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Abstract

This thesis is devoted to the study of aspects of the forward physics and for-

ward detector system of the ATLAS detector. The first topic involves LUCID,

the official luminosity monitor of ATLAS during Run-2. Here we concentrate

on the simulation, calibration system and performance of the LUCID-2 detec-

tor. The second topic covers the ATLAS Forward Proton (AFP) detector. In

this case, the testing and performance studies of the readout electronics for

the precision AFP ToF detector - required to reduce pile-up background - are

the key issues. The main topic is devoted to the study of Higgs production

in Central Exclusive Diffractive (CED) processes with the ATLAS detector

at the LHC. A detailed calculation of diffractive ultra-peripheral CED “pho-

toproduction” of the Higgs boson, in proton-proton and heavy-ion - proton

interactions at the LHC, is presented for the first time. CED Higgs produc-

tion via Double Pomeron Exchange is also studied using the same calculation

techniques and compared with other well reported results in this area. This

was done as a test of the techniques used and in order to assess the error on

the cross-section for Higgs “photoproduction” reported here.
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Chapter 1

The ATLAS experiment at the

LHC

1.1 The Large Hadron Collider (LHC)

The Large Hadron Collider(LHC) at CERN operates at unprecedented energy.

The collision of proton beams at a centre of mass energy of up to 14 TeV with

luminosity of 1034 cm−2 s−1, allows the detailed exploration of the uncharted

territory at the TeV scale. The LHC is also capable of accelerating heavy ions

to exploit lead-lead and proton-lead collisions at the centre of mass energy of

8.8 and 5.5 TeV, with the luminosity of the order of 1029 cm−2 s−1 and 1027

cm−2 s−1 respectively.1

The discovery of what was ostensibly the Standard Model Higgs boson

was announced in 2012 [50], providing the last piece of the Standard Model.

1In Run-2, LHC reached the centre of mass energy of 8.16 TeV for p-lead collision with
an instantaneous luminosity between 0.5 to 1×1029 cm−2s−1.and the centre of mass energy
of 5.02 TeV for lead-lead collision with an instantaneous luminosity of 2.7× 1027 cm−2s−1

[3, 6].

1



However, precision measurement of SM parameters like the mass of Higgs

boson will still continue to be a primary purpose of the LHC.

The protons in the beam originate from a bottle of hydrogen gas. The

electrons are stripped from the hydrogen atoms and then injected to the lin-

ear accelerator in the chain, LINAC 2, which accelerates the protons to the

energy of 50 MeV. The beam is then injected into the Proton Synchrotron

Booster (PSB), which accelerates protons to 1.4 GeV, followed by the Proton

Synchrotron (PS), which increases the beam energy up to 25 GeV. Protons

are then sent to the Super Proton Synchrotron (SPS) where they are accel-

erated to 450 GeV, before finally reaching the LHC ring, as shown in figure

1.1. The LHC is installed in circular tunnel with 27 km circumference in a

depth of about 100 m underground. Two counter rotating beams of protons,

in the blue and red loops of the LHC shown in figure 1.2, to maximum beam

energy. The two beam collide at the centre of mass energy of 14 TeV at four

interaction points located around the circumference of the LHC.

For heavy ion collisions, the lead sample is first heated to about 5000 C

to vaporize a number of atoms. Initially a few electrons are stripped from

the atoms and the newly created ions are accelerated in LINAC3 to 4.5 MeV,

where the remaining electrons are stripped from the ions. Next, the ions are

accumulated and accelerated to 72 MeV per nucleon in the Low Energy Ion

Ring (LEIR), the heavy-ions are then accelerated to full energy in a similar

way to protons.

There are maximum of 3564 bunches, each containing ∼ 1011 protons, in

both proton beams. Each bunch crossing is labelled with a Bunch Crossing

ID number (BCID). Two neighbour BCIDs are separated in time by 25 ns.
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Figure 1.1: The schematic view of the LHC injection chain.

A typical beam structure alternates between regions with many filled BCIDs

(called bunch trains) and regions with many empty BCIDs. Most physics runs

in 2015 used 25 ns bunch spacing within a train that had up to 2808 filled

bunches.

The counter rotating beams collide at one of the four interaction points

located around the circumference of the LHC, corresponding to the positions

of four particle detectors: ATLAS, CMS, ALICE and LHCb, shown in figure

1.2.

The four main LHC experiments are:

• ATLAS(A toroidal LHC apparatus) is a general purpose detector for

studying proton-proton and heavy ion collisions [7].

• CMS (Compact muon solenoid) is a general purpose detector for study-

ing proton-proton and heavy ion collisions with the same physics pro-

gram as ATLAS detector [8].
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Figure 1.2: A schematic layout of the LHC ring.

• ALICE (A large ion collider experiment) is dedicated to heavy ion

physics and the study of the physics of strongly interacting matter and

the quark-gluon plasma [9].

• LHCb (LHC beauty experiment) is dedicated to precision measurements

of CP violation and rare decays of B hadrons [10].

There are also the following three smaller LHC experiments.

• LHCf (LHC forward experiment) is dedicated to the measurement of

neutral particles emitted in the very forward region of the LHC collisions,
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in order to calibrate and interpret cosmic ray experiments [11].

• MoEDAL (Monopole and exotics detectors at the LHC) The prime

motivation of MoEDAL is to search directly for anomalously ionizing

avatars of new physics such as the magnetic monopole [12].

• TOTEM (Total elastic and diffractive cross-section measurement) is de-

signed to measure the total proton-proton cross-section with the luminos-

ity independent method and study the elastic and diffractive scattering

at the LHC [13].

1.2 LHC performance during Run 1 and 2 and

long term plan

Run number Run 1 Run 2 Run 3
Parameter Design 2010 2011 2012 2015 2016 2017 2020-

22
Beam energy [TeV] 7.0 3.5 3.5 4 6.5 6.5 6.5 7
Protons per bunch
[×1011]

1.15 1.0 1.3 1.5 1.1 1.1 - -

Bunches per beam 2808 368 1380 1380 2244 2076 - -
Bunch spacing [ns] 25 150 75/50 50 50/25 25 25 -
Delivered integrated lu-
minosity [fb−1]

- 0.045 5.1 21.3 3.9 36.0 50.4 300

Peak instantaneous
Luminosity
[×1034cm−2s−1]

1 0.021 0.36 0.77 0.51 1.37 2.06 2

Mean number of interac-
tions per bunch crossing

- 4.0 9.1 20.7 13.7 24.2 - -

Table 1.1: The LHC parameters during Run 1, Run 2, Run 3, and their nominal
values for proton-proton collisions [4, 5, 6]

From the beginning of Run 1 in 2010, the beam parameters slowly evolved

until the end of 2012. The beam energy in 2010 and 2011 was 3.5 TeV,
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while in 2012 it increased to 4 TeV. From the beginning of Run 1 until the

long shutdown in 2012, the number of bunches per beam increased from 368

to 1318, while the bunch spacing decreased from 150 ns to 50 ns and the

peak instantaneous luminosity reached 77% nominal from just 2%. The total

amount of luminosity that was gathered during Run 1 in 2010, 2011, and 2012

at the LHC is 0.045fb−1, 5.1fb−1, and 21.3fb−1, respectively.

After the two year long shutdown, Run 2 started in June 2015 with the

beam energy of 6.5 TeV. At the beginning of Run 2 the bunch spacing was 50

ns which subsequently decreased to 25 ns later in the year. Much more data

was collected in Run 2 than Run 1. For example, the data recorded in 2016

and 2017 was 36.0 fb−1 and 50.4 fb−1, respectively. Run 2 will end in 2018.

After Run 2 there will be a 2 year shutdown at which time the machine will

be upgraded to run at a beam energy of 7 TeV, the original design luminosity.

Run 3 is expected to start in 2020 and continue until 2022 and collect ap-

proximately 300 fb−1 of data by the end of the run. In 2025, High-Luminosity

Large Hadron Collider (HL-LHC) project will be implemented. The objective

is to increase luminosity by a factor of 10 beyond the LHC design value. With

this increased luminosity it is feasible to study rare processes which are be-

low the sensitivity of the LHC experiments operating at the nominal design

luminosity. More details on LHC run parameters are shown in table 1.1.

1.3 The ATLAS Experiment

The complete ATLAS detector is split into a barrel part, where detector layers

are positioned on cylindrical surfaces around the beam axis, and two end-cap

6



Figure 1.3: Overview of the full ATLAS detector showing the magnet systems and
the four major sub-detectors.

parts, where detector layers are positioned in planes of constant z perpendicu-

lar to the beam-pipe and a backward part, extending up to a pseudo-rapidity

of η = 4.9. In the barrel region the ATLAS detector is deployed in four layers.

The first layer of the ATLAS detector is the inner detector (ID) which track

charged particles. The inner detector is immersed in a 2 T solenoidal magnetic

field enabling the momentum of the tracked particles to be determined. The

next two layers contain the calorimetry the function of which is to determine

the electromagnetic (second layer) and hadronic energy (third layer) energy

of each event. The fourth and outer layer is the muon spectrometer (MS) for

high-precision tracking of muons in an approximately 4 T toroidal magnetic

field. The preceding structure is repeated in the end-cap regions of ATLAS

except that in this region the tracking layer is absent.The design performance
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requirements for the ATLAS detector and coverage of its sub-detectors are

summarized in table 1.2.

sub-detector Resolution Coverage

Inner Detector σ(PT )
PT

= 0.05%√
PT
⊕ 1% |η| < 2.5

Electromagnetic calorimeter σ(E)
E = 10%√

E
⊕ 0.7% |η| < 3.3

Hadronic calorimeter (barrel and end-cap) σ(E)
E = 50%√

E
⊕ 0.3% |η| < 3.3

Forward calorimeters σ(E)
E = 100%√

E
⊕ 10% 3.1 < |η| < 4.9

The Muon Spectrometer σ(PT )
PT

= 10% at PT = 1 TeV |η| < 2.7

Table 1.2: The performance of the ATLAS detector and the coverage of its sub-
detectors [5]

1.4 ATLAS Coordinate System

Figure 1.4: ATLAS coordinate system

The coordinate system used in ATLAS is a right-handed Cartesian coor-

dinate system with the nominal interaction point in the centre of the detector

defined as its origin, shown in figure 1.4. The x-y plane is transverse to the

beam direction, with the positive x-axis pointing to the centre of the LHC
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ring and the positive y-axis pointing upwards and the z-axis is along the beam

line. The half of the detector at positive z-values is referred to as the ”A” side,

the other half the ”C” side.The polar coordinates are defined with: the radial

distance r is the distance from the beam line; the azimuthal angle φ measured

around the beam axis, ranging between −π to π with respect to the x axis;

and, the polar angle θ is measured from the positive z axis and varies from 0

to π.

Rapidity, y, is a Lorentz invariant parameter and a convenient way to

display the pz dependence of the data, where:

y = ln(
E + pz
E − pz

) (1.1)

pz is the component of momentum along the beam axis and E is the energy

of the particle.

However, measuring rapidity can be problematic as it can be difficult to

get the total momentum vector of a particle especially at high values of the

rapidity where the z component of the momentum is large, and not determined

precisely. This leads to the concept of pseudo-rapidity η which is defined as:

η = −ln[tan(
θ

2
)] (1.2)

where θ is the angle made by the particle trajectory with the beam axis. In

hadron collider physics, the rapidity (or pseudo-rapidity) is preferred over the

polar angle because, loosely speaking, particle production is constant as a

function of rapidity.
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1.5 The ATLAS Sub-detectors Overview

1.5.1 Magnet System

Figure 1.5: Overview of the ATLAS magnet systems.

The ATLAS Magnet System provides a magnetic field to bend tracks of

charged particles, allowing the determination of the momentum of the particles

from the curvature of the track measured in the tracking detectors. The ability

to accurately determine the track momentum using tracking depends on the

curvature of the track.

ATLAS has two superconducting magnetic systems. The first system is the

Central Solenoid (CS) [14] that produces a uniform 2 T solenoidal magnetic

field parallel with the beam axis allowing the accurate determination of the

momentum of even very high momentum particles. The CS has a length of 5.8

m, a diameter of 2.56 m and a thickness of a only 5 cm. Keeping the thickness

at a minimum was a one of its main design goals. This is because some particles
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have to pass through the solenoid before reaching the calorimeter.

Secondly, we have the toroidal magnetic system (MT) [15, 16] for the muon

spectrometer (MS). The MT system, like the MS, is divided into a barrel

region and two end-cap regions. The barrel toroid consists of 8 coils assembled

symmetrically around the beam axis. The coils have a length of 25.3 m, an

inner diameter of 9.4 m and an outer diameter of 20.1 m. The toroidal magnet

system is part of the muon barrel spectrometer. The end-cap toroids also

consist of 8 coils each. They are part of the muon end-cap spectrometers,

located 10 m away from the interaction point with an outer diameter of 10.7

m.

The MT for the Barrel Toroid region of the MS provides a magnetic field

ranging from 0.15 T to 3.5 T. The End-Cap Toroids provide a magnetic field

with strength ranging from 0.2 T to 3.5 T in the MS end-cap regions. The

overall configuration of the MT system is shown in figure 1.5.

1.5.2 Inner Detectors

The purpose of the Inner Detector (ID) is to: reconstruct the tracks and ver-

tices in the event with high efficiency; contributing, together with the calorime-

ter and muon systems, to the electron, photon and muon recognition; and,

supplying the important extra signature for short-lived particle decay vertices.

The ID is located inside the solenoid magnet, and is composed of three layers

of sub-detectors: 1) A pixel tracker [19], 2) Semi-Conductor Tracking detector

(SCT) [22, 23]; and, 3) a straw tube, Transition Radiation Tracker (TRT)

[24, 25, 26]. All the three detectors are designed to track the 3-D trajectories
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Figure 1.6: Schematic view of the Inner Detector (ID), including the new Insertable
B-Layer, the Pixel barrel and end-cap, SCT barrel and end-cap and TRT barrel.

of charged particles with high resolution and minimum multiple scattering. A

schematic over view of three detectors is shown in figure 1.6.

In the following sub-section, the details of these three detectors will be

discussed.

Pixel Detector

The pixel detector [19] is designed to provide a very high-granularity, high-

precision set of measurements as close to the interaction point as possible. The

system provides three of the precision measurements over the full acceptance,

and determines the impact parameter resolution and the ability of the Inner

Detector to find short-lived particles such as b-quarks and τ -leptons

The pixel detector’s high granularity is achieved with 1744 pixel modules

each with 47232 pixels of size 50 × 400 µm2 and thickness 250 microns. The
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sensors are made of radiation hard p-n type silicon wafers. A charged particle

traversing the pixel sensor creates electron-hole pairs which are separated by

the electric field and collected at each pixel. The pixel detector has been

designed to provide high track resolution of about 12 µm in the transverse

plane and 66 µm and 77 µm in the z direction for the barrel and end-cap

region, respectively.

The Insertable B-layer (IBL) [20], the fourth-pixel layer, was added inside

the existing ATLAS pixel detector during the long LHC shutdown of 2013 and

2014. The new fourth layer pixel system is the closest layer of the detector to

the beam line and it plays a crucial role in the reconstruction of secondary ver-

tices for the b-jet tagging where the B meson decays away from the interaction

point.

Semi-Conductor Tracker

The second layer of the Inner Detector, the Semi-Conductor Tracker (SCT) [21,

22], occupies the region from 299 mm to 514 mm radially from the interaction

point. The SCT consists of silicon strip modules very similar to pixel modules,

arranged into 4 barrel layers and two end-caps each of 9 disks.

There are 4088 modules in the SCT, each of these modules has 1536 silicon

strips that are 2.6 cm long and with 80 micron pitch. The silicon strips are

actually two pairs of silicon micro-strip planes glued together back-to-back.

In general, this double layer configuration allows for reduction of the number

of readout channels. Compared to the pixel detector, the SCT has coarser

granularity. The spatial resolution of the SCT detector modules is 17 µm in

the transverse direction and 580 µm in the longitudinal direction.
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Transition Radiation Tracker

Figure 1.7: Schematic diagram of portion of the TRT detector with an indication
of a track of charged particle which is slightly curved due to the magnetic field of
solenoid.

The outmost layer of the inner detector is the Transition Radiation Tracker

(TRT) [24, 25, 26] extending in radius from 554 mm to 1028 mm. Along

with continuous tracking, the TRT provides electron identification capability

through the detection of transition radiation X-ray photons. The TRT detector

is composed of around 300,000 thin walled proportional mode drift-chamber

“straws” embedded in a fibre radiator matrix, as illustrated in figure 1.7. Each

straw is a tube of 4 mm diameter with high-voltage tungsten wire running

along its axis as the anode. The cathode is formed from a conductive layer

on the inside surface of the Kapton straw. Each straw is filled with Xe and

CO2 (70% /30% ). When a charged particle travels through the detector, it

ionizes the gas and produces a signal in each straw it passed through. From

the timing of each pulse, the positions of the particles can be determined with

a precision of about 137 µm. Also, highly relativistic charged particles (eg

electrons and positrons) that travel through the fibre matrix radiator, emit
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transition radiation X-ray photons. These photons ionize the Xe gas. This

enables the TRT to distinguish between electrons from slower, heavier charged

particles like pions.

Figure 1.8: Number of Hits per track in the precision detectors and TRT.

The TRT has lower granularity and lower precision per space point, or

hit, measurement, compared to the silicon detector. However, on average 36

space point measurements on a track are made in the TRT, compared with an

average of seven hits in the silicon detectors. figure1.8 shows the number of

Hits in the precision detectors (pixel and SCT) and TRT versus η.

1.5.3 Calorimeters

After traversing the inner detector, interaction products from the intersection

point enter the ATLAS calorimetry [27]. The calorimeter system is designed

to stop entirely or “absorb” most of the particles coming from a collision,

forcing them to deposit all of their energy within the detector. Calorimeters

typically consist of layers of “passive” or “absorbing” high-density material
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- for example, lead - interleaved with layers of an “active” medium such as

liquid argon (LAr). Most particles, except muons and neutrinos, lose all their

energy before leaving the ATLAS calorimeter system allowing a measurement

of energy and position measurement of electrons, photons, hadrons, taus, and

jets as well as providing information for particle identification.

The ATLAS calorimeter system includes Electromagnetic (EM) Calorime-

ters [28] and Hadronic (HAD) Calorimeters [29].

The EM calorimetry surrounds the inner detector. It is primarily designed

to measure the energy of electrons and photons. Also, by utilizing both ID

and EM, it is possible to reconstruct electrons and photons that are produced

in primary and secondary interactions, originated from p-p collisions at the

ATLAS interaction point [39].

The EM calorimetry is divided into a barrel part and two end-caps. The

end-cap calorimeter modules placed one at each end of ATLAS consists of an

Inner Wheel, the closest part to the interaction point, and the Outer Wheel,

the part furthest from the interaction point.

Figure 1.9: Schematic diagram of Electromagnetic barrel accordion calorimeter and
a cut away view of inside the accordion geometry.

Figure 1.9 shows a cutaway view of EM barrel calorimeter. A total of
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1024 1.8 mm thick lead absorber sheets are folded in accordion shape and

stacked in leaving a gap of 3.6 mm between two successive sheets. Although,

this configuration leads to longer response time, it allows uniform performance

through the detector, low electronic noise and high radiation resistance, and

more importantly a good energy and spatial resolution.

A honeycomb layer is used to space the absorber plate layers. The honey-

comb structure allows LAr to fill the space between the absorber plates. LAr

was chosen as an active material because of its linear response and radiation

hardness. The readout electrodes are located between the layer of absorbers

and build out of copper plated Kapton sheet ( A layer of Kapton sandwiched

between copper plates) held in place by the honeycomb structure.

When an incoming particle passes through the absorber, it initiates an elec-

tromagnetic shower that ionizes the active layers of the calorimetry the shower

traverses, producing charge. The two outer conductive layers of electrode dis-

tribute the high voltage over the electrode outer surfaces, when the middle

layer collects the charge. The collected charge is proportional to the energy

deposited by the EM shower. However, in some cases not all of the energy is

deposited in the calorimeter. Sometimes the EM shower can start in the ma-

terial preceding the EM calorimetry. To correct for any energy lost within the

inactive material upstream of the EM calorimeter, a liquid argon pre sampler

layer around 11 mm thick is placed in front of the EM inner surface.

The EM end cap calorimetry is comprised of two coaxial wheels. They are

built similarly to the EM barrel out of accordion shaped absorbers, electrodes

and LAr active material. However, the LAr gap thickness is constant in the

Barrel but changing with the radius in the end-Cap. In the inner wheel, the
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granularity is coarser and there are only two samplings.

At the LHC the particle densities and energies are largest at high |η|, i.e. in

the forward and backward directions. Calorimetry is the only useful detector

technology capable of surviving in this harsh environment. The high particles

flux causes enormous ionization rate in the LAr and the slowly-drifting ions

build up in a large liquid argon gap. In order to avoid ion build-up problems

and at the same time to provide the highest possible density of materials to stop

particles, a differently structured detector with the smaller LAr gap is needed.

The Forward calorimetry is integrated into the end cap calorimetry covering

the region 3.1 < |η| < 4.9. In order to have some measurement of longitudinal

shower development, the FCal is divided into three sections. All three modules

use a novel electrode structure. This consists of copper tubes parallel to the

beam axis, which contain electrode rods. In the FCal 1 the electrode rods

and the calorimeter matrix are copper. This serves to ensure a good thermal

conductivity and avoids local heating of the liquid argon. In order to have

an extremely dense detector, the FCal 2 and FCal 3 modules have tungsten

electrode rods, and the matrix consists of small sintered tungsten slugs. In

all three modules, the LAr gap between the electrode rods, and the copper

electrodes tubes is maintained by a spiral of radiation hard PEEK plastic. A

cutaway view of FCal is shown in figure 1.10(c)

In the range |η| < 1.6 the ATLAS hadronic calorimeter is an iron-

scintillating tiles calorimeter. In the end cap regions, for |η| > 1.6, the

hadronic calorimeter is an LAr calorimeter, mainly because of the intrinsic

radiation hardness of this technology.

The TileCal has a fixed central barrel (LB), and two moveable extended
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Figure 1.10: Schematic diagram of the FCAL tube.

barrels (EB). The tile calorimeter uses steel as the absorber and plastic scin-

tillator as the active medium which are assembled with alternating layers of

steel and scintillating tile, positioned radially to the beam line. A schematic

view of the mechanical assembly and the optical readout of a sector of the tile

Calorimeter is shown in figure 1.11(b). When a high energy hadron (hadron,

jet, and tau) passes through the TileCal, it produces a hadronic shower with

an electromagnetic component. The shower is initiated in the steel tiles and

propagates through the detector. Gammas and charged particles, generated

in the shower, traverse the scintillator material and produce a light signal (the

signal is proportional to the energy deposited in the detector).

The Hadronic End-Cap calorimeter (HEC) is an LAr sampling calorimeter

which provides hadronic coverage for 1.6 < |η| < 3.2. Each end cap consists
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of parallel Cu plate absorbers orthogonal to the beam axis and consists of

two consecutive wheels with absorber thickness of 25 and 50 mm, respectively.

The readout cells are fully pointing in φ but only pseudo-pointing in η. The

thickness of the active part of the calorimeter is about 12 interaction lengths.

Figure 1.11: Schematic diagram of Tile calorimeter.
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Figure 1.12: Schematic view of a cross-section of the Muon Spectrometer.

1.5.4 Muon Spectrometer (MS)

The muon spectrometer (MS) [30] is the outermost detector of ATLAS. It is

designed to measure high-pT muons with a high precision, independent of the

inner detector. The MS also provides an independent muon trigger. The MS

integrates four different detector technologies and the barrel and end cap toroid

magnets. Most parts of the MS are located within a roughly 4T magnetic field

that is produced by a large superconducting toroidal magnet in the barrel

region and smaller toroidal magnets in the end-cap region. Figure 1.12 shows

the schematic view of the MS.

The MS is built out of different types of muon chambers that are designed
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either for precise tracking or that can be used in triggering. Monitored Drift

Tubes (MDTs) [31] and Cathode Strip Chambers (CSCs) [32] provide precise

spatial measurements for muon tracking, of the order of 20 microns, in the bend

plane. The muon trigger systems utilizes Resistive Plate Chambers (RPCs)

[33] and Thin Gap Chambers (TGCs) [34], which also provide spatial tracking

with precision of few millimetres in the η and φ plane.

The barrel region of the MS consists of three concentric cylindrical regions

comprised of MDT and RPC chambers, as shown in figure 1.12. A MDT tube

is an aluminium gas filled (Ar:CO2 = 93:7) tube with a diameter of 30 mm.

An anode wire is positioned along the central axis of the tube and the tube

wall functions as the cathode.

An MDT chamber consists of two multilayers, which in turn consist of three

or four layers of tubes each. In the barrel region (|η| < 1.3; the MDTs are

positioned in three concentric layers around the beam axis, at an approximate

radius of 5 m, 8 m, and 10 m. There is a 16-fold segmentation in φ, which are

called sectors. The innermost layer of chambers has four layers of tubes.

The end cap (1.3 < |η| < 2.4) MDT chambers are assembled onto three

wheels, positioned at z = 7.5 m, 14 m, and 22.5 m. These chambers have a

trapezoidal shape.

The MDT chambers are installed with a precision of about 5 mm and 2

mrad with respect to their nominal position. To achieve the required momen-

tum resolution, the positions of the chambers need to be known to a precision

smaller than 30 µm. Optical alignment sensors along with though going muon

tracks are used to maintain the alignment of the MDTs over time.

The RPC is a gaseous detector with 2 mm gas-gaps in between two parallel
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resistive plates. The gas-gaps are filled with (C2H2F4:C4H10:SF6 = 94.7:5:0.3).

Metallic strips are mounted onto these plates with a pitch between separate

φ (η) strips of 23 (35) mm. The plates are operated at a voltage difference of

9.84 kV, as a result of which a charged particle crossing the gas-gap will create

an avalanche of electrons drifting towards the anode. Each chamber consists

of two units, placed next to each other with a small overlap. Each unit has

two gas-gaps, one for φ and one for η.

The fast response and precise timing characteristics allow the RPC detec-

tor to make a rapid measurement of the muon momentum, which is then used

to make a trigger decision. Moreover, RPC precise time resolution of approx-

imately 1.5 ns gives it the ability to distinguish individual bunch crossings.

In the end-cap of muon spectrometer, the MDT chambers are comple-

mented by the Cathode Strip Chambers (CSC). CSC chambers are used in

the innermost tracking layer due to their ability to withstand higher rates and

beam related backgrounds. Triggering in the end-cap regions is performed

using TGCs. The CSC is an argon filled multi-wire proportional chambers,

composed of closely spaced arrays of anode wires oriented in the radial direc-

tion and crossed with panels of copper strips as the cathodes. The perpendic-

ular strip and wire structure allow both coordinates to be measured for each

passing particle. The resolutions are roughly 40 µm and about 5 mm 2 in the

bending plane and in the non-bend plane, respectively.

The muon track in the MS is reconstructed in two steps. In the first step the

muons are triggered in the RPC and TGC and then local track segments are

defined in each layer of chambers. In the next step, the local track segments

2It is enough for the momentum direction measurement
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from different layers are combined to form a full MS track. To reduce the

probability of background tracks being reconstructed in the calorimeter, the

tracks of the muon candidates are required to point towards the interaction

point.

1.5.5 Forward Detectors

In addition to the central ATLAS detector systems, four smaller sets of de-

tectors AFP, ALFA, LUCID and ZDC [65, 38, 60, 37] have been built in the

forward region. The LUCID and ZDC detectors are situated on both sides

of the interaction point; mainly to detect forward neutrons and to measure

the luminosity of the LHC and ATLAS respectively. The main purpose of the

ALFA detector is to measure elastic proton scattering. The AFP detector was

relatively recently installed in the forward region of ATLAS aiming to detect

deflected protons from exclusive interactions. These forward detectors will be

discussed in more detail directly below. In addition, my contributions to the

development of the LUCID and AFP detectors will be described in Chapters

3 and 4.

AFP(ATLAS Forward Proton):

AFP is a proton tagging detector which consists of 2 + 2 stations installed

at ±205 and ±217 m from the interaction point on each side of the ATLAS

intersection point. Each station includes silicon-based trackers and Cherenkov

based time of flight detectors. The main purpose of AFP is to identify events

in which one or two protons emerge intact from the proton-proton collisions.
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ALFA (Absolute Luminosity For ATLAS):

ALFA is designed to determine the total p-p cross-section as well as the lumi-

nosity by measuring elastic proton scattering at very small angles. It is made

of four Roman Pot stations, located in the LHC tunnel in a distance of about

±240 m from the interaction point. Each station is equipped with tracking

detectors, inserted in Roman Pots which approach the LHC beams vertically.

The tracking detectors, which measure the positions of protons in the trans-

verse plane to the LHC beam, are made of scintillating square fibres and read

out by MultiAnode PMTs (MAPMTs), with custom made electronics.

LUCID (Luminosity measurements Using Cherenkov Integrating

Detector):

The LUCID detector is the only detector of ATLAS that is dedicated solely

for luminosity monitoring and determination, when calibrated using the Van

de Meer (VDM) process.The LUCID-2 detector was commissioned in 2015,

replacing LUCID-1 which was installed in 2008. The detector is deployed at

±17 m for the ATLAS Intersection Point. Each detector consists of 16 10 mm

diameter photomultipliers (PMTs) arranged in 4 groups around the beam-

pipe and with 4 quartz fibre bundles is readout by PMTs situated 1.5 m away

from the detector inside the muon shielding. LUCID uses small amounts of

radioactive 207Bi sources deposited on to these windows to monitor the gain

stability of the photomultipliers. The result is a fast and accurate luminosity

determination that can be kept stable during many months of data taking.
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ZDC (The Zero Degree Calorimeters):

ZDCs are compact calorimeters which are placed symmetrically at about ±140

m from the interaction point, where the straight section of single beam-pipe

divides into two independent beam-pipes. The primary purpose of the ATLAS

Zero-Degree Calorimeters (ZDC) is to detect forward neutrons and photons

with |η| > 8.3, in both proton-proton and heavy-ion collisions. For heavy Ion

collisions the ZDC’s play a key role in determining the centrality of such col-

lisions, which is strongly correlated to the number of very forward (spectator)

neutrons. For p-p collisions with luminosities well below 1033 cm−2s−1, the

ZDC will enhance the acceptance of ATLAS central and forward detectors for

diffractive processes and provide an additional minimum-bias trigger for AT-

LAS. Significant backgrounds in hadron-collider experiments are created by

beam-gas and beam-halo effects. These can be greatly reduced by requiring a

tight coincidence from the two arms of the ZDC’s, located symmetrically with

respect to the interaction point.

Figure 1.13: A sketch of the ATLAS Forward map, not to scale, showing the posi-
tions of ATLAS detectors in the forward region on one side of the interaction point
of ATLAS.
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1.5.6 Trigger and Data Acquisition Systems (DAQ)

When the LHC is operating at full design luminosity each proton beam will

be comprised of 2808 filled bunches, separated by 25 ns, corresponding to

a bunch collision rate of 40 MHz. ATLAS is designed to observe up to one

billion p-p collisions per second, with a combined data volume of more than 60

million megabytes per second. However, only a small subset of these events will

yield interesting - as defined by the ATLAS Physics Program - high transverse

momentum events. Also, it is only practically feasible to readout a small

fraction of the available data. To reduce the flow of data to manageable levels,

ATLAS uses a specialized multi-level trigger system. ATLAS has adopted

two-stage trigger system [35, 36], Level1(L1) and Event Filter(EF), to reduce

the incoming bunch crossing rate from 40 MHz to a few hundred kHz in L1

stage and then to a few kHz in the EF stage.

The L1 trigger is a hardware-based. A high-speed pipeline is used to process

a huge amount of data from trigger chambers of the MS, as well as reduced-

granularity information from all calorimeters. In order to be able to select a

few hundred interesting events per second from millions of events generated

per second, for permanent storage and subsequent analysis, the L1 trigger

selects events with isolated high transverse-energy electrons, gammas, muons,

jets, and taus as well as missing transverse energy.

The L1 trigger gathers and analyses data from the MS and calorimetry to

make its decision. The Central Trigger Processor (CTP) is fed by signals com-

ing primarily from the dedicated trigger hardware in the calorimeter (L1Calo)

and muon (L1Muon) detector systems. The L1Calo uses calorimeter energy
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deposits to identify various types of high transverse energy particles as well as

energy sums of interest. The L1Muon trigger input uses the track information

from muon chambers to identify high transverse momentum muon candidates.

The CTP implements a trigger menu based on a logical combination of results

from both L1Calo and L1Muon. From this information, L1 trigger identifies a

region of interest (ROI) which contains the information about the coordinates

of the particles as well as their thresholds transverse energy which is used to

seed the selection process in the higher level trigger (HLT).

In Run 1, HLT used a two-level software trigger consisting of the L2 trigger

and Event Filter stages (EF). The L2 trigger is a software based trigger formed

in large PC farms. It is seeded by the RoI to reconstruct the events in greater

detail using information from the inner detector track reconstruction and more

precise energy deposition from calorimeter. This additional information is used

to limit the amount of data to about few kHz. The EF works in a similar way

to Level 2, but with a longer latency. At this level, the offline reconstruction

algorithms were used and the events are formed for the first time to reduce

the final trigger rate to few kHz.

The trigger/DAQ was upgraded for Run 2. The upgrades include a faster

Readout System (ROS) leading to higher data readout rates. Also, the level-1

trigger uses data from other detectors, in addition to the MS and calorimeters.

However, the main update was made to the higher level triggers. The L2 and

EF stage were merged and run together with the event building within the

same processing unit. In addition, a new network design was implemented in

order to merge the two existing networks, L2 and EF, into one calls the “HLT”

network. Ultimately, the high capacity memory transfer between the two
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levels allows tighter coupling of the algorithms and reduces CPU and network

usage. Moreover, a flexible event-building system allows network traffic to

be optimized. Figure 1.14 shows the new design of trigger/DAQ architecture

design and the design values of latencies and sustained rates [35, 36].

Figure 1.14: Overview of the ATLAS TDAQ system during Run 2.
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Chapter 2

Standard Model And The Higgs

Boson

2.1 Standard Model

The Standard Model (SM) [40] is a relativistic Quantum Field Theory (QFT)

that provides a mathematical framework to describe the interactions of all

the known fundamental particles. There are two classes of fundamental parti-

cles: the spin-half particles called fermions which are further sub-divided into

leptons (e, µ, τ and their neutrinos) and quarks (u, d, c, s, t, b), leptons with in-

teger and quarks with third-numbered electric charges. They interact through

the second type of particles, spin-1 force carriers or gauge bosons, which are

particles that mediate the fundamental forces of the Standard Model. Three

out of the four forces of nature, electromagnetic, weak, and strong forces are

included in the standard model. However, the last force, gravity, is not part

of the Standard Model. Luckily, in particle physics, when it comes to the
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minuscule scale of fundamental particles, the effect of gravity is weak enough

to be negligible. It has strength of 6×10−39 relative the strength of the strong

force. The electromagnetic and weak force, respectively, have the strength of

1
137

and 10−5 in comparison to the strong force.

Electromagnetic Force

The electromagnetic force, classically described by the Maxwell equations, is

carried by the spin-1 massless photon. Every particle that has non-zero charge,

couples to the photon and is therefore sensitive to the electromagnetic force.

This includes all fermions except neutrinos and the charged W-bosons of the

weak force.

Weak Force

The weak force is carried by three bosons: two charged W-bosons with the

mass of 80.379 GeV and the neutral Z with the mass of 91.1876 GeV. The

W± and Z couple to the third component of the weak isospin, I3. It is defined

as I3 = Y −Q, where Y stands for the weak hypercharge accounting for quark

mixing and Q is the electrical charge. The weak force bosons couple to left-

handed quarks and leptons and to themselves, neutrinos only interact weakly.

The charged W bosons also couple to the photon. In the Standard Model the

electromagnetic and weak force are combined into a single electroweak force

[41, 42].
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Strong Force

The particles carrying the strong force are called gluons, there are eight of

them. The gluons couple to colour-charged particles, including quarks and

gluon itself. A gluon consists of two colour-charges. Quarks, in contrast to

gluons, carry only one colour-charge and are combined into colourless hadrons,

which may be a meson (qq̄) or a baryon (qqq or q̄q̄q̄). The quarks are confined

within hadrons [45].

The Higgs Boson

The Standard Model (SM) predicts the existence of a scalar boson (spin=0),

called the Higgs boson, the fundamental quantum of the Higgs field. The

Higgs mechanism is responsible for the masses of the W and Z bosons. The

rest masses of the charged fermion arise from Yukawa-type interactions with

the Higgs field. What appears to be the Standard Model Higgs boson, with

measured mass of around 125 GeV, was discovered in 2012 by the ATLAS and

CMS experiments at the LHC [50].

In the SM, all types of interactions between particles are described by a lo-

cal gauge symmetry based on the group structure, SU(3)C×SU(2)L×U(1)Y
3.

The SU(3)C group describes the symmetry of strong interaction in theory of

Quantum Chromodynamics (QCD), and SU(2)L × U(1)Y describes the elec-

troweak interaction. The spontaneous breaking of this symmetry triggers the

Higgs mechanism which introduces masses for the particles by coupling them

to the Higgs field.

All the elementary particles of the Standard Model and their names,

3C stands for colour, Y is the weak hypercharge and L the left handedness
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masses, spins, charges, chirality, and interactions with the strong, weak and

electromagnetic forces are shown in figure 2.1.

Figure 2.1: The diagram shows the elementary particles of the Standard Model, the
Higgs boson, the three generations of quarks and leptons, and the gauge bosons,
including their name, mass, spin, charge, chirality, and interactions with the strong,
weak and electromagnetic forces. It also shows how the properties of the various
particles differ in the symmetric phase and broken-symmetry phase

2.1.1 Quantum Electrodynamics (QED)

In QFT, a fermion with mass m is described by the Dirac equation for a

free fermion field Ψ(x) and a spin zero boson with mass m is described by

Klein-Gordon equation for a complex scalar field φ(x) as follows:

Klein-Gordon equation: (∂µ∂
µ +m2)φ(x) = 0 (2.1)

Dirac equation: (iγµ∂µ −m)Ψ(x) = 0 (2.2)
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The Lagrangian densities, L, extracted from Klein-Gordon equation and

Dirac equation are:

LKG =
1

2
(∂µφ∗∂µφ−m2φ∗φ) (2.3)

LDirac = Ψ̄(iγµ∂µ −m)Ψ (2.4)

In the above equation the symbols γµ represent Dirac matrices, and Ψ̄ =

Ψ†γ0, where Ψ† is the hermitian conjugate of the field.

Quantum electrodynamics (QED) introduces the photon in the Lagrangian

of a (fermionic) Dirac field and describes the electromagnetic interactions be-

tween them. QED is an Abelian gauge theory based on U(1) symmetry group.

The local gauge transformation of the U(1) group is defined as:

Ψ(x)→ Ψ′(x) = Ψ(x)e−iqα(x) (2.5)

In order for Lagrangian density to be gauge invariant under this transfor-

mation, a covariant derivative must be introduced and defined as:

∂µ → Dµ = ∂µ − iAµ(x) (2.6)

where Aµ is the so-called gauge transformation of the photon field. To make

the Lagrangian of Dirac field invariant under U(1) transformation the gauge

field transformations must be:

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µα(x) (2.7)
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where α(x) is a real arbitrary function. Therefore, the Lagrangian of Dirac

field becomes:

L = Lfermion + Linteraction = Ψ̄(iγµ∂µ −m)Ψ− qΨ̄γµΨAµ (2.8)

where the first part in the equation describes the kinetic energy of the free

fermion field, the second (includes the mass of fermion) corresponds to the

self interaction and the third term describes the electromagnetic interaction

between the fermion and photon fields. In the above equation q is the electric

charge of the fermion. The QED Lagrangian would not be complete with-

out a term describing free photons, Fµ,νF
µ,ν . Therefore, the complete QED

Lagrangian is described by:

LQED = Lfermion + Linteraction + Lphoton

= Ψ̄(iγµ∂µ −m)Ψ− qΨ̄γµΨAµ −
1

4
Fµ,νF

µ,ν
(2.9)

where Fµ,ν = ∂µF
ν − ∂νF µ. If one naively try to add a mass term for the pho-

ton, 1
2
mγAµ,νA

µ,ν , to the Lagrangian, the Lagrangian breaks the local phase

invariance which requires the gauge boson of QED to be massless.

2.1.2 Weak Interaction

The gauge invariance principle utilized in QED can extend to model the weak

interactions. However, the weak interaction is unique in a number of respects:

QED is fully described by taking a Lagrangian that is invariant under the U(1)

symmetry; likewise the weak interaction is described along the same line by
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taking SU(2) symmetry. The different gauge group in each symmetry gives

back the number of different force carriers in each case: for instance photon is

the force carrier in the electromagnetic field and W± and Z bosons are gauge

bosons for the weak interaction. Also, similarly to the electric charge, there is

an associated conserved quantity under the action SU(2) which is referred to

as isospin.

Unlike the electromagnetic interaction, which obeys the parity and charge

(CP) symmetry, the weak interaction violates CP symmetry. In parity-

symmetric theories such as QED, the left-handed (L) and right-handed (R)

particles are indistinguishable. On the other hand, if the weak interaction

violates parity-symmetry right- and left-handed particles will interact differ-

ently. All fermions interact via the weak interaction.The left-handed and

right-handed fermion fields are defined by acting the projection operator,

P± = −1±γ5

2
, on fermion fields as follows:

ΨL = P−Ψ

ΨR = P+Ψ

(2.10)

Therefore, fermions appear as families with left-handed doublets of quarks

and leptons (I3 = ±1
2
) and right-handed singlets of quarks and leptons (I3 =

0).
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 e

νe


L

, eR

 µ

νµ


L

, µR

 τ

ντ


L

, τR

u
d


L

, uR, dR

c
s


L

, cR, sR

t
b


L

, tR, bR

(2.11)

2.1.3 The Electroweak Model

The electroweak model (EW) developed in the 1960s by Glashow, Weinberg,

and Salam unifies electromagnetic and weak interactions under SU(2)×U(1)

symmetry group [41, 42, 43]. The gauge group of SU(2) × U(1) is described

by four vector fields, three of which are associated with the SU(2) group that

will be called W a
µ , where a = 1, 2 or 3 and an Aµ associated with the U(1)

group. The structure of the gauge theory is determined by the form of the

covariant derivative, Dµ = ∂µ + igW a
µTa + ig′BµY which acts on left-handed

field, ψL, and Dµ = ∂µ + ig′BµY which acts on right-handed field, ψR, where

hypercharge and Pauli matrices are shown with Y and Ta (a = 1, 2 or 3),

respectively and they are the generators of SU(2)L × U(1)Y . Bµ and W a
µ are

the electroweak gauge boson transforming as follows:

Bµ(x)→ B′µ(x) = Bµ(x)− 1

g
∂µα(x)

W i
µ(x)→ W ′i

µ (x) = W i
µ(x)− 1

g′
∂µβ

i(x)− εijkβjW k
µ

(2.12)

where εijk are the SU(2)L structure constants, g and g′ are coupling constants
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of the weak and electromagnetic interactions, respectively. The gauge trans-

formations are:

ψL → ψ′L = eiYLα(x)eiT
iβi(x)ψL

ψR → ψ′R = eiYRα(x)ψR

(2.13)

The EW Lagrangian that describes fermions and gauge bosons as massless

particles can be expressed as:

LEW = Lfermion + Lgauges

=
∑

iΨ̄γµDµΨ− 1

4
BµνB

µν − 1

4
WµνW

µν
(2.14)

where

Wµ,ν = ∂µW
ν − ∂νW µ − ig′[Wµ,Wν ]

Bµ,ν = ∂µB
ν − ∂νBµ

(2.15)

The EW Lagrangian density describes fermions and gauge bosons as mass-

less particles since just like gauge bosons W’s and B, it is not possible to simply

add a mass term for fermions to the Lagrangian. Such a Dirac mass term,

mΨ̄Ψ = m(ΨL + ΨR)(ΨL + ΨR) = m(Ψ̄LΨR + Ψ̄RΨL) (2.16)

contains couplings of left- and right-handed fields, which have different trans-

formation properties, spoiling the gauge symmetry.

In the following subsection we will discuss the mass generation both for the

electroweak gauge bosons and for the fermions through the elaborate mecha-
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nism of spontaneous symmetry breaking.

2.2 Higgs Mechanism

2.2.1 Spontaneous Symmetry Breaking

We could easily make a massless theory for fermions and gauge bosons. But,

from experiment we know that weak gauge bosons and fermions are all mas-

sive particles. Adding a mass term to the Lagrangian makes the theory non-

invariant under the SU(2) × U(1) gauge transformation. The Higgs mecha-

nism is a theoretical framework which explains how the masses of W± and

Z bosons arise through the spontaneous breaking of Electroweak symmetry,

SU(2)× U(1).

In order to spontaneously break local SU(2) × U(1) gauge symmetry a

complex scalar SU(2) doublet field is introduced as:

φ =
1√
2

φ1 + iφ2

φ3 + iφ4

 (2.17)

The Lagrangian extracted from Klein-Gordon equation for a complex scalar

field φ+ = φ1 + iφ2 and φ0 = φ3 + iφ4, is given by:

L(φ) = (Dµφ)+Dµφ− V (φ) (2.18)

The simplest possible potential that will respect SM symmetry is V (φ) =

µ2φ†φ+ λ(φ†φ)2. µ is associated with the mass of the scalar field and λ term
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Figure 2.2: (Left) For µ2 > 0 there is a unique ground state at φ = 0. (Right) For
µ2 < 0 the ground state is degenerate.

describes quartic self-interactions among the scalar fields. Vacuum stability

demands λ to be greater than zero. Therefore, there are two possibilities for

the sign of µ2. For the positive µ2, the field φ has an absolute minimum

at zero and the minimum energy of the field is unique and can’t break the

symmetry. However, in the case that µ2 takes a negative sign, the potential

has a Mexican hat shape and the minimum is no longer set at zero, but there

is a set of minima at φ2 = µ2

λ
= ν2. This is shown in figure 2.2. In order to

expand φ(x) around its minimum in perturbation theory, a particular value is

chosen for the minimum which breaks the symmetry. Therefore, the chosen

field is:

φ0 =

0

ν

 (2.19)

To see what particles are present in this model, the behaviour of the La-
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grangian is studied under small perturbation around the vacuum. Therefore,

perturbations around the vacuum are described by:

φ(x) =

 0

ν + h(x)

 (2.20)

where h(x) is the scalar Higgs field representing a perturbation around the

vacuum. Substituting the vacuum expectation value of the scalar field into

the Lagrangian of EW, the relevant mass term is:

∣∣∣(ig′Y
2

Aµ + igτa
)
φ
∣∣∣2 =

1

8

∣∣∣∣∣∣∣
 gW 3

µ + g′Aµ g(W 1
µ − iW 2

µ)

g(W 1
µ − iW 2

µ) −gW 3
µ + g′Aµ


0

ν


∣∣∣∣∣∣∣
2

=
(νg

2

)2
W+
µ W

+µ +
ν2

8

[
W 3µ Aµ

] g2 −gg′

−gg′ −g2


W 3µ

Aµ


(2.21)

The physical charged weak boson is defined as W± =
W1∓W2√

2
. So the first

term shows the mass of charged boson which is (1
2
νg)2. The two remaining

neutral gauge bosons Zµ and Aµ are defined as:

Zµ =
(gW 3

µ − g′Bµ)2

g2 + g′2
(2.22)

with the mass Mz = (νg
2

)
2

and,
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Aµ =
(g′W 3

µ − gBµ)2

g2 + g′2
(2.23)

with the mass, mA = 0. The mass of the Higgs boson is mH =
√

2λν and

from the experimentally measured gauge boson masses and weak coupling the

vacuum expectation value of Higgs field is ν = 246 GeV.

Here the point is that a Lagrangian with a complex scalar doublet and four

massless vector bosons has twelve degrees of freedom: four from the scalars and

eight from the vector bosons. Through the Higgs mechanism, the Lagrangian

is transformed into one real massive scalar, three massive vector bosons, and

one massless vector boson. The massless vector boson is, of course, to be

identified as the photon and the single remaining scalar as the Higgs boson.

Counting degrees of freedom again: one from the Higgs, two from the photon

and nine from the massive vector bosons, again adds up to twelve.

In the next section, it will be shown that the same scalar Higgs doublet

generates the mass for fermions.

2.2.2 Fermion Mass

As we mentioned in the previous section the mass term for fermion mΨ̄Ψ =

mΨ̄LΨR+mΨ̄RΨL is not invariant under the SU(2)L×U(1)Y gauge symmetry.

However, fermions can be given mass via the Yukawa mechanism. That is,

when we add terms to the Lagrangian where the complex Higgs doublet φ

couples to the doublet of left-handed Ψ̄L =

 e

νe

 fermions and to the one
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right-handed fermion Ψ̄R = eR as shown in the following equation.

LY ukawa = −GeΨ̄LφΨR −GeΨ̄RφΨL (2.24)

The above equation not only describe an interaction between the Higgs field

and fermion, but also how the fermions acquire a finite mass if the complex

Higgs doublet φ has a non zero expectation value such as φ0 =

 0

V + h

.

Therefore, mass of the Higgs boson can be determined by substituting

φ0(x) in equation 2.24.

Le = −Ge

(
ν̄e, ē

)
φeR −GeēRφ

 e

νe


=
GeV√

2
eē+

Ge√
2
heē

(2.25)

The first term shows the electron mass term and the second term repre-

sent the electron-Higgs interaction. The mass of electron is then me = V Ge√
2

.

However, the Higgs mechanism does not say anything about the value of the

electron mass since Ge is a free parameter.

Because neutrinos are described by a chiral left-handed flavour neutrino

field, they can’t interact with Higgs boson and they are left massless in the

SM. However, experimental evidences show flavour neutrino oscillation which

mixes neutrino flavour states with neutrino mass states, requires neutrinos to

have nonzero masses.[48, 49]. Neutrinos do not seem to get their masses the

way other particles do, through the interaction with Higgs boson. The ways

that the Standard Model can be extended to include finite neutrino masses
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are described in details elsewhere [51, 52].

2.3 The Higgs Boson Production and Decay

at Hadron Colliders

In the previous chapters we mentioned that the SM Higgs boson is a CP-

even spin zero neutral particle. Its mass is given by mH =
√

2λν, where λ

characterizes the Higgs self-coupling. However, because λ is a free parameter,

the Higgs boson mass is not predicted by SM. However, the Mass of Higgs

boson can be measured experimentally.

The SM Higgs boson is produced at the LHC mainly via four main pro-

cesses: gluon fusion production gg → H; vector boson fusion production

q′q → q′qH; associated production with a W boson or a Z boson; Higgs-

Strahlung process q′q → WH,ZH and a small contribution from gg → ZH,

associated production with a pair of bottom quarks qq′/gg → bb̄H or top

quarks qq′/gg → ttH, and associated production with a single top quark

through t-channel qg → tHq′b processes and in association with a W boson

gb→ tHW . Leading order diagrams for these Higgs boson production mech-

anisms at the LHC are shown in figure 2.3.

Production cross-sections for the various Higgs boson processes at 8 TeV

centre of mass energy are predicted in [44] are shown in figure 2.4.

For a Higgs boson with a mass of about 125 GeV the SM predicts a mean

life time of about 1.6 × 10−22 s and after that it will decay to gauge boson,

quarks, gammas and muons. Figure 2.5 shows the Standard Model prediction
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Figure 2.3: Leading order diagrams for Higgs boson production mechanisms at the
LHC.

for the branching ratios of the different decay modes of the Higgs particle

depends on the value of its mass.

In 2012, both ATLAS and CMS announced the discovery of a new boson

consistent with the Standard Model Higgs boson by examining the results of

Higgs searches in a number of decay channels H → WW,ZZ, bb̄, and τ+τ− in

the 2011 dataset at a centre of mass energy of 7 TeV with integrated luminosity

of 4.6−4.8fb−1 and also part of the 2012 dataset from decay channels H → γγ,

H → ZZ∗ → 4l and H → WW ∗ → eνµν at a centre of mass energy of 8 TeV

and integrated luminosity of 5.8 − 5.9fb−1 in p-p collisions. The SM Higgs

boson production processes considered for this analysis were the dominant
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Figure 2.4: Predictions for the probabilities of various decays of the Standard Model
Higgs, as a function of the Higgs mass.

gluon fusion gg → H, vector boson fusion q′q → q′qH, and Higgs-Strahlung

q′q → WH,ZH. Also a small contribution from q′q/gg → tt̄H to the H → γγ

process was taken into account [46].

The mass of the observed new particle is estimated using the profile likeli-

hood ratio λ for the two channels with the highest mass resolution, H → γγ

andH → ZZ∗ → 4l. The resulting estimate for the mass of the observed

particle is MH = 126.0 ± 0.4 (stat) ±0.4 (sys) GeV with a 5.9σ excess in the

confidence level. 4

By 2013 and 2014, both experiments updated their results for the full 2011

4The leading sources of systematic uncertainty come from the electron and photon energy
scales and resolutions.
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Figure 2.5: Predictions for the probabilities of various decays of the Standard Model
Higgs, as a function of the Higgs mass.

and 2012 LHC runs with an integrated luminosity of 4.8fb−1 and 20.7fb−1 at

a centre of mass energy of 7 TeV and 8 TeV, respectively. Unlike previous

analyses that found no excess in H → τ+τ− and H → bb̄ , in the new analysis,

the Higgs searches were performed using the five decay channels H → γγ,

WW , ZZ, bb̄, and τ+τ−. The combined mass is measured by the ATLAS and

CMS experiments is MH = 125.7± 0.3 (stat) ±0.3 (sys) GeV [47].
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Chapter 3

LUCID and Luminosity

Measurement

3.1 Luminosity Overview

In a beam colliding experiment, the instantaneous luminosity, L, is defined

as the ratio between the interaction rate of any process, dNproc
dt

, and its cross-

section σ, the probability for a particular process to occur is given as:

L =
dNproc
dt

σ
(3.1)

where Nproc is the number of events of a given process that took place during

the run, during time dt.

An accurate estimation of the luminosity is particularly important for any

physics analysis in which a cross-section is measured and it is a key param-

eter in most physics analyses. The higher the luminosity, the more data the
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experiments can gather to allow them to observe and study rare processes.

3.1.1 Luminosity Measurements

The absolute luminosity can be obtained from the geometrical and kinematic

characteristics of the beams such as the frequency of the beam, the number

of particles in the beam, and the overlap integral of the beam. In the case of

two Gaussian ideal head-on collisions, if two bunches are containing n1 and

n2 particles, circulating with a frequency of fr and the cross-section area is

A = 4πσxσy, then the expression for the luminosity is:

L =
nbn1n2fr
4πσxσy

(3.2)

where σx and σy are the standard deviation of Gaussian functions describing

the beam profile in the horizontal and vertical directions and nb is the number

of colliding bunches at the LHC.

During the experimental run time, it is difficult to use this method or any

other method that needs to measure beams properties, as direct measurement

of the beam profiles without disturbing the beams is not possible.

In practice, the methods used in ATLAS to monitor the luminosity are

sampling the rate of inelastic interactions. The fast detectors, such as LUCID,

are able to measure an event rate for each beam crossing; the detectors have

to be read every 25 ns which is the temporal bunch spacing at the LHC since

2015. In the case of the LUCID luminometer a dedicated electronics readout

board (LUMAT) is used to process the measurements taken during run time

and provides integrated as well as bunch-by-bunch luminosity information.
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The total luminosity, L, is then obtained by summing over the luminosity of

each bunch, Lb.

The number of inelastic p-p interactions that take place when two bunches

collide follows Poisson statistics with a mean of µ, which denotes the average

number of inelastic interactions per bunch crossing. A particular detector

will measure a visible number of interactions, µvis = εµ, that depends on

the efficiency and acceptance of the detector to detect a single interaction, ε.

Therefore, the luminosity as a function of µ and inelastic cross-section, σinel,

can be expressed as:

Lb =
µfr
σinel

=
µvisfr
σvis

(3.3)

where σvis = εσinel is the visible cross-section.

Measuring µvis allows us to monitor the luminosity, since µvis is an ex-

perimentally observable quantity that is proportional to the luminosity. The

LUCID luminosity monitor is calibrated by performing an absolute luminosity

measurement and a measurement of µvis, at the same time. ATLAS uses the

VDM method [55, 56] to determine the absolute luminosity. In this method,

the beams are separated in the horizontal (x) and vertical direction (y) while

the interaction rate is measured with a particular algorithm. The basic idea is

that the luminosity can be obtained from the width of the two scan curves (Σx

and Σy) if the number of colliding protons in the bunches are also measured.

One can show that the maximum luminosity for a colliding bunch pair Lpeak

can be calculated as:

LPeak =
nbN1N2fr
2πΣxΣy

(3.4)

Here Σx and Σy are the standard deviation of Gaussian function in the hori-

50



zontal and vertical directions and nb is the number of bunches at the LHC.

A luminosity monitor is calibrated by equating equation 3.4 to equation

3.3. This yields:

σvis = µMAX
vis

2πΣxΣy

N1N2fr
(3.5)

where µMAX
vis is the visible interaction rate observed at the peak of the scan

curve by the luminosity monitor in question.

Therefore, the efficiency of the luminosity algorithm can be expressed as

ε =
σvis
σinel

(3.6)

For instance, during Run-2, the LUCID-2 detector measured the efficiency

of LUCID “OR” algorithm, εOR to be 24%. εOR represents the probability of

a single p-p interaction to result in a hit in at least one of the LUCID’s PMTs

on either side. While σvis for “OR” algorithm is measured to be 32.4 mb and

µMAX
vis to be 24.

3.1.2 Luminosity Block (LB)

All the runs in the LHC are segmented into equal time intervals called Lumi

Blocks (LBs). This keeps the loss of data to a minimum possible. If the

machine, detector or DAQ system fails, the LBs in which failures occur will

be excluded from the analysis LBs (good LB).

The minimum value of LB size is chosen such that the statistical uncer-

tainty is less than the systematic error and the upper limit depends on how

much data is lost due to the failure in the system is tolerable. Typically, a LB
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size is in the order of 1 minute.

The LUCID detector provides bunch by bunch, raw luminosity information

for each LB, as well as the luminosity over all colliding bunches. Therefore,

the average luminosity can be expressed as:

L =
∑

i=BCID

µivis
fr
σvis

(3.7)

where the sum is performed over the colliding BCIDs. Therefore the prob-

lem of measuring luminosity can now be factorized into determining σvis and

measuring µvis.

The value of µvis is obtained from the raw number of counts and the number

of bunch crossings, under the assumptions that all p-p interactions in a bunch

crossing are independent.

Event “OR” Algorithm

The Poisson probability for observing zero events in a bunch crossing can be

expressed as:

P0(µvis) = e−µvis = e−µε
OR

(3.8)

where the probability for a single p-p interaction to result in a hit in at least

one of the LUCID tubes is denoted by εOR, shows the efficiencies of the “OR”

condition. Similarly, Let εA, εC , εAND denote the efficiencies of the “ORA”,

“ORC” and “AND” conditions5, respectively. Then, the probability of observ-

5All conditions are defined in table 3.2
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ing at least one event is:

POR
1 (µvis) =

NOR

NBC
= 1− P0(µvis) = 1− e−µvis (3.9)

The raw event count NOR is the number of bunch crossing, during a given

time which satisfy the event selection criteria of the Event OR algorithm, and

NBC is the total number of bunch crossings during the same interval. Then,

µORvis , in terms of event counting rate yields:

µvis = −ln(1− NOR

NBC
) (3.10)

Similar equations for ORA and ORC events can be expressed as:

µORAvis = −ln(1− NORA

NBC
)

µORCvis = −ln(1− NORc

NBC
)

(3.11)

Event “AND” Algorithm

For the AND condition, the formula is more complicated as the probability

depends on three parameters: εA, εC , and εAND. These efficiencies are related

to the Event OR efficiency by εOR = εA + εC − εAND . The probability of

having at least one hit on both sides PAND(µ) is:

PAND(µ) = 1− PZero−OR
0

(3.12)

where PZero−OR
0 is the probability of having no hit at least on one side which

53



can be expressed as :

PZero−OR
0 = PA

0 + PC
0 − P0 (3.13)

where PA
0 = e−µε

A
is the probability that there be no hit at least on side A,

PC
0 = e−µε

C
is the probability that there be no hit at least on side C, and

P0 = e−µε
OR

is the probability that there be no hit on either side. Therefore,

the probability of having at least one hit on both side can be determined as

follows:

PAND =
NAND

NBC

= 1− (e−µε
A

+ e−µε
C − e−µεOR)

= 1− (e−µε
A

+ e−µε
C − e−µ(εA+εC−εAND))

(3.14)

The efficiencies εAND and εOR are defined as εAND = σANDvis /σinel and εOR =

σORvis /σinel. The average number of visible inelastic interactions per BC is

computed as µvis = µεAND. Therefore equation 3.14 becomes:

NAND

NBC
= 1− 2e−(1+σORvis /σ

AND
vis )

µvis
2 + e−(σORvis /σ

AND
vis )µvis (3.15)

There is no analytical solution for µ in the above equation and thus, it can

only be solved numerically.
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Saturation of the Luminosity Algorithm

Saturation of a luminosity algorithm occurs when almost all bunch crossings

give a signal in the detector. Considering equation 3.16:

P = 1− e−µεOR (3.16)

when P is the probability to observe bunch crossings with at least one hit in

the LUCID detector, µ is the average number of p-p-interactions per bunch

crossing and ε is the overall efficiency of the detector. P is estimated by

counting the fraction of bunch crossings with at least one hit in an LB period.

If the measured fraction is 1 or close to 1 then every bunch crossing has a

hit, therefore, it cannot be used to estimate µ. Lowering the overall efficiency

of the detector can avoid this saturation problem.

In the next section, the Simulation of the LUCID detector and its efficiency

will be presented.

3.1.3 The LUCID Detector

LUCID detects charged particles by means of the Cherenkov light emitted in

the quartz window of LUCID’s PMTs. Cherenkov light is emitted when a

charged particle traverses a material with a velocity larger than the speed of

light in the medium (v > c/n), where n is the refractive index of the radiator.

LUCID is a dedicated luminosity monitoring detector. The LUCID appa-

ratus consists of two modules installed in the forward region at about ±17 m

from the interaction point of ATLAS. The LUCID detector works based on
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prompt Cherenkov light, allowing measurements to be made within the bunch

spacing of the LHC (25 ns). This allows the LUCID detector to perform pre-

cise luminosity measurements bunch by bunch. The LUCID detector design

evolved to keep pace with the increasing luminosity of the LHC. So far two

versions of the LUCID detector have been designed and installed. We shall

only consider the LUCID-2 detector that was installed in 2014.

3.1.4 The LUCID-2 Detector

During the long LHC shutdown between 2013 and 2015, the ATLAS beam-pipe

in the LUCID region was upgraded, necessitating the removal of the LUCID-1

detector. At this stage an upgraded LUCID-2 detector was installed. The new

beam-pipe was made of aluminum instead of stainless steel and simulations

showed that the number of particles hitting the LUCID-2 detector would in-

crease fourfold. Also during Run 2, the LHC machine was expected to provide

twice the previous peak instantaneous luminosity. Also, the bunch spacing in

the LHC was decreased from 50 ns to 25 ns. The original LUCID design could

not cope with the new running conditions, which would lead to saturation

of photomultipliers and the luminosity algorithms, as well as problems with

the lifetime of the old PMTs. As the acceptance of the photomultiplier was

increasing, there would be hits in the detector in almost every bunch crossing.

The large acceptance also meant that the PMTs were drawing large currents

that would limit their lifetime. Therefore, a new design for the LUCID de-

tector was needed to meet the challenges in 2015 and beyond. The solution

to these problems was to build a detector without Cherenkov tubes and a gas
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radiator and with smaller PMTs with smaller acceptance. This device relied

solely on the Cherenkov light generated in the PMT windows, for the detection

of charged particles.

In the LUCID-2 design, each module consists of 16 photomultipliers with

an additional 4 quartz fibre bundles, effectively forming four small “spaghetti

calorimeters”. The more compact design with 16 + 16 new smaller 10 mm

diameter photomultipliers in 4 groups around the beam-pipe and with 4 bun-

dles of quartz fibres readout by PMTs that were 2 m away from the LUCID-2

detector, inside the muon shielding. To increase the detector lifetime, only a

subset of the PMTs is used at a given time, the unused tubes being turned

off and available as spares. In addition, the LUCID detector uses 4 PMTs

with the reduced window opening to decrease their acceptance and thus avoid

saturation of some luminosity algorithms.The 20 R760 Hamamatsu PMTs are

grouped in 5 different families shown in table 3.1.

Name Method/Use Diameter Type # of
PMTs

Fiber PMT Cherenkov light is produced and
delivered by quartz fibers bundles.

10 mm R760 Hama-
matsu

4

Bi PMT Equipped with a 207Bi radioactive 10 mm R760 Hama-
matsu

4

VdM PMTs Equipped with LED light and used
during the VdM scan to determine
the absolute luminosity

10 mm R760 Hama-
matsu

4

SPARE
PMTs

Turned on if the VdM PMTs have
aged too much

10 mm R760 Hama-
matsu

4

MOD PMTs Equipped with a 207Bi radioactive
and a thin ring-shaped layer of
aluminium deposited between the
quartz window and the photocath-
ode to reduce the acceptance.

7 mm R760 Hama-
matsu

4

Table 3.1: 5 different types of PMTs that are used in the LUCID-2 during 2015
data taking.
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We performed Monte Carlo simulations to estimate the acceptance of the

new LUCID detector. The LUCID simulation is divided into two steps. The

first step is the description of the geometry of the detector in a stand-alone

GEANT4 (GEometry ANd Tracking) [57] simulation in ATHENA. The second

step is the study of the detector response to particles of a given energy, posi-

tion and direction. This process is generally divided into three steps itself: 1)

event generation; 2) physics and detector response; 3) digitization of physics

quantities and producing the final output. The digitization scheme for the

LUCID detector is divided into five steps: 1. Unpacking of the simulated hits

to a format which can be used in the digitization; 2. Simulation of the PMT

response; 3. Formation of detector response digits; 4. Level 1-trigger simula-

tion; 5. Conversion of digits to byte stream format. Finally, the estimation of

efficiency and acceptance of the LUCID detector in different algorithms.

3.1.5 Cherenkov Light Emission in LUCID

In LUCID, the minimal velocity at which the emission takes place, c/n, cor-

responds to a particle energy threshold Etrsh:

Etrsh = γm0c
2 =

m0c
2√

1− 1
n2

(3.17)

where m0 is the rest mass of the particle. In the quartz window of the PMTs,

for a pion Etrsh = 190 MeV and for an electron Etrsh = 0.7 MeV. The

Cherenkov light threshold is emitted along the path of the particle. Figure

3.1 shows the digitized pulse shape of a signal from one of the PMTs of the

LUCID detector when a particle enters a tube. The charge carried by a par-
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ticular signal is measured by integrating over the pulse shape.

Figure 3.1: Digitized pulse shape of a signal from one of the PMTs in A-arm of the
LUCID detector during a 50 ns run in June 2015 at CM energy of 13 TeV. Each
time bin represent 3.125 ns long which means the duration of the pulse is less than
25 ns.

Geometry of The LUCID-2 detector

In the first step of the simulation, the main detector elements were described in

a stand-alone GEANT4 [57] simulation which is a platform for the simulation

of the passage of particles through matter, using Monte Carlo methods. The

general layout of the LUCID detector in the simulation is similar to the real

detector and all the major parts of the detector are included in the simulation.

As this simulation is mostly done for the purpose of finding the acceptance

of the LUCID detector, the main elements in the geometry of the LUCID

detector are the elements that particles pass through before they reach the

PMTs and the surface of the PMTs themselves.
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The second step in the simulation chain is to simulate the passage of the

generated particles through the different detector elements and their response.

Such a description includes a description of both the active material of the

detector as well as the passive parts such as support structure and shielding.

In this sub-section the, design of the LUCID detector will be discussed and

issues in which detector description differs from the simulation design will be

addressed here.

In constructing the detector components in GEANT 4, the different geo-

metrical forms and methods are defined in order to produce the solids that

will be needed to build a computer model of the detector. The volumes are

hierarchical; a volume is placed in its mother volume. The first step in the

simulation is to define air volume as the boundary for all the component of

the detector in order to separate different detectors. The volume is defined in

such a way that it contains only the LUCID detector and does not clash with

the neighbour ATLAS detector subsystems once included in the simulation.

The beam-pipe in the region where the LUCID detector is situated is sup-

ported by a long cone called VJ cone which is attached at the back to an alu-

minium plate which attached to a solid shielding cylinder made of cast iron.

The VJ cone supporting LUCID-1, was made of aluminium. For LUCID-2 it

was decided to change the composition of the cone material to carbon fibres to

further reduce background and activation. The VJ cone consists of two 42.5

cm and 22.5 cm long cylinders which are attached by a 4.4 m conical shaped

section. The front of the VJ cone is located at 13.4 m from the interaction

point. The frontal cylinder has a 5 mm thick wall and an outer diameter of

115 mm. The back cylinder has an outer diameter of 610 mm. On both ends
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Figure 3.2: Schematic view of LUCID-2 detector.

of the VJ cone, the two aluminum rings that are part of the the support for

the beam-pipe are placed at 13352 mm and 18152 mm from the the IP, respec-

tively. Figure 3.4 shows the schematic description of the VJ cone and figure

3.2 shows the real design of the VJ cone.

Inside the VJ cone, there is a 1550 mm long LUCID support cylinder that

is made of carbon fibre. The cylinder has a 1.5 mm thick wall and an outer

diameter of 223 mm. The LUCID support cylinder is attached to the beam-

pipe support cone. In the LUCID design, at the back of the support cylinder,

four bundles of optical quartz fibres, housed in aluminium tubes, are attached

to copper tubes that carry water to cool the fibres as well as the LUCID

PMTs mounted on the PMT support cylinder. This cooling is needed during

beam-pipe bake-out. Figure 3.3 shows a full shape and cut-away visualization

of the different pieces of the detector description as it is implemented in the
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Figure 3.3: Visualization of the layers of the simulated LUCID-2 detector

simulation/GeoModel. The LUCID and ATLAS upgraded geometries that are

tagged in this study are LUCID GeoModel-00-02-01 [53] and ATLAS-R2-2015-

02-02-00 [54].

Figure 3.4: Visualization of the PMTs in the simulated LUCID-2 detector
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The LUCID-2 luminosity monitor is comprised of 16 PMTs that are at-

tached to four aluminium supports sitting around a 1.5 mm thick cooling

cylinder. Figure 3.4 shows the simulation of the PMTs arranged on the PMT

supporting cylinder.

The PMT window acts as a Cherenkov radiator. When charged particles

cross the window, they produce light which is converted into an electrical signal

that is fed into a read-out board (LUCROD) for the measurement of the charge

and the digitization of the signal. The PMTs are simulated with a thin quartz

disc matching the transverse dimensions of the tubes. The simulation of the

PMT window is crucial since it acts as a photon emitter (Cherenkov radiator).

The photocathode is simulated by applying the wavelength dependent PMT

quantum efficiency of the Hamamatsu R760 [58] to the detection of photons

produced when a particle coming from a p-p collision enters a LUCID PMT.

Each PMT is placed inside a mu metal cylinder. This mu metal cylinder

has a wall thickness of 0.85 mm and it protects the PMTs from stray magnetic

fields. At the front of the PMT and its mu-metal cylinder, a cap made of

PEEK is attached which holds a connector for optical quartz fibres in order

that the LED light or laser light can be transmitted to the front of the PMT

window for calibration purposes. The centre of the PMTs sits at a distance of

125.5 mm from the beam line and 16.97 m away from the interaction point.

Figure 3.5 shows the parameters used to describe the detector geometry of

the VJ cone, the two back and front aluminum rings, PMTs and the PEEK

caps.
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Figure 3.5: Schematic description of the VJ cone, PMT support, muon shield and
PEEK cap in the LUCID-2 design

Event Generators

A Monte Carlo event generator program is used to generate simulated high-

energy physics events. For inelastic minimum bias events, the most widely

used event generator is PYTHIA8 [59]. Inelastic, non-diffractive events are
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also called “minimum bias” events. In the study presented in the following

section, inelastic p-p collisions at the centre of mass energy of 13 and 14 TeV

are generated to simulate the production and decay of particles according

to our current knowledge of cross-sections and branching ratios. Each event

contains particles from a single interaction with vertex at (0,0,0) for single p-p

interactions generated with PYTHIA8.

Digitization

After the event generation step, all the final state particles are fed to a

GEANT4 simulation of the full ATLAS detector. In order to make the simula-

tion as realistic as possible, all detector modules are included in the simulation.

This is especially important for the simulation of signal formation in the LU-

CID detector since the signal here is dominated by secondaries created in the

forward part of the ATLAS detector, close to the beam-pipe and inside the

forward muon shielding. In fact, primary particles produced by inelastic p-p

collisions, and beam related backgrounds, can interact with the material of

the experiments and its surroundings producing secondary particles that may

reach the LUCID detector from any direction. In general, the detector sim-

ulation step computes particle trajectories, particle-matter interactions and

particle decays within the ATLAS detector volume.

The output of simulation is a “Hits” file which stores information about

the energy deposits in the detector. The number of photo-electrons generated

by Cherenkov photons traversing the sensitive detector is used to characterize

the PMT response. The total number of photo-electrons is obtained on a

tube-by-tube basis.
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Simulation of the front-end electronics is called Digitization. The task

of the digitization software is to generate digits for each tube based on the

information available from the GEANT4 simulation.The digitization software

then converts the energy deposits into detector responses, “digits”, typically

voltages or times. The digitization process runs after the GEANT4 simulation

and is constructed in such a way that full sets of simulated hits are first to be

read in, on an event per event basis. In the LUCID simulation, the sensitive

detector is defined as the PMT window.

During the simulation, a hit threshold must be imposed to trigger the

readout electronics in order to record the event. The hit threshold is used to

trigger the LUCID readout electronics when a single interaction occurs. It

must be chosen at a high enough value to filter out beam background events

while still low enough to keep the statistics in the calibration runs high. In

the LUCID-1 configuration, the hit threshold was set to 15 photo-electron. A

similar value has been adopted in the simulation of LUCID-2.

Algorithm Side A Side C Condition Counting

EventOR Nhits > 1
Nhits = 0
Nhits > 1

Nhits > 1
Nhits > 1
Nhits = 0

OR condition Incremented by one

EventORA Nhits > 1
Nhits > 1

Nhits > 1
Nhits > 0

ORA condition Incremented by one

EventORC Nhits > 1
Nhits = 0

Nhits > 1
Nhits > 1

ORC condition Incremented by one

EventAnd Nhits > 1 Nhits > 1 AND condition Incremented by one

HitOr Nhits > 1
Nhits = 0
Nhits > 1

Nhits > 1
Nhits > 1
Nhits = 0

OR condition Incremented by the total
number of hits

HitAND Nhits > 1 Nhits > 1 AND condition Incremented by the total
number of hits

Table 3.2: The six counting algorithms used in LUMAT.
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Then the simulated hits, converted into simulated “Raw Data Objects”

(RDOs) for input to the reconstruction, are converted into byte-stream data.

The byte-stream format for LUCID consists of 2 data words which contain

the hit information on a tube-by-tube basis for A and C sides separately.

The layout of the byte-stream is the same for simulated data and for real

data. This is done to mimic the output from the real detector as closely

as possible by letting the same reconstruction algorithm run on both types of

data in the same manner. The LUMAT (Luminosity And Trigger) board in the

LUCID detector provides the CTP with a trigger based on the hit multiplicity

in the LUCID detector. It sends the hit pattern to the ATLAS data flow

whenever there is a Level 1 trigger accept, and uses the hit pattern to derive

information about the luminosity. The LUMAT board receives one hit pattern

per bunch crossing. It scans the part of the hit pattern that corresponds to

the standard tubes and checks if any of the four conditions shown in table

3.2 are fulfilled. Bunch crossings that fulfill at least one condition (“ORA”,

“ORC”, “OR”, “AND”) are called events. Depending on which conditions

were fulfilled, LUMAT increments a collection of internal scalers. There are

six sets of scalers representing six different counting algorithms. Each set

contains one scaler per BCID for a total of 3564 scalers per set. The number

stored by the scaler contains information about the luminosity of that BCID.

The six algorithms work as shown in table 3.2. In the next section the relation

between the numbers stored by the scalers and the luminosity of the LHC will

be explained. But for now, we use these numbers to define the efficiency of

each of these algorithms.

Let εA, εA, εOR and εAND denote the efficiencies of the ORA, ORC, OR
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and AND conditions, respectively. In table 3.3, the definition of Hits, Events

and efficiencies for all algorithms are shown.

Type of events

ORA events events with at least a hit in side A of the LUCID

ORC events events with at least a hit in side C of the LUCID

OR events events with at least a hit in side A or side C of the LUCID

AND events events with at least a hit in side A and side C of the LUCID

Efficiency

εA Number of ORA events
Total number of events

εC Number of ORC events
Total number of events

εOR Number of OR events
Total number of events

εAND Number of AND events
Total number of events

Number of Hits

HitsA Number of hits in ORA events
Total number of events

HitsC Number of hits in ORC events
Total number of events

HitsOR Number of hits in OR events
Total number of events

HitsAND Number of hits in AND events
Total number of events

Table 3.3: Definition of Event, Efficiency and Hit for LUCID’s different hit algo-
rithms.

In the next step, a simple script is used to translate the byte-stream data

in order to calculate the efficiencies. Table 3.4 shows the calculated efficiencies

for each algorithm.

The upgraded beam-pipe and the increase in the centre of mass energy

of the colliding particles at the LHC resulted in a significant increase of the
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εA εA εOR εAND

1 0.387± 0.007 0.388± 0.007 0.590± 0.007 0.185± 0.005

2 0.351± 0.007 0.347± 0.007 0.548± 0.007 0.150± 0.005

3 0.489± 0.007 0.489± 0.007 0.693± 0.007 0.285± 0.005

4 0.3911± 0.002 0.389± 0.002 0.596± 0.002 0.184± 0.002
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1 13 10 16× 2 X New New LUCID-GeoModel-
00-02-01

ATLAS-R2-2015-02-
02-00

2 13 10 16× 2 × New New LUCID-GeoModel-
00-02-01

ATLAS-R2-2015-02-
02-00

3 13 10 16× 2 X Old New LUCID-GeoModel-
00-01-20

ATLAS-R2-2015-02-
01-00

4 8 14 16× 2 X Old Old LUCID-GeoModel-
00-01-19

ATLAS-GEO-16-01-
00

Table 3.4: Efficiency of the old and new LUCID detector for 16 active PMTs on
each side for different algorithm

LUCID acceptance and efficiency in Run-2. However, the reduced size of

the PMT window in the new LUCID design and the new LUCID geometry

compensate for this increase.

Another way to reduce the acceptance is to reduce the number of tubes

actively measuring the luminosity. Table 3.5 shows the values of the LUCID-2

acceptance for different numbers of tubes.

The table shows that the LUCID acceptance was expected to increase from

60% to 70% from the combined effect of a larger centre of mass energy and

an aluminum beam-pipe. However, the new Geometry compensated for that

increase. By reducing the number of active PMTs from 16 to 4 on each side of

69



Threshold 15 photoelectrons

CM Energy 13 TeV

Number of
Events

5k

Lucid Geometry
Description

New Lucid Geometry LUCID-GeoModel-00-02-01

Beam-pipe New aluminum beam-pipe with the front ring ATLAS-R2-2015-02-
02-00

Number of Ac-
tive PMTs

εA εA εOR εAND

16 0.387± 0.007 0.388± 0.007 0.590± 0.007 0.185± 0.005

4 0.158± 0.005 0.165± 0.005 0.287± 0.005 0.037± 0.006

1 0.047± 0.003 0.046± 0.003 0.090± 0.004 0.0032±0.0008

Table 3.5: Efficiency of the LUCID-2 in the new ATLAS geometry for different
numbers of active PMTs

the LUCID detector, the efficiency will drop by about a factor of 2. Another

obvious way to reduce the geometrical acceptance of the detector is to use

smaller PMT windows, as was done with the PMT windows already reduced

from 14 mm to 10 mm.

As we mentioned previously, LUCID-2 uses the commercial Hamamatsu

model R760 with 10 mm diameter. Besides the commercial model, another

type of modified PMTs (MOD PMTs) has been produced by Hamamatsu

compony which consists of a commercial R760 PMT with one part of the

active window aluminized in order to further reduce the effective active area

to a diameter of 7 mm. It was decided that 8 out of the 40 PMT’s of LUCID-2

should be of this type, in order to fully characterize the performance of these

modified (MOD) PMTs during the Run-2 data taking. More details about the

choice of PMTs in the design of LUCID-2 detector can be found in [60, 61].

In the table 3.6, it can be seen that with a 10 mm window the acceptance
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is the same order as LUCID-1, while it becomes smaller by further reducing

the size of the PMT window to 7 mm. However, reducing the window size to

7 mm as shown in table 3.6.

Threshold 15 photoelectrons

CM Energy 13 TeV

Number of
Events

5k

Lucid Geometry
Description

New Lucid Geometry LUCID-GeoModel-00-02-01

Beam-pipe New aluminum beam-pipe with the front ring ATLAS-R2-2015-02-
02-00

Number of Ac-
tive PMTs

4 on each side

PMT Window
Diameter

εA εA εOR εAND

10 cm 0.158± 0.005 0.165± 0.005 0.287± 0.005 0.037± 0.006

7 cm 0.122± 0.005 0.120± 0.005 0.220± 0.006 0.022± 0.002

Table 3.6: Efficiency of the new LUCID with regular and modified PMTs

Studies of LUCID-1 detector showed for µ values of about 50, the statistical

error of the luminosity becomes too large if the efficiency is higher than 20%

[61] due to the migration effect. The Monte Carlo simulation in this section

indicates that for the LUCID-2 detector, reducing the diameter of the PMTS

and lowering the number of active PMTs on each side gives efficiencies below

22%.
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3.1.6 Study of main systematic effects on LUCID’s lu-

minosity determination in the 2015 Runs

PMT Gain

The measured luminosity depends on the PMT gain but the exact relationship

between the luminosity and the gain is not obvious. Because the gain of

the PMTs in the LUCID detector decreases during the data taking periods,

frequent calibration runs using LED signals are carried out using optical fibres

and radioactive 207Bi sources at least once between LHC fills in 2015.

Small pulses of LED light are used to calibrate the PMTs. When the

LED light hits the photocathode of a PMT, each photon then excites a photo-

electron from the photocathode with a probability given by the quantum ef-

ficiency of the PMT. The LED signals provide peaks in the amplitude and

charge distributions that are recorded by the LUCID detector in data acqui-

sition runs between LHC fills, when there are no collisions. The stability of

the PMT gain is controlled by measuring and maintaining the mean value of

charge distributions, obtained from the LED calibration. During Run-2 the

high voltage was regularly changed to keep the PMT gain constant, as is the

case during the VdM scan.

To use LED sources as a reference for the PMT gain monitoring system,

the intensity of the light delivered to the PMT needs to stay constant over

a long period of time. The stability of the LEDs is controlled by PIN-diodes

that are located in front of the LED lights. Therefore, it is necessary to make

sure the light is always stable and the condition of the optical fibres which

deliver light to the PMTs stays the same. Nevertheless, we do have issues
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with the stability of the LED calibration. A better alternative is the use of a

radioactive source placed on the PMT window. It was decided to use a 207Bi

source because it provides 1 MeV mono-energetic electrons from an internal

conversion process with energies above the Cherenkov threshold in quartz.

In order to use 207Bi to monitor the PMT gain, the radioactive source

needs to be put close to the PMT. to obviate the need for a bulky source

mounting in front of the quartz windows, liquid 207Bi sources were used, with

one drop of source material placed on the quartz windows of the PMTs to

be calibrated in this way. In order to prevent contamination by the source, a

special PEEK cap was glued on top of the PMT. More detailed information

about the calibration of the LUCID PMTs can be found in [61].

Monte Carlo simulations of the LUCID-1 detector showed that a certain

relative change in gain resulted in a much smaller relative change of the lu-

minosity and the same has been observed for the LUCID-2 detector. Com-

parisons of the gain decrease measured by the 207Bi sources and the LED

system showed that the latter system was overestimating the gain decrease.

The reason for this is not clear. The LED system is more complicated and it

has components such as optical filters and fibres that could suffer performance

degradation from radiation damage. There is also a difference in wavelength

between the LED light and the blue and ultraviolet Cherenkov light produced

by the 207Bi sources. During data taking in 2015, we kept track of the charge

distribution of all PMTs6. Figure 3.6 shows the mean charge distribution of

Bi PMTs during 2015 runs. Stability of the average ratio of mean charge to

the first run for both sides of the LUCID detector is better than 10%. Figure

6The distribution of the charge registered by the PMTs
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3.7 shows the mean charge percentage of VDM PMTs that use LED light for

calibration. The LED calibration used the single photo-electron peak to give

an accurate gain measurement that worked well at lower luminosity, but at

high luminosity the measurement was spoiled because of background from the

activation of the materials surrounding LUCID. By early 2016, all the PMTs

in the LUCID detector had Bi sources.

Figure 3.6: Variation of the mean charge percentage of individual and average Bi
PMTs on each side during 2015 runs.

The offline analysis was performed regularly to monitor the gain loss of the

PMTs which most of the time showed gradual changes giving us enough time

to occasionally increase the high voltage. However, in some RUNs in 2015
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Figure 3.7: Variation of the mean charge percentage of individual and average VDM
PMTs on each side during 2015 runs.

there were sharp increases in the luminosity which resulted in a fast decrease

of the PMT gains. As the analysis procedure was too slow to correct the

high voltage, an automatic script was introduced in 2016 to determine the

mean charge of each PMTs after each calibration run which was then used to

immediately correct the high voltage supplying the PMTs.

During the 2015 running period, the high voltage was increased by as much

as 100 V for some PMTs. The increase of high voltage significantly changed

the transit time in the PMTs (up to 6 ns). The measurement system to

evaluate the transit time spread of an MCP-PMT is explained in [58]. This

led to a part of the signal moving outside of the timing window where it was
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not recorded, this in turn led to a decreasing efficiency of the detector. During

this time, before we discovered the source of the problem, luminosity measured

by LUCID was consequently underestimated.

The overall transit time effect was larger for the LUCID BI OR C al-

gorithm (the event ”ORC” algorithm for Bi PMTs) measurement than for

the LUCID BI OR A algorithm (the event ”ORA” algorithm for Bi PMTs)

measurement and so the latter algorithm was used for the luminosity mea-

surements in 2015. The blue points in the bottom plot in figure 3.8 show

the ratio of the LUCID BI OR A luminosity to the TRACK (Inner detector

track counting) luminosity during the 2015 run time.

The transit time problem was different for different PMTs, however, one Bi

PMT called BI C9 was hardly affected. Therefore, BI C9 was used to derive

a transit-time correction for the other PMTs 7. This correction improved

the consistency of the LUCID luminosity measurement compared with those

made with the other ATLAS detectors, as shown in figure Fig3-15-Transit-

time-correctioin.

Run by run discrepancy

Beside the LUCID detector, there are other sub-detectors that can provide

luminosity measurements. The main approach used by ATLAS to investigate

systematic effects is to compare measurements of several luminosity detectors

which use different algorithms to measure the luminosity. Different detectors

have different acceptance coverage, sensitivity, and contribute different sys-

7The ratio of LUCID BI OR A to BI C9 was plotted as a function of the high voltage
and a straight line was fitted to the data and used to obtain a correction factor for individual
runs.
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Figure 3.8: Ratio of the measured luminosity per run between LUCID BI OR A
and TRACK algorithms before and after applying Transit time correction, in 2015
runs.

tematic errors to the measurement of luminosity. Table 3.7 summarizes the

properties of other luminosity monitor detectors.

Name pseudorapidity
range

Method BCID

Tile calorimeter η < 1.7 Estimate Particle flux by measuring the
current drawn by PMTs

×

EMEC 1.375 < |η| < 3.2 Estimate particle flux by measuring
High voltage drop

×

FCAL 3.2 < |η| < 4.9 Similar to EMEC ×
Inner detector
(TRACK)

|η| < 2.5 The luminosity is measured by counting
the number of reconstructed tracks.

X

Minimum Bias
Trigger Scintil-
lators (MBTS)

2.09 < |η| < 3.84 A scintillator detector designed spe-
cially for low luminosity runs

×

The Beam Con-
dition Monitor
(BCM)

about 4.2 Four small diamond sensors on each
side perform hit counting and provide
luminosity in 2015 data taking

X

Table 3.7: ATLAS sub-detectors, beside the LUCID detector, that provide Lumi-
nosity for ATLAS.

By comparing the luminosity run-by-run as a function of the time, it is

possible to estimate the effect of several systematic problems such as PMT

gain change, transit time drift, train dependency and µ dependency.

77



In 2015, The BCM was the main detector used for studying the system-

atic errors of the LUCID detector as the BCM can also measure luminosity

for individual colliding bunches. In 2015, we discovered that when the LHC

employs bunch trains 8, the BCM underestimates the measured luminosity.

However, in the VdM scan and runs with isolated bunches, the BCM is still a

reliable bunch-by-bunch luminosity monitor. Figure 3.9 shows the ratio of the

LUCID BI OR A luminosity to that of two BCM measurements, as well as

to the TRACK luminosity and LUCID BI OR C. In this figure, the BCM

and LUCID luminosities were normalized to the TRACK luminosity in a VdM

run. The four different measurements are in good agreement with each other.

Figure 3.9: The ratio of the LUCID BI OR A luminosity to that of two BCM
measurements as well as to TRACK and LUCID BI OR C in 6 LHC fills which
are taken in low luminosity and with a small number of isolated colliding bunches.

Figure 3.10 (top) shows the run-to-run comparison of stability of measure-

8When more than two consecutive BCIDs are filled in a beam, it is called bunch train.
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ments from the TRACK, Tile calorimeter and EMEC detector with respect to

the LUCID BI OR A luminosity which was the official luminosity algorithm

in ATLAS, for 2015. The relative variations in measurements of all ATLAS

luminosities are within ±1.2% and the root mean square of the data points

is 0.5% for the Tile calorimeter and 0.6% for the EMEC and the TRACK in

2015.

Figure 3.10 (bottom) shows the ratio of the LUCID BI OR A luminosity

to average luminosity determined by the other three detectors. The variations

in the luminosity measurements lie within ±1% and the root mean square of

the data points is 0.5%.

Figure 3.10: (Top plot) Ratio of the measured luminosity of LUCID BI OR A
and the Tile calorimeter, EMEC, and TRACK luminosity algorithms per run in
2015. (Bottom plot) Ratio of the measured luminosity of LUCID BI OR A and
the average of the Tile calorimeter, EMEC and TRACK luminosity algorithms.
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Bunch train dependence

A large effort was made when designing the new LUCID detector and elec-

tronics to keep the length of the PMT pulses shorter than the minimum bunch

separation of 25 ns. If the pulses are too long they can pile-up in fills with long

bunch trains so that the measured luminosity becomes larger for the bunches

inside the train compared to the first bunch in the train. This is called the

bunch train effect. In 2015 the filling scheme was constantly changing. The

25 ns running started with 2 trains containing 12 colliding bunches and ended

with 62 trains with 36 colliding bunches, with many other configurations in

between.

Figure 3.11 shows this problem, that was noticed in the 25 ns runs. For

the isolated bunches and first BCID in the train, the difference between the

ratio of the LUCID and BCM measurements is less than 3% and for any other

BCID in the middle of the train, the difference is more than 15%. This due to

the fact that the BCM has a very large train dependency that causes a 3−4%

shift during 50 ns running and a 15 − 25% shift during 25 ns running and it

is therefore not possible to use the BCM detector to study the LUCID train

dependency.

In 2016, the inner detector became available to study the bunch train

effect. Figure 3.12 shows the ratio of the luminosity measured by the tracking

detector (TRACK) to that measured by LUCID for a selection of runs that

were taken close to the VdM scan with which the luminometer was calibrated.

The data was normalized so that the ratio becomes one in the VdM run. The

ratio has been calculated separately for the first bunches in trains or isolated
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Figure 3.11: The percentage ratio of µ measured by in different algorithm of the
LUCID and BCM with respect to LUCID BI OR A in an early 25 ns run. The big
difference between LUCID and BCM are coming from the measured µ in bunches
in the middle of the train. The isolated bunches and the first BCID in the train are
not affected by the train effect.

bunches and for bunches inside the trains. A difference of about 1% is seen

between the two selections. With only two detectors available for this study it

is impossible to determine if the difference between the LUCID measurement

and the TRACK is due to the LUCID detector or the Inner detector.

µ Dependancy

The logarithmic formula used to calculate the event counting luminosity is

derived under the assumption that all p-p interactions in a bunch crossing are

independent. In other words, we assume that the probability for a given p-p
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Figure 3.12: The ratio of the luminosity measured by TRACK to that of
LUCID OR A for the first bunches in the trains or isolated bunches and for bunches
inside the trains to study the train effect in the LUCID detector.

interaction to cause a hit in the LUCID detector does not depend on the total

number of p-p interactions in that bunch crossing. This assumption is not

perfectly true for high µ values.

In the gas filled LUCID-1 detector, the signals from several particles cross-

ing the gas volume at large angles could add up to produce a signal above

threshold. This migration problem was reduced but not eliminated when the

gas vessels were removed. The migration of signals in high µ runs contributes

to the µ dependency of the LUCID detector measurements.

The µ dependancy of the LUCID detector was first studied by comparing

the µ measurement of the LUCID with the BCM and the Tile calorimeter.

Figure 3.13 compares the µ measurement of different algorithms of the LUCID
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to the two algorithms of the BCM and the Tile algorithms, in one of the mu

scans in 2015 with 25 ns bunch spacing. The range of µ varies from 0 to 17.

For µ < 5, all the algorithms of the three detectors are in agreement. Points

related to the BCM measurements are separated from the LUCID and Tile

measurements for µ > 5. The difference between the LUCID measurements

and the Tile starts to show up for µ > 12.

Figure 3.13: µ measurement by Different algorithm of the LUCID, BCM and Tile
calorimeter in a µ scan.

Figure 3.14 shows the ratio of the average number of p-p interactions per

bunch crossing measured by the Tile Calorimeter to that of LUCID BI OR A

as a function of µ. The data samples were normalized such that they give the

same luminosity in the VdM fill. The LUCID-2 algorithms are µ-dependent

for both the 50 and 25 ns runs. In all 25 ns runs similar decreases are observed.

It means µ measurements using the LUCID BI OR A algorithm increase by

about 0.2% per unit of µ. In the case of the 50 ns curve, it is flatter and more

consistent. The µ measurement with LUCID BI OR A algorithm increase
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by about 0.1% per unit of µ .

Figure 3.14: The ratio of the average µ measured by Tile calorimeter to that of
LUCID BI OR A as a function of the average µ in 25 and 50 ns runs.

The data taken by the LUCID detector could then be corrected LB by

LB. However, because different runs have a different average number of p-p

interactions or µ, the µ dependency in LUCID could be different from run

to run. This is taken into account in the systematic error obtained from the

measurement of the run to run fluctuations which is described in the previous

section.

All the luminometers in ATLAS are calibrated in the low µ VdM scans.

However, due to the µ dependancy of the LUCID, the calibrations obtained

in the VdM scans had to be corrected before being used to calculate the

luminosity in the physics runs with high µ luminosity, otherwise the detector

will systematically overestimate the luminosity. This correction was called a

calibration transfer correction because it transferred the calibration obtained
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in low µ runs with a small number of isolated colliding bunches to high µ runs

with bunch trains.The errors due to the calibration transfer correction for

the 25 ns running period is determined to be 0.9% by comparing the LUCID

data with the TRACK and Tile calorimeter. However, the largest systematic

errors in the LUCID luminosity measurement comes from the error in the

determination of σvis which is 1.7%. The long term run-to-run stability has

the second most contribution which is estimated to be 1% (see section “Run

by run discrepancy”). The total luminosity error of LUCID is obtained by

adding these errors in quadrature under the reasonable assumption that they

are not correlated and so the total luminosity error of LUCID in the 25 ns

data taking period in 2015 is 2.1%.
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Chapter 4

ATLAS Forward Proton

Tagging Detector (AFP)

4.1 AFP Detector and Forward Physics

The ATLAS Forward Proton (AFP) project [64, 65] will extend the physics

reach of ATLAS [103], by enabling the identification of protons that emerge

intact from the LHC proton-proton collisions at small angle to the beam di-

rection. Such processes are typically associated with: elastic and diffractive

scattering, where the proton radiates a virtual colour-less object (pomeron);

and, two photon processes involving quasi-real photons associated with the

charged beams.

The prime process of interest for AFP is Central Exclusive Production

(CEP) in which the diffracted protons in the final state emerge intact and can

be tagged by the AFP detectors. CEP is also recognized by the observation

of the central particle such as W or Z boson, a pair of jets, or a neutral Higgs
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boson allows for a direct determination of its quantum numbers, since to a

good approximation only central systems with spin-parity JP = 0+ [104] can

be produced in this manner. Furthermore, tagging both protons allow the

mass of the centrally produced system to be reconstructed with a resolution

between 3 GeV and 6 Gev per event when both protons are tagged.

AFP consists of four stations, two on each side of ATLAS along the beam-

pipe in the forward region. The stations are located at ±205 m and ±217 m

from the ATLAS interaction point on each side. In each station, there is a

Roman Pot which allows the horizontal movement of the detector to move to

a few millimetres from the beam. Inside each Roman Pot, there is a tracking

system based on 3D silicon pixel sensors [71, 72] which is used to determine the

deflection of the protons - and hence their energy loss - in CEP events. The

Roman Pots in the far stations also house a Time of Flight (ToF) detector. The

ToF t system is essential to reduce background from multiple proton-proton

collisions when running at high-luminosity.

4.1.1 The AFP Layout

The three main component of the AFP detector are the Roman Pot (RP),

tracking detector, and ToF detector which will be discussed in more detail

below.

Roman Pot

In order to tag protons that are deflected slightly from the beam-line without

interfering with the primary vacuum of the LHC beam one requires a Roman
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Pot device [76].The Roman pot technique has been successfully tested at the

LHC and elsewhere. It has been used in both the ATLAS ALFA detector [69]

and the CMS TOTEM experiment [13]. TOTEM’s cylindrical pot design was

copied for the AFP pot with only small modifications.

The cylindrical pots orientation and its motion are horizontal, transverse

to the beam direction. In normal operation, the pots internal volume, that

houses the detectors, is kept in a ‘secondary’ vacuum. However, the secondary

vacuum may need to be broken for installation or replacement of detectors

and components. Moreover, a variety of accident scenarios must be foreseen:

the accidental loss of the secondary vacuum being the most likely. Loss of

beam vacuum, while the secondary vacuum inside the pot is maintained, is an

example of a very rare accident scenario. The catastrophic loss of vacuum, of

the secondary or of the beam vacuum, is extremely unlikely. Therefore, the

pressure differential to be considered is at most 1 atmosphere. Figure 4.1 (a)

shows a Roman Pot and the placement of the detectors inside the far Roman

pot.

Figure 4.1: (Left) Schematic view of Roman Pot and shows the position of ToF
detector and the silicon tracker detector. (Right) Shows the prototype of the ToF
detector and the silicon tracker installed inside the Roman Pot.
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The pot has a cylindrical shape and guided by a sliding mechanism with a

stepping motor to move precisely along the sliding guide and get as close as a

few millimetres to the beam. The schematic diagram in figure 4.2 shows the

movement of Roman pot with respect to the beam.

Figure 4.2: A vacuum chamber which houses the detectors is attached to the beam-
pipe by means of bellows and the deformation on the bellows bring the detectors as
close as possible to the beam line.

4.1.2 Silicon Tracking Detector

The key component of the AFP detector is the silicon tracker system. Its

purpose is to track the protons hits that are deflected at small angles during

proton-proton collisions. The LHC dipole and quadrupole magnets, guide the

protons towards the AFP detector in the forward direction. By determining

the proton’s trajectory through the silicon tracker allowing the measurement

of the proton’s deflection angle and energy loss.

Experimentally, there are three main variables which characterize the Cen-

tral Exclusive Diffractive(CED) events (see also chapter 6): the fractional

momentum loss of the two intact protons, and its transverse momentum. The

proton fractional energy loss is given by ξ1,2 = 1 − Eproton1,2

Ebeam
, where Eproton1,2

is the first or second deflected proton energy and Ebeam is the nominal LHC
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beam energy. The four-momentum transfer squared can be determined as:

√
−t = 2EprotonEbeamsin

θ

2
, (4.1)

where θ is the deflection angel of the proton.

The missing mass of the central system, which only depends on the frac-

tional momentum loss of the protons ξ1 and ξ2, is given as:

Mcentral =
√
sξ1ξ2 (4.2)

AFP provides a 5− 10 GeV per event mass resolution. The energy loss of

the proton is determined from the trajectory of the proton as measured by the

tracking detectors in the Roman Pots together with the LHC magnets.

In order to measure a very small deflection angle of protons with angular

resolution of about 1 µrad, a very special detector with high spatial resolu-

tion of 10(30) µm per detector station in x(y) direction is needed. The AFP

detectors must also be able to operate in the high background environment

near to the beam-pipe in the forward regions. FLUKA simulations were used

to predict doses and fluences for the LHC [73]. At a few centimetres from the

beam, the dose and fluences integrated over 100fb−1 of LHC luminosity are

200 Gy, 5×1011 neutron equivalent per cm2, and 1011 high energy hadrons per

cm2. These simulations were for β = 0.55 m optics and included beam-beam

interactions only. The measured values approximately confirm the predictions

from the simulations. In addition to all these requirements, as the detector

should get as close as possible to the beam line, the inactive edge region of the
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detector should be as small as possible in order to maximize the light mass ac-

ceptance. Therefore, 3D silicon pixel detectors were chosen for the purpose of

tracking proton at the AFP9. The inactive edge of AFP’s 3D tracking sensors

has been engineered to be as small as 100− 150 µm [65].

Figure 4.3: Schematic cross-sections of (left) a planar sensor design and (right) a
3D sensor, showing the charge collection in the two designs.

The 3D pixel detector is a new generation of silicon detectors. Figure 4.3

shows the schematic structure of a 3D pixel detector, compared with the tradi-

tional planar design. In the production of this type of detector, a new etching

technology has been used that allows an array of n- and p-type electrode

columns passing through the silicon substrate rather than being implanted on

its surface. n+ and p+ electrodes are developed in these holes. The diameter

of electrodes is 10 µ m, spaced at 20 µm to a depth of less than 285 µm on the

surface of the silicon wafer of the sensors. There are several advantages for this

structure over the regular planer pixel detectors, which are used in the inner

detector of the ATLAS. First, the smaller inner-electrode distance leads to a

9The AFP pixel detectors is based on the 3D double sided sensors developed by CNM
(Centro Nacional de Microelectronica, Barcelona, Spain) for the Insertable B- Layer (IBL)
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shorter collection time and smaller depletion distance. Secondly, an ionizing

particle generates charge carriers almost parallel to the collecting electrodes

in the 3D detector; therefore all charges generated from the track have similar

collection times inducing a signal with a faster rise time. This implies that

the device is extremely fast, has high charge collection and a low operating

voltage, and therefore low power consumption, even after a high irradiation

dose. Aside from all the other bonuses of 3D design, the enclosed structure of

the unit cell of the 3D detector will also reduce the amount of charge sharing,

which could be advantageous in increasing the signal in a given pixel after

heavy irradiation. These features make the 3D sensor more radiation resistant

compared to the regular planar sensors. Thirdly, since both types of electrodes

can be accessed from the top surface of the detector, it is possible to do the

read-out simultaneously from both n+ and p+ electrodes. Finally, the excess

material surrounding the detector can be etched away and this technique elim-

inates the need of using guards 10 (which is a necessary part of the saw-cut

detectors). Therefore the electric field can extend right up to its physical edge

(115 µm).

There is a 3D-silicon tracking station to measure scattered protons in each

of the AFP Roman Pots. Each tracking station consists of four tracking de-

tectors each comprised of a single FE-I4B [20] front-end chip which features

an array of 336× 80 pixels with a pixel size of 50× 250 µm2 [65]. Therefore,

the active area covered by the tracking detector is approximately 17×20 mm2.

The single chip 3D pixel modules used by AFP are similar to the ones used in

the ATLAS Insertable B-Layer (IBL) detector and have demonstrated radia-

10The role of a guard rings is to draw the excess leakage current from the sensors
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tion tolerance. The FE-I4B readout chip meets the specific requirements for

AFP: the granularity of cells provides a sufficient spatial resolution11; the chip

is sufficiently radiation hard (up to 3 MGy MJ
kg

) [67]; and, the size of the chip

is quite large (it is the largest readout chip that has been used at the LHC).

4.1.3 Time of Flight System

ToF is a fast timing detector that measures the time difference between the

arrival of the two outgoing scattered protons in the AFP detectors on either

side of the ATLAS interaction point, enabling the z-position of their common

vertex, if any, to be calculated. This determination allows pileup background

to be severely reduced.

As the instantaneous luminosity increases at the LHC the number of pile-up

events increases. At high luminosity, the ToF detector becomes essential since

the AFP detector can tag the two outgoing protons from a diffractive process in

the very forward region of the ATLAS detector. The ToF detector resolution

lies between 10 ps 12 and 30 ps allowing us to determine the longitudinal

position of the vertex with precision of 2.1 mm to 6.4 mm, respectively. By

matching the vertex position as determined in the central system, measured by

the central detector with precision of 50 µm and the vertex position determined

by AFP, it can be concluded whether the two protons originate from the same

interaction, otherwise, the event will be tagged as pile-up.

At the nominal luminosity of the LHC, an important exclusive DPE pro-

11In a test beam in 2016, the overall resolution of the tracker detector has been measured
as 15 µm (73 µm) in the short (long) pixel direction

12When two oppositely directed particles are timed relative to each other, with a time
difference ∆t, the point of origin z can be determine with the precision of ∆z = C∆t√

2
.

Therefore, precision of 10 ps translates to ∆z = 2.1 mm in the vertex position
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duction background is when: two single diffractive events with a central hard

scatter all overlap, as shown in figure 4.4 case (a). In this case the two

diffracted protons come from separate vertices. There are also two more situa-

tions possible in which events from two independent interactions superimpose

to form a background event. The first of these occurs when one interaction

with the central system overlaps with a double tag soft interaction, as shown

in figure 4.4 case (b). The second two-vertex case happens when single diffrac-

tive jet production with one tagged proton overlaps with a single tag soft

interaction, as shown in figure 4.4 case (c).

Figure 4.4: A schematic diagram of overlap backgrounds to central exclusive pro-
duction

LQbar

The Quartic detector is used to determine the ToF of the deflected protons

from, an exclusive interaction, entering the AFP detectors on either side of

the ATLAS interaction point. Quartic is a Cherenkov detector utilizing quartz

bars as radiators with a Micro-channel Plate Photomultiplier (MCP-PMT) for

readout. In the Quartic design, the fused silica (quartz) bars are oriented at

the Cherenkov angle. As a result, the reflection of the light inside the bars

will be reduced and a number of the Cherenkov photons created by the proton
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passing through the quartz radiator bars will reach the PMT at the same time.

In the new design, the timing system is again based on Cherenkov emission

in fused silica radiators. It consists of fused silica (“Suprasil”) bars to guide

the Cherenkov light to the PMTs. Because of the geometry of Roman Pot, the

light has to be brought out perpendicular to the beam, therefore, the quartz

bar has designed in L-shaped configuration and hence are called “LQbar”.

For technical reason, the LQbars are not made in one piece but two pieces.

The two bars are glued together as it is shown in figure 4.5. Because the

relativistic protons emit a Cherenkov light in a Cherenkov cone of 480 the

radiator arm has 48o cut on its free side. After the beam of protons hit the

radiator arm at 480 angle and produce Cherenkov light, the radiator which

also acts as a light guide conducts the light in a direct path. In order to

reach the MCP-PMT, the light is reflected through 90o by a 45o cut of the

radiator at the junction of the two arms of the LQbar. A layer of aluminium

is electro-deposited on the outside of the 45o junction to enable reflection of

the Cherenkov light, generated by the passage of a proton through the LQbar,

into the MC-PMT. Figure 4.5 shows the schematic view of the 4 × 4 row of

LQbar radiators of the ToF detector.

In summary, the baseline design of AFPs ToF detector (QUARTIC) con-

sists of 16 LQbars organized into four rows (called trains) of four LQbars each.

The length of all the radiators bars in the z-direction is 6 mm and the length in

the x-direction ranged from 35 to 57 mm in order that the prompt Cherenkov

light, from a traversing proton, in each bar can reach the PMT at the same

time. The light reaching the MC-PMT is converted to a signal by a specialized

4×4-pixel MCP-PMT. The signals of all PMTs are amplified, discriminated by
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CFD (Constant Fraction Discriminator) and digitized by the HPTDC (High

Precision Time to Digital Converter) board.

Figure 4.5: The left hand picture is the schematic view of the 4 × 4 row of LQbar
radiators of the ToF detector. It shows the passage of a Cherenkov photon emitted
from a proton through the Silicon Tracker detector and LQbars in ToF detector.
The right hand picture is a prototype of the new LQbar-mounting made in the
University of Alberta.

4.1.4 ToF Electronics

The primary purpose of the ToF electronics is to measure the flight time of

charged particles while preserving the timing resolution of the overall detector

at the level of 20 ps. The ToF electronic consists of MCP-PMT, preamp,

CDF, and HPTDC as shown in figure 4.6. The ToF electronics system will be

discussed in more detail below.

MCP-PMT

The ends of all the LQbars were brought into contact with a 10 µm channel size

MCP-PMT by photonics. MCPs are quite different in structure and operation

from conventional PMTs. They consist of an input window, photocathode,

anode, and Micro-channel plates (MCPs) instead of dynodes. The MCP con-
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Figure 4.6: AFP electronic readout layout.

sists of an array of small diameter special glass tubular channels bundled in

parallel and sliced to form thin discs with thickness of around 100 times the

diameter of the glass tubes. In the case of AFP, each channel has an internal

diameter around 10 µm that acts as an independent electron multiplier. A

schematic view and working principle of an MCP is shown in figure 4.7. A

photon incident on the window of the MCP is absorbed by the photocathode

deposited on the inner surface of the window. The electron resulting from this

interaction is accelerated by an electrical potential and hits the MCP surface,

usually within the mouth of one of the micro-channels constituting the MCP.

On average, more than one electron is emitted by the material of the micro-

channel wall. A strong electric field is maintained across the MCP, electrons

impinging on a MCP start a cascade of electrons in a micro-channel that prop-

agates through the channel, amplifying the original signal by several orders of

magnitude depending on the electric field strength and the geometry of the

micro-channel plate. The resulting pulse of electrons exits the opposite side of
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the plate where they are collected by the anode structure of the MCP-PMT.

Also, because the electron amplification occurs in a very spatially confined re-

gion, Transit Time Spread (TTS) is very small. This design gives significantly

better single photon time resolution than those of the standard PMT tubes

due to the shorter electron travel and reduced transit time jitter.

The MCP-PMT has the ability to work in a magnetic field without dra-

matic loss of gain. It is compact and, for the AFP application, is equipped

with a position sensitive multi-anode readout system with 4×4 anode pixels of

6× 6 mm2 size with a position resolution that depends on the anode structure

and size. The transit time jitter of the MCP-PMT can be as small as several

picoseconds, allowing the possibility of a time resolution of the same order as

that of the transit time jitter.

Despite the compact size of MCP-PMT, the amplification is about one

order of magnitude less than regular PMTs (about 105). The MCP-PMT used

in the AFP ToF detector is operated at lower gain about 5× 104, to maximize

its lifetime.

CFD and Preamplifier

Discriminators generate precise logic pulses in response to input signals ex-

ceeding a given threshold. There are two main types of discriminators, the

leading edge discriminator and the constant fraction discriminator. The sim-

pler leading edge discriminator produces an output pulse at the time when

the input pulse crosses a given threshold voltage. However, the timing of the

output pulse varies with amplitude of the input signal.

CFD’s are designed to produce accurate timing information from analog
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Figure 4.7: Schematic view of a MCP

signals of varying amplitudes but similar rise times. They accomplish this

by producing a timing signal at a constant fraction of the input amplitude,

usually chosen to be around 20%. The output from the CFD is sent to a High

Precision Time Digitizer board (HPTDC) to get digitized.

The typical MCP-PMT output signal peak value at this gain is about 5.4

mV. Whereas the input for CFD is in the range of 50− 1200 mV. Therefore,

we need a pre-amplifier to connect them.

High Performance Time Digitizer (HPTDC) board

The HPTDC is a High Performance multi-hit and multi-channel Time to Dig-

ital Converter (TDC) chip [75] used to processes the signals that are received

from CFD. The HPTDC ASIC allows precise time-tagging of up to 32 in-

put channels relative to an external clock reference of 40MHz. Based on an

integrated clock multiplying Phase Locked Loop (PLL), a 32-channel Delay
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Locked Loop (DLL) with integrated RC-delay lines provides time interpola-

tion down to 25 ps. The HPTDC board has Low-voltage differential signalling

(LVDS) inputs 13, internal buffers, multi-hit, multi-event and trigger matching

capabilities and it is sensitive to both leading and trailing edges of the pulses

that makes it capable of measuring pulse width.

The HPTDC architecture is divided into two main functional units: A

timing unit, a digital data processing and buffering, as shown in Fig:4.8.

Figure 4.8: The architecture of the HPTDC chip [75].

13LVDS digitally transmits information as the difference between the voltages on a pair
of wires. The receiver detects the voltage difference between the two signals and determine
the logic level.
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The timing unit performs digitization to time with high precision. It also

consists of three elements, shown in figure 4.9.

Figure 4.9: HPTDC timing unit [75].

A Phase Locked Loop (PLL) is used to reduce jitter on the incoming clock

signal and generates a 320 MHZ clock from the LHC clock. The HPTDC

ASIC uses the LHC 40.08 MHz bunch-crossing reference clock to synchronize

the input signals to the bunch crossings of the LHC. Without the PLL, the

resolution of TDC is limited by the frequency of the reference clock but the

PLL can perform clock multiplication - to increase time resolution - from a 40

MHz (input clock) to 160 MHz, and ultimately to 320 MHz.

A Delay Locked Loop (DLL) is used to perform time interpolation within
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the reference clock cycle to increase the precision of the time measurements.

The DLL consists of a chain of 32 delay elements. Therefore one clock period

can be divided into 32 clock phases. The best time resolution the TDC can

obtain on 32 taps is 97 ps 14. As the DLL is sensitive to jitter on its input

clock, any jitter on the clock will directly deteriorate the precision of the time

measurements. The PLL can remove jitter on the input clock to some extent.

In the next chapter, we will discuss a method of calibration to reduce the jitter

of the clock even more during the analysis of data.

Aside from DLL, another method of the resolution improvement is to use an

adjustable resistor capacitor (RC) delay line. An RC delay line interpolation

is obtained by sampling the signal with the DLL four times. In this way the

time resolution will be improved four times. Therefore, the time delay is equal

to Tdelay = Tclock/(32 ∗ 4) = 24.4 ps.

The second part of the HPTDC is digital data processing and buffering.

When a ToF hit signal reaches the HPTDC, a hit measurement is performed

by storing the state of the DLL, RC and the coarse counter in binary code,

when a hit is detected in a channel. The channel buffers enable multiple time

measurements to be made with short dead time of 5 ns. The complete time

measurement is written into the L1 buffer together with a channel identifier.

The L1 buffer is a 256-word circular buffer shared by a group of 8 channels.

Each HPTDC chip has 32 channels but in high resolution mode 4 channels are

combined, the HPTDC chip can support 8 high resolution inputs but pairs of

channels share one L1 buffer. To avoid the overflow of the L1 buffer at high

rates there are only 4 channels on each chip.

14Tclock/32 = 97 ps
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The L1 buffer output is passed to the trigger matching function which

perform a time match between a trigger time tag and the time measurements

from the L1 buffer. Then the hits that are matching the trigger are passed to

the 256 words deep read-out FIFO.

4.1.5 The AFP Trigger and Data Acquisition System

Figure 4.10: AFP Trigger setup

The AFP stations are located far from the ATLAS TDAQ system. In

order to use ATLAS TDAQ system for triggering and processing data, the

local trigger formation of AFP must be formed at the front end in 100 ns to

be within the ATLAS L1 acceptance window, which is 2.5 µs. In this section,

the AFP L1 trigger and its functionality are discussed.

Four FE-I4B readout modules are located at the 205 m station, and another

four modules plus the ToF HPTDC module are placed in the 217 m station.
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L1 triggering for the silicon Trackers is based on the HitOR from the FE-

I4B readout chips. Each FE-I4B chip gives a HitOr signal if at least one

pixel fires which is available about 50 ns after the charge injection. Using

the rad-hard HitBus ASIC [62], installed on a Local Trigger Board (LTB) in

each station allows selection of three out of four FEI4 modules to produce a

majority trigger, if at least two planes detect signal.

The ToF front-end electronics (HPTDC) can also be used for triggering

using the signals from the LQbar. The advantage of using the HPTDC board

as a trigger for L-1 triggering is that the dead time is as low as a few nanosec-

onds and it is possible to trigger all the events whereas in the Tracker system

some events will be missed due to the high dead-time of the trigger.

The AFP trigger delay must be minimized in order to be inside the L1

acceptance widow, which puts a premium on ultrafast cables and trigger logic.

The signals travel from AFP station to ATLAS USA 15 cavern 15 over 350 m

along special air-core cables with the transmission speed of 93% of the speed

of light.

In ATLAS USA 15 cavern, the signals are split between the ATLAS CTP

and the AFP local NIM logic which produces logical AND or OR and then

sends the resulting signal to the AFP Local Trigger Processor (LTP). The

CTP generates an L1A signal derived from the trigger inputs according to the

L1 trigger and fans it out to the Timing, Trigger, and Control (TTC).

The LTP provides the facility to run with the trigger and timing signals

from the CTP but it also selects the source of the AFP trigger either as ATLAS

15The USA 15 cavern in the ATLAS experiment is an underground halls that contains
most of the electronics for the experiment
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trigger, if the AFP participates in the ATLAS combined partition, or, as the

NIM local logic, when the AFP performs commissioning or calibration runs.

The TTC interface transmits the L1A signal and the trigger control com-

mands to the High-Speed Input-Output (HSIO)-II board to process and forms

the data request for the front-ends.

The output signal is then transmitted over a 200 m long optical MTP

fibre ribbon to the Opto-board. The Opto-board decodes and converts the

bitstream to 40 MHz clock and 40 Mbps data stream in LVDS format and

forwards them to the HitBus chip at the LTB via an 8m long twisted pair

cable.

On the return path, the stream of the front-end data is then deserialized,

decoded and stored in the HSIO. When the data from all front-ends arrive,

the HSIO forms a single data fragment and sends it off via the SFP output

line to the ATLAS Readout System.

4.1.6 Performance of the ToF system

To understand the performance of the AFP detector and its components in

response to high energy particles, beam test studies are essential. The first

unified AFP prototype, which combined tracking and timing prototype de-

tectors (excluding the Roman pot housing) was tested at the SPS with 120

GeV pions in November 2014, September 2015, and September 2016. The

AFP prototype was built of five tracking planes and a ToF system.The timing

system consisted of four rows of two LQbars. In addition to the ToF detec-

tor, two fast timing reference detectors consisting of quartz bars (3 × 3 mm2
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Figure 4.11: Time differences measured with the HPTDC-RCE readout. (Left plot)
shows the time differences between the two SiPM channels measured by the HPTDC.
(Right plot) shows the time differences between the LQbars and the SiPM reference
channel.

.

cross-section, 1 cm long in beam direction) coupled to silicon photomultipliers

(SiPM) that were placed behind the AFP prototype about 5.5 mm away from

the LQbar cut edge which gives partial overlap with the LQbar (only trains 1

and 2). These two channels are used as the time reference. Then signals of all

timing detectors were amplified, discriminated using CFD, and digitized with

the 12-channel HPTDC.

In order to determine the precision of the ToF detector we need to under-

stand the time resolutions of the SiPM reference devices and HPTDC. Figure

4.11 shows a Gaussian distribution with a total convoluted width of 25 ns is

fitted to the time difference between SiPM1 and SiPM2 including the HPTDC

contributions. Therefore, the resolution of a single SiPM+HPTDC device is

σSiPM +HPTDC = 25√
2

= 17.7 ps. A similar analysis has been performed

with the LeCroy SDA760ZI oscilloscope, with a time resolution substantially

better than the HPTDC, in order to measure the resolution of SiPM which
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is σSiPM = 11 ps and the resolution of the oscilloscope is ignored. There-

fore, the HPTDC resolution can be estimated from quadratic subtraction as

σHPTDC = 13.9 ps16, which is within the range of 12 to 17 ps measured in

the laboratory. In the next chapter, the test performed on HPTDC in the

laboratory of the University of Alberta will be shown.

The LQbar time resolutions were also measured from the time differences

between one bar and one of the SiPM references while the SiPM and the LQbar

channels were connected to different HPTDC chips. This measurement could

only be performed for the trains 1 and 2 (for LQbar 1A, 1B, 2A, 2B) which

had an overlap with the SiPMs so that the test beam particle passes through

both SiPM and LQbar. The time differences shown in figure 4.11 gives the

time resolutions of the full LQbar timing detectors including the PMT, CFD

and HPTDC contributions were measured between 38±6 ps and 46±5 ps per

LQbar. Also, in this test, the resolution of the average time of the two LQbars

in one train, for both A and B trains, is measured at VMCP−PMT = 190017 to

be 35±6 and 37±6 ps per train. As it is expected the train average (with two

LQbar in each train) improves the resolution with respect to the measurement

with one LQbar.

16Assuming both channels+SiPM combinations have the same resolution with no corre-
lation

17Voltage of the MCP-PMT can change the resolution of the ToF and its efficiency. The
highest resolution is achieved when VMCP−PMT = 1900 V, however the efficiency reduces
as the voltage goes down
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4.2 The HPTDC Testbed

This chapter provides the overview of the testbed that was built for the purpose

of calibrating and testing the precision of HPTDC channels. The main purpose

of this testbed was to measure the
√
n improvement in time resolutions when

combining multiple ToF measurements.

4.2.1 Introduction and Apparatus

When multiple measurements (N) of the same quantity are made by the iden-

tical detectors with resolution sigma then the overall resolution is σ√
N

. This is

provided that the channels are all independent and not affected by any coher-

ent noise effects. The AFP ToF detector has taken advantage of the “square

root” effect to improve the resolution of the detector by sampling each of the

four LQbars in the train through which the proton passed and then combin-

ing the multiple (4) measurements. In this chapter, we study this effect with

individual channels of a HPTDC board.

The HPTDC boards that are used in AFP electronic system were designed

and constructed at the University of Alberta. The time resolution of each of

the 8 channels is approximately 13 ps. The HPTDC chip designed by micro-

electronics group of CERN is the main element of the HPTDC board. It has a

total of 32 input channels. In high resolution mode, four channels are ganged

to together, giving 8 high resolution channels per chip. The time resolution of

the HPTDC chip in high resolution mode is 25 ns per high resolution chan-

nels (4 regular channels). Each board houses three HPTDC chips which are

controlled by a Field Programmable Gate Array (FPGA) which also control
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and handles the flow of data. The current versions of the HPTDC board was

used successfully at various beam tests, and for AFP data taking as part of

the ATLAS detector.

The radioactive environment on the tunnel floor, where the TDC boards

are installed, may degrade the timing performance over time. Therefore testing

was performed with a board at the University of Alberta already exposed to

1012 Neutron/cm2. Figure 4.12 shows the HPTDC that we used for the test.

No obvious degradation in performance was measured.

Figure 4.12: The University of Alberta HPTDC board.

The time measurements on each HPTDC chip comes from course counter
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(PLL), fine measurement (DLL) and four-stages RC delay are stored in 21-bit

data packets. The course counter which increments every 3.125 ns provides

the most significant 11 bits of the time measurement. The next 5 bits encode

the fine time measurement which is a 32 element delay locked loop(DLL) with

each delay being 97 ps. Finally, in high resolution mode, the state of the

course counter and fine measurement is captured four times with 24.4 ps delay

between each measurement and then interpolated by determining where the

DLL value changed to provide the final 2 bits of the time measurement.

The HPTDC chip uses a set of RC delay lines to produce these delays.

Capacitor loads can be switched into each delay line to adjust the delay. By

producing a histogram of the last 2 bits of the time measurement the delays

can be inferred and the delay lines adjusted with the bins that are too high

representing delays that are too long and bins that are too small representing

delays that are too short. Unfortunately, the HPTDC chip does not allow these

delays to be adjusted for each individual channel but must share a common

setting for all channels. As well there is not enough adjustability so that bins

cannot be fully adjusted to their ideal [75].

Moreover, the delay line used by the TDC chip is not linear as it ideally

should be for precise measurement. Some bins end up being larger than others

and this accumulates along the length of the delay line. This non-linearity can

contribute a timing error of up to ±6 bins (±150 ps). This non-linearity can

be measured by performing a code density test where a signal that is not

correlated to the TDC clock is connected to each hit input. An ideal TDC

with no nonlinearity would show a flat histogram with the equal number of hits

per bin. In reality, the time represented by each bin varies and therefore the

110



histogram varies too. Bins that are larger will show a higher number of hits in

the histogram while short bins will be lower. For a precise time measurement

all the bins need to be calibrated to the fine time bin size which is 24.4 ps in

the HPTDC, also known as the least significant bit (LSB).

The following subsections describe the testbed that is used for the calibra-

tion of each HPTDC channels and precision measurements.

Figure 4.13: A general view of the setup for testing HPTDC channels calibration
and precision.

Figure 4.13 shows a general view of the setup we used for all the tests

described in this section. We used aTektronix AWG7101 Arbitrary Waveform

Generator (AWG) to produce random hits for calibration of the TDC channels

and a double pulse for resolution measurement. Random hits are needed that

are not correlated with the reference clock. We set the sampling rate of the

AWG to the 9.23 Gsample/s to desynchronized the generated pulses from the

40 MHz HPTDC internal clock. In this way the pulses hit the HPTDC at
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random time, each HPTDC bin should receive about the same numbers of

hits.

Double signals are made from two simple signals with the sufficiently large

time interval for measuring the resolution of the HPTDC channels without

any inter-channel interference.

To trigger the AWG and RCE system simultaneously, a Digital De-

lay/Width Generator which set to output a 15 kHz square wave with the

width of 100 ns has been connected to both systems. Each signal is sent to a

CFD which is used as NIM to LVPECL convertor18. Then the signal passes

to the HPTDC through one of the twelve LVPECL inputs. The channels are

numbered from 0 to 11. In the HPTDC the time of the rising edge of each

input is captured continuously with bins of 24.4 ps and a 5 ns dead time. The

channels of the three HPTDC chips on the HPTDC board are numbered as:

TDC 1 includes Ch0 to3, Ch 4 to 7 are on TDC2 and Ch 8 to11 are on TDC3.

Finally, data from HPTDC board passes to the HSIO board which is used to

readout the HPTDC data via an on-board FPGA which decodes commands

and formats the HPTDC data output stream. The software for the HSIO is

a ROOT-based program which communicates with the module and sends the

data to the local laptop. Cosmic Graphical User Interface (GUI) is used as

the TDAQ. The tasks of the GUI is to monitor the system status, control the

number of events and produce root files from the data that sent from HSIO.

18Only in this setup
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4.2.2 Channel Calibration

The delay line used by the TDC chip is not linear as it ideally would be.

Some bins end up being larger than others and this accumulates along the

length of the delay line which leads to a big error in time measurement by

TDC. This non-linearity can be measured by performing a code density test

where a repetitive signal that is not correlated to the TDC clock passed to one

channel of TDC and generates a corresponding hit distribution in the bins. In

an ideal TDC with no non linearity, the distribution of hits would be equal in

all 210 = 1024 bins from the RC (2 bits), DLL (5 bits) and PLL (3 bits).

Figure 4.14: Shows the HPTDC bin offset: (bini = 210A
B − 1 +

∑
i bin(i−1)) where A

is the hit number in bini and B is the total number of hits

Figure 4.14 shows the offset error or INL (Integral nonlinearity), which

is the deviation between the ideal input value and the measured value, for

each bin in a specific channel in terms of LSB. The histogram test reveals

the accumulated nonlinearity error, including all PLL, DLL and RC related

errors. This non-linearity can contribute a timing error of up to ±6 bins (±150

ps). The same test can be performed for each channel of HPTDC, in order to
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calibrate each channel individually.

To compensate for the offset bins, we provided a text file from the histogram

in figure 4.14 with the list of offset LSB numbers for all 1024 bins for each

channel and subtract the offset value from the related bin number in the offline

analysis. Currently, the correction is only applied offline during analysis of the

data. However, because of the sensitivity of INL to the environmental changes,

future revisions may perform the calculation on board. Figure 4.15 shows the

distribution of the hits in one channel before and after the correction and it

improved the resolution of the channel from 38.8 ps to 15.97 ps.

Figure 4.15: HPTDC channel calibration. (Left plot) shows the time difference
between the arrival of two pluses in one channel without LSB correction. (Right
plot) same distribution after applying Applying the LSB correction.
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4.2.3 Resolution for Each HPTDC Channel

After applying the INL calibration in the analysis, the next step is to determine

HPTDC channel timing precision. In this test, two simple consecutive pulses

are produced via wave generator then the difference of the two leading edges

are measured on the same channel. To obtain the intrinsic TDC resolution

one can divide the width of this distribution by the square root of two. For

the purpose of this test the time interval between the two pulses is chosen to

be about 150 ns, all the other channels were inactive to avoid any crosstalk or

correlation between channels. Table 4.1 shows the resolution of each individual

HPTDC channels. The resolution of the channels varies between 12 ps to 17

ps.

Channel 0 1 2 3 8 9 10 11

Resolution
(ps)

14.26 13.76 14.85 16.84 12.72 13.63 12.79 13.69

Table 4.1: The performance of each channel of HPTDC
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4.2.4 Standard Error Of The Mean In Two-Times-

Measurement

In this subsection, we explain the test of the square root effect in the HPTDC

channels using the setup that described in the previous section. The pulses

that are used in this test are two simple double pulses that are sent to two

different channels on two different chips on HPTDC, simultaneously. On each

channel, the rising edge of each of the pulses in the double signal pulse are

measured by the HPTDC and the distribution of the difference between the

times measured by two channels are obtained in 100000 events. In this test,

we used channel 0 on the first chip along with one of the other channels on

the first chip and the third chip.

Channel Resolution
(ps)

Measured resolution
of the two channel
(ps)

Expected resolution
using ”Square Root
Effect”(ps)

”Square
Root
Effect”
error (%)

Correlation
between the two
channel

1 ch0 18.38 13.79 12.20 13.03% 12.54%

ch1 16.15

2 ch0 18.69 13.83 12.96 6.71% 7.02%

ch2 17.96

3 ch0 21.00 16.35 14.00 16.78% 17.42%

ch3 18.62

4 ch0 17.74 13.45 11.67 15.25% 16.11%

ch4 15.28

5 ch0 17.72 12.94 11.89 8.83% 9.03%

ch5 15.92

6 ch0 17.74 13.14 11.8 11.35% 11.38%

ch6 15.64

7 ch0 17.72 14.03 12.55 11.79% 12.61%

ch7 17.78

Table 4.2: The performance of two active channels of HPTDC, measuring the
arrival of the same waveforms.

Table 4.2 shows the resolution of the two active channels (σx and σy),
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standard deviation of the mean of the two active channel divided by square root

of 2, (σmean√
2

)19, average of the standard deviation of the two channel divided

by square root of two σExpected = Mean(σa+σb)√
2

, the square root effect error

(
σAverage−σExpected

σExpected
), and the correlation of the two channels (

∑
i

(xi−x̄)(yi−ȳ)
σxσy

).

Due to the possible correlation between the active channels, the resolution

of the individual channels drops by a few picosecond as more than one channel

is active at a time. Clearly, the precision of the measurement with two channels

(σmean√
2

) improves in comparison with the resolution of each individual channel.

However, this improvement is not as good as that predicted by the “square

root of two” effect. This is due to the presence of a slight correlation between

the channels.

4.2.5 Conclusion and Future Work

In this section, the calibration method and the timing resolution of an HPTDC

board that is used in ToF electronics are reported. The resolution of the in-

dividual channels varies between 12 to 17 ps. However, the resolution of each

channel in isolation degrades slightly when more than one channel on the

board is active at the same time. We also have tested the square root effect

by measuring the same quantity with two separate channels. The double mea-

surement of the same quantity makes the measurement more precise compared

to the individual channel precision when there are other active channels at the

time of measurement.

There are possible improvements that can be made to automate the calibra-

tion and improve the timing resolution of the HPTDC. Firstly, currently, the

19Average histogram (bini) = First channel histogram (bini)+Second channel histogram (bini)
2
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correction is applied offline during analysis of the data. Future revisions may

perform the calculation on board. Secondly, by identifying and removing the

sources of the correlation, that are believed to be mainly due to cross-talk on

the board. After crosstalk correlation effects are removed, by a HPTDC board

redesign, we should see a significant improvement of the timing resolution of

the HPTDC
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Chapter 5

Higgs production in exclusive

diffraction

5.1 Quantum Chromodynamics, Asymptotic

Freedom and The Running Coupling Con-

stant

QCD is a quantum field theory that describes the strong interaction which

is interpreted as the interaction between colour-charged quarks qf and vector

gluons Aµ. The QCD Lagrangian is comprised of three parts that describe the

gauge bosons (gluons), the fermions(quarks) and their masses and finally the

interaction part (between quarks and gluons) with coupling gs.

LQCD = Lgluon + Lquark + Linteraction, (5.1)
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where:

Lgluon = −1

4
FµνF

µν

Fµν = ∂µAν − ∂νAµ − igs[Aµ, Aν ],
(5.2)

and

Lquark =
∑
f

qf (iγ
µ∂µ −mqf )q̄f

Linteaction =
∑
f

qf (γµgsA
a
µt
a)q̄f ,

(5.3)

where ta represents the eight generators of the SU(3) algebra.

The Feynman rules for QCD [91] can be derived from equations 5.2 and

5.3. The resulting Feynman rules are summarized in Appendix A.

Quarks are fermions and a fundamental constituent of matter. They com-

bine to form composite particles called hadrons. The quarks which determine

the quantum numbers of hadrons are called constituent or valence quarks.

There are six types of quarks, known as flavours: up (u), down (d), charm (c),

strange (s), top (t) and bottom (b). Quarks carry a fractional electric charge

of value, either−1/3 or +2/3 times the elementary charge (where the electron

has -1 unit), depending on flavour. Up-type quarks, u, c and d have a charge

+2/3, while down-type quarks, d, s and b have charge −1/3.

Quarks and gluons, also known as partons also possess a property called

colour charge. The colour-charge is the analog of electric charge in Quan-

tum Electrodynamics(QED). However, unlike electric charge, which is a scalar

quantity, the colour-charge is a quantum vector charge, a concept similar to an-
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gular momentum in quantum mechanics. The quarks have three basic colour-

charge states, red, green, blue and also the corresponding anti-colours for

anti-quarks. Colour-charged particles (such as quarks and gluons) cannot be

directly observed. This phenomenon is called colour confinement and forces

partons to clump to gather and form colour-less particles called hadrons.

The strong forces between colour-charged quarks are mediated by gauge

particles called gluons. A simple way to understand this is that the gluons in

strong interactions play the role of photons in QED, which mediate electro-

magnetic interactions between charged currents. Just like photons, gluons are

massless, spin-1 particles with two polarization states.

In QED, the vacuum surrounding an electron is filled with virtual e+e−

pairs. The charge of the electron polarizes the vacuum as the virtual elec-

trons are repelled and the virtual positrons are attracted. In this way the

“bare” charge of the electron is screened. This phenomenon is called vacuum

polarization. Thus, the charge of the electron observed in the laboratory is

smaller than its “bare” charge. An example of vacuum polarization is the

electromagnetic interaction between two electrons, as shown in figure 5.1 (b)

and (c). The quantum vacuum polarization effectively reduces the strength of

the interaction.

The problem with the loop diagrams shown in figure 5.1 is that the mo-

mentum of the intermediate particle in the loop (or bubble) can take any value

according to Uncertainty Principle; as it is an internal particle. Computation

of diagram shown in figure 5.1(b) involves not only an extra power of cou-

pling constant, α, but also an integration over the possible values of the loop

momentum k over the momentum phase space
∫
dk4. This results in a con-
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(a)

+

(b)

+ . . .

(c)

Figure 5.1: (a) First order Feynman diagram of electron-positron pair production
via a photon mediator. Diagrams (b) and (c) show the same process in higher order
with one loop and more.

tribution proportional to
∫

dk2

k2 . We can introduce an arbitrary ultraviolet

(UV) cut-off20 λ2 to eliminate the ultraviolet divergence, however, this only

makes the divergence logarithmic. The bubble contribution becomes propor-

tional to
∫

dk2

k2 = ln( λ
2

Q2 ), where the other momentum scale, Q2, comes from the

virtuality of the space-like exchanged photon (the off-shellness of the photon

propagator), q2 = −Q2 .

There are many virtual diagrams which can contribute to electron-positron

scattering, an example is shown in 5.1. However, the first order diagram,

the one-loop and multiple successive one-loop along the propagator diagrams

contribute most to the cross-section. To achieve physically meaningful results

from the calculation of such diagrams, we need to compute the cross-section in

terms of an effective coupling αeff as a function of scale Q2. If we call the bare

value of the original coupling constant αbare, which is not directly observed,

20The effective coupling is not sensitive to the UV cut-off
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the relationship between αeff and αebare can be deduced as follows:

αeff (Q
2) = αbare(1 + αbareB(Q2) + (αbareB(Q2))2 + ...) =

αbare
1− αbareB(Q2)

,

(5.4)

where B(Q2) is the bubble contribution to the photon propagator. As we men-

tioned previously, the bubble contribution is proportional to ln( λ
2

Q2 ). There-

fore, as λ → ∞, the divergence problem appears. However, we can rewrite

everything in terms of the observed value αeff (Q
2 = µ2) at a known reference

scale µ2 which for QED can be taken as zero or small value like electron rest

mass. Therefore, we get:

1

αeff (Q2)
=

1

αeff (µ2)
− (B(Q2)−B(µ2)) (5.5)

The actual lowest order result for the QED running coupling is:

αeff (Q
2) =

αeff (µ
2)

1− βαeff (µ2)ln µ2

Q2

(5.6)

In QED, the β function takes the positive value of 1
3π

. Details of this

calculation can be found in [81]. Therefore, in QED, as Q2 increases αeff (Q
2)

decreases. This is similar to the vacuum polarization phenomena in which the

charge of electron appears smaller when probed from longer distance.

The same analogy can be applied to the colour-charge of a quark. Simi-

lar to QED, in QCD, the vacuum state is not an empty space. However, in

this case, the vacuum consists of the virtual quark-antiquark pairs and also

virtual gluon pairs, as indicated in figure 5.2. This occurs due to the gluon
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Figure 5.2: The two lowest order diagrams of QCD vacuum polarization. The
first diagram is shared by QED and QCD. The quark-anti loop interaction has a
screening effect because of the positive β-function. The second diagram arises from
the interaction between gluons in QCD and has the anti-screening effect, which
makes the coupling weaker at a short distance.

self-coupling interaction. In the vacuum state of QCD, quark-antiquark pairs

cause the screening effect due to the quark-loop positive β-function. On the

other hand, the gluon pairs have an anti-screening effect due to the gluon-loop

negative β-function. Once the negative contribution is larger than the posi-

tive contribution, the effective β-function is negative which means the vacuum

polarization causes an anti-screening effect. This anti-screening effect causes

the asymptotic freedom phenomenon which indicates that at short distances,

equivalently at large momentum transfer, the effective coupling constant of

strong interaction vanishes. In other words quarks do not interact at all be-

tween themselves at very short distance.

In QCD, the lowest order of β function is βQCD = −11Nc + 2Nf where

Nc = 3 represents the number of colour-charges and Nf is the number of the

light quark flavours at the scale Q2. Therefore, QCD is asymptotically free

(βQCD < 0) if there are 16 or fewer flavours of quarks.

After renormalization, the coupling constant of QCD can be shown to have

the following scale-dependence [91]:

αS(Q2) =
αS(µ2)

1 +
11Nc−2Nf

12π
αS(µ2)ln µ2

Q2

(5.7)
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In QCD, the parameter ΛQCD is called the QCD scale which is the energy

scale below which quarks, antiquarks, and gluons would no longer exist as

separate components of a plasma but as quark bound states, forming the

lighter hadrons. Because at scale Q = ΛQCD, αS(Q2) diverges to infinity,

using equation 5.7, ΛQCD can be written as:

ΛQCD = µ2exp(
−12π

(11Nc − 2Nf )αS(µ2)
) (5.8)

Now, we can rewrite the strong coupling constant at scale Q2 in terms of

QCD scale as follows:

αS(Q2) =
12π

(11Nc − 2Nf )ln
Λ2
QCD

Q2

(5.9)

The consequence of the asymptotic freedom of QCD is that the perturba-

tive approach behaves well at higher energy scales, Q2 � Λ2
QCD, due to the

effective coupling constant decreasing.

However, equation 5.9 is not valid when Q2 6 Λ2
QCD, since, at the energy

scale around Λ2
QCD the running coupling of the strong interaction becomes in-

finite. In chapter 6, we will talk more about higher orders of coupling constant

and the running coupling in the non-perturbative region.

5.2 Diffraction

Generally, in hadron-hadron scattering, interactions can be classified as either

elastic or inelastic by the characteristic signatures of the final states. The

elastic scattering occurs where the two scattered particles are the only particles
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involved in the interaction and no other final state particles were produced.

This means that the kinetic energy of the two initial particles is unaltered and

only the kinematics of the two outgoing protons is changed. About 24% of

the total amount of interactions at the LHC correspond to elastic events. The

inelastic interaction occurs where the kinetic energy of the initial particles is

not conserved, and the result is the creation of a multi-particle final state.

Furthermore, it is conventional to divide inelastic processes into diffrac-

tive and non-diffractive parts. In about 55% of all events colour exchanges

between the particles result in the multi-particle final states which are called

non-diffractive events. In contrast, diffractive processes involve the exchange

of one or two colour-less objects, the pomeron (colour-singlet), which allows

the interacting protons to remain intact. The pomeron carries the quantum

numbers of the vacuum.

Diffractive events at hadron colliders can be classified into the following cat-

egories: single, double, and central diffraction (also known as Double Pomeron

Exchange), and also higher order multi-pomeron processes, as shown in figure

5.3.

Single diffraction happens when one of the initial protons emerges as a final

state particle, but with an energy loss, and the other initial protons breaks

up into a multi-particle state travelling in roughly the same direction as the

initial particle in the forward region. It means that in the final state of single

diffraction which consists of one of the initial protons and a system of new

particles, a region empty of particles will be observed which is called rapidity

gap, as shown in figure 5.3. Single diffractive events correspond to about 14%

of all collisions at the LHC.

126



In double diffraction, depicted in figure 5.3, both initial particles break up

into multi-particle states, as the result of a colour-less exchange with vacuum

quantum numbers. The two systems are produced in two distinctive regions,

almost at the same direction as the initial particle in the forward region. It

means that in the final state of double diffractive process a space empty of

particle would appear between the remnant of the the two protons empty of

particle and that is called rapidity gap. This type of diffraction correspond to

10% of all events.

One may consider a process in which the protons do not break up and

the full pomeron energy goes into the hard state. Such a process is called

central exclusive diffractive (CED) production. This occur as the result of an

interaction of pomerons from each of the initial protons. This means that the

initial particles remain unchanged, except for a loss of energy and changed

kinematics. In addition, the two colliding pomerons produce a massive central

state. Each of these three systems, the two initial particles and the central

state, are separated distinctly from the others by two Rapidity Gaps. About

1% of all events are expected to be Central diffractive events. Finally, the

total cross-section of hadron-hadron collision can be written as the following

series:

σtot = σel + σinel

= σel + σnon−diff + σdiff

= σel + σnon−diff + σSD + σDD + σDPE

(5.10)

where SD and DD are single and double diffraction evens, respectively and
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Figure 5.3: Event topologies in η vs φ for elastic and diffractive p-p interactions.
Shaded areas represent particle production region and empty areas show rapidity
gap regions.

DPE corresponds to the Double Pomeron Exchange. Figure 5.3 shows the

Feynman diagram of all the different interactions in hadron-hadron collisions.

Diffractive events are signified by a large gap in the pseudo-rapidity distri-

bution of final state particles. A rapidity gap can be defined as the difference

between the rapidity of the diffractively scattered proton and that of the par-

ticle closest to it in pseudo-rapidity. The size an number of rapidity gaps

determine the type of diffractive process. From the experimental point of

view, rapidity gaps should ideally be defined by a total absence of particles in

a particular interval of pseudo-rapidity. In the next section we will talk about

probability that the rapidity gaps survive soft and semi hard rescattering ef-

fects.
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5.3 Survival Probability of Large Rapidity

Gap

The exchange of a gluon or a quark between two hadrons at high energies leads

to events in which, in addition to all the hard scattering may have occurred, the

entire rapidity space can be filled with soft particles. Such underlying events

will spoil the so-called rapidity gap which serves as a signature of diffractive

events.

The absence of QCD radiation and the soft interactions between the collid-

ing interaction that leads to particle production can guarantee the survival of

the diffractive event and consequently the survival of rapidity gaps. However,

all these effects results in a suppression of the cross-section as compared to

the hard scattering process alone. The survival probability of a rapidity gap

is affected by the Sudakov Form Factor [102], which is the probability not to

emit bremsstrahlung gluons. The Sudakov Form Factor will be discussed in

more details below.

The so-called Rapidity Gap Survival Probability (RGSP) encodes the prob-

ability that no additional particles are produced by accompanying soft proton-

proton interactions. The survival factor is not a simple multiplicative con-

stant, but rather depends quite sensitively on the outgoing proton transverse

momenta; loosely speaking, as the transverse momentum decreases, or equiv-

alently, as the colliding protons become more separated in impact parameter,

the additional secondary particle production will fill the gap.

The gap can be filled by the secondary rescattering caused by the rescatter-

ings of the two incoming protons or the protons with the intermediate partons.

129



These effects are described by the so-called Eikonal survival factor< S2
eik >

and enhanced survival factor < S2
enh >, respectively. The precise size of the

enhancement effect which is the suppression caused by the rescatterings of

the protons with the intermediate partons is uncertain. But due to the rela-

tively large impact parameter in the peripheral collision, it is only expected

to suppress the corresponding cross-section by a small factor, much weaker

suppression than in the case of the Eikonal survival factor [99]. Due to this

uncertainty, the enhancement effect is omitted entirely in this study.

To calculate the Eikonal survival factor, first, we must add the rescattering

amplitude Mres to the bare amplitude (with no rescattering) M as shown in

figure 5.4.

(a) (b)

+ +...+ ...

P

P

P

P

P

P

Figure 5.4: The effective amplitude, Meff , of a diffractive event is the summation
of its bare amplitude, M, shown in Feynman diagram in figure (a), with all the
higher order rescattering amplitudes Mres, shown in figure (b).

Therefore, the RGSP is given by:

〈
| S2 |

〉
=

∫ (
M(s, p1⊥, p2⊥) +Mres(s, p1⊥, p2⊥)

)2
d2p1⊥d

2p2⊥∫
M2(s, p1⊥, p2⊥)d2p1⊥d2p2⊥

(5.11)

where the integral is over the transverse momentum of the exchanged

pomerons, p1⊥ and p2⊥. In transverse momentum space, the amplitude in-

cluding rescattering corrections is calculated by integrating over the transverse
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momentum K⊥ carried round the pomeron loop, as follows:

Mres(s, p1⊥, p2⊥) =

∫
d2K⊥Melas(s,K

2
⊥)M(s, p1⊥ −K⊥, p2⊥ +K⊥) (5.12)

The elastic scattering amplitude, Mres, in transverse momentum space is

related to the opacity (Ω(b, s))(eg optical density), or equivalently the mean

number of rescatterings (< n(b, s) >) in impact parameter space (b) space as

explained in Appendix B,

Melas(s,K
2
⊥) = 2s

∫
e−iq.b(1− e−Ω(b,s))2d2b = 2is

∫
e−iq.b(1− e−Ω(b,s))2d2b

(5.13)

where q = p1⊥ − p2⊥ is the momentum transfer.

When one ignores any internal structure of the proton, a diffractive event

occurs when the spectator systems of the two protons do not interact in-

elastically. Therefore, the RGSP which determines the fraction of surviving

diffractive events, is given by the following equation derived from equation

5.13 and 5.11 in the impact parameter space (b):

〈
| S2 |

〉
=

∫
M2(s, b1, b2)e−Ω(s,b)d2b1d

2b2∫
M2(s, b1, b2)d2b1d2b2

b = b1 + b2

(5.14)

whereM(s, b) is the Fourier conjugate of the elastic amplitude,Melas(s,K
2
⊥),

in the impact parameter space and e−Ω(b, s) is called Eikonal function which

represents the probability that two hadrons pass through each other at impact

parameter b without any detectable additional inelastic interaction which will
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populate the gap.

Note that the above equation is only valid in the simplest “one-channel”

model, which ignores any internal structure of the proton.

It is assumed that bothM2(s, b1t, b2t) and eΩ(bt) are well approximated by

a Gaussian distribution in the b-space [78]. The distribution of Ω(b, s) is given

by the following equation:

Ω(b, s) = ν(s)e
− b2

R(s)2 (5.15)

The gaussian expressions of opacity allow us to express the physical observ-

ables of interest as functions of R(s) and ν(s) which are the constants of the

model used to fit the experimental distribution. The determination of these

variables enables us to produce a global fit to the total, elastic and diffractive

cross-sections.

After substituting Ω(b, s) in the equation 2.7 (appendix B), the total, elastic

and inelastic cross-sections can be expressed in terms of R(s) and ν(s) as

follows:

σtot ≈ 2πR2(s)ln[ν(s)] + C − e−ν(s)

σinel ≈ 2πR2(s)ln[2ν(s)] + C − Ei(−2ν(s))

σel ≈ 2πR2(s)ln[
ν(s)

2
] + C + e−2ν(s) − 2e−ν(s)

(5.16)

where E(x) is the integral exponential function E(x) =
∫ x
−∞

et

dt
, and C is the

Euler constant, C = 0.5773.

The values for R(s) and ν(s) can be extracted from the experimental data,

132



using the expressions for σtot and σel given in equation 5.16.

There are other models that describe the Eikonal function and total cross-

section which all result in different RGSPs. Gostman and et. al. [86] have

studied some of these models with the assumption that that the internal struc-

ture of the proton can be ignored. Their results are summarized in table 5.1,

where the Eikonal function, ν, R2, σtot and < |S|2 > are listed. These values

obtained from the fits to the p− p and p− p̄ cross-sections.

The first four models listed in table 5.1 assume that the projectile particles

have no substructure, and hence only take into account rescatterings between

the colliding protons. However, in the “GLM 2-Channel” [88] and “KKMR

2-Channel” [89] models, the inelastic diffractive intermediate rescatterings are

included as well. Therefore, equation 5.14 needs to be modified for these

models to include a projectile with substructure.

Inelastic diffraction is a consequence of the internal structure of the protons.

At high energies, each constituent of the proton can undergo scattering and

thus the outgoing superposition of states will be different from the incident

particle, so we will have inelastic, as well as elastic, diffraction.

Now let us consider simple two-channel diffraction. Besides the pure elastic

two-particle intermediate states shown in figure 5.5(a), there is the possibility

of proton excitation, p → N∗, shown in figure 5.5(b). The diffractive eigen-

states can be expressed as the superposition of its two channels, |p〉 and |N∗〉,

as follows:

|i〉 =
1√
2

(| |p〉+ |N∗〉) |j〉 =
1√
2

(| |p〉 − |N∗〉) (5.17)
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However, note that if both channel |p〉 and |N∗〉 of the incoming diffractive

state |i > were absorbed equally then the diffracted superposition would be

proportional to the incident one and again the inelastic diffraction would be

zero as if the projectile had no substructure. Details of this calculation can

be found in [89]. So, equation 5.14 is still valid for the two-channel diffraction

only Ω will be substitute by matrix Ωij .

(a)

p p

+

(b)

p N∗

Figure 5.5: The double pomeron exchange contribution to a single diffractive pro-
duction in the simple two-channel model.(a) Only elastic interaction can happen
(b) the intermediate interaction can be inelastic as long as the final interaction is
inelastic. Black parallel lines represent the pomeron exchange.

134



Finally the survival probability can be express as follows:

〈
| S2 |

〉
=

∑
i,j

∫
d2b|aPi|2|ajP ′ |2M2

i,je
−Ωi,j(s,b)∑

i,j

∫
d2b|aPi|2|ajP ′ |2M2

i,j

Average over diffractive estates i, j

Integral over phase space b

Probability of the proton P to be in diffractive estate i

Survival factor with respect
to the soft i− j interaction

Hard scattering amplitude

More details about Opacity in these two models, “KKMR” and “GLM

2-channel”, can be found in [88, 89].

Recently, PYTHIA was used to estimate gap survival probabilities for the

case of central exclusive Higgs production [90]. The models employs the Eikon-

alization 21 of the partonic cross-section in hadronic collisions can be combined

with any hard sub-process to describe the additional production of hadrons

due to secondary partonic scatterings. The gap survival probability estimated

using PYTHIA is 2.6% for the LHC at the centre of mass energy of 14 TeV.

This is remarkably close both to the values used in “KKMR” and to the “GLM

2-channel” values presented in table 5.1.

21Using the Eikonal function to describe the cross-section.
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Model Ω(s, b)
√
s

(TeV)
ν R2

(GeV−2
σtot
(mb)

〈|S|〉2
(%)

Minijet wij(b)σ
QCD
ij (s) 22 16 3.9 22.6 107 5.5

Lipatov 1 a1sa2

lnsa3
e
− b2

R2(s) 23 16 2.69 28.02 113 8.2

Lipatov 2 a1sa2

lnsa3
e
− b2

R2(s) 16 2.24 32.66 115 9.2

Dual par-
ton

σS
8πR2

S
e
− b2

R2
S + σH

8πR2
H
e
− b2

R2
S 16 2.23 32.67 109 5.3

GLM
2-channel

Ωi,j =
2νi,j
πR2

i,j
e
− 2b2

R2
i,j 14 - - 103.8 2.7

KKMR 2-
channel

[89] 14 - - - 2.4-
2.6

Table 5.1: Parameters and predictions of different models [88]

5.4 Proton Structure and Evolution Equation

5.4.1 Deep Inelastic Scattering

As mentioned earlier, the fact that asymptotic freedom is observed allows

processes with sufficiently large energy scale to be treated like perturbative

cases. In the framework of the parton model, perturbative calculations deal

directly with quarks and gluons rather than with the hadronic states observed

experimentally.

Unfortunately, the parton distribution function inside a hadron cannot be

explicitly calculated because it is a non-perturbative quantity in QCD. Hence,

the parton distribution function from a set of experiments at some momen-

tum transfer scale and its evolution to other momentum transfer scale calcu-

lated using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution

equations.

The partonic structure of a nucleon is best probed in scattering processes
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like Deep Inelastic Scattering (DIS). The DIS is a process in which a lepton

scatters off a nucleus by transferring large amounts of energy to the nucleon

via the exchange of a high energy boson with high virtuality. Figure 5.6(a)

shows a DIS process. The whole point of studying the DIS process is that

leptonic part and QED interactions, which are well understood, are used to

probe the hadronic part of the process.

The kinematics of the DIS can be explained by the two main kinematical

variables: Q2 the virtuality of the photon that is the negative square of the

4-momentum transferred to the hadron (Q2 = −q2); and, the Bjorken variable

x, given by the fraction of the proton momentum carried by the parton struck

by the virtual photon. These two variables are related via the centre-of-mass

energy of the process, s = Q2

x
.

(a)

e(k,E) e(k′, E′)

γ∗(q)

P

(b)

e(k,E) e(k′, E′)

γ∗(q)

P

xP

Figure 5.6: (a) Deep inelastic electron-proton scattering of an electron from a proton,
(b) Deep inelastic scattering of an electron from a quark constituent of the proton
in the parton model.

The DIS amplitude factors into the convolution of a perturbatively short-

distance contribution, known as leptonic tensor Lµν , and the non-perturbative

long-distance contribution, known as hadronic tensor Wµν . The amplitude of
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the DIS is given by the following equation:

M2 =
e2

Q4
2πmNLµνW µν (5.18)

The leptonic tensor is trivial to compute as the leptons are point-like

fermions and it can be expressed by the following equation:

Lµν = 4kµkν − 2qµkν − 2kµqν + gµνq2 (5.19)

where k and q are the 4-momentum of the electron beam and the transferred

photon, respectively, and gµν is the metric tensor.

Unlike the leptonic tensor, the partonic tensor W µν cannot be computed di-

rectly from QCD because of its non-perturbative character. The most general

form of the hadronic tensor W µν is constructed out of gµν and independent

momentum of proton p and photon q: (see [100], chap. 8 and 9 for more

details.)

W µν = W1(q2, p.q)[−gµν +
qµqν

q2
] +

W2(q2, p.q)

m2
N

[pµ − p.q

q2
qµ][pν − p.q

q2
qν ]

(5.20)

This decomposition of W µν introduces the two independent arbitrary struc-

ture functions W1 and W2 which have the same dimension.

We use the Mandelstam variables which are defined as s = (p + k)2, u =

(p−k′)2, t = (k−k′)2, and the Bjorken variable x, to simplify the cross-section

of electron-hadron interaction. Here, k, k′ and p represent the 4-momenta of

the incident electron, the scattered electron and the proton, as shown in figure
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5.6. After algebraic manipulation, the result of the simplified cross-section can

be written as flowing:

( dσ
dtdu

)
eP→eX =

4πα2

t2s2

1

s+ u
[(s2 + u2)xF1 + usF2] (5.21)

where the form factors W1(ν,Q2) and W2(ν,Q2) are expressed through the

unpolarized structure functions F1 = MpW1 and F2 = νW2 with ν = E − E ′.

Mp represents the mass of proton, E and E ′ represent the energy of the incident

electron and the scattered electron, respectively.

The simplest structure that can be considered for a proton is 3 point-like

quarks. At high energies, the partons can be thought of as independent point-

like particles (no correlation with each other) which are moving in the direction

of the hadron carrying a longitudinal fraction of its momentum x. Therefore,

the cross-sections can be expressed through the sum of all partonic contri-

butions to the hadron. The cross-section of a partonic process can then be

easily calculated using perturbative theory (Feynman diagrams). This model

is shown in the DIS process in figure 5.7.

To describe the hadronic cross-section a term called Parton Distribution

Functions (PDFs) is introduced, reflecting the probability of finding a quark

of type q with momentum fraction x of the proton in the proton. Using the

factorization method the inelastic electron-proton cross-section is explained

by the convolution of elastic electron-parton scattering and the PDF, fq(x),

integrated over all possible x and summed over all possible q’s, as follows:

( dσ
dtdu

)
eP→eX =

∑
q

∫
x

dxfq(x)
( dσ
dtdu

)
eP→eq (5.22)
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Thus, if we substitute the well-known cross-section of elastic scattering of

eP → eq in the above equation then the hadronic cross-section of the DIS can

be expressed as:

( dσ
dtdu

)
eP→eX =

∑
q

∫
x

dxfq(x)
2πα2e2

q

t2s2
[(s+ u)2 − 2su]δ(t+ x(s+ u)) (5.23)

Comparing the two equations 5.23 and 5.21 yields the following relation

between structure functions and the PDF.

2xF1(x) = F2(x) =
∑
q

xe2
qfq(x) (5.24)

fq(x) is the probability that the struck parton q carries the fraction x

of proton’s momentum p. Therefore, the dimensionless structure func-

tion of the proton, with momentum fraction x and charge eq is F2(x′) =∑
q

∫
dxe2

qxfq(x)δ(x−x′) which is independent of the virtuality of the photon,

Q2.

When one abandons the concept of point-like partons and adopts the field

theory concept of “dressed” particles 24, the first step is to consider the NLO

correction to equation 5.22. Or, in more physical terms, consider that the

quarks participating in the interactions can branch and emit gluons.

The probability of one gluon emission with the transverse momentum be-

24In QFT, the concept of bare field or point-like particle is replaced with the “dressed”
particle where all particles are surrounded by a cloud of fermion-antifermion pairs and gauge
bosons.
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(a)

γ∗

P

(b)

γ∗

P

xP

=
∑

q

∫
dxe2

q

Figure 5.7: (a) The hadronic part of the DIS of an electron from a proton. γ∗ is the
emitted virtual photon that interacts with the other beam proton. (b) Under the
assumption that proton consist of uncorrelated point-like quarks, the hadronic cross-
section of the DIS can can be expressed through the sum of all partonic contribution
of the hadron. In this case, the partonic contribution is the DIS of an electron from
a quark constitutent of the proton.

tween k2
⊥ and k2

⊥ + dk2
⊥ is given by:

αs
2π

dk2
⊥

k2
⊥
Pab(z)dz (5.25)

Pab(z) is the probability that parton a radiates parton b with the fraction z

of the original momentum carried by the particle and is called the DGLAP

splitting function [115]. The leading order splitting functions and associated

diagrams are shown in figure 5.8 for all combinations of quark and gluon

emissions [91].

Therefore, when we don’t naively assume the parton constituent of the pro-

ton are point-like particles, the hadronic cross-section of γ∗q → qg in equation

5.22 could be rewritten in the following format:

( dσ
dtdu

)
γ∗q→qg ∝

∫ Q2

0

αs
π

dk2
⊥

k2
⊥
Pab(x)

( dσ
dtdu

)
γ∗q→qf(x)dx (5.26)
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here the cross-section of γ∗q → q is convoluted with the probability of a gluon

emission off the quark.

Because the integral
dk2
⊥

k2
⊥

in equation 5.26 diverges at zero, we need to

add an arbitrary lower limit, µ, on the transverse momentum of the gluon to

regularize the collinear divergence. Then, the PDF function in equation 5.27

can be written as:

2xF1(x,Q2) = F2(x,Q2) =
∑
q

xe2
qαs

2π

∫ 1

x

dy

y
fq(y, µ

2)[Pqq(
x

y
)ln

Q2

µ2
] (5.27)

The details of this calculation can be seen in [101].

From the above equation, it is obvious that the PDF function (fq(y, µ
2))

depends on renormalization scale µ2 (lower boundary on the transverse mo-

mentum of the quark, q2 ). However, the structure function (F2(x,Q2)) is a

physical term so it cannot depend on an arbitrarily chosen scales such as µ

scale. Thus, ∂F2(x,Q2)
∂ln(µ2)

= 0 which leads to the DGLAP evolution equation that

describes the variation of PDF (fq(y, µ
2)) with µ2 as follows:

∂fq(x, µ
2)

∂lnµ2
=
αs
2π

∫ 1

x

dy

y
fq(y, µ

2)Pqq(
x

y
) (5.28)

5.4.2 Generalized Parton Distribution Function

In the previous section we showed that the inclusive cross-section of the DIS

process can be written in a factorized form as the convolution of PDFs, which

only depend on the momentum fraction x of the struck parton, the scale µ2,

and the parton level cross-section as a function of the Mandelstam variables.

142



Pqq(z) = CF [ 1+z2

(1−z)+ + 3δ(1− z)]
z

1− z

Pqg(z) = TF (z2 + (1− z)2)

z

1− z

Pgq(z) = CF [ 1+(1−z)2
z ]

z

1− z

Pgg(z) = CA[ 1−z
z) + z(1− z) + z

(1−z)+ ] + δ(1− z) 11CA−4TFnf

6

z

1− z

Figure 5.8: Leading order DGLAP splitting functions. CF = 4
3 , CA = 3, and TF = 1

2
are the QCD color factors

However, for less inclusive processes a treatment in terms of conventional

PDFs cannot necessarily be directly applied. One interesting example of this is

the class of elastic hadronic processes, such as Central Exclusive Production of

Higgs boson p+p→ p+H+p, or Deeply Virtual Compton Scattering (DVCS).

These type of processes are described in terms of so-called Generalized Parton

Distribution Functions (GPDs), Hq,g(x, ξ, µ
2, t) 25. In this process, we cannot

use the naive point-like incoherent parton model to describe hadrons. Instead,

GPDs express the coherence between the state of initial parton which carries a

fraction x+ ξ of the nucleon momentum and the state of final parton carrying

a fraction x − ξ of the nucleon momentum, at the given values of t and Q2.

The Bjorken variable x and the skewness parameter ξ, where ξ =
xB

2−xB
in

the Bjorken limit, describe the momentum fractions carried by the emitted

and absorbed partons and t = (p1 − p2)2 is the momentum transfer between

the two hadrons.

25t is the transverse momentum
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However, under the condition that Q2 >> µ2 and Q2 >> t, factorization

in the DVCS and the DIS are quite similar, with the exception that the cross-

section factorization is written in terms of the corresponding skewed26 GPDs

instead of conventional PDFs. Also, in the limit t→ 0 and ξ → 0 the skewed

distributions will reduce to the conventional PDFs:

Hq(x, 0, 0) = q(x)

Hq(−x, 0, 0) = −q(x)

Hg(x, 0, 0) = xg(x)

(5.29)

Due to the low cross-section of elastic hadronic processes, direct determi-

nation of the skewed parton distributions function with a high accuracy is not

possible. Moreover, GPDs depend on four variables x, ξ, t and µ2 which make

the situation more complicated. Shuvaev and et al. [113] have demonstrated

how, in small ξ << 1 region (for t→ 0), the skewed GPDs are determined in

terms of the small x behaviour of the conventional PDF which is known from

experiment as demonstrated by Shuvaev et al.[113].

The skewed distribution function depends on the momentum transfer t be-

tween the two hadrons. However, in the limit that |t| << µ2, the t dependance

of the skewed distribution function is typically assumed to factorize from the

longitudinal momentum dependence as a form factor F (t). We will assume

this to be the case in what follows, omitting the t dependence for simplicity.

Thus, H(x, ξ, µ2; t) = H(x, ξ, µ2)F (t).

Therefore, we can write the skewed distribution function as a convolution

26ξ 6= 0
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of the conventional PDFs with the hard scattering kernels kq. The Kernel

function is the modified DGLAP splitting function that specifies just how

much total angular momentum is carried by partons in the hadron. At scale

µ2, the skewed distribution function can be written as:

H(x, ξ) =

∫ 1

−1

dx′kq(x
′, ξ)f(x′). (5.30)

The splitting kernel kq(x, ξ, x
′) is calculated in [119] given by the following

equation:

kq(x, ξ, x
′) = − 1

π|x′|
Im(

∫ 1

0

ds(1− y(s)x′)−
3
2 ) (5.31)

where y(s) =
4s(1−s)

x+ξ(1−2s)
and the imaginary part is defined as Im(F (x)) =

1
2i

[F (x + iδ(x)) + F (x + iδ(x))]. When ξ = 0, kq(x, ξ, x
′) = δ(x − x′) and

H(x, ξ) = q(x), as expected.

By substituting the Kernl function in equation 5.30, the equation for GPDs

can be expressed as follows:

Hq(x, ξ) =

∫ 1

−1

dx′
[ 2

π
Im

∫ 1

0

ds

y(s)
√

(1− y(s)x′)

]dq(x′)
d|x′| (5.32)

The formula for the gluon is slightly different to that for the quarks. The

additional x in the gluon reveals itself as an extra factor of x + ξ(1 − 2s) in

the kernel equation.

Hg(x, ξ) =

∫ 1

−1

dx′
[ 2

π
Im

∫ 1

0

ds(x+ ξ(1− 2s)

y(s)
√

(1− y(s)x′)

]dg(x′)

d|x′| (5.33)
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In this study, we will consider the GPDs at low-x processes and the skewed

regime (for example x′ + ξ = x and x′ − ξ = 0 ). In this case, the ratio

of the skewed distribution Hi(
x
2
, x

2
) to the diagonal distribution Hi(x, 0) at

momentum fraction x is given by:

Ki =
Hi(

x
2
, x

2
)

Hi(x, 0)
=

22λ+3Γ(λ+ 5/2)√
πΓ(λ+ 3 + p)

(5.34)

5.5 Central Exclusive Higgs Diffractive

(CED) Process

(a) (b) (c)

(d) (e) (f)

p̄ PDF

p PDF

p̄ PDF

p

χc

PDF

p̄

p

J/ψ

PDF

p

p

H

p PDF

p

H

PDF

γ∗

p

H

PDF

Figure 5.9: The dominant Feynman diagrams for some relavant example CED pro-
cesses. First row: (a) pp̄ → p + γγ(l+l−) + p̄, (b) pp̄ → p + χc + p̄, (c) Elastic
photo-production of J/ψ, pp̄ → p + J/ψ + p̄, (d) pp → p + H + p, (e) Double
Pomeron exchange(DPE), pp→ p+H + p, (f) γp→ γ +H + p.
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The CED is defined as p + p → p ⊕ X ⊕ p with no radiation emitted

between the intact outgoing beam of hadrons and the central system X which

are shown by ⊕ signs and used to denote the presence of large rapidity gaps.

If a large region of rapidity is devoid of particles, only photon and pomeron

exchanges are significant as colour-charge exchanges between the two protons

cause QCD that act to fill the rapidity gaps.

In the past decade, interest in studies of CED processes in high energy

proton-(anti)proton collisions has increased, both theoretically and experimen-

tally. There are some important advantages to study these processes: 1- they

provide an especially clean environment in which to probe some processes that

are difficult to probe in regular QCD interaction as a result of significant back-

ground. 2 - The new forward proton tagging detectors at the ATLAS and CMS

can be utilized for investigation of crucial identification issues such as the spin

and CP parity and the bb coupling of the newly discovered particles. 3 - They

could be used for precise measurement of Higgs boson mass and the studies of

heavier Higgs-like particles expected in beyond standard model theories.

It is also worth mentioning that in the CED process, the projection of the

total angular momentum of the outgoing protons is Jz = 0 along the beam

axis. Also due to the conservation of parity, the CED process strongly favours

Jz = 0+ quantum numbers for the centrally produced particle state [99].

The dominant Feynman diagrams for some of the CED processes are shown

in figure 5.9. The first row of diagrams are the CED processes in pp̄ collisions

studied by the CDF II detector and the second row shows the CED processes

by which Higgs bosons can be produced at the LHC. The pp̄ → p + γγ + p̄

with the primary process PP→ γγ through a quark loop is shown in figure 5.9
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(a). The SM cross-section for this CED process is predicted by Durham group

to be σ ≈ 1.42 pb [93] which is compatible within errors of the experimental

value taken in Run-2 of CDF 2.48+0.40
−0.35(stat)+0.40

−0.51(syst) [92]. The process pp̄→

p + χc + p̄, with the primary process PP → χc is shown in figure 5.9 (b).

The predicted cross-section by Durham group is dσ
dy
|t=0 = 130 nb [95] and it

is in good agreement with the Tevatron result at centre of mass energy of

√
s = 2 TeV [96]. Elastic photo-production of J/ψ, pp̄ → p + J/ψ + p̄ with

the primary process γP → J/ψ through a quark loop, is shown in figure 5.9

(c) . The predicted differential cross-section by Durham group is dσ
dy
|t=0 = 3.0

nb [94] and it is measured experimentally, at the CDF at
√
s = 2 TeV, to be

dσ
dy
|t=0 = 3.6 nb [95]. Process pp→ p+H+p with the primary process γγ → H

through a quark loop is shown in figure 5.9 (d). The predicted cross-section

at the LHC (
√
s = 14 TeV) is calculated to be 0.18 fb [108]. Double Pomeron

exchange (DPE), pp→ p+H+p. with the primary process PP→ H through

gluon fusion is shown in figure 5.9 (e). The Durham Group’s prediction for this

cross-section at the LHC (
√
s = 14 TeV) is 3 fb 27 [97]. The γp→ γ +H + p

reaction with the primary process PP → H through gluon fusion is shown

in figure 5.9 (f). We have evaluated the cross-section of this process in this

thesis.

We have used the Durham formalism [98] to calculate the cross-section of

Higgs boson production via Central Exclusive Diffractive “Photo-production”

in Ultra-Peripheral Collision(CEDP) and determined the numerical value of

the cross-section using the Fortran code (please see chapter 7 for the analytical

process and chapter 8 for the blueprint and more details on the Fortran code).

27This value is highly dependant on the PDF set choice.
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We also have calculated the numerical value of the cross-section of DPE using

the same set of code for confirmation.
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Chapter 6

“Photoproduction” of Higgs

Boson

6.1 Introduction

After the discovery of a scalar state, that looks increasingly like the Standard

Model Higgs boson, in 2012 at the LHC, a new era of precision measurement

of Higgs boson has begun. In order to make precise measurements of the

Higgs sector, it is important to study as many models of Higgs production as

possible. Recently there has been growing interest in the study of the Higgs

production via CED processes p+p→ p+⊕H⊕p which raises the possibility

to make an enhanced measurement of the properties of the Higgs boson in a

way that is challenging to do using the LHC general purpose detectors alone.

For example, the invariant mass of the Higgs boson may be measured directly,

and the spin and CP properties of the Higgs boson may be explored via this

process [103, 104, 105, 106, 98].
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The Durham group [98], E. Papageorgiu [107] and David D’Enteria et

al.[108], have explored the possibility of studying the Standard Model Higgs

boson in central exclusive diffractive processes, via double pomeron exchange

and gamma-gamma fusion, in high-energy proton-proton collisions and in

proton-A collisions at the LHC. The basic CED processes, p+p→ p+⊕H⊕p

and γγ → γ ⊕H ⊕ γ, as shown in figure 5.9 (e) and (f). However, a related

channel, the photo-production of Higgs boson in CED p + γ∗ → p ⊕H ⊕ γ∗,

figure 5.9 (g), has not received careful attention, despite the fact that its cross-

section is comparable with the two other processes previously mentioned. In

this work, we evaluate the Higgs production from γ −P collisions also known

as Central Exclusive Diffractive “Photo-production” in Ultra-Peripheral Colli-

sion (CEDP in UPCs) and we will discuss the benefits of studying this channel

as well as the sources of uncertainties in the cross-section.

According to Fermi [111], the field of a fast charged particle can be in-

terpreted as a flux of photons. In the Central Exclusive Diffractive “Photo-

production” of Higgs boson in Ultra-Peripheral Collisions (CEDP in UPC),

the photon flux generated by one of the protons/ions interact an impinging

proton at large impact parameter, b, via a diffractive photo-production pro-

cess. Diffractive photo-production in proton-proton collisions refers to a class

of processes where a photon (quasi-real photon with low virtuality) emitted

from one of the protons, interacts with a QCD colour-singlet gluon state called

pomeron, extracted from the other proton. The Feynman diagram for this pro-

cess is shown in figure 5.9 (g). This process can be factorized in three steps.

First, the quasi-real photon with virtuality of Q2 fluctuates into a qq̄ pair.

Then, this pair interacts with a pomeron emitted from the other proton. Fi-
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nally, the Higgs boson is produced via gluon fusion. The additional t-channel

gluon, called the screening gluon, screens the colour of the annihilating gluons.

For the screening gluon that is not coupled to the Higgs boson, it has to have

small virtuality k2
T �M2

H in order to enhance the probability of screening.

In this processes, due to the large impact parameter, hadronic interactions

are not possible. Therefore, the final state of the events will be characterized

by a Large Rapidity Gap (LRG). The LRG leads to a much more cleaner final

state with only the Higgs boson in the central detector and much more lower

background than in hadronic interactions. After the collision, both incoming

protons scatter at very low angles with respect to the beam making it possible

to tag them with the AFP detector in the LHC tunnel and reconstruct the

mass of Higgs boson accurately based on the energy loss of the protons.

Despite all the advantages, the CED processes have over hadronic inter-

actions, their cross-section is strongly suppressed as only a small percentage

of proton-proton interactions are diffractive. Moreover, we must also consider

the suppression due to the Rapidity Gap Survival Probability (RGSP). On the

other hand, in this specific process we are studying here, if one of the protons

is substituted by a heavy ion, the cross-section will be enhanced as a result of

“Z2 effect” arising from the charge of heavy ion (Z).

The goal here is to calculate and study the cross-section of Higgs boson

production via CEDP in UPC collisions. In section 2, the amplitude and

cross-section of the p + γ∗ → p ⊕ H ⊕ γ∗ process is evaluated. The parton

distribution function that is adopted in this calculation is studied in section

3. Then, in section 4, we describe the secondary scattering suppression of the

the cross-section. Lastly, in section 5, we consider the “Z2” enhancement due
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to the collision of a proton with the heavy ion.

6.2 From Parton-Level to Hadron-Level Am-

plitude

To calculate the CEDP cross-section, we use the formalism of the general CED

processes in high-energy proton-proton collisions studied by Durham group [98]

and the Weizsacker-Williams approximation [109, 110] to determine the flux

of equivalent photon which is produced in the UPC.

γ∗

l

k̄

k̄

r̄

p2

H

Figure 6.1: Utilization of Cutkosky cutting rules to calculate the imaginary part of
the CEDP amplitude. The dotted line indicates the cut which separates the left
and right side of the process.

We begin by calculating the imaginary part of the amplitude for the simpler

parton-level process, using the Born approximation. Because of the two loops

in the Feynman diagram of the process, there would be singularities in the

cross-section. To eliminate these singularities, we apply Optical theorem and

Cutkosky cutting rules [120, 91], where the cut is made along the dotted line,

as shown in figure6.1.
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The Optical theorem derived in appendix C leads to the following equation

for p+ γ∗ → p⊕H ⊕ γ∗ process.

Im(M(γ∗p→ γpH)) = −1

2

∑
m

∫
dΠ3M(γ∗p→ m)M(m→ γ∗pH) (6.1)

Where M(γ∗p → m) and M(m → γ∗pH) are the amplitude of the left and

the right side of the cutting line, respectively, and the summation is over all

intermediate states.
∫
dΠ3 is the differential phase space of the intermediate

propagators which can be simplified to the following equation using simple

algebra. More details can be found in appendix D.

∫
dΠ3 =

1

2π5

1

4W 2

∫
dαld

2k̄d2l̄
1

αl(1− αl)
(6.2)

We can now apply the Sudakov parametrization of momentum for the

exchanged gluon (k), exchanged quark in the quark pair loop (l), and the

emitted photon (q) as follows:

k = αkp2 + βkp1 + k⊥ (6.3)

l = αlp2 + βlp1 + l⊥ (6.4)

q = p2 − xp1 (6.5)

where 0 < αk/l < 1 and 0 < βk/l < 1 are the sudakov parameteres, k⊥

and l⊥ are the transverse momentum of the exchanged gluon and quark. p1

is the incoming proton four-momentum, p2 is the four-momentum of a real
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photon, x = Q2

W 2 is the the Bjorken scale factor and W 2 = 2p1 · q is the centre

of mass energy of the photon-proton system. Because, a peripheral process

is characterized by small values of longitudinal Sudakov parameters αk/l and

βk/l (αk/l << βk/l << 1) and the transverse momenta of the order of electron

mass, we neglected terms on the order of k2/W 2. Taking this into account,

one obtains the multiplication of the unpolarized amplitude of the left and

right side as the following:

M1M2 = A
1

r2k4

( Tr(Ξ1)

(l2 −m2
q)

2
− Tr(Ξ2)

(l2 −mq2)((q − l − k)2 −mq2)

)
A = −αα

2
s

4π2

M2
Hαs

6πv

∑
q

e2
q

N2
c − 1

4N2
c

Ξ1 = Σενε
∗
σ[γν(/l +mq)/p(/l + /k)/p(/l +mq)γ

σ(/q − /l)]

Ξ2 = Σενε
∗
σ[γν(/l +mq)/p(/l + /k)γσ(/q − /l − /k +mq)/p(/q − /l)]

(6.6)

Note that the calculation is further simplified by making use of the Eikonal

approximation for those vertices which couple the gluons to the external

quarks. More details of this calculation can be find in Appendix B.

The amplitude in equation 6.6 can be further simplified by using the stan-

dard formula to sum over all the spin states of photons Σενε
∗
σ = −gνσ +
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Parton level

αsCF
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Figure 6.2: Converting parton-level amplitude into the hadron-level amplitude by
replacing a factor of αsCF /π in the amplitude by f(x, x′, k̄2, µ2, t).

4 Q2

W 4p1νp1σ and evaluating the traces. The entire amplitude then becomes:

−iM =
4

3π2

C2
F

N2
c − 1

αW 2M2
H

v

∫
d2k̄

∫ 1

0

dαl

∫ 1

0

dτα3
s(k̄

2)
∑
q

(F1 + F2)

F1 =
e2
q

k̄4

[α2
l + (1− αl)2][τ 2 + (1− τ 2)]

αl(1− αl)Q2 + τ(1− τ)k̄2 +m2
q

F2 =
e2
qm

2
q

k̄6(αl(1− αl)Q2 + τ(1− τ)k̄2 +m2
q)

(
4(1− α1 + α2

l ) +
2e2

q k̄
2τ(1− τ)(6α2

l − 6αl + 1)

αl(1− αl)Q2 +m2
q

)
(6.7)

where the colour factors CF = 4
3
, Nc = 3 is the number of colour charges, α

is the QED fine structure constant, αs is the strong running coupling, W is

the CM energy of γ and p, MH is the mass of Higgs boson, ν is, mq is the

mass of quark, eq is the charge of quark,
∑

q is the summation over all quarks

properties (mass and charge) k̄2 is the absolute value of transverse momentum

of exchanged gluon, and Q2 is the virtuality of emitting photon. More details
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of this calculation can be seen in Appendix E and F.

To convert parton-level amplitude into the hadron-level amplitude, we must

introduce the skewed PDF, in which the momentum of the outgoing proton

is not the same as that of the incoming proton, to the amplitude. Following

the recipe of general central exclusive production [82], we replaced αsCF/π

(probability of finding a gluons in the proton in the simple three valence quark

model) by f(x, x′, k̄2, µ2, t) (probability of finding a gluons in the proton in the

more realistic model) which, derived from the DGLAP evolution equation for

evolution of an initial quark distribution. This process is shown in figure 6.2.

Thus, one obtains the hadron level amplitude as:

−iM =
4

3π

CF
N2
c − 1

KαW 2M2
H

v

∫
d2k̄

∫ 1

0

dαl

∫ 1

0

dτα2
s(k̄

2)f(x, x′, k̄2, µ2, t)
∑
q

(F1 + F2)

(6.8)

where f(x, x′, k̄2, µ2, t) is the unintegrated skewed gluon density 28 of the pro-

ton and corresponds to the x′ << x limit. Here, µ = (MH

2
)2, x =

√
M2

H/s and

x′ =
√
k2
T/s are the momentum fractions carried by the screening and fusing

gluons, respectively.

6.3 PDF

As mentioned in chapter 5, in order to define the skewed PDF, a multiplica-

tive factor K =
f(x,x′,k̄2,µ2)
∂xg(x,k̄2)

∂ ln k̄2

, the ratio of the skewed x′ << x uninte-

grated gluon distribution to the integrated conventional density is introduced.

28At low-x, the gluon contributes the most.
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Therefore, the skewed PDF is evaluated by multiplying the coefficient k by

the conventional PDF. For the production of a 125 GeV Higgs boson at the

LHC, K ∼ 1.2 [113, 80]. Also, in the limit that the beam protons scatter at

small angles, one can factorize the transverse part of the PDF in form of a

Gaussian function, as exp(−B
2
p2
t ), which describes the reduction of the am-

plitude at higher momentum transfer between the colliding protons at slope

B where slope B corresponds to the slope of the electromagnetic proton form

factor. In this study we have adopted B = 4 GeV2 which is the slope that is

well-measured in diffractive J/ψ electro-production.

The factorization of the PDF function can be written as follows:

f(x, x′, k̄2, µ2; t) = f(x, x′, k̄2, µ2)e(−B
2
p2) (6.9)

And eventually, by substituting the skewed PDF with the conventional

PDF times factor k in the above equation we have:

f(x, x′, k̄2, µ2, t) = 1.2e(−B
2
p2
t )
∂xg(x, k̄2)

∂ ln k̄2
(6.10)

In this work, we used universal integrated gluon distribution functions

provided by MSTW08NLO distributions [126] using the fit in Next-to-Leading

Order (NLO) in the strong coupling αs. Further details are given in section

6.6.
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6.4 Secondary Particle Radiation Suppression

In the infrared region of k̄2, in equation 6.8, the amplitude diverges. This prob-

lem is due to only taking into account the lowest order integral and neglecting

virtual loops in the DGLAP equation. This shortcoming can be addressed

with the use of a Sudakov form factor, which represents the probability of

only emitting resolvable radiation between scale q2
1 to q2

2. Adding a Sudakov

form factor suppresses real gluon emission from the fusing gluons when the

screening gluon fails to screen the colour charge of the fusing gluon

Naively, one can say Sudakov form factor will add a factor proportional to

exp(ln2(
M2
H

k̄2 )) [80] to the amplitude, which will cancel out the diverging effect

of k̄4 in the denominator of the amplitude.

In order to determine this factor properly, one needs to calculate the prob-

ability of single gluon emission with the transverse momentum between q2 and

q2 + dq2 which is given by:

∫ q2

q1

αs(q
2)

2π

dq2

q2

1−1/q2∫
1/q2

∑
i

Pi(z)dz (6.11)

here Pi(z) is the DGLAP splitting function, which gives the probability density

for a gluon to branch off to a parton i [115].

Following the radioactive decay rule, the Sudakov form factor will take the

exponential form.

T (k̄2,M2
H) = exp

(∫ (
MH

2
)2

k̄2

αs(q
2)

2π

dq2

q2

1−∆∫
0

(Pgq(z) + Pgg(z))dz

)
(6.12)
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where ∆ =
k̄

k̄+mH
.

Therefore, the explicit form for the parton distribution function to single

log accuracy, with no real gluon emission, can be expressed as:

f(x, x′, k̄2, µ2, t) = 1.2e(−B
2
p2
t )
∂
(
T (k̄2,M2

H)xg(x, k̄2)
)

∂ ln k̄2

(6.13)

The Sudakov form factor eliminates the hard rescattering of QCD

bremsstrahlung gluon from the two fusing gluons, however, soft rescattering of

secondary particles can occur between the protons during the exclusive reac-

tion which contaminates the signature rapidity gap of the exclusive interaction,

as discussed extensively in chapter 5.

The currently available methods to calculate the RGSP are all model de-

pendent, causing a large uncertainty, of more than a factor of 2, to the cross-

section. In General, the calculated values of the RGSP lie between 2% and

6%, as expected for the CED process in the LHC’s kinematical regime. In

the previous chapter, we discussed extensively the GSP for a CED process. In

this study we used the prediction made by GLAM [88] and KMRS [89] models

for the two channel pomeron in the CED processes which provide a more re-

liable estimate of
〈
| S2 |

〉
. The estimated value for the survival probability

associated with LHC Higgs production is 2.7% [88, 89].

6.5 Equivalent Photon Flux and Z2 Effect

Taking y as the rapidity of the Higgs boson, after integrating over the trans-

verse momentum of the proton, the differential cross-section of (γ∗ + p →
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γ∗ +H + p) is

dσγ
dy

=
1

100π6b

( CFαM
2
H

(N2
c − 1)v

)2
∫
d2q̄⊥(M)2 (6.14)

where

(M)2 = C
(∫ (

MH
2

)2

k2
0

d2k̄

∫ 1

0

dαl

∫ 1

0

dτα2
s(k̄

2)
∂
(
T (k̄2,M2

H)G(x, k̄2)
)

∂ ln k̄2

∑
q

(F1 + F2)
)2

(6.15)

The total photo-production cross-section (p+ p→ p+H + p) is obtained

by convoluting the partonic cross-section (γ∗ + p → γ∗ + H + p) with the

equivalent photon flux, Nγ(E).

dσt
dy

=

∫
dE

E
Nγ(E)

dσγ(E)

dy
, (6.16)

where E is the energy carried by the photon.

The flux of equivalent photons from a relativistic particle of charge Z is

determined from the Fourier transform of its electromagnetic field represented

by Weizsacker-Williams formula [110].

dNγ

dE
=

2Z2α

πzE
(
(
XK0(X)K1(X)− X2

2
(K2

1K
2
0)) (6.17)

K0 and K1 are the modified Bessel functions of the second kind, of order zero

and order one, as a function of X =
2RAE
γ

.

The intensity of the electromagnetic field, and therefore the number of

photons in the cloud surrounding the nucleus, scales as the squared charge of
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the beam, Z2 as can be seen in equation 6.17.

In case of the proton, the photon flux equation can be simplified to [110]:

dNγ

dz
=

α

2πz
(1 + (1− z)2)

(
µ− 11

1
+

3

µ
− 3

2µ2
+

1

3µ3

)
(6.18)

z =
W 2
γP

S
and µ = 1 +

0.71GeV 2

Q2
min

and Qmin is the minimum momentum

transfer needed to produce the vector meson.
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6.6 Computing Code Utilized

“Photoproduction” package is a Fortran based Monte Carlo event generator

which we wrote to compute the cross-section of the CEDP process in UP Col-

lision and DPE, for a Higgs boson with a mass of 125 GeV. The program uses

VEGAS algorithm [131] and random number generator programs to calculate

the cross-section. By default, the program makes use of the Fortran LHAPDF

[128] library to extract the PDF values at given x and Q2. The blueprint of

the package is described in appendix G.

6.6.1 VEGAS

The VEGAS code gives Monte Carlo estimates of arbitrary multi-dimensional

integrals using the VEGAS algorithm of G. P. Lepage [131]. The VEGAS algo-

rithm is shown in figure 6.3. Achieving a good estimate of a multi-dimensional

integral requires large sample sizes at higher dimensions which increases the

computation time exponentially. Thus, the standard Monte Carlo integration

which uses Uniform Sampling wouldn’t be efficient. VEGAS algorithm uses

Monte Carlo technique to determine the integral however it is based on the con-

cept of adaptive Importance Sampling technique to speed up the convergence

of the integral by optimizing the size of each grid, in the multi-dimensional

space, based on their contribution to the integral.

The first step of the VEGAS algorithm is choosing a grid which uniformly

spaced along the axes of multi-dimensional space. Then, after putting M

sample points in the N hyper-cubes29 so that the number of points in each

29In more than 3 dimensions each block in the grid is called hyper-cube.
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hypercube is the same M
N

, the integral at each of these points will be evaluated

using Monte Carlo estimate of the integral. From calculations, we can infer

the probability density function:

P (~x) =
f(~x)∫

Ω
f(~x)d~x

. (6.19)

when the integral is a function of n variables ~x = (x1, ..., xn) over a volume Ω

and I =
∫

Ω
f(~x)d~x.

To simplify the problem, let’s limit ourselves to a one dimensional integral

which can be expanded to a multi-dimensional integral. For present purposes,

we assume p(x) is a step function with N steps. The probability of a random

number being chosen from any given step is defined to be a constant, equal to

1
N

for all steps. Therefore,

P (~x) =
1

N∆xi
, xi −∆xi ≤ x < xi , i = 1, ..., N (6.20)

The probability density is refined by subdividing each step ∆xi into mi+1

subintervals where

mi = k
fi∆xi∑
j fj∆xj

fi =
1

∆xi

∫ xi

xi−∆xi

f(x)dx

(6.21)

Thus, each interval’s contribution to the weight function increases in pro-

portion to its contribution to the integral of f(x).

In order to keep the number of steps to its original value N , groups of new

intervals must be combined in such a way that the number of subintervals in
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each group is constant. Therefore, the net effect is to alter the step sizes, while

keeping the total number constant, so that the smallest steps occur where the

function is largest, or the variance is optimal. The new grid is used and further

refined in subsequent iterations. After several iterations of this process, the

grid usually converges to the optimal grid. When the net amount of iterations

is reached or a minimum value of variance is obtained, the program stops.

A cumulative estimate of the integral and its standard deviation can be

determined using the following formula:

Ī =

∑
i Ii

I2
i

σ2
i∑

i
I2
i

σ2
i

σ̄ =
Ī√∑
i
I2
i

σ2
i

(6.22)

Here Ii and σi are the integral and standard deviation estimated in iteration

i.

6.6.2 The PDF Set

The Fortran LHAPDF library [128] provides access to the numerical values

for all parton densities, xf(x, k2), using a PDF set. The PDF set we are using

in this study is called MSTW08NLO [126]. However, the program is flexible

enough to use other PDF sets with just a little bit of adjustment for k2 < 1.

Because all the PDF sets in the LHAPDF library are mostly valid for k2 > 1

so for k2 < 1 one has to define and add the right PDF and αs to the code.

A relatively new analysis of parton distribution of the proton that incor-

porates a wide range of data from p − p or p − p̄ or e − p high energy col-
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Figure 6.3: VEGAS flowchart

lision is incorporated in the MSTW08 PDF set available in the LHAPDF

library. The main processes and data sets included in the PDF analysis for

MSTW08NLO are ordered in three groups: fixed-target experiments, HERA

,and the Tevatron in table 1 and 2 of reference [126]. For each process, the

dominant partonic subprocesses, the primary partons which are probed, and

the approximate range of x are given. The PDF for each type of parton are de-

termined by global fits to all the available DIS30, and related hard- scattering

data31.

30In MSTW08NLO the DIS data from HERA, BCDMS, CCFR, SLAC and NMC used to
constrain the PDF behaviour.

31In order to put further constraint on the PDFs and reduce their uncertainties, the
inclusive jets of H1 and ZEUS, and several LHC and the Tevatron data such as W and Z
production by DØ and CDF Collaborations are used.
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In the MSTW PDF set, the parameterizations for the input distributions

are based on Chebyshev polynomials of the form: 32.

xf(x, µ2
0) = A(1− x)ηxδ(1 + σni=1a− iTChi (y(x)) (6.23)

here TChi (y(x)) are Chebyshev polynomials and y = 1 − 2xk. The global fit

determines the values of the set of parameters A, δ, η and ai for each PDF.

The parameterization of the parton distributions (distribution of quarks, u, s,

d, and gluon g) at the input scale µ2
0 = 1 GeV2 33 are given as as the following

equations:

xuv = Aux
η1(1− x)η2(1 + εu

√
x+ γux)

xdv = Adx
η3(1− x)η4(1 + εd

√
x+ γdx)

xS = Asx
ηs(1− x)δs(1 + εs

√
x+ γsx)

x∆ = A∆x
η∆(1− x)ηs+2(1 + γ∆x+ δ∆x

2

xs+ xs̄ = A+x
ηs(1− x)η+(1 + εs

√
x+ γsx)

xs− xs̄ = A−x
0.2(1− x)η−(1− x

x0

)

xg = Agx
δg(1− x)ηg(1 + εg

√
x+ γgx) + A′gx

δ′g(1− x)η
′
g

(6.24)

where uv ≡ u − ū, dv ≡ d − d̄, S ≡ 2(ū + d̄) + s + s̄, and ∆ ≡ d̄ − ū.

Au/d/S/∆/g/+/−, δS/∆/g/g′ , η1/2/3/4/S/∆/g/g′/+/−, εu/d/S/g/g′ , γu/d/s/∆/g, and X0

are the free parameters.

The extra term A′gx
δ′g(1 − x)η

′
g in the gluon distribution is added because

It was found [124], that the global fit was considerably improved by allowing

32The detailed of this study is in [125, 126]
33There is very little sensitivity to variation in µ2

0 for the PDFs extracted.
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the gluon distribution to have a second term with a different small x power,

where η′g is quite large and concentrates the effect of this term towards small

x.

The input PDFs are subject to three constraints from the valence quark

number sum rules

∫ 1

0

dx.uv(x, µ
2
0) = 2,

∫ 1

0

dx.dv(x, µ
2
0) = 1,

∫ 1

0

dx.sv = 0 (6.25)

and the momentum sum rule.

∫ 1

0

dx.x
(
uv(x, µ

2
0) + dv(x, µ

2
0) + S(x, µ2

0) + g(x, µ2
0)
)

= 1 (6.26)

There are, therefore, potentially 34−4 = 30 free PDF parameters in the fit

(free parameters in equation 6.24 minus the four constraints from the valence

quark number sum rules), including the strong coupling defined at the scale of

the Z boson mass, αs(M
2
Z), which is allowed to be free when determining the

best fit. The values of these parameters obtained in the LO, NLO and NNLO

fits are given in reference [126].

In order to find the PDF value for the given momentum fraction

x and scale k =
√
qsq, we need to use the subroutine “initpdfset

(’MSTW2008lo68cl.LHgrid’)” to set up the LHAPDF interface code and call

the specific PDF set MSTW08NLO 90% confidence level. Once the PDF

member is initialized one must call the evolution code which will return the

PDF momentum densities, f(x, k2), at given x and k2, by using the subroutine

“evolvePDF (x, k2, f)”where x is the Bjorken scale and k is the 4-momentum
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of the parton and f indicates the type of parton. The PDF xf(x, k2) values

come from the GridPDF class in the LHAPD which provides PDF values in-

terpolated from data files.These data files consist of PDF values evaluated on

a rectangular grid of “knots” in (x, k2), with values for all flavours of quarks

and gluon, at each point. The spacing of the knot positions in x and k2 is

represented in uniform distributions in log x and log k2. Also for (x, k2) points

outside the grid range, MSTW provides a sensible extrapolation to small-x,

low-k and high-k values [127].

Strong Coupling

We recall from chapter 5, where we discussed the QCD running coupling, that

equation 5.7 shows the strong running coupling at scale Q2 in terms of energy

scale k and QCD scale λQCD. However, in this equation, αs diverges (Landau

pole) as the energy scale gets close to the QCD scale, Q2 ≤ λ2
QCD, as a result

of QCD confinement phenomena.

While a process like DPE, due to having a factor like T (k2,M2
H)/k4 [80] in

the integrand (T is the Sudakov form factor and k4 is the transverse momen-

tum of the exchanged gluon), can set the cutoff on the k2 integral well above

the point where the perturbative QCD running coupling becomes invalid, the

CEDP process does not have this advantage. Even though, the integrand is

safely peaked in the perturbative regime, as shown in figure 6.4, the additional

k2 in the denominator requires a cutoff of around 0.1 GeV2.

As it is necessary to use an αs consistent with the PDF evolution, we use the

form of αS(Q2) used in MSTW08NLO fits which is only valid in perturbative

domain and diverges in low energy scale. However, as a result of the low energy
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Figure 6.4: The integrand of the k integrand in equation∫
d2k̄

∫ 1
0 dαl

∫ 1
0 dτα

3
s(k̄

2)
∑

q(F1 + F2). F1 and F2 are defined in equation
6.7.

scale cut-off k, we must consider a different models of the infrared behaviour

of the strong coupling constant in the non perturbative domain.

One can improve the perturbative QCD (pQCD) series by suppressing the

Landau pole and using the analytic approach, also known as analytical pertur-

bation theory. Extended description of this model can be found in [130]. We

have chosen the “analytic” approach [116] using the “approximate solution”

[129] due to its low k2 behaviour, well-defined formula, and properties such as

gauge-independence, universality, and IR-finite behaviour.

The “analytical” running coupling equation in the Leading order can be
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expressed as:

α(0)
an (k2) =

4π

β0

( 1

ln(k2/Λ2)
+

Λ2

Λ2 − k2

)
(6.27)

And the approximate solution for the NLO is shown as the following equa-

tion.

α(2,approx.)
an (k2) =

4π

β0(Nf = 3)

( 1

l(LQ, c)
+

1

1− exp(l(LQ, c))

)
(6.28)

l(LQ, c) = LQ + c ln(
√
L2
Q + 4π2) (6.29)

LQ = ln(
k2

Λ2
) (6.30)

β0 = 11− 2

3
Nf (6.31)

β1 = 102− 38

3
Nf (6.32)

c =
β1

β2
0

(6.33)

We have used Nf = 3 as the number of effective (light) flavours and Λ =

0.35 GeV as the QCD scale parameter in the “analytic” method.

Using the αs related to the MSTW08NLO PDF set for the perturbative

region and k2 > 1 GeV2 and the fitted “analytic” leading order αs for the

non-perturbative region k2 < 1 GeV2, the plot of αs(k
2) shown in figure 6.5

was made. The green line shows the αs related to the MSTW08NLO PDF

set. It diverges for the very small (k2). The blue line represents the“analytic”

model fitted to the αs plot from MSTW08NLOat k2 < 1 GeV2.

The values of αs shown with the green line in figure 6.5 obtained from

the fitting of the two models are stored in a grid file of x and k2 in the
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Figure 6.5: Values of αs MSTW08NLO PDF set and “analytic” model. The green
line is the plot of αs related to MSTW08NLO PDF set. The blue line represents
the “analytic” model fitted to the αs plot from MSTW08NLO at k2 < 1 GeV2.

LHAPDF along with the PDF values for each x and k2 and added to the

“photoproduction” package.
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6.6.3 Results of the Cross-section Calculation

Integrand and the Cross-Section

The integrand for the total cross-section that is used in this package is:

σtot
dy

=

∫
dQ(2πγqtQ)

α

2πz
(1 + (1− z)2)

(
µ− 11

1
+

3

µ
− 3

2µ2
+

1

3µ3

)dσγ
dy

(6.34)

where

dσγ
dy

=
1

100π6b

( CFαM
2
H

(N2
c − 1)v

)2
∫
d2q̄⊥

(∫ (
MH

2
)2

k2
0

d2k̄

∫ 1

0

dαl

∫ 1

0

dτα2
s(k̄

2)fg(x, k
2,MH)

∑
q

(F1 + F2)
)2

F1 =
e2
q

k̄4

[α2
l + (1− αl)2][τ 2 + (1− τ 2)]

αl(1− αl)Q2 + τ(1− τ)k̄2 +m2
q

F2 =
e2
qm

2
q

k̄6(αl(1− αl)Q2 + τ(1− τ)k̄2 +m2
q)

(
4(1− α1 + α2

l ) +
2e2

q k̄
2τ(1− τ)(6α2

l − 6αl + 1)

αl(1− αl)Q2 +m2
q

)
(6.35)

Also, γ =
√
s

2mP
, x =

MH√
s

, qt = Qcos(φ), z = Qsin(φ)
√
s

mP
, µ = 1+0.71

γ2

z2 .

This integral is a nine-dimensional integral and the integral parameters are

αl, τ , α′l, τ
′, the gluon momentum k and k′, photon virtuality Q and φ the angle

between qt and w (the photon energy). fg(x, k
2,MH) =

∂

(
T (k̄2,M2

H)G(x,k̄2)

)
∂ ln k̄2

is determined from the MSTW08NLO. αs(k
2), αs(k

′2) are defined in the extra

package that we added to the MSTW08NLO. The cross-section is integrated

over the rapidity interval −2.5 < y < 2.5.

Finally, we calculated the cross-section of Higgs boson production in CED

processes in p-p and Pb-p collisions at the LHC at the CM energy of
√
s = 14
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Name CEDP DPE γγ
process

CEDP γγ
process

Process p+ p→ p+H + p Pb+ p→ Pb+H + p
Subprocess γ∗q → γ∗+H+

q
PP→ H γγ → H γ∗q → γ∗+H+

q
γγ → H

Cross-
section
(fb)

0.19± 0.005 2.55±0.001 0.18 182.5± 0.02 170

RGSP 2.7% 2.7% 100% 2.7% 100%
√
s (TeV) 14 14 14 8.8 8.8

Table 6.1: Higgs boson production in CED processes for MH = 125 GeV after
considering the RGSP in the calculation. The cross-section for the CEDP and DPE
processes are calculated using “Photoproduction” package. The cross-section of γγ
process is calculated by D’Enteria et al.[108].

TeV and
√
s = 8.8 TeV, respectively . The result is shown in table 6.1. The

cross-sections of DPE and CEDP in p-p and Pb-p collisions are calculated

using the “photoproduction” package (for more details about this package see

Appendix G) and the cross-sections of γγ process in p-p and Pb-p collisions

as calculated by D’Enterria and Landsberg in reference [108].

The cross-section of DPE in p-p collision was initially calculated by

Durham group [121]. We also calculated this cross-section using our “pho-

toproduction” package adapted for DPE to check the reliability of the code.

We have calculated the DPE cross-section to be 2.55 fb which is the highest

cross-section of the three processes (DPE, CEDP and γγ process), in agree-

ment with the Durham Group’s calculation [133]. The CEDP process is also

expected to have lower cross-section compare to that of DEP process and

higher compare to that of γγ process due to the fact that this process is par-

tially a QCD process(σ ∝ α2
sα

2). However, because of the QED nature of the

γγ process, no secondary gluon will be emitted to fill the rapidity gap and
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therefore this process with not suffer from the low value of SRGP. Therefore,

both CEDP and γγ processes have cross-sections int the same order. Both

these processes can happen in p-Pb collisions as well. As we discussed in sec-

tion 6.5, charged beams are associated with a flux of quasi-real photons that

is proportional to the square of the charge of the beam particle. Thus, for

p-Pb collisions one would naively expect the cross-section to be enhanced by

a factor of Z2 .

Sources of Error

The errors represented in table 6.1 for the cross-sections of DPE and CEDP

calculated using the ”photoproduction” package are due to the errors in cal-

culation of the integrand. However there are other more important factors

that increase uncertainty in the calculation of CED processes. One of these

is our estimate of the RGSP. We discussed the estimated value of RGSP in

this chapter, however, RGSP is still an open question in high energy physics.

With this caveat in mind we shall adopt, without error, the values for RGSP

utilized in our calculations above.

After RGSP, the PDF set is the secondmost major source of uncertainty

in the calculation of DPE and CEDP cross-sections. In an study by the

Durham group [133], the cross-section of the DPE process was calculated using

MSTW08 LO and NLO PDF sets, shown in figure 6.6. It shows the sensitivity

of the cross-section to the choice of PDF set could be up to 50% for Higgs

boson with the mass of MH = 125 GeV. Thus, we assume that the effect of

PDF uncertainty is in the same range for the CEDP process.
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Figure 6.6: Cross-section of the DPE processes in centre of mass energy of 14 TeV, in-
tegrated over the rapidity interval −2.5 < y < 2.5, for a range of PDFs MSTW08LO
and NLO [133].

Mass of the Higgs Boson

We find that the CEDP process is a sensitive measure of the Higgs boson

mass since the CEDP cross-section depends quadratically on the Higgs boson

mass in equation 6.35, whereas in other similar processes such as DPE and

γγ process, the cross-section has no direct dependency on the mass of Higgs

boson and only the PDF is a function of M2
H . Therefore as it can be seen

in figure 6.7 the cross-section drops as the mass of Higgs boson increases for

the process like the CEDP. Figure 6.7 shows the quadratic behaviour of the

CEDP cross-section versus mass of Higgs boson and the linear behaviour of

DEP cross-section.
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Figure 6.7: The Higgs cross-section dependence upon MH in DPE and the CEDP
process. The blue (dark grey) cross line shows the quadratic behaviour of the cross-
section of the CEDP process and the green (light grey) line represent the linear
behaviour of DPE cross-section.
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Chapter 7

Summary And Conclusion

The work described in this thesis covers three main topics. The first topic

involves the LUCID detector upgrades and LUCID’s performance during the

runs in 2015, as described in chapter 3. I made major contributions in all the

studies described in this chapter, during the time I worked with the LUCID

group at CERN. This work was part of the mandatory task towards qualifica-

tion for ATLAS authorship.

My authorship task was to: 1) update the Monte Carlo description of LU-

CID by incorporating the new geometry of the LUCID-2 detector; 2) improve

the performance of LUCID-2 by studying how to, practically, reduce its ac-

ceptance; and, 3) study the performance of the LUCID-2 detector, compared

with other detectors that can be used to determine the luminosity, with a

view to determining the systematic errors on the LUCID’s determination of

the luminosity received by the ATLAS detector. In addition, my studies led

to an automatic PMT gain adjustment system being implemented in 2016. As

reported in Chapter 3, we achieved an overall error on the LUCID luminosity
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measurement - in the data-taking period where the bunch spacing was at the

LHC design value of 25 ns - of 2.1%. This, high degree of precision combined

with LUCID’s ability to make bunch-by-bunch luminosity measurements for

the LHC machine group, led to LUCID being chosen as the official luminosity

monitor of ATLAS.

The second topic that is covered in this thesis, in Chapter 4, is the AFP

detector and its electronics. AFP is the newest ATLAS sub-detector. Its

purpose is to identify and measure the energy loss of one or both protons

that emerge intact from proton-proton diffractive events collisions in ATLAS.

For “exclusive” events, from Central Exclusive Diffraction (CED), where both

protons survive and are measured in AFP, it is possible to determine the mass

and quantum numbers of central state with high precision. This opens up a

whole new physics arena of diffractive physics for ATLAS by turning the LHC

into a pomeron-pomeron, photon-photon and photon-pomeron collider.

The Alberta contributions to this detector were to the Roman Pot mechan-

ics used to pace the proton spectrometer within millimetres from the beam and

to the readout system for the precision ToF system. My contributions to the

AFP detector were concentrated on the readout electronics for the precision

ToF detector that is of critical importance in reducing the background from

pileup backgrounds. My responsibility here was to create a test-bed for the

HPTDC modules - used to readout the AFP ToF detectors - that we built

here at the University of Alberta and to use this test-bed to validate the per-

formance of these modules. One of the key issues here was the increase in

precision due to multiple, separate, measurements of the ToF. In principle

the precision increases according to the square root of the number of sepa-
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rate measurements. After calibrating the HPTDC modules, I verified using

the test-bed that this is not quite the case as a coherent effect, affecting all

the channels, reduces the expected improvement of the resolution by about

20%. The overall time resolution delivered by our electronics was 14 ps per

channel. The overall timing resolution of the ToF detector plus electronics has

been found from test-beam to be between 35 to 37 ps for a train of only two

LQbars.

The third and main topic of my thesis is the study of three channels of

the Higgs production via CED, p + p → p⊕H ⊕ p. In particular I made the

first reliable calculation of the ultra-peripheral CED “photoproduction” of the

Higgs boson via the diagram shown in Figure 6.2 for both proton-proton and

proton-heavy-ion collisions at the LHC. In addition, I calculated CED Higgs

production via double pomeron exchange and photon fusion, for the purpose

of comparison and verification of my main calculation.

Using “Photoproduction” package w/o RGSP: σ(γ∗q → γ∗ + H + q) =

7.04fb

Using “Photoproduction” package with RGSP: σ(γ∗q → γ∗ + H + q) =

0.19fb

Using “Photoproduction” package with RGSP: σ(PP→ H) = 2.5fb

Durham group value with RGSP [133]: σ(PP→ H) = 1.5fb

It turns out that the cross-sections for proton-proton production of all three

processes is similar in size. The results of my calculation of Higgs production

by DPE are in good agreement with previous results published by the Durham

Group [133].

An interesting and important feature of the ultra-peripheral “photo-
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production” and photon fusion production of the Higgs boson is that they are

enhanced by approximately Z2. For proton - lead beam this factor is 6.7 × 103.

Another, feature of the “photo-production” channel is that the cross-section

has a significant dependence on the Higgs mass. In the era of precision Higgs

measurements it is important that as many Higgs decay channels are studied

as precisely as possible. Especially if the cross-section for the process is mass

dependent as is the case with the ultra-peripheral CED “photoproduction” of

the Higgs boson, studied in this thesis.
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Appendix A

QCD and QED Feynman Rules

incoming

fermion: U(p)

anti fermion: V̄ (p)

photon: εµ

ougoing

fermion: Ū(p)

anti fermion: V (p)

photon: ε∗µ
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µ
= −iefγµ fermion-photon vertex

p
= i 6 p+m

p2−m2+iε fermion propagator

pµ ν
= −i gµν

p2+iε gluon propagator

µ, a
= −ieqγµta quark-gluon vertex

= V ab
µν = δabF (

M2
H

m2
t

)
M2
Hαs

4πv

(
gµν − k1µk2ν

k1.k2

)
gluon fusion vertex

µ, a

ν, b

k1

k2
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Appendix B

Eikonal Function

When two partons collide at some impact parameter, b, then the average num-

ber of secondary hard scatterings (the average number of jet pairs produced

in the proton-proton interaction) is given by:

< n(b, s) >= L(s)σ(s, b) (2.1)

where L(s) is the parton luminosity and σ(s, b) is the cross-section for a pair

of partons to produce a pair of jets. If one assumes that rescatterings are

independent of each other, the distribution of the number of rescatterings at

an impact parameter b can be modelled by the Poisson statistics. Within

this simple model, the gap survival probability is directly related to the mean

number of rescatterings at an impact parameter b.

Ph(b, s) =
< n(b, s) >h

h!
en(b,s) (2.2)

where < n(b, s) > is the average number of secondary hard scatterings . There-
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fore, the total cross-section then can be written as:

σtot = 2π

∫
(
∞∑
h=1

Ph(b, s))d
2bt

= 2π

∫
(1− e<n(b,s)>)d2bt

(2.3)

In order to express the total cross-section, one can use optical theorem

which relates total cross and imaginary part of the elastic cross-section a(b, s)

in impact parameter space b through the unitarity relation as the following

equation:

σtot = 4π

∫
Im(a(s, b)d2bt (2.4)

And then the elastic and inelastic part of the cross-section can be expressed

as:

σel = 4π

∫
a(s, b)2d2bt

σinel = σtot − σel
(2.5)

After comparing the total cross-section in equation 2.3 and 2.5, we can

express the elastic amplitude in terms of< n(b, s) > or equivalently the Eikonal

function [83], Ω(b, s), as:

a(s, b) =
e<n(b,s)> − 1

2i
=
e−Ω(b,s) − 1

2i
(2.6)

Therefore, the total elastic and inelastic cross-sections can be express in

203



the following format as functions of Eikonal function:

σtot = 2π

∫
(1− e−Ω(b,s))d2b

σinel = π

∫
(1− e−2Ω(b,s))d2b

σel = π

∫
(1− e−Ω(b,s))2d2b

(2.7)

204



Appendix C

Optical Theorem

The Optical theorem can be deduced from the unitarity of the scattering ma-

trix (S)34.

SS† = 1 (3.1)

where S = 1 + iT . The transfer matrix T 35 is not Hermitian. Therefore, the

unitarity of S matrix implies

1 = SS† = (1 + iT )(1− iT †) = 1 + TT † − i(T − T †)

i(T − T †) = TT †
(3.2)

The left hand side of the above equation is:

< f |i(T − T †)|i >= i(2π)4δ4(pi − pf )[M †(i→ f)−M(f → i)] (3.3)

34S matrix describes the relation between the outgoing waves to the incoming waves.
35Transfer matrix T expresses the coefficients of the wave function on the right hand side

of the sample in terms of the coefficients of the wave function on the left hand side.
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where M2 is the amplitude, pi and pf are the initial and final momenta, and

|i > and |f > are the initial and final states of the scattering process.

Summing over all intermediate states, the right hand side of equation 3.3

is:

< f |TT †|i > =
∑
m

dΠm < f |T |m >< m|T †|i >

=
∑
m

[(2π)4δ4(pm − pf )][(2π)4δ4(pi − pm)]

∫
dΠmM

†(f → m)M(m→ i)

(3.4)

Therefore, after applying simple algebra the optical theorem is given by

the following equation:

i[M †(i→ f)−M(f → i)] =
∑
m

∫
dΠmM

†(f → m)M(m→ i) (3.5)

where dΠm is the phase space factor
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Appendix D

Three Body Phase Space

Three body phase space is the differential phase space of the intermediate prop-

agators which follows the general formula of phase space and can be expressed

as:

∫
dΠ3 =

∫
d4l1

(2π)3

d4l2
(2π)3

d4l2
(2π)3

δ(l21 −m2
q)δ(l

2
2 −m2

q)δ(l
2
3)(2π)4δ4(P + q − l1 − l2 − l3)

(4.1)

Where lµ1 , lµ2 and lµ3 are the four momentum of the quarks which By applying

conservation of energy in the vertices we can subtitled l1 and l2 by q − l and

l − k and using Sudakov parametrization and characteristic of delta function,
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the phase space equation will be simplified to:

∫
dΠ3 =

1

2π5

∫
d4ld4kδ([q − l]2 −m2

q)δ([l − k]2 −m2
q)δ([P − k]2)

=
1

2π5

W 4

4

∫
dαldβld

2l̄dαkdβkd
2k̄

1

W 2(1− αl)
δ
(
βl + x−

l̄2 +m2
q

W 2(1− αl)
)

1

W 2(αl − αk)
δ
(
βl − βk −

[ ¯l − k]2 +m2
q

W 2(αl − αk)
) 1

W 2(|αk|)
δ
(
(1− βk) +

k̄2

W 2αk

)
=

∫
dΠ3 =

1

2π5

1

4W 2

∫
dαld

2k̄d2l̄
1

αl(1− αl)

(4.2)

here Sudakov factors are described as follows:

k = αkp2 + βkp1 + k⊥, l = αlp2 + βlp1 + l⊥, q = p2 − xp1 (4.3)

To make sure that the quark propagator are on-shell particles the following

equation should be true

βk = 1 +
k̄2

W 2αk

βl − βk =
[ ¯l − k]2 +m2

q

W 2(αl − αk)

βl = −x+
l̄2 +m2

q

W 2(1− αl)

(4.4)
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Appendix E

Amplitude of The CEDP

Process

In this appendix we compute the amplitude of left and right side of the CEDP

process in the parton level, required for computing the cross-section. Figure

6.1, shows the Feynman diagrams for the process.

By utilizing QED and QCD Feynman rules that mentioned in the previous

chapter, the amplitude of the left and right side of the CEDP process could

be expressed as below:

M1M2 =
∑

εαε
∗
β

∑
ū(l)(−igsγµtB)u(p)

(−igσµ
k2

)
(−igsγσtC)Aαβσλ

(−iδADgλ1λ

k2

)
(−igsγλtA)V ab

λ1λ2

(−iδDBgλ2ν

r2

)∑
ū(p′)(−igsγνtB)ū(l)

(5.1)

Where Aαβσλ is the amplitude of the quark loop shown in figure 5.1and

V ab
λ1λ2

is the well-known gluon fusion vertex in the Standard Model.
∑
εαε
∗
β is
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the sum of all the polarization of the incoming and outgoing photons. u(x)

and ū(x) are respectively corresponding to the incoming and outgoing quarks.

Term that include gs correspond to gluon vertices and the rest are representing

gluon propagators.

Because the momentum of gluon is sufficiently small compare to the in-

coming protons, we can use Eikeonal approximation, ū(p+ q)γµu(p) ' 2pµ in

this calculation. Therefor, the above equation can be simplified to :

M1M2 =
N2
c − 1

4N2
c

1

r2k4
pσp

νV ab
λν

∑
εαε
∗
βA

αβσλ (5.2)

By substituting the well-known gluon fusion vertex in the Standard Model

[112] V ab
λν = 2

3

M2
Hαs

4πv

(
gλν − rµkλ

r.k

)
into the above equation, it will be simplified

to:

M1M2 =
N2
c − 1

4N2
c

M2
Hαs

6πv

1

r2k4
pσpλ

∑
εαε
∗
βA

αβσλ (5.3)

Also, due to the fact that the gluons only have transverse component (k2 ≈

−k2
⊥ = k2

T ), the second term in Vµλ vanishes upon contraction with pλ1 , yielding

Vµλp
λ
1 = 2

3

M2
Hαs

4πv
pµ1 .

Figure 5.1, shows two of the four diagrams which are needed to compute the

virtual photon impact factor Aαβσλ(the other two are obtained by reversing

the direction of the quark line). To obtain
∑
εαε
∗
βA

αβσλ we start with the
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Feynman rules to compute the amplitude as follows:

∑
εαε
∗
βA

αβσλ = −(4π)2ααs
∑
q

e2
q

∑
εαε
∗
β

(Tr(Γαβσλ1 )

(l2 −m2
q)

2
− Tr(Γαβσλ2 )

(l2 −mq2)((q − l − k)2 −mq2)

)
Γαβσλ1 = [γα(/l +mq)γ

λ(/l + /k)γσ(/l +mq)γ
β(/q − /l)]

Γαβσλ2 = [γα(/l +mq)γ
λ(/l + /k)γβ(/q − /l − /k +mq)γ

σ(/q − /l)]

(5.4)

Therefore, the multiplication of the left and right side of the amplitude can

be expressed as:

γ∗(qµ) γ∗(qµ)

q(lµ)
q(kµ) q(kµ)

α β
σ λ

γ∗(qµ) γ∗(qµ)

q(lµ)
q(kµ) q(kµ)

α β
σ

λ

Figure 5.1: We make use of the Cutkosky cutting rules to calculate the imaginary
part of the amplitude. The dotted line indicates the cut which separated the left
and right side of the process. By applying the optical theorem, the imaginary part
of the amplitude is the convolution of the amplitude of the right process and the
left process in a three body phase space.

M1M2 = A
1

r2k4

( Tr(Ξ1)

(l2 −m2
q)

2
− Tr(Ξ2)

(l2 −mq2)((q − l − k)2 −mq2)

)
A = −αα

2
s

4π2

M2
Hαs

6πv

∑
q

e2
q

N2
c − 1

4N2
c

Ξ1 = Σενε
∗
σ[γν(/l +mq)/p(/l + /k)/p(/l +mq)γ

σ(/q − /l)]

Ξ2 = Σενε
∗
σ[γν(/l +mq)/p(/l + /k)γσ(/q − /l − /k +mq)/p(/q − /l)]

(5.5)

211



where

Σενε
∗
σ = −gνσ + 4

Q2

W 4
pνpσ

Ξ1 = gνσΓνσ1 + 4
Q2

W 4
pνpσΓ1

Ξ2 = gνσΓνσ2 + 4
Q2

W 4
pνpσΓ2

(5.6)
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Appendix F

MATLAB Computational

Results

We computed Γ1, Γνσ1 , Γ2, Γνσ2 , using MATLAB program. The result shows in

the following equations:

gνσΓνσ1 = −4αls
2[
−D1 −m2

q + (1− αl)2m2
q − αl(1− αl)Q2

1− αl
]

Γ1 = −2α3
l (αl − 1)s4

gνσΓνσ2 = −4s2[
1

2
(D1 +D2) + α− l(1− αl)Q2 + (αl(1− αl)−

1

2
)k⊥ + (−αl(1− αl) + 1)m2

q]

Γ2 = 2α2
l (αl − 1)2s4

(6.1)

where

D1 = −αl(1− αl)Q2 − l2⊥ −m2
q

D2 = −αl(1− αl)Q2 − (l + k)2
⊥ −m2

q

(6.2)
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Therefore, the amplitude is given by:

M =
4

3π2

C2
F

N2
c − 1

αW 2M2
H

v

∫
d2k̄

∫ 1

0

dαl

∫ 1

0

dτα3
s(k̄

2)
∑
q

(F1 + F2)

F1 =
e2
q

k̄4

[α2
l + (1− αl)2][τ 2 + (1− τ 2)]

αl(1− αl)Q2 + τ(1− τ)k̄2 +m2
q

F2 =
e2
qm

2
q

k̄6(αl(1− αl)Q2 + τ(1− τ)k̄2 +m2
q)

(
4(1− α1 + α2

l ) +
2e2

q k̄
2τ(1− τ)(6α2

l − 6αl + 1)

αl(1− αl)Q2 +m2
q

)
(6.3)
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Appendix G

“Photoproduction” package

The “Photoproduction” directory consists of two sub-directories: Main, and

Plot. The Main subdirectory includes all the files needed to compute the cross-

section and Plot subdirectory consists of the programs needed to plot the PDF

vs x and Q2, αs and Cross-section vs mass of the Higgs boson.

Main directory

The Main directory includes nine other sub-dirctories listed as follows:

Common, obj, Main, Integrand, Sudakov, LHAPDF, PDF , Alpha and bin.

Common:

Includes all the General variables that have been used through out the

program.

obj:
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Includes the object files produced by the compiler from the Fortran files.

Main:

The Fortran source files in various subdirectories.

Integrand:

Include the integrand for the VEGAS file.

Sudakov:

Includes all the files that take to determine sudakov factor at the given x and

Q2.

1-Sudakov: calculates Sudakov factor using equation 6.12.

2-initsud: writes out Sudakov factor in a grid of x and Q2 to “sud.dat” file

located in bin subdirectory.

3-calcsud: read Sudakov form factor from “sud.dat”.

4-sudint: interpolator for Sudakov form factor to calculate xg for a given x

and Q2.

5-sPDF: calculates exclusive skewed pdf d
dlnQ2 (Txg) where T is Sudakov form

factor and xg = is skewed pdf.

LHAPDF:

LHAPDF is a general purpose C++ interpolator, used for evaluating PDFs

from discretized data files.

PDF:
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Includes all the files that take the conventional PDFs from MSTW08NLO

PDF set and calculate the General PDFs and finally interpolate the GPDs

with Sudakov form factor. Files from 1 to 5 get the xg (gluon PDF) from the

grid files in LHAPDF and calculate skewed pdf and save it in the file called

’hg.dat’ in 4 columns related to Q2, lnx, tg (skewed pdf), dtg (integrated

skewed pdf) respectively.

1-inpdf: call LHAPDF and the PDFset , LHAPDF function.

2-PDFlha: after ’inpdf’ calls LHAPDF, it evaluates the value of gluon PDF

for PDFINPUT , LHAPDF function.

3-PDF: use the PDFINPUT to calculate single PDF xg and dxg
dQ2 .

4-hg: Calculates skewed unintegrated PDF.

5-inithg: writes out skewed PDF to “hg.dat”.

6-calchg: read in skewed pdf from “hg.dat”.

7-hpdfint: interpolator for skewed pdf.

Alpha:

Only include one file that extract the αs from MSTW08NLO PDF set.

alpha.f: calculate strong coupling constant, αs used by the current PDF,

using the following formula
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α(2,approx.)
an (k2) =

4π

b0(Nf = 3)

( 1

l(ln k2

Λ2
21
, cfit21 )

+
1

1− exp(l(ln k2

Λ2
21
, cfit21 ))

)
(7.1)

l(LQ, c) = LQ + c ln
√
L2
Q + 4π2 (7.2)

b0 =
11

3
− 2

3
Nf (7.3)

bin:

It includes the executable files: superchic and init. Also the input data file.

The PDF set MSTW08NLO is also in this directory.

1-init and intg: Includes the two executable folders.

2-inputs: input.DAT file includes all the initial condition For energy, quantum

numbers and etc.

3-PDFsets :Consists of the PDF set that we are using in this calculation.

Here we are using MSTW08NLO, which returns the momentum density (that

is x times the number density). The values of αS obtained from the fits are

stored in the grid files. For consistency, the same values should be used in all

calculations involving the PDFs.

Plotting and controlling

Plot:

Includes file to choose different sets of αs and to plot αs, PDFs and the

changes of cross-section with respect to higgs mass MH .

1-ir.dat: It contains various analytic couplings to compare different αs in the
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infrared regime.(see https://.arxiv.org/pdf/hep-ph/0405062.pdf for details).

2-alpha.p: make αs plot.

3-IntPlot: contains Main.f and Integrand.f set up for plotting the integrand.

4-MassPlot: contains Main.f for plotting how the cross-section changes with

the higgs mass
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