
The way ahead is long. I see no ending, yet high and low I’ll search with my will unbending.

– Qu, Yuan, ancient Chinese poet.

University of Alberta

A FAST CIRCUIT SIMILARITY-BASED PLACEMENT ENGINE FOR FIELD
PROGRAMMABLE GATE ARRAYS

by

Xiaoyu Shi

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Xiaoyu Shi
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis, and
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatever without the author’s prior written permission.

To my dear parents, Guang Shi and Youcheng Yu,
and my lovely fiancee, Yuanfang Sun,

I would never achieve this without their endless love.

Abstract

This thesis work presents a novel and efficient circuit similarity algorithm to detect both the local

and global topological similarity between two circuits (configurations). Targeting placement, one of

the most time-consuming phases in Computer Aided Design (CAD), our proposed circuit similarity

algorithm, namely CSBP (Circuit Similarity-Based Placement), is able to significantly accelerate

placement based on this similarity. Moreover, circuit similarity can also be applied to other CAD

phases, such as routing and verification. We have applied CSBP to incremental design for FPGAs

and design space exploration for FPGAs, respectively. For incremental design, we generate the

placement of a logically optimized netlist based on the placement of the original netlist and the cir-

cuit similarity between the original and the optimized logic-level netlists using both mild resynthesis

and aggressive resynthesis. Experimental results show CSBP is averaged 31X faster than the state-

of-the-art Versatile Place and Route (VPR) with comparable wire length and estimated critical delay.

For design space exploration, experimental results show CSBP accurately depicts the “shape” of a

design space and pinpoints the optimal designs at both logic level and algorithm level. Moreover,

a turbo version of CSBP performs an average of 30X (up to 100X) faster than VPR’s while still

achieving comparable placement results.

Acknowledgements

I would first like to express my deepest gratitude to my co-supervisors, Dr. Osmar R. Zaiane and

Dr. Bryan Y. Hu, for their great support and valuable guidance in this work. Despite of being

extremely busy serving as the scientific director of Alberta Ingenuity Center for Machine Learning

(AICML), Dr. Zaiane always managed to give me considerable time to answer my questions and

provide insightful ideas on my project. It was a great pleasure working with him and his wisdom

and personality would have a tremendous influence on my future career. A big thank-you goes to

Dr. Hu whom I have known back in the UCLA days in 2008. He was always there to help me out

when I ran out of ideas to attack the problem. He is not only a great mentor, but also an amazing

person, a great friend, and has been my role model ever since.

I would also like to thank Dr. Guohui Lin, who also provided a great deal of insightful advice

into this research. I am especially thankful for Dr. Lin’s help in revising the iterative graph similarity

algorithm to circuit similarity algorithm.

I would like to thank many other people who have contributed to this project in various ways, in-

cluding Dahua Zeng, who implemented the iterative graph similarity algorithm module, Bret Hoehn,

who helped me carefully proofread the papers over and over again and many others in the depart-

ment whom I don’t have enough space to list in here, for making my graduate study at University of

Alberta a pleasant, rewarding and unforgettable experience.

Last but not the least, I would like to thank my family, who have always been supportive of my

education, and words could not express how grateful I am for having them in my life. They are

always proud of me, as I am always proud of them.

This project was generously supported by AICML and Natural Sciences and Engineering Re-

search Council of Canada (NSERC). I am grateful for their financial support.

Table of Contents

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Statements . 2
1.3 Contribution of this Research . 2
1.4 Thesis Outline . 3

2 Preliminaries 5
2.1 Overview of FPGAs . 5
2.2 Overview of FPGA CAD Flow . 6

2.2.1 Synthesis . 6
2.2.2 Placement . 8
2.2.3 Routing . 15
2.2.4 Timing and Delay Analysis . 16

2.3 Graph Similarity . 17
2.4 Incremental Design for FPGA . 20
2.5 Design Space Exploration for FPGA . 21
2.6 Summary . 22

3 Circuit Similarity 23
3.1 Motivating Example . 23
3.2 Circuit Similarity Algorithm . 26
3.3 Performance Enhancement . 29
3.4 Applications of Circuit Similarity . 31
3.5 Summary . 32

4 Experimental Results and Discussions 33
4.1 Case Study on Incremental Design . 33

4.1.1 Experimental CAD Flow and Settings . 33
4.1.2 Experimental Results for “imfs” . 35
4.1.3 Experimental Results for “rwsat2” . 41

4.2 Case Study on Design Space Exploration . 48
4.2.1 Logic-Level Design Space Exploration 48
4.2.2 Algorithm-Level Design Space Exploration 53

4.3 Summary . 55

5 Conclusions 57

Bibliography 59

A A Complete List of Commands in ABC 63

List of Tables

2.1 Temperature update schedule . 10
2.2 Summary of notions of similarity. 18
2.3 Summary of variables in iterative similarity algorithm 19

3.1 Status of layouts of Figure 3.4. 27
3.2 Similarity score matrix for two graphs in Figure 3.2 29
3.3 Similarity score matrix for two graphs in Figure 3.2 with pruning (β = 0.5, Bl =

Br = 0) . 31

4.1 Characteristics of the original and “imfs”-modified netlists. 35
4.2 Comparisons of initial solutions of different CAD flows for “imfs” in incremental

design. 36
4.3 Comparisons of post-routing wire length of different CAD flows for “imfs” in incre-

mental design. 37
4.4 Comparisons of post-routing area of different CAD flows for “imfs” in incremental

design. 38
4.5 Comparisons of post-routing critical delay of different CAD flows for “imfs” in

incremental design. 39
4.6 Comparisons of placement runtime of different CAD flows for “imfs” in incremental

design. 40
4.7 Characteristics of the original and “rwsat2”-modified netlists. 42
4.8 Comparisons of initial solutions of different CAD flows for “rwsat2”. 43
4.9 Comparisons of final placement bounding cost of different CAD flows for “rwsat2”. 44
4.10 Comparisons of final delay cost of different CAD flows for “rwsat2” 45
4.11 Comparisons of estimated critical delay of different CAD flows for “rwsat2”. . . . 46
4.12 Comparisons of final placement runtime of different CAD flows for “rwsat2”. . . . 47
4.13 Characteristics of the logic-level design space for 20 MCNC applications over 19

configurations. 49
4.14 Initial placement quality comparison of circuit “dsip” for 19 designs. 50
4.15 Final placement quality comparison of circuit “dsip” for 19 designs. 52
4.16 Comparison of total runtime (s) for logic-level design space exploration. The ‘*’

marked time is measured with a timeout. 53
4.17 Characteristics of the algorithm-level design space of 18 configurations using CMU

SPIRAL. 54

List of Figures

2.1 An island-style FPGA architecture [58]. 5
2.2 Overall CAD flow for FPGAs. 7
2.3 An illustration of the deterministic parallel approach. 14
2.4 Constant multiplier blocks generated by CMU SPIRAL (integer constants: 58, 183,

161, 7; bit width is 8). 21

3.1 CAD flow using circuit similarity. 24
3.2 Logic-level networks before and after optimization (the label above each node de-

scribes the level and reverse level of the node). 25
3.3 The placement of the original and modified networks. 26
3.4 Placement results for circuit “des”. (reference configuration has 1245 CLBs and

1501 nets, the new configuration has 1215 CLBs and 1471 nets) 27
3.5 Effectiveness of the present pruning techniques 30

4.1 CSBP CAD flows used in incremental design. 34
4.2 CAD flows used in the experiments for design space exploration. 48
4.3 Minimal estimated critical delay design space shape of 20 circuits on 19 designs. . 51
4.4 Final wire length design space shape comparison of VPR, CS and CS-t on circuit

“dsip”. 51
4.5 A simple example of a multiplier block with constants 23 and 81 [2]. 54
4.6 Wire length-delay space of VPR for 18 configurations. 55
4.7 Wire length-delay space of CS for 18 configurations. 55

List of Symbols

vi A node in graph G . 19
v′j A node in graph G′ . 19

X(n)
i,j Similarity score between node i in graph G(V) and node j in graph G′(V ′) in iteration n 19

t The iteration number . 19
n(v) The set of all adjacent nodes of node v . 19

π
An injective map from n(vi) to n(v′j), if |n(vi)|< |n(v′j)| or An injective map from n(v′j) to
n(vi), if |n(vi)| ≥ |n(v′j)| . 19

α A weight constant within interval (0,1) . 19
ε A terminating threshold for iterations . 19
M An upper bound for number of iterations . 19
kv : V→ V′ A predefined inter-similarity between two nodes . 19

ke : E→ E′
A predefined inter-similarity between two edges, where (vi,v) is an edge in graph G and
(v′j,π(v)) is an edge in graph G′ . 19

in(v) The set of all adjacent nodes that have an edge entering node v . 19
out(v) The set of all adjacent nodes that have an edge leaving node v . 19

ix

List of Acronyms

AIG And-Inverter Graph

ASIC Application Specific Integrated Circuit

CAD Computer Aided Design

CLB Configurable Logic Block

CS Circuit Similarity

CSBP Circuit Similarity-Based Placement

CS-t Circuit Similarity-turbo

DAG Directed Acyclic Graph

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

GUI Graphical User Interface

I/O Input/Output

IC Integrated Circuit

ICP Incremental Placement

IPR Incremental Physical Resynthesis

LUT Look-Up Tables

PI/PO Primary Input/Primary Output

PLB Programming Logic Block

QPF Quadratic Placement for FPGAs

RTL Register Transfer Level

SIMD Simple Instruction Multiple Data

VHDL VHSIC Hardware Description Language

VLSI Very-Large-Scale Integration

VPR Versatile Place and Route

List of Publications

[65] X. Shi, D. Zeng, Y. Hu, G. Lin and O. R. Zaiane. Accelerating FPGA Design Space Exploration
Using Circuit Similarity-Based Placement. International Conference on Field-Programmable
Technology, pages 373–376, 2010.

[66] X. Shi, D. Zeng, Y. Hu, G. Lin and O. R. Zaiane. Enhancement of incremental design for
FPGAs using circuit similarity. The International Symposium on Quality Electronic Design,
pages 243–250, 2011.

[67] X. Shi, Y. Hu, G. Lin and O. R. Zaiane. CSBP: A Fast Circuit Similarity-Based Placement
for FPGA Incremental Design and Design Space Exploration. Integration, the VLSI Journal (In
Review), 2011.

xi

Chapter 1

Introduction

1.1 Overview

Field Programmable Gate Arrays (FPGAs) are programmable integrated circuits that can be repro-

grammed after manufacture. The prime advantages provided by FPGAs are their fast manufacturing

turnaround time, low start-up costs and ease of design that involves less financial risks [51]. How-

ever, since the size of FPGAs has reached the million gates level, modern FPGA designs suffer from

long compilation time, and placement is one of the most time-consuming phases.

In a typical FPGA incremental design cycle, several iterations of synthesis need to be performed

before delivering the final design. There are several phases of a design process in which iterative

repetitions are common, including the initial checks of the Register Transfer Level (RTL) code,

constraint verification, timing closure, and in-system debugging [20]. Each of these steps requires

a time-consuming resynthesis of the FPGA design. Several methodologies have been devised to

save the recompilation time [25, 33, 70, 2]. However, these methods either need to keep the internal

node boundaries or have to use extra information (i.e. name matching), which are usually destroyed

during aggressive resynthesis. Therefore, a faster and more effective tool is required for FPGA

incremental design.

On the other hand, an FPGA design offers a variety of customizations by varying design param-

eters. Those parameters include decisions at the algorithm level (e.g., Simple Instruction Multiple

Data (SIMD) or pipeline) or at the architecture level (e.g., cache and bus structures); options at high-

level synthesis (e.g., scheduling and resource binding tradeoff) or combinations of various logic

synthesis and optimization (e.g., the Berkeley ABC toolset [9]). Efficiency of a design space ex-

ploration tool is of paramount importance for designers to quickly identify a small set of favorable

design parameter combinations (i.e., configurations) for a multi-objective design. Some methods

have been devised to minimize the number of configurations to be evaluated in the design space

exploration [18, 29, 8, 42]. However, FPGA application designers still heavily rely on the general

CAD tools (e.g., Altera Quartus or Xilinx ISE) to generate every single configuration due to the lack

of efficient FPGA design space exploration tools.

1

A unique property shared by both the incremental design problem and the design space explo-

ration problem is the existence of similarities between netlists of different circuits (configurations).

For the incremental design problem, functional changes or optimizations in RTL or the logic level

are small, and they generally result in a “similar” topology of the modified netlist compared with

the original one [52]. For the design space exploration problem, such similarities include both local

similarity and global similarity. Local similarity is due to the use of common primitives (e.g., Digi-

tal Signal Processing (DSP) modules or macros) in different configurations. Global similarity exists

because the characteristics of the application are shared by all configurations that implement it.

1.2 Thesis Statements

In this thesis, we propose a circuit similarity algorithm and put forward a novel Circuit Similarity-

Based Placement (CSBP) framework. With the significant speedup for placement runtime and satis-

factory placement quality, we apply CSBP to accelerate FPGA incremental design and design space

exploration, respectively. We address the following hypotheses in this thesis:

• Hypothesis 1: The proposed circuit similarity algorithm can efficiently detect the intrinsic

topological similarities between circuits (configurations) in both logic level (including both

mild and aggressive resynthesis) and algorithm level.

• Hypothesis 2: The proposed CSBP flow can significantly accelerate the FPGA placement

process with comparable placement quality compared to the state-of-the-art VPR tool.

• Hypothesis 3: The proposed CSBP can be applied to accelerate and facilitate the FPGA in-

cremental design process and FPGA design space exploration process.

1.3 Contribution of this Research

In this thesis work, we use circuit similarity1 to accelerate placement in incremental design and

exploration of the design space. To quantitatively represent such a similarity, the proposed circuit

similarity algorithm employs graph similarity [75], a widely applied technique in social network

analysis [44] and chem-informatic domains, to measure the topological similarity of two circuits.

We present an iterative algorithm to compute the circuit similarity (both local and global) between

the modified and original netlists, and identify the correspondence of nodes/edges. Based on such

circuit similarity, the placement and routing of the modified netlist can be derived from the layout

of the original netlist obtained in the previous iteration. Unlike many existing algorithms [33, 2],

which require radical changes to existing CAD tools, our approach simply inserts a plugin to the

existing CAD tools and preserves the “push-button” feature in the commercial FPGA CAD tools.

1Note that the same notion of “circuit similarity” was used in [32], but it was defined based on the Boolean functions of
logic gates in a circuit.

2

The proposed circuit similarity CAD flow first produces an initial placement and routing solu-

tion for the modified logic-level netlist (e.g., functional changes, optimizations or design parameters

changes), based on the layout of the original netlist and the circuit similarity between the origi-

nal and modified logic-level netlists. Based on this initial solution, an efficient refinement is then

performed as a fine-grain tuning for further improvement of the layout quality. Note that such a re-

finement procedure does not require a new implementation since the existing placement and routing

tools can be used with lower optimization strength (e.g., lower initial temperature in the simulated

annealing-based placement or fewer iterations in the negotiation-based routing). The essential in-

formation obtained from the previous design iterations is automatically captured and quantified by a

runtime-efficient “similarity detection” phase. We also take advantage of such “similarity” property

to perform an efficient yet accurate estimation of the design space.

We have applied the proposed Circuit Similarity-Based algorithm to Placement, namely CSBP,

and verified its effectiveness on incremental design for FPGAs and design space exploration for

FPGAs, respectively. For incremental design, we have used CSBP to generate the placement for a

logically resynthesized netlist (i.e., both mild resynthesis and aggressive reynthesis) based on the

placement of the original netlist and the circuit similarity between the original and the modified

logic-level netlists. Tested on the 20 largest MCNC benchmark circuits [73], experimental results

show CSBP produces a much higher quality initial placement than VPR’s [57] initial placement in

terms of bounding box costs and delay costs on both mild “imfs” resynthesis and aggressive “rwsat2”

resynthesis. Our CSBP is 31X faster on average than the VPR placement, while producing compa-

rable wire length and estimated critical delay. For design space exploration, we have performed

experiments at the logic-level and algorithm-level, respectively. At both levels, experimental re-

sults show that CSBP captures the characteristics of the design space with accurately estimated wire

length and critical delay, and pinpoints the best designs. Therefore, the design highlights and op-

timization efforts from the previous designs are preserved by CSBP, and can be reused in future

design iterations, thus reducing the engineering effort in the FPGA cycle. Moreover, CSBP achieves

an average of 30X speedup over VPR’s placement.

Two conference papers resulting from this work have been published [66, 65], and one journal

paper is under review [67]. One report of invention is being filed for U.S. patent. One open-source

software, circuit similarity-based placement toolset including a circuit similarity placement tool and

a circuit similarity visualization tool, is developed and publicly available for download2.

1.4 Thesis Outline

The thesis proceeds as follows. Chapter 2 provides preliminaries and background for this work. This

chapter briefly reviews FPGAs and the major steps in a typical FPGA CAD flow, including synthe-

sis, placement, routing and timing and delay analysis. This chapter also reviews the fundamentals of

2Download address: http://webdocs.cs.ualberta.ca/ xshi/soft.html

3

graph similarity algorithms and two case studies we present in this thesis: incremental design and de-

sign space exploration. Chapter 3 illustrates the circuit similarity-based CAD flow with a motivating

example and describes the circuit similarity algorithm in detail. Chapter 4 presents two case studies

using CSBP for incremental design and design space exploration, respectively, and experimentally

demonstrates the efficiency and the effectiveness of the proposed circuit similarity algorithm. The

thesis concludes in Chapter 5. Appendix A lists the resynthesis optimization commands used in

ABC toolset.

4

Chapter 2

Preliminaries

2.1 Overview of FPGAs

Field Programmable Gate Array (FPGA), a programmable integrated circuit, has gained great popu-

larity in the circuit design since its first introduction in 1984. The key advantage provided by FPGAs

is their reconfigurable ability compared to Application Specific Integrated Circuits (ASICs), where

a device is custom built for a particular design. By properly programming, FPGAs can implement

any functionality of ASICs without sending the chips to manufacturers for re-fabrication. Therefore,

FPGAs can significantly reduce the manufacturing turnaround time, save start-up costs and simplify

the design that involves less financial risks [51].

An FPGA chip consists of Input/Output (IO) blocks and other core programmable blocks. An

island style FPGA architecture is shown in Figure 2.1. The generic structure of island style FPGA

includes four main parts: Configurable Logic Blocks (CLBs), which are the basic logic blocks,

implement the logic functions of the circuit. IO blocks are the connections of FPGA and external

devices. The connection block is used to connect a CLB to the routing channels while the switch

block is used to connect the routing channels [58].

Figure 2.1: An island-style FPGA architecture [58].

FPGA programmability carries a price. In contrast to ASICs, the circuit speed of FPGAs is gen-

5

erally slower and the circuit area of FPGAs is generally larger. Moreover, since the size of FPGAs

has reached the million gates level, modern FPGA designs suffer from long compilation time, and

placement is one of the most time-consuming phases. Extensive studies have been performed to

search for better FPGA architectures in order to reduce the speed and area penalties, and improve

the efficiency of the placement as a single synthesis phase [57, 62, 71].

2.2 Overview of FPGA CAD Flow

The Computer Aided Design (CAD) or design automation process for FPGAs plays a critical role in

the field of modern FPGA design technology. With the rapid growth of the FPGA size, implementing

a circuit normally requires millions of programmable switches or configuration bits to be properly

set [58]. It is extremely difficult for Integrated Circuit (IC) designers to manually trace down all the

states for each switch or gate. Thus, CAD tools are devised to make the design process easier and

traceable for IC designers. More specifically, FPGA IC designers usually use high level hardware

description languages, such as VHSIC1 Hardware Description Language (VHDL) or Verilog [17],

to implement the circuit functionalities. In order to process the highly abstracted hardware descrip-

tions, CAD tools are used to convey those high level designs into a netlist, which is a formatted file

consisting of basic Programming Logic Blocks (PLBs) specifying the states of each programming

logic units and the connections among them. The conversion from hardware descriptions to netlists

is called synthesis, which can be further broken down into three sub-phases: technology optimiza-

tion, technology mapping and packing as shown in Figure 2.2. After synthesis, the FPGA circuit

designs can be then placed and routed into particular FPGA architectures. Finally, timing and de-

lay analysis can be performed before downloading the designs to the FPGA circuit boards. In the

following subsections, we will briefly describe the fundamentals and summarize the state-of-the-art

techniques of synthesis, placement, routing and timing and delay analysis, respectively.

2.2.1 Synthesis

Synthesis phase is a crucial step in FPGA CAD flow. First, synthesis tools automatically map a

FPGA circuit design that is described using a high level hardware description language to a library

of simple gates. This gives IC designers freedom to choose among different implementation op-

tions. For the synthesis methods, it can be divided into two categories: sequential synthesis and

combinational synthesis. In this work, we focus on combinational synthesis, which the presence of

latches or flip-flops are explicitly specified by IC designers. There are extensive studies on synthesis

methodologies for homogeneous FPGAs, but very limited methods are proposed for heterogeneous

FPGAs [27, 60, 4]. Therefore, an emerging trend of research is to speedup the synthesis process for

heterogeneous FPGAs with mixed size Look-Up Tables (LUTs). For example, using functional and

1VHSIC stands for Very-High-Speed Integrated Circuits, which was a U.S. government program aiming to develop high
speed circuits [16].

6

Circuit description

(VHDL, Verilog)

Technology Mapping

Netlist (.net)

Technology

Optimization

Packing

Route

Placement (.p)

Place

Routing (.r)

Timing & Delay

Analysis

Generate Bitstream

and Download

Synthesis

Figure 2.2: Overall CAD flow for FPGAs.

architectural symmetries in SAT-based Boolean matching to speedup heterogeneous FPGAs [69].

The goal of the synthesis phase is to minimize the number of logic blocks that are needed to imple-

ment the circuits and to maximize the circuit speed. Synthesis itself is complicated, enough to be

further divided into three sub-phases: technology optimization, technology mapping and packing.

Technology optimization

Technology optimization attempts to generate an optimal abstract representation of the logic cir-

cuits by removing redundant logic and simplifying logic as much as possible [6, 48]. There are two

main operations performed in technology optimization: network restructuring and node minimiza-

tion. Network restructuring operations include decomposition, extraction, factoring, resubstitution

and collapsing [6]. Node minimization operations include logic algebraic simplification and node

reduction using Boolean minimization techniques [48].

7

Technology mapping

Technology mapping maps the optimized netlist of basic gates into a restricted set of circuit ele-

ments. There are generally three FPGA architectures, namely LUT-based logic blocks, multiplexers

and wide AND/OR arrays. In this work, we only consider the most popular LUT-based2 logic blocks

architectures since previous research suggests that LUTs are an area-efficient method of implement-

ing combinational functions [49]. In this case, technology mapping maps the optimized netlists into

LUTs based on the logic Boolean functions. Technology mapping for LUT-based FPGAs can be

further divided into two major categories: library-based technology mapping and direct approaches.

LUT-based technology mapping is an active research area and both categories have been extensively

studied by previous research [49, 48, 31, 27], so we would skip the details of these techniques and

heuristics.

Packing

Packing groups several LUTs and registers (or flip-flops) into one logic blocks after technology

mapping phase. Given certain circuit specifications, such as the maximum number of LUTs a logic

block can contain and the number of input/output signals a logic block can contain, the essence of

packing phase is to optimize the inner connections between LUTs so that the number of logic blocks

needed is minimized and the number of signals needed to be routed among blocks is reduced. Pack-

ing problem can be classified as a form of clustering problem, which is essentially the same problem

as partitioning problem [58]. Partitioning uses a top-down hierarchical design methodology to di-

vide the circuits into smaller, more trackable components while clustering uses a bottom-up design

methodology to group the basic components (i.e. LUTs in this context) into different logic blocks.

The partitioning method has been extensively studied and can be divided into four major categories:

move-based approaches, geometric representations, combinational formulations and clustering ap-

proaches [12]. The clustering method has also been extensively studied, among which spectral and

labeling methods are the top popular two [58, 34, 21].

2.2.2 Placement

Placement in FPGA determines the physical locations and inter connections of each logic block in

the circuit design, which now becomes one of the bottlenecks of the CAD processes. Since this

work essentially focuses on the placement engine, the classic placement methods that have been

used for the past two decades along with some modern placement techniques in the last 5-10 years

are thoroughly reviewed. More specifically, these placement methodologies are grouped into four

different categories, namely simulated annealing approach, min-cut approach, quadratic approach

and parallel approach. The methodology of each algorithm is briefly described, with an emphasis

2A K-LUT device consists of K inputs, one output, and 2K configuration bits that serve as truth table entries. Therefore,
a K-LUT can implement any K-input function by probably configuring its 2K bits.

8

on the comparison of performances and evaluation of its advantages and disadvantages. In partic-

ular, simulated annealing approach is stated in detail since the circuit similarity-based placement

engine in this work is based on simulated annealing. Generally in the placement step, the netlist

of logic blocks is placed into FPGA circuit [58]. The optimization goal of placement is to place

the blocks in a proper location so that the objective function is minimized. There are three com-

mon optimization criteria for placement, time-driven requirement, wire-length-driven requirement

and path-driven requirement. Time-driven placement attempts to minimize the delay in the circuit

while wire-length-driven placement targets to minimize the total wire used. Path-driven placement

focuses on trying to put the logic blocks on the critical path of the circuit so that both timing and

wire length can be optimized. New challenges have emerged since the size of FPGAs has reached

million gates level. The design and development using FPGAs suffer from a significant amount of

placement time as turnaround time is crucial. For the next generation of CAD tools for FPGAs, fast

and quality placement methods are critical and highly demanded.

Simulated annealing placement

An annealing process allows molecules to cool down in a controlled manner by temperature in order

to find their best fit in the system. Simulated annealing placement mimics the annealing process

used to gradually cool down molten metal to high quality metal objects. An initial placement is

created by randomly placing the logic blocks in the circuit. A large number of block swaps is made

to gradually reduce the cost. In this sub-section, the well-known Versatile Place and Route (VPR)

tool using simulated annealing is reviewed [57].

The simulated annealing algorithm starts with random “move”, which swaps the logic blocks

[58]. Multiple cost functions can be defined to address different design specifications, such as wire-

length driven criteria, time-driven criteria and path-driven criteria. The cost functions can also be a

linear combination of those criteria in a reasonable computation time so that all the criteria can be

considered at the same time [57].

Algorithm 1 Pseudo-code of similarity annealing-based placer [58].
S = randomPlacement();
T = initialTemperature();
Rlimit = initialRlimit();
while (exitCriteria() == false) do

while (innerLoopCriteria() == false) do
Snew = generateViaMove(S, Rlimit);
∆C = Cost(Snew) - Cost(S);
r = random(0, 1);
if (r < e−∆C/T) then

S = Snew;
T = updateTemperature();
Rlimit = updateRlimit();

9

As shown in Algorithm 1, simulated annealing starts with a random placement of each logic

block in the circuit. After the initial placement, a certain number of moves are performed per

temperature based on the following [58]:

MovesPerTemperature = InnerNum× (N4/3
blokcs)

where InnerNum can be controlled by the user and its default value is 10. After each swap, a move

is either accepted or rejected depending on whether the cost is reduced or not at certain temperature.

If the cost decreases, the move is always accepted. However, if the cost increases, there is still

probability for the move to be accepted. The probability is given by e−∆C/T , where ∆C is the change

in the cost function that the move courses, and T is the current temperature. This hill-climbing

ability allows simulated annealing method not to converge to local minima and thus to reach global

optimization [57].

A good annealing schedule is essential to the final results. With the motivation of increasing the

amount of time spent at temperatures where a significant of moves are being accepted, the following

temperature update schedule is used in VPR:

Tnew = αTold

where α is defined as shown in Table 2.1. Note that Raccepte is the percentage of the move that has

been accepted at the previous temperature.

Raccept α

Raccept > 0.96 0.5
0.8 < Raccept ≤ 0.96 0.9
0.15 < Raccept ≤ 0.8 0.95

Raccept ≤ 0.15 0.8

Table 2.1: Temperature update schedule

Even with a good annealing schedule, millions of block swaps still need to be evaluated at each

temperature. The most time consuming and computationally intensive part is calculating the cost

change caused by the swap. It is crucial to speed up this part as fast as possible. VPR applies

some heuristics to optimize this process, such as using incremental net bounding box update and a

changing range of distant limit [58].

There are several advantages of the simulated annealing-based placer. Firstly, it outperforms the

other placers as long as direct comparisons can be made [57]. The FPGA CAD tool VPR, which

uses the simulated annealing method, has become the state-of-the-art tool in the research community.

Secondly, simulated annealing placer has an open cost function which can be defined as either wire-

length-driven, time-driven or path-driven. The cost function can also be the linear combination of

10

the above types though the weights need to be carefully chosen. Thirdly, simulated annealing can

achieve global minimum due to its hill-climbing ability. However, simulated annealing is very slow

because of its computationally expensive and time consuming evaluation of each move. In addition,

due to the inherent sequential nature of simulated annealing, it is very hard to run it in parallel using

multi-core CPUs or clusters.

Quadratic placement

Quadratic placement method uses the squared wire length as the objective function. It tries to min-

imize the cost by solving the linear equations deprived from the models [74]. Although quadratic

placement only considers the squared wire length, it can efficiently finish the placement process

with nearly no quality lost. As a result, quadratic placement is widely used in the Very-Large-Scale

Integration (VLSI) placement [74].

Different cost functions can be defined as linear equations in terms of wire length. One of the

classic algorithm proposed in [74] can be divided into three stages.

• In stage One, by repeatedly building up, modifying and solving linear equations, a good initial

placement can be obtained. This stage is performed until no significant improvement can be

achieved.

• In stage Two, instead of building and solving linear equations, nodes can be directly moved

to reduce the total wire length since stage one has already given a reasonably good initial

placement. The process in stage two is much faster than stage 1 so more iterations can be

performed to achieve a better refinement.

• In stage Three, simulated annealing can be used to further refine the placement with low

temperature.

The main advantage of the quadratic placement technique is that it significantly reduces the

runtime with almost no quality lost compared to VPR. According to the results reported in [74],

among the 20 MCNC benchmark circuits [24], Quadratic Placement for FPGAs (QPF) runs 5.8

times faster than VPR on average while the wire length obtained by QPF is only 1.9% more than

VPR. By using better algebraic method to solve the linear equation, the run time could be further

reduced. However, since the squared wire length is the only factor considered in the objective

function, the timing part of the placement can not be shown in the quadratic placement.

Min-cut placement

Partitioning-based placement algorithms have been fast and hence scalable for large ASIC placement

and have also been applied to FPGAs. One of the recent partitioning-based placement methods, the

min-cut placement, recursively applies bi-partitioning to map the netlist of a circuit into the FPGA

11

layout region. It minimizes the number of cuts of the nets, leaving the highly connected logic blocks

in one partition [14].

Delay optimization is very important in circuit design. Effective delay minimization on large

circuits is possible only by accounting for performance as early as possible in the design flow. Min-

cut placement targets delay minimization on the placement stage, which is an early step in the CAD

design process.

The min-cut placer employs the fundamental divide-and-conquer method. A circuit is recur-

sively bi-partitioned in a breadth-first manner. The cut direction (horizontal or vertical) is deter-

mined based on the criticality of the nets crossing the four borders so that the total cut numbers are

minimized [14]. This recursive process is repeated until each partition contains only a few blocks

to group the highly connected blocks together so that the placement cost is decreased. The goal of

min-cut is to find a proper partition that cuts fewest wires in the net.

All the edges in the net are weighted with timing criticality, as well as terminal alignment of

critical nets [14]. The algorithm can be divided into three steps. In the first step, min-cut uses the

cutting-edge multilevel partitioner hMetis [63] as its partitioning engine. During the partitioning

process, a tight connection between the circuit graph and placement is maintained, which represents

coordinates of all blocks on the FPGA fabric. Recursive partitioning is done until each leaf parti-

tion has only a few blocks. In some cases, some leaf nodes might contain more nodes than it can

accommodate, so overlaps must be removed. In step two, overlaps are removed by using a greedy

technique, which moves blocks to the closest best aligned partition. Finally, the placement is refined

by using a low temperature simulated annealing method to further minimize the delay.

The advantage of the min-cut placement technique is that it minimizes the delay in the placement

stage, which lays the foundation for designing a better performance circuit. In addition, the run time

reported in [14] shows that an average 3-4 times speed up is gained compared to VPR on 20 MCNC

benchmarks with a slight degradation in the quality. However, the results of min-cut rely on how

well the partition is performed. Current research is focused on finding some heuristics to better

partition the circuit. Also, min-cut placer may not be able to reach the global minimum because of

some of the greedy strategies it uses.

Parallel placement

As the scale of modern FPGAs has reached millions of logic blocks, more efficient and scalable

FPGA placement algorithms are needed. Parallelization is an appealing solution for providing fast

placements due to the rapid development of multi-core CPUs in recent years. For the parallel place-

ment approaches, we focus on the simulated annealing-based methods since they outperform the

other placers. The main drawback is their slow runtime. We divide modern simulated annealing

based parallel FPGA placers into three categories: parallel move approach, area based approach and

deterministic parallel approach.

12

A: Parallel Move Approach Since there are a myriad number of moves at each temperature, the

motivation of the parallel move approach is trying to accelerate the simulated annealing process by

performing several moves at the same time. There are three possible cases after each move is done.

(1) the move is accepted, and two blocks are swapped (2) the move is accepted and a block is moved

to an empty location (3) the move is rejected. Moves can be done in parallel only if they do not move

the same block or move to the same location. However, ensuring the above can only guarantee there

are no move collisions. Net cost collision might still happen when two moves that move blocks of

the same net may evaluate the bounding box incorrectly as each move can not take into account the

fact that the other move is changing the bounding box cost.

Generally, there are two ways to deal with the move collision and the net cost collision:

• Ignoring the errors in the cost function is the easiest way to resolve collisions, but it has

negative effects on the accuracy of the cost which interferes with the acceptance of moves,

hence adversely affects the results.

• Finding the disjoint moves is an alternative way that not only moving different blocks, but

also belonging to different nets. However, the over restricted moves result in a smaller swap

space and the synchronization overheads tend to overwhelm the gain in parallelism.

Both of these two methods show negative speedups [7]. This is due to the overhead of syn-

chronization outweighs the advantages of parallelization. Nevertheless, the thought of trying to

parallelize the moves inspires many other parallel FPGA placement methods.

B: Area Based Approach The area based approach is motivated to solve the collision illustrated

in the parallel move approach by partitioning the area of FPGA and assigning the partitioned areas

to different processors. The whole circuit is partitioned into several parts, and each processor is in

charge of one partition.

The moves evaluated are much less restricted compared to the move parallel approach. However,

collisions could still happen because multiple processors may move blocks belonging to the same

net across the partition. These errors can be tolerated because the net collisions that span over two or

more partitions rarely happen. Moreover, with cooling temperature, the swaps tend to occur between

nearby blocks. Since each processor can only move blocks within its own partitioned area, to allow

the placement to reach global minimum, the partition must be carefully chosen so that each block

has the freedom to move to any arbitrary location in FPGA. The area based approach uses both

horizontal and vertical partitions to ensure the global minimum could be reached [7].

The experimental results show a non-linear speed up has been gained compared to the sequential

placer and the cost is not degraded with the increasing processors. This is due to the less synchro-

nization requirements.

C: Deterministic Parallel Approach One of the constrains of parallelism is the non-determinism of

13

the results. This constrain is seldom studied in the past work (an exception is [10]), but is vital in a

commercial context for the following two reasons [62]:

• When IC designers use a commercial FPGA placement tool, they must be able to reproduce

the problem when a bug is reported. Non-determinism makes this extremely difficult because

the results are varied at each run.

• In the release testing stage of building a placer, it would be terribly difficult to look into failing

tests since the results changed randomly.

The algorithm proposed in [62] parallelizes the placement while keeping the results determin-

istic. The deterministic parallel approach partitions a move into two stages: processing and final-

ization. As shown in Figure 2.3, during the processing stage, each processor proposals a move and

evaluates it. This takes the vast majority of time and thus occurs in parallel. In order to avoid

collisions and maintain the deterministic property, the calculated moves are put into a queue and a

dependency checker is needed to ensure there is no collision. If collision occurs, it will re-propose

the moves that have collided. Note that the finalization part can be done by any of the idle processor.

In our example shown in Figure 2.3, C0 is idle when all the moves in queue have been checked, thus

C0 perform the finalization job.

Figure 2.3: An illustration of the deterministic parallel approach.

There are several advantages of the deterministic parallel approach. Firstly, speedup can be linear

given the assumption that the finalization time is negligible. Secondly, a move is now processed

entirely by one processor, which improves the memory locality. Thirdly, the results are deterministic

and serial equivalent, which tremendously benefits the IC design process.

14

Incremental placement

The time spent on placement is still a dominate part for the entire FPGA complication process,

especially with the size and logic capacity of FPGAs increasing dramatically [15]. Moreover, the

recompilation time of the entire circuit design for small changes or localized improvements is also

time-consuming, taking hours or even days to re-execute the entire CAD flow [36]. Therefore,

incremental placement is devised as a more scalable and efficient placement methodology. In most

of the multi-iteration design processes, changes are generally small so that incremental placement

is able to speedup the compilation process by considering only the changed part as opposed to the

traditional full compilation of the entire FPGA CAD flow.

Incremental placement for FPGAs is a new and challenging field and not so much work is pub-

lished thus far. In general, most incremental placement algorithms keeps a “reference placement”

from previous iterations and a list of modified logic blocks, including the removed ones and newly

added ones. The unmodified logic blocks are normally replaced into their previous locations. The

newly added logic blocks3 are overlapped onto the physical location of the existing logic blocks in

order to maintain placement locality while a further step of “overlap re-legalization” is needed to fix

those overlapped blocks [36, 43].

We will briefly mention several most cited work about incremental placement. The Incremental

Placement (ICP) engine is primarily focused on improving timing through small logic level netlist

changes [19]. ICP tries to shift the non-critical logic elements in the reference placement to sat-

isfy the preferred locations requests targeting numerous FPGA architectures. Incremental Physical

Resynthesis (IPR) presents a new way to optimize timing by utilizing a series types of physical op-

timizations, such as cell repacking, signal re-routing and logic restructuring, with a quadratic initial

placement and a future overlap re-legalization process [45]. “iPlace” algorithm is proposed as an

efficient incremental placement method based on shifting, compaction and annealing [36]. “iPlace”

first places the new design into a super-grid which is larger than the previous FPGA physical size,

followed by a compaction scheme to re-legalize the illegal blocks. “iPlace” ends with a low temper-

ature simulated annealing as a further refinement.

In this work, we propose an enhancement for incremental placement using circuit similarity [66].

We will discuss the details of our method in Chapter 3.

2.2.3 Routing

Routing is one of the most basic yet important phases in FPGA design [15]. Similar to ASIC routing

problem, FPGA routing configures which programmable switches should be switched on or off in

order to connect all the logic blocks subject to timing and other constraints [58]. However, FPGA

3There are two cases regarding to the number of the newly added logics blocks. If the number of newly added blocks
is less than the number of the removed blocks, the problem is considered “trivial” by replacing the deleted ones with the
newly added ones. We emphasize on the other case, where the number of newly added blocks is larger than the number of
the removed blocks.

15

routing is more restricted and challenging compared to ASIC routing since it can only use prefabri-

cated routing resources, such as limited wire segments, programmable switches and multiplexers.

A routing-resource graph is often created as an abstract representation of the FPGA routing ar-

chitecture [35]. Each vertex in the routing-resource graph represents a wire segment or a logic block

pin and each edge represents the programmable switch that connects the two vertices. The routing-

resource graph can be either modeled as a directed graph [54] (e.g., connecting the bi-directional

switch, such as a transistor, with directed edges) or as an undirected graph [37](e.g., connecting the

unidirectional switch, such as a buffer, with undirected edges).

In essence, the optimization goal of routing problem is trying to find a shortest path in the

routing-resource graph between the nodes without exceeding the maximum number of wire seg-

ments. Moreover, an additional optimization goal is to make nets on or near the shortest path fast

[58], which is called time-driven whereas delay-driven only considers about routability.

Most of the FPGA routers use a two-step routing algorithms, with a combination of global

routing as the first step and detailed routing as the second step. Global routing determines the coarse

routing topology of each net in terms of logic block pins and channel segments while detailed routing

determines the wire each net uses in the routing channel or region [15, 58]. The combined global-

detailed routers have the potential to reach the maximum optimization and significantly simplify the

generally routing problem, which is NP-hard [15].

In terms of popular open-source academic FPGA routing CAD tools, up to date, the VPR router

is the most successful one that uses the PathFinder negotiated congestion-delay algorithm, which

is a combined global-detailed router [13]. VPR router iteratively rips-up and re-routes every net in

the circuit until all congestion is resolved. Another important reason for VPR routing tool being

widely recognized is that it provides the IC designer flexibility to specify a simple yet reasonable set

of FPGA architecture parameters and generates the corresponding routing-resource graph automat-

ically.

2.2.4 Timing and Delay Analysis

Timing and delay analysis is the last step before bitstream generation in the FPGA CAD flow shown

in Figure 2.2. Timing analysis is a design automation program that provides an assist for debugging

timing issues in hardware [50]. Timing analysis is mainly used for two cases: determining the circuit

speed for fully placed and routed circuits and estimating the slack of each source-sink connections

during various CAD phases (mostly used in placement and routing) in order to not slow down the

overall circuit performance [58].

Delay analysis computes the delay of a routed circuit from a net source to any of its sinks. Delay

analysis is primarily used for two purposes: determining the speed of a routed circuit and analyzing

the delay of different net topologies during routing [58]. Several delay models have been proposed

to meet the requirements of delay analysis. For instance, the Prefield-Rubinstein delay model was

16

used to determine an upper and lower bound on the a RC-tree to each net sink [38, 30]. Alternatively,

the Elmore delay model was defined in a combination of a common model of buffer delay in order

to allow its use with circuits that contain buffers as well as resistors and capacitors [64], which is

considered as the most widely used delay estimation model in the FPGA research community [28].

2.3 Graph Similarity

Given two graphs (or networks), there are multiple ways to define their similarity. The characteris-

tics of commonly used measures of similarity are summarized in Table 2.2, where column “Global

Topo” indicates whether a measure considers the global topological information, which is important

to find the correspondence between nodes of two graphs. Some measures have already been used

for FPGA design automation, e.g., J. Cong et al. applied the edit distance measure to FPGA re-

source optimization [26]. Our circuit similarity algorithm employs the iterative method, which has

relatively low computational complexity and considers the global topological information.

17

Ta
bl

e
2.

2:
Su

m
m

ar
y

of
no

tio
ns

of
si

m
ila

ri
ty

.
M

ea
su

re
D

es
cr

ip
tio

n
Ti

m
e

G
lo

ba
l

C
om

pl
ex

ity
To

po
Is

om
or

ph
is

m
[4

6]
Id

en
tif

yi
ng

a
bi

je
ct

io
n

be
tw

ee
n

th
e

no
de

s
of

tw
o

gr
ap

hs
w

hi
ch

pr
es

er
ve

s
(d

ir
ec

te
d)

ad
ja

ce
nc

y.
N

P-
H

ar
d

Y
es

E
di

td
is

ta
nc

e
[1

1]
G

iv
en

a
co

st
fu

nc
tio

n
on

ed
it

op
er

at
io

ns
(e

.g
.,

ad
-

di
tio

n/
de

le
tio

n
of

no
de

s
an

d
ed

ge
s)

,
de

te
rm

in
e

th
e

m
in

im
um

co
st

tr
an

sf
or

m
at

io
n

fr
om

on
e

gr
ap

h
to

an
-

ot
he

r.

N
P-

H
ar

d
Y

es

C
om

m
on

su
bg

ra
ph

[3
9]

Id
en

tif
yi

ng
th

e
‘l

ar
ge

st
’

is
om

or
ph

ic
su

bg
ra

ph
s

of
tw

o
gr

ap
hs

.
N

P-
H

ar
d

Y
es

It
er

at
iv

e
m

et
ho

ds
[5

9]
Tw

o
gr

ap
h

el
em

en
ts

(e
.g

.,
ed

ge
s

or
no

de
s)

ar
e

si
m

i-
la

ri
ft

he
ir

ne
ig

hb
or

ho
od

s
ar

e
si

m
ila

r.
C

ub
ic

Y
es

St
at

is
tic

al
m

et
ho

ds
[4

7]
A

ss
es

si
ng

ag
gr

eg
at

e
m

ea
su

re
s

of
gr

ap
h

st
ru

ct
ur

e
(e

.g
.,

de
gr

ee
di

st
ri

bu
tio

n,
di

am
et

er
,

be
tw

ee
nn

es
s

m
ea

su
re

s)
.

L
in

ea
r

N
o

18

Different algorithms, including similarity flooding [53], simRank [22], and the coupled node-

edge [75], have been proposed to compute the graph similarity based on the iterative definition.

In this work, we use an iterative graph similarity algorithm for molecular graphs [41], which takes

advantage of graph sparsity, one of the properties of a circuit graph. Before presenting this algorithm,

Table 2.3 describes all frequently used variables.

Table 2.3: Summary of variables in iterative similarity algorithm
Variable Description

X (n)
i, j Similarity score between node i in

graph G(V) and node j in graph
G′(V ′) in iteration n

vi A node in graph G
v′j A node in graph G′

t The iteration number
n(v) The set of all adjacent nodes of node

v
π An injective map from n(vi) to n(v′j),

if |n(vi)|< |n(v′j)|
An injective map from n(v′j) to n(vi),
if |n(vi)| ≥ |n(v′j)|

α A weight constant within interval
(0,1)

ε A terminating threshold for iterations
M An upper bound for number of itera-

tions
kv : V →V ′ A predefined inter-similarity between

two nodes
ke : E→ E ′ A predefined inter-similarity between

two edges, where (vi,v) is an edge in
graph G and (v′j,π(v)) is an edge in
graph G′

in(v) The set of all adjacent nodes that have
an edge entering node v

out(v) The set of all adjacent nodes that have
an edge leaving node v

The iterative similarity algorithm is summarized in Algorithm 2. In each iteration (t), the algo-

rithm computes the similarity score, X (t)
i, j , between each node pair (vi,v′j), where vi ∈G and v′j ∈G′.

The similarity score of a node pair is a real value between 0 and 1. The higher the similarity score

of a node pair is, the more likely these two nodes are matched together. This score is updated based

on the values of their adjacent node pairs obtained in the previous iteration and the predefined inter-

similarity between two nodes/edges. The predefined similarity is used to capture non-topological

19

connections between two graphs. The algorithm terminates when the difference between the total

similarity scores in two consecutive iterations is smaller than ε , or the number of iterations reaches

an upper bound M.

Algorithm 2 Similarity of G and G′

Initialize X (0)
i, j

while |∑X (t)−∑X (t−1)|> ε and t < M do
if |n(vi)|< |n(v′j)| then

X (t)
i, j = (1−α)kv(vi,v

′
j)+α max

π

1
|n(v′j)|

∑
v∈n(vi)

X (t−1)
v,π(v)ke((vi,v),(v

′
j,π(v)))

else

X (t)
i, j = (1−α)kv(vi,v

′
j)+α max

π

1
|n(vi)| ∑

v′∈n(v′j)

X (t−1)
π(v′),v′

ke((vi,π(v
′
)),(v

′
j,v
′
))

2.4 Incremental Design for FPGA

The key to incremental design methodology is design preservation [68], i.e., maximally preserv-

ing and taking advantage of the engineering effort in the previous design iterations. A commonly

employed method for design preservation is to partition a design and avoid a recompilation of un-

changed partitions in the next iteration. This method can yield a significant reduction in iteration

time but due to the strict hierarchical boundaries, synthesis cannot perform any cross-boundary op-

timizations where a partition exists. To break this hard hierarchy boundary constraint for improving

the quality of the design, Xilinx SmartGuide [68] employs naming and local topological matching

to identify the correspondence between two netlists resulting from the previous and the current it-

erations, respectively. Based on this correspondence, the layout from the previous iteration can be

reused in the current iteration, therefore leading to better quality and saving the recompilation time.

However, in modern synthesis algorithms (e.g., ABC), the internal node boundaries are usually de-

stroyed by structural hashing (transforming a logic network into an And-Inverter Graph (AIG)), and

aggressive optimization and logic restructuring performed in the netlist make it difficult to produce

the naming matching between the original and modified netlists. As shown in Figure 3.3, the naming

matching-based correspondence does not work in this example since only two nodes (node 7 and

node 8) out of nine internal nodes have the same names in the original and the modified networks.

In contrast, the proposed circuit similarity algorithm employs the topological similarity detection

technique and is able to identify a more comprehensive correspondence between the two networks.

20

2.5 Design Space Exploration for FPGA

For multi-objective optimization, a pareto-optimal point represents a design point or a configura-

tion for which no other configuration is better in the objective function space. A common goal

of design space exploration in multi-objective optimization is to find pareto-points, which benefit

IC designers seeking to make appropriate design tradeoffs for given constraints. Pareto-point ex-

ploration is time-consuming due to the exponential increase of the number of configurations with

regard to the tuneable parameters and the long runtime required by the current FPGA CAD tools.

For example, current configurable soft cores (e.g., Xilinx Microblaze cores) can have thousands of

configurations [55] and the runtime for evaluating one configuration of Microblaze by Xilinx plat-

form studio is about 15 minutes [18]. Obviously, a straightforward evaluation of all configurations

for pareto-points is infeasible.

<<2

4x

<<3

8x

<<2

4x

-

7x

+

5x

+

11x<<2

28x

+

161x+

29x

<<8

41216x<<9

14848x

<<4

176x

<<5

160x

<<8

1792x

+

183x

<<8

46848x

X

Y1 Y2 Y4 Y3

<<6

64x

<<3

8x

-

7x

+

71x<<4

112x

+

29x

<<8

1792x
<<3

232x

<<8

41216x

+

183x

<<2

28x

<<9

14848x

-

161x

<<8

46848x

X

Y4 Y2 Y3 Y1

(a) RAG-n (b) Hcub

Figure 2.4: Constant multiplier blocks generated by CMU SPIRAL (integer constants: 58, 183, 161,
7; bit width is 8).

A key insight of the design space exploration problem is that there exists similarity among dif-

ferent configurations. This feature is illustrated by an example of an algorithm-level design space

exploration problem with two implementation algorithms (i.e., RAG-n [1] and Hcub [72]) of a con-

stant multiplier block. The algorithm-level schematics of these two implementations (generated by

CMU SPIRAL [40]) are shown in Figure 2.4. They both implement the following constant multiplier

block:

Y1 = 58 ·X ,Y2 = 183 ·X ,Y3 = 161 ·X ,Y4 = 7 ·X (2.1)

where X is the input and Y1, · · · ,Y4 are outputs, and the precision (bit width) is 8 bits. Although

there is a significant difference between the structures of these two configurations at the first glance,

21

they both use adders, subtractors and shifters as building blocks (primitives), which lead to a local

similarity. When these algorithm level designs are mapped to FPGAs, such local similarity results

in similarities of local clusters that contain LUTs or DSPs used to implement these primitives. In

addition, both configurations generate the constant multiplication for equation (1), which results

in global similarity. Specifically, the I/O (X and Ys) of both configurations are identical; there are

identical internal structures (e.g., subgraph 28x→ 29x→ 14848x is shared by both implementations)

as highlighted in Figure 2.4 using different colors; both configurations are sparse Directed Acyclic

Graph (DAG) structures, and they are topologically similar.

Besides pareto-points, which only characterize a set of “good configurations” in the design

space, people may also be interested in finding the “shape” of the entire design space, which in-

cludes both “good configurations” and “bad configurations”. The knowledge of “bad configura-

tions” is helpful for algorithm developers to diagnose the design and for CAD tool designers to

analyze the tool working flow. For instance, the combination of two logic optimizations may result

in a poorer design than applying them individually. A full profiling of the design space will reveal

such phenomenon and help CAD tool designers improve the tool.

2.6 Summary

In this Chapter, we first briefly reviewed FPGA and its key advantages compared to ASIC. Properly

programmed, FPGAs can implement any functions of ASICs with lower cost and faster manufac-

ture turnaround time. The main phases of the FPGA CAD flow are reviewed, including synthesis,

placement, routing and timing and delay analysis. For each phase, we described the fundamentals

and summarized both the classic and state-of-the-art techniques with a particular focus on placement

techniques. Moreover, specific for this thesis work, we reviewed the details of the graph similarity

algorithms and compared the pros and cons for each algorithm. We particularly focused on the

iterative method used for molecular graphs which later in Chapter 3 we adapt it to a circuit sim-

ilarity algorithm. We also reviewed the essential background for incremental design process and

design space exploration process, which later in Chapter 4 we use as two applications to perform

experiments on.

The next Chapter will present a motivation example of the circuit similarity algorithm and pro-

vide in depth details and applications of the proposed algorithm.

22

Chapter 3

Circuit Similarity

3.1 Motivating Example

Following the flow in Figure 3.1, we use an example to illustrate the procedures of circuit similarity

flow. In the first design iteration, given a logic-level network G shown in Figure 3.2(a), where

each node denotes a LUT and each edge denotes an interconnection between LUTs, the placement

(Figure 3.3(a)) of network G can be obtained by performing a time-consuming and highly-optimized

placement (e.g., VPR). Suppose a change of RTL code is made due to optimizations or design

parameter changes after the first iteration, and the RTL and logic-level synthesis is performed in the

following iteration, resulting in a modified network, G′, as shown in Figure 3.2(b). To produce the

placement of network G′, circuit similarity flow first computes the similarity between networks G

and G′, and finds the correspondence of nodes in these two networks (Figure 3.3(a) right). Based

on such node correspondence, the initial placement (Figure 3.3(b)) of network G′ can be determined

using the placement of network G (Figure 3.3(a)), for example, if node V ′ in network G′ corresponds

to node V in network G, V ′ is assigned the same coordinates as node V .

Note that the detection of similarity and the correspondence of two networks is generally much

faster than the replacement of the entire network. Therefore, circuit similarity flow is more efficient

than the from-scratch design flow, which replaces the entire circuit.

Taking advantage of circuit similarity flow’s efficiency, we also illustrate a logic-level design

space exploration problem using CSBP as an example. The design parameters explored in this

example are the logic synthesis options in the Berkeley ABC tool set [9]. The purpose of the design

exploration is to identify the impact of different combinations of logic optimizations on the wire

length and timing. MCNC benchmark “des” is used as the application to be implemented. The

reference configuration is synthesized using the following ABC script:

b; rs; rs -K 6; b; rsz; rsz -K 6; b; rsz -K 5; b

where each command is a logic optimization in ABC. For example, “b” means balance the AIG

and “rs” means the logic rewriting using Boolean substitution1. The placement of the reference
1A complete list of the ABC commands can be found at Appendix A

23

RTL/Logic

Synthesis

Logic Level

Netlist (Config)

Place & Route

Placement & Routing

Constraints Met ?

Done

Functional Change /

Optimization / Design

Parameter

Modified Logic Level

Netlist (Config)

Similarity

Detection

Place & Route

Refinement

Circuit Similarity

Flow

Similarity

Matching

Verification

Yes

No

Initial Placement &

Routing

Figure 3.1: CAD flow using circuit similarity.

configuration is generated by VPR and the layout is shown in Figure 3.4(a) with nets toggled in

VPR Graphical User Interface (GUI). Next we generate a new configuration, which is synthesized

by the following ABC script:

st; rw -l; b -l; rw -l; rf -l; fraig; rw -l; b -l; rw -l; rf -l

The similarity of the netlists for the reference and the new configuration is obtained by a circuit simi-

larity algorithm (detailed in Section 3.2). Based on this similarity, the layout of the initial placement

is shown in Figure 3.4(b), which is obtained based on the placement of the reference configuration.

As circled in the figures, CSBP captures the main characteristics of the topological similarity be-

tween the reference and the new configurations, and thus results in a well optimized initial layout.

Given this initial placement, a low-temperature annealing process is used to refine the placement

and final placement result is shown in Figure 3.4(c). For comparison, Figure 3.4(d) shows the layout

of the random initial placement produced by VPR. Obviously, the initial placement generated by

24

V7

V1

V8

V4

V12

V9

V13

V5

V10 V11

V14

V15

V16

V6

V2

V3

1,2 2,1

3,1

2,2

1,3

2,11,2

1,3

2,2

3,1

I/O

Node

LUT

Node

(a) G, network before RTL code change

V’7

V’1

V’8

V’4

V’11

V’10

V’9
V’5

V’12

V’13

V’14

V’15

V’6

V’2

V’3

1,2 2,1

3,1

2,2

1,3

2,1

1,3

2,2

3,1

(b) G′, network after RTL code change

Figure 3.2: Logic-level networks before and after optimization (the label above each node describes
the level and reverse level of the node).

circuit similarity has significantly less wire length compared to the random placement. This shows

that CSBP successfully finds the internal corresponding topologies of both netlists, and therefore

makes a good decision on the relative position of Clustered Logic Blocks (CLBs) placement. It is

also interesting to compare the highlighted topologies of the layouts of the final placement between

the new configuration and the reference configuration (Figure 3.4(c) and Figure 3.4(a)). Although

different logic optimizations are applied, the resulting layout shares similarities. The final placement

produced by VPR is shown in Figure 3.4(e) for comparison. Table 3.1 shows the numerical com-

parisons of these layouts, where delay cost quantifies the delay of a route from a net source to any

of its sinks. The placement generated by our similarity-aware algorithm results in comparable wire

length, better critical path delay and less placement runtime compared to the placement generated

by VPR.

25

V5

V4

V6

V3

V2

V1

V’5

V’4

V’6

V’3

V’2

V’1

Node

Correspondence

(V, V’) :

(1,1) (2,2) (3,3)

(4,4) (5,5) (6,6)

(7,7) (8,8) (13,9)

(9,10)(12,11)

(11,12) (14,13)

(15,14) (16,15)

I/O block

(a) Placement of network G

(b) Placement of network G’

CLB block

V’10

V’15

V’8

V’11

V’13

V’14V’9

V’7

V’12

V9

V16

V8

V12

V14

V15

V10

V13

V7

V11

Figure 3.3: The placement of the original and modified networks.

3.2 Circuit Similarity Algorithm

As described in Chapter 2, Section 2.3, Algorithm 2 is designed for undirected molecular graphs

[41], and the computational complexity is too expensive to handle real circuits. In this section,

we first adapt Algorithm 2 to consider a directed circuit graph and then present two techniques to

significantly improve both time and space efficiency of the circuit similarity detection.

One unique constraint for circuit similarity detection in incremental design is that the matching

of the corresponding Primary Inputs (PIs) and Primary Outputs (POs) of the two circuits must be

guaranteed. Therefore, the similarity score for a pair of corresponding PI/PO nodes is set to 1 and is

not updated during the iteration. As a result, such a predefined PI/PO matching effectively provides

extra hints for the iterative similarity detection process and generates better matching between the

26

(a) placement of (b) initial placement (c) final placement (d) initial placement (e) final placement
reference config of circuit similarity of circuit similarity of VPR of VPR

Figure 3.4: Placement results for circuit “des”. (reference configuration has 1245 CLBs and 1501
nets, the new configuration has 1215 CLBs and 1471 nets)

Table 3.1: Status of layouts of Figure 3.4.
Layout Wire Delay cost Critical delay Runtime (s)
CS-init 306 5.93E-05 - -

VPR-init 1087 1.40E-04 - -
CS-final 237 5.08E-05 8.28E-08 13.38

VPR-final 221 4.98E-05 1.01E-07 28.42

two circuits. Intuitively, for those node pairs close to PI/PO nodes, higher scores will be obtained

because of the propagation of the constant similarity score set in PI/PO node pairs. Note that other

hints such as internal registers and naming matching information obtained in logic synthesis can also

be used as the predefined matching to enhance both the quality and speed of the circuit similarity

detection.

27

A
lg

or
ith

m
3

C
ir

cu
it

si
m

ila
ri

ty
al

go
ri

th
m

of
G

an
d

G
′ .

In
iti

al
iz

e
X
(0
)

i,
j
=

1
w

hi
le
| ∑

X
(t
)
−

∑
X
(t
−

1)
|>

ε
an

d
t<

M
do

fo
r

ea
ch

no
de

in
G

do
fo

r
ea

ch
no

de
in

G
′ d

o
if
|in

(v
i)
|≥
|in

(v
′ j)
|a

nd
|o

ut
(v

i)
|≥
|o

ut
(v
′ j)
|t

he
n

X
(t
)

i,
j
=
(1
−

α
)X

(t
−

1)
i,

j
+

α
1

|o
ut
(v

i)
|+
|in

(v
i)
|[m

ax π
(

∑
v′
∈o

ut
(v
′ j)

X
(t
−

1)
π
(v
′)
,v
′)
+

m
ax π
(

∑
v′
∈i

n(
v′ j)

X
(t
−

1)
π
(v
′)
,v
′)
]

el
se

if
|in

(v
i)
|≥
|in

(v
′ j)
|a

nd
|o

ut
(v

i)
|≤
|o

ut
(v
′ j)
|t

he
n

X
(t
)

i,
j
=
(1
−

α
)X

(t
−

1)
i,

j
+

α
1

|o
ut
(v

i)
|+
|in

(v
i)
|[m

ax π
(

∑
v′
∈o

ut
(v

i)

X
(t
−

1)
v,

π
(v
))
+

m
ax π
(

∑
v′
∈i

n(
v′ j)

X
(t
−

1)
π
(v
′)
,v
′)
]

el
se

if
|in

(v
i)
|≤
|in

(v
′ j)
|a

nd
|o

ut
(v

i)
|≥
|o

ut
(v
′ j)
|t

he
n

X
(t
)

i,
j
=
(1
−

α
)X

(t
−

1)
i,

j
+

α
1

|o
ut
(v

i)
|+
|in

(v
i)
|[m

ax π
(

∑
v′
∈o

ut
(v
′ j)

X
(t
−

1)
π
(v
′)
,v
′)
+

m
ax π
(

∑
v′
∈i

n(
v i
)

X
(t
−

1)
v,

π
(v
))
]

el
se

X
(t
)

i,
j
=
(1
−

α
)X

(t
−

1)
i,

j
+

α
1

|o
ut
(v

i)
|+
|in

(v
i)
|[m

ax π
(

∑
v′
∈o

ut
(v

i)

X
(t
−

1)
v,

π
(v
))
+

m
ax π
(

∑
v′
∈i

n(
v i
)

X
(t
−

1)
v,

π
(v
))
]

28

For those internal nodes without predefined similarity, we replace kv with X (t)
i, j , and ke with 1.

Instead of updating similarity scores based on all the neighbors, we perform the update for edges

that leave the nodes and edges that enter the nodes, separately. More specifically, as shown in

Algorithm 3, given the two graphs, we initialize the similarity scores of all pairs of nodes to 1. In

each iteration, for instance, if |in(vi)| ≥ |in(v
′
j)| and |out(vi)| ≥ |out(v

′
j)|, the similarity score X (t)

i, j is

updated as follows:

X (t)
i, j = (1−α)X (t−1)

i, j +α
1

|out(vi)|+ |in(vi)|
[max

π
(∑

v′∈out(v′j)

X (t−1)
π(v′),v′

)+max
π

(∑
v′∈in(v′j)

X (t−1)
π(v′),v′

)]

In our experiments, we find α = 0.75 consistently produces a high quality matching. For the

two circuit graphs in Figure 3.2, the obtained similarity score matrix is shown in Table 3.2 (PI/PO

nodes are not shown). Clearly, the topologically similar node pairs (e.g., node 7 in graph G and node

7 in graph G′) have scores close to 1. This matrix describes a complete bipartite graph, where the

weight associated with each edge denotes the similarity score of two nodes.We can now compute a

maximum matching in this bipartite graph to obtain a node matching between the two graphs. The

min-cost network flow [56] is used to compute the maximum matching in our experiments, and the

resulting node matching is given in Figure 3.3(a) top right.

Table 3.2: Similarity score matrix for two graphs in Figure 3.2
V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

V ′7 0.92 0.25 0.48 0.15 0 0 0 0.42 0.06 0
V ′8 0 0.73 0 0 0.05 0 0.39 0 0.17 0.06
V ′9 0 0.39 0 0 0.4 0 0.73 0 0.06 0.48
V ′10 0.48 0 0.89 0.25 0.3 0.12 0.14 0.06 0.33 0.09
V ′11 0 0 0.11 0.48 0 0.86 0 0.36 0.17 0
V ′12 0 0 0.3 0.34 0.64 0.25 0.39 0.34 0.15 0.42
V ′13 0.48 0.25 0.07 0.4 0 0.36 0 0.88 0.06 0
V ′14 0.4 0.39 0.29 0.15 0.15 0.18 0.12 0.46 0.59 0.06
V ′15 0 0.12 0.09 0 0.63 0 0.36 0 0.27 0.82

3.3 Performance Enhancement

In practice, it is infeasible to compute the similarity scores of all |V | · |V ′| node pairs for large circuits.

In this subsection, we present two pruning techniques to reduce the number of pairs that need to be

updated so that we can reduce both the runtime and storage.

Support Constraint. Two internal nodes are less likely to be matched if they share few predefined

matchings in their supports. A support of a node is the set of nodes with predefined matchings in

the transitive fanin or fanout cone of this node. For example, the nodes with predefined matchings

are PIs and POs in two graphs in Figure 3.2. The support for node V7 is SP(V7) = {V1,V2,V4,V5},

while the support for node V ′15 is SP(V ′15) = {V ′2,V ′3,V ′6}. The support similarity of V7 and V ′15 is the

29

sum of similarity scores of all V →V ′ node pairs in their supports: XSP(V7),SP(V ′15)
= XV2,V ′2

= 1. On

the other hand, the support similarity of V7 and V ′7 is 4. Therefore, V7 is more likely to be matched

with V ′7 than with V ′15. Formally, for two nodes v ∈ G and v′ ∈ G′, the support constraint requires

min(
XSP(v),SP(v′)

|SP(v)|
,

XSP(v),SP(v′)

|SP(v′)|
)≥ β

where β ∈ (0,1] is a constant. If the support constraint of the two nodes is not satisfied, we do not

update their similarity score in the iteration. For example, if β = 1, i.e., we only keep the pairs of

nodes that have exactly the same supporting PIs and POs, 54 node pairs (e.g., (V7,V ′11),(V7,V ′12)) in

Figure 3.2 can be pruned.

Level Constraint. If only combinatorial resynthesis is involved in an incremental design process,

we can convert a circuit into a DAG by removing all registers and adding the register inputs (outputs)

as POs (PIs). Given a DAG, a topological sort and reverse topological sort can label each internal

node v with two values (shown above each node in Figure 3.2), i.e., level(v) and rlevel(v), where

level(v) (rlevel(v)) denotes the length of the longest path from PIs (node v) to node v (POs). Two

nodes with significantly different (level, rlevel) values are less likely to be matched. Formally, for

two nodes v ∈ G and v′ ∈ G′, the level constraint requires

|level(v)− level(v′)| ≤ Bl , |rlevel(v)− rlevel(v′)| ≤ Br

where Bl and Br are two nonnegative constant integers. For example, if Bl and Br are both set to be

one, 22 node pairs (e.g., (V7,V ′9) and (V7,V ′15)) in Figure 3.2 can be pruned.

1

10

100

1000

10000

100000

1000000

10000000

100000000

Bl=Br=1 Bl=Br=0 !"#$!% no_pruning

n
u

m
b

e
r

o
f

re
m

a
in

in
g

 n
o

d
e

 p
a

ir
s

Circuits

Figure 3.5: Effectiveness of the present pruning techniques

We have tested the above two pruning techniques on the 20 standard MCNC benchmark cir-

cuits. For each circuit, we run two logic synthesis algorithms, one with ABC command “if -K 4”

and the other with “if -K 4; imfs” (an area-oriented resynthesis engine which destroys the internal

name matching [3].), and generate two logic-level netlists. Figure 3.5 compares the number of node

30

pairs that need to be updated in the iterative similarity with the following five schemes: (a) without

pruning (“no pruning”), (b) using a weak level constraint-based pruning (“Bl=Br=1”), (c) using a

strong level constraint-based pruning (“Bl=Br=0”), (d) using a weak support constraint-based prun-

ing (“β=0.5”), and (e) using a strong support constraint-based pruning (“β=1”). As shown in Figure

3.5, the pruning techniques reduce the number of node pairs by 3 to 4 orders of magnitude com-

pared with the total number of node pairs. More specifically, the strong level constraint-based prun-

ing (“Bl=Br=0”) and the strong support constraint-based pruning (“β=1”) can prune approximately

90% and 99% node pairs, respectively.

Table 3.3: Similarity score matrix for two graphs in Figure 3.2 with pruning (β = 0.5, Bl = Br = 0)
V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

V ′7 0.92 0 0 0 0 0 0 0 0 0
V ′8 0 0.73 0 0 0 0 0 0 0 0
V ′9 0 0 0 0 0 0 0.73 0 0 0.48
V ′10 0 0 0.89 0 0 0 0 0 0.33 0
V ′11 0 0 0 0 0 0.86 0 0.36 0 0
V ′12 0 0 0 0 0.64 0 0 0 0 0
V ′13 0 0 0 0 0 0.36 0 0.88 0 0
V ′14 0 0 0.29 0 0 0 0 0 0.59 0
V ′15 0 0 0 0 0 0 0.36 0 0 0.82

Table 3.3 shows the similarity score matrix obtained after applying these two pruning techniques

on the similarity detection of G and G′ in Figure 3.2. The iterative circuit similarity with pruning

results in a very sparse matrix, while the most significant elements in this matrix are well preserved.

For example, (V11, V ′8) and (V9, V ′7) are pruned due to the support and level constraints, respectively

while (V9, V ′14) is not pruned simply because it does not satisfy either of the constraints. Nevertheless,

the most useful node pairs are preserved after pruning and the same node matching can be obtained

compared to the completely computed similarity score matrix shown in Table 3.2. As a result of

the sparsity of the similarity matrix, the maximum matching algorithm (min-cost network flow) is

significantly faster. In Chapter 4, we will show that these pruning techniques do not significantly

affect the quality of the similarity detection.

3.4 Applications of Circuit Similarity

As shown in Figure 3.1, circuit similarity detection flow can be employed to discover the topolog-

ical correspondence between the original netlist and the modified netlist. Such information is then

used to improve the efficiency of time-consuming CAD phases including placement, routing and

verification, e.t.c.

Based on the layout results of the original netlist, such correspondence provides guidance and

improves the efficiency of placement and routing of the modified netlist. Specifically, the node

31

matching between the two netlists produces a good initial placement of the modified netlist; the edge

matching2 between the two netlists gives a high-quality initial routing. Overlaps and congestions

can be resolved by an efficient layout refinement phase.

Circuit similarity can also be applied to accelerate the sequential verification process, since se-

quential optimizations such as retiming only have a limited impact on the structure of a circuit.

Particularly, the topological similarity can be employed to filter the redundant register pairs in the

sequential equivalence checking before performing the computationally expensive functional equiv-

alence checking and the state traversal. Similar ideas have been presented by van Eijk [61], but

global topological similarity was not employed.

In this thesis work, we use the proposed circuit similarity to speed up placement which allows

faster incremental design and design space exploration. More specifically, given an original network

G, its placement can be obtained by performing a highly-optimized placement (e.g., VPR). For an-

other network, G′, which is optimized by resynthesis scripts or generated by other design parameters,

its placement is generated by first computing the similarity between networks G and G′, and finding

the matching of nodes in these two networks. The node matching between the two networks gives

a good candidate for the initial placement of the modified network (G′). Therefore, based on such

node correspondence, a high-quality initial placement of network G′ can be determined using the

placement of network G. For example, if node V ′ in network G′ corresponds to node V in network G,

V ′ is assigned the same coordinates as node V . Further refinement (e.g., low-temperature simulated

annealing) is applied to the initial placement of G′ to gain better results.

3.5 Summary

In this chapter, we first illustrated the circuit similarity-based CAD flow using a motivating exam-

ple in Section 3.1. The details of the circuit similarity algorithm are described in Section 3.2. In

essence, the circuit similarity algorithm updates the circuit similarity scores for each node based on

the similarity scores of the the incoming nodes and outgoing nodes in each iteration. In order to

improve the efficiency and reduce storage requirement, we devised two pruning techniques, support

constraint and level constraint. Support constraint takes advantage of the predefined matchings of

the transitive fanin/fanout of one node while level constraint utilizes the topological/reverse topo-

logical sort of a graph. Finally, we briefly discussed the various applications CSBP could be applied

to, such as placement, routing and sequential verification.

The next Chapter experimentally demonstrates the effectiveness and efficiency of the CSBP

algorithm on incremental design case and design space exploration case, respectively.

2The edge correspondence can be obtained using the coupled node-edge algorithm [75].

32

Chapter 4

Experimental Results and
Discussions

We use incremental design for FPGAs and design space exploration for FPGAs as two case studies to

experimentally demonstrate the efficiency and effectiveness of the proposed CSBP, respectively. For

the incremental design case study, we first explain the experimental CAD flow and settings. Then we

present the comprehensive experimental results in terms of initial placement quality, final placement

quality and runtime comparison. Moreover, we compare the experimental results of CSBP perform-

ing on two completely different resynthesis scripts, one using mild resynthesis (i.e., “imfs”) and the

other using aggressive resynthesis (i.e., “rwsat2”). For the design space exploration case study, we

devise the experiments into two parts: logic-level design space exploration and algorithm-level de-

sign space exploration. For logic-level design space exploration, we present in-depth experimental

results and analysis in terms of initial placement quality, final placement quality, design space shape

characterization and runtime comparison. For algorithm-level design space exploration, we present

the results using a wire length-delay space.

4.1 Case Study on Incremental Design

4.1.1 Experimental CAD Flow and Settings

In this case study, we consider an island-style FPGA architecture, which includes an array of CLBs

interconnected by programmable routing. Figure 4.1 shows the two CAD flows that are compared

in our experiments. Both flows include two design iterations and they share the first iteration, which

starts from a logic-level netlist (a BLIF file). A technology mapping (using ABC command “if -

K 4”) is first performed on this netlist to map it into a 4-LUT-based network. After the mapping,

T-VPack [57] is performed with “no cluster” parameter to generate a CLB-based network, where

each CLB contains one LUT and one flip-flop. The timing-driven placement in VPR is then used

to produce the placement result (a “.p” file), and the timing-driven routing with a detailed timing

analysis is finally performed.

33

VPR:

Placement

Iteration 1

BLIF

ABC: (if -4)

T-VPack:

(no_cluster)

Mapped

Netlist

Placed:

(.p)

VPR: Routing

Layout

ABC: (imfs)

(rwsat2)

Modified

Netlist

Circuit Similarity

Initial

Placement

Low Temperature

SA

VPR

P&R

Iteration 2

flow a

Iteration 2

flow b

VPR: Routing

Layout

Figure 4.1: CSBP CAD flows used in incremental design.

In the second iteration, we perform a logic-level optimization on the mapped netlist using ABC

command “imfs”, an area-oriented resynthesis engine for network mapped into K-LUTs [3]. This

optimization performs a window-based traversal in the logic-level netlist and rewrites the local net-

work in each window using Boolean resubstitution based on logic don’t-cares. Even though “imfs”

is considered a mild resynthesis optimization compared to “rwsat2” optimization, the names of in-

ternal nodes (LUTs) in the modified netlist are not preserved after the optimization. Table 4.1 shows

the characteristics of the logic-level netlist before (column “original”) and after “imfs” optimization

(column “imfs”). CIs (COs) include the PIs (POs) and register outputs (inputs). We will employ the

proposed CSBP to discover the node correspondence purely based on topological information of the

original and the “imfs”-modified netlists.

Starting from the modified netlist, we compare the following two flows: (a) CSBP flow and

(b) from-scratch flow, as shown in Figure 4.1. Flow (b) uses VPR to replace the entire modified

netlist. Flow (a) first computes the circuit similarity between the original and the modified netlists

and uses it to generate an initial placement, which is further refined by a low-temperature annealing

process using the VPR placement (innerNum is set to 0.1 in VPR for the moves per temperature. See

Chapter 2, Section 2.2.2). As stated in Chapter 3, Section 3.3, based on different pruning settings

34

Table 4.1: Characteristics of the original and “imfs”-modified netlists.

CLB#
Circuit CI# CO# original imfs

alu4 14 8 719 713
apex2 38 3 963 946
apex4 9 19 788 786
bigkey 452 421 1261 1261
clma 94 115 4193 4100
des 256 245 1232 1222

diffeq 332 308 674 673
dsip 452 421 1554 1551

elliptic 196 196 441 438
ex1010 10 10 1103 1101
ex5p 8 63 541 505
frisc 905 1002 2844 2793

misex3 14 14 735 711
pdc 16 40 2211 2145
s298 17 20 45 45

s38417 1490 1568 3161 3150
s38584 1297 1564 3723 3717

seq 41 35 997 982
spla 16 46 2126 2060

tseng 435 507 941 867

and annealing parameters, we develop two versions of circuit similarity. A high-quality version, CS,

uses β = 0.5,Bl = Br = 1 and inner num = 11. A turbo version, CS-t, uses β = 1,Bl = Br = 0 and

inner num = 0.1. Both CS and CS-t are evaluated in our experiments.

Our proposed CSBP is implemented in C and evaluated on the 20 largest MCNC benchmarks.

All results are collected averaged over five runs and benchmarked on a Linux server with dual-core

2.19GHz CPU and 5GB memory. The CS2 package [23] is used to solve the min-cost network flow

for the maximum matching problem.

4.1.2 Experimental Results for “imfs”

Quality of the initial placement. Table 4.2 compares the initial placement generated by the pro-

posed circuit similarity (column “CS init”) and the one generated by VPR (a random initial place-

ment) in terms of bb cost (bounding box cost) and delay cost, two key measures of the placement

process. The bb cost and delay cost of the final placement produced by VPR (column “VPR final”)

are also presented in the table for reference. Clearly, CSBP generates the initial placement with

a quality very close to the final placement. This result shows that the topological node correspon-

dence extracted by the circuit similarity algorithm indeed discovers the intrinsic connection between
1A parameter in VPR which controls the number of moves at each temperature. See Chapter 2, Section 2.2.2.

35

the original and modified logic-level netlists, and thus provides a reliable guidance to generate the

placement for the modified netlist.

Table 4.2: Comparisons of initial solutions of different CAD flows for “imfs” in incremental design.

bb cost delay cost
Circuit CS init VPR init VPR final CS init VPR init VPR final

alu4 94 219 94 2.43E-05 3.59E-05 2.40E-05
apex2 146 364 142 2.92E-05 5.43E-05 2.88E-05
apex4 133 273 130 2.76E-05 4.29E-05 2.87E-05
bigkey 245 1979 245 1.17E-04 2.45E-04 1.17E-04
clma 842 3078 683 2.05E-04 4.49E-04 1.90E-04
des 235 1084 221 4.99E-05 1.39E-04 4.73E-05

diffeq 209 934 209 3.65E-05 1.06E-04 3.65E-05
dsip 430 2158 400 1.65E-04 3.27E-04 1.68E-04

elliptic 83 335 82 1.41E-05 3.73E-05 1.40E-05
ex1010 155 392 153 4.28E-05 6.66E-05 4.17E-05
ex5p 95 153 70 1.46E-05 2.14E-05 1.24E-05
frisc 2373 9616 2206 4.47E-04 1.17E-03 4.85E-04

misex3 100 228 95 2.25E-05 3.71E-05 2.16E-05
pdc 489 1170 431 1.02E-04 1.79E-04 9.49E-05
s298 3 6 3 5.79E-07 8.26E-07 5.79E-07

s38417 1130 19113 957 4.01E-04 2.07E-03 3.74E-04
s38584 1620 20477 1369 5.01E-04 2.41E-03 4.95E-04

seq 164 380 163 3.34E-05 5.93E-05 3.22E-05
spla 490 1102 407 9.40E-05 1.65E-04 8.45E-05

tseng 298 1700 275 7.76E-05 1.95E-04 7.54E-05
geomean 229 829 211 5.34E-05 1.14E-04 5.19E-05

ratio 108% 392% 1 103% 220% 1

Quality of the final placement. A low-temperature annealing is applied to the initial placement

generated by our CSBP flow. The quality of post-routing results produced by flow (a) and flow (b)

shown in Figure 4.1 are compared. In flow (a), two different settings are tested: (i) a high-quality

version (column “CS”) and (ii) a turbo version (column “CS-t”). Wire length, the device area (in the

number of minimal width transistors) and the critical path delay are compared between the circuits

produced by the two versions of flow (a) and flow (b) as shown in Table 4.3, 4.4 and 4.5, which

shows that both versions of CSBP produce layout with a quality very close to the results produced

by from-scratch flow. The comparison between CS and CS-t shows the effectiveness of the proposed

pruning techniques (in Chapter 3, Section 3.3). Clearly, CS-t, geared with aggressive pruning and

significantly lower annealing effort, still produces placement with comparable quality to CS and

VPR.

36

Table 4.3: Comparisons of post-routing wire length of different CAD flows for “imfs” in incremental
design.

Wire length
Circuit CS CS-t VPR

alu4 11091 13289 10882
apex2 16716 19149 16122
apex4 16396 18664 16424
bigkey 26520 39827 26632
clma 74664 95025 71487
des 26504 28066 25540

diffeq 22721 23984 23195
dsip 47265 55024 39454

elliptic 8736 9783 8329
ex1010 18132 20640 17881
ex5p 8570 9618 8079
frisc 243989 259561 233522

misex3 11379 13532 10733
pdc 50685 62485 50442
s298 319 363 321

s38417 70544 100379 76544
s38584 106385 134489 103074

seq 19300 21233 18940
spla 50101 61598 46630

tseng 27260 30195 27758
geomean 23214 27352 22602

ratio 103% 121% 1

37

Table 4.4: Comparisons of post-routing area of different CAD flows for “imfs” in incremental de-
sign.

Area
Circuit CS CS-t VPR

alu4 2.63E+06 3.48E+06 2.42E+06
apex2 3.98E+06 4.57E+06 3.68E+06
apex4 3.76E+06 4.27E+06 3.76E+06
bigkey 2.53E+07 1.84E+07 2.53E+07
clma 1.86E+07 2.36E+07 1.86E+07
des 9.48E+06 9.48E+06 9.48E+06

diffeq 1.53E+07 1.53E+07 1.34E+07
dsip 2.88E+07 2.19E+07 2.88E+07

elliptic 5.07E+06 5.07E+06 5.07E+06
ex1010 4.48E+06 4.82E+06 4.48E+06

ex5p 2.09E+06 2.42E+06 2.09E+06
frisc 2.01E+08 1.69E+08 1.85E+08

misex3 2.83E+06 3.51E+06 2.83E+06
pdc 1.36E+07 1.62E+07 1.29E+07
s298 6.53E+04 8.19E+04 6.53E+04

s38417 3.47E+08 3.47E+08 3.47E+08
s38584 3.43E+08 2.67E+08 3.79E+08

seq 4.57E+06 5.18E+06 4.86E+06
spla 1.36E+07 1.49E+07 1.17E+07

tseng 2.91E+07 2.52E+07 2.91E+07
geomean 1.07E+07 1.11E+07 1.05E+07

ratio 102% 106% 1

38

Table 4.5: Comparisons of post-routing critical delay of different CAD flows for “imfs” in incre-
mental design.

Critical delay (s)
Circuit CS CS-t VPR

alu4 7.65E-08 6.58E-08 7.45E-08
apex2 8.35E-08 7.61E-08 7.21E-08
apex4 1.09E-07 8.80E-08 8.24E-08
bigkey 1.34E-07 1.35E-07 1.43E-07
clma 1.32E-07 1.67E-07 1.34E-07
des 9.91E-08 1.11E-07 7.46E-08

diffeq 1.24E-07 1.16E-07 1.23E-07
dsip 1.27E-07 1.26E-07 1.31E-07

elliptic 8.56E-08 8.44E-08 8.89E-08
ex1010 1.16E-07 9.57E-08 9.82E-08

ex5p 6.73E-08 6.11E-08 6.52E-08
frisc 3.36E-07 3.44E-07 3.48E-07

misex3 7.10E-08 6.95E-08 6.02E-08
pdc 1.45E-07 1.68E-07 1.40E-07
s298 2.44E-08 2.79E-08 2.02E-08

s38417 3.80E-07 3.80E-07 4.16E-07
s38584 4.47E-07 4.31E-07 4.34E-07

seq 7.86E-08 8.04E-08 6.78E-08
spla 1.33E-07 1.66E-07 1.43E-07

tseng 1.44E-07 1.44E-07 1.51E-07
geomean 1.18E-07 1.18E-07 1.12E-07

ratio 106% 106% 1

39

Runtime comparison. Table 4.6 compares the runtime of the placement in the two versions of flow

(a) with flow (b). It shows that CS-t achieves 31X speedup on average (up to 91X), compared with

the from-scratch VPR placement. Since computing the similarity between two circuits is much faster

than replacing them from scratch, more speedup is expected when applying CSBP to larger circuits.

As a matter of fact, the two largest circuits in the MCNC benchmarks (s38417 and s38584) achieve

the highest speedup as shown in Table 4.6. Similar results can also be found at Table 4.12 and 4.16.

This essentially proves that the circuit similarity-based algorithm has a premium scalability and thus

can be applied to very large scale circuits. In practice, one can use CS-t as a quick estimation of

the solution quality for an iteration during the incremental design. If the quality is within a satisfied

range, the VPR placement can be performed for a better quality.

Table 4.6: Comparisons of placement runtime of different CAD flows for “imfs” in incremental
design.

Placement runtime (s)
Circuit CS CS-t VPR

alu4 4.47 (4x) 0.48 (33x) 15.68
apex2 5.8 (4x) 0.63 (38x) 23.86
apex4 13.15 (1x) 0.63 (30x) 18.81
bigkey 27.3 (2x) 2.13 (27x) 58.41
clma 174.8 (2x) 12.66 (33x) 413.64
des 16.83 (2x) 1.64 (25x) 41.31

diffeq 6.65 (4x) 0.67 (42x) 28.13
dsip 78.92 (1x) 4.63 (16x) 75.8

elliptic 3.46 (3x) 0.31 (37x) 11.56
ex1010 51.77 (1x) 5.92 (5 x) 27.9
ex5p 6.14 (2x) 0.3 (33x) 9.87
frisc 127.78 (4x) 8.72 (52x) 453.57

misex3 4.88 (3x) 0.42 (37x) 15.49
pdc 90.48 (1x) 4.01 (23x) 92.82
s298 0.06 (5x) 0.02 (16x) 0.32

s38417 193.95 (5x) 10.79 (91x) 977.24
s38584 224.21 (5x) 12.66 (81x) 1022.41

seq 8.27 (3x) 0.68 (41x) 28.02
spla 74.56 (1x) 3.81 (22x) 84.96

tseng 17.71 (3x) 1.11 (44x) 48.53
geomean 18.63 (2 x) 1.45 (31 x) 44.98

ratio 41% 3% 1

40

4.1.3 Experimental Results for “rwsat2”

As mentioned in Section 4.1.1, we perform “rwsat2”, a more aggressive logic-level optimization, on

the mapped netlist in the experimental CAD flow shown in Figure 4.2.1. The “rwsat2” optimization

consists of a set of commands as following:

st; rw -l; b -l; rw -l; rf -l; fraig; rw -l; b -l; rw -l; rf -l

where each command (alias) is a logic optimization in ABC, e.g., “st” (structural hashing) aggres-

sively destroys the initial boundaries among internal nodes (LUTs); “rw” (rewrite) and “rf” (refac-

tor) reconstruct the network by reducing the AIG size and level; “fraig” (functionally-reduced AIG)

changes the current network structure and transforms into a functionally-reduce AIG [5]2. There-

fore, in the modified netlist, the name matchings among the nodes are not preserved and the struc-

ture of the network is completely changed. Table 4.7 shows the characteristics of the logic-level

netlist before (column “original”) and after “rwsat2” optimization (column “rwsat2”). CIs (COs)

include the PIs (POs) and register outputs (inputs). We will employ the proposed circuit similarity

to discover the node correspondence purely based on topological information of the original and the

“rwsat2”-modified netlists. The rest of the experimental CAD flow and settings is identical to the

case study on “imfs” as stated in Section 4.1.1.

2A complete list of these commands can be found in Appendix A.

41

Table 4.7: Characteristics of the original and “rwsat2”-modified netlists.

CLB#
Circuit CI# CO# original rwsat2

alu4 14 8 719 691
apex2 38 3 963 914
apex4 9 19 788 771
bigkey 452 421 1261 1261
clma 94 115 4193 4063
des 256 245 1232 1215

diffeq 332 308 674 665
dsip 452 421 1554 1553

elliptic 196 196 441 439
ex1010 10 10 1103 851
ex5p 8 63 541 515
frisc 905 1002 2844 2320

misex3 14 14 735 629
pdc 16 40 2211 1969
s298 17 20 45 39

s38417 1490 1568 3161 3122
s38584 1297 1564 3723 3646

seq 41 35 997 932
spla 16 46 2126 1935
tseng 435 507 941 883

Quality of the initial placement. Table 4.8 compares the initial placement generated by the pro-

posed circuit similarity (column “CS” and “CS-t”) and the one generated by VPR (a random initial

placement) in terms of bb cost (bounding box cost) and delay cost. The results are conclusions are

similar to the “imfs” experiments. Both CS and CS-t produce the initial placement with a much bet-

ter quality than VPR’s by reducing 40% of the bb cost and 31% of the delay cost, respectively. This

again demonstrates the circuit similarity algorithm is able to discover the underlying structural char-

acteristic on the aggressive resynthesized netlists which naming matching is destroyed and structure

is dramatically changed.

42

Table 4.8: Comparisons of initial solutions of different CAD flows for “rwsat2”.

initial bb cost initial delay cost
Circuit CS CS-t VPR CS CS-t VPR

alu4 145 155 212 2.70E-052.95E-053.55E-05
apex2 213 249 341 3.38E-054.24E-055.25E-05
apex4 231 222 259 3.49E-053.66E-054.09E-05
bigkey 1294 1575 2004 2.23E-042.39E-042.49E-04
clma 1737 1615 3020 3.36E-043.28E-044.62E-04
des 306 798 1087 5.93E-051.13E-041.40E-04

diffeq 818 901 922 9.52E-051.04E-041.03E-04
dsip 448 578 2184 1.64E-041.75E-043.30E-04

elliptic 149 244 338 1.73E-052.56E-053.72E-05
ex1010 277 259 297 3.95E-053.99E-054.30E-05
ex5p 118 134 156 1.82E-052.03E-052.31E-05
frisc 5374 6530 8696 7.57E-048.49E-041.07E-03

misex3 129 162 192 2.36E-052.83E-053.23E-05
pdc 860 789 1015 1.23E-041.31E-041.55E-04
s298 3 4 5 5.50E-076.06E-077.27E-07

s38417 9254 14905193581.07E-031.74E-032.15E-03
s38584 1194820781199831.39E-032.37E-032.33E-03

seq 246 297 355 3.77E-054.72E-055.47E-05
spla 799 765 986 1.13E-041.27E-041.50E-04

tseng 801 1323 1736 1.17E-041.56E-042.00E-04
geomean 472 585 785 7.41E-058.96E-051.08E-04

ratio 60% 75% 1 69% 83% 1

Quality of the final placement. In order to provide some different perspectives for results, we

compare the final bounding box, final delay cost and estimated critical delay between two versions

of CSBP for “rwsat2” results. Table 4.9 compares final bounding box cost and Table 4.10 compares

the final delay cost. Both CS and CS-t produce quality very close to the results produced by from-

scratch flow. Table 4.11 compares the estimated critical delay, CS and CS-t reduce it by 4% and 1%,

respectively, compared to from-scratch flow. The comparison between CS and CS-t again shows the

effectiveness of the proposed CSBP method and the pruning techniques.

43

Table 4.9: Comparisons of final placement bounding cost of different CAD flows for “rwsat2”.

Final bounding box cost
Circuit CS CS-t VPR

alu4 92 111 91
apex2 137 157 136
apex4 135 148 131
bigkey 262 401 272
clma 766 956 690
des 237 250 221

diffeq 224 237 216
dsip 468 518 426

elliptic 91 96 84
ex1010 147 167 142
ex5p 80 88 76
frisc 2308 2376 2052

misex3 87 97 81
pdc 416 480 402
s298 3 3 3

s38417 1091 1287 978
s38584 1401 1685 1352

seq 156 174 153
spla 396 481 389
tseng 276 298 272

geomean 218 249 208
ratio 105%120% 1

44

Table 4.10: Comparisons of final delay cost of different CAD flows for “rwsat2” .

Final delay cost
Circuit CS CS-t VPR

alu4 2.34E-052.48E-052.24E-05
apex2 2.83E-053.00E-052.77E-05
apex4 2.71E-052.87E-052.70E-05
bigkey 1.13E-041.11E-041.11E-04
clma 2.22E-042.38E-041.93E-04
des 5.08E-055.23E-054.98E-05

diffeq 3.79E-053.91E-053.68E-05
dsip 1.57E-041.57E-041.65E-04

elliptic 1.41E-051.45E-051.42E-05
ex1010 2.71E-052.91E-052.78E-05
ex5p 1.45E-051.54E-051.42E-05
frisc 4.41E-044.39E-044.37E-04

misex3 1.98E-052.06E-051.84E-05
pdc 8.80E-059.05E-058.56E-05
s298 5.34E-075.40E-075.05E-07

s38417 3.14E-043.25E-043.68E-04
s38584 5.25E-045.49E-044.95E-04

seq 3.08E-053.25E-053.04E-05
spla 7.83E-058.78E-058.18E-05

tseng 7.86E-057.98E-057.73E-05
geomean5.00E-055.20E-054.94E-05

ratio 101% 105% 1

45

Table 4.11: Comparisons of estimated critical delay of different CAD flows for “rwsat2”.

Estimated critical delay (s)
Circuit CS CS-t VPR

alu4 5.61E-086.27E-085.88E-08
apex2 6.77E-087.30E-086.45E-08
apex4 6.27E-086.50E-086.27E-08
bigkey 1.32E-071.29E-071.59E-07
clma 1.85E-071.93E-071.29E-07
des 8.28E-088.04E-081.01E-07

diffeq 1.17E-071.13E-071.38E-07
dsip 1.26E-071.22E-071.48E-07

elliptic 8.05E-088.73E-088.98E-08
ex1010 6.80E-087.51E-087.22E-08
ex5p 5.06E-085.47E-085.54E-08
frisc 3.13E-073.19E-073.16E-07

misex3 5.19E-086.27E-085.48E-08
pdc 9.70E-081.06E-071.03E-07
s298 1.78E-081.78E-081.61E-08

s38417 3.65E-073.65E-073.83E-07
s38584 4.37E-074.13E-075.09E-07

seq 5.53E-086.12E-085.40E-08
spla 1.02E-071.11E-079.25E-08

tseng 1.46E-071.40E-071.67E-07
geomean9.84E-081.02E-071.03E-07

ratio 96% 99% 1

46

Runtime comparison. Table 4.12 compares the runtime of the placement for the “rwsat2” resyn-

thesized circuits. The results and conclusions are similar to “imfs” resynthesized circuits. Note

that a timeout is invoked if CSBP takes longer than the original netlist. It shows that CS-t achieves

28X speedup on average and up to 93X on the largest circuit, which again proves the scalability of

CSBP, compared with the from-scratch VPR placement. Moreover, note that the pruning setting in

CS-t makes the similarity detection phase in CS-t approximately 10X faster than that in CS, and the

reduction of inner num also makes the annealing process in CS-t approximately 10X faster. Even

with such a significant speedup, the quality of the placement produced by CS-t is still comparable to

that produced by CS, which again proves the effectiveness of the proposed pruning techniques and

the quality of the initial placement generated by CSBP.

Table 4.12: Comparisons of final placement runtime of different CAD flows for “rwsat2”.

Placement runtime (s)
Circuit CS CS-t VPR

alu4 6.89 (1 x)0.36 (28 x) 9.97
apex2 8.65 (2 x)0.49 (31 x) 15.01
apex4 *4.16 (3 x)0.54 (22 x) 12.03
bigkey 35.33 (1 x)1.74 (25 x) 43.18
clma *43.64 (3 x)5.85 (24 x)139.37
des 13.38 (2 x)1.28 (22 x) 28.42

diffeq 3.11 (6 x)0.52 (36 x) 18.73
dsip *11.58 (4 x)5.21 (10 x) 52.09

elliptic 3.54 (2 x)0.24 (34 x) 8.11
ex1010 *8.38 (2 x)0.49 (32 x) 15.56
ex5p *2.44 (3 x)*1.84 (5 x) 8.53
frisc 22.17 (8 x)4.23 (44 x)185.37

misex3 6.3 (2 x)0.25 (40 x) 10.02
pdc *19.67 (3 x) 2.7 (21 x) 56.97
s298 0.05 (5 x)0.01 (24 x) 0.24

s38417 38.66 (11 x)5.05 (84 x)426.19
s38584 29.23 (14 x)4.52 (93 x) 421.8

seq 14.3 (1 x)0.51 (37 x) 18.75
spla *17.21 (3 x)2.21 (24 x) 53.04

tseng 5.99 (6 x)0.82 (43 x) 35.02
geomean 8.4 (3 x)0.96 (28 x) 27.26

ratio 31% 4% 1

47

4.2 Case Study on Design Space Exploration

T-VPack:

(no_cluster)

Mapped Netlist

Packed Netlist

Technology Mapping

(if -k 4)

Ref Config?

Circuit Similarity
Ref

Config

Initial Placement

Generation

Placement

Yes

No

Similarity

Matching VPR Place

Ref Placement

(.p)

VPR Place

Flow bFlow a

Low

Temperature SA

19 ABC Logic

Synthesis Scripts

Execute Next Script

Synthesized

Netlist

More Config? Exit

No

Yes

Figure 4.2: CAD flows used in the experiments for design space exploration.

In this section, we apply CSBP to design space exploration at logic level and algorithm level,

respectively.

4.2.1 Logic-Level Design Space Exploration

Experimental CAD Flow and Settings The objective of this design space exploration is to iden-

tify the influence of logic-level optimization in a post-layout design. In our experiment, the design

parameters are logic synthesis and optimization commands in Berkeley ABC [9]. We use 19 synthe-

sis scripts provided in abc.rc from the ABC package, i.e., there are 19 configurations in this design

48

Table 4.13: Characteristics of the logic-level design space for 20 MCNC applications over 19 con-
figurations.

Block Number Level
Circuit CI# CO# min max minmax

alu4 14 8 652 710 7 10
apex2 38 3 773 926 8 11
apex4 9 19 754 805 7 10
bigkey 452 421 924 1263 3 4
clma 94 115 3731 4221 12 17
des 256 245 1157 1245 6 10

diffeq 332 308 648 712 12 15
dsip 452 421 1106 1554 3 4

elliptic 196 196 375 441 8 11
ex1010 10 10 851 1100 6 10
ex5p 8 63 460 519 6 11
frisc 905 10022173 2788 19 26

misex3 14 14 545 680 6 9
pdc 16 40 1836 2159 8 14
s298 17 20 36 43 3 4

s38417149015683063 3252 9 10
s38584129715643568 3715 8 11

seq 41 35 891 982 6 9
spla 16 46 1718 2074 8 14

tseng 435 507 744 938 12 14

space exploration case. In the rest of this sub-section, we follow the same names of each script used

in ABC as the index, e.g., the two scripts shown in Chapter 3, Section 3.1 are named “resyn3” and

“rwsat2”, respectively. Interested readers may refer to Appendix A for more details.

The experimental CAD flow is shown in Figure 4.2. Starting from 19 ABC logic synthesis

scripts, we have the resulting synthesized netlists stored in BLIF file format. Next, the same proce-

dures are performed as stated in Section 4.1.1 until the netlists are packed. After this point, we again

compare two CAD flows: (a) CSBP flow and (b) VPR from-scratch flow, as shown in Figure 4.2.

Flow (a) first selects the largest configuration (i.e., the one with largest number of CLBs) as the ref-

erence. Then the reference configuration is placed using VPR and produces a reference placement

(“.p” file). The reference configuration and its placement are then used to guide the initial placement

of the new configuration by finding the similarity between the new configuration and the reference

configuration. The same annealing process is used to further refine the placement results as Section

4.1.1.

As in Section 4.1.1, we evaluate both CS and CS-t in this design space exploration case, and use

the same server and settings to benchmark the results.

49

Experimental Results Table 4.13 shows the minimal and maximal CLB number and level for

the design space of each application. The number of CLBs and levels vary widely in different

configurations.

Quality of the initial placement. Table 4.14 shows the initial placement quality of CS and CS-t

compared to VPR’s initial results. We show one representative circuit “dsip” as an example. The

results for the other circuits are similar. The “Configuration” column in Table 4.14 lists the 19

ABC scripts’ names. The bounding box cost (“initial bb cost” column) and the delay cost (“initial

delay cost” column) are compared. The initial placement results generated by CS and CS-t are

significantly better than VPR’s random initial placement results. CS improves the bb cost and delay

cost by 76% and 48% compared to VPR, respectively. This again demonstrates that CSBP is able to

find the underlying structural similarities among different configurations, and thus provides a quality

placement for the design space exploration.

Table 4.14: Initial placement quality comparison of circuit “dsip” for 19 designs.

initial bb cost initial delay cost
Configuration CS CS-t VPR CS CS-t VPR
resyn 363 934 1817 1.02E-04 1.49E-04 2.22E-04
resyn2 363 934 1819 1.02E-04 1.49E-04 2.19E-04
resyn2a 453 453 2184 1.69E-04 1.69E-04 3.11E-04
resyn3 443 494 2189 1.64E-04 1.70E-04 3.07E-04
compress 448 448 2203 1.66E-04 1.66E-04 3.31E-04
compress2 363 936 1785 1.03E-04 1.52E-04 2.21E-04
choice 1943 1978 2020 2.72E-04 2.74E-04 2.72E-04
choice2 1940 1977 1990 2.72E-04 2.74E-04 2.75E-04
rwsat 371 930 1804 1.03E-04 1.53E-04 2.26E-04
rwsat2 448 578 2184 1.64E-04 1.75E-04 3.30E-04
shake 424 518 2151 1.44E-04 1.51E-04 2.93E-04
share 365 936 1778 1.02E-04 1.50E-04 2.19E-04
src rw 458 793 2185 1.48E-04 1.70E-04 2.96E-04
src rs 452 458 2159 1.46E-04 1.48E-04 2.96E-04
src rws 544 841 2172 1.53E-04 1.72E-04 2.93E-04
resyn2rs 365 937 1770 1.03E-04 1.52E-04 2.23E-04
compress2rs 363 936 1809 1.03E-04 1.53E-04 2.22E-04
resyn2rsdc 427 719 2156 1.65E-04 1.83E-04 3.10E-04
compress2rsdc 373 933 1772 1.04E-04 1.53E-04 2.24E-04
geomean 483 802 1989 1.39E-04 1.69E-04 2.65E-04
ratio 24% 40% 1 52% 64% 1

Quality of the final placement. A low-temperature annealing is applied to the initial placement

results generated by CSBP. Table 4.15 compares the final placement results of circuit “dsip” for 19

designs. We evaluate the final wire length and the critical delay. For wire length, CS and CS-t pro-

duce the results close to VPR’s final results with 32% and 53% overhead, respectively. For critical

50

delay, CS and CS-t achieve better results than VPR, reducing it by 18% and 20%, respectively. This

shows the effectiveness of CSBP that generates an optimized initial placement which in turn leads

to an optimized final placement.

0.00E+00

5.00E-08

1.00E-07

1.50E-07

2.00E-07

2.50E-07

3.00E-07

3.50E-07

4.00E-07

4.50E-07

E
st

im
a

te
d

 c
ri

ti
ca

l
d

e
la

y

Circuits

vpr-min cs-min cs-t-min

Figure 4.3: Minimal estimated critical delay design space shape of 20 circuits on 19 designs.

0

100

200

300

400

500

600

700

800

W
ir

e
 l
e

n
g

th

Configs

vpr cs cs-t

Figure 4.4: Final wire length design space shape comparison of VPR, CS and CS-t on circuit “dsip”.

Design space shape characterization. We compare the minimal, median and maximal wire length

and critical delay produced by CS and CS-t to VPR. Figure 4.3 shows the minimal critical delay

curves of all 19 designs for 20 circuits using CS, CS-t and VPR. The almost identical curves prove

that both CS and CS-t can precisely pinpoint the minimal critical delay design. Similarly, the median

and maximum curves of both CS and CS-t follow close to VPR’s. Moreover, the shape of most con-

figurations is accurately matched as well. As an example, Figure 4.4 shows the wire length curve for

circuit “dsip”. Note that “choice” and “choice2” include a repetitive call of ABC synthesis command

“fraig store”, which stores the current functionally-reduced network as one “synthesis snapshot” for

51

Table 4.15: Final placement quality comparison of circuit “dsip” for 19 designs.

Wire length Critical delay
Configuration CS CS-t VPR CS CS-t VPR
resyn 353 432 267 1.23E-07 1.18E-07 1.63E-07
resyn2 353 432 278 1.26E-07 1.17E-07 1.51E-07
resyn2a 465 523 432 1.25E-07 1.25E-07 1.34E-07
resyn3 464 516 424 1.25E-07 1.22E-07 1.28E-07
compress 465 519 400 1.25E-07 1.19E-07 1.63E-07
compress2 354 434 231 1.19E-07 1.18E-07 1.81E-07
choice 722 735 369 1.30E-07 1.30E-07 1.27E-07
choice2 721 732 346 1.30E-07 1.30E-07 1.54E-07
rwsat 351 433 281 1.21E-07 1.15E-07 1.40E-07
rwsat2 468 518 426 1.26E-07 1.22E-07 1.48E-07
shake 440 507 370 1.20E-07 1.21E-07 1.77E-07
share 352 431 236 1.22E-07 1.18E-07 1.64E-07
src rw 451 512 388 1.24E-07 1.25E-07 1.72E-07
src rs 445 502 394 1.21E-07 1.22E-07 1.24E-07
src rws 441 514 411 1.25E-07 1.22E-07 1.65E-07
resyn2rs 352 429 225 1.18E-07 1.16E-07 1.63E-07
compress2rs 352 435 242 1.24E-07 1.19E-07 1.73E-07
resyn2rsdc 462 516 412 1.23E-07 1.24E-07 1.21E-07
compress2rsdc 352 423 216 1.22E-07 1.16E-07 1.53E-07
geomean 429 496 324 1.24E-07 1.21E-07 1.52E-07
ratio 132% 153% 1 82% 80% 1

later technology mapping. Such a choice-based logic optimization may significantly change the

topology of the netlist. In the future, we will investigate improvements to this problem. Although

CS-t produces longer wire length than VPR, Figure 4.4 shows that CS-t closely captures the relative

wire length of each configuration which is essentially useful in the design space exploration.

Runtime Comparison. Table 4.16 compares the total runtime of placing 19 designs of each MCNC

application using CS, CS-t and VPR. Column “Ref” shows the time to place the reference config-

uration. Column “CS” and “CS-t” shows the time to generate the placement for the remaining 18

configurations. Note that a timeout is invoked if CSBP takes longer than the original netlist. Without

considering the time for placing the reference configuration, CS achieves averaged 3X speedup while

CS-t achieves averaged 30X speedup with up to 100X compared to from-scratch VPR placement.

Since the computation of the reference placement is a one-time cost for a design space exploration

problem of one application, the time used for the reference placement should be amortized and

becomes negligible as the number of configurations increases.

We make use of the significant speedup of CS-t and use it to perform quick design space explo-

ration. For instance, the total time of exploring the whole design space of 20 MCNC applications

with 19 designs is more than 8 hours using VPR (place only). In contrast, it only takes 37 min-

52

utes (including the time for the reference placement) using our CS-t. More significant speedup is

expected when larger design space is explored.

Table 4.16: Comparison of total runtime (s) for logic-level design space exploration. The ‘*’ marked
time is measured with a timeout.

Circuit CS CS-t VPR Ref
alu4 113.99 (2x) 6.13 (31x) 188.62 10.37

apex2 122.85 (2x) 7.7 (35x) 267.46 17.03
apex4 187.18* (1x) 8.77 (28x) 246.03 14.89
bigkey 630.69 (1x) 26.71 (27x) 720.96 37.85
clma 1782.7* (1x) 101.42 (25x) 2532.65 143.91
des 183.37 (3x) 20.32 (27x) 549.24 29.38

diffeq 56.09 (7x) 9.13 (42x) 387.89 19.78
dsip 626.48* (1x) 55.92 (14x) 776.66 47.12

elliptic 47.06 (4x) 4.37 (40x) 173.6 9.88
ex1010 229.28* (1x) 72.73 (5x) 336.51 18.54
ex5p 95.55* (1x) 4.18 (33x) 136.49 7.87
frisc 373.98 (8x) 75.43 (42x) 3178.44 176.56

misex3 122.87 (1x) 4.68 (36x) 170.32 11.44
pdc 747.53* (1x) 43.8 (22x) 975.6 55.11
s298 0.94 (5x) 0.32 (14x) 4.45 0.27

s38417 564.45 (15x) 82.99 (100x) 8318.7 445.85
s38584 541.19 (15x) 84.73 (96x) 8155.16 443.59

seq 218.33 (2x) 9 (37x) 337.44 18.52
spla 745.35* (1x) 39.71 (23x) 923.75 53.36
tseng 86.72 (7x) 13.71 (43x) 587.89 33.35

geomean 186.97 (3x) 16.64 (30x) 497.81 28.33
total 7476.6 (4x) 671.75 (43x) 28967.86 1594.67

4.2.2 Algorithm-Level Design Space Exploration

Experimental CAD Flow and Settings We now demonstrate the effectiveness of CSBP at the

algorithm-level for the design space exploration. Specifically, the design is a constant multiplier as

shown in Figure 4.5, where (a) shows a multiplier block implements a parallel multiplication of a

variable with a fixed set of constants, i.e. c1,c2, . . .cn and (b) presents a very simple example - a

multiplier block for the parallel multiplication with the constants 23 and 81. The design parameter

in this exploration is the fractional bits, which controls the precision of the constants, from 7 to

25, resulting in a design space containing 18 configurations3. Given a fractional bit setting, we

use the CMU SPIRAL multiplier block generator to generate the RTL design of each configuration

based on the Hcub algorithm [72]. The following constants (accurate to two decimal places) are

used for all configurations: 0.23, 0.71, 0.63, 0.03, -0.19, 0.03, 0.03, -0.01. Once we obtain the

RTL design, we use Altera Quartus to perform RTL elaboration and generate a BLIF file from a
3Bits = 16 is abandoned since ABC crashed when synthesized it. So there are 18 configurations in total.

53

verilog (.v) file. Other experimental settings are the same as described in Section 4.1.1. Table 4.17

presents the number of CLBs and level for algorithm-level design space. Since those configurations

vary in algorithm level, the topological structure and circuit size differ considerably compared to

logic-level variations. Therefore, it is more challenging to find the similarities between these design

configurations.

Multiplier

block

1 9

9x = 8x + x

23x = 32x – 9x

81x = 8(9x) + 9x

1

x

Cnx

C2x

C1x

81

23

8 32

-1

8

1

(a) (b)

Figure 4.5: A simple example of a multiplier block with constants 23 and 81 [2].

Table 4.17: Characteristics of the algorithm-level design space of 18 configurations using CMU
SPIRAL.

Bits CLB# Level Bits CLB# Level
7 501 35 17 2222 57
8 697 38 18 2356 52
9 814 37 19 2339 60
10 920 41 20 2577 56
11 1115 42 21 2398 54
12 938 43 22 2625 55
13 1085 41 23 2832 55
14 1293 48 24 3289 56
15 1352 48 25 3234 62

Experimental Results Figure 4.6 shows the wire length-critical path delay space produced by

CS and VPR-based placement for the 18 configurations (using Bits = 24 as reference). The label

besides each point indicates the corresponding configuration. For example, “B7” means this point

corresponds to the configuration using Bits = 7. Figure 4.7 shows the same design space using CS.

From these two figures, we can clearly see that CS and VPR find the same pareto-points, i.e., optimal

configurations of this design space, such as B7, B8 and B9. In addition, the overall shapes of the two

design spaces match well. This demonstrates that our circuit similarity not only works well at low

level logic synthesis, but also at high level algorithm level. Moreover, in terms of runtime, CS and

CS-t, respectively, achieve 7X and 30X speedup compared to VPR.

54

B7

B8

B9

B10

B12

B14

B15

B17

B18

B19

B21

B22

B23

B25

1.5E-07

0.0000002

2.5E-07

0.0000003

3.5E-07

0.0000004

0 50 100 150 200 250 300 350 400 450 500

E
st

im
a

te
d

 c
ri

ti
ca

l
d

e
la

y

Wire length

Figure 4.6: Wire length-delay space of VPR for 18 configurations.

B7

B8
B9

B10

B12

B14

B15

B17

B18

B19

B21

B22

B23

B25

1.75E-07

2.25E-07

2.75E-07

3.25E-07

3.75E-07

4.25E-07

0 100 200 300 400 500 600

E
st

im
a

te
d

 c
ri

ti
ca

l
d

e
la

y

Wire length

Figure 4.7: Wire length-delay space of CS for 18 configurations.

4.3 Summary

In this Chapter, we presented the experimental CAD flow and results on FPGA incremental design

case and FPGA design space exploration case, respectively. For the incremental design case study,

we first explained the CAD flow and experimental settings. In essence, the CAD flow consists

of two iterations, where the first iteration performs a standard synthesis, mapping, placement and

routing flow, while the second iteration uses the proposed similarity-based flow compared with

“from-scratch” VPR flow. We conducted our experiments on two optimization scripts: a mild “imfs”

resynthesis script and an aggressive “rwsat2” resynthesis scripts. We compared the CSBP placement

quality against VPR using the core measurements, such as wire length, critical delay, area, bounding

box cost, delay cost and runtime. Our experimental results showed that CSBP generates comparable

or even better placement results in the above criteria with averaged more than 30X speedup. By

increasing the circuit size, more speedup is achieved up to 100X. The results demonstrate CSBP is

55

able to detect the similarity among both minor and radical changes in the incremental design process

and significantly saves runtime in particular to very large scale circuits.

For the design space exploration case study, we performed our experiments on logic-level de-

sign space and algorithm-level design space. For logic-level design space, the changes are due to

the logic-level optimization to netlists or gates, which generally results in local similarity among

different circuit designs. In contrast, for algorithm-level design space, since the changes are due to

different high level optimization algorithms, the resulting circuit designs generally share global sim-

ilarities. For both case studies, we also first presented the CAD flow and experimental settings. For

the logic-level case study, we constructed the design space with 19 configurations on each of the 20

MCNC benchmarks. We compared the initial and final placement quality and runtime to VPR, and

experimentally showed CSBP is able to significantly improve the initial placement quality with 76%

reduction in bounding box cost and 48% reduction in delay cost. Moreover, CSBP generates compa-

rable final placement results with 30X speedup compared to VPR. We also characterized the shape

of the design space in terms of minimal, median and maximal wire length and critical delay. The

almost identical cures produced by CSBP and VPR proved CSBP is able to accurately capture the

design characteristics of a design space and provides insights for IC designers. For algorithm-level

case study, we used CMU SPIRAL multiplier block generator to generate different RTL designs us-

ing different algorithms and configurations. We focused on the wire length-critical path delay space

produced by CS and VPR and demonstrated that CSBP is able to comprehensively understand the

underlying structural similarities among circuits and precisely pinpoint the most optimized designs

in a design space thus provides significant convenience to IC designers.

The next Chapter concludes this thesis and points out the future research direction for applying

CSBP to more applications.

56

Chapter 5

Conclusions

In this thesis, we have presented an efficient circuit similarity algorithm. Based on this algorithm, we

have proposed a Circuit Similarity-Based Placement (CSBP), and applied it to incremental design for

FPGAs and design space exploration for FPGAs. For incremental design, experimental results show

that CSBP is able to accurately capture the similarity from the previous design iterations for both

mild and aggressive synthesises and thus reduce the engineering effort. For design space exploration,

experimental results show that CSBP can precisely depict the shape of the design space and closely

match the design curves. Compared with the state-of-the-art VPR tool, CSBP is averaged 31X and

30X faster while preserving the wire length and critical delay in incremental design and design

space exploration, respectively. Moreover, up to 100X speedup can be achieved when circuit gets

larger, therefore, demonstrates the CSBP’s premium scalability. The significant speedup is achieved

because of the high-quality initial placement generated based on circuit similarity.

We first addressed our Hypothesis 1 by proposing the “circuit similarity” concept based on the

iterative graph similarity algorithm used for undirected molecular graphs, and adapted it to consider

the unique circuit properties and reduce the expensive computational complexity. Different from

molecular graph similarity algorithm, we update the circuit similarity scores for one node based on

the edges that leave the nodes and edges that enter the nodes, respectively. In addition, since primary

inputs and primary outputs are fixed in incremental design and design space exploration processes,

the matchings for those nodes are fixed and not updated in each iteration. In order to improve the

efficiency of the circuit similarity algorithm, we devised two pruning techniques, namely support

constraint and level constraint to reduce the number of node pairs needed to be updated in each

iteration. We experimentally demonstrated that with a strong level constraint pruning and a strong

support constraint pruning, and approximately 90% and 99% of the nodes can be pruned.

We then addressed our Hypothesis 2 by proposing a circuit similarity-based CAD flow for FP-

GAs. In essence, the flow produces a highly optimized initial placement for the modified logic-

level/algorithm-level netlists based on the layout of the original netlist and the circuit similarity

between the original and modified logic-level/algorithm-level netlists. Based on this initial solution,

an efficient refinement is then performed as a fine-grain tuning for further improvement of the layout

57

quality. Note that such a refinement procedure does not require a radical change of the existing CAD

tools and can be inserted as a simple plug-in. The essential information obtained from the previous

design iterations is automatically captured and quantified by a runtime-efficient “similarity detec-

tion” phase. The circuit similarity based CAD flow can be applied to various FPGA applications.

We used the circuit similarity-based flow to accelerate the FPGA incremental design process and

FPGA design space exploration process.

We finally addressed our Hypothesis 3 by implementing the circuit similarity-based placement

and experimentally compared the results in two FPGA applications: incremental design and de-

sign space exploration. For the incremental design case study, we chose two optimization syn-

thesis scripts to perform our experiments, a mild resynthesis “imfs” and an aggressive resynthesis

“rwsat2”. We compared the key criteria against VPR tool, such as bounding box cost, delay cost,

wire length, area, critical delay and runtime, and CSBP is able to generate comparable or better

placement quality with averaged more than 30X speedup and up to 100X on very large circuits.

For the design space exploration case study, in addition to those criteria compared in incremental

design, we also investigated the design space characterization by comparing the wire length-critical

path delay space. The experimental results show that CSBP is able to capture the intrinsic struc-

tural similarities among different circuit designs, and thus provides a useful insight for design space

exploration.

There are some promising and interesting future projects resulting from this thesis work, in-

cluding integrating predefined matchings (e.g., the naming matching) into the CSBP flow to further

enhance both the efficiency and the quality of the design and applying the circuit similarity algorithm

to routing and sequential verification for FPGAs.

58

Bibliography

[1] A. G. Dempster and M. D. Macleod . Use of Minimum-adder Multiplier Blocks in FIR Digital
Filters. IEEE Transactions in Circuits and Systems-II: Analog and Digital Signal Processing,
42:569–577, 1995.

[2] A. Ling, S. Brown and J. Zhu. Towards Automated ECOs in FPGAs. International Symposium
on Physical Design, 2000.

[3] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang. SAT-based Logic Optimization and
Resynthesis. International Workshop on Logic and Synthesis, 2007.

[4] A. Mishchenko, S. Chatterjee, J. H. Jiang and Robert Brayton. Integrating Logic Synthesis,
Technology Mapping, and Retiming. In Proceedings of the International Workshop on Logic
and Synthesis, 2005.

[5] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton. FRAIGs: A Unifying Repre-
sentation for Logic Synthesis and Verification. Technical Report, EECS Dept., UC Berkeley,
2005.

[6] A. Sangiovanni-Vincentelli, A. El Gamal and J. Rose. Synthesis Method for Field Pro-
grammable Gate Arrays. Proceedings of the IEEE, pages 1057–1083, 1993.

[7] A.Nayak A.Choudhary, M.Haldar and P.Banerjee. Parallel Algorithms for FPGA Placement.
Proceedings of the 10th Great Lakes Symposium on VLSI, pages 86–94, 2000.

[8] A.M. Smith, J. Das, S.J.E. Wilton. Wirelength Modeling for Homogeneous and Heterogeneous
FPGA Architectural Development. ACM International Symposium on FPGAs, 2009.

[9] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis
and Verification. http://www.eecs.berkeley.edu/∼alanmi/abc/, Release 70930.

[10] J.Chandy S.Kim B.Rankumar, S.Parkers and P.Banerjee. An Evaluation of Parallel Simulated
Annealing Strategies with Application to Standard Cell Placement. Technology Computer-
Aided Design, 16:398–410, 1997.

[11] H. Bunke. Error Correcting Graph Matching: On the Influence of the Underlying Cost Func-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21:917–922, 1999.

[12] C. Alpert and A. Kahng. Recent Directions in Netlist Partitioning: A Survey. Integration, the
VLSI Journal, 19:1–81, 1995.

[13] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burns. Placement and Routing Tools for the
Triptych FPGA. IEEE Transactions on VLSI, pages 473–482, 1995.

[14] P.Maidee C.Ababei and K.Bazargan. Time-driven Partitioning-based Placement for Island
Style FPGAs. IEEE Transactions on Computer Aided Design of Integrated Circuits and Sys-
tems, 24:395–406, 2005.

[15] D. Chen, J. Cong and P. Pan. FPGA Design Automation: A Survey. Found. Trends Electron.
Des. Autom., 1:139–169, 2006. ISSN 1551-3076.

[16] D. J. Creasey. Advanced Signal Processing. IEE Telecommunications Series, 1985. ISBN
0863410375.

[17] D. M. Miller and M. A. Thornton. Multiple Valued Logic: Concepts and Representations.
Morgan and Claypool Publishers, 2008. ISBN 9781598291902.

59

http://www.eecs.berkeley.edu/~alanmi/abc/

[18] D. Sheldon and F. Vahid. Making Good Points: Application-Specific Pareto-Point Generation
for Design Space Exploration using Statistical Methods. ACM International Symposium on
FPGAs, 2009.

[19] D. Singh and S. Brown. Incremental Placement for Layout Driven Optimizations on FPGAs.
International Conference on Computer Aided Design, pages 752–759, 2002.

[20] D. Zacher. Turbo-Charge Your FPGA Design Iterations. http://chipdesignmag.com/display.
php?articleId=3497, 2007.

[21] E. Lawler, K. Levitt and J. Turner. Module Clustering to Minimize Delay in Digital Networks.
IEEE Transactions on Computers, pages 47–57, 1966.

[22] G. Jeh and J. Widom. A Measure of Structural-context Similarity. Proceedings of the Eighth
International Conference on Knowledge Discovery and Data Mining, 2002.

[23] A. V. Goldberg. An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm.
Journal of Algorithms, 22:1–29, 1997.

[24] S.Yildiz M.Markov I. Villarrubia, P.Parakh and Madden. Benchmarking for Large Scale Place-
ment and Beyond. Proceedings of the International Symposium on Physical Design, pages
95–103, 2003.

[25] J. Cong and M. Sarrafzadeh. Incremental Physical Design. International Symposium on Phys-
ical Design, 2000.

[26] J. Cong and W. Jiang. Pattern-based Behavior Synthesis for FPGA Resource Reduction. Proc.
16th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2008.

[27] J. Cong and Y. Ding. Flowmap: An Optimal Technology Mapping Algorithm For Delay Opti-
mization in Lookup-table based FPGA Designs. Technology Computer-Aided Design, 1994.

[28] J. Cong, L. He, C. Koh and P. Madden. Performance Optimization of VLSI Interconnect
Layout. Integration, The VLSI Journal, 21:1–94, 1996.

[29] J. Das, S.J.E. Wilton, W. Luk, P.H.W. Leong. Modeling Post-Techmapping and Post-Clustering
FPGA Circuit Depth. International Conference on Field-Programmable Logic, 2009.

[30] J. Rubinstein, P. Penfield and M. Horowitz. Signal Delay in RC Tree Networks. IEEE Trans-
actions on Computer Aided Design, pages 202–211, 1983.

[31] K. C. Chen, J. Cong, Y. Ding, A. Kahng and P. Trajmar. DAG-Map: Graph Based FPGA
Technology Mapping For Delay Optimization. IEEE Design and Test Magzine, pages 7–20,
1992.

[32] K. Chang, D. A. Papa, I. L. Markov and V. Bertacco. InVerS: An Incremental Verification
System with Circuit Similarity Metrics and Error Visualization. International Symposium on
Quality Electronic Design, 2007.

[33] K. Chang, I. L. Markove and V. Bertacco. Fixing Design Errors with Counterexamples and
Resynthesis. IEEE Journal on Technology in Computer-Aided Design, 27:184–188, 2008.

[34] L. Hagen and A. Kahng. Fast Spectral Methods for Ratio Cut Partitioning and Clustering.
International Conference on Computer Aided Design, pages 10–13, 1991.

[35] L. Mcmurchie and C. Ebeling. PathFinder: A Negotiation-based Performance-driven Router
for FPGAs. In Proceedings of International Symposium on Field Programmable Gate Arrays,
1995.

[36] D. Leong. Incremental Placement for Field-Programmable Gate Arrays. PhD thesis, Univer-
sity of British Columbia, 2004.

[37] M. Alexander, J. Cohoon, J. Ganley and G. Robins. An Architecture-Independent Approach to
FPGA Routing Based on Multi-Weighted Graphs. European Design Automation Conference,
pages 259–264, 1994.

[38] M. Khellah, S. Brown and Z. Vranesic. Modeling Routing Delays in SRAM-based FPGAs.
Proceedings Canadian Conference on VLSI, pages 13–18, 1993.

60

http://chipdesignmag.com/display.php?articleId=3497
http://chipdesignmag.com/display.php?articleId=3497

[39] M. L. Fernandez and G. Valiente. A Graph Distance Metric Combining Maximum Com-
mon Subgraph and Minimum Common Supergraph. Pattern Recognition Letters, 22:735–758,
2001.

[40] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso and R.
W. Johnson . SPIRAL: A Generator for Platform-Adapted Libraries of Signal Processing
Algorithms . Journal of High Performance Computing and Applications, 18:21–45, 2004.

[41] M. Rupp, E. Proschak and G. Schneider. Kernel Approach to Molecular Similarity Based on
Iterative Graph Similarity. Journal of Chemical Information and Modeling, 47:2280–2286,
2007.

[42] M. Xu and F. Kurdahi. Area and Timing Estimation for Lookup Table Based FPGAs. European
Design and Test Conference, 1996.

[43] N. Togawa, K. Hagi and M. Yanagisawa. An Incremental Placement and Global Routing
Algorithm for Field Programmable Gate Arrays. Asia and South Pacific Design Automation
Conference, pages 519–526, 1998.

[44] O. Macindoe and W. Richards. Graph Comparison using Fine Structure Analysis. Proceedings
of IEEE Conference on Social Computing, 2010.

[45] P. Suaris, L. Liu, Y. Ding and N. Chou. Incremental Physical Resynthesis for Timing Opti-
mization. International Symposium on Field-Programmable Gate Arrays, pages 99–108, 2004.

[46] M. Pelillo. Matching Free Trees, Maximal Cliques and Monotone Game Dynamics. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24:1535–1541, 2002.

[47] R. Albert and A. L. Barabasi. Statistical Mechanics of Complex Networks. Reviews of Modern
Physics, 74:47–97, 2002.

[48] R. Brayton, G. Hachtel and A. Sangiovanni-Vincentelli. Multilevel Logic Synthesis. Proceed-
ings of the IEEE, pages 264–300, 1990.

[49] R. Francis, J. Rose and Z. Vranesic. Chortle-crf: Fast Technology Mapping for Lookup Table-
based FPGAs. Design Automation Conference, pages 227–233, 1991.

[50] R. Hitchcock, G. Smith and D. Cheng. Timing Analysis of Computer Hardware. IBM Journal
of Research and Development, pages 100–105, 1983.

[51] S. Brown and J. Rose. FPGA and CPLD Architectures: A Tutorial. IEEE Design and Test of
Computers, 12:42–57, 1996.

[52] S. Krishnaswamy, H. Ren, N. Modi, R. Puri. DeltaSyn: An Efficient Logic Difference Opti-
mizer for ECO Synthesis. International Conference on Computer Aided Design, 2009.

[53] S. Melnik, H. Garcia-Molina and A. Rahm. Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching. Proceedings of the 18th International
Conference on Data Engineering, 2002.

[54] S. Nag and R. Rutenbar. Performance-driven Simultaneous Place and Route for Island-Style
FPGAs. International Conference on Computer Aided Design, pages 332–338, 1995.

[55] T. Givargis and F. Vahid. Platune: A Tuning Framework for System-on-a-Chip Platforms.
IEEE Transactions on Computer Aided Design, 21:1317–1327, 2002.

[56] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms. MIT
Press, Cambridge, MA, USA, 2001. ISBN 0-262-03293-7.

[57] V. Betz and J. Rose. VPR: A New Packing, Placement and Routing Tool for FPGA Research.
1997.

[58] V. Betz, J. Rose and A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs. Kluwer
Academic Publishers, 1999. ISBN 0792384601.

[59] V. Blondel, A. Gajardo, M. Heymans, P. Senellart and P. Van Dooren. A Measure of Similarity
between Graph Vertices: Applications to Synonym Extraction and Web Searching. Society for
Industrial and Applied Mathematics Review, 46:647–666, 2004.

61

[60] V. Manohararajah, S. D. Brown and Z. Vranesic. Heuristics for Area Minimization in LUT-
based FPGA Technology Mapping. In Proceedings of the International Workshop on Logic
and Synthesis, pages 14–21, 2004.

[61] C. A. J. van Eijk. Sequential Equivalence Checking based on Structural Similarities. IEEE
Transactions on Computer-Aided Design, 19:814–819, 2000.

[62] A.Ludwin V.Betz and K.Padalia. High-quality, Deterministic Parallel Placement for FPGAs on
Commodity Hardware. ACM/Sigda International Symposium on FPGAs, pages 14–23, 2008.

[63] R.Aggarwal V.Kumar, G.Karypis and S.Shekhar. Multilevel Hypergraph Partitioning: Appli-
cation in VLSI Domain. Proceedings ACM/IEEE Design Automation Conference, 1997.

[64] W. Elmore. The Transient Response of Damped Linear Networks with Particular Regard to
Wideband Amplifiers. Journal of Applied Physics, pages 55–63, 1948.

[65] X. Shi, D. Zeng, Y. Hu, G. Lin and O. R. Zaiane. Accelerating FPGA Design Space Exploration
Using Circuit Similarity-Based Placement. International Conference on Field-Programmable
Technology, pages 373–376, 2010.

[66] X. Shi, D. Zeng, Y. Hu, G. Lin and O. R. Zaiane. Enhancement of incremental design for
FPGAs using circuit similarity. The International Symposium on Quality Electronic Design,
pages 243–250, 2011.

[67] X. Shi, Y. Hu, G. Lin and O. R. Zaiane. CSBP: A Fast Circuit Similarity-Based Placement for
FPGA Incremental Design and Design Space Exploration. Integration, the VLSI Journal (In
Review), 2011.

[68] Xilinx Corporation. SmartCompile Technology: SmartGuide. Xilinx Press Release, 2008.

[69] Y. Hu, V. Shih, R. Majumdar and L. He. Exploiting Symmetry in SAT-Based Boolean Matching
for Heterogeneous FPGA Technology Mapping. The International Conference on Computer-
Aided Design, 2007.

[70] Y. S. Yang, S. Sinha, A. Veneris and R. K. Brayton. Automating Logic Rectification by Ap-
proximate SPFDs. Asia-South Pacific Design Automation Conference, 2007.

[71] Y. Sankar and J. Rose. Trading Quality for Compile Time: Ultra-fast Placement for FPGAs .
1999.

[72] Y. Voronenko and M. Pschel . Multiplierless Multiple Constant Multiplication. ACM Transac-
tions on Algorithms, 3(2), 2007.

[73] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide, Version 3.0. Technical
Report, Microelectronics Center of North Carolina, 1991.

[74] Y.Xu and M.A.S. Khalid. Qfd: Efficient quadratic placement for fpgas. International Confer-
ence on Field Programmable Logic and Application, pages 555–558, 2005.

[75] L. Zager. Graph Similarity and Matching. PhD thesis, Massachusetts Institute of Technology,
2005.

62

Appendix A

A Complete List of Commands in
ABC

Here is a complete list of resynthesis optimization commands used in ABC tool from file abc.rc in

the download package.

resyn ”b; rw; rwz; b; rwz; b”

resyn2 ”b; rw; rf; b; rw; rwz; b; rfz; rwz; b”

resyn2a ”b; rw; b; rw; rwz; b; rwz; b”

resyn3 ”b; rs; rs -K 6; b; rsz; rsz -K 6; b; rsz -K 5; b”

compress ”b -l; rw -l; rwz -l; b -l; rwz -l; b -l”

compress2 ”b -l; rw -l; rf -l; b -l; rw -l; rwz -l; b -l; rfz -l; rwz -l; b -l”

choice ”fraig store; resyn; fraig store; resyn2; fraig store; fraig restore”

choice2 ”fraig store; balance; fraig store; resyn; fraig store; resyn2; fraig store; resyn2; fraig store;

fraig restore”

rwsat ”st; rw -l; b -l; rw -l; rf -l”

rwsat2 ”st; rw -l; b -l; rw -l; rf -l; fraig; rw -l; b -l; rw -l; rf -l”

shake ”st; ps; sat -C 5000; rw -l; ps; sat -C 5000; b -l; rf -l; ps; sat -C 5000; rfz -l; ps; sat -C 5000;

rwz -l; ps; sat -C 5000; rfz -l; ps; sat -C 5000”

share ”st; multi -m; fx; resyn2”

src-rw ”st; rw -l; rwz -l; rwz -l”

src-rs ”st; rs -K 6 -N 2 -l; rs -K 9 -N 2 -l; rs -K 12 -N 2 -l”

src-rws ”st; rw -l; rs -K 6 -N 2 -l; rwz -l; rs -K 9 -N 2 -l; rwz -l; rs -K 12 -N 2 -l”

63

resyn2rs ”b; rs -K 6; rw; rs -K 6 -N 2; rf; rs -K 8; b; rs -K 8 -N 2; rw; rs -K 10; rwz; rs -K 10 -N

2; b; rs -K 12; rfz; rs -K 12 -N 2; rwz; b”

compress2rs ”b -l; rs -K 6 -l; rw -l; rs -K 6 -N 2 -l; rf -l; rs -K 8 -l; b -l; rs -K 8 -N 2 -l; rw -l; rs

-K 10 -l; rwz -l; rs -K 10 -N 2 -l; b -l; rs -K 12 -l; rfz -l; rs -K 12 -N 2 -l; rwz -l; b -l”

resyn2rsdc ”b; rs -K 6 -F 2; rw; rs -K 6 -N 2 -F 2; rf; rs -K 8 -F 2; b; rs -K 8 -N 2 -F 2; rw; rs -K

10 -F 2; rwz; rs -K 10 -N 2 -F 2; b; rs -K 12 -F 2; rfz; rs -K 12 -N 2 -F 2; rwz; b”

compress2rsdc ”b -l; rs -K 6 -F 2 -l; rw -l; rs -K 6 -N 2 -F 2 -l; rf -l; rs -K 8 -F 2 -l; b -l; rs -K 8

-N 2 -F 2 -l; rw -l; rs -K 10 -F 2 -l; rwz -l; rs -K 10 -N 2 -F 2 -l; b -l; rs -K 12 -F 2 -l; rfz -l; rs

-K 12 -N 2 -F 2 -l; rwz -l; b -l”

64

	Frontmatter
	Frontpiece
	Title Page
	Dedication
	Abstract
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	List of Acronyms
	List of Publications
	Introduction
	Overview
	Thesis Statements
	Contribution of this Research
	Thesis Outline

	Preliminaries
	Overview of FPGAs
	Overview of FPGA CAD Flow
	Synthesis
	Placement
	Routing
	Timing and Delay Analysis

	Graph Similarity
	Incremental Design for FPGA
	Design Space Exploration for FPGA
	Summary

	Circuit Similarity
	Motivating Example
	Circuit Similarity Algorithm
	Performance Enhancement
	Applications of Circuit Similarity
	Summary

	Experimental Results and Discussions
	Case Study on Incremental Design
	Experimental CAD Flow and Settings
	Experimental Results for ``imfs''
	Experimental Results for ``rwsat2''

	Case Study on Design Space Exploration
	Logic-Level Design Space Exploration
	Algorithm-Level Design Space Exploration

	Summary

	Conclusions
	Bibliography
	A Complete List of Commands in ABC

