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A bstract

Pricing of insurance contracts has generated much interest among researchers and 

practitioners in the last two decades. Rapid m ortality decline in developed nations 

calls for methodologies th a t properly assess and price risks entailed in insurance 

contracts. To address this problem, we propose the use of two types of imperfect 

hedging techniques -  quantile and efficient hedging. We show th a t they are ef

fective tools for managing both  financial and insurance risk elements inherent in 

equity-linked life insurance contracts. Financial risk comes from the volatility of the 

financial instrum ents underlying the contract, while insurance risk arises from the 

dependence of the payoff on the client’s survival to  m aturity  of the contract.

F irst, we introduce the two hedging methodologies and show why they  are a ttrac

tive for pricing of equity-linked life insurance contracts. We give explicit theoretical 

results for the price of a contract paying the maximum of two risky asset values at 

maturity, provided the contract buyer survives to  this date. We also prove a result 

which allows straightforward generalization of our approach to  payoffs w ith n  risky 

assets. Using numerical examples, we dem onstrate risk managem ent possibilities 

for the seller of the contract and the advantages of applying quantile or efficient 

hedging. These m ethods are com putationally inexpensive, intuitive, and flexible in 

term s of risk management yet precise in quantifying financial and insurance risks.

Next, we study modern m ortality trends in the context of imperfect hedging. We 

analyze the classical m ortality models of Gompertz and Makeham, and the recently 

developed approach of Lee and Carter for fitting and forecasting mortality. Thus 

we extend the topic of quantile and efficient hedging beyond financial m athem atics 

into actuarial science. By performing a com parative study between the United 

States, Sweden and Japan, we show th a t m ortality model selection carries significant 

implications for risk management in equity-linked life insurance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A cknow ledgem ents
I am very grateful to  my supervisor, Dr. Alexander Melnikov, for suggesting such 
an interesting area of research for my graduate studies, for acquainting me with the 
world of m athem atical finance in graduate lectures and research-related discussions, 
for patient guidance throughout my academic career and support of post-graduate 
plans, and for encouragement bo th  a t happy times and in moments of adversity.

I am very thankful to Dr. Felipe Aguerrevere for introducing me to  a number of 
different topics and fascinating perspectives in finance and economics during courses 
at the University of A lberta School of Business and in communications outside the 
classroom, and for continual support and encouragement of my interests in finance 
as well as career plans.

I am grateful to  my professors and colleagues for the knowledge and insight 
shared w ith me during lectures and otherwise.

I am also eternally thankful to  my family and friends for being in my life and 
encouraging me, throughout my graduate experiences and always.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To N adiya, O lha, B oyan and  L ittleB u n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Please observe an alternative way to spell the author’s name: Yulia V. Romaniuk

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C ontents
1 In tro d u ctio n  1

1.1 General idea and goal of the d is se r ta tio n ................................................... 1
1.2 M otivation .........................................................................................................  2
1.3 Outline of the t h e s i s .......................................................................................  4

2 Q uantile and efficient h ed g in g  for p ricin g  o f  eq u ity-link ed  life in
su ran ce con tracts 6
2.1 Background on imperfect hedging in insurance ....................................  6
2.2 Quantile and efficient h e d g in g ......................................................................  9
2.3 Our s e t t i n g ........................................................................................................  14
2.4 Theoretical results for two risky a s s e t s .....................................................  26
2.5 Payoffs with n  risky a s s e ts .............................................................................  55
2.6 Numerical illustration: applying quantile and efficient hedging . . . .  58
2.7 How much can you lo s e ? ................................................................................. 62

3 M o rta lity  m od elling  68
3.1 B ack g ro u n d ......................................................................................................... 68
3.2 M ortality models in the th e s is ....................................................................... 69
3.3 Note on financial s e t t in g ...................................................................................  71
3.4 Note on insurance s e t t i n g ...............................................................................  72
3.5 Quantile hedging to  the r e s c u e ! .................................................................... 72
3.6 Numerical results: effects of the m ortality  m o d e ls ....................................  78
3.7 Future d irec tion ..................................................................................................  89

B ib liograp hy  91

A p p en d ix  1 97

A p p en d ix  2 98

A p p en d ix  3 109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Tables
1 Probabilities of successful hedging based on given initial capital . . .  59
2 Initial hedging capital based on given success p ro b a b ilitie s ................... 60
3 Expected shortfall am ount based on given initial c a p i t a l ......................  60
4 Initial hedging capital based on given shortfall r i s k ................................  61
5 M aximal shortfall for different risk preferences .......................................  67
6 Estim ated param eters for the  models of Gompertz and M akeham . . 79
7 Probabilities of successful hedging based on the m ortality model . . 81
8 Estim ated param eters ax , bx for the Lee-Carter m o d e l .............................. 109
9 Estim ated m ortality index values kt for the Lee-Carter model . . . .  I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f F igures
1 Comparison of m ortality in d ices ....................................................................  82
2 Critical ages of c l i e n t s ......................................................................................  84
3 Survival probabilities, U S A ..........................................................................  86
4 Survival probabilities, S w ed en ....................................................................... 87
5 Survival probabilities, J a p a n ..........................................................................  88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 Introduction

1.1 G en eral id ea  an d  goal o f  th e  d isser ta tio n
Equity-linked insurance contracts have been studied since the middle of the 1970s. 
The payoff in such contracts depends on two factors: the value of some underly
ing financial instrum ent(s) (hence the term  equity-linked), and some insurance-type 
event in the life of the owner of the contract (death, retirem ent, survival to a certain 
date etc.). As such, the payoff contains both financial and insurance risk elements, 
which have to  be priced so th a t the resulting premium is fair to  bo th  the seller 
and the buyer of the contract. The famous result of Black and Scholes (1973) and 
M erton (1973) tells us th a t, in an idealized m arket setting, as long as the seller 
obtains a price equal to  the expectation under the risk-neutral probability measure 
of the discounted payoff, the seller can hedge this payoff perfectly -  w ith probability 
of successful hedging equal to  1. Perfect hedging relies on the ability to  trade the 
financial asset underlying the  option and the option itself in a particular m anner 
so as to  offset any movement in the  values of the  underlying and the  option. How
ever, m ortality risk cannot be offset in the same manner, since m ortality  is not (yet) 
traded, which makes the insurance m arket incomplete and renders perfect hedging of 
equity-linked life insurance contracts impossible (see section 2.3.2 for more details).

The main goal of this dissertation is to address the problem of appropriate pric
ing of equity-linked life insurance contracts and hedging of the risks involved. As 
will be discussed in section 2 .1, a number of imperfect hedging techniques have been 
applied to price equity-linked insurance agreements. We choose to  use two im per
fect hedging techniques: quantile and efficient hedging, developed respectively in 
Foellmer and Leukert (1999) and Foellmer and Leukert (2000). Quantile hedging 
allows the hedger to  maximize the probability of successful hedging, while efficient 
hedging seeks to  minimize the expected shortfall risk, which is the expected potential 
loss from the hedging strategy, weighted by some loss function reflecting the hedger’s 
risk preferences. Developed from sophisticated statistical testing techniques, quan
tile and efficient hedging are powerful tools which allow for m any quantitative risk 
management possibilities; a t the same time, these methods are com putationally 
practical, understandable, and justifiable not only to  academics, bu t to practition
ers in the insurance industry.

We consider a single-premium equity-linked life insurance contract which enables 
its holder to receive the greater of the values of two risky assets (such as stocks) 
at m aturity of the contract, provided the policyholder survives to  this date. We 
solve the question of optimal pricing and hedging of such a contract in the context 
of quantile and efficient hedging and illustrate the  idea numerically. We also prove 
a theoretical result which allows our methodology to  be generalized to  a contract 
involving n  risky assets in a straightforward manner, with the only difference in 
derivations of pricing formulas between two and n  risky assets being the time spent 
on calculations. In this, we extend the application of quantile and efficient hedg
ing for a budget-constrained investor from a setting with a single risky asset (see

1
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Melnikov and Romaniuk (2006)) to  a multi-asset Black-Scholes-Merton-type setting.
We also extend our studies to  investigate some relevant problems in the field 

of actuarial science. The modelling of m ortality is a hot topic today, in light of 
changes in survival probability patterns over the last century. I t has been noted 
(see, for example, Horiuchi and W ilm oth (1998), Koissi et al. (2006) or Tuljapurkar 
et al. (2000)) th a t m ortality rates in developed countries have been declining, where 
as increases in life expectancy have been underestim ated. Such trends call for the as
sessment of presently used m ortality models to  investigate whether these models re
flect the current m ortality patterns adequately. To this purpose, we study three mor
tality models of Gompertz, M akeham and Lee-Carter (see Lee and C arter (1992)); 
the first two are classical actuarial models, widely used today by practitioners, and 
the third is the newly developed model which trea ts m ortality as a stochastic process. 
Such study directly affects the risk implications for the type of equity-linked insur
ance contract considered here, since survival probability is one of the factors on 
which the contract’s payoff depends.

Below we give motivation for the problem studied in this dissertation, namely, 
proper pricing and risk managem ent of equity-linked life insurance contracts, as 
well as reasons behind considering the particular area of m ortality modelling as an 
extension of the m ain results and setting.

1.2 M o tiv a tio n
Insurance industry has been growing at a tremendous pace in the last decade, es
pecially w ith the development of new markets in Europe and Asia. Equity-linked 
and unit-linked (contracts paying one unit of some risky asset) business has been 
especially successful. For example, Swiss Re reported about world insurance growth 
in 1997 “high growth in the life business in Europe, N orth America and the emerg
ing markets in W estern Europe, life business grew after adjustm ent for inflation by
10.5 %, and in N orth America by 6.9 % ... The high growth rates were spurred in 
particular by dynamic business in unit-linked and index-linked insurance products” 
(Swiss Re online (1997)). National Association for Variable Annuities notes th a t 
to tal industry sales of equity-indexed annuities grew from .2 to 12.6 billion dollars 
from 1995 to  2003 (NAVA (2004)). Additionally, in Spain in 2000, the “greatest 
growth occurred in unit-linked [insurance products] (81 % in comparison w ith 21 % 
in other types)” (see Spanish Institu te  for Foreign Trade (2002)), and W interthur 
Life achieved a “strong and remarkable growth in unit-linked business” in Hong 
Kong in 2003 and launched m arkets for unit-linked insurance in 2001 and 2002 in 
Japan and Taiwan respectively (W interthur Life online (2004)).

While growth in equity-linked (unit-linked, or equity-indexed) business is great, 
it is not clear whether insurance companies are developing risk measures and hedg
ing strategies necessary to  deal w ith all the risks the company undertakes when 
it sells equity-linked contracts. In the insurance industry, the effects of failing to  
adopt adequate risk management models can be devastating. If the company over
estimates and overprices its risks, the consumer will bear the financial burden of

2
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excessive insurance premiums, which is likely to  lead to  governmental inquiries and 
regulation, as evident in C anada today. On the other hand, if the company under
values its risks, it may face million-dollar losses and lose investors’ and shareholders’ 
confidence. W hile some events causing damage and deaths and calling for massive 
insurance claims cannot be predicted (terrorist activities, hurricanes, tsunam i etc.), 
price movements in the underlying assets, as well as long-term  m ortality patterns 
(deceleration of m ortality at older ages, increasing life expectancy etc.) can be an
alyzed qualitatively and quantitatively. Therefore, the question of finding hedging 
methodologies th a t can account for and value the financial and insurance risk ele
ments, and provide appropriate risk m anagement strategies is of great interest and 
im portance from bo th  theoretical and practical perspectives.

One of the impediments to risk pricing arises from the ever-increasing market 
dem and for flexible and personalized insurance products. To respond to  this demand 
and compete w ith financial institutions (banks, trusts, m utual funds etc.), insurance 
firms quickly develop and advertise, along w ith traditional life and health  insurance, 
comparative products for investment and wealth m anagem ent. T he latter instru
ments are attractive to  investors, as they tend to  have shorter m aturities and more 
exposure to  financial m arket risk th an  traditional insurance contracts. However, it is 
often impossible to  design and implement pricing tools th a t adequately measure and 
valuate both  financial and insurance risks before equity-linked products hit the mar
ket, resulting in mispriced portfolios and potentially negative repercussions in terms 
of losses and governmental regulations. Now, there has been a num ber of suggestions 
for hedging m ethods in connection to  insurance. These include perfect and mean- 
variance hedging, as well as numerical and simulation techniques (Brennan and 
Schwartz (1976), Brennan and Schwartz (1979), Boyle and Schwartz (1977), Del- 
baen (1986), Bacinello and O rtu  (1993), Aase and Persson (1994), Ekern and Pers- 
son (1996), Boyle and Hardy (1997), Bacinello (2001)), utility-based indifference 
pricing (see Hodges and Neuberger (1989), Young (2003)), and risk-minimization 
strategies (Moeller (1998), Moeller (2001), Cvitanic and K aratzas (1999) and Cvi- 
tanic (2000)). W hile these approaches have their merits, we feel th a t quantile and 
efficient hedging are particularly suited for equity-linked insurance, because these 
hedging techniques are very intuitive, easily implementable, dem and little in terms 
of computing power, as well as allow the hedger to  calculate explicitly all the nec
essary premiums, risks, and hedging strategies.

The need for correct m ortality modelling arises from the general pattern  of 
decline in m ortality in many developed countries in the last century (see, for exam
ple, W ilm oth and Horiuchi (1999), Tuljapurkar et al. (2000), Lynch and Brown (2001), 
Yashin et al. (2001)). Frequently, the rates of decline of m ortality for older ages and 
increase of life expectancy have been underestim ated (Koissi et al. (2006)). The 
rectangularization of the survival probability curve, together w ith lower m ortality 
at older ages and higher life expectancy are particularly troublesome developments 
for insurance firms: the changing m ortality profile demands appropriate assessment 
m ethods and adequate actuarial tools to  manage m ortality risks. Recently, the

3
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topic of m ortality risk has become the focus of atten tion  of actuarial and insurance 
companies (Pitacco (2003)) and the topic of numerous conferences and symposiums 
dealing specifically w ith the question of m easurement and pricing of m ortality risk. 
Once the company selects a particular m ortality model, the decision will be directly 
reflected in the prices of and risk managem ent strategies for insurance portfolios, 
since survival patterns affect basically all products in the insurance industry: life 
and health, accident and disability, as well as investment and wealth management. 
We investigate m ortality modelling to  dem onstrate how survival trends displayed by 
different categories of insured clients and transm itted  by the choice of a m ortality 
model can be taken into account when designing risk management strategies for the 
equity-linked contracts in consideration.

1.3 O u tlin e  o f  th e  th e s is
In chapter 1, we introduced general ideas behind the research topics discussed in this 
dissertation. Section 1.2 gave m otivation behind the particular topics studied: im
perfect hedging, its applications to  life insurance, and effects of m ortality modelling 
on risk management w ith insurance contracts.

In chapter 2, quantile and efficient hedging are discussed in detail. F irst, we 
review the statistical origins behind the two hedging methodologies (section 2 .2 .1). 
Next, we describe the m ethods as presented in Foellmer and Leukert (1999) and 
Foellmer and Leukert (2000) (sections 2.2.3 and 2.2.4) and show how they apply 
in our setting w ith two risky assets (section 2.3.3). The financial and insurance 
settings in which we study the problem of optim al pricing and hedging under budget 
constraints are presented formally in section 2.3. We proceed to  present one of the 
m ain contributions of this thesis: the explicit pricing formulas for equity-linked life 
insurance contracts based on quantile and efficient hedging (section 2.4); for efficient 
hedging, there are three cases, one for each of the risk preference scenarios of the 
hedger: risk-aversion, risk-taking and risk-indifference. The results are given as 
theorems and are followed by their respective proofs.

Next, we discuss how to generalize the application of quantile and efficient hedg
ing to contracts involving n  risky assets (section 2.5). We state  the theorem (which 
we label the multi-asset theorem) th a t is required for such generalization. The proof 
of the theorem is given separately in Appendix 2 due to its technicality. Then we 
illustrate how the risk management strategies resulting from quantile and efficient 
hedging can be applied in practice (section 2.6). We also examine how large the 
expected losses resulting from the application of imperfect hedging can get (sec
tion  2.7) and provide a numerical example to  support the theory (section 2.7.1).

C hapter 3 deals w ith the effects of m ortality modelling on risk management 
w ith equity-linked life insurance contracts. Section 3.1 provides background on 
m ortality modelling; section 3.2 describes in more detail the three m ortality models 
(Gompertz, Makeham and Lee-Carter) studied in this dissertation and provides the 
definitions of the necessary actuarial concepts (section 3.2.1). The setting for the 
problem is described in sections 3.3 and 3.4, and derivation of the pricing formulas is

4
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discussed in section 3.5.1. After this, we present numerical illustrations to  highlight 
the implications of insurance and financial risk elements for risk management with 
equity-linked life insurance contracts (section 3.6); the estim ation of the param eters 
used by the three m ortality models is described in section 3.6.1. We suggest several 
directions for future studies in the area of imperfect hedging and m ortality modelling 
in section 3.7.

The dissertation concludes w ith bibliography and Appendices 1, 2 and 3, in 
which the derivation of the explicit formula for the density of the risk-neutral prob
ability measure, the proof of the m ulti-asset theorem, and tables w ith the estim ated 
param eters for the Lee-Carter model are given respectively.

5
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2 Q uantile and efficient hedging for pricing of 
equity-linked life insurance contracts

2.1 B ack grou n d  on im p erfect h ed g in g  in  in surance
Soon after the celebrated papers by Black and Scholes (1973) and M erton (1973) on 
the pricing of call options, the topic of pricing of equity-linked insurance contracts 
became ra ther popular. As mentioned above and explained in detail in section 2.3.2, 
equity-linked contracts incorporate financial and insurance risk elements, and perfect 
hedging in the sense of Black, Scholes and M erton does not work: m ortality risk of 
the option holder cannot be offset by trading in the insurance m arket, as m ortality 
is not a  traded asset.1 This section will review some of the research th a t has been 
done in the area of pricing risks entailed in equity-linked insurance products.

Brennan and Schwartz (1976), B rennan and Schwartz (1979) consider an equity- 
linked life insurance policy with an asset value guarantee and determine the value 
of such policy using the economic concept of equilibrium pricing; the calculated 
value corresponds to  the perfectly com petitive price. Note th a t the payoff is just 
the greater of some guaranteed fixed am ount or the value of the underlying risky 
fund at m aturity  of the policy. The authors also propose a strategy which would 
eliminate financial risk inherent in the payoff of the contract, bu t indicate th a t the 
insurance company would have to  hold reserves to  offset m ortality risk, or sell a 
large number of contracts in hopes of elim inating m ortality risk (this is known as 
pooling). In this sense, financial risk is hedged perfectly, b u t no strategies other 
than  the traditional ones have been suggested to  deal w ith insurance risk.

Boyle and Schwartz (1977) work out a similar solution for death benefit and 
m aturity  benefit guarantee contracts, which pay the larger of a fixed guarantee 
or value of some risky fund at expiration of the contract or upon the death  of 
the policyholder. Delbaen (1986) extends previous articles by proposing Monte- 
Carlo simulation to  price fixed term  equity-linked contracts w ith guarantee, for 
which premiums have to be paid periodically and survival probability of the client 
is factored into the value of the contract. M onte-Carlo methodology is also applied 
to  calculate the number of shares of the underlying risky fund to be included in the 
policyholder’s benefit (with periodic premiums, this num ber no longer equals unity); 
in Brennan and Schwartz (1976) and Brennan and Schwartz (1979), the number 
of shares in the policy benefit for contracts w ith periodic premiums is determined 
numerically as a solution to  the partia l differential equation arising from the problem 
setup.

Bacinello and O rtu  (1993) further build on the above papers by considering the 
case of equity-linked contracts where guarantees are determ ined endogenously based 
on the premiums paid, as opposed to  being specified exogenously, as in Brennan

■‘However, it appears that market for mortality is slowly developing. Special thanks to the 
anonymous referee of our submission (Melnikov and Romaniuk (2006)) for this interesting 
and useful observation.
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and Schwartz (1976), Brennan and Schwartz (1979) and Delbaen (1986). Aase and 
Persson (1994) work in a setting where the number of shares of the underlying risky 
fund included in the benefit is non-random, which is different from the setting of 
Brennan and Schwartz (1979), Boyle and Schwartz (1977) and Delbaen (1986) (see 
above). Although such setting is simpler, it allows the authors to  derive analytic 
solutions for the premiums of contracts in consideration and avoid simulations or 
numerical solutions. Note, however, th a t certain  unclear assumptions are m ade in 
order to obtain explicit pricing formulas in Aase and Persson (1994), for example, 
“risk-neutrality w ith respect to  m ortality” (Theorem 1 on p. 37).

Ekern and Persson (1996) calculate premiums for a large variety of equity-linked 
contracts, including those w ith payoffs where the contract owner chooses the  larger 
of the values of two risky assets (and possibly a guaranteed am ount) at m aturity  of 
the contract, similar to  the payoffs we consider in this dissertation. However, the 
authors completely disregard the pricing of m ortality risk, calling it “unsystem atic 
risk” for which “the insurer does not receive any com pensation” (see p. 39 in Ekern 
and Persson (1996)). The justification provided is the traditional argum ent tha t 
m ortality risk can be elim inated by selling a large number of equity-linked contracts. 
Note, however, th a t such justification is not acceptable in the current insurance 
research .2

Boyle and Hardy (1997) examine the pricing of and reserving for m aturity  guar
antees for policies where the policyholders’ premiums are invested in a specified 
portfolio which is guaranteed not to fall below a certain level a t m aturity. The au
thors compare two approaches, stochastic simulation and options pricing, to  price 
and calculate reserves, and find th a t relative m erits of each of the m ethods depend, 
among other factors, on the nature of the guarantee. Bacinello (2001) analyzes 
the pricing of one of the most common life insurance policies sold in Italy  in the 
last two decades; the contract involves a bonus rate, whose value depends on the 
performance of some reference fund and is not allowed to  fall below some minimum 
interest ra te guaranteed.

Moeller (1998) looks at a portfolio of equity-linked contracts, thus incorporat
ing financial risk and group m ortality risk into the setting. The author defines 
risk process as conditional expectation w ith respect to the risk-neutral measure of 
squared errors in future costs (the squared difference between the cost of the hedging 
strategy at m aturity  of the contract and the current cost). The hedging strategy 
(the number of shares in the underlying risky asset) is then  determ ined uniquely by 
minimizing the squared errors described above and the squared error from tim e 0 
to m aturity T. Moeller (1998) also shows th a t for a  portfolio of contracts, a t any 
time the number of shares of risky asset underlying the payoff will depend on the 
expectation about the number of individuals surviving to  th a t point in time. In his 
later paper (see Moeller (2001)), the author examines a portfolio of equity-linked 
life insurance contracts and determines risk-minimizing strategies in a discrete-time

2Among many useful comments on our paper (Melnikov and Romaniuk (2006)), the 
referee has indicated that studies have shown that pooling mechanisms do not work.
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setting for the Cox-Ross-Rubinstein model.
Utility-based indifference pricing approach was introduced in Hodges and Neu- 

berger (1989); in this pricing methodology, the premium  for the contract is calcu
lated in such a  way as to  make the hedger (the insurance company, in our case) 
indifferent between including and not including a specified number of contracts in 
h is/her portfolio (see also Argesanu (2004), Kuehn (2002)). The method has been 
extended to  equity-linked insurance contracts by Young and Zariphopoulou (2002a) 
and Young and Zariphopoulou (2002b), who look at the utility-based pricing when 
insurance risks are independent of the underlying financial asset, and Young (2003), 
where the  death benefit payable to  the insured client depends on the  value evolution 
of the underlying.

Spivak and Cvitanic (1999) consider the problem of maximizing the probabil
ity of an agent’s wealth at m aturity being no less th an  the value of a contingent 
claim w ith the same expiration date; duality m ethod from utility maximization lit
erature is used to  analyze this problem. Applying the same methodology, Cvitanic 
and K aratzas (1999) study dynamic measures of risk th a t look a t the “worst-case” 
scenario: the measures consider the largest (worst) possible, minimized over all real- 
world probability measures, shortfall (see also Kirch (2001)). Shortfall is defined as 
the expectation of the positive part of the difference between the value of the con
tingent claim at m aturity  of the contract and term inal value of the hedging strategy. 
Cvitanic (2000) shows th a t in incomplete markets, as long as all equivalent m artin
gale measures are included in the set of possible real-world probability measures, the 
“max-min” quantity, which is the maximal minimized shortfall, will coincide from 
the perspective of bo th  the seller and the buyer of the contract. A lthough we do not 
know of explicit applications of the above approaches to  equity-linked insurance, 
the ideas are similar to  those of quantile hedging (Foellmer and Leukert (1999)), 
which aims at maximizing the probability of successful hedging, and efficient hedg
ing (Foellmer and Leukert (2000)), whose goal is to  minimize the expected shortfall, 
weighted by the hedger’s risk preference. These two m ethods will be described in 
detail in the next section.

Building on the papers mentioned in the previous paragraph, Nakano (2004) 
considers the minimization of shortfall risk in a jump-diffusion setting, bu t unlike 
Foellmer and Leukert (2000), who impose a nonnegativity constraint on the wealth 
process, the author only requires it to  be integrable. Based on this, the optimal 
portfolio and the optimal term inal wealth are derived explicitly. Kirch and Rung- 
galdier (2004) study the applications of efficient hedging when asset prices follow 
a geometric Poisson process, where price changes occur a t random  points in time 
(this is a natural generalization of the Cox-Ross-Rubinstein model), w ith intensities 
constant in time, bu t not necessarily known to  the investor.

Finally, quantile and efficient hedging m ethods have been applied to  price equity- 
linked insurance products on various occasions. Krutchenko and Melnikov (2001), 
Melnikov (2004a), and Melnikov and Skornyakova (2005) apply quantile hedging 
in the context of diffusion and jump-diffusion models. The la tte r paper examines
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equity-linked life insurance contracts w ith  flexible guarantees. Melnikov (2004b) 
studies optim al pricing utilizing an efficient hedging approach in a diffusion setting, 
and Kirch and Melnikov (2005) use efficient hedging in a jump-diffusion frame
work w ith perfectly correlated W iener processes to  price equity-linked life insurance 
contracts w ith fixed guarantees. Melnikov et al. (2005) extend these results to  corre
lated W iener processes. Melnikov and Rom aniuk (2006) show how quantile hedging 
can be applied to  price and hedge financial and m ortality risk elements inherent in 
equity-linked life insurance contracts w ith determ inistic guarantees, as well as exam
ine m ortality modelling and its effects on the resulting risk m anagement strategies. 
The results presented in Melnikov and Romaniuk (2006) are also a part of this 
dissertation and will be given in chapter 3.

2.2 Q u an tile  and  effic ien t h ed g in g
Here we describe the two imperfect hedging approaches used in the thesis: quantile 
and efficient hedging. We begin w ith a brief discussion of the Neyman-Pearson 
lemma (as summarized in Korn and Korn (2000)), since both  hedging methods are 
based on this im portant statistical result.

2.2.1 Neyman-Pearson lemma

Suppose th a t we want to test the null hypothesis ho w ith probability measure Po 
on the space ( f l ,P , P0) against an  alternative h\,  w ith probability measure P i on 
(H ,P , P i). There are four possible outcomes of the test:
1. accept ho when it is true,
2. accept ho when it is false: this is called Type I I  error, denoted here /3,
3. reject ho when it is true: this is called Type I  error, denoted here a,
4. reject ho when it is indeed false (this is usually the desired outcome for the test). 
We reject ho based on whether the value of some test statistic falls into the rejection 
region, which we denote R.

Note th a t for outcome (2), the ‘tru e ’ probability measure is P i, as h\  is the 
hypothesis th a t holds in the real world. Thus in (2), the test statistic falls into the 
acceptance region, R c , and

P — P \{R C). (2.1)

For outcome (3), the ‘tru e’ probability measure is Po, as ho is the correct hypothesis, 
thus when we reject ho, we get the Type I error

a  = P0(R). (2 .2)

Generally, the probability measure corresponding to  the alternate hypothesis is 
taken as the known, or real-world probability measure, and the aim of the test is to 
make the correct decision as given in outcome (4). T hat is, we want to  reject ho in
favor of hi when h\ (and thus P i) holds; the probability for outcome (4) is called

9
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power of the test, and we have

power of the test =  1 — /3 =  P i(R ). (2.3)

W hen testing the two hypotheses, we usually want to  control the size of Type I 
error while minimizing the Type II error, or, equivalently, fix a  and maximize the 
power of the test 1 — j3. Then the test is referred to  as being conducted at 1 — a  
significance level.

The Neyman-Pearson lemma provides the structure of the set on which, for a 
given significance level a, the power of the test 1 — /3 is maximized. 
N ey m a n -P ea rso n  lem m a

For us, A  is the ‘optim al’ rejection region th a t maximizes the probability of 
making the correct decision: rejecting the false ho in favor of hi  and working with the 
real-world probability measure P\. The conclusion of the  lemma and the definition 
of A  in (2.4) are the elements underlying the quantile and efficient hedging results, 
as shown in Foellmer and Leukert (1999), Foellmer and Leukert (2000). Keeping 
this in m ind, let us look a t each hedging approach in more detail.

2.2.2 Sett ing

Below we discuss quantile hedging, following the main ideas and, for the most part, 
notation in Foellmer and Leukert (1999). Suppose th a t the discounted price process 
X  — (-Xt)t€[o,T] °f the underlying risky asset is a semimartingale on a probability 
space {Q .,T ,P)  w ith filtration {Pt)te\o,T}- There are no arbitrage opportunities in 
the m arket, th a t is, the set V  of all equivalent m artingale measures is nonempty. 
Note th a t Foellmer and Leukert (1999) conduct calculations assuming th a t the risk
free interest ra te  r  equals zero.

A trading strategy (Vo, £) w ith initial capital Vo >  0 and a predictable process £, 
corresponding to  the number of shares of the risky asset X ,  is called self-financing 
if the capital generated by the strategy satisfies

Define
>  k > , where k =  inf < k : P{ (2.4)

Suppose Pq(A) — a. Then for all A  e  T  such th a t Po(A) <  Pq(A),

P i (A) < Pi(A). (2.5)

A self-financing strategy is admissible if

(2 .6 )

Vt > 0 V fe [0 ,T ] , P - a . s . . (2.7)
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Only admissible hedging strategies are allowed.
Prom option pricing theory, we know th a t in the complete case, the equivalent

martingale measure P* £ V  is unique (see, for example, Melnikov et al. (2002)).
Consider a contingent claim whose payofF is an  .Fr-m easurable nonnegative random 
variable H  satisfying H  £ L l {P*). The payofF H  can be hedged perfectly (in a 
complete m arket), th a t is, there exists a unique (admissible) hedging strategy with 
(minimal) cost Vo such tha t

P(VT > H )  =  1. (2 .8)

We also know th a t the cost of this perfect hedging strategy is given by

V0 = H 0 = E*{H e~rT). (2.9)

Above, and for the remainder of the dissertation, e denotes the exponent function, T  
the m aturity  of the contract, and E* the expectation w ith respect to  the equivalent 
m artingale measure P*.

Therefore, as long as the contract seller receives Ho, he/she will generate suf
ficient funds to  pay the buyer at m aturity  of the  contract. However, what if the 
hedger is unable or unwilling to  provide the initial capital required for the perfect 
hedge, and all he/she has available is the am ount Vo <  -^o? Quantile and efficient 
hedging provide different answers to  this problem.

2.2.3 Quantile hedging

Quantile hedging proposes to  solve the problem of Vo <  Ho by maximizing the 
probability of a successful hedge. T hat is, Foellmer and Leukert seek an admissible 
strategy (Vo,£) th a t will

maximize P  ( v T = V0 + £sd X s > H^j (2.10)

under the constraint Vo <  Vo <  H q-

Now, define success set corresponding to  the admissible strategy (Vo,£) and its 
term inal wealth Vt  as {Vt  >  H }.  Proposition (2.8) on pp. 254-255 in Foellmer and 
Leukert (1999) states th a t
i f  A  £ P t  maximizes P (A ) under the constraint E * {H Ia ) <  Vo, and i f  £ is a perfect 
hedge for the modified contingent claim with payoff H  — H I ^  £ L l {P*), then (Vo,£) 
solves the optimization problem given in (2.10). Moreover, the corresponding success 
set coincides almost surely with A.  Refer to  Foellmer and Leukert (1999) for further 
details (such as existence of £) and proof of the  proposition. Also note th a t by 
this proposition, A  is the set on which the payofF H  can be hedged with maximal 
probability of success.

Next, Foellmer and Leukert utilize the Neyman-Pearson lem m a to  provide the 
explicit structure of the success set A. The implicit hypotheses are 

ho', the hedge will fail
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h\: the hedge will be successful.
We want to  maximize the probability of hi being the correct situation, th a t is, 
maximize the power of the test as described in (2.3) for the Neyman-Pearson lemma. 
Introduce a probability measure Q* w ith density

* £ = *  (2 H ) 
dP* H 0 '  ̂ ' ’

Note th a t Q* corresponds to  Po (the probability measure of the hypothesis we want 
to  reject), where as P  corresponds to  P i, the real-world probability measure.

Under Q*, the budget constraint E * (H I a ) <  Vo becomes

Q*(A) <  (2.12)
Po

In term s of notation, E* still refers to  the expectation with respect to  P * , where as 
E®* will denote expectation under Q* (such notation will be used in this and all 
subsequent sections of the dissertation).

Let

a  = W0 l (2' 13)

this a  is the Type I error in the Neyman-Pearson lemma (see (2.2)). Define

a = inf j a  : Q* > a ■ H^j <  a  j  ; (2.14)

this a is equivalent to k  in the  Neyman-Pearson lemma (see (2.4)). Define the set 
A  corresponding to  a as

(2-15)

Here, as usual, dP * /d P  denotes the density of the equivalent m artingale measure 
P*.

Theorem (2.22) on p. 256 in Foellmer and Leukert (1999) says th a t if Q*(A ) =  a  
holds, then the optimal hedging strategy solving (2.10) is actually (Vo, £), where £ is 
the perfect hedge for the modified payoff H  =  H I ^  and Vo its cost. Therefore, using 
the result of the Neyman-Pearson lemma to  derive the structure of A  (see details 
in (2.62)), Foellmer and Leukert show th a t the probability of successful hedging, or 
power of the test, is maximized for a given level of Type I error Q*(A) =  a ~  Vq/ H q- 
Setting Type I error at this level is equivalent to  requiring Vq f°r the initial capital 
of the optimal hedge £ (as shown in (2.58)). Also, knowing the structure of the 
success set A  (2.15) allows us to  calculate explicit formulas for £ and its cost Po- 
These ideas are discussed in more detail in section 2.3.3.

Foellmer and Leukert (1999) point out (see pp. 252 and 261) th a t there are two 
risk management possibilities based on the quantile hedging methodology. F irst,
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the investor could face some given initial capital (that is smaller th an  the amount 
necessary for a perfect hedge) and would need to  maximize the probability of suc
cessful hedging based on this given capital. Or, if the investor has some control over 
the initial capital, he/she could fix the acceptable probability of successful hedging 
and then  calculate the am ount necessary to  hedge the contingent claim in consider
ation to  guarantee the chosen probability of success. We analyze bo th  of these risk 
management perspectives and dem onstrate how they can be applied in practice (see 
section 2 .6).

2.2.4 Efficient hedging

In this section, whenever possible, we follow the notation of the previous section (it 
coincides w ith th a t in Foellmer and Leukert (2000) w ith some exceptions). Efficient 
hedging addresses the  issue of insufficient initial capital (Vo <  H q) by minimizing 
the expected hedging losses, while taking into account the hedger’s risk preferences 
through some loss function. T he loss function l(x) is an increasing function defined 
on [0, oo) w ith 1(0) =  0 and E (l(H ))  < oo. Note th a t, in general, the loss function is 
concave up, as the  investor (hedger) is assumed to  be risk-averse, meaning th a t the 
larger is the loss, the  less willing is the investor to  bear it. However, it is possible 
th a t some investors may be the atypical risk-takers (these could be addictive gambler 
types, for whom it is more difficult to  stop gambling as the game goes on and they 
lose more and more money). The loss function for risk-takers is concave down.

Foellmer and Leukert work w ith the loss function l(x) = x p, and distinguish and 
analyze three possible cases for the value of p:
1. p = 1: risk-neutral investor,
2 . p > 1: risk-averse investor,
3. 0 <  p  <  1: risk-taker.
We will discuss the solution for each case above, bu t let us first formuiate the 
optimization probfem which is to  be solved.

Define shortfall risk as the  expectation of loss from the hedging strategy affected 
by risk preference of the hedger:

E ( l ( ( H - V T)+)). (2.16)

Efficient hedging aims at finding an admissibie strategy (Vo,£) th a t minimizes the 
shortfall risk and costs no more than  Vo- T hat is,

minimize E (l( (H  — V r )+ )) (2-17)
under the constraint Vq < Vq < H q.

Similar to  the  hypothesis testing techniques used to  develop quantile hedg
ing, Foellmer and Leukert show in Proposition 3.1 (p. 121 in Foellmer and Leuk
ert (2000)) th a t there exists an  jFy-measurable function Cp *■ [0,1] th a t minimizes 
E(l(( 1 — <p)H)) under the constraint E*(ipH) < Vo■ Such (p is unique (P  — a.s.)
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on {H  > 0} for loss functions th a t are strictly concave up. Theorem  3.2 on p. 123 
(Foellmer and Leukert (2000)) shows th a t the strategy (Vo, £) th a t hedges the mod
ified claim H  — (pH also solves the optim ization problem (2.17). Moreover, the 
success ratio, defined in general as p>(Vq, £) =  I{vt >h } +  Ti I{vt <h }> f°r H  coincides 
P  — a.s. w ith (p. Therefore, as in the case of quantile hedging, knowing the structure 
of (p, we solve the  optimization problem (2.17) by finding the perfect hedge for the 
modified claim H  — (pH.

Note th a t the  requirement th a t tp is unique on { H  > 0} for concave up loss 
functions is not restrictive to  us. Later in their article (see pp. 125 and 129), 
Foellmer and Leukert show th a t (p is unique on { H  > 0} for p > 1 and 0 <  p  <  1. 
In  particular, for l(x)  =  x p, in the case of risk-aversion, p  >  1 and

A l j  , (2.18)

where I  = (Z7) -1  denotes the inverse of I'. In the situation 
and

In the special case of risk-indifference, p =  1 and

^  =  (2'20)

provided th a t P* ({d P /d P * — a} n  { H  >  0}) =  0. In  all above cases, a is calculated 
from the constraint on the initial capital E*(<pH) = Vq ((2.12) in the case of quantile 
hedging; see also the definition of k in the Neyman-Pearson lemma (2.4)).

In our setting w ith one or several risky assets, the density d P * /d P  of the risk- 
neutral measure P* will always be continuous, since it will be a function of a linear 
combination of one or more W iener processes; thus P *{dP/dP* = a} = 0. Also, we 
work w ith contracts th a t pay the larger of the values of two or more risky assets (or 
a single risky asset and some positive guarantee) at m aturity, so the payoff H  will 
always be positive. Therefore, all conditions required to  obtain a unique solution 
for the structure of the optimal hedge are satisfied. Now we proceed to  describe our 
setting and to  derive explicit formulas, based on the results of quantile and efficient 
hedging given above, th a t will enable us to  calculate the cost of the optimal hedge 
and find strategies to  manage financial and insurance risks inherent in equity-linked 
life insurance contracts.

2.3  O ur se tt in g

2.3.1 Financial  sett ing

We work in a financial market w ith interest ra te  r > 0, riskless asset (bank account, 
for instance) B  — (-Bt)t6[o,r], and two risky assets 5 1 and S 2 (such as stocks),
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S l = (S,()t€[oiT], w ith price evolutions

dB t  — r B t d t  B t  =  B o er t , B q :=  1;

(  Ui — -4-S\t+(TiWf
dS\ =  S K m d t  + (TidWZ) &  S lt = S l0e \  2 )  , i =  1,2, (2.21)

where constants m  G R, ct; >  0 are re tu rn  and volatility of the instantaneous re tu rn  
of the risky asset S %. Note th a t S 1 and 5 2 are based on two different W iener 

processes, W 1 — (Wj1) ^ ^ ]  and W 2 = ( W 2)te[0Tj. All processes are given on a 
standard  stochastic basis (D, T ,  F  =  {Pt)te[o,T}i P )  and are adapted to  the filtration 
F, generated by W %. The correlation between W 1 and W 2 is p, and we make the
standard  assumption th a t p2 < 1, th a t is, the risks underlying the assets cannot be
perfectly (positively or negatively) correlated.

Define a trading strategy, or portfolio, as a predictable process n  such th a t

^ =  (rOte^T] — (A )7 ij7 t  )te[o,r]- (2.22)

Here, (3 represents the money invested in the riskless asset, B, while 71 is the number 
of shares of SI held in the portfolio at the instant of time t. As before, we suppose 
th a t all contracts to  be discussed m ature at time T.

The capital of 7r is given by

V  =  A B t +  7 ^ t + 7 ^ 2. (2.23)

The strategies whose discounted capital satisfies

V "7V . 2 B  \

(2-24>

are called self-financing. Only self-financing strategies with nonnegative capital are 
admissible.

In our financial m arket setting, there are two sources of risk, W 1 and W 2, 
and two risky assets, thus the  financial m arket is complete (and arbitrage-free; see 
Melnikov et al. (2002)), and there exists a unique equivalent m artingale measure P* 
w ith density Z  such th a t

^  =  t e [ 0 ,T } .  (2.25)

Using general methodology for finding m artingale measures (as presented in Mel
nikov and Shiryaev (1996), Melnikov et al. (2002)), we calculate the expression for 
Z  explicitly (derivation details are given in Appendix 1):

a 2
0<j>xW}+<hW?-4t (2.26)
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where

<t>2

and

r(cr2 ~ crip) + pn2a i -  picr2 ln
/-I o\ 5 \L.Hj

a ia 2{l ~  pz) 
r(ffi -  <T2P) +  pp  1CT2 ~  P2<?1 

aicr2{l ~  p2)

a 4> — 01 +  ^2 +  2p(l>i4>2- (2.28)

Under P*, the evolutions of 5 1 and S 2 can be rew ritten as

. ( r -
=  5J(rd t +  CTjdW?*) ^  SJ =  SJeV 2 /  , i =  l , 2 .  (2.29)

Here, 1U1* =  (fUt*)te[o,T] are W iener processes w ith correlation p under P* tha t 
satisfy (see, for example, Melnikov et al. (2002))

W t  = W \  +  Bit (2.30)

with
9i =  (2.31)

Oi
It follows th a t discounted S'1 and S 2 are martingales w. r. to  P*. Using (2.26) and
(2.30), we can rewrite the expression for Z  under P *:

4>lW p+<j)2W p-[ ̂ -+<pl6l+<f>202
Z t = e V J . (2.32)

Note th a t in derivations of pricing formulas and hedging strategies, we will use 
the formulas for S z and Z  under bo th  the original and the risk-neutral probability 
measures.

Now, consider &i given above in (2.31). In financial literature, 0 is referred to as 
the m arket price of risk: this is the additional ‘rew ard’ per unit volatility investors 
receive to  compensate them  for the willingness to  bear risk when pu tting  money in 
risky as opposed to  riskless assets. We require

8i > 0 pi > r, (2.33)

otherwise an arbitrage strategy with zero initial outlay and positive expected return 
could be constructed (short a stock and invest the proceeds in a bond, then  use the 
principal and interest from the bond to  buy back the stock).

As in the setting of quantile and efficient hedging (see section 2 .2 .2), we have an 
Px-m easurable random  variable H  denoting the contingent claim w ith payoff H.  In 
the setting considered here, the payoff depends on the values of two risky assets at 
m aturity  of the contract, a t which point the contract holder may choose the larger
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of the two values:

H  =  m ax{5y, S f } =  SyT{s i >g2} +  S j - I ^  <sf, }• (2.34)

As such, H  is the payoff for a  purely financial contract. Prom option-pricing theory,
we know th a t its fair price H q is

H 0 = E * ( 4 r ) ,  (2-35)

and as long as the seller of the contract receives Ho, the liability H  can be hedged 
perfectly (see, for instance, Melnikov et al. (2002)).

Since Ho will appear frequently in subsequent analysis and calculations, we give 
the explicit form of (2.35), with derivations following the result. The perfect hedge 
price of the  contract w ith payoff H  (2.34) is

H q = E* ( m ax{Sr> ST ) )  = 5 01 - ^ 1(y1) +  S g - $ 1(jft), (2.36)
V eT

where T 1 denotes one-dimensional cumulative norm al distribution: for u  ~  N ( 0,1),

r c e_tl2/2
^ ( c )  =  /  — i= ^du .  (2.37)

J —oo v

The constants y \ , i/2 are defined as

l n ( § )  + ^ T  
y, =   , (2.38)

(TV 1

In
1/2

and

( l )  + T
a V T

a 2 =  ct2 +  erf — <lp o \V 2 - (2.39)

Note th a t M argrabe (1978) and Davis (2002) derive pricing formulas in the case of 
perfect hedging for contracts with two risky assets, where one of the assets serves 
as a strike in a call-type payoff.
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To calculate the formula for H q, we rewrite (2.35) as 

H q = E * ^ m a x { 5 ^ 5 |} N

=  E * +  E * { - ^ h s ^ s ^ , }

= E* ( eaiWT I  / s n  CT2_a2 \

+ S 20e ^ TE* ( e ^ wr  I  , s„  (2.40)

Above, we are using the expressions for evolutions of S l under P* given in (2.29).
Next, we simplify the sets of the indicators above by transform ing the linear com

bination of two W iener processes into a single new W iener process W l — (Wj )te[o,T] 
under P *:

= n w ? - n w }-
G

2 _  ffiW /* -  a2W?*
W f  =

4 (7

(7 =  a 1 +  C72 -  2/9(71(72-

Note th a t a  represents the volatility of a risky asset w ith the underlying risk process 
W l , and it is the same as the cr in (2.39). Also, since a 2 m ust be positive, we need
to check th a t the expression in the  definition of a 2 above is positive:

a2 — o \  + a 2 — 2/*7i (72

> a \p 2 +  a 2 — 2po i <72 as p2 <  1

=  ((7ip -  a2)2 > 0

=>cr2 >  0. (2.42)

Using the fact th a t random  variables are normally d istributed w ith mean

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



zero and variance T, we can write

cl
<72W |* -  <71 w£* <  in (

+ ~ ~ ^ ± T )  =

l i d )  + °±^ T
tJ T

Clw},* -  a2W . f  <  In ( J j p

°1 a 2 rr 1 _  f  ^txs-2 ^
?0

T )  =  < J a W ^ < l n ( ^ )  +

to ( f )  +
 >. <»•«>

W"1
where s2 =  ~z= ~  N ( 0 , 1) w. r. to  P*.

Now we will utilize a lemma on p. 797 of Shiryaev (1999), referring to  it as 
the one-asset lemma. The lemma states th a t for two normally distributed random 
variables rj ~  N (f iv , cr%) and £ ~  a^),  and a constant c,

E- (e-n ■ I {(&,) =  <f O ' " ^ )  ■ * '  ( ,  (2.44)

with cov(a, b) denoting the covariance between a and 6, and H/ 1 the one-dimensional 
cumulative normal distribution (2.37).

For our case, we take r) = —cqfF^  ~  7V(0, a ?T) and £ =  ~  iV(0,1) (w. r. to
P*) and calculate the covariances as required by the lemma:

co v(t7,£) =  co v (-< JiW f ,Si) =  ^ ---- P° f 3')T, (2.45)
(TV 1

where =  1,2. Note th a t since the underlying random  variables W^, Wj. are 
continuous (paths of W iener processes are everywhere continuous), we can use the 
lemma for sets of type {£ <  c} as well as {£ <  c}.

Following the above considerations, we apply the one-asset lemma (2.44) and
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obtain

{o-2W |* -c r iW ^ .* < ln  ( § j ) + - 2V™L :r} y
H n = S l e ^ E *  ( eaiWT I^

I { a 1W ^ - a 2W ^ < I n  ^  j  +  f i Z S T } ,

_2
+  S t e ^ E *  ea2Wr I  /S 2N „2_„2

\ !mW±*-aoWP<ln I -9- V

2 "2 1 ln ( s f )  +  22 1T (al -  p(Ti(J2 )T
=  S l e  * Te ^ T V 1 I v^0/ ~-------+  r -

0 1 a V f  a V T

i / l n ( ^ ) + ' 2 2T ,
V r  <rV r j

+  (2.46)

+  S l e - ^ T S L | v^0/ / = -~-------+
a

This completes the derivation of the formula for the perfect hedge price in (2.36), 
with given in (2.38).

Since we want to  analyze equity-linked life insurance contracts, let us now see 
how the presence of insurance risk affects the financial payoff H  (2.34) and the 
resulting pricing calculations.

2.3.2 Insurance settin g

Let a random  variable r (x )  on a probability space (fi, T , P)  denote the remaining 
lifetime of a person of current age x. We can safely assume th a t the insurance 
risk arising from clients’ m ortality and the  financial m arket risk have no (or very 
minimal) effect on each other, hence the two probability measures P  and P  are 
independent.

Now, term  insurance products are types of policies whose payoff occurs before 
m aturity  of the policy. For example, one could buy a 20-year policy paying 10,000 
CAD in case the death  of the policyholder occurs w ithin 20 years from the date 
of purchase. On the other hand, the payoff of life insurance products occurs on or 
after the m aturity  of the policy, provided some prespecified event did not occur prior 
to the m aturity  date. We work w ith a single-premium equity-linked life insurance 
contract where the insured receives the  payoff H  given by (2.34), provided th a t 
he/she is alive to  collect th a t payoff. T hat is, we are interested in the  payoff H

H  = H - I {t[x)>t}. (2.47)
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The fair prem ium  Uq for a contract with such payoff is

U0 -  E * x E ( H e - rTl {T{x)>T})

= E* ( H e - rT) P { t (x ) > T}

= E* (He~rT) TVx , (2.48)

where t Px =  P { t (x ) > T }  denotes the probability of a life aged x  surviving T  more 
years.

Notice th a t m ortality of the  insured client (as reflected by h is/her survival prob
ability t Px) makes it impossible for the insurance firm writing the contract to  hedge 
its payoff w ith  probability 1:

0 <  t P x  <  1 =*• Uo < Hq — E* (H e ~ rT) . (2.49)

As mentioned previously, since m ortality is not traded  directly, it is not possible 
to hedge m ortality risk, as one hedges the risk associated w ith trading options by 
taking positions in the underlying risky asset, for example. Thus the insurance 
market is incomplete.

2.3.3 Q uantile and efficient hedging for life insurance

In the situation when the quantity Uo (2-48), collected by the  firm from the  sale 
of the equity-linked life insurance contract w ith payoff (2.47), is strictly less than
the amount Ho,  necessary to  hedge the payoff perfectly, the firm faces the risk
of default. To reduce this risk, the company m ust find some appropriate imperfect 
hedging technique which optimizes the hedging outcomes, given constraints on initial 
capital available for hedging. Below, we show how quantile or efficient hedging can 
be applied in this situation.

In this section, we will modify notation from th a t in Foellmer and Leukert (1999) 
and Foellmer and Leukert (2000) to reflect the fact th a t  now we are using quantile 
and efficient hedging results in our setting.

Recall th a t  quantile hedging seeks to  find an admissible hedging strategy tt* tha t 
maximizes the probability of successful hedging:

P { u > : V f  > H }  =  m ax P { V $  > H }  w ith V0 < U 0 < H 0. (2.50)7T

This is the optimization problem  described in (2.10), and it is solved by a perfect 
hedge 7r* for the modified contingent claim

(2.51)

(2.52)
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Alternatively, efficient hedging aims a t obtaining an admissible hedging strategy 
7r* tha t minimizes the shortfall risk:

E ( l ( (H  -  V f ) +)̂ j = m in i?  (l ((H -  V f ) +)) w ith VQ < U0 < H 0. (2.53)

This problem is described in (2.17); its solution, again, is a perfect hedge 7r* for the 
modified contingent claim

H* = <p*H, (2.54)

where
/ 1  (a*e~rTZ T ) \= -----— A l l ,  P >  1, (2.55)

with I  =  (I' ) _1 denoting the inverse of the  derivative of the loss function Z,

<P* = I{1 >a*e~rTH1-PZT}i 0 <  p < 1, (2.56)

and finally
<P* = W e - ^ z T}, P =  1- (2-57)

The inequalities in (2.50) and (2.53) reflect the fact th a t the investor is budget- 
constrained: Uq < Ho , H q — E* (H e~ rT) is the amount needed for a perfect hedge, 
and the requirement th a t the initial cost Vo of the optim al hedging strategy must 
not be greater than  the am ount available to  the hedger: Vq <Uo-

Now, there are several things to  note about the adaptation  of quantile and 
efficient hedging results to  our setting. F irst, we use n* to  denote the optimal
hedging strategy for both  hedging methods; the cost of this strategy is always Uq

(in the notation of previous sections, the optim al strategy and its cost were denoted 
(£)^o)j see discussions following (2.15) and (2.20)). Second, we denote modified 
contingent claim H* and use A* to  denote the success set for quantile hedging, and 
ip* to denote success ratios for efficient hedging (compare with H, A  (2.15), and <p 
(2.18), (2.19), (2.20)).

The constraint Uq on the  initial capital available for hedging arises from the 
insurance risk component (2.48), and is the  same for bo th  quantile and efficient 
hedging; in sections 2.2.3 and 2.2.4, this constraint was denoted Vo (see (2-10), 
(2.17)). Also, we denote a* the constant th a t  appears in the explicit forms of A* 
and ip* above; previously, in (2.14), this constant was labeled a. Note th a t in our 
case, just as in Foellmer and Leukert (1999) and Foellmer and Leukert (2000) for a, 
a* is calculated from the budget constraint in the setting w ith nonzero interest ra te 
r. Let us explain this in more detail.

Consider the probability measure Q* constructed by Foellmer and Leukert when 
using the Neyman-Pearson lemma to derive quantile and efficient hedging results. 
The density of this measure is as given in (2.11), w ith H q — E*(H).  In
the notation of sections 2.2.3 and 2.2.4, the cost of the optim al hedge £ is Vo, which,
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for the case of quantile hedging, becomes

V0 =  E * ( H I a ) =  [  HdP* = f  H
JA JA

dJ l d- 9 1 d P *
dQ* dP*

L
H ^ - d Q *  = H 0 Q*(A).  (2.58)

A P

This is equivalent to  setting the maximal level of Type I error a t Q*(A) — a — 
Vo/Ho and then  minimizing the Type II error according to  the Neyman-Pearson 
lemma. So in the setting of Foellmer and Leukert (1999), a is calculated from 
the equation Vo =  E * ( H I A) (see discussion following (2.15)). Similarly to  above 
considerations, for the case of efficient hedging, a is calculated from Vo =  E*((pH).

In our case the interest ra te  must be taken into account when discussing the 
probability measure Q* th a t  corresponds to  the null hypothesis in the Neyman- 
Pearson lemma. For our setting, the density of Q* is defined by

dQ* H e ~ rT H
W t  =  E * ( H e - r T )  =  ^ r >  (2 '59 )

th a t is, the density is the ratio  of the discounted payoff to  the  risk-neutral expec
tation of the discounted payoff. This allows us to  express the cost of the optimal 
hedge ir* for quantile hedging as

Uo = E* (He~rTI A, ) =  [  H e ~ rTdP* — [  H e ~ rT^ ^ d P *
J a * Ja • dQ* dP*

=  r  H e - r T H o U _ dQ* =  HoQ* ^  (2.60)
J a * P

just as in Foellmer and Leukert (1999) (see (2.58) above). Note th a t we dropped 
the time reference for the densities above w ith the understanding th a t all processes 
are taken on P t  and A* is TV-measurable. The same reasoning and definition of 
Q* density (2.59) enable us to  calculate a* for efficient hedging formulas from

U0 = E*(ip*He~rT) = H 0E Q’ (<p*), (2.61)

as is done in Foellmer and Leukert (2000) for r  = 0.
Now, consider the definition of A  — {dPi /dPo  > k}  from the Neyman-Pearson 

lemma (2.4). Recall th a t Po corresponds to  Q*, the probability measure of the null 
hypothesis (fail to  hedge), and P i to P , the real-world measure of the alternate
hypothesis (hedge successfully). In Foellmer and Leukert (1999), for r  — 0, the
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authors get

dP  -1  f dP dP* ~ 
> k > =  —— > k

dQ* J \  dP* dQ

dP* H  I I  d P

with a — k / H o . For our setting with r  > 0, we have

dp - i  r dp dp* ~
> k  ̂ -  i — —  >  k

d P H o  = (2.62)

dQ* J ( dP* dQ
dP H 0erT f d P  a

> k =  > - p p H  , (2.63)dP* H  J [ d P

with a* = k / H o . This is how we obtain the expression for A* (2.52) in our setting. 
The success ratios ip* for efficient hedging are rew ritten as above, taking into account 
the adjustm ent for r  >  0 in the Q* density, which leads to  the modification a*e~rT 
from a in Foellmer and Leukert (2000) in the formulas (2.55), (2.56) and (2.57).

It is worthwhile to  stress the elegance of the  quantile and efficient hedging ap
proaches in the  situation w ith financing constraints. The constraint on the initial 
hedging capital may arise due to  some external factor beyond the hedger’s control 
(such as m ortality  risk in equity-linked life insurance contracts), or a circumstance 
within the decision-making power of the hedger (he/she may be unwilling to put up 
the entire am ount required for perfect hedging and be prepared to  take some risk 
as a trade-off for offering the contract at a lower price). In either case, the hedger 
can solve the  problem of insufficient initial capital by maximizing the  probability of 
a successful hedge or minimizing the shortfall risk. For bo th  of these perspectives, 
the approach is the same: invest into the (optimal) strategy 7r*, which perfectly 
hedges the modified contingent claim H*,  and the desired optim ization goal will be 
achieved. Of course, the structures of H* and the corresponding strategy ir* differ 
for quantile hedging and for each risk preference case in efficient hedging. However, 
conceptually, the above risk management ideas are easy to  understand and thus are 
more likely to  be implemented.

In section 2.6, we will illustrate the situation where the investor cannot provide 
the entire am ount Hq required for a perfect hedge and is ready to  accept some default 
risk when using quantile hedging, or shortfall risk if applying efficient hedging. 
Default risk is the probability th a t the hedge fails, we will denote default risk e 
(in the notation of the Neyman-Pearson lemma, this is the Type II error /3; see 
(2.1) and (2.3)). Shortfall risk, which we will denote S, is the expected loss from 
the strategy, defined in (2.16). Note th a t 5 is an amount th a t could be lost due 
to  imperfect hedging, so it is expressed in dollar terms. We will show the possible 
risk m anagement strategies based on two different perspectives of the  hedger. First, 
we will calculate the level of default risk (or shortfall risk) if the hedger is willing 
to  invest Uq taken as a percentage of H q into the optim al hedge. Second, we will

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



illustrate how much initial capital Uq is required if the hedger wants to  keep e (or 
5) at some acceptable level, specified beforehand. This illustration is based on the 
payoff (2.47), where the client chooses the larger of the values of two risky assets at 
m aturity  of the contract, provided he/she survives to  this date.

However, we can extend our study of quantile and efficient hedging far beyond 
purely financial risk management considerations: the flexibility of the two hedging 
m ethods makes them  excellent tools for insurance applications, particularly in the 
case of equity-linked life insurance products. Let us discuss the risk management 
opportunities presented by quantile and efficient hedging in insurance in more detail. 
On one hand, we showed in (2.48) th a t Uo is the fair premium for an equity-linked life 
insurance contract with payoff H  (2.47). On the other hand, the results of quantile 
and efficient hedging tell us th a t the budget constraint (Uo in our case) is also the 
cost of the optimal strategy ir*, which perfectly hedges the modified contingent 
claim H* respectively given by (2.51) and (2.54) for quantile and efficient hedging. 
Based on this, we obtain the following equalities for the price of the equity-linked 
life insurance contract in consideration:

Uo = E* x E ( H e - rT) =  E*(H*e~rT) (2.64)
=  E* (H e~ rT)TPx = E*(H*e~rT),

from which we can express the survival probability of the policyholder as

The term  E* (He~ rT) above is known: it is the perfect hedge price (2.35) for the 
contract with payoff (2.34). This price is calculated explicitly in (2.36).

Equations (2.64) and (2.65) are essential to  the subsequent risk management 
analysis of quantile and efficient hedging in insurance applications, as they give 
a quantitative connection between financial and insurance risk components. Such 
connection, in turn , allows the  insurance firm to  assess accurately the risks it bears 
and to  implement specific strategies to  control these risks according to  the preferred 
risk management approach. T h at is, the firm can either offer the equity-linked 
contract in consideration to  any client and then, based on the fair price received 
from this client, maximize the probability of successful hedging 1 — e, or, for efficient 
hedging, minimize the shortfall risk 5. Or, the  firm can set the acceptable level of 
financial risk e or the acceptable am ount of expected shortfall S, and then analyze 
clients for the contract accordingly.

More specifically, in the first approach, the client’s survival probability t Px can 
be derived (based on h is/her known age x)  from some appropriate m ortality model. 
Then, if the firm chooses to  apply quantile hedging, it will derive a* from (2.51) 
and (2.65), and calculate the maxim al probability of successful hedging 1 — e from 
(2.50). W hen utilizing efficient hedging, the firm will find a* from (2.54) and (2.65), 
and then compute the minimal shortfall risk 5 using (2.53). Note th a t the obtained
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values for the m axim al probability of successful hedging or minim al shortfall risk 
may not fit the com pany’s desired risk profile. Alternatively, the firm can utilize 
equation (2.65) in reverse: first, choose some acceptable level of default risk e (or 
shortfall risk <5), calculate a*, and then  find survival probabilities t Px of potential 
clients. Next, using some particu lar m ortality model, ages of clients paying fair 
premiums (under the prescribed risk level) can be derived and risk management 
consequences analyzed in light of the  firm’s risk preferences.

We will illustrate the application of quantile and efficient hedging in insurance 
in section 3.6, using the payoff where the client receives the larger of the value of 
some risky asset or a determ inistic guarantee at m aturity  of the contract, provided 
the client lives to  collect the  payoff, of course. The effects of the  three m ortality 
models of Gompertz, M akeham and Lee-Carter on the assessment and management 
of m ortality and financial risks will be discussed and illustrated  in the context of 
each of the two risk managem ent approaches described above.

2.4 T h eo retica l r esu lts  for tw o  risky a sse ts
In this section we present explicit formulas for the premium of the equity-linked life 
insurance contract w ith payoff H  (2.47) th a t pays the larger of the values of two 
risky assets at m aturity, conditional upon the policyholder’s survival to  the m aturity  
date, as well as maxim al probability of successful hedging for quantile hedging and 
minimal shortfall risk for efficient hedging. The results are presented as theorems for 
each of the imperfect hedging m ethods, w ith three cases for efficient hedging based 
on the three risk preferences of the investor, and are followed by the  corresponding 
proofs.

2.4.1 Q uantile hedging  

T heorem  1
Suppose tha t the  firm th a t sells an equity-linked life insurance contract with payoff
(2.47) decides to  use quantile hedging to  maximize the probability of successful
hedging.
P art I. The fair prem iu m  for the contract is 

Uo = E,
=  S l - ^ 2( x ^ y ! , P ? )  + S l - 9 2( x ^ y 2 , p ^ ) .  (2.66)

P art II. The p rob ab ility  o f  su ccessfu l hed gin g  is given by

P ( A *) =  t t 2( z ? ,y ? ,p ? )  +  (2.67)

Above, \k2 denotes two-dimensional cumulative normal distribution of random  vari-
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ables u\ ,U 2 ~  N ( 0,1) with correlation g

e ~ 2 ( i - e '2 )
S'- \ c , d , g ) = [ C f

J  — co J  — oo

c r d  -  n n 1_ - 2 A u i + u l ~ 2 S ^ 2 )

2tt^ 1  — g2
- du \du 2 ,

and

Q  _  < M °~1  ~  — (<72 +  </>2 ) ( o '2  -  0 ~ ip )

=

Pi —

p f =

-Q
x i ’ and

°4>

are a

T  -  In (a*Sq)

* ? V T

2 +  <M l +  >̂2̂ 2 -  CT2(p<t>l +  <h) T  -  In (a*

cr.

a;?

:

=

r -  iii + ° i + cri

t? V T
(T̂ + CTo

r  -  P2 + - V 1 T  -  In (a*Sg)

In I(S) + Ml ~ M2 +  ajLr
rV T

I <T1_02M2 -  Pi + - L2~^

r V r

and o f  are given by

erf — (cti +  (f>i) 2 + 2 p(j>2 {cri + (f>i) +  <f>2 ,

a 2 ~  (°2 +  </>2)2 +  2/3</>l(<J2 +  ^ 2) .+ ^ 1 -

Note th a t A *  is given in (2.52), y i in (2.38), <pi in (2.27), 6i in (2.31), a
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and <7$ in (2.28).
P ro o f .
P a r t  I. To find the fair premium, we need to  calculate

oe *lr~ *  | e -  \ H s±>s * t}= S l e ^ E *  eaiWr I r „ . ,n J
{ * > ^ }

S g e - ? T£*  ( J _> £ s | j / ( s . < 4 )  ] . (2.74)

The indicator sets above can be simplified as follows. In (2.41) and (2.43), we showed 
th a t {Sy >  S'y \ and { S ^  < S?r } can be w ritten  as

l n f f l )  + £ z ? ± T '
{5^ >  S ^ }  — { s i <   ̂ and

ln ( ai~ a2 j<
{ S * .< 5 $ }  = <{S 2< - V i l _ J -------- > (2.75)

- • • w*
w ith the help of W iener processes W % such th a t s 1 =  ~  N { 0,1) under P*.

Similarly, we want to  rewrite and |jj?~ > First, consider

j :  using the formulas for the density Z t  (2.32) and the evolutions of
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Sl (2.29) under P*, we can write

{£1 a* Sl,
>

^+<Mi+<M2)T a* S l e rT -^ T + d W ^ *
e V /  >   £ oTT

=  <! (<n +  <h)w£* +  </>2Wy/ 2 *

<  ( “ H T " 1 +  ^  +  <fc02J  T  ~ ln (a *s °) J

j < x ^ Q <  ( *  ° '- +  0 i^ i +  ^ 02  j T  -  In (a*^1)

^  +  ^ d 2 ) T  — ln (a*Sq1)
. (2.76)

To write the last two equalities above, we defined a new W iener process W 1® — 
( X 1Q)*e[o,T] w. r. to  P*:

W,
i q _  ( ° i  +  4>i)wt * +  4>2Wft 2 *

(2.77)

0 \ — (°1 +  0 l)2 +  02 +  2p(cri +  (j>l)4>2-

Similarly to  the requirem ent a 2 >  0 for perfect hedge calculations, we need to check 
th a t o f  is positive:

o f  = (o\ + (f>i) 2 + (f>2 + “2 p(oi + (f>l)(p2 

> (<7i +  <pl) 2 +  4>2P2 +  2p(oi  +  (t>l)(j>2 as p2 < 1 
=  ((ui +  4>i) +  4>2p ) 2 > o

=> o f  > 0 . (2.78)

Also, since W f 9  ~  N ( 0 , T ) ,  the random  variable s f  =  ~  N ( 0,1) w. r. to p*
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Likewise, we simplify the set |  ^  >

1 a*S2 

~  >Z t

Y-

- 0 i W i * - < ? i 2 W |* + (  - f+< t> id i+<h 82  J T  a * $ 2 e r T - ^ T + o - 2W£*

orT

T1*=  { { 0 2  +  <h)wf + 4>1 wl

< ( +  <hh  +  ^ 2 ] T  -  ln (a*F2)

^  ^  +  <h&2 ) T  -  ln (a*S2)

t? V T
(2.79)

n  w 2® 
with s j  = N ( 0 , 1) for the W iener process W 2® = ( W ^ ) te 0̂)r] (w- r - to  P*) 

2 Q _  (<72 +  < h ) W ? *  +  «Al W l *
W: (2.80)

,Q2 (CJ2 +  0  2)2 +  +  2p(<72 + > 0.

Notice th a t the formulas for <jf used above with W are the same as the ones in 
(2.73).

From this point, we require a version of the one-asset lemma (2.44) to calculate 
explicit expressions for expectations of type

E* (e~zI .{ x < X } - l { y < Y }) ’ (2.81)

where x, y, z  are normally distributed correlated random  variables and X ,  Y  are 
given constants. Note th a t the approach for deriving the formula for the perfect 
hedge price of H  was similar (see calculations following (2.36)), bu t we had only one 
indicator to  worry about in th a t case.

We have derived the result th a t allows us to  calculate expectations in (2.81), it 
is the multi-asset theorem presented in section 2.5, w ith proof given in Appendix 2. 
Here we utilize the theorem for n =  2 indicators, referring to it as the two-asset 
lemma:

Two-asset lemma
Let x  N ( y x , a I) ,  y  ~  N ( y y, er^) and z N ( f i z , cr2) be three (normally distributed)
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random variables w ith correlations p Xy ,  P x z ,  Pyz -  Then for given constants X , Y ,

V
X

E  (e I { x < x } I { y < Y } )  — e  ^ J • 4 /  ( X , Y , p xy),

X  — p x

(2.82)

'  G z Px Z l
° x

Y  = ^ J Z j h +(JzPyzj

where 4/2 denotes the two-dimensional cumulative norm al distribution (2.68). 
P ro o f.
See section 2.5 and A ppendix 2.

Now we will use this lem m a to finish our calculations of the fair premium  for the 
case of quantile hedging. Based on previous simplifications (see (2.74), (2.75), (2.76) 
and (2.79)), we have

(

U0 = She~1E* S°1WT I ?5+<7? \ , . 1 1
1 +<t,1e1+<t>2e2 T-in (o*sJ)

« i < - 77t

S ^ e - 2 - 1  E* S<T2 W T* I  . r2+CT2 \ , , I  I
- S - ^ + 4 > ie l +4>2S2 I T - l n  ( a * s 2 )

S 2< -

2 \  _21 (Trt _1, 2 tI)jy/T

(2.83)

Now we will apply the two-asset lemma with z = —oiWj?  ~  iV(0, a fT ), x  — s', 
N ( 0,1), y  = Si ~  N ( 0 , 1), and the respective correlations

Q

Pxz = corr ( s f ,-U iW -r)  = -  

pyz =  corr ( s ^ —<7jWr) =

+  P’fij

O,

(Ti (7j  p
a

Q

n — rn r r f cQ « 1 — ^ i 0’]  (a i  +  </’»)('ai ajP)Pxy — c u i i ^  , ^
ay  a

(2.84)

for i , j  = 1,2. Note th a t co rr(s^ ,s ,)  are exactly the correlations p f  given in (2.69).
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Let us calculate X , Y :  from (2.83), we have

+  0 i0 i +  0202)  T  -  In (a*Sq1) 
X \  — -----------------

and

Tl ~ ai

o? V t

01#1 +  0202 -  Oi(p<j>2 +  4> 1)

r— (  tJl +  01 +  p(j) 2+̂ (— a * — .

T  -  ln (a*S^)

t? V T
>

^  +  <h«l +  < k h  ) T  -  ln (n'Sg)

o J v 'T

+  0101 +  0202 -  C2(p01 +  02)a\  a 2 
2

. ( cr2 +  02 +  P01
+ ^ {  ~

T  -  ln (a*Sg)

Y i =

% - j T

to ( | )  +  ^  

y /T

=  ar.2 j

+  o\

Kli+fr
y/T  ( ^  ~

0 V t
=  2/1,

In
>"2 =

( D + d - i r

a V f

to ( |  ) + f T

+ 0 2 V f

tV t
— 2/2,

with x f  and yi introduced in (2.70) and (2.38). 
Then for Uo in (2.83), we obtain

Uo = S]e
- ° i T  - ( 0 - ^  | T

+ S l e ~ ^ Te
iTr̂  ( ~Q

^X i, Y l,co rr(s f ,s i  

(  2 )  ^ 2,F 2,c o r r ( s ^ ,s 2

(2.85)

(2 .86)

(2.87)

which is the formula for the fair premium in the case of quantile hedging.
P a r t  I I .  Now we derive the formula for the probability of successful hedging P(A*)  
in (2.67). For this, we adopt a similar approach to  the one above for calculating the 
fair premium. Note th a t now we work under the original probability measure P ,
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not the risk-neutral P*.  F irst, we rewrite A* as follows:

=  >  ^  ~ ^

+  \ j z ^  >  c 'rl'~}  n  <  ^ 1 ’ ' (2.88)

Next, using (2.26) and (2.21), we simplify the sets above by rewriting them  in 
terms of new Wiener processes. For { S ^  >  and {S1̂  <  Ff-}, we have

{ S ^  > Sf.} =  jcr2W |  -  a rWr <  In +  ^ui  -  ^2 +  — T |

< ln (^o ) +  (Ml “  M2 +  ^ 2 ^ )  T
Sl “  ctV T

=  { s i < y ? } ,

{ S ^  < Sf*} =  jo-iW ^ -  a 2W | <  ln +  (^i2 -  Hi +

ln ( f ) + (M2 ~ M1 + '
o'^/t

=  (S2 <  y2Q}, (2-89)

with VF* =  (W( )t6[0>r] such th a t

^  =  Z2H f _ £ l S _ (2 90)

^  =  a j W l - n W ? '
a

a 2 — a \  +  a l  — 2 p<Ti(T2 >  0, 

and Si =  ^  ~  N ( 0 , 1) under P.  The constants y f  are given in (2.72).
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For we Set

1 a* S i 
Z ?  > erT

f 1 a * S l  I
\ Z ^ > j

- f rW\ - b tW*+’4 T > a*s l Ml - r - ^ jT + a x W *

(a i +  ^ )W 4  +  </>2W | <  -  mi +  ^  ^  ^  T  -  ln (a*^1)

r  -  mi +  T ~  In (a* ^1)

S? “  a f V T

Is? < *?}>

(<72 +  <h)W% +  <  k  -  M2 + T  -  In (a*Sg)

<

° i +l72 T  -  ln (a*

r? \/T

= { s j  <  a;!}, 

with W lQ — g[o,t] such th a t

1Q _  (m  +  <t>l)W} +  .feW,2w p  = ,Q

W,
2 Q  _  (<?2 +  <f>2 ) W ?  +  <pi W l

(2.91)

(2.92)

and s f  = '—̂j r  ~  -^(0,1) w. r. to  P . Also, note th a t the constants x ^  and p  are

given in and (2.71) and (2.73) respectively, and th a t erf >  0, as shown in (2.78). 
Now (2.88) becomes

A * = {s? < x ? }  n {si < V i )  + (s2 < x2 }  n (s2 < y % } ,r7<9l (2.93)

where the respective correlations corr(s f , S i )  = p f  are given in (2.69) (see also 
(2.84)). All above considerations allow us to  write the set of successful hedging in
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its finalized form

P(A*)  =  P  ( { s f  <  (~l {si <  y f }  +  {s^ <  x%} n  {s2 <  y f  })

=  y 2 { x i , y i , P i )  + 'S'2 {x^,y%,p%).  (2.94)

2 .4 .2  E ffic ie n t h ed g in g : r isk -a v e r s io n  

T heorem  2
Suppose th a t the  firm th a t sells an equity-linked life insurance contract with payoff
(2.47) decides to  use efficient hedging to  minimize the shortfall risk. Further, suppose 
th a t the firm ’s risk preference is risk-aversion, so th a t for the loss function l(x) — x p, 
p > 1.
P art I. The fair p rem ium  for the contract is

Uo = E ‘

=  S i  • T 2( ^ , y i , p f )  +  S i  •

-  M  • [4>2(c1; y f , p? )  + 4/2(c2, y2, P2)] ■ (2-95)

P art II. The sh ortfa ll risk  is given by

E ( l ( ( H - V T )+)) = N  ■[&(<■!,%, r f )  + * 2 {c2 , f c f4 j \

+  (2-96)

Above, T 2 denotes two-dimensional cum ulative norm al distribution given in (2.68), 
with

_  </>2(cr2 -  (Tip) -  (0 i -  tri(p -  l))(cri -  cr2p)
P1 “  g  )

erf cr

A _  0 l(<Tl -  CT2P) -  (<t>2 -  cr2{p -  l))(cr2 -  (71 p) ,0
P2 — R • lZ-y ‘la  f a

The constants M ,  N ,  x f ,  c*, y?, Cj, y?, , and y* are defined as

c p . T1
a * \ p - l  e 2(p-l)^

M  =  ( -  ) -------- r - ^  , (2.98)
r T +  ^r+-^-+<£i0i+<fe02j
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t ax l

x 2

ln ( (5 01r 1^ )  + p  ( r  +  I 1)  +  <-±ir L +  0 i(6li _  ^ i)  +  ^ 2(^2 -  po-i) T

t¥ V t

l n ( (5 o)p +  p ( r  +  ^ - )
2 2

+  02(02 — <̂ 2) +  01 (#1 — po"2)

r f V r
(2 .100)

*n  ( ( * S o ) P  1 ^ )  +  P  ( r  ~  +  *2  1 “  +  0 i ( ^ i  +  CTl )  +  0 2 ( ^ 2  +  p e r i )

Cl

C2

T

rfV r

ln  ((S’02r 1iL) + p  ( r  _  2̂ )  +  ~£ i r i  _  +  02 (02 +  0-2) +  0 i  (6*i +  p o2) T

r f V r
(2 .101)

Vl

ln  f  _l ( ?1 f j
,c _  +  l  2 1(0-1 -  o 2p) -  02(o2 -  crip)] — 3-

(J

In (§?■) +  ( ^ 2 ^ )  T  +  [02(02 -  (Tip) ~  0 i (01 -  a 2p)] - r j  
$  =  K ° J V   1= — , (2 -102)

(7 V t

Cl =

C2

r + ^ - j £  + ( p -  1) P i -

r f V f

in ( (5 02r i ^ )  + r + - f  p +  (p ~  ! )  (^2  -  T") +  P (02O2 +  0 io-2p)

rE V t

(2.103)
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vl

y c2

In ( | | )  +  Ml -  M2 +  a-2̂ x  +  (4>i(ai -  a2 p) -  fa ( a 2 -  <Jip))

r V T

ln ( f r )  +  M2 -  Mi +  ^ 2^  +  ^ r j  0 2 (0 2  -  o ip) -  0i(cri -  ct2m)) T

rV T
(2.104)

h  =

k2 =

ln ( ^ ( S o )1 P)  -  r  +  ~2 +  (p -  !) (mi -  -  K 0 W i +  <p2 <JiP -  ° l {p  -  1))

a f y / T

ln (^ -( 'So)1-p)  “  r + a~2 +  (P ~  !) (m2 -  -  P(4>2T 2 +  </)iO‘2p -  o-|(p -  1))

(2.105)

Ml
In ( I ) + Mi -  M2 +  ^ 2^  +  P(a i ~  a ^ P )

ln +
a y /T  

2 2

M2 -  MI +  ^T T 2- +  _  o-ict2m)

ry/T
(2.106)

and erf' are given by

(of f  = crl + ( l - p ) 2c r l - 2 a 1 { l - p ) 6 1, 

( a i ) 2 =  c? +  (1 — p)2o_2 — 2cr2( l  — p) 0 2 - (2.107)

Note th a t is given in (2.55), yi in (2.38), fa in (2.27), 9i in (2.31), a  in (2.39), and 
00 in (2.28). Also, the formulas for the premium and the shortfall risk above hold 
as long as technical conditions p ^  and M 7̂  are satisfied, as explained in the 
proof of Theorem 2. The conditions are not restrictive in any way: the likelihood of 
having two risky assets with correlation of the underlying W iener processes being 
exactly equal to  the ratio of Qi is very small. However, in case this does happen, 
there are ways to  deal with the situation (please see the proof for more details). 
P ro o f .
For proofs of pricing and shortfall risk formulas for all risk preference cases of efficient 
hedging, we first simplify the expression for the modified contingent claim H* — fa*H 
(2.54). Second, we rewrite Uq in terms of indicator sets, which we simplify by 
introducing new W iener processes. Third, we evaluate the resulting expectations of 
type (2.81) by utilizing the two-asset lemma (2.82). Notice th a t the  second and third 
steps are the same as in the approach of proving the results for quantile hedging. 
Because of this, we will only show m ajor steps in the derivations, leaving out tedious
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calculation details.
P a r t  I. We wish to  calculate the  fair prem ium  for the case of risk-aversion using 
efficient hedging. The success ratio  ip* for this case is given by (2.55):

( I  (a*e~rTZ t ) \
^    ) ’ P >1 ,

with I  — (V) 1 denoting the inverse of the derivative of the loss function I. Since 
we are using l(x) — x p, we have

l ' ( x ) — pxp ~ 1 =>• I ( x )  = xp~T , (2.108)

therefore

l (a * e~ rTZ T) =  k * - ( Z T ) ^ t ,

/  a* I
where k* — ( — . (2.109)

Then H* simplifies to

H* =  ip*H = H  -  (/c*(Zt )WT A l l )

=  ( h  - k * ( Z T) ^ )  I ( ! (2.110)
|fc*(zT)p^T< ^ | 

which leads to  this expression for the fair premium:

* - (S?
(H  k*

erT ̂ |fc*(ZT)p^T<JFt| er T ^ T  ̂ ^  ̂ k*(ZT)p=* < H  j

^  ^ e rT ^jfc*(ZT)F ^ < S ^ j^ { 5T -5T}^

E  { ' S r W ) *  7j fe*(ZT)Flu< s i | 7{s t > st} ^e1
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Now we work w ith the indicator sets above; we already know th a t {5^ >  S1̂ } and 

{Sy <  S^} simplify as shown in (2.75). So we need to  express |A:*(Z t )^~i  <  5'j’}

and | <  Sy j  similarly. Since the calculations are sym m etric for the for

mulas involving S'1, from now on we show derivations for S'1 and only state  the 
results for sets involving S 2.

Consider the set |fc*(Z t )p~t  <  S r} -  using (2.32) and (2.29), we can write

{k*{ZT) 4 i  <  5 ^ }  (2 .112)

k*p. V /  <  Ŝ e.\ /

ln

4  <

(§0  + (r" ir) T + (iT + ^  + 0292) JVT

(f^ ) + (r “  2̂ ) T  + ( j t  + fa 0! + 
a AV f

where W 1A =  (W ^A)te[o,T] is a W iener process under P* such th a t

W t1A

( ~A\2 _
W i ) -

z.A

4>i
-  U l  +

p  — 1 x J {p — l )2 r p  — 1 \ p  — 1 

( 0  1 -  C T l(p  ~  l ) ) 2 +  4>l +  2p4>2(<pl -  U i ( p  -  1 ) )  

(.V -  I ) 2

+  a i ( p -  ! ) 2 -  2 tJ ! ( p  -  ! ) ( 0 i  +  p 4>2 ) 

( p ^ T P  ’

(2.113)

. W  A  9and ~  1V(0,1) (w. r. to P*).  To simplify the expression for (d f )  above,
we used the definition of er  ̂ given in (2.28).

We must check th a t (a A)2 >  0. F irst, note th a t <f>i (2.27) can be expressed as

pd2 -  81 , p9\ -  6*2
01 =  —--------2“  and 02 =

1 - p 2

01 +  P02
1 -  fP

(2.114)

-<9i,
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(2.115)

which allows us to  write

, - a \ 2 a l  +  a i ( p -  l ) 2 +  2 c t i 0 i ( p -  1)

(<,l) =  ---------------
alp 2 +  2cri (6>i -  ai)p  +  a^ + a\  -  2 a x6 \

(P ~  I )2

Denote
Qip)  =  a iP2 +  2<ti(0i - a 1 ) p + a 24> + a l ~ 2 o i 0 i. (2.116)

We examine the discrim inant D  of the quadratic Q(p) to  see when Q(p) >  0:

D  = Aa\(Qi -  a i ) 2 -  Aal(a1 + a \  -  2aidi)

=  4 a 2 {d2 - a l ) .  (2.117)

Now we need to  figure out the sign of 6 \ —a 2̂. Observe th a t using (2.114) and (2.28),
we can write

2 _  ei +  e 2 ~  2pfli6>2 12 1181
a<t> 1 — p2 ’ ( 2 . 1 1 8 )

which, in turn , leads to

2 2 P2®l +  ° 2  -  ZpOih
d l ~ a <f = ----------- W 2---------

=  - T ~ ^ > ( p ° i  ~ e2?  < 0, as p2 < 1. (2.119)
1 ~ P

We see th a t D  <  0 as long as p0\ — 62 ^  0, or, equivalently,

p #  02/fli. (2 .120)

This implies th a t Q(p) >  0, th a t is, (dj4)2 >  0. For the set w ith  S 2 we get a 
symmetric condition

P ^ O i / 0 2 - (2 .121)

It is precisely (2.120) and (2.121) th a t give rise to  the technical conditions in The
orem 2 .

In case th a t p = 6 2 / 6 1 , the quadratic Q(p) would have a double root at

- ( 0 1  -  f7 l ) / (7 l ,

which means th a t volatility dj4 would equal 0 if p  happened to  be precisely equal to 
the root of Q{p). This would make the set in (2.112) equal to  f l  (or the empty set) 
and reduce our calculations with sets involving S'1 to those done previously for the
case of perfect hedging (see (2.40)). Alternatively, p  could be slightly adjusted to
not equal the root of Q(p),  and we would proceed w ith com putations as shown in
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the remainder of the proof.
Before we return to  the simplification of the set |fc*(Z7’)p -T <  consider 

(2.115):

-Art a l  + aj{p  -  l ) 2 + 2 a i 6 i(p -  1 )(ZrM-L(^1 ) =
( P - 1)2

( - f )2
(p -  l )2 ’

with a f  defined in (2.107). Now we can write 

{,k*(ZT) ^ r  <  S

In ( § )  +  (r- -  4 )  T  + ( j  +  < ^ 1  +  < ^ 2

(2 .122)

T
p - 1

T ? V ?

In
=  s ^ < ( p - l ) -

( f ^ )  +  (r  -  I f )  T  + ( ~ 2  +  +  0202^

a f V T
.

(2.123)

Consider the expression for Uq in (2.111): using (2.75) and (2.123), we can write 
a part of it in the simplified form as

E* Z L le ^ { fc.(ZT)i^ T < si} 7{Sr > ^  

/

S l e - ^ T E* SaiWT l I ,

S1 —< S i )+
, s / T

(2.124)

where

In
k? = ( p -  1)-

O’:f V r
(2.125)

Now we apply the two-asset lem m a (2.82) to  evaluate the expectation above. 
We take 2 =  — oiWj,* ~  N{0,cr\T),  x  = s f  ~  7V(0,1) and y =  s i ~  iV(0,1); the
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necessary correlations are calculated to  equal

p - 1  (  <f>i 4>2P
Pxz ~  ^  \ p -  1

-  < J \
p - l j  ’

P y z  =  

P x y  —

CTl — <72 P

<fe(o~2 ~  aip) ~  (4>i ~  o-i(P ~  l))(q~i ~  P2P) , pA (2 126)
o?  o

with pi defined in (2.97).
Applying the lem m a with the above param eters to  the  expected value in (2.124) 

and simplifying the resulting constants, we get

f i .  1 s 1 >s2\  ) — *-’o y i >  j f c * ( Z r ) p = r < S i A  I A t — j J
(2.127)

with x f  and y\  given in (2.100) and (2.38).
Now let us re tu rn  to  Uq in (2.111). We will simplify another term  in this ex

pression using (2.32), (2.123) and (2.75):

(

~  erT 6
E* ± ^ w i*+jhLW*' T T

e * - 1 T  P“ 1 T I {s?< ~ k?}I < i .si\ <79 —a?to i  h - M r
» 1 < - tVT

Define a W iener process W p = (W£p)£G[0jx] under P* as

W?
p - i w tu  +  - ^ w 2*

<7p

<t>\ , 4>i , 2 _ M _
ip - 1)2 {p - 1)2 ip - 1)2 

_2

ip ~  i )2
> o ,

(2.128)

(2.129)
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with (70 given in (2.28). T hen (2.128) becomes

/

+4>\0\+4>iQi

\

.(2.130)

/

Now we apply the two-asset lemma (2.82) w ith z =  —j z ~  N  ^0, 

x, y — s f ,  s i ~  N ( 0,1) under P*, and correlations

P x z

Pyz

£71 ( p -  l ) ( 0 i + pfc)  ~  £71

-  £ 7 2 p )  ~  0 2 ( £ 7 2  ~  £7 i p )

CF <pCF

P xy (2.131)

After some simplifications (see (2.125), (2.38) and (2.109)), the expectation in 
(2.130) becomes

with M ,  ci and y\  defined in (2.98), (2.101) and (2.102) respectively.
At this point, to  complete the proof, all above calculations would be repeated 

for expectations involving S 2. But, as mentioned previously, since the results are 
symmetric, we omit these calculations here and simply s ta te  th a t by putting together 
(2.127), (2.132) and their respective counterparts for S 2, we obtain the formula for 
the fair premium for the risk-aversion case of efficient hedging.
P a r t  I I .  Now let us derive the formula for the shortfall risk for the case of risk- 
aversion. Based on the discussion after (2.17), the form of success ratio  (2.55), and 
(2.109), the shortfall risk can be expressed as

E* — M  ■ ^ 2 (c i,y i ,  p f ) ,  (2.132)

E ( l ( ( H - V f ) +))  =  E m ~ < P * ) H ) )

= E ^ ( l ( a * e ~ rTZT ) A H ) p ĵ

(2.133)
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Note th a t the first equality is established on p. 123 in Foellmer and Leukert (2000). 
This expression further reduces to

e  ( m  -  v ? y ))  =

+  E  ( (^ > < * ,  * * * } ' « « * > )  ‘ <2134)

Now, consider the sets above. We already know how to simplify some of them  
under P*, bu t now we work w ith the original probability measure P.  As in the 
proof of P a rt I, we show the  derivations for sets involving S 1, as results for sets with 
S 2 are symmetric. In (2.89), we showed how to  reduce the set {5^ >  S ^}. Now 
we have to  simplify Using the same approach as when working
with this set in the proof of P a rt I (see equations (2.112)-(2.123)), we can write

{fc*(Zr )W i <  S £ }  =  { sA <  k f }  , (2.135)

where

kA =  (p -  1) V J V F J -----------p— , (2.136)
V T

and sA =  ~  JV(0,1) (w. r. to  P)  w ith a new W iener process W 1A — ( W t A)te[o,T]
defined by

( A  -  n )  IT.1 +W / A =  AA-2 L—  A _ _  (2.137)
a \

for which (dj4)2 =  (p-i)* >  0 as l°ng as P ^  8 2 / 8 1  (see discussion following (2.113))

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We simplify j/c* (Z r)p- 1 >  P f  j  similarly and obtain

{,k*(ZT >  5 ^ }  =
a f y / T

=  { s f  <  (2-138)

Now let us simplify the first expectation in (2.134):

=  [ k ' f e - ^ V E  ( e ^ lW$ I {s t < V } I { « < t i } )  ’ (2 ' 139)

with k f  and y f  given in (2.136) and (2.72). Above, we used a W iener process 
W p — (Wf)te[o,T] (w - r - t °  P)  satisfying

-iL-Wi1 4- -&-W?
W f  =  ( Pz2__L (2.140)

Cp

where a 2 = j ^ p  >  0 (see (2.129)).
To evaluate the expectation in (2.139), we apply the two-asset lemma (2.82) with

z — - ^ W r p  ~  N  ^0, (p^ 1)2 T ^ j , x , y  =  s ^ ,s i  ~  AT(0,1) under P , and the corre

sponding correlations given in (2.131). As before, after appropriate simplifications, 
we obtain

(2.141)

with ci, defined in (2.103), (2.104).
Similarly we simplify the  second expectation in (2.134): using (2.21), (2.138) 

and (2.89), we get

=  { S i f e ^ y - E  ( e ^ w i l l 4 <  - S - . , / , . . ^ , )  ■ (2-142)

Now we proceed in the usual manner, applying the two-asset lemma (2.82) with 
z =  - o ’!pW£  ~  N ( 0 , a f p 2T) ,  x , y  = s f , s i  N ( 0 , 1) under P , and correlations
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given by

P x z

o\  — 0 2 P
Py z a

(j>2 {(J2 -  crip) -  (0 i -  <Ji(p -  l) ) (g j -  o~2p)
=  - p i  (2.143)P xy

After appropriate simplifications, the expectation in (2.142) becomes

(2.144)

w ith k\,  y* defined in (2.105), (2.106).
Repeating the above steps for the remaining two expectations in (2.134) th a t 

involve S 2 and putting  together (2.141) w ith (2.144) enables us to  write the final 
formula for the shortfall risk in Theorem  2.

2 .4 .3  E ffic ie n t h ed g in g : r isk -ta k in g  

T heorem  3
Suppose th a t the  firm th a t sells an equity-linked life insurance contract with payoff
(2.47) decides to  use efficient hedging to  minimize the shortfall risk. Further, suppose 
th a t the firm’s risk preference is risk-taking, so th a t for the loss function l{x) = x p,
0 <  p < 1.
P a r t  I. The fa ir  p re m iu m  for the contract is

m ax{5y, S'!.}

=  Sq ■ * 2( £ f ,y i , f i )  + S 20 ■ &,(%)■ (2-145)

P a r t  II . The s h o r tfa ll  r isk  is given by

( p i - 4 ) t P+ 4 T P- 

(y,2-4^Tp+4-Tp'

(2.146)

Above, T 1 and T 2 denote one- and two-dimensional cumulative norm al distributions
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given in (2.37) and (2.68) respectively, with

T  _  ~  ° i P )  ~  (01 +  o-i(1 -  p ) ) ( t l  ~  °2P)
Pi ~  e  ’cr^cr

T  _  01 (^ l “  °2P) -  (02 +  <72(1 -  p ) ) ( c r2 -  CTip) 
P2 -  -----------------------------£-----------------------------■(To C7

(2.147)

The constants x f , x f  , and pf are defined as

+  0 i ( 0i -  CTi) +  02(02 -  po-i) + p  ( r +
Xi —

~ T
X n  =

- T
* 2

T  -  In ( (S ^ -P a * )

a f V T

7 ĵ r 1  +  ^ 2(02 ~  cr2) +  01 (6*1 -  p<r2) + p  (r  + ^

r + - 2 ~ ( l - p ) ( p ~ p ( a l i 1 ~ p )  + 01 ̂ 1 + 02^1 p)

(2.148)

*Vt

r + ° 2 - - ( l ~ p ) { p 2 -  -  K ^ K 1 -  p) +  02(12 +  01d 2P) T  — In ((S’§)1- V )

_ l n ( f f )  +
2/i —

Vt

P l  -  P2 +  ^2-2^1  +  P { 0 \  ~  O l ( J 2 p )

(2.149)

-T
V2 =

111 ( l  1 +

a V f

P 2 -  P i  +  +  P ( d 2 “  d l d 2 P ) T

r T r
(2.150)

Note th a t <p* is given in (2.56), §i in (2.38), 0j in (2.27), in (2.31), u in (2.39), 
(j0 in (2.28), and erf' in (2.107). Also, as in the case of risk-aversion with p  >  1 , 
the formulas for the premium and the shortfall risk above hold as long as technical 
conditions p ^  and p yl ^  are satisfied (see the proof below), b u t these conditions 
are not restrictive, as explained in the proof of Theorem 2.
P ro o f .
P a r t  I. To derive the formula for the fair premium for the case of risk-taking, recall 
th a t the success ratio  <p* (2.56) has the form

P* =  J{l>a*e-’-?’ffl-PZT}! 0 <  p  <  1.
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Using this, we rewrite Uq as follows:

U0 = E*
evT
H

E  l grT"^{l^a*e H1 PZt}

S'1
E * ( - ^ T I { l > a * e - r T {S}t ) i ~ r z T } I {S)r >Sf,}

S ;
E * ( ~ F T I { l > a * e - r T ( s 2 , ) i - P Z T } I { S ^ < S 2 ,}  ) • (2.151)

As in the proof of Theorem 2, we show calculations for S'1; the calculations for 
S2 are symmetric. The set { l  >  a*e~rT (S f ) 1_pZ T } simplifies to

{1 >  a*e~rT{ S \ ) l - pZ T }

=  < erf W f < ( r + ° - f +  M i  + M 2 -  (1 -  P) ( r  -  ^  T  -  In ( a ^ S 1)1̂ )

=  { s f  <  ~k[}, (2-152)

where

+- *4 + M l  + M 2 -  (1 -  V) (r  -  f ) )  T  -  In ( ^ ( S 1)1-? )

*  = -   1 ■ <2-153>

the random  variable sf  =  ~  ^ r(0; 1) under P*,  and the W iener process f-U1T =

( l ^ 1T)te[o,r] is defined by

W ?  =  (2.154)
“T

with erf given in (2.107).
Here we do not have to  check again th a t (erf)2 >  0, since in (2.122) we derived

the relation (erf )2 =  ^ 1 ^ 2  >  0, and (2.115)-(2.119) show th a t (erf )2 >  0 as long as
p ^  (p ^  fh) holds. Note th a t these technical requirem ents cause the conditions in 
Theorem 3 and are the same as the ones in Theorem  2 (please refer to  the discussion 
of (2.120) and (2 .121)).
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Using (2.29), (2.75) and (2.152), the expectation in (2.151) becomes 

E*

/

S l e ^ T E*

« l < -

V
rVT

\

/

(2.155)

Now we apply the  two-asset lemma (2.82) to  evaluate this expectation. We take 
2 =  —uiWj.* ~  1V(0, cr^T), x, y =  s f ,  si ~  N ( 0,1) (w. r. to  P*).  The corresponding 
correlations are

P x z

P y z  ~

(1 -p )c r i  +<t> 1 +  p4> 2

a i -  o ip

P x y  — P i (2.156)

with p j  defined in (2.147).
After appropriate simplifications, we obtain this expression for the expectation 

in (2.155):

E ' { ~ ^ I { l > a - e ^ T ( S ^ y - P Z T } I { S ^ > S ^ , } Sj  -  i V U  P i ) -  (2.157)

The constants x f ,  y i are given in (2.148), (2.38). Repeating these calculations for 
the expectation in (2.151) containing S 2 and putting  them  together with the above 
result produces the  finalized formula for the fair premium for the  case of risk-taking. 
P a r t  I I .  To derive the formula for the shortfall risk for the risk-taking case, based on 
the discussion after (2.17) and  arguments on p. 129 of Foellmer and Leukert (2000) 
th a t establish the  first equality below, we can write

E ( l { ( H - V f ) +j )  -  E { l{H )- < p* l (H ))

= E ( H p) - E ( t p * H p)

=  E  ( ( 4 ) p/ {5i >S2})  +  E  ( { S 2 )pI {s i <5, })

-  E  ( ( ‘5'T)?’7{l>a*e-’-'r (Sl,)1-PZr }7{Sl,>S|.})

-  (2-158)

As before, we show calculations for items involving S 1.
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Consider the expectation E  ({S^)pI ŝ usi ng (2.89) and (2.72), it can be
w ritten as

E  { { S ^ Y k s ^ s l } )  =  { S l f e ^ - ^ E  (e ffl^ / {siSy-?})  . (2.159)

To evaluate this expression, we use the one-asset lemma (2.44) with 77 =  —axpWj< ~  
N ( 0 , a 2p2T) ,  £ =  s i ~  iV(0,1) under P,  and

7 ^  (° i  ~  ° i ° 2 p)Tpcov(t7, Q  —  -=--------. (2.160)
(TV 1

Following these considerations, the expectation in (2.159) becomes

E  ( ( S i y i {si> S2}) =  (2.161)

where 'P1 denotes one-dimensional cumulative norm al distribution (2.37) and y (  is 
defined in (2.150).

Now consider the set { l  >  a*e~rT(Sj,)1~pZT}'- we simplify it under P  similarly 
to  what was done in (2.152) under P*:

{1 >  a*e~rT( S ^ ) 1^ pZ t }

=  L f  W ?  < ( r  +  |  -  (1 -  p)  f ) )  T  -  1„ (a* (S j)> -!') |

=  K  <  *?}, (2.162)

where

( r  + ^ -  ( l - p )  (p i  -  T  -  In ( a * ^ 1)1 p)
H  ^ ---------------------------- . (2-163)

the random  variable s f  =  -^=- ~  N ( 0,1) under P,  and the W iener process W 1T =  

( W t T )te[o,T] is defined by

T = « i ( 2 164)
a  f

with erf given in (2.107).
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Let us now re tu rn  to  the other expectation involving S 1 in (2.158):

=  (S3re('“"+ ) TPE ( e ’ “ ' ^ / W < s n / { „ < s f } )  ’  < 2 J 6 5 >

and. as many times before, we apply the two-asset lemma (2.82) w ith z — —cripWj< ~  
N ( 0 , a f p 2T),  x , y  = s f , s i  IV(0,1) (w. r. to  P).  The corresponding correlations 
are the same as those defined in (2.156).

Finally, after some simplifications, we can write

E  ( ( S ,T )p-f{1>a. e-rT ( s i,) i - PZT} / { s i , > 5 2 } )

= (Sj)-e('U- ^ ) T’̂ T’'V (x ;\ 9 l  „T). (2.166)

The constants x f ,  y j  are given in (2.149), (2.150). Performing symmetric calcula
tions for expectations with S 2 and pu tting  together (2.161) w ith (2.166) allows us 
to  write the final result for the shortfall risk for the case of risk-taking.

2 .4 .4  E ffic ien t h ed g in g : r isk -in d iffe r e n c e  

T heorem  4
Suppose th a t the firm th a t sells an equity-linked life insurance contract w ith payoff
(2.47) decides to  use efficient hedging to  minimize the shortfall risk. Further, suppose 
th a t the firm’s risk preference is risk-indifference, so th a t for the loss function l(x) — 
x p, p  = 1.
P art I. The fair p rem ium  for the contract is

T T  P* A . * m a x { 5 T>5 T )u o — E  yip  -p f -------

=  5 01 - T 2(x{,y1,p{) +  5 02 -'F2( r p,y2,p p). (2.167)

P art II. The shortfa ll risk is given by

E ( 1 ( ( H - V t )+)) = S l e ^ T ■ [ ^ \ y I1 ) ~ ^ 2 { x l y l p [ ) }

+ S 2e ^ T • [4'1(j/|) -  ^ { x l y l p i ) }  . (2.168)

Above, T 1 and 4*2 denote one- and two-dimensional cumulative normal distributions 
given in (2.37) and (2.68) respectively, w ith

Pi
2 -  o~ip) -  (pijai -  a2p)

(7 (j)CX

p{ =  M<r i -< T 2p)- ch (( T2-< r ip ) '  ( 2 1 6 9 )
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The constants x\ ,  xf,  and y(  are defined as

r  +  +  4>i{9i -  cti) +  <j>2 (d2 -  peri) T  — In (a*)

=

ct0 \/T
2

r  +  ^  +  4>2 (0 2 ~  cr2) + f a ( 6 1 -  pcr2) T  — In (a*)

— 4>2 <Tlp) T  — In (a*)

r +  -*■ -  <j>2 <7 2 -  f a o 2p) T  — In (a*)

y{ =
P i  -  P2 +  %■

t ' / T

d
In +  P 2 — P i  +  %■ T

rV T

Note th a t <p* is given in (2.57), fa in (2.38), fa in (2.27), Oi in (2.31), a  in 
and (70 in (2.28).
Proof.
Part I. Let us calculate the fair premium for the case of risk-indifference. 
th a t the success ratio  tp* (2.57) has the form

<P* =  I {i>zTa*e-^}^ P =  1- 

W ith  this, Uq can be w ritten as

' p * H "
U0 = E*

E*

Pr T

1 L t
r T 1 { l > Z T a*e  r T }

S4
E  I ^r j ' I { l > Z T a', e r T } I { S i < S 2 }
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(2.39),
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Note th a t now we only need to  simplify the set {1 >  ZTa*e~rT} and then apply 
the two-asset lemma to the expectation w ith S 1 above. Using the expression for 
density w. r. to  P* (2.32), we have

{1 >  Z Ta*e~rT} = { 1 >  e
faWp’+cfoWp-l ^+<Mi+<fe02 IT

a*e-rT

=  {s1 < k1}, (2.174)

where

¥  =

r + -j- + +  4>2 0 2 ) T  -  In (a*)

cr^Vr
(2.175)

the random  variable s1 = ~  N { 0,1) for the W iener process W 1 = (W/)tg[o,rj
(w. r. to  P*)

2 *

G (f)

with (70 given in (2.28).
Now, using (2.75), we can write

(2.176)

E  I erT ^ { l> Z T a*e  rT}^{S'^>S'|,}

/

=  S b e ~ ^ TE s a i  W T *I{sI <kI } J

m < -

SA \  cri —CT?

V aV T

{2.171)

To evaluate this expectation, we use the two-asset lemma (2.82) with z  =  
—ctiWj.* ~  N(0,  o \T ) ,  x, y = s1, s i ~  N ( 0 , 1) (w. r. to  P*), and correlations

P x z  =

P y z  =  

P x y  —

4>1 +  <p2P
@(f> 

ai  — a 2p

p i (2.178)
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with p[ defined in (2.169). After simplifications, the  expectation in (2.177) becomes 

E * ^ ^ ^ { l > Z TQ*e-rT}-f{S'i,>S|.}^ =  p{)- (2.179)

Same calculations for the expectation w ith  S 2, together w ith the ones above, lead
to the final formula for the fair prem ium  for the  risk-indifference case.
P a r t  I I .  Now we derive the shortfall risk formula for risk-indifference. Using the 
expression for ip* (2.57) and the fact th a t l{x) = x  here, we can write

E ( l ( ( H - V f ) +j)  = E ( ( l - i p * ) H )

= E ( H )  — E{ip*H)

= E  (S y /iga  >S2}j +  E

-  E  (S 'rI{l>ZTa*e-'-T}-f{Sl,>S2})

-  E  (•S'rI{i>zTa*e-rT}^{s^<s|,}) • (2.180)

For E  ( J{S1,>S2}) , we have

(4 / {S.>S. 1) = S l e ( " ' - * ) TE  ( ^ ^ / {>1<ff)) (2.181)E

based on (2.89) and (2.72). To this expression we apply the one-asset lemma (2.44) 
w ith 7] =  —0 iW j. ~  iV(0,1), £ — s i ~  ^ (0 ,1 ) ,  and

cov(7y,C ) = ( d z J W £ E '  (2.182)

We obtain

E  ( s i l {si > s , })  = s y ^ v H v i ) ,  (2.183)

with Ik1 given in (2.37) and y[ in (2.172).
Now consider {1 >  ZTa*e~rT}: under P , this set simplifies to

{ \ > Z Ta*e-rT} =  | l > e^ wT + ^ w ? - ^ r a *e- r r |

=  {s 1 < k1}, (2.184)
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where

( r  +  l ' j r - l n K )
V  =  -i >— = -------- , (2.185)

cr^Vi

the random variable s1 — ^  ~  iV(0,1) for the W iener process W 1 — (W /)te[o,r] 
(w. r. to  P ) , defined as

W l  =  W  +  W ,  (2.186)

with (j^ given in (2.28).
Based on the considerations above, we can write

E  ( S ^ I { 1>ZTa*e-rT}I{Sl >s|,}

=  S l e ^ ~ ^ ) TE  (e‘ri^ / {8r<fc/}/{ai<5?})  (2-187)

and apply the two-asset lem m a (2.82) w ith z =  —cti Wj. ~  77(0, cr^T), x , y =  s1, s i ~
1V(0,1) (w. r. to  P ), and the corresponding correlations given in (2.178). After some
simplifications, the  expectation in (2.187) takes form

( s f r { i > z Ta-e-«r}I{S'T>S>}) =  s y ^ 2 (x{ ,y{,p{) .  (2.188)E

The constants y[ are given in (2.171), (2.172).
P u tting  together (2.183) with (2.188) and performing similar calculations for 

expectations involving S 2 enables us to  derive the final formula for the shortfall risk 
for the case of risk-indifference.

2.5 P ayoffs w ith  n r isky a sse ts
So far, we have focused on discussing the payoff where the client is entitled to  
receiving the larger of the values of two risky assets at expiration of the contract. 
A natural question arises: how do we price contracts and manage financial and 
insurance risks for payoffs involving the larger of n  risky assets? Policies w ith such 
payoffs are sometimes referred to  as “switching-of-funds” contracts. Formally, the 
payoff is given by

H n =  H n ■ /{r (x)>T}, 

where H n =  m ax{S ^, S f , . . . ,  S?}. (2.189)

As before, { r(x ) >  T} refers to  the conditioning of the payoff on the  policyholder’s 
survival to  m aturity  of the contract.
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European-type contracts w ith payoffs involving several risky assets have been 
studied previously. For instance, Stulz (1982) derives analytical formulas for prices 
of European call and put options on the minimum or m aximum of two risky assets 
in the classical Black-Scholes-Merton-type setting. Johnson (1987) generalizes this 
result to  payoffs w ith n  risky assets, using a change of num eraire technique, the 
characteristics of ca ll/pu t options, and the lognormal properties of the underlying 
assets. Boyle and Tse (1990) present a fast and accurate approxim ation algorithm to 
value options on the maximum or minimum of several assets. Boyle and Lin (1997) 
obtain upper bounds for prices of call options on several assets, without making 
any assumptions about the probability distribution of the underlying assets; thus 
the bounds depend only on the returns of the assets and their covariances. Laama- 
nen (2000) further extends the result of Johnson (1987) to  the payoffs on m  best of 
n  risky assets by utilizing a recursive approach in pricing calculations. We derive a 
more general probabilistic-type result th a t allows us to  value not only payoffs with 
several assets, bu t also to  calculate directly expectations resulting from such payoffs 
being contingent upon other events, for example, when using quantile or efficient 
hedging to  price equity-linked life insurance contracts.

If we look carefully through the derivation of pricing formulas in the proofs of 
Theorems 1, 2, 3 and 4 (section 2.4), we notice th a t when pricing payoffs with two 
risky assets, we must evaluate expectations of type

E * ( e - * I {X<X}) or E * ( e ~ zI {x<x}I {y<Y}) (2.190)

th a t contain a t most two indicators and three normally d istributed correlated ran
dom variables. To calculate these expectations, we have used the one-asset and the 
two-asset lemmas ((2.44) and (2.82) respectively). The same idea applies to the 
derivation of pricing formulas for payoffs w ith n  assets: we would have to deal with 
expectations involving n  indicators and n  +  1 random  variables. For example, for 
quantile hedging (see (2.66) and (2.74)), we would calculate the fair premium Uq as

K  =  (2.191)

+

which, after appropriate simplifications, could be represented similarly to  the ex
pectations in (2.190).
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As mentioned in the proof of Theorem 2 (section 2.4.2), we have derived a result 
which allows us to  calculate expectations w ith n  indicators. This result, presented 
below as a theorem, is the key for obtaining explicit formulas for fair premiums for 
bo th  quantile and efficient hedging (for each risk preference case), as well as explicit 
expressions for the probability of successful hedging (quantile hedging) or shortfall 
risk (efficient hedging).

M u lti-a sset th eo rem
Let Xi ~  N ( m ,  of), i =  1 , . . . ,  n  and z ~  N ( f i z , a^) be n  +  1 normally distributed 
random  variables w ith variance-covariance m atrix  R n+i given by

&z P l z

&l&zPlz

Then for some given constants X,l:

E  (e -^{si<Xl} ' ' ' I{xn<Xrl}')

X i  =

(2.192)

- M ) .

X{ Hi + O'zPiz-

In the formulation of the theorem, we refer to  x n+i  as z,  to  distinguish the fact 
th a t the n +  1 random  variable is in the exponent. Also, Ik", n >  1, denotes the n- 
dimensional cumulative normal distribution (see below) of n  random  variables with 
mean 0, variance 1, and correlation m atrix

R n

I

P l r

P i n

1

(2.194)

with the inverse R " 1 =  A n .
The general formula for the k-dimensional cumulative norm al distribution of (k) 

random variables m ~  lV (/ii,of) w ith variance-covariance m atrix is given by

^ eneral(ci, • • • , Cfc) =  (2-195)

1 f ci r *  _ i x ^  r k=1b i i ( m - ^ ( y 3- H ) d y i . . . d yk ,
(27r)fe/ 2| 

Dfc =

:______  r  . . .  [ Ck e- |E ? = iE j= iM
|D fc|V2 J J ^

j B f e  =  ll&ijllfe — D fc .

VlCkPltc

Cl&kPlk

Please note th a t for the remainder of the dissertation (including Appendix 2), \kfe,
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k > 1, w ithout the subscript ‘general’ will refer to  the fc-dimensional cumulative 
norm al distribution of correlated random  variables w ith m ean 0 and variance 1. 
P ro o f .
Due to  the highly technical (and ra ther messy) derivation details, the proof is pro
vided not in the m ain tex t of the thesis, bu t in Appendix 2.

We believe th a t this theorem  will prove very useful in a number of applications 
beyond this dissertation: variety of processes in m athem atical finance, economics 
and insurance are modelled as linear or exponential functions of W iener processes. 
Frequently, expectations involving several such processes need to  be evaluated, and 
it is likely th a t some of these expectations can be represented in the form which 
is suitable for applying the multi-asset theorem  to  calculate the necessary expres
sions directly. This would provide higher accuracy and be tte r efficiency in terms 
of computing power th an  the use of numerical solutions (such as approximations or 
sim ulations).

2.6  N u m er ica l illu stra tion : a p p ly in g  q u an tile  and  effi
c ien t h ed g in g

In  this section, we dem onstrate how an investor can use quantile or efficient hedging 
to  deal with insufficient initial capital. We do not deal w ith insurance risk ele
ment yet; this aspect of equity-linked life insurance contracts will be illustrated in 
section 3.6. For now, we focus on showing w hat risk m anagement strategies are 
available to the hedger utilizing quantile or efficient hedging techniques.

2 .6 .1  D a ta  a n d  p a r a m e te r s

To calculate param eters for our model ( ^ c q ,/? ,  i =  1,2), we used daily stock 
prices of Russell-2000 (RUT-I) and Dow Jones Industrial Average (DJIA) indices 
from August 1, 1997 to July 31, 2003. The da ta  was taken from Yahoo! finance 
(www.finance.yahoo.com). The first index, RUT-I, reflects the performance of 2000 
smaller firms in the US, while the second, DJIA, represents 30 large and prestigious 
US companies. The param eters were calculated using a standard  approach in finance 
(see, for example, Hull (2005)):

In ^  ̂ g At  ̂  =  ~  ~2 ĵ ^  (2.196)

where 2 ~  7V(0,1). In our case A t  — since we take the business year to  have

252 days. We estim ate the mean and the standard  deviation of In i*1 a

straightforward manner, and then multiply them  by 252 and V252 respectively to 
obtain annualized values. Note th a t we add to  the annualized m ean half of the 
estim ated (annualized) variance to  obtain /i .
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The estim ated param eters are given below:

p i  =  .0482, H2 = -0419, a i =  .2234, a 2 =  .2093, p = .71.

We took the July 31, 2003, values of the indices for the initial prices of the risky 
assets, correcting for the large difference between the two, so th a t

=  (9233.8/476.02) • 476.02, S$ =  9233.8.

For the estim ate of the interest rate , we looked a t 5-year nominal yields on US 
treasury securities (www.federalreserve.gov) and took r = .04, or 4 percent, which 
is close to  the average of the yields in early 2000s.

We consider a 5-year contract w ith payoff m ax {S5 , S f} and the situation where 
the seller of the contract is not able to  collect (or is not willing to  provide) the 
amount necessary to  invest into the perfect hedging strategy. We calculate the per
fect hedging price (2.36) and the price of the optim al hedging strategy as prescribed 
by quantile or efficient hedging (see (2.66), (2.167), (2.145) and (2.95)). We analyze 
two risk management approaches. F irst, we find the values for the maximal probabil
ity of successful hedging (2.67) for quantile hedging or minimized shortfall risk (for 
the different risk preferences when using efficient hedging, (2.168), (2.146), (2.96)) 
based on the available level of initial capital, given as a percentage of the perfect 
hedging price. Second, we look a t w hat levels of initial capital are required to  allow 
the investor to hedge the payoff w ith the desired probability of successful hedging 
(or shortfall risk). We take p — 1, p = .8 and p  =  1.2 for the risk-indifference, 
risk-taking and risk-aversion cases of the investor’s risk preference.

2 .6 .2  Q u a n tile  h e d g in g  r e s u lts

The perfect hedging price for the contract is USD 10,587.54.

T able 1: P robab ilitie s  of successful hedging (in  p ercen t) based  on selected 
levels of in itia l hedging cap ita l (given as p ercen tag e  of th e  perfect hedging 
price) ____________________________________________________________

in itia l cap ita l available p ro b ab ility  of successful hedging
90 95.55
95 98.05
99 99.70

Let us look at the values in Table 1: as expected, we see th a t by providing larger 
initial capital for hedging, the investor can expect to  hedge with greater probability 
of success. Or, if the investor chooses to  set the acceptable level of the probability 
of successful hedging, then he/she will need to  allot more money for the initial 
investment into the optimal hedging strategy in order to  atta in  higher probabilities 
of success, as shown in Table 2. These results agree w ith  our intuition regarding the
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T ab le  2: In itia l  c a p i ta l  (a m o u n t a n d  p e rc e n ta g e  o f th e  p e rfe c t h e d g in g  p rice) 
re q u ire d  to  h ed g e  w ith  g iven  p ro b a b ili t ie s  o f success________________

p ro b a b ili ty  of successfu l h e d g in g in itia l  c a p ita l  n e e d e d
90 8,536.23 (80.62)
95 9,422.78 (89.00)
99 10,288.32 (97.17)

relationship between the probability of successful hedging and the capital invested 
into a hedge. In section 2.7, we explore this relationship further and show th a t when 
the initial hedging capital approaches the perfect hedging price, the probability of 
success goes to 1 (or vice versa). On the other hand, taking smaller and smaller 
initial capital (—> 0) is equivalent to  hedging with increasingly lower probability of 
success (—> 0).

2 .6 .3  E ffic ien t h e d g in g  r e s u lts

The perfect hedging price for the contract is still USD 10,587.54.

T ab le  3: E x p e c te d  sh o r tfa ll  (a m o u n t a n d  p e rc e n ta g e  of th e  p e rfe c t h ed g in g  
p rice) b a s e d  on  se lec ted  levels of in i t ia l  h ed g in g  c a p ita l  (g iven  a s  p e rc e n ta g e  
of th e  p e rfe c t h e d g in g  p rice ) for risk -in d iffe ren ce , r isk - ta k in g  a n d  risk -av ers io n

in itia l  c a p ita l  av a ilab le e x p e c te d  sh o rtfa ll
p  =  1.0 90 1,101.54 (10.40)

95 533.87 (5 .04)
99 100.51 (0 .95)

p  =  0 .8 90 160.06 (1 .51)
95 77.19 (0.07)
99 14.10 (0 .01)

p =  1.2 90 5 ,240 .32  (49.50)
95 2 ,290 .30  (21.63)
99 326 .77  (3 .09)

First, we observe some expected patterns across all risk preference cases. The 
higher the initial capital provided by the investor for the optim al hedging s tra t
egy, the smaller is the expected shortfall (Table 3). Equivalently, the lower the 
shortfall risk acceptable to  the investor, the greater is the am ount of initial capital 
required for the optim al hedge (Table 4). Similar to  the probability /capital idea in 
quantile hedging, such results agree w ith our intuition about the shortfall/capital 
relationship, which will be examined in more detail in section 2.7.

Next, let us compare the values between the three risk preference cases. Table 3 
shows th a t, for the same given level of initial capital, the amount of expected shortfall
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T ab le  4: In i t ia l  c a p ita l  (a m o u n t a n d  p e rc e n ta g e  of th e  p e rfe c t h e d g in g  p rice) 
req u ired  to  m a in ta in  se lec ted  sh o r tfa ll  r isk  level (g iven  as p e rc e n ta g e  of th e  
p e rfec t h e d g in g  p rice) fo r risk -in d iffe ren ce , r is k - ta k in g  a n d  r isk -av e rs io n

a c c e p ta b le  sh o rtfa ll r isk in itia l  c a p ita l  n e ed ed
p  =  1.0 10 9,568 .06  (90.37)

5 10,062.45 (95.04)
1 10,476.20 (98.95)

p  =  0.8 10 4 ,478 .03  (42.30)
5 7 ,346 .77  (69.40)
1 9 ,866 .17  (93.19)

p =  1.2 10 10,309.31 (97.37)
5 10,431.13 (98.52)
1 10,546.32 (99.61)

will be perceived as less by a risk-taker and more by a risk-averse investor th an  the 
shortfall expected by a risk-indifferent investor. We take the  risk-indifference case 
as the benchm ark since this expected shortfall am ount is the actual expected dollar 
loss. For example, suppose th a t three investors can provide the initial capital of 
only 90 percent of the am ount required for the perfect hedge. The actual minimized 
expected loss in this situation is about 1,100 dollars; this is the am ount a risk- 
indifferent investor would see as being lost due to  insufficient (for a perfect hedge) 
initial capital. A risk-taker, providing the same dollar am ount for the optimal hedge, 
would value the expected loss at only 160 dollars; clearly, he/she cares less about 
losing money th an  the risk-indifferent person. A risk-averse investor, on the other 
hand, would ‘feel the pain’ much more sharply: to  h im /her, the perceived loss from 
insufficient initial capital is valued at over 5,000 dollars (Table 3).

Similar pa tte rn  is observed in Table 4. To keep the level of acceptable shortfall 
risk at, say, 5 percent, the risk-indifferent hedger would invest about 10,000 dollars 
into the optim al hedge. For the same shortfall risk, the risk-taker would give only 
7,300, while the risk-averse investor would pay about 400 dollars more th an  is re
quired by the benchmark case of risk-indifference. Again, this is due to  the fact tha t 
the risk-taker feels losses less, while the risk-averse investor more th an  the hedger 
who values losses based on actual dollar amounts.

Now, let us think about the shortfall/capital relationship a little more. W hen the 
level of initial capital available for hedging approaches the perfect hedging price, the 
expected shortfall approaches zero. Equivalently, the smaller the level of shortfall 
risk acceptable to  the hedger, the larger will be the capital required to  invest into the 
optimal hedging strategy. These intuitive ideas are somewhat illustrated in the two 
tables above and will be proved in Theorem 5 (section 2.7). B ut w hat happens to 
the expected shortfall in each of the risk preference cases as the capital available for 
hedging becomes increasingly smaller? Intuitively, it seems correct to  think th a t the
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expected shortfall would approach the expected (under the subjective probability 
measure P )  full amount of the payoff in the case of risk-indifference: a hedger who 
values h is/her losses 1-for-l w ith actual dollar am ounts cannot expect to  lose more 
or less th an  the payoff H  which has to  be paid to  the buyer of the contract a t 
maturity. B ut then a risk-taking hedger, who cares less about losses, should value 
the maximal expected shortfall less (and a risk-averse investor more) than  the risk- 
indifferent person. This is an interesting topic, and we will examine and illustrate 
it in more detail in the next section.

2.7  H ow  m uch can  you  lose?
Following the discussion about maximal expected losses, let us see what happens 
to  the probability of successful hedging (in quantile hedging) or shortfall risk (for 
efficient hedging) as the initial am ount available for hedging
a. approaches the perfect hedging price, or
b. approaches zero.
We already gave the intuition behind the relations capital/probability  of success and 
capital/shortfall. The aim of this section is to  justify and quantify the idea th a t as 
initial capital approaches the perfect hedging price, probability of success goes to  1 
and shortfall risk to 0. And, as initial capital goes to  0, so does the probability of 
success, while the shortfall risk increases to  some boundary which depends on the  
risk preference of the hedger.

T heorem  5
P art 1: q uan tile  hedging
a. Whenever the initial capital of the optim al hedging strategy (2.66) approaches 
the perfect hedging price (2.36), the probability of successful hedging (2.67) ap
proaches 1.
b. The probability of successful hedging goes to  0 whenever the price of the optim al 
hedging strategy goes to  0.
P roof.
Note th a t all formulas and definitions of constants are given in Theorem 1. Com
paring the formulas for the fair premium  for quantile and perfect hedging, we see 
th a t the quantile price approaches the perfect hedging price whenever

* 2( z ? , W , p ? ) - \ t H m )  5 f - + o o  ^  a * ^ 0 .  (2.197)

But whenever a* —> 0,

x f ^  oo ^  (2.198)

and since y f  — —y®, ^ { y ? )  +  ^ '1(y?) =  1- Thus p art la  is proved.
To prove part lb , we note th a t the quantile price —> 0 as x f  —> —oo, or a* —> oo.
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This concludes the  proof of p a rt 1 of Theorem  5.

P art 2: efficient h ed gin g , risk -ind ifference
a. Whenever the initial capital of the optimal hedging strategy (2.167) approaches 
the perfect hedging price (2.36), the shortfall risk (2.168) goes to  0.
b. The shortfall risk approaches

m ax shortfall7 =  S l e ^ T • T x(y[ ) +  S l e ^ T • T 7(y\ ) (2.199)

whenever the price of the optim al hedging strategy goes to  0. Here, T 1 is defined 
in (2.37), and y \  in (2.172).
P roof.
All formulas and constants for this case are given in Theorem  4, and the proof is 
similar to the proofs of parts l a  and lb . From the formulas for the fair prem ium  
for efficient (case p = 1) and perfect hedging, we observe th a t the  efficient hedging
price approaches the perfect hedging price whenever

^ 2 {x l ,y i ,Pi )  ->■ ^ ( V i )  <=> x \ ^ o o  &  a* —> 0. (2.200)

And, when a* —> 0,

x - ^ o o  <£► ^ ( y i )  ~ ^ 2{x\ ,yl ,p[)  ->  0 , (2 .201)

so the shortfall risk goes to  0.
For part 2b, note th a t the  price of the  optimal efficient hedging strategy goes to  

0 whenever x \  —> —oo, or a* —>■ oo. But this implies th a t x \  also —» —oo, so th a t

^ 2(^ ,% J ,P i) o, 

which leaves the expression (2.199) for the largest expected shortfall.

P art 3: efficient h ed gin g , risk -tak ing
a. Whenever the initial capital of the optimal hedging strategy (2.145) approaches 
the perfect hedging price (2.36), the shortfall risk (2.146) goes to  0.
b. The shortfall risk approaches

m ax shortfallT =

+

whenever the price of the optimal
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in (2.37), and y f  in (2.150).
P roof.
Note th a t the formulas and definitions of constants for this case are given in Theo
rem  3. The price of the  optimal efficient hedging strategy goes to  the perfect hedging 
price whenever x f  —> oo, or a* —> 0. But in this case x f  —> oo and

which causes the shortfall risk to approach 0.
On the other hand, when the efficient hedging price approaches 0, x f  —* — oo 

and a* —> oo, so th a t x f  —> —oo and ^ 2 { x f , y f ,  p f )  —> 0, and the maxim al shortfall 
risk takes the form (2.202). This concludes the proof of p a rt 3 of Theorem  5.

P art 4: efficient hed gin g , risk-aversion
a. Whenever the initial capital of the optimal hedging strategy (2.95) approaches 
the perfect hedging price (2.36), the shortfall risk (2.96) goes to  0.
b. The shortfall risk approaches

m ax shortfall"4 =  (S%)pJ<ll~ ~ ^ TP+~*'T*> ■ ^ ( V i )

+ (S 2 Y e ( ,12~ ^ y P + ^ Tp2 - y \ $ )  (2.203)

whenever the price of the optimal hedging strategy goes to  0. Here, VI;1 is defined 
in (2.37), and y f  in (2.106).
P roof.
For the  risk-aversion case, the formulas and definitions of constants are given in 
Theorem 2. To prove part 4a, note th a t

^ 2 ( x ? , y i , p t )  &  x f - > o o  ^  a* —> 0.

Then also M  —> 0 and c* —> oo (thus ^ 2(cj, y f  p f )  —> ^ ( y ? ) ) ,  so th a t the lim it of 
the  product M  ■ ^ 2(ci, yf, p f )  (of type 0 ■ const) equals 0 as a* —>• 0. B ut whenever 
this happens, we also get th a t N  —> 0 and —» oo, so 4 '2(ci, y f  p f )  —> const,  and 
the product N  ■ ^t2 (ci, y f  p f )  —> 0. At the same time, a* —> 0 implies th a t ki —» —oo 
and ^ 2 (ki, y f ,  —p f )  —> 0. P u tting  together all of the above, we get th a t the shortfall 
risk goes to  0 whenever the price of the optim al efficient hedging strategy for the 
risk-aversion case approaches the perfect hedging price.

The proof of p art 4b requires more work, as we encounter indeterm inate forms for 
some of the limits. F irst, we establish th a t the price of the optim al hedging strategy 
goes to  0 as a* —> oo. Notice th a t as a* —> oo, x f  —> —oo and ty2 ( x f ,  jji, p f )  —> 0. 
At the same tim e £j —► — oo, so ^!2 ( c i , y f , pf )  —> 0, b u t M  —> oo. Thus we have to 
show th a t

lim M - y 2 (~Ci, y f , p f ) ^  0. (2.204)
a*—►oo
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To deal with th is indeterm inate form, we refer to  the definition of M  (2.98) 
and the expression for the cumulative normal distribution of two correlated random  
variables (2.68), and apply L ’Hospital’s rule to  evaluate the following limit:

[Vi e 2(1  =i ) dy
9, , a, \a* 2 ivd V  I ^

lim M  - T (ci,yi,  Pi )  — c o n s t ■ lim -----------------------------------------

[Vi e 5(1^2)
J  — OC

=  const ■ lim -------------------------- :-1a*—>oo —(a*)?-1
r? -(y-pci)2
-t  [Vi e  &

J —OO

=  const  ■ lim -—— (2. 205)
a ’ —>oc

Note th a t the const  in the front takes care of all the constants remaining from the 
definition of Cj and taking of the derivatives.

Now, we can represent c* as q  =  ln^ +/n , where k\ , k ,2 are constants corre
sponding to (2.101). Then we rewrite the expression multiplying the integral above 
as follows:

S2 - i f - ln-’+ t A2
e  2 e  2  ̂ /  e  2fc2 fe2 2fc2

- i  - 1  - i
( a * ) P- i  (a*)^-1 (a*)?-1

_ l n a *   fci I 1 ^1

=  (a*) ^  P - ' - e  (2.206)

Taking the limit of this expression as a* —> oo, we obtain

 In a*  fcl j 1 1

lim (a*) 2*2 P-1 ■ e 2fc2 =  lim const   =  0. (2.207)
(a*)

a*—>oo

So far, we showed th a t the coefficient in front of the integral in (2.205) approaches 
0 as a* —y oo. Now we just need to  make sure th a t the integral does not affect this 
result. Making the substitution

* =  V RCi (2.208)
\A  -  p2 '

we obtain

dy 1 f 12 dzfVi -fr-gsE  dy 1 P  - i 1 dz
/ e 2( !^ 2)  . =  - =  /  e ~ - = ,  (2.209)

J - o o  2 7 T i / l  — p2 \ /2 7 r  Jh \f̂ zn
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which is bounded regardless of w hat happens to  the limits from substitu tion  l\ and 
12- Therefore, the product of the (bounded) integral and the coefficient in (2.207) 
will be of type 0 • const , so the lim it of this product as a* —> oo will be 0.

Now th a t we have established th a t as a* —» oo, the price of the optim al hedging 
strategy for the risk-aversion case of efficient hedging approaches 0, let us see what 
happens to  the shortfall risk. W henever a* —> oo, ki —> oo also, meaning tha t 

Vii ~ p f )  ~ > 1̂,1(Vi )• So to  show th a t the maximal expected shortfall is given 
by (2.203), we need to  prove tha t

lim N  (2.210)
a*—> oo

We do this in the same way as for the lim it (2.204) above. Note th a t a* —> oo means 
tha t N  —> oo and M/2(c ,̂ y%, p f )  —> 0 (because Cj —> —oo).

Based on the definition of N  (2.99) and the formula for ik2 (2.68), we have to 
evaluate

-T^+lpCjy-y2
jVi e 2(1 -p2) ~dy

lim N  ■ ^ 2(ci, Vi , p f )  — konst -  lim -------------------- _ ° 2n^ 1Zf —
a*—>oo a*—*oo I - 1

T -*2 
e 2 fr2 e 2

=  kons t -  lim --------- ------------ , (2.211)
(a*)WT

with konst  taking care of all the constants resulting from the definition of c*, deriv
atives, and simplifications. Note th a t the  steps to  rewrite the  expression above are 
identical to  those in (2.205). We substitu ted

(2.212)
V 1 ~ P

with limits I\ and \,2 - Again, as in (2.209), the integral in (2.211) is bounded. 
Similarly to  q , based on the definition of c* in (2.103) and appropriate constants 
m i , m 2 , we can write c* =  ~ ln^ +?ni. Then, following the same steps as in (2.206), 
the coefficient m ultiplying the integral in (2.211) can be w ritten as

2
_ In a _  rnl

(a*) ^”*2 P_1 • e .

From this, we see th a t the coefficient approaches 0 as a* —> oo. Therefore, the 
overall product in (2.211) goes to  0 also.

Based on these considerations and the expression for the shortfall risk (2.96), 
we conclude th a t as the price of the  optimal hedging strategy approaches 0, the 
shortfall risk approaches its maximal level, given by (2.203), and finish the proof of 
Theorem 5, part 4b.
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2 .7 .1  E x a m p le

Here we provide some numbers to  illustrate how the values of the maxim al shortfall 
risk differ based on the risk preference of the  hedger. We use the same data , estim ates 
and contract type as in the numerical example in section 2.6. Based on these 
numbers, we calculate th a t in the  case of risk-indifference (p =  1), the largest 
expected shortfall is USD 13,270.06. Table 5 provides the values for risk-taking 
(0 <  p < 1) and risk-aversion (p >  1).

T ab le  5: V alues of m a x im a l sh o r tfa ll  r isk  (d o lla r  a m o u n ts )  fo r v a r io u s  risk  
p re fe ren ces o f th e  in v es to r________________________________________________

p,  r isk - ta k in g m a x  sh o rtfa ll p,  r isk -av e rs io n m a x  sh o r tfa ll
0 .0001 1.00 1.0001 13,282.81

0.1 2.56 1.1 34 ,696 .96
0.2 6.56 1.2 90 ,917 .44

0.3 16.87 1.3 238 .749 .10
0.4 43.45 1.4 628 ,313 .24

0.5 112.15 1.5 1 ,657 ,112 .04

0.6 290.10 1.6 4 ,379 ,958 .56
0.7 752.02 1.7 11 ,601 ,974 .26
0.8 1,953.64 1.8 30 ,799 ,160 .76

0.9 5,086.17 1.9 81 ,939 ,309 .75
0.9999 13,270.06 2.0 218 ,470 ,861 .00

First of all, note th a t as p —> 1, the values of maximal expected shortfall for bo th  
risk-aversion and risk-taking approach the am ount of largest expected shortfall in 
the risk-indifference case, which is expected. Also, observe th a t when a  risk-taking 
investor becomes more risk-averse, he/she begins to  value potential losses higher and 
higher. And, when risk aversion grows, the investor becomes increasingly sensitive 
to  shortfall risk. Such results agree w ith our intuition. It is ra ther interesting to  see 
th a t when the level of risk aversion changes by 1 (from p — 1 to  p =  2), the  value 
of the potential loss increases by a factor of about 15,000 ( th a t’s a lot!). Or, when 
risk-taking habits change from 1 to  0, the  expected loss decreases by a factor of 
about 13,000. Such situations seem too extreme; in the real world, risk preferences 
of m ajority of the investors probably fall close to  p = 1.
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3 M ortality  m odelling
Here we discuss the effects of m ortality modelling on risk m anagem ent w ith equity- 
linked life insurance contracts.3

The notation introduced in this chapter applies only to  the current chapter and 
to  Appendix 3 pertaining to  the results presented here. Note th a t some of the  
names of variables may overlap w ith those used previously; we choose not to  change 
the names in order to  keep them  consistent w ith the notation used in financial and 
m ortality literature. In particular, for the  financial setting we use the  typical Black- 
Scholes notation (see, for example, Melnikov et al. (2002) or Hull (2005)), while 
for the insurance setting we a ttem pt to  follow closely the notation  of the classical 
actuarial textbook by Bowers et al. (1997).

3.1 B ack grou n d
Humans have been trying to  understand life and death for as long as they existed. 
Every culture and nation has legends about the origins and reasons for being born  
and dying. Scholars would formulate these ideas into questions about w hether or 
not human survival is governed by some law, and if so, w hat it is and how science 
can explain it. The obvious source of inform ation on this topic is b irth  and dea th  
data. As early as 1693, English astronom er Edm und Hailey constructed a life table 
from the observed number of deaths in Breslau (now Wroclaw, Poland). Soon after, 
in 1740, the earliest life tables for males and females were published by Nicholas 
Struyck (Pitacco (2003)). Around th is tim e, m athem aticians became interested in 
modelling hum an survival as well. A braham  De Moivre produced the first known 
analytic model for the probability of survival as a linear function of the person’s 
current age, recognizing, however, th a t his model failed to  represent hum an survival 
across all ages accurately.

So the search for a be tte r model continued, and in 1825 Benjam in G om pertz 
presented his version of the survival probability formula, based on the recognition 
tha t hum an m ortality displayed exponential patterns for most ages. His result is be
lieved to  be the most influential param etric m ortality model in the  literature. Some 
years later, in 1860, M akeham noticed th a t G om pertz’s model was not adequate for 
higher ages and amended it in an effort to  correct this deficiency (Higgins (2003)). 
Despite further developments after 1860 (including models by Thiele in 1872 and 
W ittstein  in 1883), G om pertz’s and M akeham ’s models rem ain to  this day am ong 
the most popular choices for m ortality modelling.

In the early 20th century, Italian economist and sociologist Vilfredo P areto  p u t 
forth his idea for a model of m ortality; Wallodi Weibull’s model from the 1940s for 
predicting time until next failure of a technical system was adapted as a m ortality

3A version of this chapter has been accepted for publication in Insurance: Mathematics 
and Economics under the title “Evaluating the performance of Gompertz, Makeham and 
Lee-Carter mortality models for risk management with unit-linked contracts” by A. Melnikov 
and Yu. Romaniuk.
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model, w ith hum an organs seen as technical p arts  th a t eventually fail. Throughout 
the last century, there were other contributions to  m ortality modelling, bu t most of 
them  were m odifications/generalizations of the  results of Gom pertz and Makeham. 
In recent decades, the study of m ortality has become increasingly more complex. 
Due to  expanding com putational capacities, m odern param etric models may involve 
up to ten param eters (for example, the model of Heligman and Pollard (1980) with 
eight), or rely on processing large am ounts of da ta  for param eter estim ation (Lee 
and C arter (1992)). The newest direction in the study of hum an survival is the idea 
of modelling an d /o r forecasting m ortality as a stochastic process. For example, Lee 
and C arter (1992) forecast m ortality as a random  walk w ith  drift, Dahl (2004) works 
in a setting where the  dynamics of m ortality intensity has the form of a diffusion 
process w ith drift and volatility dependent on the present s ta te  of the process only. 
Biffis (2005) models asset prices and m ortality  dynamics by affine jump-diffusion 
processes, while Luciano and Vigna (2005) use doubly stochastic (Cox) processes to 
describe m ortality dynamics. However, as noted in Higgins (2003), the development 
of stochastic m ortality models is in its infancy stage.

W hen we speak of m ortality  models, we should distinguish between static  (func
tions of age only) vs. dynamic (functions of age and current year) and determ inistic 
vs. stochastic models. Of those considered in this paper, the models of Gompertz 
and Makeham are determ inistic and static, while the Lee-Carter m ethod forecasts 
mortality stochastically and is dynamic. We stress th a t currently Gompertz- and 
Makeham-based models are typically used for educational, forecasting and risk valu
ation purposes (Pitacco (2003)). The particular choice of m ortality  models discussed 
in this paper arises from our desire to  investigate how the  widely used classical 
models of Gompertz and M akeham compare to  one of the  most significant recent 
developments in m ortality modelling and forecasting -  Lee-C arter’s method.

3.2 M o rta lity  m o d e ls  in  th e  th esis

3 .2 .1  S o m e  a c tu a r ia l c o n c e p ts

Before we describe the m ortality  models of Gompertz, M akeham and Lee-Carter, 
we need to  introduce some actuarial concepts. Working in the insurance setting 
introduced in section 2.3.2, let Iq be the number of newborns in a group under 
observation. Denote L ( x )  the number of survivors to  age x  among the newborns:

Define survival function  as the probability th a t a newborn will a tta in  age x:

where r(0 ) denotes the remaining lifetime of a newborn. Then from (3.1) and the

1 if life j  survives to  age x  
0 otherwise.

(3.1)

s(x) =  P { t (0) >  x}, (3.2)

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



standard assum ption th a t each newborn’s survival function is s(x)  (all independent), 
we have th a t the expected number lx of survivors to  age x  from Iq newborns is 
calculated as follows:

lx = E(L (x ))  — Iqs(x ). (3.3)

Let Lx denote the to ta l expected num ber of years lived by the survivors between 
ages x  and x  +  1:

Note th a t based on (3.2), the following relation holds for the probability th a t a life 
aged x  survives T  more years:

Now we can present the classical definitions of the concepts needed to  describe 
the models of Gompertz, M akeham and Lee-Carter. F irst, the force of  mortality is 
given by

it can be interpreted as the likelihood th a t  a life th a t survived to  age x  dies in the 
next instant of time. The central death rate is defined as

we think of this as the expected ra te at which survivors in the group of Iq newborns 
die between ages x  and x  +  1.

3 .2 .2  M o r ta lity  m o d e l  fo rm u la s

Now we are ready to summarize the m ain contributions of Gompertz, Makeham (as 
given in Bowers et al. (1997)), and Lee and C arter (1992) to  m ortality modelling 
and forecasting:

Above, t  refers to  historical time period (years), x  to  the person’s age, /j,x is the 
age-dependent force of mortality, m Xtt the central death  ra te  for age x  and year 
t, and the corresponding error. The remaining constants A , B , c (different for

(3.4)

fSr / x S(X + T )
TPx = P { t ( x ) >  T} = -----7— .

s(x)
(3.5)

G o m p e r tz : j ix  = B  ■ cx , c >  1, B  > 0;
M ak eh am : /.ix — A  + B -  cx , c >  1, B  > 0, A  > — B \  (3-8)
L e e -C a r te r : In (mXjt) =  ax + bx ■ kt + £x,t-
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Gompertz and Makeham), and ax ,bx can be estim ated based on historical deaths 
and death rates data, while the m ortality index kt in the Lee-Carter model can be 
fitted for past years and forecasted for the  future. In section 3.6.1, we describe the 
estimation of the involved param eters in more detail.

Gom pertz’s and M akeham ’s results can be summarized analytically in term s of 
a single formula for the force of mortality, and param eter estim ation is the only 
potentially challenging task. Lee and C arter’s approach requires more explanation. 
The idea behind the m ethod is to  view m ortality as a process dependent on age 
as well as on the time period, so the param eters ax,bx are age-specific, while the 
m ortality index kt reflects the  effects of the  corresponding year and thus environment 
on the (past) current and future survival/m ortality patterns. The estim ate of the 
m ortality index kt is modelled by a random  walk with constant drift d and mean-zero 
random noise i p :

kt = k t - 1 +  d + ipt- (3-9)

Once the m ortality index is projected for future years, life table functions (such as 
survival probabilities and life expectancies) can be extrapolated to  use as needed in 
actuarial/insurance applications.

3.3 N o te  on  finan cia l se tt in g
To focus on the effects of m ortality  risk in our analysis of pricing and hedging of 
equity-linked life insurance contracts, we work w ith a single risky asset, as opposed 
to  the two-asset setting (see section 2.3.1). Note tha t the study of m ortality risk 
and optimal risk management strategies for equity-linked contracts w ith two assets 
is performed in the same way as described in the remainder of this chapter.

We have a typical Black-Scholes-Merton setting: a financial m arket w ith interest 
rate r  >  0, one riskless money m arket account B  = (-Bt)te [0,T] and one risky asset 
S  = (St)t6[0iT] satisfying

dB t — rBf dt  B t = B 0 ert, Bo := 1;

dSt = Stifidt  + adW t) ^  S t =  (3.10)

with constants f i e l ,  a  >  0, and W  = (Wt)te[o,T] a W iener process on a standard
stochastic basis (12, !F, F  =  (Pt)te[o,T] > P)- All processes are adapted to  the filtration
F, generated by W.  Every predictable process tt — {^t)te[o,T\ =  {Pt,lt)te[o,T] is 
called a trading strategy (or portfolio) w ith tim e t value

V? = (3tBt + l t S f  (3.11)

Only self-financing (with no additional inflow/outflow of cash other than  the  initial 
premium payment) and admissible (with nonnegative capital) strategies are allowed. 

It is well known th a t in this setting the equivalent m artingale measure P* is
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unique, and its density Z  is given by

\i — r
a

(3.12)

Under P*,  the evolution of S  takes form

dSt = St {rdt +  ad W t*) &  S t = S 0e (3.13)

with W*  a W iener process under P* (see, for instance, Melnikov et al. (2002)) such 
th a t

The contract in consideration entitles the client to  one unit of some risky asset 
or a guaranteed amount, whichever is greater, a t expiration date T.  The payoff H  
has the form

Above, g is the ra te  guaranteed by the contract and So is the initial value of the 
risky fund. Basically, the client has the right to  choose the larger of two funds at 
m aturity  of the contract: a risky fund with expected re tu rn  // or a risk-free fund 
earning a ra te  of g over the duration of the agreement. Clearly, the perfect hedging 
price of the payoff H  can be reduced to  a formula similar to  th a t of Black-Scholes 
for the price of a call option (Black and Scholes (1973)).

3.4  N o te  on  in su ran ce se tt in g
The insurance setting is the same as in the previous chapter ( ( Q ,P , P ) ,  see sec
tion 2.3.2). Again we run into the problem of the contract premium  Uq being 
insufficient for a perfect hedge:

U0 = E x  E*(He~rTI {T{x)>T}) =  E* (H e~ rT)Tpx < E *(H e~rT). (3.17)

Recall th a t t Px =  P { t (x ) > T }  denotes the probability of a life aged x  surviving T  
more years.

3.5 Q u an tile  h ed g in g  to  th e  rescue!
In this chapter, we focus on applying quantile hedging to illustrate optim al hedging 
of financial and insurance risks inherent in equity-linked contracts (alternatively, 
one could use efficient hedging in a similar m anner). Based on the discussion in

W t* = W t + 6 - 1. (3.14)

H  — max{ST, K T } — s t I{st >k t } +  k t I{st <k t } i 

where K  is the determ inistic guarantee, calculated as

K t  — SoegT .

(3.15)

(3.16)
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section 2.3.3, we have th a t the optim al hedging strategy (the one th a t maximizes 
the probability of successful hedging under budget constraints) is the perfect hedge 
for the modified contingent claim H *, w ith cost

U0 =  E*(H*e~r ) =  E
m ax{S r, K t } I a > 

TPr (3.18)

where A* — {z T > a e - t T H } (2-52).
Prom (3.18) and (3.17), we obtain the formula

T P x  =
E * ( m ^ { S T , K T }I*A:

E*(m&x{ST , K T })
(3.19)

which is exactly the equation (2.65) resta ted  here for our particular choice of H.  
Recall from the discussion of (2.65) th a t this formula is the key to  managing bo th  
financial and insurance risk components when hedging contracts w ith insufficient 
initial capital. The hedger can either sell the  equity-linked contract w ith payoff 
H  to any client and then determ ine the maxim al probability of successful hedging 
given th a t the premium Uq received from this client was invested into the optim al 
hedge, or the hedger can set the probability of successful hedging a t 1 — e and see 
what clients are suitable for the policy in consideration (see section 2.3.3 for more 
details). Before dem onstrating the two risk managem ent possibilities in light of the 
m ortality implications of the models of Gom pertz, M akeham and Lee-Carter, we 
derive the formulas for the fair premium  Uq and survival probability t Px used in the 
numerical illustration.

3 .5 .1  D e r iv in g  p r ic in g  a n d  su r v iv a l p r o b a b ility  fo r m u la s

First, consider equations (3.10), (3.18), (3.12) and the general structure of the m ax
imal set of successful hedging (2.52): they allow us to  write

P(A*)

+ E  jl{S r <KT}^

=  E
ee w T + % T >  o ^ S o e O ' - 4 ) T + a W T  \  I { S o e ( " - 4 )  t + ° w t > S 0esT

+  E I ^ eewT+^-T>c ( ^ - 4 ) T
< S 0 esT

(3.20)
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Since S and Z  are bo th  functions of W ,  and W t  ~  iV(0,T) (under P),  we can 
rewrite this equation further as

P(A*) =  E  ( l { y>J} I { y>N})  +  E  { l { y>M } I { y <N})  if /J, -  r  -  a 2 > 0,

P(A*) — E  (I { y < j } I { y > N } )  +  E  ( I { y>M } I { y < N }) if M -  r  -  cr2 <  0,
(3.21)

where y  is a standard  normal random  variable (under P ), and M,  N,  J  are given by

In (a* S 0) + ( g - r  - ^ T
M  =

N  =  

J  =

eVr
g - y + ^ T

a V T

In (a*Sq) -

(9 -  a ) V T

Next, let us see how the constants M, N, J  compare to each other: first, 

( g - y + ^ ) T  In (a*S0) +  ( s  -  r  -  £ )  T

(3.22)

N  — M  =
r V T e V r

in -  r) (g -  n + y )  ~ ° 2 (9 - r -  t trln  (a* Sq)

r d V f

where

A = !
a

fi +  r — <7 In (a*S0).

(3.23)

(3.24)

Similarly, we have th a t

N - J  =
( 3 - M + t ) T  l n(a*S0) - ^ ^ T

(9 -  a)VTo V T
A

<j(6  — <j)\ /T’
(3.25)
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and

In (a So) +  (g ~  r  -  T )  T  ln a *5  _  i 2 ^ L T
M - J  = ---------------------- L----------- v x 2------

d V T  (0 -  ct) V T
A

6 { e - a ) V ¥

Now, observe th a t A is positive whenever

(3.26)

th a t is, whenever

fi — r — i7

or

j .  In (a Sq) g  +  v 2 ^  n
g > — 7T H-----^— and g  — r  -  a  > 0" 9

j, In (n S q) g  + r 2 n
g < -  tt H-----------and g  — r — a  < 0 .

g — r — a z 2

Moreover, based on (3.23), (3.25), (3.26), and the fact th a t the sign of (6  — a)  is 
determ ined by the sign of (g - r - a 2), if the guaranteed ra te  g is selected as indicated 
below, we obtain th a t

J  < M  < N  whenever g — r  — a 2 > 0 and g >  G, 
M  < N  < J  whenever g — r — a 2 <  0 and g < G, 

Y -ln(a*5o) g + r 
g — r — a 2 2

G = -T +  tL L L .  (3.27)

These considerations allow us to  simplify P(A*)  (3.21) even further:

P(A*)  =  P { y > N }  + P { M  < y < N }  = P { y  > M }  (3.28)

or

P(A*) = P { N  < y < J }  + P { M  < y < N }  = P { M  < y < J } .  (3.29)

Therefore, under P,  the maximal set of successful hedging A* takes the form

A* — {y > M } (3.30)

or

A* — { M  < y < J} ,  (3.31)

depending on the sign of (g — r — cr2) (and the appropriate selection of g).
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Using the same reasoning and following the steps done in (3.20) - (3.29) for P ,
we can simplify the expression for A* under P* to

A* =  {y * >  J*} n  {y* > N*}  +  {y * >  M *} n  {y * <  IV*}

=  {y * >  N*}  +  {M* < y* < N*}  = {y* > M*}  (3.32)

or

A* = {y* < J*}  n  {y* > N*}  +  (y* > M*}  n  {y* <  IV*}
=  {N* < y* < J*} + {M* < y* < N*}  =  {M* <  y* < J*}, (3.33)

where the constants M*,N*,  J*

m * =  M  +  e V f , 

n * =  N  +  e V f ,
J* = J  +  e V f  (3.34)

satisfy J* < M* < N*  if y —r — a 2 > 0 and g > G, or M* < N* <  J* if y  — r — a 2 <  0
and g < G (this is equivalent to  (3.27)), and y* ~  JV(0,1) under P*.

Next, using the evolution of S  under P* (3.13) and the expression for Z t  (3.12),
we can write Uq as

UQ = E'

— E  E  f  g r T  > ^ “ P { y ‘ < « * }

= E " (IUfe-.iv->) + E ' ( 1 | / , „.<„•<»•}) <3-35)

for A* in (3.32). For A* in (3.33), we obtain a similar formula for Uq:

Uq — E  +  E  (^~PrI{y*>M*}I{y*<N'} ^

= E * +  E * • (3-36)

Now we proceed to  calculate the  explicit formula for the fair prem ium  as follows. 
The second term in the last line of equation (3.35) (as well as (3.36)) is simply

E * =  S o e k - ’W J V )  -  * x(M *)), (3.37)

with tH1 denoting the one-dimensional cumulative norm al distribution (2.37). The
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first term  in the last line of equation (3.35) is calculated directly based on (3.13):

{ S T T \  _  S oe~rT r  ( r - 4 ) T +*VTy* =£_ , *
\ e rT J N- € 6 V

= S o & i a V T  -  N*).  (3.38)

The first term  in the  last line of (3.36) is calculated in the same m anner; we get th a t

E * =  S o ^ H a V f  -  N*)  -  t V n / T  -  J*)).  (3.39)

Finally, pu tting  together (3.37) with (3.38) and (3.39), we obtain  these explicit 
formulas for the fair premium U q and survival probability t P x ’-

U0 = S o - ^ i a V f  -  N*) + S 0e{9~r)T - (^ ( iV * ) -  ^ ( M * ) ) ,
e (9 ~ r ) T  . ^ ( M * )

T P x  =  1 ----------------------1=-------------------------- 7 ^ ^ ----------------------  (3-40)
^ { a V T  -  N * )+ e (9 - r )T

for A* in (3.32). If A* is given by (3.33), then

U q =  S q ■ ( ^ ( a V r  — N*)  — \E'1( ( 7 \ /T  — J*)) +  SQ e^9 ~ r '>T ■ { ^ { N * )  -  \E'1 ( M * ) ) ,  

_  t t V V r -  J*) + e ^ T ( 41) 
TPx ^ ( a V T  -  N*) + e(9 -r)T

Recall th a t J* are given in (3.34).
Now let us discuss the conditions (3.27) encountered in the process of calculating 

the formulas above. These conditions serve as a guide to  the  firm offering the 
contract for choosing an appropriate guaranteed ra te  based on the m arket situation 
and the nature of the risky asset (the relation between /z, r and a).  The intuition 
behind selecting g accordingly is the following. First, we should always have r < g < 
p: the guaranteed ra te  should be higher th an  the risk-free ra te  (otherwise clients 
would find money m arkets more appealing), and lower th an  the expected return  on 
the risky asset, since payment of the guarantee involves no risk. B ut how high or 
low should g be set between p  and r?

Note th a t p — r  >  a 2 implies th a t the expected excess re tu rn  of the  risky asset 
over the risk-free ra te  is higher th an  the risk (volatility a 2) associated w ith the asset, 
call it Stock 1. T hen Stock 1 is more attractive than  Stock 2, whose parameters 
satisfy p  — r  <  <r2, since the risk-return relation for Stock 2 is not as appealing as 
in the previous case. The only restriction is th a t p — r — a 2 ^  0, since this term 
appears in the denom inator of equations in (3.27). However, practically speaking, 
this should not pose any problems, since finding risky assets satisfying the precise 
relationship p — r = a 2 would likely prove difficult.

A simple guideline for a manager deciding how to set guaranteed rates for con
trac ts involving Stocks 1 and 2 is the following. To guarantee the higher expected
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return of the more appealing Stock 1, the  m anager should set g to  exceed the aver
age of the asset’s re turn  and the risk-free rate. T h a t is, for g  — r > cr2, < g < g. 
(Note th a t this ensures g >  G, as required by (3.27)).4 If, on the other hand, the 
underlying of the contract is the less a ttractive Stock 2, the m anager can set the 
guarantee below the average of g  and r  (r < g < ^4p  implies g < G  for (3.27)). 
T hat is, whenever the contract calls for securing an asset whose expected return  is 
not very high, the guaranteed ra te can be lower th an  in the case of an  underlying 
with high returns.

3.6 N u m er ica l resu lts: e ffec ts  o f  th e  m o rta lity  m od els

3 .6 .1  P a r a m e te r  e s t im a t io n

For the risky asset, we chose the Toronto Stock Exchange/S tandard  and Poor Com
posite Index, which mirrors closely the perform ance of some 300 C anadian and US 
companies. Note th a t Canadian Im perial Bank of Commerce (CIBC) offers 3- and 
5-year index-linked GICs (G uaranteed Investm ent Certificates), in which return  on 
an invested amount is linked to the perform ance of S& P/TSX  60 or 500 fund (over 
3 and 5 years respectively). At m aturity  of the contract, clients receive their in
vestment plus interest earned based on the  fund’s re turn , or the originally invested 
amount if the fund’s re tu rn  is negative over the time of investment. This is essen
tially the same as the unit-linked contract considered in this paper except for the 
payoff’s dependence on the client’s survival to  the m aturity  of the contract; the 
implied prem ium  for this particular product of CIBC is, of course, the interest the 
investment would have earned if deposited elsewhere (for example, into treasury 
bonds) for the same duration.

For TSX/S& P, the annualized re tu rn  g — 9.11% and volatility a  =  15.73% 
were estim ated using daily d ata  from Jan. 1, 1995 to  Jan. 1, 2005 (estimation 
was perform ed as outlined in section 2.6.1, see also Hull (2005)). The initial value 
So — 9246.7 was the price of the index as of Dec. 31, 2004 going into 2005. We chose 
three m aturities for the contract, T  =  3, 10 and 20, to  look at the variations in risk 
management considerations for short-, medium- and long-term agreements. Note 
th a t shorter contracts are more likely to  be offered under the um brella of wealth 
m anagem ent/investm ent products, whereas longer contracts belong to  the insurance 
products category. The annual interest ra te  r — 5.61% used in calculations was the 
average annual yield of a 10-year C anada treasury bond from 1997 to  2003, as 
reported by Bolder et al. (2004). Recall th a t the contract allows its holder to  choose 
the greater of a risky fund value or some determ inistic amount. We used 7 percent

4It was shown in section 2.7 that whenever the probability of successful hedging P(A*) 
is maximized (or if it is specified beforehand to be close to 1), a* in (3.27) will be a very 
small positive number (less than 1, for our purposes). This makes In (a*So) and the entire 
numerator Tpln(a*So) negative. Thus the sign of the first term of G  in equation (3.27) 
depends on the sign of the denominator, g  — r — a2.
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for the (annualized) guaranteed ra te to  calculate the corresponding guarantees; for 
example, for a 3-year contract, K% — 9246.7e^°7'3 .̂

To estim ate the param eters for the three mortality models (see (3.8)), we used 
1959 - 1999 m ortality d a ta  (survival probabilities, deaths and death rates) for the US, 
Sweden and Japan  from the Hum an M ortality Database (www.mortality.org). To 
calculate A, B , c for Gom pertz and M akeham, we used the  standard  Least Squares 
method to  minimize the sum (over tim e and all ages) of the errors squared. Utilizing 
equations (3.5) and (3.6), we can derive these relations for logs of survival probability 
values:

f x , t  = In { .TPx)  =  - r ^ - r c x (cT ~  X) for Gompertz, and (3.42)
In (c)

f x>t — h i( rp s )  — —A T  —  ̂ cx (cT -  1) for Makeham.

Then for the given values of Tpx, we seek to  minimize

L  

L

From here, we proceed in a standard  manner, calculating partia l derivatives of L  
with respect to B,  c for Gom pertz and A, B,  c for Makeham, and solving for 
the corresponding param eter values numerically using MATLAB (the programs are 
available upon request5). The estim ated param eters for the models of Gompertz 
and M akeham are given in Table 6.

T ab le  6: E s tim a te d  p a ra m e te rs  for G o m p e r tz  (G ) a n d  M a k e h a m  (M ) m o r ta l i ty  
m odels fo r U SA  (U S ), S w eden  (S ), J a p a n  (J)

A B c

Gus 6.148 • 1CT5 1.09159

Mus 9.566 • 1CT4 5.162 • 1 (T 5 1.09369

Gs 1.694 • 1 (T 5 1.10960

Ms 4 .393  • K T 4 1.571 • 1 (T 5 1.11053
Gj 2.032 - 1 0 -5 1.10781
Mj 5.139 • 1 (T 4 1 .8 6 9 - 10“ 5 1.10883

For the Lee-Carter model, there are several m ethods to estim ate a x , bx  and 
kt, namely, Singular Value Decomposition, Weighted Least Squares, and Maximum

sThe assistance of M.-C. Koissi and B. Bejanov with parameter estimation and mortality 
forecasting is gratefully acknowledged.
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Likelihood Estim ation, also known as Poisson log-bilinear method. For technical 
details on the m ethods, see Brouhns et al. (2002), Brouhns et al. (2005), Lee (2000), 
Lee and C arter (1992), W ilm oth (1993), and for a useful and informative summary 
and comparison of the  estim ation methodologies, we refer the reader to Koissi et 
al. (2006). As pointed out in Koissi et al. (2006) and W ilm oth (1993), all three 
methods produce similar results, so out of practical considerations, we used Weighted 
Least Squares approach, thoroughly outlined in the la tte r article. The weight wx>t 
is the observed num ber of deaths in year t  a t age x. For the estim ates of central 
death rates m x,t (3-7), one can use death  rates for the corresponding year and age 
(Pollard (1973)). Then, similarly to  the estim ation for Gom pertz and Makeham 
models, we seek to  minimize

bxkt j  for Lee-Carter. (3.44)
t  x

Again, we take partia l derivatives w ith  respect to  ax , bx , kt, set them  equal to  
zero and solve for the required param eters, following the  methodology described in 
W ilmoth (1993).

Once ax , bx and kt are estimated, we forecast kt+i for i — 1 (year 2000) to  26 
(year 2025) using (3.9). Note th a t the drift d is found using Least Squares for the 
slope of the line fciggg+j =  fciggg + d - t ,  w ith the intercept taken to  be the estim ated 
value of the  m ortality index for the last year in the sample (Koissi et al. (2006)). 
Based on the obtained projections, we calculate forecasts for the central death rate 
m X)t using (3.8), and then  obtain survival probabilities \f)x.t for years 2005 - 2025 
based on the relation given in Pollard (1973):

2 —  mx t / „  . _ x
iPx,t =   • (3.45)

2 +  m Xtt

At this point we find 3px,2005, for example, as follows:

3Pa;,2005 =  lPx,2005 ' lPx+1,2006 ’ lPa:+2,2007- (3.46)

For the static  models of Gompertz and Makeham, the  formulas in (3.42) with the 
corresponding estim ated param eters (Table 6) were used to  calculate future survival 
probabilities t Px for T  = 3, 10 and 20.

The actual and forecasted values of the m ortality index k t  for the United States, 
Sweden and Japan  are plotted in Figure 1. Numerical values of ax , bx for ages 0 - 
100 and kt for years 1959 - 1999 are given in Tables 8 and 9 in Appendix 3. While 
being aware th a t there is plenty of room for improvement in the estim ation of all 
param eters and potential for further study of errors in forecasts (not conducted here 
as the presented analysis is less statistical and more financial in nature), we believe 
tha t the numerical results below are reasonable and consistent. They illustrate the 
im portance of selecting an  appropriate model to  assess and valuate risks inherent in 
equity-linked contracts in light of contem porary survival patterns, calling to atten-
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tion the differences in risk management strategies when dealing w ith clients from 
varied backgrounds and contracts of short, medium and long duration.

3 .6 .2  M a x im iz in g  th e  p r o b a b ility  o f  s u c c e s s fu l h e d g in g

In this setting, the insurance firm selects the  first approach of quantile hedging: the 
firm maximizes the probability of successful hedging given a lim ited initial capital. 
Suppose a 60-year old client approaches the firm w ith the intention of buying a 
contract th a t will allow him /her to  receive the maximum of TSX /S& P fund value, 
currently at CAD 9246.70, and a guaranteed am ount (based on the guaranteed ra te 
of 7 percent) in 3 (10, 20) years respectively. The client m ust be alive to  collect the 
payoff.

Since the company knows the client’s age, it can estim ate h is/her survival prob
ability for the corresponding duration based on the selected m ortality  model. Then 
the company will use this survival probability tPgo in equation (3.17) to calculate 
the fair premium  U q for the contract and quote the price to  the client. U pon receipt 
of am ount Uq, the firm will use equation (3.40) to  find a*, which is needed to  cal
culate the maximal probability of successful hedging 1 — e based on the  form of the 
maximal set of successful hedging A* (2.52). Once the company knows how much 
financial risk (e) it carries, it can decide whether or not such risk profile is accept
able to  its managers and shareholders. Table 7 gives sample values of the m axim al 
probability of successful hedging, based on the three m ortality  models and contracts 
with 60-year old clients from the US, Sweden and Japan  (abbreviated subscripts US, 
S, J).

T ab le  7: P ro b a b ilitie s  of successfu l h e d g in g  (in  p e rc e n t)  b a se d  o n  G o m 
p e r tz  (G ), M ak eh am  (M ), L e e -C a r te r  (L C ) m o d els

T G u s M u s L C u s M s L C S G j M j L C j
3 98.2 98.2 98.5 98.7 98.7 99.0 98.6 98.5 99.2

10 94.1 94.1 95.7 95.5 95.5 97.1 95.1 95.0 98.2
20 81.5 81.6 88.9 83.8 83 .7 91.7 82.2 82.2 95.6

As we can see from Table 7, G om pertz and M akeham give almost identical 
results for all countries and all contract durations. Lee-Carter consistently predicts 
higher probabilities of successful hedging th an  the  other two models, w ith  differences 
ranging from less than  1 percent for shorter contracts to  between 7 (US, Sweden) 
and 13 (Japan) percent for longer contracts. Since the greatest differences between 
the models are observed for contracts of longer duration, we can conclude th a t  the 
choice of a m ortality model will affect insurance type products (which are long-term) 
more so th an  the short-term  investm ent/w ealth  m anagement solutions.

Also, insurance firms a ttracting  Swedish and Japanese clients seem to  be in a 
better position, as greater hedging successes are forecasted based on survival trends 
in these two countries th an  in the US (Table 7). To analyze this trend , consider
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Figure 1: it shows th a t Jap an  and Sweden are expected to  have lower m ortality 
indices for the next 20 years th an  the US, meaning th a t Japanese and Swedish clients 
are likely to  have higher survival probabilities in the next two decades th an  their 
US counterparts. Higher survival probabilities imply greater premiums collected 
from the sale of contracts (see (3.17)) and more initial capital available for hedging, 
leading to  higher probabilities of successful hedging.

k: Fitted and Forecasted Values

  Jap a n

   United S ta tes

 S w eden

xv*oc
>»
ratso
S

-10

-15
1980 2010 20301950 1970 1990 2000 2020 20401940 1960

Year

F ig u re  1: C o m p a riso n  o f  m o r ta l i ty  ind ices  for U S A , S w eden  a n d  J a p a n

Now, although the Lee-Carter model predicts the lowest m ortality index values 
for Japan  (Figure 1), G om pertz and M akeham indicate th a t Sweden should have 
lower expected m ortality rates th an  Japan, based on the higher probabilities of 
successful hedging in Table 7. Moreover, the differences between Lee-Carter and 
Gom pertz/M akeham  models are observed in all three countries (Table 7). This is 
a potentially alarming sign in the following sense. As mentioned before, Gompertz- 
and Makeham-based models are most popular today, so the insurance industry may 
be relying on models which do not reflect future survival patterns accurately. As 
shown in Lee and C arter (1992), m ortality  index values fit past and current mor
tality  patterns and survival expectations in the US fairly well (better th an  official 
estimates), so it is reasonable to  expect th a t Lee-Carter approach will forecast fu
ture survival patterns successfully at least for the next couple of decades in the US, 
as well as other developed countries.

Therefore, if the insurance industry is, in fact, relying on Gompertz- and Makeham- 
type models, it may be overestimating its m ortality forecasts, or, vice versa, under
estim ating future survival tendencies (this is also reflected in Figures 3, 4 and 5,
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where Lee-Carter survival probability forecasts for most ages are significantly greater 
th an  those of Gompertz and Makeham). This, in tu rn , m ay result in serious fi
nancing problems for insurance firms and significantly undervalued retirem ent costs 
in the three countries in consideration. These inferences agree w ith the concerns 
about the rising costs of m ortality  decline and the resulting economic implications 
of higher tax  burdens on the working population, which has to  supply tax  money to 
finance pension paym ents for the  retired portion of the population (see, for example, 
Bongaarts (2004), Koissi et al. (2006), Tuljapurkar et al. (2000), Wong-Fupuy and 
Haberman (2004)). This concern applies most to  Japan. I t appears th a t Sweden and 
the United States will be somewhat less affected by the choice of m ortality model for 
insurance, economic and demographic considerations (compared to  Japan), based 
on the smaller differences between probabilities of successful hedging in Table 7.

Let us note another obvious and potentially dangerous result for the insurance 
firm and discuss ways to  manage this problem. Consider a 20-year contract offered 
to  a 60-year old client. If the  firm charges the client the  fair price (as given by 
(3.40)), the maximal probability of successful hedging, given th a t  the initial capital 
available for hedging is the premium paid by this client, is between 80 and 95 
percent, depending on the country and the m ortality model used (see Table 7). It 
is reasonable to conclude th a t very few insurance companies would find the level of 
default risk close to  20 percent acceptable, fn this situation, the companies would 
be better off considering the  other direction suggested by quantile hedging: fixing 
the probability of default first, and then looking at the ages of clients and drawing 
the corresponding risk management conclusions. This is the approach we examine 
next.

3.6.3 F ixing th e probability o f successful hedging

Suppose the insurance firm sells equity-linked life insurance contracts, but requires 
th a t the probability of default risk, e, does not exceed some specified value. Based 
on this chosen risk profile, using equation (3.40) the company calculates the minimal 
amount of funds needed to  hedge the payoff w ith the prescribed probability and, via 
one of the three m ortality models, determines the ages of clients who would pay a 
fair price for the contract based on different default levels. T he results are presented 
graphically in Figure 2.

As an example, consider a 10-year contract offered to  Swedish clients under the 
maximum default risk of 1 percent. All models return  close to  50 for the critical 
age, meaning th a t the premium  received from a 50-year old client purchasing the 
unit-linked contract would guarantee the firm hedging the payoff successfully with 
probability 99 percent.

A natural question arises: what are the risk implications when clients below or 
above the age of 50 wish to  purchase the same contract? In  order to  keep the level 
of default a t 1 percent, the firm needs a particular am ount of funds (as determined 
by (3.17)) to  invest into a hedging strategy. Therefore, clients of all ages must pay 
this amount as the contract premium. Clients above 50 will be paying more than
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their fair share, as their survival probabilities are lower th an  those of a  50-year 
old. However, clients below 50 will enjoy purchasing the contracts a t a discount, 
compared to  the premium they should have paid.

From Figure 2, we see th a t the proportion of people purchasing contracts at a 
discount decreases with higher m aturities (as critical ages decrease). T his result is 
expected: since clients are more likely to  die over longer periods of tim e, to  keep its 
desired risk profile, the company can offer fewer discounts for long-term  contracts as 
compared to  short-term  ones. Another noticeable p a tte rn  is the decrease in  critical 
ages and the proportion of people receiving discounts with lower levels of default 
risk. This is also logical: the less financial risk the firm is willing to  carry, the 
larger the proportion of people who have to  pay higher premiums for the  contract. 
Vice versa, the  riskier the firm, the more discounts it can offer to  its clients: the 
proportion of people under the critical age increases with higher e.

Finally, in Figure 2 we also observe some features already discussed in  th e  previ
ous section: the greatest differences between Gompertz, M akeham and  Lee-Carter 
are observed for longer contracts and for Japan . Again, this implies th a t  firms 
offering long-term  contracts are more sensitive to  m ortality changes, and th e  insur
ance industry in Japan  should take ex tra care when selecting m ortality  models for 
actuarial and risk management purposes.

3.6 .4  A dd itional observations

Now, let us study the differences between th e  forecasts of the  th ree models more 
carefully. In particular, we focus on this question: why does Lee-C arter produce 
the greatest differences in ages for Japan  bu t closer age predictions in Sweden and 
the US (Figure 2)? Moreover, why does the curve implied by the critical age values 
given by Lee-Carter seem to repeat the shapes of Gom pertz and M akeham  age 
curves (Figure 2), only higher? We feel th a t answers to  these questions involve 
general patterns of m ortality decline, such as the rectangularization of th e  survival 
curve, in developed countries.

Consider Figures 3, 4 and 5: they bring to  attention parts of survival curves for 
the US, Sweden and Japan  for the next 3, 10 and 20 years. T he p lo tted  survival 
probabilities were calculated based on the forecasted m ortality index kt, estim ated 
age-specific param eters ax and bx for Lee-Carter, and model-specific param eters for 
Gompertz and Makeham. F irst, we note th a t survival probability estim ates for short 
future time periods (such as T  =  3) are closer for all models, w ith sim ilar values 
in the US and Sweden. However, for longer time periods (T  =  20), Lee-Carter 
predicts significantly higher survival probabilities than  Gom pertz and M akeham  in 
all countries, w ith differences being most pronounced in Japan. These trends explain 
the  patterns brought to  attention in the first question above.

Furtherm ore, the shapes of the survival curves in Figures 3, 4 and 5 reveal tha t 
the Lee-Carter approach is likely to  be much more sensitive to  the changes in mor
tality  patterns in the three countries than  Gom pertz and M akeham. Higher survival 
probabilities for older ages and lower values for younger ages, as projected  by the
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Lee-Carter methodology, reflect the two m ajor trends in the evolution of m ortality 
in these countries over the last century: deceleration of m ortality a t older ages, and 
rectangularization of the survival curve. The trends also help to  answer the second 
question concerning the similarity in the shapes of implied critical age curves (Fig
ure 2). The upward “shift” of the Lee-Carter age curve from those of Gom pertz and 
M akeham is a consequence of the rectangularization pa tte rn  obvious in Figures 3, 4 
and 5. Such observations confirm the  conclusions m ade earlier in th e  discussion of 
the two approaches of quantile hedging, emphasizing the im portance of choosing 
the appropriate m ortality model th a t  would capture accurately the development of 
m ortality trends w ithin the population in question.

W hy do the three survival models produce smaller differences for Sweden and 
the United States th an  for Japan? Possibly, such results are explained by patterns 
of decline in the m ortality index in the three countries from 1959 to  1999 (Figure 1). 
W ilm oth and Horiuchi (1999) point out th a t drastic changes in the  shapes of sur
vival curves in these countries occurred up until the  1950s, with the US characterized 
by the greatest degree of variability. After this time, Jap an ’s m ortality  index ex
perienced the most dram atic drop, compared to  Sweden and the US. Perhaps the 
three mortality models are producing greater differences in the survival probability 
estim ates for Japan  (compare Figures 3, 4 and 5) in response to  th e  larger change 
in m ortality p a tte rn  in this country after the 1950s. Also, the fact th a t Lee-Carter 
predicts lower m ortality in Japan  th an  the other two countries (Figure 1) is consis
ten t w ith the generally accepted idea th a t currently life expectancy in Japan  is one 
of the highest in the world. However, a separate detailed study would be required to 
make concrete conclusions about the size of differences in the forecasts of the  three 
models for the three countries in question.

3.7  Future d irection
For future studies, there are several interesting directions worth exploring. F irst, a 
natura l extension of the current setting  is to  consider other types of insurance prod
ucts and their variations. In particular, one could study term  insurance agreements 
(in which the payoff is paid upon the death of the insured client before m aturity  
of the contract), and also contracts w ith extra benefits or provisions, such as rever
sionary or term inal bonuses, paid a t m aturity  of the contract or upon the death  of 
the insured client. This la tter type of contracts would then incorporate components 
of both  life and term  insurance, w ith payoff to  be received at m aturity  of the agree
ment, but bonus paid at or before maturity, a t a random  time. A nother possibility 
is to  study contracts involving several risky funds and payoff variations resulting 
from the behavior of the underlying asset prices. Such extensions would illustrate 
the use of our methodology in a more realistic setting, appealing to  bo th  researchers 
and practitioners in the actuarial and insurance fields.

Second, other m ortality models should be incorporated into th e  analysis shown 
in this thesis. Here, classical m ortality  models of Gompertz and M akeham were com
pared with the newer m ethod of Lee and Carter. As a next step, one could compare
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other recently developed m ortality modelling methodologies to  the Lee-Carter ap
proach or the classical models. Of particular interest are the increasingly popular 
stochastic m ortality models based on affine processes; typically, they  have been used 
to model the term  structure of interest rates (see, for instance, Vasicek (1977) or 
Cox et al. (1985)). However, today these affine processes are being studied and 
applied in actuarial context for modelling m ortality as a stochastic process (see, for 
example, Bifhs (2005), Luciano and Vigna (2005), and Dahl (2004)); it would be 
interesting to  compare their performance and risk m anagement implications with 
those of Lee-Carter. The study and the resulting analysis, conducted here for Swe
den, Japan  and the  U nited States, may prove beneficial to  other countries which 
already have strong m arkets for insurance products or are developing such markets. 
The inspection should reveal whether actuarial models used to  describe the mor
tality  of the client population in question are adequate for this purpose. Finally, it 
would be interesting to  investigate why the three m ortality models agree on forecasts 
more in some countries than  in others; such study could provide insight about pos
sible connections between fluctuations in m ortality and the quality and proximity 
of forecasts given by the different m ortality models.
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A pp en d ix  1
We will now calculate the density  Z  of the risk-neutral measure P*.  We wish to 
express Zt — as a stochastic exponent of some process N:

Z t = S ( N t).

Since there are two W iener processes in our model, N t has the form N t = (f>i • Wj1 +
02 ' W l

Let us represent Bt, S j  and  S f  as stochastic exponents of processes h, H i  and 
H i  respectively. In  our setup,

h  =  rt,  HI = fu t  +  (JiWl.

The general methodology for finding m artingale measures (Melnikov and Shiryaev (1996), 
Melnikov et al. (2002)) states th a t  the process

*j(/i, H, N )  = H lt - h t  + N t + ((h -  £T')C, (h -  N ) c)t

should be a m artingale w. r. to  P ,  from which the  constants 0 i and 02 are calculated.
For x \  and k 2, we get the  following:

>c\ =  f l i t  + a i W l  — r t  + 0 i W }  +  0 2W 2 +  O’i0 i t  +  a i f ep t ,

=  P2 t  +  ~ r t  + 01 W l  +  02 W 2 +  (72 02f +  Cr20 ipt.

To make these martingales, we m ust have

f i \ t  — r t  + a  i 0 i t  +  <7 102 pt — 0 and fi2 t  — r t + <72 02* +  cr2(f>ipt =  0,

therefore,

r (c r 2 -  c r ip )  +  P P 2C 1 ~  A h 0 2  , , r { < 7 i ~  a-2 p )  + p p \ ( 7 2 - P 2 < 7 \
01 = ----------------- -------jr------------- and 02 =   T ------ j!----------- ■

CTi<T2 (1  -  PZ) T l T R I  -  PZ)

Returning to  the stochastic exponent form, we get the following expression for
Z\

Zt

where

This is how we obtain the
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HP*
= ~ [ p \ r t = £ { N t ) = £(<j>iWl +  0 2 W l )

—  01 +  02 +  2p0102-

equations for Z  and 0j in (2.26) and (2.27).
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A pp en d ix  2
Here we prove the m ulti-asset theorem  (2.193):
for n +  1 normally d istributed correlated random  variables x z ~  iV(pi, cr?) and 
z ~  N(ixz ,a^)  w ith variance-covariance m atrix R n+i

z P l z

Rn+1 —
yi&zPiz

and given constants Xi, i = 1 , . . . ,  n,

E  (e I{x\<x -l} ' ' '  I{xn<xn}) — e

az

(3.47)

X i  Hi 
-Xi — +  O'zPiz-

Above, + "  denotes n-dimensional cumulative norm al distribution of correlated ran
dom variables w ith mean 0 and variance 1 (see discussion following (2.195)). Note 
th a t we make the  standard  assum ption th a t all variance-covariance matrices are 
invertible.

First, let us introduce notation. As mentioned, R n+i is the  variance-covariance 
m atrix  for i — 1 , . . . ,  n  + 1 , where z  denotes x n+i, so th a t p,n+ 1 =  fiz, an+i = cr2, 
and whenever used in powers, i + z — i + n + 1 .  The inverse of R n+i is denoted

A n+1 — ||aij||n+l — Rn+i- 

We denote R „  the variance-covariance m atrix for x,, i = 1 , . . . ,  n:

* VlVnPln

R  n  =

V\Onp\n

Its  inverse is denoted

-1

We will also encounter these matrices in the proof:

1 • • • P l z

R-n+l —
P l z

its inverse

A n+l — HfflijUn+l — Rn+1’ 

98

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)
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as well as

R.7I. =

P i n

P i n

1

and its inverse

A ^ — '

(3.54)

(3.55)

Next, let us recall some useful facts from linear algebra and apply them  to our 
setting.
1) For any m atrix  M ,  we have this relationship between the determ inants of M  and 
its inverse M - 1 :

| M  | =
1

M '
2) Constants can be factored from determ inants: for us,

I Rn+11 =  OlCTa • • -CT^lRn+ll.

3) For M ,  the entries of its inverse M _ 1  =  are given by

(_1  y+j
m%v = | M |

• |M ^1,

(3.56)

(3.57)

(3.58)

where M J i  is the  m atrix M  w ith ) th row and column removed.
4) In our setting, since R n+i is symmetric, the entries of its (symmetric) inverse 
A n + i  satisfy

i j ~  | R |  ' | R

similar formulas hold for the entries of A n + i ,  A n  and A„.
5) Based on points (2) and (4), we have for A n + i  =  | | a j j | | n + i

(3.59)

( - 1  • • • ajaj  - • ■ a l a 2z\TC^
^ • • • 0 2 (72 |R n+i|

CiCj |Rn+l |
(3.60)

H j  ||n*similar relation holds for A „

Now we begin the proof of the m ulti-asset theorem. Based on the expression 
for the multi-dimensional cumulative norm al distribution (2.195), we see th a t the
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following equality has to  be established:

E  (e~zI{xl<Xl] ■ ■ ■ I{xn<xn}) =
f X l  f X n  /*00

(27r)(n+1)/2|Rn+i|1/2 7-
e~ze

/ Ai M n r

-oo ■/ —oo J  —oo

ze «)(^ ' H ) d z d x i - - - d x n =

f ^ +„zPlz 

(27r)"/2|Rn|1/2 7-oo 7-oo
(3.61)

Recall th a t Xj ~  N(m,<jf), z ~  lV(/iz,erf) w ith variance-covariance m atrix R „+ i 
and its inverse A h+i =  ||ay ||n+i, where as Xi ~  1V(0,1) w ith correlation m atrix  R „  
and its inverse A n =  ||a jj||n - 

To save space, let us write

/a r a \  r a n

f d y  = ■■■ f d y i  ■ ■ ■ dyn. (3.62)

-oo J —oo J —oo

Now, let us simplify the expression in the exponent in (3.61) using the substitu 
tions

- — —  =>• dz — dzaZl

Xi  = —— — =>■ dxi — dxi<Ti, (3.63)

with limits on the integral involving z  remaining ±oo and the others changing from 
X i  to Xt~IH, and the simplification of entries of inverses sta ted  earlier in point (5)
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(see (3.60)):

77+ 1 n + 1

^   ̂^   ̂a i j { x i  ~  ~  Mj)
7 - 1  j  =  l

n n 7i
“  ^  ^ ^   ̂ (^7 l ^i )( .x j  Mj) ^ ^   ̂a 2 i(2' Mi) “I- a zz{% f t z )

7 = 1  j  =  1 7 = 1

n  n  n

“  ^  ^  aij(Ji<7jXiXj +  2 ^  (
7 = 1  j  =  l  7 = 1

^ ^ ( - 1 ) ^ K +1I - .
- 2 ^ 2 ^  î d | ° i a3x ix j

j — 1 &i&j  l - t V i + 1 1

. &zi@z&iZX-i ~b CLzz&z^

i 0 ^ ( - l ) i+n+1|R “+  | . .  , (—l ) 2(n+1)|R,
+  2 2_^---------- ^ ------ i---

&z 1-^77+1 I ®Z |-^7l+l I
n | 2 ~2

= E E
i = i  j = i

( - 1 )^ 1 R ^ +1|

|Rn+l|

+ » E
( — l + n + 1 | R +■n+ll

j=l IR.
Z X i  +

IR.

'77+ 1 | IR.
•n ~2  0 .

'7 7 + 1 1

(3.64)

Now, w ith the constant —1 from the exponent, we complete the square for all
term s in the above expression th a t contain z:

77

- E- o , z  - i  i i u  - 2 A ( - i ) i+n+iiRif+1i
 ̂ | Rn+11 7 =  1 |Rri+l|

Z X i

1

2|Rn+l| 

1

^|Rn|1/2
g z | R n + 1 | +  E r = 1 ( - + +  lR n + l  +

iR nl1/ 2

+
2|Rn+l|

az |R n +1| +  E ? = i ( - l ) <+n+1|K• n+l \x i

iRnl1/ 2
(3.65)

Continuing with our calculations, let us now make another substitution:

IR n+ll1/2
+ ^ i ^ + i i + E r= i(- i) i+n+1iR i+ ii^

|R n + 2

dz  =  d z —R n |1/2
R n + + /2 '

(3.66)

Notice th a t the limits on the integral involving z rem ain ±oo.
Based on the two substitutions (3.63) and (3.66), point (1) about factoring 

constants from determ inants (3.56), the simplification of the sum (3.64), and the
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completion of the square (3.65), the expectation in (3.61) takes form

X rcc

( 2vr) ( n + l ) / 2 | R n + 1 | l / 2

O

/ /J  — OO J  —OO

\/2 ^ |R n + i|1/2
( 27r ) ( n + l ) / 2 | R n + 1 | l / 2  I R J 1 / 2

j ffx 

J  — 00

g  2|R.n_(_3_|

t+il+£f=i ( - ^ +n+1l<+il^
IRnl1/ 2

/.— 00 \ / 2 7 T
d z d k

~Hz r

W J ^ J -

X-<xx
°x

(27r)«/2|R „ |1/2

2 lRn+ll
^ |R n+1l + S ”=1(-l)i+” + 1|H.if+ll^

lRn |1 /2

For the next step, let us represent the expression in the exponent as

- I - ,

with J  determined as follows:

4 4 4 M - i ) l+J| i C i l
> >  ~-------------X i X j  —

lR n + l|

1 / a z | I W l  +  £ r = i ( - l ) i+n+1| R z'n+1

2=1 J
n  n

|Rn+l| iRnl1/2

" E E i - 1) ^ '
i = 1 j = i

|R ^ .1l|R? | - | R j f +1| f e 1l
|Rn 11 Rn+11

n  I’R ^2 I I 'D

- 2 a z ^ ( - l ) ^ +1^ f i - a 22^
j ■**'72 | j2 =  1

Also, let us make notational simplifications

( - 1 ) ^ -  / |R ; j+1||R n| -  |B & il |R ? J'■n+ l l

IR n IR■n-\-1 1

and

Si =  ( - 1  )‘+V
IRnl
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■ dx. 

(3.67)

(3.68)

(3.69)

(3.70)
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Based on (3.68), (3.69) and (3.70), the  expectation in (3.67) becomes

„ X —/ix

(2 ^ )" /2|R n |1/2 7 _ oo

= l 2 ^  = ll b  I n+1 \ 1 3 ^  |R „ ] 1/2  )21 Rn+11e

-  ( 2 , ) - / 2 | R n | i / 2 y . „  e  ( 3 n )

Now consider the original equality we are trying to  establish, given in (3.61): 
using this substitu tion

Xi = Xi GzPiz: (3.72)

we can rewrite the last expression in the  equality as shown:

x ^ +ffzPxz n ____
j  g 2 & - i ^ p i a^ XzXi(|x

J —((27r)n/ 2 |R „ |1/ 2 + - c o

Vz- - f )  . X" *

(27r)n/ 2 |R n |1/ 2 7 -

crx _  I
e

OO

with -Atx +  (Tzpxz in the upper limit referring to  each individual upper limit b +
<TX • C7i

At this point, compare (3.71) and (3.73): if we can show tha t the  expressions in 
the exponents are equal, then  we will have completed the  proof of the theorem. So, 
let us proceed with th is idea in mind.

First, we expand the exponent of (3.71):

j h  j h  rijXiXj + 2 ^ 2  BiXi ~  o 2z S j p p  
i=1 j = 1 i= 1 I n l
=  r u x \  +  r 22x j  H b rnnx 2n

+ 2r i 2x i x 2 +  27-13X1X3 3 b  2 r i „ x i x „

+ 2 r 23x 2x 3 H b 2 r 2„X 2 X n

"F 2x(n_i)nxn_ ix rl

+ 2 s ix i +  2s2x 2 +  • • • +  2 snx n — o 2 -L-x——L (3.74)
|R -n |

Next, let us expand the exponent of (3.73): after some algebraic manipulations,
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we obtain

n n
E E  aij(xi  +  azpiz)(xj  +  a zpj z )
i=i j= l

=  a n x f  +  5,22X2 +  • • ■ +  annXn
+2ai2X\X2  +  2 0 1 3 X 1 X3  H b 2 a i „ x i x n

+ 2 0 2 3 X 2 X 3  H b 2a2nX2Xn

"F ‘̂ 5(n_\')nXn—'iXn
n n n

+ 2 x i E  (3-1 j&zPjz ”1” 2x2 ^  ^ @,‘2j&zPjz 2x^ E  O'Tlj&zPjz
j=1 j=1 j-1

n n

+ E E “<s &z PizPjz• (3.75)
i = 1 j= l

Comparing the term s in the two expansions, we see th a t we need to show three 
things:
7 • X'tj — &ij,
2. Sj =  1 HijXzpjz: and
o IRn+il _  °l 1 n- n 2 n- n-

2 |R n| — 2 2 Z ^ i= l Z ^ j= l a i j 0 z f r z P j z -

Before we prove these, we establish the following relations about determinants: 

1*5+1 (3.76)
i=1

and
n

|R „ | =  |R n+i| -  ] P ( - l ) i+n+1p « |R “+ i|. (3.77)
i = l

Now we are ready to  prove relations 1, 2 and 3. F irst, consider 2: using the 
expression for entries of inverses (3.59), we have

v - - _  ( - i ) i+J‘|R j?l _ . ,0 .0 1/  , cLij<XzPjz — /  y . <?zPjz- (3.78)
3 = 1 3 = 1  I
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But from the definition of Si in (3.70) and relation (3.76), we obtain

Si =  ( - 1  f ' " a x f e l l
| R .
n

= (- i ) * + v z ^ ( - i y +>
n I ‘D ̂  I

lj z

j= 1 |Rn

_ n _ I "R |
=  a z J 2 ( - l Y +jP j J ^ r i -  (3.79)

-TLn1 = 1

Comparing (3.78) and (3.79), we see th a t relation 2 is proved.
Next, let us look at 3: we will prove this equation using (3.77) and (3.76). On 

one hand,

I Rn+11 _  a z  (-1 , V 'V  n i+ n + l lR n+
“  m  t r  K ‘ i f t .

^  i  +  X ) ( - i ) i+n+1^ E ( - i ) i+n^ -  • (3-8°)
i = 1 j = 1

On the other hand,

2 i n n n n ( 1 li+i+ll-Rbl
y  -  ^ E E ^ W  =  y  " l E E 1 ( i i i  w  <3-81>

i =  1 j = 1 i = l  1=1

Comparing (3.80) and (3.81), we see th a t relation 3 is also proved.
Finally, note th a t to  prove 1, we need to  show tha t

( - 1 ) ^ -  / I R ^ H R n l  -  |R(f+1||R ^ +1l\  =  ( - l ) ^ | R t f |

|Rn| \  |R n+l| /  |Rnl

^  |R^+1||R n| — |R n+il|R n+ ll =  |Rn+l||R^'l- (3-82)

To facilitate the proof of relation 1, we express all m atrices in the last identity 
above in terms of R „+ i w ith necessary rows/columns removed. Thus we must prove

|R n+ ll|R n++l1)(n+1)| -  I R S t ^ H R i t l ^ l  =  |R n + l | |R S r 1)("+1)|- (3-83)

Note th a t

R ji =  r ^ +1)(“+1) (3.84)

is the m atrix  R n+i w ith rows i, n  +  1 and columns j ,  n  +  1 removed.
Instead of proving (3.83) directly, we will prove this more general result:
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for n > 3 and any choice of i, j ,  k , l  < n, the following holds for any n  x n  m atrix  M

|M j f ' |K fc| -  =  TaTj k \ M ^ lk\ \Mn \. (3.85)

Above, is M n w ith rows i, I and columns j ,  k removed. Also, the function r ot,
is defined as

( 1 if b > a 
r ab =   ̂ 0 if b = a (3.86)

^ —1 if b < a.

We will prove (3.85) by induction on n.
Before we begin the proof, note th a t if I = i or k =  j ,  then  (3.85) holds trivially. 

Next, w ithout loss of generality, we assume th a t

I > i and k >  j .  (3.87)

We can make such assum ption, because if i were smaller th an  I (or k < j ), then  we
could rename the variables i , l  (or j , k ) ,  which would introduce a negative sign on
both  sides of equation (3.85).

Also, we will prove th a t (3.85) is valid for every m atrix  M „ if and only if the
following formula holds for every M „ also:

|M ^ ' | |M r i  -  W l l M i n  =  | M « H | M n |. (3.88)

P roof.
=» Assume (3.85) holds. Let k , l  = n , n .  Then (3.88) holds as well.
•<= Assume (3.88) is true. Construct a new m atrix M n by moving row I and

column k in m atrix  M „ to  positions n, n. Then

|Mj?| = ( - l ) l+k\M^\,
|M(f| =  i M r i ,

m lj \ =  ( - l ) n~ fc|M ^

|M (f| =  ( - l y ^ i N C i
|M *Wfc| -  iMi?’nni,

|M„| =  ( - l ) !+fc|M n|. (3.89)

Based on the equations above, (3.85) turns into

|M ^ | |M n  -  |M £J'||M iPI =  |M ^ ,nn||M „ |. (3.90)

And, since (3.88) holds for any m atrix by assumption, in particular, it holds for M . 
Therefore, (3.90) implies th a t  (3.85) is true, which completes the proof.

Now we proceed to  prove (3.85) by induction as follows. For the first step, we 
show th a t (3.88) holds for n  =  3, implying th a t (3.85) also holds for n =  3. For
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the inductive hypothesis, we assume (3.85) holds for some n  and show th a t (3.88) 
is true for n  +  1, which is equivalent to  (3.85) being true for n  +  1.

S te p  1. Here we have n  =  3 and i , j  =  1,1, 1,2 or 2 ,2 (the case for i , j  = 2,1 
is equivalent to  i , j  — 1,2 by transposition). For each of these possibilities, (3.88) is 
shown to  be tru e  by direct verification (om itted here).

S te p  2. Assume th a t (3.85) holds. T hat is,

|M 2 '||M * | -  \ M li\\M%\ = r ^ r ife|M p | |M „ |  (3.91)

is true for every m atrix  M  and some n, and for all possible values of i , j , k , l  < n. 
Using this assum ption, we will prove th a t (3.88) holds for n  +  1.

We want to  show th a t for any i , j  < n  +  1,

i i< ;+ i i i M S i ,|(" + i ,i -  i M i t A i i M S 11! =  i M ^ r 1,(”+1)iiM „+1|. <3.921

First, we expand the determ inants above by row /colum n n  +  1 whenever possible. 
Using notational simplifications

A /r i j , l k  _  A/Tij,* (r i+ :i),(T i+ l)fc
lVXn  /J,-)-1 ■>

M t j  =  m:i ( n + l ) , ( n + l ) j
Tl+1 J

r( n + l ) ( n + l )M n =  , (3.93)

we can write

=  ^ ^ ( - l ) l+k+1m l{n+1)m ^ 1)k\ T ^ ’lk\ 
k = 1 ; = i

+ E E
k = 1 i = i + l  

n  i —1

+  E  E ^ ^ ^ n + D ^ n + U f c l M ^ I
k = j + 1 1=1 

n  n

+  E  E  ( - 1) '+fc+lmi(n+l)m (n+l)fc|Mj?,' fc| + m (n+1)(n+1)|M ^I,
k = j + 1 l = i + 1

I M i t E l  =  E ( - 1) '+n^ ( « + l) lM nl>
1 = 1

n

I M ^ E l  =  E ( " 1)"+^ (n + l)fc lM n l ’
fc = l

n  n

|M-n_|_i| ^(n+ l)(n+l) I
1=1 k = l
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Here, m a{, denotes entry in row a and column b in M n+i.
Now we utilize the new notation (3.93) and the  expansions for the determ inants

(3.94) to rewrite (3.88) for n +  1:

j - i i - i
J ] ^ ( - l ) * + fe+1m i(n+1)m (n+1)fc| M p |  
k=1 1=1

+  E  E  ( - l ) l + k m ( n + l ) m {n + l ) k \ M ^ k \

k = l l = i + l  

n  i —1

+  E  E ( - 1 ) Z+fc^ ( n + D m ( n + l ) f c lM n ^ fe|
k=j+l 1=1

+  E  E  ( ~ i ) l + k + 1 ™ i ( n + i m n + i ) k \ M f l k \

k=j+1 i=i+1

i = l fc=l
n  n

^(n+l)(n+l) +  |M j?| • E E ( - 1) '+fc+lmK«+Dm (n+l)felM n I-
1=1 k= 1

(3.95)

Note th a t using the T function (3.86), we can simplify the sums on the left-hand 
side of the equation above to  get the  following:

Ik i

,fc=i 1=1 
n  n

|M n | (3.96)

-  E E ( - 1)'+fe+lmKn+l) (̂n+l)fc (lMnllMnl ~ |M « ||M * |)  .
1=1 k=1

Now, comparing the term s inside the sums, we see tha t they are equal by the 
induction hypothesis.

Therefore (3.88) holds for n +  1, thus (3.85), which is equivalent to (3.88) (see
(3.90)), holds for n  +  1 also. And, the general formula (3.85) implies th a t our 
particular case for (3.83) is true  as well. This, in turn, shows the equality of
the last set of coefficients (relation 1), and completes the proof of the multi-asset 
theorem.
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A ppend ix  3
Here we include tables w ith values of the estim ated param eters ax , bx and kt for the 
Lee-Carter model.

T able 8: E s tim a te d  p a ram ete rs  ax , bx for th e  L ee-C arter m odel
&X bx

Age USA Sweden Japan USA Sweden Japan

0 -4.2672 -4.8263 -4.7669 0.2365 0.1654 0.1875
1 -6.9161 -7.4971 -6.7308 0.1904 0.1480 0.1488
2 -7.3373 -7.9498 -7.2465 0.1732 0.1741 0.1685
3 -7.5993 -8.0820 -7.4993 0.1750 0.1759 0.1712
4 -7.8014 -8.1322 -7.6983 0.1870 0.1706 0.1756
5 -7.9258 -8.2192 -7.8348 0.1909 0.1938 0.1665
6 -8.0263 -8.2954 -7.9452 0.1837 0.1716 0.1507
7 -8.1122 -8.3972 -8.0785 0.1764 0.1740 0.1428
8 -8.1667 -8.4612 -8.2632 0.1544 0.1470 0.1487
9 -8.2357 -8.4903 -8.3794 0.1609 0.1398 0.1446
10 -8.2596 -8.4868 -8.4715 0.1541 0.1278 0.1425
11 -8.2230 -8.5492 -8.4920 0.1449 0.1140 0.1341
12 -8.1152 -8.5226 -8.4405 0.1282 0.1164 0.1257
13 -7.9540 -8.4235 -8.3523 0.1142 0.1117 0.1144
14 -7.7231 -8.2373 -8.2596 0.0923 0.0944 0.1081
15 -7.4651 -7.8444 -8.0411 0.0765 0.0908 0.1005
16 -7.1425 -7.7533 -7.5888 0.0493 0.1011 0.0739
17 -6.9551 -7.6193 -7.4273 0.0532 0.0846 0.0771
18 -6.7716 -7.3407 -7.3279 0.0480 0.0764 0.0754
19 -6.7427 -7.3220 -7.2363 0.0606 0.0733 0.0810
20 -6.7392 -7.2994 -7.2045 0.0596 0.0635 0.0888
21 -6.6911 -7.3081 -7.1989 0.0589 0.0580 0.0984
22 -6.6933 -7.3003 -7.1826 0.0611 0.0706 0.1079
23 -6.7014 -7.2622 -7.1661 0.0533 0.0563 0.1104
24 -6.7166 -7.2991 -7.1618 0.0564 0.0671 0.1173
25 -6.7022 -7.2738 -7.1383 0.0529 0.0521 0.1154
26 -6.7008 -7.2225 -7.1337 0.0454 0.0575 0.1140
27 -6.6778 -7.1836 -7.1232 0.0397 0.0506 0.1164
28 -6.6369 -7.1744 -7.0950 0.0286 0.0548 0.1134
29 -6.6427 -7.1161 -7.0535 0.0425 0.0679 0.1128
30 -6.5857 -7.0597 -7.0289 0.0357 0.0577 0.1104
31 -6.5416 -7.0370 -6.9900 0.0256 0.0545 0.1100
32 -6.4875 -7.0155 -6.9348 0.0314 0.0593 0.1088
33 -6.4353 -6.9309 -6.8737 0.0324 0.0576 0.1075
34 -6.3920 -6.8580 -6.8076 0.0434 0.0543 0.1075
35 -6.3214 -6.7768 -6.7354 0.0471 0.0484 0.1034
36 -6.2570 -6.7273 -6.6713 0.0480 0.0520 0.1006
37 -6.1918 -6.6713 -6.5903 0.0553 0.0554 0.0986
38 -6.0912 -6.5640 -6.5155 0.0529 0.0467 0.0945
39 -6.0612 -6.5351 -6.4258 0.0810 0.0490 0.0951
40 -5.9681 -6.4227 -6.3408 0.0810 0.0512 0.0880
41 -5.8924 -6.3633 -6.2643 0.0762 0.0477 0.0874
42 -5.7905 -6.2548 -6.1773 0.0908 0.0410 0.0814
43 -5.7174 -6.1683 -6.0848 0.0913 0.0519 0.0795
44 -5.6518 -6.0947 -5.9928 0.1014 0.0513 0.0780
45 -5.5530 -5.9968 -5.9053 0.1029 0.0453 0.0744
46 -5.4678 -5.9137 -5.8197 0.0999 0.0506 0.0722
47 -5.3777 -5.8055 -5.7238 0.1063 0.0465 0.0708
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O-x
Age USA Sweden Japan __USA Sweden Japan

48 -5.2757 -5.7289 -5.6374 0.0981 0.0543 0.0700
49 -5.2196 -5.6229 -5.5459 0.1165 0.0517 0.0692
50 -5.1144 -5.5444 -5.4566 0.1164 0.0469 0.0679
51 -5.0246 -5.4492 -5.3685 0.1042 0.0471 0.0683
52 -4.9230 -5.3457 -5.2813 0.1072 0.0493 0.0692
53 -4.8489 -5.2680 -5.1999 0.1065 0.0473 0.0711
54 -4.7685 -5.1724 -5.1122 0.1095 0.0464 0.0711
55 -4.6766 -5.0759 -5.0247 0.1005 0.0422 0.0708
56 -4.5939 -4.9874 -4.9370 0.1003 0.0468 0.0724
57 -4.5157 -4.8860 -4.8487 0.1019 0.0498 0.0748
58 -4.4023 -4.7992 -4.7493 0.0873 0.0478 0.0794
59 -4.3435 -4.7012 -4.6658 0.0976 0.0483 0.0772
60 -4.2480 -4.6006 -4.5780 0.0929 0.0483 0.0767
61 -4.1722 -4.5055 -4.4783 0.0822 0.0489 0.0779
62 -4.0580 -4.4124 -4.3857 0.0876 0.0479 0.0786
63 -3.9960 -4.3005 -4.2898 0.0861 0.0517 0.0803
64 -3.9288 -4.1970 -4.1917 0.0895 0.0504 0.0824
65 -3.8250 -4.1031 -4.0969 0.0962 0.0486 0.0836
66 -3.7651 -4.0053 -3.9989 0.0853 0.0523 0.0842
67 -3.6766 -3.9009 -3.9006 0.0924 0.0543 0.0872
68 -3.5920 -3.7987 -3.7984 0.0844 0.0561 0.0880
69 -3.5250 -3.7016 -3.6976 0.0861 0.0584 0.0885
70 -3.4298 -3.5998 -3.5919 0.0895 0.0603 0.0897
71 -3.3676 -3.4834 -3.4875 0.0782 0.0603 0.0908
72 -3.2586 -3.3866 -3.3789 0.0894 0.0605 0.0912
73 -3.1797 -3.2751 -3.2701 0.0813 0.0614 0.0912
74 -3.1041 -3.1654 -3.1595 0.0863 0.0595 0.0904
75 -3.0148 -3.0615 -3.0482 0.0922 0.0616 0.0902
76 -2.9364 -2.9497 -2.9376 0.0857 0.0614 0.0890
77 -2.8609 -2.8355 -2.8232 0.0838 0.0608 0.0868
78 -2.7720 -2.7333 -2.7120 0.0917 0.0618 0.0855
79 -2.6869 -2.6247 -2.6000 0.0902 0.0589 0.0827
80 -2.5793 -2.5226 -2.4919 0.0857 0.0570 0.0811
81 -2.5102 -2.4092 -2.3825 0.0729 0.0569 0.0787
82 -2.4046 -2.3040 -2.2767 0.0788 0.0568 0.0763
83 -2.3095 -2.2014 -2.1703 0.0818 0.0541 0.0747
84 -2.2148 -2.0972 -2.0699 0.0824 0.0504 0.0722
85 -2.1216 -1.9893 -1.9679 0.0755 0.0499 0.0699
86 -2.0303 -1.8873 -1.8664 0.0740 0.0490 0.0684
87 -1.9426 -1.7942 -1.7691 0.0739 0.0455 0.0656
88 -1.8635 -1.6905 -1.6727 0.0704 0.0430 0.0638
89 -1.7723 -1.6000 -1.5771 0.0689 0.0390 0.0623
90 -1.6779 -1.5066 -1.4858 0.0692 0.0375 0.0598
91 -1.6135 -1.4144 -1.3936 0.0565 0.0316 0.0573
92 -1.5162 -1.3246 -1.3049 0.0561 0.0286 0.0569
93 -1.4303 -1.2352 -1.2298 0.0524 0.0260 0.0538
94 -1.3510 -1.1626 -1.1487 0.0467 0.0260 0.0518
95 -1.2795 -1.0707 -1.0795 0.0398 0.0240 0.0489
96 -1.2050 -0.9910 -0.9964 0.0340 0.0225 0.0511
97 -1.1380 -0.9221 -0.9409 0.0290 0.0145 0.0459
98 -1.0893 -0.8624 -0.8624 0.0186 0.0178 0.0464
99 -1.0474 -0.8037 -0.7921 0.0065 0.0088 0.0495

100 -0.9890 -0.6987 -0.7374 -0.0019 0.0121 0.0456
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Table 9: E s tim a ted  m o rta lity  index  values k t for th e  L ee-C arter m odel

Year USA Sweden Japan Year USA Sweden Japan

1959 2.5544 3.7937 6.7274 1980 -0.3782 0.3010 -0.4301
1960 2.6275 4.3281 6.5445 1981 -0.6853 0.0183 -0.8924
1961 2.3719 3.6897 6.0998 1982 -0.9203 -0.5648 -1.4801
1962 2.4350 4.0070 5.9820 1983 -0.9310 -0.9118 -1.5167
1963 2.5415 3.6169 5.1142 1984 -1.0559 -1.3277 -1.9761
1964 2.3038 3.2711 4.7704 1985 -1.0343 -1.0078 -2.2832
1965 2.2729 3.1529 4.8374 1986 -1.1746 -1.4642 -2.7728
1966 2.2731 2.8284 4.1163 1987 -1.3011 -1.8054 -3.2539
1967 2.0242 2.7166 3.8822 1988 -1.2944 -1.5344 -3.1112
1968 2.2170 2.9540 3.6368 1989 -1.5886 -2.6725 -3.6495
1969 1.9851 2.7699 3.4282 1990 -1.8337 -2.4021 -3.6487
1970 1.7825 1.7746 3.3832 1991 -1.9824 -2.7217 -3.9837
1971 1.5421 1.8771 2.5980 1992 -2.1886 -3.1343 -4.0652
1972 1.5065 1.7493 2.1780 1993 -1.9901 -3.0514 -4.2281
1973 1.3587 1.6343 2.1556 1994 -2.1485 -4.2827 -4.7434
1974 0.9483 1.4299 1.7884 1995 -2.2114 -4.2156 -4.5762
1975 0.5051 1.4042 1.2985 1996 -2.3842 -4.4808 -5.4065
1976 0.3230 1.5187 0.9346 1997 -2.5693 -4.8989 -5.6780
1977 0.0017 0.7125 0.3425 1998 -2.6437 -5.1465 -5.8451
1978 -0.1318 0.6676 0.0162 1999 -2.6501 -5.1602 -5.7642
1979 -0.4769 0.5669 -0.5288
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