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Abstract 

Metabolomics is the ultimate reflection of organisms influenced by both genetic 

and environmental factors. Compared with other omics areas, it is the most appropriate 

and closest description of phenotype, which is the comprehensive characteristics of an 

organism. It is a powerful tool for global study of composition, dynamics and responses 

of metabolites in cells, biofluids, tissues and organs. Metabolomics has been widely 

used for studying the effects of system perturbations on organisms, such as 

environmental factors or diseases. 

Metabolomics can be divided into two categories, targeted or untargeted. 

Untargeted metabolomics is global in scope and it simultaneously detects the entire set 

of metabolites, which is more significant and more promising. However, due to the 

complexity of metabolites, it is impossible to profile the metabolome by using one 

single platform. Since the whole metabolome can be divided into different 

submetabolomes based on different chemical functional groups, it is better to analyze 

each submetabolome separately to improve metabolite coverage. Of those methods, 

chemical isotope labeling (CIL) method has been developed due to its various 

advantages. CIL can add one isotope tag to target different submetabolomes to improve 

separation, sensitivity and capability of relative quantification. This “divide and 

conquer” technology enables the study of the whole metabolome using one platform, 

such as reverse phase liquid chromatography mass spectrometry (RPLC-MS) in 

positive mode only. 

In this work, I applied CIL LC-MS technique to profile the amine/phenol 

submetabolome of tissue samples. Tissue metabolomics can reveal organ-specific 

metabolic fingerprints and play a crucial role in investigating specific diseases and sites 
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of toxicity. I first developed a workflow for carrying out tissue sample processing with 

a solvent system of methanol/dichloromethane/water. Then, dansylation labeling was 

applied to profile the amine/phenol submetabolome of mouse brain tissues with 

Alzheimer’s disease (AD). The differences in submetabolome between AD transgenic 

and wild-type mice were investigated. Several metabolite biomarker candidates have 

been found with good discriminating power. Then, my developed workflow was also 

used for amine/phenol submetabolome profiling of rat brain, heart, liver, kidney and 

muscle tissues with Dexamethasone (Dex) treatment. The side effects of Dex treatment 

on metabolome were studied with these five kinds of tissues, and some common 

changes were observed using pathway analysis. 

Biofluid samples, such as serum, plasma, urine, saliva, are considered as a pool 

of metabolites of the body that can reflect some systemic metabolic changes. These 

samples are relatively easy to obtain and widely used for metabolomics studies. In this 

work, I applied CIL LC-MS to analyze amine/phenol and carboxyl submetabolomes of 

serum samples from two cohorts of rheumatoid arthritis (RA) patients. We 

characterized the submetabolome changes between the early RA and healthy control 

groups and several potential biomarker candidates were discovered. Besides, 13C-/12C-

dansylation labeling LC-MS method were also applied for parallel profiling urine 

metabolome changes of a mouse model with AD. The metabolic differences between 

AD and control were observed for both male and female mouse urine samples. The 

findings of these works indicate that, CIL LC-MS is a comprehensive technique and it 

is applicable and promising for untargeted metabolomics. 
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Chapter 1 Introduction 

1.1 Multi “omics” 

A living system is quite complicated with multiplex characteristics of life and 

scales of biological organizations. Biological functions can be explored through the 

molecules involved in physical and biochemical reactions in the body. The 

comprehensive assessment of a set of molecules can be achieved with various “omics” 

technologies, which include genomics, transcriptomics, proteomics and metabolomics.1 

Genomics was the first omics to appear and the most mature omics field. It studies the 

whole genomes and genetic variants caused by disease or medical treatment, through 

DNA sequencing and bioinformatics.2 Nonetheless, many parts of genes have not been 

experimentally characterized and some of the relations between gene assignments and 

biochemical functions are still not clear, which may also be affected by other factors, 

such as environment.3 Transcriptomics is the connection between genomics and 

proteomics. It focuses on identifying RNA transcripts and measuring and quantifying 

the expression of genes in different organisms and under different conditions.4 The 

limitation of transcriptomics is that some knowledge of transcriptome is still based on 

gene predictions, and relatively small changes in RNA level may lead to significant 

protein changes in the organisms.5 This indirect correlation needs to be further studied. 

Proteomics explores the entire proteome and analyzes protein’s abundance and 

interaction, and reflects the underlying genomics and transcriptomics.6 Post-

translational modifications can greatly increase the complexity of proteome studies. 

Metabolomics is the end point of the omics cascade.7 It quantitatively studies the entire 

set of metabolites, including amino acids, carbohydrates, fatty acids and other products 

of metabolic functions. The four omics can provide comprehensive view of biological 

processes.  

1.2 Metabolomics 

1.2.1 Significances of Metabolomics 

Metabolomics is an ultimate reflection of organisms influenced by both genetic 

and environmental factors. It is sensitive to the small changes in organisms’ processes 

(e.g. DNA duplication, RNA expression) or diet or environment, which may cause huge 

metabolite concentration variances.8 Therefore, it is the most appropriate and closest 
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description of phenotype. Metabolomics is one powerful tool for global study of 

composition, dynamics and responses of metabolites, in cells, biofluids, tissues and 

organs.9 It can be used for studying the effects of system perturbations on metabolic 

functions by environmental influences or toxin effects, as well as for diagnosing 

diseases or monitoring treatment.10 Thus, metabolomics studies have evolved 

exponentially since the concept was introduced. 

1.2.2 Analytical Platforms for Metabolomics 

Normally, the analytical techniques for metabolomics include detection and 

separation processes. For detection, there are mainly two platforms, nuclear magnetic 

resonance (NMR) and mass spectrometry (MS).  For separation, there are three kinds 

of chromatography methods, capillary electrophoresis (CE), gas chromatography (GC), 

high-performance (HP) or ultra-high-performance (UP) liquid chromatography (LC). 

These high-throughput separation techniques are usually coupled to MS for metabolic 

profiling. No single technique can provide an ideal analysis for all metabolites. Each 

technique has its advantages and disadvantages. Next, I will introduce these platforms 

in more details. 

NMR is a spectroscopic technique. NMR is based on energy absorption and re-

emission of the atom nuclei affected by the changing of an external magnetic field.11 

With rich natural abundance of hydrogen in biological samples, high resolution 1H 

NMR is the most widely used NMR technique. It can rapidly quantify and identify a 

wide range, from low-molecule weight to high-molecule weight, of metabolites in a 

single run with little requirement for sample preparation, while simultaneously detect 

lots of other compounds. NMR is an information-rich method especially for providing 

structural information, which can be used for characterizing and exploring biological 

processes.12 Besides, it is a non-destructive technique, as a result, samples can be 

recovered for further analysis if necessary. NMR has been widely used for biomarker 

discovery and disease studies.10, 13 However, the major limitation of NMR is the 

relatively low sensitivity. The detection can only be achieved above the micro-molar 

range, while in real world analysis, many metabolites will be below its detection limit.14  

MS detects metabolites in the form of spectrum peaks with mass-to-charge 

ratios (m/z). MS is the most widely used platform in metabolomics. It can provide high 

sensitivity and selectivity, as well as reproducible quantitative analysis and the 
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possibility for metabolite identification. High-resolution MS can provide accurate mass 

measurement, allowing for precise identification, and the most widely used MS are 

Fourier transform ion cyclotron mass spectrometers (FTICR-MS) and time of flight 

mass spectrometers (TOF-MS).15  FTICR-MS offers extremely high resolution 

(100,000–1,000,000), but the slow data acquisition rate leads to low sensitivity. Besides, 

the high instrumental cost limits its application. In comparison, TOF-MS can provide 

high resolution as well as high sensitivity with a relatively low cost, thus TOF-MS is 

more popular for metabolomics. Hybrid instruments, such as quadrupole-TOF-MS, are 

widely used for rapid screening analysis16.  

Different kinds of MS-based methods have been developed. Direct injection MS 

is a rapid technique that can analyze a large number of metabolites.17 The obvious 

drawbacks of this method involve co-suppression and low ionization efficiencies.18 

Thus, MS is usually combined with separation techniques to reduce sample complexity, 

such as CE-MS, GC-MS, LC-MS. CE-MS is an emerging tool for metabolomics studies 

and has significant potential.19 CE-MS can provide extremely high-resolution and 

analyze for almost all charged compounds.19 However, the repeatability needs to be 

further improved.20 GC-MS is a high-throughput technique and generally detects low-

molecular-weight, volatile and thermally stable compounds, such as the analysis of 

breath.21 The high-molecular-weight, non-volatile metabolites cannot be analyzed 

directly, and they need multiple chemical derivatization procedures to get volatility and 

chemical stability.22 Because GC analysis is usually done under high temperatures, the 

sample stability is a major concern. LC-MS is the most widely used technology with 

great sensitivity. The recent UPLC system can further improve chromatographic 

resolution. Compared with GC-MS, LC-MS doesn’t require sample volatility and has 

lower analysis temperature. Sample derivatization is usually not required, but when 

necessary, it can be useful to provide better separation and sensitivity.23 Metabolites 

can be detected in both positive and negative ion modes, which can achieve high 

metabolome coverage. It usually uses electrospray ionization (ESI) as the ionization 

source, which is a soft ionization technique and leads to little fragmentation, but ESI is 

easily affected by ion suppression.24 Various column chemistries have been developed. 

For example, hydrophilic interaction liquid chromatography (HILIC) can be used to 

separate polar metabolites, while reverse phase liquid chromatography (RPLC) can 

separate non-polar metabolites. However, one kind of column can be beneficial to 
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analyze only one kind of polarity of metabolites, which makes detection more 

complicated. 

1.2.3 Categories of Metabolomics 

Based on experimental methods, metabolomics can be divided into two major 

categories: targeted and untargeted. Targeted metabolomics only focuses on a few 

selected compounds or particular metabolic pathways.25 Commonly, it is a hypothesis 

driven approach and explores specific biological pathways. Typically, triple quadrupole 

(QqQ) mass spectrometry with selected reaction monitoring (SRM) is applied for 

routine targeted analysis.26 In this case, only certain m/z values in mass spectra or 

certain regions of chromatogram are analyzed.27 Targeted metabolomics is not a global 

approach, but can provide high sensitivity, high throughput and capability for absolute 

quantification. In comparison, untargeted metabolomics is global in scope and cares 

about the entire chromatogram and all m/z values.28 It is usually hypothesis generating 

instead of hypothesis driven, aiming at detecting as many metabolites as possible.26 

Untargeted metabolomics determines the relative amount of all measurable unknown 

metabolites and carries out the identification. This technique is significantly attractive 

and suitable for diagnostic biomarker discovery as well as nonbiased metabolite 

fingerprinting in response to disease or genetic alterations.20 Different kinds of 

biological samples have been studied, such as tissue,29 serum,30 urine,31 cell,32 with 

different advantages. Biofluids are usually easy to collect and widely used for different 

analysis, which are considered as a pool of metabolites of the organisms and can reflect 

systemic metabolic changes. In comparison, tissue samples can reveal organ-specific 

metabolic fingerprints,33  and tissue metabolomics plays an important role in 

investigating specific diseases34 and sites of toxicity35. Although untargeted 

metabolomics is promising and significantly developed in last several decades, no one 

single method can achieve the non-targeted analysis of all the metabolites, due to their 

diverse polarities, molecular weights and concentrations. 

1.2.4 Workflow for MS-based Untargeted Metabolomics 

Experimental design and sample preparation play important roles in MS-based 

untargeted metabolomics study. Generally, the experiment steps include sampling, 

sample preparation, sample analysis, instrument analysis, metabolite identification and 

statistical analysis.15 The first step is sampling, which primarily depends on the 
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experiment type and experimental design. Sampling is the basis of the project and many 

aspects should be considered. For example, how much sample would be sufficient, what 

kind of samples could be analyzed (e.g. serum, plasma, tissue, cell, saliva, etc.), what 

would be the effects of gender, age and diet, and what would need to be done to inhibit 

enzymatic activity and stop metabolism after sample collection (e.g. freezing or acidic 

treatments). Otherwise, biological variability and metabolite degradation would be 

major issues. The second step is sample preparation, which mainly extracts metabolites 

from complex matrix and removes interfering components (e.g. protein precipitation 

with organic solvent). When necessary, extraction methods, such as liquid-liquid 

extraction (LLE) and solid-phase extraction (SPE) can pre-concentrate certain 

metabolites. After sample preparation, the third step is instrumental analysis and data 

acquisition, in which samples are analyzed by direct injection MS, CE-MS, GC-MS or 

LC-MS, with LC-MS as the most popular one. In this process, metabolites are detected 

as peaks with m/z values in mass spectra and the intensities of chromatographic peaks 

are related to their concentrations. Then, metabolic data in mass spectra are exported to 

a standard and uniform format for further analysis. The data exportation includes peak 

picking, noise and background exclusion, alignment of chromatograms and mass 

spectra. The most widely used software is XCMS, a web-based software.36 Here, each 

peak is referred to as a metabolite feature and extracted information is displayed in a 

peak table with information of each feature’s retention time, m/z, intensity, as well as 

p-values and fold changes representing relative concentration differences. The next step 

is the identification of metabolites, which still remains a big challenge. In this step, 

accurate mass of metabolites is firstly searched in metabolite database, such as 

METLIN37 and Human Metabolome Database (HMDB)38 to get putative identification 

information. Then, further experimental data are used, including retention time and 

MS/MS, to get fragment patterns, before the data are compared with standards to 

definitely identify those metabolites of interest. Currently, large number of metabolites 

still cannot be matched and comprehensive metabolite identification is impractical. 

Finally, statistical tools are applied for sample classification and significant markers 

determination, such as principal component analysis (PCA), partial least square 

discriminant analysis (PLS-DA), analysis of variance (ANOVA) and volcano plot.  
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1.2.5 Chemical Isotope Labeling Metabolomics 

As the widely used untargeted metabolomics technique, RPLC-MS has been 

applied for the studies of various kinds of samples, such as serum39, urine40, tissue41 

and cells42 etc. However, due to the complexity of metabolites (various chemical and 

physical properties), conventional RPLC-MS can only handle medium polar and non-

polar compounds, RPLC is not appropriate for extremely polar metabolites. Ionization 

also needs to be performed in both positive and negative mode to increase metabolome 

coverage, making the experiments very complicated.  

Figure 1.1 The scheme of four CIL reactions, including: (a) Dansyl chloride for 

amine/phenol submetabolome; (b) Dansyl chloride with base-activation for hydroxyl 

submetabolome; (c) p-Dimethylaminophenacyl (DmPA) bromide for carboxyl 

submetabolome; (d) Dansylhydrazine (DnsHz) for carbonyl submetabolome. 

Previously, our lab developed a “divide and conquer” technology, in which the 

whole metabolome is divided into different submetabolomes based on chemical 

functional groups (Figure 1.1). Chemical isotope labeling (CIL) is used to analyze each 

submetabolome with high coverage and the combined results are used for the complete 

metabolome analysis. Dansyl chloride (DnsCl) for amine/phenol submetabolome23, is 

used here for the discussion of CIL LC-MS process and its benefits. In this approach, 

individual experimental samples are labeled with 12C-DnsCl, while a pooled sample, 
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working as the reference and internal standard, is labeled with 13C-DnsCl. After mixing 

together and LC-MS analysis, metabolites are detected as peak pairs, which contain 

light peaks (12C labeled) and heavy peaks (13C labeled) with an m/z difference of 2.0067 

Da. The intensity ratio of light and heavy peaks is used for relative quantification of 

metabolites. Dansyl labeling method has many advantages. Firstly, the aromatic group 

makes the metabolite more hydrophobic which increases retention in RPLC. Secondly, 

the tertiary amine enhances ESI chargeability, thus enhancing MS signal. Thirdly, the 

two carbons on the tag are either 12C or 13C, which are used for relative quantification. 

Dansyl labeling method simultaneously improves separation, detection and 

quantification, in which case, only positive ion mode RPLC is required. In the last 

decade, we have also developed 12C-/13C DnsCl with base-activation for the hydroxyl 

submetabolome43, 12C-/13C-dimethylaminophenacyl (DmPA) bromide labeling for the 

carboxyl submetabolome44 and 12C-/13C dansylhydrazine labeling for the carbonyl 

submetabolome45. These four submetabolomes cover more than 95% of the whole 

metabolome. Thus this comprehensive technique is applicable and promising for 

untargeted metabolomics. 

 

1.3 Scope of the Thesis 

The objective of this research work is to develop CIL LC-MS methods for 

untargeted metabolomics. 

In Chapter 2, CIL LC-MS is used to profile the amine and phenol 

submetabolome of mouse brain and liver tissues of Alzheimer’s disease (AD). A tissue 

extraction protocol was developed for tissue metabolomics and this protocol was 

applied to discover biomarkers for AD. 

In Chapter 3, CIL LC-MS is used to profile the amine and phenol 

submetabolome of rat liver, heart, kidney, muscle and brain tissues. The metabolic 

differences between Dex-treatment and control were compared and the affected 

pathways were analyzed. 

In Chapter 4, CIL LC-MS is used to profile the amine and phenol 

submetabolome of rheumatoid arthritis disease and discover diagnostic biomarkers. 

Several biomarkers were discovered with good discriminating power. 
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In Chapter 5, CIL LC-MS is used to profile the amine and phenol 

submetabolome of mouse urine samples of AD. Metabolic trajectory changes with the 

development of the disease were observed and several metabolite biomarkers were 

discovered. 
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Chapter 2 Development of Chemical Isotope Labeling LC-MS for 

Tissue Metabolomics and Its Application for Brain and Liver 

Metabolome Profiling in Alzheimer’s Disease Mouse Model 

2.1 Introduction 

Metabolomics involves the comprehensive analysis of all the small molecule 

metabolites in a biological system. It is a rapidly emerging field for characterizing 

complex biochemical phenotypes influenced by environmental, genetic and other 

factors. Metabolomic profiling is carried out using different kinds of samples, including 

biofluids, cells and tissues, depending on the areas of applications. 46-47 Of those, tissue 

is at an organizational level between cell and organ that is composed of cells and 

extracellular matrix. Compared with biofluids containing a pool of metabolites of the 

body that reflect systemic metabolic changes, tissue samples can reveal organ-specific 

metabolic fingerprints 48-49.  Hence, tissue metabolomics plays a crucial role in many 

biological and clinical applications, such as investigating organ-specific diseases or 

functions 50-51and sites of toxicity 35. 

Many tissue metabolomics studies have been reported using various analytical 

platforms with varying degrees of metabolome coverage, including nuclear magnetic 

resonance (NMR), gas chromatography-mass spectrometry (GC-MS), capillary 

electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass 

spectrometry (LC-MS) 48. Among them, NMR analyses of tissues detected < 100 

metabolites (e.g., brain 14 and lymph node 52). GC-MS has been used to analyze tissues 

with the detectability of a few hundreds of metabolites (e.g., the detection of 200 

metabolites in colon tissues 53). CE-MS measured more than 800 peaks in colon tissues 

and around 1000 peaks in stomach tissues 54. Importantly, LC-MS has been more 

widely used in tissue metabolomics 55-60. LC-MS can detect up to 6000 metabolite 

features from rat brain tissue extract 61. A metabolite feature is defined as a unique m/z 

peak at a given chromatographic retention time.  

Although traditional LC-MS analysis may detect a large number of metabolite 

features, it has long been a problem to differentiate the weak signal of very low-

abundant metabolites from the background noise 62-63. Also, a single metabolite may be 

detected in multiple forms, including adduct ions, in-source fragment ions, dimers, 
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trimers, giving a misleading number of detected metabolites and complicating the result 

interpretation. A recent study of yeast cell extracts showed that a vast majority of over 

25,000 metabolite features detected in high-resolution LC-MS experiments could be 

filtered down to less than 1000 peaks that were likely to be from unique metabolites 64. 

Another important issue is related to metabolite quantification using LC-MS. Without 

internal standards, conventional LC-MS suffers from ion suppression effects in MS 

ionization, as sample matrix or coeluting compounds can significantly interfere with 

the ionization of metabolites and thereby distort the quantification results.  

It is clear that new technologies are needed to provide higher metabolome 

coverage and better quantitative capability for tissue metabolomics. Combining 

chemical isotope labeling (CIL) with LC-MS has recently shown to offer much 

enhanced analytical performance for targeted or non-targeted metabolite analysis 65-76. 

Previously, we reported a high-performance CIL LC-MS technique for quantitative 

metabolomics 23. This chemical derivatization method can significantly enhance the 

electrospray ionization signal and improve the RPLC separation. For example, using 

12C- and 13C-dansyl labeling LC-MS, we can achieve high-coverage metabolic profiling 

of the amine/phenol-submetabolome with high quantification accuracy 23. This 

technique has been successfully applied to metabolomics studies of various types of 

samples 77-82. However, there is no report of a simple and robust analytical workflow 

that utilizes CIL LC-MS for studying tissue samples.  

In this work, we report a workflow of a tissue extraction protocol tailored to 

CIL LC-MS for tissue metabolomics. We first developed and optimized the tissue 

extraction method using chicken liver. We then applied this workflow to profile the 

amine/phenol-submetabolome of mouse liver and brain tissue samples of an 

Alzheimer’s disease (AD) model to validate our method. We chose AD mouse model 

to demonstrate the analytical performance of our method, as it represents a typical 

biological study of animal models where various types of tissue samples can be readily 

acquired for metabolomic profiling. AD is the most common cause of dementia. Early 

diagnosis remains a challenge. Transgenic mouse models are widely used to study AD 

pathophysiology. Since brain tissue can directly reflect brain-specific metabolic 

changes, we examined the metabolomic changes in AD mouse brain tissues that may 

reveal potential diagnostic biomarkers. We also examined the liver tissues to showcase 
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the applicability of our method for different types of tissue samples. 

2.2 Experimental 

2.2.1 Chemicals and Reagents 

All the chemicals and reagents, unless otherwise stated, were from Sigma-

Aldrich Canada (Markham, ON, Canada). 13C-dansyl chloride was synthesized in our 

lab with the procedures published previously 23 and is available from 

MCID.chem.ualberta.ca. LC-MS grade water, acetonitrile (ACN), and methanol 

(MeOH) were from Thermo Fisher Scientific (Edmonton, AB, Canada).  

2.2.2 Chicken Liver Sample Collection 

Three batches of a single lobe of chicken liver were from a local grocery store 

in separate days for method development. The liver sample was cut into small pieces in 

the range of 100-200 mg with a clean surgery knife. Then, each tissue piece was 

separately transferred into a pre-weighed 2-mL Eppendorf vial and stored in a -80 °C 

freezer until further analysis. 

2.2.3 Mouse Model and Sample Collection 

A widely-used transgenic mouse model, 5xFAD, from the Jackson Laboratory 

83, was studied. The transgenic mice co-express five familial Alzheimer's disease (FAD) 

mutations, K670N/M671L (Swedish) + I716V (Florida) + V717I (London) in the 

Amyloid Precursor Protein (APP) gene and M146L + L286V mutations in the 

Presenilin 1 (PS1) gene. Approximately at the age of 1.5 months, the 5xFAD mice 

started generating high levels of Aβ42, followed by amyloid deposition at about the age 

of 2 months. The liver and brain tissue samples were taken from 11 mice, five 5xFAD 

Tg-positive and six wild-type (WT) littermate controls, after the mice were euthanized 

at the age of 5 months. Liver samples (Appendix Figure A1.1a) were washed with 1x 

phosphate-buffered saline (PBS) for 3 times before each lobe was cut into 2 pieces, 

which were then snap-frozen in liquid nitrogen and stored in a -80 °C freezer. Finally, 

only one of the 2 pieces of Lobe 1 (Appendix Figure A1.1a) of each liver sample was 

used for the metabolomic analysis. For each brain sample (Appendix Figure A1.1b), 

half of the brain was snap-frozen in liquid nitrogen and stored in a -80 °C freezer till 

extraction, and the remaining half was fixed in formalin and archived as paraffin-

embedded tissue blocks.  
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Figure 2.1. Workflow for tissue extraction and dansylation isotope labeling LC-MS. 

2.2.4 Analytical Workflow 

In our work, a differential CIL method was applied to achieve the relative 

metabolite quantification. The individual samples are labeled by 12C-dansyl chloride 

(light labeling), while a pooled sample, prepared by mixing small aliquots of individual 

samples, is labeled by 13C-dansyl chloride (heavy labeling). The same amount of 13C-

labeled pooled sample is spiked to each individual sample to serve as a global internal 

standard. Figure 2.1 displays the overall workflow of this work. It contains the 

following steps: (1) tissue disruption and metabolite extraction, (2) dansylation labeling, 

(3) LC-UV quantification of total amount of labeled metabolites in each individual 

sample and pooled sample for sample amount normalization, (4) mixing of 12C-labeled 

individual samples and 13C-labeled pooled sample at equal amounts, (5) LC-FTICR-



13 
 

MS analysis of 12C-/13C- mixtures, (6) data processing using R programs, including 

peak pair picking, peak pair filtering, peak pair ratio calculation and peak pair grouping, 

(7) multi-variate statistical analysis using MetaboAnalyst 84 software, (8) metabolite 

identification based on the dansyl standard library 85. The detailed experimental 

conditions in the workflow are described below.  

2.2.5 Tissue Extraction 

Ice-cold solvents (methanol, dichloromethane (DCM) and water) were prepared 

in advance. After weighing out the tissue sample in an Eppendorf tube, we added 3 mL 

of methanol per gram of tissue and 0.64 mL of water per gram of tissue. The Eppendorf 

tube containing the sample and solvent was put into an ice-bath, and then the tissue 

sample was homogenized twice (10 s each time with a waiting period in between for 

temperature control), using a Bio-Gen PRO200 Homogenizer (PRO Scientific, USA). 

After the addition of DCM (3 mL/g tissue) and water (another 1.5 mL/g tissue), the 

mixture was vortexed twice (30 s each time), staying in the ice-bath in between. The 

mixture was then incubated in a -20 °C freezer for 15 min. Finally, the sample was 

centrifuged at 15000 g for 10 min at 4 °C to generate an upper aqueous layer (with polar 

metabolites) and a lower organic layer (with lipophilic compounds), with proteins and 

cellular debris precipitated on the bottom. The upper and lower layers were transferred 

into separate vials.  

Three aliquots were taken from each of the upper layer samples: two 15 µL 

aliquots for the amine/phenol-labeling LC-MS analysis, and one 30 µL aliquot for 

making the pooled sample. All of the leftovers were stored at -80 °C for future analyses.   

2.2.6 Dansylation Labeling 

The 15 µL upper layer sample was thawed in a 4 °C freezer, vortexed to dissolve 

precipitates, and then the extraction solvent was removed using a Savant SC110A 

Speed Vac at room temperature. After that, the sample was re-dissolved to 25 µL with 

water for dansylation labeling with the labeling protocol adapted from a previous report 

23. 25 μL of individual tissue sample (experimental duplicates) or 25 μL of the pooled 

sample was mixed with 12.5 μL of ACN. Then 12.5 µL of 250 mM sodium 

carbonate/sodium bicarbonate buffer was added to the samples. The solution was mixed 

with 25 µL of freshly prepared 12C-dansyl chloride (DnsCl) solution (18 mg/mL) (for 

light labeling, individual samples) or 13C-DnsCl solution (18 mg/mL) (for heavy 
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labeling, pooled sample). After incubation for 45 min at 40 °C, 5 µL of 250 mM sodium 

hydroxide solution was added to the reaction mixture to quench the reaction. The 

solution was then incubated at 40 °C for another 10 min. Finally, 25 µL of formic acid 

(425 mM) in 1:1 ACN/H2O was added to make the solution acidic. 

2.2.7 LC-UV Sample Normalization 

The total amount of dansyl-labeled metabolites in each sample was measured 

using an LC-UV based protocol reported previously 86. The instrument for detection 

was a Waters ACQUITY UPLC system with a photodiode array (PDA) detector. A 

Phenomenex Kinetex reversed-phase C18 column (50 mm × 2.1 mm, 1.7 μm particle 

size, 100 Å pore size) was used with a fast step-gradient. Mobile phase A was 0.1% 

(v/v) formic acid in 5% (v/v) ACN/water, and mobile phase B was 0.1% (v/v) formic 

acid in ACN. Started at 0% B for 1 min, the gradient was increased to 95% B within 

0.01 min and held until 2.5 min to completely elute all labeled metabolites. Finally, the 

gradient was restored back to 0% B in 0.5 min and held for another 3 min. The flow 

rate was 0.45 mL/min and the total run time was 6 min. The peak area, which represents 

the total concentration of dansyl-labeled metabolites, was integrated using the 

Empower software (6.00.2154.003). According to the quantification results, 12C-

labeled individual sample and the 13C-labeled pooled sample were mixed in equal mole 

amounts. The 12C- and 13C-labeled pooled samples were mixed in equal mole amounts 

to serve as a quality control (QC) sample.  

2.2.8 LC-MS 

Labeled tissue extracts were analyzed using a Bruker 9.4 T Apex-Qe FTICR 

mass spectrometer (Bruker, Billerica, MA), coupled with an Agilent capillary 1100 

binary system (Agilent, Palo Alto, CA). An Agilent eclipse plus reversed-phase C18 

column (100 × 2.1 mm, 1.8 μm particle size,) was used. LC mobile phase A was 0.1% 

(v/v) formic acid in 5% (v/v) ACN/water, and mobile phase B was 0.1% (v/v) formic 

acid in ACN. The gradient elution profile was: t = 0 min, 20% B; t = 3.5 min, 35% B; t 

= 18 min, 65% B; t = 24 min, 99% B, t = 32 min, 98% B. Flow rate was 180 μL/min. 

All mass spectra were collected in the positive ion mode. The MS conditions for 

FTICR-MS were: nitrogen nebulizer gas, 2.3 L/min; dry gas flow, 7.0 L/min; dry 

temperature, 195 °C; capillary voltage, 4200 V; spray shield, 3700 V; acquisition size, 

256 k; mass scan range, m/z 200−1000; ion accumulation time, 1 s; TOF (AQS), 0.007 
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s; DC extract bias, 0.7 V. All the samples were injected in random order. QC samples 

and amino acid standards were injected every 10 sample runs to monitor the 

performance of the LC-MS. 

2.2.9 Data Processing, Metabolite Identification and Statistical Analysis 

After LC-FTICR-MS analysis, the entire list of centroid peaks with collected 

information (e.g., retention times, m/z values, and peak intensities) was exported from 

Bruker Data Analysis software (Version 4.0).  IsoMS 87 was used to pick peak pairs, to 

filter false-positive pairs including dimers and common adducts, and to calculate peak-

pair intensity ratios. After the alignment of peak pairs from multiple samples using the 

Alignment program, the Zerofill program was applied to recover the high-confidence 

peak pair ratios lost during the previous data processing steps. 

Based on the accurate mass and retention time, positive metabolite 

identification was performed using dansyl standard library search, which contains 273 

unique dansylated amines/phenols. Based on the accurate mass search, putative 

identification was performed using the Human Metabolome Database (HMDB) 

(www.hmdb.ca) and the Evidence-based Metabolome Library (EML) 

(http://www.mycompoundid.org/). 

Multivariate analyses, including principal components analysis (PCA), partial 

least squares discriminant analysis (PLS-DA) and receiver operating characteristic 

(ROC) curve analysis, were carried out using MetaboAnalyst software. The fold change 

and p-value between groups were calculated using Microsoft Excel. Volcano plots were 

constructed using OriginPro 8.0 (OriginLab). The q-value, multiple-testing-corrected 

p-value, was calculated using R and BioConductor (www.bioconductor.org). 

2.3 Results and Discussion 

2.3.1 Tissue Metabolite Extraction 

Tissue samples derived from organs (e.g., liver, brain and muscle) contain an 

extracellular matrix as well as a variety of resident cell types and hence require 

disruption by homogenization before downstream processing. Various methods have 

been reported to break tissues and cells, including grinding with mortar and pestle and 

homogenization with bead beater or electric homogenizer. Of those, grinding tissues in 

liquid nitrogen by mortar and pestle is not applicable to high-throughput methods 

because of serial processing of samples and laborious manual intervention.88 In 

http://www.bioconductor.org/
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comparison, homogenization using a homogenizer is less labor-intensive and more 

efficient. 33 For the sample extraction, because we wanted to study polar metabolites 

and non-polar lipids (future work) simultaneously, we developed a protocol based on a 

widely-used method that can efficiently extract the two groups of compounds into 

different solvent phases. 89 

Figure 2.2. Effects of different tissue extraction conditions on peak pair detection of 
12C-/13C-dansyl labeled chicken liver samples: (a) two organic solvents, (b) the 

extraction solvent composition, (c) the ratio of solvent volume to tissue weight and (d) 

additional means of cell-breaking. Data are presented as the mean±SD from triplicate 

experiments with duplicate injections (n=6). Here, M refers to methanol; W refers to 

water; D refers to dichloromethane. 
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For the development of this protocol tailored to CIL LC-MS, we evaluated the 

extraction efficiency of two organic solvents, the extraction solvent composition, the 

scale of the extraction solvent (i.e., the ratio of solvent volume to tissue weight) and 

mechanical tissue disruption methods. Because the amount of transgenic mouse tissues 

for AD studies was limited, three batches of chicken livers were used for the initial 

method development. To examine the effects of the extraction conditions on metabolite 

extraction efficiency for chicken liver tissues, 12C-/13C-dansyl labeled upper aqueous 

layer samples were prepared and analyzed by LC-MS. The differences in total 

metabolite concentrations of the tissue extracts were normalized by injecting the same 

total mole amount according to the LC-UV measurement. We focused on finding a 

protocol that can extract the largest number of metabolites. The peak pair number 

obtained was thus used as the indicator of extraction efficiency of the corresponding 

extraction condition.  

Firstly, we tried to replace chloroform used in the reported method89 with DCM, 

as chloroform has been classified as a probable human carcinogen.90 DCM is 

considered less hazardous yet reported with similar lipid extraction efficiency.90 Figure 

2.2a compares the extraction efficiency of two extraction solvents: 

methanol/chloroform/water (M/C/W) and methanol/DCM/water (M/D/W). The 

number of peak pairs detected using DCM (943±10; n=6) was only 2.1% less than that 

using chloroform (963±10; n=6), indicating comparable extraction efficiencies. Hence, 

DCM was used for subsequent studies.  

Next, we tested the extraction efficiency of various extraction solvent 

compositions, mainly focusing on the effect of different water amounts, as water phase 

contains the metabolites of interest for CIL LC-MS. We used a different batch of 

chicken liver for this study. Figure 2.2b shows the results from four different solvent 

compositions where the methanol and DCM amounts were fixed, but the water amount 

was different. The four water amounts, 10%, 18%, 26% and 33%, gave similar peak 

pair numbers (i.e., 1297±77, 1258±8, 1267±7, and 1340±11, respectively). The peak 

pair number from 33% of water was slightly higher than the others. However, when the 

water amount was too high, it might disturb the distribution of lipophilic compounds 

between the upper layer and lower layer supernatants. Therefore, 26% of water was 

deemed to be the most appropriate amount. Note that the number of peak pairs detected 
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in Figure 2.2b was higher than that in Figure 2.2a for the same solvent system. This 

difference could be attributed to the use of different livers (i.e., two different batches).  

We also studied the effect of the ratio of extraction solvent vs. tissue weight 

(mL/g-tissue) on peak pair detection. With the extraction solvent composition fixed, we 

tried to decrease the volume of extraction solvent per gram of tissue so that the 

metabolite concentrations could be increase, which is beneficial for increasing chemical 

labeling efficiency. Figure 2.2c shows best condition should be the one with 

solvent/tissue=3, giving a peak pair number of 1235±11. This extraction solvent gave 

comparable metabolite extraction efficiency to that of using a mixture of M/D/W with 

solvent/tissue=4, and was chosen in the final protocol for tissue extraction.  

We carried out a 3rd set of experiments to examine the effects of freeze-thaw 

and sonication for breaking cells and tissues on the number of peak pairs detected. In 

this case, another batch of chicken liver was used for the study. Figure 2.2d shows the 

peak pair numbers detected from three conditions: M/D/W alone, M/D/W with freeze-

thaw cycles, M/D/W with freeze-thaw plus sonication (i.e., 1616±2, 1611±14, and 

1438±34, respectively). Adding freeze-thaw did not yield more peak pairs. Sonication 

actually reduced the peak pair number, which might be due to the degradation or loss 

of metabolites during sonication. 

Taken together, the optimal protocol for tissue sample preparation for CIL LC-

MS is 3 mL/g-tissue of methanol and 0.64 mL/g-tissue of water before homogenization, 

and 3 mL/g-tissue of DCM and 1.5 mL/g-tissue of water after homogenization, 

followed by incubation and centrifugation. 

2.3.2. Mouse Liver and Brain Tissue Metabolome Analysis 

After method optimization for sample preparation, the CIL LC-MS method was 

used to profile the amine/phenol-submetabolome of mouse brain and liver tissue 

samples. Eleven brain samples and eleven liver samples were collected from 5 Tg type 

mice and 6 non-Tg (WT) mice. In total, with duplicate 12C-labeling experiments, 22 

12C-/13C-mixtures per tissue type were analyzed. Since the injection amount of labeled 

metabolites into LC-MS can affect the number of peak pairs detected, we determined 

the optimal injection amount using the mixture of 12C- and 13C-labeled pooled sample. 

Figure 2.3a shows the number of peak pairs or metabolites measured against the 

injection amount. The number of peak pairs reached the maximum with an injection 
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amount of 6 nmol of labeled metabolites. As a result, all individual liver, brain and QC 

samples were analyzed using LC-MS with 6 nmol injection in each run. Figure 2.3b 

shows a typical base-peak ion chromatogram (BPC) of the dansyl-labeled QC sample. 

Many peaks were detected across the entire RPLC elution window, indicating the 

complexity of the amine/phenol submetabolome of the tissue samples. 

Figure 2.3. (a) Peak pair number detected against the injection amount of 12C-/13C-

labeled pooled tissue sample with triplicate injections (n=3). (b) Base-peak ion 

chromatogram (BPC) of a labeled QC sample. 

Our CIL LC-MS analysis achieved high submetabolome coverage for both 

mouse liver and brain samples. For liver samples, a total of 2319 peak pairs were 

commonly detected in more than 80% of the 22 runs. Among them, 89 were positively 

identified based on a dansyl standard library search (Supplemental Table S2.1A). For 

the remaining peak pairs, using accurate mass search with a mass accuracy tolerance of 

10 ppm, 166 pairs were putatively identified by the HMDB library (Supplemental Table 

S2.1B), and 897 pairs were putatively identified by the EML library with one reaction 

(Supplemental Table S2.1C). Thus, among the 2319 peak pairs detected, we identified 

positively or putatively 1152 pairs (50%). Similarly, for brain samples, 1769 peak pairs 

or metabolites were commonly detected in more than 80% of the 22 samples. 78 

metabolites were positively identified (Supplemental Table S2.2A). 113 peak pairs 

were putatively identified based on mass-match to the metabolite entries in the HMDB 
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library (Supplemental Table S2.2B), and 640 pairs were putatively identified based on 

the EML library search with one reaction (Supplemental Table S2.2C). Thus, out of the 

1769 detected peak pairs, 831 (47%) could be positively or putatively identified. 

The above results indicate that the tissue processing protocol combined with 

CIL LC-MS can be used to analyze a large number of amine-/phenol-containing 

metabolites. For future work, it is also possible to add other labeling methods43-45 to 

increase the overall metabolome coverage. 

2.3.3 Submetabolome Comparison of Tg and WT mice 

Figure 2.4. (a) PCA scores plot of liver samples. (b) PLS-DA scores plot of liver 

samples (R2=0.999, Q2=0.669). (c) PCA scores plot of brain samples. (d) PLS-DA 

scores plot of brain samples (R2=0.999, Q2=0.556). 

Multivariate analyses, PCA and PLS-DA, were applied to study the 
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metabolomic differences between 5xFAD transgenic (Tg) mice and wild-type (WT) 

mice. From the PCA plots shown in Appendix Figure A2.2, it is clear that, for both liver 

and brain samples, the QC samples cluster together closely, indicating that the 

instrument performance was good and stable during the data collection period. Figure 

2.4a and 2.4c show the PCA plots without QC. Some separation between Tg and WT 

groups for both liver and brain samples could be seen, indicating that there were 

metabolomic differences between the two groups. The separation could be more clearly 

seen in the 3D PCA plots (Appendix Figure A2.3). Using PLS-DA, the Tg and WT 

groups were well separated as shown in Figure 2.4c and 2.4d. The PLS-DA models 

were validated by cross-validation (R2 = 0.999 and Q2 = 0.669 for liver samples, and 

R2 = 0.999 and Q2 = 0.556 for brain samples).  

Figure 2.5. Volcano plots of (a) liver samples and (b) brain samples. Metabolites with 

fold change (FC) > 1.2 are labeled in blue and metabolites with FC < 0.83 are labeled 

in red; both with q-value < 0.1. 
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Figure 2.6. (a) ROC curve built using 3 metabolite biomarker candidates—uridine, 

uridine-H2O and spermidine—for liver samples. (b) ROC curve built using 4 metabolite 

biomarker candidates — 1,4-diaminobutane, histidine, 4-ethylphenol and 5-

hydroxyindoleacetic acid—for brain samples. (c) ROC curve built using 7 metabolite 

biomarker candidates — 1,4-diaminobutane, histidine, 4-ethylphenol, 5-

hydroxyindoleacetic acid, 5-hydroxylysine, lipoamide and 4-guanidinobutanoic acid— 

for brain samples. 

We used the volcano plot to determine the significantly changed metabolites 

between the two groups. For liver samples, the volcano plot in Figure 2.5a shows 26 
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metabolites with fold change (FC) > 1.2, q < 0.1 and p < 0.0038 (up-regulated, in blue) 

and 26 metabolites with FC < 0.83, q < 0.1 and p < 0.003 (down-regulated, in red). In 

comparison, for brain samples, there were 6 down-regulated and 33 up-regulated 

metabolites in the Tg group in Figure 2.5b. Among those significantly changed 

metabolites, three metabolites (uridine, uridine-H2O and spermidine) were positively 

identified in liver samples, while another four metabolites (1,4-diaminobutane, 5-

hydroxyindoleacetic acid, 4-ethylphenol and L-histidine) were positively identified in 

brain samples.  

The significantly changed metabolites could be potential biomarkers for 

discriminating Tg and wild type. The discrimination power was analyzed using receiver 

operating characteristic (ROC) curves with the random forest method. In liver samples, 

uridine, uridine-H2O and spermidine gave an area-under-the-curve (AUC) value of 

0.867, 0.867 and 0.850, respectively. By combining the three metabolites into a 

biomarker panel, the discriminating power was increased and the AUC value was 

determined to be 0.922 within the range of 0.663-1 at the 95% confidence interval 

(Figure 2.6a). This panel could differentiate Tg from WT with sensitivity of 82.0% and 

specificity of 82.5%. The permutation test validated the diagnosis power of the 

biomarker panel (Appendix Figure A2.4a). For the brain samples, 1,4-diaminobutane, 

histidine, 4-ethylphenol and 5-hydroxyindoleacetic acid gave an AUC value of 0.983, 

0.917, 0.917 and 0.913, respectively. Figure 2.6b shows the AUC value of the ROC 

curve built with the biomarker panel of the four metabolites was 0.983 within the range 

of 0.933-1 at the 95% confidence interval. The discrimination of Tg from WT had 

sensitivity of 88.0% and specificity of 88.5%. Thus, the biomarker panel of these four 

metabolites showed excellent performance.  

To further improve the discriminating power, we added other three putatively 

identified significant metabolites, 5-hydroxylysine, lipoamide, and 4-

guanidinobutanoic acid, which gave highly ranked individual AUC values (0.933, 

0.933, and 0.932, respectively). The AUC value of the corresponding ROC curve of the 

seven metabolites was 0.992 (Figure 2.6c). Discrimination of Tg and WT was achieved 

at 91.0% sensitivity and 91.5% specificity. The ROC results were validated by 

permutation tests (Appendix Figure A2.4b). 
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Figure 2.7. Box plots of the relative concentrations of (a) 1,4-diaminobutane, (b) 

histidine, (c) 4-ethylphenol and (d) 5-hydroxyindoleacetic acid in the WT group and 

the Tg group. 

At the individual metabolite level, Figure 2.7 shows the box plots of relative 

concentrations of the four significantly charged metabolites in brain tissue samples of 

the WT group and Tg group. All of them were up-regulated in the Tg group. If some of 

these biomarker candidates can be validated in future studies with human samples, they 

could potentially serve as biomarkers for diagnosis of AD. The biological significance 

of these metabolites is briefly discussed as follows. 

1,4-Diaminobutane, also known as putrescine, is a low molecular weight 

aliphatic amine and one of the simplest polyamines. It plays important roles in 

physiological functions, such as cell proliferation and apoptosis 91, oxidative stress 

response and neuroprotection 92. Putrescine in the brain may have regulatory activities 

to many receptors on the surface of neurons 93 and the increased concentration in the 

brain can cause ischemic brain damage. Also, it can disrupt the functions of gamma 

amino-butyric acid receptors 93 and be involved in the development of glutamate 

mediated neurotoxicity 94. These results imply that the polyamines, especially 

putrescine, may have a relationship with AD pathogenesis. 
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Histidine is an essential amino acid for humans and other mammals, which has 

antioxidant functions. The decreased level of CSF histidine in AD patients has been 

reported. 95 5-Hydroxyindoleacetic acid is a metabolic product of serotonin, which can 

serve as neurotransmitters, and both of them have been reported to be associated with 

AD. Several studies discovered the decreased CSF levels of 5-hydroxyindoleacetic acid 

in AD patients 96-98. In our results, however, the concentration of histidine and 5-

hydroxyindoleacetic acid was elevated in brain tissues of Tg mice. 

4-Ethylphenol, belonging to polyphenols, has been reported to have 

antioxidative properties 99. Although for now there are no studies showing relationships 

between ethylphenol and AD pathogenesis, its antioxidative functions might have 

positive effects in treatments. 

2.4 Conclusions 

We have developed an analytical workflow for quantitative metabolomic 

profiling of tissue samples with high coverage. It includes a tissue extraction protocol 

coupled with a chemical isotope labeling LC-MS method. The workflow was applied 

for in-depth profiling of the amine/phenol-submetabolome of mouse brain and liver 

tissue samples. We detected a total of 2319 metabolites in more than 80% of the liver 

samples, and 1769 metabolites in brain samples. Significant metabolomic differences 

between Alzheimer’s disease transgenic mice and wild-type mice have been observed. 

These results have demonstrated the excellent performance of our workflow for tissue 

metabolomics. To achieve a higher overall metabolome coverage, the method described 

herein should be applicable to profile other submetabolomes, such as carboxylic acids 

44, hydroxyls 43, ketones and aldehydes 45. Since our workflow can extract metabolites 

and lipids simultaneously, in the future, we will also work on the lipidomic analysis to 

provide comprehensive profiling of both the metabolome and the lipidome. 
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Chapter 3 Chemical Isotope Labeling LC-MS for Metabolomics of 

Dexamethasone Side Effects in Rat Tissues 

3.1 Introduction 

Dexamethasone (Dex), first developed in 1957, is a non-selective synthetic 

glucocorticoid (GC) drug and corticosteroid medication.100 Dex has both anti-

inflammatory and immunosuppressant effects due to the ability to activate nuclear 

glucocorticoid receptors, thus regulating nutrient metabolism. Dex has been widely 

used for the treatment of allergic, immunological and inflammatory diseases, such as 

bronchospasm, rheumatoid arthritis and asthma.101 Excess or long-term Dex 

administration can lead to side effects such as osteoporosis, insulin resistance, 

hyperglycaemia and diabetes.102  However, a detailed influence on metabolism is still 

not clear. In this project, we explore the effect of Dex treatment on metabolomes. 

Metabolomics is the study of a whole set of metabolites of an organism.103 It 

can be used to measure the influence of diseases, environments and treatments on 

phenotypes. The study of the metabolism of pharmaceutical compounds and their 

effects on metabolite changes is known as pharmacometabolomics104, which is a 

powerful tool to monitor treatment. Dex can induce complicated metabolic pathway 

changes. For example, changes were revealed in a previous study using targeted 

metabolomics profiling to analyze serum samples of a rat model.105 However, the 

metabolome coverage of this study was not high. 

Our group reported a high-performance CIL LC-MS method for quantitative 

metabolomics profiling with high coverage. Dansylation labeling technique can be used 

for profiling amine/phenol submetabolome.23 Dansylation technique can improve MS 

sensitivity, quantification precision as well as metabolome coverage. In this work, we 

applied dansylation LC-MS for evaluating the metabolic changes induced by Dex 

treatment. Five kinds of rat tissue samples, including brain, liver, heart, kidney and 

muscle, were analyzed and the metabolic differences between Dex-treated and control 

groups were observed and investigated. 
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3.2 Experimental Section 

3.2.1 Sample Collection and Processing 

Two groups (Dex-treated and control group) of male rats with age of 6-8 weeks 

and weight of 200-250 g were used. There were 6 rats in each group and they were kept 

under same standard environmental conditions. The Dex group and control group were 

intramuscularly injected with 2.5mg/kg of Dex or saline twice a week for 14 weeks, 

respectively. Then all mice were sacrificed and tissue samples were taken, snap-frozen 

in liquid nitrogen and stored in -80 oC until analysis. There were 5 kinds of samples, 

with 5 control and 4 Dex brain tissues, 6 control and 5 Dex kidney tissues, 5 control 

and 5 Dex heart tissues, 4 control and 4 Dex liver tissues, 6 control and 5 Dex muscle 

tissues. There were 49 tissue samples in total. 

Figure 3.1. Workflow of tissue extraction, dansylation isotope labeling LC-MS and 

lipids analysis. 

3.2.2 Tissue Extraction 

Figure 3.1 displays the overall workflow. Ice-cold methanol, DCM and water 

were prepared first. After measuring the weight of a tissue sample, 2 mL of methanol 

and 0.42 mL of water per gram of tissue were added to the sample. The tissue sample 

was homogenized for 20 s using a Bio-Gen PRO200 Homogenizer (PRO Scientific, 

USA). After adding of 2 mL/g of DCM and 1 mL/g of water to the sample, the mixture 
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was vortexed 1 min. The sample was then incubated at -20 °C for 15 min. Finally, the 

solution was centrifuged at 16000 g for 10 min at 4 °C. The upper aqueous layer (with 

polar metabolites) and lower organic layer (with lipophilic compounds) were 

transferred into separate vials. Each upper layer was split into 4 aliquots: 2 x 15 µL for 

amines/phenols labeling and 30 µL for making the pooled samples for different kinds 

of tissues respectively. The leftover sample was stored at -80 °C for future analyses. 

The organic layer with lipids was analyzed by another person and is not discussed here. 

3.2.3 Dansyl Labeling 

The labeling method was adapted from the protocol in a previous report.23 

Fifteen µL of individual sample or pooled sample was thawed and vortexed, and then 

the solvent was removed at room temperature using a Savant SC110A Speed Vac. The 

sample was re-dissolved to 37.5 µL with 2:1 water/ACN. Then 12.5 µL of 250 mM 

sodium carbonate/sodium bicarbonate buffer was added to the samples. The solution 

was mixed with 25 µL of freshly prepared 12C-DnsCl solution (18 mg/mL for light 

labeling, individual samples) or 13C-DnsCl solution (18 mg/mL for heavy labeling, 

pooled sample). After incubation for 45 min at 40 °C, 5 µL of 250 mM sodium 

hydroxide solution was added to the reaction mixture, followed by incubation at 40 °C 

for another 10 min. Finally, 25 µL of formic acid (425 mM) in 1:1 ACN/H2O was added. 

3.2.4 LC-UV Quantification 

The total dansyl-labeled metabolite amount of each sample was normalized 

using a LC-UV protocol.86 The instrument was a Waters ACQUITY UPLC system with 

a photodiode array (PDA) detector. A Phenomenex Kinetex reversed-phase C18 

column (50 mm × 2.1 mm, 1.7 μm particle size, 100 Å pore size) was used with a fast 

step-gradient. The flow rate was 0.45 mL/min and the total run time was 6 min. The 

peak area integrated using the Empower software which was related to the total dansyl-

labeled metabolite concentration. According to the quantification results, 12C-labeled 

individual sample and the 13C-labeled pooled sample were mixed in equal amounts. 

Besides, 12C- and 13C-labeled pooled samples were mixed in equal amounts serving as 

a QC sample.  

3.2.5 LC-FTICR-MS Analysis 

Samples were analyzed using a Bruker 9.4 T Apex-Qe FTICR mass 
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spectrometer (Bruker, Billerica, MA) with electrospray ionization (ESI), coupled with 

an Agilent capillary 1100 binary system (Agilent, Palo Alto, CA). An Agilent eclipse 

plus reversed-phase C18 column (100 × 2.1 mm, 1.8 μm particle size,) was used. All 

mass spectra were collected in the positive ion mode. All the samples were injected in 

random order. QC samples and amino acid standards were injected every 10 runs to 

monitor the performance of the LC-MS.  

3.2.6 Data Processing, Metabolite Identification and Statistical Analysis  

After LC-FTICR-MS analysis, the entire centroid peak lists were exported from 

Bruker Data Analysis software.  IsoMS87 was used to pick peak pairs, reduce redundant 

pairs, calculate peak-pair intensity ratios, and group the peak pairs found in adjacent 

spectra. After the alignment of same peak pairs from different runs using Alignment 

program, the Zerofill program was applied to fill in the missing values.  

Based on accurate mass and retention time matches, positive metabolite 

identification was performed using dansyl standard library search, which contains 273 

unique dansylated amines/phenols. Based on accurate mass search, putative 

identification was performed by using the Human Metabolome Database (HMDB) 

(www.hmdb.ca) and the Evidence-based Metabolome Library (EML) 

(http://www.mycompoundid.org/). 

Principal components analysis (PCA) and pathway analysis were carried out 

using MetaboAnalyst 4.0 software (McGill University, Montreal, Canada). The fold 

change and p-value between groups were calculated using Microsoft Excel. Volcano 

plots were constructed using OriginPro 8.0 (OriginLab). The q-value, also known as 

multiple-testing-corrected p-value, was calculated using R and BioConductor 

(www.bioconductor.org). 

3.3 Result and Discussion 

3.3.1 Metabolite Detection 

Since the injection amount of labeled metabolites onto the LC−MS can affect 

the detected number of peak pairs, we first determined the best injection amount of rat 

tissue samples. We injected increasing amounts of a mixture of 12C- and 13C-labeled 

pooled sample, formed by combining all individual aliquots from 5 kinds of tissue 

samples. The result showed that with the injection amount of 3 nmol of labeled 
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metabolites, the number of peak pairs reached a maximum. Thus, for each run, all 

individual brain, heart, kidney, liver, muscle and QC samples were analyzed using 

LC−MS with 3 nmol injection. 

After LC-MS acquisition and data processing, different but similar number of 

peak pairs were detected for all 5 kinds of tissues. For brain tissues, a total of 1331 peak 

pairs were commonly detected in more than 80% of the 18 samples. Using dansyl 

standard library search, 62 metabolites were positively identified. For the remaining 

metabolites, using MyCompoundID and accurate mass search with a mass accuracy 

tolerance of 10 ppm, 659 metabolites were putatively identified in the HMDB library 

and 1264 metabolites were putatively identified in the EML database with 1 reaction. 

Thus, totally, 970 metabolites can be matched (73%). For heart tissues, 1444 

metabolites were commonly measured and 1068 metabolites can be matched (74%). 

For kidney tissues, 1469 metabolites were commonly measured and 1103 metabolites 

can be matched (74%). For liver tissues, 1768 metabolites were commonly measured 

and 1310 metabolites can be matched (74%). For muscle tissues, 1625 metabolites were 

commonly measured and 1176 metabolites can be matched (72%). As a result, we 

achieved high submetabolome coverage and more than 70% of metabolites can be 

matched with different confidence levels for all 5 kinds of samples. 

3.3.2 Comparative Metabolome Analysis between Dex-treated and Control 

Groups 

Multivariate analysis was used to visualize the metabolic differences between 

Dex-treated and control groups. Principal component analysis (PCA) plots in Figure 

3.2 show a clear separation between Dex and control groups in brain, liver and muscle 

tissues, a separation with some overlapping data points in kidney tissues and little 

separation in heart tissues. The results suggest that, with Dex treatment, significant 

metabolic changes have occurred in brain, liver and muscle tissues, and some kind of 

changes have occurred in kidney, while small changes have occurred in heart. These 

observations can be inferred from clinical reports of GC therapy. For muscle tissues, it 

was reported that GC can induce weakness and atrophy.106 For liver tissues, Dex can 

cause insulin resistance and lead to hyperglycaemia107, which may disturb liver 

functions. Further, detoxify of side effects of Dex can affect the function of liver and 

kidney. For brain tissues, GC treatment may cause neuropsychiatric diseases, such as 
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anxiety, depression and psychosis,108 which may explain the huge metabolic differences 

between the two groups. 

Figure 3.2. PCA scores plot of Dex vs. control of (a) brain, (b) heart, (c) kidney, (d) 

liver, (e) muscle tissue samples. 

These observations can be further validated by univariate analysis using volcano 

plot. As we can see from Figure 3.3, metabolites with fold change (FC) > 1.2 are labeled 

in blue (up-regulated) or in red (down-regulated) with q-value < 0.05. A large number 

of significant metabolites were detected in brain, liver and muscle tissues, with 237 
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down-regulated and 290 up-regulated metabolites, 313 down-regulated and 68 up-

regulated metabolites, 174 down-regulated and 245 up-regulated metabolites detected, 

respectively. For kidney tissues, there were 140 down-regulated and 22 up-regulated 

metabolites, while for heart tissues, only 1 down-regulated and 7 up-regulated 

metabolites, consistently with the results indicated in PCA results.  

Figure 3.3. Volcano plot of (a) brain, (b) heart, (c) kidney, (d) liver, (e) muscle tissue 

samples. Metabolites with fold change (FC) > 1.2 were labeled in blue, and metabolites 

with FC < 0.83 were labeled in red, both with q-value < 0.05. 
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Figure 3.4. Overview of metabolic pathway analysis of brain tissues. 

3.3.3 Pathway Analysis  

Using all the positively identified metabolites, pathway analysis was carried out 

with Metaboanalyst 4.0 for all five kinds of tissues respectively. These compounds were 

matched to the rat pathway library, which includes 81 pathways. Depending on how 

many hits each pathway had and the importance factors of the hit compounds, a 

pathway impact and a p-value were calculated for each pathway. Taking brain’s 

pathway result as an example in Figure 3.4, -log (p-value) is plotted against the pathway 

impact. We compared the affected pathways among all 5 kinds of tissues and found 6 

commonly shared pathways with impact > 0.3, including “Arginine and proline 

metabolism”, “Vitamin B6 metabolism”, “Phenylalanine metabolism”, “Phenylalanine, 

tyrosine and tryptophan biosynthesis”, “Valine, leucine and isoleucine biosynthesis”, 

and “Cysteine and methionine metabolism”.  

Figure 3.5. Pathway of arginine and proline metabolism of brain tissue. 
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Among these common pathways, we selected “Arginine and proline metabolism” 

as an example (Figure 3.5) for an in-depth discussion, which is one of the most affected 

pathways for all 5 kinds of tissues. On the pathway schematic, light blue means the 

metabolites cannot be positively identified, but is used as a background for enrichment 

analysis. The 5 metabolites with other colors (varying from yellow to red) are the 

positively identified metabolites with different levels of significance, including proline, 

ornithine, putrescine, spermidine and gamma-aminobutyric acid. A red metabolite has 

a more significant change between the Dex and control groups than a yellow metabolite. 

With the help of pathway analysis, we can study and compare the importance of some 

pathways and metabolites among the 5 kinds of tissues. This would facilitate our 

understanding of the effect of Dex treatment. Figure 3.6 shows the relative metabolite 

concentrations of putrescine, spermidine, ornithine, proline in the control and Dex 

groups for all 5 kinds of tissues. The significance of these metabolites is briefly 

discussed in the following section. 

Figure 3.6. (a) Box plots of the relative concentrations of (a) 1,4-diaminobutane, (b) 

spermidine, (c) ornithine, (d) proline. 

Putrescine is also known as 1,4-diaminobutane, and together with spermidine, 

they are all polyamines. Polyamines play crucial roles in cell proliferation and 

differentiation.109 In this work, putrescine was up-regulated in Dex group in liver and 
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muscle tissues; while its concentration also increased in heart and kidney tissues, the 

increase was not significant. Thus, Dex treatment may affect proliferative capacity. 

Interestingly, the level of spermidine remained stable for all tissues (not detected in 

liver tissue). Previously, a study of Dex treatment on spinal cord injury reported similar 

results, in which increased putrescine was observed, while spermidine remined 

constant.110 It may reflect the neurotrophic and regenerative effects of polyamines from 

Dex stimulation. 

Ornithine is a non-proteinogenic amino acid. Derivatization of ornithine 

produces polyamines such as, putrescine, spermidine, essential for cell proliferation.111 

Dex treatment can reduce the expression and activity of ornithine decarboxylase in 

spleen, but not in the liver or kidney, which can catalyze decarboxylation of ornithine 

to produce polyamines.112 From our results, the ornithine level was not affected, except 

in brain tissues in which it was slightly increased.  

Proline is a non-essential proteinogenic amino acid. Hydroxylation of proline 

plays important roles in the stability of collagen. Injection of Dex and proline can 

suppress bone collagen synthesis.113 Proline can also be related with 

neuropathophysiology of some disorders.114 From our results, proline level in brain 

samples significantly increased after Dex treatment, which may cause brain damage. 

3.4 Conclusion 

In this work, we applied CIL LC-MS method to study the effect of Dex 

treatment on amine/phenol submetabolome of rats with high coverage. Five kinds of 

rat tissue samples were analyzed, including brain, heart, kidney, liver and muscle. 

Significant metabolic differences were observed between Dex and control groups in 

brain, liver and muscle tissues, while some metabolic differences were detected in 

kidney tissues and minor differences for heart tissues. We also performed pathway 

analysis using positively identified metabolites for all 5 kinds of tissues and many 

common pathways were found, which means the Dex treatment had some common 

effects on different tissues. Of those pathways, one of the most affected pathways, 

Arginine and proline metabolism, was taken for in-depth discussion. The biological 

significance of involved identified metabolites, including putrescine, spermidine, 

ornithine, proline, were investigated. In the future, we will carry out other labeling 

techniques, such as carboxylic acids44, hydroxyls43, ketones and aldehydes45, to achieve 
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higher metabolome coverage. We will also combine the results from lipidomic studies, 

which will help us understand more about the effect of Dex treatment. 
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Chapter 4 Development of Chemical Isotope Labeling LC-MS 

Methods for Metabolomics Studies of Rheumatoid Arthritis Disease 

4.1 Introduction 

Rheumatoid arthritis (RA) is a common and chronic symmetric polyarticular 

arthritis. In this autoimmune disease, tissues are mistakenly attacked by the immune 

system.115 An estimated 24.5 million of people are affected by RA worldwide.116 RA 

mainly affects the small joints of hands, feet and cervical spin, causing inflammation in 

the synovium. The cause of RA is unknown. Hypothesis include genetic and 

environmental factors, e.g. smoking. Currently, there is no cure for RA. Treatment just 

helps reduce joint pain and inflammation. What is worse, the diagnosis of RA is 

difficult. Diagnosis is based on comprehensive clinical features, including joint 

swelling, X-ray testing, rheumatoid factor testing, etc., while early diagnosis is 

hampered by accuracy and sensitivity of currently available biomarkers. In this work, 

we hunt for metabolite biomarkers for early stage diagnosis of RA with good sensitivity 

and precision.  

Current conventional biomarkers includes the measurement of RA factor, anti-

cyclic-citrullinated-peptide (anti-CCP) antibody testing,117 and the antibody against the 

Fc region of IgG.118 Besides, inflammation markers, erythrocyte sedimentation rates, 

and C-reactive protein (CRP) can also be used to monitor disease development of 

RA.119 However, the relatively high false positive rate remains a significant problem. 

Metabolomics is a powerful tool to characterize the complex biochemical phenotypes, 

and is an emerging field for biomarker discovery. Many metabolomics studies of RA 

have been reported.120-121 But, their coverage of the metabolome is not high. As a result, 

new techniques are required to improve metabolome coverage as well as quantification 

accuracy. 

Previously, we reported the use of high-performance chemical isotope labeling 

(CIL) LC-MS method for the profiling of amine/phenol submetabolome.23 This 

derivatization method can significantly improve LC separation, MS sensitivity, and also 

provide precise relative quantification result. In this work, we applied CIL LC-MS to 

analyze amine/phenol and carboxyl submetabolomes of serum samples from two 

cohorts of RA patients. We first characterized the submetabolome changes between the 



38 
 

early RA and healthy control groups, and identified several significantly changed 

metabolites as biomarker candidates. Then, we compared the metabolic differences 

between RA patients on methotrexate (MTX) treatment and without MTX treatment 

and healthy controls, and between RA patients with anti-CCP antibody positive and 

with anti-CCP antibody negative and controls. The discovered metabolites were 

consistently discriminatory, validating their good consistency. We also compared the 

metabolite changes between responders and non-responders and discovered potential 

biomarkers for disease activity, which may help the administration of medication in the 

clinic. These findings indicate that RA patients can be well differentiated from healthy 

controls and the discovered biomarkers can be helpful for both diagnosis and 

medication administration if further validated. 

4.2 Experimental Section 

Figure 4.1. Workflow of the project. 

Figure 4.1 shows the whole workflow of this work. It mainly includes the 

following steps: (1) serum sample collection and aliquoting; (2) dansylation and DmPA 

bromide labeling; (3) LC-UV quantification of total amount of dansyl labeled 



39 
 

metabolites in each individual sample and pooled sample for sample amount 

normalization; (4) mixing of 12C-labeled individual samples and 13C-labeled pooled 

sample in equal amounts; (5) LC-QTOF-MS analysis of 12C-/13C- mixtures; (6) data 

processing using R programs, including peak pair picking, peak pair filtering, peak pair 

ratio calculation and peak pair grouping; (7) metabolite identification; and (8) uni- and 

multi-variate statistical analysis. Detailed experimental conditions are described below.  

4.2.1 Serum Sample Collection and Aliquoting 

A total of 250 serum samples were taken from two RA cohorts. Cohort A 

samples were collected from 50 RA patients, with 39 females (mean age 49.9) and 11 

males (mean age 47.8), symptom duration <3 years, disease activity score (DAS) >3.7, 

naïve to b-DMARD, and 50 age and sex-matched healthy controls. They were labeled 

as B1D and B1C, respectively. Cohort B samples were collected from 50 RA patients, 

with 40 females (mean age 53.4) and 10 males (mean age 57.2), symptom duration <5 

years, both pre- and post- (3 months) treatment with TNFi, as well as another 50 age 

and sex-matched healthy controls. Cohort B samples were labeled as B2D1, B2D2, 

B2C, respectively. Also, the cohort A samples were divided into with-methotrexate 

(MTX) treatment (Y) group and without-MTX treatment (N) group. Moreover, from 

the perspective of anti-CCP antibody testing, the two cohorts of RA patients can be 

divided into anti-CCP positive (P) and anti-CCP negative (N) groups. Besides, cohort 

B RA samples with disease activity score (DAS) change of >1.2 and Post DAS < 3.2 

are defined as responders (r), others are defined as non-responders (nr). So, cohort B 

RA samples include B2D1 r, B2D1 nr, B2D2 r, B2D2 nr, four groups in total. The 

analysis about RA, MTX treatment, anti-CCP responders and responders was all 

performed in this work. 

Samples were non-fasting blood samples, taken at least 2 hours after rising from 

the bed at different facilities. After centrifuge, serum samples were taken and aliquoted 

and stored at -80 oC and shipped. In our lab, each serum sample was split into 8 aliquots, 

with 2 x 15 µL for amines/phenols analysis, 2 x 15 µL for carboxylic acids analysis, 2 

x 15 µL for back-up, 35 µL for making the pooled sample. All the remaining samples 

were stored leave in. These aliquots were all stored in -80 oC freezer until further 

analysis. 
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4.2.2 Dansyl Labeling 

The dansyl labeling method was adapted from a previously reported protocol.23 

Briefly, 15 μL of individual serum sample (experimental duplicates) or 15 μL of the 

pooled sample was thawed in 4 °C freezer and then spun down. The sample was mixed 

with 45 µL of methanol, and then the mixture was stored at -20 °C for 2 hours to 

precipitate the proteins. After this, the mixture was centrifuged at 16,000 g for 15 min 

and 45 µL of supernatants was taken and dried using a Speed-Vac centrifugal 

evaporator. The sample was re-dissolved to 37.5 µL with 2:1 water/ACN. Then, 12.5 

µL of 250 mM sodium carbonate/sodium bicarbonate buffer was added to the samples 

to adjust the pH to 10. The solution was mixed with 25 µL of freshly prepared 12C-

DnsCl solution (18 mg/mL) (for light labeling, individual samples) or 13C-DnsCl 

solution (18 mg/mL) (for heavy labeling, pooled sample). After incubation for 45 min 

at 40 °C, 5 µL of 250 mM sodium hydroxide solution was added to the reaction mixture 

to quench the reaction. The solution was then incubated at 40 °C for another 10 min. 

Finally, 25 µL of formic acid (425 mM) in 1:1 water/ACN was added to make the 

solution acidic.  

4.2.3 DmPA Bromide Labeling 

The DmPA bromide labeling method was adapted from a previous protocol.122 

First, 15 µL of the individual or pool sample was thawed at 4 °C and then spun down. 

The sample was mixed with 45 µL of ACN. The mixture was then stored at -20 °C for 

2 h to precipitate the proteins, and centrifuged at 16,000 g for 15 min. 45 µL of 

supernatant was taken and mixed with 10 µL of 0.5 M triethanolamine and 25 µL of 

freshly prepared 12C-DmPA bromide solution (10 mg/mL) (for light labeling) or 13C-

DmPA bromide solution (10 mg/mL) (for heavy labeling). The mixture was then 

incubated at 80 °C for one h. After cooling down at -20°C, 20 µL of 0.2 M Tri-Gly was 

added followed by 30-min incubation at 80 °C to quench the reaction.  

4.2.4 LC-UV Quantification 

The total dansyl-labeled metabolite amount of each sample was quantified and 

normalized using a protocol previously reported based on LC−UV measurement.86 The 

instrument for detection was a Waters ACQUITY UPLC system with photodiode array 

(PDA) detector. A Phenomenex Kinetex reversed-phase C18 column (50 mm × 2.1 mm, 
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1.7 μm particle size, 100 Å pore size) was used to achieve a fast step-gradient. 

According to the quantification results, 12C-labeled individual samples and the 13C-

labeled pooled sample were mixed in equal amounts for both dansyl and DmPA 

labeling, respectively. Besides, 12C- and 13C-labeled pooled samples were mixed in 

equal amounts serving as a QC sample.  

4.2.5 LC-QTOF-MS Analysis 

Samples were analyzed using a Maxis Ⅱ Quadrupole Time-of-flight (QTOF) 

mass spectrometer (Bruker, Billerica, MA) with electrospray ionization (ESI), coupled 

with an UltiMate 3000 UHPLC (Thermo Scientific, MA). An Agilent Eclipse Plus RP 

C18 column (100 × 2.1 mm, 1.8 μm particle size,) was used. All mass spectra were 

collected in the positive ion mode. All the samples were injected in random order. QC 

samples and amino acid standards were injected every 10 runs to monitor the 

performance of the LC-MS. For DmPA labeling, 12C- and 13C-labeled blank samples 

were also injected every 10 runs to be used for blank peak pair subtraction. 

4.2.6 Data Processing, Metabolite Identification and Statistical Analysis  

After LC-QTOF-MS analysis, entire centroid peak lists were exported from 

Bruker Data Analysis software.  IsoMS87 was used to pick peak pairs, calculate peak-

pair intensity ratios, group the peak pairs found in adjacent spectra. After the alignment 

of same peak pairs from different runs using Alignment program, the Zerofill program 

was applied to fill in missing values.  

Based on accurate mass and retention time matches, positive metabolite 

identification was performed using dansyl standard library search, which contains 273 

unique dansylated amines/phenols, and acid standard library search, which contains 188 

acid standards. Based on accurate mass search, putative identification was performed 

by searching the Human Metabolome Database (HMDB) (www.hmdb.ca) and the 

Evidence-based Metabolome Library (EML) using MycompoundID 

(http://www.mycompoundid.org/).  

Principal components analysis (PCA), partial least squares discriminant 

analysis (PLS-DA) and receiver operating characteristic (ROC) curve analysis was 

carried out using MetaboAnalyst84 software (McGill University, Montreal, Canada). 

The fold change and p-value between groups was calculated using Microsoft Excel. 
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Volcano plots were constructed using OriginPro 8.0 (OriginLab). The q-value, 

multiple-testing-corrected p-value, was calculated using R and BioConductor 

(www.bioconductor.org). 

4.3 Results and Discussion 

4.3.1. Analysis of Amine- and Phenol- Submetabolome 

4.3.1.1 Metabolite Detection 

An average of 5804 ± 302 peak pairs or metabolites were detected in duplicate 

experiments. In total, 3415 metabolites were commonly detected in more than 80% of 

the 500 samples. Using the dansyl standard library search, we positively identified 116 

metabolites. For the remaining metabolites, using MyCompoundID in the HMDB 

library with accurate mass search and a mass accuracy tolerance of 10 ppm, we 

putatively identified 659 metabolites. In the EML database with 1 reaction, with 

accurate mass search and a mass accuracy tolerance of 10 ppm, we putatively identified 

1264 metabolites. Thus, for the measured 3415 metabolites, a total of 2039 metabolites 

can be matched (60%). 

Figure 4.2. (a) PCA and (b) PLS-DA scores plot of B1C vs. B1D vs. B2C vs. B2D1 vs. 

B2D2 (R2=0.897, Q2=0.773 for PLS-DA plot) for dansylation labeling. 

4.3.1.2 Comparative Metabolome Analysis for RA Biomarker Discovery 

We first compared metabolome differences between healthy control and RA 

groups, and Appendix Figure A4.1 shows PCA scores plot of the whole data sets with 

QC samples. The QC samples cluster together closely, suggesting the good instrument 

performance and data quality. However, two outliers of duplicates of sample #152, in 
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B2D1 group, were observed. This sample also had abnormal results in terms of 

concentration. It turned out to be a urine sample, wrongly collected during sample 

preparation. Thus, it was excluded.  

After data exclusion, Figure 4.2 displays PCA and PLS-DA scores plots of all 

the five groups of samples. In the PCA plot, we can see two control groups from two 

cohorts cluster together on the right, while three RA groups cluster together on the left. 

There was a separation between control and RA groups, meaning there were significant 

metabolic differences between the two groups. The separation can be seen more clearly 

in the PLS-DA plot, although there are still many overlapping data points. Besides, the 

separation between the control and RA groups was observed for both two cohorts, 

which further validated the metabolomic differences. 
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Figure 4.3. Volcano plot of the changes of metabolites between (a) B1C and B1D, (b) 

B2C and B2D1, (c) B2C and B2D2. Metabolites with fold change (FC) > 1.5 or FC < 

0.67 and q-value < 0.05 were highlighted. 

Then univariate analysis, volcano plot, was used to determine significantly 

changed metabolites that separated RA from control groups. Figure 4.3 shows three 

volcano plots between control and RA for two cohorts of samples. Of those, metabolites 

with an average fold change greater than 1.5 (up-regulated) are marked in blue, and 

those with fold change smaller than 0.67 (down-regulated) are marked in red, both with 

q-values smaller than 0.05. When comparing B1C versus B1D (Figure 4.3a), 256 

metabolites were down-regulated, and 247 were up-regulated in B1D. Among these 

503 significant metabolites, 18 can be positively identified (see Supplemental Table 
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S4.1 for the list). When comparing B2C versus B2D1 (Figure 4.3b), 92 metabolites 

were down-regulated, and 278 were up-regulated in B2D1. Among these 370 

significant metabolites, eight can be positively identified (see Supplemental Table S4.2 

for the list). When comparing B2C versus B2D1 (Figure 4.3c), 184 metabolites were 

down-regulated, and 259 were up-regulated in B2D2. Among these 443 significant 

metabolites, 18 can be positively identified (see Supplemental Table S4.3 for the list). 

We compared the metabolites listed in Supplemental Table S4.1, S4.2 and S4.3 and 

found four common metabolites, cystine, o-phosphoethanolamine, gamma 

glutamylglutamic acid, glycyl-valine, with similar fold changes.  
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Figure 4.4. ROC curve built using 4 common positively significant metabolites: cystine, 

o-phosphoethanolamine, gamma glutamylglutamic acid, glycyl-valine, for (a) B1C vs. 

B1D, (b) B2C vs. B2D1, (c) B2C vs. B2D2. 
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Receiver operating characteristic (ROC) curves were generated by random 

forest method to test differentiating power of biomarker candidates. Firstly, we input 

all the significant metabolites into Metaboanalyst, and then different numbers of the 

top-ranked metabolites were used to build ROC curves. Appendix Figure A4.2 shows 

a series of ROC curves built with different numbers of variables. However, even with 

only top five metabolites, the discrimination reached highest with AUC around 1 for all 

the three kinds of comparisons, meaning the metabolic differences between RA and 

control were very significant. For clinical diagnostic purposes, we want to achieve high 

sensitivity and specificity while using a minimal number of biomarkers. Since we had 

four common identified significant metabolites, we tested the discriminating power of 

the biomarker panel formed with these four metabolites. From Figure 4.4a, for B1C 

versus B1D, the AUC value of the ROC curve was 0.947, within the range of 0.874-

0.993 at the 95% confidence interval, and the discrimination of RA from control can be 

achieved at 89% sensitivity and 88% specificity. For B2C versus B2D1 (Figure 4.4b), 

the AUC value of the ROC curve was 0.968, within the range of 0.92-0.997 at the 95% 

confidence interval, and the discrimination can be achieved with both sensitivity and 

specificity at 91%. For B2C versus B2D2 (Figure 4.4c), the AUC value of the ROC 

curve was 0.951, within the range of 0.879-0.991 at the 95% confidence interval, and 

the discrimination can be achieved with both sensitivity and specificity at 89%. The 

results suggest the biomarker panel with these four metabolites had good performance 

for both cohort A and cohort B samples. Besides, as we can see from Figure 4.5, the 

box plots of these four metabolites show that they constantly up- or down-regulated in 

both cohort A and B, and the differences between RA and control were very significant. 

We also added more metabolites into the biomarker panel to further improve 

discriminating power. Three common unidentified significant metabolites, dansyl-702, 

dansyl-9056, dansyl-14033, were found with highly ranked univariate AUC values 

among all the three kinds of comparisons. As we can see from Appendix Figure A4.3, 

the ROC curves of newly formed biomarker panel with these seven common 

metabolites had much improved performance for all the three kinds of comparisons 

with AUC value of almost 1. These seven metabolites don’t correlate with age, gender 

and symptom durations. If those three unidentified metabolites could be finally 

identified, and all the seven metabolites could be further validated using large cohorts 

of samples, they would serve as good biomarkers for the early diagnosis of RA.  
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Figure 4.5. Box plots of the relative concentrations of (a) o-phosphoethanolamine, (b) 

cystine, (c) gamma glutamylglutamic acid, (d) glycyl-valine in the RA and control 

groups in 2 cohorts. 
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Figure 4.6. PLS-DA scores plot of (a) B1C vs. N (R2=0.988, Q2=0.913) and (c) B1C 

vs. Y (R2=0.981, Q2=0.915). The ROC curve built for (b) B1C vs. N using 19 identified 

significant metabolites and for (d) B1C vs. Y using 14 identified significant metabolites. 

Here, N refers to RA without MTX treatment and Y refers to RA with MTX treatment. 

4.3.1.3 Comparative Metabolome Analysis of RA with and without Methotrexate 

Treatment 

Methotrexate (MTX) is an immune system suppressant and it can be used to 

treat RA,123 with relatively low costs, especially compared with much more expensive 

biological treatments. In this work, for cohort A RA patient, 30 of them had MTX 

treatment (Y), while the remaining 20 patients were not treated with MTX (N). We 

compared N versus control and Y versus control, and then studied the differences 

between these two comparisons.  

As we can see from Figure 4.6, from PLS-DA plot, we observed a clear 

separation between B1C and N, and between B1C and Y. And from volcano plot 

(Appendix Figure A4.4), when comparing B1C versus N 272 down-regulated 

metabolites and 286 up-regulated metabolites were detected in without MTX treatment 

RA patients. While for B1C versus Y, 260 down-regulated metabolites and 218 up-

regulated metabolites were detected in with MTX treatment RA patients. 19 significant 

metabolites were positively identified for B1C versus N and 14 metabolites were 

identified for B1C versus Y. Using these metabolites, respectively, the AUC value of 

the ROC curve was 0.982 with sensitivity at 93% and specificity at 94% for B1C versus 

N, and the AUC value of the ROC curve was 0.971 with both sensitivity and specificity 

at 92% for B1C versus Y. These results suggest that, for both with and without MTX 

treatment RA samples, the metabolic differences between RA and control were very 

significant. We also compared the identified significant metabolites and found 12 

common metabolites between these two comparisons. These metabolites were listed in 

Supplemental Table S4.4, with the information of fold changes and p value. Most of 

these metabolites had a little smaller although similar fold changes in the comparison 

of with MTX treatment versus control, which means the MTX treatment had little effect 

on patients’ metabolome. The four previously detected diagnostic biomarkers, cystine, 

o-phosphoethanolamine, gamma glutamylglutamic acid, glycyl-valine, for B1C versus 

B1D were also commonly detected here.  
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4.3.1.4 Comparative Metabolome Analysis of RA with Anti-CCP Positive and 

Negative 

Anti-CCP antibody assays, with high sensitivity, specificity and reproducibility, 

are important for the diagnosis of RA.117 In this work, there were 26 anti-CCP positive 

patients and 23 anti-CCP negative patients in cohort A. In cohort B, there were 36 anti-

CCP positive patients and 14 anti-CCP negative patients. Anti-CCP positive patients 

usually had more severe symptoms. Here, we compared the metabolic differences 

between anti-CCP positive patients and healthy controls, and between anti-CCP 

negative and healthy controls. And the discovered metabolite biomarkers could work 

together with anti-CCP assays for the diagnosis of RA. 

Figure 4.7. PLS-DA scores plot of (a) B1C vs. B1DP (positive) vs. B1DN (negative) 

(R2=0.964, Q2=0.852) and (b) B2D1P (1positive) vs. B2D1N (1negative) vs. B2D2P 

(2positive) vs. B2D2N (2negative) (R2=0.914, Q2=0.714). 

From Figure 4.7, we can see that, for both 2 cohorts, there was a clear separation 

on PLS-DA plot between RA and healthy controls, which has also been indicated from 

previous comparisons. For cohort A samples (Figure 4.7a), we can also see some 

separations between anti-CCP negative and anti-CCP positive groups. We also 

identified significant metabolites with fold change > 1.5 or < 0.67 and q-value < 0.05. 

The common identified significant metabolites were listed in Supplemental Table S4.5. 

We can see that the fold changes of these metabolites were very similar, meaning the 

good consistency of these metabolites and the metabolic differences between anti-CCP 

positive and anti-CCP negative were not huge. Similarly, for cohort B samples, we can 

see some not obvious separations between anti-CCP negative and anti-CCP positive for 
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both pre- and post-treatment RA samples (Figure 4.7b). In the list of common 

significant metabolites (Supplemental Table S4.6), we saw similar fold changes. What 

is worth to mention is that, the four previously detected diagnostic biomarkers, cystine, 

o-phosphoethanolamine, gamma glutamylglutamic acid, glycyl-valine, for RA versus 

healthy controls were also commonly detected here. These results suggest that the 

metabolic differences between either positive or negative anti-CCP RA patients and 

healthy controls can be constantly detected, and the metabolite biomarkers could be 

used for the diagnosis of RA. 

4.3.1.5 Comparative Metabolome Analysis between Responders and Non-

Responders 

The Disease Activity Score (DAS) is a clinical assessment of RA disease 

activity, which combines information from swollen joints, tender joints, the acute phase 

response and general health.124 In clinic, to evaluate RA clinical trials, the change in 

DAS and the level of DAS is used. According to European League Against Rheumatism 

(EULAR) criteria125, after treatment, the RA patients with DAS change > 1.2 and Post 

DAS < 3.2 are defined as responders (r). Others are defined as non-responders (nr). In 

this work, for cohort B RA patients, there were 25 responders and 25 non-responders. 

We compared the metabolic differences between r and nr for both pre- and post- 

treatment samples, and also the metabolic differences between pre- and post- treatment 

for both r and nr samples. These comparisons should be useful for drug administration 

and treatment monitoring, if we could find some metabolic changes. 

Figure 4.8 shows the PLS-DA scores plots for the comparison between B2D1 r 

and B2D1 nr and B2D2 r and B2D2 nr. We can see that B2D1 nr and B2D1 r overlap 

together badly, while B2D2 nr and B2D2 r displays some separation. Besides, we can 

see a better separation between B2D1 r and B2D2 r, than between B2D1 nr and B2D2 

r. These results indicate that with treatment, the responders had greater metabolic 

changes. 



52 
 

Figure 4.8. (a) 2D and (b) 3D PLS-DA scores plot of B2D1 r vs. B2D1 nr vs. B2D2 r 

vs. B2D2 nr (R2=0.92, Q2=0.561). 

Since the not large number of samples for these comparisons, univariate 

analysis should be more reliable. Figure 4.9 shows the volcano plots of the four kinds 

of comparisons. For B2D1, when comparing r versus nr (Figure 4.9a), 3 down-regulated 

metabolites and 6 up-regulated metabolites were detected in B2D1 r, while comparing 

B2D2 r versus B2D2 nr (Figure 4.9b), 13 down-regulated metabolites and 3 up-

regulated metabolites were detected in B2D2 r. Among these significant metabolites, 

none can be positively identified for B2D1, while 1 metabolite, phenyl-Leucine, can be 

identified for B2D2. Since the metabolic differences between r and nr in pre-treatment 

samples can be especially helpful for drug administration in the beginning of treatment, 

we studied more about the 9 unidentified metabolites. We found one metabolite, dansyl-

11441, had a good univariate AUC value of 0.78. It was also detected to have good 

power to differentiate RA from controls (AUC of 0.84 for B2C versus B2D1 and AUC 

of 0.83 for B2C versus B2D2). These results indicate that, the metabolomic differences 

between responders and non-responders for both before and after treatment RA patients 

were not so significant. But we can still find some encouraging results. One reason for 

that was the relatively small sets of samples. In the next step, we will add cohort C,  

which contains more samples of responders and non-responders. We expect to obtain 

more results from these comparisons with more samples. 
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Figure 4.9. Volcano plot of the changes of metabolites between (a) B2D1 r and B2D1 

nr, (b) B2D2 r and B2D2 nr, (c) B2D1 nr and B2D2 nr, (d) B2D1 r and B2D2 r. 

Metabolites with fold change (FC) > 1.5 or FC < 0.67 and q-value < 0.05 were 

highlighted. 

We also compared the metabolomic changes due to treatment for both non-

responders and responders. In Figure 4.9c, for non-responders, there was only one up-

regulated metabolite detected in post-treatment group and it cannot be identified. In 

comparison, for responders, 51 down-regulated and 16 up-regulated metabolites were 

detected in post-treatment group, as we can see from Figure 4.9d. Four of them, 

theophylline, phenyl-Leucine, phenylalanylphenylalanine, histidinyl-alanine, were 

positively identified. These results suggest that responders showed significant 

metabolic differences after treatment, while the metabolome of non-responders 

remained relatively constant for both pre- and post-treatment. These results are 

important for the correlation analysis between DAS changes and metabolite 

concentration changes, from which we can study the disease activity. Still, as mentioned 

before, we expect to gain more results after the analysis of cohort C samples. 

4.3.2 Analysis of Carboxyl Submetabolome 

4.3.2.1 Metabolite Detection 

Compared with dansyl labeling, DmPA labeling has much higher background, 
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which may be due to the contaminants from experimental plastic vials. As a result, 

blank subtraction was performed after zerofilling. After that, totally, 2114 metabolites 

were commonly detected in more than 80% of the 500 samples. Using acid standard 

library search, we positively identified 21 metabolites. For the remaining metabolites, 

using MyCompoundID in the HMDB library with accurate mass search and a mass 

accuracy tolerance of 10 ppm, we putatively identified 333 metabolites. In the EML 

database with 1 reaction, with accurate mass search and a mass accuracy tolerance of 

10 ppm, we putatively identified 1206 metabolites. Thus, for the measured 2114 

metabolites, a total of 1560 metabolites can be matched (74%). 

4.3.2.2 Comparative Metabolome Analysis for RA Biomarker Discovery  

Figure 4.10. (a) PCA and (b) PLS-DA scores plot of B1C vs. B1D vs. B2C vs. B2D1 

vs. B2D2 (R2=0.773, Q2=0.592 for PLS-DA plot) for DmPA labeling. 

Multivariate analysis was first performed to compare metabolic differences 

between RA and healthy controls. Appendix Figure A4.5 displays PCA scores plot of 

the whole data sets with QC samples. The good cluster of QCs indicated the good 

instrument performance. Figure 4.10 shows PCA and PLS-DA plots of all the 5 groups 

of samples without QC. From the PCA plot, the 5 groups of samples almost overlap 

together and the separation between RA and control is not clear. From the PLS-DA plot, 

we can see a separation between RA and control, and it was observed for both two 

cohorts. Besides, the two control groups almost overlap together, which was expected 

and validated the observed metabolomic differences. 
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Figure 4.11. Volcano plot of the changes of metabolites between (a) B1C and B1D, (b) 

B2C and B2D1, (C) B2C and B2D2. Metabolites with fold change (FC) > 1.2 or FC < 

0.83 and q-value < 0.1 were highlighted. 

Then volcano plots were used to determine significantly changed metabolites 

between RA and control groups. Metabolites with an average fold change greater than 

1.2 or smaller than 0.83 and q-values smaller than 0.1 were considered as significant. 

When comparing B1C versus B1D (Figure 4.11a), 96 metabolites were down-regulated, 

and 388 were up-regulated in B1D. Among these 484 significant metabolites, 9 can be 

positively identified. When comparing B2C versus B2D1 (Figure 4.11b), 57 down-

regulated and 244 up-regulated metabolites were found in B2D1, and 6 can be 

positively identified. When comparing B2C versus B2D1 (Figure 4.11c), 159 down-
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regulated and 53 up-regulated metabolites were found, and 4 of them can be positively 

identified. We compared these identified significant metabolites for all the 3 kinds of 

comparisons, 1 metabolite, azelaic acid, were found with similar fold changes.  
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Figure 4.12. ROC curve built using 5 common significant metabolites, azelaic acid, 

acid-9545, acid-23681, acid-23895, acid-23900, for (a) B1C vs. B1D, (b) B2C vs. 

B2D1, (c) B2C vs. B2D2. 

ROC curves were built to test the differentiating power of potential biomarker 

candidates. Using all the significant metabolites, Appendix Figure A4.6 shows a series 

of ROC curves built with different numbers of variables. When more variables were 

included for the curve building, an increased discrimination power is observed. With 

top 15 metabolites, the performance almost reaches maximum with AUC value greater 

than 0.96 for all the 3 kinds of comparisons. Then we tried to reduce the number of 

metabolites in the biomarker panel. Previously, we found one common identified 

significant metabolite, azelaic acid. However, with only this metabolite, the 

discrimination power of ROC was not high (AUC=~0.5). Then we added 4 common 

unidentified significant metabolites, acid-9545, acid-23681, acid-23895, acid-23900, 

which were selected from top 30 metabolites ranked by univariate AUC values among 

all the three kinds comparisons, to form a stronger biomarker panel. From Figure 4.12a, 

for B1C versus B1D, the AUC value of the ROC curve was 0.919, within the range of 

0.856-0.969 at the 95% confidence interval, and the discrimination of RA from control 

can be achieved at 86% sensitivity and 86% specificity. For B2C versus B2D1 (Figure 

4.12b), the AUC value of the ROC curve was 0.957 with sensitivity at 90% and 

specificity at 91%. For B2C versus B2D2 (Figure 4.12c), the AUC value of the ROC 

curve was 0.888 with both sensitivity and specificity at 80%. Besides, as we can see 

from Figure 4.13, the box plots of these 5 metabolites show that, they constantly up- or 

down-regulated in both cohort A and B, and the differences between RA and control 

were very significant. These results suggested the biomarker panel with these 5 

metabolites had good performance for both cohort 1 and cohort 2 samples.  
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Figure 4.13. Box plots of the relative concentrations of (a) azelaic acid, (b) acid-9545, 

(c) acid-23681, (d) acid-23895, (e) acid-23900 in the RA and control groups in 2 

cohorts. 

4.3.2.3 Comparative Metabolome Analysis of RA with and without Methotrexate 

Treatment 

The comparison of RA with MTX treatment versus control and RA without 

MTX treatment versus control for DmPA labeling data was performed. Any differences 

were studied. From PLS-DA plot of Figure 4.14a, c, we observed a separation between 

B1C and MTX N, and between B1C and MTX Y. And from volcano plot (Appendix 

Figure A4.7), when comparing B1C versus MTX N, 116 down-regulated metabolites 

and 250 up-regulated metabolites were detected in without MTX treatment RA patients, 

while for B1C versus Y, 140 down-regulated metabolites and 429 up-regulated 

metabolites were detected in with MTX treatment RA patients. Six significant 

metabolites were positively identified for B1C versus N and 13 metabolites were 
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identified for B1C versus Y. Using these metabolites, respectively, the AUC value of 

the ROC curve was 0.877 with both sensitivity and specificity at 79% for B1C versus 

N (Figure 4.14b), and the AUC value of the ROC curve was 0.861 with both sensitivity 

and specificity at 79% for B1C versus Y (Figure 4.14d). These results suggest that, for 

both with and without MTX treatment RA samples, the metabolic differences between 

RA and control were significant. Besides, we also compared the identified significant 

metabolites and found 4 common metabolites between these two comparisons and these 

metabolites were listed in Supplemental Table S4.7, with the information of fold 

changes and p value. We can see that, most of these metabolites had similar fold 

changes, meaning the effect of MTX treatment was not strong.  

Figure 4.14. PLS-DA scores plot of (a) B1C vs. N (R2=0.943, Q2=0.746) and (c) B1C 

vs. Y (R2=0.951, Q2=0.801). The ROC curve built for (b) B1C vs. N using 6 identified 

significant metabolites and for (d) B1C vs. Y using 14 identified significant 



60 
 

4.3.2.4 Comparative Metabolome Analysis of RA with Anti-CCP Positive and 

Negative 

We also compared the metabolic differences between anti-CCP positive RA 

patients and healthy controls, and between anti-CCP RA negative and healthy controls 

for DmPA labeling results. From the PLS-DA plot of Figure 4.15, we can see that, for 

both 2 cohorts, there was a separation between RA and healthy controls. For cohort A 

samples (Figure 4.15a), we can also see some separations between anti-CCP negative 

and anti-CCP positive groups. We also identified significant metabolites with fold 

change > 1.2 and q-value < 0.1, and the common identified significant metabolites were 

listed in Supplemental Table S4.8a. The fold changes of these metabolites were very 

similar, meaning the good consistency of these metabolites and the metabolic 

differences between anti-CCP positive and anti-CCP negative were not that significant. 

Similarly, for cohort B samples, we can see some not obvious separations between anti-

CCP negative and anti-CCP positive for both pre- and post-treatment RA samples 

(Figure 4.15b), and from the list of common significant metabolites (Supplemental 

Table S4.8b, c), we saw similar fold changes. These results indicate that the metabolic 

differences between RA patients, either anti-CCP positive or negative, and healthy 

controls can be constantly detected, which is of great importance for the diagnosis of 

RA in clinic. 

Figure 4.15. PLS-DA scores plot of (a) B1C vs. B1DP (positive) vs. B1DN (negative) 

(R2=0.881, Q2=0.633) and (b) B2D1P (1positive) vs. B2D1N (1negative) vs. B2D2P 

(2positive) vs. B2D2N (2negative) (R2=0.817, Q2=0.609). 
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4.3.2.5 Comparative Metabolome Analysis between Responders and Non-

responders 

Similar as we did for dansyl labeling samples, we compared the metabolic 

differences between responders and non-responders for both pre- and post- treatment 

samples, and also the metabolic differences between pre- and post- treatment for both 

r and nr samples for DmPA labeling. Figure 4.16 shows the PLS-DA score plots for the 

comparison between B2D1 r and B2D1 nr and B2D2 r and B2D2 nr. We can see that 

both B2D1 nr and B2D1 r, and B2D2 nr and B2D2 r overlap together badly, meaning 

small metabolic differences between responders and non-responders in either pre- and 

post-treatment. Besides, we observed a better separation between B2D1 r and B2D2 r, 

and B2D1 nr and B2D2 nr. The results indicate that treatment caused some metabolic 

changes. We then used univariate analysis to discover significant metabolites for all the 

4 kinds of comparisons. However, we can only determine significant metabolites for 

B2D1 nr vs. B2D2 nr, in which there were 173 down-regulated and 1 up-regulated 

metabolites in Appendix Figure 4.8a. Using these metabolites, the best performance of 

ROC curve only reached an AUC value of 0.66 in Appendix Figure 4.8b, which means 

the discriminating power of these metabolites is not high. These results indicate that 

there were no significant metabolomic differences between responders and non-

responders for both before and after treatment RA patients for carboxy submetabolome.  

Figure 4.16. (a) 2D and (b) 3D PLS-DA scores plot of B2D1 r vs. B2D1 nr vs. B2D2 r 

vs. B2D2 nr (R2=0.834, Q2=0.266). 

4.4 Conclusion 

In this work, CIL LC-MS method was applied to profile amine/phenol and 



62 
 

carboxyl submetabolomes in serums of rheumatoid arthritis (RA) disease. We observed 

significant metabolic differences between RA patients and healthy controls for both 

two cohorts of samples and both two submetabolomes. For dansyl labeling, four 

common identified significant metabolites were discovered, including cystine, o-

phosphoethanolamine, gamma glutamylglutamic acid, glycyl-valine. And for DmPA 

labeling, five common significant metabolites, azelaic acid, acid-9545, acid-23681, 

acid-23895, acid-23900 were discovered. These metabolites can be potential 

biomarkers if further validated. We also found several metabolites can consistently 

differentiate control from both with and without MTX RA samples. Besides, we found 

metabolic differences between RA patients, either anti-CCP positive or negative, and 

healthy controls can be constantly detected, which was good for the diagnosis. The four 

discovered diagnostic biomarkers also showed up constantly in both MTX and anti-

CCP analysis, indicating the good consistency of these biomarkers. Due to the small 

sample set, the comparison results were not so significant. In the future, we will add 

cohort C, which have more samples and can help validate the discovered potential 

biomarkers as well as study more about the differences between responder and non-

responders. We will also do the correlation analysis between DAS changes, CRP 

changes and metabolite concentration changes to understand more about the disease 

activity. We will also try to profile other submetabolomes, such as hydroxyls43, ketones 

and aldehydes45, to reach higher metabolome coverage. 
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Chapter 5 Development of Chemical Isotope Labeling LC-MS for 

Metabolite Biomarker Discovery of Alzheimer’s Disease in a Mouse 

Model 

5.1 Introduction 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease and the 

leading cause of dementia. Currently, 5.7 million Americans are living with AD 

dementia, and the number of patients is expected to grow to more than 100 million 

worldwide by 2050.126 The clinical features of AD include progressive memory and 

cognitive impairment, problems with language and visuospatial function, and 

increasing frailty.127  Although the detailed mechanisms of AD remain to be solved, 

two histological features, neurofibrillary tangle and neuritic plaques, are hallmarks. 

Neurofibrillary tangle is a kind of intracellular filamentous lesion, composed of over-

phosphorylated microtubule-associated tau protein.128 Neuritic plaques contain 

deposits of amyloid β-peptides (Aβ), which are the cleavage products of amyloid 

precursor protein (APP).129 The diagnosis of AD in early-stage, mild cognitive 

impairment or even pre-clinical, is difficult. Currently, there is no pharmacologic 

treatment available for AD. Many failures in drug development have happened, with 

the majority focusing on Aβ. Many researchers believe that the failed clinical trials may 

be due to the too late administration of treatment.130 Medication at the early stage might 

offer better chance of slowing or even stopping the progression of AD.131 Thus, the 

discovery of highly sensitive biomarkers is important, and effective biomarkers can be 

useful for both the early diagnosis and monitoring treatment of AD. 

Traditional biomarker discovery studies are focused on transcriptomic or 

proteomic assays.132-133 Metabolomics is a powerful tool to characterize the complex 

biochemical phenotypes influenced by both environment and genetic factors.8 It is an 

emerging field for the biomarker discovery of AD. Many studies of AD have been 

reported using different kinds of analytical techniques, such as NMR10, GC/MS134, 

direct infusion electrospray mass spectrometry (DI-ESI-MS)135 and LC−MS136. These 

studies implied that the metabolomic changes can be associated with AD and 

metabolomics is able to provide promising biomarkers. However, current techniques 

can only achieve very limited metabolite coverage, and new technologies are required 

to provide higher overage and better quantitative capability. 
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Previously, our group reported a chemical isotope labeling (CIL) LC-MS 

method to achieve accurate quantification and high metabolome coverage based on 13C-

/12C-isotope dansylation labeling.23 This derivatization method can greatly enhance the 

ESI signal response, reversed-phase (RP) LC separation performance, as well as  

measurement precision. It has been well applied to different kinds of biological samples,  

including serum77, CSF78, saliva80, sweat81 and cells82.  

The transgenic mice model is the most widely used animal model for AD studies. 

Previously we reported one urine metabolomics study using TgCRND8 transgenic 

mice.79 The urine samples were collected at three different ages, and a clear 

metabolomic trajectory change was observed. Based on the promising findings of this 

work, we wanted to do further in-depth investigations of metabolic changes due to AD 

using this mouse model, not only just urine metabolomics, but serum metabolomics, 

with larger numbers of samples. Here, we report the use of 13C-/12C-dansylation 

labeling coupled with LC-MS method for parallel profiling of serum and urine 

metabolome changes. The metabolic differences between AD and control were 

observed for both male and female mouse urine samples. The trajectory changes with 

the development of disease were also studied. The discovered metabolite biomarkers 

have good discriminating power and they could be used to guide the selection of human 

metabolite biomarkers for early diagnosis of AD. 

5.2 Experimental Section 

5.2.1 Sample Collection and Processing 

In this experiment, the TgCRND8137 transgenic (Tg) mouse model of early-

onset AD with Aβ amyloid deposition was used, as well as non-Tg wild type (WT) 

littermate controls. Tg mouse model expresses a double mutant form of amyloid 

precursor protein (APP) 695 (KM670/671NLV717F) isoform, and can develop amyloid 

deposits as early as 2−3 months, which can be used for the discovery of potential 

biomarkers at the early stage of AD.   

There were 46 mice, with 24 Tg and 22 WT, as well as 23 females and 23 males, 

as Table 5.1 shows. The urine and serum samples were collected from the age of 8-9 

weeks to the age of 25-26 weeks biweekly to represent different stages of disease 

development. In total, there were 8 collection time points. Here, I only focused on the 
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analysis of urine samples, while another group member will analyze serum samples. 

For the collection of urine samples, the mouse was lifted one-by-one from the home 

cage and placed into a clean and new disposable plastic cage. The mouse was then left 

inside the cage to urinate spontaneously After that, urine was immediately pipetted from 

the floor of the cage into a 1.5 mL Eppendorf tube and snap-frozen on dry ice.  

Table 5.1. Sample information about mouse urine and serum samples.  

 

5.2.2 Dansyl Labeling 

Samples were diluted first. Briefly, 20 μL of supernatant of individual mouse 

urine sample was diluted to 80 μL by adding 60 μL of water. A pooled sample was 

prepared by aliquoting 15 μL of each of the diluted individual mouse urine samples and 

mixing them. The labeling method was adapted from a protocol in a previous report.23 

25 μL of individual mouse urine sample (experimental duplicates) or 25 μL of the 

pooled sample was mixed with 12.5 μL of ACN. Then, 12.5 µL of 250 mM sodium 

carbonate/sodium bicarbonate buffer was added to the samples. The solution was mixed 

with 25 µl of freshly prepared 12C-dansyl chloride (DnsCl) solution (18 mg/mL, for 

light labeling, individual samples) or 13C-DnsCl solution (18 mg/mL, for heavy labeling, 

pooled sample). After incubation for 45 min at 40 °C, 5 µL of 250 mM sodium 

hydroxide solution was added to the reaction mixture. The solution was then incubated 

at 40 °C for another 10 min. Finally, 25 µL of formic acid (425 mM) in 1:1 ACN/H2O 

was added. 

5.2.3 LC-UV Quantification 

The total dansyl-labeled metabolite amount of each sample was normalized 
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using a protocol previously reported,86 based on LC−UV. The instrument for detection 

was a Waters ACQUITY UPLC system with photodiode array (PDA) detector. A 

Phenomenex Kinetex reversed-phase C18 column (50 mm × 2.1 mm, 1.7 μm particle 

size, 100 Å pore size) was used to achieve a fast step-gradient. The flow rate was 0.45 

mL/min and the total run time was 6 min. According to the quantification results, 12C-

labeled individual sample and the 13C-labeled pooled sample were mixed in equal 

amounts. Besides, 12C- and 13C-labeled pooled samples were mixed in equal amounts 

serving as a quality control (QC) sample.  

5.2.4 LC-FTICR-MS Analysis 

Samples were analyzed using a Bruker 9.4 T Apex-Qe FTICR mass 

spectrometer (Bruker, Billerica, MA) with electrospray ionization (ESI), coupled with 

an Agilent capillary 1100 binary system (Agilent, Palo Alto, CA). An Agilent eclipse 

plus reversed-phase C18 column (100 × 2.1 mm, 1.8 μm particle size,) was used. All 

the samples were injected in random order. QC samples and amino acid standards were 

injected every 10 runs to monitor the performance of the LC-MS.  

5.2.5 Data Processing, Metabolite Identification and Statistical Analysis  

After LC-FTICR-MS analysis, the entire centroid peak lists, with information 

(e.g. retention time, m/z, and peak intensity), were exported from Bruker Data Analysis 

software.  IsoMS87 was used to pick peak pairs, reduce false-positive pairs such as 

dimers and common adducts, calculate peak-pair intensity ratios, and group the peak 

pairs found in adjacent spectra. After the alignment of same peak pairs from different 

runs using Alignment program, the Zerofill program was applied to fill in missing 

values. Peak pairs were finally reconstructed and the chromatographic peak ratios were 

determined using IsoMS-Quant program. 

Based on accurate mass and retention time matches, positive metabolite 

identification was performed using dansyl standard library search, which contains 273 

unique dansylated amines/phenols. Based on accurate mass search, putative 

identification was performed by using the Human Metabolome Database (HMDB) 

(www.hmdb.ca) and the Evidence-based Metabolome Library (EML) 

(http://www.mycompoundid.org/).  

Principal components analysis (PCA), partial least squares discriminant 
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analysis (PLS-DA) and receiver operating characteristic curves were carried out using 

MetaboAnalyst software 3.0 (McGill University, Montreal, Canada). The fold change 

and p-value between groups were calculated using Microsoft Excel. Volcano plots were 

constructed using OriginPro 8.0 (OriginLab). The q-value, multiple-testing-corrected 

p-value, was calculated using R and BioConductor (www.bioconductor.org). 

5.3 Results and Discussion 

5.3.1 Metabolite Detection 

The injection amount of labeled metabolites onto the LC−MS can affect the 

number of peak pairs detected in a sample. To determine the best injection amount of 

urine samples, we injected increasing amount of mixture of 12C- and 13C-labeled pooled 

sample for the optimization. In Appendix Figure A5.1, it was found that with the 

injection amount of 11.8 nmol, the number of peak pairs reached maximum. Thus, for 

each run, all individual urine and QC samples were analyzed using LC−MS with 20 

nmol injection.  

Experimental duplicates were applied for all the urine samples. In total, there 

were 600 sample runs analyzed by LC-MS. From the 600 sample injections, a total of 

25188 peak pairs were detected with an average of 10086±2278 peak pairs for each 

sample. It means that our method could achieve high submetabolome coverage. Among 

those, 3530 peak pairs were detected in more than 80% of the samples. These were 

subjected to multivariate and univariate statistical analysis.  

5.3.2 Submetabolome Comparison of Tg and WT Mice 

Principal component analysis (PCA) was performed to gain a general idea of 

the whole data sets. Appendix Figure A5.2a shows the PCA plot of all the urine samples. 

The QC samples cluster together closely, indicating that the instrument performance 

was good and the quality of the data should be satisfactory. We observed a separation 

between Tg and WT mice samples. However, some kind of in-group separations were 

more obvious, and it was inferred due to the gender differences. It was confirmed by 

labeling the samples as “female” and “male” (Appendix Figure A5.2b), which has also 

been reported previously.79 As a result, we studied female and male mouse samples 
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separately.  

Figure 5.1. 2D and 3D PCA plots (a, b) and PLS-DA plots (c, d) of female mouse urine 

samples. 

Figure 5.2. Volcano plot of metabolites with a fold change > 1.5 are marked in blue, 

and those with fold change < 0.67 are marked in red, both with a q-value < 0.05 

(corresponding to a p-value < 0.181). 

For the female mouse urine samples, Figure 5.1 shows 2D and 3D PCA plots 
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and PLS-DA plots, generated from metabolome data set with the metabolites showing 

in more than 80% of female mouse urine samples. From PCA plots, there is a separation 

between Tg and WT groups, and the separation is more obvious in 3D plot. It means 

that there were significant submetabolome differences between two groups due to the 

disease. In PLS-DA plots, a more significant separation between the two was observed, 

and they were completely separated in 3D plot. Besides, the PLS-DA plot had an 

excellent R2 value (goodness of fit) and Q2 value (goodness of predictability) of 0.903 

and 0.781, respectively, which validated the visual separation between the two. And the 

model was further validated by passing the permutation test. The univariate analysis 

was then applied to determine significantly changed metabolites, which contributed to 

the separation between Tg and WT groups. In Figure 5.2, a volcano plot displays 

significant metabolites with a fold change (FC) of > 1.5 or < 0.67 and a q-value < 0.05 

(meaning false discovery rate was < 5% and the corresponding p-value was < 0.181). 

In total, there were 434 metabolites with an increased concentration (up-regulated) and 

188 metabolites with a decreased concentration (down-regulated) in Tg compared to 

WT groups.  
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Figure 5.3. 2D and 3D PCA plots (a, b) and PLS-DA plots (c, d) of male mouse urine 

samples. 

For the male mouse urine samples, a similar result was observed from the 2D 

and 3D PCA plots and PLS-DA plots in Figure 5.3. A separation, although with lots of 

overlapping data points, was seen in the PCA plot, and a better separation was seen 

from the PLS-DA plot between Tg and WT groups. The model was validated by high 

R2 an Q2 value of 0.915 and 0.822, respectively, and permutation test. Besides, in 

Figure 5.4, a volcano plot shows that metabolites with a fold change (FC) of > 1.5 or < 

0.67 and a q-value < 0.05 (the corresponding p-value of < 0.114) were highlighted. In 

total, there were 168 up-regulated metabolites and 134 down-regulated metabolites.  
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Figure 5.4. Volcano plot of metabolites with a fold change > 1.5 are marked in blue, 

and those with fold change < 0.67 are marked in red, both with a q-value < 0.05 

(corresponding to a p-value < 0.114). 

Table 5.2. List of common identified significant metabolites. 

 

For the female mouse urine samples, among 622 significant metabolites, 19 

metabolites were positively identified based on dansyl standard library search. And for 

the male mouse urine samples, among 312 significant metabolites, eight of them can be 

positively identified. Among those positively identified metabolites, six of them were 

commonly shared by both female and male mouse urine samples. Table 5.2 shows the 

common significant metabolites. What is interesting to mention is that, these 

metabolites displayed greater changes for female samples than those for male samples, 

which may infer that female mice were affected more intensely by AD than male mice. 
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It can also be implied from the greater number of significant metabolites for female 

samples (622) than for male samples (312). 

5.3.3 Receiver Operating Characteristic Curves 

Using these six common metabolites, receiver operating characteristic (ROC) 

curve was generated to test the diagnosis power of these metabolite biomarker 

candidates. The classification model was built using the random forest method. As 

shown in Figure 5.5a, for female mouse urine samples, the area-under-the-curve (AUC) 

value of ROC curve was 0.892, within the range of 0.836-0.938 at the 95% confidence 

interval. Discrimination of AD from WT can be achieved at 80% sensitivity and 80% 

specificity. For male mouse urine samples, displayed in Figure 5.5b, AUC value of 

ROC curve was 0.881, within the range of 0.826 - 0.922 at the 95% confidence interval, 

and discrimination of AD from WT can be achieved with both sensitivity and specificity 

at 81%. The six common significant metabolites with high differentiation power can be 

biomarker candidates.  

Figure 5.5. The receiver operating characteristic curve generated based on six common 

significant metabolites for (a) female and (b) male mouse urine samples. 
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Figure 5.6. 2D (a, c) and 3D (b,d) PLS-DA plots displaying the metabolic trajectory of 

eight collection time points among the female (a, b) and male (c, d) Tg mice. Box1 to 

Box8 represent 8 time points. 

5.3.4 Time Series Analysis 

We were also interested in the metabolic trajectory changes with the 

development of the disease. Using PLS-DA plots, Figure 5.6 shows the metabolic 

trajectory of eight collection time points from female (Figure 5.6a, b) and male (Figure 

5.6c, d) Tg mice. For both female and male mice, from 2D PLS-DA plots (Figure 5.6a, 

c), we can see a clear progression of eight groups from left-bottom side to the right-top 

side, which represents a metabolomic trajectory changing from the age of week 8-9, 

10-11 … to week 25-26. The changes were seen more obviously from three-

dimensional (3D) PLSDA plots (Figure 5.6b, d).  

5.3.5 Significance of Potential Metabolite Biomarkers 

Six positively identified significant metabolites, methionine, cystathionine, 

homovanillic acid, spermidine, alanyl-histidine, diaminopimelic acid, were chosen as 

the biomarker candidates. Among them, diaminopimelic acid is down-regulated and the 
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other five metabolites are up-regulated in the Tg group. Taking methionine as an 

example, Figure 5.7 shows its relative concentrations in the Tg and WT groups at eight 

different time points. We can see that in the WT group, the concentrations are lower 

but more constant than those in the Tg group. Besides, the concentrations fluctuated 

more intensely in the Tg group, which may be due to the effect of the disease 

development. These metabolites provide insights into disease pathogenesis. The 

biological significance of these 6 common significant metabolites is briefly discussed 

below.  

Figure 5.7. Box plots of the relative concentrations of methionine in the Tg and WT 

groups at eight different time points for female (a) and male (b) mice. B1 to B8 

represented 8 time points. 

Methionine is an important sulfur-containing amino acid that plays essential 

roles in cell physiology and can serve as an antioxidant.138 High concentration of 

methionine in blood can lead to brain alterations and memory impairment, and diet high 

in methionine may contribute to neurodegeneration, causing greater risk of AD in a 

mouse model.139 Methionine was also detected as an up-regulated metabolites in our 

previous experiment.79 Besides, the increased concentration of methionine was also 

confirmed with human CSF samples.134 These results reveal that the up-regulated 

concentration of methionine may have close relations to AD. 

Cystathionine is a dipeptide formed by serine and homocysteine. The 

transsulfuration of methionine produces homocysteine, and it can couple with serine to 

form cystathionine. It means the pathways of cystathionine and methionine have close 

relations, which may also have close relations with AD. Besides, cystathionine beta-

synthase was reported to be associated with AD, although the relationship between the 

two remains to be resolved.140  
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The other four metabolites have also been reported to be associated with AD. 

Homovanillic acid is a dopamine metabolite and the depletion of dopamine is related 

with neurodegenerative condition.98 Spermidine is a polyamine, playing critical roles 

in nerve growth and regenerations. Increased levels of spermidine in AD patients has 

been reported.141 Alanyl-histidine is an endogenous antioxidant and antiglycating agent, 

and it is found to have functions of rescuing cognitive deficits.142 Diaminopimelic acid 

is an amino acid derivative related to the cognitive decline.143 

5.4 Conclusion 

In this work, a high-performance chemical isotope labeling method coupled 

with LC-MS was developed and applied to mouse urine samples to profile 

amine/phenol submetabolome. We observed significant metabolomic differences 

between control and AD groups for both female and male mice. Besides, a clear 

metabolomic trajectory change from the age of week 8-9, 10-11 … to week 25-26 was 

also observed, which indicated that the disease development can be monitored. Many 

significant metabolites were found and identified. Of those, 6 metabolites were 

commonly detected in both female and male mice with similar fold changes. The 

biological significances of these 6 metabolite biomarker candidates were briefly 

investigated and they can serve as a guidance for human biomarker discovery if further 

validated. In the future, we will also compare the results from serum samples to get 

more comprehensive results. 
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Chapter 6 Conclusions  

With high-performance chemical isotope labeling (CIL) LC-MS method, 

metabolomics has been investigated for different kinds of samples and different 

diseases. In Chapter 2, a workflow for carrying out tissue sample processing and high-

coverage metabolome profiling was developed. This workflow involves a solvent 

system of methanol/DCM/water to process a tissue sample, high-performance 

differential CIL of tissue extracts, and high-resolution LC-MS for labeled metabolite 

detection. To demonstrate the potential applications of this workflow to tissue 

metabolomics, we examined amine/phenol submetabolome differences between the 

liver and brain tissues of mouse model of Alzheimer’s disease. A total of 2319 

metabolites were commonly detected in more than 80% of the liver samples, and 1769 

metabolites were commonly detected in brain samples. Significant metabolomic 

differences between transgenic mice and wild type mice were observed. Several 

metabolite biomarker candidates have been found with good discriminating power. 

These results suggest the good performance of that CIL LC-MS workflow for tissue 

metabolomics with high coverage and good quantification capability. 

In Chapter 3, the CIL LC-MS method was applied for evaluating the 

amine/phenol submetabolome changes induced by Dex treatment. Five kinds of rat 

tissue samples, including brain, liver, heart, kidney and muscle, were analyzed. The 

metabolic differences between Dex-treated and control groups were observed and 

significantly changed metabolites were determined and some of them were identified. 

Using all the positively identified metabolites, pathway analysis was carried out for all 

five kinds of tissues, respectively, and commonly affected pathways were investigated. 

Of those, arginine and proline metabolism, was taken for in-depth discussion. The 

biological significance of involved identified metabolites, including putrescine, 

spermidine, ornithine, proline, were discussed. These results suggest Dex treatment can 

profoundly induce metabolic changes in many pathways. 

In Chapter 4, we applied the CIL LC-MS method to analyze amine/phenol and 

carboxyl submetabolomes of 250 serum samples from two cohorts of rheumatoid 

arthritis (RA) patients. In this work, we firstly characterized the submetabolome 

changes between the early RA and healthy control groups and discovered 4 biomarker 

candidates. Then, we compared the metabolic differences between RA patients with 
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methotrexate (MTX) treatment and without MTX treatment and healthy controls, and 

between RA patients with anti-CCP antibody positive and with anti-CCP antibody 

negative and controls. We also compared the metabolite changes between responders 

and non-responders, which may help the administration of medication in the clinic. 

These findings indicate that RA patients can be well differentiated from healthy 

controls and the discovered biomarkers can be helpful for both diagnosis and 

medication administration if further validated. 

In Chapter 5, 13C-/12C-dansylation labeling coupled with LC-MS method was 

used for parallel profiling of serum and urine metabolome changes. 3530 peak pairs 

were detected in more than 80% of the samples. The metabolic differences between AD 

and control were observed for both male and female mouse urine samples. The 

metabolic trajectory changes with the development of disease were also observed. The 

discovered 6 metabolite biomarkers, methionine, cystathionine, homovanillic acid, 

spermidine, alanyl-histidine, diaminopimelic acid, have good discriminating power and 

they could be used to guide the selection of human metabolite biomarkers for early 

diagnosis of AD. 
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Appendix 

Chapter 2 Development of Chemical Isotope Labeling LC-MS for Tissue 

Metabolomics and Its Application on Metabolite Biomarker Discovery of Alzheimer’s 

Disease on a Mouse Model 

 

Appendix Figure A2.1. (a) Mouse liver sample. (b) Mouse brain sample. 
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Appendix Figure A2.2. (a) PCA scores plot of liver samples. (b) PCA scores plot of 

brain samples. Red dots were labeled as the QC samples. Green dots were labeled as 

5xFAD transgenic mice, and blue dots were labeled as wild type mice. 
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Appendix Figure A2.3. (a) 3D PCA scores plot of liver samples. (b) 3D PCA scores 

plot of brain samples. Red dots were labeled as 5xFAD transgenic mice, and green dots 

were labeled as wild type mice. 
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Appendix Figure A2.4. (a) Permutation test result of the ROC curve of Tg vs. WT of 

liver samples. (b) Permutation test result of the ROC curve of Tg vs. WT of brain 

samples with 4 metabolite candidates. (c) Permutation test result of the ROC curve of 

Tg vs. WT of brain samples with 7 metabolite candidates. 
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Chapter 4 Development of Chemical Isotope Labeling LC-MS Methods for 

Metabolomics Studies of Rheumatoid Arthritis Disease 

Appendix Figure A4.1. PCA plot of B1C vs. B1D vs. B2C vs. B2D1 vs. B2D2 vs. QC. 

Two outliers of duplicates of sample 152 were redly circled, which were then excluded. 
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Appendix Figure A4.2. A series of ROC curves built with different numbers of the top-

ranked significant metabolites for (a) B1C vs. B1D, (b) B2C vs. B2D1, (c) B2C vs. 

B2D2. 
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Appendix Figure A4.3. ROC curve built using 7 common significant metabolites, 

cystine, o-phosphoethanolamine, gamma glutamylglutamic acid, glycyl-valine, dansyl-

702, dansyl-9056, dansyl-14033, for (a) B1C vs. B1D, (b) B2C vs. B2D1, (c) B2C vs. 

B2D2. 
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Appendix Figure A4.4. Volcano plot of the changes of metabolites between (a) B1C 

and MTX N, (b) B1C and MTX Y. Metabolites with fold change (FC) > 1.5 or FC < 

0.67 and q-value < 0.05 were highlighted. 

Appendix Figure A4.5. PCA scores plot of B1C vs. B1D vs. B2C vs. B2D1 vs. B2D2 

vs. QC. 
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Appendix Figure A4.6. A series of ROC curves built with different numbers of the top-

ranked significant metabolites for (a) B1C vs. B1D, (b) B2C vs. B2D1, (c) B2C vs. 

B2D2 
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Appendix Figure A4.7. Volcano plot of the changes of metabolites between (a) B1C 

and MTX N, (b) B1C and MTX Y. Metabolites with fold change (FC) > 1.2 or FC < 

0.83 and q-value < 0.1 were highlighted. 

Appendix Figure A4.8. (a) Volcano plot of the changes of metabolites between B2D1 

nr and B2D2 nr. (b) A series of ROC curves built with different numbers of the top-

ranked significant metabolites for B2D1 nr vs. B2D2 nr. 
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Chapter 5 Development of Chemical Isotope Labeling LC-MS for Metabolite 

Biomarker Discovery of Alzheimer’s Disease in a Mouse Model 

Appendix Figure A5.1. Injection amount optimization curve. 

Appendix Figure A5.2. (a)PCA scores plot of all the urine samples. Green dots 

represented the QC samples. Red dots represented Tg mouse urine samples, and blue 

dots represented WT mouse urine samples. (b) PCA scores plot of all the urine samples. 

Green dots were male mouse urine samples. Red dots were female mouse urine samples. 


