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Abstract

There have been intensive research efforts on optimizing performance in wireless

networks by adjusting certain parameters in the system. Most of the works are

for decision making at individual moments, which are independent of each other.

However, in many cases, a sequence of decisions need to be made in wireless

networks, and the decisions are not independent, referred to as sequential decision

making. The target of sequential decision making is to maximize the system

efficiency in the long run.

In this research, we aim to design optimal sequential decision making process

for infrastructure-to-infrastructure communications in the Internet of Vehicles, in

which a roadside unit without the Internet connection needs to ask for the help

of passing-by vehicles to forward its traffic to a roadside unit with the Internet

connection. Upon a vehicle arrival, the source roadside unit needs to decide

whether or not to forward its traffic to the vehicle. With the objective to minimize

the rate of cost related to energy and delay, the sequential decision making process

is modeled as optimal stopping problems.

Three cases related to the delay cost functions are considered: a) hard delay

bound; b) soft delay bound; and c) multi-step soft delay bound. Threshold-based

optimal stopping rules are derived for each of the above three cases.
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Chapter 1

Introduction

1.1 Internet of Things

Electronic devices are getting more compact, faster, cheaper and more ubiqui-

tous than ever before. Everyday consumer products such as cellphones, security

monitors, thermostats, home appliances, garage door openers and much more are

connected among themselves and to the Internet. Those data-spouting devices

are embedded with sensors that gather, store and analyze data and the data

can be uploaded to the Internet for further processing. As anything from home

thermostats to heart rate monitors to security cameras on the street that can

be connected are connecting to the Internet, we move towards the “Internet of

Things” (IoT). IoT is already changing how we live and work [1, 2, 3, 4, 5, 6, 7].

An application of IoT is smart home, in which the appliances can be mon-

itored and controlled effectively. Many technical companies have ventured into

residential industry by developing IoT applications [8]. Google Nest learning

thermostat has been adopted by more and more home owners to reduce utility

bills. The nest learns your pattern of temperature setting overtime, programs

itself, and can be controlled from your phone to reduce energy consumption. Ap-

ple also releases HomeKit, a platform on which smart-home app developers could
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develop software to increase energy efficiency and bring convenience to dwellers.

1.2 Internet of Vehicles

Vehicles and communication are indispensable parts of most people’s daily life.

The number of vehicles currently in use in the world is estimated to be approx-

imately one billion [9] and will be two billion by 2035 [10]. A vehicular ad hoc

network (VANET) [11] is proposed to support communication between people

and vehicles using technologies such as dedicated short range communication

(DSRC, also known as IEEE 802.11p), directional medium access control, and

vehicular cooperative media access control [12]. VANET has the potential to

make a safe, intelligent, and convenient transportation system [13, 14, 15, 16, 17,

18, 19, 20]. However, VANET does not attract much commercial interests [21]

because of the issues related to pure ad-hoc networking [22], unreliable Internet

access [23], to be upgraded personal devices [24] and unavailable cloud computing

capabilities[25, 26].

The Internet of Vehicles (IoV) [27, 28, 29] is a new concept coming from

the integration of the IoT and VANET. Many applications of IoV have been

investigated [30, 31]. One major application area is Intelligent Transport System

(ITS) which could improve traffic safety and efficiency[32, 28, 33, 34, 35]. The

system of improving traffic safety is referred as the collision prevention system

[36, 37, 38]. The system continuously monitors the vehicles and traffic conditions.

When it detects any emergency situation such as traffic jam, accidents and bad

road conditions, it immediately broadcasts warning messages to other vehicles.

This will make daily commute safer. Global traffic efficiency [39, 40] can be

improved by enabling connected vehicles to automatically send real-time traffic

data to a traffic control center which coordinates the whole network of vehicles.
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Another application of IoV is to serve smart cities [41, 42, 43, 44, 45]. For

example, vehicles can serve as carrier to carry sensing data from locations in a

city to a data center [46]. In work [47], vehicular sensor networks are used to

monitor metropolitan air qualities and communicate the collected data to the

public. In work [48], efficient waste collection is achieved in the context of smart

cities, where high capacity waste trucks are mobile depots and waste bins are

optimally placed for access.

1.3 Research motivation and thesis contributions

The increasing adoption of IoT leads to massive deployment of small cost-efficient

sensors. Those sensors make is possible to perform environmental monitoring

and information collection in a large-scale area, and thus, are essential for future

smart cities. In order to minimize the deployment cost, those sensors are usually

equipped with a limited energy source such as battery or solar energy. A primary

concern in IoT is efficient power management to make sure those sensors will not

run out of power soon and so that the network lifetime could be improved. In

this research we aim to find power efficient data transmission strategies for road

side units to facilitate the establishment of smart cities.

Many applications of IoV have been proposed base on three forms of ve-

hicular communications. In vehicle-to-vehicle (V2V) communications [49, 50],

vehicles can share with neighboring vehicles information such as its moving di-

rection, its velocity, and its activities (e.g., braking, lane change, etc.). In vehicle-

to-infrastructure (V2I) communications, roadside units (RSU) can serve as ac-

cess points to provide Internet services to passing vehicles. In infrastructure-to-

infrastructure (I2I) communications, vehicles can forward traffic from one RSU

to another RSU if the two RSUs do not have direct connection between them
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[51, 52].

It is in general assumed that all the RSUs are connected to a backbone network

via wired links. However, in some cases, some RSUs may not be connected to

the backbone network. For example, in remote areas, it is costly to connect

all RSUs to the backbone network. Those remote RSUs (i.e, RSUs without

backbone connection) need to send their data traffic to central RSUs (i.e., RSUs

with backbone connection), and then the central RSUs forward the data traffic

to the backbone network. A cost-effective method to achieve I2I communications

is to use passing-by vehicles, which can carry messages from the remote RSUs

and forward them to central RSUs on their path.

For such vehicle-aided I2I communications, the energy consumption of the

remote RSUs is an issue. This is because those RSUs are usually deployed in

remote areas, and thus, they do not have constant power supply. So the remote

RSUs are often equipped with batteries, and the batteries can get recharged or

renewed after a relatively long time (for example, a few months) [53]. Energy effi-

cient data forwarding in VANETs has been investigated recently in the literature

[54, 55, 56, 57, 58]. The work in [54] targets at energy consumption minimization

for an RSU. A scheduling scheme is provided, which favors passing-by vehicles

with higher velocity and/or shorter distance to the RSU. The work in [55] con-

siders delivery of packets from a source to a destination by using relaying service

of other nodes. A delay bound is set for each packet. If a packet cannot be

delivered to the destination within the delay bound, the packet will be discarded.

To maximize the packet delivery probability under an energy consumption con-

straint, it is shown that the threshold dynamic policy is optimal. The works

in [56] and [57] take into account the energy for node discovery process as well

as energy for information transmission, for two-hop routing and epidemic rout-
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ing, respectively. Transmission policy is well designed such that packet delivery

probability is maximized. The work in [58] proposes that the RSU-to-vehicle

scheduling can be combined with vehicle-to-vehicle forwarding, which can largely

lower the energy cost of the RSU.

Although the vehicle-aided I2I communications can tolerate a certain level of

delay, timely delivery is still preferred [59, 60, 61]. In general, the total delay of

a data packet at a source RSU consists of two components: the queuing delay

at the source RSU, and the transit delay (i.e., the time needed by a helping

vehicle to travel to the destination RSU to deliver its carried data traffic). A

tradeoff exists between the queuing delay and the transit delay. To minimize the

transit delay, the source RSU should wait for fast vehicles, which may result in

a larger queuing delay. On the other hand, to minimize the queuing delay, the

source RSU should pick up the first passing-by vehicle, which may lead to larger

transit delay. The work in [62] considers finite-size traffic case and infinite-size

traffic case. For the former case, the source file at the source RSU has a number

of packets, and the time duration needed to deliver all packets is minimized

by using a Markov decision process. For the latter case, the source file has an

infinite number of packets, and the average delay of a packet is minimized by a

Markov decision process. Both queuing delay and transit delay are considered

and well balanced. The work in [63] assigns each passing-by vehicle a pick-up

probability, which favors faster vehicles. For a vehicle, its assigned probability is

the probability that its arrival moment at the destination is earlier than its next

vehicle‘s expected arrival moment at the destination.

The work in [64] is the first research in the literature that considers both

energy consumption and queuing delay. However, it does not consider the transit

delay.
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To fill this research gap, in this thesis, we investigate optimal traffic scheduling

in vehicle-aided I2I communications, taking into account energy consumption,

queueing delay, as well as transit delay.

The contributions of the thesis work are summarized as follows.

• In Chapter 3, a hard delay bound is used, which means that if an information

unit at the source RSU cannot be delivered to the destination RSU within

the delay bound, the information unit is considered useless and thus, is

dropped at the source RSU. Cost is assigned to energy consumption as well

as packet dropping (due to delay bound violation). An optimal scheduling

scheme is formulated, which minimizes the rate of cost (i.e., the average cost

per unit of time). To solve the problem, we first find the optimal rule when

the waiting time at the source RSU is below a specific value. Then based on

the result and with some mathematical manipulations, we find the optimal

rule when the waiting time at the source RSU is above the specific value.

The derived optimal rule can be implemented with negligible complexity.

• In Chapter 4 we consider a soft delay bound. In specific, it is desired that

any information unit is delivered within the delay bound. However, when

an information unit cannot be delivered within the delay bound, the infor-

mation unit is considered to be partially useful and is still delivered, and

a cost is charged for the delay bound violation.1 When it is impossible to

deliver on time the buffered information at the source RSU, then the source

1The rationale behind using soft delay bound in vehicle-aided I2I communications is as
follows. One typical application of the source RSU is to serve as a gateway for a wireless
sensor network that monitors the environments (fire detection, animal tracking, etc.) in remote
areas. The sensing data of the wireless sensor network are sent to the source RSU and are
subsequently delivered by the source RSU to a destination RSU with backbone connection.
Then the destination RSU sends the data to the data center of the wireless sensor network. It
is preferred that the sensing data are delivered within a delay bound. If the sensing data are
beyond the delay bound, they still have some value (for example, for later historical studies),
and will still be delivered. A similar soft delay bound model was used in [65, 66].
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RSU is forced to select the next vehicle arrival to help forward its buffered

information, referred to as forced stop. An optimal stopping problem is for-

mulated. Due to the forced stop, methods used to solve traditional optimal

stopping problems, including the method used in Chapter 3, do not work.

To address this challenge, we develop a completely new method to solve the

formulated problem. We first eliminate a set of non-optimal stopping rules.

After finding some special features of the remaining rules, we theoretically

derive optimal rule for the formulated problem. Interestingly, the optimal

rule has a conditional pure-threshold structure, i.e., before a forced stop,

the source RSU is optimal to transmit to a passing-by vehicle if the queuing

delay is more than a threshold, conditioned on that the sum of the queuing

delay and the transit delay is below the delay bound. We also theoretically

derive the value of the threshold. The conditional pure-threshold structure

makes the derived optimal rule easy to implement in a real network.

• In Chapter 5, we consider a more general case when the delay cost function

is a multi-step case and the probability distribution function of the vehi-

cle speed can be any distribution. We transform the originally formulated

problem into multiple sub-problems. Then we solve the sub-problems se-

quentially, from the last sub-problem to the first sub-problem. The derived

optimal rule has a multiple-threshold structure.
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Chapter 2

Optimal Stopping Problem

In this research, we model the problem of optimal traffic scheduling between two

roadside units in a vehicular network as a discrete time optimal stopping rule

problem. This chapter gives an introduction to the optimal stopping problem and

an example is given for readers to better understand optimal stopping problems.

The monotone optimal stopping problem is explained at the end of this chapter.

2.1 Definition of optimal stopping problem

Optimal stopping problem is a stochastic optimization tool that is very powerful

in dealing with sequential decision making and sequential analysis in statistics.

The origin of optimal stopping problem is due to Wald’s sequential analysis [67].

In sequential analysis, the number of observations is not fixed in advance but

depends on the results of the observations. The natural question is “when is

it optimal to stop” so as to get maximal reward (expected) or minimal cost

(expected).

In an optimal stopping problem [68, 69], we observe a sequence of random vari-

ablesX1, X2, . . . . After observing n random variablesX1 = x1, X2 = x2, . . . , Xn =

xn, we need to decide whether we should stop. If we choose to stop, we get the

reward yn(X1 = x1, X2 = x2, . . . , Xn = xn). If we choose to continue, we will
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observe the realization of Xn+1. We define y0 to be the reward if we do not take

any observations and y∞(X1 = x1, X2 = x2, . . . ) to be the reward if we never

stop observing. The objective is to choose a moment to stop such that expected

reward (or cost) is maximized (or minimized). A strategy of how to choose the

stopping time is called a stopping rule.

The stopping rule ψ is a sequence of decision functions

ψ = {ψ0, ψ1(x1), ψ2(x1, x2), . . . }

where ψn(x1, x2, . . . , xn) is 1 or 0. If we have observed the first n random variables

as X1 = x1, X2 = x2, . . . , Xn = xn, we need to decide whether we should stop at

the nth observation. If ψn(x1, x2, . . . , xn) = 1, we stop at the nth observation.

Otherwise, we continue to observe the (n+ 1)th random variable Xn+1. We also

define ψ0 to represent whether we should make any observations at all, i.e. if

ψ0 = 1 we will make no observations and if ψ0 = 0 we will observe the first

random variable X1.

With the above sequences of decision functions and observations of random

variables (X1, X2, . . . , Xn), we define the stopping time N to be the time when

the stopping occurs. If ψn(X1 = x1, X2 = x2, . . . , Xn = xn) = 1, then we have

N = n after we have observed x1, x2, . . . , xn and the reward is yn(x1, x2, . . . , xn).

If N =∞, then stopping will never occur.

Our objective is to choose a stopping rule ψ in order to maximize the expected

reward V (ψ):

V (ψ) =E
[[
yN(X1, X2, . . . , XN)

]]
=E

 ∞∑
i=0

ψi(X1, X2, . . . , Xi)yi(X1, . . . , Xi)

.

9



2.2 An example

A die rolling game example is given in [70] to illustrate the concept of stopping

problem. In the die rolling, if the player gets a 6, the player is forced to stop

the game and earns nothing. If the player gets ` = 1, 2, ..., 5, the player has two

choices: 1) to roll again (with no reward for the current roll), or 2) to stop the

game and get reward of ` dollars. The die rolling game continues until the player

is forced to stop (i.e., at a roll of 6) or chooses to stop (i.e., at a roll of 1, 2, ...,

or 5). The question is: at each roll, what is the optimal decision strategy of the

player such that his/her expected reward can be maximized? As shown in [70],

at a roll of `, the optimal strategy is

• If ` is 1 or 2, the player should roll again;

• If ` is 3, the player may select to roll again or to stop, as the two choices

have the same expected reward;

• If ` is 4 or 5, the player should stop and earn ` dollars;

• If ` is 6, the player is forced to stop and earns 0 dollar.

2.3 Monotone optimal stopping rule problem

The monotone stopping rule problem is first introduced in [71]. Let (Ω,F ,P)

be a probability space with points ω ∈ Ω and
(
yn(X1, X2, . . . , Xn),Fn

)
, n =

1, 2, . . . , be an integrable stochastic process: yn(X1, X2, . . . , Xn) is a sequence

of random variables, Fn is a sequence of σ-algebras with Fn ⊂ Fn+1 ⊂ F ,

yn(X1, X2, . . . , Xn) is measurable with respect to Fn and E
[
yn(X1, X2, . . . , Xn)

]
exists with −∞ ≤ E

[
yn(X1, X2, . . . , Xn)

]
≤ ∞.
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Definition 1. Let

Bn =
{
yn(X1, X2, . . . , Xn) ≤ E

[
yn+1(X1, X2, . . . , Xn, Xn+1)|Fn

]}
. (2.1)

An optimal stopping problem is monotone if

B0 ⊂ B1 ⊂ B2 ⊂ . . . a.s. (2.2)

An important property of the monotone stopping rule problem is that the

one-step look-ahead stopping rule is optimal. The one-step look-ahead stopping

rule is also known as myopic stopping rule and it is defined as:

N1 = min
{
n ≥ 0 : yn(X1, X2, . . . , Xn) ≥ E

[
yn+1(X1, X2, . . . , Xn, Xn+1)|Fn

]}
.

It asks for stopping when the return for stopping is not less than the expected

return for stopping at the next observation. When it asks for skipping at nth

observation, it is optimal to continue regardless whether the optimal stopping

problem is monotone or not. When it asks for stopping at nth observation, it is

optimal to stop if the optimal stopping problem is monotone.

The set Bn in the definition of the monotone stopping rule problem is the set

on which the one-step look-ahead rule decides to stop at the nth observation. The

condition Bn ⊂ Bn+1 means that if the one-step look-ahead rule decides to stop at

the nth observation, then it will also decide to stop at the (n+ 1)th observation,

regardless of the value of Xn+1 a.s. Similarly, Bn ⊂ Bn+1 ⊂ Bn+2 ⊂ . . . means

that if the one-step look-ahead rule decides to stop at the nth observation, then

it will decide to stop at all subsequent observations a.s.

The optimal stopping problem in Section 2.2 is a monotone problem and the

one-step look-ahead rule is optimal, i.e. to continue when k = 1, 2, and otherwise

to stop.
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Chapter 3

I2I Traffic Scheduling with a
Hard Delay Bound1

Traffic scheduling problems in vehicular delay tolerant networks (VDTNs) have

been attracting increasing research interests in the past years. One type of VDTN

is installed in less-populated remote areas, which includes a number of roadside

units (RSUs), and only a limited number of RSUs have connection to backbone

networks [72]. The isolated RSUs (i.e., the RSUs without backbone network

connection) are deployed to serve as gateways for sensor networks (for example,

sensor networks for monitoring environment or wildlife [73, 74, 75, 76]) in less-

populated remote areas. Since it may be costly to set up direct communication

connections from the isolated RSUs to backbone networks, passing-by vehicles

may provide a solution: passing-by vehicles can help forward traffic (e.g., sensed

data) from isolated RSUs to RSUs that have connection to backbone networks

[77]. When a vehicle arrives at a source RSU that is isolated, the source RSU

may send its traffic to the vehicle, and then the vehicle stores the traffic in its

local buffer and forwards the traffic to a destination RSU with backbone network

connection when the vehicle arrives at the destination RSU [78]. The destination

1A version of this chapter has been published in IEEE Trans.Veh. Technol., 64: 1079-1094
(2015).
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RSU then forwards (through backbone networks) the traffic to a data center that

processes the data.

For such RSU-to-RSU communication in a VDTN, in general, delay (the

duration from the moment that the traffic arrives at the source RSU until the

moment that the traffic is delivered to the destination RSU) can be tolerated to

a certain level. However, it is still desirable that the traffic is delivered before it

becomes expired [59, 60, 61]. In other words, there is a delay bound associated

with each traffic unit. In RSU-to-RSU communication, the delay of the traffic

is composed of two parts: Queueing delay at the source RSU (from the moment

that the traffic arrives until the moment that the traffic is sent to a passing-by

vehicle) and transit delay (from the moment that the passing-by vehicle receives

the traffic until the moment that the vehicle arrives at the destination RSU and

forwards the traffic). There is a tradeoff between these two delay components. If

each passing-by vehicle is used to forward traffic, then we can keep the smallest

queueing delay; however, low-speed vehicles may make the transit delay very

large. On the other hand, if only high-speed vehicles are selected to help, then

we can keep small transit delay; however, the queueing delay might be out of

control since it might take a long time for the next high-speed vehicle to arrive.

Therefore, the source RSU should strike a balance between queueing delay and

transit delay. In [62], the traffic to be sent is either a finite-size file or an infinite-

size file. For the first case, the finite-size file is partitioned into segments, and

the tool of Markov decision process is used so as to minimize the time needed

by the destination RSU to receive all segments of the file. For the second case,

there are an infinite number of segments in an infinite-size file, and thus, the tool

of Markov decision process is used to achieve the minimum average delay of a

segment. It can be seen that both queueing delay and transit delay are considered
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in [62]. In [63], when the source RSU is waiting for vehicles, its incoming traffic

is aggregated into a bundle. The probability that a passing-by vehicle arrives at

the destination later than the next vehicle does is calculated, and upon arrival of

a vehicle, the source RSU transmits to the vehicle with that probability.

For the isolated RSUs in a VDTN, it is also likely that they are powered

by batteries or renewable energy (for example, solar power). Therefore, energy

consumption of the RSUs is another important performance measure in VDTNs

[54, 55, 56, 57]. In [54], the objective is to design a scheduling algorithm that

achieves minimum energy consumption of the RSUs while satisfying passing-by

vehicles’ communication requirement. It is shown that vehicles that are closer

to the RSU and with higher speeds should be picked up. In [55], each packet

has a delay bound deadline, and packets that have not been received at the

destination by the deadline will be discarded at the source node. The source

node probabilistically sends its traffic to a vehicle, and the optimal probability

to send traffic (i.e., the probability that achieves the highest successful delivery

probability under a constraint of energy consumption) is obtained. In [56] and

[57], in addition to energy used for data transmission, energy used by the source

RSU to detect a passing-by vehicle is also taken into account. By distributing

available energy for vehicle detection and data transmission, the RSU maximizes

the probability of successful traffic delivery prior to a delay bound, for two-hop

routing case in [56] and epidemic routing case in [57].

Both queueing delay and energy consumption are taken into account in [64].

Cost is charged 1) for consumed energy to send information, and 2) when there

is information loss due to delay bound violation. An optimal scheduling strategy,

in which the rate of cost (i.e., the average cost per unit time) is minimized, is

derived, and is shown to have a pure-threshold structure, that is, a passing-by
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vehicle should be picked up if the queueing delay exceeds a threshold whose value

can be numerically calculated off-line.

The delay considered in [64] is the queueing delay at the source RSU. However,

in a real application, we are more interested in the total delay including the

queueing delay and the transit delay. The transit delay depends on the speeds of

the passing-by vehicles. As aforementioned, there is a tradeoff between queueing

delay and transit delay. So the source RSU’s scheduling decision (i.e., upon a

vehicle arrival, whether to stop at this vehicle and transmit, or continue to wait

for other vehicles) should depend on both the queueing delay and the speed of

the passing-by vehicle, to be addressed in this work. Another issue of the work in

[64] is that in a forced stop (i.e., when the delay of any traffic unit in the queue

of the source RSU is more than the delay bound, the RSU is forced to use the

coming vehicle), a fixed penalty is charged regardless of the amount of traffic units

whose delay is more than the delay bound. This may not be practical, since it is

more reasonable to set up the penalty proportional to the amount of traffic units

whose delay is more than the delay bound. This issue is to be addressed in this

work. In specific, in this work, costs are assigned for both energy consumption

and traffic loss: An amount of cost is associated with each consumed energy

unit, and an amount of cost is charged if a traffic unit cannot be delivered (by

the selected vehicle) before its delay bound and thus is discarded. We derive an

optimal strategy for the source RSU to select passing-by vehicles to help deliver

its traffic.

The remainder of this chapter is organized as follows. Section 3.1 presents the

system model and problem formulation. Section 3.2 derives an optimal strategy.

Section 3.3 shows performance evaluation of the derived optimal strategy. Section

3.4 investigates the effect of wireless transmission errors, followed by concluding
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remarks in Section 3.5. Appendices include proofs of the theorems. A list of

notations used is given in Table 3.1.

3.1 System model and problem formulation

We consider a source RSU, which does not have backbone connection, and a

destination RSU with backbone connection. The distance from the source RSU to

the destination RSU is D (meters). Traffic arrives at the source RSU at a constant

rate r (bits/second) (for example, when the source RSU is used as a gateway of

underlying wireless sensor networks, the collected traffic by the source RSU is

likely to be with almost constant rate). Each traffic unit should be sent to the

destination RSU by a maximal delay of K (seconds) from the moment when the

traffic unit arrives at the source RSU. No direct connection is assumed between

the two RSUs. Therefore, passing-by vehicles are selected by the source RSU to

forward its accumulated traffic to the destination RSU. At the source RSU, the

traffic is kept buffered until a passing-by vehicle is selected, at which moment

those accumulated traffic units whose delay (including the queueing delay and

the transit delay, i.e., the time needed by the vehicle to arrive at the destination

RSU) is less than K are sent to the selected vehicle, and other traffic units

are discarded by the source RSU. Subsequently the vehicle forwards the traffic

to the destination RSU when it arrives at the destination RSU. Assume that

wireless transmission between RSUs and vehicles is error free (effects of wireless

transmission errors will be investigated in Section 3.4).

Assume that the starting point of the process of observation is T0 = 0 (sec-

ond). At the source RSU, the arrival instant of the nth vehicle (called vehicle

n) is Tn (second). Then Xn = Tn − Tn−1 (n = 1, 2, ...) is the vehicle inter-arrival

duration. Since some empirical measurement [79] has shown that the vehicle
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Symbol Meaning

An Amount of discarded traffic if vehicle n is selected

a, b The smallest, largest transit delay

b∗ Convergence point of sequence {bi}i=1,2,...

(b1 = φ(b); bi = φ(bi−1), i ≥ 2)

B Cost of discarding one traffic unit

C Cost of energy used to transmit one traffic unit

D Distance between source RSU and destination RSU

FG(g) Cumulative distribution function of transit delay

FV (v) Cumulative distribution function of vehicle speed

fG(g) Probability density function of transit delay

Fn Information of T1, T2, ..., Tn and G1, G2, ..., Gn

Gn The transit delay of vehicle n

K Delay bound

N †(λ) Optimal stopping rule of Problem (3.7)

P Transmit power level

R Data transmission rate from source RSU to a vehicle

r Incoming traffic rate at the source RSU

Tn The arrival time of vehicle n

Vn Speed of vehicle n

V (λ) Minimal cost of Problem (3.7)

vmax Maximum vehicle speed

vmin Minimum vehicle speed

W Cost of energy per Joule

Xn Duration between arrivals of vehicles n− 1 and n

Yn Total cost of using vehicle n (given in (3.2))

Zn(λ) Cost function for Problem (3.7)

µ Average vehicle inter-arrival duration

κ Overhead duration for communication

ω Outcome of Y1, Y2, Y3, ...

Table 3.1: Used Notations in Chapter 3
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inter-arrival durations at a roadside point follow independent and identically dis-

tributed (i.i.d.) exponential distributions, similar to [62, 63, 80, 81, 82, 83], we

assume Xn’s are independent and follow an exponential distribution with param-

eter µ, i.e., E [Xn] = µ (seconds). Here E [·] means expectation. In other words,

vehicle arrivals at the source RSU follow a Poisson process with vehicle arrival

rate being 1/µ. Similar to [62, 63, 82], we assume that, upon a vehicle arrival,

the source RSU can detect the speed of the vehicle and the vehicle’s speed does

not change from the source RSU to the destination RSU. Denote Vn as the speed

of the nth vehicle. Suppose the vehicle speeds are i.i.d. random variables with

cumulative distribution function (CDF) being FV (v) for v ∈ [vmin, vmax], where

vmin (m/s) and vmax (m/s) are the minimum and maximum speeds, respectively.

The transit delay of vehicle n is Gn = D/Vn (seconds). So Gn’s (n = 1, 2, ...)

are i.i.d. random variables with CDF FG(g) = 1− FV
(
D/g

)
for g ∈ [a, b], where

a , D/vmax (seconds) and b , D/vmin (seconds) are the smallest and the largest

transit delay, respectively.

Upon arrival of a vehicle, the source RSU has two choices: To skip the vehicle

and continue to wait for future vehicles (referred to as continue in the sequel), or

to stop waiting (referred to as stop in the sequel) and send its accumulated traffic

(that can meet the delay bound requirement) to the vehicle by a constant rate

R (bits/second) and a transmit power level P (Watt). Consider that vehicle n

is selected to help (which implies that the source RSU does not stop at vehicles

1, 2, ..., n − 1). The amount of accumulated traffic (from moment 0 to moment

Tn) is rTn. Let An denote the amount of traffic units that cannot meet their

delay requirement (i.e., when queueing delay plus transit delay is more than the
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delay bound K)2 and thus are discarded. An is given as

An =


rTn if K < Gn

r(Tn +Gn −K) if Gn ≤ K < Tn +Gn

0 if K ≥ Tn +Gn

(3.1)

for the following reason. When K < Gn, even the transit delay Gn alone is

more than the delay bound K, so all accumulated traffic with amount rTn will

be discarded. When K ≥ Tn + Gn, it means that even the oldest traffic unit in

the source RSU’s buffer can meet the delay bound (for the oldest traffic unit, its

queueing delay is Tn, and its transit delay is Gn). So no traffic will be discarded.

When Gn ≤ K < Tn + Gn, considering that vehicle n needs Gn duration to

arrive at the destination RSU, only traffic accumulated in the past (K − Gn)

duration can meet delay bound requirement. So the amount of discarded traffic

is rTn − r(K −Gn) = r(Tn +Gn −K).3

Similar to the weighted cost structure in [84, 65, 85], if vehicle n is selected,

we have cost values associated with the energy consumption and traffic loss.

• Energy: The total energy consumption for the data transmission from the

source RSU to the vehicle is P (rTn − An)/R (Joule). By letting W (unit of

cost per Joule) denote the cost weight of energy consumption, the cost of

the energy consumption of transmitting data is given by WP (rTn − An)/R.

For the data transmission, there is also communication overhead to setup

the transmission (for example, the information exchanges of request-to-

send [RTS] and clear-to-send [CTS]) and to acknowledge the transmission.

2The total delay is the summation of the queueing delay and the transit delay Gn. The
transmission duration from the source RSU to the vehicle is not considered here, since the
transmission duration is actually included in the transit delay.

3Considering that the delay bound K of a VDTN is usually not more than a few thousand
seconds (e.g., 7200 seconds as used in [75]) and that the data coming rate r at the source RSU is
usually not more than a few hundred bps [75, 76], it is reasonable to assume that all the traffic
that is not discarded, with amount given as rTn−An, can be transmitted from the source RSU
to the passing-by vehicle within their contact time.
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Assume the overhead also uses power level P , and the total duration of

the transmission of the overhead is κ (seconds). Then the energy cost for

communication overhead is WPκ. So the total cost for energy consumption

is WP (rTn − An)/R+WPκ = C(rTn−An) +WPκ, where C , WP/R is

the energy cost of sending one traffic unit.

• Traffic loss: When some traffic units are discarded, a penalty of B (unit of

cost) is charged for each discarded traffic unit. So the total cost for traffic

loss is BAn.

The total cost of using vehicle n, denoted Yn, is thus given as4

Yn = WPκ+ C(rTn − An) +BAn. (3.2)

Yn’s (n = 1, 2, ...) are random variables.

For the stopping problem, consider that we observe random variables Y1, Y2, . . . ,

and get one realization of them as y1, y2, . . . , corresponding to the costs of using

vehicle 1, 2, . . . , respectively. In probability theory, a such realization, denoted

as ω, is referred to as one outcome. And the sample space, denoted as Ω, is the

set of all outcomes. An event is defined as a subset of Ω, which is assigned a

probability.

For example, consider that we have observed the value of the first random

variable Y1 as y1. This fact can be defined as an event E1 = {ω : Y1 = y1}. In

other words, the event is the set of outcomes that have the first observed value

as y1. We can write Y1(ω) = y1 for ω ∈ E1; and Y1(ω) 6= y1 for ω ∈ Ω\E1.

4If the source RSU selects vehicle n to help, it is optimal to transmit all rTn − An traffic
to vehicle n, for the following reason. Assume an amount x of the rTn − An traffic is not
transmitted to vehicle n. If the amount x traffic is transmitted to vehicle n, the extra cost is
given as Cx. However, for any future vehicle to carry the amount x traffic, the cost is at least
Cx, considering that all or part of the x amount of traffic may become expired when waiting
for future vehicles.
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After knowing Y1 = y1 or the event E1 happens, if the source RSU decides

to stop at vehicle 1, the final cost of the stopping problem is y1; otherwise,

the source RSU continues to observe Y2, Y3, . . . , which are unobserved random

variables conditioned on the event E1. What we aim to achieve is to find the right

moment to stop so as to minimize the cost.

Consider a stopping rule such that for each outcome ω ∈ Ω, the moment to

stop is denoted N(ω) where N(ω) ∈ {1, 2, . . . } is the index of the vehicle that

the source RSU stops at. N(ω) is also used to denote the stopping rule. We can

think of a stopping rule as a function in the domain Ω, which maps each ω ∈ Ω

to one positive number. So N(ω) (a stopping rule) is a random variable and is

often written in short form as N . A simple example of stopping rules is N = 1

(N(ω) = 1) for ω ∈ Ω, i.e., always stop at the first vehicle. To solve an optimal

stopping problem is to find an optimal stopping rule that maps each outcome to

a stopping moment to minimize the cost.

In this thesis, we consider stopping problems that are repeated in time. For

the moment when the source RSU completes information exchange with a selected

vehicle, this moment is considered as the end of the old stopping problem and also

the beginning of a new stopping problem. If the source RSU stops at vehicleN(ω),

whose cost is YN(ω)(ω) and stopping time is TN(ω)(ω), then starting from the mo-

ment TN(ω)(ω), a new stopping problem begins with starting point denoted T0 = 0

and the next arrival vehicle called vehicle 1. For such repeated stopping prob-

lems with stopping rule N(ω), denote the independent outcomes as ω1, ω2, . . . ,

etc. Then we have i.i.d. stopping vehicle indices {N(ω1), N(ω2), . . . , N(ωn), . . . },

i.i.d. stopping moments {TN(ω1)(ω1), TN(ω2)(ω2), . . . , TN(ωn)(ωn), . . . }, and i.i.d.

costs {YN(ω1)(ω1), YN(ω2)(ω2), . . . , YN(ωn)(ωn), . . . }. The total cost is
∑

i YN(ωi)(ωi)

and the total amount of traffic that arrives at the source RSU is
∑

i rTN(ωi)(ωi).
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So the rate of cost (average cost per traffic unit) is
∑

i YN(ωi)(ωi)/
∑

i rTN(ωi)(ωi),

which converges to E
[
YN(w)(w)

]
/E
[
rTN(w)(w)

]
, or in short form E [YN ]/E [rTN ],

by the law of large numbers [86]. Here E [·] means expectation. Therefore, our

objective is to find a stopping rule N to minimize the rate of cost E [YN ]/E [rTN ].

The optimal rate of cost is given as

Q∗ , inf
N≥1

E [YN ]

E [rTN ]

= inf
N≥1

WPκ+ CE [rTN − AN ] +BE [AN ]

E [rTN ]

= inf
N≥1

WPκ+ CE [rTN ] + (B − C)E [AN ]

E [rTN ]
(3.3)

where {N ≥ 1} is the set of stopping rules that observe at least one vehicle.5

3.2 An optimal stopping rule

We make three comments here.

• We assume a ≤ K, because otherwise the minimum transit delay a alone

is more than the delay bound K, and thus, no vehicle can meet the delay

requirement of any traffic unit.

• If b > K, which means the maximum transit delay b is greater than the

delay bound K, then those vehicles whose transit delay are greater than

K should be skipped, since they cannot meet the delay bound requirement

of any traffic unit. Recall that the vehicle arrivals follow a Poisson process

with rate 1/µ. Upon a vehicle arrival, it is with probability 1 − FG(K)

that the vehicle is skipped. Thus, the arrivals of considered (not skipped)

5In the expression of the optimal rate of cost in (3.3), we use “inf” instead of “min” because
for a general stopping problem, it is possible that no optimal stopping rule N exists such that
E [YN ]

E [rTN ]
= Q∗. Nevertheless, in Section 3.2 we will show that in our Problem (3.3), there exists

an optimal stopping rule that has a rate of cost being Q∗.
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vehicles follow a Poisson process with rate FG(K)/µ [87]. Then the original

stopping problem is equivalent to the case when vehicle arrivals follow a

Poisson process with rate FG(K)/µ, the transit delay of a vehicle is within

range [a,K], and the CDF of transit delay is
0 if g < a

FG(g)/FG(K) if a ≤ g ≤ K

1 if g > K.

Therefore, without loss of generality, we assume K ≥ b in the sequel. And

thus, from (3.1), An now takes the form of

An = r(Tn +Gn −K)+ (3.4)

in which (x)+ = max(x, 0).

• We should have

B > C +
WPκ

r(K − a)
. (3.5)

The reason is as follows. First we have B > C (this is because, if B ≤ C,

it means the cost of discarding a traffic unit is not more than the energy

cost of sending a traffic unit, then all traffic units should be discarded).

Next we use proof by contradiction. Suppose B ≤ C + WPκ/
(
r(K − a)

)
,

which means WPκ− r(B − C)(K − a) ≥ 0. Since the maximal amount of

traffic that a vehicle can carry is r(K − a),6 then for any amount of traffic

x ∈ (0, r(K−a)] carried by a selected vehicle, we have WPκ− (B−C)x ≥

WPκ − r(B − C)(K − a) ≥ 0, which leads to WPκ + Cx ≥ Bx. This

means that WPκ + Cx, the cost of energy consumption in sending the

carried traffic, is not less than Bx, the cost of discarding the carried traffic.

6Considering that the transit delay of any vehicle is not less than a, a vehicle can take at
most the traffic accumulated in the past K−a duration. So the maximal amount of traffic that
a vehicle can carry is r(K − a).
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Thus, the source RSU should discard all traffic. Therefore, we should not

have B ≤ C +WPκ/
(
r(K − a)

)
.

3.2.1 Transformation of Problem (3.3)

We consider a transformation of Problem (3.3). For λ > 0, define a cost function

Zn(λ) , Yn − λrTn

= WPκ+ C(rTn − An) +BAn − λrTn

= WPκ+ r (C − λ)Tn + (B − C)An (3.6)

in which the physical meaning of λ is rate of cost.

Based on the cost function Zn(λ), we formulate a new stopping problem as

V (λ) , inf
N≥1

E
[
ZN(λ)

]
= inf

N≥1
E
[
WPκ+ r (C − λ)TN + (B − C)AN

]
. (3.7)

Theorem 1. For Problem (3.7) with λ ∈ (0, B], there exists an optimal stopping

rule, denoted N †(λ), such that E
[
ZN†(λ)(λ)

]
= V (λ).

Proof. See Appendix 3.6.1.

Theorem 2. If i) there exists a λ∗ such that V (λ∗) = infN≥1 E
[
ZN(λ∗)

]
= 0;

and ii) for Problem (3.7) with λ∗, there exists an optimal stopping rule N †(λ∗)

such that E
[
ZN†(λ∗)(λ

∗)
]

= V (λ∗) = 0, then N †(λ∗) is an optimal stopping rule

for Problem (3.3) and the optimal rate of cost (i.e., the optimal objective function

of Problem (3.3)) is λ∗.

Proof. See Appendix 3.6.2.

The next theorem shows that the first condition in Theorem 2 is satisfied for

Problem (3.7).
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Theorem 3. There exists a λ∗ ∈ (C,B] such that V (λ∗) = 0.

Proof. See Appendix 3.6.3.

From Theorem 1, it can be concluded that the second condition in Theorem

2 is also satisfied. Therefore, an optimal stopping rule for Problem (3.3) is in

the form of N †(λ∗). So if N †(λ) and V (λ) can be obtained for any λ ∈ (C,B],

then the value of λ∗ can be obtained numerically such that V (λ∗) = 0, and thus

N †(λ∗) is an optimal stopping rule of Problem (3.3). Therefore, next we focus on

derivation of N †(λ) and V (λ) for λ ∈ (C,B] in Problem (3.7). For Problem (3.7)

with a specific λ, we first derive an optimal strategy for vehicles arriving after

moment K − a in Section 3.2.2, and based on the result, we derive an optimal

stopping rule for vehicles arriving before moment K−a in Section 3.2.3. Then as

a summary of Sections 3.2.2 and Section 3.2.3, in Section 3.2.4 we give an overall

optimal stopping rule, i.e., N †(λ), for Problem (3.7) with a specific λ, as well as

its optimal cost V (λ). In Section 3.2.5, we find λ∗ such that V (λ∗) = 0, and thus,

N †(λ∗) is an optimal stopping rule of Problem (3.3).

3.2.2 Optimal stopping rule for Problem (3.7) (with a spe-
cific λ) when Tn ≥ K − a

First we consider that the source RSU does not stop before moment K−a, i.e., we

consider Problem (3.7) when Tn ≥ K − a. For presentation simplicity, in Section

3.2.2, when we say “Problem (3.7)”, it means “Problem (3.7) when Tn ≥ K−a”.

Here we introduce the notion of myopic stopping rule. The myopic stopping

rule is the rule that calls for stopping at vehicle n if the cost of vehicle n 7 is not

greater than the expected cost of vehicle n+1. For Problem (3.7), its myopic rule

is to stop at min
{
n ≥ 1 : Zn(λ) ≤ E

[
Zn+1(λ)|Fn

]}
. Here Fn means information

7Cost of a vehicle is the cost of stopping at the vehicle.
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of T1, T2, ..., Tn and G1, G2, ..., Gn, which is available at the source RSU when it

decides whether or not to stop at vehicle n+1. Note that, upon arrival of vehicle n,

if the myopic rule calls for continuation8 (i.e., Zn(λ) > E
[
Zn+1(λ)|Fn

]
, and thus,

the myopic rule decides not to stop at vehicle n), it is also optimal for Problem

(3.7) to continue since Zn(λ) > E
[
Zn+1(λ)|Fn

]
means that the expected cost

of vehicle n + 1 is smaller than the cost of vehicle n and thus, continuing to

observe vehicle n + 1 is optimal. On the other hand, if the myopic rule calls for

stopping at a vehicle, generally it may not be optimal for Problem (3.7) to stop

at the vehicle. However, if a stopping problem is monotone, under some mild

conditions, if the myopic rule calls for stopping at a vehicle, it is also optimal for

the stopping problem to stop at the vehicle (in other words, the myopic rule is an

optimal stopping rule). Therefore, next we introduce the concept of monotone

problem, and when Problem (3.7) is not monotone, we transform it to a monotone

problem, for which we prove that its myopic rule is optimal.

Definition 2. Let Bn denote the event
{
ω : Zn(λ) ≤ E

[
Zn+1(λ)|Fn

]}
. Problem

(3.7) is monotone if B1 ⊆ B2 ⊆ B3 ⊆ . . . almost surely (a.s.) [68].

Bn is the set of outcomes that the myopic rule calls for stopping at the vehicle

n.9 Bn ⊆ Bn+1 ⊆ Bn+2 ⊆ ... means that: If for one specific outcome ω the myopic

rule calls for stopping at vehicle n, then the myopic rule will also call for stopping

at vehicle n+ 1 (for whatever realization of Tn+1 and Gn+1); and in general, the

myopic rule will call for stopping at any future vehicle for whatever realization

of {Tn+1, Tn+2, ...} and {Gn+1, Gn+2, ...} (a.s.).

8When we say a stopping rule calls for continuation (which means the source RSU continues
to observe other vehicles) or stopping at vehicle n, it implies that the source RSU does not stop
at vehicles 1, 2, ..., n− 1.

9For presentation simplicity, here vehicle n means the nth vehicle arriving after moment
K − a (recalling that in Section 3.2.2 we only consider vehicles arriving after the moment
K − a).
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Next we will try to transform Problem (3.7) into a monotone problem (if it is

not a monotone problem), derive the myopic rule for the monotone problem and

prove that the myopic rule is optimal for Problem (3.7).

Recall that in this subsection we consider Tn ≥ K−a, which means Tn+Gn ≥

K since Gn ≥ a. Then from (3.4) we have An = r(Tn + Gn − K). Since

Tn+1 > Tn ≥ K − a and Gn+1 ≥ a, we also have An+1 = r(Tn+1 + Gn+1 − K).

Zn(λ) in (3.6) can be rewritten as

Zn(λ) =WPκ+ r(C − λ)Tn + r(B − C)(Tn +Gn −K)

=WPκ+ r(B − λ)Tn + r(B − C)(Gn −K). (3.8)

From (3.8), the expectation of Zn+1(λ) conditioned on that the source RSU has

observed the first n vehicles but has not stopped at them is

E
[
Zn+1(λ)|Fn

]
=WPκ+ r(B − λ)E

[
Tn+1|Fn

]
+ r(B − C)E

[
Gn+1 −K|Fn

]
=WPκ+ r(B − λ)E

[
Tn +Xn+1|Fn

]
+ r(B − C)(E

[
Gn+1|Fn

]
−K)

=WPκ+ r(B − λ)(Tn + µ) + r(B − C)
(
E [Gn+1]−K

)
(3.9)

where the last equality comes from the following fact. Fn does not carry infor-

mation regarding Xn+1 and Gn+1. In other words, if we know Fn, we know

the values of {Xk, k = 1, . . . , n} and {Gk, k = 1, . . . , n}, but not Xn+1 or

Gn+1. Thus, we have E
[
Tn|Fn

]
= Tn, E

[
Xn+1|Fn

]
= E [Xn+1] = µ, and

E
[
Gn+1|Fn

]
= E [Gn+1].

From (3.8) and (3.9), the difference between the cost of vehicle n and the
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expected cost of vehicle n+ 1 is

E
[
Zn+1(λ)|Fn

]
− Zn(λ)

=r(B − λ)(Tn + µ) + r(B − C)
(
E [Gn+1]−K

)
− r(B − λ)Tn − r(B − C)(Gn −K)

=r(B − λ)µ+ r(B − C)
(
E [Gn+1]−Gn

)
=r(B − C)

(
(B − λ)µ

B − C
+

∫ b

a

xfG(x) dx−Gn

)
(3.10)

where fG(x) is the probability density function of the transit delay of the vehicles.

We define a function

φ(g) ,
1

FG(g)

(
(B − λ)µ

B − C
+

∫ g

a

xfG(x) dx

)
a ≤ g ≤ b, (3.11)

and define b1 , φ(b).10 Since FG(b) = 1, we can re-write (3.10) as

E
[
Zn+1(λ)|Fn

]
− Zn(λ) = r(B − C)(b1 −Gn). (3.12)

We consider two scenarios: b1 ≥ b and b1 < b. For each scenario, we get

a monotone problem, obtain its myopic rule, and prove that the myopic rule is

optimal for Problem (3.7), as follows.

Scenario with b1 ≥ b

Since b1 is not less than the largest transit delay b, it is not less than Gn. So for

any vehicle n, expression (3.12) is always nonnegative. Thus, for any n, ignoring

vehicle n and stopping at vehicle n+1 is expected to involve more cost than that

of stopping at vehicle n. Therefore, the myopic rule for Problem (3.7) will require

the source RSU to stop at the first vehicle (arriving after K − a), given as

Nm
K−a(λ) = min{n : Tn ≥ K − a} (3.13)

10Note that b1 is a function of λ. For presentation simplicity, we do not show it in form of
b1(λ). The subsequent b2, b3, ... and b∗ are treated similarly.
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in which superscript ‘m’ means ‘myopic’ and subscript ‘K − a’ means we start

observation from moment K − a. And Problem (3.7) is a monotone problem for

reason as follows. From (3.12), we always have Zn(λ) ≤ E
[
Zn+1(λ)|Fn

]
for any

n. Recalling that Bn denotes the event
{
ω : Zn(λ) ≤ E

[
Zn+1(λ)|Fn

]}
, we have

B1 = B2 = B3 = ..., and thus, from Definition 1, Problem (3.7) is a monotone

problem.

Theorem 4. When Tn ≥ K−a and b1 ≥ b, the myopic rule (3.13) is an optimal

stopping rule for Problem (3.7) with λ ∈ (0, B].

Proof. See Appendix 3.6.4.

So when Tn ≥ K − a, the expected optimal stopping time is

E
[
TNm

K−a(λ)

]
= K − a+ µ (3.14)

due to the fact that: Since the Poisson arrival process (of vehicle arrivals) is

memoryless, starting from moment K−a, the expected waiting time for the next

vehicle is µ (the average vehicle inter-arrival time).

Denote the optimal cost of Problem (3.7) when we start observation from

moment K − a as VK−a(λ). Then we have

VK−a(λ) =E
[
ZNm

K−a(λ)(λ)
]

=WPκ+ r(B − λ)E
[
TNm

K−a(λ)

]
+ r(B − C)(E [Gn]−K)

=WPκ+ r(C − λ)K − r(B − λ)(a− µ)

+ r(B − C)

∫ b

a

xfG(x) dx (3.15)

where the second equality comes from (3.8) and the third equality comes from

(3.14).
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Scenario with b1 < b

We consider a sequence of values {bi}i=1,2,..., in which bi = φ(bi−1) for i ≥ 2 (recall

that b1 = φ(b)). The following theorem will be useful in subsequent investigation.

Theorem 5. When b1 < b, the sequence {bi}i=1,2,... has the following properties:

1) bi < bi−1 for i ≥ 2; 2) {bi}i=1,2,... converges to a value denoted b∗; 3) b∗ is the

unique root of φ(g) = g for g ∈ (a, b]; 4) for g ∈ (a, b], g = b∗ minimizes φ(g).

Proof. See Appendix 3.6.5.

Next we show that when b1 < b, Problem (3.7) is not a monotone problem,

and then transform Problem (3.7) into a monotone problem. Upon arrival of

vehicle n, if Gn ≤ b1, then from (3.12) we have E
[
Zn+1(λ)|Fn

]
− Zn(λ) ≥ 0,

and the myopic rule will call for stopping at vehicle n; otherwise, the myopic

rule will ask for continuation. This means the decision for any vehicle depends

on the transit delay of the vehicle. So Problem (3.7) is not a monotone problem

when b1 < b. To transform Problem (3.7) into a monotone problem, we have the

following iterations.

Iteration 1: By observing (3.12), we notice that E
[
Zn+1(λ)|Fn

]
− Zn(λ)

depends only on Gn. Upon arrival of vehicle n, if Gn > b1, then for whatever

value of Tn, the myopic rule always asks for continuation and thus it is optimal for

Problem (3.7) to skip this vehicle and continue to wait for other vehicles (recalling

that if myopic rule calls for continuation, it is optimal for the source RSU to

continue). So we can ignore those slow vehicles with transit delay larger than b1,

and only consider those vehicles whose transit delay is smaller than or equal to

b1. After ignoring those slow vehicles, the arrival rate of considered vehicles is

FG(b1)/µ. We use superscript ‘[1]’ to denote the case when vehicles with transmit

delay more than b1 are not considered. The transit delay of the nth considered
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vehicle, denoted G
[1]
n , is in the range of [a, b1] with CDF FG[1](g) = FG(g)/FG(b1)

for g ∈ [a, b1]. And similar to (3.10), we have

E
[
Z

[1]
n+1(λ)|F [1]

n

]
− Z [1]

n (λ)

=r(B − λ)µ/FG(b1) + r(B − C)

(
E
[
G

[1]
n+1

]
−G[1]

n

)
=r(B − λ)µ/FG(b1) + r(B − C)

(∫ b1
a
xfG(x) dx

FG(b1)
−G[1]

n

)

=r(B−C)

 1

FG(b1)

(
(B − λ)µ

B − C
+

∫ b1

a

xfG(x) dx

)
−G[1]

n


=r(B − C)(φ(b1)−G[1]

n )

=r(B − C)(b2 −G[1]
n ) (3.16)

where the last two equalities come from the definition of φ(·) in (3.11) and b2 =

φ(b1), respectively.

From Theorem 5, we have b2 < b1.

Iteration 2: Upon arrival of the nth considered vehicle, if G
[1]
n > b2, then

E
[
Z

[1]
n+1(λ)|F [1]

n

]
−Z [1]

n (λ) < 0, and thus, it is optimal to continue since continuing

to stop at vehicle n+1 expects to incur less cost than that of stopping at vehicle n.

So we can ignore those slow vehicles with transit delayG
[1]
n > b2, and only consider

the remaining vehicles. After ignoring those slow vehicles, the arrival rate of

considered vehicles is FG(b2)/µ. And the transit delay of the nth considered

vehicle, denoted G
[2]
n , is in the range of [a, b2] with CDF FG[2](g) = FG(g)/FG(b2)

for g ∈ [a, b2]. Here superscript ‘[2]’ means that those vehicles with transmit

delay more than b2 are not considered. And similar to (3.16), we have

E
[
Z

[2]
n+1(λ)|F [2]

n

]
− Z [2]

n (λ) = r(B − C)(b3 −G[2]
n ).

Similarly, we can have Iterations 3, 4,...,etc. And in Iteration l (l = 1, 2, ...),

vehicles with transit delay more than bl should not be considered. Since sequence
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{bi}i=1,2,... converges to b∗ (from Theorem 5), it can be concluded that, as an

overall result after all iterations, vehicles with transit delay more than b∗ should

not be considered. The arrival rate of considered vehicles is FG(b∗)/µ. And the

transit delay of the nth considered vehicle, denoted G
[o]
n , is in the range of [a, b∗]

with CDF FG[o](g) = FG(g)/FG(b∗). Here superscript ‘[o]’ means the overall effect

of the iterations (i.e., vehicles with transit delay more than b∗ are not considered).

With only those considered vehicles, Problem (3.7) is a monotone problem.

This is because for any considered vehicle n = 1, 2, ..., we have G
[o]
n ≤ b∗, and

similar to (3.16), we have E
[
Z

[o]
n+1(λ)|F [o]

n

]
− Z [o]

n (λ) = r(B − C)(b∗ −G[o]
n ) ≥ 0.

Similar to the scenario with b1 ≥ b, Problem (3.7) with only those considered

vehicles is monotone.

For Problem (3.7) with only those considered vehicles, since E
[
Z

[o]
n+1(λ)|F [o]

n

]
−

Z
[o]
n (λ) ≥ 0 for any n, its myopic rule will call for stopping at the first consid-

ered vehicle after moment K − a (recalling that we consider Tn ≥ K − a in this

subsection). The myopic rule is expressed as

Nm
K−a(λ) = min

{
n : T [o]

n ≥ K − a
}
. (3.17)

Theorem 6. When Tn ≥ K−a and b1 < b, the myopic rule (3.17) is an optimal

stopping rule for Problem (3.7) when only vehicles with transmit delay less than

b∗ are considered.

The proof is similar to the proof of Theorem 4, and is omitted here.

As aforementioned, for Problem (3.7) when the RSU does not stop before

time K − a, it is optimal to ignore those vehicles with transit delay larger than

b∗ because for such a vehicle, the expected cost of stopping at the next vehicle is

less. So stopping rule (3.17) is optimal for Problem (3.7). The optimal stopping
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rule can be rewritten as

Nm
K−a(λ) = min {n : Tn ≥ K − a,Gn ≤ b∗} (3.18)

which means from moment K−a, the source RSU should stop at the first vehicle

whose transit delay is not more than b∗. Similar to (3.14), the expected optimal

stopping time is

E
[
TNm

K−a(λ)

]
= K − a+

µ

FG (b∗)
(3.19)

since the arrival rate of vehicles whose transit delay is not more than b∗ is

FG(b∗)/µ.

Upon an optimal stopping, the expectation of transit delay (which is the

average transmit delay of a vehicle conditioned on that its transit delay is not

more than b∗) is

E
[
GNm

K−a(λ)

]
=

∫ b∗
a
gfG(g) dg

FG(b∗)
. (3.20)

Recall that VK−a(λ) denotes the optimal cost of Problem (3.7) when we start
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observation from moment K − a. Thus, we have

VK−a(λ)

=E
[
ZNm

K−a(λ)(λ)
]

=WPκ+ r(B − λ)E
[
TNm

K−a(λ)

]
+ r(B − C)

(
E
[
GNm

K−a(λ)

]
−K

)
=WPκ+ r(B − λ)

(
K − a+

µ

FG (b∗)

)
+ r(B − C)

(∫ b∗
a
gfG(g) dg

FG(b∗)
−K

)
=WPκ+ r(C − λ)K − r(B − λ)a

+ r(B − C)
1

FG(b∗)

(
(B − λ)µ

B − C
+

∫ b∗

a

xfG(x) dx

)
=WPκ+ r(C − λ)K − r(B − λ)a+ r(B − C)φ(b∗)

=WPκ+ r(C − λ)K − r(B − λ)a+ r(B − C)b∗ (3.21)

in which the second equality comes from (3.8), the third equality comes from

(3.19) and (3.20), and the last two equalities come from the definition of φ(·) in

(3.11) and φ(b∗) = b∗ (from Theorem 5), respectively.

Remark: To get the optimal stopping rule, the value of b∗, which is the con-

verging point of sequence {bi}i=1,2,..., should be obtained. From Theorem 5, the

value of b∗ can be obtained by any method to find the unique root of φ(g) = g

for g ∈ (a, b] or by any method to find the minimum of φ(g) for g ∈ (a, b].

3.2.3 Optimal stopping rule for Problem (3.7) (with a spe-
cific λ) when 0 ≤ Tn < K − a

Since we have obtained the optimal stopping rule for Tn ≥ K−a in Section 3.2.2,

next we only need to consider vehicles arriving between [0, K − a). Denote Vt(λ)

as the optimal cost of Problem (3.7) when we start observation from moment t
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(not including moment t). So the optimal cost of Problem (3.7) is V (λ) = V0(λ).

As a boundary condition, when t = K − a, Vt(λ) is given in (3.15) when b1 ≥ b

or in (3.21) when b1 < b. Next we will derive Vt(λ) for t ∈ [0, K − a) using this

boundary condition.

Suppose a vehicle, say vehicle n, arrives at moment Tn, and if it is selected,

the cost is Zn(λ). The source RSU needs to decide whether it is optimal to stop at

this vehicle. The optimality equation of dynamic programming [68] states that,

if Zn(λ) < VTn(λ) (i.e., the cost of current vehicle is less than the optimal cost of

ignoring the current vehicle and continuing to wait for future vehicles), then it is

optimal to stop at vehicle n; otherwise, it is optimal to continue observation of

future vehicles.

For moment t, consider an interval (t−∆t, t) in which ∆t > 0 is sufficiently

small. Since the vehicle arrival process is a Poisson process with average arrival

rate 1/µ, within interval (t − ∆t, t), the probability that one vehicle arrives is

∆t/µ, the probability that no vehicle arrives is (1 −∆t/µ), and the probability

that two or more vehicles arrive is o(∆t) (higher order of ∆t). Next we give an

expression for Vt−∆t(λ).

• If there is no vehicle arriving during the interval (t − ∆t, t): Then the

source RSU has to wait for vehicles arriving after moment t for chance of

transmission. For this case, the optimal costs starting from t and (t−∆t)

are the same, i.e., Vt−∆t(λ) = Vt(λ).

• If there is one vehicle, say vehicle n, arriving at Tn = t − ∆t′ where 0 <

∆t′ < ∆t: From (3.6) and (3.4), we have Zn(λ) = WPκ + r (C − λ) (t −

∆t′) + r (B − C) (t−∆t′ +Gn −K)+.
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When

Zn(λ) = WPκ+ r (C − λ) (t−∆t′)

+ r (B − C) (t−∆t′ +Gn −K)+ ≤ Vt−∆t′(λ), (3.22)

then it is optimal to stop at vehicle n and there is no need to continue the

observation after t. Define a function11

ρ(t, λ) , max
{
g ∈ [a, b] : WPκ+ r (C − λ) t+

r (B − C) (t+ g −K)+ ≤ Vt(λ)
}
.

Then (3.22) is equivalent to Gn ≤ ρ(t−∆t′, λ), which happens with proba-

bility FG(ρ(t−∆t′, λ)). When (3.22) holds, it is optimal to stop at vehicle

n, and we have

Vt−∆t(λ)

=E
[
Zn(λ)

]
=WPκ+ r (C − λ) (t−∆t′)

+ r(B − C)

∫ ρ(t−∆t′,λ)

a
(t−∆t′+ x−K)+fG(x) dx

FG(ρ(t−∆t′, λ))
.

If (3.22) does not hold (with probability 1−FG(ρ(t−∆t′, λ))), it is optimal

to skip vehicle n and continue to wait for other vehicles that come after

moment t. Therefore, we have Vt−∆t(λ) = Vt(λ).

11Note that if WPκ+ r (C − λ) t+ r (B − C) (t+ g−K)+ ≤ Vt(λ) never holds for g ∈ [a, b],
then ρ(t, λ) = a.
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As a summary, we have

Vt−∆t(λ)

=(1−∆t/µ)Vt(λ)+(∆t/µ)
(
1− FG(ρ(t−∆t′, λ))

)
Vt(λ)

+(∆t/µ)FG(ρ(t−∆t′, λ))

(
WPκ+ r (C − λ) (t−∆t′)

+ r (B − C)

∫ ρ(t−∆t′,λ)

a
(t−∆t′ + x−K)+fG(x) dx

FG(ρ(t−∆t′, λ))

)
+ o(∆t)

=Vt(λ) + (∆t/µ)FG(ρ(t−∆t′, λ))

×

(
− Vt(λ) +WPκ+ r (C − λ) (t−∆t′)

+ r (B − C)

∫ ρ(t−∆t′,λ)

a
(t−∆t′ + x−K)+fG(x) dx

FG(ρ(t−∆t′, λ))

)
+ o(∆t).

After some algebraic operations, we have

µ
Vt(λ)− Vt−∆t(λ)

∆t

=FG(ρ(t−∆t′, λ))

(
Vt(λ)−WPκ− r (C − λ) (t−∆t′)

− r (B − C)

∫ ρ(t−∆t′,λ)

a
(t−∆t′ + x−K)+fG(x) dx

FG(ρ(t−∆t′, λ))

)
+ o(∆t)/∆t.

Letting ∆t approach zero, it follows

µ
∂Vt(λ)

∂t
=FG(ρ(t, λ))

(
Vt(λ)−WPκ− r (C − λ) t

− r (B − C)

∫ ρ(t,λ)

a
(t+ x−K)+fG(x) dx

FG(ρ(t, λ))

)
. (3.23)

With the aforementioned boundary condition, equation (3.23) can be solved nu-

merically to get Vt(λ) for t ∈ [0, K − a).
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N †(λ) (3.24)

=


min{n : WPκ+ r (C − λ)Tn+

r (B − C) (Tn +Gn −K)+ ≤ VTn(λ)} if Tn < K − a
minn if b1 ≥ b or min{n : Gn ≤ b∗} if b1 < b if Tn ≥ K − a.

Therefore, for Problem (3.7), upon arrival of vehicle n at moment Tn, if Tn <

K−a, an optimal stopping rule works as follows. The source RSU first calculates

(from (3.6)) the cost of vehicle n given as Zn(λ) = WPκ + r(C − λ)Tn + r(B −

C)(Tn + Gn −K)+. If Zn(λ) is less than VTn(λ), then the source RSU stops at

vehicle n; otherwise, the source RSU continues to observe future vehicles. The

optimal cost of Problem (3.7) is V (λ) = V0(λ).

3.2.4 Overall optimal stopping rule for Problem (3.7) (with
a specific λ)

As a summary of Sections 3.2.2 and 3.2.3, for Problem (3.7), the optimal cost

is V (λ) = V0(λ), and an optimal stopping rule works as shown in (3.24) on top

of the next page. In other words, when the waiting time is less than K − a,

then the source RSU stops at the first vehicle such that Zn(λ) = WPκ + r(C −

λ)Tn + r(B − C)(Tn +Gn −K)+ < VTn(λ); when the waiting time is more than

K − a, then the source RSU stops at the next vehicle if b1 ≥ b or stops at the

next vehicle with transmit delay less than b∗ if b1 < b.

3.2.5 Optimal stopping rule for Problem (3.3)

From Theorem 3, there exists λ∗ ∈ (C,B] such that V (λ∗) = 0. From proof

of Theorem 3, V (λ) is continuous and decreasing for λ ∈ [C,B]. So λ∗ can be

found by a bisection search. Then from Theorem 2, an optimal stopping rule of

Problem (3.3) is N †(λ∗) in the form of (3.24), and the optimal rate of cost (i.e.,
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the optimal objective function of Problem (3.3)) is λ∗.

To implement the optimal stopping rule N †(λ∗), the value of λ∗, the values

of Vt(λ
∗) for t ∈ [0, K − a), and values of b, b1 and b∗ can be calculated off-line in

advance and stored at the source RSU when the source RSU is setup. Then it can

be seen that the computational complexity of the optimal stopping rule N †(λ∗)

in the form of (3.24) is fairly low. Thus, upon a vehicle arrival, the source RSU is

able to quickly make a decision, and the energy consumption in the computation

is negligible.

Next we continue to calculate the expected optimal stopping time of Problem

(3.3) given as E
[
TN†(λ∗)

]
, the expected energy consumption per unit time, and

the expected traffic loss rate.

Define function α(t) = E
[
TN†(λ∗)

∣∣∣TN†(λ∗) ≥ t

]
, which is the expected optimal

stopping time if we know that the stopping time is not before time t. Recall that

when we start observation from moment K − a, the expected optimal stopping

time is E
[
TNm

K−a(λ∗)

]
= K− a+µ given in (3.14) when b1 ≥ b or E

[
TNm

K−a(λ∗)

]
=

K − a + µ/FG(b∗) given in (3.19) when b1 < b. If we extend the definition of b∗

to the scenario with b1 ≥ b such that b∗ = b when b1 ≥ b holds, then we have a

uniform expression of expected optimal stopping time after moment K − a for

both b1 ≥ b and b1 < b as: E
[
TNm

K−a(λ∗)

]
= K − a+ µ/FG(b∗). In other words, a

boundary condition of α(t) is

α(K − a) = E
[
TNm

K−a(λ∗)

]
= K − a+

µ

FG(b∗)
. (3.25)

Following the same method of deriving (3.23), we can derive the following

equation

µ
dα(t)

dt
= α(t)− FG(ρ(t, λ∗))t. (3.26)
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Based on (3.25) and (3.26), α(t) can be numerically calculated for t ∈ [0, K − a).

And the expected optimal stopping time of Problem (3.3) is E
[
TN†(λ∗)

]
= α(0).

When the optimal stopping rule N †(λ∗) is used, the objective function of

Problem (3.3) is given as

WPκ+ CE
[
rTN†(λ∗)

]
+ (B − C)E

[
AN†(λ∗)

]
E
[
rTN†(λ∗)

]
=
WPκ+ Crα(0) + (B − C)E

[
AN†(λ∗)

]
rα(0)

.

Since an optimal stopping rule of Problem (3.3) should attain the optimal rate

of cost (also the optimal objective function of Problem (3.3)) given as λ∗ (from

Theorem 2), we have

WPκ+ Crα(0) + (B − C)E
[
AN†(λ∗)

]
rα(0)

= λ∗

which leads to

E
[
AN†(λ∗)

]
=
rα(0)(λ∗ − C)−WPκ

B − C
. (3.27)

Therefore, the traffic loss rate of the optimal stopping rule N †(λ∗) is the ratio of

the expected discarded traffic amount upon a stop to the expected total traffic

amount accumulated before a stop, given as

E
[
AN†(λ∗)

]
rE
[
TN†(λ∗)

] =
rα(0)(λ∗ − C)−WPκ

rα(0)(B − C)
.

And the energy consumption per time unit is

Pκ+ P
rE
[
T
N†(λ∗)

]
−E
[
A
N†(λ∗)

]
R

E
[
TN†(λ∗)

] =
Pκ+ P

rα(0)−E
[
A
N†(λ∗)

]
R

α(0)

in which the numerator is the expected energy consumption when the source RSU

stops, the denominator is the expected stopping time, and E
[
AN†(λ∗)

]
is given

in (3.27).
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3.3 Performance evaluation

In this section, we evaluate the performance of the derived stopping strategy,

and compare with Matlab simulations. If a vehicle is selected to help, four-way

handshake of RTS-CTS-DATA-ACK is used. The data transmission rate is R =

11 Mbps, and transmission power is P = 15.5 dBm = 35.5 mW. The overhead

duration κ = 938.91 µs consists of the following components: RTS duration (ratio

of RTS size to basic rate, plus preamble time), CTS duration (ratio of CTS size

to basic rate, plus preamble time), ACK duration (ratio of ACK size to R, plus

preamble time), as well as overhead for data transmission (MAC header time,

given as ratio of MAC header size to R, and preamble time), in which basic rate

is 2 Mbps, preamble time is 192 µs, and RTS, CTS, ACK, and MAC header have

sizes of 20 bytes, 14 bytes, 14 bytes, and 34 bytes, respectively. The traffic coming

rate is r = 5 bps at the source RSU. The energy cost is W = 1 unit of cost per

µJoule. The delay bound K is usually application dependent (e.g., a delay bound

of 120 minutes is adopted in [75]; the delay bound in [88] is 5–20 minutes). In our

simulation, each traffic unit is expected to be delivered to the destination RSU

within delay bound K = 1800 seconds. If a traffic unit is discarded at the source

RSU, a cost of B = 0.5 per bit is charged. The distance of the source RSU to the

destination RSU is D = 10, 000 meters. At the source RSU, vehicle inter-arrival

time follows an exponential distribution with parameter µ = 400 seconds. The

speeds of those vehicles are truncated Gaussian random variables 12 which have

mean v̄ = 25 m/s and variance σ2 = 9 [89]. The minimum and maximum speeds

are vmin = 18 m/s and vmax = 32 m/s, respectively. Thus, speeds of vehicles are

12Here “truncated Gaussian random variable” means the probability density function of a
Gaussian random variable is truncated with a minimum value and a maximal value.
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i.i.d. random variables with CDF:

FV (v) =


0 if v < vmin∫ v
vmin

e−(x−v̄)2/2σ2
dx∫ vmax

vmin
e−(x−v̄)2/2σ2

dx
if vmin ≤ v ≤ vmax

1 otherwise.

The transit delay of vehicle n is Gn = D/Vn, where Vn is the speed of vehicle n.

And Gn’s are i.i.d. random variables with CDF:

FG(g) = 1− FV
(
D

g

)

=


0 if g < a∫ vmax
D/g e−(x−v̄)2/2σ2

dx∫ vmax
vmin

e−(x−v̄)2/2σ2
dx

if a ≤ g ≤ b

1 if g > b

where a = D/vmax = 312.5 seconds and b = D/vmin = 555.6 seconds are the

smallest and the largest transit delay, respectively.

3.3.1 Optimal stopping rule (3.24) for Problem (3.7)

We first evaluate our optimal stopping rule (3.24) for Problem (3.7). For λ ∈

[0.0032, 0.05],13 Fig. 3.1 shows the numerically calculated values of V (λ) = V0(λ)

(optimal cost of Problem (3.7)) based on our derivation in Section 3.2.3. Matlab

simulations14 are also carried out to get the cost of Problem (3.7) by using the

stopping rule N †(λ) given in (3.24), and the simulation results are also shown in

Fig. 3.1. It can be seen that numerical and simulation results match well. As

indicated in proof of Theorem 3, V (λ) is a continuous and decreasing function of

λ ∈ [C,B].

13In this example, C = WP/R = 0.0032. Since λ∗ ∈ (C,B] (from Theorem 3), the minimum
value of λ in Fig.3.1 is 0.0032.

14When simulations are carried out to evaluate the proposed stopping rule or the subsequently
presented heuristic stopping rule, the stopping rule is applied for each vehicle arrival to decide
whether or not to stop. And once the source RSU stops and forwards its traffic to the selected
vehicle, it keeps observing subsequent vehicles for its next stopping decisions. In other words,
in the simulations, repeated stopping problems are dealt with. And simulation statistics are
averaged over 106 stops.
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Figure 3.1: V (λ) for C ≤ λ ≤ B for Problem (3.7).

3.3.2 Optimal stopping rule of Problem (3.3)

Now we focus on Problem (3.3). From Fig. 3.1, we have λ∗ = 0.031 since

V (λ∗) = 0. And from our analysis in Section 3.2.5, an optimal stopping rule of

Problem (3.3) is as follows, with optimal rate of cost being λ∗ = 0.031.

• When Tn < K − a = 1487.5 seconds, by (3.24) with λ = λ∗ = 0.031, an
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optimal stopping rule of Problem (3.3) is

N †(0.031)

= min{n : WPκ+ r(C − 0.031)Tn

+ r(B − C)An ≤ VTn(0.031)}

= min{n : 33.33− 0.1389Tn + 2.48(Tn +Gn − 1800)+

≤ VTn(0.031)}.

• When Tn ≥ K − a = 1487.5 seconds and λ = λ∗, since b1 = φ(b) =

φ(555.6) = 805.39 > b = 555.6, by (3.24) with λ = λ∗ = 0.031, an optimal

stopping rule of Problem (3.3) is

min{n : Tn ≥ K − a = 1487.5}.

Next we vary the value of B from 0.2 to 1. For Problem (3.3) with each value

of B, we numerically calculate λ∗ (which is the numerically obtained optimal rate

of cost for Problem (3.3), and can be found, as aforementioned in Section 3.2.5,

by a bisection search such that V (λ∗) = 0) and obtain the optimal stopping rule

N †(λ∗) in the form of (3.24) with λ = λ∗. We also run computer simulations

for the objective function of Problem (3.3) with stopping rule being N †(λ∗) and

get the simulated rate of cost. Both the numerically calculated optimal rate of

cost (i.e., λ∗) and the simulated rate of cost for different B values are shown in

Fig. 3.2. We can see that the numerical and simulation results match well.

Fig. 3.2 also shows the simulated rate of cost using a heuristic stopping rule for

different values of B. The heuristic stopping rule is the simple myopic stopping

rule: Upon a vehicle arrival (say vehicle n), if its rate of cost is less than the

rate of cost of the next vehicle, vehicle n+ 1, by assuming that vehicle n+ 1 has

an average inter-arrival time (i.e., Xn+1 = µ) and has an average transit delay
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Figure 3.2: The rate of cost of the heuristic rule (simulation results) and the
proposed optimal stopping rule (numerical and simulation results) for Problem
(3.3).

(i.e.,Gn+1 =
∫ b
a
gfG(g) dg), then the source RSU stops at vehicle n; Otherwise,

the source RSU skips vehicle n and waits for other vehicles. In other words, the

heuristic stopping rule is shown in (3.28) on top of next page. From Fig. 3.2, it

can be seen that the proposed stopping rule has a much lower rate of cost than

the heuristic rule.

Figs. 3.3-3.5 shows the average stopping time, average percentage of traffic

loss, and average energy consumption per time unit, respectively, for both the

proposed stopping rule (analytical results from Section 3.2.5 and simulation re-
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min

{
n :
WPκ+ rCTn+ r(B − C)(Tn +Gn −K)+

rTn
(3.28)

≤
WPκ+ rC(Tn + µ)+ r(B − C)(Tn+ µ+

∫ b
a
gfG(g) dg−K)+

r(Tn+ µ)

}
.
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Figure 3.3: Average stopping time of the heuristic rule (simulation results) and
the proposed optimal stopping rule (numerical and simulation results) for Prob-
lem (3.3).
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Figure 3.4: The percentage of traffic loss of the heuristic rule (simulation results)
and the proposed optimal stopping rule (numerical and simulation results) for
Problem (3.3).

sults) and the heuristic rule (simulation results). When penalty B increases, the

proposed stopping rule is more conservative to decide on continuation, and there-

fore, the average stopping time decreases in Fig. 3.3 and the percentage of traffic

loss decreases in Fig. 3.4. Since more percentage of traffic is delivered when B

increases, more energy is consumed, as shown in Fig. 3.5. On the other hand,

for the heuristic stopping rule, increase of B only slightly decreases the average

stopping time. This can be roughly explained as follows.

• When Tn ≤ K − µ −
∫ b
a
gfG(g) dg = 994.8 second, we have (Tn + Gn −
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Figure 3.5: The energy consumption per second of the heuristic rule (simula-
tion results) and the proposed optimal stopping rule (numerical and simulation
results) for Problem (3.3).

K)+ ≤ (Tn + b −K)+ ≤ (994.8 + b −K)+ = 0. Since (Tn + Gn −K)+ =

max(Tn + Gn − K, 0) ≥ 0, we have (Tn + Gn − K)+ = 0. Further, we

have (Tn + µ+
∫ b
a
gfG(g) dg−K)+ = 0. Therefore, the inequality in (3.28)

becomes

WPκ+ rCTn
rTn

≤ WPκ+ rC(Tn + µ)

r(Tn + µ)

which apparently never holds. Therefore, when Tn ≤ 994.8 second, the

heuristic stopping rule never decides on stopping.

• When Tn ≥ K−a = 1487.5 second, we have (Tn+Gn−K)+ = Tn+Gn−K,
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WPκ+ rCTn + r(B − C)(Tn +Gn −K)

rTn
(3.29)

≤
WPκ+ rC(Tn + µ) + r(B − C)(Tn + µ+

∫ b
a
gfG(g) dg −K)

r(Tn + µ)
.

and (Tn+µ+
∫ b
a
gfG(g) dg−K)+ = Tn+µ+

∫ b
a
gfG(g) dg−K, and therefore,

the inequality in (3.28) becomes (3.29) on top of this page. Recall that B

varies from 0.2 to 1 in Figs. 3.3-3.5. If B takes the minimum value 0.2, we

have C = 0.0032� B−C, WPκ = 33.33� r(B−C)(K−a) ≤ r(B−C)Tn.

So in (3.29), we can approximately omitWPκ+rCTn andWPκ+rC(Tn+µ)

from the numerator on both sides, respectively, and get

Tn +Gn −K
Tn

≤
Tn + µ+

∫ b
a
gfG(g) dg −K

Tn + µ

in which B does not exist. Therefore, when Tn ≥ K − a = 1487.5 second,

the value of B almost does not affect the stopping time.

• When Tn ∈ (994.8 second, 1487.5 second), the heuristic stopping rule is

more conservative when the penalty B increases.

Overall, for the heuristic stopping rule, the value of B only affects the stopping

decision for vehicle n when Tn ∈ (994.8 second, 1487.5 second). Therefore, when

B increases, the average stopping time of the heuristic rule only slightly decreases

in Fig. 3.3. This also explains that the percentage of traffic loss slightly decreases

in Fig. 3.4, and that the average energy consumption per second slightly increases

in Fig. 3.5.
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3.4 Effect of wireless transmission errors

Now we briefly investigate the case when there are wireless transmission errors

(e.g., due to wireless link outage or collisions). In specific, if a transmission error

happens with the RTS, CTS, DATA, or ACK exchange between the source RSU

and a vehicle, retransmission(s) will be needed, which consume more energy. And

if the RTS-CTS-DATA-ACK handshake cannot be completed before the vehicle

leaves the communication coverage area of the source RSU, the DATA will remain

in the source RSU’s buffer, and wait for future vehicles.

First we analyze the effect of wireless transmission errors on our optimal

stopping rule. When the source RSU makes a decision on whether or not to

stop, it does not know how much energy will be consumed if it decides to stop,

since possible retransmissions may enlarge the energy consumption. Therefore,

the source RSU needs to assess the expected energy consumption when it decides

whether or not to stop. Denote the probabilities that an RTS, CTS, DATA,

and ACK message is successfully received as p1, p2, p3, and p4, respectively.

Then the information exchange between the source RSU and the vehicle follows

a Markov chain with five states: RTS, CTS, DATA, ACK and SUCCESS, as

shown in Fig. 3.6, in which SUCCESS means that the handshake is successfully

completed. In the figure, eRTS, eCTS, eDATA, and eACK are the energy consumption

for transmission of an RTS, CTS, DATA, and ACK message, respectively.

Denote ERTS, ECTS, EDATA, and EACK as the expected energy consumption

to reach SUCCESS state if we begin with RTS, CTS, DATA and ACK state,
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Figure 3.6: Information exchange between the source RSU and a vehicle.

respectively. We have the following equations:

EACK = p4eACK + (1− p4)
(

eACK + ERTS

)
EDATA = p3

(
eDATA + EACK

)
+ (1− p3)

(
eDATA + ERTS

)
ECTS = p2

(
eCTS + EDATA

)
+ (1− p2)

(
eCTS + ERTS

)
ERTS = p1

(
eRTS + ECTS

)
+ (1− p1)

(
eRTS + ERTS

)
.

By solving the above equations, we have the expected energy consumption if the

source RSU stops, as follows:

ERTS =
eRTS + p1eCTS + p1p2eDATA + p1p2p3eACK

p1p2p3p4

.

The energy consumed to send data (i.e., eDATA) contains two parts: energy

used to send MAC header and preamble: eMAC+preamble, and energy used to send

actual data: ePAYLOAD (which is equal to P (rTn − An)/R). Since W is cost weight

for energy consumption, to successfully transmit traffic from the source RSU to

a vehicle, the expected cost of energy consumption is

WP rTn−An
R

p3p4

+W
eRTS + p1eCTS + p1p2eMAC+preamble + p1p2p3eACK

p1p2p3p4

.

After a comparison with the cost expression of energy consumption given in

Section II, it can be seen that: our analysis and solution in Section II and III
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Figure 3.7: The rate of cost of the heuristic rule (simulation results) and the
proposed optimal stopping rule (numerical and simulation results) for Problem
(3.3) when there are transmission errors (p1 = p2 = p3 = p4 = 0.9).

are still valid, if we replace parameter C with C/(p3p4) and replace parameter κ

with

eRTS + p1eCTS + p1p2eMAC+preamble + p1p2p3eACK

Pp1p2p3p4

.

With these replacements, similar to Fig. 2, we get the numerical result and simu-

lation result of our derived optimal stopping rule, as well as the simulation result

of the heuristic rule, as shown in Fig. 3.7. In the numerical and simulation re-

sults, each message (RTS, CTS, DATA, or ACK) is successfully received with a

probability 0.9, which means p1 = p2 = p3 = p4 = 0.9. In the simulation for our

52



derived optimal stopping rule and the heuristic rule, if the RTS-CTS-DATA-ACK

handshake cannot be completed before the vehicle is outside the communication

coverage of the source RSU15 (the coverage radius is set to be 300 meters in the

simulation), the RSU keeps the traffic in its buffer and waits for future vehicle.

It can be seen that the numerical and simulation results for our derived stopping

rule match with each other. Compared to Fig. 2, wireless transmission errors

lead to larger rate of cost in our derived stopping rule and the heuristic rule.

3.5 Conclusion

In this work, we have studied the traffic scheduling in vehicular delay tolerant

networks by taking into account the queueing delay, the transmit delay, and the

energy consumption. By setting the objective to minimize the rate of cost, we

theoretically derive an optimal stopping rule of the source RSU.

3.6 Appendix

3.6.1 Proof of Theorem 1

According to [68], if the following two conditions are met:

1.E
[
inf
n
Zn(λ)

]
> −∞ (3.30)

2. lim
n→∞

Zn(λ) ≥ Z∞(λ) almost surely (a.s.), (3.31)

then there exits an optimal stopping rule N †(λ) such that E
[
ZN†(λ)(λ)

]
= V (λ),

where V (λ) = infN≥1 E
[
ZN(λ)

]
.

From (3.4), we have

An ≥

{
0 if Tn < K − a
r(Tn +Gn −K) if Tn ≥ K − a.

(3.32)

15Note that this rarely happens, since the available communication time of the source RSU
and the vehicle is large enough if the transmission successful probability is not extremely low.
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For λ ≤ B, we have

Zn(λ)
= WPκ+ r (C − λ)Tn + (B − C)An
≥ WPκ+ r (C −B)Tn + (B − C)An
(e1)

≥

{
WPκ+ r (C −B)Tn if Tn < K − a
WPκ+ r(B − C)(Gn −K) if Tn ≥ K − a

(e2)

≥

{
WPκ+ r (C −B) (K − a) if Tn < K − a
WPκ+ r(B − C)(a−K) if Tn ≥ K − a

= WPκ+ r(B − C)(a−K) > −∞

where inequality (e1) follows from (3.32), and inequality (e2) follows from B > C

and Gn ≥ a. Thus, the first condition in (3.30) is established.

When n → ∞, we have Tn → ∞ a.s., and thus from (3.4), we have An =

r(Tn +Gn −K), and

lim
n→∞

Zn(λ)

= lim
n→∞

{
WPκ+ r (C − λ)Tn+(B − C)r(Tn +Gn−K)

}
= lim

n→∞

{
WPκ+ r (B − λ)Tn + (B − C)r(Gn −K)

}
.

Define Z∞(λ) = ∞. Then we have limn→∞ Zn(λ) = Z∞(λ) a.s., and the second

condition in (3.31) is satisfied.

3.6.2 Proof of Theorem 2

According to the condition i), we have E [YN − λ∗rTN ] ≥ 0 for any stopping rule

N , which leads to

E [YN ]

E [rTN ]
≥ λ∗. (3.33)

From condition ii), we have E
[
ZN†(λ∗)(λ

∗)
]

= V (λ∗) = 0, which means

E
[
YN†(λ∗) − λ∗rTN†(λ∗)

]
= 0. This leads to

E
[
YN†(λ∗)

]
E
[
rTN†(λ∗)

] = λ∗. (3.34)
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From (3.33) and (3.34), N †(λ∗) is an optimal stopping rule for

inf
N≥1

E [YN ]

E [rTN ]

which is Problem (3.3), and the optimal rate of cost is

E
[
YN†(λ∗)

]
E
[
rTN†(λ∗)

] = λ∗.

3.6.3 Proof of Theorem 3

Based on the definition of Zn(λ) in (3.6), when λ = C, for any n we have

Zn(λ)
∣∣∣
λ=C

≥ WPκ > 0. Hence, based on the definition of V (λ) in (3.7), we

have V (C) > 0.

From (3.5), we have

K − a > WPκ

r(B − C)
.

Define

δ , K − a− WPκ

r(B − C)
> 0.

When λ = B, from (3.6) we have Zn(B) = WPκ− (B−C)(rTn−An). From

(3.7), we have

V (B) = inf
N≥1

E
[
ZN(B)

]
≤ inf

N≥1,TN>K,GN<a+δ
E
[
ZN(B)

]
(3.35)

because {N : N ≥ 1, TN > K,GN < a+ δ} ⊂ {N : N ≥ 1}.

When TN > K,GN < a+ δ, from (3.4) we have AN = r(TN +GN −K), and

further, we have

ZN(B) = WPκ− (B − C)(rTN − AN)
= WPκ− (B − C)r(K −GN)
< WPκ− (B − C)r(K − (a+ δ))
= 0

(3.36)

where the last equality comes from the definition of δ.
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From (3.35) and (3.36), we have V (B) ≤ 0.

Next we show that V (λ) is continuous in [C,B]. From Theorem 1, it is shown

that for λ ≤ B, there exists an optimal stopping rule denoted N †(λ) for Problem

(3.7). As to be shown in (3.14) and (3.19) in Section 3.2.2 (which show that the

average optimal stopping time of Problem (3.7) is finite), we have E
[
TN†(λ)

]
<∞.

Let C ≤ λ1 < λ2 ≤ B. Then

V (λ1) = E
[
YN†(λ1)

]
− λ1E

[
rTN†(λ1)

]
> E

[
YN†(λ1)

]
− λ2E

[
rTN†(λ1)

]
≥ V (λ2) (3.37)

where the first equality comes from the optimality of stopping rule N †(λ1) for

Problem (3.7) with λ = λ1, the first inequality comes from λ1 < λ2, and the

second inequality comes from the fact that V (λ2) is the minimum cost of Problem

(3.7) with λ = λ2.

From (3.37), it can be seen that V (λ) is decreasing in λ ∈ [C,B].

If λ2 − λ1 < ε/(rE
[
TN†(λ2)

]
) where ε is a very small positive value (recalling

that E
[
TN†(λ)

]
is finite for any λ ∈ (0, B]), we have

|V (λ2)− V (λ1)|
= V (λ1)− V (λ2)

= V (λ1)−
(
E
[
YN†(λ2)

]
−(λ1+(λ2−λ1))E

[
rTN†(λ2)

])
= V (λ1)−

(
E
[
YN†(λ2)

]
− λ1E

[
rTN†(λ2)

])
+ (λ2 − λ1)E

[
rTN†(λ2)

]
≤(λ2 − λ1)E

[
rTN†(λ2)

]
< ε

(3.38)

where the second equality comes from the optimality of N †(λ2) for Problem (3.7)

with λ = λ2, and the first inequality comes from the fact that V (λ1) is the

minimum cost of Problem (3.7) with λ = λ1.
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From (3.38), it can be concluded that V (λ) is continuous for λ ∈ [C,B].

Since V (C) > 0 and V (B) ≤ 0 and V (λ) is decreasing in λ ∈ [C,B], according

to Intermediate Value Theorem [90], there exists a unique λ∗ ∈ (C,B] such that

V (λ∗) = 0.

3.6.4 Proof of Theorem 4

According to Theorem 2 and Corollary 2 in Chapter 5 of [68], if Problem (3.7)

when Tn ≥ K − a is monotone, then its myopic rule (3.13) is optimal if the

following conditions are satisfied:

• i) Zn can be written as Zn = un + wn, where E
[
supn |un|

]
< ∞ and wn is

nonnegative and nondecreasing a.s.;

• ii) limn→∞ Zn = Z∞ a.s..

We copy (3.8) here:

Zn(λ) = WPκ+ r(B − λ)Tn + r(B − C)(Gn −K).

Define un = WPκ+r(B−C)(Gn−K) and wn = r(B−λ)Tn. Since λ ∈ (0, B],

Condition i) is satisfied.

Define Z∞(λ) =∞. Then

lim
n→∞

Zn(λ)

= lim
n→∞

(
WPκ+ r(B − λ)Tn + r(B − C)(Gn −K)

)
= Z∞(λ) a.s. (3.39)

which means Condition ii) is satisfied.
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3.6.5 Proof of Theorem 5

Take the first-order derivative of φ(g) given in (3.11), we have

dφ(g)

dg
=
fG(g)

FG(g)

(
g − (B − λ)µ

(B − C)FG(g)
−
∫ g
a
xfG(x) dx

FG(g)

)

=
fG(g)

FG(g)

(
g − φ(g)

)
=

fG(g)

(FG(g))2

(
g − φ(g)

)
FG(g)

=
fG(g)

(FG(g))2
Ψ(g) (3.40)

in which Ψ(g) ,
(
g − φ(g)

)
FG(g). Then Ψ(b) = (b − φ(b))FG(b) = b − φ(b) =

b− b1 > 0. Replacing φ(g) with (3.11), Ψ(g) can be rewritten as

Ψ(g) = gFG(g)− (B − λ)µ

B − C
−
∫ g

a

xfG(x) dx

=

∫ g

a

(g − x)fG(x) dx− (B − λ)µ

B − C

from which it can be seen that Ψ(g) is an increasing function of g ∈ (a, b], and

lim
g>a, g→a

Ψ(g) = −(B − λ)µ

B − C
< 0.

Recalling that Ψ(b) > 0, for g ∈ (a, b] there is a unique root of Ψ(g) = 0. Denote

the root as b∗. In other words, Ψ(b∗) = (b∗ − φ(b∗))FG(b∗) = 0, which leads to

φ(b∗) = b∗. This means, for g ∈ (a, b], curve y = φ(g) and curve y = g have a

unique common point at g = b∗, which proves Part 3) of Theorem 5. Since Ψ(g)

is an increasing function of g ∈ (a, b] and limg>a, g→a Ψ(g) < 0 < Ψ(b), we have

• When g ∈ (a, b∗), Ψ(g) < 0. Then from (3.40) we have dφ(g)
dg

< 0, which

means φ(g) is a decreasing function of g ∈ (a, b∗);

• When g ∈ (b∗, b], Ψ(g) > 0. Then from (3.40) we have dφ(g)
dg

> 0, which

means φ(g) is an increasing function of g ∈ (b∗, b].
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a b∗ b2 b1 b
a

b2

b1

b

y = g

y = φ(g)

Figure 3.8: Curves y = φ(g) and y = g, and the procedure of obtaining b→ b1 →
b2 → ... .

These also mean that for g ∈ (a, b], g = b∗ minimizes φ(g), which proves Part 4)

of Theorem 5.

Fig. 3.8 shows the curve y = φ(g) and curve y = g. The red curve in Fig. 3.8

shows how to get b1 = φ(b) from b, get b2 = φ(b1) from b1, ..., etc. It can be

seen that the procedure of obtaining b→ b1 → b2 → ... is actually the procedure

of finding the unique common point of the curve y = φ(g) and curve y = g.

Therefore, it can be concluded that sequence {bi}i=1,2,... converges to b∗, and

b > b1 > b2 > ..., which proves Parts 1) and 2) of Theorem 5.
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Chapter 4

I2I Traffic Scheduling with a Soft
Delay Bound1

The contributions of this chapter are summarized as follows. 1) Based on the

soft delay bound model, we formulate an optimal stopping problem. In the

formulated optimal stopping problem, a concept of forced stop (the definition of

forced stop is given in Section 4.1) is introduced. Due to the forced stop, the

methods used in the literature to solve traditional optimal stopping problems,

including the method used in Chapter 3, do not work here, and a completely new

method is required. By characterizing the impact of forced stop, we develop a

method to find optimal solution for the formulated problem. 2) We theoretically

prove that it is optimal for the source RSU to take a conditional pure-threshold

strategy. In specific, before a forced stop, the source RSU should transmit to a

passing-by vehicle if the queuing delay is above a threshold2, conditioned on that

the total delay (queuing delay plus transit delay of the vehicle) is not more than

the delay bound. The conditional pure-threshold structure can largely facilitate

implementation of the strategy in a VANET. As a comparison, optimal solution

in 3 does not have such a conditional pure-threshold feature, and thus, more

1A version of this chapter has been published in IEEE Trans. Intelligent Transportation
Systems, 19: 839-853 (2018).

2In the sequel, “threshold” means threshold for queuing delay at the source RSU.
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computation is needed to make a decision in optimal solution of 3. 3) We provide

a method that quickly calculates the threshold off-line. Table 4.1 summarizes

important notations used in this chapter.

The following sections are organized as follows. Section 4.1 describes the

considered system and formulates the research problem. Section 4.2 derives an

optimal strategy of the problem, and proves that the optimal strategy has a

conditional pure-threshold structure. Section 4.3 provides an efficient method

to obtain the threshold. Section 4.4 evaluates our derived strategy. Section 4.5

concludes this chapter. Appendix 4.6 includes proofs of the theorems in this

chapter.

4.1 System model and problem formulation

The system model is similar to the one in Chapter 3, except that a soft delay

bound is used here. A source RSU (S-RSU) has constant data traffic arrival rate

r. The S-RSU is a remote RSU, and needs to send its data traffic to a destination

RSU (D-RSU, which is a central RSU) by using the help of passing-by vehicles.

The distance between the S-RSU and D-RSU is d. If a vehicle is selected to help,

it takes all buffered data traffic at the S-RSU, and when the vehicle arrives at

the D-RSU, it passes all the carried data traffic to the D-RSU .

At the S-RSU, denote the arrival moment of the nth (n = 1, 2, ...) vehicle

as Tn. Without loss of generality, we set T0 = 0. Similar to [62, 63, 91], the

arrival process of vehicles at the S-RSU is a Poisson process with parameter µ,

which means that the vehicle inter-arrival durations, denoted as Xn = Tn− Tn−1

(n = 1, 2, ...), are independent exponentially-distributed random variables with

mean 1/µ. Similar to [92], the speed of the vehicles are independent random

variables that are uniformly distributed between vmin (the minimal speed) and
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Symbol Meaning

a, b Smallest, largest possible transit delay

C The set of all possible stopping strategies

d Distance from S-RSU to D-RSU

D Soft delay bound

FS(x) Cumulative distribution function of

transit delay, given in (4.1)

Fnr Information of arrival moments and transit

delay of vehicles before Vehicle nr

N †(λ) Optimal stopping strategy of Problem (4.5)

P Transmission power of RTS, CTS, DATA, and ACK

R Transmission rate of DATA packets

r Data traffic arrival rate at the S-RSU

Sn The transit delay of the nth vehicle

Tn The arrival moment of the nth vehicle

Un Total cost of using the nth vehicle (given in (4.2))

V (λ) Optimal objective function of Problem (4.5)

vmin Minimal speed of vehicles

vmax Maximal speed of vehicles

Xn Time interval from arrival of vehicle n− 1 to arrival of vehicle n

Zn(λ) Cost function for Problem (4.5)

1/µ Average duration between two vehicle arrivals

κ Communication overhead duration

between S-RSU and selected vehicle

ω Cost weight for energy consumption

β Cost of violating soft delay bound

Table 4.1: Used Notations in Chapter 4
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vmax (the maximal speed). As the transit delay is the duration for a vehicle to

travel from the S-RSU to the D-RSU, it can be seen that the transit delay has

cumulative distribution function (CDF) given as

FS(x) =


0 if x < a;
b(x−a)
x(b−a)

if a ≤ x ≤ b;

1 if x > b.

(4.1)

Here a = d/vmax is the smallest possible transmit delay, while b = d/vmin is the

largest possible transit delay.

When a vehicle (say the nth vehicle) arrives, the system state is defined as the

arrived vehicles’ arrival moments (i.e., T1, T2, ..., Tn) and transit delay (denoted

as S1, S2, ..., Sn), and the S-RSU needs to make a decision between two options,

as follows.

• Option wait: the nth vehicle is skipped, and the S-RSU waits for later

vehicles.

• Option stop: the S-RSU stops waiting, and passes its buffered traffic to the

nth vehicle by using a four-way handshake RTS-CTS-DATA-ACK. Here

RTS means request-to-send, CTS means clear-to-send, DATA carries the

data traffic, and ACK means acknowledgement. Denote P as the trans-

mission power of RTS, CTS, DATA, and ACK. Denote κ as the duration

of all communication overhead (including RTS, CTS, ACK, as well as the

medium access control [MAC] header of the DATA packet). Denote the

transmission rate of a DATA packet as R. Similar to [84, 65, 85], we adopt

a weighted cost structure for energy consumption and delay as follows. For

energy consumption, we assign cost weight ω (unit of cost per Joule). Then

the energy consumption cost if the S-RSU stops at the nth vehicle is ex-

pressed as ωP
(
Tnr/R + κ

)
, in which Tnr is the amount of buffered data
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traffic at the S-RSU. A soft delay bound D is set for each information unit

in the data traffic. If one or multiple information units of the data traffic

have a total delay (queuing delay plus transit delay3) larger than D, we

say that a soft delay bound violation happens, and a fixed charge of β is

set (the reason for a fixed charge for one or multiple information units with

delay bound violation is given in Section 4.1.1). Therefore, delay cost if the

S-RSU stops at the nth vehicle is expressed as β1[Tn+Sn>D], where 1[·] is

an indicator function (which is equal to 1 if the event indicated in {·} hap-

pens, and equal to 0 otherwise), and Sn is transit delay of the nth vehicle.

Overall, the total cost if the S-RSU stops at the nth vehicle is given as

Un = ωPκ+
ωrPTn
R

+ β1[Tn+Sn>D]. (4.2)

Recall that for any vehicle, the transit delay is always not less than a (the

smallest possible transit delay). Thus, if the queuing delay at the S-RSU is more

than (D − a), the total delay (queuing delay plus transit delay) will be always

more than the delay bound D. Therefore, when its queuing delay is more than

(D− a), the S-RSU is required to stop when the next vehicle arrives, referred to

as a forced stop.4 The index of the vehicle that is the first arrival after moment

(D − a) is denoted as C , min {n : Tn > D − a}. Thus, if the queuing delay at

the S-RSU is more than (D − a), it will be forced to stop at the Cth vehicle,

and the moment of the forced stop is denoted as TC . The inter-arrival duration

between Vehicle C and its previous vehicle is denoted as XC .

3Note that when the S-RSU and a vehicle are exchanging information, the vehicle is also
moving. Thus, the duration of transmissions between the S-RSU and the vehicle is included in
the transit delay.

4Reference [66] uses a concept similar to forced stop. In [66], when the target soft delay
bound for a service is crossed, the system must provide the service when the next chance
appears.
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Denote N as index of the vehicle upon arrival of which the S-RSU stops5.

We also use N to denote the corresponding stopping strategy. We target at the

S-RSU’s optimal stopping strategy with minimal rate of cost (i.e., minimal cost

per unit time). Define Yn
4
= ωPκ + β1[Tn+Sn>D], and C 4= {N : 1 ≤ N ≤ C} is

the set of all possible stopping strategies (i.e., due to the forced stop concept, we

exclude stopping rules which will stop at a vehicle arriving after the Cth vehicle).

Similar to Chapter 3, to achieve our target, equivalently we should find

N∗ , arg inf
N∈C

E [UN ]

E [TN ]

= arg inf
N∈C

E [YN ] + ωrPE [TN ]/R

E [TN ]

= arg inf
N∈C

E [YN ]

E [TN ]
, (4.3)

where E [·] means expectation.6 As the vehicle inter-arrival durations are expo-

nentially distributed (which means that the vehicle inter-arrival durations are

“memoryless”), we have E [TC ] = D − a + E [XC ] = D − a + 1/µ < ∞. Thus,

E [TN ] <∞ for all N ∈ C.

Remarks: For the formulated problem, there is a tradeoff between wait and

stop. If the S-RSU waits less time and picks up a vehicle, the selected vehicle

can have a larger chance to deliver all data traffic before delay bound. But

it is not energy efficient since the S-RSU needs to have information exchanges

with more vehicles in a long term, thus consuming more energy. If the S-RSU

waits longer time, it is energy efficient as the S-RSU needs to have information

5Note that after the S-RSU stops at a vehicle and transmits its data traffic, we denote this
stop moment as T0 = 0, and call the next arrived vehicle as Vehicle 1 again. In other words,
the formulated problem is repeated after a stop.

6Here we minimize E [UN ]/E [TN ] due to the following reason. Since the optimal stopping
problem is repeated after a stop, we denote the stopping time in K stops as TN1 , TN2 , ..., TNK

(which are independent and identically distributed), and the corresponding cost in the K stops
as UN1

, UN2
, ...UNK

(which are independent and identically distributed), respectively. Then the
average cost per unit time is given as (UN1

+ UN2
+ ... + UNK

)/(TN1
+ TN2

+ ...TNK
), which

converges to E [UN ]/E [TN ] by the law of large numbers [68].
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exchanges with fewer vehicles in a long term, but the chance for delay bound

violation is also higher. The major challenge in solving the problem is due to

the forced stop, which makes the problem different from a traditional optimal

stopping problem. A traditional optimal stopping problem does not have forced

stop, and thus, methods used to solve traditional optimal stopping problems,

including the method used in Chapter 3, cannot be used here. In the sequel,

we will develop a completely new method to solve our optimal stopping problem

with forced stop.

4.1.1 Reason to have a fixed charge for one or multiple
information units with delay bound violation

As an example, we use the typical application of the S-RSU: serve as gateway

for a wireless sensor network. So the data traffic at the S-RSU actually carries

information of a number of “events” in the wireless sensor network, and each

event is corresponding to a number of information units in the data traffic at the

S-RSU.

We expect that only a very small portion of the data traffic will have delay

bound violation (i.e., cannot be delivered before the delay bound). This is be-

cause, if a large portion of data traffic has delay bound violation, this means that

the system is not effective to deliver the buffered data traffic at the S-RSU, and

thus, a new system is needed (for example, by using cellular communications or

satellite communications).

Therefore, when the S-RSU stops at a vehicle, it is very likely that the infor-

mation units that have delay bound violation belong to the same event. For the

same event, a single information unit with delay bound violation and multiple

information units with delay bound violation have the same effect on processing

of the event: both will make processing of the event at the receiver side de-
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layed. Thus, when there is delay bound violation, we do not make the penalty

charge proportional to the number of information units with delay bound viola-

tion. Rather, we use a fixed penalty charge for one or multiple information units

with delay bound violation.

In addition, if the data traffic of the wireless sensor network is encrypted, an

encryption segment consists of a number of information units. At the receiver

side, decryption of an encryption segment can be done only after all information

units in the segment are received. Then for an encryption segment, a single

information unit with delay bound violation and multiple information units with

delay bound violation both will make the decryption process at the receiver side

delayed. Thus, it is reasonable to charge a fixed penalty when one or multiple

information units have delay bound violation.

4.2 An optimal stopping strategy

We have four steps in the following four subsections to derive an optimal stopping

strategy for Problem (4.3).

4.2.1 Transformation of the original problem

Define

Zn(λ) = Yn − λTn = ωPκ+ β1[Tn+Sn>D]−λTn, λ > 0. (4.4)

Here λ can be viewed as rate of cost.

We will first transform Problem (4.3) into a stopping problem that minimizes

E
[
ZN(λ)

]
[68], i.e.,

N †(λ) = arg inf
N∈C

E
[
ZN(λ)

]
. (4.5)
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Theorem 7. If i) for any particular λ > 0, Problem (4.5) has an optimal stopping

strategy, denoted as N †(λ), and ii) there exists a λ∗ such that E
[
ZN†(λ∗)(λ

∗)
]

= 0,

then an optimal stopping strategy of Problem (4.3) is in the form of N †(λ∗).

Proof. See Appendix 4.6.1.

In the subsequent two steps in Sections 4.2.2 and 4.2.3, we derive N †(λ) for

Problem (4.5). Then in the last step in Section 4.2.4, we prove that there exists

λ∗ satisfying the above condition ii).

4.2.2 Elimination of a set of non-optimal stopping strate-
gies

In this step, we show that, for Problem (4.5), a set of stopping strategies are

non-optimal, and thus, can be removed from our consideration.

For any stopping strategy N ∈ C, define an event: {TN ≤ D − a, TN + SN >

D}. This event means that when the S-RSU stops, it is not a forced stop, and

the total delay (queuing delay plus transit delay) is more than the delay bound.

We first consider the following set of stopping strategies:

B =
{
N ∈ C : P{TN ≤ D − a, TN + SN > D} > 0

}
,

in which P{·} means probability of an event. Next, we show that stopping strate-

gies in B are strictly non-optimal for Problem (4.5). We can use proof by con-

tradiction. Assume N ∈ B is optimal for Problem (4.5). Then based on N , we

can construct a new stopping strategy, denoted as N
′
. The only difference of N

′

from N is that: if N advises a stopping such that TN ≤ D − a, TN + SN > D,

then N
′

advises that the S-RSU waits until a forced stop. It can be easily shown

that E
[
ZN(λ)

]
> E

[
ZN ′ (λ)

]
, which contradicts the assumption that strategy N

is optimal.
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Hence, we need only to search for an optimal stopping strategy within the

following collection of stopping strategies:

N = C\B = {N ∈ C : TN + SN ≤ D if TN ≤ D − a} .

In other words, upon a vehicle arrival, if the total delay (queuing delay plus

transit delay of the vehicle) is above D, and the queuing delay is less than D− a

(i.e., it is before the forced stop, which also means that it is still possible for the

S-RSU to pick up a later vehicle that can make the total delay bounded by D),

then the S-RSU should continue to wait for the next vehicle. Or equivalently,

the S-RSU should skip the vehicles which arrive at the S-RSU before moment

(D−a) and violate the delay bound. And we re-index the not skipped vehicles as

nr = 1, 2, .... So we have 1 ≤ nr ≤ Cr, where Cr , min{nr : Tnr > D− a} means

the forced stop.7 Denote Xnr = Tnr − Tnr−1 (nr = 1, 2, ...). Let Nr denote the

corresponding stopping time (the new index of the vehicle upon arrival of which

the S-RSU stops) and stopping strategy.

Then we have the following new stopping problem

N †r (λ) = arg inf
Nr∈N

E
[
ZNr(λ) = ωPκ+ β1[TNr+SNr>D] − λTNr

]
. (4.6)

4.2.3 Optimal stopping strategy for Problem (4.6) and
Problem (4.5)

Consider Problem (4.6). The concept of myopic stopping strategy is given first.

Upon a vehicle arrival, the myopic stopping strategy advises the S-RSU to stop if

the cost of stopping at the vehicle is not more than the expected cost of skipping

the vehicle and stopping at the next vehicle.

7Note that Cr (in the re-indexed system with some vehicles skipped) and C (in the initial
system) both mean the forced stop, corresponding to the first vehicle arrival after moment
D − a.
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We use Anr to denote the event {Znr(λ) ≤ E
[
Znr+1(λ)|Fnr

]
}, in which Fnr

is the information up to time Tnr . Here Fnr includes the arrival moments and

transit delay of all previous vehicles before Vehicle nr. So Anr means that the

myopic strategy advises the S-RSU to stop at Vehicle nr. We have the following

definition for a monotone problem.

Definition 3. Problem (4.6) is monotone if A1 ⊂ A2 ⊂ A3 ⊂ . . . almost surely

(a.s.) [68].

In this definition, Anr ⊂ Anr+1 ⊂ Anr+2 ⊂ . . . means that if the myopic strat-

egy advises the S-RSU to stop at Vehicle nr, then it will also advise the S-RSU

to stop at any future vehicle8 no matter what the realization of (Tnr+1, Tnr+2, ...)

will be (a.s.).

Now, we proceed to show that Problem (4.6) is a monotone problem. Since

at moment TCr the S-RSU is forced to stop, we need only to consider nr < Cr,

i.e., Tnr = t ∈ [0, D − a]. Then, we have

Znr(λ) = ωPκ− λTnr ,
E
[
Znr+1(λ)|Fnr

]
= E

[
Znr+1(λ)|Tnr = t

]
(i)
= ωPκ+ βP{nr + 1 = Cr|Tnr = t}
− λTnr − λE

[
Xnr+1|Tnr = t

]
,

in which equality (i) uses the following two equations:

E
[
1[Tnr+1+Snr+1>D]|Tnr = t

]
=P{nr + 1=Cr|Tnr = t},

Tnr+1 = Tnr +Xnr+1.

For 0 ≤ t ≤ D − a, we define :

m(t, λ)
4
=E

[
Znr+1(λ)|Fnr

]
− Znr(λ)

=βP{nr + 1 = Cr|Tnr = t} − λE
[
Xnr+1|Tnr = t

]
.

8When we say that the myopic strategy advises the S-RSU to stop at a future vehicle, it is
assumed that the S-RSU does not stop at vehicles before that future vehicle.
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Theorem 8. m(t, λ) is continuous in t ∈ [0, D − a]. And if for some t∗ ∈

[0, D − a), we have m(t∗, λ) ≥ 0, then m(t, λ) is a strictly increasing function in

t ∈ [t∗, D − a].

Proof. See Appendix 4.6.2.

For Problem (4.6), if the myopic strategy advises the S-RSU to stop at Vehicle

nr, based on the definition of m(t, λ), we have m(Tnr , λ) ≥ 0. Then from Theorem

8, we have m(Tnr+1, λ) > 0, m(Tnr+2, λ) > 0, ..., for Tnr+1 < D − a, Tnr+2 <

D− a, .... In other words, the myopic strategy also advises the S-RSU to stop at

any vehicle after Vehicle nr. Thus, Problem (4.6) is a monotone problem.

In general, the myopic strategy of Problem (4.6) advises the S-RSU to stop

at the earliest possible vehicle such that the cost of stopping at the vehicle is

not more than the expected cost of skipping the vehicle and stopping at the next

vehicle. Thus, the myopic strategy for Problem (4.6) can be expressed as

Nm
r (λ) = min

{
min

{
nr : m(Tnr , λ) ≥ 0

}
, Cr

}
, (4.7)

in which the superscript m stands for “myopic”.

Theorem 9. The myopic stopping strategy (4.7) is optimal for Problem (4.6).

Proof. See Appendix 4.6.4.

Considering the skipped vehicles when we transform Problem (4.5) to Problem

(4.6), from Theorem 8 an optimal stopping strategy for Problem (4.5) is

N †(λ) = min
{

min
{
n : Tn ≥ Tth(λ), Tn + Sn ≤ D

}
, C
}
, (4.8)

in which Tth(λ) is given as

Tth(λ) =

{
t∗ if ∃t∗ ∈ [0, D − a], m(t∗, λ) = 0;

∞ if m(D − a, λ) < 0.
(4.9)
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4.2.4 Optimal stopping strategy for Problem (4.3)

Recall that N †(λ) denotes optimal strategy of Problem (4.5). For Problem (4.5),

let V (λ) denote the optimal objective function, i.e.,

V (λ)= inf
N∈C

(
E [YN ]−λE [TN ]

)
=E

[
YN†(λ)

]
− λE

[
TN†(λ)

]
.

Theorem 10. V (λ) is strictly decreasing and continuous in λ > 0.

Proof. See Appendix 4.6.5.

If λ→ 0,

lim
λ→0

V (λ) = lim
λ→0

E
[
YN†(λ)

]
≥ ωPκ. (4.10)

On the other hand, if λ > µ(ωPκ+ β), we have

V (λ)
(ii)
= ωPκ+ βP{TN†(λ) + SN†(λ) > D} − λE

[
TN†(λ)

]
≤ ωPκ+ β − λE [T1] = ωPκ+ β − λ

µ
< 0, (4.11)

in which equality (ii) uses

E
[
1[
T
N†(λ)

+S
N†(λ)

>D
]] = P{TN†(λ) + SN†(λ) > D}.

From Theorem 10 and inequalities (4.10) and (4.11), it can be concluded that

there exists one and only one λ∗ > 0 such that V (λ∗) = 0. In other words,

condition ii) of Theorem 7 is satisfied. Thus, according to Theorem 7, an optimal

stopping strategy to the Problem (4.3) is

N †(λ∗) = min
{

min {n : Tn ≥ T ∗, Tn + Sn ≤ D} , C
}
,

in which T ∗ = Tth(λ∗). It can be seen that, before a forced stop, the S-RSU is

optimal to transmit to a passing-by vehicle if the queuing delay is more than the

threshold T ∗, conditioned on that the sum of the queuing delay and the transit

delay is bounded by D. In other words, the optimal stopping strategy has a

conditional pure-threshold structure.

72



4.3 Derivation of the optimal threshold T ∗

To derive the optimal threshold T ∗, it is intuitive to firstly obtain the threshold

Tth(λ) based on (4.9) for each λ(> 0) value (in which the solution of nonlinear

equation m(t∗, λ) = 0 needs to be calculated numerically), secondly obtain the

optimal objective function V (λ) of Problem (4.5) for each λ value, and thirdly find

λ∗ such that V (λ∗) = 0. Although T ∗ = Tth(λ∗) can be numerically calculated

based on this intuitive method, the computational complexity is high. So next

we propose to derive T ∗ from another perspective, to obtain T ∗ directly.

For Problem (4.3), for t ∈ [0, D − a], we consider the following stopping

strategies:

N(t) = min
{

min {n : Tn ≥ t, Tn + Sn ≤ D} , C
}

with corresponding objective function denoted as

k(t) =
ωPκ+ βP{N(t) = C}

E
[
TN(t)

] . (4.12)

Then T ∗ should be the value of t that minimizes k(t).

Theorem 11. k(t) is continuous in t ∈ [0, D − a].

Proof. See Appendix 4.6.6.

To minimize k(t), we may investigate its derivative expressed as

dk(t)

dt
= l(t)/

(
E
[
TN(t)

])2

,

where

l(t) = β
dP{N(t) = C}

dt
E
[
TN(t)

]
−

dE
[
TN(t)

]
dt

(
ωPκ+ βP{N(t) = C}

)
. (4.13)

We have the following theorem.
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Theorem 12. The function l(t) is continuous in the interval [0, D − a] with

l(0) < 0 and l(D − a) = 0. Moreover, if there is a t‡ ∈ [0, D − a) such that

l(t‡) ≥ 0, then l(t) > 0 for t ∈ (t‡, D − a).

Proof. See Appendix 4.6.7.

Theorem 12 implies that there is at most one root for l(t) = 0, t ∈ [0, D− a).

And if there is a root, denoted as t§, then l(t) < 0 in t ∈ [0, t§) (which means k(t)

is strictly decreasing in t ∈ [0, t§)) and l(t) > 0 in t ∈ (t§, D − a) (which means

k(t) is strictly increasing in t ∈ (t§, D − a)), and thus, the optimal threshold T ∗

should be T ∗ = t§.

Based on these conclusions, we can derive T ∗, as follows. We consider the

following three cases.

Case 1) If l(D − b) ≥ 0:

Since l(0) < 0, and l(t) is continuous in the interval [0, D−a], we can see that

l(t) = 0 (t ∈ [0, D− a)) has a unique root in [0, D− b]. From (4.40) in Appendix

4.6.7, the optimal threshold T ∗ is the root of

µβte−µ(D−t)
(
b

a

) µab
b−a

− ωPκ
(

1 + µe−µ(D−b−t)

×
(
g(D − b)−D + b− 1

µ

))
= 0. (4.14)

The method of bisection search can be used to find the root. The corresponding

minimum rate of cost is

k(T ∗) =
ωPκ+ βP{N(T ∗) = C}

E
[
TN(T ∗)

]
(iii)
=

ωPκ+ βe−µ(D−T ∗)
(
b
a

) µab
b−a

1
µ

+ T ∗ −
(
D − b+ 1

µ
− g(D − b)

)
e−µ(D−b−T ∗)

, (4.15)

in which equality (iii) comes from (4.34) and (4.35) in Appendix 4.6.6, and func-

tion g(·) is defined in Appendix 4.6.2 and derived in Appendix 4.6.3.
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Case 2): If l(D − b) < 0 and l(t)|t=(D−a)− > 0 (which is equivalent to(
t − g(t) + [β/(ωPκ)]h(t)t

)
|t=D−a > 0 from (4.41) in Appendix 4.6.7, where

function h(·) is defined in Appendix 4.6.2 and derived in Appendix 4.6.3):9

We can see that l(t) = 0 (t ∈ [0, D− a)) has a unique root in (D− b,D− a).

From (4.41), the optimal threshold T ∗ is the root of t− g(t) +βh(t)t/(ωPκ) = 0.

The method of bisection search can be used to find the root. The corresponding

minimum rate of cost is

k(T ∗) =
ωPκ+ βP{N(T ∗) = C}

E
[
TN(T ∗)

] (iv)
=

ωPκ+ βh(T ∗)

g(T ∗)
, (4.16)

in which equality (iv) comes from (4.36) and (4.37) in Appendix 4.6.6.

Case 3): If l(D − b) < 0 and l(t)|t=(D−a)− ≤ 0 (which is equivalent to(
t− g(t) + [β/(ωPκ)]h(t)t

)
|t=D−a ≤ 0 from (4.41)):

From Theorem 12, we have l(t) < 0 in [0, D − a). Thus, k(t) is a strictly

decreasing function in [0, D − a). Since we want to minimize k(t), the optimal

threshold should be T ∗ = D−a. In other words, it is optimal to wait for a forced

stop. The corresponding minimum rate of cost is

k(T ∗) =
ωPκ+ βP{N(D − a) = C}

E
[
TN(D−a)

] (v)
=
ωPκ+ β

g(D − a)
, (4.17)

where equality (v) comes from P{N(D−a) = C} = 1 and E
[
TN(D−a)

]
= g(D−a)

(which is from (4.37) in Appendix 4.6.6).

4.4 Performance evaluation

We use Matlab simulation to evaluate our derived stopping strategy. The distance

of the S-RSU and D-RSU is d = 10, 000 m. The S-RSU has a data arrival rate

of r = 5 bits/second. The soft delay bound is set to be D = 1, 800 seconds.

9Here x− means a value that is smaller than x but with infinitely small difference.

75



0 200 400 600 800 1000 1200 1400

Threshold (seconds)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
a

te
 o

f 
c
o

s
t 

(u
n

it
 o

f 
c
o

s
t/

s
e

c
o

n
d

)

Simulated rate of cost
Simulated rate of delay cost

Simulated rate of energy consumption cost
Analytically calculated point in our derived strategy

Figure 4.1: Rate of cost in conditional pure-threshold strategies with different
thresholds.

Vehicle arrival process at the S-RSU is a Poisson process with parameter µ. If

the S-RSU decides to stop at a vehicle, the communication overhead duration is

κ = 938.91 µs.10 The transmission rate of DATA packets is R = 11 Mbps. The

transmission power of RTS, CTS, DATA, and ACK is P = 15.5 dBm= 35.5 mW.

The cost weight for energy consumption is ω = 1 unit of cost per µJoule. We

collect simulation statistics over 100, 000 simulation runs.

We first demonstrate that our stopping strategy is optimal. For this purpose,

we compare our strategy with other conditional pure-threshold strategies. Here

a conditional pure-threshold strategy with threshold η works as follows: before

10The overhead 938.91 µs is calculated based on IEEE 802.11 Standard, which includes the fol-
lowing: RTS preamble (192 µs), ratio of RTS size (20 bytes) to RTS transmission rate (2Mb/s),
CTS preamble (192 µs), ratio of CTS size (14 bytes) to CTS transmission rate (2Mb/s), DATA
preamble (192 µs), ratio of DATA MAC header size (34 bytes) to DATA transmission rate (11
Mb/s), ACK preamble (192 µs), and ratio of ACK size (14 bytes) to ACK transmission rate
(11Mb/s).
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forced stop, the S-RSU selects the first vehicle (say the nth vehicle) such that

Tn > η and Tn + Sn ≤ D; if the S-RSU cannot find such a vehicle, then the

forced stop is decided on. We set β = 500, µ = 1/400 vehicles/second, vmin = 10

m/second, and vmax = 30 m/second. In conditional pure-threshold strategies with

threshold η varying from 0 to (D−a), Fig. 4.1 shows the simulation results of the

rate of cost, as well as the simulation results of the rate of energy consumption cost

and rate of delay cost 11. It can be seen that, when the threshold increases, the

chance to have delay bound violation is larger, and thus, the delay cost is higher.

On the other hand, a larger threshold means that the S-RSU has information

exchanges with fewer vehicles in a long term, and thus, the energy consumption

cost is lower. Fig. 4.1 also shows the analytically calculated threshold T ∗ and the

corresponding analytically calculated rate of cost (i.e., k(T ∗) in (4.15)-(4.17) plus

ωrP/R, the difference of E [YN ]/E [TN ] from E [UN ]/E [TN ] as shown in (4.3))

in our derived strategy. It is clearly shown that our derived strategy strikes an

optimal balance between energy consumption cost and delay cost, and achieves

the minimal rate of total cost.

We then vary the penalty cost β from 10 to 10, 000. And for each β value,

we exhaustively search the simulated rate of cost in conditional pure-threshold

strategies with threshold η varying from 0 to (D−a). Fig. 4.2 shows the searched

optimal threshold that achieves the (simulated) minimal rate of cost for each β

value, and Fig. 4.3 shows the corresponding (simulated) minimal rate of cost for

each β value. As a comparison, for each β value, Fig. 4.2 and Fig. 4.3 also show

11In a conditional pure-threshold strategy (including our derived strategy), a delay bound
violation happens only at a forced stop. At a forced stop, the average amount of information
units with delay bound violation is expressed as r(1/µ + E [S] − a), in which E [S] is average
transit delay of a vehicle. Therefore, if the rate of delay cost is expressed as Rd, the amount of
information units per unit time with delay bound violation can be expressed as (Rd/β)r(1/µ+
E [S]−a), i.e., proportional to Rd. Thus, the rate of delay cost in our cost function actually can
represent the performance of positive system throughput (defined as the amount of information
units per unit time that can be delivered to the D-RSU within delay bound).
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the analytically calculated threshold T ∗ in our derived strategy and corresponding

analytically calculated rate of cost, respectively. It can be seen that the analytical

results and exhaustively searched optimal simulation results match well. When

β is small, the S-RSU waits until it is forced to stop, i.e., the optimal threshold

is (D − a) = 1, 467 seconds. This is because the penalty cost β is dominated by

the benefit from delivering more traffic in a transmission. In fact, from Case 3)

when deriving T ∗ in Section 4.3, we know that if

(
t− g(t) + [β/(ωPκ)]h(t)t

)
|t=D−a ≤ 0,

which means

β ≤
ωPκ

(
g(D − a)−D + a

)
(D − a)h(D − a)

= 36.4,

then the optimal threshold is (D − a) = 1, 467 seconds. When the value of β

increases, the penalty cost begins to dominate, and the optimal threshold value

begins to decrease. As an extreme case, the optimal threshold becomes 0 when

β →∞, which means that the cost of delay bound violation is too high to afford,

and thus, the S-RSU should transmit to the first vehicle that meets the delay

bound requirement (i.e., the sum of queuing delay and transit delay is not more

than D).

Fig. 4.3 also shows the comparison of our derived stopping strategy with

the following heuristic strategy: when the S-RSU’s waiting time is less than

D − b, it is impossible for any vehicle to violate the delay bound requirement

(i.e., Tn + Sn > D), and thus, the S-RSU does not stop; when the S-RSU’s

waiting time is more than D − b, it is possible that a vehicle would violate the

delay bound requirement, and thus, the S-RSU transmits to the next coming

vehicle that satisfies the delay bound requirement. So the heuristic strategy is

actually a conditional pure-threshold strategy with threshold being (D− b). The
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Figure 4.2: The optimal threshold in conditional pure-threshold strategies.
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Figure 4.3: The rate of cost in conditional pure-threshold strategies.
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Figure 4.4: The optimal threshold value for different µ.

simulated rate of cost in the heuristic strategy for different β values is shown in

Fig. 4.3. It is clear that the heuristic strategy is not optimal in general.

We continue to show how different arrival rates of vehicles at the S-RSU affect

the optimal threshold and the rate of cost in the derived stopping strategy. We

vary the arrival rate µ of vehicles from 0.0015 to 0.03 vehicles/second. For β = 500

and different µ, the analytically calculated and simulated (by exhaustive search)

optimal thresholds are shown in Fig. 4.4, and analytical calculated and simulated

minimal rates of cost are shown in Fig. 4.5. It can be seen that, when µ increases,

the optimal threshold increases, and the minimal rate of cost decreases. This is

because, when it is expected that vehicles arrive more frequently, the S-RSU can

hold the traffic in its buffer for a longer time, and thus, each transmission can

deliver more traffic, which leads to a smaller rate of cost.

Next we show how the value of the soft delay bound D affects the optimal
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Figure 4.5: The minimal rate of cost for different µ.

threshold and the rate of cost in the derived stopping strategy. For β = 500 and

µ = 1/400 vehicles/second, we vary D from 1,000 seconds to 40,000 seconds. The

analytically calculated and simulated (by exhaustive search) optimal thresholds

are shown in Fig. 4.6, and analytical calculated and simulated minimal rates of

cost are shown in Fig. 4.7. It can be seen that, with a larger delay bound D, the

S-RSU can wait more time before stop, and thus, the optimal threshold increases,

and the minimal rate of cost decreases (as the S-RSU has information exchanges

with fewer vehicles in a long term, thus decreasing energy consumption).

4.5 Conclusion

This chapter studies vehicle-aided communications from a remote RSU to a cen-

tral RSU. Costs are assigned to energy consumption as well as possible violation

of a soft delay bound. We theoretically prove that an optimal stopping strategy
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Figure 4.7: The minimal rate of cost for different D.
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has a conditional pure-threshold structure, and the threshold can be calculated

offline quickly by our provided method. Upon arrival of a passing-by vehicle, if

the vehicle can meet the delay bound requirement, the S-RSU only needs to com-

pare the arrival moment of the vehicle with the threshold to make its decision.

Thus, the derived stopping strategy can be implemented in a VANET easily with

very low complexity.

4.6 Appendix

4.6.1 Proof of Theorem 7

Considering Problem (4.5) with λ∗, from i) we know that N †(λ∗) is optimal

stopping strategy. In other words, for any stopping strategy N ∈ C, we have

E
[
ZN(λ∗)

]
= E [YN − λ∗TN ] ≥ E

[
ZN†(λ∗)(λ

∗)
]

= 0, in which the last equality

comes from ii). Based on this, we have E [YN ]/E [TN ] ≥ λ∗.

Further, from (4.4), we have E
[
ZN†(λ∗)(λ

∗)
]

= E
[
YN†(λ∗) − λ∗TN†(λ∗)

]
. As

E
[
ZN†(λ∗)(λ

∗)
]

= 0 which is from ii), we have E
[
YN†(λ∗)

]
/E
[
TN†(λ∗)

]
= λ∗.

Together with E [YN ]/E [TN ] ≥ λ∗, we can see that among all stopping strategies

in C, N †(λ∗) minimizes E [YN ]/E [TN ], and thus, is an optimal stopping strategy

of Problem (4.3), with the optimal value of the objective function of Problem

(4.3) being λ∗.

4.6.2 Proof of Theorem 8

Since the expression of m(t, λ) includes the following two terms: P{nr + 1 =

Cr|Tnr = t} and E
[
Xnr+1|Tnr = t

]
(t ∈ [0, D − a]), we need to calculate the two

terms. We consider the following two cases.
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• When 0 ≤ t < (D − b): We have

P{nr + 1 = Cr|Tnr = t}
(vi)
=P{nr + 1 = Cr|Tnr+1 ≥ D − b, Tnr = t}

× P{Tnr+1 ≥ D − b|Tnr = t}
(vii)
= h(D − b)e−µ(D−b−t)

=

(
b

a

) µab
b−a

e−µbe−µ(D−b−t)

=e−µ(D−t)
(
b

a

) µab
b−a

, (4.18)

in which equality (vi) uses Total Probability Theorem and the fact P{nr +

1 = Cr|Tnr+1 < D − b, Tnr = t} = 0, and equality (vii) uses P{nr + 1 =

Cr|Tnr+1 ≥ D− b, Tnr = t} = P{nr +1 = Cr|Tnr+1 ≥ D− b} and P{Tnr+1 ≥

D − b|Tnr = t} = e−µ(D−b−t) (recalling that vehicle inter-arrival durations

are exponentially distributed with parameter µ). Here h(τ)
4
= P{nr + 1 =

Cr|Tnr+1 ≥ τ}, D − b ≤ τ ≤ D − a, is derived in Appendix 4.6.3.

E
[
Xnr+1|Tnr = t

]
(viii)
= E

[
Xnr+1|Tnr+1 < D − b, Tnr = t

]
× P{Tnr+1 < D − b|Tnr = t}

+ E
[
Xnr+1|Tnr+1 ≥ D − b, Tnr = t

]
× P{Tnr+1 ≥ D − b|Tnr = t}

(ix)
=

∫ D−b−t

0

µxe−µx dx+
(
g(D − b)− t

)
e−µ(D−b−t)

=
1

µ
−
(
D − b+

1

µ
− g(D − b)

)
e−µ(D−b−t), (4.19)

in which equality (viii) uses Total Probability Theorem, equality (ix) uses

the fact that the vehicle inter-arrival durations are exponentially distributed

84



with parameter µ, and g(τ)
4
= E

[
Tnr+1|Tnr+1 ≥ τ

]
, D − b ≤ τ ≤ D − a, is

derived in Appendix 4.6.3.

• When (D − b) ≤ t ≤ (D − a): We have

P{nr + 1 = Cr|Tnr = t}

= h(t) =

(
D − t
a

) µab
b−a

e−
µb(D−a−t)

b−a

and E
[
Xnr+1|Tnr = t

]
= g(t)− t.

Then m(t, λ) can be expressed as

m(t, λ)

=


βe−µ(D−t)

(
b
a

) µab
b−a − λ

(
1
µ
−
(
D − b+ 1

µ
− g(D − b)

)
× e−µ(D−b−t)

)
, if 0 ≤ t < D − b;

βh(t)− λ
(
g(t)− t

)
, if D − b ≤ t ≤ D − a.

(4.20)

It can be verified from (4.20) that m(t, λ) is continuous for t ∈ [0, D − a].

Suppose λ > 0 and there is a t∗ ∈ [0, D − a) satisfying m(t∗, λ) ≥ 0.

If t∗ ∈ [0, D − b), from (4.20), we have

m(t∗, λ) =βe−µ(D−t∗)
(
b

a

) µab
b−a

− λ
( 1

µ
−
(
D − b

+
1

µ
− g(D − b)

)
e−µ(D−b−t∗)

)
≥ 0.

Then, we have

∂m(t,λ)
∂t

∣∣∣∣
t=t∗

= µm(t∗, λ) + λ > 0. (4.21)

If t∗ ∈ [D − b,D − a), from (4.20), we have

m(t∗, λ) = βh(t∗)− λ
(
g(t∗)− t∗

)
≥ 0.
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Then, we have

∂m(t,λ)
∂t

∣∣∣∣
t=t∗

=

(
β

dh(t)

dt
− λ dg(t)

dt
+ λ

) ∣∣∣∣
t=t∗

(x)
= βµFS(D − t∗)h(t∗)− λµFS(D − t∗)

×
(
g(t∗)− t∗

)
+ λ

= µFS(D − t∗)
(
βh(t∗)−λ

(
g(t∗)− t∗

))
+ λ

= µFS(D − t∗)m(t∗, λ) + λ > 0, (4.22)

where equality (x) uses the following two equations:

dh(t)

dt
= µFS(D − t)h(t),

dg(t)

dt
= µFS(D − t)

(
g(t)− t

)
,

which are from Appendix 4.6.3.

Thus, if for some t∗ ∈ [0, D − a), we have m(t∗, λ) ≥ 0, then from (4.21) and

(4.22) we have

∂m(t, λ)

∂t
> 0 for t ∈ [t∗, D − a),

which means m(t, λ) is strictly increasing in t ∈ [t∗, D − a].

4.6.3 Derivation of h(τ) and g(τ)

We consider the following stopping strategy:

N(τ) = min
{

min {n : Tn ≥ τ, Tn + Sn ≤ D} , C
}

for D − b ≤ τ ≤ D − a.

According to the definitions of h(τ) and g(τ) in Appendix 4.6.2, we have

h(τ) = P{N(τ) = C}

g(τ) = E
[
TN(τ)

]
86



with the following boundary conditions:

h(D − a) = 1

g(D − a) = D − a+
1

µ
.

We first derive h(τ). For D − b < τ ≤ D − a, consider a sufficiently small

∆τ such that τ −∆τ ≥ D − b. Recall that vehicles arrive at the S-RSU follow-

ing a Poisson process with parameter µ. Thus, within duration (τ −∆τ, τ), the

probabilities of no vehicle arrival, one vehicle arrival, and two or more vehicle

arrivals are expressed as (1 − µ∆τ), µ∆τ , and o(∆τ) (higher order of ∆τ), re-

spectively. Consider stopping strategy N(τ − ∆τ). If no vehicle arrives within

duration (τ−∆τ, τ), then the S-RSU should continue to wait for the next vehicle

that comes after moment τ . If one vehicle, say the nth vehicle, arrives within

duration (τ − ∆τ, τ), and Tn + Sn ≤ D, then the S-RSU stops and there is no

need to wait after τ . If one vehicle, say the nth vehicle, arrives within duration

(τ−∆τ, τ), and Tn+Sn > D, then the RSU should skip this vehicle and continue

to wait for the next vehicle that comes after moment τ . As a summary, we have

h(τ −∆τ) =(1− µ∆τ)h(τ) + µ∆τ
(
1− FS(D − τ)

)
h(τ)

+o(∆τ),

which leads to

h(τ)− h(τ −∆τ)

∆τ
= µFS(D − τ)h(τ)− o(∆τ)

∆τ
.

Letting ∆t approach zero, we have

dh(τ)

dτ
= µFS(D − τ)h(τ). (4.23)

Using the initial condition h(D − a) = 1, we obtain

h(τ)=eµ
∫ τ
D−a FS(D−x) dx=

(
D − τ
a

) µab
b−a

e−
µb(D−τ−a)

b−a (4.24)
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for D − b ≤ τ ≤ D − a.

Since we have

dh(τ)

dτ
= µFS(D − τ)h(τ) > 0 for τ ∈ [D − b,D − a)

and

dh(τ)

dτ
|τ=D−a = µFS(a)h(D − a) = 0 (as FS(a) = 0),

it can be concluded that h(τ) is strictly increasing in [D − b,D − a].

Similar to the derivation of h(τ), for g(τ) we have

g(τ −∆τ) = (1− µ∆τ)g(τ) + µ∆τFS(D − τ)τ

+ µ∆τ(1− FS(D − τ))g(τ) + o(∆τ),

which leads to

g(τ)− g(τ −∆τ)

∆τ
= µFS(D − τ)

(
g(τ)− τ

)
− o(∆τ)

∆τ
.

Letting ∆τ approach zero, we have

dg(τ)

dτ
= µFS(D − τ)

(
g(τ)− τ

)
. (4.25)

Using the initial condition g(D − a) = D − a+ 1/µ, we obtain

g(τ) = D − h(τ)
[
a− 1

µ
+

µb

b− a

(
a

e

) µab
b−a

×
∫ D−τ

a

(z − a)z−
µab
b−a e

µbz
b−a dz

]
(4.26)

for D − b ≤ τ ≤ D − a, where h(τ) is given in (4.24).

4.6.4 Proof of Theorem 9

Since the S-RSU is forced to stop when nr = Cr, for presentation simplicity we

can set Tnr = TCr for nr > Cr. Then the objective function of Problem (4.6) can
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be written as Znr(λ) = ωPκ+ β1[nr=Cr] − λTnr . We have

E
[
inf nr(Znr(λ))

]
≥ ωPκ+ E

[
inf nr (−λTnr)

]
= ωPκ− E [sup nrλTnr ]

≥ ωPκ− λE [TCr ]

= ωPκ− λ
(
D − a+

1

µ

)
> −∞. (4.27)

According to Wald’s Equation, E [TCr ] = E [C]/µ. Thus, E [Cr] ≤ E [C] <∞

(since E [TCr ] < ∞), which leads to 1[Cr<∞] = 1 a.s.. Again, since the RSU is

required to stop when nr = Cr, the stopping strategies that we consider have the

property Nr(λ) ≤ Cr and thus

E
[
Nr(λ)

]
<∞ a.s.. (4.28)

According to Theorem 3.1 in [68], when the two inequalities (4.27) and (4.28)

hold, there exists an optimal stopping strategy N †r (λ) for Problem (4.6), and

the optimal (minimal) objective function of the problem is denoted as V ∗(λ) =

E
[
ZN†r (λ)

]
.

To prove the optimality of the myopic stopping strategy Nm
r (λ) in (4.7) for

Problem (4.6), it suffices if we can show that the optimal objective function of

Problem (4.6) is not less than the objective function of the myopic stopping

strategy Nm
r (λ), as follows.

For Problem (4.6), if the S-RSU is forced to stop when the vehicle index nr

is more than J , then we call this problem bounded at J . Recall that Prob-

lem (4.6) is monotone problem. Thus, Problem (4.6) bounded at J is a finite

horizon monotone problem, and thus, according to Theorem 5.1 in [68], the cor-

responding myopic strategy for Problem (4.6) bounded at J , given as N
m,(J)
r (λ) =
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min
{

min
{
nr : m(Tnr , λ) ≥ 0

}
, Cr, J

}
, is optimal, with the achieved objective

function denoted as V (J)(λ) = E
[
Z
N
m,(J)
r (λ)

(λ)
]
.

Based onN †r (λ), we define a new stopping strategy asN
[J ]
r (λ) = min{N †r (λ), J},

for J ≥ 1, and denote the corresponding objective function as V [J ](λ). Then we

have V [∞](λ) = V ∗(λ). Since stopping strategy N
m,(J)
r (λ) is optimal for Problem

(4.6) bounded at J , and N
[J ]
r (λ) is a stopping strategy for Problem (4.6) bounded

at J , we have V [J ](λ) ≥ V (J)(λ). Then

0 ≤V (J)(λ)− V ∗(λ) ≤ E
[
Z
N

[J]
r (λ)

(λ)
]
− E

[
ZN†r (λ)(λ)

]
=E

[
1[
N†r (λ)>J

] (Z
N

[J]
r (λ)

(λ)− ZN†r (λ)(λ)
)]

=E
[
1[
N†r (λ)>J

] (Z
N

[J]
r (λ)=J

(λ)− ZN†r (λ)(λ)
)]

=E

[
1[
N†r (λ)>J

]
(
β
(
1[TJ+SJ>D]−1[

T
N
†
r (λ)

+S
N
†
r (λ)

>D

])
+ λ(TN†r (λ) − TJ)

)]

≤E
[
1[
N†r (λ)>J

] (2β + λTN†r (λ)

)]
≤E

[
1[
N†r (λ)>J

] (2β + λTCr)

]
. (4.29)

Since P{N †r (λ) > J} → 0 as J →∞, then we have E
[
1[
N†r (λ)>J

] (2β + λTCr)

]
→

0 as J →∞. Then from (4.29) we have

V ∗(λ) = lim
J→∞

V (J)(λ) = lim
J→∞

E
[
Z
N
m,(J)
r (λ)

(λ)
]

= lim inf
J→∞

E
[
Z
N
m,(J)
r (λ)

(λ)
]

(xi)

≥ E
[
lim inf

J→∞
Z
N
m,(J)
r (λ)

(λ)

]
(xii)
= E

[
ZNm

r (λ)(λ)
]
, (4.30)

in which inequality (xi) follows from (4.27) by applying Fatou’s lemma [86], and
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equality (xii) follows from the fact that N
m,(J)
r (λ) is an increasing sequence of

stopping strategies converging to Nm
r (λ). Because of (4.28), Nm

r (λ) is a fixed

integer from some J on a.s.. Thus, we have lim infJ→∞ ZNm,(J)
r (λ)

(λ) = ZNm
r (λ)(λ)

a.s..

Inequality (4.30) means that the achieved objective function in the optimal

stopping strategy for Problem (4.6) is not less than the achieved objective func-

tion of the myopic stopping strategy Nm
r (λ). So the myopic stopping strategy is

optimal for Problem (4.6).

4.6.5 Proof of Theorem 10

Consider positive λ2 and λ1 satisfying λ2 > λ1. We have

V (λ1) = E
[
YN†(λ1)

]
− λ1E

[
TN†(λ1)

]
> E

[
YN†(λ1)

]
− λ2E

[
TN†(λ1)

]
, (4.31)

in which the inequality is because λ1 < λ2.

For Problem (4.5) with parameter λ2, its optimal strategy is denoted as

N †(λ2). In other words, N †(λ2) minimizes the objective function of Problem

(4.5) with parameter λ2. Thus, we have

V (λ2) = E
[
YN†(λ2)

]
− λ2E

[
TN†(λ2)

]
< E

[
YN†(λ1)

]
− λ2E

[
TN†(λ1)

]
. (4.32)

Combining (4.31) and (4.32), we have V (λ1) > V (λ2). Thus, V (λ) is strictly

decreasing in λ > 0.

Next we prove that V (λ) is uniformly continuous, i.e., for any ε > 0, there

exists a δ such that for any λ1 and λ2 satisfying |λ2 − λ1| < δ, we have |V (λ2)−

V (λ1)| < ε. We set δ = ε/E [TC ]. Then for any λ1 and λ2 satisfying 0 < λ1 <
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λ2 < λ1 + δ, we have

|V (λ2)− V (λ1)|
= V (λ1)− V (λ2)
< V (λ1)− V (λ1 + δ)

= V (λ1)−
(
E
[
YN†(λ1+δ)

]
− (λ1 + δ)E

[
TN†(λ1+δ)

])
= V (λ1)−

(
E
[
YN†(λ1+δ)

]
− λ1E

[
TN†(λ1+δ)

])
+ δE

[
TN†(λ1+δ)

]
(xiii)

≤ δE
[
TN†(λ1+δ)

] (xiv)

≤ δE [TC ] = ε,

in which inequality (xiii) is because V (λ1) is the minimal objective function of

Problem (4.5) with parameter λ1, and inequality (xiv) is because N †(λ1 +δ) ≤ C.

Since a uniformly continuous function is also continuous [90], it can be con-

cluded that V (λ) is continuous in λ > 0.

4.6.6 Proof of Theorem 11

When 0 ≤ t < (D − b), similar to (4.18), we have

P{N(t) = C} = e−µ(D−b−t)h(D − b) (4.33)

= e−µ(D−t)
(
b

a

) µab
b−a

, (4.34)

in which h(τ) is derived in Appendix 4.6.3. Similar to (4.19), we have

E
[
TN(t)

]
=

1

µ
+ t−

(
D − b+

1

µ
− g(D − b)

)
e−µ(D−b−t). (4.35)

So P{N(t) = C} and E
[
TN(t)

]
are both continuous in t ∈ [0, D − b), and thus,

from (4.12), k(t) is continuous in t ∈ [0, D − b).

When (D − b) ≤ t ≤ (D − a), we have

P{N(t) = C} = h(t) =

(
D − t
a

) µab
b−a

e−
µb(D−a−t)

b−a , (4.36)

E
[
TN(t)

]
= g(t), (4.37)
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where h(τ) and g(τ) are derived in Appendix 4.6.3. So P{N(t) = C} and E
[
TN(t)

]
are both continuous in t ∈ [D − b,D − a], and thus, k(t) is continuous in t ∈

[D − b,D − a].

Moreover, around t = D − b we have

lim
t<D−b, t→(D−b)

P{N(t) = C} (xv)
= h(D − b)

(xvi)
= P{N(D − b) = C},

in which equalities (xv) and (xvi) are from (4.33) and (4.36), respectively, and

lim
t<D−b, t→(D−b)

E
[
TN(t)

]
= g(D − b) = E

[
TN(D−b)

]
,

in which the two equalities are from (4.35) and (4.37), respectively. So P{N(t) =

C} and E
[
TN(t)

]
are both continuous at t = D − b, and thus, k(t) is continuous

at t = D − b.

Overall, k(t) is continuous in t ∈ [0, D − a].

4.6.7 Proof of Theorem 12

When 0 ≤ t < (D − b), from (4.34) we have

dP{N(t) = C}
dt

= µe−µ(D−t)
(
b

a

) µab
b−a

. (4.38)

From (4.35), we have

dE
[
TN(t)

]
dt

= 1 + µe−µ(D−b−t)
(
g(D − b)−D + b− 1

µ

)
. (4.39)

Then from (4.13), (4.34), (4.35), (4.38), and (4.39), we have expression of l(t) in

(4.40) on top of next page.

From (4.40) we know that l(t) is continuous in [0, D−b). Taking the first-order
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l(t) =µβe−µ(D−t)
(
b

a

) µab
b−a
(

1

µ
+ t−

(
D − b+

1

µ
− g(D − b)

)
e−µ(D−b−t)

)

−

{
1 + µe−µ(D−b−t)

(
g(D − b)−D + b− 1

µ

)}ωPκ+ βe−µ(D−t)
(
b

a

) µab
b−a


=µβte−µ(D−t)

(
b

a

) µab
b−a

− ωPκ

(
1 + µe−µ(D−b−t)

(
g(D − b)−D + b− 1

µ

))
.

(4.40)

derivative of l(t), we have

dl(t)

dt
=µβe−µ(D−t)

(
b

a

) µab
b−a

+ µ2βte−µ(D−t)
(
b

a

) µab
b−a

− ωPκµ2e−µ(D−b−t)
(
g(D − b)−D + b− 1

µ

)
=µ

{
µβte−µ(D−t)

(
b

a

) µab
b−a

− ωPκµe−µ(D−b−t)

×
(
g(D − b)−D + b− 1

µ

)
− ωPκ

}
+ µωPκ+ µβe−µ(D−t)

(
b

a

) µab
b−a

=µl(t) + µωPκ+ µβe−µ(D−t)
(
b

a

) µab
b−a

> µl(t).

Thus, if there is a t‡ ∈ [0, D − b) satisfying l(t‡) ≥ 0, then we have
dl(t)

dt
> 0 for

t ∈ [t‡, D − b), and subsequently we have l(t) > 0 for t ∈ (t‡, D − b).

When (D− b) ≤ t ≤ (D− a), from (4.36), (4.37), (4.23), and (4.25), we have

dP{N(t) = C}
dt

=
dh(t)

dt
= µFS(D − t)h(t),

dE
[
TN(t)

]
dt

=
dg(t)

dt
= µFS(D − t)

(
g(t)− t

)
.
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Then from (4.13), we have

l(t) =µβFS(D − t)h(t)g(t)

− µFS(D − t)
(
g(t)− t

) (
ωPκ+ βh(t)

)
=µFS(D − t)

(
t
(
ωPκ+ βh(t)

)
− g(t)ωPκ

)
=ωPκµFS(D − t)

(
t− g(t) +

βh(t)t

ωPκ

)
=ωPκµFS(D − t)p(t), (4.41)

where p(t)
4
= t−g(t)+ β

ωPκ
h(t)t. From (4.41), it can be seen that l(t) is continuous

in t ∈ [D − b,D − a].

When t ∈ [D − b,D − a], according to (4.25), we have

t− g(t) =
− dg(t)

dt
µFS(D − t)

.

Then, we have

p(t) =
− dg(t)

dt
µFS(D − t)

+
β

ωPκ
h(t)t

=

dh(t)

dt

(
a− 1

µ
+ µb

b−a

(
a
e

) µab
b−a
∫ D−t
a

(z − a)z−
µab
b−a e

µbz
b−a dz

)
µFS(D − t)

−
h(t)

(
µb
b−a

(
a
e

) µab
b−a (D − t− a)(D − t)−

µab
b−a e

µb(D−t)
b−a

)
µFS(D − t)

+
β

ωPκ
h(t)t

= h(t)q(t), (4.42)

where the second equality is from (4.26), the last equality is from (4.23) and (4.1),
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and q(t) is defined as

q(t) =a− 1

µ
+

µb

b− a

(
a

e

) µab
b−a
∫ D−t

a

(z − a)z−
µab
b−a e

µbz
b−a dz

−
(
a

e

) µab
b−a

(D − t)1− µab
b−a e

µb(D−t)
b−a +

βt

ωPκ
.

Taking the first-order derivative of q(t), we have

dq(t)

dt
=− µb

b− a

(
a

e

) µab
b−a

(D− t− a)(D − t)−
µab
b−a e

µb(D−t)
b−a

+

(
1− µab

b− a

)(
a

e

) µab
b−a

(D − t)−
µab
b−a e

µb(D−t)
b−a

+
µb

b− a

(
a

e

) µab
b−a

(D − t)1− µab
b−a e

µb(D−t)
b−a +

β

ωPκ

=

(
a

e

) µab
b−a

(D − t)−
µab
b−a e

µb(D−t)
b−a +

β

ωPκ
> 0.

As shown in Appendix 4.6.3, h(t) > 0 and
dh(t)

dt
> 0 in t ∈ [D − b,D − a).

So if there is a t‡ ∈ [D − b,D − a) such that l(t‡) ≥ 0, then from (4.41) we

have p(t‡) ≥ 0, and further from (4.42) we have q(t‡) ≥ 0. Together with the

fact that
dq(t)

dt
> 0, h(t) > 0,

dh(t)

dt
> 0 for t ∈ [D − b,D − a), we have that

p(t) = h(t)q(t) is strictly increasing and always positive for t ∈ (t‡, D− a). Since

FS(D− t) > 0 for t ∈ [D−b,D−a), from (4.41) it can be concluded that l(t) > 0

for t ∈ (t‡, D − a).

Since l(t) is continuous in the intervals of [0, D − b) and [D − b,D − a], and

lim
t<D−b, t→(D−b)

l(t)

= µβ(D − b)e−µb
(
b

a

) µab
b−a

+ ωPκµ
(
D − b− g(D − b)

)
= ωPκµ

(
D − b− g(D − b) +

βh(D − b)(D − b)
ωPκ

)
= lim

t>D−b, t→(D−b)
l(t)
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(in which the first equality is from (4.40), the second equality is from (4.24), and

the last equality is from (4.41) and FS(b) = 1), it can be concluded that l(t) is

continuous in [0, D − a].

From (4.40), we have

l(0)=−ωPκ

(
1 + µe−µ(D−b)

(
g(D − b)−D + b− 1

µ

))
.

According to the definition of g(t) in Appendix 4.6.2,

g(D − b) = E
[
Tnr+1|Tnr+1 ≥ D − b

]
≥ D − b+ 1/µ,

which means l(0) < 0. From (4.41), it can be seen that l(D − a) = 0 due to the

fact that FS(a) = 0.
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Chapter 5

I2I Traffic Scheduling with a
Multi-Step Soft Delay Bound

In Chapter 4, we consider a soft delay bound. If the total delay is less than

the delay bound, no cost is charged for delay. On the other hand, if we try

to encourage sooner delivery, we may charge some cost if the total delay is less

than but close to the delay bound. Thus, now we extend the delay cost function

used in Chapter 4 to be a multi-step function. In addition, now we consider

that the vehicle speeds can follow any distribution. Table 5.1 compares existing

data traffic forwarding methods in VANETs, the methods used in Chapter 3 and

Chapter 4 and the methods proposed in this chapter. The major contributions

of this chapter are summarized as follows. 1) Based on the multi-step soft delay

bound model, we formulate an optimal stopping problem. To solve the formulated

optimal stopping problem, we decompose the original problem into a sequence of

sub-OSPs. 2) We obtain an threshold based optimal stopping rule for each sub-

OSP. 3) We obtain an optimal stopping problem for the original optimal stopping

problem by combining the optimal stopping rules for the sequence of sub-OSPs.

Table 5.2 summarizes those notations used in this chapter but not in Chapter 4.

Work Research Problem, Methodology, and Result
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Problem: Minimize energy consumption of an RSU that processes
requests from vehicles.

[54] Methodology: Optimization formulation and approximation.

Result: A scheduler based on vehicles’ locations and velocities.

Problem: Maximize the multi-hop packet delivery probability from
a source to a destination subject to an energy consumption con-
straint.

[55] Methodology: Continuous-time Markov framework.

Result: The threshold dynamic policy is optimal.

Problem: Maximize packet delivery probability in two-hop routing
subject to constraints on energy consumption and relay activation
rate, considering energy in information transmission and node dis-
covery.

[56] Methodology: Fluid approximation, optimal control theory.

Result: Optimal two-dimensional threshold policy in closed form
for transmission and activation.

Problem: Maximize message delivery probability in epidemic rout-
ing subject to total energy consumption constraint, considering en-
ergy in information transmission and node discovery.

[57] Methodology: Continuous-time Markov framework.

Result: Optimal beaconing control solution.

Problem: in RSU-to-vehicle communications, minimize RSU energy
consumption by using V2V forwarding.

[58] Methodology: Integer linear programming.

Result: Greedy scheduling algorithms with low complexity.

Problem: For I2I communications using vehicles as relays, minimize
the delay for delivering all packets in a finite-size file, or the average
packet delay for a file with infinite packets.
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[62] Methodology: Markov decision process.

Result: Optimal scheduling algorithms and a low-complexity sub-
optimal algorithm.

Problem: For I2I communications using vehicles as relays, minimize
the sum of queuing delay and transit delay.

[63] Methodology: Queuing analysis.

Result: Probabilistic scheduling scheme.

Problem: For I2I communications using vehicles as relays, minimize
the rate of weighted cost of energy consumption and queuing delay.

[64] Methodology: Traditional optimal stopping theory.

Result: Optimal pure-threshold strategy.

Problem: For I2I communications (with hard delay bound) using
vehicles as relays, minimize the rate of weighted cost of energy
consumption, queuing delay, and transit delay.

Chapter 3 Methodology: Traditional optimal stopping theory.

Result: Optimal strategy without threshold structure.

Problem: For I2I communications (with soft delay bound) using
vehicles as relays, minimize the rate of weighted cost of energy
consumption, queuing delay, and transit delay.

Chapter 4 Methodology: New method to solve an optimal stopping problem
with forced stop.

Result: Optimal strategy with conditional pure-threshold struc-
ture.

Problem: For I2I communications (with multi-step soft delay bound
and the speed of vehicles being any distribution) using vehicles as
relays, minimize the rate of weighted cost of energy consumption,
queuing delay, and transit delay.

Chapter 5 Methodology: New method to solve multi-sub optimal stopping
problems.
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Result: Optimal strategy with multi-thresholds structure.

Table 5.1: Comparison of Traffic Forwarding Methods in
VANETs

Symbol Meaning

B1, B2, . . . Costs of violating multi-step soft delay bounds

c(t) Multi-step delay cost function

fG(x) Probability density function of transit delay

FG(x) Cumulative distribution function of transit delay

Gn The transit delay of the nth vehicle

K1, K2, . . . Multi-step soft delay bounds

Q Stages of the multi-step delay cost function

N The set of candidate stopping rules for Problem (5.2)

N(λ) An optimal stopping rule for Problem (5.3)

N1(t, λ) 1-stage look-ahead stopping rule starting from time t

NQ The first vehicle arriving after (KQ − a)

Th1(λ), Th2(λ), . . . Optimal thresholds for the first sub-OSP,

the second sub-OSP, . . .

T1(λ), T2(λ), . . . Expected stopping time for the first sub-OSP,

the second sub-OSP, . . .

V (λ) Optimal objective function of Problem (5.3)

V (λ, t) Optimal objective function of Problem (5.3)

if starting observation from time t

Vn The speed of the nth vehicle

Y1(λ), Y2(λ), . . . Expected minimum costs for the first sub-OSP,

the second sub-OSP, . . .

Table 5.2: Used Notations in Chapter 5

The following sections are organized as follows. Section 5.1 gives the system

model and research problem. Section 5.2 gives an optimal rule for the research

problem, and multiple-threshold structure of the optimal rule is also proved.
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Section 5.3 evaluates our derived strategy. Section 5.4 concludes this chapter.

Appendix 5.5 includes proofs of the theorems in this chapter.

5.1 System model and problem formulation

There is a data stream of constant rate r arriving at the source RSU. The source

RSU wishes to send these data to the destination RSU with minimal expected

cost per bit. The distance between the source RSU and the destination RSU

is D meters. Upon the arrival of a vehicle, the source RSU decides whether it

should call for transmission. If the source RSU skips the current vehicle, it will

continue to buffer incoming traffic and wait for the next vehicle. If it chooses the

nth vehicle, whose arrival time is Tn, as the carrier of the accumulated data, then

the amount of transmitted data is rTn.

The total cost to transmit those data to the destination RSU includes the

cost of energy consumption and the delay penalty. The source RSU transmits

data at a constant rate of R with transmission power P . To start the process

of data transmission, there needs a handshake process between the source (des-

tination) RSU and the vehicle. Assume the transmission power of the overhead

is also P , and the duration of the process of handshake transmission is κ. Then

the cost of the total energy consumption for transmission of the data and the

overhead is ωP
(
Tnr/R + κ

)
, where ω (unit: unit of cost per Joule) is the cost

weight of energy consumption. In addition, it is desirable that large queueing

delays are avoided even in delay tolerant networks. When a vehicle arrives at

the destination, a penalty is charged depending on the total delay comprised of

the queueing delay and the transit delay. Similar to [65], the RSU is forced to

transmit its accumulated data to a vehicle when the total delay cannot be less

than a value KQ. We consider the following multi-step delay cost function in this
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chapter:

c(t) =

Q∑
i=1

Bi1[Ki≤t<Ki+1], (5.1)

where Q ≥ 2, 0 = B1 < B2 < · · · < BQ and 0 = K1 < K2 < · · · < KQ.

Let {Xn}, n ≥ 1 denote the waiting time for the nth vehicle after observing

the (n − 1)th vehicle. The arrival time of the nth vehicular is Tn =
∑n

i=1Xi.

The speed of the nth vehicle passing by the RSU is a random variable. We do

not need to assume a specific distribute of the speed random variable as in the

previous two chapters since the optimal stopping rule derived in this chapter

applies to any distribution. However, for convenience of explanation, we still

assume the sequence {V1, V2, . . . } is a sequence of i.i.d. uniformly distributed

random variables:

Vn ∈ [vmin, vmax],

where vmin is the minimum speed and vmax is the maximum speed. We assume

{Vn} to be an independent identically distributed sequence. The transit time of

the nth vehicle from the source to the destination is

Gn =
D

Vn
.

It follows that {Gn} is also an independent identically distributed sequence. The

probability density function and cumulative distribution function of Gn are:

fG(x) =

{
ab

x2(b−a)
if a ≤ x ≤ b

0 otherwise
FG(x) =


0 if x < a
b(x−a)
x(b−a)

if a ≤ x ≤ b

1 otherwise

,

where a = D
vmax

is the smallest transit time, and b = D
vmin

is the largest transit

time.
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Our objective is to derive one optimal stopping rule that minimizes the rate

of cost:

N∗ = arg inf
N∈N

ωPTNr/R + ωPκ+ c(TN +GN)

TN

= arg inf
N∈N

ωPκ+ c(TN +GN)

TN

= arg inf
N∈N

YN
TN

(5.2)

where YN = ωPκ+ c(TN +GN), N = {N : 1 ≤ N ≤ NQ} is the set of candidate

stopping rules and NQ = min{n : Tn ≥ KQ − a} is a random variable. The

random variable NQ denotes the first vehicle arriving after (KQ − a).

5.2 An optimal stopping rule

The following six subsections describe the steps to get an optimal stopping rule

for Problem (5.2).

5.2.1 Transformation of the original problem

Like the problems in the previous two chapters, we first transform the original

problem to the following problem:

N(λ) = arg inf
N∈N

E [YN − λTN ] (5.3)

V (λ) = inf
N∈N

E [YN − λTN ] = E
[
YN(λ) − λTN(λ)

]
. (5.4)

We use the backward induction to decompose this optimal stopping problem

(OSP) into a sequence of Q sub-OSPs. And the final optimal stopping rule

N(λ) for a specific λ is the composition of the Q optimal stopping rules for the

decomposed Q sub-OSPs. Then we update λ to find the λ∗ such that

V (λ∗) = 0. (5.5)

And N(λ∗) is one optimal stopping rule for the original problem (5.2).
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Theorem 13. V (λ) is decreasing and concave in λ ≥ 0.

Proof. See Appendix 5.5.1.

According to Theorem 13, we can use Newton’s method to find the root to

the equation V (λ) = 0, which converges quadratically.

5.2.2 Tn +Gn ≥ KQ

We first solve the OSP (5.3) for vehicles whose total delay is not less than KQ.

It can be proved the same way as in Chapter [Add ref link] that it is optimal to

skip those vehicles such that: Tn < KQ − a and Tn +GN ≥ KQ.

Recall that (KQ−a) is the forced-stop threshold, which means the first vehicle

arriving at or after (KQ−a) should be chosen as the vehicle to carry accumulated

data to the destination. Thus for all vehicles whose total delay is Tn +Gn ≥ KQ

we have the optimal stopping rule NQ = min{n : Tn ≥ KQ − a}:

1. If Tn < KQ − a, the RSU should not stop at this vehicle.

2. If Tn ≥ KQ − a, the RSU should stop at this vehicle.

This stopping rule is threshold based and we denote this threshold as

Th1(λ) = KQ − a. (5.6)

The expected cost and stopping time for this first sub-OSP are

Y1(λ) = E
[
YNQ(λ)

]
= ωPκ+BQ (5.7)

T1(λ) = E
[
TNQ(λ)

]
= KQ − a+ E

[
XNQ

]
= KQ − a+ 1/µ (5.8)

Denote the optimal value for the first transformed OSP as:

V (Th1(λ), λ) = Y1(λ)− λT1(λ).

V (t, λ) is the optimal value could be achieved if we start observation from time

t.
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With the optimal stopping rule for vehicles whose total delay is Tn+Gn ≥ KQ

determined, we continue to find the optimal stopping rule for vehicles whose total

delay is KQ−1 ≤ Tn +Gn < KQ.

5.2.3 KQ−1 ≤ Tn +Gn < KQ

In the preceding sub-OSP, the optimal stopping rule for those vehicles with total

delay Tn+Gn ≥ KQ is derived. In this sub-OSP, we can ignore those vehicles and

focus on those vehicles whose total delay are KQ−1 ≤ Tn+Gn < KQ Focusing here

means we only consider what decision to make when we observe those vehicles

whose delay are KQ−1 ≤ Tn+Gn < KQ and not those whose delays are Tn+Gn <

KQ−1.

We will prove later in this chapter that this sub-OSP is a monotone problem,

which means there exists a threshold Th2(λ) such that for those vehicles KQ−1 ≤

Tn +Gn < KQ:

1. If Tn ≥ Th2(λ), it is optimal to stop.

2. If Tn < Th2(λ), it is optimal to continue.

Before continuing, we have the following two facts:

• It is optimal to stop at those vehicles such that Tn ≥ Th2(λ) and Tn+Gn <

KQ−1 because:

ωPκ+B1 − λTn < ωPκ+B2 − λTn < · · · <

ωPκ+BQ−2 − λTn < ωPκ+BQ−1 − λTn ≤ V (Tn, λ).

and ωPκ+ BQ−1 − λTn ≤ V (Tn, λ) is from the optimality of this stopping

rule.

• Th2(λ) ≤ Th1(λ). This is obvious since Th1(λ) = KQ − a.
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Based on the above information, for all vehicles arriving after Th2(λ) we have

the optimal stopping rule:

1) If Th2(λ) ≤ Tn < Th1(λ) and Tn +Gn < KQ, it is optimal to stop;

2) If Th2(λ) ≤ Tn < Th1(λ) and Tn +Gn ≥ KQ, it is optimal to continue;

3) If Tn ≥ Th1(λ), use the optimal stopping rule for the previous sub-OSP.

Since this problem is a monotone problem, the optimal threshold is the root

t ∈ [0, Th1(λ)) to the following equation:

E
[
YN1(t,λ) − λTN1(t,λ)

]
− (ωPκ+BQ−1 − λt) = 0, (5.9)

where N1(t, λ) is the 1-stage look-ahead stopping rule starting from time t.

To compute E
[
YN1(t,λ) − λTN1(t,λ)

]
, we should use the optimal stopping rule

for vehicles arriving after Th1(λ). Consider that we are at some instant in time

after Th2(λ) but before Th1(λ), we will wait for vehicles such that Tn+Gn ≤ KQ−1

to stop at. If we wait past Th1(λ), then from this point, we should use the optimal

threshold rule for the first sub-OSP to decide whether to stop. This means for

this second sub-OSP, we only need to consider the set of stopping rules whose

decision after Th1(λ) is the same with the stopping rule for the first sub-OSP.

And we can treat the first vehicle arriving after Th1(λ) as the first vehicle of the

previous sub-OSP since the vehicle arrival process is a Poisson process and the
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exponential distribution is memoryless. Then, we have

E
[
YN1(t,λ)

]
=(1− α(Th1(λ)− t,K2 − t)) ∗ (ωPκ+B1)

+ (α(Th1(λ)− t,K2 − t)− α(Th1(λ)− t,K3 − t)) ∗ (ωPκ+B2)

+ (α(Th1(λ)− t,K3 − t)− α(Th1(λ)− t,K4 − t)) ∗ (ωPκ+B3)

+ . . .

+ (α(Th1(λ)− t,KQ−1 − t)− α(Th1(λ)− t,KQ − t)) ∗ (ωPκ+BQ−1)

+ α(Th1(λ)− t,KQ − t) ∗ Y1(λ)

E
[
TN1(t,λ)

]
=α(Th1(λ)− t,KQ − t) ∗ T1(λ) + β(Th1(λ)− t,KQ − t) + t

− α(Th1(λ)− t,KQ − t) ∗ (Th1(λ) + 1/µ),

where α and β are defined in the Appendix. α(x, y) is the probability if we start

observation from time t = 0, we cannot find a vehicle whose arrival time is Tn < x

and total delay is Tn +Gn < y. If there is not such a vehicle arrived before x, we

stop at the first vehicle arriving at or after x. β(x, y) is the expected stopping

time of the above stopping problem.

Here we explain the terms in the expression of E
[
YN1(t,λ)

]
. In the first term

(1− α(Th1(λ)− t,K2 − t)) ∗ (ωPκ+B1),

(1− α(Th1(λ)− t,K2 − t)) is the probability we observe a vehicle arriving after

t and before Th1(λ) and whose total delay is less than K2.

In the second term

(α(Th1(λ)− t,K2 − t)− α(Th1(λ)− t,K3 − t)) ∗ (ωPκ+B2),

(α(Th1(λ) − t,K2 − t) − α(Th1(λ) − t,K3 − t)) is the probability we observe
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a vehicle arriving after t and before Th1(λ) and whose total delay is between

K2 ≤ t+Gn < K3.

The last term α(Th1(λ)− t,KQ − t) ∗ Y1(λ) is the expected cost if we do not

observe a vehicle whose arrival time is after t and before Th1(λ), and whose total

delay is less than KQ, so that we use the optimal stopping rule for the previous

sub-OSP.

Here we explain the terms in the expression of E
[
TN1(t,λ)

]
. The term

β(Th1(λ)− t,KQ − t) + t

is the expected stopping time if we take into account of the definition of β(x, y).

However, recall that we are considering those optimal stopping rules such that

it makes the same decision as the optimal stopping rule for the previous sub-

OSP if we are observing those vehicle arriving after Th1(λ). Thus, we remove

α(Th1(λ)− t,KQ − t) ∗ (Th1(λ) + 1/µ) from β(Th1(λ)− t,KQ − t) + t and then

add the actual expected stopping time after Th1(λ) which is α(Th1(λ)− t,KQ−

t) ∗ T1(λ).

We can find the root for equation (5.9) numerically. And the root is the value

of Th2(λ). In the same way we can define:

Y2(λ) = E
[
YN1(t,λ)

]
|t=Th2(λ)

T2(λ) = E
[
TN1(t,λ)

]
|t=Th2(λ).

5.2.4 KQ−2 ≤ Tn +Gn < KQ−1

Now we find an optimal stopping rule for all vehicles whose total delay Tn+Gn ≥

KQ−1. We continue to solve the third sub-OSP. The third problem considers those

vehicles such that Tn < Th2(λ) and KQ−2 ≤ Tn + Gn < KQ−1. Again, we try to
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find the root to the following equation:

E
[
YN1(t,λ) − λTN1(t,λ)

]
− (ωPκ+BQ−2 − λt) = 0. (5.10)

To compute E
[
YN1(t,λ) − λTN1(t,λ)

]
, we should use the Y2(λ) and T2(λ) for vehicle

arriving after Th2(λ).

E
[
YN1(t,λ)

]
=(1− α(Th2(λ)− t,K2 − t)) ∗ (ωPκ+B1)

+ (α(Th2(λ)− t,K2 − t)− α(Th2(λ)− t,K3 − t)) ∗ (ωPκ+B2)

+ (α(Th2(λ)− t,K3 − t)− α(Th2(λ)− t,K4 − t)) ∗ (ωPκ+B3)

+ . . .

+ (α(Th2(λ)− t,KQ−2 − t)− α(Th2(λ)− t,KQ−1 − t)) ∗ (ωPκ+BQ−2)

+ α(Th2(λ)− t,KQ−1 − t) ∗ Y2(λ)

E
[
TN1(t,λ)

]
=α(Th2(λ)− t,KQ−1 − t) ∗ T2(λ) + β(Th2(λ)− t,KQ−1 − t) + t

− α(Th2(λ)− t,KQ−1 − t) ∗ (Th2(λ) + 1/µ)

We can find the root for equation (5.10) numerically. And the root is the value

of Th3(λ). Again, we define:

Y3(λ) = E
[
YN1(t,λ)

]
|t=Th3(λ)

T3(λ) = E
[
TN1(t,λ)

]
|t=Th3(λ).

Before giving the optimal stopping problem for this sub-OSP, we need to

show Th3(λ) ≤ Th2(λ). Suppose Th3(λ) > Th2(λ). Then for a vehicle arriving

between Th2(λ) ≤ Tn < Th3(λ), if KQ−2 ≤ Tn + Gn < KQ−1, then the optimal

stopping rule for the previous sub-OSP asks for stopping and the optimal stopping

rule for this sub-OSP asks for continuing. This is a contradiction.
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Then all vehicles arriving after or at Th3(λ) have the optimal stopping rule:

1) If Th3(λ) ≤ Tn < Th2(λ) and Tn +Gn < KQ−1, it is optimal to stop;

2) If Th3(λ) ≤ Tn < Th2(λ) and Tn +Gn ≥ KQ−1, it is optimal to continue;

3) If Tn ≥ Th2(λ), use the optimal stopping rule in previous sub-OSP.

5.2.5 Final composite optimal stopping rule

In the same way we can find all Q thresholds: Th1(λ) ≥ Th2(λ) ≥ · · · ≥ ThQ(λ).

The Q thresholds for a specific λ is the optimal stopping rules for the transformed

problem. We can use Newton’s method to find the λ∗. Denote the Q thresholds

for λ∗ as Th1(λ∗) ≥ Th2(λ∗) ≥ · · · ≥ ThQ(λ∗). This set of thresholds are the

optimal thresholds for the original problem. When a vehicle arrives, we use its

total delay to choose the threshold to use. For example, a vehicle arrives at time

Tn and its transit delay is Gn.

1. If Tn +Gn ≥ KQ, use the threshold Th1(λ∗) = KQ − a.

2. If Ki ≤ Tn +Gn < Ki+1, i ≤ Q− 1, then we use threshold ThQ+1−i(λ
∗) to

decide whether to stop. If Tn ≥ ThQ+1−i(λ
∗), then stop at this vehicle. Otherwise,

continue to wait for the next vehicle until forced stop.
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5.2.6 Proof of the monotone property of sub-OSP

In this section, we prove the monotone property of each sub-OSP. Suppose there

is a t∗ such that KQ−i ≤ t∗ +Gn < KQ−i+1:

0 =E
[
YN1(t∗,λ)

]
− λE

[
TN1(t∗,λ)

]
− (ωPκ+BQ−i − λt∗)

=− α(Thi(λ)− t∗, K2 − t∗) ∗ (ωPκ+B1)

+ (α(Thi(λ)− t∗, K2 − t∗)− α(Thi(λ)− t∗, K3 − t∗)) ∗ (ωPκ+B2)

+ . . .

+ (α(Thi(λ)− t∗, KQ−i − t∗)− α(Thi(λ)− t∗, KQ−i+1 − t∗)) ∗ (ωPκ+BQ−i)

+ α(Thi(λ)− t∗, KQ−i+1 − t∗) ∗ Yi+1(λ)

− λ ∗ (α(Thi(λ)− t∗, KQ−1 − t∗) ∗ Ti+1(λ) + β(Thi(λ)− t∗, KQ−1 − t∗)

+ α(Thi(λ)− t∗, KQ−1 − t∗) ∗ (Thi(λ) + 1/µ))− (BQ−i −B1)

Then we prove that for t ≥ t∗,

E
[
YN1(t,λ)

]
− λE

[
TN1(t,λ)

]
− (ωPκ+BQ−i − λt) ≥ 0.

Define m(t, λ) = E
[
YN1(t,λ)

]
− λE

[
TN1(t,λ)

]
− (ωPκ+ BQ−i − λt), and we are to

prove m(t, λ) ≥ 0 for t ≥ t∗. According to the definition γ(t, x, y) and η(t, x, y)

in the Appendix:

dγ(t, x, y)

dt
= µFG(y − t)γ(t, x, y)

dη(t, x, y)

dt
= µFG(y − t)

(
η(t, x, y)− t

)
.

we have:

dm(t, λ)

dt
= µFG(Thi(λ)− t)

(
m(t, λ) +BQ−i −B1 + λt

)
≥ 0.

Thus, m(t, λ) is a non-decreasing function for t ≥ t∗ when m(t∗) = 0.
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Figure 5.1: m(t, λ1) for K2 ≤ t+Gn < K3.

5.3 Performance evaluation

This section we simulate for the case when Q = 3. The parameters used are

mostly the same with the ones in the previous two chapters. In the simulation,

we set B1 = 0, B2 = 200, B3 = 1000, K1 = 0, K2 = 1800 and K3 = 3600. During

the iteration process of λ, it converges quickly to the optimal λ∗: The initial

value of λ is set to λ0 = 0.1089178581. The other λ’s are λ1 = 0.0550637979,

λ2 = 0.0456309952, λ3 = 0.0452523308, and λ4 = 0.0452516678. And λ∗ = λ4 is

the optimal value of rate of cost. The corresponding optimal thresholds for λ∗

are Th1 = 3550, Th2 = 1993.12 and Th3 = 736.58.

For a specific λ = λ1 = 0.0456309952, the optimal thresholds are Th1 = 3550,

Th2 = 2071.83 and Th3 = 821.42. The graphs ofm(t, λ1) are Fig. 5.1 and Fig. 5.2.

It is evident from these two figures that the monotone property is satisfied.
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Figure 5.2: m(t, λ1) for K1 ≤ t+Gn < K2.

Fig. 5.3 is the rate of cost for all possible combinations of Th3 ≤ Th2 for

λ∗ = 0.0452516678. Using brute force search, the minimum rate of cost is found

at the point (Th2 = 1993.12, Th3 = 736.58) which matches exactly with the

theoretical results.

Fig. 5.4 and Fig. 5.5 show the optimal thresholds and minimal rate of cost,

respectively, when µ (vehicle arrival rate) changes. Higher µ results in larger

thresholds and smaller rate of cost. This is intuitive as higher µ means more

choices of vehicles to select.

5.4 Conclusion

In this chapter, we consider multi-step soft delay bound. Accordingly, the optimal

strategy has a multi-threshold structure. When a vehicle arrives at the source
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Figure 5.3: The rate of cost for all possible combinations of Th2 and Th3.
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Figure 5.4: The optimal thresholds for different µ.
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Figure 5.5: The minimal rate of cost for different µ.

RSU, after comparing the vehicle arriving time with one threshold, an optimal

decision (continue or stop) can be made.

5.5 Appendix

5.5.1 Proof of Theorem 13

Similar to the proof of Theorem 10, here V (λ) is decreasing with λ.

Let 0 < ζ < 1, λ1 > λ2 > 0, and λ = ζλ1 + (1− ζ)λ2. Then

V (λ) =E
[
YN(λ)

]
− [ζλ1 + (1− ζ)λ2]E

[
TN(λ)

]
=ζ
(
E
[
YN(λ)

]
− λ1E

[
TN(λ)

])
+ (1− ζ)

(
E
[
YN(λ)

]
− λ2E

[
TN(λ)

])
≥ζV (λ1) + (1− ζ)V (λ2),

so V (λ) is concave in λ > 0.
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5.5.2 Derivation of α(x, y)

We consider an optimal stopping problem starting from time 0 with two param-

eters x ≥ 0 and y ≥ 0, and the stopping rules are:

Nα = min{min{n : Tn +Gn < y}, Cα}, (5.11)

where Cα = min{n : Tn ≥ x}. The stopping rule (5.11) means that when the

RSU has observed the first vehicle such that Tn < x and Tn + Gn < y, it stops

to transmit. If there is no vehicle satisfying Tn +Gn < y for n < Cα, the RSU is

forced to transmit using the Cαth vehicle.

We define a function

α(x, y) = P (Nα = Cα) , (5.12)

which is the probability that the RSU transmits using the Cαth vehicle.

If x = 0, then Cα = 1. Thus, α(x, y) = 1. In the following we assume x > 0.

We first consider the case a+ x ≤ y ≤ b and define

γ(t, x, y) = P(N(t) = Cα) 0 ≤ t ≤ x,

where N(t) = min{min{n : Tn ≥ t, Tn + Gn < y}, Cα}. The stopping rule

N(t) means that the RSU stops at the first car that arrived after time t and

Tn + Gn < y. If for all n < Cα, either Tn < t or Tn + Gn ≥ y, then the RSU is

forced to stop at Cα. When t = x,

N(x) = min{min{n : Tn ≥ x, Tn +Gn < y}, Cα} = Cα.

In accordance with the above description, we have the following initial condition

for γ(t):

γ(x, x, y) = P(N(x) = Cα) = 1. (5.13)
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Notice that γ(t, x, y) is the probability that the RSU starts observing the

arrival process from time t, and is forced to transmit using the Cαth vehicle. Now,

suppose t < x and the RSU starts observation from time t + ∆t, where ∆t > 0

is sufficiently small such that t + ∆t < x. Since the arrival process is a Poisson

process, the probability that a vehicle arrived during the interval (t, t+∆t) is µ∆t,

the probability that no vehicle arrived 1 − µ∆t, and the probability that more

than one vehicle arrived o(∆t), where lim∆t↓0 o(∆t)/∆t = 0. If there is no vehicle

arrived during the interval (t, t + ∆t), then the RSU has to wait cars arriving

after time t + ∆t for the chance of transmission. Hence, the probabilities that

the RSU is forced to transmit using Cαth car when it starts observing from time

t and t + ∆t respectively, are the same. On the other hand, if there is a vehicle

arrived during the interval (t, t + ∆t), and that vehicle satisfies Tn + Gn < y,

then the RSU transmits using that vehicle. Under this situation, there is no need

for the RSU to restart the observation from time t+ ∆t. Moreover, if there is a

vehicle arrived during the interval (t, t + ∆t), but the total delay of the vehicle

Tn + Gn ≥ y, then RSU shall continue to wait for the next car that comes after

t + ∆t. Thus, under this scenario, the probabilities that the RSU is forced to

transmit when it starts observing from time t and t + ∆t respectively, are the

same. With the above description, we establish the following equation:

γ(t, x, y) =(1− µ∆t)γ(t+ ∆t, x, y)

+ µ∆t[1− FG(y − t+ ∆t′)]γ(t+ ∆t, x, y) + o(∆t),

where 0 ≤ ∆t′ ≤ ∆t. Note that t + ∆t′ is the arrival instant of the first vehicle

after t. After some algebraic operations, we have

γ(t+ ∆t, , x, y)− γ(t, x, y)

∆t
= µFG(y − t+ ∆t′)γ(t+ ∆t, x, y) +

o(∆t)

∆t
.
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Letting ∆t approach zero from above, we have

dγ(t, x, y)

dt
= µFG(y − t)γ(t, x, y).

Using the initial condition γ(x, x, y) = 1, for 0 ≤ t ≤ x, we obtain

γ(t, x, y) = eµ
∫ t
x FG(y−v) dv. (5.14)

Since Nα = N(0),

α(x, y) = γ(0, x, y) a+ x ≤ y ≤ b. (5.15)

When a < y ≤ b and y ≤ x+ a, α(x, y) = α(y − a, y).

When y ≤ a, α(x, y) = 1.

When y > b and a ≤ y − x < b, α(x, y) = e−µ(y−b)α(x− y + b, b).

When y > b and y − x ≥ b, α(x, y) = e−µx.

When y > b and y − x < a, α(x, y) = e−µ(y−b)α(b− a, b).

When the distribution of FG(y) is the uniform distribution, we have

γ(t, x, y) = eµ
∫ t
x FG(y−v) dv =

(
y − t
y − x

) µab
b−a

e
µb(t−x)
b−a

α(x, y) = γ(0, x, y) =

(
y

y − x

) µab
b−a

e−
µbx
b−a a+ x ≤ y ≤ b.

5.5.3 Derivation of β(x, y)

We still consider the optimal stopping rule (5.11) in Appendix 5.5.2, but focus

on another property of the stopping rule, i.e.

β(x, y) = E [TNα ], (5.16)

which is the expected stopping time of the stopping rule Nα. For x = 0, it

is readily to know that β(0, y) = 1/µ for y ≥ 0. So we assume x > 0 in the

following.
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Define

η(t, x, y) = E
[
TN(t)

]
0 ≤ t ≤ x,

which is the expected stopping time if the RSU starts observation from time t.

We have the following boundary condition for η(t, x, y):

η(x, x, y) = E
[
TN(x)

]
= E [TCα ] = x+

1

µ
.

We first assume a + x ≤ y ≤ b. Similar to the derivation of γ(t, x, y), for

η(t, x, y) we have

η(t, x, y) =(1−∆tµ)η(t+ ∆t, x, y) + ∆tµFG(y − t−∆t′)(t+ ∆t′)

+ ∆tµ(1− FG(y − t−∆t′))η(t+ ∆t, x, y)

=∆tµFG(y − t−∆t′)(t+ ∆t′)

+
(
1−∆tµFG(y − t−∆t′)

)
η(t+ ∆t, x, y) + o(∆t),

where 0 ≤ ∆t′ ≤ ∆t. After some algebraic operations, we have

dη(t, x, y)

dt
= µFG(y − t)

(
η(t, x, y)− t

)
. (5.17)

With boundary condition η(x, x, y) = x+ 1
µ
, we obtain

η(t, x, y) = γ(t, x, y)
(
x+ 1/µ− φ(x, t)

)
, (5.18)

where γ(t, x, y) is defined in Equation (5.14), and

φ(l, u) =

∫ u

l

zFG(y − z)γ(z, x, y) dz.

Since Nα = N(0), then

β(x, y) = η(0) = α(x, y)(x+ 1/µ− φ(x, 0)). (5.19)

When a < y ≤ b and y ≤ x+ a, β(x, y) = β(y − a, y) + α(y − a, y)(x− (y − a)).
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When y ≤ a, β(x, y) = 1/µ.

When y > b and a ≤ y − x < b,

β(x, y) =

∫ y−b

0

vµe−µv dv + e−µ(y−b)β(x− y + b, b)

=
1

µ
+ e−µ(y−b)

(
β(x− (y − b), b)− (y − b)− 1

µ

)
.

When y > b and y − x ≥ b, β(x, y) = 1/µ.

When y > b and y − x < a,

β(x, y) =

∫ y−b

0

vµe−µv dv

+ e−µ(y−b) (β(b− a, b) + α(b− a, b)(x− (y − a))
)

=
1

µ
+ e−µ(y−b) (β(b− a, b)

+α(b− a, b)(x− (y − a))− (y − b)− 1

µ

)
.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this research, we have investigated how to make efficient data dissemination in

IoT via vehicles. We have studied scheduling delay-tolerant data from a battery

or solar powered RSU to the Internet by considering both the queueing delay

and the transmit delay of the collected data, and the energy consumption. We

aim to achieve the efficient data transmission from the RSU to the Internet by

minimizing the total costs including the delay cost and the energy cost. The data

transmission efficiency is measured by the rate of cost, i.e. the average of cost

per unit time at the RSU.

Chapter 3 studies the case when the delay bound is a hard delay bound. If

a bit cannot reach the destination RSU by the predefined deadline, this bit is

discarded at the source RSU and a delay penalty is charged for this bit. The

above problem has been formulated as a traditional optimal stopping problem.

By deriving the optimal rules for the cases when the waiting time is above and

below a specific value, we find an overall optimal stopping rule.

Chapter 4 considers the case when the delay bound is a soft delay bound.

If the data buffered at the source RSU cannot reach the destination RSU by
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a predefined deadline, those data still get carried to the destination RSU but a

delay penalty is charged. The problem cannot be solved using traditional optimal

stopping methods. To solve this problem, we iteratively eliminate a set of non-

optimal stopping rules and obtain a sequence of optimal stopping problems. And

we prove that this sequence of optimal stopping problems will converge and the

optimal stopping rule for the converged optimal stopping problem is an optimal

stopping rule for the original problem.

Chapter 5 focuses on the case when the delay bound is a multi-step soft delay

bound. This chapter is a more general form of the problem discussed in Chapter 4.

Also, the probability distribution of the vehicle arrival process has been extended

to any distribution instead of the uniform distribution assumed by the previous

two chapters. A sequence of optimal stopping problems are solved to get the final

composite optimal stopping rules for the original problem. The derived optimal

stopping rule has a multi-thresholds structure and is easy to implement.

6.2 Further extensions and future research

In this thesis, it is assumed that all vehicles passing by the source RSU will

also pass by the destination RSU. Actually our research can be extended to the

case when some arrival vehicles do not pass by the destination RSU. Recall that

vehicle arrivals at the source RSU follow a Poisson process with rate 1/µ (µ is

the average inter-arrival time). Let β denote the percentage of the passing-by

vehicles at the source RSU that will also pass by the destination RSU. Then

the problem is equivalent to the case that vehicles arrive with rate β(1/µ) (i.e.,

average inter-arrival time is µ/β) and all vehicles will pass by the destination

RSU.

We also assume there is only one destination RSU. However, our research can
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be extended to the case when the source RSU can send its traffic to any of several

destination RSUs (that have backbone connection). As an example, consider

a source RSU that has two paths, with destination RSU #1 and destination

RSU #2, respectively. The transit delay of the two paths have CDF FG1(g)

and FG2(g), respectively. For the vehicles arriving at the source RSU, denote

α and 1 − α as the percentage of vehicles passing by destination RSU #1 and

#2, respectively. Then, the problem is equivalent to the case that only a single

destination RSU exists and the transit delay of vehicles has the following effective

CDF: FG(g) = αFG1(g) + (1− α)FG2(g).

From the above discussion it can be seen that if a vehicle does not pass by

any destination RSU, then the source RSU (called source RSU #1) cannot ask

the vehicle to help. However, if the vehicle will pass by another source RSU

(called source RSU #2 that does not have backbone connection either) closer to

a destination RSU, then it may be beneficial for source RSU #1 to forward its

traffic to the vehicle, expecting that the vehicle will deliver the traffic to source

RSU #2 and source RSU #2 will ask its passing-by vehicles to help deliver the

traffic to a destination RSU. Further, a vehicle, who carries the traffic of a source

RSU, may pass the traffic to another vehicle later, if it takes the latter vehicle less

time to arrive at an RSU with backbone network connection. The cooperative

traffic delivery will be considered as a future research topic.

In this thesis, we use optimal stopping theory to deal with infrastructure-to-

infrastructure traffic forwarding. Actually optimal stopping theory might also

be a powerful mathematical tool to investigate decision making in vehicle-to-

vehicle information sharing, traffic forwarding, and communications, which could

be another future research topic.
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