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ABSTRACT

The Hodge Conjecture states that for a projective algebraic manifold X'.
any rational cohomology class of type p, p is the class associated to a rational
algebraic cycle of codimension p.

This thesis explains part of the Griffiths program for proving the Hodge

Conjecture. The task will amount to proving that the image of the class map
[]1:C™X)z Q- HY(X.Q)

contains Prim™™(X.Q). We retrict the domain of [ ] to ©(X/P.Q). the
preimage of Prim™™(X.Q). The Griffiths program then factors the function

into the following composition:

O(X/P,Q) 0 ~ Prim*(X:Z)

The approach is to prove the Hodge Conjecture by establishing the surjec-
tivity of ® and that im= D Prim™™(X, Q).

Our object here will be to show that Prim™™(X:Z) = im= in Prim™(X:Z ).
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INTRODUCTION

Let X be a projective algebraic manifold of dimension n. Of de Rham co-
homology H'(X), there is the Hodge decomposition (') = @,,,=, H*7(X).
where HP7(X) is the space of closed harmonic forms of tvpe (p.q). The de-
composition satifies HP?(X) = H??(X). where - represents complex conju-
gation. A rational algebraic cycle of codimension p is a sum = = TR e
where r; € Q and the =;’s are irreducible codimension-p subvarieties of X
Integration of a form w € E*~%(X) over = is defined

p
W = Z r,-/ w.
/: =1 :x\(:u)ilng

We know this integral exists because. using a desingularization p : 2 — =,
of ;. we have [ \(s)..,« = J: P"w. which exists. This integration descends
to cohomology because [ (.,),., 4« = [:d(p"<) = [;:p"w = 0. To any
such cvcle z. we may associate an element of H*?(X). If = is the cycle. the
associated class ( is chosen so that the linear functionals

wr [

@W < AC
fe=

represent the same element of H?"~?"(X)*. Poincaré duality H**~2(X')-
H?*"(X) guarantees that such a ¢ can be found.

and

jn—d

The Hodge Conjecture (the version considered here ix known as
Hodge??(X.Q) ) states that for a projective algebraic manifold .X'. any ratio-
nal cohomology class of type p. p is the class associated to a rational algebraic
cvcle of codimension p.

We will show that in proving the Hodge Conjecture an assumption may
be made about p and n, and that only part of HP?(X.Q) := HPP(\) N
H??(X.Q) need be considered. To the end of justifving these assumptions.
which will be stated later, we will state the Lefschetz theorems.

Let X. being a projective algebraic manifold. have Kahler form « &
E11(X). the space of (1.1)-type forms on X. Then

L:E"(X)— EX(X)

1



n—=wAn

descends to cohomology. H*(X) — H*(X). « may be chosen so that L is dual
to the map on homology obtained by intersecting with a smooth hyperplane
section.

The primitive cohomologyis defined to be the kernel of L*+! : H*~%(X) —
H™4+2( X)), written Prim(X), or Prim*(X) in the case of the above restric-
tion to HF(X).

Lefschetz Decompostion
H*(X) = Prim(X) = LPrim(X) = L?Prim(X) =. ..
O
Strong Lefschetz Theorem
L* : H%(X) = H" (X))

is an isomorphism. O

~



The situation is depicted in the following diagram:

2#(x)=
Blx)=
H(X)=
HiXxj=

/
.
\

HI=3(X)=

HIn-2x1=

EZn—'. Xi=

H2n(x)=

Pnm®(Xx)

term9(X)

=lpnmCix)

L"Pam®(X)

lL

Q

Pami(x)

®

Lan-.l(X)

L= pamiiX;

[t

n-iznmliox,

Pruxzz(X)

o

2t=3pnm? X

|
!

EIN
Pram 1 X}

"
LT Pam

o

1

(X



The left side of the above diagram could have been written:

H%x)

H (X,



The Lefschetz decomposition is compatible with the Hodge decomposi-
tion. Namely, set

Prim”?(X) = H?9(X) N Prim**?( X))

= ker{L"P~1! ; HP9(X) — H"1tlAoprl( X))

Then Prim*(X) = B p+q=k Prim”?(X). For p+q < n.we also have the Strong
Lefschetz Theorem. which states that

L™ P HPY(X) — H"7"7P(X)
is an isomorphism.

Weak Lefschetz Theorem

Let ¥ be a smooth hyperplane section of X. with inclusion map j : ¥ —
X. Then j.: H(Y.Z) — H|(X.Z) is surjective for [ = n — 1. and bijective
for { < n — 1. (The correspponding statement for rational homology follows

from this.)O

The strong and weak Lefschetz theorems allow us to reduce the Hodge
Conjecture to a special case.

We may assume 2p < n.
Suppose 2p > n. This is equivalent to 2(n — p) < n.
By the strong Lefschetz theorem we have as an isomorphism

[P . HZ(H-P)(X,Q) — H*(X.Q)

Dual to L?”~" is the map on homology which consists of taking 2p — n hy-
perplane sections:
H2p('\’~Q) - HZ(n-p)(-Y-Q)

Now suppose we know Hodge™ ?""?(X.Q) and wish to find an algebraic cvcle
giving a certain class n € HPP(X,Q) C H*(X.,Q). Find € = (L**~")"Y(n) ¢
Hm=Pm=P(X, Q) C H*"~P)(X.Q). By our supposition find = € C"*~P(X) = Q
with £ = [z]. Obtain y € CP(X) £ Q from = by taking a smooth hyperplane
section 2p — n times. This process is dual to L?*~", so that

ly] = LP*([z]) = L¥ (&) = n

and y is a codimension-p algebraic cvcle dual to 7.

)



Thus Hodge??(X. Q) follows from Hodge" ?""?(X. Q). Recall 2(n—-p) <
n. So we may assume 2p < n. O

We May Assume n = 2p.

Suppose 2p < n. Let F be an (n — 2p)-dimensional manifold parametriz-
ing an (n — 2p)-dimensional family of complete intersection subvarieties each
obtained by n — 2p successive smooth hyperplane sections. covering X. For
any f € F. we have the corresponding (2p)-dimensional intersection subvari-
ety X with inclusion j; : Xy <+ X. Now suppose we know Hodge??(X;. Q)
for smooth X; and wish to find an algebraic cycle giving us a certain class
n € H??(X,Q). We know that for any general f € F. ji(n) € H??(X;.Q)
is algebraic. By Hodge”?(Xy), Q) find an algebraic cvcle =4 of codimension
p. Hilbert scheme arguments show easily that as f varies in F. = traces out
an algebraic cycle = of codimension n such that j;(n) = [z;] = j7({z]). By
the weak Lefshetz theorem j; : HP?P(X.Q — H**(X;.Q) (any f € F with
X smooth will do) is an injection and therefore [z] = n. We have found the
desired algebraic cycle =. Our assumption of Hodge””(X;. Q) was sufficient
to obtain Hodge??(X.Q). So we may assume X itself has dimension 2p. C

A third assumption can be made.

We Need Consider Only Prim™™(X.Q) C H™™(X.Q).
Let Y be a smooth hyperplane section of X with inclusion j : ¥ «— X
By the projection formula. we have the commutative diagram

H*(X.Q) = H"(X.Q)

(= by weak Lefshetz)tj‘ /

H™3(Y.Q)

where j. is obtained via duality from the pushforward on homology. To see
this, let (,) be a pairing: then

J=3"(&) = (J.77(€). X)x

projection

= J-(7(€).J7(X))x

formula

= J.(77(§)-Y)y

projection

= " J(€.J(Y))x

formula



=({{.Y)x
TNy = L(E).
Thus j. o j~ = L.
From the Lefshetz primitive decomposition we know
HY(X,Q) = LH**(X.Q) &€ Prim™(X, Q)
By the above diagram we obtain

H*(X.Q) = j.H**(Y.Q) & Prim™(X. Q)

Since the Lefshetz and Hodge decompositions are compatible. we have (as-
suming n = 2m)

Hm.m(X. Q) —_ j- Hm-l.m—l(y-’ Q) _3 Prirnm""'(.\’, Q)

Now suppose we know Hodge™ ™ !(}.Q) and wish to find an algebraic
cvcle giving a certain class n € H™™(X.Q). Let n = j.{ =& in the above
direct sum. By supposition. we can find a z € C™H(Y) £ Q with

- —

CHEE
We now know that the success of finding an algebraic cycle giving 7 depends
on our finding an algebraic cycle giving §. For if we can findz e C™X)ZQ
with

[x] = € € Prim™™(X. Q).

then. considering z as € C™(X) 8 Q via ; : Y — X. we have our desired
algebraic cycle z + z:

[z+z] =5[]+ zl=J.C+€=n

By induction, then, it suffices to consider only Prim™™(X.Q) ¢ H™™(X.Q).
(The Hodge Conjecture for Prim™™(X. Q). in conjunction with Hodge™ '™ 1(X.Q).
implies Hodge™™(X.Q).) C
We now outline the Griffiths program for proving the Hodge Conjecture.
We have seen so far that our task amounts to proving that the image of

[1:C™M(X)8Q—+ HY(X,Q)

-1



contains Prim™™(X.Q). So we may restrict the domain of [ ] to the pre-
image of Prim™™ (X, Q). Note that Prim™™(X.Q) =kerL : H™™(X.Q) —
Hm+im+l(X Q). It follows that the pre-image of Prim™™(X.Q) consists of
cvcles whose generic hyperplane sections are homologically equivalent to 0
(the group of which is denoted ©(X:)). We will denote the pre-image of
Prim™™(X.Q) by O(X/P.Q). So we are interested in proving that the
image of
[]:0(X/P,Q) — Prim"(X,Q)

contains Prim™™(X, Q). Most basically, the Griffiths program splits [ |. on
O(X/P.Q). into a composition:

HO(P.J)

/

O(X/P.Q) . Prim*(X:Z)

Each element of O(X/P.Q) is fibered by hyperplane sections over P. ¢. the
Abel-Jacobi homomorphism. is defined fiberwise. on smooth fibers. So we
are actually only interested in those cycles in @(X/P.Q) for which ¢ extends
meromorphically across the singular locus of singular hyperplane sections.
(H°(P.J) is the group of normal functions. to be defined later.) The ap-
proach is to prove the Hodge Conjecture by establishing the surjectivity of
® and that im= D Prim™"™. Its surjectivity is the statement of “Poincaré’s
existence theorem™. which is conjectured to be true in general. What is not
true in general is the fiberwise statement “Jacobi inversion™. the surjectivity
of C™(X )hom i J™(X:). which would imply Poincaré’s existance theorem.
We will. in this thesis, demonstrate that Prim™™(X:Z) C im=. The maps
® and = will be defined later.

The object here will be to show that Prim™™(X: Z) = im= in Prim"(X:Z).

When X is a surface, then since Jacobi inversion holds for curves. we have
the Hodge Conjecture for p = 1, known as the Lefschetz (1.1) Theorem. This
case is the subject of the Appendix. Jacobi inversion holds for other cases as
well. a few of which will be discussed in the section Example Applications. If
Q is replaced by Z in the statement of the conjecture. this integral version.
known as Hodge??(X,Z), in general is false for p > 1. A counterexample
was found by Atiyah and Hirzbruch.

This thesis is composed of two main sections. The first contains defini-
tions and preliminary results, indexed ,, ... The second is the main

8



argument. Its strucure is found in the diagram which precedes it, and its
steps are listed in the table of contents. The diagram is interpreted as fol-
lows. The statement in a box is implied by the conjunction of the state-
ments in boxes below and attached to it w1th lines. For example . 12| follows
from [3] and E and [3] from statements [5] through [1 - The statements
- @ . . @,m 16 |, E- m are the most basic statements. im-
plied by no others in the diagram. The truth of |1] . is the object of the
whole argument. Notation found in the diagram will be explained in the first
section.




DEFINITIONS AND PRELIMINARY RESULTS

The setting, and two isomorphic sheaves.

X C PV is a non-singular projective variety of dimension n = 2m.
There is a linear pencil of hyperplanes given by agzp + a;z; = 0 where
lag.a;] € P.(z0....2x) € PV, and in local coordinates t = a;/ap. We set
X, as the intersection of X with the hyperplane determined by t. We may
choose this Lefshetz pencil(the collection {X, : ¢t € P}) (see [Andreotti &
Frankel]) so that X, is non-singular for all but finitely many points. for all
t € U := P\X, where ¥ is the finite singular set C P. For t € X.the sin-

lar section X; has one ordinary double point.given in local coordinates by
?‘;rl ..... ) €PN T ri= } as its only singularity. We may also ar-
range the pencil so that Xo. X«. and the base locus D = N,e= X: = X N {z:
z0 = = = 0} are smooth. Let Y be the blowup Bp(X) of X along the base
locus D := ez Xe = X N {(20....2n) € PV | z0 = z; = 0}. Let f be the
obvious projection Y — P. Let Y = _f__l((f'). and f = f |y. We have

Y —Y A
f 7 LT
[[—P t

Proposition The two sheaves Op = R'f.C and R'f.Q}. - over [  are
isomorphic. O

Before giving a proof, we give the definitions of Or- = R' f.C and R' f.Q3. ;.
The latter is derived from the presheaf V" — H'(f~!(1"). 2 ;i-) and R'f.C is
derived from the presheaf V' — H'(f~}(V").C). (H denotes hypercohomol-

ogy-)

Briefly we review the definition of hypercohomology {Griffiths & Harris.
p.446]. Let M be a complex manifold, and U be a cover for \/. Let (A".d)
be a complex of sheaves on M with differential d. CP(U.A?) is the group of
Cech p-cochains with values in .A?. The two operators

§: CP(U, A7) = CPHY(U. A7)
d: CP(U, A% = CP(U. AT

satisfv 6% = d*> = 0,dd + dd = 0. Consequently. we have a double complex

{CP1 = CP(U. A7) : 6.d}

10



and an associated single complex. denoted (C~(U). D). (Here C' = @, ,=, €7
and D = d + 6. so that D? = d* + dé + 8d + 6% = d6 + dd = 0.) If we refine
the cover to U’ < U. we get mappings

CP(U. A?) — CP(U'. A7)
H™(C™(U)) = H(C™(U')).

So. we may make the definition of hypercohomology:

H™ (M. A”) := lim H™(C*(U), D).

124

Proof First. Qf ;- is the sheaf of relative holomorphic differential p-forms.
defined to be the cokernel sheaf in

0= f"Qp = Qp — Qyy- > 0.
Consider the following two complexes of sheaves on Y.
OV s Wy = Qe = Qe = -+ -
with the relative differentials.
ffOr:ffOr—-0—=0—---
is a trivial complex with f*Or being obtained from the presheaf
V'~ {ho f | h holomorphic on ['}.

Now fix. for a time, the open subset V" of [". Let W = f~!(1"j. The
natural inclusion f*Op C Qy- is a quasi-isomorphism by the holomorphic
Poincaré lemma. Thus it induces an isomorphism on hypercohomology:

H™(W.Qy,) = H(W. f0})

Examining H*(W. f~Op;) more closely [Griffiths & Harris. p.446]. we observe
the existence of the spectral sequence 'E.os. abutting to H*(W" f~Op-). with

(‘Efeo0p)y® = HP(W.H(fOr)).

11



the pth Cech cohomology of W~ with respect to the gth cohomology sheaf of
the complex f~O}: (see Grifiths & Harris. p.446). We have

wiron={ 7% 238

so that

e HP(W, f~Or). =0
('Efe0s)5? = HH(W. H(f~Or) { e (3.Z>0

This shows the spectral sequence 'Ef.0s. to be trivial. degenerating at the
second term. We conclude

H*(W. f~Op) = H*(W". f~Or)

Combining this with the previous isomorphism H*(W. Q3 ,-) = H*(W. f-Or.)
gives

H (W.Q},-) = H (W, [~Or)

We now cease to fix V" C [". The preceding isomorphism indicates an
isomorphism between the presheaves given by

Vs HI(FH(V).Q3,0)
and
Vs H'(fY(V). f~Or)

and thus between their respective sheaves R‘f.Qy/[- and R' f.(f~O¢).

Now let us examine the stalks of the sheaves R f.(f*O¢-) and Op- = R f.C
over U. The latter has stalk O-, T H'(X,.C) over t, and the former has stalk
H'(X.. f~Or |x.) But f*Or |x, is (from the definition of fO;-) a constant
sheaf. = Or,. Consequently. we can “factor out” f*Or- |x, to obtain the
isomorphism of stalks

H' (X, fOvx,) = fOr [x. SH(X:.C) = O, = H'(X,.C)

This shows ' _
Rf.(fOuv)=Or 2 Rf.C
We already know

R'f.QV, = R f.(f~Or)

12



Combining the last two isomorphisms vields the desired result. O

The complements.
Recall that Y was defined to be Bp(X). This is the subset of X' x P given

by {(r.s) € X xP| r € X,}. and is also the graph of the linear meromorphic
projection
X—-P

(2] = [z0. z1]-

We define the complements to be the manifold C := X xP-Y = {(r.s) €
XxP|z ¢ X,}. We will be working with the following commutative diagram
and its cohomology.

{

D X, —— X
LT
DxPLesyV 5 X xP~—1T°F

/
-
'd‘
w|

Here.l.i.r.k are inclusion maps. f. as previously defined. is =, 7. and
we define § = 7, [z.p =7 |- The mapi: X, — Y is the fiber inclusion.
where ko is given explcitly by z — (z.¢).

The splitting of the Gysin map.

As before. let p : ¥ — X be the projection. being the restriction of
T1: X xP—X.and k:Y - X x P as above.

We wish to examine the splitting of the Gysin map k. : H*(¥) —
H"**(X x P) under two decompositions. We start by presenting them.

The Kinneth decomposition of H™*2(X x P) is. using H(P) = 0 and
HO(P) = H(P) =C.

H™?(X x P)

= H(P) 2 H™*(X) = HY(P) = H™'(X) = HY(P) = H™(X)
= H™?(X) = H™(X).

The projection pr; = D x P — D was omitted from the diagram in @
to preserve commutivity. (To see that commutivity would not hold were pr,

13



included. observe that for s # ¢ and any z € D. 10 /o pr,((z.5)) = (z.t) #
(z.8) =r((z.s)).) From [1].[21], there is a splitting

H™(X)= H ¥ D)= H"(Y)
with the isomorphism given by p* + r.pr;. Also, H*(X) and H"*~?(D) are
orthogonal under the cup product [21].

Lemma
The Gysin map k. splits accordingly:

HMY) = H™(X) & H™=*(D)
L i
k.L idt \ et
: r
H*2(X x P) = H(X) = H (X

Proof

Notice that k. op™ = k. o k™ o =], using p* = (m o k)" = k"o =].

By the projection formula. k.k" is the cup product with the fundamental
class of Y in H*(X x P). This class decomposes into « = [P] + [.X] = ~ under
the Kinneth decomposition

H3 (X xP)= H¥(X) = HYP)= H(X) = H*(P)
where w is the hyperplane class and v generates H?*(P).

So k.is =id = L on H"(X) (see the preceding diagram). where H*(X')
is identified with its isomorphic image in H*(Y).

Now to examine the effect of k. on the part of H*(Y') isomorphic to
H"=%(D). We have the non-commutative diagram

D L X . X

S

D XP_r_Q.Y/_—__kQ._Y X P

Non-commutivity was demonstrated in . Though it is not commutative.
the cohomology diagram

{ te
HP=2(D) ———> H™{X;) ——> gn+2(x)

, _ '
H"=2([ xF) ——> H™F) —— HM+2(x x5

14



is. because 7.0l. = (z0!). does not depend on choice of t. Now the component
map H"? — H"(X) S H**D) = H"(Y) is given by r. o pr; and the
projection H**3(X x P) = H*(X) & H™*(X) — H""*(X) by 7.. So the
map we are looking for is

Ti.0k.or.opr]

which is equal to i. c [. from the above diagram.
We thus obtain the desired splitting. O



@ An isomorphism of sheaves.

Proposition

We also have an isomorphism. for g = g |5-1(;-), between Or- = R*g.C and
R'm. 0% /0 (log Y).O
Proof

We basically repeat the proof of the previous proposition. except that we
begin with the following two complexes of sheaves on €' :=C N X x (.

QS(xU/U(log Y): Qg{xv/v(log Y)— Q;fo/U(log Y)— ...
is the complex of relative differential forms. with the relative differentials.
gO0;:g0r—-0—=0—---
is the trivial complex with ¢*Or being obtained from the presheaf
V" — {hcg| h holomorphic on ['}.

The exact argument we used before will not work because we do not have
a quasi-isomorphism between the complexes. However. this can easily be
remedied by restricting the sheaves in both complexes to X' x ["\Y. Then
we can apply the holomorphic Poincaré lemma and proceed as before.

@ Canonical extensions.

Now we define some bundles (which of course give rise to sheaves) over
L.

Let 7? =R"1f.Q}, = Or 2 R f.C.

Let K = R"m.0% /¢ (logY) = O € R*g.C.

The Hodge filtrations on Q3.- and Q% -(logY) are {FPQ5 -} and
{FPQ% «yo-(log Y)}. where FPQY .- is the complex

0= - =00, - Q. — -
p—1

and FPQ%,/(logY) is defined similarly.
Let 7? = R* ! fLFPQy,- CH.and F = F™.
Let G? = R"frz.F”Q}xU/U(log Y)C K.,and G = gm+l.
We wish to extend these bundles over all P. For this we need the
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Canonical Extension Theorem [Deligne. p.91]

Given a bundle V on A" with integrable connection and unipotent mon-
odromy. there exists a unique extension V to all of A such that

(i) If holomorphic sections of V and V" are expressed in terms of multi-
valued horizontal bases. the coefficients grow like powers of log | t |.

(i1) The connection matrix of V. expressed in terms of a basis for V. has
logarithmic poles, and the residue of the connection is nilpotent.

Furthermore. the construction V — V is functorial for horizontal maps.
is exact. and is compatible with Hom. tensor products. and exterior powers.

O

(The connection matrix is the matrix 8 of 1-forms € £} (V) that in terms
of the aforementioned lodal frame {e;....¢€.} for V. satisfies De; = Y. 0e,)

The integrable Gauss-Manin connection for H and A’. and the unipotent
monodromy transformation. will be discussed in the next section. @

By making the canonical extension at each point of L. we obtain exten-
sions H and K of H and K. Correspondingly. we set

?:j.fﬂﬁ. a:j_gﬂ.k—:.
[E Intermediate Jacobians.

It follows from Hodge Theory that the image of the composite mapping

B 4(X,)
FmHm=1(X,)

H™ Y X,.Z)—= H™ Y(X,) —=
for smooth X,, is a lattice. The cokernel .J is then a complex torus. called the
intermediate Jacobian of X;. Using duality the definition can be rewritten

N Fm H2m—l(_\'s).
X = —x.z2)

where * denotes the dual space.

Let O(X;) denote the group of codimension m algebraic cycles on X
which are homologically equivalent to zero.

There is an Abel-Jacobi homomorphism

0y : O(X,) = J(X,)
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defined by a process of integration. Specifically, for £ € O(X,). by the
definition of ©(X,) can find a chain 7¢ of real dimension 2r: — 1 in X, with
£ = 9n;. Define

. ~ FmH'zm—l(X’)'
O, : @(X,) - J(X’) - Hgm_l(xsfz)

( FmHzm—l(‘X") — C
{ —>

w "l("‘;

) + Hom-1(Xs. Z).

The intermediate Jacobians fit together to form an analytic fiber space
over L. for which the sheaf of germs of holomorphic cross-sections is given
by

f‘
J = i 7

R?m-1fZ
We want to extend J to all F.

An extension J is defined by the short exact sequence

0—j.R™fZF =T =0

To interpret the sheaf J. we examine the local situation around one
singular point.

Suppose {e;....€;} is a basis of T(A.F)over [(A.04). Let {uy....ux}
be the multi-valued sections of R*™~! f.Z determined by generators of H*™~}( .. Z
for some ¢t € A. with the first, say k, elements spanning the invariant sub-
space. Using the map j.R*™ ' f.Z — F from the previous exact sequence.
{uy....u} can be considered multi-valued functions F — C. The matrix
[u;(e:i(t))] is. for t € A, the period matriz of X, subject to the given choice
of bases. The columns of the period matrix determine a lattice in C°. and
J(X,)is the torus obtained by taking the quotient.

For t = 0, only the first k columns need be considered, so we divide out
only these vectors. We obtain a quotient space J C € x A with projection
= :J = A. The sections of m which are locally liftable to holomorphic
mappings F — C7. The fiber 771(0) is called the generalized intermediate
Jacobian of Xo.

There is a monodromy weight filtration on H = H*™~(X.) (for fixed
t € A®), a sequence of Q-vector spaces {H = Win_; D Wir3 D --- D 0}.

The monodromy weight filtration provides a mized Hodge structure on Ho
(the fiber of H over 0). A mixed Hodge structure consists of

18



(1) A finite increasing filtration
oc---cWo,cWcW,,C---CH,

called a weight filtration (in this case the monodromy weight filtration)
(ii) A finite decreasing filtration

HoD---DFPlFP PPl ... 5

called a Hodge filtration (in this case {f?Ho},>0)
Furthermore, the induced filtration on the graded pieces W;/W_,:

<o D FPYWY/FP Wi, D FPW/FPWy D FPHIW/ PP, DO ...

must define a Hodge structure of pure weight [ on W}/117_,. That the mon-
odromy weight filtration provides a mixed Hodge structure on Hy is proved

in {Schmid].

A few words first about the monodromy transformation T on H. Its
effect on any (2m — 1)-cocycle in H*™~1(X,) is that of translating it through
different sections X, as s € P circles once counterclockwise around 0 and
returns to its original value t.

S0

o0

— of

A
By the Monodromy Theorem ([Katz].[Landman]) there are integers p > 0

and g > 0 such that
(TP - 1) =0.

We make the further assumption that T is actually unipotent. that p = 1.
We could always arrange this by passing to the finite covering of A* given by

A" = A°
sz
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Set N =logT = -3 1_,(I — T)*/k. We now present the monodromy weight
filtration. defined recursively by
I/V2'n—i-2
Wi

N Wonics

ker Vo' + VW, }

starting at 0 and —1. (According to [Zucker] we have N = 0. so H =
Win-2 = Wiy = ---. Proceed downward from there.)

In the Lefschetz pencil case we can be more particular. On X,. the
subspace of H?™~1(X,,Q) invariant under T is one-dimensional. generated
by the cocycle §;. It is called the vanishing cocycle because it approaches 0
as t — 0. We have the

Picard-Lefschetz Formula On H*™~!(X,.Q). T is given by
T(C) = (£ (c. 61)5,.

where the sign + depends on m. ()

Therefore [ — T = £(e.94,)d;. Since (4,.d,) = 0 (because the dimension of
X: is odd: see [Lewis.14.20]). we infer that N = I — T and that N2 = 0.

We will now compute the weight filtrations on 2™~ '(X.. Q). H*"~1(X,.Q).
and Hy. Applving, we obtain, letting r = 2m - 1.

W2 = ker V7t + VW40 = H?™~1(X,.Q) (since \? = 0)

Wor = H*™1(X,.Q) (for the same reason)

Wom = Wer = H™1(X,, Q)

Wimor = W =ker N + NW,, 1
=kerN = H*™Y(X,.Q)” = ker(e.4,)
(sinceN? =0,= VW, Cker \)
Wimea =Wy = NW,,, = VH™1(X,.Q)
= im(=%(e. é;)d;)

(where &, is the (local) vanishing cocycle (for t))
= Q4
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Wim-a = W,_; = NW,,, = 0(since.N? = 0)

In summary. the monodromy weight filtration is {0 C W5,,., C W5,.-;, C
Wi} = {0 c Q5 C H*"1(X,..Q)T € H*™ '(X,.Q)} . Now we can sim-
plify W5,,_;. According to a result of H. Clemens. Xj is a strong deformation
retract of f~!(A). so that via the pullback of the inclusion map j; : Xg —
f~YA). we have the isomorphism H*™~!(f1(A),Q) = H?>" " 1(X,.Q)

But we may also note that because of the

Local Invariant Cycle Property (See [Zucker.4.10] or [Lewis. lec.14].)
J-RfQ=RfQ Y420

(for ¢ = 2m — 1) the pullback of the inclusion map (j, : X, — f~HQA)) is
an isomorphism

j HTTHATNA).Q) = BN X. Q)T

(By the way R"~!'f_C is defined just as R"~!f.C was. with f replaced by f
and {” by P. It is the sheaf associated to the presheaf 1" — H*~1{ f~1(1").C)
over P.) Combining the last two isomorphisms vields

H™ (X, Q)T = H™ 7Y (X,.Q)
So we may write the weight filtration
{0 C Winy T Wiy C Won}

= {0CQC H™(X.Q) C H™(X,.Q)}
This filtration is defined over A" (where the fiber of H over t is HZ"":‘_( X..Q)).
Taking the limit as ¢ — 0, we obtain a filtration on Hy. the fiber of H over
" Wam = Ho = Q%
Womor = H™ (X0, Q) = Q¥
Wim-2» = Q, and in particular is Qo for some v € H?™ ! (X,. Q).
We now wish to compute the period matriz M(t) for arbitrarv t € A". a

matrix whose columns effectively describe R*™~! f.Z as a lattice in F~. First.
let us fix multivalued sections of R?™~! f.Z. determined (for some to € A" )
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by a (multivalued) basis {vy....,v50} of H*™"1(X,,.Z) (the multiple values
of v; deriving from the action of T'). We also stipulate that {v;..... vr} be
a basis of the invariant submodule H?™~}(X,,.Z)7. Since this last subspace
is [Lewis. p. 321] = Z%~!, we know k = 2¢g — 1. Let v be the dual cocvcle
to &, ( in H*™!(X,.Z)). Then we claim that {v;..... t2,-1.17}. where & :=
v — (%) (E{%) ;. determines a frame of H over \". To see this. note
that (6,.4;) = 0.= &, € ker(e.48;) = H*™"'(X,.Z)T = span{r,..... Tag—1}.

whereas (v,0;) = 1.= v & ker(e.d;) = span{v;.....v3-1}. This means
v— (%) (Eal—_‘:fi—i') d; & span{vy,...,vz9-1}, and consequently {v;.....vo0-1. T}

is a basis for H>™"!(X,,Z), equivalently a frame for H over A*. We further
claim that this frame extends to one for H over A. To see this. note that
Ule.. .. v24—1 are by definition invariant under 7. thus is single valued on \*.

Furthermore v — (%) (ﬁ-_’-r) J; is single-valued. since

{SHESD

logt + 27/ —1 .
Ta,
2rv/~1

) d:(since Té; = &, and (v.d,) = 1)

= (v + (£)(v-6)8) - (2) (

log ¢

27y —1

since the choices of sign (%) are the same.

Now we want a frame of F over . Note that since F is a holomorphic
subbundle of H. there is a natural quotient map H —— H/F. with the
cokernel having rank g. Using the fact that

= (v + (£)d) — (L) (l +

_ Wm=1H?m-1(X,) = invariant classes

m.= rr2m— e
F™"H 1(.X,) FrnW?2m=1[2m-1(Y,)

(see [Lewis, lec. 14]). we may assume without loss of generality that (where [/]
denotes image under q) {[vy]..... [vg]} is a basis of H/F. Now v,..... Pag—1-
being invariant under T. naturally extend over 0. i.e. over all A. and are
single-valued.

[
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We may write,for 1 <1< g—1,
9
[l = D_ hijlvs]- hij € Oa.
=1

We also have ¢

[i‘] = Zh,—[vﬂ.hd € OA.
=1
Examining pre-images under q. we obtain. in ¢}(0) = F. the set

g 3 3
{:l'g+1 - Z hlj'L'J. ceee U1 — Z h.(g_l)‘,vj.f’ - Z h.'l'.,‘}

=1 =1 =1

which, being linearly independant, must be a frame of F. Note that since
(v.&) =1 and {vy..... vag-1} is a basis of H*™~!(X,.Z)T = ker{s.4,). then

{v1..... vag-1.L} is a (fnultivalued) basis of H>™"}(X,,Z). The period ma-
trix. then. up to a Gl(R) transformation. is

fx, v:/\(ugél—z;: Riyu) fx‘ Vgt A(vga =T Fusyy) fx: PR BN

. g . * g ~ . .

fxr "1’\(”29—‘—2,:; hig—uigvs) fx: uz,-—;/\(n-_‘g_x—z:‘al hig—1)yvs) fx: v/\(u;,_;—Zj:; Apgmii by
s c .59 s -5 9 , Al D g P

fx,"'-A(" Z):l"-"'l) fx: L2g-1 ALT Z;::hd"'i) j—x'LI\(L— =: Revs)

We can simplify this notation by setting n;; = [y vi A v, = (vi.v,)on; =
Jx,vinv=(viv)forl1 <1, <29 1. The period matrix becomes

g I}
ITPRIE DY TS PR 1O P17 R I TPL e PR (Vg =37 husup)

J H ;
gty = Loy Bgm1)smy - 2g= 13201 = 2yt Bla=11Mi2g—1); (V201 =D be, hig—iy )
(v 5= 9 hyy;) (vag—1.5=3_1 .1 Asy) (v-8=3_7_, hyvy)

The last row has entries (for 1 << 2g —1):

g
(v, & = 3 hjrs)
=1

= (v, 0) — Xg: hg(vi' UJ')

Jj=1
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The last column has entries (for 1 <:1 < g-1):

3
(v vgwi = D hijr;)
=1

J=1
The last. (g.2g)th. entry. is

logt . J

(L L—(i)(zf’\/—-—l)dt—;hjl'))

logt g
=(l l)—(:t)(:zﬂ'\/———l)(l Jt)—J;h_)(l l))

log t 3

=O—(:f:)(..)__(:§:1—)+2h]n1)

So the whole matrix can be written as

Ri(g+1) -+ TN2g-1)(g+1) TN+t
Mg~y --- M(23-1)(29~1) “"29-1l :
ni nzg_l —(:t)(Z_:o\‘??l)
—hy;ny; —hyn2g-1); hin,

g . .

D h

=1 TRg-1yny oo - TRg-1)iN(2g~1); -1 7y

—h;ny, —hyn(g-y, h;n,
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The last column of the above sum matrix has unbounded norm as t — 0.
The other columns are bounded as ¢ — 0. Consequently. the minimum
non-zero norm of the lattice M(¢)Z?? does not approach 0 as t — 0. This
means the torus J(X,) does not degenerate as t — 0. The quotient space
J inherits coordinates from €7 x A with the projection # : J — A\, J
is therefore a complex manifold with. recall. the generalized intermediate
Jacobian J(Xg) = =~1(0).

A connection.

There is a natural integrable connection on H = Oy = R*~! f.C. the
Gauss-Manin connection V = d @ 1. It gives an exact sequence

0= R™IfC—oH—0LzH—0.

which satisfies the Griffiths infitessimal period relation VF < Q1 = Fr-l
For the extended cohomology bundle H we get

0 — j.R*™ 1 f.C — H s Ql(logS) = H

The differentiation ¥ is no longer surjective. Let S denote the image of \.
so that we may write a short exact sequence

0~ jR™ ' f.C = H 58 = 0.

We have. too. the Gauss-Manin connection V=4 = 1on X' = Op = R*g.C.
It gives the exact sequence

0= R™ 1. C— KN 01K —=0

For K we get
0 — j.R*g.C > K = Ql(logS) =K
Let 7 denote the image of V. so that we may write a short exact sequence
0— j.R™g.C > K - T —=0.

We wish to compute V explicitly.
For a frame of H we will use, as before




a = 3297 a;v; + az, be an arbitrary element of H (where a; € Oa.). We
will calculate the image of @ in Q4. £ H = Q. = R*™~'f.C.

where v,...., vag—1 are invariant under T and v is the dual cocycle to 4. Let

29—

! t
Va= E da; 2v; +dazgBv—d ((j:) (—Eg—) Ggg) o
=1

291 log ¢ a. i
= E aﬁdtgvf-i—a'ggdt@u—(i) (.,_g ' +.___29__)dt 74,
=1

2g~1

logt dt .
= Z afdt = vg-i-(a.'zgdt) (1 Lv— (:t) (‘ _og ) z 5,) —(:t)(l-) -_—: O,

=1

29-1
= al(dt = v)) — (£)——== o)
,2:1 f )= ()57
Noting that &, € ker(e.d;) = span{v;..... vyg-1}. and writing J, = dyr| =
oo 4 dyyoy -1 .With di € Oa.. we have

2g-1 d:
Va= Yy (af - (i)j)%_;l—t) (dt x v;) + aj,(dt = ¢).

Now note that {dt I vy.....dt T vy .dt = T} is a holomorphic frame
of Q4. = H. We will demonstrate the surjectivity of ¥ on (" by finding an
element of H whose image is a given arbitrary element of Q) = H. Pick from
QL = H an arbitrary b = }:?ifl bi(dt x v;) 4+ byy(dt = ¢). where b, € O,.

Let a,, be an antiderivative of by,.

For 1 < i <2g - 1. let a; be an antiderivative of

=1

a2gdi

b,' + (i)m

Let a = 297" a;v; + az,t. Then

2l ao,d;
Va = (- (B2 (dt z Soldt = T).
a ; (a; (i)zﬂ\/.——lt)( [A )+a2g( . l)
291
= 3 bi(dt £ v;) + by,(dt T ¥)
i=1



=b.

We see that V is indeed surjective.
Next, we will compute the extension V of V to all H. We have an exact

sequence. _
0= jR*™1f.C—H - 0L(logS) 7 H.

but ¥ is not surjective, and we will see this explicitly. Our (single-valued)

frame is again {v;,vs,...,T}. So all the d;’s extend holomorphically over \.

This time for an arbitrary element of H. we pick a = Z?ifl a;v; + a . with

a;’s holomorphic on all A. Using the same computation as before. we obtain

2971 as d
70 — L. gt - . ' R
Va= Z (a, (i)———:zﬂ_ ,__lt) (dt = v;) + @, (dt = ©).

i=1
29~1 , azgd; dt _ , dt .
= ; (ta,' - (i).).‘.T /—-_1) (_t_ . L,‘) + (ta29) (_t_ % l) )

We have expressed V in terms of the holomorphic frame

{dt . dt _ dt _ }
— 2 Ue..-. — = Uzg-1- T o U

for Q4 (log0) = H. As proof that the holomorphic coefficient of % T ¢ must
vanish to order at least 1 at 0.

Recall S € Q4 (log0) = H is the image of V. We wrote the short exact
sequence:

0— R 'YfCoH- S —0.

We claim Q4 2H C S. To check this. let b = T297  bi(dt x v;) + by,(dt = ).
where b; € O,. be an arbitrary element of Q) = H. Then we choose a =
Zzg_l aiv; + az, 1 exactly as before. so that Va=hb.

=1

QL 2 K C T is verified in just the same way.

o
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@ The Cech cup product.

We recall the general formula for Cech cohomology cup product. Let A
and B be sheaves on a topological space T. with cover Y. The cup product
is. first. a binary operation on Cech cochains:

U:C™U.A) 2 CU.B) - C™t(U. A= B)

(Qig.im) 3 (Figewin) = (Yig.tman)

where

Yigwimin = Cig.oim 2 Fim.imsn

The cup product descends to cohomology. and to verifv this. we must show
that U takes two cocvcles to a cocycle, and takes a cocycle and a coboundary
to a coboundary: in other words:

Z™UA) T ZNUB) = Z™U. A T B)
B™(U.A) = ZMU.B) = B™(U. A= B)
Z™U. A) = B"U.B) = B U.A = B)

These facts will follow quickly from the following observation: Ifa € C™(U. A)
and 3 &€ C*(U.B) Then

(a(a U 3))10~--‘m+n+l
m+n+l1
— l . =
- Z (—1) (Q U j)io...i(...im+n+1
{=0
m m+rn+l
Z Q U 3 xo...u...zm+n+1 + Z 1) ay 3)’7-~-;l---"-"+"+1
m m+n+1
-_— { - A . ! i
- Z(_l) Qio...i(...im+l < 3‘m+l~~-‘m+n+l + Z (_l) Qig.osim 2 - '"‘"';""i'""""‘l
=0 l=m+1

= ((30)io...i,,...., - ("'1)"1“0;'0...:',,,) 2 Bimetimensi
+igeim & (=1)™ ((03)imecimanss = (=1)°Fimssimensi)

= (aa)i0-~~iM+l 8 3im+l~-‘-m+n+l s (—1) alo im 5 im+x---'m+n+l
+(_‘1)m+la|° Am < Jxm*,x...im*n.ﬂ +aio...im :3 (—1) (aj)lm...xm+n+1

= (0Q)ig.ims1 T Fimerimens: T Qigoim = (1™ it nan
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= (aa Uy 3)i0-"’m+n+l + (_l)m(a U ag)io---im+n+l

or equivalently d(a U 3) = da U 3 + (—1)"a U 33. Now then. if a and .3
are cocycles. d(aU 3) = daU 3+ (—1)"aUd3 = 0.= a U .7 is a cocycle.
Secondly. if a is a cocycle and 03 any coboundary, then

auds
=(-1)"((-1)"e)Ud3
=0(((=1)"a) U B) = (=1)"F((~1)"e)uU 3
=9(((-1)"a)U J) - dau 3
=9(((~1)"a)u I)

is a coboundary. Thirdly if da is any coboundary and .7 is a cocyvcle. theun.
similarly. da U 3 is a coboundary.

We have verified the three necessary properties of U. Hence U descends
to cohomology. giving a map:

U: H™U.A) = H"(U.B) » H™"(U. A = B)

Taking the direct limit of ¢. or alternatively insisting that U/ be Leray (i.e.
each member of the family U/ has trivial higher cohomology groups). we have:

u: H™(T.A) =z HY(T.B) - H™™(T. A = B)

m A diagram of pairings.
The following diagram of pairings commutes up to a sign:

H\(P.F) x HOP.QL = F) HY(P. QL)
| : 'Lﬁ'
HY(P.j.R*™ ' f.Z) HO(P.S) H*(P.C)
| b =

HY(P.;.R*™"1f.C) x HY(P.j.R*™1f.C) — H*(P.j.R*™~2f.C)
where J is the connecting homomorphism from

0> R fCH-S—0.
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&' is the connecting homomorpism from
O—»C—)Oy-i‘-)Q;—'?O,

and where 8 is given by inclusion. The isomorphy of H 3(P,C) and H*(F. j.R*™*£.C}
arises because Y — P has compact fibers X:. and dimX, = 2m — 1..

* Commutivity up to a sign” means that. for a € HY(P.j.R*™ 'f.Z)and
cec HY(P,OLQF), weget aUdo = —8(alUa).

We now give a proof of this:

Choose a covering U = {U:} that is Leray for all sheaves involved. Let

a=(ay) € H'(P.j.R*™ 1 f.Z)

o =(0,) € HYP.OL & F)

We will first determine §o. As an element of [t (& F) C I, (S). we may
assume. lifting o, to 7,, that o; = V', on U;. As a O-chain. 7 := () must
be passed through the coboundary operator. from CoU.S) 1o CHU.S):

@)k =7c— T

Now we must take the pre-image of this under j.R*"7'f.C — H. But this
last map is essentially an inclusion, so do = or € HY(U. j.R*™"' f.Z). which
means

(Ja’)jk = T — Tj

Using the Cech cup product formula,
(audo)ije=aA (60)jk = ij A (e — 73)
The image of this under the isomorphism H*P,j.R™"2f.C) 2 HYP.C)is
Jx(aU80)isk = Jx, @i A7 = 7))

But now consider a U o, where a is identified with its image under 6.

(aUo)j=aq-0;=ai VT, = aij - %%

4(fo0n0)

inside U C P (almost everywhere).

Thus we are computing
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Now to calculate §'(a U o). We just saw that the preimage of (a U o),
under d : Oz = Qb is [y a;; A 7;. Passing this through the coboundary
operator. from CHU.Os) to C*(U, Oz). we get

@(f 22N,

= Gin N Th — akn/\rn—{-/ o N7
X X X

=/ (an—akn)/\Tn-*-/, o AT
Xe X,
= / (0(@ij)kin — 0kn) A 7n + / ag A T
Xr /\'
=/ —au AT +/ ag A 7 (since dia;;) = 0)
X, X

=/ ap N (11— Ta).
Xt

We must take the preimage of this under C — O=. which is essentially an
inclusion. So we may write

(5'(0U0’))uk=/x O.‘J/\(TJ—TA-)=—/X a, AN —7,)

and commutivity up to a sign is verified. O

The map =

We now construct the map whose image will be our main object of
scrutiny.

The Gauss-Manin connection V. from { G |. is defined on H.and descends
to a function on F* = H/F. Furthermore. V¥V annihilates the image of
R™~! f.Cin H. in particular the image of R*~! f.Z. Consequently. ¥ descends

to J = ﬁi The range of the resulting function is determined by the

infitessimal period relation (see ):

Vs:T = Qb(logE) = F "

Normal Functions are elements of HO°(P.J). i.e. holomorphic cross-
sections of UzJ(X;) with “moderate” growth near singular points. and sat-
isfving the horizontality condition V yv = 0. In the Lefschetz pencil case.
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all normal funtions are horizontal. (This will be presented later. after the

calculations in the main argument used to show m is true.) We will be

constructing a map taking normal functions to the primitive cohomology of

X. This will give the topological invariant associated to a normal function.
First. from the short exact sequence

0 j.RY.ZoF 5T —0.
we get the connecting homomorphism
Z:HY(P.J)— HY(P.j.R"'f.Z)
Second. there is (again) the Local Invariant Cvcle Property
R'f.C = j.Rf.C. ¥q>0.
Third. there is a splitting
HY(P.R*'f.C) = Prim*(X) = H**(D)..

orthogonal with respect to the cup product (see [Lewis]).
We may now construct the composite map =.

HYZ.D) > Prim" (X'}
L 4
= pr,
HYZ.R™" 110 f.2) CH‘(.‘—._;.R""‘/.C):H‘(?.R"‘"T..’.’)e Prim™(X)=H"~2(D),



An exact sequence.

Here we construct an exact sequence. which will provide an important
step in the main argument.

(I) First we restate the theorem of Lefshetz on the cohomology of hyperplane
sections.

Theorem
Let i : X; — X be the inclusion. Then :* : H¥(X) — H?(X,) is injective
for ¢ = n — 1 and bijectiveforg<n—1. O

(ITI) Second. we define the vanishing cohomology. We have the map i. :
H._1(X;) = H,_(X). which. via Poincaré duality. provides the Gysin map.
also called :..

i HYYX) — HYPHX)

The vanishing cohomology is H*"!(X,), = keri.. It is called "vanishing”
because in homology ( Hn._;(X:) ). keri. is the group of (n — l)-classes on
X which "vanish™ (are homologically equivalent to 0) when considered as
classes on X. It is generated by the vanishing cocycles {4,,..... de} (where
{ti..... tx} is the singular set ¥ C P).

(III) Third. we have the following. due to the projection formula.
Fact

1" HY(X) — H™1(X) is the cup product with the hyperplane class.
by the strong Lefshetz theorem an isomorphism. O

(IV) We put the two facts together to get
Lemma

HY(X,)=7H*"Y(X)= H"!(X,), for smooth X,. C
Proof

We know that the composite

HY(X) 5 HY(X,) &S H(X)

is an isomorphism (just above). and for this we must have coker i = keri. =

H"1(X,),. Therefore

H™ ' = HH(X) = H (X,
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(V) We notice the Gysin sequence for the pair (X, X;). which in part is
H™ (X)) 3 HM(X) = HY(X — X,) "8 H=1(X,) &5 H*(X,).

The map i. is constructed just as before. The map i : H*"3(X) — H" (X))
is the pullback. As before we have
Fact

12" H*"3(X) — H™(X) is the cup product with the hyperplane class
(but this time (recall the weak Lefschetz theorem) need not be an isomor-
phism). Its image is. from the definition and the Lefshetz decompostion.
Prim"(X)*. O

It is said by the previously mentioned theorem of Lefschetz that /= :
H3(X) — H™(X,) is an isomorphism. So Prim™*(X)* = im /./” = im i..
and applying the definition of H*~!(X,),. we obtain the short exact sequence

0 = Prim™(X) = H* (X - X,) = H" Y (X,). — 0
which sheafifies to give
0 — Prim"(X) - R"g.C — (R*"'f.C), = 0

where Prim"(X) is the constant sheaf on {". Tensoring with O;-. we obtain
the exact sequence of sheaves over [ .

0 - Prim"(X)ZOr K —-H. =0
where to identify H, we note that the direct sum
H Y X,) =H"Y(X) = HHX,).

passes to H. Thus. there is a vanishing part H, C H and coresponding
F. € FH,. C H and corresponding F, C F. Putting Hodge filtration
levels into the preceding short exact sequence.

0= F™H'Prim*(X) g Or = G "N F, - 0.
(See |E | for a definition of G.)

(VI)
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Lemma
There exists an exact sequence

0= F™'Prim*"(X) 20 —=G = F. — 0

extending the last one.
Proof
From the exact sequence

0 — Prim*(X) —» R*¢.C —» (R*'f.C). = 0

we infer R*¢.C = Prim™(X) = (R*"!f.C), over a punctured disc A" around
a singular point. In this punctured disc

0= Prim"(X)z0r =K —=-H,—=0

is horizontally split. By the Canonical Extension Theorem. the splitting
passes to the canonical extensions over \. so we have

K = (Prim"(X) I Oa) = H.
On A-. the last exact sequence yields
G = (F™'Prim"(X) = Oy) = F.
As X modulo (F™*'Prim™(X) © Q) = F. is a free Os-module. we must

have

G = (F™'Prim*(X) & Q1) = F..
a

(VII) Take the tensor product of the sequence from the lemma with Q&

to obtain
0=z FPY'Pim*(X) - W zG WU 2F. =0
Its cohomology sequence (using H(P.QL) = 0) is
0— HYP.QL2C) = HP.O L F,) -5 HYP.QL = F™*'Prim" (X))
- H'(P.Q:2G) > H(P.QLZF,) > -

35



But F™*'Prim"(X)) is a finite dimensional C-vector space. So H!(P.QL =
F™*1Prim*( X)) is equal to HY(P.Q}) 2 F™*!Prim"(X).
The exact sequence becomes

0— HYP.QL2G) - HAP.QL s F.) X5 HYP.QL) = F"+'Prim™(X)

- HY(P.QL2 Q) —

Two residues.

We repeat the computations of the last section, first tensoring the sheaves
with O(1) (pole at oc). Since H(P,QL(1)) = H*(P.Ox(—1)) = 0 by Serre
duality. and Q} = O>(—2). the last exact sequence becomes

0=HP.QY1) = F™'Prim™(X)) — HY(P.Q%(1) = G)
— HYP.QY1) & F.) — HY(P.QLY1)) = F™*'Prim™(X) = 0.

implyving an isomorphism
HOP.QY1)2G) = HUP.QY1) = F,)
Given o0 € HY(P.QL(1) = F.). its lifting
&€ H'(P.QY1) = G) C HY(P.QL1) = K) C HYP.T)

( recall T :=imV (see ) considered (the pole is at infinity) as an element
of H%(Us.T) gives rise. via the connecting homomorphism from

0— j.R"¢g.C—-K - T —0.
to a class £ € H'(Uy. R*™3.C) C H**Y(C — C ) with two residues
a = Resy_x_(£) € H™"Y — X.)

and
3=Resx_x_(§) € H*(X — X).

We will see later (in the main argument) that a and 3 represent inverse
classes in Prim™(X) (statement )

Two sheaves to be compared later.
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According to [Deligne,p.80] there is an isomorphism on [’
G = R*m.G™ ' Qx wy(@Y)

where {G?} is the order-of-pole filtration on Q% cvyu(eY). with G Q% (oY)
being
0—--—0—=+ % w(Y)— Qi (2Y) = QR e (3Y) = -

N rrrmtera?
p~-1

There is an obvious extension of G (using this expression of it) to all of
P:

=1

g = R*m.G" " 0 2 a(oY)

A larger algebraic variety.

Now we express Y itself as the fiber of 2 morphism of a larger algebraic
variety to P. To this end construct a suitable degenerate divisor rationally
equivalent to Y

Define
Z={(z.a.b)€ X xPx P CPVxP xP:acboro~+ (a1by — agbi)z1 = 0}
We have the diagram of maps

Z—>X xPxP

where # = pry3, X = Pra Define Z, = x~'(s). Note that Z, = Y and

Zo = Xoo x PUX x {oc}. Now, using the order-of-pole filtration from E
we set

2= Gm+1Q3{xPxP/PxP('Z)'
The restriction of Z° to x~}(s) =X x P

22 = G % i /p(0Z0)-
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@ An upper-semicontinuous function.
Define the function

d:P —Z2°
s —dimAYP. QL = R m.20).

Upper-semicontinuity (statement in the argument) will be proved later.



THE ARGUMENT
Schema

|

—

[ Prm™m(X;2)= i in Pim*(X;Z)!
/

2 priaon im = F"”P’l (X)}\r: priannim= € F™* Pri "(X)]
1 “Prim

The image of the normal functiors B5(Z.5) |
in H¥(P,;.R**f.Z) under = is the subser |
annihilated by the image of H{Z. 0} & F)

in H'(2, R*17.C) D g i oD, |

——

(<]

. = . -1 |
RIS iy Replacing FoyF, in @
(1=  makes no difference.

I'F:l__i-’ h@,é’issu:jec:ive,f Sl h@ud@,a:&(y):%.!

NI I J.j, a and J represent !
L additive inverses ciasses in Prim*{X;.

i
iz 7.0t =0

[
03 F'F.0el )=0|
l( AN

[E In:,dxsxdennculyoon? | . In:a.ndE,"ﬁReScnﬂ

\ \10 foraEH"(r 0,8?\

[E8 dts) = 0 on an open neighbourhood of os.! [[T8] (X x P, Zo) = (X x P, 2,)¥s # 0|

'@ In[L], 8 = Rese () ix-%e |

Ll[j d(cc) =0in[0] _-I [@ d is an upper-semicontinuous function on P]

N\ .
Semicontinuity Theor 1 1 u o .
forH‘,;p:m omology [29]_#'(P.% @ R°rauK;) = B (X x P,myh 8 K)]
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U=
The decomposition H'(P.j.R?™~! f.C) = Prim"(X) = H*~(D). in [J]is
orthogonal, which means that under the cup product pairing in m

HY(P.j.R*™1f.C)2 HY(P. j.R*™ 1 f.C) —» H*(P.;.R'™*f.C) = H*P.C).

and the decomposition. we have. for 7 € HYP.j.R*~1f.C). priannr =
ann pr,7 € Prim(X). (By pr, we mean projection onto the first term in the
decomposition

HY(P.j.R*™f.C) = Prim"(X) = H"*(D)..

And “ann” refers to the annihilator under the cup product pairing.; We
conclude

Prim™™(X:Z) = im= in Prim™(X:Z)
ft
ann Prim™™(X:Z) = ann pr;(im=) in Prim"(\: Z)

ft

F™'Prim*(X:Z) = pr,(ann im=)

g

-
Trivial. 0]

< BRI RED
By and ES:',, we need only show that the projection (in m) of the

image (in ) of H'(P.Qt = F,) in HY(P.j.R*~!£.C) under 4 is contained

in F™*!1Prim(X). In other words. we need only show

pr; o S(HY(P.QL 2 F,)) C F™*'Prim™(X).

To this end. let o € H°(P.QL 2 F,). Then form a. .3 as in @ Now E E
and @ tell us that pr(d(o) |,) = pri(a) = —pr(3) = —=Res(5) I, in
Prim™(X). But reveals that £ S Res..(&) € HY(P. QL) = F™+1Prim™(X).
especially that Res.. (&) € F™*!'Prim™(X) This implies

pri(8(c)) € F™'Prim™(X).
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O
— RO ERE ML Again. by [5] and [B] we need only

show that F™*!Prim™(X) is contained in the projection (in ) of the image
(in[I)) of H(P, QL2 F,) in HY(P. j.R*™~'£.C) under 4. In other words. we

need only show

pr, o (H°(P.Qz 2 F.)) 2 F™'Prim™(X).

To this end, let 7 € F™*'Prim™(X). Then by [11], "_7: o7 e HY(P.OQY) x
Fm™*1Prim*(X) has a pre-image (call it o) in H*(P.QL = F.'). Form a.3
as in . Now says that % © Res (6) = do = 4-:5 & 7. especially that
Res..(6) = 7. .\'ext.@revealthat pri(a) = —pr(3) = —Res (7) |x_x. .=
—7 jx-xx Butpry(a) = pry(d(c) |t, ). sothat 7 j¢;= —pr;(a) = —pr(dia) |y
)-
— pr,(6(HY(P.QUL = F.)))

G H

B] is truei

We use the diagram from EI] 6 is the from the long exact sequence for

0= R ZF =T —0.
namely
- 5 HYP.T) S HY(P.j.R ' f.2) S HY(BP.F) — ---

Thus im= = kerf.= ann im= = imd. since the pairings are dual. This is
what we wanted to prove. OJ

@ is true
__ The decomposition H™Y(X,) = H"(X) = H*'(X,). passes to H. Thus
H splits into a constant part and a vanishing part (call it H, ):

H=H"(X)=H,.
There is a corresponding F, C F (given by F, = FNH,). So F splits thus:
F=F.=C.
where C is constant. Then H(P.Q} 2 F) = HOP.Q k= F, = Ql =(C) =
HYP.QLZ F,)S HY(P.Q: 2 C) = HYP.QL 2 F,) = 0. This means we may
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replace F by F.. equivalently H(P.QL = F) by HO(P.Q! = F,). in m and
5. 0

@ is true

There is a commutative diagram

0

R"Q[_C —X:[ [

0 —=(R"'f.C), H, S. 0

where the first two vertical arrows are residue maps. S, is defined as the
image of H, under V, and the map 7 — S, is defined by commutivity via
the exactness of the rows.

Use the cover {{5.0"} = {P~{oc}.P—{0}}. Using the previous diagram
and the inclusions QL = H C S and QL =K C T from @ we obtain the
other commutative diagram:

H(L,.0L = G) ——— H'(L5. R*g.C) - H+YC = C.)

| |

14
HO(L4.QL = F.) — HY (L. R F.C) C HYY - X, )

Note that the map ¢ | is the same 4. restricted to [ { C P. as the d in [IJ both
being the connecting homomorphism from the short exact sequences in @
Now. refer to and the diagram above. The image of 6 € H%((,. QL = G)
when traced through the diagram. over then down. is Resy_y_(€) = a.
When traced down then over. it is § [¢;; (&) = 6(G) |¢,- This shows the
result. [J

s true

What we aim to prove specifically is that for p as in [E and pr, as in m
pri(p*(3)) = —pry(a). This is equivalent to p*(3) + a lving in the subspace
H"*(D), of H(P. R"“fC under the decomposition H!(P.R*"'f.C) =
Prim"(X) S H"~2(D), from [J].




First construct the diagram:

H™(Y) ~— -
4

H*(X)

H™*(X) € H*(X)
et

Y
Hn(?_ -x’:c) =
4

Res-;_xx-:-Rax_xx

Hntl (C" - C::c)
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We specify the maps. f_i_s the dual map to the pushforward on homology
from inclusion z : X, — Y. i. is the same for i : X — X. p. is the
pushforward from any of the inclusions p: X — X x P as a fiber of 7,. k. is
the Gysin map. the dual to the pushforward on homology from the inclusion
k:Y — X x P. The maps ¢~ are pullbacks of the obvious inclusions. The
remaining map is the sum of residues defined from the unions

(Y -X)U(C—-Cx)=XxP—- X, x {x<}
and
(X = X)U(C—-Cox) =X xP— X, x {oc}.

(As subsets of X x P.Y — X, and X — X are equal.)

The lower rectangle. intuitively. commutes. Commutivity in the upper
rightmost triangle is trivial. The upper middle triangle {i..k..p.i.} com-
mutes. as it is the pushforwards of the maps 7. k. p o i. which commute:

p.i. = (poi)_ = (I;Ol—)_ = k*?_
All that is left is the upper left triangle {1 = p=). k.. k. = p.}. Here. however.
we have. from .
hoo(l=p')—hk.=p.=k.Zhk.op"—k.=p.=0=(k.op —p.)==70c L.

1
So this triangle is not commutative. But if we replace H*(Y) = H"(X) by
H™*(Y) = Prim"(X). then since Prim"(X) = ker L : H*(X) = H" *(X).

koo(l =p")—k.Zp.=m{o L =0.

and so the whole diagram now commutes. O

E):] 1s true

Since we are looking at a residue at oc. we may consider just a small disc
A C P centred at oc on which f is smooth. The commutative diagram

HO(AQL(1)GRM ma F™HQY o 2 (logV) ——— HO(a*.0), 26)

,
HY(A*.R"3.0)

Reso o
4
HY(A*)8zH™(Ce)
. Resx_x 4
H*(X.F™ Q% log X x ) ————— HM(X =X )
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shows 3 = Resx_x_(£) = Res (). O

is true
The statement of , pregi_sely. is

Lemma Let 0 € HY(P.QL & F.) and 6 € H(P.QpP!(1) = G) be its lifting

under the isomorphism from . Then

dz

— Z Resw(0) = do

-~

where £ € H'(U.Q}). and U is the covering {lo =P — {c}.Ux =P ~ {0}}
of P.

Proof Let us calculate do. Precisely, o is the 0-cochain
L.o —r |L'0
("x = |L'x

We must determine the pre-image of o |, and o |¢-, under Q=G — QL= F,.
We may lift o |, to & |, € H(L0. Q% 2 G).

By an almost identical construction to that which gave us 5. we may
find 7 € H(P.Q}1) £ G) where the pole is at 0 instead of at <. Then
7 o€ HUx.Q4(1) = G). Now apply the coboundary operator to the
cochain

L"o —~ O Il'o
U 7 les

We obtain the 1-cochain
(Ux.lo) = (0 —7) ltants, -

Finally. the pre-image of the cochain must be identified. that is. under the
map
0 2 F™*'Prim™(X) —- Q2 2 G.

But this map is essentially an inclusion. so that we finally have
do=a—-1Tonl . NIYH

For A = Res,(6),

-

F—T——TAE H°(Ux N0 QL = F™H'Prim™ (X))

-~
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has no pole at oc (and only a first order pole at 0), hence is identically 0. O

[11] < [12]

This follows immediately from the exactness of the sequence in . d
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We will prove this by showing that G C G. for we will then have the
exact sequence

0 UG 55U 50-50

with the quotient sheaf supported on T (since G |¢= G = G |-. The long
exact cohomology sequence will in part be

H (P.OL2G) - HYP.OLzC) —» HY(P.Q)=0

Then HY(P.Q: £ G') = 0 will imply H'(P.QL 2 G) = 0. So again. it suffices
to prove g CcG.

We will determine bounds for the growth of the periods of the growth of
the periods of local sections of G’ near singular points. It is this property
which characterizes the canonical extension in terms of growth.

Let A\ be a local section of G’ is represented by a relatively closed ("™
n-form o on X x A —Y that has a specified order of pole along ¥ on each
local coordinate. In particular. o is a relatively closed form with a pole of
order at most n — (m + 1)+ 1 =m.

Let 1" be a small polydisc in X x P centred at the double point of Xj.
with pry(W) = A. Now the image of H,(C, — W) in H.(C,) is (for # 0)
a codimension 1 invariant subspace. Chains representing these classes can
be kept uniformly away from .X;. so the periods of o are bounded on \. A
subspace of H.(C}) orthogonal to H,.(C, — W) is generated by the tube on
the dual cycle (see [12.pp.470.518]). Again. the periods arising from the
complement of W is bounded. so we have only a local computation on Xj.

Pick local "double point™ coordinates (z,....z,) on X and use ¢ for A
so that Y x P is given locally by

{(x.t):irf:t}.

We may assume |z,]| < 1 and ¥}, |r,]? < 1. On X,. the relevant portion of
the dual cycle is given by [12.p.518]

w={r€X 1 € e%ieR.zJ>1 = e%ie\/—lR}

for t = |t|e®. Without loss of generality assume ¢ real and positive (i.e.
g =0).



Since ¢ has a pole of order at most m. we may write. locally.

o= (Zl‘f—t) Z /l[_](.l’.f)([.’l’[df./

j=1 #1+#J=n

with the hp;’s C* functions. Let o; = o [xx(y. so that (Resy(0)) |x,=
Resy,(o:). We are interested in the section o integrated over elements of
H.(C.). But the subspace (image of) H,(C, — W) is invariant and the com-
plementary subspace is generatd by tubey. Thus the integral of interest is

/ o
(tuben)| x,

which by duality and since 4, € Y. equals

[h Resy(o) = /.’t Resy, (o).

We need a result to determine the residue explicitly. It will be proved
by reducing the order of pole [Griffiths. p.489]. (Simple-pole forms have
well-defined residues (see [Lewis. lec. 9]).)

Let o = y~™n. on the unit polydisc A™. with coordinates (y.zs.....z,).
and where n is a C> form.

First we need a lemma. which follows from the similar fact about Tavlor
series for real variables.

Lemma Let h(y.z) be a C'* function on A". Then there is a partial Taylor
expansion

m—1

h(y.z) = > a=)y' + bily. 2)y™ + Fba(y. =)
=0
with b;.b, being C*. and a; = £3%;(0.::).@

Applying the lemma to the coefficients of 5., we write

-~

0=y Mm+ -ty M+ y "0

where 1;.....nm are free of dy and g, with coefficients independant of y: 1,
is C=. and every term of o involves § or dy. Write n; = u; A dy + p. where
2 is free of dy.

Proposition Res(o) = u; O
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Proof First. the form o, a closed form with a pole of order m. must have a
logarithmic plus a pole of order m — 1. Applyving this expression

O=y " m+ -ty Mt +y "o
enables us to write
Nm = Om A dy
o=1u A dy + yv.

(Every term of ¥, and v, involves ¥ or dy.)
Subtracting an exact form from o will not change its residue. So for
m > | subtract

d(y' =" (m + 1)) _ (dim + duey )y =" L emy= ‘
= +y " (m ) A dy
l—m 1 —m
dﬁm +dU -m -m —-m —m
=(-————1_m1 V' (T +y o) =y T

The difference contains a pole of order only m — 1. Using the lemma. we may
write the difference as

o=y " Nmor+ -y im + o +y o
(thus redefining ny..... rzm_l.é). Note carefully. however. that n;..... et
are the same as before, o has been changed. and to n,,_; has been added

dim
l—m

which is independant of dy.

We proceed inductively. reducing the order of the pole by one each time.
with a process that discards the n; with the highest i. adds something in-
dependent of dy to the n; with the second-highest i. and changes o. We
continue the process until the pole is of order 1. It is worth noticing that the
process leaves n; alone until the final step. in which something is added to
m = p1 Ady + py independant of dy. In other words. only yu, is affected. not
M-

Now we have a form

o=y 'mtn+ylo
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(redefining 7, ©) which has the same residue as 0. Expressing n, = yu; Ady+p,
we notice that only p; has been changed from the original u,. and not ;.
And the residue of o' is clearly u;. O
We may apply the previous proposition to o,. replacing o with o,. To
make further use of the result, we change variables. Replace {z;..... I} by
{s = X5 If,xg, ...:Zn}. Here z; = /s — Yo 1‘12, which is well-defined
since r; is positive and real there, gives us a well-defined branch of V- We
have l
n 2 1 n
d.’l’l = (S —'ZIJZ) (5'ds—z.‘tjdl'j)
j=2 - =2
and may simplify the calculation of Resy,(o;) as follows. To use the lemma
and proposition. we must compute the (m—1)st derivatives of the coefficients
of o, with respect to s and evaluate them at s = t. i.e. at /37, r! =t.

i.e. on X;. In doing this, only those terms involving ds contribute to the
residue. On ~,. t € R*. so that r; € R*.z,,.... r, € V—1R™*. whence

dry, = df,.dr, = —d7, for j > 1. So any term containing dr, A dT, will
integrate to 0 on 7;. Thus only some of the terms of

-m

o = (fo—t) Z hri(x.t)drdT;.
J=1

#l+#J=n

those in which dr;. and for j > 1. one of dr,. dT,. appears. need be consid-
ered. In the substitution

-

d11=(5—izf)—

j=2

1 N
(é-ds— 221'1’(11’1)
J:

may ignore the dz terms and pretend that

(s - zn: rf) ds
J=2

)

dl‘l =

o) —

We will estimate the growth of

L Resy, (o]
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term by term, so we will assume that

o = (er—t) h(r.t)dr A---Adr,
Jj=1

- (fo—t) h(r.t)dry A --- ANdx, Adr,
Jj=1

m]—-

= 1(s—t (s—z.r —t) h(z.t)dzy A --- Ads.

< =1

To use the propostion. we must compute

am—l 1 n R —é—
— i35 I h(z.t)
dsm-t {2 ( 12_:_2 ’)

which by Leibniz's rule becomes

m—1 k n —%—m-{»k
5 g (-5

=2

s=t

s=t

where the c;’s are constants. The iterated chain rule gives us
(3=
d*h d'elp & :
3s’°—z 61""'1-‘[ S—J_Z,I '

where the sum is taken over all non-negative A-tuples a = (a,..... Q) satis-

fving 5, ia; = k.|a] = % L a;. and the d;'s are constants. The last three
expressions are to be evaluated at s = t. Using the last two expressions. the

third last.
(s - er) h(z.t)
=2

m—1 3|°|h n \ (%—i)o. " ) s=m+k
k| |d . |a|H ( ZI)) (t“zl']) (x)

am-l

asm—l

N | b=

s=t
1s

Jj=2 =2
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We can now estimate

Resy, (o).
Yt

Use u, = Imz; (j = 2.....n). for coordinates on v,. Note

t—zn:uf

=2

Since the lowest power of (t -~
k = 0.a = 0. we may estimate

'

I . Res(ot)‘ <A

Lom
(t-f-Zuf) dll_)...dllr‘
=2

n 2
Z)=2 u1<1—t

for some constant 4. This upper bound can be simplified by a change of
coordinates. Replace (u,..... up) by va..... Urn_1.r) where

subject to
U§+"'+l’,2l_l <1

0<r<v1i-t

The differentials satisfy
dus A --- Adu,

It
N



=d(rv2)/\---/\d(rvn_l)/\d(r\/l—-v_‘f_...__‘.

e

)
r"_zdv-z A dv-z AN--- A dl‘n_l

So our bound is

V1=t L .
'4 /Zn_.l 5 / (t + rz)i—mrn—zdrdvg e dl'n—l-
<1t Jo

1=2 72

Since the v’s do not appear in the integrand, the bound becomes
Vi-t 1 .
_4'/ (t +r3)z"mr""2dr.
0
JI=t - ,
= A'/ (t+r*)z"™(r?)™ dr
[}

1—-t n N
< _4'/ (t +r2)~4dr
0

o -1
= . by substituting w =t"2r.

VT [
.4’/ (1 + u?) Fdu
0
= . substituting v = tan (.
arctanVt—l -1} ) . .
.—1'/ (sec? )7 sec? (d(
0
arctan\/:‘[—l
= A'/ sec d(
0

arctan \/t‘i -1

=4 [l log 1tsine smg]

2 1 —sing],

tan? ¢
1 + tan® (+1

1 _ tanz ¢
tan? ¢+1

1. 14+t
T B t
=A (210g ——-1_ ==

t=1



|
3T Tt

= A (%IOg ((1 + \/tf‘:‘t)2))

<A (,—log ((1 t 1)2>) fort <1

B — %A' logt.

=.-1’<1 1+\/T:7)

Thus .
,/ Resx,(o,)' <B- 3.-1'logt

for some constants 4’. B.
- . . . =1
What we have proven is that the periods of local sections of G near the
. . . 74 b
singular points grow at most like powers of logt¢. Therefore G C G. T

D]«

If d (from @) is identically 0 on P. then in particular. we have
0 =d(0)

=dimHY(P.Q: = R"m.2)

= dimH'(P.Q} 2 R*7:.G™ %' Q% 12 2(0Z0))
=dimH'(P.Qz 2 R"m.G™*' Q% (2 2(oY))

!

=dimH (P.QL = Q).

d

[14] < [15 ) 16]
If the pairs (X x P, Zp) and (X x P, Z,) are isomorphic for all # oc. then

Zo = G™' Ny ypp(820) = G™H10% 2 /2(0Z,) = Z, Hence

d(0) = dimH (P, QL @ R"72.23) = dimH (P.QL = R"7,. 2%) = d(s)

for all s # oo. But if also d(s) = 0 on an open neighboorhood of . then d
must be identically 0 on P. [J

[15] < {17 18]




I B RIS VT T L

e e

This is a direct application of the definition of upper-semicontinuity to a
function with integer values. O

1s true

Consider the linear automorphism. for s € P — {}:
L,:P—=P
(ao. 1) — (ag.a, — sag)
Now let us examine the effect of

I1xL,: XxP—>XxP

on Z, = {(z.a) € X x P: agzo + (a1 — sag)z; = 0} (from definition in E)
If (z.a) € Z,. then
(=. Ls(a))

satisfies (zg.21) - Lo(a) = aozo + (a1 — sag)z1 = 0 which can be rewritten as
(Ls(a))ozo + ((Ls(a))y — O(Ls(a))o)zr-

This. by definition, means (=. L,(a)) € Zp
We claim that 1 x Ly in fact transforms Z, isomorphically onto Z,. To
see this consider the inverse transformation

(I1x L) '=1x L]

in which (L,)™' : P — P is given by (ag.a;) — (ao.a; + sag). A similar
calculation to the above shows that (z.a) € Zg = (z.L}(a)) € Z, so that we
do indeed have the isomorphism between the pairs (X xP.Z) and (X' xP. Z,).

|
@ Is true

Our task is to show that d(oc) = 0. which means that

0=HY (P.Q: = R"m.22)

= H'(P.Q} 2 R"m.G™ 0% s 5(0 7))
Now L*:= G™*10% 5 /z(0Z) is the complex

m times
f—-"_-/\_‘
0—---—=0— Q% ><::/—-(Z )——rQ’,’}*;l,/—('.Z )= -
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But as Zo = Xoo X PU X x {oc}, we may observe
0% ool Z00) = MO (1X) 8 m30:(1)
with the poles of order [ in Op(!) being at oc. So G™*1Q% . » p(®Z ) contains
the subcomplex M® := G™ " Q% (8Xo) &c 730z(1). which 1s
m times

0— - — 0= 0% (X<) 8c ™ 0p(1) = -+~ .

the poles of order 1 in O=(1) being again at oc. The quotient £*/M* is sup-

ported on 77 (oc) = X x{oc}. Itisclear that R M* = H*(X.G™1Q% (e X, 1) 2
©:(1). which indicates, via Serre duality. that HY(P.QigO=(1)) = HYP.O=(~1}) =
0.=> HY(P.QL 2 R"m;..M*) = 0. From the cokernel sequence

0= M oL =L/M =0
we have, using left exactness.
0=0g R M* — QL g R™mpL°02 & REma (L°/L°).
= Qe SR"7.L° =0.

This is what we wanted to prove. C

(18] = [191:020]
Apply the Semicontinuity Theorem for Hypercohomology to the mor-

=M1 ~ e

phism m3 : X x P x P - P and the complex of sheaves =301 £ Z° on
X x P x P. Then we have

s — dimk(,)H"*’l(_Y X PT?EQ% 8 Z;)

being upper-semicontinuous on P. But for the scheme P, k(s) = C for all
s € P. Applying @, we discover the upper-semicontinuity on F of

s = dimH™(X x P,70b ® 2!) = dimA (P, QL 8 R™m2. Z)) = d(s)

0

is true
This is the proof of the

Semicontinuity Theorem for Hypercohomology
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Let V — S be a projective morphism of Noetherian schemes. and let A
be a complex of sheaves on V', with the N'P's being coherent O-modules fiat
over S, with differentials linear over f~1(Os). For all p > 0. the function
s — dimg(s)H'(V;, ) is upper-semicontinuous on 5.0O.

ol e,

We begin with 2
Lemma

R*'7.2°=00
Proof

The presheaf associated to R*'m.2* =0 is

PxP ol = H*(z=(U). 2°) = B (=71 L), G770 (2 xz/znz(0Z)):

We know that there exists a spectral sequence
lqE.} abutting to

H (=7 H(0). G A xe xp/zx(0Z))

with
P = HA(H (V). C™ Qe paa(02)):
Therefore
H (=Y D). Wy yoxz/exal(p — m)2Z)
= Hq(ﬁ—l(c—)? Gm+1 Q;&'x?x?/?x?(.z))
=0vp>m+l.p+gq=n+l

would imply * EZ? = 0 and thus would imply H 1 (271 (0). G™ ! Q% gz xz/zxz(02))
which would give the desired vanishing of R™*'x. 2.

So it suffices to establish the vanishing of the sheaf associated to the
presheaf

U~ Hq("T—I(U)t Qi{x?x?/?x?((P -m)Z).

namely R?7.Q%  pp/2xp((P — m)Z), for all p+ ¢ =n + 1. For this. we will
establish the vanishing of the stalks
albo - a061

aobo

H(X,Q%((p—m)Xi).t =

over all (a,b) € P& P. By Nakano's generalization of the Kodaira Vanishing
Theorem [23,p.132] these groups, except for the stalk over ((0. 1),(0.1)) are
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0. The entire fiber w_;(((0,1).(0.1))) is contained in the polar locus Z. so a
special argument is needed. We can replace Z by a linearly equivalent divisor
Z" on X x P x P without changing the cohomology. Take Z’ to be given by

aozg + a1z _ b
aizg + @p=y bo

When ag = by we get the equation of X,.. We can now apply the vanishing
theorem again. U

This argument is taken, some of it verbatim. from [Zucker. 4.46].

To establish we now use the Leray spectral sequence for hypercoho-
mology. We have the sequence {E,} with

E; =E.= = H"HX x P.7;0L = Z?) (degeneration at E;)
E)y) = H(P.R/m.(Q} 2 2°))
__H(P Ql(,RJng .)

so that
H*'(X xP.7301 = 2?)
= P H(P.OLzR'm.Z2)
i+)=n+1
But
R*™m7.2 =0
and

H2Y(P.Qi = RVmp.2?) = 0.

So the direct sum has a single term; that is.
H*Y X xP.7;0 2 22) = HY(P.Q: Z R"m,. 2?).

a
From this we may obtain the
Corollary
All normal functions are horizontal ({Zucker]). O
Proof
We know (statement that HY(P.QL 2 G) = 0.
From we have the short exact sequence

0 F"*'Prim"(X) 230 -Gz U s F. = Ql -0
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Since H?(P.QL) = 0. we have the surjectivity of
HY (P.G= Q) - HY(P.F, 2 Q).
So from H'(P.0% 2 G) = 0 we conclude
H'(P.F, 20 =

By Serre duality, H(P,F,) = 0. From the canonical bundle formula. we
have the inclusion Q} = Op(—2) < Oz, then F, 8 QL — F.. which implies

H\P.F. 2 0L) =
But HYP.Ql)=0and F =F, = O= T ( F=~H*"~1(X)). which mean that

HP.F =) =0

Now H?Y is right exact on coherent sheaves because the dimension of P is
. S .
1. Consequently. the surjection F — F gives a surjection

0=HP.F z Q) — HOB.F " 20l

Hence

OP.F "z aly=0.

which is the vanishing of the middle link in the following factorization of ¥ ;:

HY(P.T) HOP.F™ " 2 l(log T))
H

op.F T 2l

"

(The reason we have the factorization is ([Lewis.lec.12]) that

l'VZm—l

Fne = —m
FrWomoy

Wim-1 consisting of invariant classes under monodromy. so that ¥ (on F™~)
. —m+]l.=
gives no poles of 77" g Ok at ©.)
Therefore. V; =0. O



EXAMPLE APPLICATIONS

In this section we examine an equivalent condition for Jacobi Inversion.
and another special case of the General Hodge Conjecture.

Recall the Abel-Jacobi map

0(X,) > J(X,).

Jacobi Inversion is its surjectivity. Define .J,(.X;) to be the image. in J(X,).
of the subgroup O(X:)ag < O(X:) under ®. (O(X;)ag is the group of
codimension-m algebraic cycles on X, which are algebraically equivalent to
0.) It is known, by an application of Poincaré’s complete reducibility theo-
rem. that J,(X,) is a subtorus of J(X,).

Using Hilbert Scheme arguments. it can be shown that the quotient

O(X:)
e(~Yt )alg

is at most countable. It follows that

P(O(X:))
Ja(Xe)

is also countable.
Jacobi Inversion is equivalent to .J,(X,) = J(X;). For if @(X,) LA JX)
is surjective. then
J(X) _ $(O(X,))
Ja( Xt) Ja(X)

is both countable. and the quotient of two tori. .J(X,) and ./,(X;). Hence the
tori must be identical. the quotient 0.

What exactly does it mean for a cvcle £ € O(X;) to be algebraically
equivalent to 07 It means there is a smooth curve ['. a cvcle - € C™(I' x X})
of codimension m, and points a.b € I so that £ = 2(b) — z(a).

In a similar way. given = as above, we have a map on C Ho(I'),, (the
group of 0-cyvcles on [ of degree 0):

CHo(T)alg = CH™(X,)
(b—a)m— &
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For any such = we have (see [Lewis.lec.12]) a commutative diagram

CHo(r)alg = CHk(-Xt )alg

g[ o

JYT) J(X)

HO.!(D [:]. Fk.-sz—l(xr)
HIT.Z) H*=1(X,.2)

We can choose z so that [z]. is surjective. which if @ is surjective forces
wt H*-1(X,) = 1. So the weight of H*~!(X,) is necessarily 1 for Jacobi
Inversion to hold.

There is another special case of the General Hodge Conjecture (i.e. not
Hodge”?(X.Q)) which has not been discussed so far. Here the dimension of
X is odd. say n = 2k — 1. It is an equality of two filtrations on H¥*=YXN.Q):

‘\-k—lek_l(.X. Q) — F§°1H2k_l(.¥. Q)

The filtration FAH*"!(X.Q) is defined to be the maximal Hodge Struc-
ture in F*¥' N H?*-1(X.Q). And .\ is the filtration by coniveau. defined by
N H#=1(X Q) = {imo. | 0. is the Gysin map H*~%-4}.Q) — H* '(X.Q)
and ¥ = desing(Y'). where codimyxY = i}.

Now suppose the General Hodge Conjecture - and this case in particular
- is true. Suppose also that H?*~!(X, Q) has weight 1. and more particularly
that H*-1(X,Q) = Fé“lek"l(X. Q). In this case H*"1(X.Q) = F*'n
H*-Y(X,Q). Then by the finite dimensionality of the cohomology. there
exists Y of pure dimension n — (k= 1) = 1 + (n — k) (with A < n) so that

o.: H(Y,Q) = H*Y(X.Q)

is surjective. By taking n — k general hyperplane sections of ¥ we get a
smooth curve [' C Y so that

H(T,Q) — H\(Y.Q)

is surjective by the Weak Lefschetz Theorem.
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We also get the inclusion HY(Y) — H'(T) by duality. Consider a left

inverse of it, HY([') — H(Y), as a morphism of Hodge structures. This
Poincaré duality

defines an element of HY(I)~ $ HY(Y) >~ HYT) = HYY) and

being a morphism of Hodge strucures it determines a class in
(HY(T,Q) g H(Y.Q))n F".

By the Lefschetz (1.1) Theorem. and by taking a suitable integral multi-
ple. this is the class induced by some z € CHYI x Y). The (surjective)
composite

HY(T.Q) — HY(Y.Q) —= H*~1(X.Q)
is similarily induced by some
[z] € (HY(T) = H(T)") 2 H*Y(X) C H*(T x X).

where € CH¥(I x X). We again have the commutative diagram

CHO(r)alg . CHk(-Yt)alg

L [2]e

JYT) —= J(Xy)

And we know [z]. is surjective. so that Jacobi Invcrsion follows.

We wish to find some examples of hypersurfaces X C P%* (of dimension
n =2k — 1) where wtH"(X) = 1 and where the General Hodge Conjecture
holds.

Let X be such a hypersurface. of degree d. From [Lewis. 9.12}. the nu-
merical condition

3
<9 —_—
(*)|d +k—1

<

is equivalent to wt H"(.X') being 1. We want to know whether or not it is
sufficient for (the special case of) Hodge Conjecture.
To investigate this, we have the sufficient condition for

NHY(X.Q) = H (X.Q).



where [ = |23} |, found in a paper of Lewis:

uqun+2—n+1—(djg;zo

In this case we are assuming wtH"(X) = 1. so if | = |2} is k — L. then
NHAMX.Q) = HYX.Q) is VFIH*»-Y(X Q) = Fé"‘sz“(_\'.Q). our spe-
cial case of the Hodge Conjecture.

Our investigation boils down to the question: “When does condition (*)
imply [ = k — 1 and condition (**) ?”

Assume (*) holds. The cases are:

¢ k=1 In this case (*) provides no restriction on d. but that hardly
matters. for we know the Hodge Conjecture holds for curves (i.e. where
n = 1). (This is the Lefschetz (1,1) Theorem.)

e k=2 Here.d<4.

o k=3 Here.d<3.

e Lk >4 Here.d < 2. We may ignore this case. because the General
Hodge Conjecture holds for all cases where d = 1 or 2.

We have the two cases A = 2.3 to cover.
[fh=2 thend<4.=[=1=k—1. As for (*=). it holds:

(n+2=0)+1~ (%)

>13+2-1)+1-(*")=0.

If £ =3. then d < 3. So d is exactly 3. making [ =2 =k — 1. And (*x*!
again holds:
2-1l)+1— (d‘,”)

[(n+2
=2(53+2-2)+1-(%*2%)=12>0.

What we have shown is that condition (*) is equivalent to the version
.‘\"k—lek_l(.X, Q) = F:‘If—l sz_l(_\’. Q)

of the Hodge Conjecture for odd-dimensional hypersufaces.

63



INDEX OF NOTATION

This section gives the first page on which notation appears.
Page / Notation

1 X
1 H
1 HP‘Q
1 E'
1 Hodge??
1 L
2 Prim
5 Prim??
T []
T cm
3 ¢
10 X
10 Y
10 Y
10 D
10 f
10 f
10 O
10 R
10 Q
10 H
10 U
10 A"
10 CP(U. A7)
10 cra
12 H?
13 C
13 [
13 i
13 p
13 r
13 k
13 ]
13 k.
16 H
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CHO(r)alg
CHk(-x’t)alg
NE-LH2=1(X Q)
[z]-

S*(X:)
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APPENDIX

We can explicitly give the Abel-Jacobi map for curves on a surface i.e.
forn=2.m=1.

Consider a curve £ in ©(X/P) whose hyperplane sections are homologous
to 0 i.e. are O-cvcles of degree 0:

k

& = Z(Qi - pi)

=1
The Abel-Jacobi map takes & to the functional

H'Y(X,)= F'H'(X,) = C

k T
i=17P:

modulo periods
(q.' g o .d).
neH (X:.Z2)

If we have element v of H°(P.O(J)). take v(t) and invert: get & with
o¢(&) = v(t). Piece the & 's together to get £ = U3, with ®(£) = v.

To show that we do indeed have Jacobi inversion in this case. we can
define a map (after choosing p in the connected X,) on the Ath svinmetric
product of X,:

SH(X) = J(X.)

ko o k
Q1+"'+Qk*—>2/ u—‘=Or(ZQi—A‘P)
i=1YP i=1

This map. for & = g = geometric genus of X, = dimH'°(.\,). is analytic.
generically 1-1. and surjective. So @ is surjective since its imnage contains
that of this map.

(22
(0]



