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ABSTRACT

The main objective of this research is to incorporate the effects of radiation transport
into MEDUSA, a code used at the University of Alberta and other research
laboratories to study laser plasma interaction phenomena. The effects of radiation
transport on ablation pressure and the ablation mass are investigated. When
radiation transport is included, the amount of laser energy that is available for ion,
kinetic and thermal energies changes. This change in energy is also investigated.
The solution of the radiative transfer equation for a one dimensional slab geometry
is obtained by using a neutronic transport technique known as DIFFUSION
SYNTHETIC ACCELERATION (DSA). The secondary objective of this research is
to corroborate the validity of the simplified algorithm developed by Marchand et al
at the University of Alberta. The radiation transport algorithm is developed taking
into consideration its eventual extension to two dimensional geometries. However,

the extension to higher dimensions is not the objective cf the present research.



CHAPTER ONE
INTRODUCTION

1.1 LASER DRIVEN NUCLEAR FUSION:

In early 1970, many researchers argued that one could use lasers as a mean
of igniting thermonuclear fusion'”’. They showed theoretically that a thin shell filled
with a deuterium-tritium mixture can be compressed to many times its solid density
through laser driven ablative implosion. In an ablative implosion only the exterior
of the shell is heated. The shell is shocked, compressed and driven toward the origin
by the reaction force produced by the material streaming off. In this way fuel inside
the sheli can be brought to the densities required for thermonuclear fusion.

During compression, the heated fuel pellet emits electromagnetic radiation
which can significantly influence the compression efficiency. These emitted photons
can preheat the uncompressed target core, thereby reducing the final target
compression. This in turn degrades the pellet gain. Therefore, it is of considerable
importance to know the temperature on the inside of the target shell. Such
knowledge allows one to choose the proper isentrope for compression calculations
as well as to check the predictions of detailed numerical simulations of laser driven
implosions. If preheating is sufficiently strong, it is possible that fuel may not ignite.
Therefore, it is essential to minimize the fuel preheating during the implosion phase.

When the laser intensity is in the range of 10" to 10" W m?, energy transport
due to radiation can exceed heat conduction due to other processes. Experiments"*
have shown that up to 25% of the laser input energy can be lost through radiative
emission. From these experiments it can be concluded that by neglecting radiation
transport, one may be omitting a significant energy loss mechanism. Therefore, a
computer simulation without radiation transport may not yield results that are

consistent with experimental observations. Radiation transport is a very complex
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process due to its nonlinear nature and because of the dependence of the radiation
field on space, angle, frequency and time. A treatment of the interaction of the
radiation field with atoms requires a detailed knowledge of various coefficients such
as the atomic population densities, the absorption coefficient and emissitivity.
Despite its complexity, it is essential to include at least 2 qualitative analysis of

radiation transport in any computer simulation.

1.2 PHYSICS OF LASER PRODUCED PLASMA:

A detailed analysis of all of the processes taking place in a laser produced
plasma is beyond the scope of this thesis. In this section, a brief summary of some
of the processes which take place when a laser beam is incident on matter are
discussed.

When a laser impinges on a target surface, it is initially absorbed by the
production of photoelectrons. This leads to electron ionization and heating of the
target. The target material evaporates, the vapour is ionized by collisions and a
plasma layer is formed. If the intensity of the laser beam is sufficiently high the
electronic field of the incident laser beam can lead to noncollisional heating and an
outward acceleration of the plasma in an explosive manner. The plasma layer
expands mostly in an outward direction while heat is conducted into the solid. This
inward heat conduction leads to further evaporation of the target layer. This is
called ablation of the target material. The momentum of the ablated plasma is
balanced by momentum of the solid target. The momentum transferred by the action
of the ablation pressure and the effect of the pondermotive force, launches a shock
wave in the solid which after a short time overtakes the front of the heat wave.

Assuming classical theory of heat conduction, this time is given as'"

3
T I
f, = b G G

where ¢ is the flux, N is the ion density, M is the atomic mass of the target, k is the

Boltzmann constant and b is 2.0 E-/3 If the laser pulse is short compared to t, the
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heated matter has no time to move and energy diffuses into the target by heat
conduction. On the other hand, if the laser pulse lasts for a time longer than t, then
expansion is important while laser energy is being absorbed. When the laser pulse
is very long compared to t, the plasma can be divided into three phases. Phase 0 has
a mass density p, of the undisturbed solid. Phase 1 has mass density p, and is called
the dense phase of opaque ionized matter which is heated by the shock wave. This
mass penetrates into phase 0 with the speed of the shock. Phase 2 is composed of
plasma subliminated from the boundary of phase 1.

Two thermodynamic quantities, pressure and energy, directly govern the
hydrodynamics of the plasma. The energy deposited by the laser pulse can be used
to determine the temperature of the plasma and from this one can deduce the
pressure. The pressure drives the expansion of the plasma and determines the
strength of the recoiled shock launched into the solid and thereby establishes the
implosion -=locity of the plasma.

A plasma can be considered as either nonideal or ideal. In a nonideal plasma
(Q<Z where Q is the ion charge and Z is the atomic number) matter is partially
ionized. The coulomb interaction is strong in this case and free electrons can exist
in degenerate form. The ideal plasma (Q=Z) is fully ionized and the electrical
interaction is weak due to the screening clouds around charges. The screening
energy increases as the temperature is reduced and eventually exceeds kT. When
this happens a strongly coupled plasma is formed which is nonideal. An

approximation for the ionization energy is given as

I=136 (%2 v

where n is the principle quantum number of the outer most electron. The above
expression shows that higher Z plasmas are more difficult to ionize. An ideal plasma
emits radiation by bremsstrahlung, radiative recombination and line radiation from
hydrogen like or helium like ions. In a magnetically confined plasma with high Z,

the bremsstrahlung radiation can become an important mechanism for cooling. For
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low density plasma, radiation freely escapes and it can be used to infer parameters
such as the plasma density and temperature. In a partially ionized plasma, radiation
is strongly absorbed by the bound electrons and the photon population builds up
toward a black body distribution.

When a laser beam is incident on a material, the energy that is absorbed by
free electrons leads to an increase in their temperature. An increase in temperature
increases the Debye length which increases the ion interaction. This forces ions to
redistribute so as to reach equilibrium. As plasma is heated, different types of
emission spectra aie observed. The continsum emission spectrum reflects the energy
spectrum of the free electrons. The energetic x-ray signals indicate the presence of
super-thermal electrons.

In a plasma, hot regions radiate strongly and emitted photons transport energy
to cooler parts of the plasn:a or permit energy to escape altogether. Since radiation
travels rapidly, it plays an important role in plasma hydrodynamics. The radiation
that is emitted and absorbed is due to many different processes which take place at
a subatomic level. Some of the important processes are discussed below.

Bremsstrahlung Emission: In bremsstrahlung omission, radiation
is emitted when electrons are scattered by atoms and ions. As electrons approach
a nuclei they are deaccelerated and radiation is emitted.

Free-Free absorption: Absorption of a photon by a free electron
is known as free-free absorption. The electron absorption cross-sectional area is
obtained by using the principle of balance which states that at thermal equilibrium,
the absorption rate is equal to the rate of emission and is given as"’

2

ot - Bty
where Z is the atomic number, e is the electron charge, h is the Planckian constant,
a, is the radiation constant (=7.5607E-16), € is the permeability constant of the

plasma and v is the frequency.
Radiative Recombination: Radiative recombination occurs when
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frec electrons radiate more energy than their initial kinetic energy. At negative
energies these electrons are trapped in bound states.

Photoelectric Effect: Here, a bound electron absorbs a photon and
moves to a higher state.

Line Emission: Line emission occurs when a bound electron in an

upper state spontaneously emits a photon of energy hv and falls into a lower state.

In a laser heated plasma, energy is deposited primarily into the electrons and
the rate at which the electrons in turn transport this energy to higher density colder
plasma determines both the efficiency of implosion and the plasma conditions in the
region of deposition.

Mechanisms which are generally associated with the heating of the pellet are:

Classical electron thermal conduction.
Radiation transport.

1
2
3. Super thermal electron transport.
4 Shock waves.

Classical conduction is always present, and is modified by anomalous effects
from ion and magnetic field fluctuations”. When excessive energy is deposited to
thermal electrons during an implosion, the classical conduction wave burns through
the shell, leading to preheating of the pellet. This condition can be readily avoided
with proper pulse shaping. Radiative preheating arises from the reabsorption of
bremsstrahlung, recombination and line radiation photons near the ablation surface
where plasma electrons are typically in the range of 300 to 500 ev'”. Super thermal
electrons are generated when various thresholds for the absorptive instabilities are
exceeded"; for example, resonant absorption readily furnishes 100 keV electrons
with 10.6 um laser light intensities of 10® W m® Shock waves'’ leads to large
temperature gradients. They play an important role when thicker targets are used.
At intermediate irradiance (10" to 107 W m?®) the dominant heat transport
mechanism can be radiation transport.

The effects of radiation transport have been experimentally investigated by
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many researchers'®. In numerous experiments, different pellet materials have been
used in order to observe the effects of radiation transport in low and high Z
materials. Duston et al'/* used carbon as a target material, and rejected the commun
notion that for lower Z material radiation transport is negligible. This notion wys
due to the assumption that for lower Z materials the bound electrons would be usily
stripped off and therefore radiation would make a negligible contribution to plasta
dynamics and energy transport in these targets. Yaakobi et al'” have shown that 1e
of a low Z (plastic) coating reduces the preheating, thus leading to a higher density

ablative implosion.

1.3 OBJECTIVE AND ORGANIZATION OF THE THESIS:

When a laser beam is incident on a target, radiation is emitted and then
transported and reabsorbed in the target. This can significantly affect the
hydrodynamics of the target and ablation parameters. In laser fusion, a precise
knowledge of these parameters is crucial for target design. Even though our reseatch
does not involve laser induced nuclear fusion, inclusion of radiation transport is
useful for a better understanding of radiative effects in other problems, such as use
of emitted radiation as a source of x-rays"* for lithography applications. Therefore,
by including radiation transport in MEDUSA, the behavior of laser heated plasma
can be better understood. The Diffusion Synthetic Acceleration technique iS ued
to implement the radiative transfer equation in the MEDUSA code. The main
objectives of the present research are:

i To develop an algorithm which can be extended to solve the radiative
transfer equation in two dimensions.

ii. To corroborate Marchand’s algorithm.

The thesis consists of five chapters. In Chapter One, the importance ©f e
understanding of radiation relevant to laser driven nuclear fusion is discusSed,
followed by a prologue to the processes involved in laser plasma interactions. In

Chapter Two, the derivation and validity of the radiative transfer equatidn are
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discussed. Chapter Three includes a detailed analysis of the Diffusion Synthetic
Acceleration Scheme ‘DSA). Chapter Four includes simulations with the
radiation code when a model problem is used to test the validity of the DSA model.
Chapter Five contains MEDUSA simulations using Marchand’s model and the
present model. The main objective is to present a comparison between Marchand’s
model and the Diffusion Synthetic Acceleration model.

Finally, a detailed analysis of the equations involved in the Diffusion Synthetic
Acceleration model is included in Appendix A. This includes a Fourier stability
analysis (where possible), the discretization of all equations involved in the algorithm,
and a discussion of the boundary conditions. Marchand’s model, currently used in
MEDUSA tc study radiative effects in laser produced plasma is reviewed in
Appendix B. In Appendix C, a brief discussion is presented of the atomic physics
data used in MEDUSA. A copy of the radiation transport code is included at the

end of the thesis in Appendix D.



CHAPTER TWO
RADIATIVE TRANSFER EQUATION

2.1 DERIVATION OF RADIATIVE TRANSFER EQUATION:

The radiative transfer equation represents the various processes that take
place in a plasma at a sub-atomic level. These processes lead to the generation and
transport of radiation, resulting in a change in the number of photons in a given

region. The time rate of change of the photons in a volume AV is given by

3[ﬂf,V,0.t)A 4] = A Va[ﬂr)",‘)’t)]
ot ot

(2.1.01)
where aV= AxAyAsz.Atp and f is the distiibution function. Physically f is defined
such that the number of photons at a given time t at a location in space r in a
differential volume element dr with frequency interval dv travelling in direction ()
in a solid angle interval dQ is

dn = f dr dv dQ

This time rate of change of photons in a volume element AV depends on:

1. Net rate of streaming of photons out of a volume through the
bounding surface.

2, Absorption of photons within the volume element.

3. Emission of photons from the volume element.

4,5. Scattering into and out of the volume element.
A detailed description of the physical interpretation of the above processes
can be found elsewhere?’. In this section, they are discussed briefly in order to

derive the radiative transfer equation.
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1. The rate of photon loss through the surface of a cube perpendicular to

the x-axis is

streaming, = Hrv, QI AyAzAvApA g = AV-‘%[mr,v,Q,x)]

(2.1.02)

where x denotes the x-components of the photon velocity and ayazaua¢ is the

appropriate surface area. From this one can determine the net rate of streaming

from the cube to be

- 3 , 90 , 8@ , 80A , A , AN
streaming = AV &y & v on e

(2.1.03)
where p and ¢ derivatives represent the rate of change of photons in the directions
w and @ (the polar angle with respect to z-axis and the azimuthal angle with respect
to the horizontal axis), respectively.

2, The rate of absorption is equal to the product of the number of
photons in the volume element AV and the probability of absorption
per photon per unit time

rate of absorption = oo fAV (2.1.04)
where o, is the absorption coefficient.

3. The photon emission rate is equal to the spontaneous rate of emission
divided by the energy of the photon

photon emission rate = SAV/hv (2.1.05)
where S is the rate of energy emission due to spontaneous processes.

4, The rate of out-scattering from the volume element is

cAVf:d\'v L 'dﬁo,(r,v-\':,o.ﬁ,t) F(rv,99

S. The rate of in-scattering to the volume element is
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cAV[ dv[ darv-v,0.00) f (5,0,

(2.1.06;07)
In the above equations, g, is the scattering coefficient and ¢ is the speed of light.
The equation of radiative transfer is obtained by summing the above equations
with appropriate signs to designate a loss or gain. The resultant equation is

o), 26,30, 50, X0, X, A9
& dy & o & o9

Ls,f%) -ca, (VIAv,Q) ‘cfo d\'f“dﬁ o (v -v,Q .va’o)

[ dv [, dfio(v~5,2+Q)fv,0)

(2.1.08)

Equation (2.1.08) can be simplified by assuming that photons stream in
straight lines. When this assumption is made, ox/dt = c{},, since photons travel with
speed c in a given direction. Similar expressions can be obtained for the y,z axes.
Since there is no change in frequency as photons stream, dv/dt = 0. Further,
3u/dt=38¢/dt=0.0, since these angles are measured with respect to fixed axes in
space. The distribution function f is related to the specific intensity as [=chvf. Then
with the above assumptions, equation (2.1.08) in terms of the specific intensity

reduces to
%—a’%_“lm-vz(v,o) - S(v)-0,()I(v,Q)
+ fo “do L 'dﬁ[%a,(\'v-v,ﬁ-o)l(\'v,O)-o,(v~\'v,006)l(v,0)]

(2.1.09)
It can be shown* that when induced processes are included, the processes of

emission and scattering are enhanced by the factor

1s c’l]

2hv3

This enhancement leads to nonlinearity (in the form of ) in the transfer equation
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in the following form
19 .
;E + QVI = 9, [B-I]
-V c -
i S doed ) - [ el U

where  S§=6,B and §,=c,[l1+

c¥f
2h%3
c’B ]
2hv3

]

(2.1.10)

Here, for simplicity the notations of I and o, are given as
I=1I[rv,Q)] and f= 1[r,9,0]

This nonlinearity severely limits one’s ability to solve the transfer equation.
Therefore, equation (2.1.10) is further simplified by assuming that there is no change
in frequency upon scattering. With this assumption the induced in- and out-

scattering contribution completely cancel each other, and the resulting equation is

simply

1ar
—— + QVI = §,[B -
% W[B -1

(2.1.11)
This equation forms the basis of the present research. The goal is to find a
technique which can efficiently solve this equation. It is important to briefly discuss
the validity of the radiative transfer equation, before we discuss the method used to

solve the radiative transfer equation.

2.2 THE VALIDITY OF THE RADIATIVE TRANSFER EQUATION:

Many aspects of radiation transport were ignored when the radiative transfer
equation was derived above. Some of them are beyond the scope of the present
research and some are irrelevant to the objectives of the present research. In this

section, approximations that are used in the derivation of the above transfer equation
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are briefly discussed.

There are two classes of approximation: those which are inherent in any
radiative transfer equation and those which can be incorporated at the expense of
simplicity.

The radiative transfer equation was derived using the assumption that photons
are particles. However, it is well known that photons exhibit wave behavior, that is
in reality a photon is a wave packet. By treating photons as particles, one
intrinsically is neglecting the effects of interference, diffraction and reflection in
radiation transport. In the radiative transfer equation, one deals with intensities
rather than amplitudes, hence interference is nonexistent. This requires that the
density of photons be sufficiently low so that overlap of the tails of the wave packets
is negligibly small. Photons of sufficiently different frequencies do not interfere even
when they coincide spatially; in other words, photons in the transfer equation are
incoherent. It is further assumed that collision and emission processes occur
instantaneously. That is, the loss or gain of photons due to these processes is
characterized by a,, o, and B (absorption and scattering coefficient and the emissivity
respectively) at a given instant of time rather than being dependent upon some sort
of time average of these quantities over the collision or emission time. Finally, the
diffraction and reflection wave behaviour of photons can not be manifested in any
radiative transfer equation; since it requires that scattering centres be correlated as
in a crystal and the spatial extent of wave packet be such that several scattering
centres are encompassed by a photon. Therefore, in the transfer equation we treat
scattering as independent and isolated events; in other words we assume scattering
centres are randomly distributed or the wave packets are small compared to the
distance between the scattering centres. This further implies that photons have no
preferred direction.

The approximations discussed so far are inherent to all transfer equations of
photons. The approximations which remain to be discussed are assumed in deriving
the radiative transfer equation (2.1.08) and can be incorporated into the equation

(2.1.08) at the expense of simplicity.
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The two states of polarization of a photon can be added into the radiative
transfer equation; this results in four transfer equations which in general are coupled.
In practice photons do not move in straight lines since the refractive index is a
function of position. If the refractive index is a function of time as well, then a
photon changes its frequency as it streams between collisions. One can incorporate®!
refractive and dispersion effects into the streaming term of the transfer equation.
Finally, o, and S are assumed to be angularly independent in (2.1.08), this implies no
inherent preferred direction in the matter. However, in radiative hydrodynamic
problems the material in question is normally moving. Therefore, as seen by an
inertial frame observer, this motion does introduce a preferred direction, namely e
direction of motion of the fluid. These angular dependence properties are not
inherent properties of the material, but arise due to relative motion between the fluid
and the observer. These are computed using the special theory of relativity. These
angular effects are of the order of (u/c), where u is the speed of the fluid and c the
speed of light; therefore, one can normally neglect the angular dependence in

quantities such as the radiation intensity for nonrelativistic velocities.
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CHAPTER THREE
DIFFUSION SYNTHETIC ACCELERATION

3.1 INTRODUCTION:

There are many classical methods, such as the Eddington Approximation,
Asymptotic Diffusion Theory, the P-N Approximation”' and the Monte Carlo
Method*? which have been used in the past to solve the radiative transfer equation.
These methods are either too crude or are computationally inefficient. Since the late
1960’s, researchers have been investigating other options for solving the radiative
transfer equation. One of the most popular techniques is Synthetic Acceleration.
This is sometimes used to solve neutronic transport problems, but due to its slow
convergence for radiative transport problems it was not attractive. In the late 1970’
and early 1980’s this technique was greatly improved (by acceleration of the diffusion
equation with the grey equation) and today is one of the most efficient methods of
solving radiation transport problems in one dimension.  The successful
implementation of this method for a model problem at Lawrence Livermore National
Laboratory was the main motivation for the development of the present code.
Diffusion Synthetic Acceleration (DSA) is the main topic of this thesis, since it can
have ambiguities in its formulation, a great deal of effort has been made to ensure
that important aspects of the DSA technique relevant to one dimensional slab

geometry are well explained.

3.2 BRIEF HISTORY:

In 1963, Kopp®® reported that one can improve the spectral radius of the
source iteration technique (also known as power or lambda iteration) by using a
synthetic acceleration method. In synthetic acceleration one solves a low order form

of the original equation to update the source term of the original equation for the
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next iteration. For example, the diffusion equation can be treated as a low order
form of the transfer equation; the difficult part is to find the form of the low order
equation which reduces the spectral radius and remains stable. The significant
improvement and stability issues were not resolved until the late 1970’s. In 1977,
Alcouffe” reported the cause of instability and proved that the solution for DSA was
unstable for cells with large width because the discretized form of the low order
equation was not derived from the discretized form of the original equation. In 1985,
Alcouffe et al’’® successfully reported on the implementation of the DSA method for
a radiative model problem. The code presented here is similar to the work they
published in 1985 with minor modifications. The DSA technique like any other
method for radiative problems comes with its limitations. When it works, it is very
efficient compared to the source iteration or to other known methods for one
dimensional problems. Its efficiency degrades for higher dimensional and curvilinear
geometry problems. These instability concerns have been eliminated to a great

extent with the use of finite element discretization instead of finite difference

discretization of the transfer equation in space.

33 DISCRETIZATION OF THE TRANSFER EQUATION:

The radiative transfer equation and the energy balance equation are solved
simultaneously (this formulation allows us to test our code against a Marshak Wave

Bench Mark). The equations for a one dimensional slab geometry are given by**

%%I(x,v,w) + l*‘gl‘,(&\',w) + oGV xRV, p) = S(,1) = o(v,DB(,T)
o -
24D - paa ot Dl 5 = co D * S

- -UB av 3
where u,=—‘-:—f B dv o,-f°“ ‘5,401'
4r70 foa dv c,

(3.3.01;02;03a,b,¢)

Where I is the specific intensity of radiation, defined as the amount of radiative
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energy transferred across a surface element ds with normal n at point x, in frequency
range of dv about v, in an angle du about u in time interval dt about t. The
energy emission rate due to spontaneous processes is given by S; B is the emissivity,
T is the material temperature, o is the absorption coefficient defined such that the
probability of a photon being absorbed in a distance ds is ods, ¢, is the material
specific heat per unit volume, a is the radiation constant, S is the external source
in the slab, u, is the radiative energy density and I, is the scalar intensity and is

defined as

Io(x’v") = f _lll(x’l"vv‘) dp

(3.3.04)
3.3.1 DISCRETIZATION IN TIME:
The radiative transfer equation and the energy balance equation are
discretized in time using a backward Euler time differencing scheme in order to
ensure stability. The dependence of variables on frequency, angle, space and time

is omitted for simplicity. The discretized form of (3.3.01,02,03) in time is given as

1 ar!
—_( )+
cAt'( g ax
1 @rt-u) = p° Uo “o°ly"dv - copul” + S‘,]

Ar®

+ 0.1"‘ = a‘Bl”

aed € [* pasl
U, 41:-{05 dv

(3.3.05;06;07)
The quantities with * superscript are computed using the temperature at time step
n, since the temperature at time step (n+1) is not known. In addition, the following

approximation to the function B is used”

B*! = %ll:qb(v,T') subject to Io-b(v,T) dv=1

(3.3.08)



18
By using (3.3.07) and (3.3.08) and assuming that the external source is zero, the

function B reduces to

b [B‘At‘fo-o'l:”dv + u,]

B"‘ = _C__
2 (1+cat"p* o‘)
= f .lul a
AL
1 a'b’ 1
whe = ’ ’ =
S p'o, cA:" X o, ey
(33.09;10ab,c,d)
With these relations, equations (3.3.06;07) reduce to
"ala:l - (004.1-)]l0] - ‘an[fo.d.l;"dV + p:‘;l] + "
n+l = _1_'[ ® . + Il:
u, 2 [Lol, dv AB‘]
(3.3.11a,b)

If the time index is suppressed in the radiative transfer equation(3.3.11a), it reduces

to
b+ (ot = Lf argy + 0

(3.3.12)

where Q contains all the terms evaluated at the previous time step and remains

unchanged while the transfer equation is being solved iteratively. Q is given as

u,
prae”

+ .‘II n

- X1
=%

(3.3.13)
3.3.2 DISCRETIZATION IN FREQUENCY:

We use equation (3.3.12) to discretize the radiative transfer equation in
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frequency. The discretized form of the equation is obtained by integrating (3.3.12)

over the frequency interval dv as shown below

"uax— dv + j:"'(ow)ldv = fv‘;‘x—z'lj;.olo dv + fv:'Q dv

Vi

(3.3.14)
If we define
f"ol dv
= =" = u _ = "
l‘—f;'ldv Q- vIodv o, f"zdv Xy fv'xdv

vi

(3.3.150,b,c,d)

then the multi-group transfer equation can be expressed as

“%I: * (ogre)ly = %T_l_z‘ Oglog * Q,
(3.3.16)
3.3.3 DISCRETIZATION IN ANGULAR SPACE:

The discretized form of the radiative transfer equation (3.3.16) in angular

space is obtained by integrating in angular space as defined below

a R
“-'?:! * (04T "'g_zla 94 * Cng
where Iq = 2:_, I_Um_
1 Ol
= F]
e * o fo-‘l‘ do,,
"3
subject to E:_,m_ =2

(3.3.17a,b,c)
Physically I, represents the specific intensity in a particula: direction with weight

distribution of @, , u, is the cosine angle of the specific intensity with respect to the
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x-axis and M is the total number of discretized angles.
3.3.4 DISCRETIZATION IN SPACE:
The spatial discretization of the radiative transfer equation (3.3.17a) is

obtained by integrating in space over the cell width, as shown below

1 4

= — 1 I,dx
Ax, .1
xg.l al "pl “4.% x T] x[.l
., { = e 24 3
x"_l’u_ axdx + L‘.;(a,n)l.'dx L‘% 2 Eto‘,l“ + L‘_; Q"dx
2

(3.3.18)
then the transfer equation reduces to
B _ Xg"
K;‘(’-a«._; " )t Oty = L= B4 Oy * Qug
(3.3.19)

3.4 SOURCE ITERATION:

Equation (3.3.19) is simply a set of (M*G) transfer equations corresponding
to M angles and G frequency groups. This equation includes three unknowns I, and
Ig:1» Where one of L., is obtained from the boundary condition of the cell. Very
often one uses a relation known as Diamond Differencing (DD) to equate the
number of equations with the number of unknowns. This relation is given as,

1
o ™ et o)

(3.4.01)
This simply states that the intensity at the centre of a cell is equal to the average of
the intensity at the cell boundaries. The difficulty in solving the radiative transfer

equation arises due to the coupling (summation over the frequency groups) of the
specific intensity on the right hand side of (3.3.19). The simplest approach to solve
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such types of equations is by the use of the source iteration technique. This involves
making an initial guess for the source term in equation (3.3.19) and solving for the
intensities. The solution is then taken to be the new initial guess in the source term
(the summation term on right hand side) of (3.3.19) for the next iteration and
equation (3.3.19) is solved again. This is repeated until the new solution and initial
fuess have converged to some desired accuracy. The final form of the set of

equations involved in the source iteration (SI) method is written as

1 1 1
v ] =
+ > joz

3 2 Nxgud¥ i
bt P Sl = 5 ZyOyfe * A5

mgi
where 1 1 &“S(O“:t)AX‘
Jo= f oo
1., 2 2
L= 13
ngi . -1
2" waie3 ni-3

(3.4.02a,b,c)

In the SI method one uses (3.4.02) to obtain the intensity as is shown in the
appendix (section A.3). A Fourier stability analysis of the transfer equation shows
that when = - 0 or/and o > 1, the spectral radius can be arbitrarily close to unity.
In simple terminology, it means that the error reduction per iteration can be
extremely slow or that an infinite number of iterations may be required. However,
in practice when the radiative transfer equation is fully discretized and one has a
finite frequency range rather than from 0 to , the radius of convergence can shown
to be always less than one. This is due to the fact that for a finite system all of the
Fourier modes are not present. This slow convergence compels one to look for other

methods which can reduce the spectral radius. The next section deals with this issue.

3.5 DIFFUSION SYNTHETIC ACCELERATION

OF THE TRANSFER EQUATION:
3.5.1 INTRODUCTION TO SYNTHETIC ACCELERATION:

The idea behind synthetic acceleration can be explained as follows*”. Suppose
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we are given an equation of the form
[A-B)f = S

where [A-B] is difficult to invert, but A can be inverted relatively easily. We try the
following iteration strategy

f*'= A"Bf + A'S
where 1 and 1+ 1 are iterative indices and the eigen value of [A'B] determines the
rate of convergence. The above iteration scheme will converge as long as the
spectral radius (the largest eigenvalue) is less than one. It can be shown that one can
solve above problem iteratively as

[A-B](f- ') = B(f*'-f)
where f is the converged solution. The above equation implies that an exact solution
can be obtained immediately by inverting [A-B] if the solution to f*' is known. The
inversion of [A-B] is the obstacle we are trying to remove, so we are no closer to the
resolution of the problem. If we assume that L is an approximation to [A-B] and if
L is easily invertible, then the problem can be solved in two steps as given below

f*12 = ATBf + A'S

L(f*t - £412) = B(f*'/ - f)

This iteration strategy is called synthetic acceleration. In order to elucidate

the use of synthetic acceleration, let us consider the radiative transfer equation. The

radiative transfer equation and its low order form corresponding to the above set of

equations is given by

lol
(u%ﬂ!)l ’*-’-‘233,2.01 +Q
1

'01 I
o1y 2y, NX 2_
-1 %) 5 2,00, 1Y

It is trivial to identify A and B, but L is not so obvious. The main task in
synthetic acceleration is to find the operator L, which reduces the spectral radius and
yields a stable solution. We will show by using a systematic approach that the
required operator is the diffusion operator. In early 1980, Larsen*® developed a four

step procedure whereby one could derive beginning with virtually any differencing
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scheme of the transfer equation a set of linear equations’. His approach is
applicable to any differencing scheme of the transfer equation without regard to
geometry or mesh size. However, equations in P, acceleration are algebraically
difficult to solve. Hence efficiency remains a serious issue for higher dimensional
problems. The approach we have taken to obtain the low order equation is the one
proposed by Alcouffe’* and later improved by Larsen™".

The main objective of the DSA scheme is to synthesize a low order form for
the radiative transfer equation, which can be used to accelerate the rate of
convergence of the transfer equation. In addition, we require the new method to
exhibit the following characteristics:

1. It offers a solution to the exact transfer equation, rather than just an

approximation, such as the diffusion equation.

2. It is computationally efficient.

The method should be extendable to higher dimensions and to
curvilinear geometry.

4. One should be able to solve more complicated problems, such as

problems involving scattering.

From our experience we are able to prove the first two characteristics of the
method, proof for the later two is beyond the scope of the present research; however,

it has been reported*"** that these can also be satisfied.

3.52 DIFFUSION SYNTHETIC ACCELERATION:
A Fourier stability analysis of the transfer equation (presented in section A.1
of the appendix) shows that the most slowly converging modes (correspond to A=0)

are given as

_xn 1 (, i,
T om]

(3.5.01)

This equation indicates that the slowly varying modes are linear function of u. We
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use this fact to derive an equation which replaces (3.4.02c) and the end result is a
faster convergence of (3.4.02a). Physically, the slowest converging modes correspond
to near equilibrium situations. Therefore, in a sense we can guess that the low order
form will resemble a diffusion equation.

We will use equation (3.3.12) to illustrate the DSA formulation. Its discretized
version is given in Appendix A.3, since its subtle differences are not trivial. The
steps that are commonly used to obtain the low order form of the transfer equation
are as follows:

i. The zeroth and first moments of (3.3.12) in angular space are taken,

that is equation (3.3.12) is multiplied by the weight functions 1 and 0,
followed by an integration of the resultant equations over angular
space.

ii. I, is eliminated from the above two equations.

iii.  The accelerated form of the resultant equation in (ii) is obtained by

resetting the index of iteration for the zeroth and first moments of
the intensity (that is 1+1/2 » 1+1 for I, and I,).
The final result is

1

S8 1 9y, (genlt = ax[ ok} -9
ax3(0"'t) &10 + (0 ‘)l:) "llfo °Iod" + QO ax3(°+t)ol
L2 2 "
ax 3o+t) ox
(3.5.02)

This is simply the diffusion equation corresponding to the transfer equation
when I is linear in angle, since when I is linear in angle I,=0. It is shown in the
appendix (section A.2) that the spectral radius for (3.3.12) with (3.5.02) goes to zero
even for those modes for which (3.3.12) with (3.4.02) has spectral radius close to
unity. This apparently seems to have solved our problem, but we will see this is not
so. In equation (3.5.02) the right hand side contains a coupling term; therefore, we
will have to solve this equation using source iteration, as was done for the radiative

transfer equation.
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3.6 GREY DIFFUSION EQUATION:

A Fourier stability analysis of (3.5.02) with source iteration shows that the
spectral radius can be very close to unity. Therefore, to significantly improve the
convergence rate of the transfer equation (3.3.12) we must improve the spectral
radius of the diffusion equation (3.5.02) by another low order equation or by some
other approximation. To accelerate the rate of convergence of the diffusion equation
we choose to solve a low order form of diffusion equation, namely the grey diffusion
equation, to obtain the new source term for the diffusion equation.

First of all we rewrite (3.5.02) as

k’—l- T4
1 ilo 2. (o+1)l 2. qxfo ol:dv + S

" 3o+r)

(3.6.01)
where S includes all the terms that do not change during the iteration of the diffusion
equation. In the source iteration method we take

o= e (3.6.02)
A Fourier stability analysis of (3.6;01,02) shows that the diffusion equation can have
a radius of convergence that is close to unity. If for simplicity we assume that the
opacity is spatially independent in the Fourier stability analysis, then the radius of

convergence and the corresponding eigen function are given by

= 3o(o+e)x 4, § . g 300X Ln

e
0 A2+3(a+1)? A2+3(o+1)?

® =1

(3.6.03a,b)
This also shows that the slowest converging modes correspond to modes that are
close to equilibrium modes. In order to accelerate the diffusion equation, we solve
it by using the synthetic approach. That is, we use a grey equation as the low order

equation.
The central idea behind the grey equation is to collapse the continuous energy
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dependence in (3.6.01) to one energy group and design this equation such that the
near equilibrium situation is treated more accurately than in the source iteration
method. This new equation replaces (3.6.02). The steps invoived in the derivation

of the grey equation are as follows:

i The first term in equation (3.6.01) is approximated by
1
1 &M 1 @ a1 & FiFi
- -1, - - _————-¢ 10 P e e ¢ IO
3(o+t) ax? 3(o+1) &x? 3o+1) &x?
kol
-1 i] 2
3(o+t) @x? °
and
k’-l- ko.‘._ ko k’— k’l
rorp, -0 2"-0%,%1"
.101

3 ko.‘.
= e 2
f . ol “dv

(3.6.04)
An important characteristic of this transformation is that it ensures that after
convergence, the left side of (3.6.04) is the same as the right side, implying that the
converged solution for the source and the accelerated equation are the same.

Variables 6 and ¢ will be explained later.
il Integrate (3.6.01) over the frequency spectrum.
The final result is

ke 7S
) L(m)a:’ ]d” " e ”(fe v g

-+ [Ty« [ [ 1_& (Ih% Lo 1:'_;]14\»

3(o+1) a:’
ke= '_ -l- l =
T j:. [Io . 0 210 ZLV - ﬂIo + 'l]fo OIO 2dV

(3.6.05)
=2 and @2 are defined”® such that above equation produces an exact solution
without iteration when I, corresponds to the slowest converging modes. From

(3.6.03) we see that the eigenvalue and the eigenfunction corresponding to the
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slowest modes are

® =17 -_ox X
0 (o+1) (o+1)

x

e

(3.6.06)
We take the spectral functions (in normalized form) to be
X
e"% - q,“§ . (g+1)
(%)
0 (0+1)
(3.6.07)

This choice of spectral function produces the linear grey equation. It is called linear
because it leads to an additive correction. The other expressions for 8 and ¢ are

given by
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(3.6.08)

Here the correction term is multiplicative, hence it is nonlinear. The main difference
between these methods lies in the approximation to the grey spectrum. In the linear
case we take it to be the spectrum corresponding to equilibrium, while in the
nonlinear case it is the latest spectrum averaged coefficient. This can be rephrased
as follows: the linear case grey method is defined by collapsing the cell average flux
as the spectral function, while in the nonlinear grey case it is the cell edge flux that
is collapsed as the spectral function.

The solution to the radiative transfer equation involves solving the following
set of equations (3.3.12), (3.5.02) and (3.6.05). Equation (3.3.12) is solved first, then
equation (3.5.02) and (3.6.05) are solved. This form of iteration can be viewed as
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inner and outer iteration In the inner iteration equations (3.6.05) and (3.5.02) are
repeatedly solved until (3.5.02) is converged. Then equations (3.5.02) and (3.3.12)
are solved until (3.3.12) is converged to the desired accuracy. When the above
equations are discretized, the consistency in the discretization of the equations and

their boundary conditions is crucial for a physically acceptable and stable solution.

This is addressed in Appendix (A.4).
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CHAPTER FOUR
MODEL PROBLEM

The numerical aspects of the technique used to solve the radiative transfer
equation are presented in Chapter Three. In this chapter, results are presented for
the model problem that is used to test the present code. This chapter also includes
a discussion of the issues which often arise with any code - issues such as fixups,
stability, efficiency and the validity of the code. A comparison of the source iteration
(SI) method and the diffusion synthetic acceleration (DSA) method is presented in
this chapter. It will be shown later that when the DSA method is stable, it is always
faster than the SI method and yields the same results. The extent to which DSA
improves the spectral radius depends on different parameters, such as the time step,

convergence criterion and the number of inner/outer iterations.

4.1 FIXUPS AND THE STABILITY OF THE CODE:

It often becomes necessary to incorporate fixups into codes that involve
complicated equations and the DSA method is no exception. The main objective of
these fixups is to suppress the appearance of nonphysical results. For example, the
intensity is a physical quantity which can not be allowed to have a negative value.
Therefore, it is important that some fixup should be implemented when negative
intensity leads to instability.

The fixups are based on the trial and error approach and hence do not have
any real theoretical justification, other than that they prevent nonphysical results
from appearing in the simulations. Their presence in the code does not imply that
they are used in every simulation. The important rule we have learned for a fixup
strategy is that a fixup should be invoked only when the solution has become

unstable not because it is becoming unstable. Every effort should be made to ensure
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that the transfer equation, the diffusion equation and the grey equation are consistent
at all times. A negative value may be physically unacceptable, but mathematically
a negative value is as good as a positive value. Hence a negative value should not
be modified unless a physically unacceptable solution is obtained or the code has
become unstable. In this section we discuss some of the fixups implemented in the
code.

The first fixup that is implemented is due to the spatial differencing scheme
employed in differencing the radiative transfer equation in space. The Diamond
differencing scheme is used to discretize the transfer equation in space, because of
the ease of its implementation. Unfortunately, it can lead to a negative specific
intensity, which if not corrected can destabilize the code. When a cell edge intensity
becomes negative, it is taken to be zero or is set to be the average intensity of the
cell. The choice depends on a parameter which is a function of the cell width and
the time step (section A.3). Another important fixup which also has been included
in our theoretical analysis is the incorporation of the above fixup into the diffusion

equation. The Diamond Difference relationship in the diffusion equation is

redefined as
o1 1 ot sl
=2[a +b

When a fixup is required in the transfer equation, the coefficients a,; and b, are

given as

1 1

Jom =

2 2

o mtosi b =toi

ogt l’l ? ost bl

13 12,
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Without the fixup, these coefficients are
ac‘,ab,‘,xl.o

(4.1.01a,b,c)
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The choice of these coefficients depends upon the stability of the solution
rather than on some theoretical analysis. The main objective is to define these
coefficients so that the diffusion matrix yields a stable solution. From equation
(A.8.02), we see that the main diagonal element is not always the dominant element.
This can lead to a negative solution of the diffusion equation. If a negative solution
of the diffusion equation occurs too frequently, the solution for the transfer equation
may become unstable or become physically unacceptable. This problem can be
eliminated through the use of small time steps so that the gradient opacity is small.
One can also modify the algorithm*' to ensure that the main diagonal element is
always dominant, but this modification leads so slower acceleration of the diffusion
equation.

In simulations it was observed that when the negative flux fixup is
implemented, L., can become zero causing a floating point error in (4.1.01b) when
a,; and b, are computed. In order to prevent a floating point error, we take
8,5 =D, = 1.0 whenever L., is zero.

Many switches are added into the code to ensure its stability and to prevent
the code from consuming an excessive amount of time on iterations which are
extremely slow to converge or start to diverge. If the diffusion equation yields a
spectral radius greater than or close to 1.0, then the code automatically resorts to SI
for that iteration when switch AUTACC=1. If it occurs too often, then the
calculation is terminated. A similar type of switch is included to prevent the grey
equation from yielding an unrealistic solution. If the solution of the diffusion or the
grey equation becomes unstable too often then the calculation is again terminated.
In the event that the integration is not achieved within the required precision or the
resultant matrix is ill behaved, then the program is again terminated. The code has
been written such that the error messages are written into a file named "analysis” for
instabilities which do not cause termination. Error messages appear on the screen
for those instabilities which require user input to continue or that require termination
of the code. These switches improve the efficiency of the code but do not ensure

DSA stability when large time step is used, as was expected in the beginning of the
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study.

4.2 THEORETICAL ASPECTS OF THE MODEL PROBLEM:

Often a code is tested against a bench mark problem, before it is used to
simulate real problems, The problem we use to test the code is the well known
Marshak Wave bench mark¥% This is the same model problem used by Alcouffe et
al*? and Velarde et al** to test their codes. Here a strong source (acting as a laser
beam) is placed at one end of the plasma. The temperature (which is changing due
to the propagation of the radiation) is computed as a function of space and time. In
this section the equations involved in the formulation of the model problem are
presented.

We start our formulation from equations (3.3.01;02;3a) derived in Chapter

Three. These equation are repeated here for convenience

%%’(x’“,v;) + “%(I,H,VJ) + 0(\',7)1(1.9,\'-‘) = S(v,1) = o(v,D)B(v,])
X -
_% = p(nuo o(¥, DIy(x,9)d - co (u(T) + S.,]
C = Ry
u‘(n = .4—1-‘-'[0 B(T,%) av

(4.2.01;02;03)
For the model problem, we assume that a local thermodynamic equilibrium (LTE)
exists in the plasma. In LTE, it is assumed that properties of the matter are
dominated by atomic collisions which establish thermodynamic equilibrium locally
at a position x and at time t, and that the radiation field does not affect this
equilibrium even when it deviates substantially from the Planckian distribution. That
is, at a given instant of time and point in space it is sufficient to specify two
thermodynamic quantities, such as the temperature and density in order to compute
the source term S(=0B) and the absorption coefficient 7. With the LTE assumption,

B becomes the Planckian function and the transfer equation reduces to
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where o and B are defined as
0 =a [l-e:‘"] B= %;f[e‘-' -1
v
h -
where  ay=-= and a,=3.8171E55 m™!
(4.2.07)

where T is the material temperature, a (=7.560667E-16 Jm’K") is the Stefan
Boltzmann constant, h (=6.626E-34 Js) is the Planckian constant, k (1.3807E-23 JK")
is the Boltzmann constant. When equation (4.2.04) is discretized in frequency

(Chapter Three) it reduces to

al
p&! + (q‘+t)1‘ = _x.;ﬂz‘ °t’¢k + Q‘
(4.2.08)

For the model problem, the initial intensity in the summation term on :he right hand

side of the above equation is taken to be Planckian and the absorption coefficient

is computed as

(4.2.09)

where w(v) is the weight function corresponding to the intensity at that moment.

Since this is unknown an approximation is usually made. The choice of this function
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is somewhat arbitrary. The weight functions which we have included in the code are

known as Planckian and Rossland Mean functions. These functions are given by"”

w(v) = B(v) Planckian
.1 9B(v)
w(v) —o(v) T Rossland

(4.2.10a,b)

Their justification is based on the following argument*”. The Planckian
function B is a good approximation at thermodynamic equilibrium since the specific
intensity is given by a Planckian function, and away from equilibrium the choice of
the weight function is of less importance. The Rossland function is a good
approximation since the specific intensity can be approximated by the equilibrium
diffusion approximation. The choice of these functions becomes less significant if a
large number of frequency groups are used.

The Romberg integration approach is used to integrate these functions.

Lower-Upper decomposition is implemented to invert the matrices in both the

diffusion and the grey equations.

4.3 SIMULATIONS OF THE MODEL PROBLEM:

The main objectives of this section are to test the code against a bench mark
problem and make comparison between the two approaches used to solve the
transfer equation, namely the Source Iteration (SI) and Diffusion Synthetic
Acceleration (DSA) methods. The SI method always yields a stable solution
irrespective of the time step involved. The DSA becomes unstable for large time
steps, but when it works, it is more efficient than SI and yields the same results as
the SI methods.

The model problem we used to test the code involves a slab at uniform
temperature with a source at one end. The source is placed at the left boundary and
it is assumed to be Planckian. This choice for a source resembles a laser beam

incident on a foil. It is assumed that the specific heat of the plasma is constant
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during the simulation, that is it is independent of the temperature. The convergence

criterion is set to be

In'l _ -2 7101 3

This simply states that the specific intensity of the transfer equation is considered to
have been converged when the error between two consecutive solutions is less than
1%. A similar convergence criterion is used for the temperature but a convergence
criteria of 0.1% is used instead of 1.0%. If the time step is large (such as in nano
seconds) then tighter convergence is essential. Once the intensity has converged we
use the so called "parametric iteration" to update the temperature. In parametric
iteration we use the new temperature (obtained after solving the energy balance
equation) to compute the variables (such as o and x) that should have been
computed at the advanced time step. This is repeated until the temperature is

converged to the desired accuracy. The data set used for the standard model

problem is
number of cells (uniform) 20
number of frequency groups 30
number of discretized angles 08
specific heat per unit volume 7.00E+04 JK'm®
source temperature 1000 ev
initial slab temperature lev
slab width 02m
frequency range 1.00E-01-1.00E+04 ev

Additional parameters will be mentioned when appropriate.

Many runs were made to explore the performance of the DSA method. In the
remainder of this section, we will discuss important aspects related to the efficiency
of the code. We have observed that when very small time steps are used (e.g
fraction of a picosecond) the DSA method is not very efficient compared to the SI

method. When time steps are small, it is more efficient to use the Source Iteration
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method, because the time taken to solve the diffusion and grey equation out weighs
the efficiency of the DSA method over the SI method. The efficiency of the DSA
method improves as we increase the time step. In our simulations, the maximum
time step allowed for a stable DSA solution is about 100.0 picoseconds for the model
problem. The efficiency of DSA relative to SI depends on the convergence criteria.
A tighter convergence criteria with the DSA method results in a small increase in
computer time but it significantly increases with the SI method. It is observed that
if the number of inner iterations (number of diffusion equations per transfer
equation) is not bounded, then not only the efficiency drops bat also this can
destabilize the code. It is observed that if inner iterations are bounded by 10 then
DSA is more efficient and stable compared to when the number of inner iterations
is allowed to be unlimited. The solution of the diffusion equation without the grey
equation very often increases the computer time for a given simulation (even though
it improves the spectral radius) due to slow convergence rate of the SI. However,
the time is substantially reduced when the diffusion equation is solved using the grey
equation.

Therefore, in order to optimize the efficiency of the code, it is important that
the diffusion equation is solved with the grey equation and that a bound is placed on
the inner iterations. " The remainder of this section includes a graphical
representation and a discussion of the following topics:

i A comparison between DSA and SI .

ii. Planckian vs Rossland weight functions.

iii.  Use of exponential temperature as the initial temperature (instead of

being uniform).

iv. Effect of varying the number of cells, number of frequency groups and

number of discretized angles.

V. Marshak Wave Bench Mark

The source code is in a file name "sate.f” (a listing can be found in the

appendix) and the input file is called "sate.data" and is given below.
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satedata

ENTER 1 FOR RUNS WITH DIFFERENT TIME STEPS OTHERWISE 0
ENTER SCR NUM DBXL DBXU TCONT
ENTER T OR F FOR SIMULATIONS OF THE MODEL PROBLEM (SIMRUN)
ENTER "0" IF SOURCE IS TO BE DEPENDENT ON TIME (TEMPTD)
ENTER "0" IF INITIAL TEMPERATURE DISTRIBUTION IS EXP (TEMEXP)
ENTER "0" IF ALWAYS USE NFF (NFMUST)
ENTER "0 TO 20" FOR OUTPUT TO BE PRINTED (PRES)
ENTER BOUND FOR TRANSPORT AND DIFFUSION EQU (TB DB)
ENTER *0" IF (INTB=0) "1" IF (INTB=PINB) "2" IF USE MTSP (NFFC)
ENTER IERR AND TERR AND SIER
ENTER # OF OIT AFTER WHICH NEGATIVE FLUX IS ALWAYS USED (INSB)
ENTER ABSORPTION COEFFICIENT 1E? (? = 6 TO 11) (AC)
ENTER "0 TO 2" FOR CONVERGENCE CRITERION BEST IS *1" (CONVC)
ENTER "0" IF INITIAL INTENSITY TO BE PLANCKIAN EACH TIME (TRIN)
ENTER "0" IF UNIFORM SPATIAL DISTRIBUTION IS TO BE USED (USC)
ENTER TIME INTERVAL AT WHICH TEMPERATURE IS TO SAVED (PRTME)
ENTER *0 OR 1" DIFFUSION BC (DIFBC)
ENTER *0 TO 2" TO OVERCOME NEGATIVE DIFFUSION INTENSITY (NDIT)
ENTER MAXIMUM TIME FOR SIMULATION (MAXT)
ENTERM <9 G <61 N < 151
ENTER L LFL UFL TELB ITRB ITSL

2.00E-01 1.00E +01 1.00E +03 2.00E-G2 1.00E +01 1.00E-00
ENTER *0" IF PLANCKIAN IS TO BE USED AS A WEIGHT (WFN)
ENTER SPECIFIC HEAT (SPH)
ENTER DTIME
ENTER "0* IF NEGATIVE FLUX FIX UP IS TO BE IMPLEMENTED (NF)
ENTER NUMBER OF TEMPERATURE ITERATIONS ALLOWED (TITA)
ENTER NUMBER OF OUTER ITERATIONS ALLOWED (OITA)
ENTER "0" FOR LOWER LIMITS OTHERWISE "1* (SETLIM)
ENTER "0" FOR SOCURCE = 0 AT RIGHT *1" FOR BOTH ENDS (SETSOU)
ENTER "1" IF NEG. FLUX TAKEN IT'S ABSOLUTE VALUE (ABVL)
ENTER "1" IF CODE TO BE EXECUTED WITH MEDUSA (MEDUSA)
ENTER "1° IF ACCELERATION IS AUTOMATIC (AUTACL)
ENTER "0" IF TRANSPORT EQUATION IS TO BE SOLVED BY SI (TRNACC)
ENTER *1* IF DIFFUSION EQUATION IS TO BE ACCELERATED (DIFACC)
ENTER *0" FOR LINEAR GREY MODEL OR "1° FOR NONLINEAR (LIN)

00

00 02 0000 9999 01
F

01

01

01

00

9999 999

02

1.00E-02 2.50E-01 1.00E-02
999999

1.00E+11

01

01

00

1.00E-09

00

03

1.01E-07

008 030 020

7.00E +04
1.00E-12

2888%38

5.00E-01

8388
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Figure 4.1 a, b
When finer cells are used the computational time increases significantly, while

the solution for the temperature remains very much the same. An increase in the
temperature at the left end implies that the closer we move to the left (by making
cells more finer), a higher temperature is obtained at the left end of the slab until
it reaches the maximum value at the boundary (the value of the source). The
difference in temperature can be reduced if a tighter temperature convergence
criterion is used in both cases. A decrease in the number of cells has a more
noticeable change in the temperature profile than when the number of cells is
increased. The difference in the temperature with 50 cells compared to 20 cells (Fig.
4.1a) is relatively small while the computational time is significantly increased. The
use of 10 cells (Fig. 4.1b) on the other hand shows a significant difference compared
to 20 cells. Therefore, use of 20 cells is sufficient to yield an accurate description of

the temperature in the slab for this case.

Figure 4.2 a, b

In the standard model problem 30 frequency groups are used. From Fig. 4.2a,
it can be seen that increasing the number of frequency groups has no effect on the
temperature profile that is observable. However, if the number of groups (Fig. 4.2b)
is decreased then a significant change in the temperature profile is observed.

Therefore, 30 frequency groups are sufficient in our simulations of the model

problem.

Figure 43 a, b

Here it is shown that when the number of discretized angles is reduced (Fig.
4.3) then the entire temperature profile is shifted upward. We did not observe any
significant significant change in the temperature profile (Fig. 4.3b) when number of
discretized angles is increased to 16. Therefore, we think 8 discretized angles is

sufficient to take into consideration the angular dependence of the intensity.
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Figure 4.4
This graph represent the Marshak Wave Bench Mark with the present code.
The profiles shown here are not exactly as reported by Alcouffe or Honrubia, this is
because different weight function profiles are used for the absorption coefficient. This
implies that the rate of change of temperature will be different; however we expect
that the equilibrium profiles should be very much the same. This is true for all of

the results reported by Alcouffe and Honrubia and reported here.

Figure 4.5

Here a comparison of SI and DSA is presented. This graph shows that the
accelerated and non accelerated solution are the same. We have observed this
consistency for all cases. In this graph a comparison between the linear and
nonlinear grey models is also presented. We observed that the linear grey model

performs better than the nonlinear model. The comparison of SI and DSA is shown

below
# of transfer equ. # of diffusion equ # parametric iteration
SI 1432 0 63
DSA(linear) 148 578 26
DSA(nonlinear) 148 1893 27

Our present code is not as stable as was expected. There appears to be a
discrepancy in our derivation which we have not been able to resolve. The boundary
conditions used for the grey equation in the code arc 1e best in a sense that they
yield the same result while allowing the use of a larger time step. The cause of this
instability will require further investigation in the future. From our experience we
think the inconsistency exists between the grey and the diffusion equation boundary

coaditions.

Figure 4.6 a, b
This graph reflects the effect of the weight functions used for evaluating the
absorption coefficient. In Fig. 4.6a the number of groups is 30 and in Fig. 4.6b the
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number of groups is 60. This shows that different choice of weight functions can lead
to different temperature profiles. This graph also shows that as the number of
groups is increased the choice of the weight function becomes less crucial. This
conclusion is difficult to corroborate or disapprove because neither Alcouffe nor

Honrubia has discussed the choice of the weight functions in their publications.
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Figure 4.1 b
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Figure 4.2 a
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Figure 42 b
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Figure 43 a
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Figure 4.5

A Comparison between S| and DSA
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Figure 4.6 a
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Figure 4.6 b
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CHAPTER FIVE
MEDUSA SIMULATIONS

The objective of our research has been to study the nature and extent of the
effects of radiation in laser produced plasma. We will show through simulations that
the radiation plays an important role in~the transport of heat in laser produced
plasmas. The extent to which radiation affects the hydrodynamics of a plasma very
much depends on the time profile and intensity of the laser beam to name few. An
exclusion of radiative effects can lead to an erroneous estimate of radiation
transported or loss of energy from a plasma. Although the inclusion of radiation
transport into a hydrodynamic code is an arduous task, it is important because it
gives a more accurate representation of the laser plasma interaction. This chapter
has been divided into the following sections:

i. Introduction to MEDUSA

iii.  Integration of the radiation code into MEDUSA

iii.  Simulations using MEDUSA

This chapter will conclude the objective of our thesis. An extensive appendix
is included at the end. The appendix includes the derivation of all of the equations

used in the code "sate.f".

5.1 INTRODUCTION TO MEDUSA:

In the mid 1970’s a computer code named MEDUSA was written to simulate
the laser fusion process. It was written for a one dimensional geometry in order to
investigate the hydrodynamics and thermodynamics which take place in a small
pellet. MEDUSA was refined later to accurately describe the interaction of laser
light with a plasma. The MEDUSA code in its present form differs from the original

due to modifications and additions made to it at University of Alberta. The present
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version of MEDUSA gives a more realistic simulation compared to the original one.

New features included are:

i. A modified equation of state, which is valid at low temperatures and
near solid density.

ii. A simultaneous solution of electron and ion diffusion and equilibration
equations.

iii. A calculation of the local ionization and x-ray emission from a radiative
equilibrium model.
iv. Addition of the radiation transport.
In this section a brief summary of the equations solved by MEDUSA are outlined,

more details can be found elsewhere®'.

5.1.1 PHYSICAL MODEL:
In MEDUSA, the plasma is assumed to consist of a charge-neutral mixture

of electrons and various species of ions (a collective term for atoms, ions and
molecules). Thermodynamically, the electrons and ions are treated as two
subsystems, each with its own internal energy, temperature and pressure. The two
subsystems are coupled via a common velocity which ensures neutrality of the
mixture. The exchange of energy is due to electron-ion and electron-atom collisions.
Electric fields are ignored. The instantaneous local chemical composition is
described by a set of fractions £, such that
o, = Lo

where f, is subject to = f,= 1, and n, is the ion density of the kth species. The
electron density changes with time due to hydrodynamic expansion and contraction
of the moving fluid. The electron and ion densities are related by

n=n /Z m’
where Z is the atomic charge of the matter. The physical density is given as

p = nMm, Kgm®
where M is the atomic mass (the electron mass is ignored), my is the hydrogen mass.

The average mass and charge is calculated from
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M=3fMand Z=3Xf7Z

5.12 ENERGY EQUATION:
The energy equation is given as
dT . dp pdV -
cLaferls g
where S is the rate per unit mass at which energy enters each system. This is given
by the following expressions for electrons and ions
S.=H, +K+J+X+Y,
S, =H,-K+Q+Y,

where H: heat flow due to thermal conduction

7

rate of energy exchange between the electron
and ion fluids.

rate of Bremsstrahlung emission

rate of absorption of laser light

rate of viscous shock heating

<R X =

rate of nuclear energy released (it is switched off in our
simulations, since it is irrelevant to our research)

and P is the pressure and C, and B; are given as

au au
C=— B = —
Y ar], r‘( aP]r

5.1.3 HEAT CONDUCTION:
The heat conduction is assumed to be classical and is given as

H=Lvyvr
P

where the thermal conductivity y, for electrons and ions is
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]

1.83E-10T2
X Wim K
logAZZ
s
4.3E-12T}
= ! Wim K

W
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Ao 124B06T/n,

VnZ

where A is the coulomb logarithm.

5.1.4 ENERGY EXCHANGE:
The exchange of energy between electrons and ions occurs at the rate of

wiw

o= 27 nhoghym (kT)
M32/ZREm,
the K term in the energy equation is
x=-:;mn,1a(n-r,)

5.1.5 ENERGY EMITTED:
When radiation transport is not included, all of the radiation emitted from the

plasma is taken to be via Bremsstrahlung emission by electrons and this emission is

treated as a total loss. For a Maxwellian distribution it is given as
T2
Jo-8.5E-14"4TE - WKg ™!

5.1.6 ENERGY ABSORBED:
The absorption is assumed to occur via inverse Bremsstrahlung at a density

p below critical density p. , where p. is given as
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eMmym,
e

At p =p, the remaining power is deposited in the next adjacent cell and reflection of

the laser intensity is neglected. The absorption coefficient is given as

559 +logAT,)z?
2
lz‘lli—'_ﬂ-raz

«=13.51

where P is p=L
Pe

If the initial laser intensity is P, at r=R,, then the power at r is given by

a(R,-r)
P=Pe

5.1.7 MOTION OF THE PLASMA:

~ The motion of the plasma is governed by the Navier-Stokes equation

&‘__
pE— vP
where u is the velocity of the plasma and P is the total pressure, P = P, + P..

5.1.8 EQUATION OF STATE:

The equation of state assumes that ions behave as a non-degenerate perfect
gas, while electrons behave as being degenerate, non-degenerate or partially
degenerate. The most recent EOS package gives a more accurate description of a
metal at low temperatures and coincides with the EOS of the original MEDUSA at
high temperatures. It is invoked by setting NLOM2(6)=.TRUE,,
NLOM2(7)=.TRUE. and STATE =-1 (for aluminum).

5.1.9 DIFFERENCING SCHEMES:
The cell edges are free to move, thereby altering the volume of the cell. The
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quantities at the centre are obtained by averaging the values at the cell edges. A
finite differencing scheme is used to discretize the equations shown above. The cell
width varies such that the mass of the cell remains constant during the simulations,

since thermonuclear burning is turned off.

5.1.10 TIME DIFFERENCING AND TIME STEP CONTROL:

MEDUSA uses a five level scheme. Levels 1,3,5 correspond to the time step
n-1,n,n+ 1 respectively and levels 2,4 correspond to the time between n-1 & n and n
&n+1. Ifweletr, p, T.,, to be the cell coordinate, mass density and temperature
(electron and ion) respectively then with known values for (r, p, T.,)™ and u™” (r,
p)* we determine T, u™*"?, (r, p)**'. All basic quantities are thereby advanced one
step in time. Due to the non-linearity of the T,; in the energy equation, this equation
is solved by iteration.

Since the temperature equations are solved implicitly, the solution for the
temperature is stable for all time steps. However, the time step should be chosen
carefully in order to obtain results within a desirable accuracy. The maximum value

of At is restricted by the Courant-Friedrichs-Lewy conditions and is given as

1
3 < alui"(rj:l"j.)

Cu

At

The time step is also constrained by the maximum variation allowed in the

hydrodynamic velocity and in the ion and electron temperatures.

5.1.11 LASER PROFILE:

In our simulations we use two types of laser beam time profiles. These are
gaussian and trapezoid profiles. The maximum power attributed to a given beam
ranges from 10" Wm? to 10" Wm? A detailed description of laser characteristics is

given wherever they are used in the simulations sections.
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5.2 INTEGRATION OF DSA CODE IN MEDUSA:

The atomic physics tables developed by Lee** contain the emissivity and the
microscopic cross-section area at a given temperature and ion density. These
quantities are in MKS units, watts/ion and m’, respectively. For the transfer
equation we need the absorption coefficient and the initial intensity. In order to find
the relation between given variables and required variables, consider the radiative

transfer equation and the energy balance equation

p-g,; + (g+t) = § = oB

n
el _ =, 4,
u, =—|| o'lgdv+
) co;{f" s
3
where B‘MT

v

(5.2.01)
where I is the specific intensity in W m? o is the absorption coefficient in m”, S is
the rate of energy emission due to spontaneous processes, ¢, is the specific heat per
unit volume and c is the speed of light in m/sec and B is the specific intensity.

A careful analysis shows that one can relate the emissivity and the microscopic
cross-section area to the specific intensity and absorption coefficient as

NP Ax
4n

B

and a=NA,

(5.2.02)
where P: is the rate of energy emitted W/ion
A,: is the microscopic cross-sectional area in m*
N;: is the ion density per unit volume
The values of the emissivity and cross-section area are obtained through
interpolation at a given temperature and density by calling subroutine DINTRP. If

the temperature is less than 10 ev then the emissivity is taken to be Planckian, and
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the cross-sectional area is obtained by calling the function named CIGMA. When

CIGMA is called to obtain the absorption coefficient o, then

MA

3

g =
NA

(5.2.03)
where A’, is ohtained from CIGMA, N, is the Avogadro number, and M is the
atomic mass. The specific heat is obtained from the EOS subroutine, and is given
as

fcy * ¢,

% =P 00

(5.2.04)
Where p, corresponds to mass density at time step 3 and ¢, and c,, are the specific
heats obtained from EOS at time level 3.
The emitted power is defined as the power loss per unit mass from the
plasma; therefore, it is proportional to the difference in the intensity at the adjacent

cell boundaries obtained after solving the transfer equation at time level 3. This can

be expressed as

BREMS, = %";‘z, AfBa U1 = Ly ) 0]
(5.2.05)

The present radiation code is invoked by setting SAHA=3.1. In all of the
simulations the foil is taken to be aluminium and the flux limiter is taken to be 0.25.
Variables such as temperature, pressure, velocity, average Z and mass density as a
function of space are stored into file named "out". Quantities such as the ablation
pressure, ablated mass, average Z, thermal and kinetic energy and emission to the
left and right end of the plasma, as a function of time are stored into "abl.out". The
ablated mass is defined as the mass contained between the outside cell and the last
cell in the plasma in which an outward velocity is obtained. The ablation pressure
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is defined as the pressure of the cell embodied in the ablative surface. The option
of a trapezoid time profile for the laser beam has been added. This can be invoked
by setting GAUSS =-2.0, PLENTH ="rise time (assumed to be same as fall time)".
The input file for MEDUSA is "mds.in" and it is given below, this will ..ilow another
user to reproduce the results presented here without any uncertainty in the initial

conditions that are used. Important variables are bolded.



F0000000 0 1

ENERGY : 1.00 JOULES FOCAL SPOT DIA: 70 MICRONS
20 NS PULSE

TARGET : ALUMINUM

&NEWRUN
AK0=0.10,
AK3=0.10,

ANABS =10,
BNEUM=2.0,
DTEMAX=0.1,
DTPRNT=2.5D-10,
DRPLAS=0.0,
FHOT=00,
FNE=1.0,
GAUSS= -2.0,
HELIU3=0.0,
LAMDA1=2.48D-06,
MESH =40,
NITMAX =50,
NLABS=.TRUE,,
NLCRI1=.TRUE,
NLDEPO=FALSE.,
NREP=0,

NDUMP =10,
NGROUP=5,
NLCHED = FALSE.,
NLFILM=.TRUE,,
NLREPT = .FALSE,,
NP1=1,

NPRNT = 50000,
NLECON=.TRUE,,
NLPFE=.FALSE,,
NLOMT2(6)=.TRUE.,
OUTAMI =10,
PIQ(55)=2.0,
PMULT=2.0,
QSHELL(1)=097,
RINI=1.0D-04,
RHOGAS =2700.0,
RHOT=0.0,

SAHA =31,
SCR=1.0,
SCTI=1.0,
TEINI=3.0D02,
TRITIU =00,
TSTOP=5.0D-09,
XMASS =26.9815,
ZGLAS=00,

&END
HNUMIN=8000.0,

60

DTIMAX=0.1,
DELTAT=1.0D-12,
DEUTER=0.0
FTHOT =0.0,

GAMMAE = 1.66666667,
HELIU4=0.0,

MXDUMP =10,
NCASE=1,
NLMOVE=.TRIE,,
NLBRMS=.TRUE,,
NLDUMP= FALSE,,
NTRLMS=0.0,
NETRAL=0.0,
NHDCPY =100,
NLEDGE=10,
NLHCPY = FALSE.,,
NONLIN=1,

NP2=40,

NGEOM=1,
NLICON=.TRUE.,,
NLPFI=.TRUE.,
NLOMT2(7)=.TRUE,,

PONDF=-10,
PMAX=3.16D+17,

ROGLAS=0.0,
RHOINI =2700.0,

STATE=-1.0,
SCRHO=1.0,
SCTIME=1.0,
TIINI=3.0D02,
TON=0.0,

XTRA=10,
ZPLAS=0.0,

HNUMAX =9000.0,

DUMAX=0.1,
DRGLAS=0.0,

FLIMIT =1.00,

GAMMAI =1.66666667,
HYDROG=0.0,

NRUN = 9”99’
NLBURN=.FALSE,,
NLITE=.TRUE,
NLFUSE=.FALSE,,
NSLEDG =9999,
NFILM =1,

NIN=5,
NLEMP=.TRUE,,
NLPRNT=.TRUE,,
NSHELL =150,
NP3=1,

NREP=0,
NLOMT2(11)=.TRUE.,
NLX=TRUE,

PLENTH=1.0D-10,
ROPLAS=0.0,
RSHELL =1.0D-04,
SIMULT=1.0,
SCTE=1.0,
SCP=10,
TINUCL=1.0D+07,
TOFF=3.9D-09,

XZ=13.0,

NLEMRA = FALSE.
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53 MEDUSA SIMULATIONS:

This section includes the MEDUSA simulations. The main objective is to
validate Marchand’s Model with the present code. This is done by comparing the
MEDUSA simulations which use Marchand’s model and the present code. It will be
shown that there are cases where the two algorithms yield different results. These
results will be presented followed by a discussion of which algorithm appears to be
more accurate. Since Marchand’s model was successfully tested against experimental
observation, we believe that the present code must also confirm the same
experimental observations.

The graphs to be presented in this section reflect the consistency and the
differences of the two models. It is observed that Marchand’s model works well for
a trapezoid profile beam, but appears to give erroneous results when a gaussian
profile beam is used. The effects of radiation transport are the subject of this

section. The input file for MEDUSA is given on the previous page.

Figure 5.1 a, b, ¢

This graph represents the electron temperature and normalized mass density
of the plasma as a function of space using the DSA model and Marchand’s 2-cell
simplified model. The laser beam has a trapezoid temporal profile (with RISE
TIME =1.0E-10 sec, TOFF=4.0E-09 sec and PMAX=3.16E17 Wm?, A =2.48E-07).
These graphs correspond to different time steps and are presented here to show the

consistency between the present model and Marchand’s model at various time steps.

Figure 52 a, b, ¢

This graph represents the pressure and normalized mass density of the plasma
as a function of space with the DSA model and Marchand’s model. The laser beam
is the same as the one used in Fig. 5.1 (trapezoid). Each graph can be viewed as a
snap shot of the pressure and the mass density at different times. Again the

consistency between the two models is evident.
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Figure 5.3
This graph represents the ablation mass as a function of time with the DSA

model and Marchand’s model. The laser profile is the same as in Fig. 5.1.

Figure 5.4
This graph represents the ablation pressure as a function of time with the

DSA model and Marchand’s model. The laser profile is the same as Fig. 5.1.

Figure 5.5 a,b,c

These gri:.h- represen: the electron temperature and mass density as a
function of space, when a gaussian laser profile (with FWHM=1.7E-09 sec,
PMAX =5.0E16 Wm?, A=0.35E-06) is used. This “gure shows that when a gaussian

profile is used the two models do not give as consistent electron temperature as they

did for trapezoid laser profile.

Figure 5.6 a,b,c

Here the pressure and mass density are shown as a function of space, when
a gaussian profile for the laser beam is used (same as in Fig. 5.5). Even though the
electron temperature was the same for both models, the pressure is not the same.
The inconsistency in pressure is quiet conspicuous, the dip in pressure about the

ablation surface in Fig. 5.6 b of Marchand’s model appears to be nonphysical.

Figure 5.7

This graph represents the ablation mass of the plasma when a laser beam with
a gaussian profile is used. Here the inconsistency is so conspicuous that one needs
to reject either the DSA model or Marchand’s model. It appears that the DSA
model is more accurate than Marchand’s model, because in Figure 5.3 the intensity
is higher than in Fig. 5.7, which implies that the ablation mass in Fig. 5.7 should be

less than the ablation mass in Fig. 5.3. This is not true in Marchand’s model.
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Figure 5.8
This graph represents the ablation pressure of the plasma when a laser beam
with a gaussian profile is used. Even though the ablation mass from the two models
is quiet different, the ablation pressure is not very different. This reflects the
complexity of the radiation transport, that is, consistency in one resuit does not

necessary imply that other parameters are consistent too.

Figure 5.9 a,b,c,d.e

These graphs show the effects of radiation transport on the ablated mass,
ablation pressure, kinetic energy, theru.cl energy and ion energy. The laser profile
is a trapezoid (with PLENTH =1.0E-10, PMAX=3.16E17). In these graphs results
of MEDUSA with radiation transport (by invoking DSA model or Marchand model)
and with no radiation transport (it implies that all radiation emitted is lost rather
than being transported) are presented.

Fig. 5.9 a,b show the =ffect of radiation transport on the ablation mass and
ablation pressure. Mora*** has shown that the ablation mass and ablation pressure
are proportional to intensity and to the critical density of the plasma and are given

as

11 3
23 4

;) 00 =

These relations indicate that ablation pressure is less sensitive to radiation transport
compared to ablation mass. The weak dependence of pressure on radiation is due
to the fact that with radiation transport the thermal energy is converted into x-rays
which can escape thne plasma, tiis conversion reduces the ablavion pressire.
Radiation transport on the other hand transports energy to higher densit; plasma
which in turn contributes to an increase in ablation pressure. The 2 auns in Fig. 5.9
a,b qualitatively confirm such relations.

When radiation transport is not included, all of the energy emitied due to

bremsstrahlung is taken to be a loss. With radiation transport some of the energy
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is transported to a colder dense plasma. Therefore, it is expected that when
radiation transport is included the kinetic energy, ion energy and thermal energy
should be relatively large compared to the case when no radiation is included. This

conclusion is qualitatively confirmed from Fig. 5.9 c,d.e.
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Figure 5.1 a
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Figure 5.1 b
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Figure 5.1 ¢
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Figure 52 a
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Figure 52 b

DSA Mode |l
4T ' r ' ' .2

i {1
8t ]

[ 11.
‘25 :O.
B 10.
.0¢ o — 0.

300 600 900
Distance in micro m
Marchand Model
. O T LS L) T T T

i 12,
.4; ],
.8: ]
.2:' 10.
6} lo.
. O oot ' —— 0

300 600 300

Distance in micro m

0—6—0 Pressure
»~—w——+ Normalized Mass Density
Time=2.00E-09 sec

S »» 0NN O O

O » O N OO O

Ayisus(Q SSsDW

A}yisuaQg SSOWN



Pressure in MBar
OO0 O = =N

in MBar

Pressure

O »00ONOO

O » 0O N OO O

Figure 5.2 ¢

70

DSA Model

L ae

Lade

M ﬁ—ﬂ
A 1 L 1

0

300

600 900 1200

Distance in micro m

Marchand Model

e

1 ada,

T T T

whal

M.

0

300
D

600 900 1200

istance in micro m

¢—0— Pressure
——— Normalized Mass Density

Time=3.00E-09 sec

O O O = =N

O + 0N O O

o H» 00O N OO O

Ayi1suaQg SSDONW

A} 1sua(Q ssDwy



Ablation Mass in g/m?

71

Figure 53
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Figure 55 a
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Figure 55 b
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Figure 5.5 ¢
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Figure 5.6 a
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Figure 5.6 b

DSA Mode |

.\‘l....\.io

0 40 80 120 160 200 240 280
Distance in micro m

Marchand Mod=z |l

9 — el
i {1
6} .
| {0.
3t ‘
I 1o
¥ D
O_LLMMMMA. S N
0 40 80 12G 160 200 240

Distance in micro m

0——=0 Pressure
—— Normalized Mass Density
Time=2.:0:-09 sec

Ky1sua@g SSOW

SON

Ayi1sua(



in MBar Pressure in MBar
O 0O 0 o0 o —

o O O o o

Pressure

O N & O 0 O

o NN~ O OO O

78

Figure 5.6 ¢
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Figure 5.7
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Figure 59 b
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Figure 5.9 ¢
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Figure 59 d
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CONCLUDING REMARKS:

The objective of the research was to solve the radiative transfer equation in
one dimension by using a method that can be extended to higher dimensions or
curvilinear geometries. Another objective of th '« ~arch was to corroborate
Marchand’s simplified 2-cell model.

The Diffusion Synthetic Acceleration (D! 4) metlind is chosen to solve the
radiative transfer equation. This method has been successfully used to solve
neutronic transport problems in higher dimensions, hence it is believed that similar
extension should be possible for radiative problems. The Marshak Wave bench mark
is used to test the validity of the code. It is observed that Diffusion synthetic
Acceleration is very efficient compared to other methods such as SI; however, it
becomes unstable at large time steps.

A comparison of DSA and Marchand’s mode! shows that these two models
give simile  sults when a trapezoid laser pulses are used. However, the results are
not con” “2n a gaussian laser beams are used. Analysis of the results shows
that Ma. " . model appears tr give erroneous resuits, the ablated mass obtained
with Marcha. ’ , model is unre- - “tin, too much mass is being ablated. Therefore,
Marchand’s model requires furti:e: investigation if the above error in the ablation
mass is to be rectified. Marchard’s model on the other hand is computationally
more efficient than DSA, but its disadvantage is its applicability in only one
dimensional slab geo: :try problems. Further, in Marchand’s model the angular
dependence of the intensity is ignored, which is more crucial in higher dimensions.
Therefore, Marchand’s model is good for nongaussian laser beams in one
dimensional slab geometry, while the DSA model can be extended to higher
dimensions including curvilinear geometries, though the equations involved become
more complicated.

It is observed that the effects of radiatiur: wansport is more significant on the
ablation mass as compared to the ablation pressure, as predicted by Mora. Inclusion

of radiation transport results in zn increase in thermal, kinetic and ion energy. This
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is due to the fact that when radiation transport is included energy is transported as
well rather than being just lost. From the simulations it appears that the increase in
energy is about 7 to 10 % for kinetic, thermal and ion energies. More simulations
are required to estimate the x-ray conversion efficiency and the effects of radiation

transport when different wav~lengths or higher intensities are used.
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APPENDIX

A. NUMERICAL ASPECTS OF DSA

A.1 FOURIER ANALYSIS OF THE RADIATIVE
TRANSFER EQUATION:

We start our Fourier stability analysis of the radiative transfer equation when

it is discretized in time. As shown earlier in Chapter Three (3.3.12), this is given as

a -
ua + (o+1) = lzﬂfoolodv +Q
where I, = f_llldu

(A.1.01)

Due to the coupling in frequency on the right hand side, we solve the above
equation iteratively. The iteration strategy that is used to solve the radiative transfer
equation is known as source iteration. Source iteration (SI) of (A.1.01) is expressed
as

lol

ual
&

OSSR Y VP
.1 101
R AT "

(A.1.02a,b)
where the . . 1/2 index corresponds to the most recent intensity obtained by solving
(A.1.022) with an initial intensity of I,. For the next iteration, the source term
(A.1.02a) is updated by using (A.1.02b). To study the convergence properties of

(A.1.02), we define
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= (n)'D ezu
Dy =1 - I3 = &'Dy e™

where w is the eigen-value and D, is subject to the condition

fo-oD’dv=l

(A.1.03a,b,c)

We take o and y to be spatially independent for simplicity in the Fourier
stability analysis. The following steps are taken to obtain the radius of convergence:

i. Write (A.1.02a) for I-1 iteration.

ii. Subtract the above equation from equations (A.1.02a) and substitute

(A.1.03a,b) wherever possible.
iii. Simplify the above result using equation (A.1.03c).
iv. Repeat the first two steps for equation (A.1.02b).

Since the steps are relatively simple, only the final results are given.

(ii) - apz«on)uslz'-'

@) = @Dy = [ Dy

(A.1.04a,b)
The radius of convergence is obtained by manipulating (A.1.04a,b) and using
(A.1.03c). The steps that are performed are as follows:
i. Multiply (A.1.04b) by o and integrate over entire frequency spectrum
ii. Substitute (A.1.04a) into the above equation
iii.  Simplify the final result by using A.1.03¢c
The final result after angular integration is

- Ll gy — By = [0S r g
© 2fo"[f-n xn (ipk+o+t)}1v [ang o
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(A.1.05)
The spectral radius can be viewed as the rate at which both D and D, go to
zero, which is just the error reduction per iteration. In practice it is taken to be the
largest eigen-value. In the source iteration method this occurs when A =0 and r=0.

When this is true the spectral radius is given by

spro= [Tadv =

where n - 1 when ar -+ 0. This is true whent+0oro > L.
This result shows that the SI method can require an arbitrarily large number

of iterations before a converged solution is obtained.

A.2 FOURIER ANALYSIS OF THE RADIATIVE TRANSFER
EQUATION USING THE DIFFUSION EQUATION:

A Fourier stability analysis of the transfer equation when it is accelerated

using the diffusion equation involves equations (3.3.12;3.3.04;3.5.02) presented earlier

1
I3 lo.l.

al ? -
Cr +(o+t) 2 = 121-{0 olgdv + Q

1 1
f L *—

1_FK it “oF Tdu + gu[" o0l 15
T3(o+t) &t * @0k =xnf°o o & mfo o, “~)av

(A.2.01;02;03)
Let us define

1 1
o= I 3

le
D 2x12%-12%aqDe®
D! =1 -I"' = wDe
] 1« ]
N =R - F o=l fy et
where Fy' = I7-13"

(A.2.04a,b,c,d)
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A Fourier analysis of the transfer equation when accelerated with the diffusion
equation involves the following steps:

i Rewrite (A.2.01;02;03) for steps -1, and subtract them from
(A.2.01;02;03) respectively. After substituting the first equality of
(A.2.04), we obtain

'01
oD ? k3. xm ]
b ¢ (@+1)D . f oD; dv
(A2 . 1.'.
2 _ ! 2
D, 'I"D dp
2 J+]
1 &

- + + -1 = - *1
Yoy ar T W [T ok
- lo.l
cxn [ |o (f! D %y - DJ]“'

(A.2.06a,b,c)
Substitute the second equality of (A.2.04) (Fourier decomposition) into
(A.2.06a), to obtain

ii.

iApw! De®t + (0+1)w'Det = x—zn-f- w!D, et dv
[
From this we have that

D=X1 fo Dty = ((o+t)-idp)xn f, Ddv
2

((a+7)+iAp) 2 (o+1)*+A%4?)
Iol

D,? = f_llm’De“‘ dp

2 -
3(:‘“’) offy e + (a+1) W™ = x'qfo owlfy e dv

+ xnj: [of_:w’De“‘ dp - u‘Doe“l]dv

After simplification the above results yields
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52} o - o 00

X a+1)

(A.2.07ab,ed)
iii. From (A.2.04d) we have
1]
frap o p 2
[ (] [
' f, et = "l D, e - f‘lD e'oldy
1

So= “’Do'f_,Dd“

(A.2.08a,b,c)

iv. Substitute f, in (A.2.07¢) to get

(__....*2 + 3("")2] ((.)Do - f_’l D du) =xnf’ [0(000 N f-ln D dy) d“]

(o+1)
+ YN fo "o I_’I Ddpdv - xn fo -aDodv

V. Multiply the above equation by o and divide by

[1’+3(o+r)’]
3(o+1)

Then integrate over frequency spectrum, to obtain

__xMgo_ = mo
I oD f A2+3(g+1) @ 'f f Ddudy f [ A%+3(a +t)2
3(0 +1) 3(o+1)

(A.2.09)

vi. Substitute D from (A.2.07) and use the normalization relation
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f- of' (CAIRZT IR ‘f. 3xne(e+t) 4
0 2((0+1)*+A%?) 0 (A*+o+1))
( f3xno(o+t)dv]
0 (Xo+1)*+AY)

W =

(A.2.10)

vii.  Simplify the above equation (imaginary parts disappears after [ d u)

SANCR 1 3
l; ok [ (((o+t)’+l’u’) 0-’*3(0*':)’)}1“

[ f Ixno(o *t)dv]
A2+3(0+1)?

w:

viii.  After further simplification, the final result is

f I ox(o+1) ( AY(1-3u?) }1# ]dv
2 %0 {atiare)? -t | ((a s+ A3ud)

( f 3xno(a+t) ]
0 (A3+3(0+1)})

(A.2.11)

This shows that in the limit of A -+ 0 the spectral radius goes to zero for all

values of r = 0. Therefore, with the solution of the diffusion equation, the solution

of the transfer equation will converge rapidly even for slowly converging modes.

As stated earlier, the diffusion equation itself faces the same problem as the

transfer equation, namely slow convergence. It can be shown, by using a Fourier

stability analysis similar to that used for the transfer equation with SI (A.1), that the

spectral radius for the diffusion equation with the source iteration technique is given

= 3o(o+1)x
° (P+Xosr))
-1 when <-0 andlor g==

W=7 dv

r = “f a+1:)

(A2.12)
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This slow convergence can reduce the effectiveness of the Jdiffusion equation
in accelerating the transfer equation. Therefore, another equation is derived which
is designed such that for slow converging modes a more rapidly converging solution
is obtained. Fourier analysis is not presented here due to the complexity in its
derivation, but a similar approach can be used to obtain the spectral radius of the
transfer equation when it is accelerated using the diffusion equation which in turn

has been accelerated by the linear grey equation.

A3 SOLUTION OF THE RADIATIVE TRANSFER EQUATION:

We rewrite (3.4.02) here for completeness

1 1

223 f L lo.l.

2 2 2 XﬁA-‘ !
""(I-w'% ) I-c"%) * Opln = =T Ok * 850

(A.3.01a,b,c)
The solution to the above equation is obtained by a so called "sweep from left
to right" and then "sweep from right to left" method. The intensity incident from the
ieft is computed independent of the intensity going to the right and vice versa.
CASE L Ba >0

i. Substitute (A.3.01b) for I''_,,. into (A.3.01a) and solve for

Il#l/z )
mgi
ii. Substitute the new value for I"'?,, in (A.3.01b) to obtain
"2 .., which will be used as I'',, , for the next cell, and so on.
iii.  If "', is less than zero, let I*'?_,,,=0 or I, ="' in

(A.3.01) and solve again for I'*'*,

CASEIl. u_.<0
The procedure is the same as for p, > 0 except that I''?,,.,, is replaced by
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ll' 1/2
mp¥l/2

For the next iteration, I'""* _ obtained from (A.3.01b) is used to get the new

source term for {A.3.01a). The final set of equations for u,> 0 is given as

1

et ! 3
1l [ 2‘ P T, Oyl + A% Qg + 2"-’.‘,_1]
I 2

mgl (&“ l+ Zp.)l
le= o= lem
lmz'l =2 lqlz -1 2.-1.

If I''2__ is negative then, according to a parameter § (=cat/ax)

1

XA, 1 1-3
[ 23— ZeOon * 8500 * “"J-u-l]
2

E<l Iy = -
Op
h.!
1%, =00
"l"i
1
XgMiA%, 1 -3
141 [ ) zxol', ost * ‘Q"C‘ +ud ngi-1
21 Iy = - 2
(O *+ B
hl bl
2 2
l ._l_ = I"‘

3

(A3.02a,b;03a,b;04a,b)
Ifu, <0,

lo_l. 8
L =
" (6,4 '2l1.)
11 o1 ol
1 =21 0-12
-1 gl Wl
net nei+3

If I'"'”_, is negative then,



1+

LN B,
[ s - o v

03]

Jeo

E>1 Iu"—'

(A3.054,b;060,b;07:4,b)
The new source term is obtained by summing the new specific intensity from the

transfer equation as

]01 o=

1+1 2 2
Iq‘ = IO“ = 2. I"‘ (l).

(A.3.08)
Therefore, one complete solution of the transfer equation with source

iteration can involve equations (A.3.03;04;05;06;07;08).

A.4 DERIVATION OF DISCRETIZED FORM
OF THE DIFFUSION EQUATION:

In order to obtain a diffusion equation which is consistent with the transfer
equation just solved, one must start with (3.5.02) instead of (3.3.12). Alcouffe
showed*” that the diffusion obtain equation from (3.7.27) leads to unstable solutions.
The following steps are taken in order to obtain the discretized diffusion equation
from the transfer equation.

i Multiply equation (A.3.01) by @, and w,u, and sum over the

angular space to obtain the zeroth and first order moment in angular
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space. This yields

]s.! |~l ]01

Bt =150+ 8y Tog” = X AKE Ol + 5,00
2 2
Iol [ol [01 Iv_l 101
%(1 -y la? -t

2
’) + 6 g = Q Ax‘
7"‘"2' 2!“3 3 M’E 03"‘2' “I 1gt

(A.4.01;02)
Here we used the facts that
ol 1.1 3y 2-1 1.4 11
12"2=z.1.“2(‘).(“' )=‘:'xuuzmulﬂﬂ"2-%l°l‘z
I, o, =0
L §
= xﬂnlul "t'I'
Qo Bar” ost
Qp = VI8l
(A.4.04a,b,c)

ii. The accelerated form of the diffusion equation is obtained by

accelerating only the first two moments, as given below

1 i1 1+1 1+1
Ut Iw'%) * Ol =AMy 2% By 0y Ly + A% Qo

[9.!
2 1,41 141 s g1+l
Caed "l * 3 Ut = 1) * Ol = Qi

(A.4.05;06)
The DD relationship is redefined in order to eliminate the instability due to

the negative flux fix up in the transfer equation, as
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S l"1,+b " n = 0,1
3 ot~

IM‘ ogl ogied

[ S

22|

(A4.07)

where the choice of a,, and b,, is somewhat based on trial and error approach.

To obtain the diffusion equation in the form of a tridiagonal matrix, the
following manipulative steps are taken

i Equate (A.4.02) and (A.4.06).

ii. Substitute (A.4.07) in it for n=1 witha,, = b, = L

iii. Write the resultant for i+ 1.

iv. Divide (ii) and (iii) by o, and o,,, respectively.

V. Eliminate (A.4.05) for I'!,,,,..

vi. Rewrite (A.4.05) for i=i+1 and eliminate for I'''"? ., ..

vii.  Substitute I'',,,, and I'',,,,, from v and vi into step iv.

viii.  Substitute (A.4.07) for n=0 in (vii) .

ix. Subtract the resulting two equation from the two equations obtained

in step vii.

The final result is

-5 1 fua 3_ 'l'l.l . l M,l‘ l"'_,
0",1 ogi 2 30“ ogi+s  ogi 3
/ +1 l'l i+l G i1 1+1
* 4 "J‘"I * b%‘“lo'pl]# —4‘! g‘«_ 0!",,,(-_]
1 m g
4[1,,.1‘14.1“1'12‘ O‘M(aw.] bogio1 Qflol)]

1 M It
;[x,max.f-‘ ¢ %oy, b«r’o,,-_] .5,
2

(A.4.08)
Where S;"'* consists of variables which do not change during iteration of the

diffusion equation, and is given as



(A.4.09)

A.5 DERIVATION OF THE DISCRETIZED FORM
OF THE GREY EQUATION:

A discretized form of the diffusion equation was obtained from the discretized
transfer equation to ensure stability. The grey diffusion equation is derived from the
discretized form of the diffusion equation, namely equation (A.4.08).

The accelerated form of the diffusion equation is obtained by summing the
frequency groups with a particular weight function. The following substitution is
made in (A.4.08) before summing over the frequency groups in order to obtain the
grey equation.

Consider the following transformation to be used in the diffusion equation

kel
o Codlys T = 07 GuI BT

ko_ l k01

ko_
+fu ‘6,4 (aJ *b ’ 1)

ke [ 253 kv

2 2 kel e
8u " = g7 x) - 'P,a (I N _1)
o83 ’ z a3
kQ_ f T8 l | T4 ko_.
3
By oy @) ,)
"2

(A.5.01a,b)
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2
Iy 120 px (b,‘,l bl 0l
Gt = el e RN Ly Loyt
2 2
1 1 1 1
doi ol-—

(A5.02a.b,c)
k' can be k or k+1/2 corresponding to values before and after acceleration. The
resultant equation is

1
‘3‘l¢l

1 . ped 1) 3 [ el 1.1\
+2,——.—q>"'(1"‘ - M +(1 -] - w’(l -3
36y "\ %z A3 |z oy oay o3

-I

ko.‘. ko.‘ 2 k’-l kcl

Rel2 [yhe) _gkel 2 ] k2 ] H
Per (Id KR -1t ) +[1 Q%-z - i (l 3G
2 2

4.
-

ATl

- ! : "
O gie1| ke 11 k1 3 2
* zs—!;— Opiot (adq’,,.é * bual 1 ] *f,... - O (a“"’a 3 * bad
F] F 2

- 1 10

ko= 010 ke bl &l l e 1Y2
+ E‘—f 9"2 (a‘,;l’ + bd’k., l] -f‘l : = 9“ (ad’ *b‘l ]

2

1 a3
T ¢ ket k1 O3 e 2 ko2
“z,zl,‘qn:.]“‘z,o'(. e:‘:lﬂ(adoll 3 bdoll l)] “’,In. e‘l'l(adtll bﬂtll ]
2

l ko.! lol kvl 16 kol." ke 1 1 [ 124 1\n8
+2‘zx‘m,u,2‘o Oq,z(adld.?bdld_i] +fu L. 0‘, (adl 1 o d ]
2 2
[}

IS,

(A.5.04)

These relations simply reflect that a correction term is added to both sides of
(A.4.08) in order that the accelerated form of the new equation yields the solution
more rapidly by projecting out the slow converging modes. Before the final form of
the Grey equation is presented, consider the following manipulative steps taken to
obtain the final form of the grey equation.

Suppose we have an arbitrary function yr, which is a function of frequency and
space. Consider the two terms (#7 & #13) from (A.5.04)
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g [0 W - a5 Ay My By 0gy)
where other variables are as previously defined

= I [ (o *+ v)ax, Wy - ax, Xy M; Ty 0g ¥y

ax,
1 X 0¥y

(
a ) oﬂu‘+tu‘-a—:;:%2' "J

[ Axgo
= - _._‘—L
I, | oy ax + Tax, vem) I, x‘t

= I, [ 8y ¥y - A‘txu'kft"ﬂ*m]
&,0._7
= (] g (]
e P45 ey '
= I 1 + a0 n|¥utAx,
let &, = (1+agm)rAx,

(A.5.05)
If y, is taken to be 6**'* ,then above result can be written as

-3

l’z
§ = I, 8y 6y

With the above manipulation and keeping only k+1 terms on left side of equation
(A.5.04), it reduces to
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l‘-% ke

Pgie1 (11 kot Pyl kel kel
- g1l Yo -
Z' 36“,1( d‘% a,%] + E‘ 36“ (l“,% l“_%)

e"l ! 3} kel E kel 331
vy (a"‘"lat 3t b““’w%) ) 7‘ (a"‘,at" * b"ld'%)

(210

L 23

( t'l jo-l- ko-.-l‘: kol
: Ea 3‘1 I,‘i.?. -1 .2‘ - l Py =1 .2']
Ou. 2 ofi*3 30“ ogi*3 ogi 3,
b3 [ 101 1 By 1
2 ‘o L 3 *— *—
> 'P,tql"z-l":l_%i ,'z_l'z
2 134, a3 Toied 34, ol oi-d

1 kol lo_l
2 2
- ;E,(E,‘.J,..n + Kol ]
1 1 1 1
1 ke= koo ko= ko2
*Z {5101 [ad’lldtzg + bd'lldozé] + E{a""d.i;"b"‘la-i]]
k'-i
+ 3 Su
(A.5.06)
The solution of the grey equatior depends on the choice of the spectral functions 6

and @. One expression for 8 and ¢ corresponds to the spectral function causing

slowest convergence. In this case 8 and ¢ are taken to be same and are given as

eb% = wh% = 1/(9*T)
L & Elx oyl
(A.5.07)

This is known as the linear case, The other expression for 8 and ¢ is known as the

non linear case and is given as

F 22 lo.l.
N 1 2
Ot 7 _ Ja 'Pk z 8
= . _
“ k“;‘ ko_; s ko% f 124
Gty *baly O

(A.5.08a,b)

When the nonlinear expression is substituted in (A.5.06), it reduces to
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1
1 k3 kel ko1 1 3 ke kel
= By |9ga|l 3‘11*ET¢,¢(1*1"1]
'3°,m [ ¢ (0"'2' -2 ‘303! %3 -3

1

1 kot &1 1 o1 kel I3
+ —A&fagal 3 * byad 1)]" 5(“0:’ x*bor’_l]]‘z ol

4[ '( Foeg Geg)| 4T\ ey O3 e

(A.5.09)
The following steps are utilized to obtain above equation. Consider the following

expression from right side of (A.5.06)

ke kvl k’.! ko_l

1
Pyt 2 2 2 2
L =-(a 7-1 +&(ay,l 1 -b,1

(A.5.10)
If we substitute the nonlinear expression (A.5.08a,b) in (A.5.10)

k#l kol lo.! kql
a’ -1 i i-1r
i1 -1 00l el

E‘ .l 2 2 2

g o kea t-l

(A.5.11)
Here we have used (A.5.01) and (A.5.05).

Now it is trivial to see how all terms except S, on the right hand side of
(A.5.06) cancel each other.
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A.6 BOUNDARY CONDITIONS OF THE DIFFUSION EQUATION:

The boundary conditions* are obtained by adding a term into the flux (scalar
intensity) at cell boundaries in order to make it consistent with the scalar intensity
inside the slab. Conventionally, a quantity known as the one-way flux must be
conserved between the accelerated and non-accelerated equations.

The one way flux at the left and right boundaries is given as,

3l i
J%2 = 2.._»0 o)_p_llé

f L f 2

2 2
JIO% z “-‘o Q- p.!“h%

(A.6.01)
The diffusion equation derived here is based on the fact that if the specific intensity
is linear in angular space, then the exact solution of the diffusion equation is
obtained without iteration (assuming no negative flux fixup is implemented). The
specific intensity at the boundaries is defined as

lol 1 Io.l. 3 j...l.
2 2 2
g = 2he” * S0l

(A.6.02)
The one way flux becomes
lvl '0.! bl
1,72 3 2
1P = B g 0upalsl } ¢ Sl i
3 he?0 “mPm 2 Q% 2 l”l‘%
Iol l lol 3 h.l.
2 2 2
=3 ~1 =
JI'-‘- “-Q w.u.[z Mo_; * 2".11"’_;-]
(A.6.03a,b)

It's accelerated form is given as
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. 1,141 3
J=x =1 4
_;_ Ba*0 mlplf2 “_;. + gp-lu_;]
Il 1,01 is1
Jl.% = E“.q w.“-lilw'-; + Eu'llll*-;-]

(A.6.04a,b)
By subtracting (A.6.03) from (A.6.04), and using the condition that J"*'* = J*!, we
obtain the following accelerated diffusion intensity at the boundaries after summing

over all angles

o1 +]
f 12".,0 O by = lq;z“.w W, By * I 1 - ’:‘%

WE = 182
o4 11
s e 132 op, +13% -1
L L 19y 0 Duby .1 .1
» nF'm ba " 1903 10143

(A.6.05a,b)

However I'',,,,, and I'"',,,,,, are unknown. To find expressions for these variables in
terms of I'!,.,,, quantities we go back to the original equation used to derive the
diffusion equation within the slab.

I'*',,, and I'',,,,, are computed as follows

A TV,

i Divide (A.4.06) by g,

ii. Substitute (A.4.07) in above for n=1

ili. ~ Multiply (A.4.05) by (-1/2) and add the resultant into above

iv. Substitute (A.4.06) for n=0 into iv

V. Solve for I''',,; by taking i = 1

B. |

A similar procedure is used, except that we now multiply by 1/2 (instead of -
1/2) and solve for I',,,,, by taking i = I (instead of i=1), The final result is
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11 ! 11 N, 8% s .
Iy J—(aw * bogil,) ,) J%—-n‘ o‘,(ao‘,lqlg . b“,z(:"l)
2 P 3
Iol jcl
a0 Q | Qm“n oL g -1y - 2 @ -13

3

- —U 3 - 5
2 o 3o, w; ;3 34, 3

8l 2

bl %u(awlgll’l bQ’,"l )* E 2 “(aqlll'l ’bwil,.l |)

lslo_
o R Quthy Ll g ("'; e
2 0', 30,, gl 3 w _l 3a‘l 761‘ 76"%
(A.6.06a,b)

After substituting (A.6.06) in (A.6.05), we rewrite these equations in similar form
as the diffusion equation. The final form of the accelerated diffusion equation at the

boundaries is given as

0,1 11 9 | N
(2,0 Oubtn + —Xb —.—)1 1+ (Fagy - )5
b0 Talm T T T 35, w3 4% 33y, %
O-l- ’
-1z NI il P ARE o)
gl Tua*0 Opbn 1,1 4 ¢ On aql '
2 F
. MIQM - g{l“l . 2 (llv-:- } h:)
2 6, 36, »; %3
-3 . . —6ﬂb - 1o
( u.co "’.l‘. 4 aw ( 4 (V7] ——)'w__
1 .l
== "—12 <0Vak " L ‘,(awl"' ¥ bw'M
M L5 ars lyoz ‘ w-
.1 .'
‘M,QM+Q,‘,A:,_ .(I‘z _112)
2 3 35, -3
g Oy 2

(A.6.07a,b)
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A.7 BOUNDARY CONDITIONS OF THE GREY EQUATION:

The boundary conditions for the grey equation are obtained from the diffusion
boundary conditions using the transformation (A.5.02) that was used to obtain the
grey equation from the diffusion equation inside the slab. The following steps are
used:

i Substitute (A.5.01) in (A.6.06).

ii. Sum over frequency groups.

iti.  Use similar simplification as was done to obtain (A.5.06) from (A.5.04).

The final form of the grey equation at the boundaries can then be expressed as

(Zyp0 Ouba *+ By 305 + 48 bo,)l"" + (Gt - o,,)l*;‘
1 o 1 1 1
"— ”— — f T4 T4
z 1 § 2 2
= I E“_,ow_u. , = zzleglf‘l l("ol 3 boxlo_l_ )
2 2 2
1 1
X, Q0% 2 3 3
+ 13Qy, -5~ 1.5 < 3F-17)
2 87l s 6 '30,,‘?5 %3
bl
g ®ar O’ « * Ih-)+—}.‘.(-—-(l ,_1_1,,%)
379, 03 93 Wl o
(A.7.01;02)

A8 SOLUTION OF THE DIFFUSION AND GREY EQUATIONS:

To obtain the solution for the diffusion equation, we rewrite (A.4.08) and
(A.6.07) in a tridiagonal form, and invert the matrix. In matrix form (A.4.08) is

written as

a,,l(::_ % + b',l‘::’ _;- + c‘,I;:.% = R

(A.8.01)

where coefficients from (A.4.08) for i=2..I are given as



& 36, 30, 4 4
C, = ——l_ #E&
& 3%, 4

I
11 _ lol il
Ry = _El D171 8%1, By 04y 1(G0g.o] Y- btm",-%)] * S,,_Z,

(A.8.02a,b,c,d)
The expression for left and right boundaries from (A.6.07) are

ay = 0.0

b

=

Be>0 WOylyt } +-° b(kl
3 48

1
7 Byt 1“0.1
1 s 30‘,4‘

lo- vl
R,-l,z ,o(o.p-+l l+__LQ£Lix_:_OJi
Va 183 2 o,
]

lo.. v_
Ivl I+1
o R LA

(A.8.03a,b,c,d)

1. 1
a ] = —0 -1 ’."

1
bﬂd = —2 .p. 3-\ *za‘l-laMl
1 Coper = 00

o= b_

2
B poo®

e 5y, 250y
Ocl'i 2

nba ~ .
181 Oy

lo_

lvl
I z 2 +l oLy
“3a, o ,,,.%) 2 Ry "ﬂ("w’w.% ou',,.%)

(A.8.04a,b,c,d)
In the source iteration method a new solution is substituted in (A.8.02d;3d)
and the matrix is inverted again for the new solution. This is repeated until some

desired convergence is achieved. To accelerate the diffusion equation we solve the
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grey equation instead of substituting the new solution on the right side of the
diffusion equation. The Grey equation is solved in like manner to the diffusion

equation. The set of equations is given as

1 kol ‘01

ke
a‘,a_z + bl 3 it + c"u.; = R}
2

(A.8.05)
where coefficients from (A.5.04) for i=2..N are given as,
¢
= -%z 3“'1 + lg‘_lba_l
1y, [9n @ =
b, = 3'2 _a'd*'gu "2 [Elba*ft-l“a-x]
8 Tg- |¢
1
= —_2 L —Ep“
3¢ oy
For linear case
kol lol bo_ 01 ko.!
2 1 2 2
ST ,,,,('ou s ORI gi(llkl - ;)
l __L % hi h-
3'2 (I 'E‘ ) + -3-2 (’ l N l)
1 0- ko_ o_ to_
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jo.— ko_.
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For non linear case
k#l
=3 ‘s »
(A.8.06a,b,c,d)

At the left and right boundaries from (A.7.01;02) we have
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B. MARCHAND’S MODEL

Conceptually Marchand’s approach is quite similar to the approach used by
Audenaerde et al®! to solve the neutron particle transport problem. The details of
the mathematics involved can be found elsewhere®’. The following discussion
emphasises the conceptual understanding of Marchand’s model in it’s exact form and
then the two-cell simplified model.

In order to elucidate Marchand’s algorithm, consider the geometry shown in

the figure below.
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Using the analogy of the Andemaerde analysis, the radiation power intensity
that originates from a ring of radius R of thickness dx in cell m and is incident on

the right boundary of lth cell is

dPl:l(")v)d“dV = aﬂRdet)dv n.].%e i NG L
r

(B.01)

where pu=cosf and 7 is the optical depth between x,,, and x, and can be expressed as
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t(x-x,)

T, 1 %) =T(X), 1K) +T(X %) = Tt

(B.02)
where 7, = n,0,4Ax,, 0, is the ion density, and I,, is the power radiated per atom, per
unit frequency interval dv per unit solid angle in cell m.

The total radiation specific intensity from cell m incident on interface x,,, is

P(p,v)= Lu'dﬁ:'l(p,,v)dr

(B.03)
By using equation (B.01;02) in (B.03), (B.03) reduces to

dp.dvaznl"ududv le-Ts ll-e-Tl

) (B.04)

We can represent the contribution due to all cells left of cell 1 as

2xl, -m e
P} du=E.,,%udu e *1{1-e *}

(B.0S)

To compute the total intensity reaching position x;,,(the right side of the cell) from

all directions, we integrate over u

Qlfl = foldllp 151
x 2l
Q=X o FIE(T)-Es(riat Tl
where Em = [ %e"‘

(B.06)
where E, is the exponential integral of order three. Similarly, the contribution from

all directions at the left boundary of the cell is
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+t)l

Ql I°E.“

(B.07)
Then using the fact that energy is conserved, the net gain/loss of energy per unit

volume and per unit energy in Ith cell is

w. 10000 -0
! Ax

W=-l——[—- (591 Z_,, "lE(th.)-E,(t,.*t;)
-E (Tt T *Ey (t,,,*t,ﬂ-)l

(B.08)
Here the first term represents the power emitted out of cell | and the second term
represents the power (emitted from all other cells and) absorbed by the Ith cell.
Unfortunately, due to coupling of each zone with other neighbouring zones, the
simulation run times are significantly larger than those in which radiation is

neglected.
In order to reduce the radiation time, Marchand developed an intuitive

approach to solve the above problem. He claimed that one can approximate the
plasma as being either optically thin or optically thick. In the limit where the plasma
is optically thin, the intensity coming from the right (or left) of a given cell is the
same as that produced by a single cell of luminosity equal to the sum of intensities

emitted from all cells (since nothing is absorbed), that is

P,,,=2n2 where Z=I I Ax

(B.09)
For the optically thick case, one treats it as if it is comprised of two cells, one
optically thick (emission is negligible) and the other optically thin (here absorption
is negligible), then the intensity emitted out of the original cell is



where Z,=l,Ax,

(B.10)
where cell "a" is non-radiating with optical thickness 7, and cell "d" is optically thin
and radiates with luminosity Z,. Marchand called this approach of reducing n cells
into two effective cells the recursive approach. The figure below illustrate what is

meant by recursive approach.
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In the recursive approach one assumes that the radiation intensity everywhere
in the plasma can be approximated by the intensity generated by a combination of
two cells, one optically thick and one optically thin. Following the preceding analysis,
the intensity incident on the right boundary of the Ith cell from the right is

N o A
Ple2nze *a2npt(l-e #)eZe *
9;

(B.11)

here the unknowns Z,, and 7, are chosen so that the dominant angular dependence
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of the specific intensity is around || =1; because in the cold region the specific
intensity is strongly peaked around |u|=1. With this simplification the number of
computational operations is proportional to the number of cells N rather than N? as
it is for the exact model.

To physically justify the applicability of his algorithm Marchand made some
assumptions®”. He assumed that for problems in consideration, the time scale which
characterizes macroscopic changes of the medium is long compared to the typical
photon transit time; hence to a good approximation radiation transport can be
considered as a stationary problem. The range of energies is restricted to 30 ev <
hv < 10 Kev for which photon scattering mean free paths are typically much longer
than the absorption mean free path, implying scattering is negligible. In this limit,
it is possible to describe the radiation transport in terms of photons being produced
isotropically and propagating in straight lines until they are absorbed. The
absorption probability is prescribed by the local absorption cross-section. Therefore,
Marchand’s model is applicable for problems in which time dependence or scattering
can be ignored. The angular dependence of the intensity is ignored. Although our
present radiation transport code also ignores scattering, the technique that is used
to solve the radiative transfer equation can be made applicable ,with appropriate

modification, to problems involving scattering.
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C. LEE’S RADIATIVE TABLES

Spectral-line intensities from laser produced plasmas are useful as temperature
and density diagnostics. These emission spectra allow one to test the accuracy of the
theoretical rate coefficients. However, before one can predict the emission spectra,
one needs to know the plasma’s charge state distribution and ion-level population as
a function of it’s electron temperature and density.

The tables of emission spectra used in MEDUSA are produced by Y.T. Lee
et al at Lawrence Livermore National Laboratory. A detailed description of the
model used for Lee’s table can be found elsewhere!. Here the formulation and
regions of validity of these tables is briefly discussed.

Since the laser produced plasmas of interest are produced with electron
density ranging from 10" to 10* cm?, neither the coronal nor the Saha-Boltzmann
equilibrium models are applicable. The coronal model gives ionization balance for
ions in their ground states, hence it’s valid for plasmas with electron densities less
than 10" cm® On the other hand, Saha-Boltzmann equation is only valid for higher
density plasmas. The coronal model assumes that all ions in the plasma are in their
ground state. The local thermodynamic equilibrium (LTE) model significantly over
estimates the average ionization state at all temperature and the coronal model
underestimates the ionization state at low temperature by neglecting excited sate
ionization. Lee uses a kinetic model injunction with coronal and Saha-Boltzmann
model to calculate the time dependent ionization balance and ion-level populations
of the non-LTE plasma in the electron density range of interest. This model reduces
to coronal equilibrium at low density and Saha-Boltzmann equilibrium at high
density.

The ground-state and excited-state energy levels for each ionization stage are
generated from screening constant calculated by W. Lokke et al and R. More. There
is one energy level per principal quantum number, and quantum lowering is obtained
from a modified Stewart and Pyatt formula to account for dense plasma effects. The

following atomic process are included in the model
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i. excitation and de-excitation collisions
ii. Radiative spontaneous emission

iil. Ionization due to collision

iv. Radiative recombination

v. Three body recombination

vi. Dielectronic recombination

The model assumes that each energy level couples with every level of the
same ionization stage, but only to the ground state of the next ionization stage. The
contribution of electron-impact ionization from excited levels is also taken into
account.

The results of ionization balance model are used to normalized the relative
populations that are determined by the balance of collisions and spontaneous
radiative transitions to calculate spectral line intensity (of L shell transition) as a
function of electron temperature and density. In the calculation, it is assumed that
the effects of ionization and radiative recombination on the cxcited-state population
are negligible, since electron collision rates are very large (of the order of 2)
compare to both the ionization and radiative recombination rates at the temperatures
and densities under consideration.

The model assumes that the plasma has small temperature and density
gradients, and the effect of radiation transport is neglected. In situations where
radiation transport and gradients are not negligible, the model is still useful in setting

an upper bound for experimental data.
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*  RADIATIVE TRANSPORT CODE BY HUMAYON BUTT SEPT92  *

. MWMBCMWWAMW .
M SEE M S¢ THESIS FOR DETALS

* DOCUMENTATICM IS SHOWN IN LOWER CASE BUT ALL VARIABLES ARE ¢
‘M!‘ANTTOBEINUPPBCA!ECI.(PORWFYWWMTD .

* SCAN FOR “nuar® SCAN "NRUN"

SUBROUTINE SATE

PARAMETER (NANO=24 NF Q=64 NCL=! 31)

PARAMETER (RK~7 36064 TE-16.PK=6.6261 E-34)
PARAMETER (BK=1.3007E-23 3P=3 OE08.EVE=1.6022E-19)
PARAMETER (TCP=EVE/BK.P13.141 393 A0=PK/BK *TCT))

INTEQER ABVL. AUTACL, CONVC, COUNT, CONT, TCONT, DB, DOCOUNT

COMMON 711/ ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT
COMMON /12/ DRT, DIFBC, DIFACC, BT, TITA

SMTST2, IMTST), SMTST4, SMTITS
COWWMDTN’HTITW

REAL*S ALFAMNCL), AC, ATMASS, DAF(NFONCL), ATEM(NCL)
REAL*S ABCONFONCL). AB(NCL), AOINFGNCL)

REAL*S BETAINCL), BOINFONCL)

REAL®S CV(NCL), CW, CHINFONCL)

REAL®S DLINCL), DINTO(NFONCL + 1), PRNTM

REAL*S FINTINFG.NCL + 1), FINLINFQ), FINRONFO)
REAL®S FRONFG + 1), PQONFGNCL)

REAL*0 HILIM
REAL*8 INLB(NFG), NRB(NF ), ITAL, [ERED(NCL), IERR
REAL*S INTB(NANGNFONCL + 1), INTINANGNFONCL), ZININFONCL)
REAL®S [TRB, ITERINFO.NCL)
REAL*S L, LFL, LOWLIM
REAL®S MAXT
REAL®E NATE(NCL). NINTONANONFGNCL)
REAL®S NFFTINANGNPONCL), Nmmro:u. + 1), NZIN(NFONCL)
PINTOINANONPO.NCL) M

REAL®S 3(NPGNCL), SUMI, SUM2, GRPQ(NCL), GRZQ(NCL)
REAL*S SINTINFGNCL + 1)

REAL*S TTIME, TOU, TERR. TELB

REALS TRNFVRINCL).

REAL*S UFL

REAL®S WF(NANG)

REAL*S ZLPINANG), ZNTINFONCL), ZQINFGNCL), DIER

COMMON /RO)/ ALFA, AC, ATMASS, DAF, ATEM

COMMON /R182/ PAB

, SPRB
commms.wm SUM2, GRFQ, ORZQ
COMMON /R231/ SINT
COMMON /R24/ TTIME, TOU, TERR, TELB
COMMON R25/ TRNFVR. TEMP
COMMON R26/ UFL
COMMON /R27/ WF
COMMON /R28/ ZLP, ZINT. 20, DEER

LOGICAL RTEON, TRN, DIFF, LOR, NLOR, SIMRUN, SMTST
COMMON L1/ TRN, DOFP, LOR, NLOR. SIMRUN, SMTST
COMMON ADC/ NRN, NCODE, NCOUNT, PRNT

C*** fng & Hirk ore sralyUcal expresssans of ngma wd
€ plwdumn furction [egn (4 209 A 4 20T
EXTERNAL FLIQ, FPLNK, F1. 1)

P (NCODE .BQ 0) THEN

<

C  “ope® flles reisted 10 ue radiation cody

C  "pordd® mput data file for the redisteon cods

C  “snalywis” ervor messagee whan thes code becoms urstable

C  “wryp" contanw the tavpersture for the model problem

C  “remk” contarm velues of the verisbies sccarding (0 pres value

ovm«mmnnm,snnmm

C**** ryumr=1 diffarwat rure with difTerent time slaps Respag everytheng
C  elos aurme, anly werk for the model probiem. Turmed off for raw.
NRUN=0
€% gy cutput if ey 10 W flles remalt, otharwies an the screen
€ rum a debug vanble - used (o chack consstarncy v S & DA
C  died & diwth used 10 privst 0 variable(s) shar dhi # of darstion
C  until diuch ¥ of ierstion, ¥ of vartshis depars an the value of
C**%% prea. Lrant=| means NO pararneter Rerslion.
WRITE (6,*Yentar SCR NUM DXL DBXU TCONT
READ (4.10) SCR, NUM, DRXL, DBXU, TOONT
10 FORMAT (SOX. D2, IX. I X M. IX W, 1X. 12)
READ (4.20) SDARUN
20 PORMAT (66X, L2)
WRITE (8.30) SCR, NUM. DBXL, DBXU, TCONT
30 FORMAT (1X, "SRC NUM DBXL DBXU TCONT =, %1 X 1)

r
€**** rend imitial duta for the rediation code
C?9900000000008000000000000 00
CALL DATAIN

CoPI0I90000000300000000 0 000000
CN  PRNT=PRE3
NCPl=NC+ |
NCML =NC. 1
NADI=NA/2
SMTET = FALSE.
PRNTM = 1.008-12
C*%%% read legmnire polynomiale’s aeroe md waight flsxtion
Qommm

I (SOMRUN) THEN
C***° thin will sirlats i poasible combinationn of ol, dm without
C  groy o with (lomw snd nonliness) grey with differest bounds
C  (2.3,20.50,100,500) at difTerant tirns staps (1,2.5,10.20,30,100,
€ 200,300,1000) pico seconds. note tuis rwilch over dm wy
C**** initiad mads of

TRNACC =0

DIFACC = 0

UN=0

TRN = FALZE

DIFf = PALSE

LOR = FALSR

NLOR = FALSE

60 CONTINUE

70 IF MEDURA BQ. 1) THEN
C**** gat dats necemmwy for mbume svmsiation
€ MOT acte & 2 switch 10 @ucuts 8 part of Wbl subroutine
C s aubronting rends the radiative tsbies wnd evahistes the
C  varvbles for the RTE, it's Amction is amwe 59 the model
C**** sbroution for G model prodlem.

MOT=0

CALL TABLES

MDT=1
P ONITT NE 1 .OR ( NOT. KTEON)) RETURN
nie
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€% doflrw the madal problem

(1930000000000s0c0esressansance

CALL MODEL,

P Lt LT YL LI TY SPrT Y

;N

€°%%0 R T uoed a0 reset parsmaLer for compurstion of spectrel redi of
C  the wasfer equatson
c muuwm.ammmmm—m
sop Aurther ¢ompuatation of s sqilion when £ ppers Lo be
C""mlnbwumwm
RT=0
80 SMTETI =0
MTIT2 =0
AMTITI =0
IMTST4~0
IMTSTS =0

TOM =TOM+ |
T (TOIT OT. OTA) THEN
C**** compints new

rpeiture
(990000000009000000040900 00000

CALL TEMPER

CALL CPUTM
(I90000000000000 0000090000000

WRITE (8. “Yprogrem floped becsuse oits ecceded’, TOIT, OITA
TOP

BN

qT=0
C**%¢ DRT used 29 ranet parametar for computation of spectrsl redive
C** of the diffusion egpittion

DRY =0

CO%0enearsesstcessorsestinsrese

C**%* chack if radigtive trafur squation is converped
CALL TROONV

Co90000eee0000000nssssssnsese
DO110J= 1, NG
DO 100K = |, NC
DOOI™ L, NA
PINTILIK) = NINT(LLXK)
90 CONTINUR

100 CoNTINUR
110 CONTINUR
T (CONV .BQ. 0.0R OT QE. TB .OR. (3MTST)) THEN
C*°° yrmupert Stensity 8 ¢Onvarged of Wanport bound is ecceded or
9% et e
0F (aMTST) THEN
WRITE (99."Yoiter Uarstion Larrninated due Lo 97 ga 1.00t
1o ofaw
IMTST = PALSE
END IF
QO TO 290
END
IF (TRNACC B, 0) THEN
Co9%500000000000000000000000s

CALL TRNE
C*°° golve tomafir squetion Uaing POUTTE itarstion.
(CU99000000060000000 0500000 0400

00 10 80
Q:meAccm- DHTHEN
-0
120 TAT=TOT+
= DCOUNT *+ NDICNT

NDICNT =
C**** potve sltifivquency dffusion squstion
CPr000000000000000000 009000000

CALL MFDE

CHO0000000000000000000005%000s.
C**** chuch if maRidagsency diffurion Stastion is comverged
CPe90500000000000(0 00099000000

CALL DPOONV

Or=T+1
I (y .0 DB . mmmommm'n)m

C  imtavagy, tL (s in) the sohstion of diffasicn enpiation with
C**** Q1 d with gray difSumion squation
WRITE (&, “Yook tilt @it i tir, TOIT. THT, OFT. BT,

o
WRITE (98.130) (2 XNONGI)K=1 NCP1 W=t NG)
130 PORMAT ((1XIXILIXIPELCY,1X0)

WRITE (*."Yeter { 40 contimue’
READ (3. INUM

T (NUM NR. 1) THEN

TP

or
END P
O (EMTST) THEN
IMTIT = FALSE
W (SMTST2 OB NG*NC*0.05) THEN
WRITE (99.*Yimer #ertion tarmemsted des to 100 oftes i
11 sobgion o
SMTIT2 =0
ELSE IF (EMTST3 .GE NO"NC*0.01) THEN
WRITE (99."Yismur #eration (amituted due {0 dape .ge O
1.99 too ok’
SMTITI

END P

conveged sccelartiod gud ussccslarsted diffusion

&

WRITE (99.140) TOIT, TUT, OIT, TIT
140 PORMAT (1X. Your=. I3, I1X, ug=. M, | X, ‘o, 14,
] 1X, W, 1)
END P

NDZI=0

DO170J=1.NQ

DOIsOK =1, NC
ZINTUX) = (AO(UK)NDINIX + 1) + BOUKY*NDING.K)) /
2

IF INTUK) LE. 0.0) THEN
NDZ =NDZ + |
WRITE (99.150) J, K. ZNTUX), TOIT, TIT
130 FORMAT (1X. ‘zint from &€f is neg. ) & ot Low ',
1 202.1X) 1PEL0.3, 20X.12)

DO 190K =1,NC

[F (ABVL EQ. 1) THEN
Ceooe taks sheolute value of comvarged ndin whan it is negative
DOOK=1,NC
DO200J=1,NO
T NDINGX) LE 0.0) THEN
NDING K) = ABS(NDING K))

WRITE (99,220) K, AB(K), TOIT. TIT. OIT, TIT
220 FORMAT (1X, ‘sbik) from &Y is nag. mey cauee instability
11X 1PENLS, 41XID)
END IF

230 CONTINUE

00 TO 0

BN
240 [F (DIFACC LE 1) THEN
Wm

CALL Dol
FLSE ¥ (DIFACC BQ. 2) THEN

C****  compuie oW tampersture
WOTT=TIT+1
Oofr=0
DO 30K =1,NC
DO310J=1,NO

ZNTUX) = ZNTUX) + NINTILIK) * WF(D
300 CONTINVE

310 CONTINUE
320 CONTINUE
lrmuuno)m

arped d ind unceedorated zint

C“" umaum-‘nummm
WRITE (8,°Y) k zixt’, TOIT, TET, OFT, OT. TIT
WRITE (38,330) (X ZINTOX)K =L NC)J=1 NG)
330 FORMAT (3(1X1.1XI2.1X.1PB10.3.10)
comm

CALL CPUT™
WRITE (*,“Yarter 0 to contimse’

READ (5, NUM
W (NUM NE. 0) THEN
sTOP

WRITE (8.360) X, TOIT, OfT, TIT, AB(K)
360 PORMAT (1X, temp may become nag. k 1ot oit it sb(kY,



1 A1, 1X LIPELO.D)
r

END
370 CONTINUR
Coooe M(-mnhmm oY, TIT
0) THEN

" (smperature
CP90000000090000000000 00000000
CALL T
CP0000600084000000000000000000
i nawe 1 L
Cosotvrsseessseresessescsserere
Coo0escesovssteennesasessasens

[P (SIMRUN) THEN
IF (CONT .EQ. 0) THEN

CR90000009800000000004800 00000

CP9000000000000000000snt0s0000

300  FORMAT (1X. ‘unconverged tamparature &t time:', | PEL1.4)
CLSE

WRITE (0.390) TTIME
390 rq'lMAT(lx‘Wm-"t'n:'. 1PEILO

END
CO990000000000000000000 0000000
CALL CPUTM

C*040000000000000s00etetasose

P (NRUN .EQ. 0) THEN
sTOP

END P
NONT = NONT + |
wmn'm 1) THEN

3,008-09
mrmm 10) THEN
DTIME =
B.!BIF(‘NCNTN 11) THEN
DTDME = 1.00E-08
MF(NC‘NTBQ 12) THEN
DTIME = 1.00E-07
ELSB
STOP
ENDWF
TT=0
OfT=0
or=o
TOr=0
TUT=0

c
[
C*  rondthe ivput .
c
c
SUBROUTINE DATAIN
PARAMETER (NANO=24 NFO=64 NCL=151)
PARAMETER (RK7.560667E-16.PK¢.6261E-34)
PARAMETER (BK=1.3807E.23 SP~3.0EOR EVE=] 6022E-19)
PARAMETER (TCP=EVE/BK.PI3.141 393 A0=PKABK °TCP))
INTEGER SETLIM

mmvn.wna.cwvc.cmm OCONT, TOCONT, DB, DCOUNT

INTHOER USC, WIN, CONV. DXL, DBXU, NUM

COMMON 117 ABVI, AUTACL, CONVC, COUNT, CONT, TUONT, DR, INWINT
COMMON 1/ DRT, DIFBC, DIFACC. 0T, TITA

COMMON 13/ INSB, [RUN., LIN, MEDUSA

COMMON 74/ NA. NG, NC, NI, NDIT, NFFC, NDICNT, NFMUNT
COMMON 13/ OIT. OITA, PRES, RT, SETI(R), SCR, TRNALC
COMMON ¢/ TB, TEMIDE®P. TIT, TOIT. TRMPTD., TIT, TRIN
COMMON T/ USC, WIN, CONV, DBXL. DRXU, NUM

REAL®S ALFA(NCL), AC, ATMASS, DAFINFQNCLY, ATEM(NCLY
REALS W‘Im\ DTIME Darr

REAL"S
REAL*S NLNN'O\ INRBNFO\, TTSE. TEREDINCLL, IFRR
REAL*S INTRINANGNPONCL ¢ 1), INTINANONFANCT), ZINONFONCLY

REAL*S PMACINCL\, PINTINANOQNFONCL), PRTIME
REAL*S SPH SIRC, SPR

REAL®S SOLUNCL + ), SPRB

REAL®S TTIME. TOU, TERR, THLB

REAL®S UM,

REAL®S ZLXNANQ), ZINTINFONCLY. ZQINFONCLL DBR

COBBMON 03/ ALFA, AC, ATMAAS, DAF, ATEM
COMMON /R06/ DEST, DTIME, DaPR

COMMON o HILD4

COMMON /R1 0/ INLB, INRB, ITSL, EERED, (HRR
COMMON /R |1/ INTB, ONT, 22N

WRITE (6, "YENTER “0* F SOUCRE 13 TO RE DEPFNDENT ON TIME®
READ (4,10) TEMPTD
10 FORMAT (66X, )
WRITE (8,20) TEMPTD
Nm"ﬂlm " 1)
WRITE (6,°YENTER *0° [F INTTIAL TEMPERATURE DLRIDUTION 3 EXPFON

LANTIAL
READ (4,30) TEMEXP

lw« 70) PRES
70 FORMAT (66X, 2)
WIITE (8.90) PRES
80 FORMAT (1X, PRES «*,12)
WRITE mmmmrmnnmw
READ (4.50) T8, D8
90 FORMAT (60X M4, 1, D)
WRITE (8,100) TB. DB
100 PORMAT (1X. TB DB =, 1X. 203))
WRITE (6. *YENTER 0T (N NFF INTENRITY AT CELL BOUNDARY IS TO

\BE
WRITE (6.°y2ERQ OR *1" IF IT I3 TO BE CELL AVERAQE INTENRITY OR
Ve

WIITE (6,%y~7" IF MT3 PAPER CRIETRION I3 TO BE USED’
READ (4,110) NPPC
110 PORMAT (66X. 2)
WRITE (8,120) NFTC
120 PORMAT (1 X, NFPC =°,12)
WRITE (6, *YENTER ERR AND TERR AND DGR’
READ (4.130) ERR, TERR, DIER
130 PORMAT (41X. X1X1PER.2))
WIITE (8.140) [ERR, TERR. DUR
140 PORMAY (1, TERR =*, IPE10.3, SX. TERR =", IPE10 3, 3K,
1 DER=‘1PEIOY)
WRITE (6,"yENTER NOF OIT AFTER WHICH NEEGATIVE FLUX 1S ALWAYS US

e
READ (4,130) INSB
150 PORMAT (62X, I9)

COEFICIENT 1B7 (7 = 4 TO 11}
READ (4170) AC

170 PORMAT (60X, IPER 7)
WRITE (8,100) AC

180 PORMAT (JX, ‘AC =*, 1PEI0.3)
WRITE (6, *YENTER 0 P NDE B TO BE UIED POR CONVIROENCE OR *1°
WRITE (6,"y® (NENT-FINT) B TO BE USED AND 2" IF IT I8 TO B2

INORMALEY

READ (4,190) CONVC
190 PORMAT (56X, )

WRITE

200 PORMAT (1 X, 'CONVC =, 2)
READ (4210) TRIN
210 FORMAT (¢6X. 12)
WRITE (1.220) TRIN
220 PORMAT (1X, TRN = 12)
WRITE (6,"YENTER “07 IF UNIFORM SPATIAL DURIBUTION I8 TD) BE USELY

READ (4.230) USC
230 PORMAT (46X, 2)



WRITE (8,240) USC
WO PORMATIX, USC =)
READ (4,230) PRTOME
230 PORMAT (60X, | PES.2)
WRITE (8.260) PRTIME
260 FORMAT (I X, PRTIME =°, |PEL1 2)
WIRITE (6, °YENTER “0 TO 2* FOR DUFFUSION BC
READ (4,270) DOFBC
270 FORMAT (66X, 2)
WRITE (3,200) DIFRC
200 FORMAT (1X, DOTBC =, 12
WIITE (6, TENTER 0" [P NEWWMMWINPAIAMI’TI
1y
WRITE (6,"YTAKEN TO BE ZERO”1* [P IT I3 TAKEN TO BE THE PREVIOU

Iy
WRITE (6, "YINTENSITY POR THAT GROUP & CELL'
READ (4,290) NDIT

290 FORMAT (86X, 12)

WRITE (8.500) NDIT
$00 FORMAT (X, NDIT =',13)
WIITE (6, “YENTER MAXIMUM TIME FOR SOMULATION OF MODEL PROBLEM

READ (4,310) MAXT

310 FORMAT (60X, 1PER.2)
WRITE (8.320) MAXT

320 FORMAT (1X, MAXT = |PEIL2)
WRITE (6,VENTER NA < 24 NG <64 NC<13)'
READ (4,330) NA, NGO, NC

1I0 FORMAT (37X 13, 1X. 13, IX. B)
WIITE (8.340) NA, NGO, NC

340 FORMAT (IX. NA =°. B, IX. NO =", 3, S, NC =" 13)
WRITB(AYENTER L LFL UFL TELB B Tl
READ (4,330) L, LFL. UPL, TELSB, ITRB, ITSL

350 FORMAT (4X, &1 X.IPER D))

WRITE (8.360)
360 I'MH:'IT‘(}X 4X T, 8X LFL, 6X, 'UFL' 3X, TELE', SX, TIRP',
1 X
WRITE (8.370) L, LFL. UPL, TELB, ITRB, ITSL
370 FORMAT (1X, 6(1 X.t PER 2))
WRITE (6,°YENTER “0"IF PLANCXIAN I3 TO BE USED AS A WEIGHT
WIUTE (6,"YFUNCTION OR *1* IF ROSSLAND FUNCTIONS I3 TO BE UREDY
AFAD (4,380) WIPN
380 FORMAT (66X, 2)
WRITE (8.390) WrN
390 FORMAT (IX, 'WI'N ='13)
WIITE (6. YENTER SPECTFIC HEAT

WRITE (8.410) SPH
410 FORMAT () X, SPECTFIC HEAT = ', |PE10.3)
WRITE (6, "YENTER DTIME
READ (4,420) DTIMB
420 FORMAT (60X, 1PER.2)
WRITE (8.430) DTIMB
430 PORMAT (1X, DTIME =, IPEIO.Y)
NF =0

WRITE (6.440) NF

SMOPORMAT(IX,NF = 12)
WRITE (6."YENTER NUMER OF TEMPERATURE ITERATIONS ALLOWED'
READ (4,430) TITA

430 PORMAT (64X, W)

READ (4.470) OTA
470 PORMAT (62X, 16
WRITE (8.490) OTA
480 PORMAT (1X. 'OITA =", 16)
READ (4.490) SETLIM
490 PORMAT (66X, 12)
WRITS (8,500) SETLIM
300 FORMAT (1X, 'SETLDM =*, 12)
SETIOU =2
WRITE (& YENTER 0 IF FLUX AT RIGHT BOUNDAR B 0, | tF BOTH END S
¥

READ (4.310) SETSOU
310 FORMAT (6€X. 1)
WRITE (8.320) SETSOU
320 PORMAT (1X, ‘SETSOU =*, 1)
WRITE (4. YENTER “1° POR A & B TO BE | AT BOUNDARIES'
READ (4,530) ABVL
330 PORMAT (66X, 12)
WRITE (8, 340)

360
360 FORMAT (1X, ‘MEDURA =°,
M(&MIUMBAMMLL\’MW
10 ON THE SMR OF

WRITE (6."YTRANIPORT BQu, ALSO ENTER THE VALEU FOR SPR FOR AUTOMA

1TIC ACCELERATION (<.5Y
READ (4,570) AUTACL, SPRB
370 PORMAT (36X, 13, 2X. 1PEA D)
WRITE (6, “YENTER “0" (I TRANSPORT EQUATION 13 TO BE SOLVED BY &r
WRITE (6,°YOR “1° I BY Dax’
READ (4.380) TRNACC
390 PORMAT (66X, 1)
W.590)

WRITE TRNACC
390 PORMAT (1 X, TRNACC =°,
WRITE (4, YENTER“1“IF DIFFUSION EQUATION I8 TO BE ACCELERATED

600 FORMAT (66X, 1)
WRITE (8.610) DIFACC
610 FORMAT (1X, DFACC =, 1)

g
133333133 3210434040111 BE T

o0nanon

620 WRITE (6. "YENTER *0” FOR LINEAR GREY MODEL OR "1° FOR NONLINEAR O
IREY MODEL'
READ (4.630) LIN
630 FORMAT (66X, 2)
WRITE (8,640) LIN
G40 FORMAT(IX. 1IN =, 13)
THEN

WRITE (8.630) LOWLIM, HILIM
630 PORMAT (1X, Towlimw, 1PE10.3, I X, hilinw, 1PE10.3)
RETURN

BEND

* this subrouting defines the modal probiem Lsed 1o test the  ®
* code. ancther User cam modify the model by changingthe  ©
'm‘h-um-vd-.-«hm'
¢ will resukt in iteration of the method itsetf.

PARAMETER (NANG=24 NFO=64 NCL=131)

PARAMETER (RK*7.36066 TE-16,PK=4.6261 B.34)

PARAMETER (BK=1.3807B-23.5Pw3,0E08.EVE=] 6022E-19)
PARAMETER, (TCP=EVE/BK.0K=8.31 44.P¥=3.141 393 A0=PK/(BK *TCF))

PARAMETER (AL=3.81 11 E+33)

REAL*SDR, D, B

REAL®S TPONPG + |NCL), ITLB

REAL®S LLFL, LFIN, LFR(NFG + 1), LITLB, LUFL

REALS REZ2, REXS

REAL®S TRNFV

INTEGER ABVL. AUTACL. CONVC, COUNT, CONT. TCONT, DB, DCOUNT

INTEGER SMTSTI. SMTST2. SMTSTI, SMTST4, SMTSTS

LOGACAL TRN, DIFF, LOR, NLGR, SBARUN, SMTST
COMMON /L1/ TRN, DI'F, LGR, NLGR, SIMRUN, SMTST

COMMON A1/ ABVL. AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT
COMMON 12/ DRT. DOFBC, DIPACC, BT, TITA

M'CFIWOOI).PQOIO.NG.)

REAL'S
“AL‘!NWOX Q). ITSL,

INRBONF ERED(NCL), EERR
REAL*S INTBNANGNFONCL + 1), INTINANO.NFONCL), ZINNFG NCL)

REAL‘S m ZNTINFGNCL), ZQINFANCL), DIER



COMMON /RO1/ ALFA, AC, ATMASY, DAF, ATEM

REAL*8 SPLNK(NCL). ABBINCL), DIFRD(NCL)
REAL*8 SUMCHINCL), CHIXNCL), RESSIO, RESPLN
REAL*S PLNINTINFONCL), SIGINTINFONCL), SGPLIN(NFONCL)

c
cL C18 NON.LTE DATA FOR AVRG-ZRADIATIVE COOLING ETC...
C VERSION JUNE 1986 Y.T. LER
COMMON /LEEXR Y/ HNUFDGO(64), DTEMP(19), DDENS(22), ENTON(19.22),
1 TBLAIS2Y, MIOJI). POWER(19.22.64),
2 SIOMA(19.22.64). HNUMIN, HNUMAX, ZATOM, NT, NR, NGHIGH,
3 NOLOW, NGRMAX, NTMAX

P (TOfT .EQ. 0) THEN
C**** define the Brequency groups snd the cell width initial temp-
C**** ganre, spacific heat for the model problem - anly oncs
Dia=0.0
TP (USC Q. 0) THEN
C**** take uniformiy spaced spatial cells
CW=L/NC
DOT(1)=CW/2
DOIOK=2,NC
DEST(K) = DIST(K - 1) + CW
CONTINUE

DO20K=1,NC
LK) =CW
20 CONTINUE
ENDIF
Cooee isl
LLFL, = LOO(LFL)
LUPL = LOGRUPL)
LFIN = QUTL - LLFL) /NG
LFR(l)=LLFL
DO30S=2UNG+1
LFR()=LIRG - 1) + LIN
CONTINUE

DO40S=1.NG+1
= EXPLIRD)

[

10

30

40
DO sSOK =1, NC
C**** sperific humt is takam Lo be uniform in the model

tamparre
IF (TEMEXP .BQ. 0) THEN
C*%%* iyt initial tamparsture Lo be exponmtial from lefl to right from
C**** 1Kol o
LITLA = LOG(TELB)
DOSOK=1,NC
TEMP(C) = TELB * EXP(-LITLB(DISTK) - DETKY2)Y(L. - {
1 DESTOKN2))
60 CONTINUE
Elsg
C**** taks initial iumpershure 15 be wniform
DO 70K =1,NC
TEMNO = [T
CONTINUE
END N
END ¥
" (CONT BQ. 0) THEN

IF ( NOT. SMRUN) THEN
TTIME = TTIMB + DTIME

10

IF (NFPC BQ. 0) THEH ]
C**** take imaamanty ot coll boumdary 10 be 2ar0 wham it is negative
€ TRNFVR dnarminm tw type of medifiation (o be used for
C***° the negative flux fix vp
DOSOK=1,NC

TRNFVROQ) = 0.5
CONTINUE
TRNFV = (SPDTIME) / DI(1)

ELSE Ir (NFFC BQ. 1) THEN
C**** tzhe yawity o cell bourdary (6 be coll svarage snerssty
C**° whan 1t 1 gative
DO%K =1.NC
TARNFVR(K)Y= 20
90 CONTINUR
TRNFV = (SP*DTOLE) / DL( 1)
FLIR Iy (NFI'C EQ. 2) THEN
C**** mplamant Nagative fux fixip o shover o the thame
DO 100 K = 1,NC
TRNFVRK) = (SPUDTIME) / DL
100 CONTINUR
END
ENDI®
I (CONT BQ 0) THEN
I OTT .0 1) THEN
DooK = I.NC
TEMP(K) » NA!
110 CONTINUB

END I
DO10K=1,NC
DO120J=1.Na +1
FEQX) = FRU) / TEMIOK)
120 CONTINUR

130 CONTINUE
P (TRIN EQ. 0.0R. TOIT BQ. 0) THEN

ELsn
C**** calculets initial intansity ssusming N osslend distribution
DO 190K = I, NC
DO180J =1 NG
D= FFUX)
Bw P+ 1.X)
o (D .OT. LOWLDM) THEN

C>>>  CALL ROMB(F2. D, E RES2)

, B
MNWX)-INII—N'AC’IB’ (TEMP(K)**6)
C***  WIITE(6,"Yrm2 ed rm} *, RES2, RESY , PLANKUX)
DO 1701=1,NA
ONTOJK) = PLANK(1.K)
PINTALILX) » ENTALX)

C**** take initiel itansity 10 4o the intensety Srom treefer squation
DO220K*=1,NC
DO210J=1,NC
DO 2001=1,NA
ONTRIX) = NINTALLXO)
PINTQI) = BNTALXK)

DO230I=1,NA

ZNTUXK) = BNTUK) + RITIIK) * Wr()
230  QONTINUR

NG X = 2NTU K
240 CONTDNUE
250 CONTINUE
DOV K™ NC
SPLNKUK) = 0.0
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270 CONTINUE
DO 20K = ), NC
[FREIXK) =4 * P1 * 3 03343E+07 * SPLNK(K) / SP
280 CONTINUE
¥ (PRF3 OR 3 AND. TOIT O DBXL .AND. TOIT LE DBXL)
THEN

WRITE (8.290) (K.DLOK).CVO, TEMINKY 1 1 604 JERED(K).X =1 NC)
90 PORMAT (20X 12,1061 PE10.1,| X'ever, L PELO 3.1 X, tamp,
] IPE10.3.1 X Us~,1 PEI0 3,1 0)

WRITE (8,"Yfrog groug |imwts model

WRITE (8,300) JFRNI=LNG + 1)

300 PORMAT (CgJ2.1XF11.4,10)

WRITE (8,771 ) & lint s modal’

WRITE (8.310) (LKINTALI)K =1 NC) J=i NOYJ=1 NA)
310 PORMAT (6CYRIXTIIXKRIX IPR10.3.1X)

WRITE (8,Y] k vt model®

WRITE (8,320} (UK ZINTU X)L K= 1 NC)J=1 NO)

330 PORMAT (MILIXL2,1X)PE10.3,1X)

WIITE (8,47) k intagration limits model’

WRITE (8.330) (UKIP(K)LK=I NCWJ=L NG + 1)
uom;c:mrmnx.n.lxmm»

ENDO*
P (CONT BEQ 1) THEN

Ceeo* galve oparity 8 new tavp.

QO TO 400
e
[ (FTOMR QR 1.0003E-10 AND. TOIT NE 0) THEN

C*9% 1o nead (o coitulate intenasty & the boundwry, mnce levpenture
C*%4% ramams constad aftar 0.1 70 for time deparvdnt cose.

QO TO 400
END O
oF (TEMPTD .EQ. 0) THEN

Coeos oxpruss Lgrpernturs on laft end uy linear fanction of Lims
Coooe yntill it ronches its mexwan valug (1000 ev)

IF (TTOME LT. 1.00003E-10) THEN
TLB = ((TELS « |)*TTIME/ .0B.10 + 1)
ass

mb=nas

nse
LB~ TR
END IF
WRITE (6.*yelh isV, [TLB, [TRB
DO 340 3= 1, NO
D=r/ms
E=FR()+1)/MB
IF (D .OT. LOWLDY) THEN
D =LOWLIM
END I
¥ (B .OT. HLDM THEN
B=HILIM
ENDOF
CALL ROMB(FPLNK, D, E, RESPLN)

C  WRITE(6,290) ). RESPLN
C280 PORMAT (IX.J=' 12, 2%,

INTEGRAL INLB =, 1P£10.3)
INLB()) = ((SP**2)) * (ITLB**4) * (BX*TCT) * RESPLN/ (A0**3)
CONTINUE

M0
DO 30 J= |, NG
D=FR(D/TRB
BewFRO+1)/[TRB
o (D .OT. LOWLIM) THEN
D =LOWLIM
ENDIF
I (B .OT. Kt THEN
B=HRIM
onpr
CALL ROMBA'PLNK, D, E, REXPLN)

C  WRITE(4.300) 1, REXPLN
€300 FORMAT (1X. =", 2, IX, ™NTAGRAL INRB =, IPE10.3)

INRB() = (2(EP**2)) * (TRB*) * (BK*TCT) * REZPLN/ (A0°3)
330 CONTRMUB
* (SET3OU BQ. 0) THEN

Coeoe no source cu the right beamdary

DO 340J= |, NG
INRBU) = 0.0
ls0 coNTIMUB
ELSS ¥ (SETSOU .BQ). 1) THEN

Crose g snmren on the ok or right bousdary

DO3INJ=|,NO
L) = 0.0
NRB(D =00

370 coONTRUR

ENDIF
o (PREJ .GR. 12 -AND. TO(T .O&. DXL AND. TOIT 1LE DBXU)
| TN

WRITE (8.380) TLA, [TRB
180 FORMAT(1X. TILA =’ {PEI0S, X, TIRB =", 1PE10.3)

WIITE (8.390) (INLBG)INRBU)\,J=) NG)
190 PORMAT (40 J1X.X1PEI03,10)
D
400 1F (TTT LT, 1) THEN
DO410K = NC

DOK =1, NC
DO420)= | NG+ 1
FPOK) = PRI/ ATEWOO
420 CONTINUR

430 CONTINUR
I (WIN BQ. 0) THEN
DO430K =] NC
SPLNKOQ = 0.0
ABS) =0.0

DO440)=1.Na
D=IPUX)
E=Fr(+1K)

ABB(K) = ABB(K)
SGPLING.K) = (EXP(-D) - EXP(-E))
440 CONTINUE
430
DO470K =1, NC
DO440J=1.NO
CHIIX) = SIGINTUK) * PLNINTUK) / ABBK)
WK)) 1) = 27,0 ® AC ® SOPLIN( K) / ((ATEM(K)**3) *PININT(,
1
450 CONTINUE
470 CONTINUE
ELSE

DO490K = 1,NC
SPLNKAQ ~0.0
ABB(K) = 0.0
DO480J=1,NG
D=rrgX)
E=PPg+ 1K)
IF (© .QT. LOWLDW THEN
D= LOWLIM
B
I (E.QT. HILDO THEN
B = HILDM
eor
CHIULX) = (EXH-D) - EXP(-E)

SAPLING.X) = (EXP(-D) - XP(-E))
C  WRITE(S,"re2 mdreed ', RES2, RESS
430 CONTINUE
450 CONTINUE
DO3I10K=1,NC
DO 300 = 1,NQ
CHIQX) = SIGINTU,X) * PLNINT(X) / ABB(K)
ABCX) = 21.0 ¢ (AC) ® REX2 / (ATEM(K)**3)°RES3)
CONTINUE

300
310 CONTINUE
BDF
DO 520K =1, NC
PMAC(K) = 27.0 * AC * ABB(K)/ (ATEM(K)**3)*SPLNK(K))
BETA(K) = 4 * RK * (ATEM(*TCI)**3) / CVIQ
ALFAK) = 1 / (PMAC(K) BETAGK)
320 CONTINUB
DO 330K =1, NC
ETAGD ™ 1 /(1 + ALFAGK)*TOU)
» SPLNK(K) *4 * P1/ SP

SIC=SMC/NC
o (PRES .GR. 2 .AND. TOIT .GE DBXL. .AND. TOIT LE DBXU)
1 THEN

'WRITE (8, °ybeta pmac aifh in model”
WRITE (8.330) (KBET/
330 ro:unom.lu(lnlo:.m»

BD
DO 380) =1, NG
DOSMK=1,NC
PQUX=0.0
DO 3601=1.NA
QUIX} = CHIGX) * IEREDXK) * ETAK) / (2*DTIMEBETA(K)
1 +TOU sENTIIX)
PQUX) = FQUK) + INTALIK) * WFD * ZLPG)
CONTINUE

NGMA.K) = (ABCJK) + TOU) * DLA)
20K = CHIIX) * ERED(K) * ETAKK) / (DTDMEBETA(K)) +

A(K).K=1.NC)

T (PRES .GE. 2 AND. TOIT .GE. DBXL .AND. TOT .LE. DBXU)
1 THEN

WRITE (8. *Ywa of chia sad shbchi model
WRITE (861 0) (KSUMCHIK)\ABB(KLK =1 NC)
610 PORMAT (SGLIX2(1PELL.41X))



WRITE (1.*7] k chi sbe plark ot mode?
WIITE (1.620) ((LK.CHWIIQABCU,
620 PORMAT (3(I2.1X12,1 X.)(1PB10.3,150)
WRITE (077 i j k qewdel
WRITE (8.630) ((LJXK.QAIKLK=1 NOL=1 NG\ I=1 NA)
630 FORMAT ((IAXELIXILIXEPEIOIIXN
PAUSE

ENDIP
T (TIT .OE. 1) THEN
DO 660S =1, NO
DO630OK =), NC
ANTUX) = 0.0
DO6401=1, NA
ANTUX) = ANTUX) + NINTUX) * WFD

XK1= 1 NGLK =1 NCY

DO &01=1. NG
ABQ = AB(K) + ABCUK) * ZNTI.K)
670 CONTINUB
680 CONTINUE
IF (PRES .OR 2 .AND. TOIT .G DBXL .AND. TOIT .LE. DBXU)
1 THEN

WRITE (8,°Y) k zint 2q model
WRITE (8,690) ((JX.ZINT( K).ZQ(K)=1 NG)K=1 NC)
690 FORMAT (S I1XI2IX.IPB10.3,IX.1PE10.3))
ENDIF

RETURN
END

*  this subroutine solves the RTE equation wed evalusies the *
* the varibele needed for solving the diffusion equation .

o000aQn

SUBROUTINE TRNPRT

PARAMETER (NANQ=24 NFO=64 NCL~151)
PARAMETER (¥P=3.0808)

INTEGER ABVL, AUTACL. CONVC, COUNT, CONT. TCONT, DB, DCOUNT

COMMON 22/ DRT, DEFBC, DIFACC, T, TITA

mm/mc.wm.cwv DBXL, DBXU, NUM
COMMON /I NCP1, NCM!, NAD2

REAL*S ALFANNCL), AC, ATMASS, DAFQFONCL), ATEM(NCL)
REAL*S ABCONPO.NCL), ABQNCL), AONPO.NCL)
REAL®S BETANCL), BONFONCL)
REAL*S CV(NCL), CW, CHINFONCL)
nm-uuma.mwomn).m
REAL®S DISTINCL), DTIME,
REALS ETA(NCL)
REAL®S FINTCNPONCL + 1), FINLONPG), FINR(NPO)
REAL*S FRONFG + 1), PQOPONCL)
Mﬂmmﬂﬂ.m

*8 INTBONANG NPONCL + 1), ENTINANGNPONCL), IIN(NFQ.NCL)
Mﬁmm
REAL®S NATE(NCL), NINTINANG NPO.NCL)
REAL*S NFFTINANG.NPONCL), NDINONPGNCL + 1), NZIN(NFONCL)
REAL*S PMACINCL), PINTINANGNPGNCL), PRTIME
REAL*S PGINGNCL + 1), PROINCL + 1), PLANK(NFONCL)
REALS PDINONPGNCL + 1), ITBONPGNCL), PZIN(NFONCL)

REAL*S PABNCL)
REALS QNANONPGNCL)
REAL*S SIOMNNPONCL), GRSKNCL + 1)

COMMON /R0Y/ ALFA, AC, ATMASS, DAY, ATEM
COMMON /R02/ ABC, AB, AO

COMMON RI Q
COMMON 31/ SIGM, ORY

COMMON M2V 3, SUMI, SUM2, ORFQ, GR2Q
COMMON R231/ SINT

COMMON R2W 21P, ZINT, 2Q, DIER
COMMON IMT/ 3, N

DO 60 1=1,NAD2
DO30J=1,NO
DO4OK = 1,NC
NIFTLIX) =00
INTB(LSL 1) = INLB(DY
NINTLLK) = (CHIG K BTAKI*ABK)Y? ¢+ QILLKN DL »
7LD INTBIIO) / (SIOMUX) ¢ 272D
INTR(LJK ¢ 1) =2 *NINT(JK) - INTR(LLK)
IF (PRES .GRE. 13 .AND. TO(T .OR. DXL .AND. TOIT LE. DHXL)
THEN

WRITE (8,10) L J, K. INT(LJX), NINT(LJ.X),
1 NINTQUJX)/ PINTXLLX), INTRAIX ¢ 1)
1o PORMAT (1X, 17 K PININVP INTB~, 3T2,1X),
1 4(1PE10.3,1X)
=™Nr
C**** magative fux fix up critarion is wlectad (43), according
C**** 1o TRNFVR valus
I (NF BQ. 0) THEN
I ANTB(LIX ¢ 1) LT. 0) THEN

I (TANFVR(K) LY. 1) THEN
NINTILIX) = ((CHK)"ETAK) *ABKY2 + QLIXN)*
1 DUK) * LR INTILIX)) / SIMOD

INTB(LUK + 1) =00
IF (PRES.GR 13 AND. TOIT GE DBXL .AND. TOIT LE
1 DBXU) THEN
WRITH (8.20) L 5, K, PINT(LLX), X

30 FORMAT (1 X, 1J K PININVP INTH®, H1L1X)

1 4(1PB10.3,10}

END (P
% ]

NINTQIX) = ((CHIJ) "ETAK)*ABKY2 + Q(LIX))®

1 DUK) + ZLID*INTI(LIIO)/ (SIGMUIX) ¢+ ZLA(D)
INTB(JK + 1) = NINTALJK)
[P (PRES .GE 13 .AND. TOIT .OR. DBXL AND. TOIT LR

1K)
0 FORMAT (1X, TJ K P NI NVP INTR=, 3(12,1X),
1 «1PE10.3,1X))
r

]
DO1201=NAD2+ |, NA
DO110I=1,NG
DO 100K =NC, 1,1
INTEKLINCP!) = INRB()
NITT(LIX) = 0.0
NINTQI LK) = (CHIIK) BTAK)Y ABKY2 + QILLI)) DLUK) -
1 2APDINTBAIK + 1)/ (SAMUK) - 2°05M)
INTBAJK) =1 * NINT(LJX) - INTBAIK ¢+ 1)
OF (PREA .OE. 15 AND. TOIT .OR. DRXJ, .AND. TOIT LE DBXU)

THEN
WRITE (8,70) 1 J, K, PINTYLJ X), NINTALIX),
1 NNTAQJK)/ PINTILIX), INTBAIX)
70 PORMAT (1X.1J K PININVP INTB, 302.1X),
1 «1PEL103,1X0)

onor

C**** ragative Mux fix wp critarion is slected, sccording lo
TRNFVR vae

F (TRNPVRIX) LT. 1) THEN
NINTQLIX) = ((CHIU SO "ETAOO ABKY2 + (LI X)*
t DUC) - ZPD INTBAIX + 1)) SIOMUX)
INTBQLIX) = 0.0
7 (PREX .OE. 15 AND. TOIT .OE. DBXL AND. TOIT LE.
DBXU) THEN

:
§

)
0 PORMAT (1X, 1 K PININVP INTB~, 3021 X),
41PE103,1X))
r

us
NINTQLIK) = (CHIU X ETAKY ABXK)2 * QG X))*
1 DL - ZLPD INTBAI X + 1)) (ROMUX) - ZLAD)
INTBRLIX) = NINTAX)
IF (PRES .OE 13 .AND. TOIT .OR. DBXL. .AND. TOIT LE.
THEN

1)
90 FORMAT (1X, 1) K PINENVP INTD=, X12.1X),
1 A1PE103.1X))
il d
END ¥
ENDIF
END W



1483

DO 140K = 1, NCPI
DINTUX) =00
DO130I= |, NA
DINTUX) = DINTUK) ¢ INTRLIK) * WP(T)

IF(HB .GE 2) THEN
WRITE (8,160) (L) XPINTLI JONINT(LI X0 =1 NALI=E NG),
1 K=1L.NC)
160 PORMAT (3(3(12.1X),2(1 PE10.3,) X))
2001 4

IF (TRNACC .2Q. 1) THEN
DO 190)= I, NG
DO 180K = 1, NCPY
DINTUX) =0.0
FINTUX) =00
SNTUXK) = 0.0
DO1701=1,NA
DINTUK) = DINTU.X) + INTBAJK) * WP(T)
FINTUX) = FINTULK) + INTBAJX) © ZLPD) ¢ WFD)
SINTUI) = SINTUX) + INTBLIX) * WP ¢ (3"ZLPDY**
2.2
170 CONTINUR
PODNGX) = DINTUK)

DO20K=1,NC
DO 210J=1,NG
TNTUX) =00
PIDN(X) = 0.0
DO 2001=1,NA
ZNTUX) * ANTGK) + NINTAJX) * WP(T)
PINGX) = PZINOK) + PINTILK) * WF(T)

ORK0 = 0.0
DOIN =1, NG
ORIYK) = GRSUK) + (ENTUX + 1) - SINT.K)) / SIGMIX)
170 CONTINUR
230 CONTINUE
n-mu OB 3 .AND. TOIT GT. DXL .AND. TO(T LE. DBXU)
1
wmn(l'nﬁﬂ
=1.NCP1)

WRITE (8.290) (K.PFOKXLPANGOK:
290 PORMAT (1X XY LA X2(1PE10.3)100)
WIITE (3. 7k aensi’

WRITE (8,300) (K.ORSIIOX=1 NC)
300 PORMAT(IX XX'2,1XIPE10.3,1X)
ENDW

C**** nagative Mot fix wp cristarion is salected

¥ ONF BQ. 0) THEN
DO330I=1,N0
DO 320K =1, NC

& (DNTUK + I).m. 0.0) THEN
ACJX)=1.0
ELES
AOUX) = BNTUX) ! DINTUX + 1)
2or

I (DINTGUIO BQ 0.0) THEN
BOGX)=1.0

nm

BOGI) = ZNTOX) / DINTOX)
aNr

QO 10 320

AB(K = ABOC) + ABCUK) * (AOUK)"DINTUX + 1) + BOGXK)*
1 DINTUX)

340 CONTINUB
PABOQ = 2 * PAROD)

330 CONTIUR

P (PRES O S .AND. TO(T .GE. DBXL AND. TOIT LE. DBXU)

1 THEN

WRITE (WY o for

WRITE (8.360) (KAB(K) K= NC)
360 FORMAT (W1XXI2IXIPEIOS)
END P

DO3IN0I= i NG

DO 370K = 1, NCMI

310 = OUK)ZQUK) + DUK + 1)°2ZQUK + 1))/ 2 - (
1 FINTUX + 2) - FINTUX)) /2 - (DINTUK + 2) - DINTUXK +
T 1D/ EGMUK ¢ 1))+ DINTUX + 1) - DINTUX) / (3°

DO 3901 =1,Na
ITER(K) = DL(K) * CHIIX) * ETAK) * AB(K) / 4
PITE)0 = DLOC * CHIUX) * ETAK) * PAB(K)/ 4
390 CONTINUE
400 CONTINUE
IF (PRES .GE. 7 .AND. TOIT .GE. DBXL .AND. TOIT .LE. DBXU)
1 THEN
WRITE (8, Yokt dioe’, TOIT
WRITE .7k aobo ff
WRITE (8.410) (U XAO(IIOBOGIFQUKLK=1 NC)I=1 NG)
410 PORMAT (I, 202.1X.2.1X (I PEL0.3.130)
WRITE (8.7} k oG.Y
WRITE (8,420) ((LICS(IOK =1 NCM1) =1 NG)
420 PORMAT(1X. 4T21XIL1X IPEI0.3.10)

WRITE (3.1 } 24 signs*

WRITE (8,430) ((JX.2Q0.XK).SIKMUKLK= 1 NC)J=1 NG)
430 PORMAT aaznx.tuumosm»

WRITE (8,7% ) fint pdin

WNU)"' B (1,440) (UWYJ.KMJKW“JN'I NCPL)=
11
440 FORMAT(I1X.I2, 1X 2, 1. IPE10.3, IX, 1PE)0.3, 1X IPE10.3)
ENDIF
ENDIF

nanaan
b4 s

SUBROUTINE TRCONV

LOGRCAL TRN, DIFF, LOR, NLGR, SIMRUN, SMTST
COMMON /L1/ TRN, DIFF, LGR, NLGR, SRUN, SMTST

COMMON 11/ ABVL, AUTACL. CONVC, COUNT, CONT, TCONT, DB, DCOUNT

COMMON T/ DRT, DOYBC, DIPACC, IIT, TITA

COMMON 1Y INSB, IRUN, LIN, MEDUSA

COMBMON 1/ NA, NG, NC, NF, NDIT, NFPC, NDICNT, NFMUST
COMMON 1Y OFT, OITA, PRES, KT, SETSOU, 3CR, TRNACC
COMMON /¢ TB, TEMEDP, THT, TOLT, TEMPTD, TIT, TRIN
COMMON 7/ USC, WIN, CONV, DBXL., DBXU, NUM
COMMON // NCP1, NCM1, NAD2

COMMON /SMT/ SMTST1, SMTST2, SMTSTS, SMTST4, SMTSTS

REAL*S ABCINPGNCL), AB(NCL), AOINFONCL)
um-nmmwo.m» 1) PRNTM

IF (RT LT. 1) THEN

DOWK=1,NC
SNINAQ = 0.0
SPING) = 0.0
DO20I=1,NO
DO 101=1,NA



174
171
1me
m?
ns
me
1720
17121
122
173
1724
1728
1136
1727

1729
1730
173
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1748

1747
1748
1749
17150
1751
1752
1753
1754
1733
1736
1787
1738
1759
1760
1761
1762
1763
1764
1768
1766
1167

1770

SPINCK) = SPINGC) + (ABCUIO PINTILLIQ WP DR + 1)
1 )

SNINCK) = SNINGK) + (ABCU KYNINTLLK *WRMYFR(S + 1Y
LI T8

DO40K =1, NC

DIFFF = DIFFF + ((SNIN(K) - SPN(KIV2)**2) * DIKK)
40 CONTINUE

POIF = SQRT(DIFFF/4)

NDAF = PD{F

RT=2

GO TO t10

ELSE

DO70K=|,NC

SNIN(K) = 0.0

DO60J~1,NO

DO301=1 NA

SNINGK) = SNIN(K) + (ABOULK) NINTALX) *WF(D*(FRG + 1)
1 -FROWM
50 CONTINUR
60 CONTINUE
70 CONTINUE

DIFFE =00

DOMOK = |, NC

DIFFP = DIFFF + ((XNIN(K) - SPIN(K)Y'2)**2) * DUK)

CONTINUE

0
NDIF = SQRT(DIFFF/4)
END TP

SPR = NDIF / PDIF

PDIF = NDIF

P (PRES .GE. 2) THEN

WRITE (6,90) TOIT, TUT, TIT

90 PORMAT (1X, "TOITw, 18, 3, TITw, IR, 3X, “TIT™, i)

WRITE (¢.100) NDIF, SPR. SIRC. DSPR
100 FORMAT (1X, INTE ERR~, 1PE10.3, 3X. TRAN SPR~, 1FE10 3. 3X,
1 XRCw, 1PE10.3, 3X, DSPR=, IPE10.3)

110D0 120K = 1, NC
SPINKK) = SNINGK)
120 CONTINUE
IF (CONVC EQ. 0) THEN
P (NDEF .GE, TERR) G0 TO 210
CONV =
ELSE IF (CONVC .EQ. 1) THEN
DO t30J=1.Na
DO 140K = 1,NC

ELSE IF (CONVC EQ. 2) THEN
DO200K=1,NC
TINT=0.0
DO1701= ). NG
DO160]=1.NA
TINT = TINT + PINTQLI O

170 CONTINUE
DO190J=1 NG
DO 180w I, NA
IF (ABM(NINT(L).X) - PINTAJJOYTINT) .OB. IERR)
1 Q010210

RETURN
2OCONV =]

P (AUTACL BQ. 1) THEN
P (SPR..OT. $PRA AND. DEPR LY. 0.90) THEN
TRNACC = ¢
DIFACC =2

ELSEB
TRNACCw=0

ENDIF

END I

RETURN

END

. {Mmmhmmuh .
* solve the traowfler equation using S

aanann

SUBROUTINE TRNI
PARAMETER (NANO=24 NFO=64 NCL=131)
INTEGER ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT

INTEGER OFT, OfTA, PRER, RT, SETSOU, SCR, TRNACC

INTEOER TB, TEMEXP, TUT. TOIT, TEMPTD. TIT, TRIN
INTEORR U3C, WIN, CONV, DBIXL, DBXU, NUw
INTEGER NCP1. NCM1, NAD2

COMMON A1/ ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, I IXYANT

COMMON 12/ DRT, DIFBC, DIFACC. OT. TITA

COMMON AV INAB, IRUN, LIN, MEDUSA

COMMON A/ NA, NG, NC, NI, NDIT, NFFC, NDICNT. NFMUST
COMMON A3 OFT, OITA, PRES, RT, SKTIOU. SCR. TRNACT
COMMON &/ TA, TEMEOP, TUT, TOIT, TIMPTD, 1T, TRIN
COMMON TV USC, WIPN, CONV, DBXL. DRXU!, NUM
COMMON /I NCP), NCMI, NAD2

REAL®S ABCINFONCL), ABNCL), AWNT(LNCL)
REAL*S NATENCL), NINTINANONFONCLY

REAL*S WP(NAN)

REAL*S ZLPINANG), ZNTOINFQ.NCL), ZINFONCLY, DIFR

COMMON R0V ABC, AB, AQ
COMMON R 3/ NATE, NINT
COMMON R17/ WP
COMMON M2W 7LP, TINT, ZQ, DIER

DO 30J=1,NO
DO20K=1,NC
UNTUX) =00
DO 101=1,NA
ZINTUX) = ZNTUK) ¢ NINTQJX) * Wr(D

AB(K) = AB(K) + ABC().X) * ZINTUX)
40 CONTINUB

|
|
?
}

PARAMETER (NANO=24 NFO=64 NCL~131)
PARAMETER (P1<3.141393)

REAL®S A(NCL + 1)
REAL“S B(NCL + 1)
REAL®S O(NCL. + 1)
REAL®S RINCL + 1)

COMMON DT/ 1N
COMMON RMT/A.B,C. R

LOGICAL TRN, DIFF, LOR, NLOR, SIMRUN, SMTST
COMMON L1/ TRN, DIFF, LOR, NLOR. SMRUN, IMTST

INTBOER ABVL, AUTACL, CONVC, COUNT, CONT, TCONT. DR, DCOUNT
INTEOER DRT, DIFRC, DIFACC, UT, TITA

INTEGER INER, BRUN. L2X. MEDUSA

INTEORR NA. NG, NC. NP, NIWT, NFFC, NDICNT, NFMUST

INTEGER QfT, OITA, PREX, R} SETIOU, 8CR. TRNACC

INTEGER TB, TEMEX?, TWT, T XT, TEMIPTD, TIT, TRIN
INTEGER USC, WIPN, COMY DBXL, DBXU, NUM
INTBOER NCP1, NCML, 1iaD2
INTBOER SMTET), SMTSTL, SMTST), SMTYT4, SMTSTS

COMMON 711/ ABVL, AUTACL, CONVC, QUUNT, CONT, TCUNT. DB. DCOUNT

Mmuc.mm DI, DBXU, NUM
COMMON /Ml NCPT, NCOML, NAD2
COMMON /EMT/ SMTSTS, SMTET2, SMTRTS, SMTIT4, SMTITS

REAL®S ALPANCL), AC, ATMASS, DAFOWONCL), ATEMINCL)
REAL*S ABCONPONCLA ABONCL), AOGNPONCL)

REAL®S AETAMNCL), BONFONCL)

REAL*S CVINCL), CW, CHIONFONCL)

REAL"S DUNCL) umwo.na. + 1) PRNTM

REAL*S DISTINCL), DTIMEE,

.
AEAL®S FRONPG + 1), PQONPONCL)
REAL®S INTBONANONPONCL + 1), BNTINANGNFONCL), ZININPONCT.)
REAL®S [TRA. ITERNPO,

REAL*S SOMO®ANCL). 1)

REALS SOLUONCL « 1), SPRB

REALS SONPANCL), . ORPQENCL), RZOQONCL)
REALS SINTONPONCL ¢ 1)

REAL"S WPONANG)

REAL*S ZLPONANG), ZINTOWF O NCL). ZQ0NPQNCL). DUER

COMBMON /ROL/ ALFA, AC, ATMASR, DAY, ATEM
COMMON ROV ABC, AB, AO



1900
1910
193
1912
191)
1914
19
1918
m?
e
1919
170
m

1922
1w

1913
1926
1
1928
1919
10
1931
i
(143}
1934
(14}
193¢
197
[L21]
193

194)

1943

o013
014

COMMIN R0V BETA, BO
COMMON R0V CV, CW. CHI
COMMIN ROV DL, DONT, PRNTM
COMMNIN Ro& DINT. DTIME, DEPR
COMMON ROV ETA
OOMMON RO7I/ FINT, FINL, FINR
COMMON ROV PR, FQ

COMMON R 1 INTB, ONT, ZIN
COMMON R Y TTRA, ITER
COMMON R 13 NATE, NINT
COMMON R | & NFPT. NDIN, NZIN
COMMON /1Y PMAC, PINT, PRTIME
COMMON RV POIN, PFOL PLANK
COMMON R181/ PDIN, PITE, PN
COMMON 21/ WOM, ST
COMMON R2Y SOLU. SPRB
COMMON /R2Y 3. SUMI, SUM2, GRPQ, ORZQ
COMMON /n23 17 ONT

COMMON /R2T/ WP
TCOMMON R I 7LP, ZINT. 20, IXER

I (PRE3 GE 3 AND TOIT GE DBXL AND TOT LE DBXU)
1 THEN

WRITE (8. k i past
WRITE (8.00) (X ITER(LI)PITE( X)X =1 NC)J=1 NG)
10 FORMAT(IX 12 IX. ILIX IPEIOY, IX IPEIDY)
BNy
DO &0 =1,NO
DO 0K = |, NCP)
X BQ ) THEN
AK)=00
B(K) = SUMI] + SOMIK) * BOUX) /4 + 1 / (3*0GMU X))
OK) = SIOMULK) ¢ AOUXK) /4 - 1 / (3°SIOWIKY)
ELSEF (K PQ. NCP1) THEN
AK) = SIOMUX - 1) *BOOY. - 1)1 4- 1/ (3°SIOMU X -
1
B(K) @ -SUM2 » IOMUX - 1) * AOUK - 1) /44173
1 BOMUX- 1)
ax)=00

mnix

AK) = SOMIX - 1) *BOGK - 1)/4-17(3°0NCMIX -
- m

B0C) = (SIGMUK - 1)*A0UX - 1) + SIOMUK)BOUK) /4 +
1 1/ (3SIOMUX - 1) * 1/ (3*0MUI X))

CMK) = SIOMOX) * AOGXK) 74 - 1 (300U X))}
eNowr
20 CONTINUE

DO 0K =1, NCP)

(X BQ 1) THEN

RS = SUM) * PDINUIO) » FINTUXO) ¢ 2 ° (SINTUK « 1) -
t SEINTUX))/ (3*RI0MULX)) ¢ ZQU.K) * DL/ 2 - FQUX) *
1 DU/ DOMUIX) ¢ ITERUIO
ELSEF (X BQ NCP1) THEN

RIK) = -SUM2 * POINU.K) - FINTUX) - 2 * (SINTUX) -

1 SINTUX - 1))/ (3°SI0MOX - 1)) » 2QUX - 1) *DUK - 1}
2 /20PQUX- )DL - 1)/ SIOMOX - 1) ¢ ITEROX -
Yy n

B3R
RO = TERUK - 1) * MERGX) * SOK - 1)
END I

30 CONTINUE
O (PRES GE 7 AND. TOIT OE. DBXL .AND. TOIT LE DBXU)
t  THEN
WRITE Q. Tsbcrmgop’. )
WIITE (8.40) (KAGKLBIO.OOORKLK =1 NCP1)
40 PORMAT(IX. Y.[LIX IPE103,1X IPEI0S, IX IPEIOS,
1 IX PEI0Y)
ENDIF
N« NCP1

C**** ooy wurk of the ¥ of Lime nagatsve diffiasiean rlemsity occury
DOS0I= | NO
DO 0K =1, NCPL
T (NDINOIC LT. 0) THEN
NDIONT = NDICNT » |

70 CONTRMUE .
L

¥ (PRES .GR ¢ AND. TOIT OE. DBXL ANB. TOIT LE DBXU)
I THEN

WRITR (8. “Vint ndlv, TOIT, THT. OIT. N7, TIV
WRITE (8.99) (CLX.DEINTUKLNDING X)X =4 NCP1 1= NG)
90 PORMAT ((IXTLIXY 2 AIFEICIIXN

END P

RETURN
IND

* s abrosives compate e @pecrsl rudies end deterames ¢
* of dfhessen squetion .

nnaann

SUBROUTINE DPCONY
PARAMETER (NANO=24 NPO=$4 NCL=131)

L0 4CAL TRN. DFP. LOR, NLOR, SIMRUN, SMTST

(31}

019

2062

COMMON 1.1/ TRN, DIFF. LR, NLOR, SIMRUN, SMTST

INTEGER ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT

INTECER DRT. DOYBC, DIFACC, {IT, TITA

COMMON 11/ ABVL, AUTACL. CONVC, COUNT, CONT, TCONT, DB, DCOUNT

COMMON // DRT, DIFBC, DIFACC, OT. TITA

COMBMON 13/ INSB, IRUN, LIN, MEDUSA

COMMON 44/ NA. NG, NC, NI, NDIT, NFFC, NDICNT, NFMUST
COMMON A% OfT, OfTA, PRES, RT, SETSOU. SCR, TRNACC

REAL®S ABCINFONCL), ABNNCL), AOINFO.NCL)
REAL®S DLNCL), DINTINFONCL + 1), PRNTM
REAL®S DISTONCL), DTIME. DEPR

REAL® FRONT'O 1), FQINFONCL)

REAL*8 NFFTINANONFQ,NCL), NDININFONCL + 1), NZIN(NFGNCL)

REAL"S WF(NANQ)
REAL“S ZLANANG), ZINTINFONCL), ZQINFGNCL), DIER

COMMON M28/ ZLP, 2ANT, 2Q, DER

P (DAT LT. 1) THEN

DO20K=1,NC

DENIN(K) = 0.0

DEPIN(K) = 0.0

DO10J=[,NO

DEPINGK) = DEPEN(K) + ABCUK) * DINTUX) * (FR() + 1) -
1 )
DENIN(K) = DENDN(K) + ABC(1.X) * NDINGX) * (FR(J + 1) -
RO}

10 CONTINUE

20 CONTINUE

DOOFP = 0.0

DOJOK =1,NC

DOCFF = DOEFF + ((DENIN(K) - DSPINGK)Y'2)¢*2) * DLUK)
CONTINUE

DPDIP = SQRTDDEFT/4)
DRT=2
DOMK=1,NC

w DEPINGK) = DSNINGK)

CONTINUE
Q0 TO 120
EsE

»

DOGOK=1,NC

DENING = 0.0

DO S0J=| NG

= DENINGK) + ABCULK) * NDINGKO * (FRUI + 1) -

1 RO
30 CONTINUE
60 CONTINUE
DDEF =00
DOMOK=1,1C

DONFF = DOO'F + ((DENINGK) - DIPIN(K)Y2)**2) * DL(K)
CONTINUE

DPDUF = DNDIF
T (PRES .OE. 3 .AND. TOIT .GE DBXL .AND. TO(T LE. DBXU)
I THEN
WRITE (8.80) DND#F, DEPR
90 PORMAT (1X, 'DINT ERR~, IPE10.3, SX, DIFF SPR+, |PE10.3)
ENDF
a0 TO 110
DO100J=1,NG
DOSOK = |, NC
F (NDONI XYDINTUX) .QT. 100.0 OR. NDINGKYDINTUK) .
1 LE. 0.01) THEN
SMTET4 = EMTST4 + }

B (BMTST4 .OT. (NGTNCY*0.05) THEN
SMTST=TRUE
WRITE (99."Yiuaer itarati _ daelo ical wcree

110 ¥ (DEPR .QE. 1.00) THEN
STETI = QTSI + 1
I (SMTST3 .GE. (NG*NC*0.01)) THEN
WRITE (99,°Y o iterstion termmnstad due to dapr being > 1.
10 oo oftew’
SMTST = TRUE
IND I

BENDF
120D0 130K = |, NC
DEPINGK) = DENINGC

130 CONTINUB
I (CONVC EQ. 0) THEN



8

HESEN

¥ (ONDIF OR DIER) GO TO 190
ELSE [F (CONVC EQ. 1) THEN
DO1s0I=1.NO
DO 140K = |, NCP)
I (ABSINDING XYDINTUX) « 1) GE DER) 00 TO 190

TINT=00
DO 160K = 1, NCP!
TINT = TINT « NDINOUX)

CONTINUE
DO170K = 1, NCP1

IF (ABX((NDONU.K) - DINTUKOYTINT) O DEER)
) QO TO 190

c
[+
C  * this subrouting sofves the diffusion equationumng 81 *
c
[

SUBROUTINE DIFFSU
PARAMETER (NANO=24 NF(O=64 NCL*131)

INTEGER ABVL, AUTACL, CONVC, COUNT, CONT, TCONT. DB, DCOUNT
INTEGER DRT. DIFBC, DIFACC, IOT, TITA

COMMON /1 DRT., DIFBC, DIPACC, OT, TITA

REAL*S ALFAMNCL), AC, ATMASS, DAF(NFGNCL), ATEM(INCL)
REAL*S ABCINFGNCL), AB(NCL), AO(NFGNCL)

REAL*8 BETANCL). BONFONCL)

REAL®S CV(NCL), CW, CHKNFGNCL)

REAL®2 DL{NCL), DINT(NFG.NCL + 1), PRNTM

REAL*S DUSTINCL). DTIME, D&PR

REAL®S ETANCL)

REALS ITRB, I[TERINFONCL)

REAL*8 NFFTINANG NFONCL), NDIN(NFONCL * 1), NIN(NFO.NCL)
REAL*8 ZLP(NANG), ZNTINFONCL), ZQINFO.NCL), DIER

COMMON /R01/ ALFA, AC, ATMASS, DAF, ATEM

DO20K =1.NC
ABQC) = 0.0
D0104=1.N0
ABOK) = ABK) + ABCUK) * (AOUX)"NDINGX + 1) + BOUX)®

IF (PRE3 .GB. 4 AND. TOIT .GE. DBXL .AND. TOIT LE. DBXU)
1 THEN
WRITE (8. Vb sidf?
WRITE (8.30) GCAB(K).K =1 .NC)
30 PORMAT(X 4(IXYL ' X.1PELO3.1X)
By

DO SOK=1,NC
DO40J=1. N0
TERUJX) = DUK) * CHKIK) * ETA(K) * AB(KK) / 4
40 CONTINUE
30 CONTINUE
2 (DEFACC .EQ. | AND. T .CE. 2) THEN
DO70K =1.NC
DO60J=1.N0
DAFUL) = (AOUX)"NDRNG K + 1) + WX)‘NDN(J.K)) "
1 ADUXYDINTUX + 1) + BOUKY DINTUX)]
CONTINUE

70 CONTINUE
DOSOK = 1,NC
DO S0 J =1, NG
MERY.K) = MERUK) ® DAFGX)
80 CONTINUE
90 CONTINUVE
ENDIY

"

p2lyg

un
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RETURN
END

*  thes subroutme computes lampernre in each col) .

leRsReRe ke

SUBROUTINE TEMPER

PARAMETER (NANQ= 34 NFO=84 NCL=131)

PARAMETER (RK=7 36064 TH-14.PK 6 6261 8-34)

PARAMETER (BK*] 3807E-1).1P=3 OBOS.EVE=1 6022E-19)
PARAMETED (TCP=EVE/BR.OK=R 3144, P1=1. 141393 A0=PKAUK TCYN

REAL "8 NERED(NCL)

INTEGER INEB, IRUN, LIN, MEDUSA
INTEGER NA, NO, NC, NF, NDIT, NFPC, NDICNT, NFMUST

COMMON 7/ USC, WPN, CONV, DBX1.. PBXU, NUM

REAL*S ABCNFONCL), ABINCL), AO(NFONCL)
REALS BETANNCL), BONFONCL)
REAL*S DIST(NCL), DTIME, DSPR

COMMON /R13/ NATH, NINT
COMMON /R17/ PMAC, PINT, PRTIME
COMMON /R24/ TTDAF, TOU, TERR, TILB

DOOK =1,NC

NERED(K) = (ETAKWEPPMACKK))) * (2 PIABK) ¢ RREINK(
1 DTIME*BETAK)))

NATE(K) = ((NERED(KYRK)**0.23)
10

CONTINUE
T (MEDUSA FQ. 0) THEN
DO0K =1,NC
NATEQC) = NATE(X) / TCP
20 CONTINUE

F (PRES .G 1 AND. TO(T .O€. DBXL .AND. TOIT LE DBXU}
1 THEN

WIITE (6.30) TTIMR, TOIT, TUT, TIT
30 FORMAT (1X, Yamp is”, IPE10.3, 3X, lost tit ta~,

1 X))

WRITE (6.40) (DISTOONATE(KX =1 NC)
40 PORMAT (}{1PE10.3,1X I PE10.3,10))

ENDIF

END O
RETURN
END
[
c
c* [ [ L *
c
c
SUBROUTINE TEMCON

PARAMETER (NANG=IA NFO=$4 NCL=) 51)

INYEGER ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT
INTEGER NA, NG, NC, NF, NDIT, NFPC, NDIONT, NPMUST
INTEGER TB. TEMEXP, TUT, TOIT, TEMPTD, TIT. TRIN

COMMON A1/ ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT
COMMON A NA, NG, NC, NP, NOIT, NFPC, NDICNT, NFMUST
COMMON &/ TB, TEMEDDP, THT, TOIT, TEMPTD, TIT, TRIN

REAL*S ALPAINCL), AC, AT\MII. DAPONFONCL), ATEM(NCL)

LOGICAL TRN, DIFP, LOR, NLOR, SBRUN, SMTST
COMMON .1/ TRN, DIFP, LOR, NLOR, SIMRUN, SMTST

IF (TCONT BQ. 0) THEN
00 TO 30

ENDW
DO10K =], NC
¥ (ABBNATRIKYATER(K) - |) OT. TERR) THEN



I ( NOT SDARUN) THEN
NO2OK =), NC
7 (ABMNATELCYATEM(K) - 1) QT 001) THEN
0010 20
moe
20 CONTINUE
TDME = 3 * DTOME
END I
0 DO4OK =1, NC
ATEM(K) = NATE(X)
40 CONTINUR
RETURN
END

C**** 11 Amction w uend for lacios) o
€% s wwtsad intawaty (which is sesumsd Lo be planciom)

FUNCTION PPLNKOO
REAL®S X, FPINK
INTRINKIC EXP

P (ABS(X) LT. | E-06) THEN
PPINK =X *X

nse

FPLNK = (X**3) / (EXPO0) - 1.0)
ENDDF

RETURN

END

Creee N amd (3 wre uend for i siand sbeorp
C**** jon coaficiant

FUNCTION
REAL*S X. 2

INTRINSIC IDP

¥ (ABSO) LT. 1.E-6) THEN
Fl=X* X *EXPOO

Hax

2 = ((X°*4)"EXPO0) / (EXPOX) - 1.0)*°2)
ENDIF
RETURN

END
FUNCTION
REALSX. I3
INTRINRIC DEXP
1 (ABS(X) LT. |.B-6) THEN

FleX *0 4 *XPQX)
nse

¥3 # ((X**T)EXPL.*X) / (EXIX) - 1.0)**3)
END I®

RETURN
END

c
FUNCTION FEIOX)

REAL®S X. F5I0
INTRINZIC EXP

F (ABSOO LT. 1.B-06) THEN
FRO= /X2

ELs®
FSI0=(1 - EXX-X0)/ X *°3
ENDJP

RETURN
END

*  following subrouting computen the itagnil of s given fise- *
* ction using rendery mathod. .

anoonn

SUBROUTINE ROMB(P., D, E RES)

REAL®S D, DEL, DEFF
REAL'S ERR
REAL*SE P
REAL*S RES
REAL*S X, 2(20.20)

EXTERNALF

¥ (D BQ 6) THEN
O=1.0808

ENDF
ERR = §.05.06 * (IVE)**4)

DEL=E.D
%1.1)=0.3 * DEL * (F(D} + #(B))
10J=3%q.1)
DEL.=DEL/2
I=1e1
WaNn=03°2a- 1.0
DOWK=1,)
X=D+((2°0-1)*DEL
ZAN = AL + DL * FOO
20 CONTIMUE
DOJK=2 1
ZOUK) = (4.55(K - 1)°ZAK - 1)« 20 - 1K < 1))/ (4.°%K -
151
30

OOF = ABSZAD - Z(U1 - 1))
¥ (OFP LT. EXR) 00 TO 40

ananaon

rFaLT.20000TO 10
WRITE (6, “Yrequured pracision could not be achieved

sTOP
40 RES =201D)
RETURN
END

* this subrousting srverts the tnéiagoral marrix by LU ¢
* decompostion ’ .

SUBROUTINE LUS
PARAMETER (NANO=24 NFO=64,NCL=1 31)

LCAACAL TRN, DIPF, LG, NLOR, SIMRUN, SMTST
COMMON L1/ TRN, DIFF, LOR, NLOR, SIMRUN, SMTST

INTEGER DRT. DIFBC, DIFACC, IT, TITA

INTEGER NA, NG, NC, NI, NDIT, NFFC, NDICNT, NFMUST
INTEGER OIT, OfTA, PREXS, RT, SETSOU, SCR, TRNACC
INTEGER T8, TEMEXP, TET, TOIT, TEMPTD, TIT, TRIN
INTCR USC, WIPN, CONV, DBXL, DBXU, NUM

REAL*S DLONCL), DINTINFONCL + 1), PRNTM
COMMON /R0S/ DL, DINT, PRNTM

REAL®S ANCL + 1), BONCL + 1), CONCL + 1) RINCL + 1)
REAL®S SOLUNCL + |), SPRB

REAL 9 OANNCL + 1), OB(NCL + 1), OCINCL + 1)
REAL®S OR(NCL + 1)

REAL"S NR(NCL + 1), ERR(NCL + 1)

REAL*S GAMNCL + 1), BET

COMMON R22/ S0LU, SPRB
COMMON /DMT/ I, N
IF (PRES .GE. 6 AND. TOIT QR DBXL .AND. TOIT LE DBXU)
1 THEN
WRITE (W "Yvaluen in lu of grovy ', J
WRITE(®,Taber
WRITE (.1

6) ACAGB(K). CAORK)K:
10 FORMAT (1X, X\, 12, IX, IPEIL.4, 1X. IPEI1.4, 1X, 1PE114, LXK
) 1PELILY)
BDwr

¥ (B(1) .EQ. 0.0) THEN

'WRITE (%, "YSOLVE SOLIK(2) BY ELIMINATION, LEAVING N-1 EQUATION

AAMIO)
”samo-m-mwm-l»lm

CONTINUE
DO4OK=N-1.1.-1
20LUK) = SOLLXK)
40 CONTINUE
DOSOK=1,N
F(K.BQ. 1) THEN
NRAK) = OB(X) * S0LU(K; + 0CAK) * SOLUK + 1)
ELSE [F (K BQ. N) THEN
NR(K) = OAK) * SOLUK - 1) + OB(K) * SOLUK)

- GAM(K + 1) * SOLW(K + 1)

NROO
1 K+1)
BDF
¥ O30 BQ. 0) THEN
ERROQ) = -999.9999

ELSB
ERROC = 1 - OR(K) / NROQ
2o
30 CONTINUE
DO6OK=1,N
IF (ABS(ERR(K)) .GT. 0.01) G0 TO 70
0

RETURN
70 IF (NPR BQ. 0) THEN
'WRITE (6,"soln is ill betwwed for grouy, J. TOIT, OT, TIT
WRITE (6.90) (KAGLBAOCIQRIOK=1N)
80 PORMAT(IX. 2. 1X, ‘w, IPEIOS, 1X. ¥, IPB103, 1X, ‘e,
1 1PE103, IX, ¥, 1PE1GS)
WRITE (6.90) (K.ORGONR(KLSOLUGOLDINTIIOK =1.N)
90 FPORMAT (IX, 12, ‘are, 1PE10.3, IX, W, 1PE10.3, 1 X, ‘sobr,
1 1PE10.), IX, ‘dsew, IPE10.3)

=OALK) * SOLUK - 1) + OB(K) * SOLLX(K) + OCKK) * SOL



nannnno

SMTST2 = SMTST2 + |

OF (SMTST2 .OT. INT(ING"NC)*.03)) THEN
WRITE (6. “Yyrogran tarmintad i LU et
SMTIT= TRUE.

END P

WRITE (6."Yerter | of shove massage Lo be ramoved
READ (5,") NPR

Beor

RETURN

END

*  (ollowing smubroutine provides zeroes snd weight nciom ©
* of Legendre Pol.ynomial .

SUBROUTINE LPL
PARAMETER (NANO=24 NFO=$4 NCL=131)

INTEGER NA, NG, NC, NF, NDIT, NFFC, NDICNT, NFMUST
INTEGER NCP1, NCM1, NAD2
COMMON /18 NCP1, NCM1, NAD2

REAL*S S(NFONCL), SUM], SUM2, GRIFQINCL), GRZQ(INCL)
REAL*S WP(NANG)
REAL®S ZLPONANG), ZNTINFONCL), ZQONFONCLY, DER

COMMON /H/ NA, NG, NC, NP, NDIT, NFFC, NDICNT, NFMUST

COMMON /R2Y/ 3, SUML, SUM2, GRFQ, ORZQ
COMMON /R27/ WF
COMMON /28 ZLP, ZINT. 2Q, DIER

F (NA EQ. 2) THEN
WF(1) = 1.000000
ZLP(1)=0.577333

ELSE IF (NA .BQ. 4) THEN
WF(1) = 06352142
WF(2) = 0347850

ELSE IFF (NA BQ. 6) THEN
WE(1)= 0467914
WF(2) = 0.360762
WF(3)=0.171323
(1) =0.238619
ZLP(2) = 0.661209
AP3) »0.932470

WF(2) =0.313707
WE(3) = 0.222381

WP(4)=0.101229
ZLP(1)=0.183433
()= 0529332
2LP(3) = 0.796667
ZLP(4) = 0.960290

ELSE IF (NA .BQ. 10) THEN

WF(1)=0.293524

WP(2) »0.269267
WF(3) = 0.219086
Wr(4)=0.149451

WF(5) = 0.066671

ZLX(1)~0.148874
ZLP) = 0413393
ZLP(3)=0.679410
ZLI(4) = 0865063
ZLI(5) = 0.973907

ELSE IF (NA EQ 12) THEN

WE(1) =0.249147

WP(2) = 0.233493

WF(3)=0.203167
WF(4)=0.160078
WP(5)=0.106939
WF(6)=0.047173

ZP(1)=0.125233

WH(6) = 0.093139
WF(7) =0.062254
WR(E) »0.027152
(1) = 0.093013
ZP2)=0.281604
r0)=0438017
A4 =0.617876
ZAP(5) = 0.755404
ZLP(6) = 0.065631
ZLIXT) = 0.944373
(%)= 0.989401
ELSE IF (NA EQ. 20) THEN
WE(1) = 0152753
WFQQ) =0.149173
WF(3) =0.142006
WP(4)=0.1316809
WF(5)=0.118193
WP(6)=0.101930

WE(T) =0.083377
WET) = 0 062672
WE(9) = 0 040601
WE(10)=0.08 7604
M) =0074827
ZLP)=0.237708
ZLN(3) = 0.373708
ZLP(4) = 0.510887
ZLP(Y) = 0.636034
N6 =0.748332
APM=0839117
PN =091224
ZP(9) = 0.943972
ZLI(10) = 0.993129
ELSE (F (NA BQ. M) THEN
Wr(1)=0.127938
Wr(2)= 0125837
WI(S) = 0121670
WP(4) = 0113308
WE(S) = 0.107444
WP(6) =0.097419
WF(7) = 0.086190
WP(9) = 0.073346
WP(10) 4 0.044277
WI(11) = 0028331
WP(12) = 0012341
ZP(1) = 0.064037
ZLI2) =0.191119
ZLP(3) ~ 0.313043
K4 = 043374
TN(5) = 0.543421

ZLIX10) = 0938273

AXN) = 09U

ZLP(12)=0.995187
ELsB

WRITE (4.10)
10 PORMAT (1X, NA CAN NOT BE EQUAL TO ODD # OR 14,18 OR 22, CHANOE
1 THE VALUE POR NA)

sTOP

ENDIF

DO 20 1=, NADZ
WPNA ¢ 1 - D= WFD
APNA+ 1 -D =20
CONTINUE

0

SUMI =00

S =00

DO301=1,NAD2

SUM1 = SUMI + ZLIAD * Wr(D
30 CONTINUE

DO40[=NAD2 + |, NA

SUM2 = SUM2 + ZLINT) * WF(D
40 CONTINUE

RETURN

END

* oo subroutine rens this cods for the mdal preblem for  ©
* cosmn .

nonoann

SUBROUTINE RUNTSTUT)
PARAMETER (NANO=24NPO=64 NCL=} 31)

INTEQER ABVL. AUTACL, CONVC, COUNT, CONT, TCONT, DiS, DCOUNT
INTEGER DRT, DEFBC, DIFACC, BT, TITA

INTEGER INSB, BRUN, LIN, MEDUSA

INTEGER OFT, OITA, PRES, KT, SETSOU, SCR. TRNACC

COMMON 711/ ABVL, AUTACL, CONVC, COUNT, CONT, TOONT, DB, DCOUNT
COMMON 112/ DRT, DEFBC, DIFACC, BT, TITA

COMMON /D INER, IRUN, LIN, MEDURA

COMMON 13/ OFT, OITA. PRER, RT, SETSOU, 3CR, TRNACC

LOGICAL TRN, DEFF. LOR, NLOR, SMRUN. SMTST
COMMON /L1/ TRN, DIFF, LOR. NLOR, SOMRUN, SMTST

INTEORR NDB(), IT

REAL®S TMEX16)

REAL®S MAXT

REAL®S TTIME, TOU, TERR, TELB
REAL*S DISTONCL). DTIME, DEPR

THEEND) = 1.008-12
TMENY) = L00B-12
TMEG) = 5.00E-12
TMEN4) = |.008-11
TMEXS) = 200811
TMEN6) = 5.008-1)
TMEXT) = 1.008-10
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TMENS) = 2. 00E-10
TMEX®) = $ 00B-10
TMEN10) = | 00809
TMFN( 1) = 200809
TMEX12) = 3 00B-09
TMFN13) = | 00R-08
TMENK14) = 2.00E-08
TMEK13) = 3 00E-08
TMEN 1 €) = 2.00E-07

Ke=0

END P

WRITE(0.*"ymé =, TRN,DB. IT + |

I ( NOT TRN) THEN
et

DTIME = TMEXTT)
TTOME = DTDME

TRN= TRUR

DA =ND8&(1)

7 (TTIME Q. MAXT) THEN
le!(&'M-umw

ELse
RETURN
ENDIF

END D

10 [¥ (. NUT. DO'F) THEN
TRNACC = |
DIPACC =0
I (DB .OT. 500) THEN
X

DB = NDI(t)
LN=1
007010
ELZE

K=K+
DB = NDB&(K)
RETURN
END I
WRITE (8.*Yaigs &. DIFF, DB
E13E P (.NOT. NLOR) THEN
I (DB .QT, 300) THEN
K=0
NLOR = TRUE
DB = NDi(1)
00TO 10
ELSH
K=K+l
D8 = NDBGQ
RETURN
END &

EL8
“ﬂ;ﬂ%ﬂh*ﬂ.ﬂn DOFF, LOR, NLGR, SIMRUN,
t

TRN=FALSR
DOFY = FALIR.
LOR = FALSH
NLOR = FALSE
DB = NDB(1)
00TO 10
ENDW

EBND

*  this whrouting solves the grey epation .

SUBROUTINE ORDE

PARAMETER (NANO=2¢ NFO=64 NC1»1 31)
PARAMETER (P§=1.141593)

LOGICAL TRN. DIFF, LOR, NLOR, SOMRUN, SMTST
COMMON /L1/ TRN, DEF. LOR, NLOR, SOMRUN, SMTST

INTEGER ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT
INTBOER DRT. DEFBC, DIFACC, OT, TITA

COMMON 11/ ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT

COMMON 1Y DRT, DUFBC, DEFACC, BT, TITA

L N FE R R AR R R R P L L L T T L LLLL FEE

LHERERE

S tiiiitid

REAL*S SUMTHONCL). SUMPH(NCL)

REAL®S AAO(NCL), AINCL + 1)
REAL®S BBONCL), B(NCL + 1)
REAL*S CINCL + 1)

) PUND(NCL), FUNE(NCL)

REAL®S ALFANCL), AC, ATMASS, DAF(NFONCL), ATEM(NCL)
REAL S ABCONFG.NCL), AB(NCL), AO(NFONCL)
REAL*8 BETA(NCL), BOONFO.NCL)

REAL*S FRONFG + 1), PQONFONCL)

REAL*S FINTONFONCL + 1), FINLONF'G). FINR(NFO)

REAL*S INTBINANGNFONCL + 1), INTINANONFO.NCL), ZIN(NFG.NCL)
NCL)

»
REAL®S S(NFONCL), SUM], SUM2, GRFQ(INCL). GRZQMNCL)
REAL*S SINTINFONCL + 1)
REAL®S TTIME, TOU, TERR, TELB
REAL®S ZLINNANG), ZNT(NFONCL), ZQMNFONCL). DIER

COMMON /R01/ ALFA, AC, ATMASS, DAF, ATEM

SPAB
COMMON /R23/ 3, SUMI, SUM2, GRIFQ, TR2Q
COMMON /R131/ SINT
COMMON R34/ TTIME, TOU, TERR. TELB
COMMON /R28/ 212, ZINT, 2Q, DER

DO 20K =1,NCP1
=00
DO10J=1.NG

ANDOQ = AAOGK) + AOGK) * mmxou
nnooo BBOGO) + BOGLK) * NDENY,

Moaa AAOGQ)/ GINTIK + 1)
BBOK) = BBO(K) / GNTA)
40 CONTINUE
¥ (PRES .OE. 3 AND. TOIT GE. DBXL AND. TOT LE. DBXU)
| THEN
WRITE (8, Ym0 b
-l

WRITE (8.50) (KAAOGQBBOK)XK =1 NC)
50 PORMAT (1X, 2(¥'J2.1X2(1PE10.3,10))
END I
DO 70K =1, NCM]

DOSJ=1, NG

TETAQIQ = (1 + ALFAMK)*ABCU.K)*ETA()) * TOU * DUK)

FUNPUIO = AOK) * NDINCX + 1) + BO(LX) * NDING X
90 CONTINUE

90 CONTINUR

¥ (PRES.GE. 4 AND. TOIT .GE. DBXL AND. TOIT LE. DBXU)
1 THEN

WRITE .Y

'WRITE (8.100) (K.ORSQAOK=1 NCM1)

100 PORMAT (1X, A¥' 2IX1PEI0.3)

WRITE (8. *Ymta Aml®

@
WRITE (8,110) (UK ZETAGX)FUNPOK).K =1 NC)J= | NG)
110 PORMAT (1X, 3 I XX 221 PE1 0.5,120))
ENDF

DOLXK=1,NC
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FUNHK) = 0.0
DO1205=1,NC

FUNK(K) = FUNH(K) + ABCUK) * (AAOXK*GINTIK + 1) + BBOX)®

S = POIN(L) * SUM! » DL(1) * GRZQu1 7 2 - DALY * ORFQ(I) + 2 *
TGRIK1)/ 3 + PFAKY)

SR = PGIN(NCP]) * SUM2 - DLINC) * GRZQINC) / 3 « DLING) * GRFQINC)

1+ 2 GRIUNC)/ 3 » PFOUNCPI)
TF (LIN _EQ. 0) THEN
C**° ysg the lincar grey moded for wccelerating the diffunon
Covee
DO130OK =1.NC
DUMF(X) = 0.0
DO140J= 1. NO
DUMF(K) = DUMP(K) + CHIJX) / (ABCULK) + TOUY
140 CONTINUB
130 CONTINUE
DO170K = 1I.NC
DO160J= 1, NG
THETAUX) = CHKJX) / ((ABCU.K) + TOU)* DUMP(K)
PHIQX) = THETAUK)
160 CONTINUE
170 CONTINUE
DO 190K =1,NC
FUNA(K) = 0.0
SUMUK) = 0.0
DO1%0J=1,NO
FUNA(K) = FUNAGK) + PHIJX) / SIGM(1LX)
SUMIK) = SUMZ(K) + ZETA(K) * THETALK)

DO200J=1,NG
SDDKK) = SDDKIO) + (NDINGLK + 1) - NDIN(LK)) / SIGMO.X)
FUNC(K) = FUNC(K) + ZETAGXK) * FUNFULK)
CONTINUB

FUND(K) FUNA(K) * (GINTYK + 1) - GINT(K)
= SUMZOK) * (AAOK)*GINTIX + 1) + BBO(K)*GINT(K))
210 CWI‘INUB
DO 220K = 1, NCP1

200

ROQ = SUMI * POIN(K) + PFGIK) + SDDKK) / 3 - FUNDXK) /
1 3+DLOO * GR20AK/ 2 - DLOK) * GRFQ(K) + 2 * GRINK) /
2 3-FUNCEK)/4+ FUNEK)/ 4
ELSE [F (DIFBC .EQ. 1) THEN
RO = SUMI * (PGINK) - GINT(K)) + PFGI(K) + SDDKK) / 3
<FUND(K)/ 3 + DL(K) ® GRZQQC) / 2 - DLAK) * ORPQ(K) + 2
* GRSKK)/ 3 - FUNC(K) / 4 + FUNE(K)/ 4
ELAE TP (DUFBC BQ. 2) THEN
R(K) = ETA(K) ® DL(K) * FUNH(K) / 4 + SL
ENDIF
ELSE I (K .BQ. NCP1) THEN
¥ (DIPBC EQ. 0) THEN
R(K) ™ -SUMZ * PGIN(K) - PFOIK) - SDDVK - 13/ 3 + FUNIX

1 Ke1)/3-2°CRSKK-1)/3+DLK-1)* GRZQK - 1)
2 /2+DUK.1)*GRIQXK - 1) - FUNCKK - 1)/ 4 + FUNE(K
3 -4

ELSE ¥ (DIFBC .EQ. 1) THEN

R(K) = SUM2 * (GINT(K) - POIN(K) - PPGIK) - SDDKK - 1)
1 /3+FUNDK-1)/3.2°CRSKK-1)/3+ DK -1)*
2 OGRZQMK-1)/2+DL(K-1) *GRPQK - 1) - FUNCK - 1)/
3 4+FUNEK-1)/4

ELSE (F (DUBC EQ. 2) THEN

RO = -ETAXK - 1) * DUK « 1) *FUNH(K - 1) /4 + SR
END I

ElSB
ROK) = (SDDKK) - SDOKK - 1))/ 3 - (FUND(K) - FUND(K - 1))
1 /3-(FUNCIK)+ FUNCKK - 1))/ 4 + (FUNE(XK) + FUNEK - 1))
2 /4+CGRXK-1)
ENDIF
220 CONTINUE
EBsB
C**** uge the nonlinewr grey modul for accelersting the diffmion
Croee
DOUOK=1,NC
DO 230J=1,N0
FUNGGX) = NDINOX + 1) - NDING.X)
230 CONTINUB
240 CONTINUR
DO 246 =1,NG
DO2SOK=1,NC

THETAJ) = FUNF(JX) / (AMAO(K)*OINT(X + 1) + BBO(K)"GINT(

1K)
PHIUX) = FUNGOX} / (GINTUK + 1) - GINT(K))
CONTINUE

260 CONTINUE
DO WK =1,NC
SUMZ(K) = 0.0
DO 270J=1,NO
SUMZ(K) = SUMZ(X) + ZETAUJX) * THETAGX)
270 CONTINUE
230 CONTINUE
DO 300K =1, NC
FUNAKK) = 0.0
DO 290J=1.NG
FUNA(K) = FUNAK) + PHIU X) / SIGMU X)
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R(K) = SUM1 * PODNK) * PROKK) ¢ DL4K) * ORZQIK) 2+
1 DUK) *ORFQIK) * 2 * QRSIK) ¢ 3
ELSE * (DIFBC .BQ 1) THEN
RX)=00
DO3I0I=1, Na
R(K) = RIK) + SUMI * PDINGK) » FINTUK)Y » 2 * (UINTY
1 XK ¢ 1} SINTULD) / 3 SKIMUXD * 2Q0.K) * DULK)Y
H 12 . FQUX) * DL / SIOMIX) « TTFRUKY
CONTINUE

no
ELSE F (DIFBC BQ 2) THEN
R(K) = ETAK) * DLUK) * FUNH(K) 7/ 4 ¢ 8L
END O

ELSE{F (K BQ NCP1) THEN

I (DOPBC BQ 0) THEN

R(K) = SUMZ * POIN(K) - PPOKK) ¢ DL « 1) ORZQUX - 1)
1 12+DUK-1)* ORFQIK - 1)+ 2% GREUK - 1)/ 3
ELSE I (DI'BC BQ 1) THEN

R(K)=0.0

DO 32031, NO

ROK) = ROC) - SUM2 * PDENIIC - FINTUK) - 2 (INTU
1 130 - SINTUX - 1))/ (3"OMUX - 1) ¢ 200K - 1)
2 *DUK:1)/2¢ QUK 1)*DUK - 1)/ SIOMUX -
3 DONERUX- D)

CONTINUE
ELSE [ (DOBC EQ. 2) THEN
RO = -ETAK - 1) * DL « 1) * FUNHK - 11/ 4 + SR
[

32

-3

WRITE (8.360) (K DUMF(KLX =1 NC)
360 PORMAT (H1X¥' 2.1X.1PE10.3)

WRITE (8, °Ytheta phi*

WRITE (8.370) (U X THETAUIOPHILIX = | NC) =1 NG}
370 PORMAT (1 X.1'J2,1 X.%'12.2(1 PR10.3,130)

WRITE (4,"mumth nawpld’

WRITE (8.380) (K SUMTHAOSUMPH(K.X:
390 FORMAT (IXY.2IX2IPRI0.3)
WRITE (8, *Yfme mare’
WRITE (8.390) (KFUNAK)LSUMZOO.K =1 NC)
390 FORMAT mx'r.n,lxmmo n
WRITE (8,"Yvédi Amx fund
-

wmm‘mmmmmuwmxmmm NC)
400 PORMAT (1X, ', 12, 1C 1PE10.3, 1X, IPBLO.S, 10 IPBIOS, IX,
1 IPBIOJ

nomxnn NCPL
¥ X .BQ. 1) THEN
o (DUFBC .EQ. 0) THEN
AK)=0.0
B = SUMI + FUNAK)/ 3 + SUMZ(X) ® BBO(K) / 4
OO0 = FUNAK) / 3 + SUMZ(K) * AAMXK) / 4
ELIE [F (DOFBC .EQ. 1) THEN
AXK)=0.0
B0 =0.0
CX)=0.0
DO410J=1,NO
BOK) = B(K) + (XM X)* BOUKV4 + 1XI*ROMIX))) *
1 NDINUX)/ OBTIK)
COK) = COK) + (SITMULX)*AQU.XKN4 - LI SKBAIX)) *
NDOINUX) / GEINTOO

CONTINUE
BAC = BOK) + SUMIL
MLSEI¥ (OIFBC BQ. 2) THEN
AK)=0.0
B(K)=0.0
C)y=0.0
DO420J=1,NG

B0 = BOK) + (WAMOXBOUKYA + 1/(3°SIGMIK)) *

1 NDNOJO

CO0) = COK) + (RAIMUI I AOUKY4 - 13 "TIOMI IO *
I NDINOX+1)
420 CONTINUE

BGK) = B(K) / GINTOK) + SUMI

€00 = Q0K / GINTKK + 1)

END P

ELIE ¥ (X BQ. NCPI) THEN

W (DIFBC £Q. 0) THEN

AOK) = FUNAK < 1) /'3 + SUMZOK - 1) *BBOK - 1)/ 4
BAK = FUNAGK - 1)/3 ¢ UMLK - 1) * AAOGK - 1)/ 4 - SUM2
Oy = 0.0

ELSE ¥ (DFBC 8Q. 1) THEN

A= 0.0

800 = 0.0

D043 I =1,NG

AG) = AGK) + (BICMUX - 1P BOUK - 174 - 1N HOMU,
1 K-1)) *NDNUX)/ GNTOC)

BOC) = BOC) + (BIOMUX - 1 AOUK - 14 + 1/(3*S0MU,
1 K- 1) * NDINGX) / GNTOO
430  CONTRUE

B4 = BOK) - SUM2
Co\) =00
ELIE ¥ (DWFBC BQ 2) THEN

2



Hus
5n
e
bEL}
5ies

ue?
s
s
3190
1nel

na
3193
394
3193
S196
19
390
He
3200
nn

1202
3203

AK)=00
BK)«00
DO 440 =1, NG
AK)® AK) - (BIOMILK - 1)°BOUIK « | 4 < 1X3*SIGMA,
bR eNDINGX - 1)
B(K) = BK) « (SIOMK - 1)°AONK - 1 Y4 * 1HI*SIGMU.
1 K- * NDRNUX)
OCONTINUR

ALK) = AK)/ INT(K -+ 1)
MK) » B(X) / OINT(X) + 3UM2
C(X)=00
BeNow
Ase
AK) = FUNAGK - 1)/ 3+ SUMZK < 1) *BBOKK - 1)/ 4
BIX) = (FUNAIK - l)‘FUNMX))IlO(!lMtK 1)*AAOK - 1) ¢
1 sUMZK)*BBO(K)) /
K= PUNMK)I!‘MK)’ANXK)II
By
430 CONTINUE
7P (PRES Q. 4 AND. TOIT .GE DBXI. AND TOIT LE DBXU)
1 THEN
P (LIN .EQ. 0) THEN
WRITE (8, *Yabcrmlingrey
ass
WRITE (8.*Ys b ¢ 1 in nonlin grey’
L4

END
WRITE (8.460) (IKAGOBA0.COORK)K =1 N)
480 FORMAT(1X, ¥, 12, 1X, IPE10.), I1X. IPE103, I1X 1PEI0, IX,
] 1PEI0.3)
END
N=NCP}
CALL LS
DO 470K = |, NCPL
NGINGC) = SOLIMK)
470 CONTINUB
vmn.m:.m.m.on DBXL AND. TOIT LE. DBXU)
'
m(l"-l_"'"f
WIITE (8.480) (K, OINT(LNGINGO.NOINGO/INTIK LK =1 NCP1)
480 PORMAT (IX, X', I3, 1X, 1PE10.Y, IX, 1PE10.3, 1 X, 1PE10.)

BNDDF
IF (PRES .GE $ .AND. TOIT .GE. DBXL .AND. TOIT LE. DBXU)
! THEN

WRITE (8.490) (KJ.THETAJX)YAAO(K) "NOIN(K + 1) + BBOK)*

1 NODNGO)LTHETAUX) NAAO(K)Y *GINTIK + 1) + BBOK) *GINT)).FUNF(
2 JJQI= 1 NGLX =1 NC)
490 PORMAT (UIX.XI2L1X 12,1 PE103,IX.1PEI0.3,IX.1PR10.3))
ENDIF

DO 10K =1, NC

AB(X) = 0.0

DO 300)=1,NG

AB(K) = AB(K) + ABCU K) * (THETA(IONAAO(K"NGINKK ¢ 1) +

1 BBO(K)"NGIN(K)) * FUNF(JK) - THETAJXK)MAAO(K)OINT(K + 1) +
1 BBOK)*GINTOX)

IF (PRES .GE. 3 .AND. TOST .G DBXL AND. TOIT LE DBX)
1 THEN
WRITE (8. 77sh groy’
WRITE (8.320) (KABOKLK=1.NC)
320 PORMAT ({IX.X1IXIPEI0I)
aDr

DO 340K =), NC
DO 3301 =1, NO
ITERGX) = DUX) * CHIOK) * BTAXK) ® AB(K) / 4
330 CONTINUB
340 CONTINUE
RETURN
fND

* grints time of simulation on 8 pe with microsolt compiler *
* BUT "C* comymants et be ramoved before Lisms cam be obtained ¢

nnNaa0n

SUBROUTINE CPUTM
PARAMETER (NANO=24 NFO=64 NCL~131)
INTBOER ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT

INTEOER DRT, DIFBC, DIFACC, NT. TITA
INTEOER INSB, SUUN, LIN, MEDUSA

mmwwmmmm

COMMON A1/ ABVL, AUTACL, CONVC, COUNT. CONT, TCONT, DB, DOCOUNT

COMMON 12/ DRT, DO'BC. DIFACC, BT, TITA

COMMON 13/ INEB, RUN, LIN, MEDUSA

COMOMON 4/ NA, NO, NC, NIF, NDXT, NIFPC, NDICNT, NFMUST
COMMON 13/ OfT. OITA, PREL, KT, SETIOU., 3CR. TRNACC
COMMON AW T8, TEMEXP, TBT, TOIT, TEMPTD, TIT, TRIN

REAL*S NATE(NCL),
REAL*S DESTINCL), DTIME, DEPR.
REAL°S TTOME, TOU, TERR, TRLB

COMMON RO& DIST. DTIME, DeFR
COMMON /R13/ NATE, NINT
COMMON R34/ TTIME, TOU, TERR, TELB

LOGICAL TRN. DIFF, LOR, NLOR, SDERUN, SMTST

naonannn

WRITE (99,10) TOIT, TOT, TIT, OfT, BT
10 FORMAT (1X, “TOM™, B, 1 X “TIT™, [8, 1 X, TIT= 4, I X,
1 OfT, 4, 1X, T, 3)

WIITE (99.20) (DISTYK)NATE(K).K =1.NC)
20 FORMAT (2(1X,1PE10.3))

C* CALL GETTIM(HR, IMIN, ISEC. 11003EC)
C* PTOME = (THR*360000 + IMIN*6000 + (SEC®100 + 1100SEC)

RUNTM = FTIME - STOME
WRITE (99,40) TRNACC, DIFACC, LIN, DTIME
40 FORMAT (1 X, tmacc=, 12, 1 X, "diface=, I2, 1X. Tire, 12, 1

60 PORMAT (1X, ‘utione =, F12.2, ‘mier)
ELSE IF MUNTIM/100 0T, 10000.0) THEN
WRITE (99,70) RUNTM / 360000.0

70 FORMAT (1X, numtime , F12.2, ' hev)
END PP

® this subroutine resds the tabley id evalustes ali the  *

* varishles aseded for the sirulation of this code with MEDSUA *
° this of sub model, thish  *

¢ over rides wy prodefined varisblen, which are redeifhe here.

SUBROUTINE TABLES

PARAMETER (NANGw24 NFO=64, NCL=151)

PARAMETER (RK=7.3560667E-16,PK=6.6261 E-}4)
PARAMETER (BK=1.3907B-23 5P=3.0E00,EVE=1.6022E-19)
PARAMETER (TCP=EVE/BK.Pie3.141393 A0=PKABK "TCF))

INTEGER ABVL, AUTACL, CONVC, COUNT, CONT, TCONT, DB, DCOUNT
INTEGER DRT, DIFBC, DIFACC, IIT, TITA
MEDUSA

COMMON 12/ DRT, IXFBC, DIFACC, BT, TITA

REALS FINTONFONCL + 1), FINLINF Q). FINR(INYG)
IBM.'IPWO‘ I} PQINFONCL)

REAL*S

mnummmmmmnmmxm

REAL®S INTB(NANGNFONCL + 1), INTINANG.NFONCL), ZININFGNCL)
REAL®S ITRS, [TERNFONCL)

REAL*S L, LFL, LOWLDY

REAL*S MAXT

REAL*8 NATE(NCL), NINTONANGO.NFONCL)

REAL*S NFFTINANG.NFONCL), NDIN(NFFG.NCL + 1), NZIN(NFONCL)
REAL®S PMACINCL), PINTINANG.NFG.NCL), PRTIME

REAL*S PODNNNCL + 1), FFOINCL + 1), PLANK(NFONCL)

e d mm + I\ PITEQNFGNCL), PZININFONCL)

COMMON /R10/ INLB, INRB, ITSL, IERED, IERR
COMBMON /R11/ INTB, IINT, (N



comowfuys.sum SUM2, ORFQ, ORZQ
COMMON /R231/ SINT

COMMON /R1/ TRNTVR, TEMP

COMMON /R26/ UPL

COMMON R2Y WF

COMMON /R28/ ZLP, ZINT, 2Q, DIER
INTEGER FL. NTR

EXTERNAL FPLNK, F2. 13

INTEGERNRN, NCOUNT, PRNT
COMMON /RDC/ NRN, NCODE, NCOUNT, PRNT
REAL*S ABB(NCL)

REAL®S ZFAC, ZFACI, ZTMAX

c
cL €21 HYDROD
C VERSIONIA 1A JPC
COMMON DM. P3, PINL R1, R3, RS, RHO1, RHO3, RHOS,

1 RHOMI, RHOR, RINL TIME, U2, U4, UEDOE, V1, V3, V3
DIMENSION DM(151), P3(1513, RI(151) R3(131), R¥(151), RHOW(151),
1 RHO{(131). RHOS(131), U2(131), UK131), VI(131),

2 VX131, V(IS1)

CULHAM
COMTH/ DOROEI, DDROES, DDROII, DDROLS, DDTE), DDTES,
GAMMAE, GAMMAL KAPPAE, KAPPAL PEI, PES,

DOMENSION DDROE1{131), DOROE3(131), DDROII(151), DDRODB(131),
1 DOTBI(151), DOTEI(151), DDTII(131), DOTI(IS1).

2 KAPPAE(151), KAPPAK1 51), PEI(131), PEX(1313, PN

3 “I3(151) TEI(1S1), TE3(1 1), TH(131), TIX13Y)

L C23 JONS AND ELECTRONS
17 JPC  CULHAM

1 EIXCH2, LC, MIEFF, NlNE.mAI 21, ¥, F23Ql, PBQJ.

2 DDRL, DD, MDALH, PMASS

mmmml(m).mmm).mmxmun.

1 EIXCH2(151), LO(I S1), MIEFP(1 55), NE(131), N1 31),

2 FZ1(151), FZ3(131), FZIQI(151), FZ8Q3(131), DDZL(151),
DDZ3(131), FIDASH(] 1) OMEOAL(131)

, LASER]. NBCRI
co\nmmmw ELASL, LAMDA), LASER|, PLAS|, RABSI,

1 ROCRIl, XL, XL3, NBCRIl, FRACLS, NABSL

DOMENIRION ALPHAL() 51), LASER1 (1003, XL1(131), XLX131)
[+
L c2s REACTIONS
C VERUONIA 14T CULHAM
Mmmno.no.rmnunm FIHES, FIHEA,
FIHBA, FINEU, FINEU, FINTAL, FINTRL, FIT, 3T, FIX FIX
HELRSS, MELIU4, HYDROG, NETRAL, NTRLMS, PNEUT!, PNEUTS,
RIDD, R3DD, RIDHEY, RIDHES, R1DT, RIDT, RNEUTI, RNEUTS,
TINUCL, TOTNEL, TRITIU, XMASS, XTRA, XZ, YEL, YE3, Y11,
YD, YRELD, XTRAL, XTRA2, XTRAY. XZ1, X22, XZ3, XMASS1,
XMASS2, XMASSS, XTRA4, XZ4. XMASM, F1XI1, PlnPIXJ.FJXl
3X2, F3X3. FIX4, FOX4
REALS NETRAL, NTRLME
DIMENZION FAD(131), FID(151), FLH(151), PSH(1S1), FIHE3(231)
FIHES(1 31), FIHBA(131), F3HBA(151), FINEL(151),
FINEU(IS1), FINTRI(151), FANTRL(151), FIT(151),
FIT(19), FIX(151), P3X(151), FIX1(131), F1X2(151),
PIXH(1S1) FIX4(151), PIXI(131), FIX2(131), FIXO(131).
F3%X4(151), RIDD(1S1), RIDD(131), R1IDHEX151),
RIDHEI(151), RIDT(IS1), RIDT(131), YEI(151), YEX151),
Y1 51), YIX13))

C2.8 NON-LTE DATA FOR AVRO-ZRADIATIVE COOLING ETC...
9), DDEN(22). ENION(19.22),

), DTEMI]!
1 TBLZ(19.22) TBLZSQ(19.22), POWER(19.22.64)
HNUMIN, HNUMAX, ZATOM, NT, NR. NOHOOH,

TE ST e

P Y T

3 NOLOW, NORMAX, NTMAX

aanon

€0.0. AUXILIARY X-RAY TRANBPORT ARKAYS FOR URE WITH LEXTS TARLES
REAL*S NIB
COMMON LEIDR Y RADTL, RADTR. PPLL, PPR1, DTIR, PRDLLIM),

1 PRDLRI(64). PRADLL{64}, PRADLR($4), RADLL(64), RADLR(04),
2 TEIB(I91% NIB(1 1), REDOEB

C
€L C13 MESH AND NUMERICAL METHODS
€ VERSIONIA 173 JPC CULHAM
COMMON /COMNUM AR, AL BE, B C¥, CL DR, DL K, P, G OL Q2.

1 Q‘ mmmmw.wm NIP), NL, NLML,
b
mm:sumuumun.um\mm\mm.
1 DE(131), DI SN BOSTL FOISTL GRS, GRS,

1 Q3131 Q41 1), TRITE(131), THTE(L 1), UTTR( S 1Y
C

D. SALZMANN
ACOMABS YONS(1 31), DO(20.13)

c
a C17 PHYNICS CONTROL

3 NLPYR NLPTL

LOGICAL MLBRMLS, MLICON, MLX, NLABS, NLIRMS,
1 NLBURN, NLCRI1, NLDEPO, NLECON, NUCON, NLMOVE,
3 MNUPFE

c
a C3.1 NUMERICAL CONTROL PARAMETERS

c

[+
a CAl

c

VERTION 1A 1W73  I°C CULHAM

COMMON /COMNC/ AKD, AK1, AK2, AKY, AK4, AKS, BNFUM, DELTAT, DT2,
1 DT3,DT4, DTEMAX. DTIMAX, DTMAX, DTMIN, DUMAX, RDT2. RDT3,
2 RDT4,NCELDT, NCONDT, NIT, NTTMAX, BREAK, NLOOON, NLITE
LOGICAL BREAK, NLOOON, NUITR

ADMINIFTRATIVE VARIABLES
VERSIONIA 1473 JC CULHAM
OOMMON /COMADM PIQ, TSTOP, MAXDOL MAXRUN, NDUMP, NREP, NLDUMP,
1
LOGICAL NLDUMP, NLEM®
DOMENTION PIQ(100)

COMBMON ACOMUTY/ ZWMARI(131), ZWMAR(131), ZWMARYX131),
ZWMARA(151), ZWMARI(1 31), ZWMARS 1 31), ZWMAR7(131),
ZWMARB(1S1), ZWMARS(151), ZWMAIO(1 31} ZWMAT 1(131)
TWMAL(131), ZWMAI X131), EWMA L1 91), ZWMALX(131)
TWMALKIS1)

o -

(s X}

1 ANEHIELL 1 1).QEHELL( 1 NEMAX
COMMON /SHELL/ REHELL, QSHELL, NEHELL, NEMAX
DOMENTION REHELL(1 1), QSHELL{1 1), NEHFLL(1 1)
BQUIVALENCE (PIQ(63).ZPLAD), (PIQ(62LROPLAS), (PIQS1).DRPLAS),
INSTA IQUEPONDR,

MQITHOT). (MQG

X1 )ZALAS), (PIQ(1 2ROGLAS), (PIX1 1 L.DROLAS),

(PIQUIO\FLIEY), (RAOINLHOOAS) G ASERL(1).TON),

(LASER1(2)PMULT). QASERI BLANPULS), (LASER| (4),

PLENTH), (LAKER(5),TOFF), (LASER | (6).PMAX).
PIQSO)EIMULT), (PIQ(G4LOUTAMI, (PIU66LDTPRNT)

EBQUIVALENCE (PXQ(6T\NELEDC)

F X

Cl.l. BARIC SYSTEM PARAMETIERS
VERSION 18 14473 KVRARM  CULHAM

NLEND,
DOMENRON LABEL1() 2), LABEL2(12). LABELS(13), LABEIA(1 2),
1 LABELY(12), LABEL&(1 2), LABELT(12), LABEL(12)

C*** ikt io s b | amcw Win Subreuting reharms L muin

auleting
DATAN!IIW.ANI&W EPS.EFS1EPS2/NEN, LB, 1B
!
rmso.omm
NTR =1
NC=NL
NCPL=NC+1
NCMI »NC. )
NG = NGHIOH - NOLOW
TMEN = 0.3 * (10.0*"DTEMI1))
DMEN » 10.0 ** DDEN1)
ZP1 =2ATOM + 1.
P aODE BQ AN I
OT2B =072
DO 10K =1,NC
NIB(K) = NIOK)
TEIB(K) = TR10O)

CONTINUE
REDGEB = RI(NCP1)
RADTL=0.0
RADTR = 0.0
PPL1 =00
PPRI=00



DO20S=1, NG+t
PRAIRLLN =0 O

PRADLRLS) =00
PRDILIN=00
PROLRI(H =00
RADLLID) = 0.0
RADIR(N =00
0 CONTINUE
IND P
FND I’
DTIME = DT2
ATMALS = XO4ANR
TOU = | / (SP*DTIME)
NITT »NIT
P QNIT NE 1) RETURN
€+ gurapelaie Lo3 unng the slope of the previous step
DOJK=1,NC
Z1 = (TEMK) - TEIBOK)) * DT2/DT28
' (ABMZ1) OT. 0.3*TENK)) 21 = 0.0
T = TEIO + 2L
NIO(K) = NIK)
21 = (NKK) - NIVK)) * DT2/ DT2B
7 (AB&(Z)) .OT. 0.3*NKK)) 2} = 0.0
NIK) = NKK) + 2}
CONTINUB

21 = (RICNC?)) - REDOEB) * DT2/ DT2IB
I (ABKZ1) QT. 0.3°RINNCPI) Z1 = 0.0
REDOEB = RI(NCP1) * 21
DO40K=|,NC

BREMNKK) = 0.0

i1

40 CONTINUE
DOSOJ=I,NO+1
0.0

WRITE (4,70) NCOUNT, TIT. TIME
70 PORMAT (raduition code sipped due to bow tavp innte.f’,
1 AIX), IX, IPELLS)

00 TO 670

ELSE
RTEON = TRUR
BENDIF

DOSOK =1, NC
ATEM(X) = TEMK)

C**%* raph is obtained from EOS subreutine in MEDUSA
CV(K) = REPHOQ * RHOXK)/ 10.0
DETK) = RIOQ
DLOK) = ABSRI(X + 1) - RI(K)

30 CONTINUE

Co*** dafing the frequarcy groupe
DO 90 3 = NOLOW, NGHIGH
I» 13 . NOLOW + §
M=
90 CONTINUE
c-munnw-n-ahd--.—u—-n
C*°** md dunsity by ins o 2, X: 2ed

XAA = CIOMADLOGE 0(0.9 (HNUEDG()) + KNUEDG() + )))ZATOM)
] * ATMASE/ AN
€o%¢ ofie) = 0.0 ifla < tonin, atharwive 2] = 1.0
ZPACI = DMAX) (0.000.DM8N1(1.0D0(TES(K) - TMINYTMIND)
C**%¢ tfie = 0.0 if la3 < win, stharwise afie =< 1.0
ZPAC = ZFAC! * DMINI(1.0DONKKYDMEN)
CALL DINTRIDLOG10(TRI{(K)), DLOGTOMNNION SIOMA(L,1 I
XA

Lal)
XIAUK) = (1.0 - ZFACY) * XAA ¢ ZFAC) * 100 ** XA
AU = 10.0 ** XA

oc ABCUIQ = RHOMK)*.

CALL INTRIPOWER(1 1 10). PV}
PLANKGIQ ® ZFAC * 10.0 ** PV * NXK) * DLOK) / (4°PD
oc PLANKOG) = ZFAC*10.0%PVA4 " TI"X3AUI0)
100 CONTRRE
C™*** rublm
nis
DO 110 13 = NOLOW, NGHIOH
Jw 13- NORLOW + 1
XAA = CIOMADLOGT (0.3 *GINUEDG() + HNUEDG( # t)HAZATOM)
t * ATMASS/ AN
ZFACT = DMAXI (0.0D0.DMINI (1.0D0(TENK) -
ZFAC = ZPACT * DAGNI(1.0D0NKY10.0""DDENI(1))
CALL DINTRIOLOO1 TEXK)N DLOOT 00NN SIOMALL1.ID,
XA L)
JSAGXK) = (1.0 - ZFACT) * XAA + ZFACL * 10.0 ** XA
XIAUX) = XAA
ABOU) = M
cc ABCUI) = RHOIK)
DD = KNUEDGGD * 11604.0/
ER = HNUEDG(! + 1) * 11604.0/ TEX(OO
¥ (DO .OT. LOWLDD THEN
DD = LOWLIM
BND
¥ (KB .OT. HILDO THEN
HE = HILDM
BNOF

XBAGX)
*ANTXIA(IO) / ATMASS
TIBKO

-

CALL ROMB(FPLNK. DD, EE. RESPLN)
PLANKOX) = awm'(mxmmvm"o RESPIN
110 CONTINUE
ENDIP
120 CONTINUE
DOISOK=1,NC
AB(K) = 0.0
DO 140J=1,NG
ZNTUX) = 0.0
DO 1301=1,NA
PNRUX) HANKU.K)
mmm-mnuoomu.lo'wrm
CONTINUE

INGX) = ZNTUX)
AB(K) = AB(K) + ABC(UJ X) * ZINTUX)
140 CONTINUE
150 CONTINUR
I (PRES .GE 3 AND. TOIT .OE. DRXL .AND. TOIT LE. DBXU)
THEN

1
WRITE (8,160) (K.DLKLCVKLATEM(KY1 1 604 EREI(K)LK =1 NC)
160 PORMAT (2(X .22.1X'@=,1 PE10.3,1 X'cw, 1 PE1 0.3.1 X Ve,
1 1PE10.3,t X Ue~,1PE10.3.1X))
WRITE (8.°Yfreq group limits in tabies |, DTIME
WRITE (8.170) UFR()J=ING + 1)
170 PORMAT ((g.2,1X.F11.4,10)
WRITE (8,771 } k iiest in tablew’
WRITE (8,100) (LI XJINTAIK)LK=1 NCY J=) NO) =1 NA)
190 PORMAT (6CF L IXTILIX Y LLIX 1 PEL0.3,1X)
WRITE (1.°] k zint in tables '
WRITE (1.190) (U KZINT( K)K=] NO)J=1 NG}
190 PORMAT (MI2IX22.1X.1PEL0.3,10)
ENDIF
DO 210K =1, NC
ABB(X) =00
SPLAN(K) = 0.0
DO 200J=1,NG
ABB(K) = ABB(K) + ABC(JX) * PLANK(1.X)
= SPLAN(K) + PLANKUX)

200 CONTINUE
210 CONTINUE
DO230K=1,NC
SUNHCHK) = 0.0
D0O220)=1.NO
CHIJK) = ABC(IX) * PLANK(J.X) ! ABB(K)
+CHIKIL)

= SUMCHIIO)
TERED(K) = 4 * P1 * SPLANKK) / SP
CONTINUE

130

220

CONTINUE

IF (PREX .OR. 1) THEN

WRITE (8.240) TEX1). DDTE3(1). DOTIN1), RHOX1) CW(1),
1 REPH(1), DM(1), DI1), ATMASS. VX1)

40 PORMAT (Y3 de dtiro cv up éhn & stm v=°, 10(1X.1PE10.3))

WRITE (8.250) (KSUMCHKK).K
250 PORMAT (12.1X.1PE11.4,1X)
ey

DO 260K =1,NC
Aan-vux'amao"!)/cvm

TRNFVRGO)
ETA) = 1 /(1 + ALPAGKK)*TOU)
260 CONTINUE

SRC=00
DO2OK=1,NC
SIRC = SMC + BTAK)
270 CONTINUB
SIRC = SIRC/NC
DO 300J= 1, NG
DO2%0K =1,NC
QA =0.0
DO290I=1.NA
QAIK) = CHIJX) * EREIXK) * BTAK) / (2"DTIME"BETAK)
1 )+ TOU *BNTAIXK)
FQUX)=PFQEX) + EINTAJX) * WF(D) * ZLP(D
CONTINUE

SOMOK) = (ABCUX) + TOU)

20X = CHINX) * m'!I’MK)/m'BBTAﬂO)o
1 TOU *ZINCX)
90 CONTINUE

300 CONTINUE
¥ (PRES .GR $ .AND. TOIT .GE. DBXL .AND. TOIT .LE DBXU)
1 THEN
WRITE (8.*Ynam of chis s shbchi in tables*

WRITE (8.310)

310 PORMAT (S(R2.1 X2(1PEL1.4,10)
WRITE (8,°7) & chi abe plank im tables*
WRITE (8,320) (G.X.CHIJXMBCE XUPLANKO K) =1 NO)K=1,

1 NO)
320 PORMAT (S(LIXIZIXI(IPEI03,1X))

WRITE (" | jk qintublem’

WRITE (8.330) (1 X.QAJIOK=) NC) =1 NGM=t NA)
330 PORMAT (6021 XINIXI21X1PEL0.3,1X)

PAUSE

ROF¥
PO3SOK=1,NC
ORZQAK) = 0.0
aRPQOQ =00
DO0340J=1,NG
ORZQUK) = ORZQ(K) + 2QUX)
RPQAD = GRFQO0 + PQUK) / HOMIIO
340 CONTINUE

350 CONTIUR

1 NC)



DO ¥0J=1.NO
INLBU) = 0.0
INRB(f) = 0.0
360 CONTINUB
¥ (NFFC EQ. 0) THEN
DO3ITOK =1, NC

TRNFV = (3P*DTIME) / DL(1)
ELSE [F (NFFC .EQ. 2) THEN
DO30K=1,NC
TRNFVR(K) = (SPUDTIME) / DU
390 CONTINUE

END I
DO410K =1, NC
=00
DO400J =1, NG
INIBR(K) = INIBR(K) + 4 * P1 * PLANK(J.X) / DM(C)
400 CONTINUE
410 CONTINUB
RETURN
ENDIF
IF (PRES .GE 4) THEN
WRITE (.71 j K il nist nisw/ling in tsbles®
WRITE (8.420) (L XINTULIIONINTLLKQNINTALKVINT(
1 L= NAY= 1 NGLK=NC - 3 NC)
420 PORMAT (3(i'\R.1XJR.IXX 121 X}(IPEIO.S.1 XN
ENDIPF
C**** hrarw - power evstied par unit mess wetts'Kg
DO 430K = 1, NCPI
DO440J=1,NG
DINTUX) = 0.0
DO 4301 =1, NA
DINTU.X) = DINTU.K) + INTB(LIX) * WF(D) * ZLP(D

BREMIXK) = BREMSI(K) + (2PVDM(K)) ® ANTB(LIXK + 1) -
1 INTBLIX)) * WFD)
CONTINUE

470 CONTINUEB
480 CONTINUE .
C**** fiux emittad from right end of the plasma weits'wr*2
DO 310J=1, N0
=00

DO 300 K = NC,NC

DO 4901=1,NAD2

PRADLR(J) = PRADLR()) + Q°P)) * INTB(LIK + 1) * WP(D) *

C**** fix emittad from left end of the planms wistaiar*2
DO S40J= 1, NG
PRADULO) = 0.0
DO S}OK=1,1
DO 3201 =NAD2 NA
PRADLL) = PRADLL(Y) + (2°P1) * INTBAJ.X) ® WF(D) * ABY

DUMTME = DUMTME + TIME
I (DUMTME .G, DTPRNT/2.5) THEN
DUMTME = 0.0
WRITE (7.530) TDME, FLUXL, FLUXR
3350 PORMAT (Thed & fhow inrtef=*, 3(1PEL1.4,1X)
DO 3®0J =1, NG
ENERGLO) = 0.0
ENEROR() = 0.0
DO S0 I=1,NA
DO 360 K = NABS1, NABS1
ENERGLY) » ENERALY) + NINTAI X - 2)
ENERGRQ) = ENFROR() + NINTQUIX + 2)
560 CONTINUE

370 CONTRNUE
3850 CONTINUE

WRITE (1,590) (HNUEDG()\ENERGLO)ENERGR(J).J=1 NG)
590 PORMAT (3(1P£12.5,1X))

BNop
IF (PRES .OB. 2) THEN

CALL TEMPER

'WRITE (6,°Ysfler solving rte ta3 ts] nsts brecre indhr in rie.f
lwrl(uno)o:moo.w

NC)y
600 PORMAT (HI2,1XS(1PE10.3,1X)))
¥ (PRES .GE 2) THEN
DO620K=1,NC
DO 610 I = NOLOW, NGHIGH
Iwl-NGLOW+1
DO = HNUEDG(J) * 11604.0 / NATE(X)
EE» HNUEDG(S + 1) ® 11604.0/ NATE(K)
F (DD .GT. LOWLIM) THEN
DO = LOWLIM
2w

PLNKNUK) = (V(EP**) * (NATRKY**4) * (RKTCTN *
1 RESPLN/(AO**Y)

bafore sfter solving e
WRITE (.630) ((JXLZINC), LKLK =1 NI | NGY
mmﬂmnnmnno.:.mn
w

PAUSR

ENDIF

NPR=NPR + |

P (NPR .OE. 100) THEN

WRITE (6.640) TIME, DTIME, TRNACC, DIFACC, TOIT, TUT, TIT, APR
640 PORMAT (1. Y i df tost List tt s, 2(1PE10 3,10,

130110 7.5 61X IPRP D)

NM=0

END P
630 CONTINUE

C**** remum origimnl valuee

DTIB =~ DT2
DOSsOK =1, NC
NIB(K) = NIoO
NKK) = NI(K)
TEIBGO = TH10Q
TEXK) = TBI0O)

6460 CONTINUR
REDJEB = RI(NCP1)
RETURN
BND



