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Abstract

Pricing of insurance contracts has generated much interest among researchers and
practitioners in the last two decades. Rapid mortality decline in developed nations
calls for methodologies that properly assess and price risks entailed in insurance
contracts. To address this problem, we propose the use of two types of imperfect
hedging techniques — quantile and efficient hedging. We show that they are ef-
fective tools for managing both financial and insurance risk elements inherent in
equity-linked life insurance contracts. Financial risk comes from the volatility of the
financial instruments underlying the contract, while insurance risk arises from the
dependence of the payoff on the client’s survival to maturity of the contract.

First, we introduce the two hedging methodologies and show why they are attrac-
tive for pricing of equity-linked life insurance contracts. We give explicit theoretical
results for the price of a contract paying the maximum of two risky asset values at
maturity, provided the contract buyer survives to this date. We also prove a result
which allows straightforward generalization of our approach to payofls with = risky
assets. Using numerical examples, we demonstrate risk management possibilities
for the seller of the contract and the advantages of applying quantile or efficient
hedging. These methods are computationally inexpensive, intuitive, and flexible in
terms of risk management yet precise in quantifying financial and insurance risks.

Next, we study modern mortality trends in the context of imperfect hedging. We
analyze the classical mortality models of Gompertz and Makeham, and the recently
developed approach of Lee and Carter for fitting and forecasting mortality. Thus
we extend the topic of quantile and efficient hedging beyond financial mathematics
into actuarial science. By performing a comparative study between the United
States, Sweden and Japan, we show that mortality model selection carries significant

implications for risk management in equity-linked life insurance.
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1 Introduction

1.1 General idea and goal of the dissertation

Equity-linked insurance contracts have been studied since the middle of the 1970s.
The payoff in such contracts depends on two factors: the value of some underly-
ing financial instrument(s) (hence the term equity-linked), and some insurance-type
event in the life of the owner of the contract (death, retirement, survival to a certain
date etc.). As such, the payoff contains both financial and insurance risk elements,
which have to be priced so that the resulting premium is fair to both the seller
and the buyer of the contract. The famous result of Black and Scholes (1973) and
Merton (1973) tells us that, in an idealized market setting, as long as the seller
obtains a price equal to the expectation under the risk-neutral probability measure
of the discounted payofl, the seller can hedge this payoff perfectly — with probability
of successful hedging equal to 1. Perfect hedging relies on the ability to trade the
financial asset underlying the option and the option itself in a particular manner
so as to offset any movement in the values of the underlying and the option. How-
ever, mortality risk cannot be offset in the same manner, since mortality is not (yet)
traded, which makes the insurance market incomplete and renders perfect hedging of
equity-linked life insurance contracts impossible (see section 2.3.2 for more details).
The main goal of this dissertation is to address the problem of appropriate pric-
ing of equity-linked life insurance contracts and hedging of the risks involved. As
will be discussed in section 2.1, a number of imperfect hedging techniques have been
applied to price equity-linked insurance agreements. We choose to use two imper-
fect hedging techniques: quantile and efficient hedging, developed respectively in
Foellmer and Leukert (1999) and Foellmer and Leukert (2000). Quantile hedging
allows the hedger to maximize the probability of successful hedging, while efficient
hedging seeks to minimize the expected shortfall risk, which is the expected potential
loss from the hedging strategy, weighted by some loss function reflecting the hedger’s
risk preferences. Developed from sophisticated statistical testing techniques, quan-
tile and efficient hedging are powerful tools which allow for many quantitative risk
management possibilities; at the same time, these methods are computationally
practical, understandable, and justifiable not only to academics, but to practition-
ers in the insurance industry.
 We consider a single-premium equity-linked life insurance contract which enables
its holder to receive the greater of the values of two risky assets (such as stocks)
at maturity of the contract, provided the policyholder survives to this date. We
solve the question of optimal pricing and hedging of such a contract in the context
of quantile and efficient hedging and illustrate the idea numerically. We also prove
a theoretical result which allows our methodology to be generalized to a contract
involving n risky assets in a straightforward manner, with the only difference in
derivations of pricing formulas between two and n risky assets being the time spent
on calculations. In this, we extend the application of quantile and efficient hedg-
ing for a budget-constrained investor from a setting with a single risky asset (see
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Melnikov and Romaniuk (2006)) to a multi-asset Black-Scholes-Merton-type setting.

We also extend our studies to investigate some relevant problems in the field
of actuarial science. The modelling of mortality is a hot topic today, in light of
changes in survival probability patterns over the last century. It has been noted
(see, for example, Horiuchi and Wilmoth (1998), Koissi et al. (2006) or Tuljapurkar
et al. (2000)) that mortality rates in developed countries have been declining, where
as increases in life expectancy have been underestimated. Such trends call for the as-
sessment of presently used mortality models to investigate whether these models re-
flect the current mortality patterns adequately. To this purpose, we study three mor-
tality models of Gompertz, Makeham and Lee-Carter (see Lee and Carter (1992));
the first two are classical actuarial models, widely used today by practitioners, and
the third is the newly developed model which treats mortality as a stochastic process.
Such study directly affects the risk implications for the type of equity-linked insur-
ance contract considered here, since survival probability is one of the factors on
which the contract’s payoff depends.

Below we give motivation for the problem studied in this dissertation, namely,
proper pricing and risk management of equity-linked life insurance contracts, as
well as reasons behind considering the particular area of mortality modelling as an
extension of the main results and setting.

1.2 Motivation

Insurance industry has been growing at a tremendous pace in the last decade, es-
pecially with the development of new markets in Europe and Asia. Equity-linked
and unit-linked (contracts paying one unit of some risky asset) business has been
especially successful. For example, Swiss Re reported about world insurance growth
in 1997 “high growth in the life business in Europe, North America and the emerg-
ing markets in Western Europe, life business grew after adjustment for inflation by
10.5 %, and in North America by 6.9 % ... The high growth rates were spurred in
particular by dynamic business in unit-linked and index-linked insurance products”
(Swiss Re online (1997)). National Association for Variable Annuities notes that
total industry sales of equity-indexed annuities grew from .2 to 12.6 billion dollars
from 1995 to 2003 (NAVA (2004)). Additionally, in Spain in 2000, the “greatest
growth occurred in unit-linked [insurance products] (81 % in comparison with 21 %
in other types)” (see Spanish Institute for Foreign Trade (2002)), and Winterthur
Life achieved a “strong and remarkable growth in unit-linked business” in Hong
Kong in 2003 and launched markets for unit-linked insurance in 2001 and 2002 in
Japan and Taiwan respectively (Winterthur Life online (2004)).

While growth in equity-linked (unit-linked, or equity-indexed) business is great,
it is not clear whether insurance companies are developing risk measures and hedg-
ing strategies necessary to deal with all the risks the company undertakes when
it sells equity-linked contracts. In the insurance industry, the effects of failing to
adopt adequate risk management models can be devastating. If the company over-
estimates and overprices its risks, the consumer will bear the financial burden of
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excessive insurance premiums, which is likely to lead to governmental inquiries and
regulation, as evident in Canada today. On the other hand, if the company under-
values its risks, it may face million-dollar losses and lose investors’ and shareholders’
confidence. While, some events causing damage and deaths and calling for massive
insurance claims cannot be predicted (terrorist activities, hurricanes, tsunami etc.),
price movements in the underlying assets, as well as long-term mortality patterns
(deceleration of mortality at older ages, increasing life expectancy etc.) can be an-
alyzed qualitatively and quantitatively. Therefore, the question of finding hedging
methodologies that can account for and value the financial and insurance risk ele-
ments, and provide appropriate risk management strategies is of great interest and
importance from both theoretical and practical perspectives.

One of the impediments to risk pricing arises from the ever-increasing market
demand for flexible and personalized insurance products. To respond to this demand
and compete with financial institutions (banks, trusts, mutual funds etc.), insurance
firms quickly develop and advertise, along with traditional life and health insurance,
comparative products for investment and wealth management. The latter instru-
ments are attractive to investors, as they tend to have shorter maturities and more
exposure to financial market risk than traditional insurance contracts. However, it is
often impossible to design and implement pricing tools that adequately measure and
valuate both financial and insurance risks before equity-linked products hit the mar-
ket, resulting in mispriced portfolios and potentially negative repercussions in terms
of losses and governmental regulations. Now, there has been a number of suggestions
for hedging methods in connection to insurance. These include perfect and mean-
variance hedging, as well as numerical and simulation techniques (Brennan and
Schwartz (1976), Brennan and Schwartz (1979), Boyle and Schwartz (1977), Del-
baen (1986), Bacinello and Ortu (1993), Aase and Persson (1994), Ekern and Pers-
son (1996), Boyle and Hardy (1997), Bacinello (2001)), utility-based indifference
pricing (see Hodges and Neuberger (1989), Young (2003)), and risk-minimization
strategies (Moeller (1998), Moeller (2001), Cvitanic and Karatzas (1999) and Cvi-
tanic (2000)). While these approaches have their merits, we feel that quantile and
efficient hedging are particularly suited for equity-linked insurance, because these
hedging techniques are very intuitive, easily implementable, demand little in terms
of computing power, as well as allow the hedger to calculate explicitly all the nec-
essary premiums, risks, and hedging strategies.

The need for correct mortality modelling arises from the general pattern of
decline in mortality in many developed countries in the last century (see, for exam-
ple, Wilmoth and Horiuchi (1999), Tuljapurkar et al. (2000), Lynch and Brown (2001),
Yashin et al. (2001)). Frequently, the rates of decline of mortality for older ages and
increase of life expectancy have been underestimated (Koissi et al. (2006)). The
rectangularization of the survival probability curve, together with lower mortality
at older ages and higher life expectancy are particularly troublesome developments
for insurance firms: the changing mortality profile demands appropriate assessment
methods and adequate actuarial tools to manage mortality risks. Recently, the
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topic of mortality risk has become the focus of attention of actuarial and insurance
companies (Pitacco {(2003)) and the topic of numerous conferences and symposiums
dealing specifically with the question of measurement and pricing of mortality risk.
Once the company selects a particular mortality model, the decision will be directly
reflected in the prices of and risk management strategies for insurance portfolios,
since survival patterns affect basically all products in the insurance industry: life
and health, accident and disability, as well as investment and wealth management.
We investigate mortality modelling to demonstrate how survival trends displayed by
different categories of insured clients and transmitted by the choice of a mortality
model can be taken into account when designing risk management strategies for the
equity-linked contracts in consideration.

1.3 Outline of the thesis

In chapter 1, we introduced general ideas behind the research topics discussed in this
dissertation. Section 1.2 gave motivation behind the particular topics studied: im-
perfect hedging, its applications to life insurance, and effects of mortality modelling
on risk management with insurance contracts.

In chapter 2, quantile and efficient hedging are discussed in detail. First, we
review the statistical origins behind the two hedging methodologies (section 2.2.1).
Next, we describe the methods as presented in Foellmer and Leukert (1999) and
Foellmer and Leukert (2000) (sections 2.2.3 and 2.2.4) and show how they apply
in our setting with two risky assets (section 2.3.3). The financial and insurance
settings in which we study the problem of optimal pricing and hedging under budget
constraints are presented formally in section 2.3. We proceed to present one of the
main contributions of this thesis: the explicit pricing formulas for equity-linked life
insurance contracts based on quantile and efficient hedging (section 2.4); for efficient
hedging, there are three cases, one for each of the risk preference scenarios of the
hedger: risk-aversion, risk-taking and risk-indifference. The results are given as
theorems and are followed by their respective proofs.

Next, we discuss how to generalize the application of quantile and efficient hedg-
ing to contracts involving n risky assets (section 2.5). We state the theorem (which
we label the multi-asset theorem) that is required for such generalization. The proof
of the theorem is given separately in Appendix 2 due to its technicality. Then we
illustrate how the risk management strategies resulting from quantile and efficient
hedging can be applied in practice (section 2.6). We also examine how large the
expected losses resulting from the application of imperfect hedging can get (sec-
tion 2.7) and provide a numerical example to support the theory (section 2.7.1).

Chapter 3 deals with the effects of mortality modelling on risk management
with equity-linked life insurance contracts. Section 3.1 provides background on
mortality modelling; section 3.2 describes in more detail the three mortality models
(Gompertz, Makeham and Lee-Carter) studied in this dissertation and provides the
definitions of the necessary actuarial concepts (section 3.2.1). The setting for the
problem is described in sections 3.3 and 3.4, and derivation of the pricing formulas is

4
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discussed in section 3.5.1. After this, we present numerical illustrations to highlight
the implications of insurance and financial risk elements for risk management with
equity-linked life insurance contracts (section 3.6); the estimation of the parameters
used by the three mortality models is described in section 3.6.1. We suggest several
directions for future studies in the area of imperfect hedging and mortality modelling
in section 3.7.

The dissertation concludes with bibliography and Appendices 1, 2 and 3, in
which the derivation of the explicit formula for the density of the risk-neutral prob-
ability measure, the proof of the multi-asset theorem, and tables with the estimated
parameters for the Lee-Carter model are given respectively.
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2 (Quantile and efficient hedging for pricing of
equity-linked life insurance contracts

2.1 Background on imperfect hedging in insurance

Soon after the celebrated papers by Black and Scholes (1973) and Merton (1973) on
the pricing of call options, the topic of pricing of equity-linked insurance contracts
became rather popular. As mentioned above and explained in detail in section 2.3.2,
equity-linked contracts incorporate financial and insurance risk elements, and perfect
hedging in the sense of Black, Scholes and Merton does not work: mortality risk of
the option holder cannot be offset by trading in the insurance market, as mortality
is not a traded asset.® This section will review some of the research that has been
done in the area of pricing risks entailed in equity-linked insurance products.

Brennan and Schwartz (1976), Brennan and Schwartz (1979) consider an equity-
linked life insurance policy with an asset value guarantee and determine the value
of such policy using the economic concept of equilibrium pricing; the calculated
value corresponds to the perfectly competitive price. Note that the payoff is just
the greater of some guaranteed fixed amount or the value of the underlying risky
fund at maturity of the policy. The authors also propose a strategy which would
eliminate financial risk inherent in the payoff of the contract, but indicate that the
insurance company would have to hold reserves to offset mortality risk, or sell a
large number of contracts in hopes of eliminating mortality risk (this is known as
pooling). In this sense, financial risk is hedged perfectly, but no strategies other
than the traditional ones have been suggested to deal with insurance risk.

Boyle and Schwartz (1977) work out a similar solution for death benefit and
maturity benefit guarantee contracts, which pay the larger of a fixed guarantee
or value of some risky fund at expiration of the contract or upon the death of
the policyholder. Delbaen (1986) extends previous articles by proposing Monte-
Carlo simulation to price fixed term equity-linked contracts with guarantee, for
which premiums have to be paid periodically and survival probability of the client
is factored into the value of the contract. Monte-Carlo methodology is also applied
to calculate the number of shares of the underlying risky fund to be included in the
policyholder’s benefit (with periodic premiums, this number no longer equals unity);
in Brennan and Schwartz (1976) and Brennan and Schwartz (1979), the number
of shares in the policy benefit for contracts with periodic premiums is determined
numerically as a solution to the partial differential equation arising from the problem
setup.

Bacinello and Ortu (1993) further build on the above papers by considering the
case of equity-linked contracts where guarantees are determined endogenously based
on the premiums paid, as opposed to being specified exogenously, as in Brennan

However, it appears that market for mortality is slowly developing. Special thanks to the
anonymous referee of our submission (Melnikov and Romaniuk (2006)) for this interesting
and useful observation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and Schwartz (1976), Brennan and Schwartz (1979) and Delbaen (1986). Aase and
Persson (1994) work in a setting where the number of shares of the underlying risky
fund included in the benefit is non-random, which is different from the setting of
Brennan and Schwartz (1979), Boyle and Schwartz (1977) and Delbaen (1986) (see
above). Although such setting is simpler, it allows the authors to derive analytic
solutions for the premiums of contracts in consideration and avoid simulations or
numerical solutions. Note, however, that certain unclear assumptions are made in
order to obtain explicit pricing formulas in Aase and Persson (1994), for example,
“risk-neutrality with respect to mortality” (Theorem 1 on p. 37).

Ekern and Persson (1996) calculate premiums for a large variety of equity-linked
contracts, including those with payoffs where the contract owner chooses the larger
of the values of two risky assets (and possibly a guaranteed amount) at maturity of
the contract, similar to the payoffs we consider in this dissertation. However, the
authors completely disregard the pricing of mortality risk, calling it “unsystematic
risk” for which “the insurer does not receive any compensation” (see p. 39 in Ekern
and Persson (1996)). The justification provided is the traditional argument that
mortality risk can be eliminated by selling a large number of equity-linked contracts.
Note, however, that such justification is not acceptable in the current insurance
research.?

Boyle and Hardy (1997) examine the pricing of and reserving for maturity guar-
antees for policies where the policyholders’ premiums are invested in a specified
portfolio which is guaranteed not to fall below a certain level at maturity. The au-
thors compare two approaches, stochastic simulation and options pricing, to price
and calculate reserves, and find that relative merits of each of the methods depend,
among other factors, on the nature of the guarantee. Bacinello (2001) analyzes
the pricing of one of the most common life insurance policies sold in Italy in the
last two decades; the contract involves a bonus rate, whose value depends on the
performance of some reference fund and is not allowed to fall below some minimum
interest rate guaranteed.

Moeller (1998) looks at a portfolio of equity-linked contracts, thus incorporat-
ing financial risk and group mortality risk into the setting. The author defines
risk process as conditional expectation with respect to the risk-neutral measure of
squared errors in future costs (the squared difference between the cost of the hedging
strategy at maturity of the contract and the current cost). The hedging strategy
(the number of shares in the underlying risky asset) is then determined uniquely by
minimizing the squared errors described above and the squared error from time 0
to maturity T. Moeller (1998) also shows that for a portfolio of contracts, at any
time the number of shares of risky asset underlying the payoff will depend on the
expectation about the number of individuals surviving to that point in time. In his
later paper (see Moeller (2001)), the author examines a portfolio of equity-linked
life insurance contracts and determines risk-minimizing strategies in a discrete-time

2Among many useful comments on our paper (Melnikov and Romaniuk (2006)), the
referee has indicated that studies have shown that pooling mechanisms do not work.
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setting for the Cox-Ross-Rubinstein model.

Utility-based indifference pricing approach was introduced in Hodges and Neu-
berger (1989); in this pricing methodology, the premium for the contract is calcu-
lated in such a way as to make the hedger (the insurance company, in our case)
indifferent between including and not including a specified number of contracts in
his/her portfolio (see also Argesanu (2004), Kuehn (2002)). The method has been
extended to equity-linked insurance contracts by Young and Zariphopoulou (2002a)
and Young and Zariphopoulou (2002b), who look at the utility-based pricing when
insurance risks are independent of the underlying financial asset, and Young (2003),
where the death benefit payable to the insured client depends on the value evolution
of the underlying.

Spivak and Cvitanic (1999) consider the problem of maximizing the probabil-
ity of an agent’s wealth at maturity being no less than the value of a contingent
claim with the same expiration date; duality method from utility maximization lit-
erature is used to analyze this problem. Applying the same methodology, Cvitanic
and Karatzas (1999) study dynamic measures of risk that look at the “worst-case”
scenario: the measures consider the largest (worst) possible, minimized over all real-
world probability measures, shortfall (see also Kirch (2001)). Shortfall is defined as
the expectation of the positive part of the difference between the value of the con-
tingent claim at maturity of the contract and terminal value of the hedging strategy.
Cvitanic (2000) shows that in incomplete markets, as long as all equivalent martin-
gale measures are included in the set of possible real-world probability measures, the
“max-min” quantity, which is the maximal minimized shortfall, will coincide from
the perspective of both the seller and the buyer of the contract. Although we do not
know of explicit applications of the above approaches to equity-linked insurance,
the ideas are similar to those of quantile hedging (Foellmer and Leukert (1999)),
which aims at maximizing the probability of successful hedging, and efficient hedg-
ing (Foellmer and Leukert (2000)), whose goal is to minimize the expected shortfall,
weighted by the hedger’s risk preference. These two methods will be described in
detail in the next section.

Building on the papers mentioned in the previous paragraph, Nakano (2004)
considers the minimization of shortfall risk in a jump-diffusion setting, but unlike
Foellmer and Leukert (2000), who impose a nonnegativity constraint on the wealth
process, the author only requires it to be integrable. Based on this, the optimal
portfolio and the optimal terminal wealth are derived explicitly. Kirch and Rung-
galdier (2004) study the applications of efficient hedging when asset prices follow
a geometric Poisson process, where price changes occur at random points in time
(this is a natural generalization of the Cox-Ross-Rubinstein model), with intensities
constant in time, but not necessarily known to the investor.

Finally, quantile and efficient hedging methods have been applied to price equity-
linked insurance products on various occasions. Krutchenko and Melnikov (2001),
Melnikov (2004a), and Melnikov and Skornyakova (2005) apply quantile hedging
in the context of diffusion and jump-diffusion models. The latter paper examines
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equity-linked life insurance contracts with flexible guarantees. Melnikov (2004b)
studies optimal pricing utilizing an efficient hedging approach in a diffusion setting,
and Kirch and Melnikov (2005) use efficient hedging in a jump-diffusion frame-
work with perfectly correlated Wiener processes to price equity-linked life insurance
contracts with fixed guarantees. Melnikov et al. (2005) extend these results to corre-
lated Wiener processes. Melnikov and Romaniuk (2006) show how quantile hedging
can be applied to price and hedge financial and mortality risk elements inherent in
equity-linked life insurance contracts with deterministic guarantees, as well as exam-
ine mortality modelling and its effects on the resulting risk management strategies.
The results presented in Melnikov and Romaniuk (2006) are also a part of this
dissertation and will be given in chapter 3.

2.2 Quantile and efficient hedging

Here we describe the two imperfect hedging approaches used in the thesis: quantile
and efficient hedging. We begin with a brief discussion of the Neyman-Pearson
lemma (as summarized in Korn and Korn (2000)), since both hedging methods are
based on this important statistical result.

2.2.1 Neyman-Pearson lemma

Suppose that we want to test the null hypothesis hy with probability measure P,
on the space (2, F, Py) against an alternative hy, with probability measure P; on
(Q,F, P1). There are four possible outcomes of the test:

1. accept hg when it is true,

2. accept hg when it is false: this is called Type II error, denoted here G,

3. reject hg when it is true: this is called Type I error, denoted here «,

4. reject hg when it is indeed false (this is usually the desired outcome for the test).
We reject hg based on whether the value of some test statistic falls into the rejection
region, which we denote R.

Note that for outcome (2), the ‘true’ probability measure is P;, as hj is the
hypothesis that holds in the real world. Thus in (2), the test statistic falls into the
acceptance region, R®, and

f=Pi(R®). (2.1)

For outcome (3), the ‘true’ probability measure is Py, as hg is the correct hypothesis,
thus when we reject hgy, we get the Type I error

o = Po(R) (2.2)

Generally, the probability measure corresponding to the alternate hypothesis is
taken as the known, or real-world probability measure, and the aim of the test is to
make the correct decision as given in outcome (4). That is, we want to reject hg in
favor of h; when hy (and thus P;) holds; the probability for outcome (4) is called
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power of the test, and we have
power of the test =1 — § = Pi(R). (2.3)

When testing the two hypotheses, we usually want to control the size of Type I
error while minimizing the Type II error, or, equivalently, fix @ and maximize the
power of the test 1 — 3. Then the test is referred to as being conducted at 1 — «
significance level.

The Neyman-Pearson lemma provides the structure of the set on which, for a
given significance level «, the power of the test 1 — 5 is maximized.
Neyman-Pearson lemma

Define P AP
1 13 T 1
A {dP0>k},werek 1nf{k Pg(dP0>k)_oz} (2.4)

Suppose Py(A) = a. Then for all A € F such that Py(A) < Py(A4),
Pi(A) < Py(A). (2.5)

For us, A is the ‘optimal’ rejection region that maximizes the probability of
making the correct decision: rejecting the false kg in favor of h; and working with the
real-world probability measure P;. The conclusion of the lemma and the definition
of A in (2.4) are the elements underlying the quantile and efficient hedging results,
as shown in Foellmer and Leukert (1999), Foellmer and Leukert (2000). Keeping
this in mind, let us look at each hedging approach in more detail.

2.2.2 Setting

Below we discuss quantile hedging, following the main ideas and, for the most part,
notation in Foellmer and Leukert (1999). Suppose that the discounted price process
X = (Xt)te[o,T] of the underlying risky asset is a semimartingale on a probability
space (2, F, P) with filtration (F¢);c(o,7)- There are no arbitrage opportunities in
the market, that is, the set P of all equivalent martingale measures is nonempty.
Note that Foellmer and Leukert (1999) conduct calculations assuming that the risk-
free interest rate r equals zero.

A trading strategy (Vp, £) with initial capital Vi > 0 and a predictable process &,
corresponding to the number of shares of the risky asset X, is called self-financing
if the capital generated by the strategy satisfies

t
Vi=W +/ §sdXs VE€[0,T], P—a.s. (2.6)
0
A self-financing strategy is admissible if

;>0 Vvte0,T], P-as. (2.7)

10
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Only admissible hedging strategies are allowed.

From option pricing theory, we know that in the complete case, the equivalent
martingale measure P* € P is unique (see, for example, Melnikov et al. (2002)).
Consider a contingent claim whose payoff is an Fp-measurable nonnegative random
variable H satisfying H € L'(P*). The payoff H can be hedged perfectly (in a
complete market), that is, there exists a unique (admissible) hedging strategy with
(minimal) cost Vp such that

P(Vy > H)=1. (2.8)

We also know that the cost of this perfect hedging strategy is given by
Vo = Hy = E*(He™"T). (2.9)

Above, and for the remainder of the dissertation, e denotes the exponent function, T’
the maturity of the contract, and E* the expectation with respect to the equivalent
martingale measure P*.

Therefore, as long as the contract seller receives Hp, he/she will generate suf-
ficient funds to pay the buyer at maturity of the contract. However, what if the
hedger is unable or unwilling to provide the initial capital required for the perfect
hedge, and all he/she has available is the amount Vo < Hyp? Quantile and efficient
hedging provide different answers to this problem.

2.2.3 Quantile hedging

Quantile hedging proposes to solve the problem of Vo < Hp by maximizing the
probability of a successful hedge. That is, Foellmer and Leukert seek an admissible
strategy (Vp,&) that will

T
maximize P (VT =V —I—/ £dX > H> (2.10)
0
under the constraint Vi < Vo < Ho.

Now, define success set corresponding to the admissible strategy (Vp,&) and its
terminal wealth V7 as {Vr > H}. Proposition (2.8) on pp. 254-255 in Foellmer and
Leukert (1999) states that
if A € Fr mazimizes P(A) under the constraint E*(HI4) < Vo, and if € is a perfect
hedge for the modified contingent claim with payoff H = HI; € L'(P*), then Vo, €)
solves the optimization problem given in (2.10). Moreover, the corresponding success
set coincides almost surely with A. Refer to Foellmer and Leukert (1999) for further
details (such as existence of §~) and proof of the proposition. Also note that by
this proposition, A is the set on which the payoff H can be hedged with maximal
probability of success.

Next, Foellmer and Leukert utilize the Neyman-Pearson lemma to provide the
explicit structure of the success set A. The implicit hypotheses are

ho: the hedge will fail

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hi: the hedge will be successful.
We want to maximize the probability of h; being the correct situation, that is,
maximize the power of the test as described in (2.3) for the Neyman-Pearson lemma.

Introduce a probability measure Q* with density
dQ* H

Tl (2.11)

Note that @* corresponds to Py (the probability measure of the hypothesis we want
to reject), where as P corresponds to Pp, the real-world probability measure.
Under Q*, the budget constraint E*(HI4) < Vj becomes

Q*(A) < % (2.12)

In terms of notation, E* still refers to the expectation with respect to P*, where as
ER will denote expectation under Q* (such notation will be used in this and all
subsequent sections of the dissertation).

Let .
Vo
= —; 2.1
a= .13
this « is the Type I error in the Neyman-Pearson lemma (see (2.2)). Define
dP
a =i - O* . < . .
a 1nf{a Q(dP*>a H)_a}, (2.14)

this a is equivalent to k in the Neyman-Pearson lemma (see (2.4)). Define the set
A corresponding to @ as

~ dP _ _
A—{dp*>a~H}. (2.15)

Here, as usual, dP*/dP denotes the density of the equivalent martingale measure
P*.

Theorem (2.22) on p. 256 in Foellmer and Leukert (1999) says that if Q*(4) = «
holds, then the optimal hedging strategy solving (2.10) is actually (Vp, £), where £ is
the perfect hedge for the modified payoft H=HI j and Vp its cost. Therefore, using
the result of the Neyman-Pearson lemma to derive the structure of A (see details
in (2.62)), Foellmer and Leukert show that the probability of successful hedging, or
power of the test, is maximized for a given level of Type I error Q*(A4) = a = Vp/Ho.
Setting Type I error at this level is equivalent to requiring Vp for the initial capital
of the optimal hedge £ (as shown in (2.58)). Also, knowing the structure of the
success set A (2.15) allows us to calculate explicit formulas for £ and its cost Vj.
These ideas are discussed in more detail in section 2.3.3.

Foellmer and Leukert (1999) point out (see pp. 252 and 261) that there are two
risk management possibilities based on the quantile hedging methodology. First,

12
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the investor could face some given initial capital (that is smaller than the amount
necessary for a perfect hedge) and would need to maximize the probability of suc-
cessful hedging based on this given capital. Or, if the investor has some control over
the initial capital, he/she could fix the acceptable probability of successful hedging
and then calculate the amount necessary to hedge the contingent claim in consider-
ation to guarantee the chosen probability of success. We analyze both of these risk
management perspectives and demonstrate how they can be applied in practice (see
section 2.6).

2.2.4 Efficient hedging

In this section, whenever possible, we follow the notation of the previous section (it
coincides with that in Foellmer and Leukert (2000) with some exceptions). Efficient
hedging addresses the issue of insufficient initial capital (Vo < Hy) by minimizing
the expected hedging losses, while taking into account the hedger’s risk preferences
through some loss function. The loss function l(x) is an increasing function defined
on [0, 00) with I(0) = 0 and E(I(H)) < co. Note that, in general, the loss function is
concave up, as the investor (hedger) is assumed to be risk-averse, meaning that the
larger is the loss, the less willing is the investor to bear it. However, it is possible
that some investors may be the atypical risk-takers (these could be addictive gambler
types, for whom it is more difficult to stop gambling as the game goes on and they
lose more and more money). The loss function for risk-takers is concave down.
Foellmer and Leukert work with the loss function I(z) = 2P, and distinguish and
analyze three possible cases for the value of p:
1. p = 1: risk-neutral investor,
2. p > 1: risk-averse investor,
3. 0 < p < 1: risk-taker.
We will discuss the solution for each case above, but let us first formulate the
optimization problem which is to be solved.
Define shortfall risk as the expectation of loss from the hedging strategy affected
by risk preference of the hedger:

EQ((H - vp)1)). (2.16)

Efficient hedging aims at finding an admissible strategy (Vo, &) that minimizes the
shortfall risk and costs no more than V. That is,

minimize E(I((H —Vp)h) (2.17)
under the constraint Vo < Vo < Ho.

Similar to the hypothesis testing techniques used to develop quantile hedg-
ing, Foellmer and Leukert show in Proposition 3.1 {p. 121 in Foellmer and Leuk-
ert (2000)) that there exists an Fr-measurable function ¢ :— [0,1] that minimizes
E({(1 — p)H)) under the constraint E*(pH) < Vy. Such ¢ is unique (P — a.s.)

13
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on {H > 0} for loss functions that are strictly concave up. Theorem 3.2 on p. 123
(Foellmer and Leukert (2000)) shows that the strategy (Vp, £) that hedges the mod-
ified claim H = ¢H also solves the optimization problem (2.17). Moreover, the
success ratio, defined in general as p(Vo,£) = Ijyp>my + %T-I {Vr<H} for H coincides
P —a.s. with ¢. Therefore, as in the case of quantile hedging, knowing the structure
of @, we solve the optimization problem (2.17) by finding the perfect hedge for the
modified claim H = GH.

Note that the requirement that ¢ is unique on {H > 0} for concave up loss
functions is not restrictive to us. Later in their article (see pp. 125 and 129),
Foellmer and Leukert show that ¢ is unique on {H >0} forp > 1 and 0 < p < 1.
In particular, for I(z) = 2P, in the case of risk-aversion, p > 1 and

@:1—(@/\1), (2.18)

where I = (I')~! denotes the inverse of I'. In the situation of risk-taking, 0 < p <1
and

&= I1sam-pars)- (2.19)

In the special case of risk-indifference, p = 1 and

¢=1Irae 5 (2.20)

apP*

provided that P* ({dP/dP* = a} N{H > 0}) = 0. In all above cases, a is calculated
from the constraint on the initial capital E*(¢H) = Vp ((2.12) in the case of quantile
hedging; see also the definition of k in the Neyman-Pearson lemma (2.4)).

In our setting with one or several risky assets, the density dP*/dP of the risk-
neutral measure P* will always be continuous, since it will be a function of a linear
combination of one or more Wiener processes; thus P*{dP/dP* = a} = 0. Also, we
work with contracts that pay the larger of the values of two or more risky assets (or
a single risky asset and some positive guarantee) at maturity, so the payoff H will
always be positive. Therefore, all conditions required to obtain a unique solution
for the structure of the optimal hedge are satisfied. Now we proceed to describe our
setting and to derive explicit formulas, based on the results of quantile and efficient
hedging given above, that will enable us to calculate the cost of the optimal hedge
and find strategies to manage financial and insurance risks inherent in equity-linked
life insurance contracts.

2.3 Our setting
2.3.1 Financial setting

We work in a financial market with interest rate r > 0, riskless asset (bank account,
for instance) B = (By)iwcpor), and two risky assets S' and S? (such as stocks),

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S* = (S})tejo,r)> with price evolutions

dB; = rBidt << B;= Bye™, By:=1;

2 .
(Hi - 07‘) t+o; Wi
7

dsi = Sipdt+ o dW}) < Sp= Sie i=1,2, (2.21)

where constants p; € R, o; > 0 are return and volatility of the instantaneous return
% of the risky asset S?. Note that S' and S? are based on two different Wiener
processes, W1 = (W )0y and w2 = (Wt2)te[0,T]- All processes are given on a
standard stochastic basis (Q, F,F = (Ft)scpo.1), P’) and are adapted to the filtration
F, generated by W*. The correlation between W' and W? is p, and we make the
standard assumption that p? < 1, that is, the risks underlying the assets cannot be
perfectly (positively or negatively) correlated.

Define a trading strategy, or portfolio, as a predictable process 7 such that

T = (Te)eo.r] = (Bes Vi W )eepo.1)- (2.22)

Here, 3 represents the money invested in the riskless asset, B, while 1¢ is the number
of shares of S! held in the portfolio at the instant of time t. As before, we suppose
that all contracts to be discussed mature at time 7.

The capital of 7 is given by

V[ = BB+ 5t + 1257 (2.23)

The strategies whose discounted capital satisfies

) . .
"/tﬂ' t St
— =V o == 2.24

are called self-financing. Only self-financing strategies with nonnegative capital are
admissible.

In our financial market setting, there are two sources of risk, W' and W2,
and two risky assets, thus the financial market is complete (and arbitrage-free; see
Melnikov et al. (2002)), and there exists a unique equivalent martingale measure P*
with density Z such that

dpP*

Zy = d—PI}-“

te0,T). (2.25)

Using general methodology for finding martingale measures (as presented in Mel-
nikov and Shiryaev (1996), Melnikov et al. (2002)), we calculate the expression for
Z explicitly (derivation details are given in Appendix 1):

o2
7, = e WithWi-Ft (2.26)

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

1 r{og — 01p) + ppaoy — 102

- , 2.27
010-2(1 _ p2) ( )
4y = r(01 — 02p) + pp1o2 — pa0n
a102(1 — p?) ’
and
05 = 1 + 65 + 2p162. (2.28)
Under P*, the evolutions of S and S? can be rewritten as
o2 )
i . » . . (T—Tl)t—i-athu )

dS; = Si(rdt + o:dWy™) & Sp = Spe L i=1,2. (229

Here, W¥ = (Wti*)te[O,T] are Wiener processes with correlation p under P* that
satisfy (see, for example, Melnikov et al. (2002))
Wi = W} + 6;t (2-30)

with
i — 7
03 '

0; =

(2.31)

It follows that discounted S and S? are martingales w. r. to P*. Using (2.26) and
(2.30), we can rewrite the expression for Z under P*:

PIWE+paWEr — (12%4-4)1614-4)292) t
Zi=e . (2.32)
Note that in derivations of pricing formulas and hedging strategies, we will use
the formulas for S* and Z under both the original and the risk-neutral probability
measures.

Now, consider #; given above in (2.31). In financial literature, ¢ is referred to as
the market price of risk: this is the additional ‘reward’ per unit volatility investors
receive to compensate them for the willingness to bear risk when putting money in
risky as opposed to riskless assets. We require

6, >0 & >, (233)

otherwise an arbitrage strategy with zero initial outlay and positive expected return
could be constructed (short a stock and invest the proceeds in a bond, then use the
principal and interest from the bond to buy back the stock).

As in the setting of quantile and efficient hedging (see section 2.2.2), we have an
Fr-measurable random variable H denoting the contingent claim with payoff H. In
the setting considered here, the payoff depends on the values of two risky assets at
maturity of the contract, at which point the contract holder may choose the larger

16
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of the two values:
H = max{S}, S} = Stlsizs2y + SF(s1cs2y- (2.34)

As such, H is the payoff for a purely financial contract. From option-pricing theory,
we know that its fair price Hy is

H
Hy=E* 2.
0 (eT.T) ) ( 35)

and as long as the seller of the contract receives Hy, the liability H can be hedged
perfectly (see, for instance, Melnikov et al. (2002)).

Since Hy will appear frequently in subsequent analysis and calculations, we give
the explicit form of (2.35), with derivations following the result. The perfect hedge
price of the contract with payoff H (2.34) is

. [ max{Sk, SZ - -
Ho— 5 (2ELIH) _sp i + 53 v ), 2:36)

where U! denotes one-dimensional cumulative normal distribution: for u ~ N (0, 1),

c e—u2/2
Tl(e) =/_Oo T du. (2.37)

The constants g1, 2 are defined as

1

n () + 5T

o= . , (2.38)
oVT
s2 a2
. n(3)+%7T
oVT ’
and

0?2 =024 02 — 2p0109. (2.39)

Note that Margrabe (1978) and Davis (2002) derive pricing formulas in the case of
perfect hedging for contracts with two risky assets, where one of the assets serves
as a strike in a call-type payoff.
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To calculate the formula for Hy, we rewrite (2.35) as

Hy - E° <max{Si,S%}>
eT

St « (5%
= E <er—:r1{s;25%}>+E (erTI{Sr}<S%})

_ g2 .
Sée 7 'E* 601W71‘ I sl o2 o2
{0‘2W%*—0’1W%*§1n (Egg)—i- 22 1T}

.2 .
+ SgeTZTE* eagW% I 52 0202 . (2.40)
{01 Wk —gaW2*<In (?})-{v 12T}
0

Above, we are using the expressions for evolutions of S* under P* given in (2.29).
Next, we simplify the sets of the indicators above by transforming the linear com-
bination of two Wiener processes into a single new Wiener process W* = (Wf)te[o,T]

under P*:
. W2* _ Wl*
wp o= 220 " AT (2.41)
c
WQ _ Uthl* _ UZWtZ*
i o ’
o? = o240k —2poi02.

Note that o represents the volatility of a risky asset with the underlying risk process
W*, and it is the same as the o in (2.39). Also, since 02 must be positive, we need
to check that the expression in the definition of o2 above is positive:

o2 = a% + 0% — 2poy09
> O‘%pQ + U% —2poioy as pP<1
=(o1p—02) >0
=02 > 0. (2.42)

Using the fact that random variables Wr} are normally distributed with mean
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zero and variance T, we can write

1

S,
{UQW%* — oW <ln (§%>
0
2 2
03 — 03
T =
#2220

SZ
{0’1W711* - UQW*_‘[Z‘* <In (—?)
SO

2 _ 2 2 2 _ 2
91~ 93 _ 2 St 91— 92
+A2%r] {UWT<1H(§OT>+ =
n (%) + %
= (< A5 2 (2.43)
B g oVT ’ .
wheres-—ﬂwN(O 1) w. 1. to P*
i = F , . T. .

Now we will utilize a lemma on p. 797 of Shiryaev (1999), referring to it as
the one-asset lemma. The lemma states that for two normally distributed random
variables n ~ N{fy, U%) and ¢ ~ N(pc, Ug), and a constant c,

B (e Tay) = (%) g1 ( ~ (e cov<<,n>>> e

¢

with cov(a, b) denoting the covariance between a and b, and ! the one-dimensional
cumulative normal distribution (2.37).

For our case, we take n = —o; W& ~ N(0,02T) and ( = s; ~ N(0,1) (w. r. to
P*) and calculate the covariances as required by the lemma:

(of — poic;)T
oVT ’

where 4,5 = 1,2. Note that since the underlying random variables W:f«, Wr} are
continuous (paths of Wiener processes are everywhere continuous), we can use the
lemma, for sets of type {¢ < ¢} as well as {¢ < c}.

Following the above counsiderations, we apply the one-asset lemma (2.44) and

cov(n, ¢) = cov(—o; W, s;) = (2.45)
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obtain

2
. 1
Hy = Sje= TE*{eWr'[ SN o2o2
{0'2W:,21*-01W11"* <In (E%)'F'%T}

0
o2 g2
+ 1 5 ZT}>
Sl

oj—o?
Sle;giTeéT\Pl n (ﬁé) T T 4 (0 — po102)T
0 ovVT ovT

2 2_ 2
i 5 In ﬂ% + Q%
2 ST 2Tl So 2
+ Sgez Te2 U

2
) 2%
+ S2e 2 TE* VT 52
{0‘1W%* -0‘2W%*<ln (Egl—

(03 — po109)T

ovT ov'T
= SoUNG) + SEU (F2)- (2.46)

This completes the derivation of the formula for the perfect hedge price in (2.36),
with §; given in (2.38).

Since we want to analyze equity-linked life insurance contracts, let us now see
how the presence of insurance risk affects the financial payoff H (2.34) and the
resulting pricing calculations.

2.3.2 Insurance setting

Let a random variable 7(z) on a probability space (Q, F, P) denote the remaining
lifetime of a person of current age . We can safely assume that the insurance
risk arising from clients’ mortality and the financial market risk have no (or very
minimal) effect on each other, hence the two probability measures P and P are
independent.

Now, term insurance products are types of policies whose payoff occurs before
maturity of the policy. For example, one could buy a 20-year policy paying 10,000
CAD in case the death of the policyholder occurs within 20 years from the date
of purchase. On the other hand, the payoff of life insurance products occurs on or
after the maturity of the policy, provided some prespecified event did not occur prior
to the maturity date. We work with a single-premium equity-linked life insurance
contract where the insured receives the payoff H given by (2.34), provided that
he/she is alive to collect that payoff. That is, we are interested in the payoft H

H=H I ;()>1}- (2.47)
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The fair premium Uy for a contract with such payoff is

Uo = FE*x E (He—TTI{T(z)>T})
= E*(He 7)) P{r(z) > T}
= E*(He™) rps, (2.48)

where 7p, = P{7(z) > T} denotes the probability of a life aged z surviving T' more
years.

Notice that mortality of the insured client (as reflected by his/her survival prob-
ability 7p,) makes it impossible for the insurance firm writing the contract to hedge
its payoff with probability 1:

0<7ps <1 = Uy<Ho=E" (He ). (2.49)

As mentioned previously, since mortality is not traded directly, it is not possible
to hedge mortality risk, as one hedges the risk associated with trading options by
taking positions in the underlying risky asset, for example. Thus the insurance
market is incomplete.

2.3.3 Quantile and efficient hedging for life insurance

In the situation when the quantity Up (2.48), collected by the firm from the sale
of the equity-linked life insurance contract with payoff (2.47), is strictly less than
the amount Hjy, necessary to hedge the payoff perfectly, the firm faces the risk
of default. To reduce this risk, the company must find some appropriate imperfect
hedging technique which optimizes the hedging outcomes, given constraints on initial
capital available for hedging. Below, we show how quantile or efficient hedging can
be applied in this situation.

In this section, we will modify notation from that in Foellmer and Leukert {(1999)
and Foellmer and Leukert (2000) to reflect the fact that now we are using quantile
and efficient hedging results in our setting.

Recall that quantile hedging seeks to find an admissible hedging strategy #* that
maximizes the probability of successful hedging:

P{w: V¥ > H}=maxP{VJ§ > H} with V< Uy < Hp. (2.50)

This is the optimization problem described in (2.10), and it is solved by a perfect
hedge n* for the modified contingent claim

H* = Hly», (2.51)
with )
At = {_ > a*e—rTH}. (2.52)
Zr
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Alternatively, efficient hedging aims at obtaining an admissible hedging strategy
7* that minimizes the shortfall risk:

E (l((H - V;I‘)ﬂ) = min B (I((H - Vf)*)) with Vo <Uo<Ho.  (253)

This problem is described in (2.17); its solution, again, is a perfect hedge n* for the
modified contingent claim

H* = H, (2.54)

I{a*eTZ
ga*:l—(—(%—T)/\l), p>1, (2.55)

where

with I = (I')~! denoting the inverse of the derivative of the loss function I,

QD* = I{1>a*6_TTH1‘pZT}7 0< P < ]., (256)

and finally
QD* = I{1>a*e_"TZT}7 p=1 (257)

The inequalities in (2.50) and (2.53) reflect the fact that the investor is budget-
constrained: Uy < Hy, Hy = E*(He "T) is the amount needed for a perfect hedge,
and the requirement that the initial cost Vj of the optimal hedging strategy must
not be greater than the amount available to the hedger: Vo < Up.

Now, there are several things to note about the adaptation of quantile and
efficient hedging results to our setting. First, we use 7* to denote the optimal
hedging strategy for both hedging methods; the cost of this strategy is always Uy
(in the notation of previous sections, the optimal strategy and its cost were denoted
(€, Vo); see discussions following (2.15) and (2.20)). Second, we denote modified
contingent claim H™ and use A* to denote the success set for quantile hedging, and
©* to denote success ratios for efficient hedging (compare with H, A (2.15), and &
(2.18), (2.19), (2.20)).

The constraint Uy on the initial capital available for hedging arises from the
insurance risk component (2.48), and is the same for both quantile and efficient
hedging; in sections 2.2.3 and 2.2.4, this constraint was denoted Vj (see (2.10),
(2.17)). Also, we denote a* the constant that appears in the explicit forms of A*
and ¢* above; previously, in (2.14), this constant was labeled a. Note that in our
case, just as in Foellmer and Leukert (1999) and Foellmer and Leukert (2000) for a,
a* is calculated from the budget constraint in the setting with nonzero interest rate
r. Let us explain this in more detail.

Consider the probability measure Q* constructed by Foellmer and Leukert when
using the Neyman-Pearson lemma to derive quantile and efficient hedging results.
The density of this measure is %% = Hio, as given in (2.11), with Hy = E*(H). In
the notation of sections 2.2.3 and 2.2.4, the cost of the optimal hedge §~ is 170, which,
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for the case of quantile hedging, becomes

dP* dQ
W = E*(HIA)=/~HdP*: giEde
A A

dQ* dP*
= [HEdQ*zHOQ*(A). (2.58)
i H

dpr*

This is equivalent to setting the maximal level of Type I error at Q*(A) = a =
Vo /Hy and then minimizing the Type II error according to the Neyman-Pearson
lemma. So in the setting of Foellmer and Leukert (1999), @ is calculated from
the equation Vy = E*(HI 5) (see discussion following (2.15)). Similarly to above
considerations, for the case of efficient hedging, @ is calculated from Vo = E*(pH).

In our case the interest rate must be taken into account when discussing the
probability measure Q* that corresponds to the null hypothesis in the Neyman-
Pearson lemma. For our setting, the density of Q* is defined by

Qe _ _He' _ H
dP*7T = E*(He=T) ~ Hoe'T’

(2.59)

that is, the density is the ratio of the discounted payoff to the risk-neutral expec-
tation of the discounted payoff. This allows us to express the cost of the optimal
hedge 7* for quantile hedging as

_ _ ndP* dQ*
Uy = E*He ™Isp)= | He ™ Tdp*= | He ™ T— 2 _gqp*
0 ( € A ) A* € A* € dQ* dP*
H, rT
- He T2 40 = HoQ*(A), (2.60)
A* H

just as in Foellmer and Leukert (1999) (see (2.58) above). Note that we dropped
the time reference for the densities above with the understanding that all processes
are taken on Fr and A* is Fr-measurable. The same reasoning and definition of
Q* density (2.59) enable us to calculate a* for efficient hedging formulas from

Uy = E*(@*He ™) = HyEY (¢*), (2.61)

as is done in Foellmer and Leukert (2000) for r» = 0.

Now, consider the definition of A = {dPy/dPy > k} from the Neyman-Pearson
lemma (2.4). Recall that Py corresponds to Q*, the probability measure of the nuil
hypothesis (fail to hedge), and P; to P, the real-world measure of the alternate
hypothesis (hedge successfully). In Foellmer and Leukert (1999), for » = 0, the
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authors get

P\ _ [dPdP"
dQ* 1 dP*dQ*
dP Hy _ - dP
== = H 2.62
{dP*H>k} {dP*>a }, (2.62)

with a = l;:/HO. For our setting with r > 0, we have
dP A dP dP* i
{dQ* g } B {dP* iQ }
dP Hoe'T - dP _ a

with a* = k/Hp. This is how we obtain the expression for A* (2.52) in our setting.
The success ratios * for efficient hedging are rewritten as above, taking into account
the adjustment for r > 0 in the Q* density, which leads to the modification a*e™ "%
from @ in Foellmer and Leukert (2000) in the formulas (2.55), (2.56) and (2.57).

It is worthwhile to stress the elegance of the quantile and efficient hedging ap-
proaches in the situation with financing constraints. The constraint on the initial
hedging capital may arise due to some external factor beyond the hedger’s control
(such as mortality risk in equity-linked life insurance contracts), or a circumstance
within the decision-making power of the hedger (he/she may be unwilling to put up
the entire amount required for perfect hedging and be prepared to take some risk
as a trade-off for offering the contract at a lower price). In either case, the hedger
can solve the problem of insufficient initial capital by maximizing the probability of
a successful hedge or minimizing the shortfall risk. For both of these perspectives,
the approach is the same: invest into the (optimal) strategy n*, which perfectly
hedges the modified contingent claim H*, and the desired optimization goal will be
achieved. Of course, the structures of H* and the corresponding strategy n* differ
for quantile hedging and for each risk preference case in efficient hedging. However,
conceptually, the above risk management ideas are easy to understand and thus are
more likely to be implemented.

In section 2.6, we will illustrate the situation where the investor cannot provide
the entire amount Hy required for a perfect hedge and is ready to accept some default
risk when using quantile hedging, or shortfall risk if applying efficient hedging.
Default risk is the probability that the hedge fails, we will denote default risk e
(in the notation of the Neyman-Pearson lemma, this is the Type II error §; see
(2.1) and (2.3)). Shortfall risk, which we will denote d, is the expected loss from
the strategy, defined in (2.16). Note that ¢ is an amount that could be lost due
to imperfect hedging, so it is expressed in dollar terms. We will show the possible
risk management strategies based on two different perspectives of the hedger. First,

we will calculate the level of default risk (or shortfall risk) if the hedger is willing
to invest Uy taken as a percentage of Hy into the optimal hedge. Second, we will
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illustrate how much initial capital U is required if the hedger wants to keep € (or
d) at some acceptable level, specified beforehand. This illustration is based on the
payoff (2.47), where the client chooses the larger of the values of two risky assets at
maturity of the contract, provided he/she survives to this date.

However, we can extend our study of quantile and efficient hedging far beyond
purely financial risk management considerations: the flexibility of the two hedging
methods makes them excellent tools for insurance applications, particularly in the
case of equity-linked life insurance products. Let us discuss the risk management
opportunities presented by quantile and efficient hedging in insurance in more detail.
On one hand, we showed in (2.48) that Up is the fair premium for an equity-linked life
insurance contract with payoff H (2.47). On the other hand, the results of quantile
and efficient hedging tell us that the budget constraint (Up in our case) is also the
cost of the optimal strategy =*, which perfectly hedges the modified contingent
claim H* respectively given by (2.51) and (2.54) for quantile and efficient hedging.
Based on this, we obtain the following equalities for the price of the equity-linked
life insurance contract in consideration:

Uy = E*xEHe ™) =FE*(H*eT) (2.64)
E* (HC_TT)Tpm — E*(H*e—rT)’

from which we can express the survival probability of the policyholder as

* *
The term E*(He™"T) above is known: it is the perfect hedge price (2.35) for the
contract with payoff (2.34). This price is calculated explicitly in (2.36).

Equations (2.64) and (2.65) are essential to the subsequent risk management
analysis of quantile and efficient hedging in insurance applications, as they give
a quantitative connection between financial and insurance risk components. Such
connection, in turn, allows the insurance firm to assess accurately the risks it bears
and to implement specific strategies to control these risks according to the preferred
risk management approach. That is, the firm can either offer the equity-linked
contract in consideration to any client and then, based on the fair price received
from this client, maximize the probability of successful hedging 1 —e, or, for efficient
hedging, minimize the shortfall risk . Or, the firm can set the acceptable level of
financial risk ¢ or the acceptable amount of expected shortfall 4, and then analyze
clients for the contract accordingly.

More specifically, in the first approach, the client’s survival probability 7p; can
be derived (based on his/her known age z) from some appropriate mortality model.
Then, if the firm chooses to apply quantile hedging, it will derive a* from (2.51)
and (2.65), and calculate the maximal probability of successful hedging 1 — € from
(2.50). When utilizing efficient hedging, the firm will find a* from (2.54) and (2.65),
and then compute the minimal shortfall risk § using (2.53). Note that the obtained
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values for the maximal probability of successful hedging or minimal shortfall risk
may not fit the company’s desired risk profile. Alternatively, the firm can utilize
equation (2.65) in reverse: first, choose some acceptable level of default risk € (or
shortfall risk 4), calculate a*, and then find survival probabilities 7p, of potential
clients. Next, using some particular mortality model, ages of clients paying fair
premiums (under the prescribed risk level) can be derived and risk management
consequences analyzed in light of the firm’s risk preferences.

We will illustrate the application of quantile and efficient hedging in insurance
in section 3.6, using the payoff where the client receives the larger of the value of
some risky asset or a deterministic guarantee at maturity of the contract, provided
the client lives to collect the payoff, of course. The effects of the three mortality
models of Gompertz, Makeham and Lee-Carter on the assessment and management
of mortality and financial risks will be discussed and illustrated in the context of
each of the two risk management approaches described above.

2.4 Theoretical results for two risky assets

In this section we present explicit formulas for the premium of the equity-linked life
insurance contract with payoff H (2.47) that pays the larger of the values of two
risky assets at maturity, conditional upon the policyholder’s survival to the maturity
date, as well as maximal probability of successful hedging for quantile hedging and
minimal shortfall risk for efficient hedging. The results are presented as theorems for
each of the imperfect hedging methods, with three cases for efficient hedging based
on the three risk preferences of the investor, and are followed by the corresponding
proofs.

2.4.1 Quantile hedging

Theorem 1

Suppose that the firm that sells an equity-linked life insurance contract with payoff

(2.47) decides to use quantile hedging to maximize the probability of successful
hedging.
Part 1. The fair premium for the contract is

U0 — E* (ma'x{s%ﬂ S’%} IA*)

erT
= 53 WPET 00, ) + 55 VAET, b, ). (2.66)
Part II. The probability of successful hedging is given by
P(A7) = VA&, 57, o) + V(35,57 ). (2.67)

Above, U2 denotes two-dimensional cumulative normal distribution of random vari-
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ables u1,us ~ N(0,1) with correlation p

e 2(1—92—(u1+u2—29u1u2)
2
V*(c,d, 0) = / / o 1 = 2 duidus, (2.68)
and
o _ ¢2(o2—01p) — (01 + ¢1)(01 — 02p)
pl - Q )
Jl o
9 = $1(01 — 92p) —(Cg+¢2)(02 —01p) (2.69)
0'2 (o2

Q Q

The constants Z; , and y are defined as

[02;0% + $1601 + ¢202 — o1(pd2 + ¢1)} T —1n (a*S§)

= :
9T
o2 —g2
0 [ 20"2 + ¢101 + ¢aby — o2(pd1 + (;52)} T —1n (a*S3)
Iy = , (2.70)
2 oSVT
Ui—i—gf ol
r— i+ 55 T—ln(aSO)
=Q
I = ,
' NGy
Uz-l—og * Q2
r—p + 25 T —1n (a*S?)
9 = (2.71)
T = , )
2 03T
gl 02— g2
o B[]
1 O'ﬁ 3
2 0' 0.2
Q ln(%)r>+[,u2—u1+ 1 2]T
Yy = g , (2.72)
oVT
and ¢ are given by
2
o7 = (014 ¢1)? + 2p2(01 + ¢1) + 3,
2
o = (02+¢2)” + 2p (02 + ¢2) + 6. (2.73)

Note that A* is given in (2.52), §; in (2.38), ¢; in (2.27), 6; in (2.31), o in (2.39),
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and oy in (2.28).
Proof.
Part I. To find the fair premium, we need to calculate

erT
Sl S2
= E*| =LI sty ] +E* | ZL1 sz 1
T > ik} 1S ol gorgt) et

2
1A T s | o WA
5062 E [ TT 1 _a*sk I{S,}ZS%}
Zr > T

—o2 .
+ S2e TR | e2Wh I{ . >E*S%}I{S%<'S%} . (2.74)

Zr~ T

The indicator sets above can be simplified as follows. In (2.41) and (2.43), we showed
that {S% > S2} and {S} < S2} can be written as

1 2 2
n () + 57T
1]

St > 621 = 51 < and
T T U\/T
In (%ﬁi) + i
{Sh< 82} = {sy< d e (2.75)

with the help of Wiener processes W* such that s¢ = %— ~ N(0,1) under P*.

.. . *S1 *82 . .
Similarly, we want to rewrite {71}" > aeTTT} and {?LT— > aeTTT } First, consider

* gl
%T > aer—sf} using the formulas for the density Zr (2.32) and the evolutions of
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S* (2.29) under P*, we can write

1 a* S% — g Wi —a W2+ (7¢+¢101+¢202) T a* S(l) eTT——‘72—1T+glw%*
Z_T = € > T

e'rT [

= %m+mm¢+@W%

o2 + o2
< ( 2 5 S 4 101+ ¢oba | T — In (a*SY)
- o2 + o2
= {JlQWzle < (__qi_z____l_ 4+ 101 + ¢obe | T —In (a*S&)

2 +a2
( ¢2 L+ ¢1601 + ¢292) T—1In (a*Sé)
SIVT

= {9« (2.76)

_ To write the last two equalities above, we defined a new Wiener process wie =
(thQ)te[O,T] w. 1. to P*:

(o1 + )W + g W2*

Wl = S , (2.77)
)
2
o7 = (o1 +¢1)? + 0% +2p(01 + d1) 2.

Similarly to the requirement o2 > 0 for perfect hedge calculations, we need to check
2
that O‘lQ is positive:

c@ = (014 01)2+ ¢} +20(01 + 1)
> (o1+¢1)>+¢3p° +2p(01+ d1)¢2 as pP <1
= ((o1 + ¢1) + ¢2p)® > 0
Q2
=07 > 0 (2.78)

o
Y1~ . N(0,1) w. r. to P*.

Also, since W%Q ~ N(0,T), the random variable siQ NG
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* Q2
Likewise, we simplify the set {Zl—T > aers;T };

{ 1 a*S% } —¢1W%*_¢2W,12:"+ (_22é+¢151+¢292> T - a*SgerT_aTQT+‘72W%*
et - e

Zr erT el )

= {(02 + o) WE + e Wi

o2 + o2
<< ¢2 2+¢161+¢292 T—ln(a*Sg)

172 0.2
<L—;Z + $101 + ¢292) T —1n (a*Sg)
s ’

= {s9< (2.79)

5r2Q ~ ~
with s§ = % ~ N(0,1) for the Wiener process W2?@ = (WtZQ)te[O’T] (w. r. to P*)

~ W2* Wl*
Wt2Q _ (o2 + ¢2) gia + g ’ (2.80)
2

‘72Q2 = (024 ¢2)® + &% + 2p(02 + ¢2)$1 > 0.

Notice that the formulas for criQ used above with W@ are the same as the ones in
(2.73).

From this point, we require a version of the one-asset lemma (2.44) to calculate
explicit expressions for expectations of type

E* (e_zI{:c<X}I{y<Y}) ) (2'81)

where z,y,z are normally distributed correlated random variables and X,Y are
given constants. Note that the approach for deriving the formula for the perfect
hedge price of H was similar (see calculations following (2.36)), but we had only one
indicator to worry about in that case.

We have derived the result that allows us to calculate expectations in (2.81), it
is the multi-asset theorem presented in section 2.5, with proof given in Appendix 2.
Here we utilize the theorem for n = 2 indicators, referring to it as the two-asset
lemma:

Two-asset lemma
Let  ~ N(pz,02), y ~ N(py,02) and z ~ N(pz, 02) be three (normally distributed)
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random variables with correlations pzy, pz2, py-. Then for given constants XY,

e (MZ_%) . \IIZ(X, ?, Pay)s

E (e Ipexy<yy) = (2.82)
. X — u.
X = fa + 02022,
Y = —H 46,
Oy

where U2 denotes the two-dimensional cumulative normal distribution (2.68).
Proof.

See section 2.5 and Appendix 2.

Now we will use this lemma to finish our calculations of the fair premium for the
case of quantile hedging. Based on previous simplifications (see (2.74), (2.75), (2.76)
and (2.79)), we have

_o2 .
Ug = SOeTITE* eng?l" 1 02 402 I S\ o2_42
o <—¢2—1+¢191+¢292)T—m(a*33) In (§%)+—2TLT
< N"Q/ 0000
Sy < deﬁ S1% VT
2 ZGT w2*
+ Sjez “E*| e ] o2 42 2\ 42,2
0 (i?—Jr 2 +¢191+¢292) T-1n (a*53) In (%})4"—]“2—2‘7"
_\S/
S2Q< ogﬁ 52< ov'’T
(2.83)
Now we will apply the two-asset lemma with z = ~o; WX ~ N(0,02T), z = s? ~
N(0,1), y = s; ~ N(0,1), and the respective correlations
. o: + b; + ,
pez = corr(s? —o; W) = —1——@62—’0%,
g
T
- 05 — 0
pyz = corr(s;,—oWg') = Z—-—l'—q,
o
Ao — agin) — (os Mo — o
Poy = corr(siQ,si) = 93(o; — 0ip) ((3 + ¢:){o — 7ip) (2.84)
oro

2

for i,7 = 1,2. Note that corr(s?7 s;) are exactly the correlations p? given in {2.69).
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Let us calculate X,Y: from (2.83), we have

2 2
("ﬁ"l 6+ ¢202> T - In (a*S3)

_|_
X, = ) +O‘1\/T ————01+¢1Q P2
oPVT o1
02 —g2
[ £t + 9101 + b2 — 01(pg2 + ¢1)] T —In (a*Sj)
= = f 5
VT 1
<ai+ﬂg+¢9 +¢)9>T—1n(a*52)
. 3 101 + ¢atls 0 /7 0o+ do + piby
2 = Q tooVT | ———F%
N oS
0.2_02
[ 4)2 2 4 $101 + ¢26s — 02(P¢1 + (152)} T—1In (a*Sg) o
_ =79 2.85
O'QQ\/T 2 ( )
and
S} g5—0o
. In (%) + 2547 _
R A
ovVT o
5! o2
. ln(§%>+ 2 .
oVT ’
~ In (%ﬁ—) +U2;a§T 02 —O1p
Yo = g +0oVT ( >
ovVT o
In (%ﬁ-) + %2T
= — =, (2.86)
oVT
with 22 and §; introduced in (2.70) and (2.38).
Then for Up in (2.83), we obtain
2
I R A T s A A
Uy = S(l)eTlTe ( 2) 02 (Xl,Yl,corr(s?,sl))
2
o2 —(0=-22)T A
+ SgeTzTe ( : ) o2 (Xz,Yz,corr(szQ, 52))
= S50, 41, p7) + SEUAES, o, ), (2.87)

which is the formula for the fair premium in the case of quantile hedging.

Part I1. Now we derive the formula for the probability of successful hedging P(A*)
in (2.67). For this, we adopt a similar approach to the one above for calculating the
fair premium. Note that now we work under the original probability measure P,
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not the risk-neutral P*. First, we rewrite A* as follows:
1 a*H
A = (—
{ZT 7T }
1 a*St 1 2
{Z; > —7 }n {Sr > 57}

1 *S7
+ {Z—T > aerTT} n{sk < S3}. (2.88)

f

Next, using (2.26) and (2.21), we simplify the sets above by rewriting them in
terms of new Wiener processes. For {S% > 52} and {S} < S2}, we have

1 2 2 1 56 ‘7% - U%
{51251} = qo2Wp—aiWrp <ln{ o5 )+ —p2t—— T
0
Sl 2_ .2
AL ) R Gl ks
b= ovT
= {s1 <77},
1 2 1 2 Sg U% ~ U%
{ST<ST} = 0'1WT—0'2WT<111 —S—l- + \ 2 — p1+ 5 T
0
52 G‘%—O‘g
ln () + (ko =+ 55%) T
= 89 <
? VT
= {s22< 7%}, (2.89)
with W = (Wg)te[O,T] such that
— W2 _ Wl
Wi o= Pt nre (2.90)
WE _ 0’1th — O'QWtQ’
o
02 = o)+ 02 —2po109 >0,

and s; = % ~ N(0,1) under P. The constants 72 are given in (2.72).

1
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*Si
For {—2.—1; > ae—ﬂl}, we get

_L S a*S} _
ZT erT
% 4+ o2
= {(01 + ¢1)WT +¢2WT < (r —pu1+ ¢ 2 V- (a*S&)

2
o1 1
e~ 01 Wi ¢2W2+—‘2T > a*Sle(‘“‘T—T)T”lWT}
0

2 2
r - p1+ a‘i’;‘fi) T —In (a*S})

AT

1 S a*Sz. _
ZT erT

2

72 2

_ 2 (Mz—r——)T-‘ranT
¢1W ¢2WT+ T > CL*S(Z)E 2

ofﬁ-ag o2
(02 + $2)WF + g1 W < |7 — pa + 5— | T —In(a"55)

|

r— ﬁﬂi’z) In (a"52)
_ o
= {32 < Zs @y, (2.91)

with W@ = (W:Q)te[oiT] such that

(o1 + ¢1) W} + o WP

Wi = - , (2.92)
gy
e (o2 + ¢2)WZ + 1 W}
t - O'Q )
2

452 =" LN, P. Al hat th 72 and 0@
and 57 = —L ~ (0,1) w. r. to P. Also, note that the constants Z;” and o;* are

given in and (2.71) and (2.73) respectively, and that oiQ ? > 0, as shown in (2.78).
Now (2.88) becomes

A ={s? <zP}n{s <P} + {sF <2F} {52 <77}, (2.93)

where the respective correlations corr(siQ,si) = pZQ are given in (2.69) (see also
(2.84)). All above considerations allow us to write the set of successful hedging in
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its finalized form

P = P({s2 <32t {s <P+ (s < 3§} {2 < 3F))

= UE2, 92, 09) + 923,93, p3). (2.94)

2.4.2 Efficient hedging: risk-aversion

Theorem 2
Suppose that the firm that sells an equity-linked life insurance contract with payoff
(2.47) decides to use efficient hedging to minimize the shortfall risk. Further, suppose
that the firm’s risk preference is risk-aversion, so that for the loss function l(z) = P,
p>1.
Part I. The fair premium for the contract is
max{S%, S2}

Uy = E* <90*—er§—T

S5 - WA(E, G, pf) + 8§ VA5, G2, p3)

Part II. The shortfall risk is given by

E(MH-Vvo)Y)) = N-[(e, %, o) + V(e 55, p5)]
+ (sl)pe(“l‘é)“*é“z
1 .

2 2
ne=3 | Tp+ 319
Pe

‘112(]::17 gjllc7 _pf)

+ (S5) (W (ka, 55, —p3). (2.96)
Above, ¥? denotes two-dimensional cumulative normal distribution given in (2.68),
with
A _ ¢$2(02—01p) — (¢1 —o1(p — 1))(01 — 02p)
pr = E )
or'o
$1(01 — 02p) — (¢2 —o2(p — 1))(02 — a1p
2

The constants M, N, if, Ci, U5, Ci, Uss ki, and fgf are defined as

a2T
1

(a* ) p—1 e2(-1)2
T+

o2
(r+—2<2+¢191+¢202> —

: (2.98)

e
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(2.99)

In ((S)P~ &) +

v

2 2 42
(r+ %) + 252 4 1001 — o) + 82062 — po)| 7

~A
¢ = ,
' oEVT
2 2__ .2
In ((S3)P~1&) + [p (r + "72) + 772 4 o0 — 00) + (61 — p@)] T
~A
Ty = O’2E\/T 3
(2.100)
o2 o2 2 2
In ((S)P~12) + [p (r=2) + 257 - 2o+ 41(01+ 1) + (02 + pal)] T
a = 0{5 T ’
o2 0’2+ 2 2
In ((S3)P~1E&) + [p (7“ - 72) + %12- - 1% + ¢2(02 + 02) + ¢1(61 + p02)] T
02 = 0_2E\/T 5
(2.101)
1 2_ 2
. In (%(02)-) + (022U1)T+[¢1(0'1—O'Qp)—(]SQ(UQ—Ulp)]I%
= U\/T )
2 02 —g2
B In (%%)+ ( = 2)T+[¢>2(02—01p)—¢>1(01—Uzp)]p—:fi
¥ = 7T , (2.102)
ovVT
o2 o2 o2
In ((Sé)p‘lz%) + [T + '22 - p—fz% + (p — 1) (/11 — %) +p(¢101 -+ (}520‘1,0)] T
“a = 0{3 T ’
o2 o2 o2
In ((Sg)P—lapT) -+ [r + 7"5 — ﬁ? +{(p-1) (#2 - 72> + p(daog + ¢1O’2p)} T
Cy = O_QE\/T R
(2.103)
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In (%é‘) + [#1 — 2+ BT 4 2 (d1(01 — 02p) — (02 — Ulp))} T

—C

o

yl = O’ﬁ )

() 4 ke -+ D5 2 (9a(0n — 010) — (01 — 09))| T

Y = O'\/T bl

(2.104)

o m (%) - [ + %401 (1~ %) ~per01 + pr01p— oo 1»} T
ky = O‘lE\/T 3
o m(%spr) - [ +% 4+ -1 (12— %)~ plg202 + br020 ~ o3(p - 1))} T
ke =

oEVT ’
(2.105)

st 2_ 2

i In (g%) + [Ml —p2+ 5+ plof - 0102/0)] T

h - U\/T )
52 62— g2 9

i In (:g%) + [,uz —p1+ =52 +p(og — 0‘10‘2p):| T

_ , 2.106
Yo O'\/T ( )

E .
and o, are given by

(0f)? = o3+ (1-p)0? - 201(1 - p)by,
(05)* = 03+ (1—p)®c3 —202(1 — p)bs. (2.107)

Note that ¢* is given in (2.55), §; in (2.38), ¢; in (2.27), 6; in (2.31), o in (2.39), and
o4 in (2.28). Also, the formulas for the premium and the shortfall risk above hold
as long as technical conditions p # g—; and p # g—i are satisfied, as explained in the
proof of Theorem 2. The conditions are not restrictive in any way: the likelihood of
having two risky assets with correlation of the underlying Wiener processes being
exactly equal to the ratio of 6; is very small. However, in case this does happen,
there are ways to deal with the situation (please see the proof for more details).
Proof.

For proofs of pricing and shortfall risk formulas for all risk preference cases of efficient
hedging, we first simplify the expression for the modified contingent claim H* = ¢*H
(2.54). Second, we rewrite Uy in terms of indicator sets, which we simplify by
introducing new Wiener processes. Third, we evaluate the resulting expectations of
type (2.81) by utilizing the two-asset lemma (2.82). Notice that the second and third
steps are the same as in the approach of proving the results for quantile hedging.
Because of this, we will only show major steps in the derivations, leaving out tedious
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calculation details.
Part I. We wish to calculate the fair premium for the case of risk-aversion using
efficient hedging. The success ratio * for this case is given by (2.55):

* ,—rT
(p*:l_<{(ae_Zqi/\l)’ p>1,

H

with I = (I')~! denoting the inverse of the derivative of the loss function . Since
we are using [(z) = zP, we have

1 [1\r1
V'(z) = paP~? = I(z)= o7 <—> ’ ) (2.108)
therefore
(e 2r) = k*-(2Zr)5T,
a® \r-1

h kY = — . 2.109
where (peTT> ( )

Then H* simplifies to

H = go*HzH—(k*(ZT)p—ffAH)

1
= [(H=k(Z)r-1)] 2.110
(8 -k (20)77) fitanye ey (2.110)
which leads to this expression for the fair premium:
L (v H
UO = E (érT)
H k* 1
= E*| =1 — Zpyr1]
<erT {k*(zT)p—lr<H} o7 Zr)? {k*(zﬂﬁw})
« [ St
= F (Eﬁl{k*(zT)p’}T<s;}I{5%25?r}>
k
-7 (erT(ZT)p ll{k*(ZT F—T<sl} {5125%})
. [ 5%
tE (eTTI{k*(ZT)p—lr<S§}I{S%<S?r}>
o AT =S 1 2.111
- o7 (Z7)? {ir(amtr sy} shest) |- (2.111)
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Now we work with the indicator sets above; we already know that {SL > S2} and
{S} < S2} simplify as shown in (2.75). So we need to express {k*(ZT)P_}l < S%}
and {k*(ZT)ﬁ < S%} similarly. Since the calculations are symmetric for the for-

mulas involving S¢, from now on we show derivations for S' and only state the
results for sets involving S2.

Consider the set {k*(ZT)PlTl < S%}: using (2.32) and (2.29), we can write

{k*(ZT)ﬁ < St} (2.112)

2

2
¢ * ¢ % g
sowpes vy -(Fraosen) L () reowy

< Sée(

Az S of % i
{Uf‘W%A <In (7}> + (T_ 2)TH <7¢+¢191+¢292 p-1
) s3 a? % L
n{g)+tlr—3 )T+ |5+t +d20: ) 5
A
51 < ,
1 VT

= { k*e

where W14 = (W24),c0. 71 is a Wiener process under P* such that
t Jte[0,T]

(20— o) i + i

— , (2.113)

2 5
" = <5% - 01) " fgl)Q +2pp¢—21 (pgb—ll - Ul)
(¢1 —01(p—1))* + ¢5 + 2p¢a($1 — o1(p — 1))
(p—1)?
oj +ai(p —1)* ~ 201(p — 1)(¢1 + po2)
(p—1)2 ’

i1A
and s = % ~ N(0,1) (w. r. to P*). To simplify the expression for (54)? above,
we used the definition of o given in (2.28).
We must check that (5{)2 > 0. First, note that ¢; (2.27) can be expressed as

p02 -6 Pel - 62
¢1 = T—? and ¢2 = T?_ (2114)
= ¢r1tpp = b,
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which allows us to write

0‘3, + U%(p - 1)2 +2016:1(p—1)

(5_A)2 —
! (p—1)?
o1p® +201(61 — o1)p+ 03 + 0f — 2016,
- ~ . (2.115)
(p—1)
Denote
Q(p) = o2p? +201(01 — o1)p + 035 + 0% — 2016;. (2.116)

We examine the discriminant D of the quadratic Q(p) to see when Q(p) > 0:
D = 40%(91 - 0'1)2 - 40%(0'3) + O‘% - 20‘161)
= 407(6] — 03). (2.117)

Now we need to figure out the sign of 62 —ai. Observe that using (2.114) and (2.28),
we can write

62 + 62 — 200,05

2
05 = , (2.118)
¢ 1— p2
which, in turn, leads to
91 — O'¢ - - B
I—-p
1 2 2
= ———(pf1~602)" <0, as p°<L (2.119)
1-p
We see that D < 0 as long as p6; — 62 # 0, or, equivalently,
p# 62/01. (2.120)

This implies that Q(p) > 0, that is, (5{)2 > 0. For the set with S? we get a
symmetric condition

,07é 61/92. (2.121)
It is precisely (2.120) and (2.121) that give rise to the technical conditions in The-
orem 2.
In case that p = 62/61, the quadratic Q(p) would have a double root at

—(61 — 01) /01,

which means that volatility &f‘ would equal 0 if p happened to be precisely equal to
the root of Q(p). This would make the set in (2.112) equal to 2 (or the empty set)
and reduce our calculations with sets involving S* to those done previously for the
case of perfect hedging (see (2.40)). Alternatively, p could be slightly adjusted to
not equal the root of Q(p), and we would proceed with computations as shown in
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the remainder of the proof.

1
Before we return to the simplification of the set {k*(ZT)P—-f < S’:}w}, consider

(2.115):
G4y = aé +o2(p—1)2+20101(p— 1)
(p—1)
oE)2
= (1(7 _1 )1)2, (2.122)
with of defined in (2.107). Now we can write
{k*(zr)7 < st}
1 2 o2
() ()T <7¢+¢lel+¢292) T
=457 <
! AT
1 P 2
In (%9-) + (T‘ — 71> T+ (% + 161 + ¢202> p—z_}
oFVT
\
(2.123)

Consider the expression for Up in (2.111): using (2.75) and (2.123), we can write
a part of it in the simplified form as

Sl
E*| =L
<eTT I{k*(ZT)p—ET <g%}1{5%25%})

2
1 2T oWl
= 2t B W a1
o€ e I{s{l<k{‘} { ln(

where

1 i&. i’_l.z_ T ai 0 T

n{z)+Iir—5 -+ 7+¢101+¢22 P
BT

Now we apply the two-asset lemma (2.82) to evaluate the expectation above.
We take z = —01Wi* ~ N(0,07T), z = sf ~ N(0,1) and y = s1 ~ N(0,1); the

k= (p-1)

(2.125)
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necessary correlations are calculated to equal

pmz O'lE p_ 1 1 p_l ?
gy — 02p
Pyz = g
p2(02 — 01p) — (¢1 — 01(p — 1))(01 — 02p)
Pzy = ) oEo )( :p‘lA) (2‘126)
1

with p{' defined in (2.97).
Applying the lemma with the above parameters to the expected value in (2.124)
and simplifying the resulting constants, we get

«( 5t | 1q,2/2A ~ A
E‘ (GTTI{k*(ZT)p%'<S%}I{S%ZS%}> - SO\I’ (551791#’1 )7 (2.127)

with #{ and §; given in (2.100) and (2.38).
Now let us return to Up in (2.111). We will simplify another term in this ex-
pression using (2.32), (2.123) and (2.75):

PR
E (eT—T(ZT)p 1I{k*(zT)p_£I<SF}}I{S%ZS%})

2
7o T
* - —“+¢101+¢202>T vy N
k (2 plE* elW'11"+ ZW%I

= 7€ -1 p-1 ( A<IEA}I - (§é>+02702T
.
(2.128)
Define a Wiener process W? = (WP )telo,r] under P* as
_ DL pylx 4 P22+
wp o= Lt el t (2.129)
Op
2 2
2 o1 $5 P21
o, = + +2p
P -1 (-172 T(p-17
2
o
i
= >0
-1
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with o4 given in (2.28). Then (2.128) becomes

2
%% T
L* —(7+¢101+¢292)ﬁ . T vip
aT* e |l T)f{sf<éf}f{

2
Now we apply the two-asset lemma (2.82) with z = —%WTE ~ N (0, %T),
A

z,y = s8¢,81 ~ N(0,1) under P*, and correlations

a1(p — 1)(¢1 + p2) — 0}

Pzrz = 0‘¢o‘f7 9
_ ¢1(o1 — 02p) — P2(02 — 01p)
Pyz = .
U¢,O’
by = P (2.131)

After some simplifications (see (2.125), (2.38) and (2.109)), the expectation in
(2.130) becomes

* k* % _ 2/~ ~c A
E (@«_T(ZT)” 1I{k*(zT)53—r<s;}I{S%ZS%}) = M-V (e, 7, 01), (2.132)

with M, ¢; and §§ defined in (2.98), (2.101) and (2.102) respectively.

At this point, to complete the proof, all above calculations would be repeated
for expectations involving S2. But, as mentioned previously, since the results are
symmetric, we omit these calculations here and simply state that by putting together
(2.127), (2.132) and their respective counterparts for S2, we obtain the formula for
the fair premium for the risk-aversion case of efficient hedging.

Part II. Now let us derive the formula for the shortfall risk for the case of risk-
aversion. Based on the discussion after (2.17), the form of success ratio (2.55), and
(2.109), the shortfall risk can be expressed as

E(H-VE)Y) = BEUQ-¢)H)
o —rTZT) A H) )

(
(v )

+ E H”I ) (2.133)
k*(ZT)FI>H}
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Note that the first equality is established on p. 123 in Foellmer and Leukert (2000).
This expression further reduces to

\p L
1yp
+ E ((ST) I{k*(ZT)p—lrzs%}I{S%zs%}>

*\P —‘%—
+ E((k ) (ZT)” II{k*(ZT)P—}T<S%}I{S'}"<S%}>

E (1" - Vi)

2\p
+ FE <(ST) I{k*(ZT)P—iIZS%}I{S}<S% ) . (2.134)

Now, consider the sets above. We already know how to simplify some of them
under P*, but now we work with the original probability measure P. As in the
proof of Part I, we show the derivations for sets involving S*, as results for sets with
S? are symmetric. In (2.89), we showed how to reduce the set {S% > S2}. Now

1
we have to simplify {k*(ZT)ﬁ < S’qlq} Using the same approach as when working

with this set in the proof of Part I (see equations (2.112)-(2.123)), we can write

{k*(ZT)ﬁ < Sk} = {s <K}, (2.135)
where
sl 2 a2
°q _c Zo T
K =(p- 1)ln (k) i (m _ZL) Tt (2.136)
1 O'lE\/T 3
1A - —
and st = W7T1T— ~ N(0,1) (w.r. to P) with a new Wiener process W14 = (thA)te[O,T]
defined by
o1 _ o) Wi + S22
- = ¢ 1 Wi
WA = (” - )~A Pt (2.137)
93

for which (5{)% = % > 0 as long as p # 62/6; (see discussion following (2.113)).
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We simplify {k*(ZT)Ei_l > S%F} similarly and obtain

* 2 0’2
ln(k—>— (/,Ll—i'l)T~—¢L
_1 S 2 2 p—1
Bz > Skt = s <(p—1 0
{ ( T) - T} 1 —(p ) O'lE\/T
= {sf <K (2.138)

Now let us simplify the first expectation in (2.134):

*\p =5
E ((k Y (Zr)? 11{,6*(2,[@1 <S%}f{s}zs%}>
asz THP =
kit 2P e
= (k*)pe 20-1) | <6(P—1wT) I{S{‘<Ef}l{51§?‘j?}) s (2139)

with l_c‘l“_and ﬂlQ given in (2.136) and (2.72). Above, we used a Wiener process
WP = (WF)iep) (W. 1. to P) satisfying

~ DLl S22
WP =1t . p177t (2.140)
p

2
where 02 = (—p;“‘;—)g > 0 (see (2.129)).
To evaluate the expectation in (2.139), we apply the two-asset lemma (2.82) with

_ o202
y = _%Wg ~ N (07 (?f%—fT) T,y = 5‘14,51 ~ N(0,1) under P, and the corre-

sponding correlations given in (2.131). As before, after appropriate simplifications,
we obtain

*\p £ _ 2(A o5l LA
E ((k ) (ZT)p 1I{k*(ZT)171—I<S}[,}I{S%ZS%}> =NV (Clyympl )7 (2141)

with &1, 7§ defined in (2.103), (2.104).
Similarly we simplify the second expectation in (2.134): using (2.21), (2.138)
and (2.89), we get

1\p
o <(ST) I{k*(zT)p—irzs;}I{S%ZS%}>

U2
1 /J'l'__l)TP Wl
= (SO)Pe( 2 E (ecnp TI{sf<‘E1A}I{31§g?}> . (2.142)
Now we proceed in the usual manner, applying the two-asset lemma (2.82) with

z = —pW} ~ N(0,02p?T), z,y = si!,s1 ~ N(0,1) under P, and correlations
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given by

p—1/( ¢ 2
Prz = E< _Ul+¢p))

o7 p—1 p—1
g1 — 02p
Pyz = '0—7
p2(o2 —o1p) — (1 — o1(p — 1)) (01 — 02p
by = 22 Do zow) a4

gy o

After appropriate simplifications, the expectation in (2.142) becomes

1yp
B <(ST) I{k*(ZT)p% 25%}1{5%25%}>

2 2
T+, -
=<s&>Pe(’“ ) TRk, gk, — o), (2.144)

with k1, 7% defined in (2.105), (2.106).

Repeating the above steps for the remaining two expectations in (2.134) that
involve S? and putting together (2.141) with (2.144) enables us to write the final
formula for the shortfall risk in Theorem 2.

2.4.3 Efficient hedging: risk-taking

Theorem 3

Suppose that the firm that sells an equity-linked life insurance contract with payoff
(2.47) decides to use efficient hedging to minimize the shortfall risk. Further, suppose
that the firm’s risk preference is risk-taking, so that for the loss function I(z) = ¥,
O0<p<l.

Part I. The fair premium for the contract is

UO — E* <(p* ma‘X{S::Zl—" S%})

erl
= S5 -WA(F, 01,01 ) + S5 - VH(F5, 72,03 )- (2.145)

Part II. The shortfall risk is given by

Q
w3,

2
o Tp+ 2L Tp? ~ o
E((H-Vp)h) = (Sé)”e( ) 2w E) - v EL el
+ (S&)”e<“2 2 et o @d) - v@L, i, b)) -

(2.146)

Above, U! and ¥? denote one- and two-dimensional cumulative normal distributions

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



given in (2.37) and (2.68) respectively, with

r _ ¢$2(o2 —01p) — (¢1 +01(1 = p))(o1 — 02p)

£ - E 3
0'1 g

I = ¢1(01 — 02p) — (¢2 +E02(1 —p))(o2 — Ulp)_ (2.147)
U2 ag

The constants #7 , T

; and g are defined as

)

[61;0% + ¢1(61 — 01) + ¢2(02 — po1) +p (r + %%)} T —1n ((S3)*Pa*)

T
T = ,
! ofj T
2_ 2 2
[ﬂ%’z + ¢2(02 — 02) + $1(61 — po2) +p (r + UQ—Z)] T—1n ((Sg)l—Pa*)
jg - cET ’
2
(2.148)
r 2 0-2
[ E e aen (- F) - s394 i+ 02010 T (50
T = L :
! oPVT
_ , .
’ T+ % -(1-p) (N2 - %) — p(o3(1 — p) + ¢202 + ¢102P)} T —1n ((53)*Pa*)
= L :
2 BT
(2.149)
51 2_ 2
o In (g%) + [M-MQ-FUJQ—UL-FP(U%—UNW)]T
yl O'\/T )
2 2_ 2
In (:Sg%) + [uz — p+ A5 4 p(of - Ulazp)} T
7= 0 . (2.150)
oVT

Note that ¢* is given in (2.56), §; in (2.38), ¢; in (2.27), 6; in (2.31), ¢ in (2.39),
04 in (2.28), and of in (2.107). Also, as in the case of risk-aversion with p > 1,
the formulas for the premium and the shortfall risk above hold as long as technical
conditions p # g—; and p # g—f are satisfied (see the proof below), but these conditions
are not restrictive, as explained in the proof of Theorem 2.

Proof.

Part I. To derive the formula for the fair premium for the case of risk-taking, recall
that the success ratio ¢* (2.56) has the form

(P* = I{l>a*e_rTH1_PZT}7 0<p<l
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Using this, we rewrite Uy as follows:

(¥ H
L H
« (St
- <Eﬁl{l>a*e*rT<S%>1~PZT}I{s;zs%}>
o 5%
B eT—TI{1>G*E‘TT(S%)l—PZT}I{Sks%} . (2.151)

As in the proof of Theorem 2, we show calculations for S'; the calculations for
$? are symmetric. The set {1 > a*e~"7(S})1PZr} simplifies to

{1> a*e " T(SH P Zr}

~ 035 o2
= {JlElewT < (7‘ + 0} + $161 + P22 — (1 — p) (7‘ — %)) T—1n (a*(Sé)l—P)}
= {s] <k}, (2.152)
where
) (r + % + 4101 + dablr — (1~ p) (r- %)) T —In (a*(S3)1-P)
K = , (2.153)

oBVT
: o ~
the random variable sT = V_V\/ﬂ% ~ N(0,1) under P*, and the Wiener process W17 =
(thT)te[(),T] is defined by
((1 - p)Jl + ¢1)Wt1* + ngWtz*

wiT = E , (2.154)
01

with oF given in (2.107).
Here we do not have to check again that ()2 > 0, since in (2.122) we derived
Ey2
the relation (5{1)% = ((:_11))2 >0, and (2.115)-(2.119) show that (5{)? > 0 as long as

pF# %% (p#£ g—;) holds. Note that these technical requirements cause the conditions in
Theorem 3 and are the same as the ones in Theorem 2 (please refer to the discussion
of (2.120) and (2.121)).
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Using (2.29), (2.75) and (2.152), the expectation in (2.151) becomes

« (St
E <—e—r—'f1{l>a*e_’"T(S,})1PZT}I{S%FZS%})

2
1 2007 o Wi*

= 2 T -

Spe E* e I{s’{ <k'_1'['}1{

Now we apply the two-asset lemma (2.82) to evaluate this expectation. We take
z= -1 WL ~ N(0,02T), z,y = st ,s1 ~ N(0,1) (w. 1. to P*). The corresponding
correlations are

(1 —=p)o1+ o1+ po2

Pzz = — O_lE s
01— 02p
Pyz = o »
Pzy = p{, (2'156)

with pI defined in (2.147).
After appropriate simplifications, we obtain this expression for the expectation
in (2.155):

« (57 o
E (er_gj{ba*eﬂ(sw—pzT}I{s;zs%}) = SeUA(E], 1, p1). (2.157)

The constants %7, §j; are given in (2.148), (2.38). Repeating these calculations for
the expectation in (2.151) containing S? and putting them together with the above
result produces the finalized formula for the fair premium for the case of risk-taking.
Part I1. To derive the formula for the shortfall risk for the risk-taking case, based on
the discussion after (2.17) and arguments on p. 129 of Foellmer and Leukert (2000)
that establish the first equality below, we can write

E((H-VE) = EWH) - ¢ UH)
= E(H")~ B(¢"H7)

= kb ((S’j‘r)pf{s,_lrzsgo +E ((S:QF)pI{S;d%})
- F ((S%w)pf{l>a*efrT(S%)1—pZT}I{S}ZS%})

— B (S Lo rszprzy lisiassy) - (2:158)

As before, we show calculations for items involving S*.
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Consider the expectation E ( (S+)PI c1 5021 ): using (2.89) and (2.72), it can be
T {87>5%}

written as
2
m—3)Tp 1
E (S} Lszs2y) = (S},)Pe( 4) E (e o). (2.159)
To evaluate this expression, we use the one-asset lemma (2.44) with n = —o1pWi ~
N(0,03p*T), ( = s1 ~ N(0,1) under P, and
(0} — 0102p)Tp
cov(n,¢) = ZL _I192P)° P 2.160
(n,¢) s (2.160)
Following these considerations, the expectation in (2.159) becomes
2 2
— 2L ) Tp+ T Tp?
E (S} Iisyss2y) = (Séwe(‘“ )reestes v (gh), (2.161)

where U1 denotes one-dimensional cumulative normal distribution (2.37) and 77 is
defined in (2.150).

Now consider the set {1 > a*e™"7 (S%)!"PZ7}: we simplify it under P similarly
to what was done in (2.152) under P*:

{1>a%e ™ (Sp) P21}
0'2 g
= {UIEW%T < <r+ 5 —(1-p) (ul - ;)) T ~In (a*(Sé)l‘p)}
= {sT <’} (2.162)

where

(T +%--p (- %i)) T~ In (a*(5))~7)

kT = , 2.163
1 O'lE\/T ( )
viT —
the random variable s = W7”}—T— ~ N(0,1) under P, and the Wiener process W7 =
(I/T/tlT)te[o,T] is defined by
- 1- ! W
thT — (( p)al + qs;)Wt + ¢2 t , (2164)
g1
with of given in (2.107).
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Let us now return to the other expectation involving S! in (2.158):
1
E ((ST)”I{M*e—rT<s;>1—pzT}f{s;zs%})

2
p—2 ) Tp o 1
= (Sé)l’e( 2> E (e W gy (2.165)

{8197?}) ’
and, as many times before, we apply the two-asset lemma (2.82) with z = —o1pW} ~
N(0,02p?T), z,y = sT,s1 ~ N(0,1) (w. r. to P). The corresponding correlations
are the same as those defined in (2.156).

Finally, after some simplifications, we can write

E ((Sr})i"]{l>a*E_TT(S;)l—pZT}I{S}ZS%})

2 2
(m—gl)Tera—lsz o
= (Sg)peN P/ T wAE, g, 00)- (2.166)
The constants 1, 7 are given in (2.149), (2.150). Performing symmetric calcula-
tions for expectations with S? and putting together (2.161) with (2.166) allows us
to write the final result for the shortfall risk for the case of risk-taking.

2.4.4 Efficient hedging: risk-indifference

Theorem 4

Suppose that the firm that sells an equity-linked life insurance contract with payoff
(2.47) decides to use efficient hedging to minimize the shortfall risk. Further, suppose
that the firm’s risk preference is risk-indifference, so that for the loss function l(z) =
P p=1

Part 1. The fair premium for the contract is

p (- mentS )

UO el
= S5 - W&, 5, 01) + S5 - V(3L G, 03). (2.167)
Part II. The shortfall risk is given by
EWH-Vo)h) = SeeT - [V(5) - V(@01 01)]
+ Sgere T [WN() - V(3L B pp)] - (2168)

Above, Ul and ¥? denote one- and two-dimensional cumulative normal distributions
given in (2.37) and (2.68) respectively, with

¢2(02 — o1p) — $1(01 — 02p)

I _
= 040 3
pé — ¢1(O‘1 - UQP) - ¢2(0’2 - Ulp) ) (2169)
a0
51
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The constants #!, 7!, and g are defined as

[r + 52% + ¢1(61 — 01) + ¢2(62 — Pﬁ)} T —1n(a*)

O‘¢\/T ’
0.2
I [T+_2£+¢2(‘92_02)+¢1(91 ——paz)} T —1ln{a*)
By = ) 2.170
2 oo/ T (2.170)
, )
{7” + 22 — ¢101 — doo1p)| T — In(a*)
I
] = = ,
! U¢\/T
0’2 b
[7" + _gg — ¢909 — ¢109p)| T — In(a*)
=T
T2 = - , 2.171
2 osV'T ( )
s 2
g @)l g]T
1 O'\/—T )
2
() e+
B2 = : : (2.172)
oVT

Note that ¢* is given in (2.57), %; in (2.38), ¢; in (2.27), 6; in (2.31), o in (2.39),
and oy in (2.28).

Proof.

Part I. Let us calculate the fair premium for the case of risk-indifference. Recall
that the success ratio ¢* (2.57) has the form

SO* = I{1>ZTa*e—TT}7 p= L.

e (%)

= ( T {1>Z:ra*e‘TT})
= (G
= (o

With this, U can be written as

Uy =

T I{1>ZTa e*’"T}I{S1 >8? })

rT I{1>ZTG*€'TT}I{SI <52 }) . (2.173)
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Note that now we only need to simplify the set {1 > Zra*e™"7} and then apply
the two-asset lemma to the expectation with S above. Using the expression for
density w. r. to P* (2.32), we have

* —rT

1 2 &)
W+ W — | 5 +d1601+¢262 | T
a e

{1>Zra*e™™} = {1>e

= { <k}, (2.174)

where

2
(T + 322 + ¢161 + ¢292> T—1In (a*)

k= , 2.175
T (2.175)
the random variable s/ = WT:%, ~ N(0,1) for the Wiener process W/ = (W/ Jeelo,1)
(w. r. to P*)
. Wl* W2*
Wi = e ;@ L, (2.176)
¢

with o4 given in (2.28).
Now, using (2.75), we can write

E (H—I}I{sza*e—rT}I{S%ZS%})
- . (2.177)

To evaluate this expectation, we use the two-asset lemma (2.82) with z =
—o1WE ~ N(0,0%T), z,y = s/,51 ~ N(0,1) (w. r. to P*), and correlations

. pitp
Prz — ——
04
g1 — 02p0
Pyz = T’
Pzy = ,0{, (2'178)
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with p! defined in (2.169). After simplifications, the expectation in (2.177) becomes

« (51 o
E <ZTTTI{1>ZTa*e-TT}I{s;zs%}> = SpU*(Z, §1, p1)- (2.179)

Same calculations for the expectation with S?, together with the ones above, lead
to the final formula for the fair premium for the risk-indifference case.
Part II. Now we derive the shortfall risk formula for risk-indifference. Using the
expression for ¢* (2.57) and the fact that [(z) = z here, we can write

B((H=-VF))) = E(1-¢)H)
= E(H) - E(p'H)
= E(SHispas) + B (SHispasp)

- E(S%I{1>ZTa*e—TT}I{S}25%})

— E (S%I{1>ZTQ*6_TT}I{S%<S%}) . (2180)
For E (S}I{S%ZS%}), we have
2
pi—o T o1 W
E (S}I{S%ZS%}) = Sge( ) E (M, o) (2.181)

based on (2.89) and (2.72). To this expression we apply the one-asset lemma (2.44)
with n = —a; W} ~ N(0,1), ( = s1 ~ N(0,1), and

(02 — 109p)T

cov(n, () = 2.182
(.9 T (2.182)
We obtain

E (Szlrf{s}zs%}> = Sge T (g1), (2.183)

with W! given in (2.37) and ! in (2.172).

Now consider {1 > Zra*e™""}: under P, this set simplifies to
-~
{1> Zra*e™ T} = {l > e¢1W%+¢2W%_T¢Ta*e_TT}
= {s' <k}, (2.184)
54
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where

0.2
. (r + —f) T — In(a*)
k' = , 2.185
T (2.185)

S

I — _
the random variable s/ = T’; ~ N(0,1) for the Wiener process W! = (W/ )eelo,1)
(w. r. to P), defined as

- w} W2
i AL (2.186)
0¢
with o4 given in (2.28).
Based on the considerations above, we can write

E (S:IFI{l>ZTa*e~rT}I{sgrzs§}>
2
/J'l—cr_L T 1
= Sée( 2 ) E (601WT1{51<EI}I{5155?}) (2.187)

and apply the two-asset lemma (2.82) with z = —o1 Wi ~ N(0,0%7), z,y = sf, 51 ~
N(0,1) (w. r. to P), and the corresponding correlations given in (2.178). After some
simplifications, the expectation in (2.187) takes form

E (S’.}“I{I>Zra*e”’"T}I{S%ZS%}> = SéeulT\Iﬂ (EL 17{, P{) (2'188)

The constants Z1, g are given in (2.171), (2.172).

Putting together (2.183) with (2.188) and performing similar calculations for
expectations involving S? enables us to derive the final formula for the shortfall risk
for the case of risk-indifference.

2.5 Payoffs with n risky assets

So far, we have focused on discussing the payoff where the client is entitled to
receiving the larger of the values of two risky assets at expiration of the contract.
A natural question arises: how do we price contracts and manage financial and
insurance risks for payoffs involving the larger of n risky assets? Policies with such
payoffs are sometimes referred to as “switching-of-funds” contracts. Formally, the
payoft is given by

H»

where H"

H" - I+ (0)>T)>
max {Sk, S%, ..., Sk} (2.189)

Il

As before, {7(x) > T} refers to the conditioning of the payoff on the policyholder’s
survival to maturity of the contract.
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European-type contracts with payoffs involving several risky assets have been
studied previously. For instance, Stulz (1982) derives analytical formulas for prices
of European call and put options on the minimum or maximum of two risky assets
in the classical Black-Scholes-Merton-type setting. Johnson {1987) generalizes this
result to payoffs with n risky assets, using a change of numeraire technique, the
characteristics of call/put options, and the lognormal properties of the underlying
assets. Boyle and Tse (1990) present a fast and accurate approximation algorithm to
value options on the maximum or minimum of several assets. Boyle and Lin (1997)
obtain upper bounds for prices of call options on several assets, without making
any assumptions about the probability distribution of the underlying assets; thus
the bounds depend only on the returns of the assets and their covariances. Laama-
nen (2000) further extends the result of Johnson (1987) to the payoffs on m best of
n risky assets by utilizing a recursive approach in pricing calculations. We derive a
more general probabilistic-type result that allows us to value not only payoffs with
several assets, but also to calculate directly expectations resulting from such payoffs
being contingent upon other events, for example, when using quantile or efficient
hedging to price equity-linked life insurance contracts.

If we look carefully through the derivation of pricing formulas in the proofs of
Theorems 1, 2, 3 and 4 (section 2.4), we notice that when pricing payoffs with two
risky assets, we must evaluate expectations of type

E* (e_ZI{w<X}) or E* (e_ZI{z<X}I{y<y}) (2.190)

that contain at most two indicators and three normally distributed correlated ran-
dom variables. To calculate these expectations, we have used the one-asset and the
two-asset lemmas ((2.44) and (2.82) respectively). The same idea applies to the
derivation of pricing formulas for payoffs with n assets: we would have to deal with
expectations involving n indicators and n + 1 random variables. For example, for
quantile hedging (see (2.66) and (2.74)), we would calculate the fair premium UJ' as

SL s2 ... s¢
Ug = E <max{ R T}IA*> (2.191)
= E* S%FI I I I
- erT {%;—‘Zi} {57252} {5r25%3} * " {8} =52}
. | 5%
ne g_TI{L>4Sr%~}I{S%>S%}I{S%zS%} Disgesy
E* S%I I I 1
+ o T {%>ii?3} {sp>sh i {sp>82) " Hsnsonly |
T el

which, after appropriate simplifications, could be represented similarly to the ex-
pectations in (2.190).
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As mentioned in the proof of Theorem 2 (section 2.4.2), we have derived a result
which allows us to calculate expectations with n indicators. This result, presented
below as a theorem, is the key for obtaining explicit formulas for fair premiums for
both quantile and efficient hedging (for each risk preference case), as well as explicit
expressions for the probability of successful hedging (quantile hedging) or shortfall
risk (efficient hedging).

Multi-asset theorem

Let ; ~ N(pi,02),i=1,...,n and 2z ~ N(p;,02) be n+ 1 normally distributed
random variables with variance-covariance matrix R,41 given by

o7 - 010201
Ro=| : . | (2.192)
010:p1. - 0%
Then for some given constants X,
—z -<I~Lz"g22) ny ~
E(e  Iigexyy  Tancxay) = € SU(X, ., X)), (2.193)
X = —i—__-&—i-azpiz.

1

In the formulation of the theorem, we refer to z,4+1 as z, to distinguish the fact
that the n + 1 random variable is in the exponent. Also, ¥", n > 1, denotes the n-
dimensional cumulative normal distribution (see below) of n random variables with
mean 0, variance 1, and correlation matrix

1 - pin
R,=|: - (2.194)
pin -1
with the inverse R;! = A,,.

The general formula for the k-dimensional cumulative normal distribution of (k)
random variables y; ~ N(p;, U;?) with variance-covariance matrix Dy, is given by

\Illgceneral(cla ) Ck) = (2.195)

1 €1 Ck 1k k
- - .. =5 D1 g big (Y —pes) (v ~p5)

e 2 f dy---d ,
(2m)k/2| Dy |/ /—oo /—oo Lo ak
0% 010kP1k

Dy = : : , By =|bj;lx =D

O10kP1k " * 0—]%

Please note that for the remainder of the dissertation (including Appendix 2), ¥¥,
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k > 1, without the subscript ‘general’ will refer to the k-dimensional cumulative
normal distribution of correlated random variables with mean 0 and variance 1.
Proof.

Due to the highly technical (and rather messy) derivation details, the proof is pro-
vided not in the main text of the thesis, but in Appendix 2.

We believe that this theorem will prove very useful in a number of applications
beyond this dissertation: variety of processes in mathematical finance, economics
and insurance are modelled as linear or exponential functions of Wiener processes.
Frequently, expectations involving several such processes need to be evaluated, and
it is likely that some of these expectations can be represented in the form which
is suitable for applying the muliti-asset theorem to calculate the necessary expres-
sions directly. This would provide higher accuracy and better efficiency in terms
of computing power than the use of numerical solutions (such as approximations or
simulations).

2.6 Numerical illustration: applying quantile and effi-
cient hedging

In this section, we demonstrate how an investor can use quantile or efficient hedging
to deal with insufficient initial capital. We do not deal with insurance risk ele-
ment yet; this aspect of equity-linked life insurance contracts will be illustrated in
section 3.6. For now, we focus on showing what risk management strategies are
available to the hedger utilizing quantile or efficient hedging techniques.

2.6.1 Data and parameters

To calculate parameters for our model (u;, 04,0, i = 1,2), we used daily stock
prices of Russell-2000 (RUT-I) and Dow Jones Industrial Average (DJIA) indices
from August 1, 1997 to July 31, 2003. The data was taken from Yahoo! finance
(www.finance.yahoo.com). The first index, RUT-I, reflects the performance of 2000
smaller firms in the US, while the second, DJIA, represents 30 large and prestigious
US companies. The parameters were calculated using a standard approach in finance
(see, for example, Hull (2005)):

2
In <M> — (H - 2—) At + oV Atz, (2.196)

Sy

where z ~ N(0,1). In our case At = 5;—2, since we take the business year to have

252 days. We estimate the mean and the standard deviation of In (Stg—t“) in a

straightforward manner, and then multiply them by 252 and /252 respectively to
obtain annualized values. Note that we add to the annualized mean half of the
estimated (annualized) variance to obtain p.
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The estimated parameters are given below:
p1 = .0482, pg = .0419, o1 = .2234, g3 = .2093, p = .71.

We took the July 31, 2003, values of the indices for the initial prices of the risky
assets, correcting for the large difference between the two, so that

S} = (9233.8/476.02) - 476.02, S2 = 9233.8.

For the estimate of the interest rate, we looked at 5-year nominal yields on US
treasury securities (www.federalreserve.gov) and took r = .04, or 4 percent, which
is close to the average of the yields in early 2000s.

We consider a 5-year contract with payoff max {52, Sg} and the situation where
the seller of the contract is not able to collect (or is not willing to provide) the
amount necessary to invest into the perfect hedging strategy. We calculate the per-
fect hedging price (2.36) and the price of the optimal hedging strategy as prescribed
by quantile or efficient hedging (see (2.66), (2.167), (2.145) and (2.95)). We analyze
two risk management approaches. First, we find the values for the maximal probabil-
ity of successful hedging (2.67) for quantile hedging or minimized shortfall risk (for
the different risk preferences when using efficient hedging, (2.168), (2.146), (2.96))
based on the available level of initial capital, given as a percentage of the perfect
hedging price. Second, we look at what levels of initial capital are required to allow
the investor to hedge the payoff with the desired probability of successful hedging
(or shortfall risk). We take p = 1, p = .8 and p = 1.2 for the risk-indifference,
risk-taking and risk-aversion cases of the investor’s risk preference.

2.6.2 Quantile hedging results
The perfect hedging price for the contract is USD 10, 587.54.

Table 1: Probabilities of successful hedging (in percent) based on selected
levels of initial hedging capital (given as percentage of the perfect hedging

price)
initial capital available | probability of successful hedging
90 95.55
95 98.05
99 99.70

Let us look at the values in Table 1: as expected, we see that by providing larger
initial capital for hedging, the investor can expect to hedge with greater probability
of success. Or, if the investor chooses to set the acceptable level of the probability
of successful hedging, then he/she will need to allot more money for the initial
investment into the optimal hedging strategy in order to attain higher probabilities
of success, as shown in Table 2. These results agree with our intuition regarding the
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Table 2: Initial capital (amount and percentage of the perfect hedging price)
required to hedge with given probabilities of success

probability of successful hedging | initial capital needed
90 8,536.23 (80.62)
95 9,422.78 (89.00)
99 10,288.32 (97.17)

relationship between the probability of successful hedging and the capital invested
into a hedge. In section 2.7, we explore this relationship further and show that when
the initial hedging capital approaches the perfect hedging price, the probability of
success goes to 1 (or vice versa). On the other hand, taking smaller and smaller
initial capital (— 0) is equivalent to hedging with increasingly lower probability of
success (— 0).

2.6.3 Efficient hedging results
The perfect hedging price for the contract is still USD 10, 587.54.

Table 3: Expected shortfall (amount and percentage of the perfect hedging
price) based on selected levels of initial hedging capital (given as percentage
of the perfect hedging price) for risk-indifference, risk-taking and risk-aversion

initial capital available | expected shortfall

p=1.0 90 1,101.54 (10.40)
95 533.87 (5.04)
99 100.51 (0.95)

p=10.8 90 160.06 (1.51)
95 77.19 (0.07)
99 14.10 (0.01)

p=12 90 5,240.32 (49.50)
95 2,290.30 (21.63)
99 326.77 (3.09)

First, we observe some expected patterns across all risk preference cases. The
higher the initial capital provided by the investor for the optimal hedging strat-
egy, the smaller is the expected shortfall (Table 3). Equivalently, the lower the
shortfall risk acceptable to the investor, the greater is the amount of initial capital
required for the optimal hedge (Table 4). Similar to the probability/capital idea in
quantile hedging, such results agree with our intuition about the shortfall/capital
relationship, which will be examined in more detail in section 2.7.

Next, let us compare the values between the three risk preference cases. Table 3
shows that, for the same given level of initial capital, the amount of expected shortfall
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Table 4: Initial capital (amount and percentage of the perfect hedging price)
required to maintain selected shortfall risk level (given as percentage of the
perfect hedging price) for risk-indifference, risk-taking and risk-aversion

acceptable shortfall risk | initial capital needed

p=10 10 9,568.06 (90.37)
5 10,062.45 (95.04)

1 10,476.20 (98.95)

p=0.38 10 4,478.03 (42.30)
7,346.77 (69.40)

1 9,866.17 (93.19)

p=12 10 10,309.31 (97.37)
5 10,431.13 (98.52)

1 10,546.32 (99.61)

will be perceived as less by a risk-taker and more by a risk-averse investor than the
shortfall expected by a risk-indifferent investor. We take the risk-indifference case
as the benchmark since this expected shortfall amount is the actual expected dollar
loss. For example, suppose that three investors can provide the initial capital of
only 90 percent of the amount required for the perfect hedge. The actual minimized
expected loss in this situation is about 1,100 dollars; this is the amount a risk-
indifferent investor would see as being lost due to insufficient (for a perfect hedge)
initial capital. A risk-taker, providing the same dollar amount for the optimal hedge,
would value the expected loss at only 160 dollars; clearly, he/she cares less about
losing money than the risk-indifferent person. A risk-averse investor, on the other
hand, would ‘feel the pain’ much more sharply: to him/her, the perceived loss from
insufficient initial capital is valued at over 5,000 dollars (Table 3).

Similar pattern is observed in Table 4. To keep the level of acceptable shortfall
risk at, say, 5 percent, the risk-indifferent hedger would invest about 10,000 dollars
into the optimal hedge. For the same shortfall risk, the risk-taker would give only
7,300, while the risk-averse investor would pay about 400 dollars more than is re-
quired by the benchmark case of risk-indifference. Again, this is due to the fact that
the risk-taker feels losses less, while the risk-averse investor more than the hedger
who values losses based on actual dollar amounts.

Now, let us think about the shortfall/capital relationship a little more. When the
level of initial capital available for hedging approaches the perfect hedging price, the
expected shortfall approaches zero. Equivalently, the smaller the level of shortfall
risk acceptable to the hedger, the larger will be the capital required to invest into the
optimal hedging strategy. These intuitive ideas are somewhat illustrated in the two
tables above and will be proved in Theorem 5 (section 2.7). But what happens to
the expected shortfall in each of the risk preference cases as the capital available for
hedging becomes increasingly smaller? Intuitively, it seems correct to think that the
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expected shortfall would approach the expected (under the subjective probability
measure P) full amount of the payoff in the case of risk-indifference: a hedger who
values his/her losses 1-for-1 with actual dollar amounts cannot expect to lose more
or less than the payoffi H which has to be paid to the buyer of the contract at
maturity. But then a risk-taking hedger, who cares less about losses, should value
the maximal expected shortfall less (and a risk-averse investor more) than the risk-
indifferent person. This is an interesting topic, and we will examine and illustrate
it in more detail in the next section.

2.7 How much can you lose?

Following the discussion about maximal expected losses, let us see what happens
to the probability of successful hedging (in quantile hedging) or shortfall risk (for
efficient hedging) as the initial amount available for hedging

a. approaches the perfect hedging price, or

b. approaches zero.

We already gave the intuition behind the relations capital /probability of success and
capital/shortfall. The aim of this section is to justify and quantify the idea that as
initial capital approaches the perfect hedging price, probability of success goes to 1
and shortfall risk to 0. And, as initial capital goes to 0, so does the probability of
success, while the shortfall risk increases to some boundary which depends on the
risk preference of the hedger.

Theorem 5

Part 1: quantile hedging

a. Whenever the initial capital of the optimal hedging strategy (2.66) approaches
the perfect hedging price (2.36), the probability of successful hedging (2.67) ap-
proaches 1.

b. The probability of successful hedging goes to 0 whenever the price of the optimal
hedging strategy goes to 0.

Proof.

Note that all formulas and definitions of constants are given in Theorem 1. Com-
paring the formulas for the fair premium for quantile and perfect hedging, we see
that the quantile price approaches the perfect hedging price whenever

V(32 5, pP) - V(@) & ¥ o0 & a" -0 (2.197)
But whenever a* — 0,
3200 & VE2 000 - v, (2.198)

and since 37? = —372Q, \111(37?) + \I/l(gf) = 1. Thus part la is proved.

To prove part 1b, we note that the quantile price — 0 as 5;? — —00, or a* — oo.
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But then a“:? also — —ox, so that

vX (3,52, p7) = 0.

77

This concludes the proof of part 1 of Theorem 5.

Part 2: efficient hedging, risk-indifference

a. Whenever the initial capital of the optimal hedging strategy (2.167) approaches
the perfect hedging price (2.36), the shortfall risk (2.168) goes to 0.

b. The shortfall risk approaches

max shortfalll = SietT . w(g]) + S2e#2T . wl(gh) (2.199)

whenever the price of the optimal hedging strategy goes to 0. Here, ¥! is defined
in (2.37), and 7! in (2.172).

Proof.

All formulas and constants for this case are given in Theorem 4, and the proof is
similar to the proofs of parts la and 1b. From the formulas for the fair premium
for efficient (case p = 1) and perfect hedging, we observe that the efficient hedging
price approaches the perfect hedging price whenever

V2 g, =9 (@) o 500 & -0 (2.200)
And, when a* — 0,

3 —oo & W) - NE, el -0, (2.201)
so the shortfall risk goes to 0.

For part 2b, note that the price of the optimal efficient hedging strategy goes to

0 whenever :EZI — —00, or a* — co. But this implies that i{ also — —o0, so that

VX&) — 0,
which leaves the expression (2.199) for the largest expected shortfall.

Part 3: efficient hedging, risk-taking

a. Whenever the initial capital of the optimal hedging strategy (2.145) approaches
the perfect hedging price (2.36), the shortfall risk (2.146) goes to 0.

b. The shortfall risk approaches

2 2
I —U—I)Tzﬂr”—lsz
max shortfalll = (S&)”e( e 2 :

2 2
(uz—%’—)TH%Tﬁ

vH(y!)

+ (S%)re vl(gh) (2.202)

whenever the price of the optimal hedging strategy goes to 0. Here, ! is defined
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in (2.37), and 7 in (2.150).

Proof.

Note that the formulas and definitions of constants for this case are given in Theo-

rem 3. The price of the optimal efficient hedging strategy goes to the perfect hedging
T

price whenever Z; — 0o, or a* — 0. But in this case I — oo and

VAl 5 o) — @),

which causes the shortfall risk to approach 0.

On the other hand, when the efficient hedging price approaches 0, i:? — —00
and a* — o0, so that Z — —oo and ¥?(z7, 37, p!') — 0, and the maximal shortfall
risk takes the form (2.202). This concludes the proof of part 3 of Theorem 5.

Part 4: efficient hedging, risk-aversion
a. Whenever the initial capital of the optimal hedging strategy (2.95) approaches
the perfect hedging price (2.36), the shortfall risk (2.96) goes to 0.
b. The shortfall risk approaches

2 2
Hl—%)TP+%l‘TP2

max shortfall? = (S’&)pe< - W (1)

2 2
~22 ) Tp+22Tp?
& 2) TR gl (g (2.203)

+ (Sg)pe(

whenever the price of the optimal hedging strategy goes to 0. Here, ¥! is defined
in (2.37), and 7F in (2.106).

Proof.

For the risk-aversion case, the formulas and definitions of constants are given in
Theorem 2. To prove part 4a, note that

CE g pt) - V@) & F —oo & at—0.

Then also M — 0 and & — oo (thus W2(;, 4, pf') — UH(§5)), so that the limit of
the product M - U2(&;, 3¢, pft) (of type 0 - const) equals 0 as a* — 0. But whenever
this happens, we also get that N — 0 and & — oo, so U2(g;, 75, pf) — const, and
the product N - U2(g;, U5, pf) — 0. At the same time, a* — 0 implies that k; — —oc0
and U2(k;, 7¥, —pft) — 0. Putting together all of the above, we get that the shortfall
risk goes to 0 whenever the price of the optimal efficient hedging strategy for the
risk-aversion case approaches the perfect hedging price.

The proof of part 4b requires more work, as we encounter indeterminate forms for
some of the limits. First, we establish that the price of the optimal hedging strategy
goes to 0 as a* — oo. Notice that as a* — oo, 1 — —oo0 and W2(z4, 4, pt) — 0.
At the same time & — —oo, so W2(;,§¢, pft) — 0, but M — co. Thus we have to
show that

lim M - U%(g, 45, pft) — 0. (2.204)
a*—o00
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To deal with this indeterminate form, we refer to the definition of M (2.98)
and the expression for the cumulative normal distribution of two correlated random
variables (2.68), and apply L'Hospital’s rule to evaluate the following limit:

. — &2 +208;y—y> )
i e 20-p%) - - 1d
f—oo a*2T /l_pZ y

—ﬁ(a*);——ﬁ

— (240282~ 208, y)+p207 — 2

lim M - U%(&, ¢, pf) = const- lim

a*—o0 a*—oo

Yy 2(1-p2) dy
e »
. - 21/ 1—p2
= const- lim =
a*—oo (a*)PTl
—(y=p&)?

&2
[ mc
- 1Y L T3(52) dy
e 2 i e 2(1-p%)
X f—oo 2 /1_p2
= const- lim — .
a*—oo (a*),ﬁ

(2.205)

Note that the const in the front takes care of all the constants remaining from the
definition of & and taking of the derivatives.
Now, we can represent ¢; as ¢; = :%, where k1, ks are constants corre-

sponding to (2.101). Then we rewrite the expression multiplying the integral above
as follows:

2
52 1/ —-1lna* 2 (lna*)2 kylna* &
&2 -1 na +k1) B
e~z e 2 ( kg e 2k kg E“lg
- = =1 = =
(a*) 7T (a*)%=1 (a*)?=3
2
Ina kq 1 k
T2t T
= (a*) %2 * P .e %k, (2.206)
Taking the limit of this expression as a* — 0o, we obtain
2
Ina* k1 1 k
. S mgtia Tz . 1
lim (a*) *2z *2 *7".e *2 = lim const- ——= =0. (2.207)
a*—00 a*—00 —2—;‘;
(a¥)

So far, we showed that the coefficient in front of the integral in (2.205) approaches
0 as a* — co. Now we just need to make sure that the integral does not affect this
result. Making the substitution

=Y P4 (2.208)
V1-—p?
we obtain
5 —(y—p&;)? B2 2 d3
/ I L R 4z (2.209)
—c0 2my/1—p2  V2m Ji V2r
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which is bounded regardless of what happens to the limits from substitution l; and
ly. Therefore, the product of the (bounded) integral and the coefficient in (2.207)
will be of type 0 - const, so the limit of this product as a* — oo will be 0.

Now that we have established that as a* — oo, the price of the optimal hedging
strategy for the risk-aversion case of efficient hedging approaches 0, let us see what
happens to the shortfall risk. Whenever a* — o0, k; — 0o also, meaning that
U2 (k;, §F, —pf) — T1(FF). So to show that the maximal expected shortfall is given
by (2.203), we need to prove that

lim N - U2(g, 75, pft) — 0. (2.210)
a*—0o0
We do this in the same way as for the limit (2.204) above. Note that a* — co means
that N — co and ¥2(;, 75, p2) — 0 (because &, — —oo).
Based on the definition of N (2.99) and the formula for ¥? (2.68), we have to

evaluate
-z +2pcly 2 d
fyl T 2(1-p?%y . TOY
e P
. a*2m/1—p?
lim N-9%(G, 55, p8) = konst- lim —
a*—00 a*—0o0 —P( *)p—1‘1
=1

-4 fl2 —dz
= kOnSt' llm —l—

1 , (2.211)
“oe (@)

with konst taking care of all the constants resulting from the definition of &;, deriv-
atives, and simplifications. Note that the steps to rewrite the expression above are
identical to those in (2.205). We substituted

(2.212)
L-p

with limits I; and l5. Again, as in (2.209), the integral in (2.211) is bounded.
Similarly to &;, based on the definition of ¢; in (2.103) and appropriate constants
™m1,M9, We can write ¢; = W‘l Then, following the same steps as in (2.206),
the coefficient multiplying the integral in (2.211) can be written as

Ina* _my . »p mi

(@*) 23 ™ T d

From this, we see that the coefficient approaches 0 as a* — oo. Therefore, the
overall product in (2.211) goes to 0 also.

Based on these considerations and the expression for the shortfall risk (2.96),
we conclude that as the price of the optimal hedging strategy approaches 0, the
shortfall risk approaches its maximal level, given by (2.203), and finish the proof of
Theorem 5, part 4b.
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2.7.1 Example

Here we provide some numbers to illustrate how the values of the maximal shortfall
risk differ based on the risk preference of the hedger. We use the same data, estimates
and contract type as in the numerical example in section 2.6. Based on these
numbers, we calculate that in the case of risk-indifference (p = 1), the largest
expected shortfall is USD 13,270.06. Table 5 provides the values for risk-taking
(0 < p < 1) and risk-aversion (p > 1).

Table 5: Values of maximal shortfall risk (dollar amounts) for various risk
preferences of the investor

p, risk-taking | max shortfall | p, risk-aversion | max shortfall
0.0001 1.00 1.0001 13,282.81
0.1 2.56 1.1 34,696.96
0.2 6.56 1.2 90,917.44
0.3 16.87 1.3 238.749.10
04 43.45 1.4 628,313.24
0.5 112.15 1.5 1,657,112.04
0.6 290.10 1.6 4,379,958.56
0.7 752.02 1.7 11,601,974.26
0.8 1,953.64 1.8 30,799,160.76
0.9 5,086.17 1.9 81,939,309.75
0.9999 13,270.06 2.0 218,470,861.00

First of all, note that as p — 1, the values of maximal expected shortfall for both
risk-aversion and risk-taking approach the amount of largest expected shortfall in
the risk-indifference case, which is expected. Also, observe that when a risk-taking
investor becomes more risk-averse, he/she begins to value potential losses higher and
higher. And, when risk aversion grows, the investor becomes increasingly sensitive
to shortfall risk. Such results agree with our intuition. It is rather interesting to see
that when the level of risk aversion changes by 1 (from p = 1 to p = 2), the value
of the potential loss increases by a factor of about 15,000 (that’s a lot!). Or, when
risk-taking habits change from 1 to 0, the expected loss decreases by a factor of
about 13,000. Such situations seem too extreme; in the real world, risk preferences
of majority of the investors probably fall close to p = 1.
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3 Mortality modelling

Here we discuss the effects of mortality modelling on risk management with equity-
linked life insurance contracts.?

The notation introduced in this chapter applies only to the current chapter and
to Appendix 3 pertaining to the results presented here. Note that some of the
names of variables may overlap with those used previously; we choose not to change
the names in order to keep them consistent with the notation used in financial and
mortality literature. In particular, for the financial setting we use the typical Black-
Scholes notation (see, for example, Melnikov et al. (2002) or Hull (2005)), while
for the insurance setting we attempt to follow closely the notation of the classical
actuarial textbook by Bowers et al. (1997).

3.1 Background

Humans have been trying to understand life and death for as long as they existed.
Every culture and nation has legends about the origins and reasons for being born
and dying. Scholars would formulate these ideas into questions about whether or
not human survival is governed by some law, and if so, what it is and how science
can explain it. The obvious source of information on this topic is birth and death
data. As early as 1693, English astronomer Edmund Halley constructed a life table
from the observed number of deaths in Breslau (now Wroclaw, Poland). Soon after,
in 1740, the earliest life tables for males and females were published by Nicholas
Struyck (Pitacco (2003)). Around this time, mathematicians became interested in
modelling human survival as well. Abraham De Moivre produced the first known
analytic model for the probability of survival as a linear function of the person’s
current age, recognizing, however, that his model failed to represent human survival
across all ages accurately.

So the search for a better model continued, and in 1825 Benjamin Gompertz
presented his version of the survival probability formula, based on the recognition
that human mortality displayed exponential patterns for most ages. His result is be-
lieved to be the most influential parametric mortality model in the literature. Some
years later, in 1860, Makeham noticed that Gompertz’s model was not adequate for
higher ages and amended it in an effort to correct this deficiency (Higgins (2003)).
Despite further developments after 1860 (including models by Thiele in 1872 and
Wittstein in 1883), Gompertz’s and Makeham’s models remain to this day among
the most popular choices for mortality modelling.

In the early 20th century, Italian economist and sociologist Vilfredo Pareto put
forth his idea for a model of mortality; Wallodi Weibull’s model from the 1940s for
predicting time until next failure of a technical system was adapted as a mortality

3A version of this chapter has been accepted for publication in Insurance: Mathematics
and Economics under the title “Evaluating the performance of Gompertz, Makeham and
Lee-Carter mortality models for risk management with unit-linked contracts” by A. Melnikov
and Yu. Romaniuk.
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model, with human organs seen as technical parts that eventually fail. Throughout
the last century, there were other contributions to mortality modelling, but most of
them were modifications/generalizations of the results of Gompertz and Makeham.
In recent decades, the study of mortality has become increasingly more complex.
Due to expanding computational capacities, modern parametric models may involve
up to ten parameters (for example, the model of Heligman and Pollard (1980) with
eight), or rely on processing large amounts of data for parameter estimation (Lee
and Carter (1992)). The newest direction in the study of human survival is the idea
of modelling and/or forecasting mortality as a stochastic process. For example, Lee
and Carter (1992) forecast mortality as a random walk with drift, Dahl (2004) works
in a setting where the dynamics of mortality intensity has the form of a diffusion
process with drift and volatility dependent on the present state of the process only.
Biffis (2005) models asset prices and mortality dynamics by affine jump-diffusion
processes, while Luciano and Vigna (2005) use doubly stochastic (Cox) processes to
describe mortality dynamics. However, as noted in Higgins (2003), the development
of stochastic mortality models is in its infancy stage.

When we speak of mortality models, we should distinguish between static (func-
tions of age only) vs. dynamic (functions of age and current year) and deterministic
vs. stochastic models. Of those considered in this paper, the models of Gompertz
and Makeham are deterministic and static, while the Lee-Carter method forecasts
mortality stochastically and is dynamic. We stress that currently Gompertz- and
Makeham-based models are typically used for educational, forecasting and risk valu-
ation purposes (Pitacco (2003)). The particular choice of mortality models discussed
in this paper arises from our desire to investigate how the widely used classical
models of Gompertz and Makeham compare to one of the most significant recent
developments in mortality modelling and forecasting — Lee-Carter’s method.

3.2 Mortality models in the thesis

3.2.1 Some actuarial concepts

Before we describe the mortality models of Gompertz, Makeham and Lee-Carter,
we need to introduce some actuarial concepts. Working in the insurance setting
introduced in section 2.3.2, let lg be the number of newborns in a group under
observation. Denote L(z) the number of survivors to age  among the newborns:

lo ip e . .

_ [ 1 if life j survives to age x

Lz) = _X;I]’ = { 0 otherwise. (3-1)
.

Define survival function as the probability that a newborn will attain age x:
s(z) = P{r(0) > z}, (3.2)

where 7(0) denotes the remaining lifetime of a newborn. Then from (3.1) and the
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standard assumption that each newborn’s survival function is s(z) (all independent),
we have that the expected number [, of survivors to age x from ly newborns is
calculated as follows:

I, = E(L(z)) = los(z). (3.3)

Let L, denote the total expected number of years lived by the survivors between
ages x and = + 1:

1
o= / el (3.4)
0

Note that based on (3.2), the following relation holds for the probability that a life
aged x survives T more years:

_ s(z+T)
= P >T)=—F7—=. 3.5
rpe = Pir() > T} = 2o (35)
Now we can present the classical definitions of the concepts needed to describe
the models of Gompertz, Makeham and Lee-Carter. First, the force of mortality is
given by

_ @)

(3.6)

it can be interpreted as the likelihood that a life that survived to age = dies in the
next instant of time. The central death rate is defined as
lm - lcc—l—l
My = ———"; 3.7
we think of this as the expected rate at which survivors in the group of Iy newborns
die between ages z and = + 1.

3.2.2 Mortality model formulas

Now we are ready to summarize the main contributions of Gompertz, Makeham (as

given in Bowers et al. (1997)), and Lee and Carter (1992) to mortality modelling
and forecasting:

Gompertz: pu,=B-c*, ¢>1,B>0;
Makeham: p,=A+B-c*, ¢>1,B>0,A>-B; (3.8)
Lee-Carter: In(mg;) = az +by - ke + &zt

Above, t refers to historical time period (years), = to the person’s age, py is the
age-dependent force of mortality, m.; the central death rate for age z and year
t, and &+ the corresponding error. The remaining constants A, B, ¢ (different for
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Gompertz and Makeham), and a;, b, can be estimated based on historical deaths
and death rates data, while the mortality index k; in the Lee-Carter model can be
fitted for past years and forecasted for the future. In section 3.6.1, we describe the
estimation of the involved parameters in more detail.

Gompertz’s and Makeham’s results can be summarized analytically in terms of
a single formula for the force of mortality, and parameter estimation is the only
potentially challenging task. Lee and Carter’s approach requires more explanation.
The idea behind the method is to view mortality as a process dependent on age
as well as on the time period, so the parameters a,,b, are age-specific, while the
mortality index k; reflects the effects of the corresponding year and thus environment
on the (past) current and future survival/mortality patterns. The estimate of the
mortality index k; is modelled by a random walk with constant drift d and mean-zero
random noise :

ke = ki1 + d+ . (3.9)

Once the mortality index is projected for future years, life table functions (such as
survival probabilities and life expectancies) can be extrapolated to use as needed in
actuarial/insurance applications.

3.3 Note on financial setting

To focus on the effects of mortality risk in our analysis of pricing and hedging of
equity-linked life insurance contracts, we work with a single risky asset, as opposed
to the two-asset setting (see section 2.3.1). Note that the study of mortality risk
and optimal risk management strategies for equity-linked contracts with two assets
is performed in the same way as described in the remainder of this chapter.

We have a typical Black-Scholes-Merton setting: a financial market with interest
rate r > 0, one riskless money market account B = (Bt)scp,r} and one risky asset
S = (St)iepo,) satistying

dBt - ’I’Btdt <~ Bt = Boert7 BO == ]_;
02
ds; = St(,udt -+ Uth) & S = 5'06(#_7)t+UWt, (310)

with constants p € R, 0 > 0, and W = (Wi)sc[o,r) @ Wiener process on a standard
stochastic basis (Q, F,F = (Fi)¢epo,1), P)- All processes are adapted to the filtration
F, generated by W. Every predictable process 7 = (m)icp,r) = (Br, Vt)eepo,r) i8
called a trading strategy (or portfolio) with time ¢ value

Vi" = BBy + St (3.11)
Only self-financing (with no additional inflow/outflow of cash other than the initial

premium payment) and admissible (with nonnegative capital) strategies are allowed.
It is well known that in this setting the equivalent martingale measure P* is

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



unique, and its density Z is given by

dP* w82 n—r
Z = =e MTTh 9= : 12
t dP lft € B bl o (3 )
Under P*, the evolution of S takes form
(r=55)erows
dS; = Sy(rdt + cdW}) & Sy = Sge\' z/)7T7 (3.13)

with W* a Wiener process under P* (see, for instance, Melnikov et al. (2002)) such
that

Wt* = Wt + 0 - t. (3.14)

The contract in consideration entitles the client to one unit of some risky asset

or a guaranteed amount, whichever is greater, at expiration date T. The payoff H
has the form

H = max{St, Kr} = Stl{s;:>Kr} + Krl{s7<K71)}5 (3.15)

where K is the deterministic guarantee, calculated as
Kpr= SoegT. (3.16)

Above, g is the rate guaranteed by the contract and Sp is the initial value of the
risky fund. Basically, the client has the right to choose the larger of two funds at
maturity of the contract: a risky fund with expected return g or a risk-free fund
earning a rate of g over the duration of the agreement. Clearly, the perfect hedging
price of the payoff H can be reduced to a formula similar to that of Black-Scholes
for the price of a call option (Black and Scholes (1973)).

3.4 Note on insurance setting

The insurance setting is the same as in the previous chapter ((Q,F, P), see sec-
tion 2.3.2). Again we run into the problem of the contract premium Up being
insufficient for a perfect hedge:

Uo=Ex EX(He ™ I(y>1y) = E*(He ™ )rp, < E*(He™™T). (3.17)

Recall that 7p, = P{r(z) > T} denotes the probability of a life aged z surviving T
more years.

3.5 Quantile hedging to the rescue!

In this chapter, we focus on applying quantile hedging to illustrate optimal hedging
of financial and insurance risks inherent in equity-linked contracts (alternatively,
one could use efficient hedging in a similar manner). Based on the discussion in
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section 2.3.3, we have that the optimal hedging strategy (the one that maximizes
the probability of successful hedging under budget constraints) is the perfect hedge
for the modified contingent claim H*, with cost

e'V‘T

Ky}lps
UO — E*(H*e—TT) — E* (ma'X{ST7 T} A ) , (318)

where A* = {ZLT > a*e"’TH} (2.52).
From (3.18) and (3.17), we obtain the formula

_ E*(max{ST,KT}IZ)
TP = "E+(max{St, Kr})

(3.19)

which is exactly the equation (2.65) restated here for our particular choice of H.
Recall from the discussion of (2.65) that this formula is the key to managing both
financial and insurance risk components when hedging contracts with insufficient
initial capital. The hedger can either sell the equity-linked contract with payoff
H to any client and then determine the maximal probability of successful hedging
given that the premium Uj received from this client was invested into the optimal
hedge, or the hedger can set the probability of successful hedging at 1 — ¢ and see
what clients are suitable for the policy in consideration (see section 2.3.3 for more
details). Before demonstrating the two risk management possibilities in light of the
mortality implications of the models of Gompertz, Makeham and Lee-Carter, we
derive the formulas for the fair premium Uy and survival probability 7p, used in the
numerical illustration.

3.5.1 Deriving pricing and survival probability formulas

First, consider equations (3.10), (3.18), (3.12) and the general structure of the max-
imal set of successful hedging (2.52): they allow us to write

P(A*) = E(Iax)
- 2 (I lioremn) + 8 (1 oren)

= B! 92 (u ‘72)T+0W I (u 02)T+aw
. _ _
{EGWT+‘2‘T>—T—ETSO(5 E T} {Soe z TZSOCgT}
e

(3.20)

I 2 I 2
owr+8. T a*SgedT (#_a )T+aW
{e 7> T Soe 7z T<5089T
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Since S and Z are both functions of W, and Wr ~ N(0,T) (under P), we can
rewrite this equation further as

P(A") = E(Iysnlyeny) + E (Lysmylyeny) i p—r—0?>0,
P(A*) = E (I{y<J}I{y2N}) +FE (I{y>M}I{y<N}) if p-r— 0% <0,
(3.21)

where y is a standard normal random variable (under P), and M, N, J are given by

In (a*So) + (g —-r = %) T

M= 6v/T ’

o Gerdir
oVT ’

J = 1n(a*50)f<-9—‘;—)2:r. (3.22)
6 —-o)VT

Next, let us see how the constants M, N, J compare to each other: first,

NoM - (g_,u-i-g;)T_ln(a*So)—i—(g—r_%>T

ovT o0vT
L [(,u——r) (g—,u—i— "2—2> o (g—r— %)} — oln(a*Sp)
B o0T
A
- , 3.23
o0VT ( )
where T
A== Kg_“;”’) (#—r—(ﬂ)} — oln(a*SH). (3.24)
Similarly, we have that
a4+ \T N (0—a)2
NeJ = (9 HT 3 In(a*Sp) - “5=T
B ovT 0 — o)VT
A
S — 3.25
o0 — o)VT (3.25)
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and
In(a*So)+ (g—r— &) T (69-0)2
n(a”50 g—T—-3 In(a*Sp) — ~=-T
0T 0 —o)VT
A

- 00 — o)WWT (3:20

Now, observe that A is positive whenever

RN s Tl
(g 5 )(u r U)>T1n(a50),

that is, whenever

E‘TZ—ln (a*So) N WA

g > and p—r —0% >0

u—r—o? 2
or .
Z In (a*S
g< - ( 02)—|—M—2|—Tand,u—r—02<0.
w—r—o

Moreover, based on (3.23), (3.25), (3.26), and the fact that the sign of (6 — o) is
determined by the sign of (u—r—0c?), if the guaranteed rate g is selected as indicated
below, we obtain that

J <M < N whenever u—r—02>0 and g > G,
M < N <J whenever ,u—r—02<0 and ¢ <G,
0'2 *

T In(a*S

7 In ( o)+u+7'_

G = pr— 5 (3.27)
These considerations allow us to simplify P(A*) (3.21) even further:
P(A*) = P{y>N}+P{M <y < N} =P{y> M} (3.28)
or
PAY=P{N<y< J}+P{M<y<N}=P{M<y<J} (3.29)

Therefore, under P, the maximal set of successful hedging A* takes the form
A*={y> M} (3.30)
or
A" ={M <y < J}, (3.31)

depending on the sign of (4 — r — 02) (and the appropriate selection of g).
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Using the same reasoning and following the steps done in (3.20) - (3.29) for P,
we can simplify the expression for A* under P* to

A = {y>TIn{y" >N}+{y" >M}n{y < N}
(y" > N} + {M* < y* < N*} = {y* > M"} (3.32)
or
A = {y < IIn{y 2N+ {y" > M Pn{y" <N}
N <y < T (MT <y <N} = (M* <y <J), (3.33)
where the constants M™*, N*, J*

M* = M+6VT,

N* = N+06VT,

J* = J+oVT (3.34)
satisfy J* < M* < N*if uy—r—o? >0and g > G,or M* < N* < J*if y—r—0? < 0
and g < G (this is equivalent to (3.27)), and y* ~ N(0, 1) under P*.

Next, using the evolution of S under P* (3.13) and the expression for Zr (3.12),
we can write Uy as

« St « (KT
O = 5 (s oz ) + B (G g lsrer)

* ST * KT
= F (;ﬁf{yw*}f{y*zw*})JrE (eT—TI{y»M*}I{y«N*})

« [ ST ' « ( KT

for A* in (3.32). For A* in (3.33), we obtain a similar formula for Up:

Uy

* ST * KT
E (er—Tf{y«J*}f{y*zN*})JrE (eT—TI{y*>M*}I{y*<N*})

* ST * KT
E (ﬁI{N*Sy*<J*}) +E (e’r'—TI{M*<y*<N*}> . (336)

Now we proceed to calculate the explicit formula for the fair premium as follows.
The second term in the last line of equation (3.35) (as well as (3.36)) is simply

K —_T * *
E” (ev"_;I{M«y%N*}) = SOe(g )T(‘I’I(N ) — ‘I’l(M R (3.37)

with ¥! denoting the one-dimensional cumulative normal distribution (2.37). The
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first term in the last line of equation (3.35) is calculated directly based on (3.13):

S S —rT roo 1__5,3 - . _g*2
7 (ﬁhww*}) = 7 LTI Sy
= SyU(cVT — N*). (3.38)

The first term in the last line of (3.36) is calculated in the same manner; we get that
« (St . .
E (eT—TI{N*Sy*<J*}) = So(¥(oVT — N*) — W (aVT — J*)). (3.39)

Finally, putting together (3.37) with (3.38) and (3.39), we obtain these explicit
formulas for the fair premium Uy and survival probability 7p;:

Uy = Sp-UYoVT — N*) + Speld™nT . (WH(N*) — T(M*)),

- e(g—r)T . \I’l(M*)
UL(oV/T — N*) + el9=n)T . ¥1(N*)

TPz = (3.40)

for A* in (3.32). If A* is given by (3.33), then

Up = Sp-(BHoVT — N*) = OHoVT — J*)) + Speld™7T . (T1(N*) — T (M™)),
B \Ill((fﬁ _ J*) + e(g—r)T X \I/l(M*)
U(oV/T — N*) + elo=nT . Y1(N*)

TPz (3.41)

Recall that M*, N* J* are given in (3.34).

Now let us discuss the conditions (3.27) encountered in the process of calculating
the formulas above. These conditions serve as a guide to the firm offering the
contract for choosing an appropriate guaranteed rate based on the market situation
and the nature of the risky asset (the relation between p,r and o). The intuition
behind selecting g accordingly is the following. First, we should always have r < g <
p: the guaranteed rate should be higher than the risk-free rate (otherwise clients
would find money markets more appealing), and lower than the expected return on
the risky asset, since payment of the guarantee involves no risk. But how high or
low should g be set between p and r7

Note that g — r > o2 implies that the expected excess return of the risky asset
over the risk-free rate is higher than the risk (volatility 02) associated with the asset,
call it Stock 1. Then Stock 1 is more attractive than Stock 2, whose parameters
satisfy pu — r < o2, since the risk-return relation for Stock 2 is not as appealing as
in the previous case. The only restriction is that u —r — 0% # 0, since this term
appears in the denominator of equations in (327) However, practically speaking,
this should not pose any problems, since finding risky assets satisfying the precise
relationship g — 7 = 02 would likely prove difficult.

A simple guideline for a manager deciding how to set guaranteed rates for con-
tracts involving Stocks 1 and 2 is the following. To guarantee the higher expected

7
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return of the more appealing Stock 1, the manager should set g to exceed the aver-
age of the asset’s return and the risk-free rate. That is, for p—r > o2, E; < g <
(Note that this ensures ¢ > G, as required by (3.27)).* If, on the other hand, the
underlying of the contract is the less attractive Stock 2, the manager can set the
guarantee below the average of p and r (r < g < Hy— implies ¢ < G for (3.27)).
That is, whenever the contract calls for securing an asset whose expected return is
not very high, the guaranteed rate can be lower than in the case of an underlying
with high returns.

3.6 Numerical results: effects of the mortality models
3.6.1 Parameter estimation

For the risky asset, we chose the Toronto Stock Exchange/Standard and Poor Com-
posite Index, which mirrors closely the performance of some 300 Canadian and US
companies. Note that Canadian Imperial Bank of Commerce (CIBC) offers 3- and
5-year index-linked GICs (Guaranteed Investment Certificates), in which return on
an invested amount is linked to the performance of S&P/TSX 60 or 500 fund (over
3 and 5 years respectively). At maturity of the contract, clients receive their in-
vestment plus interest earned based on the fund’s return, or the originally invested
amount if the fund’s return is negative over the time of investment. This is essen-
tially the same as the unit-linked contract considered in this paper except for the
payoff’s dependence on the client’s survival to the maturity of the contract; the
implied premium for this particular product of CIBC is, of course, the interest the
investment would have earned if deposited elsewhere (for example, into treasury
bonds) for the same duration.

For TSX/S&P, the annualized return g = 9.11% and volatility o = 15.73%
were estimated using daily data from Jan. 1, 1995 to Jan. 1, 2005 (estimation
was performed as outlined in section 2.6.1, see also Hull (2005)). The initial value
So = 9246.7 was the price of the index as of Dec. 31, 2004 going into 2005. We chose
three maturities for the contract, T = 3, 10 and 20, to look at the variations in risk
management considerations for short-, medium- and long-term agreements. Note
that shorter contracts are more likely to be offered under the umbrella of wealth
management /investment products, whereas longer contracts belong to the insurance
products category. The annual interest rate r = 5.61% used in calculations was the
average annual yield of a 10-year Canada treasury bond from 1997 to 2003, as
reported by Bolder et al. (2004). Recall that the contract allows its holder to choose
the greater of a risky fund value or some deterministic amount. We used 7 percent

It was shown in section 2.7 that whenever the probability of successful hedging P(A*)
is maximized (or if it is specified beforehand to be close to 1), a* in (3.27) will be a very
small positive number (less than 1, for our purposes). This makes In (a*Sp) and the entire

numerator ”TZ In (a*Sp) negative. Thus the sign of the first term of G in equation (3.27)
depends on the sign of the denominator, p — r — 2.
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for the (annualized) guaranteed rate to calculate the corresponding guarantees; for
example, for a 3-year contract, K3 = 9246.7¢(-073)

To estimate the parameters for the three mortality models (see (3.8)), we used
1959 - 1999 mortality data (survival probabilities, deaths and death rates) for the US,
Sweden and Japan from the Human Mortality Database (www.mortality.org). To
calculate A, B, ¢ for Gompertz and Makeham, we used the standard Least Squares
method to minimize the sum (over time and all ages) of the errors squared. Utilizing
equations (3.5) and (3.6), we can derive these relations for logs of survival probability

values:
B x ¢, T
for = In(rps) = —ln(c)c (¢t = 1) for Gompertz, and (3.42)
B
fer = In(rps) = —AT - mcz(cT —1) for Makeham.

Then for the given values of 7p,, we seek to minimize

. 2
B T
= z " (¢t -1 f , .
L ;; (f &+ ™ (6)0 (¢ )> or Gompertz, and (3.43)

L

Il

2
- B
E E fop+ AT + —=&"(F - 1) for Makeham.
— In (&)

From here, we proceed in a standard manner, calculating partial derivatives of L
with respect to B, ¢ for Gompertz and fl, f?, ¢ for Makeham, and solving for
the corresponding parameter values numerically using MATLAB (the programs are
available upon request®). The estimated parameters for the models of Gompertz
and Makeham are given in Table 6.

Table 6: Estimated parameters for Gompertz (G) and Makeham (M) mortality
models for USA (US), Sweden (S), Japan (J)

A B c
Gus 6.148 - 10~° | 1.09159
Mys | 9.566-107% | 5.162- 107 | 1.09369
Gg 1.694-107° | 1.10960
Mg [4.393-107* | 1.571-107° | 1.11053
Gy 2.032-107° | 1.10781
M; 15.139-107%]1.869-107° | 1.10883

For the Lee-Carter model, there are several methods to estimate a,, b, and
k¢, namely, Singular Value Decomposition, Weighted Least Squares, and Maximum

5The assistance of M.-C. Koissi and B. Bejanov with parameter estimation and mortality
forecasting is gratefully acknowledged.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


http://www.mortality.org

Likelihood Estimation, also known as Poisson log-bilinear method. For technical
details on the methods, see Brouhns et al. (2002), Brouhns et al. (2005), Lee (2000),
Lee and Carter (1992), Wilmoth (1993), and for a useful and informative summary
and comparison of the estimation methodologies, we refer the reader to Koissi et
al. (2006). As pointed out in Koissi et al. (2006) and Wilmoth (1993), all three
methods produce similar results, so out of practical considerations, we used Weighted
Least Squares approach, thoroughly outlined in the latter article. The weight wg ¢
is the observed number of deaths in year { at age x. For the estimates of central
death rates my (3.7), one can use death rates for the corresponding year and age
(Pollard (1973)). Then, similarly to the estimation for Gompertz and Makeham
models, we seek to minimize

L= ; Z (111 (mgt) — g — l;zlAct>2 for Lee-Carter. (3.44)

Again, we take partial derivatives with respect to a, bs, k;, set them equal to
zero and solve for the required parameters, following the methodology described in
Wilmoth (1993).

Once a, b, and k; are estimated, we forecast lAcH_i for ¢ = 1 (year 2000) to 26
(year 2025) using (3.9). Note that the drift d is found using Least Squares for the
slope of the line 1519994_,5 = ];?1999 +d - t, with the intercept taken to be the estimated
value of the mortality index for the last year in the sample (Koissi et al. (2006)).
Based on the obtained projections, we calculate forecasts for the central death rate
g, using (3.8), and then obtain survival probabilities 1, for years 2005 - 2025
based on the relation given in Pollard (1973):

2 — Myt
= —, 3.45
1Pzt 2+ Moy ( )
At this point we find 35 2005, for example, as follows:
3P2,2005 = 10,2005 * 1P2+1,2006 * 1Dz+2,2007- (3.46)

For the static models of Gompertz and Makeham, the formulas in (3.42) with the
corresponding estimated parameters (Table 6) were used to calculate future survival
probabilities 7p, for T'= 3, 10 and 20.

The actual and forecasted values of the mortality index k. for the United States,
Sweden and Japan are plotted in Figure 1. Numerical values of a,, by for ages 0 -
100 and k; for years 1959 - 1999 are given in Tables 8 and 9 in Appendix 3. While
being aware that there is plenty of room for improvement in the estimation of all
parameters and potential for further study of errors in forecasts (not conducted here
as the presented analysis is less statistical and more financial in nature), we believe
that the numerical results below are reasonable and consistent. They illustrate the
importance of selecting an appropriate model to assess and valuate risks inherent in
equity-linked contracts in light of contemporary survival patterns, calling to atten-
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tion the differences in risk management strategies when dealing with clients from
varied backgrounds and contracts of short, medium and long duration.

3.6.2 Maximizing the probability of successful hedging

In this setting, the insurance firm selects the first approach of quantile hedging: the
firm maximizes the probability of successful hedging given a limited initial capital.
Suppose a 60-year old client approaches the firm with the intention of buying a
contract that will allow him/her to receive the maximum of TSX/S&P fund value,
currently at CAD 9246.70, and a guaranteed amount (based on the guaranteed rate
of 7 percent) in 3 (10, 20) years respectively. The client must be alive to collect the
payoff.

Since the company knows the client’s age, it can estimate his/her survival prob-
ability for the corresponding duration based on the selected mortality model. Then
the company will use this survival probability 7pgo in equation (3.17) to calculate
the fair premium Uy for the contract and quote the price to the client. Upon receipt
of amount Up, the firm will use equation (3.40) to find a*, which is needed to cal-
culate the maximal probability of successful hedging 1 — € based on the form of the
maximal set of successful hedging A* (2.52). Once the company knows how much
financial risk (€) it carries, it can decide whether or not such risk profile is accept-
able to its managers and shareholders. Table 7 gives sample values of the maximal
probability of successful hedging, based on the three mortality models and contracts
with 60-year old clients from the US, Sweden and Japan (abbreviated subscripts US,
S, J).

Table 7: Probabilities of successful hedging (in percent) based on Gom-
pertz (G), Makeham (M), Lee-Carter (LC) models

T | Gus | Mys | LCys | Gs | Ms | LCs | G; | My | LCy
31982982 | 985 |9871]98.7)99.0|98.6|98.5 ]| 99.2
101941941 | 957 1955|955 | 97.1 1951|950 98.2
20| 815 | 81.6 | 8389 | 83.8|83.7|91.7|8221!82.2| 95.6

As we can see from Table 7, Gompertz and Makeham give almost identical
results for all countries and all contract durations. Lee-Carter consistently predicts
higher probabilities of successful hedging than the other two models, with differences
ranging from less than 1 percent for shorter contracts to between 7 (US, Sweden)
and 13 (Japan) percent for longer contracts. Since the greatest differences between
the models are observed for contracts of longer duration, we can conclude that the
choice of a mortality model will affect insurance type products (which are long-term)
more so than the short-term investment/wealth management solutions.

Also, insurance firms attracting Swedish and Japanese clients seem to be in a
better position, as greater hedging successes are forecasted based on survival trends
in these two countries than in the US (Table 7). To analyze this trend, consider
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Figure 1: it shows that Japan and Sweden are expected to have lower mortality
indices for the next 20 years than the US, meaning that Japanese and Swedish clients
are likely to have higher survival probabilities in the next two decades than their
US counterparts. Higher survival probabilities imply greater premiums collected
from the sale of contracts (see (3.17)) and more initial capital available for hedging,
leading to higher probabilities of successful hedging.

k: Fitted and Forecasted Values

10 T T T T T T T T T “1

——== Japan
>, ...+ United States
5| N —— Sweden |

Mortality Index k

-10F

15 1 I I I
1940 1850 1960 1970 1980 1990 2000 2010 2020 2030 2040

Year

Figure 1: Comparison of mortality indices for USA, Sweden and Japan

Now, although the Lee-Carter model predicts the lowest mortality index values
for Japan (Figure 1), Gompertz and Makeham indicate that Sweden should have
lower expected mortality rates than Japan, based on the higher probabilities of
successful hedging in Table 7. Moreover, the differences between Lee-Carter and
Gompertz/Makeham models are observed in all three countries (Table 7). This is
a potentially alarming sign in the following sense. As mentioned before, Gompertz-
and Makeham-based models are most popular today, so the insurance industry may
be relying on models which do not reflect future survival patterns accurately. As
shown in Lee and Carter (1992), mortality index values fit past and current mor-
tality patterns and survival expectations in the US fairly well (better than official
estimates), so it is reasonable to expect that Lee-Carter approach will forecast fu-
ture survival patterns successfully at least for the next couple of decades in the US,
as well as other developed countries.

Therefore, if the insurance industry is, in fact, relying on Gompertz- and Makeham-
type models, it may be overestimating its mortality forecasts, or, vice versa, under-
estimating future survival tendencies (this is also reflected in Figures 3, 4 and 5,
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where Lee-Carter survival probability forecasts for most ages are significantly greater
than those of Gompertz and Makeham). This, in turn, may result in serious fi-
nancing problems for insurance firms and significantly undervalued retirement costs
in the three countries in consideration. These inferences agree with the concerns
about the rising costs of mortality decline and the resulting economic implications
of higher tax burdens on the working population, which has to supply tax money to
finance pension payments for the retired portion of the population (see, for example,
Bongaarts (2004), Koissi et al. (2006), Tuljapurkar et al. (2000), Wong-Fupuy and
Haberman (2004)). This concern applies most to Japan. It appears that Sweden and
the United States will be somewhat less affected by the choice of mortality model for
insurance, economic and demographic considerations (compared to Japan), based
on the smaller differences between probabilities of successful hedging in Table 7.
Let us note another obvious and potentially dangerous result for the insurance
firm and discuss ways to manage this problem. Consider a 20-year contract offered
to a 60-year old client. If the firm charges the client the fair price (as given by
(3.40)), the maximal probability of successful hedging, given that the initial capital
available for hedging is the premium paid by this client, is between 80 and 95
percent, depending on the country and the mortality model used (see Table 7). It
is reasonable to conclude that very few insurance companies would find the level of
default risk close to 20 percent acceptable. In this situation, the companies would
be better off considering the other direction suggested by quantile hedging: fixing
the probability of default first, and then looking at the ages of clients and drawing

the corresponding risk management conclusions. This is the approach we examine
next.

3.6.3 Fixing the probability of successful hedging

Suppose the insurance firm sells equity-linked life insurance contracts, but requires
that the probability of default risk, €, does not exceed some specified value. Based
on this chosen risk profile, using equation (3.40) the company calculates the minimal
amount of funds needed to hedge the payoff with the prescribed probability and, via
one of the three mortality models, determines the ages of clients who would pay a
fair price for the contract based on different default levels. The results are presented
graphically in Figure 2.

As an example, consider a 10-year contract offered to Swedish clients under the
maximum default risk of 1 percent. All models return close to 50 for the critical
age, meaning that the premium received from a 50-year old client purchasing the
unit-linked contract would guarantee the firm hedging the payoff successfully with
probability 99 percent.

A natural question arises: what are the risk implications when clients below or
above the age of 50 wish to purchase the same contract? In order to keep the level
of default at 1 percent, the firm needs a particular amount of funds (as determined
by (3.17)) to invest into a hedging strategy. Therefore, clients of all ages must pay
this amount as the contract premium. Clients above 50 will be paying more than
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their fair share, as their survival probabilities are lower than those of a 50-year
old. However, clients below 50 will enjoy purchasing the contracts at a discount,
compared to the premium they should have paid.

From Figure 2, we see that the proportion of people purchasing contracts at a
discount decreases with higher maturities (as critical ages decrease). This result is
expected: since clients are more likely to die over longer periods of time, to keep its
desired risk profile, the company can offer fewer discounts for long-term contracts as
compared to short-term ones. Another noticeable pattern is the decrease in critical
ages and the proportion of people receiving discounts with lower levels of default
risk. This is also logical: the less financial risk the firm is willing to carry, the
larger the proportion of people who have to pay higher premiums for the contract.
Vice versa, the riskier the firm, the more discounts it can offer to its clients: the
proportion of people under the critical age increases with higher e.

Finally, in Figure 2 we also observe some features already discussed in the previ-
ous section: the greatest differences between Gompertz, Makeham and Lee-Carter
are observed for longer contracts and for Japan. Again, this implies that firms
offering long-term contracts are more sensitive to mortality changes, and the insur-
ance industry in Japan should take extra care when selecting mortality models for
actuarial and risk management purposes.

3.6.4 Additional observations

Now, let us study the differences between the forecasts of the three models more
carefully. In particular, we focus on this question: why does Lee-Carter produce
the greatest differences in ages for Japan but closer age predictions in Sweden and
the US (Figure 2)? Moreover, why does the curve implied by the critical age values
given by Lee-Carter seem to repeat the shapes of Gompertz and Makeham age
curves (Figure 2), only higher? We feel that answers to these questions involve
general patterns of mortality decline, such as the rectangularization of the survival
curve, in developed countries.

Consider Figures 3, 4 and 5: they bring to attention parts of survival curves for
the US, Sweden and Japan for the next 3, 10 and 20 years. The plotted survival
probabilities were calculated based on the forecasted mortality index lAct, estimated
age-specific parameters a, and by, for Lee-Carter, and model-specific parameters for
Gompertz and Makeham. First, we note that survival probability estimates for short
future time periods (such as 7" = 3) are closer for all models, with similar values
in the US and Sweden. However, for longer time periods (" = 20), Lee-Carter
predicts significantly higher survival probabilities than Gompertz and Makeham in
all countries, with differences being most pronounced in Japan. These trends explain
the patterns brought to attention in the first question above.

Furthermore, the shapes of the survival curves in Figures 3, 4 and 5 reveal that
the Lee-Carter approach is likely to be much more sensitive to the changes in mor-
tality patterns in the three countries than Gompertz and Makeham. Higher survival
probabilities for older ages and lower values for younger ages, as projected by the

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e 1.00 g 0.80 \ W
] =~ \
L | 0
@ 0.98 \\ 0.60 \
z A\
309 \
= \ 0.40
g \
% 0.94 \
& \\ 0.20
2 0.92 \
<
0n
B X 1 e T e e S e [ 1141 TN
0 20 40 60 80 100 0 20 40 60 80 100
o 1.00 0.80
‘l: -;.;-'- \\
- o
g 0.98 ~ 0.60 \
A L
g 096 \‘\‘ \\
e \ 0.40 \
S 094 A} \
E b 020 \
@ 0.92 3 )
3 \\
D 0.90 Frrrperee e 000 gy
0 20 40 60 80 100 0 20 40 60 80 100
K 1.00 o~ 0.80 \\
] <\
- >
5 098 -~\\ 0.60 \
@ ~ \
[ 1 s
£ 096 - \
o \‘\ 0.40
S osa \s \
> ]
: \, A\
& 092 | v 20 L\
2 .\ A
Y1 [ SN 1 S ——— Y . SM—
0 20 40 60 80 100 0 20 40 60 80 100
Lee-Carter == =~=Makeham Lee-Carter = ==Makeham
= = = Gompertz = = = Gompertz

Figure 3: Survival probabilities, USA

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o~
n 1.00
F v\ 0.80 \\\\
0n
8 0.98
3 \ \
5 \ 0.60
O 096 \
z \ 0.40 h\
Z 0.94 ] . P
5 . \
e \ 0.20 i\
£ 0.92 A - N
2 \
°
: \
& 0.90 Hrrrrrrr et (0,00 ey
0 20 40 60 80 100 0 20 40 60 80 100
1=
W 100 e 0.80 x
[= T N \
@ 0.98 - N ' \
g ™ 0.60 \
3 \
O 0.96 \
B \\ 0.40 \
£ 0.94 y
3 \ \
2 092 0.20 \
3 \\ \\
o
£ 16 SURSRUEDRRISRHRISRRSS § NSRS N 1112 i S
@ o} 20 40 60 80 100 0 20 40 60 80 100
]
n 100 g 0.80 X
[N — \
g 098 b ’ A
g \\ 0.60 \
3 096 A \\
® \-\ 0.40 \
2 v \
S 094 | ¢ \\
3 . ¥\ 020 \
_§ ) \\ \
® 0.90 bt ) 000 e
a 0 20 40 60 80 100 0 20 40 60 80 100
Lee-Carter — —Makeham Lee-Carter =— =—Makeham
= = = Gompertz = = = Gompertz

Figure 4: Survival probabilities, Sweden

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




© 1,00 - 0.80 \
n
G 098 NN ‘\
g . ‘\\ 0.60 \
3 09 L \\
s 0.40 \
£ 094 \ \\
] \ \ 0.20 A
= 0.92 \ : \
] \ \
Q.
B 0.90 b begeseed 000 e
0 20 40 60 80 100 20 40 60 80 100
2 1.00 0.80 X
. RN \
i 098 o 0.80 \
2 ) . 0.40 \
% 0.94 L \\
& ‘. 0.20 \
2 0.92 \ \
5
2 090 \ 0.00 e
0 20 40 60 80 100 20 40 60 80 100
S 1.00 0.80 "
[ D \
= -
& 0.98 T s 050 \
“\ | \
A
3 096 \r- \
2 o0 \ o4 \
< Y \J
2 ¥, \ \
® 092 L 020 \
g i \
[=%
g 090 " 0.00 N ———
0 20 40 60 80 100 20 40 60 80 100
Lee-Carter == =—Makeham Lee-Carter == =—Makeham
= = = Gompertz

= = = Gomperiz

Figure 5: Survival probabilities, Japan

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Lee-Carter methodology, reflect the two major trends in the evolution of mortality
in these countries over the last century: deceleration of mortality at older ages, and
rectangularization of the survival curve. The trends also help to answer the second
question concerning the similarity in the shapes of implied critical age curves (Fig-
ure 2). The upward “shift” of the Lee-Carter age curve from those of Gompertz and
Makeham is a consequence of the rectangularization pattern obvious in Figures 3, 4
and 5. Such observations confirm the conclusions made earlier in the discussion of
the two approaches of quantile hedging, emphasizing the importance of choosing
the appropriate mortality model that would capture accurately the development of
mortality trends within the population in question.

Why do the three survival models produce smaller differences for Sweden and
the United States than for Japan? Possibly, such results are explained by patterns
of decline in the mortality index in the three countries from 1959 to 1999 (Figure 1).
Wilmoth and Horiuchi (1999) point out that drastic changes in the shapes of sur-
vival curves in these countries occurred up until the 1950s, with the US characterized
by the greatest degree of variability. After this time, Japan’s mortality index ex-
perienced the most dramatic drop, compared to Sweden and the US. Perhaps the
three mortality models are producing greater differences in the survival probability
estimates for Japan (compare Figures 3, 4 and 5) in response to the larger change
in mortality pattern in this country after the 1950s. Also, the fact that Lee-Carter
predicts lower mortality in Japan than the other two countries (Figure 1) is consis-
tent with the generally accepted idea that currently life expectancy in Japan is one
of the highest in the world. However, a separate detailed study would be required to
make concrete conclusions about the size of differences in the forecasts of the three
models for the three countries in question.

3.7 Future direction

For future studies, there are several interesting directions worth exploring. First, a
natural extension of the current setting is to consider other types of insurance prod-
ucts and their variations. In particular, one could study term insurance agreements
(in which the payoff is paid upon the death of the insured client before maturity
of the contract), and also contracts with extra benefits or provisions, such as rever-
sionary or terminal bonuses, paid at maturity of the contract or upon the death of
the insured client. This latter type of contracts would then incorporate components
of both life and term insurance, with payoff to be received at maturity of the agree-
ment, but bonus paid at or before maturity, at a random time. Another possibility
is to study contracts involving several risky funds and payoff variations resulting
from the behavior of the underlying asset prices. Such extensions would illustrate
the use of our methodology in a more realistic setting, appealing to both researchers
and practitioners in the actuarial and insurance fields.

Second, other mortality models should be incorporated into the analysis shown
in this thesis. Here, classical mortality models of Gompertz and Makeham were com-
pared with the newer method of Lee and Carter. As a next step, one could compare
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other recently developed mortality modelling methodologies to the Lee-Carter ap-
proach or the classical models. Of particular interest are the increasingly popular
stochastic mortality models based on affine processes; typically, they have been used
to model the term structure of interest rates (see, for instance, Vasicek (1977) or
‘Cox et al. {1985)). However, today these affine processes are being studied and
applied in actuarial context for modelling mortality as a stochastic process (see, for
example, Biffis (2005), Luciano and Vigna (2005), and Dahl (2004)); it would be
interesting to compare their performance and risk management implications with
those of Lee-Carter. The study and the resulting analysis, conducted here for Swe-
den, Japan and the United States, may prove beneficial to other countries which
already have strong markets for insurance products or are developing such markets.
The inspection should reveal whether actuarial models used to describe the mor-
tality of the client population in question are adequate for this purpose. Finally, it
would be interesting to investigate why the three mortality models agree on forecasts
more in some countries than in others; such study could provide insight about pos-
sible connections between fluctuations in mortality and the quality and proximity
of forecasts given by the different mortality models.
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Appendix 1

We will now calculate the density Z of the risk-neutral measure P*. We wish to
express Z; = 5‘%| , as a stochastic exponent of some process IV:

Zy = E(Ny).
Since there are two Wiener processes in our model, N; has the form N; = ¢1 - Wi +
¢z - Wi
Let us represent B;, Si and S? as stochastic exponents of processes A, H} and
H? respectively. In our setup,

h=rt, Hti = /Lit—l-O‘thi.

The general methodology for finding martingale measures (Melnikov and Shiryaev (1996),
Melnikov et al. (2002)) states that the process

%z(th:N) = th — ht + Ne + ((h - Hi)cv (h_N)C>t

should be a martingale w. r. to P, from which the constants ¢; and ¢ are calculated.
For 511 and s, we get the following:

sy = it + o Wi — 1t + W + ¢ Wi + o191t + 01920,
52 = pot + 0o Wi — 1t + 1 Wi + $oWE + oagat + oagnpt.
To make these martingales, we must have
it —rt+ o1t + o1t =0 and  pot — rt 4 oot + oa91pt = 0,
therefore, |

_ r(o2 — 01p) + pu2or — 102 (01 — 02p) + pp102 — H201

= d =
91 a102(1 — p?) and  ¢2 o102(1 — p?)
Returning to the stochastic exponent form, we get the following expression for
Z:
dpP*
Zy = d—Plft = E(Ny) = E(1 W} + ¢ WP)
02
(¢1Wt1+¢2W3—7¢t)
= e 9
where ag, = 4+ 2+ 20162

This is how we obtain the equations for Z and ¢; in (2.26) and (2.27).
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Appendix 2

Here we prove the multi-asset theorem (2.193):
for n 4 1 normally distributed correlated random variables z; ~ N(j;,c?) and
z ~ N(p,,0?) with variance-covariance matrix Ry, 1

2

07 T 010201z

Ry1 = : S (3.47)

J102P12z " Uz

and given constants X;,1=1,...,n,
—z _(#z‘é) nso ~

E(e I{z1<X1}"'I{zn<Xn}) = ¢ - (Xl,..‘,Xn), (348)

. X; — 1

Xi = "“—’L'——lﬁ + 0Pz

T

Above, U™ denotes n-dimensional cumulative normal distribution of correlated ran-
dom variables with mean 0 and variance 1 (see discussion following (2.195)). Note
that we make the standard assumption that all variance-covariance matrices are

invertible.
First, let us introduce notation. As mentioned, R,,4; is the variance-covariance
matrix for z;, i = 1,...,n+1, where z denotes Zy1, S0 that p,11 = ls, On+1 = 0z,

and whenever used in powers, i + 2z =4+ n + 1. The inverse of Ry, is denoted

At = lagjlln = Rﬁ}rr (3.49)

We denote R, the variance-covariance matrix for x;, 1 =1,...,n:

2
25} crr 010pPln
R, = : : . (3.50)
010np1n - On
Its inverse is denoted

A = llaijln = Ry (3.51)

We will also encounter these matrices in the proof:

1 prs
Rojai=1|: . 1, (3.52)
pro v 1
its inverse
A1 = ||l = R;}rl; (3.53)
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as well as

1 - pin
R.,=1|: .. ], (3.54)
pln ... 1
and its inverse
A, = laglln = Ry (3.55)

Next, let us recall some useful facts from linear algebra and apply them to our
setting.
1) For any matrix M, we have this relationship between the determinants of M and

its inverse M~1: )
M| = ™[ (3.56)

2) Constants can be factored from determinants: for us,
[Rn41] = 0303 - 0202 | Rnga - (3.57)

3) For M, the entries of its inverse M~1 = ”me“ are given by

my _ (—1)i+j
Y |M]

- M, (3.58)

where MY is the matrix M with j* row and i*" column removed.
4) In our setting, since Rpy1 is symmetric, the entries of its (symmetric) inverse

A, 1 satisfy
(__l)i-l-]'
TR

-[RY; (3.59)

similar formulas hold for the entries of An+1, A, and A,,.
5) Based on points (2) and (4), we have for A, 11 = ||aij|lnt1

o My RaliR,
() IRE, |

00§ |Rnt1l

(3.60)

similar relation holds for A, = ||a;|n.
Now we begin the proof of the multi-asset theorem. Based on the expression
for the multi-dimensional cumulative normal distribution (2.195), we see that the
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following equality has to be established:

E ( I{I1<X1} I{$n<Xn

X1 Xn
(27r)("+1)/2|Rn+1|1/2 / / /
n+

1 ”+1a”(wz Hl)(zj-/"])dzdml -dz, =

2
Tz
- Hz__) X1-p3 Xn—p
[ ( : / o / Yo HOPnz 1o

£ - e~ 3 im1 2oj=1GiEidi ga L ga
(27r)n/2|Rn|1/2 oo oo 1 n
(3.61)

Recall that 2; ~ N{(u;,02), z ~ N(uz,02) with variance-covariance matrix Ry 41
and its inverse A,+1 = ||a;j||lnt1, where as &; ~ N(0,1) with correlation matrix R,
and its inverse A, = ||@ij]|n-

To save space, let us write

/_;fdy:/_zm/::fdyl“'dyn. (3.62)

Now, let us simplify the expression in the exponent in (3.61) using the substitu-

tions
;= 2R o 4y = dso,
Oz
T — 1
T; = ! U'ﬂz =  dx; = di‘idi, (363)
k3

with limits on the integral involving Z remaining +oco and the others changing from
X; to X’;“ ¢ and the simplification of entries of inverses stated earlier in point (5)
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(see (3.60)):

n+1n+1

SN aiil@i — p)(xs — 1)

i=1 j—l

_Zzazg /1])+2Zazz Z‘Nz)(a:z_ljlz)’i'azz( _Nz)2

11]1 i=1

= g E 0;50:0;5;T5 + 2 E azzazazzazz—kazza 52

=1 j=1

= ZZ( DR, 00T %

i=1 j=1 U]an-i-ll

1)i+n+1 R 1)2(n+1) R
+22( PR CPOIR
Ulen+1l len+1l
" C)HR
-3y R,
i=1 J:1 |Rn+1|
-1 i+n+1 Rzz R
Z ) | 1|~~1+ | TL‘ (364)
i=1 |Rn+1| | n+1‘

Now, with the constant —% from the exponent, we complete the square for all
terms in the above expression that contain z:

%

o F an| z (DR, |
z =
2 IRn+1| =1 |Rrnq1]

- " itn 2
S [ilf{nllﬂ + 0z Rnp1] + 2opey (1) R "+1Ixz}

2R 41| IRn|/2

- . ~ . 2
L1 [oerﬂHi+2?=1<—1>Z+n+1|R5+1|xi}

- = 3.65
2R R, |1/ (369

Continuing with our calculations, let us now make another substitution:

_ 1 Z'ﬁ/ﬂ,ll/Q Ulen+1| +Zz— ( )H—n—l—l‘Rzz llji
Rnp1]/2 R/

~ |1:~{n|1/2

= di— (3.66)
lR*n+l|1/2

Wi
!

Notice that the limits on the integral involving z remain +oo.
Based on the two substitutions (3.63) and (3.66), point (1) about factoring
constants from determinants (3.56), the simplification of the sum (3.64), and the
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completion of the square (3.65), the expectation in (3.61) takes form

1 Y —Z¢ -1 "“E"Haz (zi—pi)(@j—pe5)
(27r><n+1>/2|Rn+1|1/2/_oo/_ooe J T dzdx

e M= \/Zwlf{nﬂllﬂ/x_ax& -1
[
-0

— — — 2|Rn+1]
(27T)(n+1)/21Rn+1|1/2 IRnll/Q

o i+n+1l iz = 2
4+ 'y GZ|Rn+1H‘ZTL=1(*1)l IR 125
‘e[z?zlz 1 (—1)* J‘Rn+1|w173]—( 1|ﬁn11 p) -
2
/ ¥
. zZ ax
—oo V21
X—px

e M= ox
- (27T)”/2lfln|1/2/—oo

2712 1( 1)l+J|R”+1|5L’z$J (

2
o2 Rpg1 HZD ) ()P REE s, )
|Rn|1/2 d%

2IR 1! [
e e

(3.67)

For the next step, let us represent the expression in the exponent as

—=.J
2 ?

with J determined as follows:

B, n itn 2
ZZ —1)H IRn+1 =1 oo Rnga| + > i ()4 +1|Rn+1|93i
S Rl 7 Ru |Rn[1/2

n n 'L

=> > (- < Rl (Rl — IR IR ) £

i=1 j=1 IR/rLHRn—i-l‘
n

R:
—20, Z( )z+n+1 | n+l| Plntila 2 IRn+l| —J (3.68)
=1 Rn| * R

Also, let us make notational simplifications

- (’I)H_j IRn+1||Rn| B | +1||Rn+1 (3 69)
Y [Rn| ‘Rn+1|

and

I3

;= (—1)itng, onttl 3.70
si=(=1)""0o Rl (3.70)
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Based on (3.68), (3.69) and (3.70), the expectation in (3.67) becomes

6_“2 x;xx
(2m)"/2 R |12 /—oo

R n i+n+l fiz ~ 2
_ 1 n n ViR == °'z|Rn+1H'Ei=1(‘1) |Rn+1|1'i
c 2[Ryt [Zi:l i (F) R 135 ( R 172 i%

X—px n n = = n 5 '”
I s [ A e (3.71)
(27T)n/2|R.n|1/2

-0

Now consider the original equality we are trying to establish, given in (3.61):
using this substitution

;=% + OzPiz, (372)

we can rewrite the last expression in the equality as shown:

1 - s s
-5 2im1 2?:1 AijTiTj I
[ X

a%
6_ (#ZAT) x;:x +020xz
(27r)n/2lﬁn‘1/2 /_Oo
- (Hz—gzé) X—px
€ ax

- (27r)n/2|]_:1n|1/2/_00

e—% DIHETD D) &ij(ii+0zpz'z)(ij+<fzﬂjz)d)~(’ (3.73)

with Xg;—:"‘ + 04 pPxz 0 the upper limit referring to each individual upper limit X’U—_l’“—i-
OzPiz-

At this point, compare (3.71) and (3.73): if we can show that the expressions in
the exponents are equal, then we will have completed the proof of the theorem. So,
let us proceed with this idea in mind.

First, we expand the exponent of (3.71):

5 5 R
T'iji'i:ﬁj +2 Si.’zi - 0‘2 i
i=1

i=1 j=1 © R4l

.2 .9 -
=7r112] -+ rooxg + -+ ’f‘nnl‘%
+2r1981Z2 + 2r13T1F3 + - - + 2r1n.T1Zn
+2r93ToTg + - - - + 219, To Xy

+27'(n—1)ni'n—li'n
o2 Bas1l
|Rn|

Next, let us expand the exponent of (3.73): after some algebraic manipulations,

+281%1 + 259%0 + - - + 28, Ty, — (3.74)
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we obtain

3

n

Z U(féi + O'zpiz)(i'j + O'zpjz)
1 i=1

. I
allxl + a22$2 4+ 4 anny,
+2a19F1Z2 + 20138123 + - - + 221, T1 %y
+2a93%9Z3 + - - - + 202, T2 Ty

+26~L(n_1)nin_1jn
n

n n
+22, Zaljazpjz + 227 Z a2;02P5z + -+ + 2Ty Z anj02P4z
i=1 j=1 i=1

n n
+Y D @502 pipje- (3.75)

i=1 j=1

Comparing the terms in the two expansions, we see that we need to show three

things:
1. ""z‘j = dij,
2. 8 = Z?:l &ijo"zpjz, and
o Rns1] _ of
3 2 |1{n| - ‘7 -3 1 Z] 10‘1] zp’bszz

Before we prove these, we establish the following relations about determinants:

R, | ﬁZ( 1)+ pi.|RY) (3.76)
and
- B i
Ron| = [Rogal — > (1) i RIZ |- (3.77)
=1

Now we are ready to prove relations 1, 2 and 3. First, consider 2: using the
expression for entries of inverses (3.59), we have

n n _1)i+j|1§g
Z AijOz P52 = Z <—R—"‘szjz~ (378)
j == j=1 I n1
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But from the definition of s; in (3.70) and relation (3.76), we obtain

& = (——1)i+n0'z—|REf+l
|R|
LA RY
(1), Sy, Bl
2 IR
_ o S ()i, Bl 3.79
;( ) Pj an| ( )

Comparing (3.78) and (3.79), we see that relation 2 is proved.
Next, let us look at 3: we will prove this equation using (3.77) and (3.76). On

one hand,
Ez%lf{—f"ﬂ = 9_22’ 1+i(_1)i+n+l IRTL+1|
= 5|1+ (D Y (-1 pszR ). 320
i=1 j=1 IRn|
On the other hand,
ol l1q~\-- 2 & Uf O (CD)THHRY
3‘ 5 Z;aijo'zpizpjz = —2— —2—— 4 Zl IRnl ——=—PizPjz- (381)

Comparing (3.80) and (3.81), we see that relation 3 is also proved.
Finally, note that to prove 1, we need to show that

() (IR IR — [RELIRZL ) (C)™RY)
& RYL IR - REIRY | = Renl|RY) (3.82)

To facilitate the proof of relation 1, we express all matrices in the last identity
above in terms of R, 1 with necessary rows/columns removed. Thus we must prove

n+1 1 5 i(n+1) 195 1)5 o 57, (n+1)(n+1
R IREEDD - REGTVIREEY | = R [RETDO)L (3.83)
Note that
RV — Rz’j_ﬂﬁl)(n%—l) (3 84)
T Eaa 13 .

is the matrix Rn+1 with rows i,n 4+ 1 and columns j,n + 1 removed.
Instead of proving (3.83) directly, we will prove this more general result:
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for n > 3 and any choice of 1, j, k, I < n, the following holds for any n x n matrix M
IV [IMEF| = (M| IME| = TarT | M M. (3.85)

Above, Mf{"lk is M,, with rows 7, and columns j, k removed. Also, the function Iy
is defined as

1 ifb>a
Tw=<¢0 ifb=a (3.86)
-1 ifb<a

We will prove {3.85) by induction on n.
Before we begin the proof, note that if I = ¢ or k = j, then (3.85) holds trivially.
Next, without loss of generality, we assume that

I>i and k>j. (3.87)

We can make such assumption, because if ¢ were smaller than [ (or k < j), then we
could rename the variables 4,1 (or 7, k), which would introduce a negative sign on
both sides of equation (3.85).

Also, we will prove that (3.85) is valid for every matrix M, if and only if the
following formula holds for every M, also:

(MM — MM = [V M| (3.88)

Proof.

= Assume (3.85) holds. Let k,! = n,n. Then (3.88) holds as well.

< Assume (3.88) is true. Construct a new matrix M, by moving row ! and
column k in matrix M, to positions n,n. Then

MY = (-1 MY,

M| = M,

MY = ()" FMpY|,

IM¥| = (-1 M,

M = M,

M| = (—1)"*M,|. (3.89)

Based on the equations above, (3.85) turns into
|V ||V | — [V [V = ML [Me - (3.90)

And, since (3.88) holds for any matrix by assumption, in particular, it holds for M.
Therefore, (3.90) implies that (3.85) is true, which completes the proof.

Now we proceed to prove (3.85) by induction as follows. For the first step, we
show that (3.88) holds for n = 3, implying that (3.85) also holds for n = 3. For
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the inductive hypothesis, we assume (3.85) holds for some n and show that (3.88)
is true for n + 1, which is equivalent to (3.85) being true for n + 1.

Step 1. Here we have n =3 and ¢,57 = 1,1, 1,2 or 2,2 (the case for ¢, = 2,1
is equivalent to i, j = 1,2 by transposition). For each of these possibilities, (3.88) is
shown to be true by direct verification (omitted here).

Step 2. Assume that (3.85) holds. That is,

M|V | — [V ||V | = Tl VIS M| (3.91)

is true for every matrix M and some n, and for all possible values of ,7,k,! < n.
Using this assumption, we will prove that (3.88) holds for n + 1.
We want to show that for any 1,5 <n+ 1,

i n+1 1 i(n+1 i,(n+1)(n+1
MY, MDD MY = MEZTT O M) (3.92)

First, we expand the determinants above by row/column n + 1 whenever possible.
Using notational simplifications

ii.lk i, l(n+1),(n+1)k
M = M:f-;-(ln M )7
i i(n+1),(n+1)7
M:LJ = M:E:L-I Hm )]7
M, = M (3.93)
we can write
j—1i-1
. -
|Mn+ll = ZZ )+k+1m1(n+1)m(n+1)k|M%’lk|
_1 n
Z (= 1) *my 1y Mgy e M|
k=1l=i41

n

1:_
Z Z (=) My 1y Mgy M
:J =1

T k3
+ 30 (D iy Ml M| 4 My gy IME

k=j+11=i+1
N A
MUY = Z(—l)” M+ M,
=1
; 1 = ]
M| = D (1) M,
k=1
n k(3
Mot1l = Mppnynrn Ml + DY (D g ymy e ME]. (3.94)
=1 k=1
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Here, mg; denotes entry in row a and column b in My, 3.
Now we utilize the new notation (3.93) and the expansions for the determinants
(3.94) to rewrite (3.88) for n + 1:

=141
ZZ(—l)l+k+lml(n+1)m(n+1)k|M:zj’lk|
k=11Il=1
-1 n
0 (D gy M
k=11=i11
n =1 N
+ 3 Y (D Fmy gy M ME
k=j+1 l:l
n n .
+ Y D O gy mye M
ki1 =it

Ay ) MI || - 1M =D 0 (D) Fmyg ymn 1 MY |[MF|

=1 k=1
n n
= |MY||Mn|m i1y + IME] YD (D) oy 1y m e MU
=1 k=1

(3.95)

Note that using the I function (3.86), we can simplify the sums on the left-hand
side of the equation above to get the following:

k(3 "
ZZ(_1)l+k+1rilrjkml(n+l)m(n+1)kIMg’lklil - My, (3.96)
k=1 1=1

n n
= 3 S ) gy e (MM - (MM
1=1k=1

Now, comparing the terms inside the sums, we see that they are equal by the
induction hypothesis.

Therefore (3.88) holds for n + 1, thus (3.85), which is equivalent to (3.88) (see
(3.90)), holds for n + 1 also. And, the general formula (3.85) implies that our
particular case for Rn-i—l (3.83) is true as well. This, in turn, shows the equality of
the last set of coefficients (relation 1), and completes the proof of the multi-asset
theorem.
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Appendix 3

Here we include tables with values of the estimated parameters ., IA)w and k; for the
Lee-Carter model.

Table 8: Estimated parameters a ,l;x for the Lee-Carter model
g by
USA  Sweden Japan | USA Sweden Japan

-4.2672  -4.8263 -4.7669 | 0.2365 0.1654 0.1875
-6.9161 -7.4971 -6.7308 | 0.1904 0.1480 0.1488
-7.3373  -7.9498 -7.2465 | 0.1732 0.1741  0.1685
-7.5993 -8.0820 -7.4993 | 0.1750 0.1759 0.1712
-7.8014 -8.1322 -7.6983 | 0.1870 0.1706 0.1756
-7.9258 -8.2192 -7.8348 | 0.1909 0.1938 0.1665
-8.0263 -8.2954 -7.9452 | 0.1837 0.1716  0.1507
-8.1122  -8.3972 -8.0785 | 0.1764 0.1740 0.1428
-8.1667 -8.4612 -8.2632 | 0.1544 0.1470  0.1487
-8.2357 -8.4903 -8.3794 | 0.1609 0.1398  0.1446
-8.2596 -8.4868 -8.4715 | 0.1541 0.1278  0.1425
-8.2230 -8.5492 -8.4920 | 0.1449 0.1140 0.1341
-8.1152 -8.5226 -8.4405 | 0.1282 0.1164 0.1257
-7.9540 -8.4235 -8.3523 | 0.1142 0.1117 0.1144
-7.7231 -8.2373 -8.2596 | 0.0923 0.0944 (.1081
-7.4651 -7.8444 -8.0411 | 0.0765 0.0908 (0.1005
-7.1425 -7.7533 -7.5888 | 0.0493 0.1011 0.0739
-6.9551 -7.6193 -7.4273 | 0.0532 0.0846 0.0771
-6.7716  -7.3407 -7.3279 } 0.0480 0.0764 0.0754
-6.7427 -7.3220 -7.2363 | 0.0606 0.0733 0.0810
-6.7392  -7.2994 -7.2045 | 0.0596 0.0635 0.0888
-6.6911 -7.3081 -7.1989 | 0.0589 0.0580 0.0984
-6.6933 -7.3003 -7.1826 | 0.0611 0.0706 0.1079
-6.7014 -7.2622 -7.1661 | 0.0533 0.0563 0.1104
-6.7166 -7.2991 -7.1618 | 0.0564 0.0671 0.1173
-6.7022 -7.2738 -7.1383 | 0.0529 0.0521 0.1154
-6.7008 -7.2225 -7.1337 | 0.0454 0.0575 (0.1140
-6.6778 -7.1836 -7.1232 | 0.0397 0.0506 0.1164
-6.6369 -7.1744 -7.0950 | 0.0286 0.0548 0.1134
-6.6427 -7.1161 -7.0535 | 0.0425 0.0679 0.1128
-6.5857 -7.0597 -7.0289 | 0.0357 0.0577 0.1104
-6.5416 -7.0370 -6.9900 | 0.0256 0.0545 0.1100
-6.4875 -7.0155 -6.9348 | 0.0314 0.0593 0.1088
-6.4353  -6.9309 -6.8737 | 0.0324 0.0576  0.1075
-6.3920 -6.8580 -6.8076 | 0.0434 0.0543 0.1075
-6.3214  -6.7768 -6.7354 | 0.0471 0.0484 0.1034
-6.2570 -6.7273 -6.6713 | 0.0480 0.0520  0.1006
-6.1918  -6.6713 -6.5903 | 0.0553 0.0554  0.0936
-6.0912 -6.5640 -6.5155 | 0.0529 0.0467 0.0945
-6.0612  -6.5351 -6.4258 | 0.0810 0.0490 0.0951
-5.9681  -6.4227 -6.3408 | 0.0810 0.0512  0.0880
-5.8924  -6.3633 -6.2643 | 0.0762 0.0477 0.0874
-5.7905 -6.25648 -6.1773 | 0.0908 0.0410 0.0814
-5.7174 -6.1683 -6.0848 | 0.0913 0.0519 0.0795
-5.6518 -6.0947 -5.9928 | 0.1014 0.0513  0.0780
-5.5530  -5.9968 -5.9053 | 0.1029  0.0453 0.0744
-5.4678 -5.9137 -5.8197 | 0.0999 0.0506 0.0722
-5.3777  -5.8055 -5.7238 | 0.1063  0.0465 0.0708

>
43
©

CLOCICOLIWLIBNI BRI DI DRI DI DI DN DI DO DD b = s = ot e = o b B
NSRS R e R S R S B NE S RN RS 50 IociR o o QR TD TR ot
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(25 b:c

Age| USA  Sweden Japan USA  Sweden Japan

48 | -5.27567 -5.7289 -5.6374 | 0.0981  0.0543 0.0700
49 1-5.2196 -5.6229 -5.5459 | 0.1165 0.0517 0.0692
50 |-5.1144 -5.5444 -5.4566 | 0.1164 0.0469 0.0679
51 |-5.0246 -5.4492 -5.3685 | 0.1042 0.0471 0.0683
52 | -4.9230 -5.3457 -5.2813 | 0.1072 0.0493 0.0692
53 | -4.8489 -5.2680 -5.1999 | 0.1065 0.0473 0.0711
94 | -4.7685 -5.1724 -5.1122 | 0.1095 0.0464 0.0711
95 | -4.6766 -5.0759 -5.0247 | 0.1005 0.0422 0.0708
56 | -4.5939 -4.9874 -4.9370 | 0.1003 0.0468 0.0724
57 1 -4.5157 -4.8860 -4.8487 | 0.1019 0.0498 0.0748
58 | -4.4023 -4.7992 -4.7493 | 0.0873 0.0478 0.0794
59 | -4.3435 -4.7012 -4.6658 | 0.0976  0.0483 0.0772
60 | -4.2480 -4.6006 -4.5780 | 0.0929 0.0483 0.0767
61 | -4.1722 -4.5055 -4.4783 | 0.0822 0.0489 0.0779
62 | -4.0580 -4.4124 -4.3857 | 0.0876  0.0479 0.0786
63 | -3.9960 -4.3005 -4.2898 { 0.0861 0.0517 0.0803
64 | -3.9288 -4.1970 -4.1917 | 0.0895 0.0504 0.0824
65 | -3.8250 -4.1031 -4.0969 | 0.0962  0.0486 0.0836
66 | -3.7651 -4.0053 -3.9989 | 0.0853  0.0523 0.0842
67 | -3.6766 -3.9009 -3.9006 | 0.0924  0.0543 0.0872
68 1-3.5920 -3.7987 -3.7984 | 0.0844  0.0561 0.0880
69 | -3.5250 -3.7016 -3.6976 | 0.0861 0.0584 0.0885
70 | -3.4298 -3.5998 -3.5919 | 0.0895 0.0603 0.0897
71 | -3.3676 -3.4834 -3.4875 | 0.0782  0.0603  0.0908
72 | -3.2586 -3.3866 -3.3789 | 0.0894 (0.0605 0.0912
73 | -3.1797 -3.2751 -3.2701 | 0.0813 0.0614 0.0912
74 |-3.1041 -3.1654 -3.1595 | 0.0863 0.0595 0.0904
75 | -3.0148 -3.0615 -3.0482 | 0.0922 0.0616 0.0902
76 | -2.9364 -2.9497 -2.9376 | 0.0857 0.0614 0.0890
77 | -2.8609 -2.8355 -2.8232 | 0.08383 0.0608 0.0868
78 1-2.7720 -2.7333 -2.7120 | 0.0917 0.0618 0.0855
79 | -2.6869 -2.6247 -2.6000 | 0.0902  0.0589 0.0827
80 | -2.5793 -2.5226 -2.4919 | 0.0857  0.0570 0.0811
81 1-2.5102 -2.4092 -2.3825 | 0.0729 0.0569 0.0787
82 | -2.4046 -2.3040 -2.2767 | 0.0788  0.0568 0.0763
83 |-2.3095 -2.2014 -2.1703 | 0.0818 0.0541 0.0747
84 1-2.2148 -2.0972 -2.0699 | 0.0824 0.0504 0.0722
85 |-2.1216 -1.9893 -1.9679 | 0.0755 0.0499 0.0699
86 [(-2.0303 -1.8873 -1.8664 | 0.0740 0.0490 0.0684
87 |-1.9426 -1.7942 -1.7691 } 0.0739 0.0455 0.0656
88 | -1.8635 -1.6905 -1.6727 | 0.0704 0.0430 0.0638
89 | -1.7723 -1.6000 -1.5771 | 0.0689 0.0390 0.0623
90 | -1.6779 -1.5066 -1.4858 | 0.0692 0.0375 0.0598
91 1-1.6135 -1.4144 -1.3936 | 0.0565 0.0316 0.0573
92 | -1.5162 -1.3246 -1.3049 | 0.0561 0.0286 0.0569
93 |-1.4303 -1.2352 -1.2298 | 0.0524 0.0260 0.0538
94 |-1.3510 -1.1626 -1.1487 | 0.0467 0.0260 0.0518
95 1-1.2795 -1.0707 -1.0795| 0.0398 0.0240 0.0489
96 | -1.2050 -0.9910 -0.9964 | 0.0340 0.0225 0.0511
97 |-1.1380 -0.9221 -0.9409 | 0.0290 0.0145 0(.0459
98 | -1.0893 -0.8624 -0.8624 | 0.0186 0.0178 (.0464
99 |-1.0474 -0.8037 -0.7921 | 0.0065 0.0088 0.0495
100 | -0.9890 -0.6987 -0.7374 | -0.0019 0.0121 0.0456
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Table 9: Estimated mortality index values lAft for the Lee-Carter model

Year [ USA  Sweden Japan || Year | USA  Sweden Japan

1959 | 2.5544  3.7937  6.7274 || 1980 | -0.3782  0.3010 -0.4301
1960 | 2.6275 4.3281  6.5445 || 1981 | -0.6853 0.0183 -0.8924
1961 | 23719  3.6897  6.0998 || 1982 | -0.9203 -0.5648 -1.4801
1962 | 2.4350 4.0070  5.9820 || 1983 | -0.9310 -0.9118 -1.5167
1963 | 2.5415 3.6169  5.1142 || 1984 | -1.0559 -1.3277 -1.9761
1964 | 2.3038  3.2711  4.7704 || 1985 | -1.0343 -1.0078 -2.2832
1965 | 2.2729  3.1529  4.8374 | 1986 | -1.1746 -1.4642 -2.7728
1966 | 2.2731  2.8284 4.1163 | 1987 | -1.3011 -1.8054 -3.2539
1967 | 2.0242 2.7166  3.8822 || 1988 | -1.2944 -1.5344 -3.1112
1968 | 2.2170  2.9540  3.6368 || 1989 | -1.5886 -2.6725 -3.6495
1969 | 1.9851  2.7699  3.4282 || 1990 [ -1.8337 -2.4021 -3.6487
1970 | 1.7825  1.7746  3.3832 || 1991 | -1.9824 -2.7217 -3.9837
1971 | 1.5421 1.8771  2.5980 || 1992 | -2.1886 -3.1343 -4.0652
1972 ] 1.5065 1.7493  2.1780 | 1993 | -1.9901 -3.0514 -4.2281
1973 | 1.3587 1.6343 2.1556 || 1994 | -2.1485 -4.2827 -4.7434
1974 | 09483 1.4299 1.7884 | 1995 | -2.2114 -4.2156 -4.5762
1975 | 0.5051  1.4042  1.2985 | 1996 | -2.3842 -4.4808 -5.4065
1976 | 0.3230 1.5187 0.9346 || 1997 | -2.5693 -4.8989 -5.6780
1977 0.0017  0.7125  0.3425 il 1998 | -2.6437 -5.1465 -5.8451
1978 | -0.1318  0.6676  0.0162 | 1999 | -2.6501 -5.1602 -5.7642
1979 | -0.4769  0.5669 -0.5288
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