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Abstract

The study of energy transport through molecules has gathered much attention in recent

years due to its crucial role in the operation of a host of nano-devices. Understanding the

details of such processes can aid in the development of novel molecular electronics and

nanophononic devices. Over the years, various approaches have been used to simulate

energy transport dynamics in both simple and complex models in order to gain insight

into how system and environmental properties affect the transport rates/mechanisms. In

the present thesis, we studied (i) nonequilibrium heat transport and (ii) vibrational energy

transfer in a variety of model molecular systems using mixed quantum-classical dynamics.

For direction (i), we assessed the ability of a recently developed mixed quantum-classical

dynamics method, known as Deterministic Evolution of Coordinates with Initial Decoupled

Equations (DECIDE), for calculating steady-state heat currents in the nonequilibrium spin-

boson (NESB) model − a model molecular junction consisting of a two-level system coupled

to two harmonic oscillator baths at different temperatures. Furthermore, we investigated

the importance of quantizing the initial thermal bath distributions in calculating the time-

dependent heats and heat currents across a wide range of bath parameter regimes, viz.,

temperatures, temperature gaps, reorganization energies, and cutoff frequencies. Our results

show that DECIDE performs quite well and captures the expected trends in the steady-state

heat current. In addition, our findings underscore the importance of performing quantum

sampling of the bath coordinates across a wide range of bath parameter regimes. For
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direction (ii), using adiabatic mixed quantum-classical dynamics, we studied the influence

of lattice vibrations on the transfer of vibrational excitation energy in a modified Su-

Schrieffer-Heeger (SSH) dimer chain model. We found that the incorporation of lattice

vibrations greatly enhances the rate of long-range population transfer compared to the

static chain. Finally, we investigated the effects of coupling the end sites of the SSH chain

to thermal baths at different temperatures on the vibrational excitation energy transfer.

Regardless of the temperature gap, we found that the long-range population transfer is

enhanced in the static chain compared to the chain without the baths. However, in the

case of the non-static chain, the presence of the temperature baths does not significantly

alter the transfer, pointing to the robustness of the process. Together, these studies shed

light on the microscopic mechanisms of quantum energy transport in molecular junctions

and polymer chains, how to control the rates/mechanisms of the energy transport, and

the validity of using mixed quantum-classical dynamics for simulating quantum energy

transport. Ultimately, our methodology and findings may guide the experimental design of

novel nanophononic devices.
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Chapter 1

Introduction

1.1 Energy transport in open quantum systems

Energy transfer plays a fundamental role in many chemical and biological processes in natural

and synthetic systems. Over the last several decades, many studies have been dedicated to

a molecular-level understanding of the rates and mechanisms of such processes [1–4]. Many

of these studies have been motivated by the need to develop artificial systems that mimic

the energy transfer efficiencies observed in natural biological systems. For example, in the

Fenna-Matthews-Olson complex (found in green sulfur bacteria), the excitation energy from

solar photons is channelled to the photosynthetic reaction center with a near-unity efficiency

[5]. Thus, gaining a detailed understanding of nature’s light-harvesting mechanisms can aid

in the design of materials/devices with unprecedented efficiencies.

Molecular junctions − single molecules whose ends are bound to metal or semiconductor

leads − are architectures of particular interest due to their enhanced transport properties

that surpass their bulk (generally silicon-based) counterparts [6, 7]. For example, when a

junction molecule is placed in contact with leads at different temperatures, its multiple
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degrees of freedom could channel heat in a way that is not attainable by bulk junctions. [8].

Numerous studies of nanoscale heat transfer have been performed, triggered mainly by

the growing demand for reducing thermal resistances (or increasing thermal conductivities)

in today’s increasingly small electronic devices [9, 10]. Because the thermal properties of

materials/devices change in going from the micrometer to the nanometer scale, understand-

ing the rates and mechanisms of heat transport at the molecular level is of key importance.

At this scale, vibrational energy transport is involved and a host of phenomena have been

observed, including ballistic and hopping transport, phonon transport and interference,

rectification and localization, among others [11]. In particular, graphene sheets, carbon

chain-based single-molecule junctions, and polymer chains have been shown to possess

interesting thermal transport properties [12–14]. For example, when polymer chains are

aligned in their crystalline form, structural factors (i.e., presence of random orientation, en-

tanglement, weak intermolecular interactions) that impede the heat transfer are minimized,

resulting in higher thermal conductivities in the chains (up to 50 Wm−1K−1) in contrast

with the low thermal conductivities (0.1-1 Wm−1K−1) of bulk amorphous polymers[15]. In

molecular junctions composed of saturated hydrocarbons, excited phonon modes exchange

energy with molecular vibrations in the leads, allowing for thermal energy to be carried

away [16, 17]. These and a few other applications are depicted in Fig. 1.1.

From a theoretical standpoint, the study of nanoscale energy/heat transport is a very

challenging task as one has to model the dynamics of open quantum systems. For example,

one can think of a molecular junction as an open quantum system in which the junction

molecule (i.e., quantum system) interacts with the electrodes/baths (i.e., environments) to

which they are attached. Fully quantum mechanical treatments of open quantum systems

are computationally very demanding, or even intractable, due to the many degrees of

freedom present in the system and environment(s). Thus, over the years, a number of

2



Figure 1.1: Applications of quantum transport at the nanoscale: 1) doublon transfer in
polymeric chains [18], 2) bio-inspired light-harvesting systems [19], 3) molecular electronics
[7], 4) energy transfer in biological systems [20], and 5) nanophononics [21].

approximate methods have been developed and applied to the study of nanoscale heat

transfer, several of which we will briefly describe in the next subsection.
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1.2 Overview of theoretical methods for simulating energy

transport

In general, the modelling of nanoscale energy transport processes is challenging because it

requires computational methods that are capable of describing both the electronic structure

and nonequilibrium dynamics of molecules in condensed phase environments and, in some

cases, strong electron-electron and/or electron-phonon coupling [6]. This subsection will

briefly describe several of the commonly used theoretical approaches for simulating energy

transport at the nanoscale.

Classical molecular dynamics (MD) has been extensively used for calculating thermal

properties of nanoscale systems. In classical MD, the Newtonian equations of motion for all

the particles in a system are solved numerically subject to a given force field. It has been

used, for example, to calculate steady-state heat flux between two nanoparticles [22] and in

silicon/germanium nanostructures [23], and to calculate thermal conductivity in DNA/water

mixtures [24] and quasi-one-dimensional silicon nanowires [25]. Classical MD simulations

have facilitated the study of structural effects on thermal transport. For example, it has

been demonstrated that the presence of holes/defects in graphene significantly reduce its

thermal conductivity [26]; similarly, doping silicene lattices with silicon isotopes largely

reduces the conduction of heat across a sheet [27]. Other structural effects that have been

considered include strain [28, 29], dislocation [30, 31], and folding [32]. Within classical

MD, there are two commonly used approaches to calculate thermal transport properties,

viz., equilibrium MD and nonequilibrium MD. In equilibrium MD, the thermal conductivity

can be calculated from the heat current auto-correlation function according to the following

Green-Kubo relation

καβ =
1

kBT 2V

∫ ∞
0
〈Jα(0)Jβ(t)〉 dt, (1.1)
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where kB is the Boltzmann constant, T is the temperature of the system, V is the volume

of the system, and Jα is the heat current in the α direction [25]. In nonequilibrium MD,

the thermal conductivity of a finite-sized system is calculated according to Fourier’s law

κ = − J

∇T
, (1.2)

where J is the heat flux and ∇T is the temperature gradient along the transport direction

in the nonequilibrium steady state. This method requires a temperature gradient along

the transport direction which can be obtained in two different ways. In the first way, one

imposes a local temperature by using thermostats, whereas in the second way, one imposes

a heat flux by simultaneously extracting/adding kinetic energy from/to a heat bath [33].

Ab initio methods have been proposed based on approximate solutions of the Boltzmann

transport equation (BTE). This equation governs the transport and scattering of energy

carriers in solids and is widely used to simulate mesoscopic conduction processes. Particularly,

when the heat carriers are phonons the BTE takes the form

∂n

∂t
+ v · ∇n =

(
∂n

∂t

)
s

(1.3)

where n = n(x,p, t) denotes the phonon distribution function describing the fraction of

phonons that have position x and momentum p at time t, v is the group velocity or

travelling speed of the phonons, and
(
∂n
∂t

)
s

is the scattering rate of the relevant scattering

processes. For phonons in non-metallic solids, the dominating scattering processes are

phonon-phonon scattering, phonon-impurity scattering, and phonon-boundary scattering

[34]. To solve the BTE, the group velocity and scattering rates are entered as parameters

and they involve the use of interatomic force constants from density functional theory

(DFT) calculations. Once the distribution function is obtained by solving the BTE, the
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temperature distribution and heat flux can then be extracted. Although the computational

cost of the ab initio BTE method is very high, the results obtained are quite accurate when

compared to the experimental data.

The nonequilibrium Green’s function (NEGF) approach is another powerful tool to study

phonon transport in nanostructures. In the NEGF method, one models lattice vibrations

as waves and takes atomic details into account. A typical simulation system consists of

three regions: a device (scattering) region and two contacts (thermal reservoirs). The

temperatures of the two contacts are kept at T + ∆T/2 and T −∆T/2, where ∆T is a

small temperature difference. Then, the number of phonons passing the device region from

one contact to the other is obtained. Next, that information is used to calculate the heat

flux across the device region according to the well-known Landauer formalism [35]. The

NEGF is an ideal approach to study heat transport in the ballistic regime in systems where

elastic scatterings are dominant. In addition, this method can predict thermal boundary

resistance between heterogeneous materials with full consideration of the interfacial atomic

structures [36].

There are also methods which treat the device as an open quantum system (i.e., system-

bath setup). Along these lines, several numerically exact approaches have been used to

calculate energy transport properties. In the hierarchical quantum master equation (HQME)

approach, the influence of the environment on the reduced density matrix is described in

terms of a hierarchical set of equations [37, 38]. This method allows one to treat strong

system-bath couplings, quantum coherence, and quantum entanglement, and it has been

applied to model the dynamics of a quantum heat-engine and quantum ratchet, where the

system is strongly coupled to two heat baths at different temperatures [39]. The multilayer

multiconfiguration time-dependent Hartree (ML-MCTDH) method has been used to study

nonequilibrium heat transport in molecular junctions [40, 41]. ML-MCTDH is a variational
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basis-set method, which relies on a multiconfiguration expansion of the wave function in

terms of time-dependent basis functions and a hierarchical multilayer representation [6].

The equations of motion for the time-dependent coefficients and basis functions are obtained

from the variational principle of the time-dependent Schrödinger equation. This method

converges to the exact solution by using a sufficiently large basis set. Since ML-MCTDH is

a wave-function based method, it treats the device and baths as a closed quantum system.

Another numerically exact methodology is the quasi-adiabatic propagator path integral

(QUAPI) approach, which propagates the reduced density matrix and was originally used

to simulate the spin dynamics of the spin-boson model [42, 43]. This method has also

been used to model heat transfer dynamics in the nonequilibrium spin-boson (NESB)

model and allows one to treat strong system-bath couplings and to include non-Markovian

effects [44]. Several approximate approaches have also been used. The Bloch-Redfield

equation [45], which is obtained from the Nakajima-Zwanzig quantum master equation

[46, 47] after applying perturbation theory and the Markovian approximation, has been

used to study dissipative dynamics and heat transfer in the NESB model; its regime of

validity is restricted to very weak system-bath couplings [44]. Another approach is the

noninteracting blip approximation (NIBA), which is based on the path integral influence

functional formalism, has been used to simulate thermal conductances in model molecular

junctions in the high temperature limit [48]. Monte Carlo has also proven to be useful in the

numerical implementation of path integral-based methods [49, 50] and has been successfully

applied to the calculation of thermal conductances in a model molecular junction [48].

Various mixed-quantum classical methods have been applied to the study of quantum

transport in open quantum systems [51–58]. These methods stem from the quantum-classical

Liouville equation, which provides an exact description of a quantum subsystem that is

bilinearly coupled to a harmonic environment. Several of these methods will be explained
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in detail in the following chapter.

1.3 Nonequilibrium spin-boson model

Chapters 3 and 4 of this thesis will focus on the study of heat transport in the nonequilibrium

spin-boson (NESB) model. This model is widely used to study quantum heat transport

in molecular junctions due to its generality and simplicity [44]. The NESB model consists

of a two-level spin (with states |+〉 and |−〉) coupled to two harmonic oscillator baths

at temperatures TL and TR (see Fig. 1.2 for a pictorial representation of the model). In

preparation for a mixed quantum-classical treatment of this model, its Weyl-ordered and

partially Wigner-transformed [59] (with respect to the bath coordinates) Hamiltonian reads

ĤW =
∆

2
σ̂x +

1

2

∑
v=L,R

Nv∑
j=1

(
P 2
j,v + ω2

j,vR
2
j,v + Cj,vRj,vσ̂z + Cj,vσ̂zRj,v

)
, (1.4)

where ∆ is the tunnelling frequency between the states |+〉 and |−〉 (N.B.: The spin-boson

model results from an orthogonal transformation of a double-well system, with a barrier ∆

between the |+〉 and |−〉, to a two-state system. A detailed description of this transformation

may be found in Ref. [60].), σ̂x/z are the Pauli matrices, Rj,v and Pj,v are the mass-weighted

position and momentum, respectively, of the jth harmonic oscillator in the vth bath, Cj,v

is the spin-bath coupling coefficient, and Nv is the number of oscillators in the vth bath. In

the partial Wigner representation, the spin and bath degrees of freedom are represented in

Hilbert space and phase space, respectively.

In this thesis, the bilinear coupling between the spin and baths is characterized by an

Ohmic spectral density Iv(ω) = ξv
2 πωe

−ω/ωc,v , where ξv is a dimensionless parameter that

governs the coupling strength between the spin and the vth bath and ωc,v is the cutoff

frequency of the vth bath. The reorganization energy of the vth Ohmic bath is given by
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Figure 1.2: Pictorial representation of the NESB model. The two-level spin subsystem
is coupled to two thermal baths at different temperatures (TL < TR). Because of the
nonequilibrium condition, heat flows from right to left bath through the two-level spin
subsystem.

Er,v = ξvωc,v/2. Since Iv(ω) is a continuous function, it may be implemented numerically

using the following discretization scheme [61, 62]

Cj,v =
√
ξv~ω0,vωj,v, ωj,v = −ωc,v ln

(
1− j ω0,v

ωc,v

)
, (1.5)

where ω0,v = ωc,v(1 − e−ωm,v/ωc,v)/Nv, ωm,v is the maximum frequency of the vth bath,

and j runs from 1 to Nv. In the present thesis, we focus on the symmetric case where

ωm,L = ωm,R = ωm, ωc,L = ωc,R = ωc, and ξL = ξR = ξ (or Er,L = Er,R = Er).

The NESB model has been used widely in different applications. For example, the NESB

model has been used to describe phononic energy transfer in anharmonic molecular junctions

[21, 63], nontrivial spin Seebeck effects for thermal-driven spin devices [64], exciton transfer in

photosynthetic complexes [65], electromagnetic transport through superconducting circuits

[66], and nonequilibrium phase transitions in many body physics[65].
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1.4 Su-Schrieffer-Heeger model

In Chapters 5 and 6, we study vibrational exciton transfer dynamics in a modified version of

the Su-Schrieffer-Heeger model − a tight-binding model for noninteracting, spinless electrons

confined in a dimer chain [67] which has been extensively used to study the topological

properties of polyacetelene [68]. Here, we introduce the static version of the model in which

the chain sites (viz., high-frequency vibrational modes) are fixed in space with respect to

each other. Later, in Chapter 5, we present the non-static version of the model, in which

the chain sites are allowed to oscillate with respect to each other (by coupling them to

acoustic phonons). Finally, in Chapter 6, we present a version in which the end sites of the

chain are coupled to thermal baths at different temperatures.

The Hamiltonian of the static dimerized chain containing N high-frequency quantum

oscillators, is given by

Hq = H0|0〉〈0|+
N∑

m,n=1

H0
mn|φm〉〈φn|

≡ H0|0〉〈0|+Hs, (1.6)

where |φm〉 = |χm1〉
∏
n 6=m |χn0〉 is the mth singly excited state and |0〉 =

∏
m |χm0〉 is the

ground state of the chain. (N.B.: |χm0〉 and |χm1〉 denote the ground and first excited states,

respectively, of the mth oscillator.) The ground state matrix element, H0, is a constant for

the static chain, but will take on a particular functional form once the couplings to the

acoustic phonons are introduced (see Chapter 5). The matrix elements of the Hamiltonian

for the singly-excited manifold, Hs, are given by

H0
mn = δm,n [H0 + Em1 − Em0]

−Jmn [δm−1,n〈φm|qmqm−1|φm−1〉+ δm,n−1〈φn|qnqn−1|φn−1〉] , (1.7)
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where the coupling matrix J is a tridiagonal symmetric matrix with the super-diagonal

given by alternating parameters J and J ′,

Jn−1,n =

 J if n is even

J ′ if n is odd.
(1.8)

The diagonal matrix elements of J are taken to be zeros as they are not used. In the

above, J and J ′ are the parameters that govern the strength of the transition dipole

moment coupling between neighbouring oscillators, Em1 − Em0 is the energy gap between

the ground and first excited states of the mth oscillator, and qm is the position of the

mth oscillator. As in previous studies of a similar model[69, 70], the diagonal matrix

elements H0
nn are assumed to be identical across the chain. Because of the alternating

nearest neighbour coupling strengths, J and J ′, the chain structure is considered dimerized

(with J and J ′ being the intra-dimer and inter-dimer coupling parameters, respectively).

Since the Hamiltonian Hs is restricted to the single-excitation manifold, it is identical to a

single-particle dimerized Hückel chain[71, 72] for electrons, sometimes referred to as the

Su-Schrieffer-Heeger (SSH) model[73] by the condensed matter physics community (see

Fig. 1.3 for a schematic representation).

Figure 1.3: Schematic representation of the excitation energy transfer in the dimerized
SSH chain (with N = 6) when in its topologically nontrivial phase (i.e., J ′ � J). After a
photo-excitation of the first site in the chain, the exciton propagates across the chain.
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The spectral properties[71–74] of this dimerized quantum chain model are well-established.

The model features two bands of energy levels separated by a band gap. In fact, the en-

ergy spectrum can be classified according to three different conditions: (1) N is odd,

(2) N is even with J ′/J = H < Hc, and (3) N is even with J ′/J = H > Hc, where

Hc = (1 − 1/(N + 1))−1/2. One can identify which topological class a particular model

belongs to by analyzing the eigenstates of the Hamiltonian closest to the zero energy

reference point, which lies exactly in the middle of the band gap. When N is odd (i.e.,

the chain cannot be fully dimerized), there exists a unique zero-energy state, which is

predominantly localized on either the left or the right edge site of the chain and decays

exponentially into the bulk of the chain (i.e., all sites except for the two boundary sites).

This highly localized quantum state looks rather classical and cannot support long-range

population transfer. When N is even and H < Hc, the pair of eigenstates closest to the

zero energy reference point are delocalized across the entire chain and, therefore, cannot be

considered as edge states. Under these conditions, the chain is in its so-called topologically

trivial phase. However, as H is varied to the point that H ≥ Hc, these two eigenstates

exhibit completely different spatial profiles. The structure of the wave functions goes from

being highly delocalized to bimodal with peaks localized on both ends of the chain, i.e.,

the two “edge states” become |e±〉 ≈ 1√
2

(|1〉 ± |N〉). As H is further increased, these

edge states become more localized. Under these conditions, the chain is in its so-called

topologically non-trivial phase. In the topologically non-trivial phase, the two edge states

are energetically well separated from the other states by the band gap and are the only

states that are predominately peaked at the two boundary sites. The decoupling of the two

states from the remainder of the Hilbert space becomes more pronounced as H increases or

the chain length increases. In such a situation, the population transfer via the topologically

protected edge states can be explained in terms of the quantum dynamics of an effective
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two-level model consisting of the |e±〉 ≈ 1√
2

(|1〉 ± |N〉) boundary modes. In the basis

{|1〉 , |N〉}, the Hamiltonian matrix for this model is

H2L =

 0 ∆

∆ 0

 , (1.9)

where the tunneling parameter is given by ∆ ≈ JH1−N/2. This effective Hamiltonian

can be derived from time-independent perturbation theory by first partitioning Hs into

an unperturbed Hamiltonian containing only the inter-dimer transition dipole moments

proportional to J ′ and a perturbing Hamiltonian containing only the intra-dimer transition

dipole moments proportional to J , i.e., H [0] = Hs(J = 0) and H [1] = Hs(J
′ = 0),

respectively. Then, one expands the pair of exact zero-energy eigenfunctions |e±〉 for Hs

in terms of the unperturbed eigenfunctions 1√
2
(|1〉 ± |N〉) for H [0], including up to second-

order corrections. Finally, calculating the matrix elements 〈e±|Hs |e±〉, rotating the matrix

back to the site basis, and retaining only matrix elements corresponding to the two ends,

yields the effective Hamiltonian H2L. From the expression for ∆, we see that as the chain

length increases the two edge states converge into a doubly degenerate zero-energy manifold.

Therefore, for long-range population transfer problems, ∆ will typically be an extremely small

number given the facts that H � 1 in the topologically non-trivial phase and N is a large

number. If the chain is excited at one end at time t = 0 with |ψ(0)〉 = |1〉 ≈ 1√
2
(|e+〉+ |e−〉),

then the wavepacket propagates as follows: |ψ(t)〉 ≈ cos(ωt/2) |1〉 − i sin(ωt/2) |N〉 with

ω = (E+ −E−)/2 = 2∆. From this straightforward analysis, one learns two things: (1) the

population is largely confined and oscillates between the two end sites |1〉 and |N〉, and (2)

the oscillation frequency of ω � 1 implies an extremely slow long-range population transfer.

In addition to describing quantum transport dynamics in polyacetylene, the SSH chain

has been used to model vibrational exciton transport in α-helical polypetides [57], topological

13



plasmon polaritons in dimerized doped silicon nanoparticle chains [75], topological optical

waveguides in silicon arrays [76], and multilayer graphene systems [77].

1.5 Objectives and outline of thesis

The main objectives of the present thesis are

• to test the validity of using mixed quantum-classical dynamics for simulating nonequi-

librium heat transport in model molecular junctions.

• to assess the importance of quantum sampling of the initial bath coordinates in mixed

quantum-classical / classical dynamics simulations of quantum heat transport.

• to evaluate the influence of intramolecular vibrations on vibrational exciton transfer

in dimerized chain molecules.

• to gauge the influence of thermal gradients on topologically protected vibrational

exciton transfer in dimerized chain molecules.

Below is an outline of the topics covered in each chapter:

1. In Chapter 2, we introduce the quantum-classical Liouville equation (QCLE) and

discuss two approximate solutions of the equation, namely the adiabatic and DECIDE

solutions, which can be used to simulate the mixed quantum-classical dynamics of a

system.

2. In Chapter 3, we study to what extent the DECIDE method is capable of capturing

the turnovers observed in the steady-state heat current as a function of both the

tunnelling frequency and bath reorganization energy in the NESB model. A discussion

of the role of nonadiabatic effects in the calculation of heat currents is also presented.
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3. In Chapter 4, we study the effects of sampling the initial bath degrees of freedom

from quantum and classical probability distributions on the time-dependent heats

and steady-state heat currents in the NESB model. We discussion the differences

between both treatments and assess the importance of quantizing the initial thermal

bath distributions.

4. In Chapter 5, we investigate long-range population transfer in the SSH model. We

contrast the long-range population transfer is the static-chain version of the model

with that in the non-static version, where the chain is coupled to a set of acoustic

phonons. We then analyze to what extent the robustness of the long-range population

is compromised by varying the parameters in the model.

5. In Chapter 6, we study the effects of coupling the ends of the static and non-static SSH

chains to thermal baths at different temperatures. We analyze how the long-range

population transfer is affected by a thermal gradient.

6. In Chapter 7, we present our concluding remarks and future plans.
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Chapter 2

Mixed Quantum-Classical

Dynamics

In many situations, one is interested in studying a quantum transport process occurring

in a complex system containing a large number of degrees of freedom (DOF). For such

systems, a full quantum mechanical treatment of the dynamics is computationally very

expensive or sometimes even impossible. One practical way to circumvent this limitation

is to use mixed quantum-classical dynamics methodologies, in which the subsystem of

interest is treated quantum mechanically while its environment (referred to as a bath in

what follows) is treated in a classical-like way. Such methodologies may be derived from the

quantum-classical Liouville equation, which we will discuss in the following section [78, 79].
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2.1 Quantum-classical Liouville equation

The fully quantum dynamics of a composite system, comprising a subsystem and bath, is

prescribed by the quantum Liouville equation

i~
∂ρ̂(t)

∂t
= −

[
Ĥ, ρ̂(t)

]
, (2.1)

where ρ̂(t) is the time-dependent density matrix of the composite system and Ĥ is the

Hamiltonian of the composite system, given by

Ĥ = Ĥs + Ĥb + V̂c, (2.2)

where Ĥs and Ĥb are the Hamiltonians of the subsystem and bath, respectively, and V̂c the

potential energy operator corresponding to the coupling between them.

The quantum-classical Liouville equation (QCLE) may be derived from the quantum

Liouville equation in the limit that the subsystem DOF are much lighter than the bath

DOF. Here, I will outline the main steps of the derivation (for the full derivation, please see

Ref. [80]). One starts by performing a partial Wigner transform [81] over the bath DOF of

the quantum Liouville equation, which for the density matrix is given by

ρ̂W (R,P ) =
1

(2π~)N

∫
dZeiP ·Z/~

〈
R− Z

2
|ρ̂|R+

Z

2

〉
, (2.3)

and for an operator Â

ÂW (R,P ) =

∫
dZeiP ·Z/~

〈
R− Z

2

∣∣∣Â∣∣∣R+
Z

2

〉
. (2.4)

In the above equations, R and P represent the positions and momenta of the N bath DOF,
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and the integrations are carried out over the variables Z. After the transform, the quantum

Liouville equation takes the form

∂

∂t
ρ̂W (X, t) = − i

~

(
ĤW e

~Λ/2iρ̂W (t)− ρ̂W (t)e~Λ/2iĤW

)
(2.5)

where X = (R,P ) denotes the set of positions and momenta of the bath DOF and

Λ =
←−
∇P ·

−→
∇R −

←−
∇R ·

−→
∇P (here, the arrows indicate the directions in which the derivatives

act). To arrive at this equation, the following relation for the Wigner transform of a product

of two operators was used [82], viz.,

(ÂB̂)W (X) = ÂW (X)e~Λ/2iB̂W (X). (2.6)

Expanding the exponential operators in Eq. 2.5 and truncating the result at O(~), one

obtains the QCLE, which reads

∂

∂t
ρ̂W (X, t) =

i

~

[
ĤW (X) , ρ̂W (X, t)

]
−1

2

({
ĤW (X) , ρ̂W (X, t)

}
−
{
ρ̂W (X, t) , ĤW (X)

})
, (2.7)

where the square and curly brackets denote a commutator and Poisson bracket, respectively.

The partially Wigner-transformed Hamiltonian, ĤW , is given by

ĤW (X) = K̂q + V̂q +Kb(P ) + Vb(R) + V̂c(R), (2.8)

where K̂q and V̂q are the kinetic and potential energy operators of the subsystem, respectively;

Kb and Vb are the kinetic and potential energies of the bath, respectively; and V̂c is the

subsystem-bath coupling potential energy operator. As illustrated in Ref. [83], the truncation

of the series expansion after first order in ~ is justified for systems in which the masses of
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the subsystem DOF are much smaller compared to those of the bath DOF.

2.2 Adiabatic dynamics

In the present thesis, we used adiabatic mixed quantum-classical dynamics to model heat

and vibrational energy transfer in the NESB and SSH models, respectively. Adiabatic

dynamics neglects nonadiabatic effects, which may be pronounced or non-negligible in many

cases. Nevertheless, adiabatic dynamics is simple and efficient and can sometimes be used

to gain qualitative and possibly even quantitative insight into a process. We now show how

adiabatic dynamics can be derived from the QCLE.

We start by writing down the QCLE in the Heisenberg picture for an observable ÂW (X, t)

(although one could equivalently start from the QLCE in the Schrödinger picture for the

density matrix),

∂

∂t
ÂW (X, t) =

i

~

[
ĤW (X) , ÂW (X, t)

]
−1

2

({
ĤW (X) , ÂW (X, t)

}
−
{
ÂW (X, t) , ĤW (X)

})
. (2.9)

We then represent the QCLE in the so-called adiabatic basis of eigenstates {|α;R〉} defined

by the eigenvalue problem ĤW |α;R〉 = Eα(R)|α;R〉, with Eα(R) the energy of state α.

This leads to the following equation[83]

∂

∂t
Aαα

′
W (X, t) =

∑
ββ′

[
(iωαα′ + iLαα′)δαβδα′β′ − Jαα′,ββ′

]
Aββ

′

W (X, t), (2.10)

where ωαα′ = (Eα − Eα′)/~ is the transition frequency between states α and α′; L is the
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classical Liouville operator given by

iLαα′ =
P

M
· ∂
∂R

+
1

2

(
FαW + Fα

′
W

)
· ∂
∂P

, (2.11)

with the Hellmann-Feynman forces FαW = −〈α;R|∇RV̂c(R)|α;R〉 which propagate the bath

DOF (characterized by masses M) on the potential energy surface (PES) Eα(R) when

α = α′, or on the mean PES [Eα(R) + Eα′(R)]/2 when α 6= α′; and Jαα′,ββ′ is the term

responsible for nonadiabatic transitions given by

Jαα′,ββ′ = − P
M
· dαβ

(
1 +

1

2
Sαβ ·

∂

∂P

)
δα′β′ −

P

M
· d∗α′β′

(
1 +

1

2
S∗α′β′ ·

∂

∂P

)
δαβ ,

(2.12)

where dαβ = 〈α;R| ∂∂R |β;R〉 is the nonadiabatic coupling matrix element, and Sαβ =

(Eα − Eβ)dαβ( PM · dαβ)−1. After representing the QCLE in this basis, its solution may be

given by [84]

Aαα
′

W (X, t) =
∑

(α1α′1)...(αNtα
′
Nt

)

[ Nt∏
j=1

(eiL̂∆tj )αj−1α′j−1,αjα
′
j

]
A
αNtα

′
Nt

W (X), (2.13)

where, in the limit that ∆tj = tj− tj−1 is sufficiently small, the propagator for time segment

j may be approximated by

(eiL̂∆tj )αj−1α′j−1,αjα
′
j
≈ Wαj−1α′j−1

(tj−1, tj)e
iLαj−1α

′
j−1

∆tj

×
(
δαj−1αjδα′j−1α

′
j

+ ∆tJαj−1α′j−1,αjα
′
j

)
. (2.14)

In the above equations, Nt is the number of time segments and Wαj−1α′j−1
(tj−1, tj) =

e
iωαj−1α

′
j−1

∆tj
is the phase factor associated with a given time segment. Finally, to arrive
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at an adiabatic approximation to the dynamics, one sets Jαj−1α′j−1,αjα
′
j

= 0. Consequently,

the evolution of the bath DOF is restricted to a single PES (or an average of two PESs)

within a given trajectory, i.e., there are no nonadiabatic transitions.

To determine the expectation value of ÂW (X, t), one averages over an ensemble of

trajectories according to the following equation:

〈A(t)〉 =
∑
αα′

∫
dXAαα

′
W (X, t)ρα

′α
W (X)

=
∑

(α0α′0)...(αNtα
′
Nt

)

∫
dX
[ Nt∏
j=1

(eiL̂∆tj )αj−1α′j−1,αjα
′
j

]
A
αNtα

′
Nt

W (X)ρ
α′0α0

W (X),(2.15)

with the initial conditions for each trajectory sampled from the density matrix elements

ρ
α′0α0

W (X).

2.3 Deterministic Evolution of Coordinates with Initial De-

coupled Equations (DECIDE)

The “Deterministic Evolution of Coordinates with Initial Decoupled Equations” (DECIDE)

method allows one to simulate the time evolution of mixed quantum-classical systems with

high accuracy, high stability, and relatively low computational cost [85]. In contrast to the

surface-hopping solutions of the QCLE, [86–88] DECIDE represents both the subsystem and

bath DOF in terms of continuous variables and does not involve stochastic hops between

PESs.

The Weyl-ordered, partially-Wigner transformed (with respect to the initial bath

coordinates) Hamiltonian that governs the dynamics of the composite system is

Ĥ = Ĥs(x̂) + Ĥb(X) + V̂c(x̂,X), (2.16)
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where x̂ = (x̂1, x̂2, · · · , x̂L2−1) denotes a set of generalized coordinates that completely

describe the state of the subsystem of dimensionality L (the L2−1 coordinates come from the

number of independent elements in the reduced density matrix ρ̂), X̂ = (R,P ) with R =

(R1, R2, ..., RN ) and P = (P1, P2, ..., PN ), and V̂c the subsystem-bath coupling potential.

The DECIDE equations of motion may be derived by starting from the partially Wigner-

transformed quantum Heisenberg equations for x̂(t) and X̂(t) and then truncating them by

approximating an arbitrary time-dependent operator (B̂(x̂(t), X̂(t)))W ≡ (eiK̂tB̂(x̂, X̂))W

as follows:

(B̂(x̂(t), X̂(t)))W = (eiK̂t)W e
~Λ/2iB̂W (x̂,X)

≈ eiLtB̂W (x̂,X)

≡ (B̂W (x̂,X))(t), (2.17)

where K̂ is the quantum Liouville operator and Λ is the Poisson bracket operator. From

the second line of this equation, we see that the approximation involves replacing K̂ with

the quantum-classical Liouville operator, L̂ [80] (which is exact for subsystems that are

bilinearly coupled to harmonic environments), and retaining only zeroth-order terms in ~

in the Moyal product expansion. The higher order terms account for the full back-action of

the bath(s) onto the subsystem. These approximations lead to the DECIDE equations of

motion for the subsystem and bath coordinates:

˙̂x(t) =
i

~

([
ĤW , x̂

])
(t)

Ẋ(t) = −
({
ĤW ,X

}
a

)
(t), (2.18)

where the time arguments are placed outside of their respective brackets to indicate that

one should first evaluate the commutator and Poisson brackets with respect to the initial
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bath coordinates and then apply the time dependence to the coordinates in the resulting

expressions. (For the detailed derivation of the DECIDE equations of motion, please see

Ref. [85].) Given the aforementioned approximations, one sees that the DECIDE method

may yield inaccurate results in parameter regimes where the subsystem dynamics is highly

non-Markovian, e.g., in cases involving very strong subsystem-bath coupling, very slow heat

baths, and very low temperatures. That being said, in regimes with weaker non-Markovian

effects, the DECIDE method is expected to perform very well (as demonstrated in Refs. [85]

and [54] and in Chapter 3 of this thesis).

To integrate the equations of motion in Eq. 2.18, one must cast them in a basis {|α〉}

that spans the Hilbert space of the L-dimensional subsystem. For example, for a subsystem

that is bilinearly coupled to a harmonic bath, the L2(L2 − 1 + 2N) equations of motion for

the matrix elements of x̂(t) and X(t) take the following general form

ẋαα
′
(t) = F ({ẋ(t)αα

′}, {(x̂(t)X(t) + X(t)x̂(t))αα
′})

Ẋ(t)αα
′

= G({ẋαα′(t)}, {Ẋαα′(t)}), (2.19)

where G ≡ −
〈
α|({ĤW ,X}a)(t)|α′

〉
is a functional of the matrix elements ẋαα

′
(t) and

Ẋαα′(t), and F ≡ i
~

〈
α|([ĤW , x̂])(t)|α′

〉
is a functional of the matrix elements ẋ(t)αα

′
and

(x̂(t)X(t)+X(t)x̂(t))αα
′

(i.e., matrix elements of the Weyl-ordered bilinear interaction term,

which may be evaluated according to (x̂lXk)
αα′ =

∑
β x

αβ
l Xβα′

k ). The explicit forms of F

and G must be worked out for the model under study. Thus, Eq. 2.19 represents a set of

coupled first-order differential equations (FODEs), which can be numerically integrated to

propagate xαα
′
(t) and X(t)αα

′
.

After numerically integrating the coupled set of FODEs in Eq. 2.19 up to time t, one can

construct the time-dependent expectation value of an observable Â in terms of {xαα′(t)}

23



and {Xαα′(t)} as follows:

〈A(t)〉 =
∑
αα′

∫
dX(0)Aαα

′
W (x̂(t),X(t))ρα

′α
W (x̂(0),X(0)). (2.20)

To evaluate the expectation value, we assume a factorized initial state of the form

ρα
′α
W (x̂(0),X(0)) = ρB,W (X(0))ρα

′α
S (x̂(0)). We then specify the initial values of the matrix

elements x{αα
′}(0) and X{αα

′}(0) = X(0)δ{αα′}, viz., x{αα
′}(0) is calculated after specifying

the basis and X(0) is sampled from the bath distribution ρB,W (X(0)). Starting from these

initial conditions, one integrates Eq. 2.19 up to time t to obtain (x{α
′α}(t),X{α

′α}(t)) and

evaluates the required terms in the integrand of Eq. 2.20. Finally, one averages over an

ensemble of trajectories to compute the expectation value 〈A(t)〉.

The DECIDE methodology has several advantages over mixed quantum-classical surface-

hopping approaches: (i) The time evolution prescribed by the equations of motion is

deterministic, which results in numerically stable results out to long times; (ii) The scaling

of this method is polynomial in L and N , as it only requires the integration of at most

L2(L2 − 1 + 2N) coupled equations; (iii) There is no need to diagonalize the Hamiltonian

matrix on-the-fly; (iv) No momentum jump approximation is made; (v) The time evolution

is not mean-field in nature.
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Chapter 3

Quantum-classical Dynamics of

Nonequilibrium Heat Transport in

a Model Molecular Junction

3.1 Introduction

The study of nonequilibrium heat transport in nanoscale systems has gathered much

attention over the years due to its crucial role in the operation of molecular electronic

devices [89–96]. Gaining control of the heat transport dynamics has led to the design

of novel phononic devices with unique functionalities. Some examples of devices include

thermal rectifiers (which allow heat flow in one direction and impede it in the opposite

direction) [21, 97–106], thermal transistors (which switch between insulating and conducting

states, and amplify heat flow) [21, 107–109], and thermal logic gates (which perform basic

logic operations) [110]. The nonequilibrium spin-boson (NESB) model [44, 60, 111–113]

has served as a simple prototype for exploring and understanding heat transport through
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molecular junctions, such as those found in phononic devices. This model consists of

a two-level spin (representing the junction molecule) in contact with two independent

harmonic oscillator baths at different temperatures (representing the thermal reservoirs).

Owing to its simplicity, the NESB model has also been used to test a variety of approximate

quantum dynamical methods for calculating both time-dependent and steady-state heat

currents across a wide range of parameter regimes [41, 44, 63, 95, 97, 110, 114, 115].

A number of numerically exact and approximate quantum dynamical methods have

been used to calculate heat currents in the NESB model. Redfield theory has proven to

be reliable in the very weak system-bath coupling regime [44], while the noninteracting-

blip approximation works best in the strong system-bath coupling regime and at high

temperatures [112, 116]. The nonequilibrium polaron-transformed Redfield equation has

been used to derive a unified heat current expression for the NESB model, which reduces to

the Redfield and the noninteracting-blip approximation ones in the weak and strong coupling

limits, respectively [63]. Perturbative methods based on the nonequilibrium Green’s function

[117, 118] approach perform reasonably well up to intermediate system-bath couplings, while

the polaron-transformed version of this method [119] extends its validity into the strong

system-bath coupling regime. Numerically exact methodologies such as the quasi-adiabatic

propagator path integral [42–44], influence functional path integral [120], Monte Carlo [48],

and multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) [41] methods are

capable of producing accurate results across a wide range of system-bath coupling strengths

and nonadiabaticities, but at high computational costs [44, 121].

When dealing with larger and more complex systems, mixed quantum-classical methods,

which treat the junction molecule quantum mechanically and the thermal reservoirs in a

classical-like way, can more efficiently simulate the composite system (i.e., system plus

bath) dynamics. Recently, a mixed quantum-classical framework for calculating heat
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transport properties in molecular junctions was developed [54]. This framework was built

on the full counting statistics approach [122] and formally relies on the quantum-classical

Liouville equation (QCLE) [80, 123–125] for prescribing the composite system dynamics.

In practice, however, any mixed quantum-classical method that can be derived from an

approximate solution of the QCLE, could be used to simulate the dynamics of the composite

system. To date, Ehrenfest dynamics and the “Deterministic Evolution of Coordinates

with Initial Decoupled Equations” (DECIDE) method [85], which can both be derived

from the QCLE, have been used to calculate time-dependent heats and heat currents for

the NESB model in a variety of parameter regimes. The Ehrenfest method is capable of

qualitatively capturing the expected trends in the steady-state heat current as a function of

the tunnelling frequency of the two-level system and the system-bath coupling strength;

however, it gives substantial quantitative deviations from the numerically exact results at

lower temperatures and intermediate to strong coupling strengths due to its mean-field

nature [58]. In Ref. [54], the DECIDE method was simply used to demonstrate the proposed

framework for calculating time-dependent heats and heat currents on a small number of

parameter sets.

In this Chapter, we investigate the ability of the DECIDE method to qualitatively and

quantitatively capture the exact turnover behaviours observed in ML-MCTDH plots [41]

of the steady-state heat current as a function of the tunnelling frequency of the two-level

system and the system-bath coupling strength, respectively, at different bath temperatures.

Generation of these turnovers provides a strong indication that the approximate method

is capable of correctly capturing the physics of the heat transport across a wide range of

parameter regimes. We also compare our DECIDE results to those obtained using Ehrenfest

dynamics [58] and mixed quantum-classical adiabatic dynamics. Any differences observed

between the DECIDE (an inherently nonadiabatic method) and adiabatic dynamics results
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would shed light on the importance of nonadiabatic effects in the heat transport dynamics;

while any differences observed between the DECIDE and Ehrenfest dynamics results would

be indicative of breakdowns in a mean-field-type description of the heat transport dynamics.

This Chapter is organized as follows. In Sec. 3.2, we provide the heat and heat current

expressions. In Sec. 3.3 we present the simulation details, in Sec. 3.4, we present and

discuss our simulation results within the context of the numerically exact and other mixed

quantum-classical results. Finally, we summarize our findings in Sec. 3.5.

3.2 Heat and heat current expressions

To evaluate the heats and heat currents in the NESB model (fully described in Sec. 1.3) using

mixed quantum-classical dynamics, we must specify their expressions in the partial Wigner

representation. In this representation, the expression for the average heat transferred from

the vth heat bath to the subsystem is given by [54]

〈Qv(t)〉 = 〈Ĥv
B(t)− Ĥv

B(0)〉

=
∑
αα′

∫
dX(0)ρB,W (X(0))ρα

′α
S (0)

[
Ĥv
B(t)− Ĥv

B(0)
]αα′

, (3.1)

where Ĥv
B =

∑Nv
j=1

(
P 2
j,v + ω2

j,vR
2
j,v

)
is the Hamiltonian of the vth heat bath, {|α〉} denotes

a complete set of basis states that span the Hilbert space of the quantum subsystem. By

extension, the time-dependent heat current 〈Jv(t)〉 of the vth bath is defined as the time

derivative of 〈Qv(t)〉:

〈Jv(t)〉 =
d

dt
〈Qv(t)〉. (3.2)

In our simulations, 〈Jv(t)〉 is obtained by simply calculating the derivative of 〈Qv(t)〉 at

each time step. In general, the short-time behaviour of 〈JL(t)〉 is different from that of
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〈JR(t)〉. However, in the long-time limit, 〈JL(t)〉 and 〈JR(t)〉 will reach their steady state

values and J = |〈JL(∞)〉| = |〈JR(∞)〉| is the steady-state heat current. Alternatively, the

steady-state heat current can be calculated from

J = lim
t→∞

J(t) = lim
t→∞

1

2
[〈JL(t)〉 − 〈JR(t)〉] . (3.3)

3.3 Simulation details

The initial state of the system is chosen to be the product state ρ̂W (0) = ρ̂S(0)ρB,W (0),

where ρ̂S(0) = |+〉〈+| (where |+〉 is the spin-up state of σ̂z) and ρB,W (0) =
∏
v ρ

v
B,W (0)

with

ρvB,W (0) =

Nv∏
j=1

tanh(~βvωj,v/2)

π
exp

[
−2 tanh(~βvωj,v/2)

~ωj,v

×

(
P 2
j,v

2
+
ω2
j,vR

2
j,v

2

)]
, (3.4)

the partially Wigner-transformed canonical distribution of the vth bath.

In our DECIDE simulations of the NESB model, we take the coordinates of the spin

subsystem to be the Pauli matrices, i.e., x̂ = (σ̂x, σ̂y, σ̂z). Casting the equations of motion

in Eq. (2.18) in an arbitrary basis {|α〉} (spanning the 2× 2 Hilbert space of the spin) and

working out the expressions on the right-hand side of Eq. (2.18) using the NESB Hamiltonian
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in Eq. (1.4), leads to the following set of coupled first-order differential equations:

σ̇αα
′

x (t) = −1

~
∑
v

Nv∑
j=1

Cj,v[Rj,v(t)σ̂y(t) + σ̂y(t)Rj,v(t)]
αα′ ,

σ̇αα
′

y (t) = −2∆σαα
′

z (t) +
1

~
∑
v

Nv∑
j=1

Cj,v[Rj,v(t)σ̂x(t)

+σ̂x(t)Rj,v(t)]
αα′ ,

σ̇αα
′

z (t) = 2∆σαα
′

y (t),

Ṙαα
′

j,v (t) = Pαα
′

j,v (t),

Ṗαα
′

j,v (t) = −ω2
j,vR

αα′
j,v (t)− Cj,vσαα

′
z (t), (3.5)

where the dot denotes a time derivative. In Eq. (3.5), there are 4× (3+2N) (with N = NL+

NR) first order differential equations for the matrix elements (σ
{αα′}
x , σ

{αα′}
y , σ

{αα′}
z ,X{αα

′}),

where {αα′} implies that all the combinations of basis indices are considered.

To evaluate the matrix elements in Eq. (3.5), we use the subsystem basis, which consists

of the eigenstates of σ̂z, i.e., {|α〉} = {|+〉, |−〉}. Using this basis, the initial values of

the matrix elements of the spin coordinates are evaluated as σ+−
x (0) = σ−+

x (0) = 1,

σ++
x (0) = σ−−x (0) = 0, σ++

y (0) = σ−−y (0) = 0, σ−+
y = i, σ+−

y = −i, σ+−
z (0) = σ−+

z (0) = 0,

σ++
z (0) = 1, σ−−z (0) = −1; the initial values of the matrix elements of the bath coordinates

are evaluated as Xαα′(0) = X(0)δαα′ (since the spin and bath are initially decoupled),

with X(0) sampled from Eq. (3.4); and the expression for the average transferred heat in

Eq. (3.1) becomes

〈Qv(t)〉 =

∫
dX(0)ρvB,W (X(0))

Nv∑
j=1

[
(P 2

j,v(t))
++ − P 2

j,v(0)

2

+ω2
j,v

(R2
j,v(t))

++ −R2
j,v(0)

2

]
, (3.6)

30



where we have used the fact that ρ++
S (0) = 1.

The fourth-order Runge-Kutta scheme [126] is used to integrate the set of first order

differential equations in Eq. (3.5), which yields the values of the matrix elements of the

time-dependent spin and bath coordinates. Finally, noting that, for example,
(
P 2
j,v(t)

)αα′
=∑

β P
αβ
j,v (t)P βα

′

j,v (t) (where Pαα
′

j,v (t) 6= Pj,v(t)δαα′ , since its value depends on the subsystem’s

operators at time t due to the subsystem-bath coupling), the time-dependent average

heat and heat current can then be generated in terms of the matrix elements of the time-

dependent bath coordinates by averaging over an ensemble of trajectories according to

Eqs. (3.6) and (3.2), respectively. To obtain converged results, ensembles of 107 trajectories

and a time step of ∆t = 0.2654 fs are used.

In the adiabatic dynamics simulations, the average heat transferred from the vth bath

to the subsystem is calculated according to

〈Qv(t)〉 =
∑
αα′

∫
dX(0) [Hv

B(X(0), t)−Hv
B(X(0))]αα

′
ρvB,W (X(0))ρα

′α
S (0)

=
∑
α

∫
dX [(Hv

B(X(0), t))αα −Hv
B(X(0))] ρvB,W (X(0))ρααS (0) (3.7)

where {|α〉} now denotes the adiabatic basis defined previously and the matrix element

(Hv
B(X, t))αα is evolved in time according to Eq. (2.13). To arrive at the second line of the

above equation, we have used the facts that the heat current only depends on the bath

coordinates and that the state of the subsystem, α, does not change over the course of

the dynamics. The initial values of the left and right bath coordinates, X(0), are sampled

from Eq. (3.4). Finally, the time-dependent average heat and heat current are generated by

averaging over an ensemble of trajectories according to Eqs. (3.7) and (3.2), respectively.

To obtain converged results, ensembles of 107 trajectories and a time step of ∆t = 0.2654 fs

are used.
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To extract the steady-state heat current, J , from the time-dependent heat current,

J(t), we average all the values of J(t) for t > t∗, where t∗ denotes a time after which J(t)

remains essentially constant. (Based on our simulation results, we took t∗ = 200 fs.) Next,

to compute the error bar in the steady state heat current, we bin the time-dependent heat

current values for t > t∗ into time-ordered sets of width 20 fs, then calculate the average

heat current for each bin, and finally calculate the standard deviation of the bin averages.

3.4 Results and discussion

We now present the results of the time-dependent average heat and heat current and

the steady-state heat current for the NESB model for a variety of (left and right) bath

temperatures, bath reorganization energies, and tunneling frequencies computed using the

DECIDE method and adiabatic dynamics. Our results are compared and contrasted with

those of the numerically exact multi-layer multi-configurational time-dependent Hartree

(ML-MCTDH) method (from Ref. [41]), Bloch-Redfield theory (BR) (from Ref. [41]), and

Ehrenfest mean-field theory (MFT) (from Ref. [58]). In all of our simulations, NL = NR =

100, ωc = 400 cm−1, and ωm = 2000 cm−1.

Figure 3.1a shows the time-dependent heats of the left (cold) and right (hot) baths

calculated using the DECIDE method for the case of TL = 60 K, TR = 120 K, Er =

100 cm−1, and ∆ = 300 cm−1. After the sudden switch-on of the subsystem-bath coupling

at t = 0, both the heats of the left and right baths exhibit large increases in the first ∼150 fs.

This behaviour has been previously observed in a nanoscale thermal switch model [127] and

is due to energy added in the form of the switched coupling potential. After this transient

time, there is a linear increase in the left-bath heat and a linear decrease in the right-bath

heat, as expected. As can be seen, the DECIDE results are in excellent agreement with

the ML-MCTDH ones at short times, but exhibit slight deviations at later times, with
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differences ranging from ∼ 2 cm−1 to ∼ 6 cm−1. Figure 3.1b depicts the corresponding

time-dependent heat currents of the left and right baths. It should be noted that the

ML-MCTDH time-dependent heat currents were calculated by taking the time derivative of

the sum of the bath and subsystem-bath coupling energies [41], in contrast to our definition

in Eq. (3.2). Thus, differences between the two sets of results are expected at short times,

but both definitions should give the same long-time limit. Initially, the heat currents of the

left and right baths rise rapidly (due to the sudden switch-on of the system-bath coupling)

to their maximum values, and then decrease slowly to their steady-state values. As can be

seen, the DECIDE results are in very good agreement with the ML-MCTDH ones at long

times. In the inset of Figure 3.1b, we present a comparison between the time-dependent

heat currents J(t) (obtained using DECIDE) and J ′(t) (obtained using ML-MCTDH). From

this plot, one can see that, despite some noise in J(t), the long-time limits of J(t) and J ′(t)

are in very good agreement with each other. For this particular parameter set, the difference

between the exact result and that obtained by DECIDE is ∼0.004 cm−1fs−1. These results

demonstrate the ability of DECIDE for accurately predicting the time-dependent heats and

heat currents in the limit that ωc > ∆ and kBT < ∆.

In Fig. 3.2, we plot the steady-state heat currents obtained using the various approaches

for the case of TL = 60 K, TR = 120 K, and ∆ = 300 cm−1 as a function of the reorganization

energy, Er. At low reorganization energies, the DECIDE, MFT, and BR results are seen to

be in good agreement with the ML-MCTDH result, with the BR result agreeing exactly

with the ML-MCTDH one. Particularly, the differences between the exact and DECIDE

results are ∼0.0001 cm−1fs−1 and ∼0.004 cm−1fs−1 for Er = 50 cm−1 and Er = 100 cm−1,

respectively. These results strongly suggest that these methods can yield reliable results in

weak subsystem-bath coupling situations. As the reorganization energy is increased, the

DECIDE and MFT results exhibit the expected turnover [128, 129], while the BR result
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Figure 3.1: Time-dependent heats, 〈Qv(t)〉, (top panel) and heat currents, 〈Jv(t)〉, (bottom
panel) of the left and right baths obtained using the DECIDE method with 107 trajectories.
The simulation parameters used are TL = 60 K, TR = 120 K, ωc = 400 cm−1, Er =
100 cm−1, NL = NR = 100, and ∆ = 300 cm−1. For comparison, the numerically
exact ML-MCTDH results for 〈J ′L(t)〉, 〈J ′R(t)〉, and J ′(t) are shown [41]. The inset shows
a comparison between the time-dependent heat currents J(t) and J ′(t) obtained with
DECIDE and ML-MCTDH, respectively.

continues to grow linearly. The turnover can be explained in the following way. In the

weak system-bath coupling regime, the system-bath coupling strength directly determines

the effectiveness of the heat transfer between the system and the baths; therefore, a larger

coupling strength leads to a larger heat current. However, as the system-bath coupling
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strength further increases (to a point in the intermediate coupling regime), the bath friction

begins to limit the heat transfer (due to slow diffusion processes in the baths which dissipate

the heat away from the system) and the heat current begins to decrease. Beyond ∼100 cm−1,

we see that all of the mixed quantum-classical methods underestimate the steady-state

heat current, with DECIDE exhibiting markedly closer agreement with the exact result

than MFT for the largest reorganization energies. For this case, the differences observed

between the exact and approximate results range from 0.01 to 0.04 cm−1fs−1 and 0.02 to

0.3 cm−1fs−1 for MFT and DECIDE, respectively. Moreover, we see that DECIDE predicts

the correct value of Er at which the turnover takes place, viz., Er = 300 cm−1. Thus, at

the stronger coupling strengths, DECIDE captures nonadiabatic effects that are neglected

by a mean-field treatment of the heat transport dynamics. As for adiabatic dynamics, we

see that it does not perform well for most reorganization energies (except for Er = 400

cm−1) and does not capture the expected turnover behaviour. These observations indicate

that nonadiabatic effects are important in the heat transport dynamics across a wide range

of subsystem-bath coupling strengths.

Figure 3.3 displays the dependence of the steady-state heat current on the reorganization

energy for the higher bath temperatures of TL = 100 K and TR = 150 K (with ∆ =

300 cm−1). We see that the trends and relative agreements between the approximate results

and the exact result are the same as for the lower bath temperature case. However, at higher

bath temperatures, we observe a substantial improvement in the quantitative agreement

between the DECIDE/MFT results and the exact ones, with DECIDE performing markedly

better than MFT over a wider range of reorganization energies than at the lower bath

temperatures. Given the nature of the underlying approximations in the DECIDE method,

this improvement in performance is expected. This likely explains why the DECIDE results

are in very good agreement with the exact ones in the range of Er = 300 cm−1 to Er = 500
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Figure 3.2: Steady-state heat current as a function of the bath reorganization energy, Er,
obtained using DECIDE and adiabatic dynamics with 107 trajectories. The simulation
parameters used are TL = 60 K, TR = 120 K, ωc = 400 cm−1, ωm = 2000 cm−1,
NL = NR = 100, and ∆ = 300 cm−1. For comparison, the numerically exact ML-MCTDH
results [41], along with the approximate BR [41] and MFT [58] results are shown.

cm−1. As in the lower bath temperature case, we see that DECIDE captures nonadiabatic

effects that are neglected by MFT and that nonadiabatic effects are important across a

wide range of subsystem-bath coupling strengths.

The effect of the energy difference between the two spin states, ∆, on the steady-state

heat current is shown in Fig. 3.4 for the case of TL = 100 K, TR = 150 K, and Er = 100 cm−1.

As ∆ is increased, we see that the BR, MFT, and DECIDE results exhibit turnovers, while

the adiabatic dynamics result does not. This turnover occurs due to the resonant character

of the heat transport, viz., the steady-state heat current increases initially with increasing ∆

up to a certain value of ∆ at which there is the maximal number of in-resonance bath modes;

after which, the steady-state heat current decreases due to a reduction in the number of

in-resonance bath modes [44]. Despite exhibiting turnovers, the BR, MFT, and DECIDE
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Figure 3.3: Steady-state heat current as a function of the bath reorganization energy, Er,
obtained using DECIDE and adiabatic dynamics with 107 trajectories. The simulation
parameters used are TL = 100 K, TR = 150 K, ωc = 400 cm−1, ωm = 2000 cm−1,
NL = NR = 100, and ∆ = 300 cm−1. For comparison, the numerically exact ML-MCTDH
results [41], along with the approximate BR [41] and MFT [58] results are shown.

results have substantial quantitative differences. Overall, BR theory exhibits the largest

deviations from the exact results (compared to MFT and DECIDE) over the entire range

of ∆ values. MFT and DECIDE perform similarly up to ∆ = 200 cm−1. MFT predicts the

turnover to occur at ∆ ≈ 200 cm−1, while DECIDE predicts it to occur at ∆ ≈ 300 cm−1,

in excellent agreement with the turnover point given by ML-MCTDH. Beyond ∆ ≈ 400

cm−1, we see that DECIDE yields results that are in very close agreement with the exact

ones, while MFT yields significantly smaller values, viz., we find absolute differences of

0.004, 0.003, and 0.003 cm−1 fs−1 for DECIDE and 0.019, 0.004, and 0.002 cm−1 fs−1 for

MFT at ∆ = 500 cm−1, ∆ = 800 cm−1, and ∆ = 1000 cm−1, respectively. Interestingly,

adiabatic dynamics yields very good agreement with the exact results starting at ∆ = 800

cm−1. This is consistent with the adiabatic approximation, which is expected to improve in
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the slow-bath limit, i.e., ωc � ∆.

Figure 3.4: Steady-state heat current as a function of the tunneling frequency of the two-level
spin system, ∆, obtained using DECIDE and adiabatic dynamics with 107 trajectories. The
simulation parameters used are TL = 100 K, TR = 150 K, ωc = 400 cm−1, ωm = 2000 cm−1,
NL = NR = 100, and Er = 100 cm−1. For comparison, the numerically exact ML-MCTDH
results [41], along with the approximate BR [41] and MFT [58] results are shown.

3.5 Summary

In this work, we investigated the ability of the DECIDE method for calculating steady-

state heat currents in the nonequilibrium spin-boson model. This was accomplished by

contrasting our results with those of the numerically exact ML-MCTDH method. In the

ωc > ∆ limit, DECIDE was found to be capable of capturing the expected turnover in the

steady-state heat current as a function of the bath reorganization energy for both lower and

higher bath temperatures, with good to excellent quantitative agreement across the range

of reorganization energies considered. Overall, the agreement was better in the case of the
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higher bath temperatures. Moreover, DECIDE was found to be capable of capturing the

expected turnover in the steady-state heat current as a function of the tunneling frequency

for the bath temperatures considered.

We also made comparisons between the DECIDE results and those of other mixed

quantum-classical methods, namely mean-field theory and adiabatic dynamics. In the

fast-bath limit, adiabatic dynamics is not capable of qualitatively capturing the expected

trends in the steady-state heat current with respect to the reorganization energy and

tunneling frequency, regardless of the bath temperatures. This observation underscores the

fact that nonadiabatic effects play an important role in the heat transfer dynamics across

a wide range of parameter regimes. On the other hand, mean field theory is capable of

capturing the expected trends for the parameter regimes considered; overall, however, it

did not yield as accurate steady-state heat currents as DECIDE, nor did it exactly predict

the turnover points as in the case of DECIDE. Our findings hold promise for DECIDE

simulations of nonequilibrium heat transport in more realistic systems, for which fully

quantum mechanical approaches are not computationally feasible.
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Chapter 4

Quantum Bath Effects on

Nonequilibrium Heat Transport in

Model Molecular Junctions

4.1 Introduction

During the last two decades, great efforts have been devoted to modelling heat transfer at

the nanoscale [89–96, 130, 131]. As a result, a number of applications have been proposed,

including thermal diodes[21, 97–106], thermal logic gates [110, 132], thermal transistors

[21, 107–109], quantum heat engines [132, 133] and quantum absorption refrigerators

[134, 135]. Optimizing the heat currents in these nanophononic devices represents a

formidable challenge for both theory and experiment. From a theoretical standpoint,

the non-equilibrium spin boson (NESB) model has become a prototype for the study of

quantum heat transport [44, 112, 136]. This model, which consists of a two-level spin coupled

to two harmonic oscillator baths at different temperatures, has been shown to capture
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several phenomenological features of molecular junctions. A large number of quantum

methods have been used to simulate the heat transport dynamics of this model, including

Redfield theory [44], mean field theory [58], the noninteracting-blip approximation [112, 116],

the nonequilibrium polaron-transformed Redfield equation [63], methods based on the

nonequilibrium Green’s function [117, 118], perturbative approaches [137], nonequilibrium

variational polaron theory [138], extended hierarchy equation of motion [139], quasi-adiabatic

propagator path integral [42–44], influence functional path integral [120], Monte Carlo [48],

and multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) [40, 41]. Recently,

we also applied a novel mixed quantum-classical dynamics method, known as DECIDE

[85] (which stands for “Deterministic Evolution of Coordinates with Initial Decoupled

Equations”), to the NESB model, and obtained qualitative to semi-quantitative agreement

with the exact results over a wide parameter regime [51].

When simulating heat transport through a molecular junction, one of the main quantities

of interest is the steady-state heat current. This heat current is often calculated by averaging

over initial conditions that are sampled from thermal distributions of the bath positions

and momenta. In previous studies of the NESB model, it has been calculated by averaging

over quantum thermal distributions of the positions and momenta of the bath harmonic

oscillators. Beyond the NESB model, the use of quantum bath distributions for calculating

heat transport properties in more complex systems has been rather limited [140, 141].

Such systems are typically studied using classical molecular dynamics, with the initial

bath conditions sampled from classical thermal distributions. Due to its versatility and

relatively low computational cost, this approach has enabled the calculation of thermal

properties in a wide variety of nanoscale systems at higher temperatures, including graphene

[142], fullerene derivatives [143], phononic-like membranes [144], multilayer MoS2 [145],

amorphous polymers [146], nanofluids [147], two-dimensional polyaniline structures [148],
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and metal-organic frameworks [149]. At low temperatures, it is expected that quantum

bath distribution effects on the heat currents will be significant; however, it is unclear how

these effects are influenced by other bath parameters and the system-bath coupling strength

over a wide range of temperatures.

In the present chapter, we set out to investigate the importance of quantizing the initial

thermal bath distributions in calculating time-dependent heats and heat currents across a

wide range of bath parameter regimes of the NESB model, viz., bath temperatures, bath

temperature gaps, bath reorganization energies, and bath cutoff frequencies. This is done

by contrasting the results of mixed quantum-classical dynamics simulations starting from

both quantum and classical bath distributions. Our findings shed light on the parameter

regimes in which quantum bath sampling is deemed important and, indirectly, on ways

of engineering thermal reservoirs to maximize/minimize heat currents through molecular

junctions.

This chapter is organized as follows. In Sec. 4.2, we present the statistical expressions

used to calculate the heat current starting from both quantum and classical thermal bath

distributions. The simulation details, results, and summary are provided in Sections 4.3,

4.4 and 4.5, respectively.

4.2 Heat current from quantum and classical distributions

The average amount of energy flowing from the vth bath to the spin within a time t defines

the time-dependent heat, i.e.,[54]

〈Qv(t)〉 = 〈Ĥv
B(t)− Ĥv

B(0)〉

=
∑
αα′

∫
dX(0)ρα

′α
W (0)

[
Ĥv
B(t)− Ĥv

B(0)
]αα′

, (4.1)
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where Ĥv
B = 1

2

∑Nv
j=1

(
P 2
j,v + ω2

j,vR
2
j,v

)
is the Hamiltonian of the vth bath, ρα

′α
W is a partially

Wigner-transformed density matrix element corresponding to the composite system, {|α〉}

denotes a complete set of basis states that span the Hilbert space of the two-level spin

subsystem, and X = (R,P ) denotes the set of positions and momenta of the baths. It

follows that the time-dependent heat current 〈Jv(t)〉 of the vth bath is given by

〈Jv(t)〉 =
d

dt
〈Qv(t)〉. (4.2)

In the long-time limit, the composite system reaches a steady state at which |〈JL(∞)〉| =

|〈JR(∞)〉| = J , thereby defining the steady-state heat current. Equivalently, one may

express the steady-state heat current as

J = lim
t→∞

1

2
[〈JL(t)〉 − 〈JR(t)〉] ≡ lim

t→∞
J(t), (4.3)

where J(t) = 1
2 [〈JL(t)〉 − 〈JR(t)〉], i.e., the average of the absolute values of the left and

right bath heat currents (this can be understood by noting that that the steady-state heat

currents of the left and right baths are expected to be positive and negative, respectively,

because TL will always be chosen to be less than TR).

As is commonly done, the initial state of the system is taken to be the product

state ρ̂W (0) = ρ̂S(0)ρB,W (0), where ρ̂S(0) = |+〉〈+| (|+〉 is the spin-up state of σ̂z) and

ρB,W (0) =
∏
v ρ

v
B,W (0) with

ρvB,W (0) =

Nv∏
j=1

tanh(~βvωj,v/2)

π
exp

[
−2 tanh(~βvωj,v/2)

~ωj,v

(
P 2
j,v

2
+
ω2
j,vR

2
j,v

2

)]
≡ ρvB,q(0), (4.4)

the partially Wigner-transformed canonical distribution of the vth bath. This distribution
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accounts for the quantum equilibrium structure of the collection of harmonic oscillators.

From this expression, one can recover the classical Boltzmann distribution by taking the

high temperature limit limβ→0 ρ
v
B,W (0):

ρvB,cl(0) =

Nv∏
j=1

βvωj,v~
2π

exp

[
−βv

(
P 2
j,v

2
+
ω2
j,vR

2
j,v

2

)]
. (4.5)

The fully quantum and classical bath distributions (in Eqs. 4.4 and 4.5, respectively)

may be related according to the following convolution equation [150],

ρvB,q(X) =

∫
dX

′
g(X

′ −X)ρvB,cl(X
′
), (4.6)

where the quantum dispersion function, g(X), is given by

g(X) =

Nv∏
j=1

βvωj,v
2π(u′′j,v − 1)

exp

[
− βv
u′′j,v − 1

(
P 2
j,v

2
+
ω2
j,vR

2
j,v

2

)]
, (4.7)

with u′′j,v = uj,v cothuj,v and uj,v = βv~ωj,v/2. From this expression, one sees that the

classical distribution is broadened by g to generate the quantum distribution. This is

illustrated in Fig. 4.1, where we show representative classical and quantum distributions

for a single harmonic oscillator from 60 K to 360 K. At 60 K, 120 K, and 240 K, we see

that the classical distributions are markedly narrower than their corresponding quantum

ones, i.e., the classical positions and momenta span a smaller range of values. At 360 K,

the distributions are more similar, as expected at high temperatures, but non-negligible

differences in their widths still exist. It should be noted that, over the temperature range

considered, the quantum distribution changes less than the classical one. As will be shown

later, these differences in the distributions significantly impact the heat transport dynamics

of the NESB model.
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Figure 4.1: Representative quantum (left panels) and classical (right panels) initial proba-
bility distributions for one harmonic oscillator from 60 K to 360 K, obtained with Eqs. 4.4
and 4.5, respectively. The value of ω was set to 1 in both cases.
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4.3 Simulation details

Given the previous success in applying the DECIDE method to the NESB model [51], we

use it herein to simulate the dynamics of the time-dependent heat. The DECIDE method

evolves the spin and bath coordinates using different approximations to the quantum-

classical Liouville equation [80, 123–125]. The details of the DECIDE equations of motion

and their solution for the NESB model are given in Ref. [51]. Based on Eq. 3.1, the heat

transferred from the vth bath to the subsystem is obtained by calculating the matrix

elements of the time-dependent bath coordinates using DECIDE and performing an average

over an ensemble of trajectories [whose bath initial conditions are sampled either from

ρvB,q(X(0)) in Eq. 4.4 or ρvB,cl(X(0)) in Eq. 4.5] according to

〈Qv(t)〉 =

∫
dX(0)ρvB(X(0))

Nv∑
j=1

[
(P 2

j,v(t))
++ − P 2

j,v(0)

2

+ω2
j,v

(R2
j,v(t))

++ −R2
j,v(0)

2

]
, (4.8)

where ρvB(X(0)) = ρvB,q(X(0)) or ρvB,cl(X(0)), and
(
P 2
j,v(t)

)αα′
=
∑

β P
αβ
j,v (t)P βα

′

j,v (t),

for example. In the above equation, we have used the subsystem basis consisting of

the eigenstates of σ̂z, i.e., {|α/β〉} = {|+〉, |−〉}. According to DECIDE [85], the time

dependence of the matrix elements R++
j,v (t) and P++

j,v (t) is obtained by integrating a set

of L2(L2 − 1 + 2N) (where L is the dimensionality of the spin subsystem and N is the

total number of bath oscillators) coupled first-order differential equations for the matrix

elements of the spin and bath coordinates, viz., with L = 2 and N = NL + NR, the
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4× [3 + 2(NL +NR)] equations are [51]:

σ̇αα
′

x (t) = −1

~
∑
v

Nv∑
j=1

Cj,v[Rj,v(t)σ̂y(t) + σ̂y(t)Rj,v(t)]
αα′ ,

σ̇αα
′

y (t) = −2∆σαα
′

z (t) +
1

~
∑
v

Nv∑
j=1

Cj,v[Rj,v(t)σ̂x(t)

+σ̂x(t)Rj,v(t)]
αα′ ,

σ̇αα
′

z (t) = 2∆σαα
′

y (t),

Ṙαα
′

j,v (t) = Pαα
′

j,v (t),

Ṗαα
′

j,v (t) = −ω2
j,vR

αα′
j,v (t)− Cj,vσαα

′
z (t). (4.9)

The time-dependent heat current of the vth bath, 〈Jv(t)〉, is then calculated according to

Eq. 4.2. Converged results are obtained with ensembles of 107 trajectories, NL = NR = 100,

and ωm,L = ωm,R = 2000 cm−1. A time step of ∆t = 0.265 fs is used for integrating the

equations of motion.

To calculate the steady-state heat current, J , we average all the values of J(t) for t > t∗,

where t∗ is the time after which J(t) remains essentially constant (based on our results, we

chose t∗ = 250 fs). To calculate the error bars in the steady-state heat current, we group

the time-dependent heat current values for t > t∗ into time-ordered sets of width 20 fs,

then calculate the average heat current for each group, and finally calculate the standard

deviation of the group averages.

4.4 Results and discussion

In Fig. 4.2, we show the time-dependent heats and heat currents of the left and right

baths, calculated using classical and quantum bath sampling (the results of these sampling
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methods will be referred to as “classical” and “quantum”, respectively, from hereon), for the

parameter set TL = 60 K, TR = 120 K, ωc = 400 cm−1, Er = 400 cm−1, and ∆ = 300 cm−1.

As can be seen in the top panel of Fig. 4.2, the classical time-dependent heats of the left

and right baths are larger by ≈ 200 cm−1 than their corresponding quantum ones, after the

initial transient period. This difference can be attributed to a combination of two related

factors. Firstly, the additional average over the quantum dispersion of the bath position

and momentum variables (see Eq. 4.6) leads to a reduction in the quantum heats compared

to the classical ones. Secondly, the differences in the widths of the left and right bath

distributions in the quantum and classical cases creates different effective thermal gradients.

More specifically, the more dissimilar widths of the classical left and right bath distributions

(see Fig. 4.3) leads to higher heat transfer. In the middle panel of Fig. 4.2, we see that

the quantum and classical time-dependent heat currents of the left and right baths exhibit

the same oscillatory behaviour, but the magnitudes of the fluctuations are different, viz.,

the classical result has larger steady-state fluctuations than the quantum one (see inset).

This difference can be attributed to the additional averaging over the quantum dispersion

function (see Eq. 4.6) in the quantum case, which dampens the fluctuations. To reduce the

magnitude of the statistical fluctuations in the left/right bath heat currents at steady state,

we next calculated the average time-dependent heat current, J(t) = 1
2 [〈JL(t)〉 − 〈JR(t)〉].

As can be seen in the bottom panel of Fig. 4.2, both the quantum and classical results are

positive and have smaller fluctuations than their respective left/right bath heat currents,

with the classical result being larger and having smaller fluctuations than the quantum one.

The observation that the classical steady-state heat current is larger than the quantum one is

consistent with the larger slopes observed in the classical heat curves and is a consequence of

the narrower and more dissimilar classical distributions of the left and right baths compared

to their quantum counterparts. Interestingly, despite the larger steady-state fluctuations in
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the classical left/right bath heat current, we see that it is possible for the averaging process

to reduce their magnitude beyond that of the quantum result.

Figure 4.2: Quantum and classical time-dependent heats of the left and right baths (top
panel), their corresponding heat currents (middle panel), and the average of the absolute
values of the left and right bath heat currents (bottom panel). The results were obtained
using the DECIDE method with 107 trajectories. The following parameter set was used:
TL = 60 K and TR = 120 K, ωc = 400 cm−1, Er = 400 cm−1, ∆ = 300 cm−1.
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In Fig. 4.3, we plot the classical and quantum steady state heat currents as a function

of the bath reorganization energy (i.e., a measure of the spin-bath coupling strength) for

different values of TL and TR with TR−TL = 60 K. The values of the remaining parameters

are ωc = 400 cm−1 and ∆ = 300 cm−1. As a reference, we also show the numerically exact

results (obtained with the ML-MCTDH approach) available for the temperatures TL =

60 K and TR = 120 K [41]. For the most part, the quantum and classical steady state

heat currents exhibit substantial differences across the considered ranges of reorganization

energies (viz., 50 cm−1 < Er < 400 cm−1) and temperatures (viz., 60 K< TL < 360 K

and 120 K< TR < 420 K), with the differences decreasing with increasing temperature

and decreasing coupling strength, as expected. In all cases, the classical steady-state heat

currents are larger than the quantum ones for the reason discussed earlier. As the bath

temperatures are increased, the maximum steady-state heat current (observed in each panel)

decreases monotonically in the classical case and increases to a plateau in the quantum case.

In both cases, the expected turnover behaviour [128, 129] is captured, with the turnover

taking place over approximately the same range of Er values; however, the slopes of the

rise and fall in the classical case are larger than in the quantum case. For example, for the

lowest temperature pair, the ratios of the slopes (classical/quantum) are ∼3.5 and ∼18 for

the rise and fall, respectively; for the highest temperature pair, the ratios decrease to ∼1.6

and ∼3.3 for rise and fall, respectively.

In Fig. 4.4, we present the steady-state heat current as a function of the temperature gap,

∆T = TR − TL, between the heat baths, for three fixed values of the left-bath temperature,

viz., TL = 120 K, TL = 240 K, and TL = 360 K. The values of the remaining parameters

are ωc = 400 cm−1, Er = 100 cm−1, and ∆ = 300 cm−1. First, as TL increases for a

given value of ∆T , one observes that the classical and quantum steady-state heat currents

become increasingly similar, as expected. However, even at relatively high left/right bath
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Figure 4.3: Steady-state heat current as a function of the bath reorganization energy, Er,
for different bath temperatures. The results were obtained using the DECIDE method with
107 trajectories. In all cases, ωc = 400 cm−1, ∆ = 300 cm−1, and TR − TL = 60 K. As a
reference, numerically exact results are shown for the case of TL = 60 K and TR = 120 K
[41].

temperatures (e.g., TL = 360 K and TR = 480 K), there is still a small but significant

difference (viz., 0.04 cm−1fs−1) between them. Second, both the classical and quantum

steady-state heat currents exhibit an increasing linear trend with increasing ∆T . This

is simply due to the fact that the thermodynamic force for heat transfer increases with

larger differences between the initial distributions of the left and right baths. Moreover,

at small ∆T values, the classical and quantum results are in very close agreement, but as
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∆T increases the difference between them grows monotonically. Finally, as TL increases,

there is an overall decrease in the classical steady-state heat current (across the range of

∆T values), viz., the slope of the linear trend decreases by ∼ 45%; on the other hand, the

quantum steady state heat current only exhibits a slight overall decrease in going from

TL = 240 K to 360 K. This difference underscores the sensitivity of the heat transport

calculations to the classical bath sampling.

Figure 4.4: Steady-state heat current as a function of the temperature gap between the
heat baths. The results were obtained using the DECIDE method with 107 trajectories. In
all cases, ωc = 400 cm−1, Er = 100 cm−1, and ∆ = 300 cm−1.

In Fig. 4.5, we show the classical and quantum steady-state heat currents as a function of
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the bath reorganization energy, Er, for the following cutoff frequencies of the bath spectral

density: ωc = 100 cm−1, 200 cm−1, 400 cm−1, 600 cm−1, and 1200 cm−1. The values of the

remaining parameters are ∆ = 300 cm−1, TL = 60 K, and TR = 120 K. As a reference,

we also show the numerically exact results (obtained with the ML-MCTDH approach) for

the case of ωc = 400 cm−1. (NB: To observe the turnovers in the ωc = 100 cm−1 and

ωc = 200 cm−1 cases, see Fig. 4.2 where the steady-state heat currents are plotted over

a larger range of bath reorganization energies.) Several notable similarities/differences

between the classical and quantum results are observed. First, for all the cutoff frequencies

considered, the classical results are higher than the quantum ones across the entire range of

Er values (except for the {ωc = 1200 cm−1, Er = 400 cm−1} case). The overall trend in the

classical and quantum results as a function of Er is similar (apart from a few differences

in the turnover points), with the smallest differences between them observed for small Er

values in the case of ωc ≤ 200 cm−1 and larger Er values in the case of ωc ≥ 400 cm−1.

Second, the differences between the classical and quantum results remain relatively small

(over the range of Er values considered) for ωc = 100 cm−1, but can become relatively

large for the remaining ωc values. Third, as ωc increases from low values (where the bath

is off-resonance with the subsystem) to intermediate values (where the bath is nearly

resonant with the subsystem) to high values (where the bath is again off-resonance with

the subsystem), we see that the maxima in the classical and quantum steady-state heat

currents occur at {ωc = 400 cm−1, Er = 200 cm−1} and {ωc = 200 cm−1, Er = 500 cm−1},

respectively. In general, the largest differences between the classical and quantum results

occur when ωc ≥ 200 cm−1 (i.e., ωc is close to or exceeds ∆) and Er takes on intermediate

values. In this regime, there are bath modes in resonance with the subsystem and the

friction induced by the coupling to the bath is not yet high enough to impede the heat

transfer. At low Er values, the differences between the classical and quantum results are
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either negligible or relatively small because the bath sampling has a lower impact when the

spin-bath coupling is weak. In contrast, the differences observed at high Er values (when

ωc ≥ 400 cm−1) are small because the heat transfer is highly friction-limited, i.e., the heat

transfer is saturated to the point that it becomes independent of the initial bath sampling

method. Similar results are obtained when the tunneling frequency is varied and ωc is kept

constant (see Fig. 4.4).

Figure 4.5: Steady-state heat current as a function of the bath reorganization energy, Er,
for different cutoff frequencies, ωc. The results were obtained using the DECIDE method
with 107 trajectories. In all cases, ∆ = 300 cm−1, TL = 60 K, and TR = 120 K.

Finally, we analyze the fluctuations in the classical and quantum steady-state heat

54



currents in terms of the steady-state fluctuation theorem (SSFT),[151, 152] which provides

a rigorous constraint on the heat current fluctuations and generalizes the second law of

thermodynamics to the nanoscale. For heat exchange between two baths at equilibrium,

the SSFT may be approximately expressed as [153]

lim
t→∞

1

t
ln

Pt(Q(t))

Pt(−Q(t))
=

∆βQ

t
, (4.10)

where ∆β = βL − βR and Pt(Q(t)) is the probability distribution of the net heat transfer

Q(t) from the hot (right) bath to the cold (left) bath by time t. Previously, it was found that

the SSFT holds for the NESB model in the Markovian regime [116]. For our analysis, we

check the validity of SSFT using a relatively weak coupling strength (viz., Er = 100 cm−1),

∆ = 300 cm−1 < ωc = 400 cm−1, TL = 60 K, and TR = 120 K. In the left panel of

Fig. 4.6, we plot the classical and quantum probability distributions, Pt(Q(t)), at t = 500 fs,

generated from ensembles of 107 trajectories. As can be seen, the width of Pt(Q(t)) is larger

when the initial bath coordinates for each trajectory are sampled from the quantum bath

distribution, compared to the classical case. This appears to be a result of the fact that the

quantum bath distribution is broader than the classical one (see Eqs. 4.6 and 4.7). In the

right panel of Fig. 4.6, we plot ln[Pt(Q(t))/Pt(−Q(t))] vs. Q(t) at t = 500 fs, generated by

both classical and quantum bath sampling, and compare the results to ∆βQ vs. Q. As can

be seen, the quantum result is linear and shows a maximum absolute deviation of 0.06 from

∆βQ, while the classical result is nonlinear and deviates greatly from ∆βQ (viz., 0.74 at

400 cm−1). In particular, the classical result is higher than the quantum one, meaning that

there is a relatively larger disparity between the probability of a net heat transfer of Q from

the hot bath to the cold bath [i.e., Pt(Q(t))] and that from the cold bath to the hot bath

[i.e., Pt(−Q(t))]. Thus, at least for the parameter set considered, we find that quantum

bath sampling is required to ensure the validity of the SSFT.
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Figure 4.6: Plot of the heat transfer probability, Pt(Q(t)), at t = 500 fs (left panel). Check
of the validity of the SSFT based on Eq. 4.10 (right panel). The results were obtained using
the DECIDE method with 107 trajectories and the following parameter set: ωc = 400 cm−1,
Er = 100 cm−1, ∆ = 300 cm−1, TL = 60 K, TR = 120 K.

4.5 Summary

In this work, we studied the effect of quantum bath sampling on the heat transfer dynamics

in the NESB model. For this purpose, we sampled the initial positions and momenta of

the bath oscillators from both quantum and classical thermal distributions and compared

the results for the steady-state heat currents. In general, at a given temperature, the

classical distribution is narrower than the quantum one. Moreover, for the model studied,

the differences in the widths of the classical distributions for the hot and cold baths are

larger than the corresponding quantum ones over a wide range of temperatures. Together,

these differences in the initial equilibrium structures led to pronounced differences in the

magnitudes of the steady-state heat current and, to a lesser extent, trends as a function of

the various model parameters. In particular, the classical steady-state heat currents were

observed to be ∼ 1.3− 4.5 times higher for a broad range of parameter regimes considered.
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A sharper turn-over in the steady-state heat current (as a function of subsystem-bath

coupling) was observed in the classical case, with the turn-over point sometimes occurring

at lower values of the coupling than in the quantum case. Finally, we found that the SSFT

holds in the Markovian regime only when quantum bath sampling is used. Together, these

findings underscore the importance of performing quantum sampling of the bath coordinates

across a wide range of bath temperatures, reorganization energies, and cutoff frequencies

for calculations of time-dependent and steady-state heat currents in thermal molecular

junctions. Our study also sheds light on the possibility of optimizing the steady-state heat

current by engineering the initial equilibrium structures of the thermal baths.
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Chapter 5

Ultrafast Topologically-protected

Vibrational Energy Transfer in a

Dimer Chain

5.1 Introduction

Molecular material-based technologies have attracted the attention of various research

communities due to their many appealing factors such as production cost, chemical versatility,

and environmental friendliness. Organic material-based optoelectronics[154, 155] such as

light-emitting diodes and photovoltaics, molecular electronics devices [156] such as molecular

wires, and quantum computing architectures[157–159] for encoding quantum information

into molecules are a few prominent examples. Underlying this wide array of technologies is

the common challenge of engineering the highly efficient transfer of energy [160, 161], charge

[162, 163], or quantum information [158, 159] across complex molecular structures. For

instance, the excitonic research community has been studying ultrafast excitonic dynamics
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in natural light harvesting complexes [164] in order to understand how energy transfers

so efficiently through the highly disordered energy landscapes commonly encountered in

biological settings[165–167]. The knowledge acquired from these studies has already led

to the design of optoelectronics devices[168–170]. Similarly, studies of quantum transport

through molecular junctions and quantum state transfer (i.e., quantum information transfer)

mediated by vibrons [158, 159] have also been carried out in order to improve the functionality

of molecular electronics and molecule-based quantum computers, respectively.

In this chapter, we focus on excitation energy transfer in molecular systems. Recently,

Yuen-Zhou et al. [171] proposed to use topologically protected edge states [172, 173] as

efficient transport channels to direct Frenkel exciton migration in highly disordered molecular

systems for energy harvesting applications. The symmetry-protected topological constraint

increases the transport efficiency by greatly suppressing the possibility of disorder-induced

backscattering. However, this proposal requires the application of an external magnetic field

and advanced structural engineering to realize the desired topological phases for the excitons.

This motivated us to search for a simpler way (in terms of experimental considerations) to

realize topologically-protected excitation energy transfer in molecular systems, which could

be eventually adopted in actual devices.

Different from the strategy adopted in Ref. [171], we seek to generate topologically

protected edge states in molecular assemblies through minimal modifications. To this

end, we focus on quasi one-dimensional assemblies, for which a harmonic description of

the vibrations is adequate [131], as the basis for our investigation. For example, recent

theoretical studies have suggested the possibility of ultrafast long-range vibrational energy

transfer [174] and electric-field induced topological phases [175] in α-helical and double-

stranded helical structures. Such results, coupled with continuing advances in organic

materials synthesis, indicate that simple quasi one-dimensional organic structures may serve
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as potential platforms for ultrafast topologically-protected excitation energy transfer.

In this work, we investigate energy transfer along one-dimensional molecular chains with

dimerized units, and explain how the transfer could primarily be mediated via topologically

protected edge modes[73, 173]. Our dynamical simulations reveal that long-range vibrational

energy transfer takes place across a wide range of parameter regimes for the model considered.

In particular, the integrity of the long-range transfer is not compromised by coupling to the

phonons arising from displacements along the backbone of the chain. In fact, the rate of the

long-range energy transfer is enhanced by three orders of magnitude due to this coupling.

To carry out our dynamical simulations, we adopt the well-established quantum-classical

Liouville equation (QCLE) formalism [83, 176, 177]. In mixed quantum-classical methods,

the total system is partitioned into a quantum subsystem and a classical environment in order

to reduce computational costs. For the model considered in this work, the high-frequency

excitations on the dimer chain are treated quantum mechanically, while the low-frequency

lattice displacements of the chain are treated classically. It should be noted that the QCLE

yields exact quantum dynamics for a subset of models (including the one studied in this

work) in which the environment is composed of harmonic oscillators that are bilinearly

coupled to each other and linearly coupled (with respect to the environment’s coordinates)

to a finite set of quantum subsystem degrees of freedom (DOF). Hence, the QCLE approach

is expected to provide highly reliable predictions of quantum phenomena associated with

all the topological phases in our model. However, to reduce computational costs and focus

on qualitative trends, we employ an adiabatic approximation to the solution of the QCLE,

which restricts the evolution of the classical DOF to the potential energy surfaces (PESs)

that they are initialized on. Although nonadiabatic effects could be non-negligible for

this model, we found previously that the adiabatic approximation allows for a very good

qualitative (if not semi-quantitative) description of the dynamics for a closely related model
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with similar parameters to that considered in this work.[70]

The outline of this chapter is as follows: In Sec. 5.2, we describe the model of a dimerized

chain coupled to acoustic phonons. In Sec. 5.3, we provide the details of how our simulations

are performed. In Sec. 5.4, we present our simulation results, which demonstrate the

robustness and ultrafast nature of the long-range energy transfer mediated by the coupling

to the phonon environment. Finally, the conclusions of this study are given in Sec. 5.5.

5.2 Dimerized chain coupled to acoustic phonons

We study the energy transfer along a one-dimensional dimerized chain of quantized (high-

frequency) modes coupled to a set of acoustic phonons corresponding to the (low-frequency)

lattice displacements of the chain (see Fig. 6.1 for a schematic representation). Since we

are concerned with the quantum dynamics of this system in the high-temperature limit,

the acoustic phonons can be adequately modelled as classical vibrations.

Figure 5.1: Schematic representation of the dimerized chain (with N = 6) coupled to
acoustic phonons generated by lattice vibrations (denoted by double-headed arrows).

The Hamiltonian of this dimerized chain of quantized modes coupled to a set of classical

acoustic phonons (chosen to be the normal modes of a chain of bilinearly coupled harmonic

oscillators) is given by

H = Hq +
N∑
m=1

Hmm(R) |φm〉 〈φm| , (5.1)
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where H0 found in Hq (see Eq. (1.6)) now takes the following form

H0 =
∑
m

P 2
m

2M
+
∑
m

[
Em0 + (1− δm,1)

W

2
(Rm −Rm−1)2 + wm0(R)

]
, (5.2)

and Hmm(R) = wm1(R)− wm0(R). The coupling term wmν(R) is given by

wmν(R) = (1− δm,1)
χ

2
(Rm −Rm−1)〈χmν |q2

m|χmν〉. (5.3)

In the above equations, each harmonic oscillator is described by a position Rm, momentum

Pm, and force constant W , δm,1 is the Kronecker delta function, and a uniform coupling

strength χ is adopted.

The matrix elements of qmqm−1 in Eq. 5.1 are all given by

〈φm|qmqm−1|φm−1〉 = 〈χ0|q|χ1〉2. (5.4)

The values of the various matrix elements of qm and q2
m are taken from Table 2 in Ref. [69],

while the values of the parameters Em1 − Em0, J , W , and M are taken from Table 1 in

Ref. [69] and are given by 1660 cm−1, 7.8 cm−1, 13 N/m, and 87 mp, respectively. The

values of χ considered in this study are 5, 25, and 62 pN.

Simply looking at the Hamiltonian in Eq. 5.1, it is not evident whether the non-trivial

topological phases can be preserved once the classical acoustic phonons are coupled to the

dimerized quantum chain. One important observation is that the classical DOF provide an

effective on-site potential that modifies the diagonal matrix elements of the Hamiltonian.

In principle, the sublattice symmetry is broken and the topological phases could change.

A major focus of our study is to investigate the robustness of the topological edge states

upon coupling to the vibrational DOF. A high robustness is crucial for long-range energy
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transfer via these edge modes in practical applications.

5.3 Simulation details

In all of our simulations, the quantum subsystem of high-frequency oscillators and classical

environment of low-frequency lattice displacements are assumed to be uncorrelated initially,

yielding a factorized initial density operator:

ρ̂ (0) = ρ̂q (0) ρe (X) , (5.5)

where ρ̂q(0) and ρe(X) are the initial densities of the quantum subsystem and classical

environment, respectively. Because we are interested in the population dynamics following

a vibrational excitation of the first quantized mode in the chain, the initial density matrix

of the quantum subsystem (represented in the subsystem basis of singly excited states) is

given by

ρ̂q(0) =



1 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · 0


. (5.6)

Since our simulations are performed in the adiabatic basis, the initial state of the quantum

subsystem is sampled for each trajectory by first expressing ρ̂q(0) in the adiabatic basis (see

details of the transformation and sampling in Appendix A of Ref. [70]). A set of initial

values for the positions/momenta of the classical oscillators for each trajectory is obtained

by sampling from a Boltzmann distribution corresponding to a collection of uncoupled
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harmonic oscillators at thermal equilibrium at 300 K:

ρe (X) ≈ 1

Z

N∏
j=1

exp

[
−β

{
P 2
j

2
+

1

2
W 2R2

j

}]
, (5.7)

where Z =
∫
dRdP exp

[
−β

2

∑
j(P

2
j +W 2R2

j )
]

is the partition function. Starting from these

initial values, the correct thermal equilibrium distribution at 300 K (in the absence of a

vibrational excitation) is achieved by equilibrating the coupled harmonic oscillators for 2 ps

using the ground-state Hamiltonian found in Eq. 5.2 with a Nosé-Hoover thermostat and a

time step of 0.25 fs. (In Ref. [70], we checked the ergodicity of the Nosé-Hoover thermostat

by comparing our adiabatic dynamics results to those generated with a Nosé-Hoover chain

thermostat and found good quantitative agreement between them.)

Following the sampling of the initial quantum state and positions/momenta of the

classical DOF, microcanonical trajectories of length 150 fs are generated using the short-

time sequential propagation algorithm[84] in the absence of nonadiabatic transitions (i.e.,

adiabatic dynamics), with a time step of 1 fs. To correct for the majority of arbitrary sign

flips in the eigenvectors upon numerical diagonalization of the Hamiltonian matrix at each

time step of a trajectory, we use the sign-correction procedure outlined in Ref. [70]. (N.B.:

This procedure not only corrects eigenvector signs within a trajectory, but also establishes

sign consistency across an ensemble of trajectories.) Finally, the time-dependent populations

of the high-frequency modes along the chain are calculated based on an ensemble of 107

trajectories according to Eq. 2.15 with Â = |φm〉〈φm|.

5.4 Results and discussion

We first demonstrate through a series of numerical simulations that the chosen model can

indeed facilitate long-range population transfer (LRPT) via the topological edge modes,
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even in the presence of lattice distortions. Importantly, the LRPT proceeds at a much

faster rate in the presence of the phonons.

To isolate the effect of coupling the dimerized quantum chain to the phonons on the

LRPT, we begin by considering a static dimer chain. As briefly summarized in Sec. 1.4,

the topological edge states can only arise in a perfect dimer chain with an even number

of quantum oscillators and the hopping parameters satisfying the relation H > Hc. In

Figs. 1 and 2a, we present results that confirm that the onset of LRPT can be controlled by

modifying the parameter H for a dimerized quantum chain composed of six high-frequency

oscillators. With the understanding that we only consider the single-excitation manifold of

the dimerized quantum chain, we will refer to the high-frequency quantum oscillators as

sites in the following discussion.

Figure 5.2: Population dynamics for a six-site static dimer chain with H = 1, i.e., J = J ′.
(a) Population on each site. (b) Population on boundary sites and in bulk.

Figure 5.2 shows the singly excited state populations plotted versus time for the static

dimer chain when H = 1. In the left panel, it is clearly shown that a wave packet (initially

on site 1) spreads across the chain by sequentially exciting the next oscillator in the 1D chain.

In the right panel, we adopt an alternative representation of the dynamics by summing the
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populations on the interior sites (in this case, sites 2 through 5) and designating this sum

as the bulk contribution. (N.B.: In the subsequent plots, we solely use this representation.)

The right panel conveys the same message that the excitation has to propagate through

the bulk of the chain before reaching the other end. This picture of sequential population

transfer is precisely what one expects from quantum dynamics in a 1D chain, viz., the

ballistic propagation commonly observed in perfect 1D chains without any static or dynamic

sources of disorder.

Figure 5.3: Population dynamics for a six-site dimer chain with H = 10. (a) Static dimer
chain. (b) Dimer chain coupled to acoustic phonons with χ = 5 pN.

We next consider a six-site dimer chain with H = 10. In the left panel of Fig. 5.3, we see

that the wave packet directly transfers from one end to the other, effectively skipping over

the bulk sites, on a timescale of tens of picoseconds. This transfer mechanism is a signature

of the presence of topological edge states. As mentioned in Sec. 1.4, the edge states are not

strictly confined to the ends of a finite-sized dimer chain, but become increasingly confined

as the chain length increases. Thus, it is encouraging to observe that such a direct LRPT

is also possible in short chains. In the case of longer dimer chains, the critical parameter

Hc becomes smaller, implying that one could achieve a similar quality of LRPT without
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requiring such a large value of H (as in the present example of a six-site dimer chain).

To rationalize the slow timescale of the LRPT, we recall that the idealized LRPT rate

is characterized by the energy gap between the two edge states (i.e., 2∆) in the effective

two-level model presented in Sec. 1.4. In the topologically non-trivial phase, the two edge

states become nearly degenerate and, therefore, the LRPT will be slow.

From this point onward, we consider the dimerized quantum chain coupled to the lattice

displacements. The population dynamics in a six-site chain with χ = 5 pN is shown in

the right panel of Fig. 5.3. In comparison to the left panel, the LRPT now proceeds three

orders of magnitude faster (from ∼ 50 ps down to ∼ 100 fs). More surprisingly, the coupling

to the acoustic phonons (arising from the lattice displacements) does not compromise the

robustness of the LRPT in this case. However, it is expected that, as the interaction

between the dimer chain and the acoustic phonons increases, the once isolated manifold of

edge states will mix with the eigenstates predominantly confined to the bulk. This is due

to the fact that these states are coupled to the same set of lattice vibrations.

Figure 5.4: Population dynamics for a six-site dimer chain (χ = 25 pN and H = 10) with
static disorder in the excited state energies of each site. The solid and dashed lines refer to
the results with and without disorder, respectively.
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It is not uncommon for a natural or fabricated chain to have a structure that deviates

from an idealized structure with identical units characterized by uniform parameters. Thus,

we now investigate the robustness of LRPT against inhomogeneity in the quantum oscillators

across the chain. This inhomogeneity is introduced into our simulations through a statistical

variation of the energies of the quantum oscillators’ first excited states. More specifically,

we sample independent values of energy fluctuations from a Gaussian distribution (whose

standard deviation is taken to be 15% of the inter-dimer hopping parameter J ′) and add

them to each Em1 at the beginning of each trajectory. As such a static inhomogeneity

breaks the sublattice symmetry, the topological edge states are expected to lose their desired

spatial profile of being predominantly localized on the two boundary sites. Indeed, Fig. 5.4

shows that, in the presence of static disorder (solid lines), more population leaks into the

bulk of the chain than in the absence of static disorder (dashed lines). Nevertheless, as

seen, the LRPT is partially preserved in the presence of the weak disorder, i.e., when J ′

is much larger than the fluctuations of Em1. It should be noted that these results were

generated with a larger value of the coupling between the quantum and classical subsystems,

viz., χ = 25 pN. While a stronger coupling is expected to compromise the integrity of the

topological edge states (by amplifying the dynamical noise due to the interaction with the

classical phonons), we find them to be remarkably stable in the absence of the disorder for

this value of the coupling.

We next investigate the effect of increasing the coupling strength between the quantum

and classical subsystems from χ = 5 pN to χ = 62 pN in the six-site dimer chain for different

values of H in greater detail. According to Fig. 5.5, the population leakage into the bulk is

significant even when H = 12. However, the mechanism of LRPT is preserved even in this

strong-coupling limit. For instance, one sees that the population inside the bulk always

decreases and the population on the end site always rises faster with increasing H. In the
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Figure 5.5: Population dynamics for a six-site dimer chain with χ = 62 pN and different
values of H. (Left): Site-1 population. (Center): Bulk population. (Right): Site-6
population.

subsequent simulations, we use this stronger coupling to investigate the robustness of the

LRPT under various conditions.

69



Figure 5.6: Population dynamics for a six-site dimer chain with χ = 62 pN and different
values of A (in Å) and H.

So far, we have considered LRPT as a quantum dynamical phenomena involving

topological edge states that only arises when H > Hc, as illustrated in Figs. 5.2 and 5.3.

However, there may be alternative mechanisms that generate LRPT even when H < Hc. In

fact, one of the authors has previously proposed such a mechanism in a 1D chain without

dimerization (i.e., J = J ′). This mechanism emerges when there are lattice distortions at

the two ends of the chain, which in turn cause a shift in the vibrational frequencies of the

two boundary quantum oscillators. Indeed, there is no issue in designing a system that

supports the co-existence of both mechanisms to drive the LRPT, as shown in Fig. 5.6. This

figure provides a comprehensive view on how the population dynamics changes as a function

of both H and an energy shift (χ2A〈χmν |q
2
m|χmν〉, where A is the length of the distortion)

to the two boundary quantum oscillators. Along the vertical axis of Fig. 5.6, H is varied

from H = 1 (corresponding to the topologically trivial phase) to H = 10 (corresponding

to the topologically non-trivial phase), while along the horizontal axis, A is varied from
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A = 0 Å to A = 0.5 Å, i.e., shifting the frequencies of the two boundary quantum oscillators

out of resonance with those of the interior oscillators. When there is no energy shift, the

LRPT is solely driven by the topological edge states (see leftmost column of Fig. 5.6), while

as A is increased with H = 1 (see bottom row of Fig. 5.6), the alternative mechanism

(involving the asymmetric oscillators at the boundaries) solely drives the LRPT. When

there is an interplay between the two mechanisms (see remaining panels of Fig. 5.6), we

observe two trends: (i) as one increases H for a fixed A, the effectiveness of the LRPT is

slightly compromised, and (ii) as one increases A for a fixed H, the effectiveness of the

LRPT can be significantly improved.

Another question of interest is the dependence of the LRPT on the length (i.e., number

of quantum oscillators, N) of the dimerized quantum chains. As described in Sec. 1.4, the

topological edge states are strictly absent in a static (imperfectly) dimerized chain with

an odd number of sites, even if H > Hc. Thus, we now investigate the population transfer

as a function of N in the case where the dimer chain is coupled to the acoustic phonons

(with χ = 62 pN and H = 10). The results presented in Fig. 5.7 clearly demonstrate that

the edge-state-driven LRPT is absent in the odd-length chains. For all even-length chains

considered, the edge-state-driven LRPT not only enables significant population transfer

across the chain but it also occurs at a fast rate. Furthermore, as one increases the length

of the even-length chains from N = 4 to N = 10, the efficiency of the LRPT decreases due

to an increased population leakage into the bulk. This is likely due to the fact that, as

the chain length increases, the overall coupling between the dimer chain and the acoustic

phonons also increases (e.g., for a four-site chain, the coupling is 4χ, while for a ten-site

chain the coupling is 10χ). As a result, the dimer chain becomes more heavily influenced

by the phonons, which in turn affects its ability to support the topological edge modes.

So far, we have demonstrated the robustness of the edge-state transport mechanism in
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Figure 5.7: Population dynamics for dimer chains of various lengths N with χ = 62 pN and
H = 10. (Left): Site-1 population. (Center): Bulk population. (Right): Site-N population.
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Figure 5.8: Population dynamics in a six-site dimer chain with χ = 62 pN and H = 10
for different temperatures of the classical acoustic phonon bath. (Left): Site-1 population.
(Center): Bulk population. (Right): Site-6 population.
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the dimer chain coupled to an acoustic phonon bath at room temperature (300 K). Now,

we investigate how the transfer rate is affected by the bath temperature. On the one hand,

a low-temperature environment provides a favourable condition for sustaining the quantum

coherence needed to realize the edge states. On the other hand, the phonon excitations are

significantly reduced at low temperatures. Since the ultrafast population transfer is only

made possible by the coupling to the phonons, it is not immediately obvious how LRPT

will be affected by a temperature change. In Fig. 5.8, we present population results for a

wide range of bath temperatures, from 50 K to 300 K. It is reassuring to observe that the

LRPT remains effective over this entire temperature range, with the LRPT being faster

and suffering less leakage to the bulk in the lower temperature regime. Interestingly, as

shown in the middle panel of Fig. 5.8, there is a turnover (as function of temperature) in

the population leakage to the bulk, which occurs at 200 K.

Further investigation is required to determine whether the nonlinear temperature

dependence of the population leakage to the bulk is an artifact of our adiabatic dynamics

simulations, which neglect nonadiabatic transitions in the trajectories. Since nonadiabatic

transitions are expected to occur more frequently in the high temperature regime where

the classical phonons have higher momenta, it is important to get a sense of the magnitude

of the nonadiabatic effects in our results. To this end, we performed a nonadiabatic

dynamics simulation of the six-site dimer chain coupled to a classical acoustic phonon bath

at 300 K. (The algorithmic details of how to perform this simulation, including the Monte

Carlo sampling of the nonadiabatic transitions, adjustment of the bath momenta, and the

computation of the expectation value are given in Appendix B of Ref. [70].) From Fig. 5.9,

we clearly observe the qualitative similarities between the adiabatic and nonadiabatic results,

which were generated using 107 and 109 trajectories, respectively. Quantitatively speaking,

the LRPT is seen to be more effective when one uses the more accurate nonadiabatic
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dynamics, as reflected by the reduction in the bulk population in the middle panel of

Fig. 5.9. This reduction validates the existence of the turnover in the population leakage to

the bulk shown in the middle panel of Fig. 5.8. The nonadiabatic transitions, induced by

the motions of the acoustic phonons, also slow down the depletion of the population on

site 1. Finally, the nearly quantitative agreement between the adiabatic and nonadiabatic

results for the short-time population transfer on site 6 (see right panel of Fig. 5.9) strongly

suggests that the LRPT is primarily captured by the adiabatic dynamics. The role of the

nonadiabatic transitions is mainly to suppress the spurious leakage of population into the

bulk. Overall, these results confirm that our adiabatic simulations offer a reliable qualitative

(and even semi-quantitative) picture of the transfer dynamics.

5.5 Summary

In this work, we studied the vibrational population transfer induced by a quantum excitation

that is initially localized on one end of a one-dimensional model of a dimerized quantum

chain at 300 K. Our goal was to investigate the possibility of engineering a robust, efficient,

ultrafast, and long-range energy transfer mechanism via topologically protected edge states

in a molecule. To this end, we performed adiabatic dynamics simulations based on the

QCLE approach, which were shown to provide reliable qualitative results of the quantum

population transfer dynamics for this model. We found that the nonadiabatic corrections

mainly suppress the artificial population leakage (resulting from the adiabatic approximation)

into the bulk of the chain.

In contrast to the energy transfer dynamics in a static dimerized chain, a vibrational

excitation does not necessarily move sequentially from one site to the next when the static

constraint is lifted. When the high-frequency modes couple to the low-frequency lattice

displacements along the backbone of the chain and the chain is in its topologically non-trivial
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Figure 5.9: Nonadiabatic population dynamics for a six-site dimer chain coupled to a
classical acoustic phonon bath at 300 K, with χ = 62 pN and H = 10. (Left): Site-1
population. (Center): Bulk population. (Right): Site-6 population.
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phase (i.e., H > Hc), the transfer primarily involves the population of the edge states

|e±〉 ≈ 1√
2
(|1〉 + |N〉). Moreover, the vibrations of the lattice, which are inevitable at

finite temperatures, are found to accelerate the transfer rate, instead of decelerating it or

localizing the population. A nonlinear dependence of the LRPT on the temperature was

observed, suggesting the existence of an optimal temperature range over which the LRPT is

most effective. This an important consideration in the design of molecular devices that must

operate within a specific temperature range. Finally, we found that the LRPT is robust

against weak static disorder, which is a highly desirable trait due to the near impossibility

of fabricating a perfectly homogeneous organic structure.

In summary, our findings suggest the possibility that a quasi one-dimensional dimerized

molecule may be used as a platform for building devices that are capable of robust, efficient,

ultrafast, and long-range vibrational energy transfer via a topologically-protected transfer

mechanism. These findings will hopefully stimulate work towards synthesizing polymers with

the desired structure and testing their energy transfer properties. So far, our computations

have been restricted to relatively short chains and time scales; however, one of the authors

has recently proposed a novel approach for accurately simulating QCLE dynamics at high

temperatures at a fraction of the computational cost of the existing QCLE-based surface-

hopping methods.[85] Thus, it is our desire to investigate the long-time dynamics of more

realistic systems using this approach, and thereby gain a more detailed understanding of

the quantum dynamical features of topologically-protected energy transfer in this class of

materials.
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Chapter 6

Vibrational Energy Transfer in a

Dimer Chain Coupled to Thermal

Reservoirs

6.1 Introduction

The study of excitation energy transfer in molecular and nanoscale materials has become

very popular during the last decades due to their potential technological applications

[154–158, 158, 159, 159]. Some prominent systems that have been studied include artificial

light-harvesting antenna complexes [178–180], photocatalytic nano-composites [181–183],

enhanced photoluminescent films [184], sensing and signalling devices [185], etc. In addition,

advances in organic and inorganic synthesis have led to the creation of novel architectures

with exceptional energy transfer properties [186]. For example, well-defined dendritic

polymers have been experimentally and theoretically studied, showing a step-wise energy

transfer from the periphery units towards the center with high photochemical stability
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[187, 188]. More recently, metal organic frameworks have been explored as new platforms

for long-range energy transfer [189, 190]. For example, it has been observed that collapsing

a MOF thin film from a 3D to 2D framework can enhance the directional excitonic energy

transport [191]. At the same time, the study of heat transport in molecular architectures has

received a great deal of attention due to its numerous applications in molecular electronics

and nanophononics. These applications include thermal diodes [21, 97–106], thermal logic

gates [110, 132], thermal transistors [21, 107–109], quantum heat engines [132, 133] and

quantum absorption refrigerators [134, 135].

One of the main challenges in developing such technologies is the optimization of the

energy transfer through the complex molecular structure under the influence of a thermal

environment. Recently, we demonstrated the possibility of achieving ultrafast, long-range

vibrational exciton transfer in a model chain molecule coupled to a set of acoustic phonons

[53]. In the present study, we coupling the ends of this chain to thermal baths (each

consisting of a set of harmonic oscillators) at different temperatures. This work aims to

understand to what extent the nature and rate of the vibrational exciton transfer is affected

by the presence of a temperature gradient across the molecule. First, we consider a static

chain in which the sites of the model chain are fixed in space. Next, we consider a chain

coupled to acoustic phonons in which the sites are allowed to oscillate.

This chapter is organized as follows. In Sec. 6.2, we present the model Hamiltonian. In

Sec. 6.3, we provide the simulation details. Finally, the results and conclusions are given in

Secs. 6.4 and 6.5, respectively.

6.2 Model Hamiltonian

In Section 1.4 we presented the static version of the dimerized chain model. Next, in Section

5.2 we coupled the chain sites to a set of acoustic phonons, giving rise to the non-static
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version of the model. In the present chapter, we study the exciton transfer dynamics of both

the static and non-static chains whose end sites are coupled to thermal baths at different

temperatures (see Fig. 6.1 for a schematic representation).

Figure 6.1: Schematic representation of the dimerized chain coupled to two thermal reservoirs
at different temperatures TL and TR. The red oscillatory curves depict the heat flow down
the chain due to the thermal gradient.

We consider the transport of a vibrational exciton along a one-dimensional (1D) dimerized

chain of N vibrational quantum modes (also referred to as sites below) whose end modes

are coupled to two thermal baths at different temperatures (TL and TR with TL < TR)

each consisting of Nµ harmonic oscillators. Additionally, the chain is coupled to a set of N

acoustic phonons (corresponding to displacements of the 1D lattice), modelled as classical

vibrations. The Hamiltonian of this system is given by

H = H0|0〉〈0|+
N∑

m,n=1

H0
mn|φm〉〈φn|+

N∑
m=1

Hmm(R) |φm〉 〈φm| , (6.1)

where |φm〉 = |χm1〉
∏
n 6=m |χn0〉 is the mth singly excited state and |0〉 =

∏
m |χm0〉 is the

ground state of a chain. The ground state matrix element is given by

H0 =
∑
j

P 2
j

2M
+

1

2M ′

∑
µ=L,R

Nµ∑
j=1

(P ′2j,µ + ω2
j,µR

′2
j,µ) + (6.2)

∑
m

[
Em0 + (1− δm,1)

W

2
(Rm −Rm−1)2 + wm0(R)

]
,
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where Rj and Pj are the position and momentum, respectively, of the jth lattice displacement

and W is the force constant governing the harmonic motion of the lattice displacement.

The primed variables R′j,µ and P ′j,µ are the position and momentum, respectively, of the

jth harmonic oscillator with frequency ωj,µ in the µth bath. The matrix elements for the

singly-excited manifold are given by

H0
mn = δm,n [H0 + Em1 − Em0]

−Jmn [δm−1,n〈φm|qmqm−1|φm−1〉+ δm,n−1〈φn|qnqn−1|φn−1〉] , (6.3)

where Em1 − Em0 is the energy gap between the ground and first excited states for each

site, qm is the position associated with each site, and the coupling matrix J is a tridiagonal

symmetric matrix with the super-diagonal elements given by alternating parameters J and

J ′ that govern the strength of the transition dipole moment coupling between neighbouring

sites (see Sec. 1.4 for a more detailed discussion). The coupling Hamiltonian matrix elements

are given by Hmm(R) = wm1(R)− wm0(R), where wmν(R) takes the following form

wmν(R) = (1− δm,1)
χ

2
(Rm −Rm−1)〈χmν |q2

m|χmν〉

+δm,1

NL∑
j=1

Cj,LR
′
j,L〈χmν |q2

m|χmν〉+

δm,N

NR∑
j=1

Cj,RR
′
j,R〈χmν |q2

m|χmν〉, (6.4)

with χ and Cj,µ the constants that govern the coupling strength between the quantum

modes and the lattice displacements and thermal baths, respectively. The coupling between

the subsystem and µth thermal bath is characterized by an Ohmic spectral density with an

exponential cutoff, viz., Iµ(ω) =
ξµ
2 πωe

−ω/ωc,µ with ξµ the Kondo parameter characterizing

the system-bath coupling strength and ωc,µ the cutoff frequency. For this spectral density,
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the bath reorganization energy, Er,µ, is related to the system-bath coupling strength by

Er,µ = ξµωc,µ/2. The Ohmic spectral density is implemented according to the following

discretization scheme [61, 62]

Cj,µ =
√
ξµ~ω0,µωj,µ, ωj,µ = −ωc,µ ln

(
1− j ω0,µ

ωc,µ

)
, (6.5)

where ω0,µ = ωc,µ(1 − e−ωm,µ/ωc,µ)/Nµ, ωm,µ is the maximum frequency of the µth heat

bath, and j runs from 1 to Nµ. In this work, ωm,L = ωm,R = ωm, ωc,L = ωc,R = ωc, and

ξL = ξR = ξ (or, equivalently, Er,L = Er,R = Er). Finally, the matrix elements of qmqm−1

are all given by 〈φm|qmqm−1|φm−1〉 = 〈χ0|q|χ1〉2. The values of the various matrix elements

of qm and q2
m are taken from Table 2 in Ref. [69], while the values of the parameters

Em1 − Em0, J , W , and M are taken from Table 1 in Ref. [69] and are given by 1660 cm−1,

7.8 cm−1, 13 N/m, and 87 mp, respectively. The value of χ used in this study is 5 pN.

6.3 Simulation details

The quantum vibrational modes and classical lattice displacements/thermal baths are

assumed to be uncorrelated initially, such that

ρ̂ (0) = ρ̂q (0) ρe (X) , (6.6)

where ρ̂q(0) and ρe(X) are the initial densities of the quantum subsystem and classical

environment, respectively. The initial density matrix of the quantum vibrational modes

(represented in the subsystem basis of singly excited states), corresponding to the first
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quantized mode in the chain being vibrationally excited, is given by

ρ̂q(0) =



1 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · 0


. (6.7)

The initial state of the quantum subsystem is sampled for each trajectory by first expressing

ρ̂q(0) in the adiabatic basis (see details of the transformation and sampling in Appendix A

of Ref. [70]).

For each trajectory, the initial values of the positions/momenta of the lattice displace-

ments and thermal baths are sampled. For the lattice displacements, the sampling is

done from a Boltzmann distribution corresponding to a collection of uncoupled harmonic

oscillators at thermal equilibrium at 300 K. Starting from these initial values, the correct

thermal equilibrium distribution at 300 K (in the absence of a vibrational excitation) is

achieved by equilibrating the coupled harmonic oscillators for 2.5 ps using the ground-state

Hamiltonian in Eq. 5.2 with a Nosé-Hoover thermostat and a time step of 2 fs. For the

thermal bath oscillators, the initial values of the coordinates are sampled from Eq. (3.4).

Following the sampling of the initial quantum state (with N = 6) and positions/momenta

of the classical degrees of freedom (with N = 6 and Nµ = 1000), microcanonical trajectories

of length 150 fs are generated using the short-time sequential propagation algorithm[84] in

the absence of nonadiabatic transitions (i.e., adiabatic dynamics), with a time step of 2

fs. To correct for the majority of arbitrary sign flips in the eigenvectors upon numerical

diagonalization of the Hamiltonian matrix at each time step of a trajectory, we use the

sign-correction procedure outlined in Ref. [70]. Finally, the time-dependent populations of

the quantum modes along the chain are calculated based on an ensemble of 108 trajectories
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according to Eq. 2.15 with Â = |φm〉〈φm|.

6.4 Results and discussion

We start with the case of the static chain coupled to the thermal baths at temperatures

TL = 350 K and TR = 250 K. In Fig. 6.2, we show the time-dependent populations of

the quantum vibrational modes for different system-bath coupling strengths. The results

in the left and right panels are generated using cutoff frequencies ωc = 400 cm−1 and

100 cm−1, respectively. In both cases, we observe that the population transfer from site

1 to site 6 increases with increasing coupling strength, with a negligible change to the

bulk site populations. The results corresponding to ξ = 0.1 × 10−8, ξ = 0.5 × 10−8, and

ξ = 1.0× 10−8 are essentially the same as the case where no baths are coupled; however,

notable changes appear when the coupling strength is increased to 5.0× 10−8 and beyond.

When ωc = 400 cm−1, the population transfer from site 1 to site 6 increases up to ∼ 0.4 (for

the largest system-bath coupling) and exhibits substantial fluctuations. That being said,

this behaviour may not be entirely correct, since the adiabatic approximation is expected

to deteriorate when the bath frequencies increase. When ωc = 100 cm−1, the population

transfer from site 1 to site 6 increases up to ∼ 0.13 (for the largest system-bath coupling),

and exhibits smaller fluctuations than in the higher ωc case. Overall, these results show

that the coupling to baths promotes the population transfer.

To study the effect of the bath temperature gap on the population transfer in the

static chain, we vary the temperature of one bath while the other is kept constant at

300 K. Since we are using adiabatic dynamics, we focus on a low bath cutoff frequency

case, ωc = 100 cm−1, and intermediate coupling strength, ξ = 5.0× 10−8, to ensure that

the dynamics is within the adiabatic regime. Overall, Fig. 6.3 shows that, despite some

quantitative differences, the temperature gradient does not have a pronounced effect on
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Figure 6.2: Site population dynamics in the static six-site dimer chain with ωc = 100 cm−1

(right panels) and ωc = 400 cm−1 (left panels) for different system-bath coupling strengths.
In all cases, TL = 350 K and TR = 250 K. Top panels : site 1 population, center panels :
bulk population, bottom panels : site 6 population.
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the population transfer from site 1 to site 6 regardless of the direction of the gradient, i.e.,

TL > TR or TR > TL. Therefore, although one may expect that a larger temperature gap

would have a pronounced effect on the population transfer, we see that this is not the case

under the particular conditions considered.

We now turn to the non-static chain, which includes both the coupling between the

quantum modes and the acoustic phonons and the coupling to the thermal baths at

temperatures TL = 350 K and TR = 250 K. In Fig. 6.4, we show the time-dependent

populations of the quantum vibrational modes for different system-bath coupling strengths

and a site-phonon coupling of χ =5 pN, with the results in the left and right panels generated

using cutoff frequencies, ωc, of 400 cm−1 and 100 cm−1, respectively. [In this case, we

considered much larger system-bath couplings (on the order of 104 times larger) because no

changes in the time-dependent site populations were observed for the smaller couplings.]

When ωc = 400 cm−1, we do not observe any clear trend with increasing system-bath

coupling, in contrast to the static chain case. Also, the site-1 and site-6 populations are

very noisy, in contrast to the rather smooth oscillatory behaviour observed in the no-bath

case; that being said, their mean behaviours do not differ substantially from the no-bath

case. When ωc = 100 cm−1, we observe a pronounced dampening of the site-1 and site-6

populations with increasing system-bath coupling strength, but no substantial differences in

the mean populations at the longer times. Overall, in the case of the non-static chain coupled

to the thermal baths, one observes large changes in the fluctuations of the populations and

only minor changes in their averages, compared to the no-bath case.

We finally study the effect of the bath temperature gap on the population transfer in the

non-static chain, varying the temperature of one bath while the other is kept constant at

300 K (with ωc = 100 cm−1 and ξ = 5.0× 10−4). As in the case of the static chain, Fig. 6.5

shows that, despite some quantitative differences, the temperature gradient does not have a
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Figure 6.3: Site population dynamics in the static six-site dimer chain with ωc = 100 cm−1

and ξ = 5.0 × 10−8 for different temperature gaps. In the left and right panels, TL and
TR are kept constant, respectively. Top panels : site 1 population, center panels : bulk
population, bottom panels : site 6 population.
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Figure 6.4: Site population dynamics in the non-static six-site dimer chain with ωc = 100
cm−1 (right panels) and ωc = 400 cm−1 (left panels) for different system-bath coupling
strengths. In all cases, TL = 250 K and TR = 350 K. Top panels : site 1 population, center
panels : bulk population, bottom panels : site 6 population.
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pronounced effect on the population transfer from site 1 to site 6 regardless of the direction

of the gradient. Moreover, on average, the population transferred does not differ too much

from the no-bath case, viz., ∼ 0.5. Based on the above results, we see that coupling the end

sites to the baths (at least for the form of the coupling that we adopted) merely tames the

population fluctuations regardless of the magnitude and direction of the thermal gradient.

In contrast to the static chain where the population transfer was enhanced, in this case

it remains approximately the same compared to the no-bath case. Thus, the coupling

to the lattice displacements both increases the population transfer [53] and dampens the

population fluctuations (through energy exchange between the bath and lattice modes).

6.5 Summary

In this work, we studied vibrational exciton transport in a one-dimensional model of a

dimerized chain of quantum modes under the influence of a thermal gradient. Our goal was

to investigate how and to what extent a thermal gradient affects the edge states and, in

turn, the energy transport. To this end, we performed adiabatic dynamics simulations on

static and non-static versions of the chain. In the case of the static chain, we showed that it

is possible to increase the vibrational population transfer by a selecting a sufficiently large

system-bath coupling strength. For the parameter sets considered, our results showed that

increasing the thermal gradient does not have a significant effect on the population transfer.

In the case of the non-static chain, we also found that the edge states are maintained

when the end sites are coupled to thermal baths. Overall, our results reveal that the

long-range population transfer is robust against the noise induced by the thermal baths.

These findings suggest the possibility of engineering new devices capable of efficient exciton

transfer through a junction molecule in the presence of thermal noise.
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Figure 6.5: Site population dynamics in the static six-site dimer chain with ωc = 100 cm−1

and ξ = 5.0 × 10−4 for different temperature gaps. In the left and right panels, TL and
TR are kept constant, respectively. Top panels : site 1 population, center panels : bulk
population, bottom panels : site 6 population.
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Chapter 7

Conclusions and Future Work

7.1 Summary

The study of energy transfer processes at the nanoscale poses a remarkable challenge as

it may involve simulating the dynamics of open quantum systems. A commonly studied

architecture in this field is the molecular junction, which may be treated as an open

quantum system (because the junction molecule is connected to leads/baths, constituting

the environment). Depending on the nature of the molecular junction, a number of

theoretical methodologies have been used to study quantum transport through the molecule,

e.g., ML-MCTDH, NEGF methods, noninteracting-blip approximation, nonequilibrium

polaron-transformed Redfield equation, path-integral based methods, Monte Carlo, etc.

Some of these methods are even numerically exact or yield very accurate results in certain

regimes, but their application to complex, realistic systems is limited due to their high

computational costs. To overcome this issue, in this thesis, we demonstrated the utility of

several mixed-quantum classical approaches based on approximate solutions of the QCLE

for studying energy transport in open quantum systems.
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In Chapter 3, we showed that the DECIDE method offers a relatively cheap and accurate

way of simulating quantum heat transport by calculating steady-state heat currents in the

NESB model for a wide range of parameter regimes and comparing our results with those of

the numerically exact ML-MCTDH method. In particular, we tested the ability of DECIDE

to reproduce the turnovers in the steady-state heat current with respect to i) the tunneling

frequency of the spin subsystem and ii) the bath reorganization energy (which provides

a measure of the coupling strength between the spin and the thermal baths). DECIDE

was not only capable of capturing these turnovers, but was also capable of predicting the

maxima at which the turnovers occur. In addition, we compared the results of DECIDE (a

nonadiabatic dynamical method) with those obtained with adiabatic dynamics to study the

importance of nonadiabatic effects in quantum heat transport. Adiabatic dynamics was

not capable of capturing the turnovers in the steady-state heat current and showed drastic

deviations with the exact results, especially in the fast-bath limit. These observations led

us to the conclusion that nonadiabatic effects are very important over a wide range of the

parameter regimes.

In Chapter 4, we investigated the differences between sampling the initial bath coordi-

nates from quantum and classical distributions in trajectory-based mixed quantum-classical

simulations of heat currents in thermal molecular junctions. This was done within the

context of the NESB model, by sampling the initial positions and momenta of the har-

monic bath oscillators from both quantum and classical distributions and comparing the

resulting steady-state heat currents. Over a wide range of temperatures, the classical

distribution is narrower than the quantum one. As a result, the difference in the widths of

the classical distributions corresponding to the hot and cold baths are larger than their

quantum counterparts. These width differences were found to yield pronounced differences

in the magnitudes of the steady state heat currents (the classical ones being ∼ 1.3− 4.5
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times higher than the quantum ones for most of the parameter regimes considered). In

addition, sharper turnovers in the steady-state heat currents were observed in the case of

the classical bath sampling. Finally, we checked the validity of the SSFT, which provides

a rigorous constraint on the heat current fluctuations and generalizes the second law of

thermodynamics to the nanoscale. We found that, in the Markovian regime, the SSFT is

satisfied only when quantum bath sampling is used. Overall, our findings (i) underscore the

importance of quantum bath sampling (across a wide range of parameter regimes) when

simulating heat transfer dynamics in thermal molecular junctions, even at high temperatures

where a classical description may be considered sufficient, and ii) suggest the possibility

of optimizing steady-state heat currents in molecular junctions by engineering the initial

equilibrium structures of the thermal baths.

In Chapter 5, we used adiabatic mixed-quantum classical dynamics to study excitonic

energy transfer in a dimer chain model. To monitor the energy transfer across the chain, we

focused on the time-dependent population of the first vibrational excited state of the chain.

In the case of the static chain (i.e., the chain decoupled from the lattice displacements), we

found that long-range population transfer (LRPT) occurs with ∼ 50 % of the population

transferring from site 1 to site 6 in ∼ 50 ps. On the other hand, in the case of the non-static

chain (i.e., the chain coupled to the lattice displacements), the LRPT proceeds at a much

faster rate with ∼ 75 % of the population transferring in ∼ 200 fs. Moreover, we found a

nonlinear dependence of the LRPT on temperature, suggesting the existence of a critical

temperature at which the population transfer reaches a maximum. Because of the disorder

commonly encountered in molecular architectures, we studied the effect of introducing weak

static disorder into the chain and found that the LRPT is only slightly affected. Overall,

we showed that the LRTP in this dimer chain is highly robust, suggesting the possibility

that a quasi one-dimensional dimerized structure may be used as a platform for devices

93



that are capable of robust, efficient, ultrafast, and long-range excitonic energy transfer.

In Chapter 6, we applied adiabatic mixed-quantum classical dynamics to study excitonic

energy transfer in a model dimer chain whose end sites are coupled to thermal baths at

different temperatures. For the parameter regimes considered, we found that the LRPT

in the static chain increases significantly when a sufficiently strong site-bath coupling is

used compared to the no-bath case. Moreover, this enhancement is not affected neither by

the temperature gap nor by the direction of the thermal gradient. As for the non-static

chain, we found that the edge states involved in the LRPT are preserved even for the

largest temperature gaps considered. For both the static and non-static chains, very little

population is leaked to the bulk sites, showing that the presence of a thermal gradient

does not affect the LRPT process. Altogether, these findings indicate that, in principle,

one could achieve ultrafast LRPT, even when a nanoscale device is coupled to thermal

environments.

7.2 Future work

In Chapters 4 and 5, we computed first moments of the heat (i.e., average heat transferred)

and heat currents in the NESB model. Higher moments, like the second moment (variance) or

third moment (skew), contain information about higher order correlations of the transferred

heat. Thus, it would be worthwhile to calculate the variance of the heat and heat current

fluctuations in the NESB model for a wide range of parameter regimes.

In Chapters 5 and 6, we performed adiabatic dynamics to study the population transfer

dynamics in the SSH chain coupled to various classical environments. Although nonadiabatic

effects were deemed to be rather minor under the conditions investigated, it would be

worthwhile to apply the DECIDE method to chains for which nonadiabatic effects are

expected to play a larger role, viz., chains that are more strongly coupled to their classical

94



environments and/or have smaller frequency scale separations between the quantum and

classical DOF. Such a study would shed light on the nature and rate of the energy/population

transfer in more strongly nonadiabatic regimes. Additionally, instead of coupling the

harmonic oscillator baths only to the end sites of the quantum chain, one could consider

the effects of also coupling the baths to the lattice modes of the end sites.

In Chapter 6, we focused on a specific topological class of the model chain i.e., the

case where the critical parameter Hc = (1− 1/(N + 1))−1/2. Thus, it would be worthwhile

to explore other topological scenarios and analyze the effects of thermal gradients on the

excitation energy transfer.
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