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Abstract

Recently, researchers investigating control architectures for autonomous mobile robots
have taken a new approach called behaviour-based control, v _-h has resulted in
producing robots with simple insect-like intelligence. All efforts to date have
concentrated on designing single autonomous robots situated and embodied in the real
world. Given that man is not about to invent a highly intelligent autonomous robot
tomorrow, we conjecture that useful tasks can be accomplished with today's simple
behaviour-based control mechanisms provided multiple robots are organized into
collections of task achieving populations. This thesis takes the first steps toward
developing a control theory and model for populations of behaviour-based autonomous
robots capable of achieving collective tasks without centralized coordination or the use
of explicit communication. Specifically, our model is bascd on several examples of
collective behaviour taken from the siudy of Social Insects. We have tested our
collective control strategies by designing a robot population simulator calied
SimbotCiry. We have also constructed a system of five homogeneous sensor-based
physical robots, capable of achieving simple collective tasks, to demonstrate the

feasibility of the proposed theory and model.
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Chapter 1

Intelligent Behaviour

1.1 Introduction

Can intelligent behaviour-based mobile robots achieve tasks collectively? What
constitutes intelligent behaviour? When discussing intelligent behaviour is it necessary
to put it in the coniext of human intelligence, animal inteiligence, insect intelligence or
machine intelligence? Are social insects, which function collectively in groups,
intelligent? When viewed as a superorganism, can the collective intelligence of social
insects be considered to be greater than the sum of the simple individuals that comprise
the group? Can this collective behaviour be simulated on a computer? Better stll, can
we build useful machines that demonstrate collective behaviour? This chapter attempts
to explore these questions and propose solutions whose exploration will concern us
throughout the remainder of this thesis.

We begin with the next two sections contrasting the difference between Machine

and Robotic Intelligence. Next, we examine a natural example of collective behaviour,



the social insects, and conjecture whether a new level of intelligence is possible. We
call this new intelligence Collective Robotic Intelligen~e and propose our method for its
investigation. Section 1.5 outlines our research goals and objectives and section 1.6

provides an overview of the remainder of the thesis.

1.2 Machine Intelligence

What constitutes intelligent behaviour? Answering this question would depend on the
context in which you define intelligence. Are we referring to human, animal, insect or
machine intelligence? If we view intelligence as the ability to perceive logical
relationships and use one's xnowledge to solve problems and respond appropriately to
novel situations, then its meaning changes for each case mentioned. Webster (1988)
defines behaviour as "the way in which something reacts to its environment.” We
believe the intelligent behaviour of an agent should be judged solely on the externally
observed interaction between the agent and the environment and without regard to its
internal mechanisms. Behaviour that we might consider intelligent for an insect is not
considered intelligent for a human. Why is that?

Part of the reason may be due to the fact that there is an enormous set of
unarticulated background assumptions when we discuss anything that is context
sensitive. Our experience has already set our expectations when we discuss the
biologically based intelligence. We view human intcliigence as being greater than
animal intelligence, which is greater than insect intelligence. When discussing
intelligence, it is therefore necessary to specify the type of intelligence, thereby

implicitly defining the background assumptions and appropriately setting our

expectations.

tJ



The majority of the formal discipline of Artificial Intelligence has, for the past thirty
years. concentrated on the deliberative reasoning cf human intelligence. It is believed
that the same process by which we deliberately reason through, is hypothesized to
underlie human intelligent behaviour (Beer, 1990). Traditional Artificial Intelligence
has approached the problem of building artificially intelligent systems using the
representation and reasoning hypothesis. In this approach, a suitable symbolic
repr. sentation is used to capture in a given domain knowledge (Goebel, 1988). The
given task to be performed must then be expressible as the manipulation of this
symbolic representation. A computer program then carries out the required
manipulations in such a way as to perform the desired task (Beer, 1990).

Beer (1990) summarizes the traditional AI methodology as follows:

(1) most intelligent behavior can be modeled on the exempl:-: of
conscious deliberation; (2) deliberative human reasoning is essentiaily a
species of computation over symbolic representations of the world; (3)
insights gained from modeling the performance of particular aspects of
intelligence in restricted domains will eventually be synthesized into an
understanding of generally intelligent behavior in unconstrained

interactcn with the real world.

Traditional AI has constructed many successful systems which function well in
restricted domains of discourse. Typically these systems function exclusively on their
own internal representations and for the most part are not temporally constrained when
searching their solution spaces. In other words, these systems are not typically real-
time systems with time dependant constraints. Search and knowledge are the

predominant tools used to solve a given problem with the solutions symbolically



represented in a given solution space. It is these traditional Al systems that have, what

we will refer to as, Machine Intelligence.

1.3 Recbotic Intelligence

In an effort to bring these machines intc contact with the real world, researchers
connected sensors and actuators that would enable their machines to obtain their own
input data and to affect the world through their actuators. Brooks (1991) calls this
framework, the sense-model-plan-cct framework, or SMPA for short. Several
examples of these mobile robots exist, dating from the late sixties: SHAKEY (Nilsson,
1984) at SRI, the CART (Moravec, 1981) at Stanford and Hilare (Giralt, Chatila and

Vaisset, 1984) in Toulouse.

About 1984, a number of people took a different approach to organizing
intelligence. Instead of simplifying the world in which their robots lived, zs was the
case with the SMPA maciiines, robcis were allowed to interact with a highly complex
and dynamic environment. This required thc robots to be reactive to their environment
and operate on time scales similar to those of animals and humans (Brooks, 1991).
Agre and Chapman (1987, 1990) claimed that internal symbolic representations were
not necessary and could be replaced with simple rules of interaction between an agent
and its world. Brooks pioneered much of this work, now termed behaviour-based
robotics, at MIT by constructing c:.aplete robots which operated in dynamic
environments using real sensors. Based on this work, it seems possible for a coherent
intelligence to emerge from subcomponents interacting in the world without the benefit

of explicit iniernal world models (Brooks, 1986, 1990).



The physical grounding of these systems in the real world and the inherent temporal
constraints placed on the robots by the dynamic and unpredictable environment,
coupled with physical sensors to provide a representation of the world classify these
machines with, what we will refer to as, Robotic Intelligence.

Brooks (1991) characterizes a number of key aspects of this style of Robotic
Intelligence:

Situaredness. The robots are situated in the world-—they do not deal
with abstract descriptions, but with the here and now of the world
directly influencing the behavior of the system.

Embodiment. The robots have bodies and experience the world
directly—their actions are part of a dynamic with the world and have
immediate feedback on their own sensations.

Intelligence. They are observed to be intelligent—but the source of
intelligence is not limited to just the computational engine. It also comes
from the situation in the world, the signal wransformations within the
sensors, and the physical coupling of the robot with the world.
Emergence. The intelligence of the system emerges from the system's
interactions between its components—it is sometimes hard to point to
one event or place within the system and say that is why some external

action was manifested.

Criticism by its very nature is a destructive act. There is often a cloud of
controversy that surrounds behavior-based robotics. The notion of what is important in
intelligent systems seems to get lost in the arguments over the need for representation.
“The theme common to all this work is that the appropriate patterns of behaviour

emerge from the dynamic interaction between an intelligent agent and its environment.



The ability of its internal control mechanisms to somehow mirror the structure of its
external environment is irrelevant " (Beer, 1990, p. 14).

Traditional Artificial Intelligence has tried to tackle the probiem of building
artificially intelligent systems from the top down. Intelligence has been approached
through the notions of rthoughr and reason. Behaviour-based robotics has taken a
bottom up approach building systems (e.g., mobile robots), situated in the world,
carrying out autonomous tasks (Brooks, 1991). If the latter approach should prove
successful then we may expect systems with insect level intelligence to appear first on
the path towards human level intelligence. Current systems using this approach show a
close similarity to achieving an insect level intelligence (Beer, 1990; Brooks, 1990;
Anderson and Donath, 1990). The practical question then becomes: What can we do
with them today?

Given that man is not atiout to create a highly intelligent autonomous robot
tomorrow can we make use of these simple intelligent robots we have toaay? By
organizing collections of simple buhaviour-based autonomous robots into groups, can

useful tasks be accomplished by the collective efforts of these simple machines?

1.4 Achieving Tasks Collectively

Life provides us with countless examples of collective task achieving societies. Bees,
Ants and Termites all function collectively in groups, efficiently accomplishing tasks
with, seemingly simple, insect intelligence. Researchers have begun to speculate on
useful tasks being carried out through collaboration rather than individual effort (sce
Dario et al., 1991; Yuta and Premvuti, 1991). Steels (1990), inspired by the behaviour

of ant colonies, has created a simuiation of cooperative behaviour among a group of



rock collecting robots. By organizing collections of simple autonomous robots into
task achieving groups, it may be possible to reach a new level of robotic intelligence,
which is greater than the sum of the simple individuals that comprise the group. We
term this new level of intelligence: Collective Robotic Intelligence .

In order to build such Collective Robotic systems we will need to develop a control
model suitable for controlling populations of task-achieving, behaviour-based, mobile
robots. How then should we go about designing the required control systems?

Proposing a Theory. It would seem natural to study one of the examples of
existing collective behaviour, namely the social insects. Social insects are a group of
arthropods (crusty bugs) studied by entomologists (bug guys). Social insects live in
societies and exhibit collective behaviours in maintaining their societies (Wilson, 1971).
By studying the proposed theories that attempt to explain the collective behaviour of
social insects, we ay hope to develop our own control theories and mechanisms that
guide us in achieving a collective robotic intelligence.

Our approach to controlling groups of multiple robots is to Invoke = common group
behaviour. We propose five methods by which this group behaviour may be invoked.
The first makes use of a common task and a simple coeperation strategy of non-
interference. The second method uses a follow behaviour that keeps the group
together. The third method involves environmental cues to invoke the same behaviour
in each robot. The fourth method allows the robet to invoke its group behaviour once it
senses it is within a group. The fifth method invokes groun behaviour through
autostimulation, a type of broadcast communication.

Testing the Theory. The next step in developing collective robotic intelligence is 10
test our proposed control theories for collective behaviour. This can be accomplished

by simulating the proposed system on a computer. Simulation allows one to test the



feasibility of a given control mechanism. We have tested the first two control methods
in simulaton. However, given the importance of sifuiatedness in this style of work and
that we ultimately will build these robots, it is very important to simulate only that
which we can build. To do otherwise would leave us open to the simplifications so
often criticized of simulation work.

Collective behaviour implies 4 certain cooperative effort is involved in achieving the
given task. Therefore, tasks selected for simulation are such that they can not be
accomplished by an individual robot, but rather require the collective effert of many
individuals. For example, a box cannot be pushed by a single robot either because the
box is too heavy or it revolves around its axis. Therefore, in order to push the box
some n number of robots will be required where n > 1. Simulaion allows us to test
the control theories in principle, however, the real test takes place in the physical world.

Implementing the Theory. In order to really test ideas of collective robotic
intelligence it is important to build complete agents which operate in dynamic
environments using real sensors (Brooks, 1990). There has been very little published
in the area of cooperation among multiple robots; all of the work to date has been
simulation only (see Yuta and Premvut, 1991 for an example). Working with situated
and embodied robots will allow us to observe the dynamic interactions with the
environment and other robots. The uncertainties of sensor data and the accumulated
errors of such things as wheel slippage can only be ascertained by direct interaction
with the real world.

Ir order to test our first method of control we have designed and built five physical
robots. The robots are each equipped with two photovoltaic goal sensors, two infrared
robot-avoidance sensors and one stagnation sensor used to provide positive

achievement feedback. The robots form a homogeneous group of task achieving



autonomous agents capable of coliectively moving a box otherwise unmovable by a
single robot. They accomplish this task without any explicit communication between
the robots. All communication is implicit and in the form of the passive sensing and
avoidance of other robots. The experiment demonstrates the feasibility of constructing

a simple homogeneous group of reflexive robots to achieve a task collectively.

1.5 Research Goals and Objectives

The methodology outlined above immediately raises a number of questions. Of all the
social insects, which should be studied? Is enough known abou he collective
behaviours of social insects to proceed? If so, what are the predominant theories
explaining collective behaviour? In choosing a control architecture for the individual
robots, which of the many current approaches should be taken? Is one control
architecture more suited for collective behaviour? Or is it necessary to design our own?
What sort of simulation tools are required to test and debug these control architectures?
In simulation to what level of detail should the robot's sensors and aciuators be
modeled? How many degrees of freedom of mobility should the robots possess? Whai
types of collective tasks should be simulated? What are the appropriate benchmarks for
assessing success or failure? What type of physical sensors will we have to equip our
robots with? Is communication among the robots necessary in order to accomplish
their task? If so, is that communication explicit or implicit? Most of these questions
can only be answered by empirical investigation, by actually building the system and
seeing what happens. Like the classical methodology, collective robotic intelligence
must ultimately be judged by whether or not it produces models which are successful in

illuminating the mechanisms of intelligent behaviour.



The remainder of this thesis describes an experiment in collective robotic
intelligence. A robot population simulator called SimbotCity is developed in which any
number of robots can be created. The robots are capable of demonstrating several
behaviours including wandering, following other robots, herding and goal sceking.
Collectively the robots are capable of performing a simple cooperative task designed to
demonstrate the feasibility of the approach. The simulated task is then taken into the
real world, in which five physical robots have been built. The robots are capable of
achieving the same cooperative task as shown in the simulation, namely locating and
collectively pushing a large box in their environment. In addition, the robots are
capable of switching appropriately between its various behaviours as externally sensed
conditions change. The robots are also capable of modifying their course of action 1f
progress is not being made towards the collective task at hand. The methods of
achieving coliective behaviour have been tased in part upon the behaviour exhibited by
the social inscots.

This work is intended to be an initial exploration into the uncharted world of
collective intelligence. As such, its primary goal is to examine the feasibility of the
approach outlined above, and to explore some of the initial models for collective
behaviour. The work has proven to be formidable, but the experiences of building
robots which operate in the real world has been a fruitful endeavor. The robots have
shown how a goal oriented behaviour can be couple with reflexive behaviours to
achieve an overall collective task with relatively simple combinational circuits. The next

secton discusses the outline of the remainder of the thesis.

10



1.6 Thesis Outline

“Wis Jhesis represents onc of the first known efforts to explore the collective intelligence
af a group of situated and embodied mobile robots whose goal is to cooperatively
achieve a given task. The remainder of this section provides a brief description of the
contents of each chapter.

In this chapter, the foundations of the approach advocated in this thesis are
described. We define, what we refer to as, Robotic Intelligence, as opposed to the
Machine Intelligence of th: more traditional Artificial Intelligence research effort. We
make this distinction to Jdistinguish between Situated and Non-Situated Intelligence.
The key characteristics < Robotic Intelligence are outlined with emphasis on the
physical grouading of thesz systems in the real world. The notion of Collective
Robotic Inteiligence is defined and we argue that a control mechanism necessary to
achieve collective behaviour may be obtained through the careful study of the social
insects. Finally, we provide an overview of the five physical robots we have
constructed and the practical knowledge gained from cbserving them achieve a simple

collective task.

Chapter 2 reviews the behaviour-based approach to constructing mobile robots.
We examine the elements of different control architectures as viewed from their
development approach; behavioural control methodologies; behaviour arbitration
mechanisms; and communication strategies among individual behaviours. This
background is important in order to understand the individuals that comprise the
superorganism exhibiting the collective intelligence.

Chapter 3 examines several examples of collective behaviour based on the study of
a group of anthropods known as social insects. We primarily concentrate on ants and

bees as they represent the most widely researched and understood groups. Social

11



insects have a rich array of sensing capabilities used to invoke twehaviour and we
examine the many mechanisms involved in producing collective behsviour.

Chapter 4 presents a control theory " model for robot populations based on the

observations made in the previous or. We outline a number of specific

observations made from the examples of collective behaviour and speculatc how this
knowledge may be used in designing our own robot populations. We presest our

model for group control and outline the steps in designing robots to be used in

collective tasks.

In Chapter 5, we present our robot population simulator, SimborCity, and describe
its architecture and facilities for testing multiple robots. The physical models used for
an individual robot are described as well as the behaviours used to implement collective
behaviour. The chapter demonstrates that achieving a collective task is possible by a
group of homogeneous behaviour-based autonomous robots without explicit
communication among the robots. Finally, a brief overview of related simulation work
is discussed

Chapter 6 discusses the implementation of the five physical robots we have
constructed. The chjectives in building robots is presented along with the collective task
we have chosen to demonstrate. The architecture for an individual robot is presented
along with a description of the robot's available sensors and actuators. The collective
task is presented and a discussion of the resulting demonstrations follows. Finally, the
results are compared with the stated objectives and suggestions for other collective
tasks are made.

Chapter 7 summarizes the research presented «n:' discusses future research along

with proposed methods of implementing group behaviour.



Chapter 2

Behaviour-Based Robotics

2.1 Imntroduction

Unitil recently, the field of Artificial Intelligence (Al) has been guided by one unifying
idea: the essence of intelligence relied on the symbolic representation of knowledge and
reasoning involved the manipulation of this symbolic representation (Chandrasekaran,
1990). This chapter explores another idea called the behaviour-based approach in
which there is no, or only partial, representations of the world.

We begin by contrasting the functional approach of traditional Al with that of the
behaviour-based approa~h. Next, we review the behaviour-based approach by dividing
the area into three distinct architectures, Non-Reprcsentational, Reactive and
Distributed Behavioural, in sections 2.3, 2.4 and 2.5, respectively. Finally, we

provide a summary of the behaviour-based approach.
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2.2 Functional Versus Behavioural Architectures

The majority of the work in Al has followed the Turing dream of capturing intelligence
as a disembodied represeatational system, which we refer to as machine intelligence.
Researchers interested in creating a robot that interacts with the real world have made
the assumption that such a robot would also possess machine intelligence. These
robots would contain sensors at one end and actuators a+ the other end. Their

controllers were referred to as functional based controllers and were based on machine

intelligence (Chandrasekaran, 1990).

A functional based controller is a functional decomposition resulting in modules
each of which performs one stage in a processing pipeline (Figure 1.). Sensor data 1s
fed into the left end of the pipeline with the first module designed to do sensor
processing. This data is then used as input to a module designed to produce a central
world model. A planner module uses this world model to produce a plan which is

passed on to an execution module which ultimately controls the actuators or effectors.

This architecture is illustrated in the following diagram.

. Sensor World b Planni Plan -
Sensors Processing 1 Modelling anning B ecution [~ Effectors

Figure 1: Functional based controller with modules wired in series.

This approach is very sensitive to failures in any one of the modules; like the old

serially wired Christmas lights, malfunction of any one bulb causes the whole string to

g0 out.
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A behaviour-based controller is organized into task achieving behaviours. In this
approach the controller is divided into modules, one for each type of behaviour to be
exhibited by the system. Examples of such behaviours are seek-light, avoid-darkness
or avoid-obstacles. In this approach sensors are inputs to all modules, or behaviours,
and all modules output to the effectors. This architecture is illustrated in the following

diagram

Seek Goal e

Avoid
Collisions

Pickup Nag
Object

e
' v v v

L OH AT T

Locate -§
Object

Figure 2: Behaviour based controller with modules wired in parallel.

This control architecture is more robust and less sensitive to failures in any of the
modules. This robustness is due to the parallel manner in which the modules are
wired. Failure of a behaviour will result in a diminished, but a still functioning, robot.
Like today's parallel wired Christmas lights, failure of any bulb still keeps the string lit.

Behaviour-based control can be broadly divided into three approaches: First, there
is the non-representational or connectionist approach. Proponents of this approach
argue that intelligent action does not require or use explicit representations and their
processing, and behaviour can be achieved by reflexive actions. Braitenberg (1984),

Beer (1990), Beer et al. (1990a), Travers (1988), Coderre (1988), and Sekiguchi et al.



(1989) are examples of this approach. The second is a reactive approach in which
perception-directed reacrive actons are used as a way of responding to a complex
environment without complex planning. Responses are indexed directy over the
situation description, rather than resulting from complex problem solving using abstract
world models. Sensors constantly monitor the changes in the world and additional
reactive steps are taken where appropriate. The work of Agre and Chapman (1987,
1990), Kaelbling (1987), Kaelbling and Rosenschein (1990) and Anderson and Donath
(1988a, 1988b, 1990) are examples -“ this approach. The third approach is a
combination of the first two with the addition that action generation may not be
performed centrally at all. In this approach reactiveness of responses is combined with
distribution of action-generation. Brooks (1986, 1990), Payton (1986, 1990a), Payton
et al. (1990) and Arkin (1987, 1990) are examples of this approach. In the next section

we examine the non-representational approach.

2.3 Non-Representational Architectures

This section looks at the non-representational or connectionist approach (also referred
to as reflexive) to behavioural robot control. This approach produces reflexive
behaviours. In section 2.3.1 we define reflexive behavia:r, and examine several
examples of this approach. In section 2.3.2 we consider the work of Valentino
Braitenberg and his series of robots known as vehicles. In section 2.3.3 we consider
Michae! Travers' work on Animal Construction Kits, an idea inspired by Braitenberg's
vehicles. In section 2.3.4 we look at Bill Coderre's Perworld, in which the behaviour
of "pets" is controllcd by hierarchical experts inspired by Minsky's Society of Mind

Theory (Minsky, 1985). In section 2.3.5 we consider the work of Rundal Beer and his
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urtificial insect inspired by a close study of the neural circuit of a simple insect. In
section 2.3.6 we examine the connectionist approach of Sekiguchi et al. in which
behaviours are generated by a trained neural network. Finally, we conclude with a
discussion in section 2.3.7 about the sufficiency of reflexive behaviour alone to define

complex task achieving behaviour.

2.3.1 Reflexive Behaviour

Researchers using non-representational approaches argue that much of intelligent action
does not require or use explicit representations and their processing. "Connectonism
i:as been erbraced warmly by many philosophers on the grounds that it provides such
a non-representational account of cognition” (Chandrasekaran, 1990). This approach
produces very reflexive behaviour. Anderson defines reflexive behaviour as "the
response of the robot at time ¢+ is completely determined by a specific set of stimuli at
time ¢ and is independent of other unrelated external/internal events" (Andercon &
Donath, 1988a). Reflexive behaviour differs from reactive behaviour. Reflexive
behaviour has nc memory and 5 a fixed relationship between the stimulus and its
response. Reactive behaviour, on the other hand, has memory and as a result produces
behaviour in which the stimulus/response relationship is not necessarily fixed but may
also depend upon other external/internal environmental factors, unrelated to the
stimulus. In the next section we consider the reflexive behaviour of Braitenberg's

Vehicies.

2.3.2 Vehicles
Braitenberg proposes a series of 14 robots known as vehicles (Braitenberg, 1984).

The 14 vehicles represent a series of hypothetical, autonomous robots that exhibit
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increasinglv sophisticated simple behaviour such as seek-light and avoid-obstacles.
Each of the robots in the series incorporates the essential features of its predecessors
with some incremental improvement in behavioural complexity. Of the 14 vehicles, the
first six represent a completely reflexive approach to robot control.

The simplest vehicles are created using a stimulus/response paradigm and four
connection types: excitory (+) or inhibitory (-) connections, and crossed or uncrossed
connections, where crossed refers to connecting a sensor to the motor on the opposite

side. The result is the creaton of four vehicles illustrated below.

Figure 3: Braitenberg's vehicles. Sensors are connected to motors with either crossed
or uncrossed, excitory or inhibitory connections. Vehicle 3b orients toward the source,

3a away from it. Vehicle 3¢ and 3d with inhibitory influence of the sensors on the
motors.
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All vehicles in figure 3 have simple behaviours as a result of these connections. In
vehicle 3a each sensor is connected uncrossed to a wheel motor causing the vehicle to
turn away from a source. For example, the right sensor activates the right wheel motor
causing the vehicle to turn towards the left. In vehicle 3b the sensors are cross
connected causing the sensor to activate the wheel motor on the opposite side; this
causes the vehicle to move towards a source. Vehicles 3a and 3b both DISLIKE
sources. Vehicle 3a tends to avoid them by escaping to a place where the source is
hardly felt. Braitenberg calls vehicle 2: a COWARD. Vehicle 3b is also excited by the
presence of sources, but turns towards them and hits them with high velocity, as if it
wanted to destroy them. Vehicle 3b is therefore AGGRESSIVE (Braitenberg,
1984).Vehicles 3c and 3d have a inhibitory connection between the sensors and the
motors. This will allow the vehicles to slow down in the presence of a strong stimulus
and speed up when the sdmulus is weak. Vehicle 3¢ is said to LOVE the source and
will come to rest in the presence of the source. Braitenberg describes vehicle 3d asan
EXPLORER since it too likes the source but will come to rest pointing away from it
ready to leave as soon as another weak source is detected. Vehicles 7 - 14 acquired a
sense of memory, allowing them tc behave differently given different environmental

considerations, and become increasingly reactive.

2.3.3 Animal Construction Kits

Travers creates an animal construction kit which allows the user to assemble active
artificial animals from prefabricated components (Travers, 1988). Inspired by
Brairenberg's proposal, Travers has constructed a simulation environment which
allowed point-like robots to interact with food and obstacles. Travers designed two

systems: the first, Brain Works uses a neural model of computation. The second
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system, Agar, uses agent-based computation inspired by Minsky's Society of Mind
Theory (Minsky, 1985).

Brain Works allows the user to construct a reflexive nervous system for a simple
animal. The animal is equipped with several sensors and motors for movement. The
sensors include eyes and touch bumpers which respond respectively to food and to
obstacles in the animal's world (Travers, 1988). The animal’s basic task is to catch
food while avoiding being blocked by a wall or obstacle. Travers extended Brain
Works by allowing evolved animals. Survival and reproduction of these evolved
animals were based on maintaining an energy reserve by finding and eating prey. An
energy reserve was depleted by movement and the passage of time, and increased by
eating prey. This extension evolved the system from reflexive to reactive behaviour by
replacing the neural behaviour model with a matrix that defines a function from the

vector of sense inputs to the vector of motor outputs.

2.3.4 Modeling Behaviour in Petworld

Coderre has created a simulation environment called Perworld for modelling aspects of
animal behaviour. Unlike Brain Works, behaviour in Petworld is modeled as a rigid
hierarchy of simple agents that make recommendations to their superiors (Coderre,
1988). These recommendations are in the form of rankings of alternatives. Conflicting
behaviours are resolved by agents either choosing, compromising or displacing.

A pet's control system is a hierarchy of modules called experts. Each expert makes
recommendations by providing an output consisting of a ranking—a list of possible
actions with numeric weights attached—telling how good those actions are in the
opinion of the expert (Coderre, 1988). The pet executes the highest ranking action

recommended by the topmost expert. This approach is very similar to the connectionist



approach of assigning weights to the inputs of neurons during training. In the pet
control architecture a partial orJcr is assigned to each expert's behaviour. For example,
finding food and interacting are most important, followed by nest building, exploring
and homing into the nest. To resolve conflicting behaviours say between foraging and
combat, a compromise is made, dependert on how serious the danger of starvation or
attack is (Coderre, 1988). This behaviour could then be classified as reactve by the
previous definition since the behaviour exhibited by the pet will depend on both internal

(starvation) and external (attack) events.

2.3.5 An Artificial Insect With Adaptive Behaviour

Randal Beer has created an artificial insect capable of demonstrating simple adaptive
behaviour (Beer, 1990). This has been achieved through the careful study and
simulation of the biological mechanisms underlying the autonomous behaviour of
simpler natural animals (Beer et al., 1990a). They call their approach Computational
Neuroethology, since Ethology is the study of the behaviour of animals in their natural
environments (Lorenz, 1981), and Neuroethology is the study of the neural
mechanisms underlying this behaviour (Cambhi, 1984).

The behaviour of the simulated insect is controlled by an artificial nervous system
and is based in part on specific neural circuits in several natural animals. Model
neurons are interconnected by weighted synapses through which they can inject current
into one another (Beer et al., 1990a). In this respect Beer's model is similar to several
neural models that have previously explored in the field of artificial neural networks
(for an example see Hopfield, 1984). Behaviour arbitration is handled by an explicit

ordering of the behaviours. Beer's artificial insect's behavioural repertoire will increase
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as the field of Neuroethology makes new discoveries on the mechanisms that control

behaviour.

2.3.6 Behavioural Control Using Neural Networks

Sekiguchi et al. (1989) have constructed a physical robot whose behaviour 1s governed
by patterns in sensor data detecied by a trained neural network. A total of twelve
sensors are used for detecting both internal and external changes in the environment.
This data is then fed to a hierarchical network which has been previously trained. Both
the input vector from the sensors and cutput vector to the motors are boolean (0 or 1).
Short term memory provides a hysterisis effect on the input sensor data. This aliows
the robot to continue executing a behaviour pattern once the stimulus is removed.

Training is accomplished through back propagation of the error term from the output

layer to the input layer.

2.3.7 Discussion

It can be argued that connectionism is as representational as the classical symbol
manipulation systems, the main difference coming from the type of representation
(Chandrasekaran, 1989). The advantages of the simple reflexive behaviours, exhibited
in Braitenberg's vehicles 1 - 6, and Travers unevolved animals, is the simplicity of
control architecture used to create the behaviors. However, it can be seen, in
Braitenberg's later vehicles, Travers evolved animals, Coderre's Pets and Sekiguchi's
robot that more complex behaviours require the introduction of some internal model
achieved through the introduction of memory. This is implemented in Braitenberg's
vehicle 7 by using special wire called Mnemotrix, and in Travers' animals by replacing

neurons with a matrix memory. It is also present in Coderre's pets in the form of
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experts providing ranked output actions and Sekiguchi's short term memory. In each
of these systems we witness an evolution of increasingly complex behaviour that
begins as purely reflexive behaviour and evolves toward reactive behaviour. The above
examples seem to suggest that reactive behaviour and memory are required for a richer
expression of robot behaviour. This is also the question asked by Anderson and

Donath (1988a):

The issues with which we are concemed are fundamental; can autonomy
result from simple reflexive stimulus/response forms of behavior in
which there exists a rigid relationship between a specific stimulus and

exhibited response, or is reactive behavior required?

In a simulation experiment on locagon directed open space wandering performed by
Anderson and Donath (1988a) a combination of four refiexive behaviours with no
arbitration mechanism or memory for the behaviours produced a cyclical behaviour due
to the lack of internal state within each behaviour.

We have also experienced this cyclical behaviour in experiments with our reflexive
robot Herbie. Herbie has three binary light sensors, two forward looking and one
vertical looking, and one each left and right wheel motors. Endowed with two simple
reflexive behaviours, seek-light and avoid-darkness, we have observed the robot to
enter a cyclic behaviour pattern, of forward - reverse motion, when entering a dark

region at slow speeds shown in figure 4.
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Figure 4: Herbie - the photovore is a reflexive light seeking, dark avoiding robot.
Note the cyclic behaviour as the robot enters and then backs out of the darkness.
Without memory, this behaviour is repeated continuously.

This experiment verified to us the same conclusion reached in the simulation by
Anderson and Donath (1988a), that an autonomous system requires reactivity and

memory. This approach to behaviour based control is examined in the next section.

2.4 Reactive Architectures

This section examines the reactive approach to behavioural mobile robot control. In
section 2.4.1 we will define reactive behaviour and provide an overview of the
approach. Next we consider three examples of this method of autonomous mobile
robot control. In section 2.4.2 we examine the work of Agre and Chapman (1987,
1990} in their implementation of Pengi, a program which controls the behaviour of a
simple penguin embedded within a commercial video arcade game known as Pengo. In
section 2.4.3 we consider the work of Kaelbling (1987) aad Kzeibling and

Rosenschein (1990) and their architecture for reactive systems. In section 2.4.4 we



examine the work by Anderson and Donath (1988b, 1990) in constructing reactive
behaviours from a collection of reflexive behaviours. Finally, we conclude with a
discussion in section 2.4.5 on the merits of reactive behavioural control for an

autonomous mobile robot.

2.4.1 Overview of Reactive Behaviour

Reactive behaviour has been previously described as behaviour in which the
stimulus/response relationship may depend on the occurrence of specific events. For
example, presenting your hungry pet with food may invoke a strong response if some
time has passed since its last feeding, however, once satiated the same food stimulus is
unlikely to invoke the same response because the pet's internal state has changed. The
primary difference between reflexive and reactive behaviour is memory; reactive
behaviour has a temporal ordering which affects the stimulus/response relationship
whereas reflexive behaviour is without memory and therefore, has a fixed
stimulus/response relationship. In the next section we consider just such a reactive

approach.

2.4.2 Pengi: An Implementation of a Theory of Activity
Agre and Chapman began to question the supposition that action derives from the
execution of plans within the framework of problem solving and reasoning with
representations. They believed that activity could be derived from simple machinery
interacting with the immediate situation (Agre & Chapman, 1987).

To test their theory, they built a program called Pengi which controlled the
behaviour of a simple penguin embedded within a commercial video arcade game

known as Pengo. In Pengo bees chase penguin's and if caught the penguin dies.
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Penguins and bees live in a two dimensional maze consisting of walls made of slideable
ice blocks. Penguins can kill bees, and likewise bees kill penguins, by kicking an ice
block into a bee or penguin.

As an example of how activity results without planning, but instead relies on
constant evaluation of the immediate situation, consider the implementation of their
situation-action like reactive rules. Imagine the situation of a penguin being chased by a
bee along a corridor. The penguins behaviour is the result of two simple rules, or
reflexes: (R1) when you are being chased, run away; (R2) if you run into a wall, kick
through it. They argue that the penguin's behaviour is not governed by any
preconceived idea of what will happen, but rather as a result of the current situiation
(i.e., bees chasing penguin). This allows the behaviour to be opportunistic, and

nerefore robust under uncertainty. The simple nature of the reflexive behaviour of R1
and R2 allows for real-time reactive activity. Behavioural arbitration is handled by a
hierarchical behaviour selection mechanism. In the next section we consider an

alternative reactive architecture.

2.4.3 An Architecture For Intelligent Reactive Systems

Kaelbling takes a top down approach to behaviour construction. The desired behaviour
of the robot is specified by constructing a program in terms of a top level goal and a set
of goal reduction rules which leads to the goal. The proposed architecture is divided
into two components: perception and acticn. The perception component is horizontally
subdivided into several layers of abstraction with uninterpreted sensor readings
available at the lowest level and world models available at the highest level. The action

component is also horizontally subdivided into a set of behaviours. The action
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component receives input from the perception component and outputs commands to

both the sensors and effectors as illustrated in figure 5 from Kaelbling (1987):

Sensor and Effector Commands I
Perception ._wﬂ_.v Actdon

Model

Focus of Attention

Figure 5: Kaelbling's Top Level Decomposition.

This allows for an action directed perception and is unique among many other
systems. The system is reactive through the use of an incremental planner that
immediately notices changes in the environment before the completion of the plan and
adjusts by starting a new plan with the given situation in mind.

The robot's control architecture is a hierarchical decomposition of behaviours.
Arbitration amongst conflicting behaviours is handled by procedures called mediators.
In the next section we examine a method of assembling simple reflexive behaviours into

a system that provides reactive control.

2.4.4 Organizing Reflexive Behaviours for Reactive .oitrol

Anderson and Donath were interested in investigating the requirements for autonomy.
They began by looking at behavioural patterns that were purely reflexive (Anderson &
Donath, 1988a). They came to the conclusion that while it was possible to construct
autonomous behaviour in terms of a set of fixed primitive reflexive behaviours, the
degree of autonomy achievable may be limited (Anderson & Donath, 1988b). They
also concluded the limitations of reflexive behaviour were due to the lack of memory of

previous events.



Their approach to creating reactive behaviours was bottom up. Lower level
behavicurs were constructed from individual reflex behaviours. High level behaviours
were constructed using the previously defined lower level behaviours as components
and devices called a goal detector. These goal detectors acted as boolcan event
detectors with inputs from sensors. Thus these higher level behaviours act as
arbitrators of the component behaviours and events in the environment. The net
resulting behaviour of the mobile robot is reactive; the set of behaviours active at any
point in time is a function of its location in the environment (Anderson & Donath,

1988b). In the next section we discuss the advantages and disadvantages of the

reactive approach

2.4.5 Discussion

Situatedness (reactive behaviour that results from an agent responding to a given
sitnation) behaviour, of the type exhibited in Pengi, provides a fast response demanded
by real-time environments but lacks a goal-directed component thought to be a
requirement for intelligent autonomous systems. Like Simon's Ant (Simon, 1970),
seemingly intelligent behaviour is more a result of the complexity of the environment
than the complexity of the intelligent agent. That is not to say that this approach does
not merit further study. On the contrary, we believe that the study of intelligent robotic
behaviour should begin bottom up with an understanding of the simpler forms of
intelligence. Goal directedness belongs to the higher levels of intelligent behaviour that

result from willful motivation and will undoubtedly be required in an intelligent

autonomous mobile robot.

A common question found in all the behaviour based approaches is how to provide

arbitration amongst the competing behaviours. The weakness in Agre and Chapman's



approach revolves around their behaviour arbitration mechanism. The designer must
understand the dynamics of the penguin’s environment and hardcode the arbitraton
mechanism into the rules of action. This does not provide a general method for
behaviour arbitration.

In Kaelbling's approach behaviour arbitration is handled by mediators who receive
input from behaviours and sensor data and decide which behavioral pattern to follow.
This is very similar to Anderson and Donath's approach with higher level behaviours
accepiing inputs from lower level behaviours and event detectors which monitor the
environment. The difference being Kaelbling takes a top down approach by specifying
a desired behaviour for the robot and using goal reduction rules which lead to the goal.
This allows tileir action agent to model any tvpe of conditional or heuristic strategy in
which a fixed relationship between the agents inputs and outputs. Anderson and
Donath, on the other hand, use a bottom up approach by defining new behaviours in
terms of previously defined behaviours. The use of abstraction in this approach is
more powerful and keeps the details of 2 particular behaviour hidden. This allows for a
complete decoupling of tt e behaviours and separates the mechanism for controlling the
behaviours from the behavior's impiementation details. This approach allows for an
explicit representation of complex forms of behaviour through the use of abstraction.
The problems with Andercsin and Donath's approach lie in the reflexive behaviour
components method of response. Each primitive reflexive behaviour transforms a set
of stimuli into a response. The response of each behaviour is expressed in the form of
a potential field (Anderson and Donath, 1988b). The potential field method suffers
+s>m local minima in the net potential field which results from combining the potential
iields of two conflicting behaviours. The robot will then appear "stuck"; a problem

referred to as "stagnation”. This could be resolved through the use of 2 behaviour



which monitors the robot's progress and envokes an alternative strategy when the

currently active behaviour is found to have _.agnated.

Any intelligent autonomous mobile robot operating in a changing dynamic
environment will have to be reactive in orde. to operate in real-iime. The open question
for such a system is how to combine and provide a method with which to arbitrate the
behaviours. In the next section we examine the third approach to behaviour-based

control of a mobiie robot in which action generation may not be performed centrally at

all.

2.5 Distributed Action Generaticn

This section examines the third approach to behavicur-based contro! for an autonomous
mobile robot. This method combines some aspects of the first two methods with the
distribution of action generation. The central theme for this section will consider the
distribution of action generation. Some approaches do not make use of internal
representations (Brooks, 1986) and some do (Arkin, 1987; Payton, 1986). We begin
in section 2.5.1 with an overview of the approach. In section 2.5.2 we consider the
work of Brooks and his method without representation. In section 2.5.3 we examine
Arkin's approach to combining reactive response with the more classical Al planning
systems. In section 2.5.4 we look at the work of Payton, both his earlier work with
reactive systems and his newer approach which incorporates a connectionist model for
behaviour selection (Payton, 1990). Finally, we conclude with a discussion in section

2.5.5 on the merits of the above three methods.
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2.5.1 Overview Distributed Action Generation

Methods of distributed action generation usuaily feature concurrent asynchronous
decision making processes or behaviours. Centralized systems responsible for world
models usually must engage in computationally expensive sensor fusion. The
distributed approach allows for real-time reaction necessary in constantly changing
environments. In all approaches some mechanism must be provided to combine the
outputs of multiple behaviours. We consider the first of these approaches in the next

section.

2.5.2 The Subsumption Architectur

Brooks proposed a new architecture for controlling a mobile robot called the
subsumption architecture (Brooks, 1986). The controller is built as a series of layers
each designed to exhibit increasing levels of competence. Each layer is composed of a
task achieving behaviour. The controller is built incrementally with new layers being
added on top of previous layers. The new layer leaves most of the previous layer's
behaviour intact but can take control or "subsume"” some aspect of the previous
behaviour. In this fashion the robot begins with a working controller. As new layers
are added, on existing debugged behaviours, the robot improves in competence. The
control of the robot is accomplished without any internal representation of the world.
Each layer of task achieving behaviour is composed of several modules which are
finite state machines with a set of inputs and outputs. Modules can communicate by
sending messages along their output line. Since there is no handshaking, message
delivery is not guaranteed. All modules can read any of the robot's sensors and can

theoretically manipulate the robot's effectors; although, generally only the lowest layer

behaviour controls the effectors directly
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Higher level behaviours control lower level behaviours through suppress and
inhibir links. Messages sent on an inhibit link stop all messages on the target link for a
fixed period of dme. Messages sent on a suppress link replace the messages on the
target link.

Behaviour arbitration is handled by a fixed priority scheme just as in Kaelbling's
arbitrator mechanism. Later work by Cudhea and Brooks (1986) extended this
architecture to provide a different mechanism for resolving conflict between
behaviours. This was implemented as difference engines designed to reduce the
difference between the actual world state and the desired state. To combine different
behaviours a simple timeout mechanism is used to control the transition between
behaviours. Jon Connell provides several enhancements to Brooks' approach
(Connell, 1990). Based on the subsumption architecture Connell's approach differs
from that of Brooks in the manner in which the control system is layered. In Brooks'
approach layers define a total order on the behaviours of the robot, while Connell
defines a tree-like partial order. Connell also allows the priority to vary among the
layers. Other differences include less state and more modularity. In the next section

we consider an approach of combining reactive distributed control with the more

classical AT planning approach.

2.5.3 Motor Schema Based Control

Purely reactive systems are incapable of formulating and following longer-term goals
because they are always immediately reacting to the world. This has led a number of
researchers to propose various schemes that integrate reactive responses with more

classical Al planning techniques which reason about explicit internal models of the

domain (Beer, 1990).
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Arkin has proposed one such method called schemas. A schema can be viewed as a
generic specification of a computing agent. Motor-schemas correspond to a primitive
behaviour that can be combined with other motor schemas to yield a more complex
behaviour (Arkin, 1987). For each motor schema activated, perceptual schemas are
created to detect events. If such an event occurss, a new motor scherna is instantiated as
a concurrent process. Schemas communicate through a blackboard ensuring a high
degree of concurrency. Arkin's motivation for the use of schemas comes from

neuroscientific, psychological, and robotic sources (Arkin, 1990).

*nstantiated motor schemas drive the robot to interact with its environment. At the
highest level they are used to satisfy a goal created by the planning system. At the
lowest level they provide primitives to the robot. The motor schema based control
system is discussed within Arkin's Autonomous Robot Architecture (AuRA). AuRA
has a hierarchical planner consisting of a Mission Planner, a Navigator, 2 Pilot ard
Motor Schema Manager. The Pilot is responsible for implementing a path developed
by the Navigator. To do so, the pilot chooses from the available sensing mechanisms
and motor schemas. These are passed on to the Schema Manager for instantiation.
Distributed cor. occurs within the Manager. Schemas are instantiated with
parameters, so two generic schemas can have two different instantiations. Arbitraton
a.uongst behaviours is handled through the use of potential fields. Thus, motor
schernas produce a field (vector) which is summed along with other motor schemas
vector outputs. As previously mentioned the potential field method has problems with
local minima. To over come this Arkin introduces a background noise schema which
produces a low-magnitude random direction velocity vector sufficient to change the

robot's position if it becomes stuck at one of these Iocal minima. In the next section
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we examine another multi-behaviour approach which later introduces a novel link to the

first connectionist approach previously discussed.

2.5.4 Pian Guided Reaction

Payton (1986) describes a multi-behaviour approach for reflexive control of an
autonomous robot. Virtual sensors (similar t. event detectors) were used to recognize
features in the environment and send this data to reflexive behaviours which in turn sent
motor commands to a blackboard. A control module, using priority arbitration, selecis
one message and sends it to the motor actuators. This is similar to Arkin's schema
based approach. But no mechanism existed to combine concurrent behaviours. This
system led to very tight coupling between sensing and action. The overall system was
hierarchical instead of layered but the lowest level of control was very similar to
Brooks' subsumption architecture (Payion et al., 1990). At the lowest level an action
was determined by cutput of multiple concurrent, independent behaviours. This
distributed approach allowed them to avoid the computationally expensive task of
generating a centralized world model. This allowed for a quick reactive responsc

instead of having to deal with the delays imposed by sensor fusion. They termed this

command fusion.

Although the above approach led to many successes they gained most from a close
examination of how it failed. The main result was their discovery of the problems
abstraction caused by limiting access to critical information. This discovery led to the
proposal of a new architecture designed to overcome this limitation (Payton, 1990).

The new architecture eliminated abstraction wherever possible. In order to
eliminate the communication problem between behaviours they made behaviours as fine

grain as possible by eliminating internal states and instance variables. These simple



decision-making units and their interconnection collectively define a behaviour. This
allowed them to move away from a priority-based arbitration mechanism to a
distributed one in which arbitration is carried out by the fine-grained connectionist
architecture. Behaviours can then explicitly indicate their bias in regards to the available
choices. The weighted output from a behaviour is used as one input to a multi-input
command unit. The command unit then selects the behaviour with the greatest weight.
Additional behaviours could be added and would influence the decision-making by

inputing their preferences to the command units (Payton , 1990).

2.5.5 Discussion

The Brooks' approach combines the non-representational approach with the reactive
approach and provides a non centralized action generation. However, it lacks
modularity as one behaviour is not protected from the details of others. Connell
proposes a solution by keeping modules completely independent (Connell, 1990).
Hartley proposes a solution by introducing a new abstraction called a control
connection (Hartley, 1991). Each control is associated with an arbirrator whose job is
to select behaviours based on a priority list.

Brooks method also forces a fixed priority on the behaviours thus lower level
behaviours can not control (subsume) higher level behaviours. Sometimes a low level
should be able to override a higher level, consider what happens when you touch
something hot. The spinal cord takes over eliminating the danger while the higher level
inputs are ignored (Hartley, 1991). However, this response could be implemented as

an emergency behaviour which takes control of the low level in these situations.



Lack of modularity also causes a problem if lower levels are changed. Since higher
levels are dependent on the inner workings of lower levels, changes cause large
redesigns of the controller.

Arkin's method differs from that of Brooks in that there is no layering in schemas,
instead it is a collection of networked autonomous agents changing as the perception of

the robot changes. The method uses potential fields and can suffer from local minirna.

Paytor '~ previcus approach was non-connectionist and they attribute the success of
their current connectionist fine-grained approach to the elimination of abstraction. We
don't feel this is quite correct in the sense that it is not the elimination of abstraction that
is important but rather the elimination of internal state within the individual behaviours.
Abstraction is a powertul tool in constructing behaviours. Payton's command units are
equivalent to Kaelbling's arbitrators or; Cudhea and Brooks' difference-engines ; or

Anderson and Donath's higher level behaviours and eveni-detectors.

2.6 Summary

In this chapter we have surveyed a cross section of the behaviour-based mobile robot
control systems. We have presented the work in the three broad categories of Non-
Representational or Reflexive Architectures, Reactive Architectures and a combination
of the two in the Distributed Behavioural Architectures (for a goo<d collection of papers

see Maes, 1990). The approaches may be summarized in the following table:
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Control Method Arbitration Communication Representation

REFLEXIVE

Braitenberg (1984) Weighted Inputs Blackboard Raw Sensor Data

Beer (1990) Weighted Inputs Blackboard Raw Sensor Data
& Fixed Priority

Sekiguchi (1989) Hierarchical Net. Memy/Biackboard Sensor Data/Mem

Travers (1988) Weighted Input Blackboard Raw Sensor Data
Coderre (1988) Hierarchy Agents Message Passing Sensor Data/Mem
REACTIVE

Agre & Chapman Hierarchy/Fixed Message Passing Raw Sensor Data
(1990)

Kaelbling (1987) Mediators Message Passing Sensor Data/Maps
Anderson & Hierarchy/Potential Message Passing Raw Sensor Data
Donath (1990) Field

DISTRIBUTED

Brooks (1990) Fixed Priority Message Passing Sensor Data/FSMs
Arkin (1990) Potental Field Blackboard Sensor Data/Maps
Payton (1990) Fixed/Weighted Blackboard Sensor Data/Maps

Table 1: A summary of the behaviour-based approaches.

Behaviour-based control systems are a relatively new and promising way in which
to design autonomous intelligent robots which are situated in the real world. All the
systems presented are single task achieving autonomous robots with Robotic
Intelligence that differs significantly from the Machine Intelligence found in today's

classical Artificial Intelligence systems. The difference lies in the representational
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requirements of a situated and embodied intelligent agent. Those requirements call for
the representation to be expressed as immediate sensor data indexed directly off the
environment.

Is it possible to organize such machines into groups of task achieving autonomous
robots? And how would we go about controlling them? In the next chapter, we try and

answer these questions by examining one of the natural occuring examples of collecuve

behaviour: The social insects.
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Chapter 3

Collective Insect Intelligence:

An Example of Collective Behaviour

3.1 Introduction

Can Nature provide us with hints in designing control theories for collective behaviour?
One of the most challenging questions in science is how the behaviour of large systems
is generated from their individual components. By studying Nature's examples,
valuable lessons in population dynamics and its control may help us to create our
robotic society.

In order to build such a population of cooperating robots we will need to develop a
control model suitable for controlling groups of task-achieving, behaviour-based,
mobile robots. How then should we go about designing the required control system?
One possible approach would be to study an existing example of collective task
achieving behaviour found in the social insects. Social insects live in societies and

exhibit collective behaviours in maintaining their societies (Wilson, 1971). Theraulaz et
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al. (1991) and Deneubourg et al. (1991) have both proposed models with which to
control groups of interacting robots, based on studies of social insects. Parallels
between artificial self-organizing systems and insect societies are mentioned in
Deneubourg and Gross (1989), Deneubourg et al. (1987), Moyson and Manderick
(1988) and Steels (1987, 1989).

In this chapter we examine naturally occuring examples of a control theory for

insect populations. We begin by examining several examples of collective behaviour

found in the social insects.

3.2 Insect Societies: An Example of Collective Behaviour

Social insects are a group of arthropods (crusty bugs) studied by entomologists (bug
guys). Social insects live in societies and exhibit collective behaviours in maintaining
their societies. A society is "a group of individuals that belong to the same species and
are organized in a cooperative manner” (Wilson, 1971, p. 5). The insect colony is
often referred to as a superorganism because many of the social phenomena it displays
are similar to the physiological properties of organs and tissues. However, the holistic
attributes of the superorganism occur in a behavioural way as a result of the simple
repertories of individual colony members, and are more easily understood than the
molecular basis of physiology (Wilson, 1971). Information on social insects
concentrates on four main species: ants, termites, and the more highly organized bees
and wasps. Wilson distinguishes these insects as a group by their common possession
of three traits: "individuals of the same species cooperate in caring for the young; there
is a reproductive division of labour, with more or less stenlz individuals working on

behalf of fecund individuals; and there is an overlap of at icast two generations in life
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stages capable of corihating to colony labour, so that offspring assist parents during
some period of their life" (Wilson, 1971, p.4). The most studied and understood
groups are ants and bees. In this section we will concentrate on these two groups by
examining the elements of collective behaviour: sensor capabilities, mental capabilities,
examples of collective behaviour, and the role communication plays in collective

behaviour. We begin with an overview of ants and bees.

3.2.1 Ants and Bees: An Overview

Ants are considered the premier social insects. They are also the most abundant of the
social insects. At any given moment there are 1013 ants living on the earth (Wilson,
1971). Ams are organized through a caste system. There are three castes among the
fernale: worker, soldier, and queen. The males form a caste by themselves but only in
the loosest definition of the term. Ants have specialized workers designed to perform
different tasks. For example, larger workers do most of the foraging while smaller
workers are responsible for brood care.

Odour trails are the principal means of communication among ants. Single scout
workers are able to recruit a large number of their nest mates to food finds in a matter of
minutes by means of odour trails (Peacock, Waterhouse and Baxter, 1955).

Behaviours seem to be triggered by externally sensed events. For example, the
swarming behaviour can be triggered by the overcrowding of the workers in the nest
chambers (Pzacock et al., 1950). Swarming behaviour also begins upon the detection
of the light of dawn (Schneirla, 1956). The same behaviour will begin at a later time on
overcast days. Ants usually return to their nest at dusk. Behaviour is also wiggered by
movement and scent of their prey (Schneirla, 1956). The array of different sensing

capabilities enables ants tc display a large collection of different behaviours.
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The honeybee (Apis mellifera) has been the most intensively studied of all the social
insects (Wilson, 1971). They have a simple caste structure consisting of worker and
queen. Beec have been found to exhibit a temporal division of labour (i.e. as bees age
their tasks change) which is thought to depend on a rigid time schedule of glandular
development (King, 1933; Lindauer, 1952).

Bees have an advanced visual and audiiory system of communication. The waggle
dance "is a ritualized reenactment of the outward flight to food or new nest sites; it is
performed within the nest and somehow understood by the other workers in the
colony"” (Wilson, 1971, p. 94). The workers are then able to translate this dance into a
unrehearsed flight of their own. The meliponine bees are also able to interpret
modulated symbols. They transmit sound signals which correlate in duration and
frequency with the distance of food finds (Wilson, 1971).

Like the ants, behaviour can also be triggered by externally sensed events. For
example experiments by Schricker (1965) determined that honeybees use the three
ocelli, which are simple eyes, to monitor light intensity. The intensity of the light is
used by worker bees to govern the amount of time used for food collecting behaviours.
Bees with their ocelli blinded began collecting food much later in the morning and
ceased flving earlier in the evening than unoperated workers.

Next we examine some of the elements involved in producing behaviour in both

ants and bees.

3.2.2 The Elements of Collective Behaviour

Wilson (1971) feels that the first step in understanding the behaviour of a given species

is a thorough examination of the sensory physiology of the species. Behaviour in



st insects is thought to be like a2 stored program ir 2 biolngical computer whose
activation is a result of certain sensory simuli. Moser (1970) writes:
Insects function like tiny robots p-wgrammed to do specific jobs. Their
nervous systems act like bizlogical computers; they are activated, as if
by punch cards, when their rc ¢ - Ors are stimulated. The external
receptors respond to pressure, sound, light, heat, and chemicals.
The second step involves evaluating their mental capacities in search for peculiarites
that may relate to their social achievements. The third step, and most challenging
according 1o Wilson, is explaining collective behaviour as a product of the behaviours
cf the individual colony members. In this section we will take each step in turn as it
applies to social insects.

Sensory Capabilities and Bees. The most studied of all insect species is the
honeybee. "Two generatons of entomologists have carefully measured the powers of
discrirnination of the honeybee in every known sensory modality” (Wilson, 1971, p.
197). The main technique used is Paviovian in which the bees are first allowed to feed
on sugar while the stimulus to be studied is simultaneously exposed to the bees. Next
the bees are tested 10 see if they are attracted to the stmulus in absence of the reward.
If successfully trained in this simple conditioned response they are allowed to choose
between the stimulus and an unfamiliar but similar stimulus to see if they can
discriminate between the two. Finally, the unfamiliar stimulus is incrementally changed
until the smallest detectable difference between it and the stimulus detectable to the
insect is determined. This method seems to have reached its limits and newer
techniques in the electrophysiological and biochemical fields combined with electron

microscopy have revealed new discoveries. Wilson (1971) describes the sensing

capabilities of bees:
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The composite picture assembled by these behavioral and physiological
studies can be roughlyv grasped by comparing the honevbee's sensory
capacities with those of man. The honeybee can see in almost all
directions around its body simultaneously, but, compared with man, 1t
is very myopic and receives fuzzy images, even of large, nearby
objects. It is not aware of shapes as we appraise them. but it is very
sensitive 1o broken patterns, the flickering of light, and sudden
movement. It requires approximately the same amount of light we need
to see any image at zil. It has color visicon, but, instead of the familiar
spectrum ranging Tror~ blu.  ~let to red, its sensitivity starts in the
ultraviolet and ends in th: "o or the near red. Its ability to sense
ultraviolet light allows it to se. ilie sun through an overcast sky on some
days when we are unacle 1o accomplish this feat. Moreover, the colors

1
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because they bear ultraviclet markings invisible to us, and in a few cases
red markings obvious to us but invisible to the bee. The bee can also
evaluate the plane of polarization of sunlight, a quality totally alien to
our own vision. The bee is virtually deaf to airborne sound but
moderately sensitive to groundborne sound, which it deizcts through its
feet. It has a sense of smell almost identical to ours. Its sense of aste is
sirnilar, but appears to be generally less sensitive and to have a coarser
discriminating power. The bee is very sensitive to touch all over its
body, but it apparently has far less capacity for judging the texture of
surfaces. It has a comparatively excellent sense of balance and can

perform at least one feat beyond our capacity, namely, onientation to
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gravity at a constant angle while walking up and down a vertical
surface. It alsc possesses at least a limited responsiveness to the earth's
magnetic field.

The remarkable ability of the neybee to detect the plane of polarization of sunlight
provides the bee with directional information. It was von Frisch (1949) that determined
this unique ability that has subsequently been found in other insects, crustaceans,
spiders, mites and even in squids and octopi. When a bee succeeds in finding food it
returns to the hive to report this information via the waggle dance. The waggie dance is
a figure eight pattern performed by the bee on the vertcal comb of the nest. The
direction of the straight run on the vertical comb and its duration are closely correlated
with the direction and distance, respectively, of the food find with reference to the hive
(Wilson, 1971). During the straight run the bee vibrates—the waggle—13 to 15 times
per second. The angle the straight run makes with the vertical is the same angle with
which the bees must orient themselves to the sun in order to find the food. The bee's
ability to detect gravity is crucial to the waggle dance.

Heran (1952) determined bees can sense changes in temperature of as little as one-
fourth of a degree. This ability is used to maintain precise nest temperature required
during the production of honey. Lindauer and Martin (1963) and Martin (1964) proved
that odour sensing is achieved by an estimation of differential stimulation of the two
antennae. Wilson (1971) describes the experiment:

Bees were trained to walk up the lower arm of a Y-tube and, upon
reaching the fork, to choose the upper arm out of which the appropriate
odour emanated. When Martin crossed the antennae of a bee and glued
them in place so that the left antennae projected to the right and the right

to the left, the bee tock the wrong turn. This indicates that the bee
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weighs information rcceived from the two antennae concerning the
relative concentraton of the odorant on either side of the head.
Cne of the most incredible abilities of honeybees is the ability to keep precise time.
This ability becomes even more impressive when witnessed as part of the sun
orientation mechanism. Lindauer (1954) and von Frisch (1967) determined bees were

able to account for the change in the sun's azimuth using their internal clock. Wiison

(1971, p. 209) describes the experiment:
To take a concrete example, one bee was observed dancing inside a hive
in a closed room from 7:05 until 10:46 A.M. in the course of a single
morning. During this tine the azimuth of the sun shifted 54.5°
clockwise, while the bee's direction of dancing shifted 53.5° in the
opposite sense. Thus, without any clue whatsoever except its memory
of the movement of the sun and its own internal clock, the bee adjusted
almost perfectly to the sun's movement and still performed straight runs
that pointed symbolically to the target.

Next, we examine the sensory capabilities of ants of which far less is known.

Sensory Capabilities of Ants. The sensory abilities of ants are + - ~ .¢: v the
same as the honeybees. Vision differs among the species from complete bi: ... 55 10
bee-like acuity. Henring, smell and sense of gravity are comparable with the honeybee.
The sense of taste is almost as developed as that of man. No sense to the earth's

magnetic field has been found (Wilson, 1971).

Wilson presents some of the evidence behind these statements beginning with
vision. Christiane Voss (1967) determined that, although the angle of divergence
between the optical axes of adjacent ommatidia is a relatively gross nine to ten degrees,

the ants of the Formica rufa group can distinguish black and v hite strips that present
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visual angles of as little as one-half degree. Voss determined shapes are distinguished
in the same way as honeybees.

Sun-compass orientation in ants, and in animals generally, was discovered by the
ant taxonomist Felix Santschi (1911). Santschi's interest was piqued by the problem of
how workers of desert ants were able to forage at a distance from their nests and then
find their way back home over the featureless desert sands, even when strong desert
winds made odour trails impractical. He made his discovery by shading the returning
ants from the sun on one side and presenting an image of the sun by means of a mirror
on the opposite side. The ants reversed direction by 180° and marched away from their
nest. When the shade and mirror were removed the ants, once again, reversed direction

by 180° and marched home.

Jander (1957) determined that ants were able to keep track of time in the same
manner as honeybees and use this ability to keep track of the sun’s movement and
constantly adjust the angle of their return journeys. Like bees, ants are able to utilize
the pattern of polarized light to calculate the po. - n of the sun (Jander, 1957; Vowles,
1950).

Hearing in ants is similar to that in honeybees and consists of receiving
groundbourne vibrations perceived by the subgenual organs of the legs (Wilson,
1971). Exireme sensitivity to groundbourne sound has been noted by numerous

observers (see Haskins and Enzmann, 1938).

Ants have a gravity receptor system nearly identical to that of the honeybee (Markl,
1962). Like the honeybee, ants can substitute gravity for light signals in maintaining a
constant angle. To test this phenomenon, Vowles (1954) first allowed the workers of
Lasius niger and Myrmica ruginodis to run over the surface of a horizontal board while

keeping a constant angle to an artificial light. After turning off the light and tilting the
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board to a vertical position, the ants changed their direction to maintain the same
angle—but this time with reference to gravirty.

Ants have about as much sense of smell as bees and humans. This generalization 1s
based on the work by Wilson, Bossert and Regnier {1969) and showed that ants of
various species are able to detect and move up odour gradients by a lateral movement of
both antennae. These results are similar to those found by Martin on honeybees.

Ants sense of taste was investigated by Anneliese Schmidt (1938} and found to be
similar to bees but they were much more sensitive to effective compournids. Schmidt
was also able to prove that ants, like bees, can sense substances by contact
chemoreception with the antennae.

Mental Capacities. The vast arrav of sensing capabilities in both becs and ants
helps explain the interesting and varied behaviour of these social insects. Their mental
capacities have been shown as a result of studying the sensory capabilities of social
insects.

The training experiments designed to determine the sensory capabilities above, have
had the beneficial side effect of allowing researchers to test the capacity of bees to learn
in a wide range of environmental circumstances. This learning capacity is impressive in
several renpzcts. Wilson (1971) summarizes the experiments as having shown that
worker bees are able to learn signais in every known sensor modality. They are quick
to learn and can master multiple tasks dependent on several modalities simultaneously.
These tasks can be both temporally and spatially ordered as in the programs of visits to
different flowers at specific times of the day. Isolated worker bees can be trained to
navigate mazes with as many as five turns in sequence in response te such clues as the
colour of a spot, the distance between two markers and the angle of a turn in a maze

(Kalmus, 1937; Weiss, 1953, 1957). In one experiment, after associating a colour
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with a reward of 2-molar sucrose solution the bee could remember it for as long as six
days. If exposed to the association three times in a Tow, they can remember the colour
for as long as two weeks (Menzel, 1968).

Ants are capable of comparable feats. Workers of Formica polyctena can remember
their way through mazes for periods up to four days (Chauvin, 1964), while those of
Formica rufa , operating in a natural environment, can remember four separate
landmarks using them in orientation for as long as a week later (Jander, 1957). The
incredible ability of both ants and bees to memorize the path and angular velocity of the
sun has already been described.

An interesting ability, reported by Jander, is demonstrated during the foraging
behaviour of ants. Wilson (1971) has summarized it in the following way:

Equally impressive is the integrative process that takes place in the
brains of bees and ants during foraging trips. The outward bound
worker typically winds and loops in tortuous searching patterns until it
encounters food. But it then takes a relatively direct route (the "bee-
line") in its return trip to the nest. On the basis of his experiments with
Formica ,Jander suggested that the insect performs a continuous series
of calculations analogous to the simplest possible mathematical
operation. As it runs outward, according to Jander's interpretation, the
ant perceives the constant light source, the sun, and it is aware of the
angles it takes relative to that source during each of its twists and turns.
For every new direction taken, the product of the angle to the sun times
the duration of the outward leg of the run is calculated, and the sum of
all these products is divided by the total running time to produce the

average (weighted) movement angle to the light. When the insect is
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ready to come home, it need only reverse this mean angle by 180°. The
neural machinery for accomplishing such a feat—which in our case
would require a compass, a stopwatch, and integral vector calculus—is
of course quite unknown.

Wilson remarks that it would be easy to succumb to a sense of wonder and to
conclude from these fragments of information that social insects are mentally
comparable to vertebrates. However, social insects suffer from severe constraints both
in their learning capacities and their innate behaviour patterns to levels far below those

attained by higher vertebrates. These constraints have been revealed item by item in the

course of empirical research.

Learning is restricted to special condi* »ns and has immediate adaptive value. The
skill learned is related to some narrow challenge encountered by the insect during the
course of their daily activities. For example, the individual workers ability 1o memorize
the angle of their outward journey relative to the sun while simultaneously accounting
for the motion of the sun through the sky. This must be done on each trip out of the
nest. If a defective worker could not keep time and memorize the hour, it would lose
much of its pollen and nectar crop each day. Ants that could not memorize odours with

some precision would soon lose its colony boundaries.

The insects have only a limited ability to transfer memories to assist in the learning
of new situations. The severest restriction in insect learning is the absence of the
process of transfer learning. An example is Formica workers inability to run a
mastered maze in reverse, they treat the change as a whole new problem; while rats, in

contrast can save time in learning by transfer of the previous information (Schneirla,

1946).
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Social insects do not play. Play, as Hinde (1966) has tried to define it biologically,
is "a general term for activities which seem to the observer to make no immediate
contribution to survival.” In mammals, play is displayed most often in the younge
individuals and appears to have two functions: first, exploring the environment and
social partners; second, perfecting adaptive responses to both. Wilson (1971) claims
there is no known "behavior in ants or any other social insects that can be construed as
play or social practice behavior approaching the mammalian type."

Social insects exercise a severe economy in communication and response patrterns.
Fire ants (Solenopsis saevissima) use a single trail substance to organize both food
retrieval by masses of workers and colony emigration and it is also used in alarm
communication (Wilson, 1962). During orientation, as we have seen, two different
classes of stimuli, gravitational and visual, can be interchanged without difficulry.
Thus, both appear to be used by the same steering mechanism in the brain, and as
Wilson notes "this innate limitation has been economically turned to advantage by the
honeybees to evolve their waggle dance communication.” This same dance is used to
vecruit workers to all food discoveries, including water, as well as to new nest sites
during colony division.

In summary, these limitations of mental capabilities found during experiments on
learning performance of honeybees and ants have revealed constraints which hold the
potential intelligence of these insects below that of mammals. The frequent use of the
same communication signals and responses for two or more very different purposes,
provide further limitations on the insect brain (Wilson, 1971, p. 219). Next, we

examine the interesting guestion of collective behaviour.

Collective Behaviour. For behavioural biologists one of the main problems in

understanding how an insect society functions is to be able to deduce collective activity
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from individual behaviour. "Collective behaviour i1s not simply the sum of each
participant's behaviour, as others emerge at the society level” (Pasteels et al. 1987).
This they claim creates a paradox—how can individual ants appear so inefficient and
disorganized, for example in their nest building activity, while at the same time build
highly elaborate nest structures?

To answer such a question, Pasteels et al. feel researchers choose one of several
attitudes. The first is to consider that their behaviour is far less random than it appears.
The majority of communication or division of labour studies adopt this viewpoint.
Ants, of course, are not random particles, they do communicate and subtle forms of
division of labour are often observed.

A second attitude is to consider behavioural variance as being irrelevant to the
society's functioning. Observations of a society are filtered and descriptions of
behavioural scquences are reported in deterministic terms, with only those acts which
are deemed functional being reported.

" A radicallv different attitude is to admit that some randomness at the individual
level could be part and parcel of the society's functioning." (Pasteels et al., 1987). Due
to their great number, Oster and Wilson (1978) have suggested that social insects can
well afford behavioural variance. This variance, they claim, could increase the
probability that a social activity will eventually be performed. Their collective reliability
more than compensates for the individual inefficiency.

In discussing collective behaviour, Wilson (1971) notes an important first rule
concerning mass action; namely, it usually results from conflicting actions of many
workers. Individual workers have only a very local perception of the behaviour of
nestmates near them, and are largely unaware of the behaviour of the colony as a

whole. He sites an example of this phenomena in the process of moving the nest. "As



workers stream outward carrying eggs, larvae, and pupae in their mandibles, other
workers are busy carrying them back again. Stll other workers run back and forth
carrying nothing.” This same process occurs in the construction of comb cells by
honeybees. In order to obtain pieces of wax for cells of their own, the workers
regularly tear away walls that are in the process of being constructed by other nestmates
(Lindauer, 1952). When viewed at close range these antagonistic actions seem chaotic,
however, their final result is almost invariably a well constructed nest.

The emergence of statistical order from competing elements is evident in the
marching patterns of army ants. Schneirla (1940) describes the movements of
individual workers of the swarm raiding species Eciton burchelli as erratic. The swarm
moves slowly forward when the ants on the front extend the chemicai trail by a small
amount before they themselves retreat running back into the swarm. Individually, ants
in the swarm are observed to collide with one another. Headon collisions usually result
in a changed direction for both ants involved. Workers receiving collisions from the
rear usually increase their pace as a result of the collision. "Yet out of all this disorder
the characteristic swarm of the Eciton burchelli emerges: aroughly elliptical mass of
workers, 10-15 m or more across and 1-2 m in depth... with the forward edge growing
at a speed of 30 cm a minute.” (Wilson, 1971). Schneirla notes the swarm is a result of
two antagonistic forces. The first is pressure on the individual ant to avoid
overcrowding. The second force is drainage, which is space vacated by workers
subsequently filled by other workers in adjacent crowded areas. The influence of these

two forces are felt by wave-like propagations through the swarm.
Wilson (1962) refers to such interaction as "mass communication"” and defines it as
the ransfer among groups of information that a single individual could not pass to

another. Wilson explains this mass communication as a result of a behavioural
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response, in accord with certain probabilities, to the stimuli normally present in the
colonial environment. In absence of a stochastic theory of collective behaviour Wilson
(1971) proposes a series of widely ranging evolutionary hypothesis:
(1) the individual social insect , being unaware of most of what is going
on in the colony to which it belongs, responds in an ad hoc manner to
the stimuli it encounters moment by moment; (2) the responses and the
probability of their occurrence are programmed genetically so that mass
behavior of the colony is efficient with respect to the particular
environmental conditions experienced through evolutionary time by the
species; (3) the program evolves as the environment changes, always in
the direction of increasing colony efficiency; (4) caste ratios, the age
structure of individuals in the colony, and comnmunication also evolve so
as to provide the responses and their probability structure with greater

efficiency at the colony level.
This view of collective behaviour would allow for the reconstruction of mass behaviour
from a knowledge of the behaviour of a single colony member. This view, however, is
not shared by all researchers. Pasteels et al. (1987) feel that stochastc events can have
a creative role and claim that a "structured but flexible collective activity can emerge
from unspecialized workers when non-linear, autocatalytic mechanisms associated with
stochastic events regulate their activity.” Their approach is inspired from self-
organizing processes (Glansdorff and Prigogine, 1971; Nicolis and Prigogine, 1977).
By self-organization in insect societies they refer to the emergence of patterns at the
level of the society, resulting from interactons between the individualc or between the

individuals and the environment. This is different than the self-organization Wilson
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refers to. in which patterns are due to the execution of evolution crafted pre-determined
programs based on age or caste groups.

The best examples of collective behaviour are those involving the cooperative
construction of nests. The resulting outcome of the behaviour is very predictable.
Researchers can induce building activity by selectively damaging portions of a nest.
Some nests are built requiring many workers lifetimes to complete. The existence of
such nests leads to the conclusion that the workers interact in an orderly and predictable
manner. But how can the workers communicate so effectively over such an extended
period of time? (Wilson, 1971). Pierre-Paul Grassé (1959, 1967) suggested that the
key process involved "stigmergy” a Greek term meaning "to incite work". Grassé
claimed it was the product of work previously completed, rather than direct
communication among nestmates that convinced insects to perform additional labour.
This theory was based on his observations of nest building by the termites Cubintermes
and Macrotermes. Grassé distinguished three successive stages of construction which
are exemplified in -~ _ounstruction of a single foundation arch. Termites begin the first
stage in an uncoordinated individual exploration of the environment. The next stage
begins with the seemingly random placemen:+  -:hLcts; one pellet placed in one spot by
one worker is often picked up and deposited in anoier spot by a different worker. The
final stage involves the seemingly random chance that two or three pellets are placed on
top of one another. Termites prefer this structure and continue to place pellets on top
forming a column. If no other columns are nearby then work on the column will cease.
However, if another column is close the termites will bend the tops of their columns
towards one another. Once the two tops meet the arch is complete. The sense which
allows the termites to determine the proximity of the neighbouring column has not been

discovered but it is hypothesized that it is clfactory (Wilson, 1971, p. 229).



Several researchers challenged Grassé's simple stigmergy explanation. Among
them Stuart (1967, 1969) pointed out that Grass€'s theory could not account for the
shut down when the job is finished. Of course work on an arch would finish when the
two arches met. but what stopped the building of new arches? In his own studies on
the repair of nest walls by workers Stuart discovered that termites continue to repair the
wall until the disturbing stirnuli caused by the breach, namely the air currents, are
removed. During the repair additional workers are recruited to the scene by odour
trails, which stopped once the breach was repaired. Stuart's findings revealed,
contrary to Grassé's simple assumptions, that chemical communication is used by

termites in the coordination of nest building.

Another remarkable example of collective behaviour is weaver ant nest construction
(Wilson and Holldobler, 1990). These ants construct their nests from green leaves held
together by sticky larval silk. In order to construct a wall workers must fold a leaf,
they first spread over its surface and randomly tug at any edge they can grasp. One part
is turned more easily than the others, and the initial success causes other ants to aid the
effort and abandon their own. Like the preference for columns of pellets termites
exhibit when constructing arches, weaver ants are able to sense and have a preference

towards the turmed portion of a leaf.

An interesting paper by Pasiecels ¢t 3l. (1987) c~mpares collec:ive behaviour with
self-organizing systems in which both noi-linear inechanisms and stochastic events
play an essential role. They present a rnathematical model which quantifies trail
recruitment. Workers are treated as identical vnits with unspecialized behaviours,
largely random and independent of past experience (i.e. no memory). All that is
postulated is that the an:s are able to lay a trail after feeding, that they have a certain

probability of follcwis::; this trail and that this probability increases with pheromone



concentration. Their claim is that this simple model is able to predict the collective
behaviour observed in their experiments with actual ants.

Seeley and Levien (1987) approached this same problem, of food source selection,
for honevbee societics. The difference in Seeley and Levien’s model is that no random
component in communication is involved in the emergence of the foraging pattern.
Seeley and Levien conclude “that the sophisticated achievements of 2 colony as a wheie

can reflect a smali (their emptasis) set of underlying rules of individual behaviour."

3.3 Summary

In this chapter we have taken a look at an existing example of collective behaviour, the
social insects, in the hope that we can determine the salient features of such a society.
With their rich variety of sensing capabilities, social insects exhibit a wide range of
collective task achieving behaviour which is both productive and efficient in
accomplict g a given task. Their repertoire of behaviours is directly related to the
large array of sensing capabilities. Coailective behaviour, viewed at the society level,
scems to be an emergent property of a self organizing system with a few simple rules of
interaction. When viewed at the individual insect level, collective behaviour appears to
be a collection of random and uncoordinated activity. Chemical communication is used
to incite common behaviours -hich result in a collective behaviour of the group as it
propagates throughout the society. Their existence is both encouraging and mystifying
as we strive to recreate just such a mechanism to control our artificial populations of

task achieving robots.

In the next chapter, we recall Narture's lessons to guide us towards a theory on

collective robotic intelligence and propose a model for its implementation.



Chapter 4

Collective Robotic Intelligence:
A Control Theory For Robot Populations

4.1 Imntroduction—Proposing A Theory

Can intelligent behaviour-based robots achieve tasks collectively? The idea of using
inrelligent agents that cooperate to achieve tasks without explicit coordination or
communication is not new. Brooks proposes sending a colony of small robots to the
Moon to construct a permanent base (Brooks and Flynn, 1989). Danio et al. proposes a
social organization of socieries of cellular mobile robots where useful tasks are carried
out through collaboration rather than individual effort (Dario et al.. 1991).
Additionally, Yuta and Premvut describe an approach to cooperzation of multiple
autonomous mobile robots using environmental resources while working toward a
common goal (Yuta and Premvuti, 1991).

In this chapter we propose the first steps towards a control theory for robot

populations. We begin by first reviewing the lessons learned from the several
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examples of collective behaviour found in the social insects. Next, we present our
theory on Collective Robotic Intelligence emphasizing its emergent property. Finally,
we present its model of group control and illustrate its use by considering the steps

involve :  -lcsigning a collective task.

4.2 Towards a Theory on Collective Intelligence

A number of interesting observations can be made from the examples of collective
behaviour in the preceding chapier.

1. Social insects have a large array of sensors allowing behavioural components to
interact with the environment directly. It is this large array of sensors that seem to
allow the insects to display a variety of different behaviours. A behaviour is usually
produced as a result of the insect sensing the necessary stimulus. For example, the
three ocelli, used for detecting light intensity, governs the amount of time used for food
collecting behaviours. Bees with their ocelli blinded still continue to collect food but on
a reduced time schedule (Schricker, 1965). Similariy, swarming behaviour in an?s can
be triggered upon the detection of the light of dawn (Schneirla. 1956). This simple
mechanism of invoking behaviours allows the externally sensed environment to provide
the synchronization necessary for temporally ordered tasks. The perceived behavioural
complexity is directly related to both the number of sensor modalities and the sensor's
individual sensitivity.

2. Collective behaviour usually begins with seemingly random and uncoorc:nated
activity. The activity usually results in a form of self-organization. The resulting

outcome of the behaviour is very predictable. For example, arch construction by the

termites Cubintermes and Macrotermes begins with the random placement of pellets,
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some of which end up piled on top of another pellet. This activity results in the
formation of arch columns, a structure the termites have a preference for. and they
cc atinue to pile pellets on top (Pierre-Paul Grassé, 1959, 1967). Weaver ants begin
leaf folding (part of their nest building activity) by grabbing and pulling any comer they
can grasp. This eventually folds the leaf at a weak corner, ants will then abandon their
comer for the newly folded one (Wilson and Holldobler, 1990).

3. Collective behaviour can be viewed as an emergent propeny of the self-
organizing system with a few simple rules of interaction. This emergent property
results from the system interacting with its dynamic environment. The specification of
individual behaviour alone does not explain the resulting functionality of the group.
The rules of interaction and the environment in which the interaction takes place must
be accounted ‘or together. The implication when designing collective tasks is that an
interaction loop must be found comprising of the system and the environment which
ultimately converges tow .rds the desired goal. For example, the ellipucal swarm
pattern that emerges from the army ants Eciton burchelli, mentioned in the previous
chapter, resulted from the two simple antagonistic rules of drainage and pressure.
Pasteels et al. (1987) were able to reproduce in simulation the foraging patterns of the
ants Tetramorium caespitum by two simple rules of behaviour, namely, lay trail after
feeding and follow trail scent. The environment is used, in these examples, as a
comuri:: .cation medium. These simple behaviours were able to generate the coherent
collective behaviour observed in field experiments.

4. Subtle forms of communication take place in collective activity. Most of this
communication is chemical based and used to trigger a given behaviour. For example,
in Stuart's (1967, 1969) nest reparation experiments, termites used chemical odour to

attract additional workers to the site of repair activity. Simple, non-chemical



communication is also used to incite behaviour. For example, tandem running is
believed 1o be the predecessor io odour trail systems (Wilson, 1971). Tandem running
consists of a leader and a follower ant. The leader ant stops running in order for the
follower to bump and push the leader forward; the leader continues for another 3 to 10
centimeters at which time it stops again.

5. There is evidence that suggests that ants alter their behaviour when ifound in
large groups. For example, worker ants were found to excavate the soil and attend
larvae at a higher rate when found in large groups (Hangarter, 1969). Ancther
example is the aggressiveness of an individual ant increases as the size of the crowd of
nestmates around her grows (Wilson and Holldobler, 1990). Wilson (1971) found that
when workers of Acanthomyops claviger are kept in solitude, they are nearly
insensitive to the natural alarm substances of the species. In contrast, those placed in
the same nests with a few hundred nestmates respond normally to the alarm substances.
It has been theorized that some of these group behaviours are a result of the sensing of
higher concentrations of metabolic products associated with large numbers of ants.

6. Can ants communicate with themselves? Foraging workers were found to do
just that when they dispense orientation pheromones in their odour trails and then
follow the traces during the return journey to the target areas (Holldobler et al., 1874).

7. The effects of collective behaviour form a kind of distributed representaton.
Take for example, nest construction in wiich the nest is physicaily realized as a result
of huadreds of tiny pieces put together by individual ants. The object "nest” is spatially
distributed with each ant holding a partial representation of the whole.

8. Task behaviour can be considered temporally ordered like a Finite State Machine
(FSM). Consider the task of nest construction. The ask involves a series of steps that

inuer be performed one after the other. If we were to consider each step a state of a
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FSM then the system would move from state to state. The transition between states
occurs when the agent (in this case an ant) sense< a change in the environment. For
example, termites begin nest building by exploring their environment (state 1. They
start by picking up pellets and moving them about (state 2). Once they sense two
pellets on top of one another (a random event) they begin to pile other pellets on top of
the structure (state 3). The structure continues to grow until another column is sensed
nearby, at which point the termites begin to bend their columns towar.. each other
forming an arch (state 4). If no other column is sensed nearby they abandon their work
and begin moving pellets around again (state 2).

Can simple autcnomous robots achieve tasks collectively? Considering the
examples mentioned of collective task achieving behaviour by ants we are tempted to
answer yes. Ants can be compared to simple robots executing equally simple
programs. There is no evidence to suggest that any one ant understands the resulting
outcome of its behaviour on the whole; no master architect directing hundreds of
workers, but rather, stored behiavioural programs that can be invoked by researchers
using appropriate stimuli. For example, corpse removal is another collective behaviour
invoked by chemical odour. Dead ants are carried away from the nest and discarded in
refuse piles by workers. Wilson et al. (1958) were able to invoke the same behaviour
from ants by treating bits of paper with acctone extracts of dead corpses. In fact, live
ants were also dragged away by nestmates towards refuse piles when small amounts of

acetone extract was daubed on them.

These observations on collective behaviour create a new way to view the
representation of a collective task as a set of temporally ordered behaviours. This
representation is distributed and manifests itself as a sequence of steps necessary to

physically execute the individual components of the task. Take for example nest
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building, each individual has a sequential program used to build pieces that will
eventually form a physical nest. Each step in the program is a side effect of a
behaviour. The behaviour becomes active when the appropriate stimuli exist in the
environment. Therefore, a physical piece of the nest can be described in terms of a set
of sequential behaviours (steps in the program). The behaviours are temporally ordered
in a cascading fashion (i.e. they must follow one another to create th piece, with each
step automatically following the last). The representation is distributed because the nest
is really a sum of each of these pieces, and can only exist once the ent re collection of
individuals are present.

This type of intelligence is emergent because all the individual behavioural bits of
ropresentation need to be together and operate simultaneously in order to achieve the
collective task. Emergent functionality describes a function that is not achieved directly
by a behaviour, but indirectly by the dynamic interaction of more primitive behaviours
among themselves and with the world (Steels, 1991). Emergent functionality has
become one of the main themes in research on Artificial Life.

Artificial Life (AL) is a bottom-up approach to constructing man-made systems that
exhibit behaviours characteristic of natural living systems. It views an organism as a
large population of simple machines, and works upwards synthaetically from there—
constructing large aggregates of simple, rule-governed objects which interact with one
another nonlinearly in the support of life-like, global dynamics. Emergent behaviour
has become the key concept in AL. It is this bottom-up, distributed, local determination
of behaviour that AL employs in its primary methodological approach to the generation
of life-like behaviours (Langton, 1988).

From the previous observations we propose the following control theory: Collective

Roboric Intelligence (CRI) is an emergent properiy of a coilective task; it is represented
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as a distributed cascade of sequential behaviours and the population control is achieved
by invoking group behaviour. CRI states that control of a population of robots is
achieved by invoking group behaviour. Several diff:-rent mechanisms may be used to
invoke the necessary group behaviour outlined below in the following lemmas:

1. Group behaviour may result by using a common goal oriented collective task.
For example, if we design a group of robots to locate and converge upon a single object
and while doing so the robots do not interfere with one another, we have then
successfully controiled the movement of the group as a whole. This type of group
control can be observed in ants that collectively move a large obi=ct towards their nest
opening.

2. Group behaviour may result by herding robots. This may be accomplished if
we design our robots to stay together in "herds” using a FOLLOW behaviour. The
collective task may require that groups of robots remain together. Consider grass
cutting by a group of small robots who travel in herds. The control of the group 1s
accomplished using a behaviour designed to keep them together: the task is
accomplished by having all the robots executc a function (i.e. cutting) while the group
is moved through its environment. This mechanisin is used by ants in recruitment such
as tandem-running, where ants will recruit ancther to follow or in swarming behaviour
where groups fan-out by following odour trails.

3. Group behaviour may result from environmental cues. This method of control
uses cues found in the environment to invoke the same behaviour in the group. Both
dawn and dusk provide ants with a visual cue to begin or end food collecting
behaviours and are an example of an environmental cue. Collective tasks can be
designed to allow the environment, in which the robots work, to provide the cue that

invokes the group behaviour. For example, a group of building cleaning robots,
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designed to keep the outside surface of buildings clean, would begin their activity at
dusk by depositing photosensitive chemicals on the outside surface. Cleaning action

would begin the next day when the chemical reacted with sunlight.

4. Group behaviour may be invoked once the robot becomes aware it is in a group.
This method of control is accomplished by equipping each robot with sensors to detect
the presence of other robots. Sensors would be placed around the periphery of the
robot enabling it to detect other robots both in front and behind as well as to the left and
right. The collective task is then executed once the robot finds itself surrounded by
other robots. For example, bulldoser robots designed to level the ground would only
be effective once a large group was formed travelling in the same direction. The robots
in the centre of the group would execute the collective task while those on the periphery
would be responsible for navigating the group over the surface to be leveled. This
form of control is found in ants that exhibit certain behaviour when found in groups
only (see observadon 5 above for several examples).

5. Group behaviour may also be invoked through autostimulation. The wide range
of alarm substances found in ants is an example of this control mechanism. For
example, if we are using a group of robots to search an area for a particular substance,
then once a single robots finds the substance it broadcasts a signal which invokes a
behaviour in all robots receiving the signal. This method of control is different from
the above methods because it is a form of self-facilitation (a term taken from the
psychological literature meaning communication that promotes rather than inhibits
activity).

In the next section we propose a model of individual control and outline the
necessary features that allow the model to be used in the collective control of a

population of autonomous robots.
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4.3 A Model of Group Control

In order to test any theory on collective behaviour in a meaningtul way. we will need to
build a group of robots based on some individual model of control. This collection of
robots should then form a system with emergent functonality. Steels (1991) defines the
characteristics of such a system with emergent functionality as consisting of (1) a set of
behaviours each with its own interaction with the environment; (2) the activation of a
behaviour is a direct result of stimulus from the environment and; (3) behaviours
contribute individually to the global functionality but, require other behaviours to do
useful work. In a system with emergent functionality all the components need to be
present and operate simultaneously to achieve the desired collective task.

Our model based on these principles is shown below in figure 6. The intent is not
to model ants, but rather to use the lessons we have learned about collective behaviour
to propose a useful control model for the individual robot. The model and its
behaviours are designed to allow a group of robots to interact. Control of the group is
achieved using any one of the five methods outlined in the previous section. Using this

model we will outline the steps in designing a robot to be used in a collective task.
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Figure 6: Contol model of an individual robot. Behaviours B/ and B2 both receive a

positive stimulus, whereas behaviour Bn receives a negative feedback stimulus.

The above model is best explained by defining the sequence of steps involved in
designing a collective robotic system. As an example, we will choose the simple task
of locating and pushing a box collectively; this task uses the first method of group
control, a common task, outlined in the previous section. Cooperation is achieved
among the robots by not interfering with others in the group. The task is such that it
can not be accomplished with a single robot (i.e. the box is too heavy or turns on its
axis). The steps are as follows:

1. Define the colleciive task as a sequence of behaviours. These behaviours may
either be reflexive (i.e. without memory) or reactive (i.e. with memory). Each
behaviour interacts directly with the environment, receiving immediate feedback. A
behaviour becomes active when its associated sensor detects the preconditions
necessary for activation. For example, the box pushing task will require an explore
behaviour to allow the robot to explore its environment; a locate-box behaviour to
identify the box; and an avoid-obstacle behaviour for collision avoidance. The
sequence would simply consist of explore then locate-box. The explore behaviour

would allow the robot to search for boxes; the locate-box behaviour would take control
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once a box is sensed and guide the robot towards the box. 1f on the way an obstacle is
encountered, the avoid-obstacle behavicur would cause the robot to veer from its path.

2. Determine the stimulus necessary to activate each behaviour. For example, the
explore behaviour is active if the box sensors are off; the locate-box behaviour is active
if the box sensors are on; the avoid-obstacle behaviour is active if any one of many
obstacle sensors are on.

3. Determine the minimum nurnber of robots needed to accomplish the task. This
is task dependent and in the case of our box pushing robots at least two robots are
required.

4. Determine the stimulus which causes negative feedback. This is required in
order for the robots to determine if progress is being made toward the collective task.
When using reflexive behaviours only, this feedback will allow for the detection of
cyclic behaviour (see chapter 2). In the our case, should a robot find itself pushing on
a side opposite three other robots, this stimulus and its associated behaviour will allow

the robot to stop pushing and retreat (see figure 7).

Figure 7: Negative feedback will allow robot number 1 to evaluate 1ts progress.

Consider another example of the use of multiple robots. The following example
illustrates a group task which uses CRI. The group task we wish to accomplish is that
of bulldozing small bits of styrofoam evenly spread throughout an area into a pile at one

end of the area. In order to accomplish this task, it will be necessary for the collection
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of robots to form a physical configuration and move as a unified group. This
configuration may be a square grid, a horizontal line, cr possibly a geese-like "V"
formation, exhibited when geese flock, and would be task specific. Group task
behaviours, such as bulldozing, emerge and are a result of individual behaviours
invoked by the rcbots, as they become aware of the group.

Each robot is equipped with several task achieving behaviours designed for the

particular group task at hand. A brief description of each behaviour follows:

FIND Causes the robot to search for similar robots.
AVOIDR Causes the robot to avoid obstacles on the right.
AVOIDL Causes the robot to avoid obstacles on the left.
FOLLOW Causes the robot to follow another robot.
PLOW Causes the robot to lower its plow.

Each robot is equipped with infrared sensors for detecting other robots: in front;
behind; to the left; and to the right. Robots are capable of detecting and following other
similar robots. This results in the robots forming and travelling in fixed physical

configurations as illustrated in the diagram below:
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Figure 8: A group of plowing robots.

Initially, the collection of robots exist unaware of each other. Guided by their
FIND behaviour the robot attempts to seek and identify similar robots. Once a similar
robot is found, indicated by a single lit LED (Light Emitting Diode), the FOLILOW
behaviour guides the robot to follow. As other robots join the group, those loc.ted on
the group's periphery become responsible for collision avoidance on the side without a
fellow robot. This is accomplished with the avoid-left (AVOIDL) and avoic-right
(AVOIDR) behaviors. The PLOW behaviour is invoked once the robot is awar: of
other robots on at least three of its four sides.

The group bulldozing behaviour is a result of a sufficient number of individual
robots collectively plowing. The resulting level of competence, exhibited by the group,
is higher than that of any individual robot, and is greater than the sum of the individual
robot capabilities. To see that, consider a single robot trying to push a spherical ball.
Each time the robot attempts to push the ball in a forward direction, the ball rolls off to

one side of the robot. In order to move the ball forward two robots will be required

pushing collectively in the same direction.



Where would we use such collections of multiple robots? Consider the problem,
previously mentioned, of keeping the outside surface of buildings ciean We could
design a surface clinging robot. Swarms of these surface clinging robots deposit
chemicals 1o sites unreachable by other means. Behaviours wouid be designed so that
these robots stay hidden during the daylight hours only to come out and deposit their
licht sensitive chemicals at night. Cleaning action, by the chemical, would begin the

next day as the chemical reacts with daylight.

4.4 Summrry
Based on the observations of collective behaviour from the last chapter, we have taken
the first steps towarcs a theory on collective robotic intelligence and proposed a new
way of representing collective tasks as a distributed sequence of behaviours. The
resulting intelligence is emergent because all the individual behaviocural bits of
representation need to be together and operate simultaneously in order to achieve the
collective task. Contro! of the population of robots is achieved by inveking group
nehaviours. Five methods for invokir.g group behaviour are presented with several
cxamples given. Finally, we propose a control model used in the design of these
collective svstems and demonstrate its use by considering an example of a collective
task. We speculate that populations of these simpie robots can be designed to perform
uscful real-world tasks effectively.

in the next chapter, we present our robot populatien simulator, SimborCity, and
describe its architecture and facilities for testing the control model and the dynarmic

interactio  t multiple robots.
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Chapter 5

SimbotCity:
A Robot Population Simulator

5.1 Introduction—Testing the Theory

The ultimate goal of this work is to design and build a number of real physical robots
capable of achieving simple tasks collectively. There are two approaches we may adopt
in order to test the control model developed in the last chapter. First, we can design
then construct several identical physical rebots. testing their performance and dynamic
interacdor in the real world. This could potentially be very time consuming, as any
change in the control model would have to be replicated in all the rebots. The second
approact ~ to test the control model in simulation before constructing the physical
robots. The amount of time needed to change and test a new control model would be
reduced, as would the error in replicating the model in each simulated robot. The
disadvantage with simulation « ems from the simplifications made in modelling any

aspect of the real world. However, this disadvantage is minimized if we treat the



simulation as a tool for testing the feasibility of our conwol strategy; realizing the
ultimate test still lies in the real world.

In this chapter we present our robot population simulator SimboiCirty and discuss
its ise as a tool for investgaiing control strategies used to control populatons of mobile
robots. We begin by outlining our simulation objectives by defining some of the new
issues that arise in robot populations. Next, we present SimbotCity's architecture
which includes models for sensors, behaviours and actuators; these models are then
combined using a contol architecture explained in the following section. Behaviour
implementation is diccassed n.' 1, Lsing the push-box task and its behaviours as an
example. A collective *usk and its evperiments are then presented. Finally, related
work in simulation from the fields of Graphics and Simulation of Adaptve Behaviour

is discussed.

5.2 Simulation Objectives

When multiple robots start 10 interact a whole series of new issues begin to surface.

Brooks (1991) outlined several of these issues, a subset of which we shall consider

here.

Emergence: Each robot's control system consists of a set of behaviours, we would
like to see what the collective b:haviour of a group of homogeneous robots will be.
Further, if an incremental modification to the individual robot is made, we would like 10

determine its effect on the collective behaviour of the group.

~l
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Cooperation: In achieving collective tasks, some form of cooperation will be
necessary. This may simply tike the form of not interfering with other robots as Yuta
and Premvut (1991) have proposed or may involve some other form of cooperation.

Allocarion: We would like to know the minimum number of robots necessary to
accomplish the collective task. Brooks refers to this as "density dependence.” Also,
should we decide to use more than the minimum number, at what point does the svstem

cease to be functional due to a glut of rob.. .s?

Herding: There are advantages in keeping a group of robots together. Collectively
they can respond much quicker to a given stimulus than if they are more spatially
distributed. An example might be a group of fire fighting robots whose extinguish
behaviour activates upon fire detection. A group would respond quicker to the blaze
and gain control easier than just one robot. Given the local perceptive abilities of the
robots, what are the suitable behaviours needed for herding?

"These are the issues we wish to investigate with simulation; and the lessons learned

in the provess, will scrve as a guide when building the physical sysiem.
o

5.3 The Architecture of SimbotCity

The simulator’'s architecture has been implemented in a modular fashion making
extensive use of abstract data types (ADT's). A population model consists of a group of
robots. Each robot consists of a sensor model, a behaviour model and an actuator
model. Models are further subdivided into model types. For example, a robot may
have several different sensor types: infrared for close range obstacle detection; sonar

for long range obstacle detection; and acous*ic for sound detection to name a few.
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Similarly, behaviour and actuator models are also divided into types. Models are
implemented as ADTs and are accessed using the appropriate function. So as not to
sacrifice speed of ¢xecution. functions are implemented as macros.

The simulator is implemented on a SUN Sparc station and runs under the X-
Window system. User interaction is designed using the XView! graphical user
interface which is an implementaticn of the OPENLOOK specification. The current
version of SimbotCity, version 1.08, consists of approximately 2000 lines of C code.

The user interface of the simulator is illustrated in figure 9. A scrollable window
allows the user to view a portion of the robots’ environment. To create a population of
robots, the :ser creates a configuration file. The configuration file contains an entry for
each robot consisting of the robot's number; initiali X and Y coordinate; and direction
the robot is pointing. Configurztions are then dynamically loaded into the simulator at
run time. A simulation may be run continuovsly or single steppedl. Single-stepping is
useful in debug mode ir. which each robot's behavioural parameters are displayed.
User interaction is handied with panel buttons eliminating the need for command

memorization.

X View Programming Manual for Version 11 of the X-Window System by Dan Heller, OReilly &
Associates, Inc. 1990.
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Figure 9: The user interface of SimbotCity version 1.08.

5.3.1 The Robot Model

In the current version of SimbotCity each robot has three sensors: a goal sensor (S2),
an obstacle sensor (§1), a robot sensor (S0), and two actuators: a left wheel motor (Al)
and a right wheel motor (AQ). Each rovot's control model consists of five behaviours:

a goal behaviour which directs the robot towards the goal, an avoid bchaviour which
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steers the robot clear of obstacles including other robots, a follow behaviour which
allows one robot to follow another, a siow behaviour which prevents rear end
collisions between following robots and a find behaviour which causes the robot
explore its environment. A direction point . indicates the robot's current orientation as

illustrated below in figure 10:

——————— S2 Goal Sensor

0N SO Robot Sensor
r fﬁ -~ S1 Obstacle Sensor
{j’ Y T Direction Indicator
é{____--—-— AQ Right Motor
T A1l Lett Motor

Figere 10: An example cf one instance of the robot model with three sensors and

fwe actuators.

5.3.2 The Sensor Model

The sensor model is implemented as an ADT with six pieces of information: sensor

-

nan’ -, type, direction sensor is pointing, view angie width, input value for active

sensors, and output value.

struct sensor {
int number;
int ype;
float direction;
float view _angle;
float input value;
Sfloat output_value;
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Macros provide access to the data structure and sensor processing is based on sensor
type.

Currently there are five sensor types each based on the availabie physical sensors in
our lab. These types are: infrared, sonar, acoustic, light, and switch. In SimbotClity
sensor types may only represent the actual physical sensors available. This approach

ensures that simulated robots can eventually be built using the same sensir  echniques.

5.3.3 The Actuator Model

The actuator model is implemented as an ADT with tive pieces of ‘niormation: actuator
number, iype, position on the robot, input value and an on-off switch.

struct actuator{
int number;
int rvpe;
int position;
int inpur value;
int onswitch;

Macros provide access . the data structure and actuator processing is based on actuator
type. There are four types of actuators: motor, hand, plow, and solenoid. The current
robots use the motor type only; a left and right motor provide movement. Steering the
robot is accomplished by muning one motor oni at a im > “revoup'l 0 Cteer the

robot left the right motor is .umed on while the left motor is turned off.

5.3.4 The Behaviour Model

The behaviour model is implemented as a mapping between ser: -. :nputs and actuator

outputs (i.e. reflexive behuviour). Sensors previde the input to behaviours, which then



process the serser data and output the results to the actuators. Each behaviour reads its
connected sensors and calculates a given response during each simulation time step.
The resulting command is sent to the actuators to be used d -ring actuator processing.
The behaviours are arranged in a fixed priority with the highest priority behaviour

sending |- actuator commands Jast.

5.4 <Control Architecture

The control system we have developed for our robots is modelled after Jon Conneil’s
modified subsumption architecture (Connell, 1990). An example of the architecture for
the conirol system of our robots is shown in figure 11. It consists of a number of
modules (Bn's), each of which implements one behaviour. The moduies receive input
from the sensors (Sn's) and generates output commands to the actuators (An's).
Rehaviour output commands are combined in a fixed priority scheme {(circles) with only
one module at a time controlling the actuator. Connell's architecture has rn» direct
channcis between modules and ro central communications. Two speciul constructs
determine how the behaviour modules interact. First, a module can inhibit the input or
output of another module (circle with an "I") thereby activating or disabling the
Sehaviour module. This is a slight modification from Conr::il's original proposal (he
does not allow inhibition of inputs). Second, a module can suppress the output of
another module {(circle with an "S") by replacing the output with 1ts own output

commands.
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Figure 11: The coatrol system consists of behaviour modules (the B's), each of
which processes the sensor data (the S's) and generates commands to the actuators

(the A's). Behaviour arbitration is t . ough a fixed priority network (1. circles).

The behaviours in figure 11 for our simulated robots are: FIND - 20), a behaviour that
causes the robot to move in a spiral pattern used to explore the environment; FOLLOW
(B1), which uses the SO robot sensor to detect othe: roboi¢ and czuses the robot to
follow it; GOAL (B2), which uses the S2 goal sensor to locate the box and steer the
robet towards it SLCW (B2), which rcads the SC robot scasor and the ST obstacle
sensor to slow the robot down preventing a collision with another robot (both SO and
S1 are on); AVOID (B4), this behaviour uses the SO and S1 sensors to deiect an
obstacle (S0 = off, S1 = on) and steers the robot away as long as the s:nsors are active.
This behaviour can also be invoked by the SLOW behaviour if SLOW can not prevent a
robot to robot collision; thi ~complished by inhibiting the SO sensor which
generates the same obstacle dewcuon pattern (SO = off and S1 = on).

Behaviour arbimation is handled by the fixed priority network indicated in figure 11
by circles. The FOLLOW bchaviour can suppress the FIND behaviour's motor

commands and replace them with its own motor commands. This occurs when other
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robots are detected ia the vicinity (discussed further in the section on behaviour
implementation). Likewise, the SLOW behaviour can suppress the FOLLOW
beha viour's motor commands in the event a robot gets too close tc the one it is
following. Both the GOAL and AVOID behaviours can inject their own motor
commands suppressing all others, with the AVOID behaviour having higher priority.
Behaviour modules are designed by deciding the sensory input that activates the
module and the action the module will take once activated. Modules are then combined

using the inhibit and suppress constructs mentioned above.

5.5 Behaviour Implementation

As an example, SimbotCity (1.08) can be designed to accomplish the collectdve task of
box-pushing. The task is such that it cannot be accomplished by one robot because the
box is 100 heavy to push; therefore, the collective effort of several robots is necessary.
To accomplish this task the robots must locate the box, move towards it while avoiding
collisions with other robots, distribute themselves along a side of the box and push. As
discussed in section 5.2, there is an advantage in keeping robots iogether in a herd
when accomplishing collective tasks. Robots are designed to travel in groups by
following other robots. The following sections, with their acconianying figures,

describe the behaviours necessary to accomplish the collective task of box-pushing.
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5.5.1 The FIND Behaviour

The I'IND behaviour is the robot's default behaviour and causes the robot to execute a
wide spiralling search pattern to the right. Robots move forward only and therefore are
1n ~oastant motion in their environment. The size of the spiral is governed by a
turn_rate parameter. The behaviour is constantly active issuing motor commands and

requires no sensor input. If no other behaviour sends moter commands then FIND

guides the robot.

5.5.2 The FOLLOW Behaviour

The follow behaviour is designed to keep robots together in a herd. The follow
behaviour becomes active when another robot is detected by the SO robot sensor and
causes the robot to move towards it. Sensecr SO is a forward looking sensor with a
view angle of 90°, thus, robots only follow other robots ahead of themselves. Once a
roooi 1s following another, it narrows its viewangle to 22° so as not to be distracted by
other groups< s passing in close proximity. Modifying a behaviour’s response
in this fashion, 1s what we refer to as a behaviour preference. Behaviour preferences
are a technique that allow for the robot to dynamically adapt its response to the
environment given the current state of the robot. Adaptive behaviour is a methaed taken
by the Animar approach (for an example see Meyer and Guillot, 1991; Wilson, 1991).
An example of the FOLLOW behaviour is illustrated in figure 12 taken at TimeStep
134. Figure 13, taken at TimeStep 171, shows the resulting collisions between robots

with only the FIND and FOLLOW behaviours active (robot number 2 collides with
number 7).
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Figure 13: Robots 2 and 7 collide due to no obstacie avoidance behaviour.

5.5.3 The SLOW Behaviour

‘The SLOW behaviour is designed 1o prevent collisions between robotis following one
another. The behaviour becomes active when the SO robot sensor and S1 obstacle
sensor both becomi: active. The bekaviour turns both wheel motors off for one Time
Step. This effectively slows the robot down and prevents the collision as illustrated in
figure 14 taken at Time Step 134, but with the SLOW behaviour added to the control
architecture. The distance between robot number 2 and 7 is greater than in figure 12 in

which robots have only the FIND and FOLLOW behaviours active.
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Figure 14: Robots with the ST.O)v.  + viour added.

5.5.4 The AVOIL Behaviour

The AVOID behaviour steers the 1.:i -~ away from obstacles. The behaviour becomes
active when the SO robot sensor is off and the S1 obstacle sensor is on. Once active the
behaviour commands the left motor on and right motor off for one Time Step resulting
in a right tum. Turning continues as long as the sensor pattern remains. The AVOID
behaviour can also be invoked by the SLOW behaviour.by inhibiting the SO sensor
input. This occurs when the SLOW behaviour has not been successful in preventing a
robot to robot collision. Figure 15 is taken at Time Step 2873 just before robots 1 and 2
invcke their AVOID behaviour. Figure 16, taken at Time Step 321 shows the results of
the AVCOID behaviour between robots 1 and 2. The AVOID behaviour receives
negative feedback from the environment allowing the robot to gauge the progress it is
making moving forward. Fer example, in Figure 17 robot 7 is pushing the box in the
Qpposite direction of robots 1 and 2: should the box end up moving against robot 7,
pushing it backwards, its negative feedback will cause it to turn away until it is no

longer moving backwards as illustrated in Figure 18 taken at Time Step 218.
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Figure 15: Robots 1 and 2 before invoking AVOID behaviour.
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Figure 16: Robots 1 and 2 after invoking the AVOID behaviour.

5.4.5 The GOAL Behaviour

The GOAL behaviour causes the robots to move towards the goa’, in this case a box
(see figure 17). The behaviour is activated when the robots sense the goal with their S2
goal sensor. This causes the robots to move towards the goal and is proportional t: the
distance frorn the goal. The closer the robot is to the goal the greater its desire to move

towards the goal instead of t5wards udher robots.
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Figure 17: Robots with the GOAL behaviour added. Note Robot 7 is not making

progress.
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Figure 18: Robot 7 changes direction due to negative feedback connection on its

AVOID behaviour.

"Together the five behaviours implement the control model necessary to achieve the

collective box-pushing task. Robots roam their environment in herds looking for boxes

to push. Once found, the robots push the box to one edge of their world. Robots

employ a simple form of cooperation by avoiding and therefore not interfering with

each other while performing the task. For box-pushing, at least two robots are required

to accomplish the task and greater than twelve causes the system of robots to be

inefficient due to the even distribution of robots around the perimeter of the box. By

keeping robots together in a herd the system of robots responds quicker to the task at

hand due to the simultaneous sensing of the box by several robots. This increases the



likelihood that the distribution of robots around the perimeter of the box will be
asymmetrical causing the box to move in one direction quicker than if a symmetrical
distribution occurred simultaneously. The collective behaviour of the group keeps the

box rooving even in the event one robot fails due to its quick replacement by a

neighbouring robot.

5.6 Related Work

Within several different disciplines, there have been a number of research projects
aimed at achieving some form of collective behaviour with a group of 2utonomous
agents capable of sensing their immediate environment. This section briefly surveys

some of the more relevant work in simulating collective behaviour.

5.6.1 Computer Graphics

Within the Computer Graphics literature, there is an animation technique referred to as
Stimulus Response (S-R) animation. S-R animation is computer animation achieved by
giving objects in a simulated environmeat rudimentary sensory capabilities and the
ability to respond to other objects in the environment (Yang and Ware, 1989). The
mapping between sensors and effectors provides for a behaviourally-controlled
animation. This technique is being explored by a number of researchers (Reynolds,
1987; Wilhelms and Skinner, 1989; Yang and Ware, 1989).

The work of Craig Reynolds (1987) is particularly relevant to our approach.
Reynolds has simulated the flight of a flock of birds using a distributed behavioural

model which assumes a flock is simply the result of the interaction between the
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behaviours of individual birds. Each simulated bird is implemented as an independent
actor that navigates according to its local perception of the dynamic environment. To
build a simulated flock, Reynolds started with a bird model that supported geometric
flight and added three behaviours that led to simulated flocking. Those behaviours
were: Collision Avoidance, avoid collisions with nearby flockmates; Velocity
Matching, attempt to match velocity with nearby flockmates; and Flock Centering,
attempt to stay close to nearby flockmates.

Reynolds' approach differs from the one presented in this thesis in the method used
to implement the flock centering behaviour. Flock centering causes the bird to fly in a
direction that moves it closer to the centroid of the nearby birds. Since our physicai
robots cannot be equipped with a sensor that would allow for the calculation of the
centroid we can not employ this technique in simulation. Our FOLLOW behaviour has
a very local perception oriy and coupled with a behaviour-preference causes the

herding behaviour similar to Reynolds’ flocking.

5.6.2 Simulation of Adaptive Behaviour

An interesting approach to Al called the Animat approach involves simulating and
understanding complete animal-like systems. The approach advocates gradually
building up to human intelligence (Wilson, 1991). Within this literature are a few
studying Collective Behaviour. Theraulaz et al. (1991) propose a simplified model for
functional self-organization and how such a model could be applied in the coordination
and self-organization of groups of interacting robots with simple local computational
properties (for another example of collective behaviour see Deneubourg et al., 1991).

Their model is also based on the study of social insects—wasp colonies in particular.
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The model they present is based on their observations of task assignment in wasp
colonies and describes the task assignment process in a hierarchically structured society
in which two types of interaction control individual behaviour. The first is a
hierarchical type of interaction in which the individuals of the society are ordered in a
dominance structure with the highest ranking member designated the & individual. The
second tyvpe of interaction is a trorhic type of interaction controlling relationships
between individuals and the environment. Trophic interaction represents the colony's
demand for food and care, and varies an individual's response threshold to this type of
stimulation. This eventually leads to a task specialization among individual colony
members similar to a caste structure. Their mode! differs from ours in that we do not
have a hierarchical structure for our populations; all individuals are considered the
same. Our model also has no mechanisn: that varies the sensor response thresholds

anc therefore, no caste structure emerges from our system.

5.7 Summary

In this chapter we have presented our robot population simulator SimbotCity and its
architecture for constructing and testing collective tasks. Simulation allows us to test
the control strategies for populations of task achieving behaviour-based robots. Our
approach is to employ a group of homogeneous robots controlled by a set of simple
sensor driven reflexive behaviours whose actions are dependent on the current state of
the environment in which the robot is situated. The resulting emergent global

behaviour is a result of the individual robot's ability to sense its progress, via negative

feedback, towards the collective geal.

39



In the next chapter, we present our physical implementation of the box-pushing task

and describe the system's collective behaviour.
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Chapter 6
Box-Pushing Robots:

A Collective Task Implementation

6.1 Introduction—Implementing the Theory

In order to test the contro’ strategies, developed in simulation, in the real world we have
constructed a system of five identical behaviour-based mobile robots capable of
achieving simple collective tasks without centralized coordination or the use of explicit
communication (see figure 19). Control of the group of robots is accomplished by
having each robot work toward a common goal. A simple form of cooperation among
the Tobots is achieved by ensuring they do not interfere with each other. Each robot is
antonomous and equipped with sensors for detecting both the goal and obstacles.

In this chapter we present a simple collective task implementation and discuss its
relevance to the proposed control theory. We begin in section 6.2 by outlining our
objectives in constructing robots and present the collective task we have demonstrated.

In section 6.3 we present an overview of the robot's architecture. In section 6.4 we
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explain the architecture’s implementation. Section 6.5 discusses the expertmental
results obtained in demonstrating the collective task. Finally, in section 6.6 the results

are compared with the stated objectives and suggestions for other collective tasks are

examined.

Figure 19: These five identical autonomous mobile robots were designed to locate and
collectively push a box without centralized coordination or the use of explicit

communication.



6.2 Objectives in Constructing Robots

Building physical robots and testing their performance and dynamic interaction in the
real world is the ultimate test for any proposed system. In doing so, we hope to
discover how well the proposed comrol model does or does not work. By having
already tested the control strategies in simulation we have lessened the burden and
increased the likelihood for success. However, as the inherent uncertainties of a
dynamic real world rears its ugly head, we shall be prepared to meet them soldering
iron in hand.

The coltecy v s -ve chose to implement is box-pushing. The task is such that i
cannot be accomplish=d by one robot be. 2~ - " hax s 100 heavy to push; therefore,
the collective effort of several robots is necessury. To accomplish this task the robtots
must locate the box; move ioward it while avoiding collisions with other robots;
distribute themselves along a side and push. In doing so, we hope to test the first
lemma of our theory, namely, group behaviour may result by executing a common goal
oriented collective task. We also hope to test the simple cooperative strategy of non-

interference thereby verifying its usefulness in collective behaviour.

6.3 The Architecture of a Box-Pushing Robeot

The robot's architecture consists of GOAL and AVOID behaviour modules. The
GOAL behaviour functions to locate and guide the robot toward the box, while the

AVOID behaviour handles obstacle avoidance including other robots. The control

architecture is illustrated in figure 20.
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Figure 20: The box-pushing robot's control architecture used to control two wheel
motors.

Each robot is equipped with five sensors. Sensors S1 and S2 are used by the
GOAL behaviour to locate the box. Sensors S3 and S4 provide forward looking
obstacle detection and sensor S5 is used to detect lack of progress toward the goal and
is treated as an avoid response. A simple fixed priority between behaviours controls

arbitration with the AVOID behaviour having the highest priority.

6.4 TImplementing the Control Architecture

The control architecture is implemented using a combination of analog and digital
circuits mounted on a plexiglass chassis. The architecture can be divided into three
main functicnal units consisting of sensors, behaviours and actuators explained below.
Sensors S1 and S2 are photovoltaic cells capable of detecting the box which is
equipped with a 100 watt light bulb. Sensors S3 and S4 are near infrared Light
Emitting Diodes (LEDs) with a detection range from 1 to 18 inches. Sensor S5is a

switch which becomes active if the robot is pushed backwards. All sensors produce

binary on or off signals.
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Behaviours are implemented in combinational logic and are invoked when their
associated sensor becomes active. The behaviours are reflexive and have no memory.
Behaviour arbitration is handled with a simple combinational circuit assigning highest
priority to the AVOID behaviour module. When the left photovoltaic sensor (S1)
becomes active the GOAL behaviour activates the right wheel motor causing the robot
to move toward the left. Likewise, when the right photovoltaic sensor (S2) becomes
active the GOAL behaviour activates the left wheel motor causing the robot to move
toward the right. When both sensors become active the GOAL behaviour activates both

motors causing the robot to move straight forward. In this manner the robot can locate

and move toward the box.

Figure 21: Close-up of an individual box-pushing robot.



The AVOID behaviour is invoked when any one of the two obstacle sensors S3 and
S4 are active. Sensors S3 and S4 are located on the left and right side of the robot
respectively (see figure 21) and sense obstacles within 10 inches of each side of the
robot in a 40° cone. Activation of the left sensor causes the robot to move right;
activation of the right sensor causes the robot to move left; activation of both sensors
cause the robot to move right. Sensor S5 detects when the robot is being pushed
backwards and therefore not making progress towards the goal and invokes the AVOID
behaviour to turn the robot away from the box.

Each robot has two actuators, a left and right wheel motor used to provide mobility.
Steering is accomplished by actuating one motor at a time. This allows the robot to turn
left, right and forward. Backward motion is accomplished by reversing the polarity to

the motors. An idle wheel on the front balances the tripod wheel configuration.

6.5 Demonstrating Group Behaviour
All demonstrations designed to test the system were video recorded. The first of these
tests were performed on each individual robot in order to rou ghly calibrate the sensors
to the same values. Tests involving the robots were conducted by starting the robots in
an initial configuration, much the same way as in simulation. By adjusting the goal
sensors 1o respond to the light on the box only, the system could be started and stopped
by turning the box light on and off. The following sequence of pictures were taken in
this manner.

The robots were first tested individually. Figures 22-24 show a robot avoiding an
obstacle on its way to the box (shown at the top of the picture). The infrared sensors

have a range from 1 to 18 inches depending on the physical alignment of the transmitter
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and receiver pair. Obstacle detection is accomplished by transmitting a directed
modulated light signal in the near infrared spectrum and seasing its reflection with a
phototransistor receiver. This method of obstacle detection is not completely accurate
due to the reflectance property of some surfaces. The technique was sufficient tor
obstacle avoidance in the robots providing the velocity at which they travelled allowed
sufficient time to negotiate a turn. One method of increasing the sensing range was to

cover each robot in retro-reflecting tape.

Figure 22: The first of a three picture sequence showing a single robot avoiding an
obstacle on its way to the goal.
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Figure 24: The last picture in a sequence of three showing obstacle avoidance.



Next the robots were tested in a group of three (figures 25-27). The initial
configuration was set so the robots would collide if they continuned on their original
course. As they progressed toward the goal the AVOID behavinur kept the robots from
colliding for the majority of the time. Collisions occurred whenever the sensors missed

an oncoming robot. Reliability of the AVOID behaviour could be increased by adding

additonal infrared sensors.

Figure 25: The first picture of three showing a group of three robots moving towards
the goal.

00
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Figure 26: The second picture of three showing a group of three robots moving

towards the box.

Figure 27: The last picture in a sequence of three showing the robots pushing the box.
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The remaining demonstrations were conducted with all five robots in a variety of
initial configurations. The robots converged on the goal and pushed the box in a

number of directions depending on how many robots were on a given side.

6.6 Summary

In this chapter we have presented a simple collective task implementation which uses
one of the five suggested methods for controlling a group of autonomous mobile
robots. The approach we implemented involves controlling a group of five physical
robots working toward a common goal. The collective task is accomplished without
centralized coordination or the use of explicit communication among the robots. The
described svstemn demonstrates a simple form of cooperaticn takes place among robots
that do not interfere with one another.

An important feature of the system is that simple reflexive behaviours can be used
to control the individual robot in a gnal directed manner using equally simple binary
sensors. The behaviours and their arbitration mechanism are constructed using simple
combinational logic. An important implication of this simplicity is that the control
architecture could be scaled down to fit on a small silicon chip. This would allow for
the creation of a large number of cost effective robots to be used in areas too tiny for
more traditional robots. Finally, the system demonstrates the feasibility of controlling

populations of autonomous robots without the need for explicit communication.



Chapter 7/

Conclusion

7.1 Summary

Research in behaviour-based robotics has led to radically different architectures for
controlling autonomous robots. These new architectures emphasize a more direct
coupling of perception to acton and a dynamic interaction with the environment
resulting in systems with an emergent functionality. Systems that chose to employ this
methodology must be designed in a way that make use of an interaction loop between
the system and the environment which ultimately converges towards the desired goal.
Most research projects have concentrated on designing single autonocmous robots
capable of achieving a simple insect-like intelligence. Useful tasks may be
accomplished with these simpl’ behaviour-based control mechanisms provided multiple
robots are organized into collections of task achieving populations.

The research described in this thesis attempts as the first step to propose a control

theory suitable for controlling populations of behaviour-based robots. Our approach to
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controlling multiple robots involves the use of group behaviours which may be invoked
using several sensory-based mechanisms. The strategies proposed have resulted from
the study of social insects which exhibit collective task achieving behaviours. To test
our control theory we created a simulator, called SimbotCiry, which allowed us to
create configurations of multiple robots designed to achieve a collective task. Once
satisfied the control strategy was feasible, we then constructed a system of five physical
robots designed to accomplish a simple collective task without any centralized
coordination or the use of explicit communication. The approach, employed to control
the group of five robots, involved having the robots work toward a common goal.
Using non-interference as a simple form of cooperation the robots were able to
collectively locate and push a box in their environment. The system demonstrates the

feasibility of the proposed control theory warranting its further investiga®on.

7.2 Future Research

There are a number of areas of the described research that could be expanded upon
beginning with the simulator, SimbotCiry. In its current version (1.08) robots are
constructed by coding the selected sensor, actuator and behaviours and then
recompiling the system. A more general implementation allowing the user to
interactively construct a robot by selecting its components would be more useful. Also,
task definition should allow for a wider range of collective tasks to be explored by the
user.

Group behaviour is the unique method the theory advocates for controlling
populations of autonomous mobile robots. The system of physical robots explored the

first method proposed for invoking group behaviour. This methed involved using a
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common goal as a means of controlling the group of autonomous robots. The
remaining four methods of group behaviour need to be tested in the real world.

The second method of invoking group behaviour involves keeping the robots
together in herds. This may be accomplished by designing a suitable FOLLOW
behaviour. The behaviour would require sensors that detect the presence of other
robots, this may be accomplished using infrared transmitting beacons on each robot.
Receivers on the robot would detect and guide the robot toward the herd. The group
would then move as one mass capable of distributing itself over an arca. This could be
useful if the system of robots were being used to gather spatial data. The system could
then be viewed as a flexible array of sensors capable of reconfiguring itself. Such a
system would possess sensing capabilities similar to Moravec's Robot Bush (Moravec,
1988), a fictitious robot constructed in a tree-like fashion with hundreds of tactile
sensors at its leaves.

The third method of invoking group behaviour involves usin” environmental cues.
Collectve tasks can be designed to allow the environment, in which the robots work, to
provide the cue that invokes the group behaviour. This method requires careful study
of the environmental changes as the task proceeds and focuses on the perceptual
changes rather than the individual steps in the collective task. Task progression is then
viewed as a sequence of behaviou:a! steps, with each siep effecting a perceivable
change in the environment. These changes form the environmenial cucs necessary o
invoke the next behavioural step in the task. Since the robots 4il perceive these changes

simultaneously the method forms a basis for controlling the group.
The fourth method of invoking group beiaviour entails having the robots become
aware they are in a group. Special task achieving group behaviours then become

active. The method could employ a sensor ring which surrounds the robot and is used



to detect the presence of neighbouring robots. Robots in the middle of such a group
would then invoke the group behaviour. This form of control would divide the robots
into different classes in which robots within the group are assigned different functions.

The fifth method of invoking group behaviour uses autostimulation. This is a form
of explicit communication in which the robot broadcasts a signal that invokes the group
behaviour. This method would be useful in tasks requiring many possible decision
branches for their execution. For example, using multple robots to perform a search
for an object, which once found could terminate the search. Other forms of explicit
communication for group control could also be explored.

The research described in this thesis is intended to bt an initial exploration into
achieving tasks collectively using a system of multiple robots. As such, its primary
goal was to examine the feasibility of the approach we have outlined in this report. The
work has proven to be formidable, but the experiences of building robots which operate

in the real world has been an enlightening one. Collective Robotics may one day prove

to be a suitable tool in achieving useful tasks.
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