate the model, M is

the number of measurable states, Yij is the measured value of state i at time j and Ŷij is

the value of the state i at time j as predicted by the model and Wi is the weight factor

of the state i.

Particle swarm optimization (PSO) algorithm with 20 particles was used to minimize

the WSSE. The estimated model parameters are presented in Table 5.1. It should be

noted that all the parameters were subjected to a lower boundary constraint (P>0) which

was handled by the method developed in Chapter 4 (Kasiri et al., 2014c).

Table 5.1: The estimated parameters for the model described in Section 5.3.1, Eqs. 5.7-
5.11

Parameter Estimated Value Unit Parameter Estimated Value Unit
µm 4.01×10−2 1/h kd 1.09×10−5 1/h

KSdCO2
4.84 mgdCO2

/L KIdCO2
1.25×103 mgdCO2

/L

KS
PO

−3
4

155 mg
PO−3

4
/L KI

PO
−3
4

1.25×103 mg
PO−3

4
/L

KSI
28.2 µmol photons.m−2.s−1

ρmdCO2
6.29×10−5 mgdCO2

/(mgBiomass.h) KρdCO2
1.88 mgdCO2

/L

ρm
PO

−3
4

1.50×10−3 mg
PO−3

4
/(mgBiomass.h) Kρ

PO
−3
4

1410 mg
PO−3

4
/L

ρm
NH

+
4

0.273 mg
NH+

4
/(mgBiomass.h) Kρ

NH
+
4

2.75×103 mg
NH+

4
/L

kL 0.200 m/h aBτ 1.11 h/m

k 0.330 1/h l 2.40×104 L/(mol.h)

Normalized sensitivity analysis ( (∂Y/Y )
(∂P/P )

) was performed on all model parameters to

determine the parameters (P ) with significant effect on the average CO2 uptake rate and

algal growth (Y ). The results are obtained by changing each parameters value by 10%

(5% higher and lower) from the estimated value. Table 5.2 summarizes the significance of

the eight model parameters that may be considered to be important. As expected the CO2
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uptake rate is very sensitive to its maximum uptake rate and the uptake half-saturation

constant of dissolved CO2. Also, the rate of HCO−3 dehydration and CO2 hydration,

specific gas-liquid interfacial bubble area and bubble lifetime play a significant role in

the CO2 uptake rate. However, algal growth showed the most sensitivity toward the

maximum growth rate and the half-saturation constant of phosphate, light intensity and

dissolved CO2.

Table 5.2: Normalized sensitivity of CO2 uptake rate and algal growth to model param-
eters obtained based on the periodic feeding strategy

CO2 uptake rate (ρdCO2
)

ρmdCO2
KρdCO2

l k aBτ µm KS
PO

−3
4

KSI

0.999 0.239 0.132 0.116 0.039 0.002 0.001 0.001

Algal growth (X)
µm KS

PO
−3
4

KSI
KSdCO2

KI
PO

−3
4

k KIdCO2
aBτ

2.04 0.710 0.668 0.401 0.256 0.094 0.061 0.011

The model predictions were then compared with the measured experimental data.

The adequacy of the model is shown in Figures 5.4-5.7, which show reasonably good

agreement between the model predictions and the corresponding experimental data. Fig-

ure 5.4 indicates that the model can adequately explain a downtrend followed by an in-

crement in the microalgal growth due to the effects of light/ dark cycle and phosphate

feed, respectively. It can be seen that the intermittent phosphate feeding increases the

microalgal growth. This is in agreement with Jin et al. (2006), who reported that in-

termittent nitrate feeding increases microalgal growth and can be used to prolong the

duration of exponential growth phase in a given photobioreactor system. The results also

indicate that the model can capture the dynamics of dissolved CO2 perfectly in short

time intervals (Figure 5.5). As shown in Figure 5.6, the dynamics of phosphate have

been captured adequately by the model. However, the model shows a slight weakness in

capturing ammonium dynamics (Figure 5.7). Based on these results, we concluded that

the accuracy of the model was adequate for use in optimization studies.
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Figure 5.4: Fed-batch model predictions and biomass data achieved based on the periodic
feeding strategy
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Figure 5.5: Fed-batch model predictions and dissolved CO2 data achieved based on the
periodic feeding strategy
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Figure 5.6: Fed-batch model predictions and phosphate data achieved based on the
periodic feeding strategy
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Figure 5.7: Fed-batch model predictions and ammonium data achieved based on the
periodic feeding strategy
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It should be noted that the mathematical model describing the algal growth rate and

CO2, phosphate and ammonium uptake rates of Chlorella kessleri cultivated in the race-

way photobioreactor is identified experimentally. The model parameters were estimated

using data generated by the photobioreactor working under a certain operating condition

and cultivation mode (fed-batch). Therefore, different cultivation mode and operating

conditions resulted in different model parameters for fed-batch and batch cultures, al-

though the same kinetic expressions were used for both cultivation modes (Chapter 4)

(Kasiri et al., 2014c) . For example, the maximum specific growth rate µm is found to be

higher for the fed-batch culture than for the batch cultures. This increase in µm could

be the result of better mixing of the culture which facilitates better light distribution

between microalgal cells. Also, there are feed streams containing highly concentrated

nutrient solutions and fresh medium into the photobioreactor that increase algal growth

(Coelho et al., 2014; Yadala and Cremaschi, 2014). It is concluded that the model pa-

rameters require to be tuned when the cultivation mode or operating range/conditions

are different to obtain the accurate models.

5.3.3 Feeding Strategy Optimization

Bioprocess optimization is usually performed by calculating the optimal feeding profile

for the duration of the culture. In this study, there are two possible scenarios: maximum

algal biomass or maximum CO2 fixation rate. Algal growth and the CO2 fixation rate

can be manipulated by varying the CO2 and phosphate feed rates as well as the light

intensity profiles. The optimal feeding strategy u∗ is given by:

u∗ = argmax
u

Javg. (u; ξ(t0); tf ) (5.13)
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where t0 is the initial time, tf is a given culture time and Javg. is the objective function

defined as:

Javg. =
1

tf − t0

∫ tf

t0

Jtdt (5.14)

where J can be defined either as algal growth or CO2 uptake rate. The model devel-

oped can be used to calculated the optimal feeding strategy u∗. The dynamic model of

photobioreactor can be represented as:

dξ

dt
= f (ξ, u) (5.15)

and can be discretized using Euler’s method to:

ξt+1 = ξt + ∆tf
(
ξt, ut

)
(5.16)

where ξ = [X [dCO2]
[
PO−3

4

] [
NH+

4

]
V ] is the state vector, ξt is the state vector at time

t and ∆t is the time interval of discretization.

The dynamics of the photobioreactor are highly nonlinear and there are constraints

on the process inputs and final bioreactor volume which are given by:

0 ≤ ut ≤ umax (5.17)

Vmin ≤ V tf ≤ Vmax

Table 5.3 shows the constraints used in the optimization of algal growth and CO2

uptake rate, which are taken into account by the PSO algorithm during optimization.

It is worthwhile to mention that an explicit constraint on the pH is not imposed in this

experiment because it has been proven in our laboratory that even the injection of pure
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CO2 (99.99%) into the OSPW causes the pH to settle around a value of 6 and Chlorella

kessleri maintains its growth in such conditions.

Table 5.3: List of constraints imposed using Eq. 5.17

Variable Lower Bound Upper Bound Unit

Phosphate Feed rate (QIn2 ) 0 50 mL

CO2 Concentration (P InCO2
) 0.03 15 %

Light Intensity (I) 0 140 µmol photons.m−2.s−1

Reaction Volume (V ) 4 8 L

The PSO algorithm with 20 particles was used to determine u∗ = [ut0 . . . utf−1] such

that the objective function, Eq. (5.14), is maximized. The total cultivation time was

assumed to be 432 h (18 days) with a time interval of 24 h for input manipulation.

Thus, 54 parameters (3 manipulating inputs × 18 days) were estimated using the PSO

algorithm to maximize each objective function. Note that a light/dark cycle of 16/8 h is

considered and consequently it is assumed that only air (0.03% CO2) is sparged into the

bioreactor during the dark cycle since the algal growth rate is zero during this cycle.

CO2 Fixation

Considering the CO2 uptake rate as the objective function results in an increase in the

average CO2 uptake rate to 5.60× 10−5 mgdCO2/(mgBiomass.h); a 1.7-fold increase with

respect to the initial fed-batch experiment 3.28× 10−5 mgdCO2/(mgBiomass.h) as a result

of the optimal feeding strategy shown in Figure 5.8. As shown in Figure 5.8, due to luxury

cosumption of CO2 in high CO2 concentration, a high concentration of CO2 is required

in all injection periods. Also, a relatively high phosphate concentration is required to

achieve the maximum CO2 uptake rate. That is in agreement with Xu et al. (2010) who

reported that elevated CO2 at high Pi levels improved the photosynthetic capability of

Gracilaria lemaneiformis. However, in order to maximize the CO2 uptake rate, high light
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Figure 5.8: Optimal feeding strategy to maximize average CO2 uptake rate, (a) CO2; (b)
phosphate; (c) light intensity
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Figure 5.9: Optimal feeding strategy to maximize average algal growth, (a) CO2; (b)
phosphate; (c) light intensity
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Figure 5.10: Algal growth as a result of optimal feeding strategy and periodic feeding
strategy

intensity is not required. The average light intensity in the profile is approximately 60

µmol photons.m−2.s−1.

Algal Growth

Similarly, considering algal growth as the objective to be maximized results in average

algal growth of 816 mg/L; this is a 3.5-fold increase in the biomass production with

respect to the original fed-batch experiment 238 mg/L as a result of the optimal feeding

strategy shown in Figure 5.9. Also, the final concentration of biomass is calculated to be

3410 mg/L; this is a 9.2-fold increase in final biomass concentration with respect to the



5.4: Conclusions 136

initial fed-batch experiment 370 mg/L (Figure 5.10). As shown in Figure 5.9, high light

intensity as well as relatively high concentration of CO2 are required to optimize algal

growth. However, in order to maximize the algal growth, high phosphate concentration

is not required. Generally, increasing CO2 levels increase algal growth because more CO2

from the external bulk medium diffuses to the active site of Rubisco (Xu et al., 2010;

Spalding, 2008); also, an increase in the light intensity corresponds to an increase in algal

photosynthesis (Chisti, 2007; Fan et al., 2007).

5.4 Conclusions

The dynamics of Chlorella kessleri cultivated in OSPW in the closed raceway photobiore-

actor (fed-batch) was adequately described by a dynamic mathematical model developed

based on batch kinetics identified from a previous study of ours explained in Chapter 4.

The proposed model then was used to calculate the optimal levels for CO2, phosphate

and light intensity to maximize CO2 uptake and algal growth. The estimated optimal

feeding strategy resulted in a 1.7-fold increase in the average CO2 uptake rate, a 3.5-fold

increase in the average algal growth when each of these objectives was maximized. In our

future studies, Pareto optimization as a multi-objective optimization method will be used

to calculate the optimal feeding strategy to maximize CO2 uptake rate and algal growth

simultaneously. The optimal feeding strategies then will be experimentally validated in

the raceway photobioreactor. Subsequently, the obtained results from the experiment

can be used for tuning the parameters to achieve a more accurate model. Moreover,

algal cultivation can be perfomed in continuous mode to provide a basis for the design

and scale-up of industrial algal cultivation. Industrial algal cultivation can be integrated

with CO2 fixation and wastewater treatment by exploiting CO2 from flue gas, along with

phosphate and ammonium from agricultural run-off.
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Chapter 6

Conclusions and Future work

6.1 CONCLUSIONS

Biological fixation of CO2 using microalgae is an environmentally sustainable option for

CO2 capture. To make this option economically competitive compared to other CO2

capture techniques, it is necessary to reduce the cost of cultivation and optimize the

CO2 fixation rate and operate the algal culture at the optimal process conditions. Since

oil sands process water (OSPW) contains a variety of inorganic compounds necessary

for microalgal growth it can be used as a growth medium to reduce the cost of water

and chemicals required for the growth medium. Moreover, the biomass growth and

CO2 uptake rate of phototrophic microalgal cultures can be optimized by manipulating

the effective factors such as light intensity, nutrient availability, temperature and pH.

However, optimization of algal cultures is difficult because of their complex dynamic

behaviour and the lack of appropriate models of microalgal growth and CO2 dynamics.

The purpose of this research was to further identify the best microalgal strain that can

grow in OSPW with high capacity of CO2 fixation, develop a model of the algal system

by applying statistical and mathematical approaches and subsequently determine the

operating conditions that maximize algal growth and CO2 uptake rate in batch and fed-

batch cultures. Development of such an accurate model and calculating the optimal
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operation condition was the underlying goal throughout the thesis. Concluding remarks

about the materials discussed in the thesis are summarized as follows:

Chapter 2

Botryococcus braunii, Chlorella pyrenoidosa and Chlorella kessleri were cultivated in

OSPW to identify microalgal strains that can grow in OSPW. The results indicated that

Botryococcus braunii was unable to grow in OSPW; therefore, only Chlorella pyrenoi-

dosa and Chlorella kessleri were evaluated further based on their specific growth rate

and ability to uptake CO2 in different conditions with varying CO2, phosphate, nitrate

levels, and light intensity. The results indicated that Chlorella kessleri exhibited higher

CO2 uptake and specific growth rate compared to Chlorella pyrenoidosa at the same con-

ditions. Also, the results revealed that CO2 concentration, light intensity and phosphate

concentration (in that order) had the strongest effect on growth and CO2 uptake rate.

Chapter 3

At first, a statistical approach was used to develop two quadratic models to describe the

CO2 uptake rate and specific growth rate of Chlorella kessleri in batch cultures. The mod-

els were then validated against experimental data and used to determine the optimal sets

of CO2 concentration, phosphate concentration and light intensity for CO2 uptake rate

and specific growth rate. 35% CO2 concentration, 29 mM phosphate concentration and

70 µmol photons.m−2.s−1 light intensity maximized CO2 uptake rate to 65.03 mg/L/day.

Also, the maximum specific growth rate of 0.310 per day was obtained at 22% CO2 con-

centration, 29 mM phosphate concentration and 70 µmol photons.m−2.s−1 light intensity.

Moreover, a multi-objective Pareto optimization method was applied and resulted in a

CO2 uptake rate of 62.98 mg/L/day and a specific growth rate of 0.309 per day at 28%

CO2 concentration, 29 mM phosphate concentration and 70 µmol photons.m−2.s−1 light
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intensity.

Chapter 4

A kinetic model was developed to achieve a better understanding of the behavior of

microalgae cultivated in batch cultures and eventually to find the optimal operation

conditions. The proposed mathematical model adequately described the algal growth,

CO2 uptake, phosphate uptake, nitrate uptake and ammonium uptake rate of Chlorella

kessleri cultivated in OSPW. The results of a single-objective optimization revealed that

initial conditions of 42% CO2, 29 mM phosphate and 81 µmol photons.m−2.s−1 light

intensity maximized average CO2 uptake to 477 mg/L. Also, initial conditions of 16%

CO2, 30 mM phosphate and 81 µmol photons.m−2.s−1 light intensity maximized algal

growth to 676 mg/L. Finally, the results of multi-objective Pareto optimization indicated

that initial conditions of 28% CO2, 32 mM phosphate and 81 µmol photons.m−2.s−1 light

intensity resulted in CO2 uptake of 327 mg/L and algal growth of 635 mg/L.

Chapter 5

Since the cultivation mode significantly affects the efficiency and effectiveness of a mi-

croalgal production process, an automated lab-scale raceway photobioreactor was used to

develop a model based on modification of batch kinetics determined in Chapter 4 and the

inclusion of mass transfer and other transport effects. The dynamics of Chlorella kessleri

cultivated in OSPW in the closed raceway photobioreactor (fed-batch) was adequately

captured by the developed dynamic mathematical model. The estimated optimal feeding

strategy resulted in a 1.7-fold increase in the average CO2 uptake rate, and a 3.5-fold

increase in the average algal growth when each of these objectives was maximized.
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Summary of Findings

To summarize, Chlorella kessleri which is indigenous to OSPW exhibited higher CO2

uptake and specific growth rate compared to other selected candidates. In order to

maximize CO2 uptake and growth of Chlorella kessleri, appropriate models of microalgal

cultures were developed using data generated by manipulating CO2 concentration, light

intensity and phosphate concentration which exhibited significant effects on CO2 uptake

and specific growth rate. The results showed that CO2 uptake rate and algal growth

can be maximized successfully by applying optimal initial conditions in batch cultures

or applying optimal feeding strategy in fed-batch culture. These findings and results

have the potential to be used in the design and scale-up of industrial algal cultivation in

OSPW with the aim of CO2 fixation.

6.2 FUTURE WORK

• Pareto optimization as a multi-objective optimization method can be used to cal-

culate the optimal feeding strategy to maximize CO2 uptake rate and algal growth

simultaneously in fed-batch and continuous systems.

• The mathematical model of Chlorella kessleri cultivated in OSPW in the closed

raceway photobioreactor is an experimentally identified model. The model param-

eters are identified using experimental data which is obtained over a certain range.

The optimal feeding strategies can be experimentally validated. The obtained re-

sults from these experiments then can be used for tuning the parameters in the

model to obtain a more accurate model for the range of data collected.

• The algal cultivation can be perfomed in the raceway photobioreactor in a con-

tinuous mode to provide a basis for the design and scale-up of industrial algal
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cultivation with the aim of CO2 fixation.

• The industrial algal cultivation can be performed at a larger scale in an integrated

fashion by exploiting CO2 from flue gas, medium from OSPW and phosphate and

ammonium from agricultural run-off.

• The direct injection of CO2 into the tailing ponds water can be investigated, since

algal growth and CO2 fixation can provide oxygen for aerobic micro-organisms and

improve the biodegradation of unwanted dissolved compounds in the ponds.
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