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ABSTRACT
Both appealing to Gédel incompleteness, Lucas' anti-
mechanist argument [26-30) and Priest's anti-consistency
argument [37-39) set mechanicalness and consistency in
apparent tension. With the two arguments expressly
reconstructed, it is shown that they are logically
equivalent in sctating that consistency and mechanicalness
are incompatible due to Gédel incompleteness. By way of
refuting both arguments, this thesis is designed to defend
the compatibility of consistency, mechanicalness and
incompleteness without appeal to the absolute truth of
either mechanism or the thesis of consistency. For this
purpose the thesis pursues a representational approach,
which has its origin in works by, among others, Benacerraf
(6], Myhill [31], Webb [44-45] and Arbib [2]. The point of
the approach is that the logic of the mind can overcome
its own Gédel incompleteness not by itself being inconsis-
tent or beyond the mechanistic but by its being capable of
representing stronger systems in itself; and so can a
proper machine. In light of the approach, it is shown that
the two arguments share the same pitfall of misidentifying
the logic of the mind with the system or systems in which
the Goédel séntence for the logic of the mind is provable.
It turns out that the logic of the mind can be both
mechanical and consistent because it is both literally

iv



Gédel incomplete and representationally Gédel complete.
Concepts such as Gédel representability, quasi Gédel
representability, representational provability, the
restricted universal Turing machine, and so on, are intro-
duced along the way. About one third of the volume is
given to a review, which helps show, among others, why the
two arguments have not ceased to be challenging in spite

of there having been many criticisms of them.
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1. Introduction

The general topic of this thesis is the logical nature of
the mind. In approaching the logical nature of the mind we
can, as we will in this thesis, address the mind as a
logic, a system of logical means including possibly non-
logical axioms or their equivalents. Let us call it the
logic of the mind, IM.l With reference to the logic of the
mind there are two principal issues, the issue of
me~hanicalness and the issue of consistency. The former
issue is significant to the way the logic of the mind
operates; whereas the latter is pertinent to the outcome
of the operation of the logic of the mind. Corresponding-
ly, there are two principal questions concerning the logic

of the mind: First, can the workings of the logic of the

1 Here, the logic of the mind is supposed to be a
static logical system. This supposition does not con-
tradict the fact that a real mind may change itself by
receiving and processing information from outside. For so
long as we are supposed to be able to imagine the whole
truth of arithmetic, we are entitled to address the logic
of the mind as complete as possible with respect to
arithmetic. We admit that the arguments based on this
supposition may not be directly applicable to many aspects
of real minds. However, it is the ideal mind that is
understood as the primary concern of this thesis. In this
regard, our term 'the logic of the mind' means the same as
does J.R. Lucas' term 'a complete or adequate model of the
mind', ((26]), Lucas, 1961, p. 44) G. Priest's terms 'the
naive canons of proof', and 'the proof procedures of
proof',([41], Priest, 1987, p. 51, p. 55) or R.J. Nelson's
term 'the logic of mind'((37], Nelson, 1982, p. 2) in
their contexts respectively, with the provision that it is
an open question as to what logical rules and axioms
(logical or non-logical) are in the logic of the mind.

1l



mind be explained completely in terms of recursion?
Second, may the outccme of the logic of the mind be
consistent? Positive answers to these two questions are
the following two theses:

The thesis of mechanism (or mechanism). The

logic of the mind is essentially mechanistic in

the sense that it can be explained exclusively

in terms of recursion.?

The thesis of consistency. The logic of the mind

is essentially consistent in the sense that it

does not necessarily contain any contradiction.3

2 There are various formulations, versions and
supposed connotations of mechanism. We think that the
above formulation of mechanism is in essence the same as
is presented by J. Webb ([48], 1983, p. 310). A brief
review of some of the versions of mechanism can be found
in ibid, pp.310-312; and [47], Webb, 1980, p. 235. An
analysis of a couple of supposed connotations of mechanism
is given by Nelson ({37], 1982, pp. 2-6). Nelson himself
subscribes a version of finite mechanism to the effect
that the logic of the mind can be characterized as a
Nonleterministic finite automaton (NFA). (ibid, p. 2.) A
very interesting historical investigation of mechanism and
its associates from a contemporary rerspective is
contained in Webb's [47], Chapter 1. There is meaning in
looking for bettei and better formulations of mechanism.
But we think the above formulation is adequate enough for
us to examine Lucas' argument of antimechanism as will be
given shortly.

3 The thesis of consistency should be distinguished
from the law of contradiction, or rather of non-contradic-
tion. Strictly speaking, the law of contradiction, being a
normal rule of logic, only decrees that any contradiction,
once uncovered, ought to be consciously eliminated from
our rational universe. The law of contradiction per se
does not entail that it is always possible to eliminate
all uncovered contradicticns from our rational universe.



Recently, two arguments have been put forward
respectively against mechanism and the thesis of consis-
tency. The first is initiated by J.R. Lucas, to the effect
that Gédel's first incompleteness theorem (hereafter, G1l)
implies antimechanism --- the negation of mechanism.
([(28]), Lucas, 1961)4 The second is presented by G. Priest,
to the effect that Gl implies the thesis of inconsistency
--- the negation of the thesis of consistency. ([39-41],
Priest, 1979, 1984 and 1987) As for the implications of

the two arguments, we simply quote from Lucas and Priest

It is the tenet of the thesis of consistency to state that
it is always possible to do so regardless of whether one
really intends to do so. Of course, these two principles
are closely related. The law of contradiction would lcse
almost all its meaning if the thesis of consistency did
not hold, That is why Professor G. Priest suggests, after
being convinced that the thesis of consistency does not
hold (though he has not used the term 'the thesis of
consistency’), that the law of contradiction should be
rejected. ([39], Priest, 1979, p. 220 and [41], Priest,
1987, p. 258-259) Moreover, the thesis of consistency does
not carry the connotation that the logic of the mind must
be consistent. For, that the logic of the mind is not
necessarily inconsistent does not imply that it is
necessarily consistent. Rather, it says just that the
logic of the mind is possibly consistent. In section 4.2,
we will touch this peint again in light of our explication
of the correlation between formal systems and Turing
machines.

4 According to Webb, E. Post was the first, in 1924,
to prove undecidability and to conceive of its
consequences taken to be against mechanism. Webb gquotes
Post, 'We see that a machine would never give a complete
logic; for once the machine is made we could prove a
theorem it does not prove.' But upon consideration Post
says, to the contrary, 'The conclusion that man is not a
machine is invalid.' (See [38], Davis (ed), 1967, p. 417
and p. 423; and [47]), Webb, 1980, p. 229.)



the following two passages:

'If the proof of the falsity of mechanism is

valid, it is of the greatest consequence for the

whole of philosophy.'([28], Lucas, 1961, p. 59)

'[tlhey (Priest's points made in his book of

1987 against the thesis of consistency, of which

the above mentioned is a substantial one) are a

sustained attack on the dominant logical theory

of our times, the logic of Frege, Russell and

their successors, or, as it has come to be

known, classical logic.'([41], Priest, 1987, p.

257)

We need not say more than the above in this regard. In
opposition to both Lucas and Priest's arguments, this
thesis is devoted to defending mechanism and the thesis of
consistency together by way of refuting them both in one
line.

Obviously, if either Lucas or Priest is correct,
then, other conditions granted, either mechanism or the
thesis of consistency is incompatible with Gl. Since the
validity of Gl is beyond question. So, if either Lucas or
Priest is correct, then either mechanism or the thesis of
consistency must be rejected. At first sight, there seems
no significant connection between Lucas and Priest's
arguments. However, it can be observed that the two
arguments are so closely related that they both appeal to
Gl and the thesis of recursive capacity (see below) and
both purport to show that mechanism and the thesis of

consistency are incompatible. To see this, we explicate

Lucas and Priest's arguments through the following two



reconstructions of them:

A. Tho L-argument (a reconstruction of Lucas' anti-
" mechanist argument)

Al (Gl). For any system® S which is a).
recursively enumerable (i.e.) and b). capable of
representing all means of recursion there is a
Gédel sentence Gg for S which says that Gg is
unprovable; further, it would indeed be
unprovable in § if S is consistent.
A2. Gg, because of its meaning and its un-
provability in S provided that S is consistent,
can be seen to be true and therefore in this
sense be provable jin _the logic of the mind.
A3. The system S addressed in Al ié arbitrary so

lang as it satisfies the two clauses a) and b)

5 All theoretical systems addressed in this thesis
are first order ones unless otherwise indicated. This
technical restriction will not in essence affect the
generality of our argument. For any higher order system in
a hither order language can in a way be represented
equivalently by a first order system in a first order
language. A discussion about this point is given in ([4],
Bell and Machover, 1977, pp. 14-15). As for the logic of
the mind, presumably, there is no prior reason for us to
suppose that it has to be of first order. However, it is
still meaningful to investigate whether or not the logic
of the mind as restricted to the first order dimension
(supposing that it has other dimensions which are
irreducible to the first order) has to be beyond the
mechanistic or has to be inconsistent, in view of Goédel
incompleteness. To our understanding, Lucas, Priest and
almost all their critics admit that their arguments can
be, as they are really presented, developed under the
first-order restriction.



in Al. Let any such system be called a gédelian
system and let LM refer to the logic of the
mind., If LM is itself a gédelian system, there
would be a Gédel sentence for IM, say Gry. By A2
Grym would be provable in IM if LM is
consistent. By Al however, the provability-in-
IM-of Gy means that LM is inconsistent.

A4. The thesis of consistency holds. So, IM is
essentially consistent.

AS5. From A3 and A4 LM cannot be a gddelian
system.

A6 (The thesis of recursive capacity). IM is
capable of representing all means of recursion.
A7. From A5, A6 and the definition of gdédelian-

ness, LM cannot be r.e.b So, mechanism is false.

B. The P-argument (a reconstruction of Priest's
anti-consistency argument)

Bl. The same as Al (Gl).

B2. The same as A6 (the thesis of recursive capacity)
B3. Mechanism holds. So LM can be explained and
realized exclusively in terms of recursion.

B4. From B2 and B3 LM is a gddelian system, or

6 Note here, a system which is capable of represent-
ing all means of recursion may not be itself recursive.



can be completely formalized as a gddelian

system.

B5. From Bl and B4 LM has its own Gédel

sentence, say Gry, Wwhich says that Gry is

unprovable in LM and it would indeed be

unprovable in IM if LM were consistent.

B6. Gry, because of its meaning and its

unprovability in IM (provided that IM is

consistent), can be seen to be true and

therefore in this sense is provable in IM.

B7. From BS5 and B6 LM is inconsistent. Moreover,

suppose IM is consistent, then Gpy is both

provable and unprovable in IM. So the thesis of

consistency is false.

The above two reconstructed arguments can be regarded
as faithful simulations of Lucas' and Priest's original
arguments to the effect that they are virtually refutable
if and only if so are their original counterparts.’ The
case for Priest's is obvious. Priest's original argument
is explicitly equivalent in essence to that formulated
above. (Priest, [41], 1987, p. 56; [40], 1984, p. 165; and

[39], 1979, p. 221) Here, one subtle as well as important

7 There are many succinct reconstructions of Lucas'
original argument. See for example, [8], Boyer, 1983, p.
148; and [25], Kirk, 1986, pp. 437-438. A brief
reconstruction of Priest's original argument is given in
[34], Napoli, 1985, p. 405. :



point about the meaning of the thesis of inconsistency
needs explaining. That is, the thesis of inconsistency
does not connote that contradictions which are provable
are true in any sense. The thesis which connotes just this
may be called the thesis of true inconsistency, in
contrast to the thesis of inconsistency. Priest does
attempt to distinguish them and to argue for them both,
though he neither calls them by the same names as we do
now nor highlights the distinction between them. ([40],
Priest, 1984, p. 171) However, in this paper only the
thesis of inconsistency is our central concern. We are rot
going to address the thesis of true inconsistency
directly, though we do tend to think that this thesis is
either untenable or pointless. In view of the above point,
the P-argument, i.e., Priest's argument of inconsistency
as reconstructed above, is only a part of his whole
argument of true inconsistency. One thing is clear, merely
maintaining the thesis of inconsistency is not sufficient
for those who want to defend the thesis of true
inconsistency, whereas a rejection of the thesis of
inconsistency is enough for those who want to dismiss the

thesis of true inconsistency.8

8 If the thesis of inconsistency is rejectable, there
will be no contradiction which is necessarily provable,
let alone to be necessarily true. In section 2.1 we will
touch this point again.



The case for Lucas needs more explanation. First,
Lucas has developed many arguments for antimechanism
through a long process of his rejoinders with his
opponents. Not all of his arguments are even partially
reflected in the L-argument as formulated above. ([28-32],
Lucas, 1961, 1968, 1970, and 1984) However, we believe
that the core of his arguments is well represented in the
L-argument. Second, exactly speaking, Lucas does not seem
to have the thesis of consistency invoked explicitly in
his original argument in the way in which it is above,
though he does invoke the thesis of consistency in his own
way. Taken succinctly, his reasoning consists of the
following two points: First, in order to show that, in
view of G1, the logic of the mind is indeed essentially
different from any gdédelian system, it is necessary to
show that the elementary Peano arithmetic (hereafter, 2)
is consistent. For otherwise 2 and hence any extension of
Z would be inconsistent, making everything including Gg
(the Gédel sentence for Z) provable in them and therefore
rendering G1 irrelevant to the concern of mechanicalness.
In this case, there is no way for IM to be distinct from 2
in virtue of its having Gg for any gdédelian system S
including Z provable in IM. Second, in order to have a
sound proof of the consistency of Z, it is necessary to

show, or at least to assume that IM is consistent.



10
Otherwise 2 may still be inconsistent even though its
consistency is 'provable' in IM. Thus Lucas invokes the
thesis of consistency in order to show the consistency of
Z from (the demonstration of) the consistency of IM. To be
sure, Lucas is completely correct in doing so, regardless
of whether his whole argument is correct or not. We did
not let this piece of Lucas' reasoning appear in the L-
argument merely for the sake of simplicity with a view to
intensifying the main contrast between Priest and Lucas.
Oon the other hand, few people would really worry about the
consistency of Z. At least, without appeal to the
consistency of 2 we could establish a conditional version
of anti-mechanism, say conditional anti-mechanism, to the
effect that if 2 is consistent, then LM is essentially
nonmechanistic. Nonetheless conditional anti-mechanism
would be enough for many anti-mechanists, Lucas included.
Forlconditional antimechanism to hold, it is not necessary
to invoke the thesis of consistency to prove the
consistency of Z. In this connection the L-argument shows
that the thesis of consistency must be invoked in a way
even for conditional antimechanism to hold, without regard
to the consistency of Z. In fact, there is presumably a
possibility that Z is consistent whereas LM is inconsis-
tent. If that is the case, even though we can prove a

priori that 2z is consistent and in consequence that Gz is



11
indeed unprovable in 2, we may still not be able to show
that LM is essentially distinguished from being gdédelian
in virtue of the fact that the Goédel sentence Gg for any
gédelian system S is provable in IM. For presumably, there
are two possible cases in which LM may be able to prove
the Gédel sentence Gg for each gddelian system S. One case
is that LM is inconsistent. In this case everything is,
according to our common understanding®, provable in LM.
The other case is that LM is capable of something beyond
the capacity of any gdédelian system. In this case, LM may
be capable of proving something of which no gdédelian
system is capable. Since what Lucas intends to show is
certainly the second case, i.e. that IM can be used to
prove Gg for every gédelian system S just because IM is
capable of something beyond the mechanistic, he has to
invoke the thesis of consistency to exclude the first
case. The fact that Lucas fails to invoke the thesis of
consistency in this way explicitly does not mean that the
L-argument as constructed above must fail to be a faithful
simulation of Lucas' original argument. Rather, it may
well be viewed as a defect of Lucas' original argument.

Besides, there are places at which Lucas invokes the

9 We confine ourselves within the discipline of
classical logic. Later in section 3.8 we will show that
the assumed distinction between the classical and the non-
classical is not significant for our concerns from a
representational point of view.



12
thesis of consistency in other ways. A prominent one is
seen in his reply to a critical point made by Hilary
Putnam. ({42], 1960, p. 77) We will review it in some
detail in section 2.4. What these show is that the role of
the thesis of consistency in Lucas' various arguments for
anti-mechanism is crucial in many ways.10

Now, in order to highlight some interesting aspects
of the two reconstructed arguments, we use some informal
symbolization, namely:

T™ --- The thesis of mechanism,

TC =--- The thesis of consistency,

TA --- The thesis of antimechanism,

TI ~--- The thesis of inconsistency,

TRC ~--- The thesis of recursive capacity.ll
Using the above symbols, we can draw from the L- and the
P~-arguments two informal formulas:

Ll. [Gl1 & TC & TRC] => TA (-TM)

and

10 Any way, at the very least, the value of the L-
argument and hence its criticisms are independent of who
for what first formulates it as such. Moreover, one who is
convinced of conditional antimechanism may not be
convinced of antimechanism; whereas if we can succeed in
refuting conditional antimechanism, we will be in a better
position to refute antimechanism.

11 Note, as we indicated before, anti-mechanism is
the negation of mechanism and the thesis of inconsistency
is the negation of the thesis of consistency. So, TA=-TM
and TI=-TC.



Pl. [Gl & TM & TRC] => TI (-TC).
Both L1 and Pl are equivalent to a third one:

JI. -Gl v ~TRC v -TM v -TC.
JI means exactly the joint incompatibility of TM, TC, Gl
and TRC, or say the joint incompatibility of TM and TC
given Gl and TRC. Now, since the validity and the truth of
Gl and TRC are much less controversial than that of TM and
TC, the apparent tension or incompatibility as shown by JI
is supposed to be primarily between TM and TC. This
incompatibility has been recognized by Priest. He says, in
a brief comment on Lucas' antimechanism:

'Both the anti-mechanist and I agree that the

recursiveness and the consistency of proof are

not compatible.'([40), Priest, 1984, p. 168)12
For both Lucas and Priest, this incompatibility is
necessary regardless of which one of the two theses TC and
TM is true.

Ll and Pl each captures the logical relations amongst

TM, TC, Gl and TRC as demonstrated in the L- and the P-

12 1n this connection Priest adds also that 'to infer
the nonrecursiveness of proof, therefore, invokes
consistency and hence begs the question.'([38], Priest,
1984, p. 168) This added remark is somewhat misleading.
For the joint incompatibility of the recursiveness and the
consistency of proof is not given a priori. It is only to
be proved or disproved. As the following discussion shows,
the problematic point here is not of begging the question,
but of taking what is uninferable for inferable. If Priest
were right in this regard, then for the same reason, to
infer inconsistency from mechanism begs the question, too,
though in a converse way. But that is just what Priest has
consciously done.

13



arguments. Nonetheless they each also miss some contents
which make the two arguments themselves in tension. To
have these contents included, we use the following
informal formulas:

L2. G1 & TC & TRC & [[Gl & TC & TRC] => TA (-TM)]
and

P2. G1 & TM & TRC & [[Gl & TM & TRC] => TI (~-TC)].
Since L2 and P2 are equivalent respectively to

L2'. Gl & TC & TRC & TA (--TM)
and

P2°'. Gl & TM & TRC & TI (--TC),
the tension in question is obvious. This tension is a
predicament for both mechanism and the thesis of consis-
tency.

In our view, neither L2 nor P2 nor JI may be true;
what may be true is the negation of JI, i.e.

JC. Gl & TM & TC & TRC.
In this thesis we will not argue for mechanism or the
thesis of consistency directly, instead, towards es-
tablishing JC as our conceived final goal we will try to
demonstrate that TM and TC are compatible with each other,
and with G1 and TRC as well. In other words, we intend to
show that there is no logical incompatibility between
mechanism and the thesis of consistency under Gl and TRC

even though it is impossible for us to establish the truth
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of either of mechanism and the thesis of consistency
absolutely.

In the literature, both the L- and the P-argument
have been criticized in many respects, though very few if
any of these critiques are designed explicitly with the
view of defending both mechanism and the thesis of
consistency. In order to have an appropriate outlook of
the present status of the issues raised by Lucas and
Priest, we will make a brief review of some criticisms of
them in chapter 2. The main body of this thesis will be
formed in chapters 3 and 4, in which we present our own
examinations of the L- and the P-argument, with the larger
part being against the P-argument in chapter 3.

Our general viewpoint is that sincé the provability
concept is in general system-relevant, the provability
concept according to which Gl holds and the one according
to which Gy is viewed as provable in IM may well be
different; and because of this both the L- and the P-
arguments prove to be invalid. To vindicate this
viewpoint, we take what may be termed a representational
approach, which owes its origin to works by, among others,
Benacerraf ([6], 1967), Myhill ([31], 1964), Webb ([47-
48], 1980, 1983), and Arbib ([2]), 1987). The central idea
is that the provability in IM of Gy as is usually

recognized means and only means that Gyy is provable in a
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system which is representable in IM. Accordingly, the
logic of the mind can overcome its own Gédel
incompleteness not by itself being inconsistent or beyond
the mechanistic, but by its being capable of representing
stronger systems in itself. For the sake of convenience,
we cdevelop this central idea mostly by way of examining
the P-argument in chapter 3. In chapter 4 we will show
that the idea developed in our examination of the P-
argument is applicable to that of the L-argument. If we
are right in this regard, it then means that, among other
things, the two arguments share the same pitfall:

misidentification of the two provabilities.



“e. & Review of 8Somo Criticisms of the L- and the

P=arqument

In this chapter, we review briefly some critical
remarks relevant to the L- and the P-argument respective-
ly, with a view to getting a proper background to develop
our own points and to examine them by contrast.
Ooriginally, some points reviewed in this chapter might not
be made with reference particularly to the L-and the P-
arquments, for these two are but our present
reconstructions of Lucas and Priest's original arguments.
Nonetheless these points will be considered primarily in
connection with the L- and the P-argument. We do so
because we think that our reconstructions do reflect the
essences of their original counterparts and our concern
here is just confined to these reconstructions. We have no
intention to cover all the issues raised by Lucas' and
Priest's original arguments. Hopefully, this review will
help show that although both of the argument:z have been
seriously challenged from various perspectives, neither of

them has ceased to be itself challenging.l3 Some

13 7o many, what is challenging is not the question
whether these two arguments are really wrong, but rather
the question where and why they go wrong. For example,
Kirk remarks, with reference to the attempt to use Goédel
incompleteness against mechanism, 'there is not much
agreement on just what is wrong with it.'([25], Kirk,
1986, p. 437) We write this thesis just to explore the
second question.
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explicatory points such as those about the logical
connections between mechanism and consistency will be
especially attended to in this chapter.

We choose first to review some criticisms of Priest's
argument.

2.1. Boundness, Formalizability, and Chihara's

Considerations

Charles S Chihara was among the very first to
challenge the P-argument.([11], Chihara, 1984) The main
critical points he makes in his pioneer examination of the
P-argument can be summarized as two considerations as
shown below.

The first consideration is of soundness. As Chihara
understands, in order to prove that the Goédel sentence Gry
for IM is true Priest must first, not only assume, but
also prove

The soundness principle. Whatever is provable in

IM is true.

In Chihara's mind, the ultimate point Priest intends to
prove is the truth of Gyy, but without the soundness
principle the truth of Gyy may not be granted even though
GyM is provable in IM. However, even though this soundness
principle is indeed true, it does not automatically follow
that we could prove or would realize it to be so.([11],

Chihara, 1984, pp. 120-121) Besides, if the soundness
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principle really holds, LM may be weaker than is needed to
prove the truth of Gry.(ibid, p.120 and p. 123)

The second consideration is of formalizability.
Chihara observes that the P-argument presupposes

The formalizability assumption The logic of the

mind can be completely formalized in a systen

that is open to G1.

In chihara's view, this assumption is untenable. (ibid, pp.
121-122)

In our view, Chihara's considerations, though
instructive or correct in some respects, are in general
not relevant to or less than fatal to the P-argument.
Moreover, in some respects they are even questionable. Our
reasons for this general view are given in the following.

We first consider the relevance of the soundness
principle. The soundness principle is necessary only for
the proof that Gyy for IM is true, but not for the proof
that Gyy is provable in IM. Now, in order for the thesis
of inconsistency to hold, it is needed only to
demonstrate, without necessary reference to the thesis of
true inconsistency, the provability in IM of Gyy. As was
indicated in chapter 1, the thesis of inconsistency should
be distinguished from that of true inconsistency.
Certainly, the first thesis does not imply the second, nor

does the refutation of the second imply the refutation of
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the first. Since our primary interest lies only in a
refutation of the first thesis, Chihara's consideration,
for all its strength in questioning the thesis of true
inconsistency, is not very relevant to our present
concern. In fact, checking the two arguments that Priest
gives for the truth and the provability in IM of Gpy in
two places, we find that all the appeal to the soundness
principle can be omitted if the purpose of the proofs is
limited to establishing the thesis of inconsistency. At
the first place, Priest tries to spell out the intuition
that g 'expresses its own unprovability and hence is true'
by giving the following argument:

(1) $xProv(xg) => ''3IxProv(xg)' is true

(2) => g is provable
(3) => g is true
(4) => =~ 3}xXProv(xg).

Then he concludes:
Hence - }xProv(xqg).

(where -~ $xProv(xg), i.e. g is the Goédel sentence in
question) He remarks:

'Step (2) depends upon the fact that 'Prov'

really does represent the proof relation. Step

(3) depends on the fact that whatever is

provable in P is true. Steps (1) and (4) follow

from the Tarski bi-conditional T('p')<-->p

(where 'p' is the code of p).([39], Priest,

1979, pp. 222-223)
But, clearly, if this proof for the truth of g is correct,
then so should the following proof, which is merely for

the provability of g be, i.e.

20
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(1) $x Prov(xg) => g is provable
(2) => =~ $XProv(xq).
Hence - 3}xProv(xqg).

In this proof, step (1) requires only that 'Prov' really
represents the proof relation; step (2) follows merely
from the definition of g. So no appeal to the soundness
principle is necessary.

At the second place, Priest says:

‘In outline the proof is this. let the sentence

be A. Either A is provable in T, or it is not.

If it is provable then, assuming soundness, it

is true. Suppose it is not provable, Then for

every integer n, -P(n,g) is provable. Assuming

that the system of proof is sound, it follows

that every integer satisfies -P(x,g), and hence

that (x)-P(x,g) is true.'([40], Priest, 1984, p.

166)
Supposing the correctness of the above proof, we can make
the following one merely for the provability of A:

Either A is provable in T, or it is not. If it

is provable then, we need nothing more. Suppose

it is not provable, then for every integer n,

-P(n,g) is provable. It follows that (x)-P(x%,q9)

is provable in IM. (Notice that IM here is

supposed to be f1-complete.)
We get the same result as the above.

Regarding the provability of the soundness principle,

Priest argques that it is easy and even trivial to prove



it.14 Here we need not care much whether Priest is all
right in this regard or not. If it were just the un-
provability of the scundness principle that baffled the P-
argument, one would be able to claim that the thesis of
inconsistency could hold so long as so could the soundness
principle. This means, for one thing, that if IM is sound,
then there are, in IM, contradictions which are true. We
guess Priest would like, but Chihara would not like, to
accept this consequence.15

As for the relation between the soundness principle
and the thesis of true inconsister~y, the unprovability of
the soundness principle is not enough for us to reject the
thesis of true inconsistency. For what we need for a
rejection of the thesis of true inconsistency is not that
there is no possible formulation of IM whose soundness can
be proved, but that for any sound formulation of LM no
contradiction can be proved to be necessarily in it and
true.

Concerning the capacity of IM in case it is sound,

chihara distinguishes N -~ the system of the real naive

14 gee [40]}, Priest, 1984, p. 166, and [41], Priest,
1987, pp. 62-63, where he presents his proofs of this
principle.

15 1n fact, since IM is the ideal model of the human
mind, if there is no reason for us to assume soundness
principle for IM, there will be no reason for us to
assume the soundness of anyone's mind. Thus, the soundness
principle would become meaningless.
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proof procedures -- from A -- the system of the apparent
proof procedures. According to him, apparent principles
such as Tarskian truth formula (roughly, 'p' is true if
and only if p.) should not belong to N. He thinks that 'a
more fundamental objection' to Priest's argument is that
if IM=N, Gry may no longer be provable in IM.([11],
Chihara, 1984, p. 123) Although Chihara is not sufficient-
ly specific as to why he think so, we agree with Chihara
to the extent that there should be some N such that in
case IM=N no contradiction is provable in IM. (For this we
need only to restrict a candidate N' as much as needed.)
But we also admit, probably in disagreement with Chihara,
that in a sense there is certainly a proof of Gpy in LM.
What is needed is then to analyze the sense and show to
the effect that the sense in which Gry is provable is
different from the one in which it is not, thus resolving
the apparent contradiction. Chihara's idea is that LM must
become weaker if IM is altered so as to be sound from
being unsound. This idea may be true if 'weaker' is taken
in the sense of containment, but may not be true if it is
taken in the sense of representation.l® Even in the sense
of containment Chihara's idea may not be tenable unless he

provides it with other support. For Priest just insists

16 rFor detail please see chapter 3, especially,
sections 3.4 and 3.5.
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that principles such as the Tarskian truth formula be kept
in IM. In view of this, the dispute between Priest and
Chihara would be transformed into whether and in what
sense principles such as the Tarskian truth formula should
be kept in IM. Here, we agree with Chihara that the
Tarskian truth formula should at least be somewhat
qualified before being included in a correct formulation
of IM. However, even though the defender of the P-argument
admitted this, he could still question whether the proof
of the provability and the truth of Gyy must employ the
Tarskian formula any more than many other proofs do. So,
if Chihara wants to falsify Priest's argument by applying
the above idea, he has to show concretely, among other
things, why any proof of Gpy cannot be carried out in a
sound embodiment of IM. Since Chihara has not done so, his
point in this regard is at most inconclusive.l7

We now turn to Chihara's consideration of for-
‘malizability. Here also we beg to differ. It is true that
the logic of the mind must be formalizable in order to be
subject to Gl. We can also be certain that practically,

the logic of a real mind cannot be completely formalized.

17 Besides, it can be pointed out that if all that
matters hinges on the soundness of IM, it can then be
claimed that if IM is sound or can have a sound embodi-
ment, then Priest's argument holds. We do not know whether
Chihara or Priest would like to accept this case or not.
However, in this thesis we just want to show that Priest's
argument does not hold even though IM is sound.
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(Maybe the uncertainty principle of physics plays a role
in this regard.) However, here we are concerned not with
the practical formalizability of logics of real minds, but
with the formaligzability-in-principle of the logic of the
ideal mind. What matters to our concern is whether there
is a possible mind the logic of which satisfies the
formalizability assumption, and its Goédel scitence is
provable in a sense which ensures a contradiction. To
study this question, we may first presupposz that the
logic of a possible mind satisfies the first condition,
i.e. the formalizability assumption, and then see whether
this logic can at the same time satisfy the second
condition, i.e. having its own Gédel sentence provable in
a required sense. Of course, we may alsé first presuppose
for a possible mind that it satisfies the second condition
and then see whether it also satisfies the first one. Now,
since Priest intends to prove the thesis of inconsistency
by appeal to mechanism, if Chihara wants to falsify the P-
argument, he should follow him in presupposing mechanism
and then show that the thesis of inconsistency does not
follow. But, if mechanism holds, or is presupposed, there
should be no reason why the lcgic of the mind cannot be in
principle formalizable and therefore be subject to Gl.

Chihara expresses his doubt that the axioms of LM may not
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. be recursively enumerable. (ibid, p. 122)18 But, again, if
mechanism holds, the logic of the mind should be recur-
sively enumerable by definition.

Chihara also questions the formalizability assumption
by citing Robinson's infinitary arithmetic. According to
Chihara, if the formalizability assumption held, then
Robinson's infinitary arithmetic would be proved to be
true from self-evident truths. But since he is one of
those who believe that they need only to follow David
Hilbert and Hartry Field in this regard, this is for him
impossible. (ibid, p. 122)19 Here we are not sure what is
the exact sense or senses in which Hilbert and Field do
reject any infinitary arithmetic as Chihara means. Perhaps
Chihara means that any ideal mathematics is only instru-

mental (here following Hilbert) and any mathematics is

18 In his text, Chihara uses the term 'effectively
decidable' for being effectively, or recursively
enumerable, or axiomatizable. According to standard
terminology, this is a misexpression. Being effectively
decidable is stronger than being axiomatizable, which and
only which is necessary of a theory to be open to G1,
other conditions being given. (See [4], Bell and Machover,
1977, p. 332, Theorem 7.5.4, 7.5.2; p. 356, Theorem
7.11.8.) Maybe Chihara thinks of the original version of
Gl as was given by Gédel([{17], Godel, 1931) when he says
that 'to be open to Gédel's theorem the axioms of P must
be effectively decidable.' But, since that original
version has already been strengthened to being applicable
to any recursively enumerable theory which can represent
all recursive functions, it would be better to invcke the
strongest version of Gl in this regard.

19 7he references Chihara makes of Hilbert and Field
are [22], 1925 and [15], 1980.
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only instrumental (here following Field). But these kinds
of instrumental viewpoints themselves are not beyond
question. For example, Godel has a tendency toward Platon-
ism, which is at odds with instrumentalism.([18], Godel,
1964) Moreover, even if Hilbert or Field is right in this
regard, it may not legitimate to apply instrumentalism
directly against the thesis of inconsistency because this
thesis does not involve the matter of truth directly.
Merely from the thesis of inconsistency it is not
deducible that there are some truths in arithmetic,
inconsistent or not.

From the above we see that Chihara's points, partly
because they are mainly directed to the thesis of true
inconsistency, have little force against the P-argument.
2.2. Axiomatizability, and Napoli’s Observatioen

Succeeding Chihara and recognizing well the tension
between Lucas and Priest, Ernesto Napoli tries to argue
that no presupposition of consistency is required to show
the invalidity of the P-argument, which is, according to
him, ‘'nothing less than a sheer and circular presumption
of inconsistency'.([34], Napoli, 1985, p. 403) 1In
Napoli's view, there are two cases in which Gpry may be
proved in LM. Case 1: IM is axiomatizable. In case 1, the
provability of Gyy in LM means that LM is inconsistent. So

in case 1 the provability of Gry in IM is but the
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supposition of what is to be proved. Case 2: LM is not
axiomatizable. In case 2, since the provability relation
of IM is not recursive, even if Gyy is provable in LM,
there is no contradiction because what is established (by
Gl and the provability of Gyy in IM) is only that

(a). Gym is not effectively provable in LM; and

(b). Grm is non-effectively provable in LM.
Napoli's implicit view is that any proof conducted in a
nonaxiomatic, i.e. non-r.e. theory is non-recursive; so
that if Gy is only non-effectively provable in LM, then
there may be no contradiction which is necessarily
involved, for clauses (a) and (b) do not constitute a
direct contradiction. Here, Napolil sees that the pitfall
of the P-argument may lie in the P-identification.20 His
observation contains some truth. But this truth is not
enough to invalidate the P-argument. First, as Napoli
notices, Priest himself claims mechanism. Since mechanism
means that any proof of IM is recursive, it follows that,
unless special explanation or qualification is given, case
2 should be excluded from consideration. In fact, if Gy
could be non-recursively provable in LM, there would be no
Godel sentence for IM. For in that case, the provability

predicate for IM would be non-recursive, and hence Gl

20 please recall the last paragraph of chapter 1;
also see the beginning paragraph of chapter 3, and
especially section 3.1 for detail.
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would not be applicable to IM and the Gédel sentence for
LM could not even be constructed. Priest provides several
powerful arguments to the effect that any proof conducted
in LM must be recursive and hence in particular so must
the proof of Gyy be. Agreeing with Priest in this regard,
we take the view that any proof is recursive so long as it
is a proof, whether or not it is conducted in a non-r.e.
theory.2l If Napoli thinks that the P-argument in this
regard is incorrect, he should, as he did not, let his
reader know why. Second, pointing out the equivalence
between the claim of the recursive provability in IM of
Gpm and the claim of the inconsistency of IM in case 1 is
not enough to show that Gpy cannot be recursively provable
in ILM. For certainly, circularity is not invalidity.
Moreover, just because of this circularity (or better,
equivalence), if Napoli wants to renounce the
inconsistency of IM without begging the question, he has
to give proper reason to show why Gpy cannot be
recursively provable in LM without appeal to the
consistency of IM. Otherwise Priest would also have good
reason to accuse Napoli of begging the question in return.
Since Napoli has not done so, his argument cannot be

viewed as a satisfactory refutation of the P-argument,

21 gee [40]), Priest, 1984, 167-170. Our detailed
discussion about this will be given in section 3.2.



though his observation is appreciable.
2.3. Absolute Undecidability, Butrick's, and Lacey and
‘Joseph's Viewpoints
We now consider the problem of undecidability of the
Gédel sentence directly. Concerning this Richard Butrick
holds a special viewpoint, which, though not raised for
the purpose of attacking Priest's argument, is nonetheless
quite relevant to it. This viewpoint is

The absolute undecidability viewpoint. '[tlhe
Godel formula, (i.e. Gédel sentence) is not
decidable in any system, and in that sense it is
a pseudo sentence'. ([9], Butrick, 1965, p. 144)

Butrick's argument for his viewpoint is the following:

The Gdédel formula contains a designatory
function, and the claim that the number named by
that function does not stand in the relation
"Dem" to any other Gédel number. To determine
whether what it says is true, one must determine
whether the formula associated with that number
is demonstrable (either an axiom or obtained
from the axioms by the rules of substitution and
transformation). That formula, it turns out, has
the Gédel number of the Gédel formula and hence
contains a designatory function and the claim
that the Gédel number named by that function
does not stand in the relation "Dem" to any
other Gédel number. To determine whether this
latter claim is true one must proceed again in
the same manner, and so on endlessly, obviating
the nggion that any decidable claim is made at
all.'

Obviously, if Butrick's argument were correct, the P-

22 gee ibid above, p. 414, wherein 'Dem' is the
expression which Gédel used as the provability relation in
his original article in which Gl was first proved. See
[17], Goédel, 1931.
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argument would have stumbled at step B6, at which it is
stated that Gpyy can be proved in LM.

The validity of Butrick's argument bears very much on
what the Gédel sentence designates by its designatory
function and what it claims about its designation. Hugh
Lacey and Geoffrey Joseph challenge Butrick in just this
regard. ([27], Lacey and Joseph, 1968) According to Lacey
and Joseph, in examining the decidability of the Gddel
sentence we need to consider three systems: the object
theory, say P, i.e. our Z; the intuitive, unformalized
arithmetic, say A; and the metatheory of P, say M.
Correspondingly, the Gdédel sentence G (or any other
sentence of the formal object language of P) can bebread
in three ways: as G, which is significant to P; as Gp,
which is significant to A, and as Gy, which is significant
to M. (ibid, p. 77-79)23 In Lacey and Joseph's view, the
problem of the undecidability of the Goédel sentence should
be settled with respect to the three systems separately
and independently. Thus viewed, G is indeed undecidable in
P according to them, but Gp is provisionally decidable in

A (in the sense of depending upon how 'strict a mathemati-

23 The distinction between G and Gy is also discussed
by, among others, Webb without mentioning Gp. ([48], Webb,
1983, pp. 328-329.) This distinction is enough for our
concerns. In any case, we disagree with Lacey and Joseph
in some aspects on the G-Gp-Gy distinction, though we will
not go into detail about it in this thesis because it is
not relevant to our present concern.
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cal finitism one advocates'), and Gy must be decidable in
M. (ibid, p. 82) When Butrick argues for his viewpoint, he
obviously invokes Gy, for only Gy in M can be taken to be
saying something other than what the mere technical and
syntactic form of G means. But, according to Lacey and
Joseph's analysis, Gy claims something only about G, not
about Gy itself. Thus there is no self reference involved,
and hence Butrick's argument is misleading.(ibid, p. 80)
Now, we do not believe that Lacey and Joseph's argument is
sufficiently tight. For example, there could still be
doubt why Gy can only say something about G, but not about
Gy itself, though to our understanding, there might be no
decisive means for us to dissolve this doubt. At least,
Lacey and Joseph do not say anything specific on this
point. Nonetheless, we do think that their argument shows
that Butrick's viewpoint of absolute undecidakility is
hardly plausible, for after all there are definitely
senses in which the Gédel sentence is decidable, and
moreover, true.24

From the above, we can say that Butrick's viewpoint

is untenable. However, even a conclusive refutation of the

24 1n fact, probably because they fail to attend to
Butrick's general viewpoint adequately, Lacey and Joseph
miss a simple point against Butrick. That is, the Godel
sentence read as G is simply decidable in many object
formal systems (in contrast to meta ones) such as any
maximal extension of P, or trivially, in any object formal
system containing G.
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absolute undecidability viewpoint does not imply that
Priest' argument must hold. For though the above reasoning
is applicable to the Godel sentence for any gddelian .
system, it does not say anything specifically about the
sense or senses in which the Gddel sentence for a system
may be decidable, whereas what the P-argument presupposes
is not simply that the Goédel sentence is provable in some
sense, but that it is provable in the exact sense which
guarantees that IM is inconsistent.

In summary, Chihara's first consideration is
primarily about the truth of Gry:; his second consideration
purports to show that LM may not qualify as a system which
is subject to G1l; Napoli's observation yields an analysis
of the meaning of the provability in IM of Gypy, but only
in regards to recursiveness and non-recursiveness; and
finally, Butrick's viewpoint concerns the meaning of Gy
directly. As the above discussion shows, none of these
criticisms may be justified as a satisfactory refutation
of the P-argument. It is worth noting that though these
critical points are diverse in themselves, they all leave
untouched the question of system identification: In which
system is Gpy provable in an ordinary sense? We will
answer this question in sectibn 3.2.

Now, we turn to some of criticisms of the L-argument.



2.4. Consistency, and Putnam's Criticism

Putnam's criticism of antimechanism concerning
consistency and incompleteness has been widely appreciat-
ed.25 According to this criticism, we can not simply say,
merely by appeal to Gédel incompleteness, that there is a
Goédel sentence Gp for a Turing machine T which is
unprovable in T but is provable in IM. The reason is that

'Given an arbitrary machine T, all I (IM) can do
is find a proposition U such that I can prove:

(3) If T is consistent, U is true,

where U is undecidable by T if T is in fact

consistent. However, T can perfectly well prove

(3) too! And the statement U, which T cannot

prove (assuming consistency), I cannot prove

either (unless I can prove that T is consis-

tent, which is unlikely if T is very compli-

cated)!'([42], Putnam, 1960, p. 77)
The upshot of this reason is that there is no difference
between IM and a proper Turing machine T at least as
regard Gédel incompleteness. This is why Putnam's
criticism is also considered having force against the L-
argument, though the former appeared prior to the latter.

However, since the L-argument takes the thesis of

consistency as one of its antecedents, we can moderate it

by adding to it some simple supplementary argument so that

25 For the criticism, see [42], Putnam, 1960, p. 77.
This criticism is made in a comment on Nagel and Newman.
For its citations and comments, see [10], Chihara, 1972,
p. 507-508, [8], Boyer, 1983, p. 148); and [48], Webb, p.
329). Even earlier, Good expressed largely the same point
of criticism. ([20], Good, 1969, p. 357).
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it becomes immune from Putnam's criticism. The required
supplementary argument, which is nicely presented by Lucas
himself, goes like this: T is either consistent or
inconsistent. If T is inconsistent, T cannot be equivalent
to 1M because IM is consistent according to the thesis of
consistency. If T is consistent, then U is unprovable in T
according to Gl1, but it is provable in IM. Again T cannot
be equivalent to IM.([29], Lucas, 1968, p. 153-154) This
supplementary argument shows that since the thesis of
consistency is presupposed, for the validity of the
moderated L-argument it does not really matter whether the
consistency of T in question is eventually provable or
not. In other words, the moderated L-argument could still
pass intact even though the consistency.of T for a class
of Ts would never be prcovable. Or at least it would pass
unless and until further proper criticisms of it were
made.

To make the above point clearer, we can think of it
in the contrapositive. If the thesis of consistency is not
presupposed, then T and IM might be equivalent to each
other precisely because they were both inconsistent and
therefore U would be provable in both of them. So, the

thesis of consistency really matters in this regard.26

26 The thesis of consistency (for IM) and the actual
provability of the consistency of T are different things.
Lucas' moderated argument is that since the thesis of



Besides, needless to say, few mechanists except those like
Priest would like to defend themselves at the sacrifice of
giving up consistency.

The above discussion shows that in order to find the
real pitfall of the L-argument, we have to fully
appreciate the logical implications of the thesis of
consistency as an antecedent of the L-argument.

Webb observes that Lucas' concept of consistency is
not a simple and standard one. It is characterized as
'halting, tentative and self correcting'. Webb therefore
doubts whether or not it is formalizable and provable.-
([48])], Webb, 1983, p. 329) Webb's observation here is
correct, but it does not serve as a case against the L-
argument. For Lucas is an anti-mechanist, he need not care
whether the logic of the mind or any of its aspects is
formalizable or not. He might well intend the concept of
consistency invoked in the L-argument not to be for-
malizable. As for the contents of consistency, since Lucas
gives diverse arguments for the thesis of consistency, he
makes the defended consistency open to certain
qualifications which are not part of consistency as

usually understood. However, in our view, what Lucas

consistency is presupposed, T must be different from LM,
whether or not T is consistent. Conversely, if the thesis
of consistency is not presupposed, T may be equivalent to
IMI
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really intends to show by arguing for the consistency of
real minds is beyond the real. That is, theoretically, the
existence of real minds, which are consistent only in
some self correcting sense, implies that there is an ideal
mind which is consistent in the usual sense, with all the
capacities that the real ones may possess, save, of
course, those merely attributable to inconsistency. To our
knowledge, there is so far neither empirical evidence nor
theoretical argument nor any combination thereof that has
succeeded 1in disproving the existence of such an ideal
mind. Besides, with regard to the L-argument, it should be
noticed that the thesis of consistency is presupposed in
the L-argument, and is not to be proved by the L-argument.
So, even if the logic of the mind be consistent only in a
'self correcting' sense, it would be already enough for
the logic of the mind to be distinct from all inconsistent
formal theories. This means, for one thing, that the
validity of the L-argument might not be seriously affected
by what Webb notices concerning consistency in this
context.
2.5. Turing Machine Specification, and Dennett's Reasoning
In Daniel C. Dennett's view, the multiplicity of
Turing machine specifications of a physical object shows
where and why the L-argument is wrong. He says:

'The fundamental error behind attempts to apply
Goédel's Theorems to philosophy of mind is
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supposing that objective and exclusive deter-
minations of the activities and capacities of
concrete objects are possible which would
determine uniquely which Turing machine
specification (if any) is the specification for
the object.'([14], Dennett, 1978, p. 264)
His reasoning can be summarized as the following: A Turing
machine is in itself only a symbolic abstraction. Any
concrete physical object is at the same time capable of
receiving different Turing machine specifications, i.e.,
realizing different Turing machines, corresponding to
different events which we wish to interpret as input/out-
put symbol tokens rather than 'noises', and different
physical states which we wish to interpret as logical
machine states. Especially,

'it ought to be possible to interpret any man as

any Turing machine -- indeed as all Turing

machines at the same time.'(ibid, p. 262)
At the same time, there are no absolute or objective
criteria by which to determine for an arbitrary object
which Turing machine specification of it is the unique
one. Even though an object is designed with the intention
to realize a certain Turing machine, that intention does
not provide legitimate grounds for us to say that that
intendedly designed Turing machine is the unique correct
Turing machine specification for that object. Because of
this a person can in principle prove the Gédel sentence

for any Turing machine (which is equivalent to a proper

formal system) that he realizes under one interpretation
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in virtue of his realizing another Turing machine under
another interpretation., Thus viewed, then, what can be
done by a person can be so done by him merely in virtue of
his capacity of Turing machine realization. That is, a
person need not be beyond the mechanistic to be a person.

The above is Dennett's reasoning. This reasoning may
well be correct in its own right, with some provisions,
but it can hardly be right for the purpose of refuting the
L-argument. There are three reasons for this. First, the
L-argument is, strictly speaking, directed only to the
relation between the logic of the mind and any one
abstract Turing machine, not to the relation between a
concrete person and a concrete object, both as being
simultaneous realizations of the many, and in fact
infinitely many, Turing machines as Dennett conceives.
Presumably, the equivalence between a person and a non-
living object with respect to the capacity of Turing
machine realization does not imply by itself the e-
quivalence between the logic of the mind which is
realizable by a person and any one Turing machine. It is
the latter equivalence that is primarily under the attack
of the anti-mechanist. What Dennett does is to defend the
latter equivalence by arguing for the first equivalence.
That strategy does not work well. Perhaps Dennett thinks

that that strategy must work. But at least this is just
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what he has to prove before he can justify his reasoning.
If Dennett wants to do so, he should give further
arguments, but he has not done so yet. Second, when Lucas
claims that a person is able to prove the Gédel sentence
for every gdédelian system, he obviously means that a
person is able to do it consciously. If Dennett's
reasoning is correct and a person is able to prove the
Gédel sentence for every goédelian system just because he
can realize all the required Turing machines physically ,
it would require that a man is able to switch among
infinitely many different Turing machine schemata
consciously. However, empirically, there has been so far
no hard evidence as to whether or not a person can do
this. To the contrary, it seems natural to assume that
because of certain physiological constraints, any concrete
person cannot do this. Besides, by definition, the
function of any Turing machine can be performed by a
universal Turing machine. In this sense, a universal
Turing machine can do any job which is recursive. So a
person need only realize one universal Turing machine to
do whatever he is supposed to be able to do, provided that
mechanism holds. For, by definition, the function of any
Turing machine can be performed by a universal Turing
machine. Third, even it were possible for a person to

realize infinitely many Turing machines consciously, it
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would still be very hard for the advocate of Dennett's
reasoning to explain why a person can get to know that
the Gédel sentences for all universal Turing machines are
true, given the fact that no single Turing machine as he
understands can prove the Gdédel sentences for all
universal Turing machines simultaneously.2’
2.6. Pinite Mechanism, and Kirk's Approach
Recently, Robert Kirk takes a somewhat peculiar
approach in attacking the L-argument and its like. Kirk
demonstrates his approach by giving two sub-arguments. The
first sub-argument, which may be viewed as a complex of
considerations, leads to a special version of mechanism:
FPinite mechanism. The logic of the mind can be
adequately modelled by a finite automaton. ([25],
Kirk, 1986, p. 445)28
Here, a finite automaton is understood as a device having
'finitely many possible (internal) states, finitely many
possible inputs and finitely many possible outputs; and

for any given state and any input its output and next

27 ror this point, see Turing, 1964, in [1], Anderson
(ed), 1964, p. 16) and [48), Webb, 1983, p. 339.

28 Nelson subscribes to another version of finite

mechanism in his book The Logic of Mind where he argues
that human beings are nondeterministic finite automata.

([37], Nelson, 1982, p. 4 and p. 35)
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following state will be determined.'2? In contrast to
Kirk's finite mechanism, our version of mechanism as we
have so far formulated and talked about can be
reformulated as

standard mechanism (or Turing moch&nism) The

logic of the mind can be adequately modelled by

an infinite automaton.

Here, an infinite automaton, e.g., a Turing machine, is
equipped with finitely many possible internal states but
it may be equipped with unlimitedly or potentially
infinitely many inputs and outputs.39 Clearly, the
difference between finite mechanism and standard mechanism
lies in that what is capable of being modelled by an
infinite automaton may not be so by a finite one.

The second sub-argument is a direct refutation of the
L-argument given the truth of finite mechanism. It can be
compressed as the following: No finite automaton is
capable of all elementary arithmetic, or in our termino-
logy, the thesis of recursive capacity does not hold for
any finite automaton. In order to apply Gl to IM in the
antimechanistic way, LM has to satisfy two conditions:

first, being formalizable, i.e. being recursive; and

29 The definition of a finite automaton can be found
in [26], Kobrinskii, 1965, p. 3, or (2}, Arbib, 1987, p. 57.

30 For an exact definition, see [35], Nelson, 1968,
p. 62, and p. 99), and [16], George, 1973, pp. 6-7, 69-70.



second, being capable of all elementary arithmetic. Under
Kirk's approach, IM satisfies the first condition, but
since finite mechanism holds, LM does not satisfy the
second condition in the manner in which it satisfies the
first one. So the conclusion: Gl cannot be applied to LM
in the anti-mechanist way as it is intended to be by
Lucas. (ibid, pp. 444-445)

We can see that either Kirk's second argument is
invalid, or it presupposes a stronger version of finite
mechanism,i.e.:

8trong finite mechanism. LM can be adequately

modelled by a finite automaton, but it cannot be

adequately modelled by any automaton which is

not equivalent to a finite one.

Clearly, if LM can also be adequately modelled by an
infinite automaton, Kirk's second argument will lose all
its force due to this point.31

Before checking the truth of strong finite mechanism,

31 we say so because there is so far no proof that
what is capable of being adequately modelled by a finite
automaton cannot be so by an infinite one. Such a proof
will depend partly upon what 'adeguately modelling' means.
Anyway, the main point of Kirk's argument will not be
changed if there is such a proof. Strong finite mechanism
appears to be a silly position. But, as reasoned in the
text, Kirk's approach cannot hold without it. So we guess
that the concept of adequately modelling in Kirk's mind is
very special. It may have the connotation of modelling as
much as possible by means as little as possible.
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we first examine what Kirk's second argument would be
about if strong finite mechanism held. To be sure, Kirk's
second argument as a conditional does hold regardless cf
whether strong finite mechanism does as well. Indeed, if
strong finite mechanism held, then so would the con-
clusion of the argument. However, strong finite mechanism
does not hold. For when we say that LM can be completely
or adequately modelled by such and such means, we
straightforwardly mean that IM wi s apacity can
be so modelled by such means. Since we know that any
finite automaton does not have the full capacity of
representing all means of recursion as IM has, any finite
automaton cannot model IM with its full capacity adequate-
ly. If Kirk thought that to model LM adequately did not
mean to model IM with its full capacity, he could
establish strong finite mechanism. But this kind of
mechanism would not vitiate Lucas' anti-mechanist position
any more. For what Lucas insists is just that IM with its
full capacity cannot be modelled by any machine. Thus
viewed, Kirk's approach is hardly acceptable to the
standard mechanist.

As we suggested above, Kirk in fact gives no decent
argument for finite mechanism. In Kirk's view, grantedly,
the mechanist 'will probably concede' that there are only

finite number of possible 'discriminably different'
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inputs, outputs and internal states for the human
mind. (ibid, p. 441 and p. 444) But this view needs much
clarifying. For this we consider the case of input only.32
There are two senses in which it is meaningful to talk
about the number of the inputs of a machine or a mind: the
actual and the potential. Two points are clear in this
regard. First, the number of the inputs of a mind is
actually finite in the sense that the number of the
discernable inputs that the mind actually receives in any
limited time is finite. Second, the number of the inputs
of a mind is potentially infinite (or unlimited) in the
sense that for any ordinary mind there is no previously
given finite set of inputs which can cover all the inputs
that the mind may receive in its undefiﬁitely long
potential life. Kirk accepts the second point as well as
the first one. For he admits that the human mind is
capable of all elementary arithmetic 'by interacting with
the outside world'. (ibid, pp. 442-443) Now the question
is, to let an automaton model the human brain as adequate-
ly as possible, should it be a) both actually and

potentially finite, or rather, b) only actually finite but

32 The case of output is parallel to the case of
input; and the case of internal states can be omitted for
there is no difference between a Turing machine and a
finite machine with respect to internal state per se. Like
a finite automaton, a Turing machine has only finite
internal states; whereas unlike any finite automaton, a
Turing machine may have infinite inputs and outputs.
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at the same time potentially infinite? Certainly, the
answer must be b). The next step is obvious: it is only a
proper Turing machine, not a finite automaton, that is
capable of b); and hence a finite automaton cannot best
model the human mind. From this we conclude that the best
explanation of Kirk's approach is, though Kirk could have
not been very clear about this as he should be, that he
considered the human mind only to be something which is
isolated from, or unaided by, the outside world. Assuming
that the human mind is isolated from the outside world,
then of course Kirk approach is right. But since the human
mind addressed in the L-argument is legitimately supposed
to be interacting with the outside world, Kirk's approach
is just beside the point with respect to the L-argument.
2.7. Representability, Benacerraf's Idea and His Argument

In an attempt to clarify the provability concept
invoked in the L-argument, Paul Benacerraf construes it so
that

'to prove a formula is to derive it as a formal

theorem of a consistent system which includes

the postulates of arithmetic.'([6], Benacerraf,

1967, p. 20)

Based on this construal, and noticing that every formal
system equivalent to a Turing machine can be enumerated by
a universal Turing machine, say Maud, under some stipula-

tion about vocabulary and Gédel numbering, he reasons as

follows:
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'Identifying the i-th formal system in the
enumeration as Wj, it follows from Godel's work
that the relation 'F;,..., Fp is a proof of Fp
in Wwi' has its counterpart in Maud: i.e. .
whenever a statement of that form is true, its
translation into Maud is provable by Maud.
Calling 'Maud;' the result of adding H (the
Goédel sentence for Maud) as an axiom to Maud,
then 'H is a theorem of Maud;' is provable by

Maud. So, thus interpreted, what Lucas can

'prove' does not differentiate him from

Maud. (ibid, pp. 20-21)

Here, Benacerraf expresses an important idea:

The B-idea. Some proof in IM of Gpy can be

interpreted as a proof in a consistent formal

theory which is not necessarily the same as LM

but which can in a sense be represented in M, 33
We believe that the B-idea, if fully developed and
thoroughly applied, can be used to refute both the L- and
the P-argument in a way which is most coherent with, and
beneficial to, the background of contemporary logic and
philosophy of mind.

Nonetheless, there are two shortcomings with
Benacerraf's presentation of the B-idea. First, he is not
specific as to how to determine the Gédel sentence for
Maud if Maud is a universal Turing machine. But this must

be made specific to meet Benacerraf's requirements. We

will expand this point in chapter 4 but omit it here.

33 According to J.J.C. Smart, W.V. Quine had
presented to him roughly the same as the B-idea before
1961. (See [43], Smart, 1961, pp. 109-110)
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Second, and more importantly, he does not seem to
appreciate his own B-idea sufficiently. The emphasis of
the paper in which he presents this idea is given to his
preferred reconstruction of Lucas' original argument; let
us call it the B-argument. The B-argument presupposes
quite the opposite of the B-idea, namely:

The containment presupposition Any sentence

which is provable in IM is contained in the

logical closure of IM.(ibid, pp. 23-30)34
Obviously, since according to the B-idea, a Turing machine
can prove certain sentences by virtue of representing some
other Turing machines, and hence without necessarily
containing those sentences (i.e. proving them directly),
the B-idea is incompatible with the containment presup-
position. Benacerraf himself does not recognize such an
implicit presupposition in his argument. But the evidence
for this is very clear, once noticed. For example,
throughout his twenty step argument, he defines s*, the
closure of all what 'I' (roughly, our LM) can prove as the
set which contains all provable sentences; whereas if he
took the B-idea seriously, he would not define S* that
way.

The conflict between the B-idea and the B-argument

34 This presupposition is similar to the C-principle
to be formulated in section 3.4.
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shows at least that Benacerraf does not take the B-idea
very seriously. This is not surprising. His B-idea has
been almost totally overlooked in the literature. There
are in the literature comments and criticisms, from
different perspectives, of Benacerraf's paper and the B-
argument, some of them being instructive or correct in
themselves. But none of them, it seems to us, have been
made with regard to the B-idea. The authors of these
comments and criticisms, Lucas included, simply do not pay
attention to the B-idea, apparently thinking that whether
or not Benacerraf is correct with his B-argument has
nothing to do with the B-idea.35 our view and appreciation
are rather different. Because of this, we feel a need to
review the B-argument in a way that highlights the B-idea
directly.

In Benacerraf's own view, the only assumption of the
B-argument is, at step 9,

The tripartite assumption. ‘[t]here is a

recursively enumergble set Wj such that

a) 'Q c Wy'es

b) 'Wy ¢ *1es*
c) s* c Wj

35 see [29], Lucas, 1968; and [11], Chihara, 1972.
Further, there is no allusion to the B-idea in Boyer's
review of some problems with Lucas which have attracted
attention; ([8), Boyer, 1983, p. 148) neither is there
specific mention of Benacerraf and his B-idea in Kirk's
recent list of some of the most popular suggestions for
mechanism in view of Gédel incompleteness. ([25], Kirk,
1986, p. 451)
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where Q is Robinson's arithmetic, and s* is the same as
introduced above (i.e.,the logical closure of the theorems
that 'I' can prove).(ibid, p. 25) The B-argument ends with
a contradiction at step 20. So, the conclusion of the B-
argument, step 21 of the B-argument, is, instead of the
negation of (9c) as Lucas suggests, the negation of the
tripartite assumption. That is,

'At best Gédel's theorems imply the negation of
the conjunction of 9a, 9b, and 9c.'(ibid, p. 29)

To Benacerraf, the B-argument

'fairly represents what underlies the vague ones
that Lucas presents...';(ibid, p. 23)

and it is

'the best case that one can make for a view such

as Lucas's and extract from that what would seem

to be the import of the Gédel theorems for the

philosophical thesis of Mechanism.'(ibid, p. 17)

We will make four points concerning the B-argument,
but will not go through all the details of the argument.
First, although perhaps the tripartite assumption is the
only explicit assumption of the B-argument, there are
implicit ones, among which the containment presupposition
is prominent. Because of this, if the containment
presupposition is unacceptable, the B-argument may not be

valid. Second, if the containment presupposition were

acceptable, the L-argument would be able to survive in
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spite of its criticisms reviewed in this thesis.3® Were
this the case, the L-argument instead of the B-argument
would probably still be the best case for Lucas. Third, as
we will show in chapter 4, the containment presupposition
also underlies the L-argument. In spite of this similari-
ty, the B-argument and the L-argument are qualitatively
different, for they lead to different conclusions.
Benacerraf gives no specific reason to show why and in
which sense the B-argument 'fairly represents what
underlies the vague ones that Lucas presents'. Especially,
we do not see that there is a proper sense in which the B-
argument more fairly represent Lucas' original argument
than the L-argument does. So we think that the L-argument
will still need to be refuted whether or not the B-
argument is valid. Fourth, Benacerraf takes the negation
of the tripartite assumption to mean further that

'If I am a Turing machine not only can I not

ascertain which one, but neither can I ascertain

of any instantiation of the machine that I

happen to be that it is an instantiation of that

machine.' (ibid, p. 29)
Here we do not argue whether or in which sense the B-
argument really implies the above meaning. Instead we want

to point out that even if the B-argument were correct and

really implied the above meaning, it would say nothing as

36 For this point, please see our discussion of the
common pitfall of the L- and the P-arguments in chapters 3
and 4 for detail.



to whether or not another human being other than 'l' could
ascertain which Turing machine is equivalent to 'I‘'.
Understandably, if the B-argument entails nothing
significant to the latter question, its significance will
be much less than otherwise expected. Besides, when 'I' is
said to be able or unable to ascertain himself as a
specific Turing machine, it seems to be presupposed that
I élready possesses an adequate concept of his self
identity. It seems no easy job to deal with problems
related to this presupposition.
2.8. Bffectiveness, and Myhill's Theorem

For the mechanist, B-idea needs to be justified in a
way in which effectiveness is essentially involved. For,
to refute the L-argument, the mechanist needs to show not
only that what can be done in a way by a brain can be done
in a way by a machine, but also that the two ways in which
the job is done are both effective. Now, to refute the L-
argument, we need not show directly that the way in which
any job is done by a brain has to be effective; we need
only show that the job of overcoming Goédel incompleteness
can be done in a effective way by a machine. For if we can
show this, then it is at least possible that the way in
which IM is able to overcome Goédel incompleteness is
effective. As Webb observes

'the real source of Lucas' feeling of super-
iority here is the very effectiveness with which
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Gédel's diagonal argument will enable him always
to find an achilles' heel in each machine... if
Lucas can effectively stump every machine, then
by (CT) (i.e. Church's thesis), there should be
a machine that does this too!'([48], Webb, 1983,
p. 339)

In this regard, a relevant and significant result ic
Myhill's theorem There is a total recursive
function g such that for the Turing machine
Zn(x) that prints out theorems of the adequate
consistent arithmetic ¥, the Turing machine
Zg(h(g)) is Zn(g') for an adequate consistent
arithmetical logic ' with more theorems than
Z.([33], Myhill, p. 115; also see [2], Arbib,
1987, pp. 167-168)

As Arbib comments,

'while Gédel's incompleteness theorem points to
an inevitable limitation of any axiomatization
of arithmetic, Myhill's theorem points out the
much less well known fact that this limitation

can be effectively overcome.'(ibid, Arbib, p.
168)

Thus understood, what Myhill's theorem shows is precisely
The Point of Effectiveness. The procedure of
finding out an appropriate machine which is able
to overcome the Goédel incompleteness of another
arbitrarily chosen machine is effective.
The point of effectiveness implies that there is some
sense in which it can be claimed not only that for each

machine My there is another My which can overcome the
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Goédel incompleteness of My, but also that there is one
machine M which can, of course, effectively, overcome the
Godel incompleteness of every appropriate machine. So in
this sense what can be done by the human mind with respect
to Gédel incompleteness can be done by a Turing machine.37

The point of effectiveness shown by Myhill's theorenm,
and Webb' and Arbib's comments is very important. It
suggests that the limitation of any effective means as is
shown by Gédel incompleteness can be itself overcome in a
effective way. However, it still leaves something to be
desired for a full refutation of the L-arqument with the
thesis of consistency retained. There are two points in
need of further explanation. First, Myhill's theorem shows
only that the procedure of extending consistent arithmetic
systems is effective. Suppose a proper Turing machine, say
M, can perform this procedure and represent all produced
systems, then, concerning Gédel incompleteness, we need to
show what is the technical sense in which the Godel
sentence for M can be determined and proved in M itself,
before we can say that M can overcome its own Gédel

limitation in the manner that Arbib conceives. Second, Gl

37 Good also conceives this point, though in a vague
sense. ([19], Good, 1967, p. 145) It is worth noting that
the point of effectiveness addresses the Turing machine
and the human mind directly, but not physical devices
capable of realizing Turing machines. Because of this, it
is in sharp contrast to Dennett's reasoning (see section 2.5).



shows that the Gédel sentence for any gdédelian system is
unprovable in that system unless that systenm is
inconsistent. Granting that a universal Turing machine is
equivalent to a gdédelian system, how can we show that a
universal Turing machine can prove its own Gddel sentence
without being inconsistent, i.e. without being equivalent
to an inconsistent system? Certain explanations for these
two points may be implicit in Myhill, Webb and Arbib's
mind. But they have not expressed them explicitly yet. In
chapter 4, we will give our own explanations of these two
points, in light of the B-idea and the point of
effectiveness.

In summary: Putnam's criticism is intended to show
that a machine may not be different froﬁ the mind with
respect to Gédel incompleteness because we may not be able
to prove the Gédel sentence for that machine through the
(only possible) way of proving its consistency. Dennett's
reasoning appeals, instead to a universal Turing machine,
to an object's 'universal' capacity of realizing arbitrary
machines. Kirk's approach equates LM to a finite
automaton, and thereby omits IM's unlimited potential.
Benacerraf's B-idea has the provability in S of Gg
interpreted as the provability in one system which is
representable in S. Myhill's theorem helps show that the

B-idea accords well with mechanism. In our view, the B-
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idea implies a representational approach toward refuting
the L-argument; whereas Webb and Arbib's viewpoint, the
point of effectiveness supported by Myhill's theorem,
represents mechanism in its proper sense; moreover, if we
want to have both the point of effectiveness and the
thesis of consistency, the only way for us is to go along

with a proper representational approach.
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3. An Examination of tho P-Argument

The critical examination of the P-argument presented
in this chapter constitutes a self-contained refutation of
the P-argument. To locate the pitfall for the P-argument,
section 3.1 starts with a preliminary examination of the
P-argument, which leads to the discovery that Priest
tacitly identifies two provability concepts: one according
to which G1 holds, and the other according to which G, is
viewed in the usual sense as provable in LM. Call this
identification the P-identification. Based on a discussion
of the recursiveness of proof, section 3.2 shows that, the
crux of the examination of the P-identification is not
recursiveness in general, but the special identification
of two systems of which one is IM, and the other is one of
those in which Gry is provable. Section 3.3 formulates
Priest's underlying inference needed for the P-iden-
tification. Call it the P-inference. It is shown that the
truth of the P-inference hinges primarily upon how we
interpret its premise that any sentence which is provable
in a sound system is provable in LM. Refer to the premise
of the P-inference as Il. Regarding the meaning of I1,
section 3.4 first formulates and then dismisses the

containment principle of interpretation according to which
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Il is interpreted as stating that LM contains as its
subset the axioms of 8§ for any sound system S. Section 3.5
presents the representaticnal principle of interpretation,
according to which Il is interpreted as holding that IM
can represent the axioms of S for any system S.
Correspondingly, concepts such as representational
provability and its technical counterpart QGR-provability
are introduced. The task of section 3.6 is to show how the
entire P-inference is interpreted according to the
representational principle and why this interpretation is
justifiable. Section 3.7 contains the conclusion that
since the representational provability concept is
plausible and distinct from the ordinary pvovability
concept, the P-identification is not the only option in
question, and hence the whole P-argument is invalid.
3.1. A Preliminary examination and the P-identification

Upon a preliminary examination of the P-argument, we
can be sure of the following points about it. First, Bl is
just an informal version of G1; hence there should be no
problem with Bl. Second, B2, i.e., the thesis of recursive
capacity, is highly plausible, or in Priest's words,

'relatively unproblematic.'38 Although B2 may not be true

38 see ([40), Priest, 1984, p. 167), where he
explains, 'For our naive canons of proof (i.e. our LNM)
contain those of ordinary arithmetic, in which all
recursive functions are specifiable in the usual way.'
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for some real minds, it is true for certain ideal minds.
In fact, our interest and also Priest's lie just in
whether the thesis of inconsistency is true for these
minds. So we can pass B2 without making a difference to
our and Priest's interest. Third, B3, i.e., mechanism, is
certainly open to examination. However, in the P-argument,
B3 serves only as an assumption. In examining the P-
argument we are interested only in whether this argument
holds given B3, not in whether B3 itself holds or not.
Since our intention is to defend the joint compatibility
of mechanism, the thesis o. -onsistency, G1, and the
thesis of recursive capacity, even though the arguments
available for mechanism are not sufficient for us to
confirm it, it is still useful to show that mechanism is
jointly compatible with the thesis of consistency and Gl.
Fourth, B4 follows from B2 and B3 regardless of whether B2
and B3 are true. So it is valid as a conditional. Fifth,
B5 holds as well for it is just an application of G1 in
case the gddelian system is LM. Sixth, B7 as a sub-
argument is also valid, for what B7 says is only that the
conclusion of B7 follows from that of BS5 and B6 regardless
of whether one or both of the two themselves hold or not.
Thus, finally, seventh, the above points suggest that if
the P-argument is indeed invalid, the pitfall is most

probably in B6.



We now try to locate the pitfall of the P-argument by
examining B6. To begin with, we express our agreement with
Priest that there is a definite sense in which B6é holds,
i.e. Gyy is provable in IM. To help make it clearer in
which sense B6 holds and what are the bearings of this
sense on his whole argument we reformulate Gl by the
following conditional:

Gl'. For any system S, if

(a). S is r.e.,
(b). S satisfies the recursive capacity assumption,
and
(c). S is consistent,
then
(d). Gg is not provable in S.
Put in terms of G1', the P-argument goes like this: In the
case where S = IM, we have
(e). Gym is provable in LM.
8o the negation of (d) holds. Since (b) holds as well, a
choice has to be made between (a) and (c). Since (a) is
indispensible, (c) has to be rejected. The crucial
underlying question is: in which sense can the provability
in IM of GiM be demonstrated? To be precise, we let (d)
and (e) above be re-expressed as
(d'). Gyu is not provable in LM according to some

provability concept.
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and
(e'). GM is provable in LM according to some
provability concept.
Let us call the provability concept imposed upon (d')
provability; and that imposed upon (e') provability,. At
least nominally, the two provabilities can be regarded as
being different. The question is, are they indeed
essentially different? To Priest, they must be essentially
the same. For he thinks that the provability of Gry
implies the inconsistency of LM according to Gl, and that
the provability of Gy and that of the unprovability of
GrM (provided that IM is consistent) constitute a
contradiction. ({40], Priest, 1984, p. 165) Looking at the
P-argument we see that only by assuming the identity of
the two provabilities can he reach his desired conclusion.
Let us call Priest's assumed identification of the two
provabilities the P-identification. Obviously, if we can
show that the P-identification is not true, then we can
choose to keep both (a) and (c) as mentioned above without
necessarily causing inconsistency. We will show in the
following that the P-identification is indeed a
misidentification.
3.2. Recursiveness in General and the Special System
Identification

We need a long argument to show why the P-
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identification is misleading. At the first sight, the crux
of the matter of P-identification appears to be
recursiveness. In fact, without specifying everything that
provability, connotes, we can safely say that it carries
recursiveness as its primary connotation. Definitely, when
we say that Gry is not provable in LM, we mean that Gry is
not recursively provable in IM. Thus, the truth of the P-
identification seems to be essentially contingent upon
whether provability, connotes recursiveness as well.
Priest entertains such a view. To him, the P-
identification is justifiable simply because Gry is
recursively provable.39 Prompted by this view, Priest
gives a series of reasons for a more general thesis:

The thesis of the recursiveness of proof. Any
proof is recursive.
Priest's reasons for this thesis are elegant and

forceful.40 We agree with Priest completely on this thesis

39 In fact, many phllosophers (including Napoli and
Lucas) think that this is the most significant questlon
regarding provability,. Napoli suggests that Priest is
wrong just because, among other things, Gy is not
recursively provable. (See section 2.2) Lucas in fact
agrees with Napoli on this point, and it forms his pivotal
point against mechanism.

40 gee [40), Priest, 1984, pp. 167-170; and [41],
Prlest, 1987, pp. 51-55. The term 'the thesis of the
recursiveness of proof' appears in ibid, p. 54. The origin
of this thesis can be traced back to at least to Hilbert's
viewpoint that proofs are finite objects. See [23],
Hilbert, 1927; also [47], Webb, 1980, p. 122, p. 152, p.
175, p. 186).



and generally on his reasons for this thesis. For the sake
of this paper then, we omit mentioning the details of his

reasons except for quoting two telling passages, from A.

church and Priest respectively:

'... consider the situation which arises if the

notion of proof is non-effective. There is then

no certain means by which, when a sequence of

formulas has been put forward as a proof, the

auditor may determine whether it is in fact a

proof. Therefore he may fairly demand a proof,

in any given case, that the sequence of formulas

put forward is a proof; and until this

supplementary proof is provided, he may refuse

to be convinced that the alleged theorem is

proved. This supplementary proof ought to be

regarded, it seems, as part of the whole proof

of the theorem...' ([12], Church, 1956, p. 53.)

'If the proof relation is effectively

recognizable, then by Church's thesis (which

seems entirely reasonable in the context), it is

recursive.'([40], Priest, 1984, p. 167)

From a theoretical point of view, of course, there
are non- recursively enumerable systems, (non-r.e.
systems), as well as r.e. systems. For a r.e. system,
plainly, any concrete proof in it is recursive. For a non-
r.e. system, the set of its axioms are not r.e., so the
entire proof relation for it cannot be r.e. However, this
does not mean that none of its axioms is discernable or
identifiable. For example, second order arithmetic is non-
r.e., but we certainly can identify some of its axioms.
Precisely because of this, we can still say that any
concrete proof, even though it is conducted in a non-r.e.

system, is recursive in spite of the fact that the entire
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provability relation for the non-r.e. system is not r.e..
Besides, naturally, any proof which is conductible in a
non-r.e. system should be so in an appropriate r.e.
system.

From the above we can see that if the crux of the
examination of the P-identification were merely recursive-
ness, the P-identification would indeed be justifiable by
the thesis of the recursiveness of proof. However, the
story is not so simple. Recursiveness is at most one
perspective from which the P-identification should be
examined; there is another perspective: system identity.
The P-identification holds if and only if LM is identical
to one of the systems in which Gy is provable.4l as
Benacerraf notices, whatever sentence is provable is
provable necessarily in a system. (See the beginning of
section 2.7 Although the thesis of the recursiveness of
proof guarantees that Gpy is recursively provable if it is
indeed provable, it does not and can not decree or
determine the system or systems in which it is provable.
For this reason we would rather say that the real crux of
the P-identification is not recursiveness in general, but

the special identification of two systems of which one is

41 we need not assume that the system in which Gpy is
provable is unique. If Gpy could be provable in a system
which IM properly includes, then Gpy could be so in 1M as
well.
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IM, and the other is one of those in which Gry is

provable.

3.3. The P-inference

We now need to return to Gl. From Gl and the
'gédelian suite' of its related results#2, the Gédel
sentence for any consistent gédelian system can be proved
in another consistent gédelian system, but in no
consistent gédelian system can all the Gédel sentences for
all the gdédelian systems be provable, and especially, in
no consistent gédelian system can the Gédel sentence for
that system itself be provable.

Because of the above, there are two alternatives:
either

(1) The P-identification is true ahd in this

case IM is inconsistent;

or

(2) The P-identification is false and in this

case there is a system S such that Gry is

provable in S but S is not included in IM and

hence may be consistent.
Presumably, with the concerns shared by Priest and us, but
without any prejudice against either alternative, we can

only claim, without specifying what system S is:

42 1 yse the phrase 'the gédelian suite' after Webb.
See [48], Webb, 1983, p. 309, 'Gédel's incompleteness
theorems and their suite’'.



Cl. Gpm is provable in a system S.
Cl is merely compatible both with (1) and with (2). But
Priest must go further for the sake of his whole argument,
and say that S in Cl1l could be LM , for he must claim

C2. Gpm is provable in IM according to the same

provability according to which G1 holds for LM.
Presumably, Cl is a necessary but not sufficient condition
for C2. But Priest thinks that it is legitimate to infer
C2 from Cl. Let us call the inference from Cl to C2 the P-
inference. How could Priest make the P-inference? Priest
has said nothing explicitly regarding this except
suggesting the vague and ambiguous point that whatever is
provable in a sound system is provable in IM. ([40],
Priest, 1984, p. 165) He seems to think that he need not
to say anything specific about the P-inference. However,
it may well be illuminating to explicate the P-inference.
To us, the most probable explication of the P-inference is
like this:

The P-inference

Il. Any sentence which is provable in a sound

system is provable in LM.43

43 prawn from Priest's context, a system is sound if
there is an intended model in which the appropriate axioms
are true. ([38], Priest, 1984, p. 166, where he talks
about the soundness of Peano Arithmetic) Priest is not
specific, it seems to us, as to whether there are sound
systems which are, like Euclidean geometry and non-
Euclidean geometries, mutually inconsistent. It would be
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I2. There is a sound system in which Gyy is

provable.

I3. From the above Gry is provable in IM.

We now examine the P-inference as explicated above.
There should be no problem with I3 as a conditional.
Whether I2(i.e., Cl) is true is still subject to
examination from a skeptical point of view. But we do not
want to be such skeptics as to be bothered with I2. So in
our view, the truth of the P-inference hinges on Il.
However, it does seem natural to view Il as a meta-axiom
about our IM, and we do think, or at least prefer to
stipulate, maybe with some provisions, that Il is true.
Thus what may be left open and nonetheless hinges on the
truth and the meaning of the P-inference is the
interpretation of Il.

3.4. O-provability and The Containment Principle of

Interpretation

To interpret Il correctly, we need a correct
principle. There are at least two rival principles for our
present concerns. We consider the first one in this

section. To begin with, we make some elementary concepts

unfair to Priest to think that he would deny the existence
of the intended models for non-Euclidean geometries. But
if Priest did admit the existence of such models, and
hence to admit the corresponding systems as being sound,
we seem to have one more point against his view. (See
later the discussion about the second reason against MIlg.)

67



68

or terms sufficiently explicit. First, by definition, a
sentence p is provable in a system S if and only if there
is a finite series of sentences p;, ..., px such that p is
Pk, and for any i<k pj is either an axiom of S or
deducible from the preceding ps according to the rules of
' 8. Second, ordinarily, when a sentence p is said to be an
axiom of a system S, p is meant primarily to be included
or contained in S. Finally, we introduce the concept

Oordinary provability (or O-provability). A

sentence is O-provable in S if and only if there

is one proof of p such that all the axioms

required for that proof are contained in S.
The above definition of O-provability seems superfluous.
For ordinarily, the provability one addresses is just O-
provability. However, since there may be meaningful non-
ordinary kinds of provabilities, it is helpful to have O-
provability defined explicitly. Later, another kind of
provability will indeed be introduced. At any rate, a
little bit of superfluity does not create much trouble. In
the following, O-provability and provability will be meant
to be the same, but in case we feel a need to emphasize
the distinction of the ordinary provability concept from
the representational provability concept (see next
section), we will use the term 'O-provability' or its

cognates instead of the term 'provability' or its
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cognates.
We are now ready to formulate the first principle.
The containment principle of interpretation (or
the C-principle). The general provability
concept for LM should be understood such that a
sentence is provable in IM if and only if it is
O-provable in IM.
According to this principle, the meaning of Il is
MIlc. Any sentence which isbo-provable in a
sound system is O-provable in LM, 44
In other words, the logical closure of LM contains as a
subset of the closure the set of the axioms of S for every

sound system S.45

44 We use 'sound' here in MIlc (and also in MIlp and
so on, see later) because it appears in I1, the first
premise of the P-inference. We would rather like to use
'acceptable! instead of 'sound', though. The meanlng of
'being acceptable' is now vague and flexible, and it may
just mean being sound or something else. However, our
point is that we need not specify the meaning of 'being
acceptable' in order to carry our further discussion.
Please see sections 3.5 and 3.6 for relevant points.

45 The logical closure of a system is the set of all
the consequences of the system. There seems no hard
evidence as to whether Priest accepts MIlc. However, since
only according to MIlc can the provability in LM of Gy and

the unprovability in IM of Gyy constitute a contradiction,
and Priest, holding his P-identification, does think this
contradlction has been derived wherefrom, he virtually
accepts MIlc. A most llkely possibility is that Priest is
inadvertent about MIlc in contrast to other possible ones.
However, since when one says a sentence is provable in a
system, he ordinarily means that that sentence is O-
provable in that system, Priest should be ordinarily
understood as meaning MIlc when he holds Il without
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We have two reasons against MIl. and hence against
the C-principle. The first reason comes in part from the
existence, or rather, the recognition of the existence, of
non-r.e. systems. Concerning MIlqc we have the following
conditional:
ch. 1If
(a) MIlc is true,
(b) the theory of recursion is true, and
(c) there exists at least one non-r.e. system,
then
(d) mechanism is false.
Oof this conditional ¢D, (a) is in question; (b) is
certainly viewed as holding; and (¢) is also commonly
recognized as true, and probably held by Priest. Since
mechanism is claimed to be true by both Priest and us,
MIl. should be rejected according to both Priest and us.
We are satisfied with this controposition of the
conditional CD, not going to go into any detail about the
truth of (b) or that of (c).
Our second reason is found in the existence, or at
least the recognition of the existence, of systems which

are inconsistent with one another while each of which can,

indicating which special interpretation should be given to
I1. Besides, when he talks about the meaning of proof, the
arithmetic capacity of LM, he seems to presuppose

MIlc. (See [39], Priest, 1979, pp. 220-221; and [40],
Priest, 1984, p. 165, and especially, p. 167)
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in virtue of the fact that they can be given intended
models, be viewed as sound. For example, the continuum
hypothesis, CH for short, has been proved to be
independent of ZFC. This means, for one thing, that both
Ta = 2FC U (CH) and Tp = 2FC U (-CH} are consistent if so
is ZFC. Since there is no reason for us to claim that one
is sound while the other is unsound, we should accept them
both as sound. For another example, as we mentioned
before, both Euclidean and non-Euclidean geometries have
intended models, and hence are consistent by themselves,
but they are mutually inconsistent. If MIls were true,
then IM would be a priori inconsistent in virtue of the
fact that IM contained all the axioms of these mutually
inconsistent systems. One might think that this
consequence would not baffle Priest, for inconsistency is
just normal to him. However, since every sentence except
the negation of a tautology is self consistent, if MIlc is
correct, then IM would contain all sentences except the
negations of the tautologies, making every contradiction
virtually provable in IM. This consequence is certainly
unacceptable even by Priest, for he holds nonetheless the
viewpoint that contradictions should be kept to a
minimum. ([41]), Priest, 1987, p. 144-145)

Given the two above reasons, it should be obvious
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that MIlc is implausible.46

3.5. R-provability and The Representational Principle of
Interpretation
In contrast to O-provability, we now define
Representational pzovability (or R-provability).
A sentence p is R-provable in a system S if and
only if p is O-provable in a system which is
representable in S.
The representability concept in the above definition is
itself unspecified. We will define it later. Now, using
the concept of R-provability, we formulate
The representational principle of interpretation
(or the R-principle). The general provability

concept for LM should be understood such that a

46 we anticipate that there are some who are still
not convinced of the implausibility of #Ilc even after
being given the above reasons. However, for our main
purpose at the very least, we need not to exclude MIle as
a possible interpretation of Il in order to justify the
compatibility of mechanism and the thesis of con31stency
For this we need only to demonstrate that there is a
plausible interpretation of Il which leads to the
justification of this compatibility. For if this is the
case, we can show at least that inconsistency is not the
only choice which we have to make under the apparent
pressure of Gédel incompleteness. Besides, even whether
MIlc works for Priest's purpose is still a question. For,
if IM contains axioms which make Gpy provable in LM, how
can it be possible that Gry is not provable in IM at the
same time? What G1 states, with reference to LM, is that
if LM is godellan and consistent, then G is not
provable in IM. Surely, we should have, if G is provable
in IM and IM is godelian, then IM is inconsistent, then
Gym cannot be unprovable in LM.
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sentence p is provable in IM if and only if p is
O-provable in a system which is representable
in, and acceptable for, LM.

There are two key concepts in the above formulation:
(system) representability and (system) acceptability. We
will concentrate on representability. But, before doing
this, we try to explain the acceptability concept briefly
first. For acceptability, we stipulate here roughly that

a system S; is acceptable for Sp; if S; has not

been (corresponding to a weak sense), or cannot

be (corresponding to a strong sense), found

inconsistent, unsound or the like by virtue of

Sy.

It is easy to see that there are other possible weaker or
stronger or intermediate senses in which the acceptability
concept can be defined along this general line. However,
the essernice of all these can be viewed as the same for our
present concerns. We will discuss the acceptability
concept in more detail in section 3.6.

Now we consider representability. Since there are
many concepts of representability, there may be many
senses in which the R-principle can be meaningful. In this
thesis we just choose one. To show what our choice is we
introduce two concepts: gédelian representability (or G-

representability) and quasi-gdédelian representability (or
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QG-representability). For any two systems S; and Sj;:

S; is said to be G-representable in S; if the

syntax predicates of the langquage of S; and the

provability predicate for S, are representable

in S3; and

S; is said to be QG-representable in S, if for

every r.e. aspect A of the syntax or of the

provability predicate of S, A is G-

representable in Sj.
Here, a predicate P is said to be representable in a
system S if and only if there is a formula f in the
language of S such that

P(x) = S 1- £(x).%7

To be sure, the ab»ve two concepts are meaningful.
For G-representability, from Godel's results, we know
that, first, the syntax of any r.e. language is G-

representable in any system which is capable of

47 This concept of the representability of a
predicate is understood according to the definition given
in Peter Aczel (1977), in [2], Barwise (ed), p. 754. This
definition is equivalent to that of 'weak representability
(of a predicate)' given in (3], Bell and Machover, pp.
324~325. In the definition of the G-representability, the
condition of the representability of the syntax predicates
of S, can be strengthened to that of strong representabi-
lity of those predicates. Here, a predicate P is said to
be strongly representable in a system S if and only if
there is a formula f in the language of S such that

if P(x), then S 1- £(x); if -P(x), then S 1- -f(x).
(See ibid) Since we think that the technical difference
between these two represenabilities is insignificant for
our present concerns, we just pass it by.



75
representing all means of recursion; and second, the
provability predicate for any r.e. system S is G-
representable in any system satisfying the recursive
capacity assumption.

For QG-representability, it is important to recognize
that though we can talk about non-r.e. systems, and seem
to be able to address these systems in the same way we do
r.e. systems, all we can express are, supposing
mechanism48, but the r.e. aspects of such non-r.e.
systems. To be convinced of this, let us imagine how a
non-r.e. system can be described or defined. Let S be an
arbitrary but intended non-r.e. system. By contemporary
standards, the best and standard way to define S is to
define or construct it in precise axiomatic-set-theoretic
terms. In fact, the language of S, the axioms of S, the
rules of S and so on all can and can only be adequately
defined in these terms which are provided and conditioned
by a proper axiomatic set theory, ZFC, for example. This
means that all the necessary steps for an adequate
definition of S can be taken in ZFC. In other words, all
the dimensions of S can be defined in ZFC so long as they
can be precisely described or defined, period. Nonetheless

ZFC is itself a r.e. system. This very fact implies that

48 Mechanism here serves to exclude the possibility
that the logic of the mind is capable of non-recursive means.
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although we can prove within 2FC that S is not a r.e.
system, we cannot say anything beyond the r.e. aspects of
S. This is so not because ZFC is short of something, but
because ZFC is capable of providing the definition of any
r.e. or non-r.e. apparatus whereas any definition given in
ZFC has to be itself recursively given. In this sense we
say generally that if for any r.e. aspect x of S x can be
G-representable in a system, then S can be viewed as best
representable in that system, nothing better could be
achieved in any formal system or in IM, provided that
mechanism holds.

As for the relation between G- and QG-
representability, the former is extensionally included in
the latter. Besides, in case the system in question (to be
represented) is r.e., the QG-representability of the
system is automatically reduced to G-representability of
the system. Because of this, in what follows we will be
generally concerned with QG-representability.

In terms of QG-representability we can refine R-
provability into ‘

QGR-provability. A sentence p is QGR-provable in

a system S if and only if p is O-provable in a

system S' which is QG-representable in S.
Correspondingly, we can get a special version of the R-

principle in terms of QG-representability. We omit its



full expression.

Back to the problem of interpreting Il, we now can,
according to the R-principle and in terms of QGR-
provability, interpret Il as

MIlip. Any sentence which is O-provable in a

sound system is QGR-provable in IM.

To see the difference between MI1R and MIl., we contrast
the QG-representational relationship and the containment
relationship. There are many differences between them. For
example, there are two systems S and S' such that S is QG-
representable in S' but not containable in S'. For another
example, an inconsistent system cannot be contained in the
logical closure of any consistent system, but it is QG-
representable in a proper consistent system. Moreover, a
most striking difference between the two relationships is
that there is no system which is containmentally maximal
if language expansion is always allowed.4® In contrast
however, there are systems which are QG-
representationally maximal in the sense that any formal

system is in principle QG-representable in them.%9 For

49 Here, a system S is containmentally stronger than
a system S' if S' is the consequence of S but not vice
versa. For any theory S' it is always possible by
2xpanding the language in question to find S such that S'
is a proper subset of S and S is not the consequence of S'.

50 we define that system S as QG-representationally
stronger than system S' if and only if S' is QG-
representable in S but S is not QG-representable in S'.



example, 2, because it is capable of representing all
means of recursion, is such a QG-representationally
maximal system. Because qf these differences, MIlp is
definitely different from MIlc,

With regards to non-r.e. systems, MIlp seems to be
contrived as an interpretation of Il. But technical
details aside,3l this is to the general effect the only
pcssible interpretation of I1 provided that mechanism
holds, and a fortiori, Church's thesis holds. Psychologi-
cally analyzed, MIlp seems to be contrived as an
interpretation of Il only because the existence of non-
r.e. systems seems to be a priori and have no bearing on
the capacity of the human mind. This is however not the
case. Here, we need not enter the ontological
controversies over the existential status of non-r.e.
systems. It suffices for us to consider how we can come
into any knowledge or recognition of these non-r.e.
systems. If mechanism holds, then clearly, we can
recursively only recognize the r.e. aspects of non-r.e.
apparatuses even if these apparatuses really exist in some
proper sense. Here, mechanism seems to lead to a paradox
of non-r.e.-ness. On the one hand, non-r.e.-ness is beyond

r.e.-ness; on the other hand, any non-r.e. system can only

51 ye view as technical details such differences as
result from the different versions of representational
interpretation, as discussed above.
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be described by some r.e. systems. But, this seeming
paradox can be resolved by the observation that the
existence of non-r.e. systems are proved recursively by
and only by being represented in some r.e. systems. To
emphasize, in and only in the sense that they can be
vepresented in some r.e. systems that their existence can
be proved. It is a most natural implication of the
representability in gddelian systems of non-r.e. systems
that the distinction between the r.e. and the non-r.e.
systems should and can be representable in gddelian
systems. That is why though any non-r.e. system is only
representable-in-a-way in a gdédelian system, the non-r.e.-
ness of this system is nonetheless representable in the
same way in the same gdédelian system as well.>?2

To have a still more adequate conception of MIlg, we
should acknowledge fully that MIly is, as indicated above,
not unique as an interpretation of Il1 according to the R-
principle. There are others. For example, we can have

MIlp'. Any sound system is finitely G-

52 one may object to this point by citing the
observation that if the representational interpretation
were reasonable, then there would be no sentence which is
unprovable in a gédelian system but provable in a
nonrecursive system. Here, the observation cited is
correct, but it does not serve as an objection. For what
it shows is only that contrary to the antimechanist'
imagination, any seemingly nonmechanistic job can be done
in a mechanistic gdédelian system. We will return to this
point in chapter 4.
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representable in IM.
Here, a system S; is said to be finitely G-representable
in another system S; if any finite aspect of the syutax or
of the provability predicate of S; is G-representable in
S;. We can see that MIlgp' might be weaker in u sense than
MIlp in that S; might be finitely G-representable but not
be QG-representable in 82.53 For another eoxample,
recognizing that virtually all structures including the
intended model for Z and so on can be conveniently defined
in ZFC, we may as well be led to interpret Il as

MIlp". Any sentence which is O-provable in a

sound system is generally QGR-provable in LM.
Here, a sentence p is said generally QGR-provable in a
system S if and only p is O-provable in a system S' which
is QGR- provable either in S directly or in an
intermediate system S" which is again QG-representable in
S. Needless to say, much explicatory or auxiliary work has
to be done kefore we can have an adequate conception of
MIlg". However, we believe this work can be done, though
we will not do it in this paper. What is important is that
since any gdédelian system is itself QG-representable in

any other goédelian system, it seems unlikely that there

53 Here we notice that an exact definition of finite
G-representation requires an exact definition of being a
finite aspect. There may be controversies over this point.
But we can pass this point without weakening the illumi-
nating power of our example.
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should be any essential difference between MIlp and MI1lR"
with respect to our present concern.

3.6. The R-inference and Its Justification

We now consider the whole P-inference in light of the
R-principle and its associates. Accordance to MIly, the P-
inference should be read as

The R-inference

I'l (MIlg). Any sentence which is O-provable in

a sound system is QGR-provable in LM,

I'2. There is a formal sound system in which Ly

is O-provable.

I'3. From the above Gyy is QGR-provable in IM.
The R-inference as a conditional is valid, for I'3 follows
logically from I'l and I'2. But we still need to justify
I'3. Since I'3 follows from I'2 and I'l and the truth of
I'2 is generally granted, in order to justify I'3, we need
only to justify I'l. According to the known results of
gédelian numbering, in order to justify I'l we require
only that IM is capable of all means of recursion. But
this is just what B2 (of the P-argument) claims. We
discussed at the beginning of section 3.1 already that B2
should be viewed as acceptable. At least, since B2 is
well accepted by both the mechanist and the anti-mechan-
ist, we can simply assume it to be true if we have not

been convinced of its truth, without stretching the issue



in question. Thus, I'l and hence I'3 can be viewed as
justifiable.

The above shows that I'3 is justifiable as itself,
whereas we need to show further that it is so as a proper
interpretation of I3. In this regard, since QGR-
provability is a typical notion of provability
corresponding to the R-principle, we can simply take QGR-
provability to be in essence the exclusive alternative to
O-provability. Thus we have either

(R) (i.e. the conclusion of the R-inference).

GyM is QGR-provable in 1M,

or

(0) (i.e. the conclusion of the P-inference).

Gym is O-provable in IM.

To our knowledge, there has been no special reasons
presented for (0) and against (R) in this context except
for begging the question to appeal to the thesis of
inconsistency. To the contrary, since the truth of (0) is
based on the C-principle but the C-principle has been
proved implausible, we seem to have one reason for (R) and
against (0). This reason becomes more convincing when the
following assumption is made:

The uniformity assumption. Gyy is provable in LM

in the same way in which the Goédel sentence for

each gédelian system is provable in LM.
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The uniformity assumption is highly plausible. Now, if Gpy
is O-provable in IM, then, according to the uniformity
assumption the Gbédel sentence for every gddelian system is
O-provable in IM. But we know clearly that no consistent
gédelian system could be such that the Gédel sentence for
every goédelian system is O-provable in it. The above
consideration highlights, and in a sense repeats, that in
accordance with G, Gry cannot be O-provable in LM, not
only because any system in which Gyy is O-provable has to
be non-r.e., but also because no consistent r.e. system
can be such that the Gédel sentence for every godelian
system is O-provable in it. This systematic constraint
just is demonstrated by G1.

Of course, we do nect think the above reason is
conclusive. So, with the purpose of providing explanation
we would like to consider further some imaginable points
which would be taken as against the R-principle and hence
against (R).

One point is of the observation that since any
inconsistent system is QG-representable in IM and
everything is provable in an inconsistent system, any
sentence would be QG-representable in ILM. This okservation
is correct. But it does not jeopardize the plausibility of
the R-principle. The reason for this is that the pass-or-

fail test for the reasonableness of the R-principle is not
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whether all inconsistent systems are QG-representable in
1M, but (a). whether any really sound or consistent theory
is QG-representable in LM, and more crucially, (b).
whether IM is capable of ascertaining them as acceptable
(being consistent, sound, or whatever) to a proper extent.
» - st, for part (a) of the test, it is easy to see that
the R-principle cannot fail it.%4 second, for part (b) of
the test, it is true that in many cases LM is incapable of
ascertuining sound or consistent systems as such absolute-
ly. But this fact dces not mean that IM must fail part (b)
of the test in the legiti-mately required sense. For what
is and should be required of LM in this regard is that LM
be capable of ascertain-ing sound, consistent, or any
required systems as such to and only to the extent to
which any possible system can be. Obviously, if mechanism
and Church's thesis hold, then no doubt IM will pass part
(b) of the test. For in this case, any two gdédelian
systems will have the same capacity in this regard, and
the capacity of any non-r.e. system in this regard will
have to be conditioned upon that of the gédelian systems,
in which the non-r.e. system may be representable and

hence may gain its existence and any capacity therefrom.

54 aAs we showed before, any system is QG-represen-
table in any gdédelian system. Moreover, there is no
essential difference between consistent and inconsistent
systems with respect to being represented in a gédelian
systen.
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Since in our justification of the R-principle, mechanism
and church's thesis are presupposed, we can continue to
elaborate our theory in spite of the above point of
observation.

Here is also a good place for us to consider the
second key concept in the R-principle, namely,
acceptability. In section 3.5 it was stipulated that
system S, accepts S; if S; has not been or cannot be found
inconsistent or unsound or the like by virtue of S;. We
admit that this stipulation or explanation is not thorough
and clear enough. What is however clear enough in this
regard is that we need not necessarily have a thorough
definition of this concept before we can meaningfully use
it. We need only be sure that for any sétisfactory
acceptability concept, if S; is acceptable for S; where Sj
is a censistent gdédelian system, then S; must be
acceptable for any consistent system. For any defect of S;
concerning its acceptability that can be by any system S
or LM can be found by S,. Again from the above discussion
we know that this is guaranteed, granting mechanism and
Church's thesis.

A further point which would cause (R) and the R-
principle trouble is drawn from the question of whether
for an arbitrary sentence p it is ascertainable when p is

O-provable and when p is merely QGR-provable. It is
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natural to ask this question, Since the meaningfulness of
QGR-provability does not exclude but rather presupposes
that of O-provability, it seems natural that if a sentence
p may either be O-provable in LM or be merely QGR-provable
in IM, it should be ascertainable in a way which one the
case is; but, supposedly against the idea of QGR-
provability, it seems that it is in general not
ascertainable. We appreciate this point; but at the same
time we think that this point, like the first one, only
helps spell out implications of (R) and the R-principle;
it creates however no real pressure against our viewpoint.
The reason is that although it is in general not
ascertainable for an arbitrary sentence whether or not it
is only QGR-provable in LM, this is so only because we do
not know exactly which gédelian system LM happens to be.
To be sure, special identification is rather different
from general classification. The fact that LM can be
reasonably classified as a gédelian system does no’  .:cail
that it can be identified with all its logical contents.
Conversely, the possibility that LM may not be
identifiable with all its logical contents does not imply
that it cannot be gdédelian. As we discussed before on the
thesis of the recursiveness of proof, for any sentence p,
if p is provable, either O-provable in IM or merely QGR-

provable in LM, a proof of p must be effectively
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specifiable with all the required axioms. It is trivially
true that p is O-provable in LM if and only if the axioms
required for at least one proof of p are all contained in
IM. Thus viewed, then, our inability of ascertaining
between O-proofs and QGR-proofs conducted in IM is merely
due to our inability of ascertaining all the axioms of LM.
Since the latter inability will always be with us even
though only O-proofs in IM are justifiable, the former
inability should not be a blame of trying to accommodate
QGR-proofs as well as O-proofs in LM. We believe that the
above discussion has already shown that the reason for
accommodating only O-provability is no more convincing
than the reason for accommodating both O-provability and
QGR-provability. If we have to accept these two
provabilities and their possible implications, we should
not be bothered much by the ascertainability problem for
our present concerns.

Related to the above discussion, it is instructive to
consider a question which concerns the logical contents of
IM directly. Suppose that LM can be viewed as a godelian
system, how can we specify which gdédelian system it is?
For example, Z is primarily an artificial formal system.
Should IM be 2 exactly? If LM is not equivalent to 2 (in
the sense of containment), is it equivalent to some other

gdédelian system which is specifiable? It seems that there



is no reason why LM has to be some specified gédelian
system., Granted that IM should be an ideal model of all
the real human brains, LM could be any consistent gédelian
system without gaining or losing any rational capacity
which some variant of IM would have. Further, generalizing
the spirit of the R-principle, we need not even presuppose
that LM contain any particular arithmetic truth at all. It
suffices for IM to be eguivalent to the pure first order
predicate calculus, PC. For Z itself can be viewed as the
set of all the tautological conditionals in 2's language
in each of which the antecedent is a conjunction of some
axioms of Z. In this sense Z can be conditionally
represented in PC. In fact, it is an open question in
which sense LM contains the axioms of Z, supposing that IM
contains them in a sense. At least there is so far no
reason for excluding the case that IM contains Z only in
some conditional sense.

We stop here discussing the reasonableness of (R) and
the R-principle directly, not because we believe that
enough has been given to establish their truth, but
because we think that enough cannot be given for their
truth until enough of their applications has been made. We
acknowledge that the truth of our whole argument hinges
essentially upon their truth.

3.7. The Conclusion



From the above, then instead of claiming the O-
prevability in IM of Gry, we claim the QGR-provability in
IM of Gyym. Since provability; and provability,; introduced
near the end of section 3.1 can be interpreted
respectively as O-provability and QGR~-provability, and it
is fairly probable that without begging the question to
invoke the thesis of inconsistency Gry should not be taken
to be O-provable in LM, we can reach

The conclusion of this thesis: The P-identifica-

tion is not the only possibility in question,

and hence the P-argument is not valid. Put

positively, the joint compatibility of

mechanism, the thesis of consistency, the thesis

of recursive capacity and Gl may well hold in

spite of all consequences of Gl.

If the above conclusion is correct, then it is easy
to explain why it is at least possible both that IM is
consistent and that Gyy can be viewed as provable in LM.
Suppose IM is gdédelian and consistent, then according to
Gl, Gy is not O-provable in LM. However, since Gy is O-
provable in another system which is representable in a
sense (maybe just QG-representable) and acceptable for LM,
Gpm may well be R-provable (maybe just QGR-provable) in
ILM.

To be sure, so far we have not claimed that
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provability, can only be interpreted as QGR-provability.
To do so we first need to present an independent proof of
the thesis of consistency, but we have not done so yet.5>
on the other hand, to show that that could not be the
case, one would have to first give an independent proof of
the thesis of inconsistency, but no one has done so yet
either! In view of this, we just express our present
viewpoint, to be further confirmed, that if mechanism
holds as Priest thinks, then the only reasonableb
alternative in this regard is (R), namely, Grm is QGR-
provable, instead of O-provable, in IM. In other words,
should Priest be correct in claiming the provability in IM
of Gry, he would have to mean it in the sense of the QGR-
provability in LM cf Gry. |
3.8. Appendix I (The assumption of non-classical logic)

In advancing the P-argument Priest has in his mind

The assumption of non-classical logic: the logic

of the mind is non-classical.
So, to understand the above conclusion better, we-should
take into consideration the distinction between classical
logic and non-classical logic. In this section, we try to
make some brief points about this distinction.

One presupposition of our above discussion is that

55 1f 1M were inconsistent, then provability,
certainly could be interpreted as O-provability, for then
every sentence would be provable in LM.



the lugic of the mind is of the classical as is typically
embodied by the standard first order logic plus certain
possible non-logical axioms. Since there is essential
difference betwéen classical logic and non-classical
logic,56 we should reformulate our conclusion reached
above as to the effect that

if the logic of the mind is classical, then the

joint compatibility of mechanism, the thesis of

consistency, the thesis of recursive capacity,

and Gl holds.

Now the question is, what would turn up if the logic of
the mind is non-classical? Here we anticipate that the
defender of the P-argument would make the rejoinder that
since the logic of the mind may be non-classical, the
zbove conclusion may lose its meaning. In reply to this
rejoinder, we present the following points:

Point 1. There has been so far no hard evidence, and
will probably be none as we believe, as to whether the
logic of the mind is classical or non-classical. Because
of this, it is meaningful to explore the logical nature of

the mind under the presupposition that the logic of the

56 For our present concerns, the major difference
between the classical logic and the non-classical logic
lies in that the disjunctive syllogism

{p&(--pVq) 1- p
holds for the former but not for the latter whereas
inconsistencies are allowed in the latter but not in the
former.

91



92

mind Js classical.

Point 2. If the logic of the mind is non-classical,
or especially, just paraconsistent, then the thesis of
consistency should of course be rejécted or at any rate be
revised. However, as our above discussion shows, Gédel
incompleteness has no force to entail the thesis of
inconsistency. In order to establish this thesis, one
cannot appeal to Gédel incompleteness. But this is just
what we intend to show.

Point 3. In Priest's view, his dialetheic logic, a
kind of paraconsistent logic, is preferable to classical
logic as the embodiment of the logic of the mind. His

reason is,

'[a] theory has greater power, Or a wider range
of applications, or, in general, subsumes a
rival is a well known methodological test for
that theory to be preferable to its rival. In
many ways, dialetheic logic relates to classical
logic as does Special Relativity to Newtonian
Dynamics.' ([41], Priest, 1987, p. 148)
In our view, although the preference criterion Priest
cites is acceptable, his reason is itself problematic.
Priest insists on mechanism. But, if his dialetheic logic
is mechanical, it should, as we demonstrated above, be
representable in any consistent gdédelian system. This
means, for one thing, that any power that Priest's
dialetheic logic possesses will be possessed in a

representational sense by the logic of the mind qua a
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consistent gédelian system, even though the logic of the
mind is not itself dialetheic. We have shown that any
consistent gédelian system is QG-representationally
maximal. (See section 3.5.) This very truth will baffle any
attempt of showing that there is a non-classical system
which is preferable to the classical as an embodiment of
the logic of the mind according to the preference standard
cited in Priest's reason. It may be the case that Priest's
dialetheic logic is also representationally maximal in a
special sense. If this is the case, then we say Priest's
dialetheic logic is representationally equivalent to any
consistent gédelian system. In this sense, the mere
possibility that IM is non-classical is insignificant for
our present concerns. For if Priest wants to use Goédel
incompleteness to exclude the possibility that LM is
classical, he begs the question; whereas if it is possible
that IM is classical, then there is possibility that LM is
consistent, mechanical, Gédel incomplete, and capable of
representing all means of reursion, all at once. But this
is just what we try to show by way of refuting the P-
argument, without any prejudice asainst Priest's

dialetheic logic or any kind of paraconsistent logic.
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4. An Examination of the L-arqument

The critical examination of the L-argument in this
chapter, in close connection with that in last chapter,
leads to a refutation of the L~argument. In the P-
argument, mechanism is presupposed whereas the thesis of
consistency is to be rejected. In contrast, in the L-
argument, the thesis of consistency is presupposed, and
mechanism is to be rejected. Thus, as the informal formula
JI in chapter 1 shows, the P- and the L-argument
abstracted as two conditionals are equivalent to each
other. In this sense, a refutation of the P-argument is in
essence a refutation of the L-argument as well. Because of
this, our examination of the L-argument is restricted only
to showing that our basic points made on the P-argument
are in essence applicable to the L-argument as well. For
this purpose we first make an preliminary examination of
the L-argument in section 4.1 to locate its pitfall. Then
we will concentrate, in section 4.2, on how the represen-
tational approach can be carried out in the parlance of
Turing machines. Besides, in section 3 we will give the
technical proofs of the theorems stated in section 3.
4.1. An Preliminary Examination of the L-argument

Based on considerations similar to those we have for

our examiration of the P-argument, we can make the



following points for preliminary examination of the L-
arqument. First, there should be no problem with steps Al
and A6. They are the assumptions of the P-arqument as
well. Second, steps A3, A5 and A7 as conditionals are all
valid regardless of whether their antecedents hold or not.
Third, step A4, i.e., the thesis of consistency, should be
viewed as holding in our examination of the L-argument
with a view to defending its compatibility with mechanism
under G1 and the thesis of recursive capacity. To
emphasize, this compatibility is meaningful and logically
examinable even though neither the thesis of consistency
nor mechanism could be absolutely confirmed.

From the above points we naturally think that if the
L-arqument is indeed invalid, its pitfail may probably be
found in step 2. The question for the L-argument is the
same as for the P-argument: Assuming IM has its own Goédel
sentence, in which sense can it be provable in IM? Now, in
terms of O-provability, the L~-argument means largely the
following reasoning: if LM had its own Goédel sentence, say
Grm, Gpm would be provable in IM; if Gry were provable in
IM, it must be O-provable in LM; if Gy were O-provable in
LM, IM must be inconsistent; since LM is not inconsis-
tent, IM must have no Gdédel sentence of its own, and
therefore not be a gédelian system; finally, since LM is

capable of all means of recursion, LM must not be
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mechanical. On examination we can see clearly that Gpy is
O-provable in LM if and only if the P-identification
holds. So, in a sense we can say that the L-argument is
valid if and only if the P-identification holds, other
conditions given.57 However, as shown in chapter 3,bsince
the R-principle is acceptable, the P-identification doces
not hold, for whereas provability; is certainly O-
provability, provability,, the one according to which the
Gédel sentence for each gédelian system is provable in LM,
may well be QGR-provability. Thus, the case may well be
that or only that Gyy is O-provable in a system which is
QG-representable in LM but not identical to any subsystem
of LM. Obviously, in this case, there will be no necessary
tension between mechanism and the thesis of consistency
unless some argument other than the P-argument could prove
valid to the opposite effect.
4.2. G6dael Incompleteness and Turing Machines

In section 2.8, we indicated that in order to refute

the L-arqument in a satisfactory way, we should show

57 tucas once said that the provability concept
invoked in A2 is 'deliberately uncouth' in order to
([Lucas, 1984, p.) But, however uncouth it is, it must be
O-provability, for otherwise his argument cannot pass
through. It is true that if mechanism were really
rejectable, LM cnuld not have its own Goédel sentence, and
hence the problsm of the P-identification would not
arise. However, since invoking Gédel incompleteness is an
essential step in the L-argument, the P-identification has
to be presupposed for the validity of the L-argument.
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explicitly how the Goédel sentence for each machine as a
gdédelian system in a sense can be determinable and
provable in LM without invoking or creating
inconsistency. Granting Church's thesis, our discussion of
the R-principle and its associates in last chapter serves
this purpose in principle, providing a full basis for us
to achieve this goal in the representational approach.
However, that discussion is not conducted directly in the
parlance of Turing machines. Since from the mechanistic
point of view the mechanism of the human brain is treated
primarily as that of a proper Turing machine and then,
only consequently, as that of a formal system due to an
equivalence relation between formal systems and Turing
machines, an explicit demonstration of the
representational approach in the parlance of Turing
machines is still needed. We feel this need to be very
pressing, especially in view of the fact that in the
literature almost all discussions, mechanist or anti-
mechanist, about the implications of Gl in the parlance of
Turing machines are just too vague or even ambiguous to
fit the issue in question. For example, there has been
much talk of the Gédel sentence for a Turing machine, but
it is just unclear as to how to determine it and its
technical implications in correspondence with their

counterparts in terms of formal systems. In the following,



we try to remedy this situation by explicating what is the
case for Godel incompleteness in the parlance of Turing
machines. Our explication consists of three points.

Point 1: the correlation between Turing machines and
formal systems.58 A Turing machine can be viewed as a
natural number generator which generates or 'prints' a
natural number as its output if it really stops at some
stage after being given a natural number as its input. The
range of a Turing machine is the set of all the numbers
that it can eventually generate as its outputs, and its
domain is the set of all the numbers at each of which as
its inputs it generates a number as its output. Assuming
church's thesis, then, a Turing machine is equivalent to,
and hence can be characterized as, a r.e. function. In
this spirit, if a Turing machine M generates b as its
output at a as its input, we write M(a)=b. Hereafter we
will restrict ourselves to one-place Turing machines and
correspondingly one-place universal Turing machines. There
is, however, no loss of generality for us to submit to
this restriction.3% Now, in order to develop the same
ideas for Turing machines as we do for formal systems, we

first need a proper correlation or correspondence relation

58 This point has been well established. We specify
it here for the sake of integration.

59 A discussion about this point is found in (45],
Wang, 1963, pp. 152-153.
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between formal systems and Turing machines. This
correlation can be established through a Gédel numbering.

Suppose we aré given a proper (first order) language, in

which every formal system we address in the following is.

expressed, and an arbitrary but given Godel numbering g
for that language. We can see that for each formal system
S there is a set Wé such that s is a theorem of S if and
only if g('s') (i.e. the Gédel number of 's' according to
g) belongs to Wg. Let us call Wg the theoremhood
representative set, or the TR-set for short, of S
according to g. Now we can establish the correlation
between formal systems and Turing machines regarded as
theorem proving devices. The key idea is that we can view
the correlation in such a way that

M is Turing-equivalent (or T-equivalent) to 8

according to g if and only if the range of M is

the TR-set of S according to g.
Up to equivalence in a sense, this is the only proper way
to conceive the correlation between Turing machines (or
r.e. functions) and forwal systems.%0

Point 2: determination of the Gédel sentence for a
Turing machine. According to G1 and the above discussion,
for any gddelian system S and any Goédel numbering g, if S

is consistent and Gg is the Godel sentence of S, then

60 por a discussion of this point, see ibid, p. 155.
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g('Gg') does not belong to Wg where g('Gg') is the Godel
number of Gg according to g and Wg is the TR-set of S.
This implias that if a Turing machine M is T-equivalent to
S, then the Gédel sentence for M according to g is Gg and
its Gédel number g('Gg') is not in the range of M. Such an
understanding of Gédel sentence determination seenms
adequate enough, but it creates a difficulty for us to
deteriiine the Gédel sentence for a universal Turing
machine. For, naturally, we tend to think that a gddelian
system should be equivalent to a universal Turing machine.
But, on the one hand, the range of any universal Turing
machine is N (the set of all the natural numbers); on the
other hand, if a universal Turing machine is T-equivalent
to a consistent formal system, the Gédei number of its
Goédel sentence has to be cutside of N. This observation
seems to suggest that either any universal Turing machine
can only be T-equivalent to an inconsistent system; or it
does not have its own Gédel sentence at all; or the
correlation relation as introduced above is improper.
However, neither of the three is the case. For although we
cannot talk about Gédel sentences for universal Turing
machines directly under a usual stipulation, we can do so
indirectly under an unusual stipulation. To show this we
introduce the concept of

Restricted universal Turing machine. A (two-
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place) Turing machine M with rénge Ry is a (one-

}place) restricted universal Turing machine (a

RUT-machine) if and only if for any (one-place)

Turing machine M' with range Ry, if RyrCRy,

then there is k such that M(k,y)=My(y)sM'(y).
Corresponding to the above definition, an ordinary
universal Turing machine can now be defined as a RUT-
machine with range N. The following points about RUT-
machines are significant to our concerns. First, by
definition a RUT-machine with range V is capable of
representing any Turing machine with range V' such that
V'eV. In our view, this fact shows that there is a natural
and proper sense in which RUT-machines are regarded as
genuine universal Turing machines. Second, the concept of
RUT-machine is, due to i%s allowance of restrictedness,
quite general. Any ordinary universal Turing machine is a
RUT-machine. Third, the existence of non-trivial RUT-
machines other than the ordinary universal Turing machines
is also certain. In fact, we have

Theorem A For any r.e. subset V of N, there is a

RUT-machine with range V. (A proof is given in

section 4.3 (Appendix))
Theorem A guarantees that for any gédelian system S and
any Gédel numbering g there is a RUT-machine M such that M

is T-equivalent to S according to g. Let us call a RUT-
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machine with an infinite range an infinite RUT-machine. We
now can meaningfully talk about Gédel sentences for
infinite RUT-machines directly.®l Fourth, any RUT-machine
can be effectively converted into an ordinary universal
Turing machine. That is, we have

Theorem B For any infinite RUT-machine M there

is a partial 1-1 Turing machine Me such that

Me*M, the concatenation of M with Me, is an

ordinary universal Turing machine. (A proof is

given in Appendix.)
Theorem B implies that there is a good sense in which an
infinite RUT-machine is equivalent to an ordinary
universal Turing machine.

Point 3: representational provability and consis-

tency. From the above, we know that the Gédel number of

61 por finite RUT-machines we still cannot talk their
Goédel sentences directly unless we make some further
provisions. For, a closed formal system, being an infinite
set of sentences, cannot be T-equivalent to any finite set
according to any Gédel numbering. One might think that the
concept of RUT-machine is too artificial to be taken
seriously. In our view, however, it is a useful concept.
True, it is somewhat artificial, but the choice of N as
the field (domain plus range) of Gédel numberings and
Turing machines is itself artificial, too. Any recursive
infinite subset of N can serve as the field of Gddel
numberings and Turing machines. The status of the RUT-
machines with the same range with respect to N, the
standard field of the standard Gédel numberings is
isomorphic to that of the ordinary, universal Turing
machines with respect to a certain non-standard field of a
class of non-standard Gédel numberings. In view of this,
one may become more tolerant toward the concept of RUT-
machine.



the Gédel sentence for a RUT-machine may not belong to its
range. Since an infinite RUT-machine is in essence of the
same recursive capacity as a direct universal Turing
machine, there is possibility that an infinite RUT-machine
is T-equivalent to a consistent system whereas at the same
time is able to prove its own Gédel sentence in a
representational way which does not ensure inconsistency.
This possibility is real. Let us go through the following:

Given

§ -- a consistent gédelian system with Wg as its

TR-set,

g -- a Gédel numbering for the language of S,

M -- a RUT-machine which is T-equivalent to S

according to g, and

Gg -- the Gbédel sentence of S according to g.
Since S is consistent, g('Gg') does not belong to Wg.
 Since M is T-equivalent to S, there is no x and y such
that M(x,y)=g('Gg'). This means that M cannot generate
g('Gg'). Since s is consistent, there is a r.e. or finite
consistent extension S' of S such that Gg is provable in
S'. Since S' is r.e. its provability predicate is
representable in S. (As we emphasized before, any r.e. set
or predicate is representable in any gédelian system.)
Now, suppose Pr is the predicate representing the

provability relation in S of S'. Then, there is a number i

103



such that i= the Gédel number of 'Pr(j)' according to g
where j is the Gédel number cof 'Gg' according to g. Let

Trgi1={b/ Sl- Pr(a) for some constant a and b is

the Gédel number of 'Pr(a)' according to g}.
Then, Trg: is the representative Tr-set (in §) of S'.
Clearly, Trg: is r.e.; Trg: is properly included in the
TR-set of S (i.e. Wg); and ieTrg:. Because of this, there
are two numbers k and 1 such that a) M(k,y)=Mg(y) is a
Turing machine; b) the range of My is Trg:; and c)
Mk(l)=i. This means that M is capable of generating all
the members of Trg: including the one which means that Gg
is provable in S'. In other words, this is tantamount to
saying that all the theorems of S' including Gg are
provable by M in a representational sense. To repeat the
same thing in still another way, although M does not
generate j (i.e. the Goédel number of Gg), M does generates
i which means the provability in S' of Gg and S' is
representable in M (in the sense of T-equivalence). So, Gg
can be viewed as being QGR-provable in M in the same sense
in which Gg is QGR-provable in S. Here, needless to say,
since S and hence S' is consistent, S' should be

acceptable for S, or T-equivalently, Mk is acceptable for

M. 62

62 1t is interesting to notice that though Wg is
properly included in Wg:, the representative Tr-set in S
of S', i.e., Trg: is nonetheless properly included in Wg.
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our explication of the representational approach in
the parlance of Turing machines ends here.

One might wonder whether a RUT-machine would be T-
equivalent to a consistent system as well as to an
inconsistent system according to different Gédel
numberings. The answer to this question is negative. In
concrete, for any infinite RUT-machine M, if there is a
Gédel numbering g according to which M is T-equivalent to
a consistent formal system, then there is no Gddel
numbering g' according to which M could be T-equivalent to
an inconsistent formal system; and vice versa. This has to
be the case because we have

Theorem C For any gdédelian system S and any

Gédel numbering g, the TR-set of S‘according to

g is a) recursive if S is inconsistent; and b)

mefely r.e. if 8 is consistent. (A proof is

given in Appendix.)®3
According to Theorem C and the T-~equivalence correlation,
all the infinite RUT-machines can be classified into two

classes a and B: class a contains those whose ranges are

There is no inconsistency or magic here. All this can be
well explained in view of ordinary relations between
infinite sets, and especially, between r.e. infinite sets.

63 please notice that Theorem C addresses only
gbédelian systems. For non-gédelian systems it simply does
not hold. For example, there are non-gddelian while
decidable and consistent systems whose TR-sets are,
according to any Gédel numbering, recursive.



all recursive sets; class B contains those whose ranges
are all merely r.e. sets.®4 Theorem C provides us with a
criterion by which to bisect infinite RUT-machines with
respect to consistency. Specifically, there is reason for
us to accept

The Definition of Turing-consistency (for RUT-

machines). A RUT-machine is Turing-consistent or

P-consistent if and only if it is T-equivalent

to one consistent system according to one Goédel

numbering if and only if its range is merely

r.e..65
The above definition is meaningful. From Theorem B we know
that there are T-consistent RUT-machines as well as T-
inconsistent RUT-machines. For the former, any RUT-machine
with a merely r.e. range is such a one. For the latter,
any RUT-machine with a recursive infinite range is such a
one.

For a further interesting observation, we have

Theorem D Any RUT-machine in class a can be

64 7o be sure, a gédelian system cannot be at the
same time both consistent and inconsistent. This necessity
is reflected in the fact that if the Tr-set of a gddelian
system S according to one Gédel numbering g is recursive
(or merely r.e.), then there is no other Gédel numbering
g' such that the Tr-set of S according to g’ is merely
r.e. (or recursive).

65 please note, the above definition is applicable
only to RUT-machines.
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converted into one in class f, and vice versa,

by being concatenated with a simple Turing

machine. (A proof is given in Appendix.)
This fact seems to suggest that any RUT-machine and hence
any infinite Turing machine can always be regarded in a
way as being inconsistent as wéll as being consistent. In
our view, however, what this fact means is not that the
above explanation is improper, but that

the logic of the mind is neither necessarily

inconsistent nor necessarily consistent.
This is an extremely important point by itself. A conse-
quence from this point is, informally, that no Turing
machine is crazy or inconsistent in nature. However, since
this point is already well beyond the concern of this
thesis, we would like to expand it only in another paper.

The above explication is, it seems to us, enough to
show that the basic points we made about the P-argument
are completely applicable to the L-argument. The only
difference is of emphasis. For the P-argument, we
emphasize that LM can be consistent under the mechanistic
constraints. For the L-argument, we stress that LM can be
mechanistic under the constraints of consistency.

We now try to expand the philosophical significance
of the above technical points by remarking on some

typical viewpoints.
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Nelson once expressed the viewpoint that

'The proper retort (to Lucas) (I [Nelson] think)
is that there is no reason why computers cannot
also in principle "produce" such sentences

(Gédel sentences) by heuristic means'([36],
Nelson, 1980, p. 449)

However, the above explication shows, it seems to me, that
not only by heuristic means, but also by effective means
of proof only, though in a representative sense, can
computers produce their own Goédel sentences.
Hofstadter once observed that Lucas had for his L-
argument the idea that
‘we are always outside the systen, and from out
there we can always perform the "Gédelizing"
operation, which yields something which the

program, from within, can't see is true.'([24],
Hofstadter, p. 472)

In contrast, the idea drawn from the above explication as
against the L-argument is that neither the human mind nor
the machine can really perform anything outside their own
systems; nonetheless, both can represent their own systems
as proper parts of themselves and hence create certain
logical environments in which they are really capable of
performing things outside their own systems.

Defending mechanism, Arbib once said that

'Godel theorem limits a human as much as a
machine'. ([2]}, Arbib, 1987, p. 183)

Now, based on the above explication, we can also say that
the representational means as is revealed by, among

others, Goédel numberings, empowers a proper machine as
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much as a human.

According to Wang, Goédel views as a rigorously proved
result the following viewpoint:

‘Either the human mind surpasses all machines

(to be more precise: it can decide more number

theoretical questions than any machine) or else

there exist number theoretical questions

undecidable for the human mind.'((46], Wang,

1974, p. 324)
Gédel also agrees, still according to Wang, with Hilbert
on rejecting the second disjunct of the above disjunc-
tion. (ibid) However, based on our examination of the L-
argument, we would rather hold a different viewpoint.
That is, any one RUT-machine (the human brain included)
can surpass another or itself simply by representing it as
a proper part of its own whole program, but none (the
human brain being of no exception) can do this in a way in
which others cannot do it.

With the purpose to show that

'Gédel's work was perhaps the best thing that

ever happened to both mechanism and for-

malism, ([44], Webb, 1980, p. vii)
Webb once pointed out that

'The existence of a universal machine is

essential to Turing's thesis (for mechanicalness

of the rationality) and the undecidability of

its halting problem is essential to its univer-

sality.'(ibid, p. 232)
In Webb's line and for our special concerns, we can Say

that the existence of a RUT-machine is essential to the

compatibility of consistency and mechanicalness; whereas



the undecidability of its halting problem is essential to
its restricted universality.

Finally, expressing a widely accepted viewpoint, J.
Van Heijenoort once pointed out,

'‘Mathematics cannot be completely and

consistently formalized in one system.'([2],

Heijenoort, 1967, p. 356)

This viewpoint is correct in a sense. Nonetheless we
would also like to advocate another viewpoint, namely,
that mathematics can be represented in one formalized
system to the same extent of completeness and consistency
to which it can be represented or entertained in the logic
of the mind. The former viewpoint is implied by Gédel
incompleteness; whereas the latter viewpoint is implied by
QG-representational maximalness or what.we would like to
call Goédel representational completeness.56
4.3. The Appendix
A Proof of Theorem A

Let

M be any ordinary universal Turing machine,

V be any r.e subset of N,

My be a total Turing machine which enumerates V,

and

M' be such that M'(x,y)=M(x,y) if M(x,y)=My(2)

66 we stipulate that a system S is Gdédel
representationally complete if and only if the Gddel
sentence for any gédelian system can be R-provable in S.
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for some z, and otherwise undefined.
Then M' is a Turing machine with rangé V and satisfies the
RUT-machine condition.
A Proof of Theorem B
Let
M be any RUT-machine with infinite range V,
My be a total 1-1 order-preserving Turing machine
which enumerates V,
My~ be a Turing machine such that My~ (x)=y if
My(y)=x for some y, and otherwise undefined, and
M' be such that M'sMy~*,
Then for any Turing machine M, Mp=My*M, is a Tomachgne and

its range is a subset of V. We have

1) My (y) = (My~ *My) *Ma (Y)
2) =My~ * (My*Ma (V) )

3) =My~ *M(j,y) for some j
4) =M'(j,y) for some j

For the above deduction, 1) holds because My *My is a
total identity Turing machine; 2) according to the
association law; 3) because the range of My*Mj(Y) is
included in V and M is a RUT-machine with range V; and 4)
according.to the definition of M'. Since M, is arbitrary,
so, M' satisfies the ordinary-universal-Turing-machine
condition that for any Turing machine M there is number k

such that M'(k,y)sMy(y)=M(y):; and My~ is the required Me
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for M.
A Proof of Theorem C

First, the TR-set of any inconsistent system is,
according to any Gédel numbering, the set of the numbers
for all the sentences of the language in question. Such a
set has to be recursive if so is the whole language in
question. To be sure we can simply stipulate that our
language in question is recursive. Second, if the Tr-set
of a consistent gédelian system were, according to any
Gdédel numbering, recursive, the system itself would be
decidable. However, According to Gl, it is impossible,

A Proof of Theorem D

Immediate by application of Theorems A and B.
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