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Abstract

Processing of complex feedstocks for the production of value-added chemicals and

fuels is industrially important. The lack of a priori knowledge of the innumerable

species and the reaction pathways governing their conversion, has posed challenges to

monitoring these processes. Although, data-driven models have been used, their lack

of interpretability and an end-to-end modeling framework has limited the efficiency

of diagnostic decisions in process monitoring. On the other hand, systems where

the mechanistic knowledge of the species and their reactions are arrived at from

first-principles simulations, face computational challenges in the deployment of such

models for the process design. This thesis focuses on the following two aspects: (i)

developing inferential machine learning models to enhance the interpretability of data-

driven models, and (ii) developing predictive machine learning models to reduce the

computational cost of first-principles simulations, in modeling chemical systems.

The first aspect of developing inferential machine learning models focuses on the

identification of species, reaction pathways, and kinetic parameter estimation from

spectroscopic data of the system, with application to the visbreaking of bitumen.

Spectroscopic curve resolution methods that are structure-preserving, interpretable,

and jointly parse data from multiple sensors, to extract latent features for species

identification have been presented with an increasing degree of sophistication as fol-

lows:(i) self-modeling multivariate curve resolution (SMCR), (ii) joint non-negative

matrix factorization (JNMF) as a data fusion analogue of SMCR where regularization

constraints act like chemical information sieves to handle complementary, orthogo-

nal and redundant features in the latent factorization of multi-sensor data and (iii)
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joint non-negative tensor factorization (JNTF) as a structure-preserving higher order

analogue of JNMF. Next, Bayesian structure learning among the extracted spectral

features has been used to causally infer plausible reaction pathways that have been

validated by domain knowledge. Finally, the latent factorization and causal inference

models have been used as an engine to interpret the modes identified by training hid-

den semi-Markov models on spectra. This captures the time scales and dynamics of

reaction mechanisms with changing temperatures, for the realtime monitoring of re-

active systems purely from spectroscopic data. Projections of spectroscopic data onto

the temporal mode of data collection via latent factorization, are interpreted as con-

centrations. Kinetic models constrained by physical laws and the reaction adjacency

matrix deduced from the Bayesian network structure are implemented using chemical

neural ODEs trained on the temporal concentrations. The prediction accuracy is seen

to depend on the ability of latent factorization to handle process noise.

The second aspect of training predictive machine learning models, focuses on not

only reducing the computational cost of the ab initio molecular dynamics (AIMD)

simulations of chemical systems, but also the cost in itself of developing such models.

This has been demonstrated with application to the transglycosylation of cellobiose,

to assess whether or not the solvent molecules reorganize significantly in going from

the reactant to the product configurations. A self-supervised 3D convolutional neural

network autoencoder is trained to extract features from the reactant and product

simulation trajectories, the probability distributions across the difference between

which is used to assess if the solvent reorganization is significant. Cellobiose systems

at lower temperatures are found to reorganize to a greater extent than those at higher

temperatures, consistent with the decrease in the activation free energy barrier as

temperature increases. Similarity between the reactant configuration features of other

chemical systems with those extracted from that of the cellobiose systems, is then

used as a basis to inform the extent of reorganization in the product profiles, without

having to explicitly run AIMD simulations for the same.
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Chapter 1

Introduction

Process monitoring of chemically reactive systems is crucial for product quality con-

trol, for the optimization and control of the process itself to ensure plant safety [1], and

to realize sustainable production objectives that are central to process intensification

[2]. The challenges faced by the systems engineering approach to process monitoring

of reactive systems via design, optimization and control broadly encompass

1. Model development of the complex reactive system, when the complete identi-

fication of the species and reactions may not be available. This has popularized

the development of data-driven system inferential models [3], [4] based on the

molecular-level information obtained from process integrated spectral analyzers

using flow cells, quartz windows or immersion probes that are fast, noninvasive,

non-destructive, inexpensive and do not require sample preparation [5], [6].

2. Model deployment, in the event mechanistic knowledge of the species and reac-

tions are used for the first-principles simulation of chemical systems. Although

the atomic simulations can potentially access length and time scales beyond

the limit of experiments, they are found to be computationally intractable for

systems with a large number of atoms [7]. This has prompted the training of

A portion of this chapter has been published as: A. Puliyanda, K. Srinivasan, K. Sivaramakrish-
nan, V. Prasad. A review of automated and data-driven approaches for pathway determination and
reaction monitoring in complex chemical systems. Digital Chemical Engineering 2022, 2, 100009.
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predictive machine learning models on the mechanistic simulations, as a com-

putationally efficient surrogate that could then be deployed for advancements in

drug design [8], computational chemistry in molecular and materials modeling

[9], retrosynthesis and catalysis [7].

The thesis is directed to tackle the aforementioned challenges with regard to model

development and deployment for chemically reactive systems, with the aim of fur-

thering process intensification. This chapter provides an overview of the data-driven

strategies used for species identification, reaction pathway determination and kinetic

parameter estimation, before highlighting the knowledge gap that has motivated the

development of such an end-to-end data-driven system inferential framework with

application to the partial upgrading of bitumen.

This chapter also provides an overview of predictive machine learning models

trained on first-principles molecular dynamics simulation data as a computationally

efficient alternative. The cost of training such predictive models owing to the genera-

tion of target labels via sampling calculations from the simulation data has prompted

the development of a self-supervised framework, where the density distribution of the

extracted features informs label assignment for predictive models, with application

to predicting the extent of solvent reorganization from the simulation trajectories of

the reactive cellobiose and fructose systems, as demonstrated in this thesis.

1.1 System inferential modeling framework from

process data of reactive systems

Bitumen being a complex reactive mixture is lacking in the exhaustive enumeration

of its constituent species, let alone the reaction pathways governing their conversion.

This poses a challenge to monitor composition changes in bitumen arising from re-

actions occurring during the partial upgrading of the complex feedstock; to obtain

a pumpable product stream, in compliance with the North American standards of
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pipeline transport (viscosity <350Cst at 7.5◦C (winter) and density< 940kg/m3 at

15◦C and an olefinic content<1 decene equivalent) [10]. In such situations, reaction

monitoring relies on experimental data of the system, obtained by integrating pro-

cess analytical tools like spectroscopic sensors with reactors, for species detection

and measuring analyte concentrations, to facilitate higher control of product com-

position and process intensification [11]. Real-time data from spectral measurement

techniques viz. Fourier transform infrared (FTIR), Raman, Ultraviolet–visible (UV-

vis), Nuclear magnetic resonance (NMR) and Mass spectrometry (MS) are used for

species identification followed by monitoring changes to the structural and elemental

composition during the conversion of reactants to products from which mechanisms

are deduced for reaction optimization and process design [12]. The use of multiple

spectral analyzers is seen to increase the confidence of the kinetic model estimates,

making process analytical tools popular in industry to monitor chemical processes

[13].

Figure 1.1: Classification of reaction systems based on degree of knowledge of species
and reactions, and approaches for pathway determination.

At this point, it is useful to define the various classes of reaction monitoring and

pathway determination problems [14]. For very well-understood systems, where full

knowledge of participating species and reactions is available, the pathway determina-
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tion problem is already solved. The monitoring problem, given the highly developed

understanding of the system, can focus on the (real-time) estimation of kinetics and

the full compositional profile of the products of the reaction scheme. When species but

not (all) reactions are known, pathway determination may be attempted using heuris-

tic approaches relying on the chemical expertise of humans, or through automated

approaches. In this case, the monitoring problem typically focuses on estimation of

conversion, apparent reaction order and apparent kinetics in the absence of pathway

determination. If neither species nor reactions are known well (as in the analysis of

petroleum residues or their resulting hydrocarbon fractions), then the estimation of

conversion (which is often poorly defined) is usually all that is possible in the ab-

sence of (data-driven) methods for the identification of species and then of reaction

pathways. In this case, too, the determination of reaction pathways can enable more

sophisticated analyses for monitoring, and the ability to track the compositional pro-

file of the products. Figure 1.1 presents the classification of systems based on the

degree of knowledge of species and reactions (− implying a lack of knowledge and

+ implying knowledge of species/reactions), and the corresponding typical approach

for pathway determination. A description of the methods to automate the reaction

pathways and for the online monitoring of complex chemical systems via data-driven

approaches, follows from Section 1.1.1 to Section 1.1.3.

1.1.1 Species identification

Multivariate statistical process monitoring (MSPM) for the design, analysis and con-

trol of systems lacking in a priori knowledge [15] has been popularized in pharma,

food and biotechnology industries [16], with the increased data collection from analyz-

ers that are built into a manufacturing process to relay molecular level information

[6]. Spectroscopic and chromatographic analyzers (Fluorescence, Visual, Near in-

frared (NIR), Infrared (IR), Raman, proton nuclear magnetic resonance (1H-NMR))

[17] [18], acquire process data that are high dimensional, non-causal, non-full rank,
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noisy and have missing values. This has resulted in choosing MSPM methods to build

mathematical system inferential models in the latent variable space for process moni-

toring [3][4] by developing statistical techniques like calibration, multivariate analysis

and curve resolution [19]. This helps in obtaining compositions and chemical signa-

tures of species from measurements (chromatographic and spectroscopic), as a first

step in the data-driven monitoring of complex reactive systems.

Multivariate calibration refers to the process of relating, correlating, or modeling

analyte concentration or the measured value of a physical or chemical property to a

measured response [20]. Partial least-squares (PLS) regression is popular in multi-

variate calibration as it modifies relations between sets of the observed variables by a

small number of latent variables that maximize covariance in predictor and response

space (not directly observed or measured) by incorporating regression and dimension

reduction techniques [21]. Multivariate analysis techniques like hierarchical cluster-

ing analysis (HCA) was applied on emissions from materials like polymers to identify

spectral groupings [22], that are matched to compound classes in standard libraries

[23] in a bid to automate species identification from spectra of complex mixtures.

Curve resolution in spectral data is a factor analytical decomposition that works by

resolving the data into concentration and spectral profiles either bilinearly or multi-

linearly using the self-modeling multivariate curve resolutionalternating least-squares

(SMCR-ALS) [24] [25] and the parallel factor analysis (PARAFAC) [26] [27] mod-

els, respectively. The initial estimates for the decision variables can be obtained by

evolving factor analysis (EFA) on a row-wise augmented data matrix both in the

forward and backward direction [28] if the data has an intrinsic order or by use of a

global search technique in the feasible space using particle swarm optimization (PSO)

[29]. The concentration and spectral profiles are subject to physically meaningful con-

straints like non-negativity, closure, unimodality to obtain a unique decomposition

free from rotational and intensity ambiguities [30]. The PARAFAC model is inher-

ently free of these ambiguities and is a unique decomposition as it preserves the
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multi-linear structure of data and the inter-modal latent factor interactions while

resolving the data into independent factor matrices [31], unlike the less restricted

Tucker decomposition that decomposes data by singular value decomposition (SVD)

into orthogonal factor matrices [32] .These decomposition methods depend on a pa-

rameter called the rank or the number of pseudo-components which capture most of

the variance in the data. In orthogonal decomposition it is determined using emprical

metrics [33] based on principles of SVD into principal uncorrleated directions; while in

higher order PARAFAC decompositions methods like core consistency [34] and split

half anlysis are used for rank determination based on the principles of PARAFAC

being a restricted Tucker model [32]. Hence, it can be seen that resolution methods

are applied to complex mixtures and aim to extract information on the number of

components that significantly contribute to the mixture properties, the concentration

of the components, and their respective spectra in the case of hyphenated analyti-

cal techniques employed without prior knowledge about the system; to then enable

further chemical interpretation and understanding of reaction pathways [35].

1.1.2 Reaction pathway identification

Once the species have been identified, deciphering the reaction mechanisms under-

lying complex reactive systems is a pre-requisite to develop kinetic models to devise

online monitoring strategies [36]. If the rules governing species conversion are known,

then reaction pathway identification can be automated by first translating chemical

knowledge into machine-level representations as follows [37]: (i) encoding chemical

species using molecular descriptors of reaction cores using SMILES/SMARTS strings,

Morgan fingerprints, or by using matrix representations of species as molecular graphs

via edge/vertex adjacency matrices, (ii) encoding reaction rules as templates by repre-

senting a reaction as a difference in the fingerprints between the product and reactant

representations. Then an automatic reaction network generator consisting of a gen-

eration algorithm, successively applies these rules to the species until a termination
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criteria is met, as with the Rule Input Network Generator (RING) [38]. Manually en-

coding reaction rules is not only cumbersome but is also restrictive when it comes to

discovery of novel mechanisms. Hence, there has been the development of algorithms

that automatically extract reaction templates from databases by atom-atom mapping

(AAM) between representations of reactants and products to develop transformation

rules based on the identification of the reactive center about which there has been

structural or bond changes [39]. In the event AAM is time-consuming to automate

template learning from databases, there is evidence of using template-free approaches

for predicting [40] and discovering reaction mechanisms [41].

Machine learning (ML) models are seen to improve the generalizability of automat-

ing reaction mechanisms in comparison to rule-based methods, by supplementing the

aforesaid approaches with neural network machinery as universal function approx-

imators of non-linear reaction dynamics by learning lower dimensional embeddings

of input chemical data representations that are passed through non-linear activation

functions to output predictions for the control and monitoring of chemical systems

[42]. ML frameworks have been widely used for reaction prediction by candidate

ranking. Given the reactants, reaction templates have been used to arrive at candi-

date products, a distribution over which is learned using a neural network for multi-

class classification with a softmax activation in the output layer to identify the most

probable products [43]. Reaction rules search for particular structural motifs in reac-

tants prior to applying the transformation, hence are lacking in their ability to look

at a molecule as a whole to check for the presence of conflicting motifs that may

hinder transformation because of which given the reactants, a deep neural network

was used to learn the distribution over the reaction rules to pick the most probable

one [44]. Candidate ranking of rules and products has been deployed in a two-step

framework for reaction prediction [45] where first, the concatenated fingerprint of the

SMARTS representation of reactants and reagents is input to a neural network to

learn a probability distribution across 17 types of reactions. Second, the transfor-
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mation rules corresponding the most probable reaction is then applied to the input

to obtain a distribution across the candidate products. A similar two-step approach

has been used to realize a template-free approach to reaction prediction that involves

the prediction of reactivity [46]. First, molecular graph representations of reactants

and reagents are input to a graph convolutional neural network (GCNN) that ranks

the likelihood of the enumerated products by the pairwise interaction of reactive

sites, followed by another GCNN that learns a distribution across the Weishfehler

Lehman Difference Networks (WLDN) representation of reactant-product reactivity.

Reaction fingerprints obtained as the difference between molecular graphs of the re-

actants and products is used in the quantitative prediction of activation energy (a

reaction property) using deep learning as a data-driven approach to leverage massive

datasets to rank products based on whether they are energetically feasible [47]. It

is seen that reaction prediction is either rule-based or template-free which involves

predicting reactivity centres that however does not account for stereo-chemistry in

the reacting species [48]. This calls for reaction prediction using an encoder-decoder

architecture comprising 2 recurrent neural networks/ long short term memory units

(RNNs/LSTMs) as using in machine translation models seq2seq, except that the lan-

guage being translated here is the SMILES representation of reactants and products,

wherein the semantics of translation synthetically deciphers the rules of the under-

lying reaction transformations [49]. The encoder RNN acts to classify the reaction,

while the decoder RNN synthetically determines the appropriate transformations to

result in the product as a SMILES output, which may run the risk of being spurious.

Similar such machine translation architectures have been used to identify the electron

source and sink, given the reactants, followed by proposing elementary reactions that

are ranked using Siamese neural networks trained by shared weights to ultimately

chain them to obtain overall reaction pathways [50].
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1.1.3 Online monitoring and kinetic parameter estimation

Deduction of the species and the reaction mechanisms governing their conversions

from process data is used as a basis for developing kinetic models viz. differential

equations, Markov processes and state space representations using law of mass action

kinetics, S-system or polynomial models [51]. These kinetic models are characterized

by structure (species inter-conversion as reaction pathways) and parameters (rate

constants, reaction orders, stoichiometric coefficients). The parameters are learned

by fitting the model to experimental data by using Bayesian analysis, Monte Carlo

sampling or evolutionary algorithms ([51], [52]) wherein sometimes, in the absence of

prior knowledge of network topology, the structure is learned by virtue of parameter

estimation [53]. These approaches can broadly be classified as [54] (a) simultaneous,

where reaction pathways are learned from data by virtue of kinetic parameter estima-

tion or (b) incremental, where given the reaction pathways, time series concentration

data is used for kinetic parameter estimation either via a rate-based differentiation

approach or an extent-based integration approach [55].

Simultaneous approach to kinetic modelling. The S-system formalism has

been used as a tool to reverse engineer reaction networks from time series concentra-

tion data using a co-evolutionary algorithm to learn structure and parameters simul-

taneously by representing the non-linear system dynamics as a product of power law

functions, whereby network topology is characterized by the power law parameters

that give the cause-effect relationship among the species [56]. However, it does not

guarantee a unique solution and fails to scale well for systems with large number of

species, as the parameters scale quadratically ([56], [57]). Hence, simpler dynamical

models that are linear in parameters are used to describe reaction rates based on the

law of mass action as a linear combination of weighted polynomial basis functions [58].

The basis functions represent elementary reactions and are determined by model re-

duction in going from general to specific basis followed by least squares optimization
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approach to estimate parameters by regressing against temporal process data [59].

Noisy process data could lead to multiple reaction networks giving rise to the same

dynamics that are inferred from temporal concentration data. This is known as the

fundamental dogma of chemical kinetics [60] because of which the structural identifi-

ability of the network and its parameters is of significance in the distinguishability of

optimization-based solutions, and is attempted to be achieved using model reduction

to identify core reactions as to eliminate redundant terms [58].

The solution multiplicity and the reliance on user input to design the non-linear

library of basis functions to represent rates (eg. reactive SINDy), can be mitigated

by designing physically constrained data-driven models for kinetic structure and pa-

rameter inference [61]. Universal function approximators like neural networks that

ordinarily lack interpretability in the function mappings between inputs and outputs,

are architecturally designed to incorporate the law of mass action and the Arrhenius

law to represent the non-linearity of reaction rates wherein the weights and biases cor-

respond to the kinetic parameters [61]. In such hybrid approaches, first principles are

built into data-driven neural network models such that all the uninterpretability goes

into the feature identification and parameter estimation, compromising on obtaining

causally interpretable features. This is overcome by the use of genetic algorithms

to learn interpretable features that define the functional form of the non-linearities

describing reaction rates, wherein a heuristic algorithm guides a population of species

each associated with a vector of function transformations representative of explain-

able features in a combinatorial space of pre-defined functions [62]. This is followed

by statistically estimating the parameters of the linear combinations of the features

(or function transformations) extracted by the genetic algorithm, using OLS/LASSO

regression to learn an interpretable causal map of fundamental reaction mechanisms

using a purely data-driven approach in the absence of a priori mechanistic knowl-

edge. Another data-driven approach for structure inference from trajectory data is to

model the reaction system as a continuous time Markov chain that not only captures
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reaction stochasticity but also learns kinetic parameters given by law of mass action

using the maximum likelihood estimation [63]. Stochastic block model has been used

as a statistical tool in conjunction with mechanistic knowledge of reaction pathways,

to predict chemical reactions from species data to determine which of the mechanistic

pathways can be reliably inferred from the noisy process data [64].

Incremental approach to kinetic modelling. The progress of reactions for

optimization and control is characterized using the concept of extents, which is based

on the principle of mass balance for example in an open homogeneous reaction system

the reactants entering the reactor either convert into products in the reactor (extent of

reaction), remain unconverted in the reactor (extent of inlet flow) or leave the reactor

unconverted (extent of outlet flow) [65]. For a heterogeneous or a gas-liquid reaction

system, the mass balance will be satisfied by incorporating an additional term for the

extent of mass transfer between the phases [66]. The reaction rates can be indepen-

dently deduced from the extent of reaction which is not just a pure function of species

concentration or reaction variants (unless in a homogeneous batch reactor where re-

action rates give true extents of reaction) due to the additional dependence on the

flow variants, mass transfer variants and the invariant terms, because of which the

species vector is transformed into a low-dimensional manifold of states to infer extent

of reaction from concentration data [65],[66]. Alternatively, tendency models have

been widely used for batch reactor optimization where the identified stoichiometry

and kinetic models for a set of enumerated reactions are fit to a batch of data followed

by optimization and model update over the subsequent batch of data in an iterative

process over time [67]. Tendency models are a parsimonious approach to approximate

the kinetics of complex reaction systems [68], without prior mechanistic knowledge

of the system to predict the dynamic reaction tendencies in transient batch oper-

ations [69]. However the extent-based approach of directly inferring reaction rates

from species concentration data is not only agnostic to the canonical expressions

for reaction kinetics or mass transfer but also generalizes well across different reac-
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tor configurations, is already a reduced model as redundant states are eliminated

prior to identification, facilitates estimation of unmeasured species concentration by

reconciling the measured concentrations and inlet flowrates with the variant states

transformed as extents and finally integration of extent of reactions is a conducive

approach to obtain model predicted concentrations that are fit to the process data

for kinetic parameter estimation thereby overcoming the susceptibility to noise and

sparsity while time differencing the measured concentrations for the same, as with

the rate-based approaches [54],[55].

1.2 Predictive modeling from mechanistic simula-

tions of reactive systems

When both the species and mechanisms governing their conversion are known, first-

principles (ab initio) atomistic simulations are seen to provide insights into length and

time scales, otherwise limited by experiments. High throughput molecular dynamics

(MD) simulations are also seen to surmount difficulties in acquiring large amounts of

consistent experimental data, in developing predictive models of a system [70]. How-

ever, these simulations involve computationally expensive quantum mechanical (QM)

calculations using wave function theory, on-the-fly electron structure calculations via

density function theory (DFT) and potential energy surface (PES) methods, making

them intractable for systems with large number of atoms and longer time scales [7].

This has popularized the use of predictive machine learning to draw inferences from

copious amounts of mechanistic simulation data, so that it can serve as a computation-

ally efficient surrogate of the same, in the property prediction of molecular systems

[71]. ML surrogates of these mechanistic models have not only improved their use for

screening the design space, leading to advancements in drug design [9], computational

chemistry in molecular and materials modeling [72], retrosynthesis and catalysis [7],

but also led to the development of hierarchical multi-scale models that assess the

impact of molecular-level mechanisms on mechanical properties of the material at the
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macroscale [73].

When it comes to chemical reactive systems, ML models capture the quantitative

structure-property relationships by learning features from the simulation data that are

associated with thermodynamic properties of the system. ML regression models viz.

LASSO, random forest, gradient tree boosting and support vector regression, trained

on fingerprints extracted from MD simulations are shown to predict solvation free

energy and partition coefficients that have been experimentally validated [74]. Evi-

dence of using deep learning architectures like convolution neural networks (CNNs)

to extract spatiotemporal features from the MD simulations of interfacial water den-

sities are used to predict hydration free energies that characterizes hydrophobicity

that drives protein folding mechanisms [75]. 3D molecular features constructed from

the atomic partial charges, average number of water contact points, the number of

hydrogen bonds, their shapes and sizes, as extracted from MD data, have been used

to train CNNs to predict free energies of the drug-protein binding [76]. Chemical

behavior in fuel combustion has been modeled by training a ML model on chemical

reactivity data from MD simulation to predict the component fractions [77]. Pre-

dictive ML models trained on expensive electron structure calculations, were seen to

efficiently reproduce the infrared spectra characterizing peptide dynamics [78]. Aside

from regression models, ML classifiers viz. Linear discriminant analysis (LDA), sup-

port vector classifier (SVC) are trained on the MD data of the decomposition of

dioxetane, to extract features from the nuclear coordinates that correspond to ei-

ther successful or frustrated dissociations [79], the time scales of which impact the

chemexcitation yield. More complex reactive systems, for instance catalytic biomass

conversion, involve water that dissolves biomass, and polar aprotic cosolvents to ac-

celerate reaction rates. Maximizing the rate and yield of biomass conversion in such

systems depends on an optimal solvent:cosolvent ratio, the high throughput screening

of which is facilitated by training a predictive ML surrogate that is computationally

efficient at generating descriptors from simulation data, against which the reaction
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rates are regressed [80].

1.3 Motivation

Figure 1.2: Machine learning has the potential to bridge the modeling tradeoff be-
tween automation and interpretability.

The work in this thesis is motivated by the challenges of using machine learning

to (i) increase the interpretability of system inferential data-driven models, and (ii)

to increase the automation capacity of prediction-based mechanistic models, for reac-

tive chemical systems. The potential of machine learning to bridge the automation-

interpretability tradeoff as shown in Figure 1.2, opens up avenues for a wide variety

of modeling paradigms.

Interpretability challenges in end-to-end inferential models from exper-

imental data. Based on the classification of chemical reactive systems (Figure 1.1),

it can be seen that data-driven models are widely used to model complex reactive

systems, where the prior knowledge of its constituent species and the underlying re-

action pathways are obscure. Literature pertaining to the chronological identification

of species, reaction pathways among them and then kinetic parameter estimation via

data-driven system inferential models has been outlined in Section 1.1. However, an

end-to-end machine learning framework for the same, is lacking.
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The autonomy of data-driven models poses a challenge to their ability in explaining

physical systems. Hybrid models that incorporate physical laws are seen to limit the

autonomy of data-driven models that are constrained to be physically interpretable.

For instance, the Beer Lambert’s law in spectral curve resolution for species identifi-

cation [5], [35] the law of mass action and Arrhenius law of temperature dependence

[61] for simultaneous inference of reaction pathways by parameter estimation from

temporal concentration data. Sometimes it may be difficult to obtain accurate mea-

surements of non-equilibrium temporal concentration data of species [81]. Although,

the projections of spectroscopic data onto the temporal mode of data collection gains

interpretability as concentration (Beer’s law), the simultaneous inference of reaction

pathways and kinetic parameters in this case may not be reliable, owing to process

noise [60]. This motivates the development of injecting interpretability into the data-

driven approach for reaction inference, before using the reaction network structure

as an additional constraint to guide kinetic parameter estimation from the aforemen-

tioned noisy concentration data. Preserving interpretability via physically meaningful

constraints in going from the identification of species and reaction pathways, to finally

kinetic parameter estimation, by solely relying on spectroscopic data of a reactive sys-

tem, has not been established thus far.

Data obtained from different spectral analyzers contain multi-view information of

the reactive chemical system. For instance, process Raman spectroscopy offers infor-

mation pertaining to the molecular backbone as well as symmetrical non-polar groups,

IR spectroscopy yields information pertaining to hydrogen bonding and asymmetric

polar groups, and NMR spectrometry provides highly resolved information detailing

specific proton environments [82]. Current spectroscopic curve resolution approaches,

fall short of combining complementary information from multiple spectral sensors

through data fusion architectures that retain semantic meaning of the sensor inter-

relationships by incorporating network regularization constraints [83], [84], to extract

meaningful features for species identification.
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Computational costs of predictive models from mechanistic simulations.

Also, when it comes to first-principles mechanistic models of systems where both the

species and conversion pathways are known a priori, literature points to the reduction

of computational efforts by training predictive machine learning models as surrogates,

as outlined in Section 1.2. The use of ML-derived insights from MD simulations

to predict the mechanism, rate and yield of chemical systems as functions of its

thermodynamic properties has been recognized as one of the six grand challenges

of the 21st century [85]. However, these ML models are cost-effective only if the

cost of training them and that of generating the simulation data to train on, is

lesser than the cost of performing the first-principles calculations themselves. The

training costs generally involve sampling calculations of the simulations to obtain

labels against which the mapping of the features extracted from the mechanistic

simulations, is learned [74],[75], [76], [79], [80]. This has motivated the development of

self-supervised models, to extract features, the probability distribution across which

is used as a basis for label assignment, when training ML models on the AIMD data

of the transglycosylation of cellobiose to predict whether or not the solvent molecules

reorganize significantly.

1.4 Thesis Objectives

Enhancing the interpretability of inferential machine learning models for reactive

chemical systems can be facilitated by not only incorporating physical laws as con-

straints but also by jointly analyzing complementary molecular-level information from

multiple spectroscopic sensors to limit solution ambiguity. This thesis leverages se-

mantic meaning-based and structure-preserving data fusion architectures to extract

meaningful spectroscopic features that act as a basis for species identification, re-

action pathway identification via causal inference among the features, followed by

estimating kinetics, without reliance on a priori knowledege of a reactive chemical

system. A schematic representation of the end-to-end machine learning framework
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Figure 1.3: Schematic of the end-to-end inferential machine learning framework to
model complex reactive systems in the absence of prior knowledge of its species or
reaction pathways.

that has been developed for the same has been indicated in Figure 1.3. Following are

the objectives that have been realized:

• Quantitative parameters computed from the FTIR multivariate curve resolu-

tion (MCR) of the thermal cracking of Athabasca bitumen have been used to

propose plausible reaction pathways without prior knowledge of the system.

Two solution engines viz. particle swarm optimization (PSO) and alternating

least squares (ALS) have been devloped to solve the MCR objective at local

operating temperatures and globally across all operating temperatures.

• MCR has been developed to jointly parse complementary information from

multiple spectroscopic sensors by way of joint non-negative matrix factoriza-

tion, while extracting features for species identification. Probabilistic causal

structure inference among these features has then been used to hypothesize re-

action pathways. This has been demonstrated with application to the partial

upgrading of Cold Lake bitumen.

• Joint non-negative tensor factorization has been developed as a structure-preserving

higher order analogue of the data fusion architecture in joint non-negative ma-

trix factorization, before using causal structure inference among the extracted

features to infer reaction pathways. The higher order latent factor decompo-
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sition is shown to limit solution ambiguities even in the absence of additional

redundancy penalizing constraints.

• A framework for using online spectroscopic data to monitor reaction dynamics

with changing operating temperatures during the processing of complex feeds,

has been developed. Hidden semi-Markov models are shown to facilitate dy-

namic mode identification of online spectra. The spectral mode segments are

then interpreted as reaction mechanisms by using the earlier developed scheme

of latent factor decomposition and causal structure inference. The dynamics of

mode transitions are then demonstrated to reflect reaction mechanism dynamics

in realtime.

• Projecting spectral data onto the temporal mode of data collection using the

structure preserving tensor factorization is physically interpreted as the concen-

trations corresponding to the extracted spectral features. The reaction network

structure causally inferred among the spectral features is used to additionally

constrain a physical neural ODE architecture that has been demonstrated to fit

kinetic models to the temporal concentrations.

Figure 1.4: Predictive machine learning to limit computational costs of mechanistic
simulations for reactive systems by extracting self-supervised insights

When it comes to reducing the computational costs of developing predictive mod-

els from ab initio mechanistic simulations, the cost of assigning labels in the train-
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ing phase by expensive sampling calculations can be mitigated by the use of self-

supervised neural network architectures to extract features from the MD trajectories.

Also, the use of simple quadratic distance-based classifiers is seen to surmount the

training costs of neural network classifiers [86]. A schematic of training ML models

to extract actionable insights from mechanistic simulations has been shown in Figure

1.4. This thesis leverages insights from the probability distributions across the ex-

tracted features to inform the discrimination of whether solvent molecules reorganize

significantly in reactive systems to realize the following objective:

• 3D CNN autoencoder has been implemented to extract features from the reac-

tant and product configurations of the AIMD simulation data for the transgly-

cosylation reaction of cellobiose. Probability distributions across the difference

in features between the reactant and product configurations are used to assess

whether or not the reorganization of solvent molecules is significant. General-

ization of these insights enables associating features extracted from the reactant

configurations of other systems to predict whether solvent molecules reorganize

significantly in the product profiles, and if they are found not to a decision can

be made to eliminate those molecules when running mechanistic simulations of

the product configurations, saving computational effort.

1.5 Thesis Structure

This thesis is written in a paper-based format. Chapters 2 to 6 concern the develop-

ment of interpretable machine learning models for the data-driven species and reaction

pathway identification, followed by online monitoring and kinetic parameter estima-

tion of reactive chemical systems using spectroscopic data, without reliance on prior

knowledge of the systems. The hypothesized reaction pathways have been validated

by domain knowledge. Chapter 7 deals with developing predictive machine learning

models from AIMD simulations to reduce computational costs with application to
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simulating reactions in cellobiose and fructose systems.

Chapter 2 investigates the effects of the solution engines (particle swarm optimiza-

tion, alternating least squares), initialization techniques and heuristics in determining

the number of latent components in the implementation of the self-modeling multi-

variate curve resolution algorithm to deconvolve FTIR data. Quantitative metrics

deduced from the intensities of the absorption bands in the deconvolved spectral fea-

tures of the latent components have been used to infer plausible reaction pathways

in the thermal cracking of Athabasca bitumen.

Chapter 3 focuses on a data fusion framework that incorporates complementary

spectral relationships from both the FTIR and 1H-NMR spectroscopic data while

penalizing redundancies among them via network regularization constraints. The

algorithm has been developed to handle process data artefacts by imputing missing

values, using a rotationally invariant norm for robustness to outliers and noise, and

enforcing non-negativity constraints to ensure interpretation of the latent features in

compliance with Beer’s law. A metric-agnostic approach of using Bayesian structure

learning for causal inference among the latent spectral features is demonstrated to

hypothesize reaction pathways for the thermal cracking of Cold Lake bitumen.

Chapter 4 outlines the implementation of a structure-preserving data fusion frame-

work as a higher order analogue of that demonstrated in Chapter 3. The FTIR and

1H-NMR spectroscopic data collected across the process modes of temperature and

residence time are decomposed via joint non-negative tensor factorization. The data

projections onto the spectral channels specific to each sensor are interpreted as spec-

tral features of the latent components, while the projections onto the temperature and

time modes are interpreted as their corresponding concentrations. Reaction networks

are hypothesized by structure learning among the latent spectral features. The higher

order decomposition has limited solution ambiguity owing to its structure-preserving

nature, obviating the need for network regularization constraints. However, a scal-

able method for parallelizing tensor factorization when using a robust norm to handle
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outlier and noise has been proposed via grid tensor factorization.

Chapter 5 focuses on using tensor factorization and causal structure inference for

species identification and reaction mechanism hypothesis, respectively, in the backend

to facilitate the interpretation of the dynamically identified modes from the Hidden

semi-Markov models (HSMM). HSMMs that explicitly model the duration distribu-

tions of the modes and their transition dynamics, using FTIR spectroscopic data

collected across varying temperature conditions, has been developed for the realtime

monitoring of reaction dynamics.

Chapter 6 utilizes the spectral projections onto the temporal mode of data collec-

tion obtained from non-negative tensor factorization of FTIR data, as concentrations

to develop a kinetic model. A chemical reaction neural ODE that is structurally

constrained by the law of mass action, the Arrhenius law of temperature dependence,

and the adjacency matrix derived from the Bayesian network structure that has been

causally inferred from the spectral features corresponding to the concentration profiles

of species, has been used to learn kinetic models. This framework has been demon-

strated on synthetically generated spectroscopic data from a known reaction template

in the database, as it would be challengin to validate predictions in the absence of an

exhaustive ground truth kinetic model for complex systems like bitumen or biomass.

Chapter 7 presents a self-supervised framework of feature extraction from the ab

initio molecular dynamics simulations of the reactant and product configurations for

the transglycosylation of cellobiose, using a 3D convolutional neural network autoen-

coder. The probability distribution across the difference between the features of the

reactant and product configurations have been used assess whether or not solvent reor-

ganization is significant. The proposed framework seeks to reduce the computational

cost by eliminating solvent molecules when simulating the product configurations for

those chemical systems, the features from the reactant configuration of which are

most similar to the encoded features of the reactant cellobiose systems where the

solvent molecules are found not to significantly reorganize in the product profiles.
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Chapter 8 summarizes the key findings of the thesis and highlights avenues for

future work.
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Chapter 2

A data-driven approach to
generate pseudo-reaction sequences
for the thermal conversion of
Athabasca bitumen

Abstract

This work focuses on the application of self-modeling multivariate curve resolution

(SMCR) methods on the Fourier transform infrared (FTIR) spectra of the liquid prod-

ucts obtained from the thermal cracking of Athabasca bitumen in the temperature

range of 300–420◦C and reaction times ranging from 15 min to 27h. The objective

was to develop a reaction pathway for the thermal cracking process from the SMCR

methods and to identify key elements of the reaction chemistry that also affected

physical properties like viscosity. An important aspect of this work was that min-

imum external chemical knowledge was used for the chemometric techniques. The

SMCR method employed in our study was applied on both temperature-specific and

augmented datasets considering all temperatures together to extract resolved concen-

tration and spectral profiles using the alternating least-squares (ALS) optimization.

The improvements of particle swarm optimization (PSO) over ALS were investigated

with regards to resolution quality, convergence speed, residuals and explained vari-

This chapter has been published as: K. Sivaramakrishnan‡, A. Puliyanda‡, A. de Klerk, V.
Prasad. A data-driven approach to generate pseudo-reaction sequences for the thermal conversion
of Athabasca bitumen. React. Chem. Eng. 2021, 6, 3, 505-537.(‡ Equal contribution)
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ance. The thermal conversion of Athabasca bitumen was shown to observe a series

reaction sequence with methyl transfer dominant at lower temperatures and a greater

extent of cracking at higher temperatures along with the formation of lighter products

with a higher fraction of mono-substituted aromatics.

2.1 Introduction

Oil sands bitumen is a heavy residue feedstock of high density and viscosity, and this

presents significant challenges in processing it to obtain hydrocarbon products. Two

major issues are the difficulty with getting bitumen to flow at ground temperatures,

and the high carbon to hydrogen ratio, which necessitates some form of upgrading

before processing in a conventional refinery. Bitumen is customarily diluted with nat-

ural gas condensate/naphtha to improve the flow properties, but this is not ideal. An

alternative that has been explored recently is the partial upgrading of bitumen, which

aims to reduce the viscosity enough for the bitumen to flow easily without diluent.

One of the techniques explored for partial upgrading is thermal conversion at rela-

tively mild temperatures.[87] However, the chemistry behind the thermal conversion

of oil sands bitumen is quite complicated. Most of the proposed reaction networks in

the literature for thermal cracking of bitumen over a wide range of temperatures and

residence times involve compound classes segregated based on boiling point and sol-

ubility classification rather than individual chemical components due to the obvious

difficulty in identifying the constituent species in bitumen.[88], [89] Though advances

were made to identify the molecular structure and composition of the heavier compo-

nents of bitumen like asphaltenes,[90] tracking changes in chemical structure during

thermal treatment is a difficult task.

Given the difficulty of compositional analysis, there has been some research on us-

ing different process variables as indicators to track product composition. One way to

achieve this was by setting up distributed monitoring networks to measure the process

variables involved, but this was found to be expensive and inefficient.[91] However,
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a central monitoring network that could measure the different process variables and

eventually control the system by relying on data from the reaction progress would be

a good approach moving forward.

The development of hyphenated analytical techniques based on spectroscopy and

chromatography has facilitated the enhanced characterization of analytes in various

fields of petroleum, catalysis and analytical chemistry.[92],[93], [94],[95],[96], [97] The

data from these techniques serve as the building blocks for developing the reaction

network for a chemical system since empirical models are more practical to develop

than a first-principles model for complex mixtures. Specific to bitumen, Fourier trans-

form infrared spectroscopy (FTIR), [98], [99], [100] proton nuclear magnetic resonance

(1H-NMR),[101] and electron spin resonance (ESR) [102], [103], [104] have been ap-

plied to obtain information on physical and chemical properties like the presence of

hydrogen bonding, aromatic, nonaromatic and heteroatomic content, and free radical

concentration. The data from these measurements can also be used for qualitative

and quantitative analysis. The major advantages of applying spectroscopic techniques

for complex mixtures are that they require small amounts of samples, have shorter

processing times and do not contaminate the sample due to their noninvasive nature.

[105], [106], [107] The inclusion of accessories like flow cells, quartz windows and im-

mersion probes also facilitate faster characterization.[108] They also provide avenues

for online monitoring of the system which is important if the goal is automation and

control.[109] However, the challenge is that the data obtained is multi-dimensional

and often represent overlapped spectra from a vast number of components.

Kinetic models provide an estimate of the probability of the occurrence of each

constituent reaction through calculations of kinetic parameters like rate constant and

activation energy. The drawback of kinetic models is that a reaction network is always

required to be assumed prior to performing calculations and lumping of components

also creates issues in interpretation. If the model is based on macroscopic properties

like viscosity as done by Shu and Venkatesan,[89] sample-to-sample variability in such
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properties can also contribute to possible sources of error. [110], [111]

Chemometric techniques involving statistical approaches have been shown to be

quite useful in tackling the challenges of higher dimensional data and overcoming the

limitations of a kinetic model based on assumed lumping and relationships. [112],

[113], [114], [115] Their principal benefit is the requirement of minimal prior knowl-

edge of the system, both mathematically and chemically and the ability to operate

with fewer assumptions. Chemometric techniques are used to convert data to valu-

able information that assist in further processes that require human intervention like

incorporation of chemical knowledge of the system to develop reaction pathways and

obtaining an insight into the reaction chemistry. The development of statistical mod-

els with limited reliance on prior knowledge is employed in the development of kinetic

models for advancements in the control and monitoring aspects of reaction engineering

in process systems.[116]

This work focuses on the use of chemometric techniques to identify species and re-

actions for the thermal conversion of Athabasca bitumen over the temperature range

300–420 ◦C based on FTIR spectra of the reaction products. Depending on the re-

action times for which the bitumen sample was held at each temperature in a batch

reactor, two regimes were considered in this work: visbreaking and coking. Visbreak-

ing corresponds to the times before solid organic particles start forming in significant

amounts and the coking regime that follows has measurable coke content.[117] In-

dustrial visbreakers employ temperatures of 430–490◦C, pressures in the range 0.3–2

MPa and the residence times in the order of seconds or minutes in a coil visbreaker

(but much larger in a soaker-type visbreaker). [118], [119], [120] Typical conditions

for industrial delayed coking are 480–510◦C and higher residence times of upto 24

hours under low pressures of 0.6 MPa.[120]

The type of chemometric analysis conducted on the FTIR data was self-modeling

multivariate curve resolution (referred to as SMCR or MCR) employing 2 different al-

gorithms for extracting the final concentration and spectral profiles of a reduced num-
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ber of components from the original bitumen. The MCR approach is self-sufficient in

that it does not require any additional mathematical or chemical information apart

from spectral data to perform the deconvolution. For this reason, the term ‘self-

modeling’ is prefixed and implied when referred to as MCR in this work. The SMCR

methods were applied on the datasets comprising of each temperature separately,

called local models and also applied on the combined data from all temperatures,

referred to as the global model. Certain quantitative parameters from the FTIR in-

tensities are also calculated for each resolved model spectrum to aid with the tracking

of chemical changes with time and to get an insight into the specific kinds of reactions

occurring during thermal conversion.

The key contribution of this study was to combine basic chemical knowledge of

the system and the results of the chemometric techniques involving local and global

models with both algorithms to propose a plausible reaction sequence for the thermal

conversion of Athabasca bitumen. The consistency of the results from the global

model was verified with that of the local models so as to verify the credibility of the

developed reaction pathways. The results were compared with that obtained for Cold

Lake bitumen [25] in terms of differences in reaction chemistry with the variation in

chemical composition and possible relation to physical properties like viscosity. It

should be noted that Athabasca bitumen resembles Cold Lake bitumen in overall

chemical composition, but has a lower saturate content, higher asphaltene content

and higher viscosity; and this study highlights the fact that different strategies would

need to be employed for its partial upgrading.[110],[121], [122]

2.2 Origin of data

In this work, Athabasca bitumen was subjected to temperatures of 300 – 420◦C

under 4 MPa inert atmosphere (N2) at residence times ranging from 15 min to 27

hours. FTIR spectra of the reaction products were obtained for a total of 35 samples

including the feed bitumen.
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Table 2.1: Experimental conditions of thermally processed samples used for data
analysis.

Temperature Number of samples Reaction times at
each temperature

(min)
Feed 1 -

300◦C 2 360, 1080
350◦C 6 30, 60, 180, 240, 360, 480
380◦C 6 120, 240, 360, 480, 1320,

1620
400◦C 16 15, 30, 45, 60, 75, 90,

105, 120, 135, 150, 180,
210, 240, 360, 1170, 1440

420◦C 4 360, 420, 480, 660

For information on the materials used, equipment and procedure and the analyses

done on the feed and thermally converted products, the reader is referred to previous

work conducted at 400◦C on Athabasca bitumen. [111] The only difference from that

work is that 4 additional temperatures between 300◦C and 420◦C have been explored

as well and the corresponding reaction times are given in Table 2.1.

2.2.1 FTIR data

The dataset was obtained by analysis of 35 samples of liquid products that were

collected from thermal conversion at 5 different temperatures, 300◦C, 350◦C, 380◦C,

400◦C and 420◦C, and at various reaction times ranging from 15 min to 27 hours.

The number of samples at each temperature and the respective reaction times that

were used in this study are summarized in Table 2.1.

The FTIR spectra of these samples were obtained at 1764 spectral channels in the

wavenumber range between 4000 – 600 cm−1 (16666 – 2500 nm). Out of these, only

1738 points were used for modeling purposes as the wavenumbers in the region 650

– 600 cm−1 corresponded to instrument noise due to the attenuated total reflectance

(ATR) attachment employed and appeared as random peaks with arbitrarily high

values of transmittance. The transmittance data was converted to absorbance units by
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Figure 2.1: Raw FTIR absorbance spectra of 35 liquid products from thermal conver-
sion of Athabasca bitumen at five different temperatures and reaction times before
pre-processing.

their logarithmic relation, which is also related to Beer-Lambert’s law. It is important

to note that although the path length was the same for all the wavenumbers in one

spectrum, it might vary between spectra. This raw absorbance data is shown in

Figure 2.1.

As can be seen from Figure 2.1, the region from 4000 – 3200 cm−1 mostly exhibits

baseline intensities with no peaks worthy of chemical interpretation though the O-H

and N-H groups present in bitumen (both free and hydrogen bonded) absorb in that

region.

2.3 Methods and parameters used

The theory behind the chemometric techniques used in this work, i.e. multivari-

ate curve resolution employing 2 convergence algorithms is provided in this section.

In addition, the software tools and the related functions along with the respective

important parameters adopted in each step are highlighted. The reasoning behind

the steps implemented during the mathematical analysis is also mentioned wherever

appropriate.
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(c) the raw FTIR spectra of the liq-
uid products from thermal conversion of
Athabasca bitumen at 350◦C.

Figure 2.2: Pre-processing the FTIR data.

2.3.1 Pre-processing of FTIR data

Raw spectroscopic data is multi-dimensional and may have issues such as significant

spread, different units of measurement among the variables, heteroscedasticity, possi-

ble experimental error and inherent instrument noise that is unavoidable. Existence

of these features in the data may hinder further processes of rank determination and

curve resolution. It was thus necessary to subject the raw data for pre-treatment

that consisted of three steps: (i) baseline correction; (ii) smoothing; (iii) normaliza-

tion. With the objective of identifying major types of reactions occurring at each

temperature over time, the SMCR method was applied to datasets that were split

temperature-wise as given in Table 2.1. This helped to identify whether there was a
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difference in the reaction chemistry at low and high temperatures.

MATLAB R2017b (9.3.0) was used to carry out all the chemometric analysis in this

study. The ‘msbackadj ’ function belonging to the Bioinformatics toolbox was used

to perform the baseline correction. First, the wavenumbers were split into windows,

each of width 200 units, which is the default window size. Adjacent windows are

located at a distance of 200 units from each other and are given by the step size.

A baseline value was found for every window through an expectation-maximization

algorithm and these estimated points were regressed further to smoothen the curve

through a piecewise cubic interpolation that is given by the function ‘pchip’. After

baseline correction, smoothing was performed using ‘mssgolay ’ function, also located

in the Bioinformatics toolbox, which uses the well-known Savitzky-Golay (SG) filter,

in which a least-squares two-degree polynomial is used for de-noising the spectra over

every 5 samples (window size).[123] It is important to note that the normal SG filter

requires the wavenumber units to be equally spaced but the ‘mssgolay ’ function allows

for unequally spaced wavenumbers as well.

Normalization by mean-centering and auto-scaling was executed using the ‘zscore’

function from the Statistics and Machine Learning toolbox. Mean-centering removes

offsets in the data while auto-scaling is a variance-based scaling method that brings

all intensity data between 0 and 1. [124] These two processes are necessary to deal

with variability in the variables in the data that will affect the results of further

exploratory and regression analysis like rank determination and curve deconvolution.

This also made it irrelevant that there were differences in path length between the

spectra due to the use of ATR. Other types of scaling include pareto, range, and

vast scaling which also act on the variance of the data, out of which range scaling

is sensitive to outliers. [125], [126], [127] Level scaling is an average-based method

that can be used when changes on a relative scale are more significant than absolute

values in the data. [124]

All of these pre-processing steps including baseline correction, smoothing and stan-

31



dardization were applied to the FTIR data before proceeding with curve resolution.

The pre-processed data (only baseline corrected and smoothed) along with the resid-

ual after pre-processing as compared with the raw data for the spectra of liquid

samples obtained at 350◦C is shown in Figure 2.2. Similar results were obtained for

other temperatures as well and is supplied in Appendix A.

The advantage of pre-processing the data is clearly visible in Figure 2.2a where the

spectral features are more distinctly seen than in the raw data (Figure 22.2c). The

stretching vibrations of the sp3 hybridized C-H methylene groups that can belong

to either the alkyl side chains or naphthenic rings occur at 2850 cm−1, 2920 cm−1

while those of the methyl C-H stretches can be seen at slightly higher wavenumbers

of 2950 cm−1. These are the highest intensity peaks in the spectrum. The second

most intense set of peaks correspond to the bending vibrations of the sp3 C-H groups

at 1380 cm−1 and 1460 cm−1. The set of aromatic C-H bending vibrations fall in

the 690 – 900 cm−1 range that comprise of mono-substituted aromatics (with more

than 4 adjacent hydrogens) peaks at 727 cm−1, o-disubstituted aromatic peaks at

744 cm−1 and 763 cm−1, and the m- and p-disubstituted aromatic peaks at 810 cm−1

and 860 cm−1 that also overlap with substituted alkenes. The C=O stretching that

appeared at 1740 cm−1 corresponds to the ester-type and the anhydride-type (more

probable) functional groups that were thought to be converted to carboxylic acids

by hydrolysis and eventually decarboxylated. In addition, the peaks at 1220 cm−1

indicate the presence of alcoholic and acyclic C-O groups, whose chemistry during

thermal conversion has not gained much clarity yet.

The spectra of the samples at each temperature at different reaction times vary

only slightly in intensity and represent a mixture of components whose structures are

unknown. Significant overlap of the functional groups also occurs in the 1550 – 1650

cm−1 region that corresponds to both the aromatic and alkene C=C stretches. No

significant chemical interpretation can be derived by viewing the spectra in isolation.

Hence, it made sense to deconvolute the spectra to extract the concentration and
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spectral profiles for a smaller number of pseudo-components that were representative

of the change in properties of bitumen with time and develop a reaction sequence

based on these results.

2.3.2 SMCR-ALS and SMCR-ALS-PSO

Spectral measurements consisting of multivariate responses are obtained in a number

of industrial processes. These measurements are generally cast into data matrices,

that can be decomposed in a bilinear or tri-linear fashion using SMCR or PARAFAC,

respectively. [128], [129], [130], [131] SMCR is essentially a soft-modelling technique

that utilizes factor analytical decomposition and invokes physically meaningful laws

like Beer Lambert’s law. [131] Beer’s law is also a bilinear model that relates the

absorbance of a light-irradiated species to its concentration and path length. Due

to the pre-processing, only relationship within each spectrum remained, while that

between spectra was lost due to normalization.

The curve deconvolution process involved three major steps: (i) data matrix de-

composition as a means of exploratory analysis based on singular value decomposition

to find out the number of components that are active and change in concentration dur-

ing the reaction; (ii) obtaining initial estimates of concentration or spectral profiles for

the determined number of active species; (iii) final resolution through a constrained

optimization to retrieve the change in concentration with time and the individual

spectra for each component.

The number of active components (more appropriately described as pseudo-components

since they are model-derived) are extracted through two methods: (i) the conventional

principal component analysis (PCA) [132] by means of singular value decomposition

(SVD); (ii) Elbergali’s [133] recommendation based on the maximum ratio of deriva-

tives of the second and third order of the Malinowski’s [33] indicator function (which

is based on real experimental error).

As a separate case, one or two more components than the optimal number were
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chosen for further optimization and the results were compared. Rank relaxation was

carried out to ensure meaningful chemical information was not lost to noise in the

approach where the indicator function is used to statistically determine the number of

components. Fixed-size moving window evolving factor analysis (FSMW-EFA),[28]

which is an iterative method, was used to obtain the initial estimates of concen-

tration profiles in the MCR method since it was suggested as a better approach to

distinguish concentration regions of a component from the noise as compared to the

forward/backward EFA employed by Tefera et al. [25] Other contemporary tech-

niques having similar goals to EFA are rank estimation-based methods like gener-

alized rank annihilation method (GRAM),[97] window factor analysis (WFA),[134]

and sub-window factor analysis (SFA)[135] that includes elution limits for interfering

compounds as well. Iterative EFA was chosen over other methods like non-iterative

EFA since the data used in our study possessed an evolutionary structure and the

algorithm did not require much user-mediation and it could be automated easily.

Alternating least squares (ALS) is a common optimization technique for obtaining

the final concentration and spectral profiles and is utilized in this work, as was also

adopted by Tefera et al.[25] for the analysis of the spectra of Cold Lake bitumen.

However, there are certain limitations to the algorithm in that it does not al-

ways reach the global minimum. Data-related problems like collinearities present

among the variables, non-ideally distributed noise patterns, background signals and

algorithm-related issues like rank deficiency, intensity and rotational ambiguities can

also hinder the accuracy of the final solution. Using multiple initial estimates or

Monte Carlo methods are useful methods to tackle some of these issues. [136]

A key difference in the approach used in this work as compared to that of Tefera

et al. [25] is the inclusion of particle swarm optimization (PSO) to improve the ALS-

obtained concentration profiles. PSO is a population-based meta-heuristic technique

that is inspired by the natural phenomena of bird flocking. [137] Its primary advantage

over other optimization methods apart from convergence to the global minimum is
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that the search space does not constitute any restrictive assumptions. In addition,

though it is similar to genetic algorithms (GA), it is computationally simpler and

faster. [138] The results from SMCR-ALS-PSO were compared to that of SMCR-

ALS in the local models for Athabasca bitumen while only ALS was investigated for

the global model in this work.

Data decomposition

Let D be the data matrix that is composed of the FTIR spectra of m samples obtained

at n spectral channels. In our study, m is 35, n is 1738 for the whole set of spectra

while m varies when modelled for temperature-wise data. In the SMCR bilinear

model, the data matrix is decomposed as follows:

D = CST + E (2.1)

where C is an m×l matrix that contains the concentration of l components, S is a n× l

matrix that consists of their resolved spectra, and E(m×n) is the residual matrix that

contains the error of decomposing D into the constituent C and S profiles through

SMCR. l is the rank of the data matrix D that is representative of the number of active

components in the bitumen mixture and needs to be found first before proceeding

with solving Equation 2.1. The procedure for finding the number of components is

given in the sub-section 2.3.2 titled ‘Determination of chemical rank of the system’

under this main heading.

Multiset structures

If the experiments were analyzed with more than one characterization technique,

Equation 2.1 can be changed to a row-wise augmented matrix where D and S are

arranged as the combination of different measured and resolved intensities while the

concentration is unaltered as the process analyzed is the same. On the other hand, D

becomes a column-wise augmented matrix when multiple groups of experiments are

analyzed with the same characterization technique and C is split up into individual
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concentrations for each set of experiments. Here, the spectral shape of the compo-

nent does not change over different conditions, as for example in a high-pressure liquid

chromatography with diode-array detection (HPLC-DAD) system. The formulation

of augmented matrices is given in Equation A.1 and Equation A.1 in the Appendix.

In this work, a combined dataset formed by combining the data from all 5 tempera-

tures is also analyzed to check for improvements in the final spectral resolution and

consistency with the local models.

Algorithms to solve SMCR

Either non-iterative or iterative algorithms are used to solve Equation 2.1. [139]

Non-iterative methods like heuristic evolving latent projections (HELP), WFA, or-

thogonal projection analysis (OPA),[140], [141] and parallel vector analysis (PVA)

[142] are more useful when a single experiment is analyzed by a single characteri-

zation technique. It is essential that the concentration profiles follow a sequential

structure for non-iterative methods to work. On the other hand, iterative methods

like iterative target transformation factor analysis (ITTFA), [143] ALS and resolving

factor analysis (RFA) overcome these limitations of non-iterative methods and just

require initial estimates of C or S to arrive at the solution.

ITTFA optimizes the concentration profile with certain constraints and then cal-

culates the spectral profile from D and C while ALS calculates an optimized C and

S simultaneously at each iteration. They are adaptive in nature and do not neces-

sarily require the concentration region to follow a sequential structure. They allow

for meaningful chemical and mathematical information to be included as constraints,

which can tackle the problem of ambiguity that is often prevalent in the MCR so-

lution.[144] The SMCR method can find the solution even without these additional

inputs (which is why it is called self-modeling) but these are added by the user based

on the knowledge of the system. Iterative algorithms also have the added advantage

of having the ability to deal with augmented matrices and extracting the solutions for
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each experimental run and characterization technique. Hence, we chose to optimize

the SMCR with an iterative method instead of a non-iterative approach.

The ALS-based iterative optimization approach can be viewed as a block-relaxation

algorithm applied to a least squares loss function which is non-convex. Here, the min-

imization subproblems over blocks of decision variables that are updated alternately

in an iteration have convex objective functions.[145] The algorithm is relatively fast

and computationally simple compared to other contemporary methods. The ease of

incorporating chemical knowledge about the system (some known spectra of a com-

ponent class that can be present in bitumen), mathematical and natural constraints,

and the ability to merge the rank and initial estimate determination process with

ALS optimization prompted us to proceed with this method. Details of extracting

the number of significant contributing components, obtaining initial estimates for C

and S, the associated constraints and some limitations such as ambiguous solutions

are provided in the next few parts of this section.

The objective function to be minimized in the SMCR-ALS routine is the 2-norm

(entry-wise matrix norm) of the residual obtained from the SMCR solution (given

in Equation A.5 and Equation A.6 in the Appendix). The first task consists of

minimizing the residual using a least squares approach to calculate S, given D and

an initial estimate of C, which is calculated by FSMW-EFA (given in the sub-section

2.3.2 titled ‘Obtaining initial estimates’ in this heading).[146] In our work, this is

achieved by using a user-defined function that is similar to the ‘lsqnonneg ’ function

in the Optimization toolbox in MATLAB. Matrix right hand division is used where

both the known matrices are required to have the same number of columns (m in this

case for D and C). This function includes the application of the non-negativity and

unimodality constraints. A new estimate of C is obtained from the calculated S in

the previous step and the data matrix. The residual is calculated in each iteration

and the loop is stopped by assessing the difference between residual values in the

current step and the previous step, i.e. when a near-constant value for the residual

37



is obtained with a tolerance of 0.001 for the convergence.

The final solutions to the concentration profiles were verified for adherence to the

mass balance constraint. Since the concentrations were normalized, all values were

between 0 and 1 and in no particular unit. The summations of the concentrations

of the number of active components involved was found to be closer to 1 when opti-

mized by the ALS-PSO method across all times for the models at each temperature.

The exact concentration profiles and further discussion are shown in the Results and

Discussion section.

Determination of the chemical rank of the system

This is a process of identifying the number of active components that are partici-

pating in the thermal reaction and undergoing a chemical change during the time of

reaction. SMCR requires this information prior to estimating the initial concentration

and applying the constrained optimization algorithm.[147] However, it is always not

necessary that the extracted number of principal factors, i.e. the chemical rank (l),

is equal to the number of active species in the system and when the former is lesser

than the number of actual species, the matrix is said to be rank deficient. This is a

common situation in real data that consists of redundant, overlapping spectra along

with noisy backgrounds. [148] In the case of bitumen, the composition is quite com-

plex and the number of components constituting bitumen and further taking part in

the thermal reaction is very difficult to determine. Thus, the challenge is to identify

the number of species responsible for the observed spectral and concentration change

and separate them from the inert ones.

Malinowski [149] has comprehensively reviewed a number of empirical and statisti-

cal methods for the prediction of rank in cases where no assumptions regarding noise

as well as situations where full information regarding experimental error was avail-

able. The empirical indicator functions could also be combined with a non-iterative

partial least squares (NIPALS) routine that is sometimes used for PCA where the
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loading vector is normalized,[150] but the true dimension of the factor space needs to

be determined irrespective of the knowledge or presence of error of any type, which

can be achieved by looking into the theory of error developed by Malinowski. [33]

R(l) = D − USV T (l) (2.2)

RE(E) = RSD(l) =

⌜⃓⃓⃓
⎷ n∑︁

j=l+1

R2
j

m(n− 1)
(2.3)

IND(l) =
RE(l)

(n− l)2
(2.4)

IE(l) =

√︃
l

n
RE(l) (2.5)

SD(l) = log [IND(l)]− 2 log [IND(l − 1)] + log [IND(l − 2)] (2.6)

ROD(l) =
IND(l − 2)− IND(l − 1)

IND(l − 1)− IND(l)
(2.7)

In terms of the eigenvalues that are used to reproduce the data matrix, primary

eigenvalues correspond to the principal factors while secondary eigenvalues consist

of the extracted error in the data and should not be included in the MCR model.

Most empirical functions that assist in determining the dimension of the factor space

are based on real error (RE), which is representative of the experimental error in the

system. The RE is also the residual standard deviation (RSD) that is calculated as

the difference between the original data and the PCA-decomposed or singular value

decomposition (SVD)-decomposed matrix using l components (Equation 2.3). [133]

One such empirical function, called the indicator function (IND), was shown to exhibit

a minimum when the appropriate number of factors were able to best reproduce the

original matrix (Equation 2.4). However, in the case of excessive error, a second

minimum could be produced on the addition of further data points even though the

assumption that the error was random and homoscedastic was valid.
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Another error function called the imbedded error (IE) quantifies the amount of

error remaining after factor decomposition of the spectral data which cannot be erad-

icated (Equation 2.5). However, it was found from real datasets that the IND function

was more sensitive to the inclusion of secondary eigenvalues that increased the error

than the IE. [133] On the other hand, both IE and IND both increase continuously

when the original data matrix is not factorizable and consists of random numbers.

Elbergali [133] reported that for simulated data sets, both IE and IND reached a

minimum value since the error was uniform for the entire dataset. The problem was

with real-time experimental data such as fluorescence and HPLC runs, where find-

ing the point of change in slope for the functions became difficult due to multiple

data points showing similar values. The second derivative (SD) of the IND function

was shown to display a maximum at the optimum point and have better sensitiv-

ity than IND and IE functions themselves (Equation 2.6). Apart from these, the

ratio of derivatives (ROD) criterion was discovered to be the best indicator for the

rank determination (Equation 2.7). At the point where the last primary eigenvalue

is added, the ROD would show a maximum and combined with the minimum in the

IND function, was suggested in the literature to be the best indicator among all the

above ones mentioned.[151]

In our work, after the splitting of the data sets temperature-wise, SVD was applied

to decompose each data matrix (D) to obtain the diagonal matrix of singular values

(S) and the two unitary matrices (U and V ). The residual was calculated by sub-

tracting the product of U , S and V T from D (Equation 2.2), followed by its standard

deviation considering the residual matrix as a single column vector of elements (Equa-

tion 2.3). This procedure was also conducted on the augmented multiset structure

consisting of all temperatures as well. The IND and ROD were calculated for each

iteration up to the number of samples (rows) in D as per the Equations 2.2-2.7.

The ROD and IND were checked for maximum and minimum respectively to de-

termine the number of active components for the local and global models. Once the
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number of factors was chosen, the error remaining after the reproducing the original

matrix from the decomposed data was calculated and reported. As a separate test

case, the number of components was chosen as one higher than the SVD-determined

value and the solution profiles are compared with the optimum case to check whether

there was any improvement in in terms of explained variance (R2) and lack of fit

(LOF). All these results are provided in the Results and Discussion section under the

sub-heading ‘ALS-optimized C, S profiles and spectra-derived quantitative parame-

ters’.

Obtaining the initial estimates

Once the number of components to be included in the SMCR model is determined,

a key step is to provide the optimization process with an initial guess of the concen-

tration or spectral profile. It is preferred that the initial estimates also satisfy the

constraints applied in the optimization algorithm rather than arbitrary profiles.[131]

Since the system investigated in this work has a sequence in an ordered variable

(reaction time), i.e. experimental data is available at continuously increasing times

at each temperature (Table 2.1), EFA was thought to be quite suitable for initial

profile estimation. However, methods like simple-to-use self-modeling analysis (SIM-

PLISMA),[152] key set factor analysis (KSFA)[153] and OPA can handle unstructured

data as well.

Forward/backward EFA works by applying PCA to find the eigenvalues (EVs) of

sub-matrices of increasing size row-wise from the main data matrix. The difficulty

here is to differentiate the EVs belonging to the noise from those indicating the

presence of an actual component. FSMW-EFA was suggested to be an improvement

over forward/backward EFA by Keller and Massart [28] as the noise EVs are also

constant due to the fixed size of each window on which SVD is applied. Tefera et

al.[25] used forward/backward EFA for the analysis of Cold Lake bitumen. In our

work, a moving window of fixed size 3 was selected for carrying out FSMW-EFA for all
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temperatures except at 300◦C where a window-size of 2 was used. This was because

only 3 spectra were obtained at that temperature due to minimal gas production and

miniscule changes in macroscopic properties like viscosity over long reaction times

of up to 18 hours. It should also be noted that the higher the size of the moving

window, the more robust the method becomes. The other advantage of FSMW-EFA

is that it consumes lesser time as it needs to be carried out in only one direction. In

addition, the concentration direction had a lower overlap in the component profiles

than the spectral direction for thermally converted samples in our study. Therefore,

it was logical to estimate the initial concentration profiles rather than the spectral

profile.

Shinzawa et al. [154] compared the use of PSO against the use of EFA to obtain the

initial estimate of concentration profiles in their work on the application of SMCR on

near-infrared (NIR) spectra of a mixture of oleic acid and ethanol. They showed that

PSO performed better than EFA and yielded smaller residuals for the final solution.

In our work, a hybrid PSO technique was introduced in an attempt to improve the

profiles obtained by ALS, still using EFA for obtaining the initial estimates. The

theory behind PSO and the procedure followed in our work is detailed in the sub-

section 2.3.2 titled ‘PSO and its use as a hybrid technique in this study’.

Limitations: Ambiguities

The uniqueness of solutions from the SMCR-ALS method is crucial for its reliability.

However, the MCR solution potentially suffers from 3 types of ambiguity: intensity,

permutation and rotational.[155] All ambiguities revolve around the fact that different

combinations of C and S can produce the same parent data matrix D. Profiles having

the same line shape and structure but different relative intensities/scales indicate the

presence of intensity ambiguity. This is illustrated in Equation A.3 in the Appendix.

If concentration is optimized first in the ALS scheme, it is normalized before every

iteration to help reduce the intensity ambiguity. Permutation ambiguity implies that
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the order of the components can vary within the concentration and spectral profiles,

while still yielding the same parent matrix. This does not affect the solution as much

as the intensity or rotational ambiguities in terms of further chemical interpretation.

The most commonly present ambiguity in MCR results is the rotational ambiguity,

which is specified in Equation A.4 in the Appendix. A combination of different line

shapes of the component spectra and concentration can reproduce the original data

matrix and affect the uniqueness of the solution. One way to deal with this is by

appending subsets to D in a row-wise or column-wise manner, which would decrease

the possibility of the number of solution profiles obeying the same constraints and

reproducing the parent matrix as well. [156]

Since ambiguity is component-specific, it is only required that the profiles related to

the active species are unambiguous, even if ambiguity exists in the rest of the profiles.

Juan et al. [131] recommended to test the presence of ambiguity by calculating

the extent and the location of the ambiguity. They suggested the calculation of

two parameters that give the range of an objective function for each contributing

component given by:

fi,min = min
||cisTi ||
||CST ||

(2.8)

fi,max = max
||cisTi ||
||CST ||

(2.9)

The lower the value of fi,max−fi,min, the lower the extent of the ambiguity, implying

the closeness to the uniqueness of the solution. To identify the location of ambiguity,

dyads of profiles can be plotted corresponding to fi,min, fi,max for each component and

checked for deviations. However, this kind of testing was out of scope for our work.

Implementation of constraints

The strength of multivariate curve resolution is the ability to incorporate chemically

meaningful constraints that compensate for the limited prior knowledge of the sys-
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tem. Their other function is to suppress ambiguities that arise in the solutions. [157]

Constraints can be naturally part of the system like non-negativity (applicable to

both concentration and spectra), closure (mass balance), unimodality (concentration

specific) and equality (where some columns of the solution are forced to follow known

spectra). Mathematical constraints include local rank that specifies where some com-

ponents are absent and selectivity that indicates where one particular component is

present in the time space. In the case of column-wise augmented matrices, correspon-

dence of species and model constraints that facilitate trilinear or multilinear data for

components whose spectral shapes do not change much across components can be

used as constraints. [158]

Lastly, just like a known spectrum constrains a column of the solution, a physic-

ochemical model with user-input parameters can be integrated with concentration

regions. To predict concentrations of unknown analytes, a model relationship can

be obtained between the SMCR-derived concentrations and those in the calibration

samples. This is implemented using the correlation constraint. [159] In our work, a

local rank constraint was used during the initial estimate determination, while non-

negativity and closure were employed in the ALS and PSO optimization routine. The

case of known spectra was not employed in our work because the objective was to pro-

pose a reaction mechanism without much input of chemical knowledge of the system

into the curve resolution algorithm.

PSO and its use as a hybrid technique in this study

ALS is not always robust in avoiding local minima that leads to insufficiency in

the performance of the curve resolution process. As highlighted in the introduction,

multiple local estimates or the use of Monte Carlo methods can serve as ways to

tackle this problem. It was noticed by Tefera et al.[25] that some resolved spectra

were uninterpretable and showed only noisy peaks when ALS was used to resolve

the spectra of Cold Lake samples. PSO, which is a nature-inspired technique, was
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recommended as an alternative and is employed in this study as a hybrid technique.

Since they are as effective locally in the quest for neighborhood solutions, they are

used in combination with a constrained optimization solver for searching for solutions

in the local neighborhood, namely ‘fmincon’ in the Optimization toolbox. [160], [161]

In this study, the merger of PSO and the local optimizer is embedded inside the ALS

loop to further improve the ALS-produced concentration profiles with the same initial

estimates as obtained by EFA (previous section on ‘Obtaining initial estimates’).

In PSO, particles (which are the candidate solutions) are deployed in a bound

search space to look for the best value of a user-defined objective function.[162] The

particles are identified with two important parameters, namely their position and

their velocity. For a D-dimensional space, the position of the ith particle is given by

xi = (xi1, xi2, · · · , xiD) and its velocity in different dimensions is represented by vi =

(vi1, vi2, · · · , viD). While performing the search, the value of the objective function is

calculated wherever the particles move and is compared with the previous values. If

the current value is the least or maximum (according to the nature of the objective

function) among all the previous values in the path of that particle, then it is the

personal best position of that particle (pi = (pi1, pi2, · · · , piD)). Similarly, a global

best position (pg = (pg1, pg2, · · · , pgD)) is also calculated based on the comparison

with the fitness values of all particles. These parameters are used to update the

velocity and position of the particles through the following equations:

vnewid = w.voldid + c1r1(pid − xold
id ) + c2r2(pgd − xold

id ) (2.10)

xnew
id = xold

id + µvnewid (2.11)

where vnewid and voldid are the updated and current velocity of the particle, xnew
id and

xold
id are the updated and current position of the particle in the search space, w is the

inertia weight parameter, c1 and c2 are correction or learning factors also referred to

as cognitive and scaling factors respectively, r1 and r2 are random numbers obtained
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from a uniform distribution and vary between 0 and 1 and µ is a time parameter that

is used to update the position using the amended velocity.

The parameters in Equation 2.10 and Equation 2.11 are usually chosen from ex-

perience but Bansal et al. [163] reviewed different strategies for choosing the inertia

weight parameter and tested the performance of PSO in various scenarios. The first

PSO model developed by Kennedy Eberhart [164] did not include w to update the

particle velocity and instead, the velocity was capped at a maximum value. As an

improvement, an inertia weight parameter was introduced later to have a trade-off

between model exploration and the error, similar to the function of a regularization

parameter in SVM. [165], [166] In this work, we employ a constant w set to 1 since

this strategy was shown to produce minimum error, albeit with a large convergence

time. Most of the other strategies for the choice of w depend on the global and local

positions of the particles and some common types are summarized in Table A.1 in

the Appendix.

A value close to 1 for w allows for a global search but as w decreases towards 0, local

search predominates. In this work, the MATLAB function ‘particleswarm’ belonging

to the Global Optimization toolbox was used to perform PSO. The 2-norm of the

residual calculated using the original data matrix, ALS-obtained spectra and PSO-

obtained concentration, is used as the fitness function. A three-dimensional search

space with a swarm size of 150 was utilized within lower and upper bounds of 0 and

1, respectively, since the concentration was already normalized. The parameters of

swarm size were given by the function ‘optimoptions ’ and combined further with a

constrained nonlinear optimizer, ‘fmincon’, both of which belong to the Optimization

toolbox. The role of ‘fmincon’ is to find a better local solution after the PSO termi-

nates. ‘fmincon’ employs an interior point algorithm by default, and is a large-scale

algorithm that solves a quadratic optimization problem without generating or storing

any matrices. Further details of other algorithms used to solve nonlinear constrained

optimization problems are given in the Appendix. The default number of iterations
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for the PSO used is 600.

Figure 2.3: Sequence of steps followed in this work for chemometric analysis of the
FTIR spectra through curve resolution.

Process flow followed in SMCR-ALS-PSO method

Fig. 2.3 provides the work flow followed in this work regarding the SMCR methods

applied on the FTIR spectra of the liquid products from the thermal conversion of

Athabasca bitumen. The reasoning for the use of the different steps employed is

already highlighted in previous sections while describing each method. We would

like to highlight that there are possible alternatives to two aspects of the solution

procedure: instead of using the empirical approach of Malinowski to identify chemical
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rank, a range of potential chemical ranks could be evaluated using the Akaike or

Bayesian information criterion [167] as a basis; and global optimization approaches

[168], [169] can be explored.

Performance indices for SMCR models

Two measures of performance based on residuals are used to evaluate the performance

of SMCR in two places: (i) choosing the number of components and (ii) final resolution

of C and S profiles, both given in the first and third headings of the Results and

Discussion section in this work. The performance of the SMCR techniques is validated

with two measures: (i) the lack of fit (LOF) and (ii) total explained variance (R2),

both expressed as a percentage. LOF is calculated by dividing the sum of squared

error (SSE) by the total sum of squares (SSM) and taking the square root of the

resulting value as given in Equation 2.14. In other words, LOF is a measure of the

unexplained variance in the respective model. The R2 is calculated by subtracting

the result of division of SSE and SSM from 1 as given in Equation 2.15.

SSE =
∑︂

r2i (2.12)

SSM =
∑︂

D2
i (2.13)

LOF = 100

√︃
SSE

SSM
(2.14)

R2 = 100

(︃
1− SSE

SSM

)︃
(2.15)

where ri is each element of the residual matrix calculated by subtracting the factor-

reproduced matrix from the original data matrix, D.

Summary of methodological framework

We present a visual interpretation of the methods used in our analysis in Figure 2.4.

The FTIR spectra are preprocessed using baseline correction, smoothing and normal-
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Figure 2.4: Visual representation of the transformation from spectra to pseudo-
components and subsequent chemical interpretation.

ization. This is followed by chemical rank determination (identifying the number of

pseudo-components), which is accomplished using singular value decomposition, cal-

culating the indicator functions from Equations 2.4 -2.7 and identifying the number

of components for which they achieve a maximum (ROD, Equation 2.7) or minimum

(IND, Equation 2.4). Next, the initial estimates for the pseudo-component concen-

tration profiles are obtained using fixed size moving window evolving factor analysis,

which is an iterative unidirectional (i.e. using only forward SVD) method that decom-
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poses a concentration matrix using a transformation and a corresponding score. Next,

the SMCR-based concentration and spectroscopic profiles for the pseudo-components

are obtained using these initial profiles as a starting point. This is accomplished using

an alternating least squares approach, and then applying particle swarm optimiza-

tion and ’fmincon’ (a constrained nonlinear optimizer) to get a better approach to

a global optimum and remove ambiguities, and to apply non-negativity constraints,

respectively. Once the spectral and concentration profiles are obtained, they are

used along with quantitative performance indicators (described in a later section) for

interpretation of the reactions occurring among the pseudo-components.

2.4 Results and Discussion

First, we provide results for local (i.e. valid for a specific temperature) models.

These are obtained using both the ALS and the ALS–PSO-‘fmincon’ algorithms for

SMCR. We then present the results from a global SMCR model for all temperatures

considered together.

2.4.1 Rank of each sub-matrix

As mentioned earlier, ROD and SD were the indicators used to identify the number

of chemical (pseudo-)components to be considered. Fig. 2.5 depicts the ROD, SD

and the residual after performing SVD with the optimum number of components on

the data obtained at 400◦C. The plot of cumulative contribution of each component

to the overall variance is also shown. These plots at other temperatures are provided

in the Appendix.

The x-axes in Figure 2.5a, 2.5b and 2.5c have 17 components/eigenvalues emerging

from 16 experimentally obtained datapoints plus one for the feed. It can be seen that

ROD has a maximum value of 20 when 3 components are used. This is consistent

with the maximum for the second derivative of the IND function as shown in Figure

2.5b. Further support for a 3-component SMCR model comes from the residual
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Figure 2.5: Chemical rank determination for the data at 400◦C

calculated by subtracting the original data matrix from the SVD-reproduced data

with 3 components in consideration. The maximum positive value of the residual

is 0.01 and the maximum negative value is -0.013. Figure A.6a and Figure A.6b in

the Appendix give the residual plots after conducting SVD with 2 and 4 components,

respectively, for the 400◦C dataset. It can be seen that the residuals calculated using 2

components were higher than those using 3 components, but the residual spectra when

a higher than optimal number of components were considered had lower values (Figure

A.6b). This could be because the total variance explained (R2) by 4 components

(99.77 %) was higher than that explained by 3 components (99.60 %) as depicted in
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the eigenvalue plot in Figure 2.5d. The LOF (defined in the previous section), also

decreased from 9.57 to 4.78 when 2 to 4 components were employed for the 400◦C

dataset. However, the LOF was 6.37 when the optimal number of components were

employed. Values for the LOF and (R2) for other datasets are given in Table A.2 in

the Appendix.

Fig. A.7–A.10 in the Appendix show that ROD is maximum when 3 components

are chosen for the SMCR models at the other temperatures of 300◦C, 350◦C, 380◦C

and 420◦C as well.

It is to be noted that it would have been difficult to choose among 3, 4 or 5 com-

ponents from the scree plot (representing the variance contribution with respect to

number of components) (Fig.2.5d) alone since the inclusion of more than 2 compo-

nents could explain ¿99% of the total variance. But none of these correspond to the

optimal number as determined according to the ROD and SD indicators and choos-

ing more than the required number of factors will mean the inclusion of secondary

eigenvalues that represent only noise and will unnecessarily increase the computa-

tional time of the rest of the algorithm. Hence, it was decided to proceed with 3

pseudo-components for the rest of the curve resolution process, and this is consis-

tent with the number of pseudo-components used to describe the thermal conversion

of Cold Lake bitumen as well. [25] The first pseudo-component was chosen to be

the one most likely to be representative of the feed in all cases. The concentration

of the feed was expected to decrease with time on thermal conversion but either

the second or third component could represent the final converted products in the

reaction mixture depending on the extracted concentration profile (section 2.4.3 ti-

tled ‘ALS-optimized C, S profiles and spectra-derived quantitative parameters’ in

Results and discussion). Though each pseudo-component cannot be assigned a spe-

cific molecular structure, their spectra can provide valuable information about major

chemical changes occurring during thermal conversion and the flow of the reaction is

determined by the changes in concentration.
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2.4.2 Initial concentration estimates
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Figure 2.6: Plots of initial estimates of change in concentration of the three pseudo-
components with process flow (reaction time in min) at the following temperatures:
(a) 420 ◦C; (b) 400 ◦C; (c) 380 ◦C; (d) 350 ◦C

As detailed in the Methods and parameters used section, FSMW-EFA was used to

obtain the initial estimates for the concentration profiles at each temperature. Figure

2.6 shows the initial concentration estimates obtained through this method at each

temperature except 300 ◦C, which is shown in Figure A.11 in the Appendix. The

profiles depict the conversion of one pseudo-component to another quite clearly. The

concentration of the first pseudo-component (S1 – black line in Figure 2.6 and Figure

A.11) appeared to decrease gradually at all temperatures and vanished at reaction

times of 480 min, 1170 min, 1320 min and 240 min at 420◦C, 400◦C, 380◦C and

350◦C respectively. This corresponds most likely to the feed since its concentration
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is expected to decrease with the progress in thermal conversion.

The concentration of the second pseudo-component (S2) increased in the regions

where the feed concentration decreased, reached a maximum and then declined at

higher reaction times. S2 started appearing at the first instance where the feed con-

centration started to decrease, while the third pseudo-component (S3) came into

existence at a later reaction time at all temperatures (Fig. Figure 2.6a- 2.6d). Since

there were only 3 points at 300◦C, S1 disappeared at the intermediate reaction time

where only S2 existed and S3 remained at the final reaction time.

These observations suggest that S2 is representative of an intermediate product and

S3 would be representative of the final product at all temperatures as indicated by

the initial estimates. Any further interpretation based on these initial concentration

profiles should be done with caution. We therefore moved onto the optimized spectral

profiles for the results to make chemical sense. The final ALS- and PSO-‘fmincon’-

optimized concentration profiles can be verified against the initial estimates so as to

get an idea of the accuracy of the EFA method.

2.4.3 ALS-optimized C, S profiles and spectra-derived quan-
titative parameters

Results and analysis at 300 ◦C

Figure 2.7 shows the ALS-optimized concentration and spectral profiles for the pseudo-

components when the reaction was conducted at 300◦C. The spectra between 3200 –

650 cm−1 are shown as split into 4 regions for easier visualization. The residual plot

when the original matrix was subtracted from the product of the profiles obtained

from ALS routine is shown in Figure A.12a of the Appendix.

The pattern of the concentration profiles (Figure 2.7a) can be understood from

the fact that the 300◦C dataset consisted of only 3 data points including the feed.

The initial estimates (Figure A.11 in the Appendix) that were not normalized, had a

similar pattern and the conversion among the pseudo-components appeared to follow
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Figure 2.7: Results of SMCR-ALS applied to FTIR spectra of liquid products from
thermal conversion of Athabasca bitumen at 300◦C.
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the path S1 → S2 → S3. The importance of bringing the concentrations to the same

scale before implementing the ALS can be seen from Figure A.11. The concentration

of S2 is much higher than the other two components and when fed as is to the

ALS routine, can affect the results. Due to the limited amount of data, there is no

information available on the exact concentration values between 0 – 360 min and

between 360 – 1080 min but the trend can be seen. S1, which is representative of

the feed, does not exist at higher reaction times, where only S3 remains, while the

intermediate product (S2) is present at intermediate times.

We considered four quantitative parameters defined in terms of intensity ratios from

the resolved spectra to improve the ability for understanding crucial steps in thermal

cracking at each temperature. Ratios of intensity rather than absolute intensities are

examined so as to negate the effect of path length that is a source of uncertainty in

the ATR attachment to the FTIR spectrometer. These parameters are:

n− CH2/n− CH3 =
I2920
I2950

(2.16)

Overall extent of aromatic substitution (EOS) =
I744 + I763 + I810 + I860

I727
(2.17)

Degree of condensation (DOC) =
A1630−1550

A3130−3050

(2.18)

Complex oxygenate content (COC) =
I1740

I1740 + I1605
(2.19)

where I is the intensity at the respective wavenumber shown in subscript and A is

the area under the regions in the wavenumber range specified as the subscript.

The n − CH2/n − CH3 parameter, defined in terms of the intensity ratios of the

dominant asymmetric stretch of methylene C-H to the stretch of terminal methyl C-H

groups, serves as an indicator of the average aliphatic chain length in bitumen. Naph-

thenic rings attached to aromatics exist in large proportions in Athabasca bitumen

and a larger value of this parameter (Equation 2.16) can also indicate the presence of
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non-aromatic cyclic rings. [170] DOC was incorporated in a modified form from the

work by Tefera et al.[25] where they had defined it as the area under the C=C stretch

of aromatics divided by the area under the entire C-H deformation intensities from

900 – 700 cm−1. In our work, the denominator was changed to include the area under

the aromatic C-H stretching wavenumbers only (Equation 2.18). This was because

the chance of overlap of C-H bending between the alkenes and di- and tri-substituted

aromatics in 900 – 700 cm−1 region was much more than in the 3130 – 3050 cm−1

region. [171] However, the limitation of DOC is that the decrease in hydrogens in the

aromatic ring is not taken into account when non-aromatic substituents are present.

To mitigate these shortcomings, EOS was introduced in this work (Equation 2.17)

and was calculated as the ratio of intensities rather than areas (which was the case

for DOC) to limit the possibility of overlap with alkenes. The sum of intensities cor-

responding to ortho, meta and para-disubstituted aromatics (744, 763 and 810 cm−1

respectively) and tri-substituted (860 cm−1) aromatics were divided by the intensity

at 727 cm−1 that originated from a mono-substituted aromatic with 5 adjacent hy-

drogens. In effect, EOS considers the number of adjacent hydrogens in an aromatic

compound and could account for both condensed aromatics as well as the presence of

acyclic and non-aromatic substituents and was considered in combination with DOC

for interpretation of the resolved spectra in this work.

COC focused on the C=O stretching frequencies for the ester and anhydride-type

carbonyl compounds (1740 cm−1) and their change during thermal conversion was

examined by calculating this parameter for each pseudo-component (Equation 2.19).

However, this must be interpreted with caution as the exact process of conversion of

complex oxygenates to acids, alcohols and further decarboxylation from the acids to

yield CO2 was complicated and still unclear. [172] Also, since phenolic compounds are

more prevalent than aliphatic alcohols in bitumen, it is possible that the anhydride

content is more than the ester content. [87] This could be because the interaction of

carboxylic acids with themselves leading to anhydrides would be more probable than
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phenols interacting with carboxylic acids yielding esters.

Table 2.2: Change in the ALS-resolved spectra-derived quantitative parameters with
pseudo-component number at 300◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.78 1.79 1.82
Overall EOS 3.15 3.26 2.90
DOC (C=C stretch/C-H 2.77 2.43 2.81
stretch wavenumber)
COC value 0.77 0.91 0.00

The change in the above-mentioned quantitative parameters across S1, S2 and S3

is summarized in Table 2.2. It can be seen from Table 2.2 that thermal conversion

did not alter the ratio of the methylene groups to the terminal methyl group intensity

by much. S1 and S2 had a near-constant value of 1.78 and it mildly increased to

1.82 for S3, which was quite intriguing. This suggests that there was neither a major

change in the length of alkyl side chains attached to the cyclic moieties nor was there

much formation of additional cycloalkanes due to thermal cracking at 300◦C. This

also reflects the minimal change in the spectral intensities and line shapes at 2850

cm−1, 2920 cm−1, 2950 cm−1 in Figure 2.7b.

Cronauer et al. [173] suggested that hydrogen transfer from potential donors like

naphthene-aromatics or benzylic carbon centres to multinuclear aromatics (MNA)

would be difficult at temperatures lower than 300◦C. At the same time, there have

been studies that reported the occurrence of hydrogen transfer to MNAs at 150◦C.

[174], [175]

Tefera et al.[25] observed that the results and chemical interpretation for the

SMCR-ALS resolved spectra for pyrolysis of Cold Lake bitumen at 300◦C were similar

to that at 150◦C. nCH2/nCH3 was reported to increase from 1.82 to 1.89 from the

first to the third pseudo-component, which was a significant increase compared to

that observed for Athabasca (Table 2.2). They suggested the possibility of hydrogen

transfer from a benzylic carbon that later combined with another free radical to yield
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a longer side chain. Methyl transfer was also thought to occur, which increases the

−CH2 content. The assumption here was that hydrogen transfer reactions occur in

bitumen at temperatures as low as 150◦C, despite contrasting views in the literature

as highlighted in the previous paragraph.

At 150◦C, this could explain an increase in viscosity for the liquid products (from

88 Pa.s to 240 Pa.s) due to a gain in molecular weight over time. [176] For complex

mixtures, the change in viscosity and density cannot necessarily be directly related

to the molecular weight when the composition varies. It was interesting to note that

the viscosity trend followed an opposite pattern (decreased overall from 88 Pa.s to 1

Pa.s over 8 h with non-constant values at 4 h) at 300◦C despite spectral features in

the ALS-resolved profiles for Cold Lake bitumen remaining similar to those at 150◦C.

Though boiling point distributions for the products are not known, the density of

most products obtained at 300◦C was higher than that of the feed. These observations

indicate that reasons for viscosity change cannot be attributed to a single reason in

complex mixtures as highlighted by Sivaramakrishnan et al. [111] as well.

Shifting our attention back to Athabasca bitumen in our work, the viscosity of

the pyrolyzed products at 300◦C showed a sparse change over 1080 min and gas was

hardly produced during the reaction. While the peak at 1460 cm−1 corresponds to

C-H bending in methyl groups only, the peak at 1380 cm−1 can indicate both methyl

and methylene group bends.[177] Since the splitting of the bands was more visible

at 1380 cm−1 , it is considered for examining migration of methyl groups at various

conditions in this work. The C-H bending bands for methyl groups occurring at 1380

cm−1 (Figure 2.7d) showed clear signs of splitting for S1, S2 but appeared to be flat

for S3, indicating the possibility of some methyl transfer. From the perspective of

energy demand, methyl transfer from ethane requires the same energy as hydrogen

abstraction from the benzylic carbon in toluene, which is quite probable. [177] This

suggests that some methyl transfer may have occurred to an extent that led to an

increase in the -CH2 content and was reflected in the mild increase of nCH2/nCH3
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(Table 2.2). In fact, the contribution of methyl transfer to free radical reactions was

recently demonstrated. [178] This process is illustrated in Figure 2.8.

Figure 2.8: Methyl transfer from an isopropyl group attached to an aromatic (1)
followed by hydrogen abstraction from the matrix leading to increased CH2 content
(compound (4)).

DOC had similar trends for both Athabasca and Cold Lake where it showed a

very slight effective increase from 2.77 to 2.81 (S1 to S3) for Athabasca (Table 2.2)

but a higher net increase from 0.18 to 0.26 (S1 to S3) with a minimum at S2 for

both types of bitumen. However, the EOS showed an overall mild decrease from 3.15

to 2.90 from S1 to S3 reaching a maximum at S2 for Athabasca (Table 2.2) but it

increased from 2.26 to 2.56 for the pseudo-components in Cold Lake. The EOS was

calculated from the resolved spectra for Cold Lake bitumen for this work, and was not

calculated by Tefera et al.[25] The increase in EOS for Cold Lake spectra could have

been a result of the increase in DOC due to intramolecular ring closure reactions as

suggested by Tefera et al. [25] On the other hand, the slight decrease in EOS despite

the near-stable DOC for Athabasca was thought-provoking since both dealt with the

aromatic part of the product. It should be kept in mind that DOC was calculated

differently in the two works though the intended meaning was the same. In addition,

Figure 2.7e shows that there was no significant change in the intensity at 727 cm−1

that indicated no additional formation of mono-substituted aromatics in S3.

On the whole, considering the minimal changes in DOC and nCH2/nCH3 parame-

ters and the little to no gas production, it can be concluded that the extent of cracking

at 300 ºC was indeed low. This could also be a reason for the reduced effect on vis-
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cosity at 300◦C (which stayed nearly constant at the feed viscosity of 36 Pa.s even

after 1080 min of reaction time). Selucky et al. [110] reported that the amount of

saturates in Cold Lake bitumen is more than in Athabasca bitumen, making it more

susceptible to cracking at lower temperature. This is probably another reason for

the chemical changes being more significant in Cold Lake bitumen than in Athabasca

bitumen when subjected to pyrolysis at 300◦C.

Results and analysis at 350◦C

The ALS-resolved concentration and spectral profiles for the FTIR dataset at 350◦C

thermal conversion is given in Figure 2.9. The residual plot when the ALS-reproduced

profiles are subtracted from the original matrix (D) is given in Figure A.12b in the

Appendix.

The concentration profiles of the pseudo-components (Figure 2.9a) suggest that the

reaction pathway is not as straightforward as was the case with 300◦C. Both S2 and S3

appeared to exist at large reaction times while the concentration of S1 decreased but

did not vanish until 360 min. In contrast to the initial concentration estimates (Figure

2.6d) where S2 rose before S3, the third pseudo-component appeared before the second

in the final resolved concentration profile. The concentration of S3 briefly dropped

below S2 at 180 min but was equal to or more than S2 at all other reaction times.

Due to the existence of both S2 and S3 at larger times and the appearance of S3 from

the moment S1 started decreasing, the reaction network can be considered as S1 → S3

directly with S2 as an intermediate product existing in lower concentration. For the

purpose of analysis of chemical changes through the resolved spectra, the values of the

derived parameters for S1 as representative of the feed and S3 as representative of the

final product was considered as a fair assumption. The spectra-derived quantitative

parameters for the pseudo-components at 350◦C dataset are compiled in Table 2.3.

It was interesting to note that the ALS-resolved concentration profiles for that

of Athabasca bitumen (Figure 2.9a) were similar to that of Cold Lake at 340◦C
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Figure 2.9: Results of SMCR-ALS applied to FTIR spectra of liquid products from
thermal conversion of Athabasca bitumen at 350◦C.
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Table 2.3: Change in the ALS-resolved spectra-derived quantitative parameters with
pseudo-component number at 350◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.78 1.77 1.74
Overall EOS 3.14 3.45 1.30
DOC (C=C stretch/C-H 2.79 3.59 2.22
stretch wavenumber)
COC value 0.77 0.00 0.51

[117] where the third pseudo-component started rising from the start when the first

component began to decrease and both the second and the third pseudo-component

existed at larger reaction times with S3 being the dominant one. The reaction network,

though difficult to ascertain for thermal cracking at 340◦C for Cold Lake bitumen, was

considered to follow the path S1 → S3 with S2 being existent in lower concentration.

The amount of gas produced during reaction at 350◦C for Athabasca bitumen was

3-4 %wt. after 480 min and this was more than that produced at 300◦C (previous

section). A small but continuous decrease in nCH2/nCH3 (Table 2.3) possibly meant

that there was a reduction of the length of aliphatic chains attached to the cyclic struc-

tures during cracking. At the same time, it could also mean a decrease in -CH2 content

by the conversion of naphthenes to aromatics through hydrogen-disproportionation.

However, the extents of these changes were still low and were reflected in the minimal

change in intensity of methyl and methylene absorption bands at 2950 cm−1 and 2920

cm−1 respectively in Figure 2.9b. The release of some gas indicated a certain extent

of cracking.

In comparison, ALS-resolution of the spectra for Cold Lake bitumen at 340◦C

(ref.[25]) showed an increase in nCH2/nCH3 similar to the trends at lower temper-

atures, which was attributed to the presence of hydrogen transfer to multinuclear

aromatics.

In addition, the C-H deformation band at 1380cm−1 was split for S1 and S2 but

not for S3 (Figure 2.9d). This potentially indicated that carbons having more than

63



one -CH3 attached to them initially have only one methyl group at longer reaction

times. This could occur through methyl transfer, as was indicated at 300◦C, or by the

formation of methyl radicals eventually leading to the production of methane gas by

free-radical combination with hydrogen radicals. In this work, methane was found to

be the dominant gaseous product at all reaction times at 350◦C as determined from

GC-FID.[179] This was also supported by the work of Jha et al. [180] where they

found that methane was the major product in the gaseous phase when Athabasca

bitumen was thermally reacted at 300◦C. On the other hand, if methyl transfer alone

took place, it would have led to an increase in the CH2 content as noticed in the

case of Cold Lake bitumen at 340◦C and 360◦C, while the opposite was observed

with Athabasca bitumen with a decrease in the nCH2/nCH3 parameter at 350◦C

(Table 2.3). [25] On the whole, it can be said that methane formation happened to a

larger degree than methyl transfer at 350◦C during thermal conversion of Athabasca

bitumen.

On the other hand, significant changes were observed for DOC and EOS as is

seen from their values for the three pseudo-components. DOC decreased from 2.79

to 2.22 from S1 to S3 with a maximum at S2 (Table 2.3) while the opposite was

seen to happen with Cold Lake bitumen at 340◦C, where it increased gradually from

0.18 to 0.39. [115] Despite this increase, they suggested that ring closure reactions

through intra-aromatic coupling were suppressed. [181] In order to make a meaningful

interpretation of the DOC, it was important to view it together with EOS values. The

EOS for thermal cracking of Athabasca bitumen at 350◦C decreased sharply from 3.14

to 1.30 (S1 to S3) while that of Cold Lake bitumen at 340◦C rose from 2.27 to 2.63

over the three pseudo components. This is reflected by the higher intensity for mono-

substituted aromatic absorption at 727cm−1 for S3 as compared to the feed and S2

(Figure 2.9e). The increase in EOS for Cold Lake bitumen shows that there was

an increase in the number of substituents in the aromatic rings that could be due

to condensation of a naphthene-aromatic to a complete aromatic with a non-cyclic
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substituent already on the naphthene ring. The ring closure reactions cannot be

ignored.

Considering the variation in all the parameters at 350◦C for Athabasca bitumen,

a plausible reaction sequence is illustrated in Figure 2.10.

Figure 2.10: Sequence of reactions speculated to be occurring at 350◦C based on
SMCR results.

When compound (5) is converted to (6) through the loss of hydrogen, the -CH2

content is clearly lowered. The ethyl substituent can crack further, leading to benzylic

and methyl free radicals that can abstract hydrogens from the matrix and form com-

pound (7) and release methane gas. This accounts for the decrease in the nCH2/nCH3

parameter (Table 2.3) and a possible pathway to produce methane that was seen to be

dominant in the gaseous products. Another interesting observation is that compound

(5) is a tri-substituted aromatic while compound (6) is o-di-substituted with respect

to the newly formed aromatic ring. This does not directly imply a decrease in the

EOS with the way it was calculated (Equation 2.17). To verify this, another param-

eter that represents the ratio of tri-substituted, meta-, para-disubstituted aromatic

C-H bends at 810, 860cm−1 and that of o-disubstituted aromatic C-H bends at 744,

763 cm−1 was calculated from the resolved spectra. It was interesting to see that this

parameter reduced from 1.53 to 0.93 from S1 to S3, which could imply an increased

formation of o-disubstituted aromatics as compared to m-, p- and tri-substituted aro-

matics. This is explained by Fig. 2.10 where the tri-substituted aromatic which is also

m-substituted is not altered but leads to the formation of an o-disubstituted aromatic

65



(compound (6)), while not much is known about mono-substituted aromatics.

Figure 2.11: Pathway showing the increase in mono-substituted aromatic content
from a naphthene, keeping the di-substituted content constant. The bond dissociation
energy (BDE) for homolytic cleavage of the indicated bonds is also shown in kJ/mol.

The question remains whether the decrease in EOS for Athabasca bitumen at

350◦C can point towards the breakage of the relatively strong Ar-C-alkyl C bond,

since this is a way to produce mono-substituted aromatics. The dissociation energy

of this bond in toluene is 433 kJ/mol at 25◦C, which is equivalent to abstracting

a hydrogen from methane to produce methyl radical, which is quite difficult under

these conditions. [177] However, there is evidence for scission of the stronger Ar-C-

H bond in benzene when it was used to study the cracking of nC16 paraffin in the

temperature range of 398 – 450◦C at pressures of 13 MPa. [180] Though cracking of

the side chain was postulated to occur (Figure 2.10), the scission of the aryl C-alkyl

C did not seem feasible at 350◦C. Figure 2.11 depicts a reaction chemistry that can

lead to a decrease in EOS without the cleavage of the aryl C-alkyl C bond and keeps

the o-disubstituted aromatic (compound (9)) content constant, with the formation of

mono-substituted aromatics. This is also reflected in the resolved profile in the 900 –

650 cm−1 region where there was a significant increase in the intensity at 727 cm−1

for S3 as compared to 810 cm−1 and 860 cm−1. The processes involved in Figure

2.11 are homolytic bond scission to give compound (10), hydrogen transfer from the
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matrix to produce compound (11) from which the hydrogen is abstracted to yield a

tertiary free radical and subsequent hydrogen disproportionation to yield the mono-

substituted aromatic (14). Direct conversion from (10) to (13) is also possible by

intramolecular 1,4-hydrogen transfer.

Little weightage should be given to the COC calculation as the resolved spectrum

of S3 was noisy (Figure 2.9c) and not representative of the spectra arising from real

compound classes. The intensity at 1740 cm−1 appeared to decrease from S1 to

S2 signifying the conversion of ester-type and anhydride-type compounds, but no

interpretation can be assigned to S3.

Results and analysis at 380◦C

The final resolved concentration and spectral profiles for the FTIR spectra of the

liquid products at 380◦C are given in Figure 2.12. The residual plot when the matrix

reproduced from the ALS-optimized profiles was subtracted from the original data

matrix is given in Figure A.12c in the Appendix.

The initial estimates were good starting points for the dataset at this temperature

(Figure 2.6c) as the final concentration profiles seemed to follow a similar trend (Fig-

ure 2.12a). S1 decreased continuously and disappeared at 1320 min while S2 emerged

at 0 min and exhibited two local maxima at 240 min and 1320 min. S3 became non-

zero at 240 min and remained at a higher concentration than S2 at all later times

except at 1320 min. Based on this, S1 → S2 → S3 can be regarded as the reaction

pathway for the conversion of Athabasca bitumen at 380◦C from the nature of the

concentration profiles of the pseudo-components. Table 2.4 provides the values of the

derived quantitative parameters from the resolved spectra at 380◦C.

Significant changes can be observed in all the parameters as compared to the

previous temperatures (Table 2.2 and Table 2.3). Overall, nCH2/nCH3 decreased

from 1.80 (S1) to 1.50 (S3) with a minimum of 1.28 for S2. The resolved spectra in

the range 2750 – 3000 cm−1 reflected this trend and were different from the ones at
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Figure 2.12: Results of SMCR-ALS applied to FTIR spectra of liquid products from
thermal conversion of Athabasca bitumen at 380◦C.
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Table 2.4: Change in the ALS-resolved spectra-derived quantitative parameters with
pseudo-component number at 380◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.80 1.28 1.50
Overall EOS 3.15 2.33 3.67
DOC (C=C stretch/C-H 2.80 1.29 1.86
stretch wavenumber)
COC value 0.81 0.21 0.00

300◦C and 350◦C where there was a minimal change in intensity in this wavenumber

range. More gas was released during cracking at 380◦C with 8 %wt. produced at

1620 min. These observations indicated the formation of lighter products and that

cracking was occurring to a higher extent compared to lower temperatures. However,

the increase in nCH2/nCH3 from S2 to S3 was intriguing and could be due to free

radical recombination at higher reaction times, which was also suggested as a reason

for the formation of heavier products in Cold Lake bitumen pyrolysis by Wang et al.

[117] This was slightly different from that for Cold Lake bitumen conversion at 360◦C

where the nCH2/nCH3 increased from 1.82 to 1.89 for S1 to S2 but then decreased to

1.87 for the third pseudo-component.[176] This could indicate the onset of cracking at

larger reaction times at 360◦C with the major types of possible reactions being C-C

bond scission in alkyl substituents to yield benzyl radicals that abstract a hydrogen

from the matrix to increase the -CH3 content.

Surprisingly, DOC and EOS showed opposite trends for Athabasca bitumen con-

version at 380◦C in this work (Table 2.4). DOC decreased from 2.79 to 1.86 with

a minimum of 1.29 for S2 while EOS initially decreased to 2.33 from 3.15 and then

increased to 3.67 for S3 that was more than S1. Hydrogen disproportionation from

naphthene aromatics having transferable hydrogen and alkyl side chains could be

a reason for the observed changes in DOC, EOS and nCH2/nCH3. This reaction

sequence is illustrated in Figure 2.13.

The naphthenic ring ((15) in Figure 2.13) becomes more stable when it loses 4 hy-
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Figure 2.13: Proposed mechanism corresponding to the changes in derived quantita-
tive parameters observed at 380◦C. The energies for homolytic bond cleavage of the
C-C bonds in (15) and (16) are given in kJ/mol.

drogens due to being attached to another aromatic, and involves its π electrons in the

delocalization that increases stability. This makes the scission of benzyl C-aliphatic

C ((16) in Figure 2.13) less demanding as the BDE for its homolytic cleavage is much

smaller than it was for (15) as indicated in Figure 2.13. Once the corresponding free

radicals are formed ((17) and (18)), they can stabilize themselves by easily abstract-

ing hydrogens to form the alkane (20) and alkyl aromatic (19). In this entire process,

-CH3 content has increased and chain length decreased that manifests as a decrease

in nCH2/nCH3 (Table 2.4). Due to the formation of an adjacent aromatic ring to

the benzene ((15) to (19)), the number of aromatic hydrogens in (19) is 3 more than

in (15) while the aromatic C=C stretch has only increased by 2. This can potentially

reduce the DOC, based on the way it is calculated (Equation 2.18).

Also, when compared to (15), the intensities at 810 cm−1 and 860 cm−1 for (19)

would definitely be higher (as observed in Figure 2.12e) due to m- and p- substitution

with respect to the methyl substituent for the second aromatic ring on the right. If

the mono-substituted aromatic content is considered constant, this would cause the
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EOS to increase from the way it is calculated in this work (equation 2.17). Also, it can

be seen from Figure 2.12e that the intensity of ortho substitution did not experience

much change at 744 cm−1 but the intensity corresponding to the mono-substituted

aromatic C-H bend at 727 cm−1 decreased from S1 but remained stable for S2 and S3.

This further could contribute to the increase in EOS and corroborates the chemistry

proposed in Fig. 2.13, though conclusive experimental proof is not available.

The absorption bands at 1380 cm−1 for all three components appeared to be split,

indicating that not much methyl transfer had happened. Still, methane gas was

found to be dominant in the gaseous products and might have been produced from

the cracking of side chains as shown in Figure 2.10 for 350◦C. On the other hand, DOC

did not vary over the three pseudo-components for Cold Lake bitumen conversion at

360◦C while EOS showed a mild decrease from 2.28 to 2.21 from the first to the

third pseudo-component. The dominant reactions that were logically thought to be

responsible for these changes were breakage of relatively weaker C-C bonds along with

hydrogen transfer to the benzylic free radicals to stabilize the products. At 380◦C,

the viscosity of Athabasca bitumen continuously decreased from 36 Pa.s for the feed

to 2 Pa.s for the product at 1620 min and measured at a shear rate of 10 s-1.[110]

Cold Lake bitumen was shown to exhibit a steeper viscosity decrease by Wang et al.,

[117] where it reached 0.31 Pa.s at 60 min but later increased to 1 Pa.s at 240 min.

They attributed this increase to free-radical addition reactions but if the same kind

of reactions were responsible for the increase in nCH2/nCH3 at 380◦C for Athabasca

bitumen (Table 2.4), viscosity should also have increased at some point; but this

did not happen. This shows that a combination of different factors like composition,

phase behavior, and mainly boiling point distribution of the liquid products would be

responsible for a change in viscosity rather than molecular weight alone. [111], [182],

[183]
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(e) Resolved spectra of the pseudo-
components in the range 900 – 650 cm−1

Figure 2.14: Results of SMCR-ALS applied to FTIR spectra of liquid products from
thermal conversion of Athabasca bitumen at 400◦C.
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Results and analysis at 400◦C

Among all temperatures, the most data was recorded for this dataset. Data for differ-

ent types of characterization like 1H-NMR, ESR, boiling point distribution, viscosity,

density, refractive index and asphaltene content for the liquid products obtained from

thermal conversion of Athabasca bitumen at 400◦C was documented in the study by

Sivaramakrishnan et al. [111] Some points from their chapter are useful in support-

ing the results obtained in this work. The final resolved concentration and spectral

profiles for the 400◦C dataset is provided in Figure 2.14 and the residual plots when

the ALS-reproduced matrix is subtracted from the original data matrix is given in

Figure A.12d in the Appendix.

The resolved concentration profiles for the three pseudo-components (Figure 2.14a)

resembled those from the initial estimates (Figure 2.6b) for most parts, though S1

experienced a steeper decrease and vanished at 360 min. It can also be seen that

the concentration profiles deviated from the closure condition in the middle reaction

times (135 min, 150 min, 180 min) when the summation reached close to 1.70 but

was within 1.20 at the rest of the times (sub-section 2.3.2 titled ‘Implementation of

constraints’). This could be possibly because the intermediate times as mentioned

above are where all the three pseudo-components exist though S1 is decreasing and S3

is increasing while S2 reaches its peak. S2 followed the path of an inverted parabola

and was higher in concentration than S3 between the times 90 min and 240 min. Coke

started forming in significant amounts from 45 min and the time between 90 – 240

min can be considered as the active coking region for 400◦C. [111] As expected, S1

had a much lower concentration during this period but at larger reaction times (¿ 360

min), S3 became the dominant product. Overall, S1 → S2 → S3 can be thought of as

the reaction network for the cracking of Athabasca bitumen at 400◦C. Table 2.5 gives

the values of the derived quantitative parameters from the ALS-resolved spectra for

the 400◦C dataset.
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Table 2.5: Change in the ALS-resolved spectra-derived quantitative parameters with
pseudo-component number at 400◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.76 1.22 1.41
Overall EOS 3.20 0.16 2.12
DOC (C=C stretch/C-H 2.81 0.58 1.77
stretch wavenumber)
COC value 0.70 0.70 0.00

There was a larger decrease in nCH2/nCH3 as compared to lower temperatures

where the value for the parameter dipped to 1.41 for S3 from a feed value of 1.76

(Table 2.5). However, S2 showed a minimum for the chain length parameter at 1.22.

The concentration profiles signify that both S2 and S3 exist at majority of the reaction

times (Figure 2.14a) so the conversion of S1 → S2 was considered as important as

S1 → S3 at 400◦C.

Gas production increased to 16 %wt. over 1440 min 24 and this combined with

the overall decrease in the CH2 content or increase in the CH3 content indicated

that cracking was taking place significantly. Interestingly, curve resolution on the

FTIR spectra of cracked products of Cold Lake bitumen at 400◦C determined that

nCH2/nCH3 reduced from the first to the third pseudo-component but reached a

maximum for the second component.[25] Hydrogen transfer followed by free-radical

recombination was stated as the reason for the initial increase but the rate of bond

scission is more important and could have been higher at later reaction times to

lead to a decrease in nCH2/nCH3. In the case of Athabasca bitumen, the trend in

nCH2/nCH3 from S1 to S2 to S3 could indicate that the rate of bond breaking was

greater than the rate of bond formation.

Inspection of the resolved spectral profiles at 1380 cm−1 (Figure 2.14d) provided

evidence of methyl transfer happening at 400◦C. The absorption band was split for

S2 but not for S3 which indicates that methyl transfer from dimethyl carbon centres

followed by free-radical stabilization by hydrogen abstraction possibly occurred at
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higher reaction times, which could be a reason for the increase in -CH2 content with

methyl content being a constant (as was illustrated in Figure 2.8). This could have

led to the observed increase in nCH2/nCH3 for S3 compared to S2 but cracking kept

this value lower than in the feed. The aromatic ring in compound (1) can be replaced

with an aliphatic group as well since it depicts changes occurring after significant

thermal cracking has progressed. Free-radical recombination of the cracked lighter

products with aromatic compounds (as shown in Figure 2.15) can also lead to an

increase in -CH2 content, which is explained later in this section.

Figure 2.15: Plausible type of reaction happening at 400◦C where cracking of the
weaker benzylic C-tertiary C (in compound (15)) followed by intramolecular hydrogen
transfer and hydrogen abstraction to yield the mono-substituted aromatic (compound
(24)) and the conjugated free radical (23). This can crack further to give lighter
aliphatic products. Possibility of free-radical recombination to form compound (28)
is also shown.

DOC decreased dramatically from 2.81 to 1.77 in going from S1 to S3 with a

minimum of 0.58 for S2 (Table 2.5). This was another observation that differed from

Cold Lake bitumen conversion at 400◦C, where the DOC increased from 0.17 to 0.26

across the three pseudo-components. Since DOC was calculated as the ratio of the

areas under the aromatic C=C stretch and the aromatic C-H bending in Tefera et

al.,[25] it was seen in concurrence with the inverse of H/C ratio of the products
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which decreased from 1.43 to 1.09 over 360 min for Cold Lake bitumen. In contrast,

there were similar trends seen for both H/C and DOC for Athabasca bitumen. H/C

decreased slightly from a feed a value of 1.48 to 1.46 at 15 min which was also the

value for the 1440 min product.[110] It reached a minimum of 1.43 at 90 min and 240

min that were the start and end regions of the existence of S2. Since hydrogen rich

gaseous products were formed in large amounts, it required the coke to be hydrogen

deficient in order to maintain the H/C ratio of the liquid products.

If Athabasca bitumen behaved similar to Cold Lake bitumen, its DOC should have

increased slightly owing to the slight decrease in H/C. The fundamental difference

between H/C and DOC was that H/C related to the whole liquid product while

DOC conformed to the aromatic region only. The minimal change in H/C also found

support in the work by Wiehe,[184] where in the model for coke formation from

pyrolysis of Cold Lake bitumen at 400◦C, he suggested that asphaltenes reached a

constant ratio H/C once a second phase called mesophase (that eventually leads to

coke) started forming. On the whole, DOC was thought to be a less reliable parameter

for two reasons: (i) since it considered areas and not intensities at single wavenumbers;

and (ii) it only takes into account the aromatic part of the spectrum but the H/C

ratio corresponds to the entire liquid product.

There was also a noted difference in the EOS for the pseudo-components in con-

verted products of Athabasca and Cold Lake bitumen at 400◦C. EOS decreased from

3.20 to a surprisingly low value of 0.16 in going from S1 to S2 for Athabasca bitumen

and then increased to 2.12 for S3 while there was a gradual and mild decrease in EOS

from 2.29 to 2.26 for Cold Lake bitumen. It can be seen from Figure 2.14e that the

peak for monosubstituted aromatics at 727 cm−1 was much higher for S2 and S3 than

for S1. It was in fact highest for S2 among all 3 pseudo-components. The formation

of mono-substituted aromatics is possible by two reaction sequences: (i) as shown in

Figure 2.11, with cracking of a three-ringed naphthene-aromatic followed by hydro-

gen transfer by hydrogen disproportionation to give the mono-substituted aromatic
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compound (14); (ii) a radical hydrogen transfer (RHT) mechanism as suggested by

Blanchard and Gray [185] through intramolecular hydrogen transfer could facilitate

the replacement of an aromatic-C – alkyl C bond from a di-substituted aromatic

to yield a mono-substituted aromatic as depicted in Figure 2.15. A previous study

[180] on cracking of hexadecane in the presence of benzene indicated the formation

of biphenyl which would have been possible only if a hydrogen was abstracted from

benzene. Removal of a carbon attached to a benzene ring would be relatively easier

but even though other studies in literature indicate that this temperature could ren-

der them susceptible to be broken, it is considered a rare occurrence at 400◦C. [180],

[185] The possibility of further cracking of the compounds similar to (14) through

hydrogen abstraction from benzylic carbon followed by RHT mechanism to produce

a mono-substituted aromatic, though less probable, cannot be ignored.

The same compound (15) can follow different paths during cracking depending

on the temperature and its structure (compare Figure 2.13 and Figure 2.15). The

benzylic C – tertiary carbon bond in (15) (BDE = 320 kJ/mol) is weaker than the

bond between the carbon attached to the tertiary carbon of the naphthenic ring and

the aliphatic side chain (BDE = 365 kJ/mol as shown in Figure 2.13). Homolytic

scission of this bond gives compound (21) which can undergo intramolecular hydrogen

transfer and the hydrogen radical can arise from the second carbon in the side chain.

The delocalization of this radical inside the aromatic ring facilitates cleavage of the

aromatic C-aliphatic C bond (BDE = 420 kJ/mol) and produces the stable benzyl

radical and the alkene (23) whose primary radical is stabilized by resonance with the

double bond. Due to the higher energy available at 400◦C than at 380◦C, conversion

of the naphthene to an aromatic is not required to aid in the cleavage of the C-C

bond in the C4 substituent as was proposed to occur at 380◦C (Figure 2.13). It

also reflects the decrease in EOS as the aromatic in (15) with 2 substituents and

4 adjacent hydrogens undergoes cracking to produce (24) which has 1 substituent

and 5 adjacent hydrogens. The alkene (25) can undergo further cracking to give
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lighter compounds (26) and (27) which can recombine with aromatic free radicals to

produce compounds with longer side chains. This occurs at later reaction times and

could also be a reason for the observed increase in nCH2/nCH3 from S2 to S3 (Table

2.5). Though no specific proof of this mechanism is given in this work, it is proposed

based on the experimental data and subsequent curve resolution results.

(a) Concentration profiles (b) Spectral profiles in the region 900 –
650 cm−1

Figure 2.16: Curve resolution applied on the 400◦C dataset using 4 pseudo-
components.

Since the value of EOS for S2 was quite low, an internal test was done to check the

validity of this observation. This was done by relaxing the number of components from

3 to 4 and inspecting the resolved concentration and spectral profiles in the 900–650

cm1 region. The concentration profiles with 4 components are noisier during the lower

reaction times as shown in Fig. 2.16a. The spectral profiles (Fig. 2.16b) indicate

higher intensities at 727 cm1 for both the second and third pseudo-components while

the peaks for S4 were not as clear. There was no benefit in relaxing the number of

components.

Results and analysis at 420◦C

First, it should be noted that this temperature is higher than the lower visbreaking

region as defined by Wang et al., [117] which was considered to be 400◦C and lower.

78



0 100 200 300 400 500 600

Time(min)

0

0.2

0.4

0.6

0.8

1

C
on

ce
nt

ra
tio

n S
1

S
2

S
3

(a) Concentration vs. reaction time for
the three pseudo-components

28002900300031003200

Wavenumbers (cm-1)

0

0.05

0.1

A
bs

or
ba

nc
e

S
1

S
2

S
3

(b) Resolved spectra of the pseudo-
components in the range 3200 – 2750
cm−1

160017001800

Wavenumbers (cm-1)

0

0.005

0.01

0.015

A
bs

or
ba

nc
e

S
1

S
2

S
3

(c) Resolved spectra of the pseudo-
components in the range 1800 – 1500
cm−1

100012001400

Wavenumbers (cm-1)

0

0.02

0.04

0.06

A
bs

or
ba

nc
e

S
1

S
2

S
3

(d) Resolved spectra of the pseudo-
components in the range 1500– 900 cm−1

650700750800850900

Wavenumbers (cm-1)

0

0.005

0.01

0.015

0.02

A
bs

or
ba

nc
e

S
1

S
2

S
3

(e) Resolved spectra of the pseudo-
components in the range 900 – 650 cm−1

Figure 2.17: Results of SMCR-ALS applied to FTIR spectra of liquid products from
thermal conversion of Athabasca bitumen at 420◦C.
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Since the lower temperatures were investigated previously, it was decided to operate

close to industrial conditions that function between 430 – 490◦C. [118] As expected,

a large amount of coke was formed ( 17 %wt. at 420◦C and 660 min compared to

12 %wt. at 400◦C and 1440 min) with the liquid yield being less than that at lower

temperatures. The resolved concentration and spectral profiles obtained through the

ALS-optimization at 420◦C are provided in Figure 2.17a and the residual plot is given

in Figure A.12e in the Appendix.

There were similarities in the initial concentration estimates (Figure 2.6a) and

the final resolved profiles (Figure 2.17a) which indicated that the initial estimates

provided by EFA were a good guess for the optimization. S2 rose at 0 min as soon as

S1 started decreasing in concentration in both the initial estimates and final profiles.

At the point of appearance of S3 (360 min), S2 decreased and S3 remained to be

highest in concentration for the rest of the reaction times. These observations were

indicative of a reaction pathway S1 → S2 → S3 though the reaction mixture consisted

of both S2 and S3 at higher reaction times. Table 2.6 provides the values of the

spectra-derived quantitative parameters for the three pseudo-components at 420◦C.

Table 2.6: Change in the ALS-resolved spectra-derived quantitative parameters with
pseudo-component number at 420◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.78 1.13 1.16
Overall EOS 3.23 1.97 1.98
DOC (C=C stretch/C-H 2.82 1.48 1.33
stretch wavenumber)
COC value 0.76 0.00 0.12

Inspection of the resolved spectral profile in the 3000 – 2750 cm−1 range suggests a

significant change in both methylene and methyl group intensities as one moves from

S1 to S3 but the relative changes were better indicated by their ratios. nCH2/nCH3

decreased to the lowest value for S2 (1.13) out of all previously investigated tem-

peratures in this work and interestingly, remained almost constant for S3 as well.
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This could probably indicate cracking as the dominant reaction with the rate of bond

scission much higher than bond formation for most times. The free radicals formed

through bond cleavage are being stabilized by hydrogen radicals (such as compounds

(19) and (20) in Figure 2.13), thus preventing them from further recombination to

yield longer molecules such as (28) in Figure 2.15.

DOC decreased continuously from 2.82 for S1 to 1.33 for S3 (Table 2.6) as opposed

to previous temperatures where it exhibited a minimum or a maximum. EOS also

followed a similar pattern to the chain length parameter where it decreased from

S1 to S2 (3.13 to 1.97) and then remained nearly constant at 1.98 for S3 (Table

2.6). This value was lower than that observed at 400◦C, suggesting the formation

of more monosubstituted aromatics through either mechanism as proposed for 400◦C

in the previous section. The absorption bands for C-H deformation at 1380 cm−1

(Figure 2.17d) for all three pseudo-components did not appear to be split and thus the

occurrence of methyl transfer could not be confirmed even though the temperature was

high enough to facilitate this phenomena. [135] A clear increase in mono-substituted

aromatic content (Figure 2.17e) meant that side reactions such as intra-aromatic ring

closing were suppressed. Overall, it can be said that cracking was quite prominent at

420◦C.

2.4.4 PSO-optimized C, S profiles and spectra-derived quan-
titative parameters

In this section, the results of the concentration and spectral profiles using PSO com-

bined with a constrained minimization function called ‘fmincon’ as the optimization

method are provided for the temperature-wise datasets. The PSO algorithm was

embedded inside the ALS loop so that it served as an improvement upon the concen-

tration profiles supplied by ALS and ‘fmincon’ identified a further local optimum if

any, after the PSO converged. It was compelling to see that there was an enhance-

ment in the resolution of the final profiles for ALS-PSO as compared to ALS profiles
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as expected and the subsequent chemical interpretation was also very similar. For

this reason, no detailed interpretation is provided in all cases for the PSO-optimized

profiles but the differences between the ALS and ALS-PSO routines for SMCR in

terms of ameliorating noisy regions of the ALS-resolved spectra, values in LOF and

R2 and the speed of convergence are discussed in this section.

Results at 300 ◦C

All concentration and spectral profiles for the PSO-optimized method are provided in

the Appendix. Fig. A.13 depicts the concentration and spectral profiles along with

the ALS–PSO residual when SMCR was conducted on the 300◦C dataset.

In comparing the concentration profiles of ALS-PSO (Figure A.13a) and ALS (Fig-

ure 2.7a), it can be seen that there was a difference in concentration at 360 min. The

relative concentration of S2 was 0.75 and for that of S1 and S3 were 0.13 and 0.13

respectively, while in the ALS-optimized profiles, it was 1, 0 and 0 for S2, S1 and S3,

respectively. Though there is no direct measure to specify which concentration profile

is better resolved, a value other than 0 and 1 for the pseudo-component concentra-

tion at the second data point suggests that the addition of PSO to the ALS method

brought the profile closer to reality for the system. Another improvement was in

removal of the noisy patterns in the spectral region between 1800 – 1500 cm−1 that

was evident in the ALS-resolved profiles (Figure 2.7c) but was well resolved in ALS-

PSO (Figure A.13d). The residual plot for ALS-optimized profiles (Figure A.12a)

extended only in the negative direction which seemed unusual. But in the case of

ALS-PSO-derived profiles (Figure A.17b), the residual had both positive and nega-

tive values and was more symmetric than the ALS profiles alone. Table 2.7 shows the

ALS-PSO spectra-derived quantitative parameters for S1, S2 and S3 for the resolution

performed on the 300◦C dataset.

Although the absolute values of the parameters in Table 2.7 were slightly different

compared to the ones derived from the ALS-resolved spectra (Table 2.2), the overall
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Table 2.7: Change in the ALS-PSO-resolved spectra-derived quantitative parameters
with pseudo-component number at 300◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.80 1.79 1.82
Overall EOS 3.48 3.55 3.23
DOC (C=C stretch/C-H 2.91 2.70 2.79
stretch wavenumber)
COC value 0.77 0.00 0.00

trends were the same, leading to the same interpretation of the chemical changes and

types of reactions.

Results at 350◦C

Figure A.14 in the Appendix provides the concentration and spectral profiles and also

the residual plot when ALS-PSO approach was used to resolve the FTIR spectra. The

concentration profiles for the ALS-PSO optimized profiles (Figure A.14a) followed

the same pattern as the ALS-optimized ones with the only difference being that

the magnitude of the concentration at 180 min for S1 and S3 was higher and lower,

respectively, for the ALS-PSO as compared to the ALS method. This might be well

due to the PSO method trying to satisfy the closure constraint at this reaction time

(the sum of concentration values was 1.5 for the ALS-derived profiles).

Table 2.8: Change in the ALS-PSO-resolved spectra-derived quantitative parameters
with pseudo-component number at 350◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.81 1.77 1.76
Overall EOS 3.50 2.98 2.15
DOC (C=C stretch/C-H 2.89 3.15 2.63
stretch wavenumber)
COC value 0.77 0.00 0.12

Also, the noisy spectrum in the 1800 – 1500 cm−1 region for S3 in the ALS-

optimized profiles was resolved to a higher extent by the ALS-PSO method (Figure

A.14c). While the intensity for S2 at 1740 cm−1 was 0, S3 showed a mild absorption
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at this wavenumber which was reflected in the COC value as shown in Table 2.8.

The only difference in the trends of the spectra-derived quantitative parameters of

the ALS-PSO profiles as compared to the ALS-profiles was the continuous decrease

in EOS from 3.50 to 2.15 (Table 2.8) in the PSO case whereas there was a maximum

at S2 for the ALS case (Table 2.3). However, the overall effect was a decrease in EOS

for both methods which did not change the chemical interpretation by much. The

peaks in the other regions were well resolved and exhibited similar trends to those

derived from the ALS-optimized profiles. These values are compiled in Table 2.8.

Results at 380◦C

The results of the ALS-PSO analysis on the FTIR spectra at 380◦C along with the

residual is provided in Figure A.15 in the Appendix. The concentration profiles indi-

cate a mild difference from the ALS-optimized profile but one can arrive at the same

reaction network of S1 → S2 → S3 by inspection (Figure A.15a). The concentration

of S3 showed a monotonic rise from the start which was different from that in the

ALS profiles (Figure 11a) while S2 had a similar trend except that it did not rise as

sharply at the higher reaction times of 1320 min and 1620 min.

Table 2.9: Change in the ALS-PSO-resolved spectra-derived quantitative parameters
with pseudo-component number at 380◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.83 1.31 1.39
Overall EOS 3.35 1.83 3.58
DOC (C=C stretch/C-H 2.91 1.86 1.92
stretch wavenumber)
COC value 0.87 0.2 0.00

Similar to other temperatures, the noisy region for S2 in the 1800 – 1500 cm−1

region of the ALS profiles (Figure 2.12c) was mitigated by the addition of the PSO

method as can be seen from Figure A.15d without altering the COC value too much

(Table 2.9). The values of the spectra-derived parameters for the 380◦C dataset are

given in Table 2.9.
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It was interesting to see that the trend in the nCH2/nCH3 was similar to that of

profiles obtained through the ALS optimization even though the spectra for S2 in the

3200 – 2750 cm−1 region had higher absolute intensities for methylene and methyl

C-H stretches. However, the increase in -CH3 stretch was more than -CH2 for this

pseudo-component, which resulted in a decrease in the chain length parameter (Table

2.9). The trends in other parameters like EOS, DOC and COC were the same as

in the ALS profiles, resulting in the same chemical interpretation. The persistence

of band splitting for all three pseudo-components at 1380 cm1 (Fig.A.15e) provides

more credibility to the proposition of minimal methyl transfer occurring at 380◦C.

Results at 400◦C

The concentration and spectral profiles for the 400◦C dataset resolved by the ALS-

PSO optimization along with the residual plot are given in Figure A.16 in the Ap-

pendix. The relative concentrations of S1, S2 and S3 followed similar paths for both

the ALS and ALS-PSO-optimized profiles as seen in Figure 2.14a and Figure A.16a

respectively. In the ALS-PSO-optimized profiles, the concentration of S1 decreased

continuously while S2 showed a global maximum at 150 min and S3 peaked at higher

reaction times. An important observation was that the sum of relative concentra-

tions of the three pseudo-components at 150 min was much closer to 1 for the PSO

approach rather than the ALS method (sub-section 2.4.3 titled ‘Results and analysis

at 400◦C’). This was also true at some other reaction times between 120 min and 210

min as well. This signified that PSO embedded with ALS caused the concentration

profiles to adhere to the closure constraint better.

The spectral profiles from the PSO method narrated a similar story as the ALS

ones with the trends in the derived parameters confirming this observation as shown in

Table 2.10. EOS and DOS had minimum values for S2 but showed an overall decrease

from S1 to S3 in these parameters. The peaks at 727cm−1 for S2 and S3 (Figure A.16f)

were similar to that of the ALS-optimized profile (Figure 2.14e). The spectral bands
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Table 2.10: Change in the ALS-PSO-resolved spectra-derived quantitative parameters
with pseudo-component number at 400◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.79 1.12 1.41
Overall EOS 3.45 0.60 2.10
DOC (C=C stretch/C-H 2.89 1.13 1.56
stretch wavenumber)
COC value 0.86 0.79 0.00

at 1380 cm−1 appeared split for S1 but straight for S2 and S3 indicating no major

changes in the reaction chemistry from what was discussed for the ALS-optimized

profiles in the corresponding section in the ALS-optimized profiles.

Results at 420◦C

The results of ALS-PSO optimization at 420◦C are given in Figure A.17 in the Ap-

pendix. The concentration of S1 was similar to the profiles obtained from both the

ALS (Figure 2.17a) and ALS-PSO methods (Figure A.17a), but the PSO profiles

were seen to adhere to the closure constraint better especially at 360 min, where the

concentration of S2 was much lower than for the ALS-optimized profile, thus making

the total concentration 1.1 as opposed to 1.4 for the ALS method. At all other times,

the sum of concentrations was around 1.1 for results obtained from both methods,

thus signifying the usefulness of PSO.

Table 2.11: Change in the ALS-PSO-resolved spectra-derived quantitative parameters
with pseudo-component number at 420◦C.

Pseudo-
component

1 2 3

n-CH2/n− CH3 1.82 1.14 1.17
Overall EOS 3.52 1.97 1.88
DOC (C=C stretch/C-H 2.90 2.11 1.71
stretch wavenumber)
COC value 0.79 0.00 0.00

The residual appeared to fluctuate in a lower range for PSO (±0.003 in Figure

A.17b) while it reached a maximum of 0.008 for the ALS-optimized profile (Figure

86



A.12e). This led to a lower LOF and R2 by the slightest of margins, which is shown

in the next section. The spectra-derived quantitative parameters for the ALS-PSO

profiles at 420◦C are summarized in Table 2.11.

At both 400◦C and 420◦C, ALS profiles were well resolved in all regions including

the noise-prone 1800 – 1500cm−1 region (Figure A.17d) and reflects the decrease in

COC value for the 420◦C dataset which corroborates with the ALS profiles as well

(Table 2.6). The absorption bands at 1380cm−1 appeared to have a split characteristic

for all three pseudo-components. This implied that the occurrence of methyl transfer

could not be confirmed as was explained for the ALS profiles in the corresponding sec-

tion on ALS-optimized profiles. While trends in nCH2/nCH3 and DOC were similar

to the ALS-optimized profiles (Table 2.6), the value of EOS for S3 slightly decreased

from S2 for the ALS-PSO-optimized profiles (Table 2.11) whereas it remained con-

stant for the profile obtained through ALS optimization. If the ALS-PSO method is

considered to capture the system changes better, it is just indicative of the forma-

tion of mono-substituted aromatics in higher amounts and the temperature might be

sufficient to break the Ar-C-alkyl-C bond that can lead to a decrease in DOC as well.

2.4.5 Comparison of ALS and ALS-PSO methods

Table 2.12: LOF and R2 values for the dataset at each temperature when ALS and
ALS-PSO were employed as the final optimization approach.

*Metric 350◦C 380 ◦C 400◦C 420◦C
ALS ALS-PSO ALS ALS-PSO ALS ALS-PSO ALS ALS-PSO

LOF 2.779 2.771 3.596 3.587 6.713 6.701 1.741 1.731
R2 99.923 99.926 99.871 99.876 99.543 99.551 99.975 99.989

*The performance metrics at 300◦C are not shown due to the lesser number of datapoints.

ALS and ALS– PSO are compared in terms of LOF, R2 and the rate of convergence.

The values of LOF and R2 as calculated from the residual plots for each method are

given in Table 2.12.
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Tefera et al. [25] reported that the ALS algorithm applied on Cold Lake bitumen

[186] converged in about 10 iterations at all temperatures and Shinzawa et al. [154]

concluded PSO to be better than EFA for estimating the initial concentrations in

SMCR by comparing the squared residual for both the methods. Also, they employed

a residual based on the global phase angle proposed by Noda [187] and this considered

the time sequence of events and the effect of any external perturbation. In our work,

we can see from Table 2.12 that though the difference in LOF and R2 values is quite

small for both the methods, ALS-PSO had a lower residual than ALS. The largest

difference was for 400◦C, where the residual for ALS-PSO was an order of magnitude

lower than that for ALS. Subtle differences in residual plots are well captured by these

indicators and the difference was in the third decimal for both indicators. It should

be noted that LOF increased with the number of elements in the dataset.
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Figure 2.18: Rate of convergence in terms of standard deviation of residual vs. number
of iterations for ALS and ALS-PSO algorithms used in MCR in this work.

The rate of convergence for both the methods is depicted in Figure 2.18 and shown

for 420◦C and it was similar for the other temperatures considered. ALS converged in

about 30 iterations and the standard deviation of the residual plotted on the y-axis is
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calculated from the sum of squared residual and reached a stable value of 0.00079. On

the other hand, PSO combined with ALS converged in half the time ( 15 iterations)

and the standard deviation of the residual reached a constant value of 0.00056, which

was also lower than that of ALS. This confirmed that ALS-PSO converged faster

than ALS and could be better suited for online monitoring of the system in focus as

highlighted in the introduction section.

2.4.6 Global model for SMCR

In addition to the temperature-specific local models, a global model was developed

that incorporated datasets at all temperatures together. The results were compared

with that of the temperature-wise model to see the improvement in the resolution of

the concentration and spectral profiles due to the larger number of samples and also

to see whether the reaction sequences described previously continue to hold. If the

results of the global model were consistent and satisfactory, it could be useful in real-

time control of the system. For example, in the case of thermal conversion of bitumen

in a continuous process, it is most likely that the temperature would be continuously

varied after a certain amount of time at each temperature. A local SMCR model

would require more computational effort since it has to switch between every process

condition from time to time, whereas a global model can skip this step and directly

operate on the spectra of the liquid product.

The number of components extracted for the global model were 3 since the ROD

exhibited a maximum value of 22.3 when three principal factors were used. Fig. A.19a

in the Appendix shows the plot of ROD varying with the number of components for

the 35 samples. The LOF as calculated from the residual obtained after performing

SVD using 3 pseudocomponents (eqn 2.14) was 7.108 and was lower than when 2

components were used, as expected. The amount of variance explained was 99.49%

and there was not much difference in the R2 when more than 3 components were

added to the model.
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Figure 2.19: . Results of SMCR-ALS applied to FTIR spectra of liquid products from
thermal conversion of Athabasca bitumen at temperatures in the range 300 – 420 ◦C
(global model).
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Figure A.19b shows the plot for the initial concentration estimates at all the process

conditions considered in the global model. The overall trends in S1 and S3 appeared

to be decreasing and increasing, respectively, with the trend for S2 being similar

to that in the SMCR models for the individual temperatures as well (Figure 2.6).

Interestingly, S1 showed a step-wise decrease in what seemed to happen at the start

of every new dataset at each temperature that was augmented with the previous

one. This nature was not seen in the final resolved concentration profiles though

the overall trends were the same as shown in Figure 2.19a. A fair adherence to the

closure constraint was also seen with the sum of concentrations of the three pseudo-

components for the datapoints 1-10 and 27-35 being between 1 and 1.2 while it reached

a maximum of 1.6 for the 11th datapoint. This was an improvement over the ALS

profiles in the local model where the summation reached 1.7 at two of the points for

the 400◦C dataset.

Table 2.13: Change in the ALS-resolved spectra-derived quantitative parameters with
pseudo-component number for the dataset comprising all experimental conditions.

Metric 350◦C 380◦C 400◦C 420◦C
ALS ALS-PSO ALS ALS-PSO ALS ALS-PSO ALS ALS-PSO

LOF 2.779 2.771 3.596 3.587 6.713 6.701 1.741 1.731
R2 99.923 99.926 99.871 99.876 99.543 99.551 99.975 99.989

Figure 2.19 shows the concentration and spectral profiles resolved using the ALS

algorithm for the dataset considering all temperatures together. The quantitative

derived parameters from the ALS-resolved spectral profiles for the global model is

given in Table 2.13.

As seen from Table 2.13, nCH2/nCH3 showed an overall decrease that was similar

to the trends from the SMCR results at all the individual temperatures except 300◦C.

There was a minimum at S2 for this parameter, which then increased slightly to 1.27

for S3. This trend seemed to capture the changes observed at higher temperatures

(380 ◦C, 400◦C, 420◦C) in the individual data sets from the local SMCR model and

indicated that cracking occurred significantly with some amount of methyl transfer
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and free-radical recombination at larger reaction times. Another parameter that

appeared to be consistent with the SMCR results for the local model was EOS, which

showed a drastic decrease from S1 to S2 and then an increase from S2 to S3. The

only temperature where EOS increased overall was at 380◦C, for which the related

plausible reaction chemistry was explained in the sub-section 2.4.3 titled ‘Results and

analysis at 380◦C’. Also, the sharp reduction in EOS for S2 was also observed at 400◦C

and explained by relaxing the number of components to 4 (sub-section 2.4.3 titled

‘Results and analysis at 400◦C’). Sivaramakrishnan et al. [111] reported an increase

in the mono-substituted aromatic content during the thermal cracking of Athabasca

bitumen conducted at 400◦C and the increase in the absorption intensity at 727 cm−1

for S2 and S3 (Figure 2.19c) was also supportive of this observation.

Although thought to be a relatively unreliable parameter, the overall decrease in

DOC could have resulted from a higher increase in the number of aromatic hydrogens

as compared to the C=C. This decrease in the condensation extent could also mean a

conversion of the higher substituted aromatics to lower substituted aromatics, which

was indicated in the reaction sequence proposed from the local models at 420◦C.

Lastly, the resolution of the spectral profiles (Figure 2.19b-Figure 2.19e) were good

with no noisy spectra as was obtained in the 1800 – 1500cm−1 in the 300◦C and

350◦C ALS-optimized profiles due to the presence of limited number of datapoints.

Though there were no issues with the resolution quality of the spectral profiles at

other individual temperatures and ALS-PSO method was also useful in reducing the

noise, it is always useful to obtain a larger number of datapoints for analysis of a

particular dataset when chemometric tools like curve resolution are used.

Since the global SMCR-ALS model considered all experimental conditions together,

only generalized comments could be made with regards to chemical changes during

thermal conversion, though most changes were able to be captured. This exemplifies

the importance of investigating the spectra at each temperature separately, though

the global model is better applicable for online monitoring of continuous processes,
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since monitoring can be accomplished by tracking changes in kinetics related to the

single global mechanism applied over the entire range of operating conditions.

Our studies have covered a range of local models and the global model, with the

tracking of many quantitative parameters and chemical interpretation and the postu-

lation of reaction mechanisms based on the trends in these parameters. In Table 2.14,

we summarize the trends in the parameters and the associated chemical interpreta-

tion. Note that, as mentioned earlier, the n-CH2/n-CH3 parameter is a measure of

the average aliphatic chain length and an indication of the presence of non-aromatic

cyclic rings. DOC and EOS primarily shed light on the aromatic nature of the com-

ponents, and COC, which focuses on the C=O stretching frequencies for ester and

anhydride-type carbonyl compounds and their changes, can indicate the conversion

of complex oxygenates.

2.5 Conclusions

This work dealt with the application of chemometric tools on the FTIR spectra of

liquid products obtained during the thermal conversion of Athabasca bitumen in the

temperature range of 300–420◦C. The objective was to develop reaction sequences

for the thermal cracking process based on the results of the statistical approaches

while using minimum prior chemical knowledge of the system. Some differences in

chemometric results and subsequent chemical interpretation of the reaction chemistry

of Athabasca and Cold Lake bitumen were also highlighted in this work.

In terms of methodology, both local and global SMCR models showed similar be-

haviour, and were able to represent the reaction system with three pseudo-components.

The global SMCR model showed the value of having more samples in the dataset and

was in good agreement with the proposed reaction sequences from the local models.

As suggested in previous works, the ALS–PSO approach was found to be superior to

the ALS method in terms of noise reduction, stricter adherence to the closure con-

straint and quicker convergence. Both methods predicted the same trends in the final
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resolved spectra-derived quantitative parameters.

In terms of the conversion chemistry, the pathway proposed among the three

pseudo-components was S1 → S2 → S3. As the temperature increased from 300◦C to

420◦C, it was seen that the extent of cracking increased and lighter products with a

higher fraction of mono-substituted aromatics were formed. Methyl transfer was sug-

gested to be dominant at the lower temperatures with minimal cracking. In contrast,

for Cold Lake bitumen, ring-closure reactions were seen to be occurring at median

temperatures of 340◦C. At 380◦C, it was speculated that conversion of naphthene

rings to aromatics facilitated cracking of the side chains at later times. At 400◦C, the

possibility of scission of Ar–C–alkyl C bond was also seen to form mono-substituted

aromatics. Free-radical recombination was an important reaction at larger reaction

times, but the rate of the recombination and condensation reactions were thought to

be higher in Cold Lake bitumen than in Athabasca bitumen at 400◦C due to differing

trends in viscosity. Severe cracking was seen to occur at 420◦C for Athabasca bitumen

with stabilization of side chains by hydrogen. However, it should be noted that the

proposed reaction chemistry is based on the results of the statistical methods and fur-

ther experiments using the appropriate model compounds are needed to prove their

occurrence in practice. The chemometric framework can also serve as a hypothesis

generator for experimental procedures involving complex molecules.
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Chapter 3

Data Fusion by Joint Non-negative
Matrix Factorization for
Hypothesizing Pseudo-chemistry
Using Bayesian Networks

Abstract

Inferring the reaction pathways underlying the processing of complex feeds, using

noisy data from spectral sensors that may contain information regarding molecular

mechanisms, is challenging. This is tackled by a two-step approach for the partial up-

grading of Cold Lake bitumen: first, joint non-negative matrix factorization (JNMF)

is used as a data fusion algorithm to extract pseudocomponent spectra by combining

complementary information about the reacting environment from Fourier transform

infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopic

sensors. Second, a probabilistic inferential model that hypothesizes reaction mecha-

nisms among the identified pseudocomponent spectra is constructed using Bayesian

networks that encode directed acyclic causal pathways among the nodes of the ran-

dom variables (pseudocomponent spectra). The JNMF algorithm has been developed

to handle process data artefacts by imputing missing data, using a rotationally in-

variant norm for robustness to outliers and noise, and enforcing the non-negativity

This chapter has been published as: A. Puliyanda, K. Sivaramakrishnan, Z. Li, A. de Klerk, V.
Prasad. Data fusion by joint non-negative matrix factorization for hypothesizing pseudo-chemistry
using Bayesian networks. React. Chem. Eng. 2020, 5, 9, 1719-1737.
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constraint to ensure physical interpretability in compliance with Beer’s law for spec-

tral data. The projected optimal gradient approach developed to solve the JNMF

objective converges within fewer iterations at the specified tolerance as compared

to the multiplicative update rules (MUR). Solution ambiguity in JNMF is limited

by incorporating graph regularization terms: (a) Inter-sensor co-regularization that

penalizes redundancy in the pseudocomponent spectra across spectral sensors (b)

Intra-spectral manifold regularization that penalizes overfitting of the pseudocom-

ponent spectra from each sensor by penalizing redundant peaks within a spectrum.

Weighting the intra-spectral regularization term that minimizes similarly correlated

peaks across spectral channels of a sensor to zero, is seen to result in chemically

meaningful pseudocomponent spectra, given that different organic compounds share

similar properties with respect to their hydrocarbon structure. Hence, the prefer-

ential weighting of regularizers is shown to act as a chemical information sieve by

controlling the peaks that appear in the pseudocomponent spectra and thereby en-

abling the proposal of different reaction mechanisms, based on the similarity metric

used to model the graph structure.

3.1 Introduction

Process integrated spectral analyzers that use flow cells, quartz windows or immersion

probes are popularly used to obtain molecular-level information as they are fast, non-

invasive, non-destructive, inexpensive and do not require sample preparation [188].

The process data from spectral analyzers are high dimensional, non-causal, non-full

rank, noisy and may have missing values [189, 190]. Non-negative matrix factoriza-

tion (NMF) has been used as a workhorse in signal and data analytics to extract

latent features by the deconvolution of such low fidelity spectroscopic process data

[191]. Existing multivariate curve resolution(MCR) algorithms on spectroscopic data

[5, 25, 131] which constrain the factors to be non-negative in order to be physically

interpretable by Beer Lambert’s law are analogous to NMF; however, these lack the
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ability to jointly analyze multiple spectral measurements as a way of incorporating

complementary information. This works seeks to develop Joint Non-negative Matrix

Factorization (JNMF) as a data-fusion analogue of curve resolution algorithms to ob-

tain non-negative latent factors of spectral features across multiple sensors weighted

additively in parts by the shared basis factor (interpreted as concentration). The

components of the latent factors containing spectral features (pseudocomponent spec-

trum) are represented as nodes among which causal maps are learned using structure

learning in Bayesian networks to generate reaction pathway hypotheses. The num-

ber of components in the latent factors arising from JNMF, is determined using the

mathematical rank, based on singluar value decomposition (SVD) [192].

Previous work on generating reaction hypotheses employs encoding prior knowl-

edge of the species and reaction rules as knowledge graphs [38, 41]. In the absence of

prior knowledge of the species, hierarchical clustering of the spectral data to obtain

clusters of spectral channels with similar absorbances, has been supplemented with

domain knowledge to identify the classes of compounds[193], before learning causal

pathways among them. Yet, the approach relies on prior knowledge of the number

of clusters (representing species). Although MCR recovers the number of species and

their corresponding latent spectra and concentrations, without a priori knowledge

of the reaction system, spectral resolution has been formulated using a mixed in-

teger non-linear programming approach [194]. This is owing to the rotational and

intensity ambiguities in MCR [195]. Our approach proposes to develop JNMF as

a data-fusion algorithm, with graph regularization and constrains the latent factors

to limit solution ambiguity. JNMF in tandem with probabilistic graphical models,

reduces the reliance on prior knowledge of the reaction system, while developing in-

ferential models to generate reaction hypotheses. This framework is preliminary to

the development of kinetic models that could be used to control the composition

of complex mixtures[194], facilitating advances in reaction engineering using princi-

ples of process systems engineering [111]. In this work, data from Fourier Transform
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Infrared (FTIR) spectroscopy and Proton Nuclear Magnetic Resonance (1H-NMR)

spectroscopy of the products from the thermal conversion of Cold Lake bitumen [196,

197], are mined to develop reaction pathways using machine learning tools.

3.1.1 Detailed background

NMF identifies latent factors to a level of limited ambiguities thereby increasing

interpretability as compared to alternate factorization methods like singular value

decomposition (SVD) and independent component analysis (ICA) that are based on

orthogonal and independent factor decompositions that are unconstrained [191]. As

an additive parts-based representation due to the non-negativity of latent factors,

NMF has been used in the linear unmixing of spectroscopic data [198], soft clus-

tering [199] and topic discovery in unlabeled datasets and has found wide usage in

cancer subtype detection, blind source separation, text mining and image recognition

[200]. Commonly used spectroscopic techniques produce multi-dimensional datasets

providing multi-view information of the chemical samples being processed. In the

realm of physically meaningful spectral interpretations based on Beer Lambert’s law,

these multi-dimensional datasets can be viewed as a linear mixing of weights (inter-

preted as concentrations) and reduced number of basis factors (interpreted as spectra

of pseudocomponents); the linear unmixing of which is done using NMF [198]. As a

blind source separation technique, it has been used to estimate spectra of reactant

mixtures, whereby the inverse problem in chemical reactions which involves the pro-

filing of spectra of reaction intermediates in the absence of pure component spectra is

overcome [201]. NMF has also shown to be a promising tool to resolve mixed chemical

signals of complex mixtures with a high degree of overlap as compared to traditional

iterative and non-iterative spectral curve resolution techniques [202]. There is also

evidence of using NMF for the time resolution of Raman spectra to fit kinetic mod-

els from information of the molecular structure of individual species encoded in the

spectra of the latent factors [203].
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Constrained NMF has a non-convex objective leading to a local optimum that leads

to non-unique solutions, which is overcome by incorporating smoothness and sparsity

constraints along with non-negativity for the case of hyperspectral unmixing [204].

An improvement in the uniqueness and performance of a typically unsupervised NMF

algorithm used for clustering was observed by incorporating graph regularization to

embed prior knowledge of geometrical structure and local invariance of the features in

going from a higher to lower dimensional space [205]. Commonly used spectroscopic

techniques produce multi-dimensional datasets providing multi-view information of

the chemical samples being processed [82]. Our approach proposes to use multi-view

spectral sensor data to incorporate graph regularization to limit solution ambiguity

[195] while jointly factorizing data from multiple spectral sensors to obtain latent

factors constrained to be non-negative. The graph regularization term which has

been used in the semi-supervised NMF approach points to the following [206]: a)

manifold regularization so that the low dimensional space (latent factor) of each view

has similar geometrical structure to the high dimensional space of that view, b) co-

regularization for the geometric similarity of the latent factors across views with the

high-dimenisonal spaces across views. The geometric structure in graph regulariza-

tion can be determined using metrics like 0-1 weighting, heat kernel weighting or

dot product weighting, which (for a normalized quantity) provides the cosine simi-

larity metric [207]. In this work, the dot product weighting of normalized spectral

absorbances from each sensor and across both sensors is used as a metric to encode

intraview similarity among spectral channels from each of the sensors and interview

similarity among spectral channels across both sensors in going from raw data space

to latent factor space. NMF with regularization has been applied to semi-supervised

clustering [205, 207], with a recent extension of jointly using multiple measurements

from similar sensors for the same [206]. Hence, our approach proposes NMF to inte-

grate multi-view information, i.e. JNMF of spectral data from different or dissimilar

sensors, while incorporating knowledge of the views as regularization terms to limit
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ambiguity in spectral deconvolution.

Heterogeneous data mined by data fusion based on simultaneous matrix factoriza-

tion to reveal the hidden underlying representations has been implemented in com-

putational biology [208, 209]. Fusion of heterogenous data that are complementary,

such as genomics and proteomics data, is seen to increase the predictive performance

and robustness of models [209]. Data fusion methods can be broadly classified based

on the stage at which the fusion is performed [208, 210]: (a) Early Fusion: Sequen-

tial concatenation of data by neglecting the modularity, (b) Late fusion: Fusing the

prediction model results obtained from each data source separately (It is not triv-

ial to retrace the separate contribution of sources when the final model is used for

inference), and (c) Intermediate fusion: Fusion propagated by features of each inde-

pendent data source, [83, 84] making the structure of the predictive model robust.

A popular algorithm to implement intermediate fusion is constrained simultaneous

matrix factorization [208], which is tantamount to multi-view JNMF.

Recently, JNMF was used for data fusion of multi-view gene interaction network

data with sparse penalty regularization constraints [83] . Adaptive JNMF, with dif-

ferent user-defined weights for the NMF of data modalities in each view, was used

for the fusion of genomics and proteomics data to build clinical predictive models

[209]. Diverse-JNMF was used to penalize redundancy in the fusion of multi-view

data by using an orthogonality regularizer between the multi-view basis factors [211].

Weighted-NMF, where missing values are imputed by zero, [212] and Robust-NMF,

where the objective function is based on minimizing the L21 loss function to robustly

deal with outliers and noise [213], are other variants of NMF that are proposed to

be extended to multi-view data for JNMF in this work. The L21 norm is a row-wise

rotationally invariant L1 norm, as it is computed by adding the row-wise L2 norms.

Hence, the use of such a norm for the loss function is seen to diminish the influence

of noise and outliers.

Evidence of stage-based fusion of FTIR, 1H-NMR and Raman spectroscopic data
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having resulted in better crude characterization [82], has motivated us to develop a

more robust intermediate fusion algorithm for integrating multi-view spectral data to

build models for hypothesis generation of chemical pathways. Since NMF has the ad-

vantage of being an interpretable factor decomposition method, utilizes optimization

based matrix computation routines for its solution and has a scalable formulation

for large-scale problems, this work focuses on using it as a semi-supervised technique

for the soft clustering of multiview spectral data into basis factors of the underlying

latent objects weighted by a common parts-based matrix across all views. The main

contributions of this paper are as follows:

1. JNMF is implemented as a data fusion algorithm for factorizing FTIR and

1H-NMR spectral data that is robust to outliers, handles missing values, favors

sparse latent factors and incorporates graph regularization to limit solution am-

biguity by penalizing redundancy and overfitting of latent factors from different

spectral sensors.

2. A projected optimal step gradient-based algorithm is developed to solve the

JNMF formulation. It has sound convergence properties in comparison with

other typically used iterative update rules like multiplicative update rules (MUR)

and alternating least squares (ALS) [214, 215].

3. The latent structure information obtained from JNMF is used to build proba-

bilistic graphical models using Bayesian networks to hypothesize the chemical

pathways among the components of the latent factors, which in the physical

sense correspond to chemically similar compound signatures, i.e. pseudocompo-

nents, and mathematically correspond to the rank of the matrix from a spectral

data view.

The paper is structured as follows: Section 3.2 outlines the proposed framework

which includes formulation of the JNMF objective (Section 3.2.1), ascertaining the
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number of species using rank determination (Section 3.2.2), algorithms to solve the

JNMF objective (Section 3.2.3) and structure learning using Bayesian networks (Sec-

tion 3.2.4). Section 5.4 discusses the the resulting hypothesized reaction pathways.

Section 3.3.7 discusses incorporating correlation among spectral channels within and

across spectral sensors as regularization terms in JNMF and its impact on the hy-

pothesized pathways. Finally, Section 3.4 summarizes the work presented in the paper

and highlights avenues for future work.

3.2 Methods

Figure 3.1: Schematic representation of the methods used to generate reaction hy-
potheses from spectral data and map it to real chemistry.

This work focuses on using JNMF as a data fusion projection-based method to

jointly extract information from more than one spectral sensor to obtain latent fea-

ture representations which are referred to as the pseudocomponent spectra. The

pseudocomponent spectra contain key molecular signatures of the dominant under-

lying compound classes, which are identified using expert knowledge. Hypotheses

about the transitional pathways among the identified compound classes arise from

learning the causal maps among the pseudocomponent spectra using Bayesian net-
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works. These hypotheses then act as a basis to build a map to real chemistry using

domain knowledge. A flowsheet that contextualizes the methods in the grand scheme

of using spectral data to generate reaction hypotheses that are mapped to real chem-

istry using domain knowledge is shown in Figure 3.1.

3.2.1 Formulation of the objective function for JNMF

The constrained joint bilinear decomposition of the data blocks Xi according to the

physically meaningful Beer Lambert law results in the commonly held matrix W,

which is the concentration of pseudocomponents across the process conditions, and

Hi, which is the absorbance spectra of the pseudocomponents. The number of pseu-

docomponents is determined as the minumum of the rank of individual data matrices

using empirical measures of rank determination.

min
W,H1,H2≥0

F (W,H1, H2) =
∑︂
i=1,2

||Xi −WHi||2F (3.1)

Equation 3.1 is tantamount to the minimization of the following trace:

min
W,H1,H2≥0

F (W,H1, H2) = Tr
[︁ ∑︂
i=1,2

(Xi −WHi)(Xi −WHi)
T
]︁

(3.2)

The simplest formulation of JNMF is shown by minimizing the objective function

shown in Eqn. 3.1. The use of an L2 norm in the objective function minimization

is not robust to outliers as the outliers may drive F (W,H1, H2) to undesirably large

values. Hence, it is suggested to reformulate the objective function to minimize the

L21 norm of the error, so that it is robust to outliers. The L21 norm of a matrix Am×n

is:

||A||21 =
n∑︂

i=1

⌜⃓⃓⎷ m∑︂
j=1

A2
ji (3.3)

Hence, Eqn. 3.1 translates to
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min
W,H1,H2≥0

F (W,H1, H2) =
∑︂
i=1,2

||Xi −WHi||21 (3.4)

Just like Eqn.3.2, Eqn.3.4 is equivalent to the minimization of a trace that is scaled

by a diagonal matrix D(X = Xi −WHi) = Di, which is associated with each term

and is defined as:

D(X) =
In×n√︃
m∑︁
i=1

x2
ij

for any Xm×n (3.5)

Hence, the minimization of the L21 norm is equivalent to minimizing the following

scaled traces:

min
W,H1,H2≥0

F (W,H1, H2) = Tr
[︁ ∑︂
i=1,2

(Xi −WHi)Di(Xi −WHi)
T
]︁

(3.6)

Additionally, the missing values in Xi are dealt with by imputing the matrices with

corresponding weighting matrices Pi that weight the missing entries to zero and the

rest to ones. Network regularization constraints that capture the relationship across

the two blocks and within each of the blocks themselves by way of regulating the

factorization using the underlying structure of the matrix cross-covariance and auto-

covariance that are incorporated, besides having terms that regulate the sparsity of

the decision variables W, H1 and H2.

Let X1 n×p1 and X2 n×p2 denote the blocks of FTIR and 1H-NMR measurements,

respectively. The autocovariances RF and RH are calculated as follows, where J is

the notation for a matrix of ones:

RF =

(︁
X1 − Jn×nX1

n

)︁T (︁
X1 − Jn×nX1

n

)︁
n

(3.7)

RH =

(︁
X2 − Jn×nX2

n

)︁T (︁
X2 − Jn×nX2

n

)︁
n

(3.8)
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The cross-covariance RFH between the two blocks is

RFH =

(︁
X1 − Jn×nX1

n

)︁T (︁
X2 − Jn×nX2

n

)︁
n

(3.9)

Accounting for this in the scheme of JNMF leads to the minimization of the fol-

lowing objective, making it a Weighted Robust JNMF with network regularization

and sparsity constraints:

min
W,H1,H2≥0

F (W,H1, H2) =
∑︂
i=1,2

Pi||Xi −WHi||21 + α||H1RFHH
T
2 ||21

+ β||H1RFH
T
1 + H2RHH

T
2 ||21 + γ||W ||21 + λ||H1||21 + λ||H2||21

(3.10)

Reformulating the above equation in terms of the minimization of the trace of

scaled L21 norms gives

min
W,H1,H2≥0

F (W,H1, H2) = Tr
[︁ ∑︂
i=1,2

Pi(Xi −WHi)Di(Pi(Xi −WHi))
T

+ α(H1RFHH
T
2 )D3(H1RFHH

T
2 )

T

+ β{(H1RFH
T
1 )D4(H1RFH

T
1 )

T
+ (H2RHH

T
2 )D5(H2RHH

T
2 )

T}

+ γWD6W
T + λ{H1D7H

T
1 + H2D8H

T
2 }

]︁
(3.11)

where Di=1,2···8 corresponds to the diagonal scaling matrix evaluated using Eqn.C.5

for each term in the objective function.

3.2.2 Rank determination

The determination of the number of components/sources whose spectral signatures

are mixed in proportion to their concentrations resulting in the measured spectral

absorbances is a crucial step in MCR [216]. In an ideal scenario, where each chemical

component makes a noise-free contribution to the data matrix, the number of prin-

cipal factors equals the chemical rank (r). However, the practical determination is

difficult due to the co-existence of instrumental factors and experimental noise [148].

The multitude of methods that have been developed to determine the number of prin-

cipal factors can be broadly classified into : empirical, mathematical and statistical
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methods [148]. A number of empirical and statistical methods have been reviewed

[217], both for the prediction of rank when there is no prior assumption of noise, and

for rank predictions when prior assumptions of noise are made using empirical indi-

cator functions that are combined with a NIPALS (non-linear iterative partial least

squares) routine to automate the prediction process. PCA was used to reduce the

measured data to contain information relevant to the system, based on [33], where it

was proved that the error associated with a dataset stems from the extracted error

(contained within the minor PC dimensions r + 1, r + 2, · · ·m) and the imbedded

error (contained in the r PCs) and can never completely be removed from the data.

Decomposition of data (D) into an orthonormal basis set where Dm×n contains m

recorded spectra as rows, each digitized into n points, results in Tm×k and P T
n×k : the

score and loading matrix, respectively. The complete set of scores and loadings, i.e.

with k = n, captures both the system variation and experimental noise. Hence, a

number of metrics based on PCA [217–219] are used to separate the (k = r < n)

eigenvectors that account for the systematic variations (imbedded error + variation

in data) from those corresponding to noise (extracted error) in the leftover PCs; of

which the Ratio of Derivatives based on Malinowski’s indicator function is used to

determine rank in this work.

D = Tm×rP
T
n×r + Em×n = D̂ + Em×n (3.12)

Equation 3.13 indicates the computation of the eigenvalues of the kth principal com-

ponent as the sum of squares of the scores. Equation 3.14 computes the residual

standard deviation (RSD) in terms of the eigenvalues of the remaining principal com-

ponents normalized by their degree of freedom, which is then used to compute the

imbedded error (IE) in Eqn. 3.15 in terms of which the Malinowski’s indicator func-

tion is defined (Eqn. 3.16). The indicator function is used to define an empirical

metric called the Ratio of Derivatives (ROD) indicated by Eqn. 3.17, an extrema in

whose profile at a certain k number of components helps determine the rank.
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q = min(n,m)

EVk = gk =
m∑︂
i=1

t2ki,where k=1, 2 · · · q (3.13)

RSD(k) =
k

n

⌜⃓⃓⃓
⎷ q∑︁

j=k+1

gj

m(q − 1)
(3.14)

IE(k) =

√︃
k

n
RSD(k) (3.15)

IND(k) =
n IE(k)2

k(q − k)2
(3.16)

ROD(k) =
IND(k-1)-IND(k)

IND(k)-IND(k+1)
(3.17)

3.2.3 Algorithms to solve the Joint Non-negative Matrix Fac-
torization Formulation

Multiplicative Update Rule

The multiplicative update rule algorithm [220] is a popular method for non-negative

matrix factorization to find useful basis information of non-negative data by min-

imizing the Euclidean distance between approximate and true values, subject to

constraints. Though it was shown that the non-convex objective function is non-

decreasing [220], it was later proved that the decision variables converge to a station-

ary point with a slight modification [215], a condition that is vital to guarantee the

local minima.

This works focuses on the extension of the modified algorithm of the MUR to obtain

solutions to the optimization problem of Eqn. 3.1. The gradients of the function are

computed as follows:
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∇FW =
∑︂
i=1,2

Pi(WHi −Xi)DiH
T
i + γWD6 (3.18)

∇FH1 = W TP1(WH1 −X1)D1 + αH1RFHH
T
2 D3H2R

T
FH (3.19)

+βH1RFH
T
1 D4H1RF + λH1D7

∇FH2 = W TP2(WH2 −X2)D2 + αH1RFHH
T
2 D3H1RFH (3.20)

+βH2RHH
T
2 D5H2RH + λH2D8

The gradients given in Eqn. 3.18 are used to compute the modified step-sizes that

are used in the MUR updates as outlined in Algorithm 1:

Algorithm 1 (Multiplicative Update Rule) Input: Initialize decision variables

{ W 0, H0
i }

Output: W, Hi that solves min
W,Hi

F (W,Hi)∀i = 1, 2 to specified tolerance

Data: Spectral data matrices Xi

While |Fk+1−Fk

Fk+1−F 0 | ≥ 10−6

Direction of descent: Compute ∇WF (W k, Hk
i ),∇Hi

F (W k, Hk
i )

Compute Modified step size:

ηW =
W̄∑︁

i=1,2 W̄HiHT
i + δ

W̄=

{︄
W ∇FW (W,H1,H2) ≥0;
max(W,σ) ∇FW (W,H1,H2) <0.

ηHi
=

Hi
¯

W TWHi
¯ + δ

Hi
¯ =

{︄
Hi ∇FHi

(W,H1,H2) ≥0;
max(Hi,σ) ∇FHi

(W,H1,H2) <0.

Update:

W k+1 = W k − ηkW∇F k
W

Hk+1
i = Hk

i − ηkHi
∇F k

Hi
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Since NMF is a non-convex optimization problem, the quality of the solution de-

pends on the initialization of the factor matrices [221]. Either NMF with random

initializatons is run a number of times and the best run is selected based on the cri-

terion of lowest Frobenius residual error, i.e. the least value of the objective function

to ensure robust and reproducible NMF results, or SVD- based initializations are

used [222]. For JNMF using MUR on the normalized FTIR and 1H-NMR data, the

Non-negative Double Singular Value Decomposition (NNDSVD) technique is used to

initialize the decision variables.

Projected Optimal Gradient approach to JNMF

Solving bound-constrained optimization problems using projected gradients with re-

spect to NMF has been investigated in the literature [223]. Projected gradient meth-

ods are shown to converge faster than MUR and have sounder optimization properties

[214]. This work seeks to improve the typical project gradient algorithm by using an

optimal step size which is updated on each iteration, with application to joint matrix

factorization.

The objective function to be minimized is given in Eqn. 3.11. The computation of

the gradients given in Eqn. 3.18 is used in the projected optimal gradient algorithm:

Algorithm 2 (Projected Optimal Gradient Algorithm) Input: Initialize de-

cision variables x={ W 0, H0
i }

Output: x that solves min
x

f(x) to specified tolerance

Data: Spectral data matrices Xi

While: |fk+1−fk

fk+1−f0 | ≥ 10−6

Direction of descent: −∇xf(xk)

Optimal step size: ηkx= arg min
η

f(x− η∇xf)

Update: xk+1 = xk − ηkx∇xf(xk)

Projection: xk+1 = max(xk+1, ϵ),where ϵ = 10−6
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3.2.4 Bayesian Networks

Generating causal structures from the experimental data in the framework of pairwise

conditional independence tests between the process variables [224] or causal Bayesian

networks constructed on a Markov assumption has facilitated the advanced reason-

ing of molecular processes in systems biology [225, 226]. Translating the information

from chemometric models into knowledge of real chemistry using databases or expert

systems that map properties and activities deduced from algorithms to predict can-

didate molecular structures forms the basis of QSAR/QSPR (Quantitative Structure

Activity Relationship/ Quantitative Structure Property Relationship) [227]. The cur-

rent state-of-the-art methods for the reaction network representation largely rely on

encoding prior knowledge and the use of databases : manually encoding reaction rules

that generate reaction networks among reactants and products using the Rule Input

Network Generator (RING) algorithm, [38] or High Throughput Reaction Predic-

tion (HTRP), which uses link predictions for binary reactions in multi-modal graphs

whose feasibility is evaluated using filters implemented by using the Tanimoto simi-

larity score of fingerprints at each reaction node [41]. Hence, there is an imperative

need to develop data-driven causal methods [228] to generate hypotheses on reaction

networks of complex chemical processes, in the absence of prior knowledge of the

process composition or physicochemical/kinetic models, to develop an understanding

of molecular-level mechanisms. An attempt in this direction has been made in the

current work that focuses on using a data fusion algorithm to extract spectral signa-

tures of the underlying pseudocomponents from heterogeneous measurements before

using causal methods to hypothesize their reaction chemistry.

Bayesian networks are a mathematically coherent framework for encoding causal

relations as probabilistic graphical models in complex systems [229] as they are ro-

bust to handling missing data, combining data with domain knowledge and avoid

overfitting [230], thereby resulting in good prediction accuracy in high dimensional
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space with fewer samples. They can also be used to build models from noisy ex-

perimental data [225]. Bayesian networks consist of nodes of random variables with

directed acyclic links among them in accordance with the conditional Markov assump-

tion [231]. Beliefs about the values of random variables are described as probability

distributions.

Working with Bayesian networks is a two-step process:

1. Learning the structure of the network that encodes the conditional independence

of the random variables represented by the nodes using either score-based or

constraint-based methods so that the joint factorization of the directed acyclic

graph (DAG) can be expressed as:

P (X1, X2 · · ·XN) =
N∏︂
i=1

P (Xi|PaXi
) (3.21)

2. Estimation of the parameters of the joint factorization of the conditional prob-

ability distribution model of the Bayesian networks from data using an EM

algorithm [232] by iteratively calculating the MLE for each of the parameters.

Most analysis tools for building causal maps from experimental data are based on

clustering algorithms, where groups of entities that have similar expression patterns

over a set of experiments are grouped together [193, 225]. In this work, a data fusion

algorithm of joint non-negative matrix factorization has been used to identify the

spectral signatures of the pseudocomponents. The random variables that comprise

absorbance intensities across both measurement techniques of similar compounds are

assumed to follow a multinomial distribution with a Dirichlet conjugate prior, as is

typically the case with experimental data that is noisy or incomplete [229, 233].

Assume D = {X1, X2 · · ·XN} comprises multinominal data which has the following

distribution:

P (Xi = x|θ) = θi,where i = 1, 2 · · ·N (3.22)
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Equation 3.22 can be used to construct the likelihood function P (Dk|θ) as a product

of the probabilities of the mutually independent random variables that encompass

the data. Here, the parameters are θ = {θ2, θ3 · · · θN}, where θ1 = 1 −
∑︁

θi are the

parameters that correspond to the physical probabilities of the random variables that

have a Dirichlet distribution

P (θ|β) = Dir(θ|β1, β2 · · · βN) =

Γ(
N∑︁
i=1

βi)

N∏︁
i=1

Γ(βi)

N∏︂
i=1

θβi−1
i (3.23)

βi represents a non-negative vector of scaling coefficients referred to as the hyper-

parameters of the distribution.

The next step involves algorithms to learn a structure among the nodes (ran-

dom variables) that encode a probabilistic causal map between clusters of similar

wavenumbers that represent a class of pseudocomponents and their chemical inter-

actions during the partial upgrading process, facilitating the generation of reaction

hypotheses.

There are three approaches to learning the structure among the nodes [234] : 1)

Constraint-based : relying on pairwise conditional independence tests between the

random variables [235], which are typically unreliable in high dimensional variable

space, 2) Score-based : involving the use of a scoring function that evaluates how well

a structure represents the data, which happens to be NP hard as Bayesian networks

with N nodes have 2O(n)2 possible structures, making it intractable to score all of

them to choose the best one; hence, greedy search methods are used to find the best

structure[193, 234], and 3) Bayesian model averaging based: involving the use of an

ensemble of possible structures from both the constraint and score-based techniques

and then averaging out the prediction of the ensemble, instead of just relying on

one best structure [234]. Constraint-based methods are sensitive to individual failure

and compromise fit and scalability in the presence of noise [193], which is present
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in experimental data, making score-based methods the preferred choice for structure

learning in this work.

The most commonly used score is the Bayesian Information Criterion (BIC), which

is the posterior probability of a structure given the data, penalized by the the dimen-

sion of the structure to favor sparser networks [225, 236]. The BIC is written in terms

of the log likelihood of the data, given the structure, which in turn can be expressed

in terms of the mutual information and entropy pursuant to the connections among

the nodes.

P (θ|D) =
P (θ)P (D|θ)

P (D)
(3.24)

Equation 3.24 (Bayes theorem) can then be used in conjunction with the prior

distribution to evaluate the log-likelihood function for a certain graph structure which

is computed as given in Eqn. 3.26, in terms of the mutual information (Eqn. 3.27)

and entropy (Eqn. 3.28). The log likelihood is penalized by the dimension of the

graph structure to facilitate sparse networks in the computation of the BIC in Eqn.

3.25

BIC(G,X) = LL(G,X)− log m

2
Dim(G) (3.25)

LL(G,X) = m
∑︂
i

I(Xi; PaXi
)−m

∑︂
i

H(Xi) (3.26)

I(Xi; PaXi
) =

∑︂
Xi

∑︂
PaXi

P(Xi,PaXi
) log

P(Xi,PaXi
)

P(Xi)P(PaXi
)

(3.27)

H(Xi) = −
∑︂
Xi

P( Xi) log(P(Xi)) (3.28)

The algorithms that are typically used to find suitable structural connections to

maximize the BIC include Hill climbing [237], Tabu search [238], Maximum mini-

mum hill climbing [239, 240] , simulated annealing and genetic algorithms [234]. Hill

climbing involves making locally optimum search iterations with random restarts,
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while Tabu search is primarily the same except that it involves penalties on the re-

versal and repetition of selected moves. MMHC, on the other hand, is a hybrid

algorithm that combines constraint-based and score-based methods. Since there is no

guarantee that any one of these algorithms by themselves could give a structure that

maximizes the BIC over an intractable search space of a large number of structures,

Bayesian networks are constructed using all the algorithms separately. The belief in

a structure is reinforced when more than one of these algorithms return an identical

result.

In addition to learning the graph structure among nodes, the strength of the con-

nections calculated based on mutual information (Eqn. 3.27), can be used to generate

explanations for reasoning in Bayesian networks. The arc weights are computed as

the link strength (LS) along the directional edge between two nodes as the mutual

information between the nodes conditioned on the joint distribution of all the other

parent nodes:

LS(X → Y ) = I(X, Y |PaY−{X}) (3.29)

Eqn. 3.29 can be interpreted as the decrease in the uncertainty of a random variable

(node) given its parent, conditioned on the joint probability of all its other parent

nodes.

3.3 Results and Discussion

3.3.1 Origin of datasets

The spectroscopic data used in this study were obtained from the experimental in-

vestigation of the low temperature thermal cracking of Cold Lake bitumen [196, 197].

Samples of bitumen from the Cold Lake region in Alberta were thermally converted

with varying durations of reaction time between 0-8 hours, spanning a range of tem-

peratures between 150◦C and 400◦C in pressurized micro-batch reactors flushed with

nitrogen. The liquid products obtained after conversion were employed to obtain
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spectral measurements. Of relevance to the interpretation of the spectral data is that

some products may have contained residual solvent, methylene chloride (CH2Cl2).

Fourier transform infrared (FTIR) spectroscopic analysis were carried out in an

ABB MB3000 equipped with a MIRacle™ Reflection Attenuated Total Reflectance

(ATR) diamond crystal plate and pressure clamp. The infrared spectrometer used a

deuterated triglycine sulfate (DTGS) detector. The spectra were obtained at a reso-

lution of 2 cm−1 as the average of 120 scans over the spectral region 4000-600 cm−1.

1H-NMR spectra were obtained in a Nanalysis 60 MHz NMReady - 60 spectrometer.

The equipment was pre-calibrated with deuterated chloroform. For the analysis, 0.15

g of the sample were dissolved in 0.7 µL deuterated chloroform and placed in NMR

tubes. The 1H-NMR analyses were performed using the following conditions: 0-12

ppm; number of scans for sample: 32; 14.7 seconds was the average scan time and

4096 points were recorded per scan. A total of 42 FTIR and 32 1H-NMR spectra were

collected, in addition to the measurement at 20◦C and 0 min reaction time that was

used for the purpose of baseline correction; these have been reported in Table B.1.

3.3.2 Treatment of datasets

The data obtained from the spectral sensors as outlined above have been used to

evaluate the performance of JNMF as a data fusion algorithm to generate latent rep-

resentations among which Bayesian networks are constructed to arrive at chemically

meaningful reaction hypotheses. It is assumed that the samples are reacted over in-

creasing intervals of residence times between 1 and 8 hrs at 7 different temperatures

(Table B.1), leading to a total of 56 process conditions. The lack of both spectral

measurements at any of these process conditions is treated as missing data that is

imputed to zeros in the JNMF framework. The JNMF objective as given in Eqn.

3.11 includes parameters α and β; these are weights assigned to co-regularization

and manifold regularization terms, respectively, while γ, λ are weights assigned for

the sparsity of the shared latent factor W and the unshared latent factors H1 and
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H2, respectively. These weights are not known a priori and a parametric study on

these values is performed with the objective of tuning these values to obtain the least

reconstruction error computed as follows:

E(W,H1, H2) =
∑︂
i=1,2

Pi ∗ ||Xi −WHi||21 (3.30)

It is worthwhile to provide some intuition regarding the regularization terms used

in the objective function. The latent factor matrix H1 = [hT
1,1;h

T
1,2; · · ·hT

1,R] ∈ RR×CF

consists of pseudocomponent signatures in the FTIR space, where CF is the number of

wavenumber channels in FTIR, R is the rank and h1,r ∈ RCF×1 is the FTIR spectrum

of the rth pseudocomponent. Similarly, latent factor matrix H2 = [hT
2,1;h

T
2,2; · · ·hT

2,R] ∈

RR×CH consists of pseudocomponent signatures in the 1H-NMR space. The cosine

similarity matrix between absorbances across wavenumbers and chemical shifts is

given by RFH = [r1F r
2
F · · · r

CH
F ] ∈ RCF×CH , where riF ∈ RCF×1 is the cross-correlation

of absorbances across all FTIR channels with the ith 1H-NMR channel. A qualitative

colormap of the cross-covariance among the spectral channels of the two measurement

sensors is given in Figure 3.2e. It is believed that using either cross-covariance or

cross-correlation would capture structurally identical regions of spectral similarity,

as highlighted in Figure 3.2f, implying that they differ only by numerical scaling.

In the notation used, the first index in the subscript indicates the spectral sensor,

the second index indicates the pseudocomponent and the superscript is the spectral

channel. With this in mind, the co-regularization term H1RFHH
T
2 ∈ RR×R can be

written as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CH∑︁
i=1

hT
1,1r

i
Fh

i
2,1

CH∑︁
i=1

hT
1,1r

i
Fh

i
2,2

CH∑︁
i=1

hT
1,1r

i
Fh

i
2,R

CH∑︁
i=1

hT
1,2r

i
Fh

i
2,1

CH∑︁
i=1

hT
1,Rr

i
Fh

i
2,1

CH∑︁
i=1

hT
1,Rr

i
Fh

i
2,R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.31)
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So, the trace of this co-regularization term that is incorporated into the objective

given in Eqn. 3.10 is the measure of the similarity between the FTIR and 1H-NMR

spectra of a pseudocomponent, which is sought to be minimized for all R pseudocom-

ponents. Using the same intuition, minimizing the trace of the manifold regularization

terms H1RFH
T
1 andH2RHH

T
2 involves reducing the similarity in absorbances across

spectral channels for the R pseudocomponent spectra in FTIR and 1H-NMR space,

respectively. Using the same notation as above, the similarity among absorbances

across wavenumbers from the FTIR sensor is given by RF = [r1F r
2
F · · · r

CF
F ] ∈ RCF×CF

, where riF ∈ RCF×1 is the auto-correlation of absorbances across all the wavenumbers

with the ith wavenumber. Hence the manifold regularization term H1RFH
T
2 ∈ RR×R

can be written as follows and can be similarly deduced for H2RHH
T
2 :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CF∑︁
i=1

hT
1,1r

i
Fh

i
1,1

CF∑︁
i=1

hT
1,1r

i
Fh

i
1,2

CF∑︁
i=1

hT
1,1r

i
Fh

i
1,R

CF∑︁
i=1

hT
1,2r

i
Fh

i
1,1

CF∑︁
i=1

hT
1,Rr

i
Fh

i
1,1

CF∑︁
i=1

hT
1,Rr

i
Fh

i
1,R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.32)

Qualitative colormaps of wavenumber regions that are similar in the FTIR data

are indicated in Figure 3.2a and Figure 3.2b, while those for 1H-NMR are given in

Figure 3.2c and Figure 3.2d. The inter-spectral similarities among wavenumbers and

chemical shifts, across the FTIR and 1H-NMR spectra, are indicated in Figure 3.2e

and Figure 3.2f.

The FTIR and 1H-NMR spectra at intermediate residence times of reaction are

chosen to compute the above correlation matrices using Eqn. 3.7- Eqn. 3.9. The

selected FTIR spectra (150◦C-306 min, 200◦C-246 min,250◦C-246 min, 300◦C-306

min) and 1H-NMR spectra (150◦C-5 min, 200◦C-5 min, 250◦C-5 min, 300◦C-5 min)

are used for the computation.

The highly correlated wavenumber pairs from the FTIR heatmap, i.e. correlation
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(a) Auto-covariance map among FTIR
wavenumbers

(b) Ratio of auto-covariance: autocorre-
lation map for FTIR wavenumbers

(c) Auto-covariance map among
1H-NMR chemical shifts

(d) Ratio of auto-covariance: autocorre-
lation map for 1H-NMR chemical shifts

(e) Cross-covariance map among FTIR-
1HNMR

(f) Ratio of cross-covariance:cross-
correlation map among FTIR-1HNMR

Figure 3.2: Auto-covariance and cross-covariance matrices used to penalize redun-
dancy.

119



> 0.9 are given in Table B.2 of Appendix B. Some of the key correlations are:

1. 764 and 1159 cm−1 indicating meta di-substituted aromatic esters

2. 831 and 1458 cm−1 are likely disubstituted aromatics with sp3 CH bend

3. 3117 and 3194 cm−1 are aromatic sp2 CH stretch

4. 705 and 2962 cm−1 showing aromatic ring bending coexists with a terminal

methyl group

5. 783 and 3058 cm−1 suggested that ortho di-substituted aromatics coexist with

alkenes

6. 686 and 1757 cm−1 indicated aromatic esters and/or with aromatic anhydrides

The highly correlated pairs of chemical shifts from the 1H-NMR heatmap i.e. cor-

relation > 0.9 are given in Table B.4 of the Appendix. Some of the key correlations

are:

1. 0.79 with 0.87 ppm, 0.79 with 0.95 ppm: self-correlated terminal R-CH3 methyl

groups

2. 0.91 with 1.28 ppm : R-CH2-CH3

3. 1.81 with 6.16 ppm, 2.25 with 6.28 ppm : ortho di-substituted alkene aromatics

4. 1.12 with 7.59 ppm : aromatics with aliphatic side chains

5. 1.97 with 7.75 ppm, 1.93 with 7.79 ppm, 6.61 with 7.79 ppm, 7.67 with 7.83

ppm, 7.83 with 7.91 ppm : self correlated aromatics

The highly correlated pairs of wavenumbers and chemical shifts from the FTIR

and 1H-NMR heatmap, i.e. correlation > 0.7 are given in Table B.6 of the Appendix.

Some of the key observed correlations are:
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1. 1595 cm−1 with 2.29 ppm: Benzylic proton exists with an aromatic C=C stretch

2. 2883 cm−1 with 2.29 ppm: Benzylic proton with a methylene group

3. 889 cm−1 with 2.3 ppm: meta di-substituted aromatic with benzylic proton

4. 2362 cm−1 with 0.956 ppm: thiol/methyl with terminal methyl

5. 2864 cm−1 with 1.32 ppm: both represent methylene CH2 stretch in the middle

of an aliphatic chain

6. 1236 cm−1 with 5.269 ppm: phenylic alcohol or CH from methylene chloride

exists with the solvent peak

7. 1379 cm−1 with 5.2 ppm: sp3 CH bend/ aliphatic CH peak/ methylene content

of bitumen which correlates to methylene chloride used as a solvent

8. 1224 cm−1 with 7.26 ppm: phenols correlate with aromatics

9. 746 cm−1 with 7.42 ppm: ortho di-substituted aromatics correlate with aromat-

ics

10. 2887 cm−1 with 6.5 ppm: aromatics with side chains

11. 2925 cm−1 with 6.69 ppm: methylene CH

12. 2941 cm−1 with 7.06 ppm: benzylic aromatic ie terminal CH3 with aromatics

13. 865 cm−1 with 7.58 ppm: para di-substituted aromatics

14. 746 cm−1 with 7.75 ppm: ortho di-substituted aromatics

The rank-based metric based on SVD provides the number of components ac-

counting for most of the variance in the data, which is used as a parameter in the

regularized JNMF decomposition. Depending on the weight assigned to the regular-

izers, they act as a sieve by rendering the latent components with structural simi-

larities from the original space, facilitating meaningful decomposition. The JNMF
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objective given in Eqn. 3.11 uses co-regularization to limit the similarity between

different spectral sensors of a pseudocomponent and the manifold regularization term

to limit the similarity among spectral channels of each sensor for a pseudocom-

ponent. An extensive parametric study was performed to ascertain a reasonable

weighting of the regularizers in JNMF while not only seeking to minimize the re-

construction loss and limit overfitting but to also result in chemically meaningful

latent spectra. For the co-regularization weight (α) spanning a varied order of mag-

nitude [0, 10−3, 10−2, 10−1, 1, 10, 100, 1000] ∈ W , the values of the other regularization

weights (β, γ, λ)∈ W resulting in the least reconstruction errors are presented in Table

3.1:

Table 3.1: Parameter values that yield least reconstruction error*

α β γ λ
0 0 10−2 10−2

10−3 0 0 10−1

10−2 0 10−1 10−2

10−1 0 10−3 10−1

1 0 0 1
10 0 10−1 0
102 0 10−2 1
103 0 10−3 10

*α and β are weights of the inter-sensor co-regularization and the intra-spectral manifold regularization terms respectively, while γ
and λ are weights of the sparsity regularization terms for the shared concentration (W) and the unshared pseudo-component spectra

(Hi) respectively.

It can be seen that for any combination of parameter weights, the least recon-

struction error is obtained for β = 0, implying that minimizing similarly correlated

absorbance peaks among wavenumbers/ chemical shifts does not result in chemically

meaningful pseudocomponent spectra. This makes chemical sense, because different

classes of organic compounds would still share common properties related to hydro-

carbon structure. For example, a phenol, alkyl aromatic and aromatic ester would all

have spectral data that include aromatic C-H.

A tuning curve that depicts the effect of α on reconstruction error based on the

above table is shown in Figure 3.3. It can be seen from the figure that the reconstruc-

tion error has the least value for β = 0, α = 0, which is a trivial case of deconvolution

122



without including the regularizers, leading to overfitting that is undesirable. Regu-

larizers are necessary at the expense of reconstruction error to result in chemically

meaningful deconvolution, to limit overfitting and to improve the uniqueness of NMF

as discussed earlier [204].

Figure 3.3: Least reconstruction errors over different α values

Keeping this tradeoff in mind, the chosen set of parameters is highlighted in Table

3.1. For values of α ≥ 10 the reconstruction error increases, so it is undesirable,

and it is preferred to pick α ≤ 1, where the other regularizers are also preferentially

weighted and the reconstruction error is not too high. The results of the parametric

studies for the chosen α are discussed in Section 3.3.4, while the rest are included in

the SI.

3.3.3 Comparison of convergence i.e. Multiplicative Update
Rules (MUR) vs Projected Optimal Gradient (POpt-
Grad) Algorithm

A comparison in the performance of the Multiplicative Update Rule (Algorithm 1)

and the Projected Optimal Gradient (Algorithm 2), in solving the JNMF objective

as given in Eqn. 3.11 using the regularization weights chosen from Table 3.1 on the

basis of the tuning curve in Figure 3.3, is illustrated in this section.
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Figure 3.4: Comparison of the convergence of MUR vs Projected Optimal Gradient
algorithms

It can be seen from Figure 3.4 that the projected optimal gradient approach to

solving the JNMF objective converges faster as compared to the MUR which does

not converge to a tolerance of 10−6 within 5000 iterations. Since the JNMF objective

function is non-convex , it it crucial to have an algorithm that has sound convergence

properties that guarantees the stationarity of the local minima indicated by the de-

cision variables. MUR was found to be lacking in the above. The variants of the

projected gradient approach stem from the step size, which could be either set to be

constant, obtained by using the Armijo rule, or explicity optimizing for the step size

in each iteration [214]. The latter, though expensive to optimize, is shown to be an

improved variant of the projected gradient approach that is directly applied to NMF

with a proof of convergence [214]. Hence, it was extended to be applied directly to

solve the JNMF objective in this paper, thereby hastening the convergence of the

algorithm in comparison to MUR, which does not converge at the specified tolerance.
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3.3.4 Spectral profiles and pseudo-reaction hypotheses based
on regularized JNMF

This section includes a detailed discussion on the pseudo-spectral profiles obtained

from the JNMF algorithm, using the values of α = 10−1, β = 0, γ = 10−3, λ = 10−1 for

the weights on the basis of the tuning curve. The isocontours for low reconstruction

error for the value of α = 10−1 across weights of the other parameters (β, γ, λ) ∈

[0, 10−3, 10−2, 10−1, 1, 10, 100, 1000], is indicated in Figure 3.5. The contours in Figure

3.5e indicate low reconstruction error that is achieved across many more combinations

of sparsity weights (γ, λ) for β = 0, of which γ = 10−3, λ = 10−1 result in the least

reconstruction loss. The pseudo-component spectra and the resulting causal pathways

over a range of α ∈ W , for specific sparsity weights at β = 0 (from the contour plots),

is outlined in the Appendix between sections B.3 and B.9.

The Bayesian networks in Figure 3.7 that are constructed with the pseudo-spectra

represented in Figure 3.6b as the nodes, have provided interpretable chemistry using

expert knowledge, which is discussed in detail. The pseudocomponent concentrations

over hourly increasing periods of residence times between 0 and 8 hours, across the 7

temperatures is indicated over the resulting 56 process conditions in Figure 3.6a.

From the spectral signatures given in Figure 3.6b, it can be seen that strong ab-

sorption peaks at 2950 cm−1, 2920 cm−1, 2850 cm−1 indicating sp3 C-H stretching

are present in all profiles, alongside peaks at 1380 cm−1, 1450 cm−1 typical of C-H

bending vibrations. Besides these peaks that are common to all PCs, it can be seen

in PC1 contains peaks at 740 cm−1, corresponding to aromatic hydrogen that is cou-

pled with a peak at 1583 cm−1 corresponding to an inherently weak C=C stretch,

indicating that PC1 primarily constitutes ortho-substituted aromatics. Likewise for

PC2, a peak at 808 cm−1 indicates that it is comprised of meta-substituted aromatics,

and PC3 has a peak at 1720 cm−1 coupled with one at 1219 cm−1, indicating that it

is composed prominently of esters. This information is used to construct candidate

molecules representative of each PC (as given in Figure C.10) and present a plausi-
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(a) β = 10−3 (b) β = 10−2

(c) β = 10−1 (d) β = 100

(e) β = 0 (f) β = 101

(g) β = 102 (h) β = 103

Figure 3.5: Isocontours for reconstruction error E ≤ 200 for α = 10−1.
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(a) Concentration profiles

(b) Pseudo-component spectra

Figure 3.6: JNMF profiles for α = 10−1, β = 0, γ = 10−3, λ = 10−1.

ble interpretation of the reaction chemistry (i.e. pathways) encoded in the Bayesian

network of Figure 3.7.

Bitumen has an abundance of free radicals [241]. Hence, given an ortho-substituted

aromatic compound (1 in Figure C.10) [242], there is a transfer of free radical hy-

drogens from the naphthenic ring to other species present in the bitumen. Hydrogen

transfer is known to occur even at 150 °C [242], the lowest temperature for which

data was included in this study. The transfer of hydrogen leads to the formation of
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Figure 3.7: Bayesian networks constructed from the PC spectra

Figure 3.8: Reaction pathways hypothesized from pseudocomponent signatures using
domain knowledge.
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an aromatic from the naphthenic ring (2 in Figure C.10). In this specific example, the

naphthenic ring had meta-substitution (2 in Figure C.10), which was subsequently

reflected in the meta-substitution of the aromatic formed by hydrogen transfer. The

appearance of aromatic meta-substitution could therefore be explained in terms of

hydrogen transfer rather than isomerization. The -OH groups then combine with

acids (3 in Figure C.10) to eliminate water, resulting in the formation of esters as

a final product (4 and 5 in Figure C.10). This is an equilibrium limited reaction.

Under thermal conversion conditions with sufficiently high temperature to vaporize

most of the water, the formation of the ester is favored. Phenols are more acidic than

naphthenic alcohols, which would have some impact on the esterification reaction, but

otherwise the esterification reaction is not affected by the ring to which the alcohol

is attached.

3.3.5 Impact of JNMF rank relaxation on spectral deconvo-
lution and pseudo-chemistry

This section is based on using the earlier set of regularization weights in the JNMF

algorithm on spectral deconvolution with a higher value of rank. In Section 3.3.4, the

number of pseudocomponents is obtained using the statistical notion of ’rank’ which

has been determined using empirical metrics as discussed in Section 3.2.2, which

could have possibly resulted in the loss of a meaningful chemical signal to what was

statistically considered as noise. This has been investigated by repeating the JNMF of

Section 3.3.4 but successively increasing the rank. It was found that a unit increase in

rank resulted in interpretable causal maps from which meaningful chemical pathways

were predicted using expert knowledge. A further increase in the rank did not yield

chemically meaningful pseudocomponent spectra as it led to noise being assessed as

a chemical signature.

The pseudocomponent concentrations across the 56 process conditions of increas-

ing temperature and residence times is given in Figure 3.9, with the corresponding
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pseudocomponent spectra indicated in Figure 3.10.

Figure 3.9: Concentration profiles of the pseudocomponents across all the process
runs

It can be seen from the pseudocomponent profiles in Figure 3.10 that strong ab-

sorption peaks at 2950 cm−1, 2920 cm−1, 2850 cm−1 pointing to the sp3 C-H stretch

are present alongside peaks at 1380 cm−1, 1450 cm−1 that are typical of C-H bending

vibrations in all the PCs. Also, PC1 has a high intensity peak at 742 cm−1, strongly

indicating the presence of ortho substituents, along with weaker absorption peaks at

808 cm−1, 864 cm−1 that point to meta and para substituted aromatics. Hence, we

may infer that PC1 mainly consists of substituted aromatics.

PC2 has absorption peaks at 1657 cm−1, 817 cm−1 that correspond to the C=C

stretch and C-H bend of olefins. Hence, we may assume that PC2 is primarily olefinic.

PC3 is seen to have a high intensity peaks for orthogonal substitutions at 740 cm−1

that runs alongside a peak at 1607 cm−1 corresponding to the aromatic C=C stretch,

indicating that this pseudocomponent may contain naphthene aromatic compounds

or ortho-substituted aromatics. PC4 exhibits a C=O stretch at 1705 cm−1 along with

a peak at 1219 cm−1 indicative of a C-O stretch, thus enabling us to deduce that this

class of compounds is comprised largely of esters or anhydrides.

Figure 3.11 shows the Bayesian networks obtained using the the pseudocomponent
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Figure 3.10: Pseudo-component spectra obtained by relaxing the JNMF rank using
optimal regularization weights as obtained from the tuning curve.

signatures from Figure 3.10 as nodes.

Figure 3.11: Bayesian networks constructed from the PC spectra obtained with rank
relaxation.

The Bayesian network of Figure 3.11 is consistent with the reaction chemistry

described in Figure C.11.

As in Figure C.10, we use the same type of candidate molecule to represent PC1

(substituted aromatics while discussing chemical pathways shown in Figure C.11). It

can be seen that substituted aromatics thermally crack to form olefins (7 in Figure

C.11), or their -OH groups could also combine with acids (3 in Figure C.11) present
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Figure 3.12: Reaction pathways to indicate conversion paths among substituted aro-
matics, anhydrides and olefins.

to give esters (8 in Figure C.11) that could undergo further cracking to produce a

compound (9 in Figure C.11) that undergoes keto-enol tautomerization to produce

olefinic compounds (10 in Figure C.11). Note that the terminology ’group’ in Figure

C.11 and subsequent figures corresponds to the PC.

We use a different candidate molecular structure (11 in Figure C.12) to represent

PC1 when the substituent to the aromatic ring is naphthenic. Due to the free radical

transfer mechanism [242], a hydrogen disproportionation reaction leads to the forma-

tion of a naphthene aromatic-like compound (12 in Figure C.12). The -OH group
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attached to the aromatic benzene ring could subsequently react with hydrocarbon

acids (3 in Figure C.12) to form esters (13 in Figure C.12).

Figure 3.13: Reaction pathways for conversion paths among substituted aromatics,
naphthene aromatics and anhydrides.

Since the path going from substituted aromatics to naphthene aromatics has the

strongest arc strength (Figure 3.11), another candidate molecule is used to represent

PC1 to highlight the possibility that meta and para substituted aromatics could

convert to ortho-substituted aromatics that show similar peaks as a naphthene ring

attached to an aromatic (Figure C.13).

This is consistent with our analysis of representative compounds of each pseudo-

component upon analyzing their signatures, where we asserted that PC3 indicates

the presence of ortho substitutions, which could either be a napthenic ring as shown

in Figure C.12 or be straight chain substituents in the ortho positions as shown in

Figure C.13.

It should be emphasized that the hypothetical molecular structures shown in Fig-

ures C.11-C.13 are plausible substructures of species commonly found in bitumen

[243]. Although it is unlikely that the specific molecules shown would represent the
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Figure 3.14: Reaction pathways for conversion of meta, para substituted aromatics
to ortho substituted aromatics.

spectral data, the substructures present as part of many different and heavier com-

pounds have the spectral features that make the reaction chemistry related to the

spectroscopic data plausible.

3.3.6 Spectral profiles and chemical pathways using JNMF
with orthogonally weighted manifold regularization

The manifold regularization terms used earlier (H1RFH
T
1 , H2RHH

T
2 ) incorporated an

auto-correlation term that weights similarly correlated spectral channels. In this sec-

tion, we investigate spectral profiles and reaction pathways stemming from the JNMF

pseudocomponent signatures with a modified manifold regularization term where the

spectral channels are asserted to be uncorrelated among themselves (H1IFH
T
1 , H2IHH

T
2 ),

i.e. absorbance at each wavenumber/ chemical shift is perfectly similar to itself and

does not correlate with values across other wavenumbers/chemical shifts; this implies

orthogonality among spectral channels. This translates to replacing RF = IF , RH =

IH which simplifies the manifold regularization term in Eqn. 3.32 to the following

diagonal matrix, minimizing the trace of which is equivalent to favoring sparser rep-

resentations, because of which JNMF is performed with γ = 0, λ = 0.
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⎡⎢⎢⎢⎣
hT
1,1h1,1 0 0

0

0 hT
1,Rh1,R

⎤⎥⎥⎥⎦
The co-regularization term continues to use the cross-correlation among wavenum-

bers and chemical shifts as a weight of similarity. The sparsity regularizers are not

considered in the objective given in Eqn. 3.33, as the use of an identity matrix in

manifold regularization is equivalent to forcing sparsity in the pseudo-spectra.

min
W,H1,H2≥0

F (W,H1, H2) =
∑︂
i=1,2

Pi ∗ ||Xi −WHi||21

+α||H1RFHH
T
2 ||21 + β||H1IFH

T
1 + H2IHH

T
2 ||21

(3.33)

The pseudocomponent concentrations across the 56 process conditions of increasing

temperature and residence times is given in Figure 3.15a, with the corresponding

pseudocomponent spectra indicated in Figure 3.15b.

It can be seen from the pseudocomponent profiles in Figure 3.15b that strong ab-

sorption peaks at 2950 cm−1, 2920 cm−1, 2850 cm−1 pointing to the sp3 C-H stretch

are present alongside peaks at 1380 cm−1, 1450 cm−1 typical of C-H bending vibra-

tions in all the PCs. Besides these peaks, it can be seen that PC1 has prominent

peaks at 740 cm−1, 1724 cm−1 and 1603 cm−1 that correspond to aromatic C-H

bending vibrations with ortho substitutions, leading us to conclude that ortho sub-

stituted phenyl esters are the most appropriate model compounds for PC1. PC2 has

a strong peak at 740 cm−1 indicating that it is mainly comprised of ortho substituted

aromatics or naphthene aromatic compound structures. PC3 has peaks at 1610 cm−1

and 1203 cm−1 that correspond to the C=C aromatic stretch and the phenolic C-O

stretch indicating that this pseudocomponent encompasses phenols and aliphatics.

The Bayesian networks that have been constructed using the pseudo-spectra from

Figure 3.15b using the heuristic score search methods outlined earlier are given in

Figure 3.16.
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(a) Concentration profiles of the pseudocomponents

(b) Pseudo-component spectra

Figure 3.15: Pseudocomponent spectral profiles with orthogonally weighted manifold
regularization, α = 10−2, β = 1

An ortho-substituted phenyl ester (18 in Figure 3.17) is chosen as a candidate

compound for PC1 in the hypothesis of plausible reaction pathways corresponding

to the Bayesian networks of Figure 3.16; the pathways of which are shown in Figure

3.17.

Since the arc strengths of the reactions paths between PC1 → PC2 and PC1 →

PC3 are relatively stronger (Figure 3.16), another model compound, i.e. ortho susb-
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Figure 3.16: Bayesian networks constructed from the PC spectra.

stituted phenyl carboxylate (26 in Figure 3.18) is used to represent PC1, the cracking

of which produces ortho-susbtituted aromatics (28 in Figure 3.18), followed by the

hydrolysis of the by-product, phenyl carboxylate (27 in Figure 3.18), to give phenols

(20 in Figure 3.18) and carboxylic acids (29 in Figure 3.18). This alternate hypothesis

is depicted in Figure 3.18.

3.3.7 Discussion: Impact of the correlation-based regular-
ization in JNMF on the hypothesized reaction mecha-
nisms

The correlations that are found to exist within the FTIR wavenumbers and 1H-NMR

chemical shifts themselves are just another tool to support the possible existence of

the molecules in the proposed reaction chemistries in Sections 3.3.4, 3.3.5 and 3.3.6.

Since FTIR indicates only the presence of functional groups and 1H-NMR indicates

the presence of different types of protons and not the actual molecules, only represen-

tative compounds for each pseudocomponent can be deciphered or proposed. Each

pseudocomponent has its own spectral profile calculated using the JNMF methods

and these intra-spectral and inter-sensor correlations give further evidence of the pres-

ence of a certain type of compound class. In general, FTIR-FTIR correlations are

more useful than NMR-NMR correlations because the type of aromatic substitution
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Figure 3.17: Reaction pathway hypothesis under orthogonal manifold regularization.

is more pronounced in FTIR rather than in 1H-NMR where it is just an overlapped

peak over a range of chemical shifts. The sensitivity of the instrument used was insuf-

ficient to identify ortho-, meta- or para substituted aromatics. Another drawback of

the NMR-NMR correlations was that hydroxyl and phenolic protons could not be in-

dicated separately, whereas they could be identified in FTIR-NMR inter-correlations.

First, let us consider FTIR-FTIR correlations as outlined in Section 3.3.2. It is

important to note that the aromatic bending vibrations for C-H bonds also overlap

with C-H bending absorptions for olefins. But since the concentration of olefins is

lesser than that of aromatics, we focus on the aromatic vibrations in the 690 - 900

cm−1 region. Meta di-substituted aromatic esters are indicated by the correlation be-

tween wavenumbers at 763 and 1159 cm−1, and this is considered as a representative

molecule belonging to group 3 in the reaction chemistry proposed for the first type

of analysis (Section 3.3.4 and Figure C.10). The next correlation indicates sp3 C-H
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Figure 3.18: Alternate reaction hypothesis under orthogonal manifold regularization.

bend along with aromatic sp2 C-H bend, and points towards aromatics with aliphatic

side chains. These types of molecular sub-structures are very common in bitumen

[243] and its cracked products and are presented in Figure C.10, Figure C.11, Figure

C.12, Figure C.13 and Figure 3.17. Aromatic sp2 C-H stretches are weak but their

presence further indicates evidence of aromatics involved in the reactions. Toluene-

like species are indicated by correlation between aromatic ring bending and terminal

methyl groups and are shown to exist in group 2 of Figure C.10 where one of the aro-

matic substituents is a methyl group. The presence of ortho disubstituted aromatics

along with olefinic side chains is clearly indicated in group 2 in Figure C.11. Bitumen

does not contain much olefins, but they can be formed through cracking as it is a free

radical mechanism. However, 1H-NMR evidence suggests that the concentration of

olefins is still low in cracked products, probably due to hydrogen transfer in the liquid

phase. Finally, the correlation between aromatic ring bending and ester/anhydride-

type carbonyl stretches are indicative of the presence of aromatic esters that are final

products in the first two sets of reaction networks (Figure C.10 and Figure C.11,

Figure C.12) and the starting molecule in the third reaction network proposed in this

work (Figure 3.17).

The 1H-NMR correlations between the chemical shifts, as identified in Section
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3.3.2, provide less information on their own than the FTIR correlations because there

is more overlap in the aromatic region. Though the nature of substitution cannot be

deciphered clearly, the correlation between 1.12 and 7.59 ppm indicates the presence of

substituted aromatics. The presence of methyl and methylene groups in aliphatic side

chains are also indicated by the first two correlations. Another interesting correlation

is the one between 1.97 and 7.75 ppm, which points towards the existence of a benzylic

proton. Most of the species in the proposed reaction chemistry have a benzylic proton

which makes this correlation important.

Perhaps the most support for the hypothetical molecules or sub-structures involved

in the proposed reaction networks in this work is provided by the correlations between

FTIR wavenumbers and 1H-NMR chemical shifts. If the R group is longer than 1 car-

bon in Figure C.11, the aromatic ester and phenolic olefin shown in Figure C.11 are

supported by the second correlation indicating a minimum of 1 benzylic proton with

a methylene group. The existence of meta substituted aromatics was already sup-

ported by FTIR-FTIR correlations and is further backed by the correlation with the

benzylic proton shift in the NMR. Aliphatic side chains are an important component

of bitumen cracking feedstock as the phenyl carboxylate shown in Figure 3.18 and

the presence of mid-chain methylene groups is indicated by the correlation of -CH2-

stretch in FTIR around 2864 cm−1 and the methylene proton shift in NMR. They are

also supported by the 10th cross-correlation where NMR gives the shifts for aromatic

protons and FTIR indicates the methylene C-H stretches. For the formation of esters

as final products (as in sections 3.3.4 and 3.3.5), phenolic compounds are probable

starting materials (Figures C.11 and C.12) and phenols can also be formed through

ester decomposition (Figure 3.17). The correlation between C-O stretch at 1224 cm−1

and aromatic shift in NMR clearly supports the involvement of phenols in bitumen

thermal chemistry. ortho disubstituted aromatics that mostly manifest themselves in

the form of naphthene aromatics are probably the most abundant in bitumen feed and

consequently become an important constituent of the reaction network. Their pres-
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ence is indicated by multiple correlations between the aromatic region in the NMR

and C-H bend for ortho disubstituted aromatics in FTIR (correlations 9 and 14).

Certain correlations identified are not captured in the reaction chemistry like the

para-disubstituted aromatics (13th correlation) and the thiol group correlated with

terminal methyl (4th correlation). Nevertheless, the overall significance of the corre-

lations in the proposed reaction networks deduced with the help of Bayesian methods

is profound.

3.4 Conclusions

Robust weighted JNMF with graph regularization has been demonstrated as a seman-

tic meaning-based framework for information fusion from multiple spectral sensors

with an application to extracting pseudocomponent spectra by curve resolution. The

semantic meaning arises from using regularization as a similarity metric to model

the graph structure within and across spectral sensors, while limiting overfitting

and solution ambiguities of JNMF, alongside yielding chemically meaningful pseu-

docomponent spectra with minimal reconstruction loss. The parametric study of the

regularization weights have revealed the intra-spectral regularization term (β) to be

weighted by zero to obtain chemically meaningful pseudocomponent spectra. This is

corroborated by the fact that different organic compounds share similar properties

with respect to their hydrocarbon structure. Hence, minimizing similarly correlated

peaks across spectral channels of a sensor, results in pseudocomponent spectra that

poorly reconstruct the original data and lack chemical meaning.

The projected optimal gradient algorithm which has been developed to solve the

JNMF objective, is seen to converge within fewer iterations at the specified tolerance

as compared to the multiplicative update rule algorithm. The resulting pseudocom-

ponent spectra represent the latent features extracted in the domain of each of the

spectral sensors, among which directed acyclic causal pathways are learned using

Bayesian structure learning. This probabilistic approach to reaction hypotheses gen-
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eration has been validated by domain knowledge. The reaction hypotheses are seen to

depend on the parameters of JNMF : chemical rank and regularization weights. The

number of pseudocomponents is empirically determined using the notion of chemical

rank and determines the number of nodes in a Bayesian network. The weights as-

signed to the regularization terms impact the peaks in the pseudocomponent spectra,

as does the value of chemical rank.

The Bayesian networks constructed with optimal weights of the regularization

terms and the empirically determined rank, were seen to hypothesize mechanisms

involving the conversion of substituted aromatics to esters and anhydrides. However,

for the same optimal weights, heuristically relaxing rank to keep in check the trun-

cation of chemical information to noise, revealed additional pathways of substituted

aromatics, esters and anhydrides further decarboxylating to give olefins as the final

product. Additionally, it is shown that different reaction hypotheses are generated

when the similarity metric used in the manifold regularization term was changed to

an identity matrix, where ortho susbtituted phenyl esters through hydrolysis and

cracking produce phenols and aliphatics as the end products. This indicates that

the parameters of JNMF regulate the peaks that appear in the pseudo-spectra across

multiple sensors, that are later represented as nodes of random variables among which

the structure of Bayesian networks is learned to probabilistically hypothesize reaction

mechanisms among the nodes. The demonstrated use of statistical methods for latent

feature extraction followed by causal structure inference has lead to the deployment

of data-driven system inferential models to demystify the hitherto unknown chemical

reaction pathways; proving vital for the real-time process monitoring and control of

complex reacting mixtures.
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Chapter 4

Structure-preserving joint
non-negative tensor factorization
to identify reaction pathways using
Bayesian networks

Abstract

Extracting meaningful information from spectroscopic data is key to species identifica-

tion, as a first step to monitoring chemical reactions in unknown complex mixtures.

Spectroscopic data collected over multiple process modes (temperature, residence

time) from different sensors (Fourier Transform Infrared (FTIR), Proton Nuclear

Magnetic Resonance (1H-NMR)) comprises hidden complementary information of the

underlying chemical system. This work proposes an approach to jointly capture these

hidden patterns in a structure-preserving and interpretable manner using coupled

non-negative tensor factorization to achieve uniqueness in decomposition. Projec-

tions onto the modes of spectral channels, specific to each sensor, are interpreted

as pseudo-component-component spectra, while projections onto the shared process

modes are the corresponding pseudo-component concentrations across temperature

and residence times. Causal structure inference among these pseudo-component spec-

tra (using Bayesian networks) is then used to identify plausible reaction pathways

This chapter has been published as: A. Puliyanda, K. Sivaramakrishnan, Z. Li, A. de Klerk, V.
Prasad. Structure-Preserving Joint Non-negative Tensor Factorization to Identify Reaction Path-
ways Using Bayesian Networks. J. Chem. Inf. Model. 2021, 61, 12, 5747-5762.
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among the identified species representing each pseudo-component. Tensor decompo-

sition of the FTIR data enables the development of reaction sequences based on the

identified functional groups, while that of the 1H-NMR by itself is lacking in mecha-

nism development as it solely reveals the proton environments in a pseudo-component.

However, jointly parsing spectra from both the sensors is seen to capture comple-

mentary information, wherein insights into the proton environment from 1H-NMR

disambiguates pseudo-components that have similar FTIR peaks. A scalable method

of parallelizing tensor decomposition to handle high dimensional modes in process

data by using grid tensor factorization, while being robust to process data artefacts

like outliers, noise and missing data, has been developed.

4.1 Introduction

The extensive use of sensors to relay analytical measurements collected as multi-

way/multi-modal data is prevalent in neuroscience [244], signal processing [245],

chemometrics [32], social network analysis [246], metabolomics, text mining and com-

puter vision [247], because of which tensor decompositions are an imperative tool for

exploratory analysis involving factor analytical decompositions as it captures the inter

modal interactions among the latent factors across modes. In metabolomics, hetero-

geneous data from different sensors like Nuclear Magnetic Resonance (NMR), Liquid

chromatography–mass spectrometry (LC-MS) and Fluorescence spectroscopy (FS)

have been jointly analyzed in terms of shared and unshared factors in the framework

of structure-revealing data fusion so that complementary information about biomark-

ers from different sensors are fused to obtain physically interpretable latent factors

corresponding to the biomarker, facilitating disease characterization. [248] Coupled

decomposition of a tensor and matrix, through a common shared factor is shown to be

structure-preserving and unique as compared to separate decomposition [249]. This

work seeks to implement data fusion through a structure-preserving framework of

joint tensor decomposition, to simultaneously analyze process data during the partial
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upgrading of Cold Lake bitumen from 2 spectral sensors : FTIR, 1H-NMR, coupled

by the shared factors of the temperature and residence time process modes. The

multi-modal structure of the tensor data from both sensors is exploited by their low

rank representation to yield latent factors across the unshared mode of spectral chan-

nels, physically interpreted as pseudo-component spectra for each of the sensors in

accordance with Beer’s law [25]. The interactions among the pseudo-components are

proposed to be encoded by a causal framework in an attempt to build an inferential

model to hypothesize the underlying pseudo-reaction chemistry during the upgrading

process.[193],[250]

Advancement in reaction engineering using the principles of process systems engi-

neering suggests using data fusion algorithms as soft sensors to obtain interpretable

latent factors by imposing physically meaningful constraints.[111] This spans 2 broad

areas of chemometrics which are preliminary to state and parameter estimation and

control of product composition :1. curve resolution (chemical signatures) 2. calibra-

tion (compositions).[32] There have been attempts to deduce underlying reactions

from pseudo-component spectra obtained using curve resolution algorithms [25],[5];

however, it is lacking in its ability to incorporate information from mutliple spectral

measurements into the curve resolution framework. Also, the use of Bayesian cluster-

ing to develop groups of wavenumbers having similar absorbances as nodes to build

causal maps that hypothesize reaction paths[193] is limited by prior knowledge of the

number of clusters. Hence, it is proposed in this work to jointly factorize multi-modal

data from spectral measurements, wherein the number of components in the latent

factors is determined using the mathematical notion of ’rank’, followed by which

causal models are built using the latent factors as the nodes to represent the under-

lying chemistry. Multi-modal data also called tensors are denoted by Z ∈ RI1×I2×···IN

, where N is the number of modes and In is the dimension of the nth mode, where

n ∈ {1, 2 · · ·N}.

Some of the tensor decomposition formulations for a 3 mode tensor X shown
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(a) PARAFAC

(b) Tucker

(c) Slice oriented decomposition

Figure 4.1: Types of tensor decomposition illustrated for a 3 mode tensor X

in Figure 4.1 are as follows: (a) Parallel factor analysis (PARAFAC), equivalently

known as Canonical decomposition (CANDECOMP)/ Canonical polyadic decompo-

sition (CPD),[251] where a tensor is described as a sum of rank-1 tensors (b) Tucker

decomposition [252] where the tensor is expressed as sum of outer products of differ-

ent rank factor matrices in each mode weighted by a hypercube, and more recently

(c) Slice oriented decomposition[253] where a tensor is represented as the sum of an

outer product of column vector of the nth mode factor matrix with tensor hyper-slices

of the remaining modes. This decomposition, implemented on a 3-way tensor of elec-

troencephalogram (EEG) data, is seen to be robust to outliers and captures patterns

in the slices. [253]

PARAFAC is a restricted Tucker model that can further be interpreted as a re-

stricted principal component analysis (PCA) model on the unfolded multi-modal
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data, with increasing degree of freedom over successive models, and hence the ten-

dency to fit more noise as model complexity increases [32]. Thereby, the parsimo-

nious PARAFAC/CPD is preferred as it has the least model complexity decom-

posing the tensor into independent factor matrices and is free of rotational ambi-

guities, implying that it is a unique decomposition where the factor matrices are

subject to trivial permutation and scaling ambiguities but is robust to noise [31].

Kruskal [254, 255] has shown CPD to be unique and hence capable of represent-

ing the underlying generative phenomena should the following sufficient and nec-

essary conditions be satisfied:
N∑︁

n=1

KUn ≥ 2R + (N − 1) for sufficiency, i.e. sum

of the ranks of all mode matrices from the decomposition must be at least greater

than a function of the tensor rank and number of modes. The necessary condi-

tions are a) min
1,···N

rank(U (1) ⊙ · · · ⊙ U (n−1) ⊙ U (n+1) ⊙ · · · ⊙ U (N)) = R i.e. across

all modes, the minimum value of the rank of the column-wise Kronecker prod-

ucts of mode matrices excluding that in consideration must give the tensor rank

b) min
1···N

(
N∏︁

m=1,m ̸=n

rank(U (M))) ≥ R i.e. across all modes, the minimum value of the

product of ranks of the matrix modes except that in consideration must at least be

greater than the tensor rank.

Tucker decomposition, which is considered a higher order analogue of SVD [255]

handles degeneracy of factor matrices by enforcing orthogonality, which in an inde-

pendent decomposition as with PARAFAC can be tackled by constraining the factors

[32]. Rotational ambiguities can be limited by incorporating constraints and sparsity

regularizations however, most of these need prior knowledge [31].

An attempt to limit solution ambiguity by jointly factorizing unfolded data in

terms of shared and unshared factors using non-negative matrix factorization with

graph regularization and sparsity constraints across the latent factors, to arrive at

interpretable factors [250] required prior knowledge of correlations within the FTIR

and 1H-NMR spectra as well as across the 2 sensor measurements. The FTIR and

1H-NMR datasets for partial upgrading of Cold Lake bitumen comprise absorbances
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recorded over wavenumbers (mode H1) and chemical shifts (mode H2), respectively.

The different conditions of temperature (mode A) and residence times (mode B) of

processing the Cold lake bitumen samples in the visbreaker at which both the sensors

record spectra, are considered as shared latent factors/mode matrices between the

sensors. For the 3-way FTIR and 1H-NMR tensors, the third mode is that of the

spectral channels (wavenumbers and chemical shifts), which are unshared by the two

process data tensors.

This work is motivated to develop an algorithm that jointly factorizes multi-modal

process data tensors in terms of their shared and unshared latent factors, which are

constrained to be physically interpretable, by enforcing non-negativity of the mode

matrices in compliance with Beer Lambert’s law [25]. This results in a unique decom-

position where the absorbance projected onto temperatures and residence times are

interpreted as pseudo-component concentrations across temperatures and residence

time, respectively, while the absorbances projected across the unshared spectral chan-

nels viz. wavenumbers and chemical shifts are interpreted as the FTIR and 1H-NMR

pseudo-component spectra respectively.

Joint tensor decomposition has been asserted as a step towards unique decomposi-

tion [249] and robust components [256]. Consequently, non-negative multiple tensor

factorization, [257] where sparsity in the target tensor is compensated for by simul-

taneously factorizing multiple auxilliary tensors that provide multiview information,

has been used to obtain spectral features among which causal structures are learned

using Bayesian networks to generate reaction hypotheses underlying complex systems.

The development of JNTF as a unique structure-preserving data fusion framework to

extract complementary spectral features is the main contribution of this work. The

framework also brings flexibility by robustness to noise and outliers, handles missing

values by imputation and enables parallelization of the scalable gradient-based op-

timization approach to solving tensor decomposition through subtensors using grid

tensor factorization (GTF) for high dimensional tensor modes.
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4.2 Description of datasets

The FTIR and 1H-NMR spectroscopic datasets [196], [197] of the low-temperature

thermal cracking of Cold Lake bitumen over increasing duration of residence times

between 0-8 hours over different temperatures in the range of 150◦C-400◦C are shown

in the Figure 5.1. The combination of temperature and residence time conditions are

lumped together as process conditions at which the absorbances across the spectral

channels are measured using the spectroscopic sensors. The samples of bitumen are

reacted in a pressurized micro-batch reactor flushed with nitrogen, and the liquid

products after conversion are separated by solvent extraction using methylene chloride

(CH2Cl2) prior to obtaining the spectral measurements.

(a) FTIR dataset (b) 1H-NMR dataset

Figure 4.2: Data from the spectroscopic sensors used for experimental investigation
in this study

FTIR spectroscopic analysis is carried out in an ABB MB3000 equipped with

a MIRacle™ Reflection Attenuated Total Reflectance (ATR) diamond crystal plate

and pressure clamp. The infrared spectrometer used a deuterated triglycine sulfate

(DTGS) detector. The spectra were obtained at a resolution of 2 cm−1 as the av-

erage of 120 scans over the spectral region 4000-600 cm−1. 1H-NMR spectra were

obtained in a Nanalysis 60 MHz NMReady - 60 spectrometer. The equipment was

pre-calibrated with deuterated chloroform. For the analysis, 0.15 g of the sample were

dissolved in 0.7 µL deuterated chloroform and placed in NMR tubes. The 1H-NMR

analyses were performed using the following conditions: 0-12 ppm; number of scans

for sample: 32; 14.7 seconds was the average scan time and 4096 points were recorded
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per scan. A total of 42 FTIR and 32 1H-NMR spectra were collected, in addition to

the measurement at 20◦C and 0 min reaction time that was used for the purpose of

baseline correction; these have been reported in Table C.1.

Figure 4.3: Structure-preserving tensor arrangement of spectroscopic data

In the prior work conducted by us using this dataset, the FTIR and 1H-NMR

data were cast as matrices that we jointly factorized by projecting the absorbance

onto the shared basis of lumped process conditions and the unshared basis of the

spectral channels [250]. This method relied on prior knowledge to incorporate graph

regularization and sparsity constraints to not only limit solution ambiguity but also

encourage the structural interpretability of the solutions. In this paper, the need of

such constraints is obviated by casting the spectroscopic data as tensors, as shown in

Figure 4.3, that are structure-preserving and unique in decomposition.

4.3 Methods

This section briefly outlines the multi-linear basis of jointly mining multi-sensor spec-

troscopy data that have an inherent structure that standard flat-view matrix decom-

positions are unable to exploit. JNTF is used to obtain more general hidden latent

factors in the feature space of the process modes temperature, residence times, spectral

channels. The number of components in the latent factor space is determined using

the multi-linear notion of ‘tensor rank’. The latent factor projections in the feature

space of spectral channels of the sensors gain interpretability as the pseudo-component

spectra from which the dominant compounds classes underlying the complex feed are
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Figure 4.4: Outline of methods used in joint tensor factorization of multi-view spectral
data to generate reaction hypotheses

deduced using expert knowledge. These compound signatures are then represented

as nodes among which the causal paths are learned using Bayesian structure learning,

as a way of generating reaction hypotheses [250]. The hypotheses are then validated

using domain knowledge to infer the chemical interactions among the identified com-

pound classes. The broad scheme of going from spectroscopic data to knowledge

of chemical interactions agnostic to prior mechanistic insights of complex chemical

systems is shown in Figure 4.4.

Notations: Tensors are denoted as X ,Y , · · ·. Matrices, vectors and scalars are

denoted by bold uppercase, bold lowercase, and lowercase respectively, like A,a and

a. Element (i, j, k) of a tensor A ∈ RI×J×K is symbolized as aijk, element (i, j) of a

matrix A ∈ RI×J as aij and the ith entry of a vector a∈ RI as ai. Moreover, A⊗B

is the Kronecker product, A ⊙ B is the Khatri-Rao or the column-wise Kronecker

product, A ∗B is the element-wise Hadamard product, a ◦ b is the outer product of

vectors.
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4.3.1 Rank determination of the tensor

A tensor is a multi-dimensional array such that an N th order tensor is an element of

the tensor product of N vector spaces, each having its own co-ordinate system and

must not be confused with tensors in physics and engineering (such as stress tensors),

also referred to as tensor fields [255]. The spectral data is viewed as a 3 way array,

with temperature, residence time and spectral channels as its modes; hence making

it favorable to be analyzed in a tensorial framework that captures the intermodal

interactions during the decomposition.

The rank of the tensor that gains interpretability as the number of pseudo-components

is the necessary number of rank-1 tensors for the lower dimensional representation of

multi-way data, the determination of which is non-deterministic in polynomial time

(NP hard) [258]. The tensor rank is determined by fitting PARAFAC as a restricted

Tucker model and estimating the core consistency of the Tucker core [259]. Core

consistency is a metric used to compare the super-diagonal elements of the restricted

Tucker core with that of the core from the actual Tucker decomposition to automati-

cally determine the rank (model complexity) without a priori assumptions regarding

residuals [34],[260]. The tradeoff between lack of fit and core consistency for noisy

data as rank R increases, where there is a sharp drop in core consistency at a point

where noise is fit, is used as an indicator of overfactoring while choosing R [258].

Under-specifying rank may cause independent chemical responses to be mixed into

a one component, while overfactoring could fit to noise; hence, multiple other val-

idation techniques can also be used such as randomness of residuals (mainly white

noise), visualizing spectral loadings and split-half analysis[261]. Split half analysis

[262] exploits the uniqueness of CPD and involves fitting models for a given rank R

on a portion of the data and testing to see if identical latent factors are obtained

when the same model is fit to the test data.

Tensor decompositions can be considered as higher order extensions of matrix SVD
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and broadly fall into 2 categories [255] : CANDECOMP [251]/PARAFAC [26]which

represents a tensor as a sum of rank 1 tensors and the Tucker decomposition [252],

which is a higher order PCA.

For an N (th) order tensorZ ∈ ℜI1×I2×···×IN

CPD:

Z =
R∑︂

r=1

u(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r + E (4.1)

where U(n) = [u
(n)
1 ,u

(n)
2 , · · · ,u(n)

R ] ∈ ℜIn×R denotes a component matrix for mode

n; R being the rank of the CP decomposition. In tensor matrix form, eqn 4.1 can be

written as

Z = I ×1 U
(1) ×2 U

(2) ×3 · · · ×N U(N) + E (4.2)

where I is an identity hypercube.

Tucker Decomposition:

Z =

R1∑︂
r1=1

R2∑︂
r2=1

· · ·
RN∑︂

rN=1

gr1 r2···rNa
(1)
r1
◦ a(2)

r2
◦ · · · ◦ a(N)

rN
+ E (4.3)

where Zr1 r2···rN = a
(1)
r1 ◦ a

(2)
r2 ◦ · · · ◦ a

(N)
rN is a rank 1 tensor and Z is a summation

of R1 ×R2 × · · · ×RN rank 1 tensors with a Tucker core G ∈ ℜR1×R2×···×RN .

In matrix form, eqn 4.3 can be written as follows:

Z = G×1 A
(1) ×2 A

(2) ×3 · · · ×N A(N) + E (4.4)

where A(n) = [a
(n)
1 , a

(n)
2 , · · · , a(n)Rn

] ∈ ℜIn×Rn denotes a component matrix in the

N (th) mode.

The main difference between CPD and Tucker decomposition is that in CPD the

number of components across the modes is invariant; while it is not so in the Tucker
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model. [244] Therefore, CPD, in a sense, can be seen as a restricted Tucker model with

equal number of components in each mode. This leads to an important diagnostic

called the core consistency diagnostic, which is used to determine the number of

components in CPD/PARAFAC models. Fitting PARAFAC models with an arbitrary

number of components and then casting them into Tucker models results in an identity

hypercube, G, if the right number of components are used. [259] The PARAFAC

tensor when matricized in the n(th) mode can be written as a restricted Tucker

model as follows:

Z(n) = U (n)TR×(R∗R···N−1times)(U (1)⊗U (2)⊗· · ·⊗U (n−1)⊗U (n+1)⊗· · ·⊗U (N))T (4.5)

This can be then used to calculated the core consistency as follows

Core Consistency = 100
(︂1− ||G− T ||2F

||T ||2F

)︂
(4.6)

It can be seen from Figure 4.5 that the tensorial blocks have 4 components that

represent the underlying pseudo-component classes. This is used as a basis for CPD

using an optimization framework that is an improvement over the Alternating Least

Squares (ALS) approach [26],[251] which was not reliable as it was not guaranteed to

converge to a stationary point. Hence, a gradient-based optimization technique was

devised for simultaneously solving over all factor matrices [258]. In theory, the Tucker

decomposition does not possess unique solutions even though it is subjected to the

permutation and variance indeterminacies. [245, 255] In practice, when additional

assumptions are introduced on the different modes, the Tucker decomposition can

be unique. [263] This is because Tucker decomposition is based on the orthogonal

premise of decomposition, while CPD is based on decomposing into independent in-

dividual components; which accounts for the uniqueness of the decomposition despite

its scaling and permutation indeterminacies. [32]
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(a) FTIR rank determination

(b) 1HNMR rank determination

Figure 4.5: Lack of fit (LOF) and core consistency plots for FTIR 1H-NMR tensor
blocks.

4.3.2 JNTF objective function

Joint non-negative tensor factorization (JNTF), which is considered as a higher or-

der analogue of joint non-negative matrix factorization (JNMF) [250] is a structure

preserving latent variable model for the additive (due to non-negativity constraints)

parts-based combination of basis factors. Non-negative tensor factorization (NTF)

has been implemented similarly using cost functions as with non-negative matrix

factorization (NMF): the least square error under the assumption of homoscedas-

tic Gaussian noise; and Kullback-Leibler divergence [215] under the assumption of

Poisson noise.

The NTF objective function is formulated to minimize the least squares error be-

tween the data tensor and the projections onto its mode matrices that are constrained
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to be non-negative. This can be extended to jointly factorize multiple tensors that are

coupled through shared mode matrices that are held common in their factorization.

The number of components in each mode is the tensor rank (R). The process modes of

temperature and residence time that are common to the sensors are denoted by ma-

trices A ∈ RI×R and B ∈ RJ×R, respectively. The dimensions I and J of the process

modes denote the number of temperature and residence time points, respectively, at

which the spectra are measured. The unshared spectral channel modes of the sensors

are denoted by the mode matrix Hi ∈ RKi×R, where Ki is the dimension of the spec-

tral channels over which absorbance is measured for the FTIR and 1H-NMR spectral

sensors, as shown in Figure 4.4. It is to be pointed out that both sensor measurements

are not available for all combinations of the process conditions outlined in Table C.1.

The missing measurements are accounted for, by using a weighting tensor W i that

imputes them by zero in the multi-linear decomposition. The least squares objective

function to be minimized for JNTF is given in Eqn 4.7.

min
A,B,Hi≥0

FW (A,B,Hi) =
∑︂
i=1,2

||W i ∗ (Zi − [[A,B,Hi]])||2 (4.7)

The use of the Multiplicative Update Rules (MUR) [264] to solve for the factor

matrices is seen not to guarantee the stationarity of the limit points because of which

it is undesirable for finding the optima of non-convex NTF based objective functions.

Alternatively, the ALS method, wherein the gradients of the objective function with

respect to the latent factor matrices are used to develop updating schemes for the

factor matrices in a round robin fashion, has slow convergence, is not accurate in

overfactoring [258] and is not guaranteed to converge to a stationary point [265].

The ALS convergence can be hastened by the use of sparsity regularization, weight

matrices in the objective and projected gradients [265]; however, the solution is still

suboptimal [266]. Non-negative least squares (NLS) was deployed as an accurate

alternative to solve the NTF objective [258] but proved to be computationally slow due
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to Jacobian calculations, leading to a gradient-based optimization method that solves

for all the factor matrices simultaneously, is accurate, has the same computational

overhead as ALS and is tractable for large tensors. The gradients of the objective

function are given by Eqns 4.8-4.10, for which X i = W i∗[[A,B,Hi]] and Y i = W i∗Zi.

∇AFW =
∑︂
i

2(X i
(1) − Y i

(1))(Hi ⊙B) (4.8)

∇BFW =
∑︂
i

2(X i
(2) − Y i

(2))(Hi ⊙ A) (4.9)

∇Hi
FW = 2(X i

(3) − Y i
(3))(B ⊙ A) (4.10)

The above problem is solved using the LBFGSB solver of the Poblano optimiza-

tion toolbox, developed by Sandia Laboratories on Matlab [267]. The matrices are

initialized based on the average values of the individual tensorial decompositions :

solving NTF by min
Ai,Bi,Hi≥0

||W i ∗ (Zi− [[Ai, Bi, Hi]])||2 for i = 1, 2 separately, followed

by initializing : A0 ← 1
2

∑︁
i=1,2

Ai, B
0 ← 1

2

∑︁
i=1,2

Bi, H
0
i ← Hi for solving the routine in

eqn 4.7.

4.3.3 Robust formulation of JNTF

The earlier formulation of tensor factorization is based on the assumption of noise

being independently and identically distributed (iid) Gaussian. For a 3 way tensor

Z of size I1 × I2 × I3, a rank R CP decomposition gives the matrix components

in each mode : A ∈ RI1×R, B ∈ RI2×R, C ∈ RI3×R by solving the least squares

objective outlined in eqn 4.7, which is the same as the result of maximizing the log

likelihood function resulting from the assumption of Gaussian noise [268]. This can

be illustrated as follows:

zi1i2i3 =
R∑︂

r=1

ai1 rbi2 rci3 r + ϵi1i2i3where ϵi1i2i3 ∼ N(0, σ2) (4.11)

Consequently, zi1i2i3 ∼ N(
R∑︁

r=1

ai1 rbi2 rci3 r, σ
2), from which it follows that the prob-

157



ability of the independent tensorial elements conditioned on the decision variables of

CPD can be expressed as

P (zi1i2i3|
R∑︂

r=1

ai1 rbi2 rci3 r) ∼ exp

⎛⎜⎜⎜⎝−
||zi1i2i3 −

R∑︁
r=1

ai1 rbi2 rci3 r||
2

2σ2

⎞⎟⎟⎟⎠ (4.12)

Finally, the expression for the log likelihood of the N (here, =3) mode data can be

written as

log
∏︂
i1i2i3

P (Z|[A,B,C]) = − 1

2σ2

∑︂
i1i2i3

||zi1i2i3 −
R∑︂

r=1

wi1i2i3 ∗ ai1 rbi2 rci3 r||
2

(4.13)

Maximizing the above data log-likelihood is tantamount to minimizing the least

squares objective given in eqn 4.7, the only difference being the imputation of missing

measurements with a weighting tensor. It can be seen that using the least squares

objective in tensor factorization makes CP decomposition sensitive to non-Gaussian

noise. Besides, the presence of outliers tends to dominate a squared objective function

[269]. Hence, it is imperative to re-formulate the factorization objective so that it is

robust to handle non-Gaussian noise and outliers, and this is typically achieved by

using the L1 norm in the tensor factorization objective [268]:

L1(A,B,C) =
∑︂
i1i2i3

⌜⃓⃓⎷zi1i2i3 −
R∑︂

r=1

ai1 rbi2 rci3 r (4.14)

The least absolute error has been used as a robust alternative to least squares when

the process errors are additive (iid) Laplacian, which is more heavily tailed than

Gaussian, making it better suited to model noise and outliers [270]. A majorization-

minorization approach of solving the above non-convex objective by breaking it into

convex sub-problems in terms of each of the decision variables that are updated while

the others are fixed, followed by a round robin scheme of solving the sub-problems
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to update the other decision variables in their turn, has been outlined in other works

[268]. Each sub-problem is in effect the rank R approximation of the mode-n ma-

tricized tensor, formulated as a weighted l1 regression problem. The underlying phi-

losophy of this method is similar to the Canonical Polyadic ALS (CPALS) approach

using a different norm for the objective function, and as discussed earlier, CPALS

has not demonstrated guaranteed convergence to a stationary point [26],[251]. It is

desired to develop a framework in which all the factor matrices can be solved for

simultaneously using one of the many gradient-based optimization solvers [258]. The

robust formulation of the objective for NMF using the L21 norm has been outlined in

Kong, et al.[213] Using this as a starting point, we seek to extend the concept of using

this robust norm to solve for factor decomposition in each of the matricized tensor

modes. Combining the individual sub-problems into a single objective function using

the L21 norm alongside the imputation of missing measurements gives the following

objective function for the weighted robust non-negative tensor factorization:

min
A,B,C≥0

F (A,B,C) = ||W(1) ∗ [Z(1) − A(C ⊙B)T ]||
21

+ ||W(2) ∗ [Z(2) −B(C ⊙ A)T ]||
21

+ ||W(3) ∗ [Z(3) − C(B ⊙ A)T ]||
21

(4.15)

Gradient computation for the NTF objective involves the column-wise Kronecker

product of modal factors, making its computation intractable due to huge memory

requirements for high dimensional tensor modes [271], which is overcome by grid

tensor factorization (GTF) which breaks the tensor into subtensors. The subtensors

are factorized independently using CPD in parallel before integrating results for the

whole tensor to estimate factors in each mode [272]. Solving Eqn 4.15 for all the

mode matrices simultaneously using gradient-based optimization, by parallelizing the

tensor decomposition using sub-tensors has been outlined in Section C.2.
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4.4 Results and Discussion

This section presents findings from the individual NTF decomposition of data from

the FTIR and 1H-NMR spectral sensors, in contrast to their coupled analysis. These

tensor decompositions have been found to satisfy the necessary and sufficient con-

ditions for uniqueness as outlined by Kruskal [254],[255], and are free of solution

ambiguities. The discussion of the tensor decomposition and subsequent interpreta-

tion of the Bayesian networks constructed from the pseudo-component spectra are

provided together with the results for each case so as to have an easier interpreta-

tion. The reaction pathways hypothesized from the Bayesian networks have been

validated against literature pertaining to conversion chemistry in bitumen that has

been investigated using quantitative metrics reflecting composition changes of model

compounds, representative of the complex reactive system [273], [250], [193], [25]. It

must be noted that the pseudo-component signatures from the tensor decomposition

does not point to a single molecular structure, but a class of compounds. Suitable

model compounds with structures representative of the pseudo-component spectra

have been used to indicate plausible conversion pathways in line with the Bayesian

networks. The merit of the framework lies in the structure-preserving data fusion

from different spectroscopic sensors to develop reaction hypotheses among the identi-

fied pseudo-components, without prior knowledge of the reactive system in terms of

either its species or underlying conversion pathways.

The results presented are based on the robust formulation of NTF using the L21

norm in the objective function, to facilitate handling non-Gaussian noise in the sensor

data during the decomposition. The results from repeating the analysis using the

squared norm in the objective (Frobenius i.e.L2), under the assumption of Gaussian

noise have been included in the Appendix between Section C.5.1 and Section C.5.3.
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(a) Pseudo-component 1 (b) Pseudo-component 2

(c) Pseudo-component 3 (d) Pseudo-component 4

Figure 4.6: Concentrations of the pseudo-components across the reaction space of the
FTIR spectra

4.4.1 Individual analysis of FTIR data

Figures 4.6a, 4.6b, 4.6c and 4.6d provide the concentration profiles across the reaction

space of temperature and residence times, for the 4 pseudo-components obtained

through rank determination using LOF and core consistency metrics as described in

Section 4.3.1. The tensor decomposition of the normalized FTIR data accounts for the

inter-modal interactions among temperatures, residence times and spectral channels

(the 3 modes) while projecting FTIR data onto each of the modes. However, to derive

physical meaning from the pseudo-component concentrations that are impacted by

the coupling between reaction temperatures and residence times, a surface plot of the

profiles across the said modes have been outlined in the earlier figures, while Figure 4.7

gives the extracted spectral profiles obtained by projection onto the FTIR spectral

channels for the 4 pseudo-components. The infrared spectra of all four principal

components have realistic absorption bands, although PC4 has a noticeable noise

component.
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Figure 4.8 provides the Bayesian networks indicating causal relationships between

the pseudo-component groups obtained from Hill climbing (HC), Tabu search and

Maximum minimum hill climbing (MMHC) structure learning algorithms. It should

be noted that the groups in the Bayesian network (Figure 4.8) are the same as pseudo-

components (PCs) in the extracted spectral profiles from tensor decomposition so

both these terms will be used interchangeably in this paper. The projection of ab-

sorbance onto the modes of temperature and residence time, rendering their interpre-

tation as concentrations along those modes, could further be used to develop kinetic

models for the process and is explored in our upcoming works. In this work, we shall

use these concentrations for qualitative corroboration with the Bayesian networks

learned from the pseudo-component spectra. The results of using tensor decomposi-

tion of synthetically generated FTIR data across a range of operating temperatures

and residence times is seen to provide more continuous concentration surfaces, as

presented in Section C.3.

Figure 4.7: Spectra of pseudo-components from FTIR tensor decomposition

For the robust decomposition of FTIR data, hill climbing and MMHC produced

similar networks. Hence, these network structures shall be used as a basis for gener-

ating reaction hypotheses. These networks corroborate the qualitative trends in the
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concentration profiles, where it can be seen that the concentration of PC1 is much

higher than the rest based on the Figure 4.6, indicating that it represents a class of

reacting species. This is reflected in the Bayesian network structure, where G1 con-

verting to G3 has the highest arc strength (Figure 4.8). Correspondingly, PC3 is seen

to exist in higher concentration than PC2 and PC4 at most temperatures and reaction

times (Figure 4.6). The networks from the Bayesian structure learning indicate that

G2 tends to be one of the final products while G3 and G4 are intermediate products

in the sequence. A sharper increase in PC4 is noticed in the concentration-time pro-

files at longer reaction times across intermediate temperatures, while PC2 is widely

present at lower temperatures.

Before delving into the conversion chemistry, it is important to identify the major

functional groups present in each pseudo-component and a representative compound

for each group in the Bayesian network developed for the robust formulation of FTIR

data. It is to be noted that the baseline of the extracted profile of PC4 is noisier than

the other 3 profiles and this has been kept in mind while identifying the characteristic

functional groups. All the PCs show the characteristic aliphatic sp3 C-H stretches at

2850 and 2920 cm−1 for methylene (CH2) groups and at 2950 cm−1 for methyl groups,

respectively. The bending frequencies for sp3 C-H bonds are seen at 1380 and 1450

cm−1 for every pseudo-component and the intensity of the methylene stretch is more

than the methyl stretch, indicating the presence of side chains as well as naphthene

rings as CH2 groups could be a constituent of both. This is consistent with the

composition of bitumen, which on a molar basis has a heteroatom-to-carbon ratio

of around 0.03, but a hydrogen-to-carbon ratio of around 1.5 [243]. Other distinct

stretches of all the groups are given in Table 4.1.

Table 4.1: Absorption regions for all groups in robust FTIR formulation.

Wavenumber
(cm−1)

Functional group Vibration
type

PCs/groups present

1597 C=C aromatic Stretch PC1, PC2, PC3
1653 C=C
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Table 4.1 continued from previous page
1701 C=O of carboxylic acid Stretch PC1, PC4
1172 – 1203 Acyl, phenolic C-O Stretch PC1, PC3 (mild)
1018 C-O of aliphatics Stretch All 4 PCs
862 sp2 C-H in p-substituted

aromatics
Bend All 4 PCs

810 sp2 C-H in m-substituted
aromatics

Bend All 4 PCs (higher in
PC2)

740 sp2 C-H in o-substituted
aromatics

Bend All 4 PCs but higher
for PC1 and PC3

723 sp2 C-H in mono-
substituted aromatics

Bend Clearer in PC2 – as a
shoulder with 740 cm-
1

1740 C=O in esters/anhydrides Stretch PC3, PC2 (mild)

Figure 4.8: Bayesian networks from the unique FTIR pseudo-component spectra

Here, we will be accounting for the 4 pathways shown in Figure 4.8 as predicted by

the Bayesian network in order of their probability of occurrence. For PC2, absorption

at 1700 cm−1 indicated the presence of carboxylic acid and its co-existence with C-O

acylic group at 1175 cm−1 confirmed this observation. Presence of aliphatic alcohol

was also marked by absorption at 1018 cm−1. The sp2 C-H bends at 740 cm−1 for

o-aromatics were seen to be of maximum intensity. The representative compounds

for each group are shown in Figure 4.9, Figure 4.10, Figure 4.11 and Figure 4.12 that

also depict the proposed reaction pathways based on the results of Bayesian networks

from robust formulation of FTIR data.

Compound (1) is a representative molecule for G1 since it has a carboxylic acid,

aliphatic alcohol in the naphthene ring, a side chain and an aromatic ring that is
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substituted in o-, m- and p- positions. These substitution patterns are not reflected

in the representation shown in Figure 4.9. The chemical structure of G3 species is not

much different than G1 but can comprise a phenolic and an ester group, which can

be obtained by condensation of the middle ring to become an aromatic (compound

(2)) or esterification of the COOH group by combining with an alcohol (compound

(3)), respectively. Compounds with carboxylic acid and phenolic functional groups

were identified in bitumen and the cracking products from bitumen.[274],[275] Ester

formation by the reaction of carboxylic acids and alcohols can take place and benefits

from vaporization of the co-produced water, as this is an equilibrium limited con-

version pathway.[276] In the specific example shown in Figure 4.9, the probability of

the end ring turning into aromatic is lower than that of the middle ring , since only

the middle ring benefits from having benzylic hydrogens that on transfer will yield

resonance stabilized benzylic radicals. Hydrogen transfer reactions in general,[277]

as well as hydrogen transfer reaction in bitumen specifically,[278] have been observed

over the temperature range of the data in this study. These reactions lead to hy-

drogen disproportionation between the molecules that could either lead to the net

decrease in hydrogen by the conversion of cycloalkane structures to aromatic rings or

the saturation of aromatic structures This reaction sequence could explain some of

the characteristics for the conversion of group 1 to group 3 species.

Compounds (2) and (3) had ortho, meta and para substitutions but another strik-

ing feature of the G3 species is the highest intensity for ortho-substituted aromatics.

So, for proposing a plausible reaction sequence the second-most probable pathway

from G3 to G2, an ortho-substituted aromatic with an ester group (compound (4))

has been considered as representative of group 3 that has a similar backbone as the

compounds (2) and (3). This is shown in Figure 4.10. Four hydrogens are lost from

the middle ring of compound (4) to convert it into an aromatic, which facilitates

cracking of the third ring and its side chain due to lowering of C-C bond energy.

However, this is not an essential step and the cracking pattern to yield an ortho-
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Figure 4.9: Proposed reaction pathway of G1 (group 1) to G3 (group 3) conversion.

substituted aromatic can be obtained from cracking of the middle ring. This results

in the formation of compound (6), which is straight-chain olefin and representative

of group 2 and can undergo further hydrogen transfer to yield a stable conjugated

diene (7). Thermal cracking of longer alkyl chains or cycloalkane rings followed by

free radical stabilization via hydrogen transfer, is shown to result in lighter aliphatic

and olefinic compounds.[279] As shown in Figure 4.10, it is more likely that hydrogen

transfer from the central ring precedes cracking, since cracking to form a resonance

stabilized benzylic free radical is more favorable.[280] Meanwhile, the ester group in

compound (4) can undergo hydrolysis to yield the alcohol that turned into a pheno-

lic group and forms compound (5), which is also meta- substituted to illustrate the

development of the high intensity of C-H bends for a meta-substituted aromatic at ∼

810 cm−1. It is to be noted that this also corresponds with the observation that the

ortho-substitution is still present in group 2 as indicated from the extracted FTIR

spectra (Figure 4.7). The reaction sequence indicated in Figure 4.10 implies hydroly-

sis of the ester, which as mentioned before, is a reversible reaction. However, the same

reaction sequence without hydrolysis or the formation of a phenol is possible by the

direct thermal decomposition of the ester. Direct thermal decomposition of the ester
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leads to the elimination of a carboxylic acid with concomitant formation of C=C in

the naphthenic ring.[281] Of relevance to the reaction pathway is that both thermal

cracking and thermal decomposition of ester groups can be sources of alkenes.

Figure 4.10: Proposed reaction pathway of group 3 to group 2 conversion.

The third-most probable pathway is the conversion of group 1 to group 4 with the

third highest arc strength in the causal structure. A plausible sequence is shown in

Figure 4.11. Though the functional groups are the same in compounds (1) and (8),

the carboxylic acid group is attached to the third naphthene ring in (8) instead of

the aromatic ring as in (1). Group 4 species can be represented by compounds (9)

and (10) which are formed by cracking of (8) at the indicated positions, followed by

decarboxylation of the olefin. Group 4 species shows absorption for aliphatic alcohol

between 1013-1100 cm−1 and also contains C=C stretch for alkene and aromatic

groups at 1653 and 1600 cm−1 , respectively.

Figure 4.11: Proposed reaction pathway of group 1 to group 4 conversion.

Finally, the least plausible, but the pathway with the least arc strength according
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to the Bayesian network structure is the conversion of group 4 species to group 2

moiety where it can be said that the alkene C=C stretch was more clearly seen in

group 4 than in group 2 though the extracted FTIR spectrum of PC4 was noisier

(Figure 4.7). There are 2 possible pathways for cracking that will yield to relatively

stable products. In both cases, cracking occurs at the α− β C-C bond as indicated,

but this can occur with or without hydrogen transfer from the naphthenic ring. If the

naphthenic ring with a double bond loses 2 more hydrogens via hydrogen transfer,

it becomes an aromatic and yields compound (12). On the other hand, if cracking

occurs before hydrogen transfer, then a conjugated alkene-aromatic (14) is formed.

The side alkyl chain gives the olefin (13) as the other cracked product and (13) and

(14) are representative of group 2 species as well. Since, group 4 and group 2 species

are structurally and functionally similar, this conversion can be considered the least

probable.

Figure 4.12: Proposed reaction pathway for group 4 to group 2 conversion.

In conclusion, it was possible to construct plausible reaction sequences that repre-

sented the networks shown in Figure 4.8. The functional groups were representative

of those identified for the pseudo-compound in the PC1-PC4 FTIR spectra.

4.4.2 Coupled analysis of FTIR and 1H-NMR data

The 1H-NMR spectra provide information about the proton environment in a com-

pound. Peaks in the range 1.5-2.5 ppm point to aliphatic hydrogens, in the 4-6

ppm point to olefinic hydrogens and the 7-9 ppm range of chemical shifts comprise

overlapping peaks of aromatic hydrogens. The results from the individual tensor de-
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composition of the said spectra are outlined in Section C.4. It is seen that at lower

temperatures and residence times of reaction, pseudo-components with an aliphatic

character are predominant, which at higher temperatures result in compounds with

pronounced aromatic and olefinic character. Knowledge of only the proton environ-

ment has hindered the hypothesis of a detailed conversion chemistry solely based

on the 1H-NMR pseudo-component spectra from tensor decomposition. It is believed

that information about the proton environment from the 1H-NMR spectra could com-

plement that of the functional groups from FTIR, when jointly analyzed, facilitating

the disambiguation of pseudo-components that share similar FTIR peaks.

Interestingly, when FTIR and 1H-NMR data are fused in the input to tensor de-

composition, the characteristic peaks in the extracted 1H-NMR profiles are not altered

much from the profiles obtained when the 1H-NMR data was considered separately

as discussed in section C.4. However, the FTIR pseudo-component profiles from the

joint analysis differ considerably from that of Section 4.4.1. Figures 4.13a to 4.13d

provide the concentration profiles of the pseudo-components in the space of the tem-

perature and residence time modes, for the joint robust formulation, and appear to

differ only in terms of the scaling while having identical trends, as reported in Figure

C.4. Figure 4.14 gives the jointly extracted FTIR and 1H-NMR profiles for the 4

pseudo-components and Figure 4.15 shows the Bayesian networks obtained through

the 3 greedy search algorithms with the 4 PCs as the nodes. The HC and MMHC

score search methods return identical network structure and concur with the quali-

tative insights obtained from the concentration profiles of Figure 4.13. The reader is

kindly referred to the discussion in section 4.4.1 and Table 4.1 for the characteristic

peaks and the corresponding functional groups present.

It must be noted that despite PARAFAC resulting in a unique decomposition, yet

the factor matrices are subject to trivial permutation [31]. As a result, the spectrum

of PC1 from the joint decomposition points to a noisy baseline as given by Figure

4.14, in comparison to the decomposition of only the FTIR data, where PC4 was seen
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(a) Pseudo-component 1 (b) Pseudo-component 2

(c) Pseudo-component 3 (d) Pseudo-component 4

Figure 4.13: Concentrations of the pseudo-components across the reaction space from
the joint decomposition of FTIR and 1H-NMR spectra

Figure 4.14: Spectra of pseudo-components from joint tensor decomposition

to be noisy (Figure 4.7). Although the FTIR spectrum of PC1 is a bit noisy, we can

clearly see a dominant peak at 740 cm−1 indicating the presence of ortho-substituted

aromatics. A peak at 1155 cm−1 and 1011 cm−1 point to the C-O stretching of an

aliphatic alcohol, the peak at 1610 cm−1 indicates C=C stretching and the inverted
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peak at 2359 cm−1 corresponds to the O=C=O stretch of carbon dioxide. PC2 has

a peak at 1030 cm−1 that indicates the C-O stretch of alcohols, followed by peaks at

1215 cm−1 and 1736 cm−1 that correspond to the C=O stretch of esters and the peak

at 1607 cm−1 pointing to the C=C olefinic stretch. The spectrum of PC3 has a peak

at 1030 cm−1 indicating C-O stretch of alcohols, a peak at 1603 cm−1 that points to

the olefinic stretch and a peak at 1700 cm−1 indicating a carboxylic acid functional

group stretch. The FTIR spectrum of PC4 is very similar to that of PC3. However,

the 1H-NMR spectra of PC3 indicates a dominant olefinic behavior in the region

between 4-6ppm, as compared to that of PC4, implying that it comprises condensed

aromatics.

Figure 4.15: Bayesian networks from the unique joint pseudo-component spectra

Having identified the representative compounds of each pseudo-component from

the spectra in Figure 4.14, the network structure among them resulting from the

Bayesian networks of Figure 4.15 facilitate the development of a plausible reaction

sequence in Figure 4.16. It indicates that PC1, which comprises orthosubstituted or

naphtenaromatics with alcohol and carbonyl stretches in the substituent functional

groups, undergoes hydrolysis and decarboxylation to result in the formation of esters

(PC2) and carboxylic acids (PC4). The esters in PC2 could further hydrolyse to

produce carboxylic acids (PC4) that upon cracking and hydrogen transfer could result

in the final products (PC3), as indicated by the reactions in Figure 4.16.

Reaction mechanisms from the individual decomposition of the FTIR data, as
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Figure 4.16: Proposed reaction hypothesis from jointly analyzing FTIR and 1H-NMR
data

shown in Figure 4.9, reveal that aromatics with substituent side chains of carboxylic

acid and alcohol functional groups upon hydrogen transfer and cracking produce con-

densed aromatics and olefins on one hand, while also undergoing esterification on the

other. The concentration profiles in Figure 4.13 support the sequence suggested by

the Bayesian networks as they point to the increase in concentration of esters, olefins

and condensed aromatics at higher temperatures and longer residence times. The im-

portance of capturing complementary information about the functional groups from
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FTIR data and the proton environment from the 1H-NMR spectra by joint tensor

decomposition has revealed that pseudo-components with similar FTIR peaks can be

discriminated based on their NMR profiles, which indicates one to be the condensed

aromatic by-product of the other owing to more pronounced aromatic and olefinic

hydrogen peaks as opposed to its parent pseudo-component. Hence, the plausible

reaction sequence that could be suggested based on the joint analysis in Figure 4.16

not only indicates the decarboxylation and hydrolysis of aromatics with carbonyl

substituents to give esters, but also captures the further cracking and hydrolysis of

esters to result in condensed carboxylic acids and aliphatic alcohols. It has thus

been demonstrated that the data fusion framework of combining complementary in-

formation from spectral sensors captures additional arcs that could be interpreted as

plausible reaction pathways, when probabilistic graphical models are used for struc-

ture learning among the spectral features.

The data fusion tensor decomposition has been implemented using a L21 norm for

robustness to noise and outliers. Upon implementing the joint tensor decomposition

using the L2 norm under the assumption of the Gaussian noise in the process data,

different reaction hypotheses have been arrived at, as outlined in Section C.5.3. The

substituted aromatics upon cracking are seen to produce condensed alcohols that

undergo esterification followed by thermal cracking of the esters to give condensed

aromatics as the final product. It is worthwhile to note that both the robust and

the Gaussian joint tensor decompositions capture similar reaction sequences of the

cracking and esterification of the substituted aromatics, and further hydrolysis and

cracking of the esters to result in condensed products; however, an additional decar-

boxylation pathway has been inferred from the robust formulation.

In our earlier work, where joint non-negative matrix factorization had been demon-

strated as a data fusion algorithm to extract pseudo-component spectra, the number

of components had been empirically determined using the notion of chemical rank

[250]. The initially obtained reaction hypotheses were seen to indicate the cracking
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and hydrogen transfer in substituted aromatics, as well as esterification to produce

condensed aromatics and esters. However, heuristically relaxing rank to keep in check

the truncation of chemical information was shown to reveal additional plausible path-

ways of esters further cracking and tautomerizing to produce condensed aromatics

with an olefinic stretch. However, in this paper, the use of multi-linear based core

consistency for rank determination, and the higher order tensor decompositions that

are structure preserving and robust to process data noise are found to limit such a

loss of chemical information.

4.5 Conclusions

This work has demonstrated tensor decomposition as a structure-preserving approach

of jointly parsing spectral measurements from multiple sensors. The spectra are

recorded over varying conditions of the two process modes of temperature and resi-

dence time, and the spectral channel mode of wavenumbers and chemical shifts for the

FTIR and 1H-NMR sensors, respectively. The structural information is preserved by

capturing the inter-modal interactions while projecting the spectroscopic data onto

each of the modes, resulting in a unique decomposition. This obviates the need to

incorporate prior knowledge-based regularization constraints to limit the rotational

and intensity ambiguities. The non-negativity constraints on the latent factors fa-

cilitates physical interpretation in accordance with Beer’s law, owing to which the

projections onto the process modes have been interpreted as concentrations of the

pseudo-components across the varying temperatures and residence times, while the

latent factor from projection onto the mode of the spectral channels have been in-

terpreted as the FTIR and 1H-NMR pseudo-component spectra. The number of

pseudo-components or the number of components in each of the latent factor modes

have been determined using the multi-linear metric called the core consistency di-

agnostic. A causal structure among the pseudo-component spectra is learned using

Bayesian structure learning to infer plausible reaction hypotheses. The spectral peaks
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that indicate representative compounds of the pseudo-components and the qualitative

insights into their concentrations over temperature and residence time in conjunction

with the inferred network structure has been central to the data-driven development

of illustrative plausible reaction pathways for the complex reactive system, which are

validated using domain knowledge.

Jointly decomposing FTIR and 1H-NMR data is seen to capture complementary

information by way of disambiguating pseudo-components that share similar FTIR

peaks owing to common functional groups, but differ in terms of the proton environ-

ment as revealed by the corresponding 1H-NMR spectra of the pseudo-components.

The spectral features from the fused analysis have revealed additional structural paths

in the Bayesian networks that point to added conversion pathways. These tensor

decompositions have been implemented to handle process data artefacts like miss-

ing observations by imputations, non-Gaussian noise by formulating the objective to

minimize a robust norm and have been parallelized to handle large amount of process

data by dividing the tensors into sub-tensors prior to grid tensor factorization. The

fused tensor decomposition with the robust norm is seen to compare well with the

Gaussian norm, except for additional peaks being captured in the pseudo-component

spectra of the robust case, pointing to additional conversion paths when interpreted

using the Bayesian networks. The joint tensor decomposition is also seen to limit the

loss of chemical information, owing to its higher order structure-preserving nature

as compared to matrix-based data fusion techniques, where heuristically relaxing the

chemical rank was shown to capture additional reaction pathways.

In the context of automating the discovery of reaction mechanisms in complex

reactive mixtures, it is crucial to identify the species and the reaction pathways

among them in the absence of prior knowledge of the system. The present study

demonstrates a data-driven approach of species identification by obtaining unique

pseudo-component spectra from tensor decompositions that represent molecular can-

didates; followed by using probabilistic graphical models to learn a causal structure
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among the latent representation of molecular candidates as a way of hypothesizing

reaction mechanisms. The semantic descriptions of the chemical mechanisms inferred

from the Bayesian networks, along with the concentration trends across temperature

and residence times conditions could be used in the future for diagnostic decisions in

automation and control.
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Chapter 5

Real-time monitoring of reaction
mechanisms from spectroscopic
data using hidden semi-Markov
models for mode identification

Abstract

In this work, we present a framework for process monitoring focusing on the dynamics

of reaction mechanisms based purely on online spectroscopic data. This is accom-

plished by developing an explicit duration hidden semi-Markov model (HSMM) that

is used to monitor changes in reaction mechanisms with changing temperatures in

a complex reacting system by dynamically identifying groups of spectroscopic sam-

ples that belong to a mode, and the mode duration. An expectation maximization

algorithm is used for parameter re-estimation, and Viterbi state decoding is used to

identify the most likely sequence of hidden states that may have generated the ob-

servation sequence. The reaction mechanism associated with samples of a mode is

then deduced by extracting latent features among spectra of the mode and learn-

ing a probabilistic graphical structure among the features using Bayesian networks,

which represent a network or mechanism of hypothesized reactions. The technique

is demonstrated on case studies related to the partial upgrading of bitumen using

thermochemical conversion based on the acquisition of Fourier transform infrared

spectroscopic data; this system is complex enough that prior information on both
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species and reactions is unavailable. Both offline and online monitoring are imple-

mented, and the technique provides monitoring of the multi-modal process and, at

the same time, provides insight into the chemistry specific to each mode, which makes

it useful both for process control and fundamental studies into process chemistry.

5.1 Introduction

Spectroscopic data containing molecular-level information offers significant promise to

decipher the underlying mechanisms in complex reactive systems through data-driven

machine learning methods [25], [250], [282]. Monitoring such complex systems is key

to automating supervisory control that is vital to process safety and product quality

[283]. Process monitoring approaches can broadly be categorized as [284],[285],[286]:

(a) model-based techniques using mechanistic models of the system, (b) knowledge-

based expert systems relying on the accumulation of past experience, and (c) data-

based systems that are not limited by the inability to fundamentally characterize a

system, as is the case with the former approaches. In-situ detection and the elimina-

tion of sample post-processing have made spectroscopic sensors a low-cost option for

online monitoring [287], reaction trajectory optimization to maximize product yield

[288], and in designing reactive processes at the Pareto front of environmental and

economic objectives [289]. Central to the shift of process systems engineering (PSE)

principles from model-based methods for optimization, control and monitoring[290];

are multivariate statistical process monitoring (MSPM) models developed using in-

line spectral data to monitor reactive systems [291],[292]. Spectral data have been

supplemented by mechanistic models for bioprocess monitoring [293]; and by esti-

mates from MSPM models acting as digital twins/soft sensors to limit uncertainty in

the measured data, while estimating target variables for model-based control [294].

Although mechanistic models are favorable in monitoring and control due to their

interpretability, there exists a significant knowledge gap owing to the complexity in

developing such models for reactive systems as bitumen [14], being investigated in
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this work. MSPM models have been used in conjunction with latent feature extrac-

tion, curve resolution [273] and calibration models on spectral data [295] to facilitate

interpretation by correlating the data to physically meaningful quantities like con-

centration or particle size distribution [296], [297] to enable making inferences about

reaction engineering systems [111] even in the absence of first principles models.

The use of MSPM to extract knowledge from process data for decision support

has been the primary goal of data mining in process analytics [298]. The MSPM test

statistics used for fault detection assume linear correlation among process variables,

Gaussian distributions, sample independence and stationarity [299], [300]. Develop-

ments in process monitoring to handle non-Gaussian behaviour using latent variable

models and mixture models, and non-linearity among the process variables is tack-

led using kernel methods, while adaptive and moving window techniques are used

for non-stationarity in process data [301]. The use of robust feature extraction tech-

niques in latent variable models handles the outliers in noisy high dimensional process

measurements[302]. Hidden Markov models (HMM) not only overcome the need to

used modifications to MSPM models that follow simplifying assumptions but is also

inherently robust to process noise and measurement uncertainties, besides account-

ing for the temporal dependence in multi-modal data arising from setpoint change

of process variables due to different product specifications or changes in operating

conditions [303], [304]. In this paper, online Fourier transform infrared (FTIR) spec-

troscopic data collected across varying temperatures and residence times during the

partial upgrading of Cold Lake bitumen is used to train an explicit duration HMM.

The model handles uncertainty, captures the time scales and dynamics of the process

to ultimately slice the spectral data in time-points via dynamic mode identification.

Interpretability in the absence of a mechanistic model is facilitated by inferring reac-

tion mechanisms from probabilistic structure learning among latent spectral features

extracted by factor decomposition of the spectra associated with the identified modes

[250]. Thereby, the proposed methodology is seen to achieve the real-time monitor-
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ing of reaction mechanisms associated with changing process conditions in complex

systems that lack mechanistic models.

5.1.1 Detailed background

Literature pertaining to mode identification in process data, followed by developing

local models on the data of the identified modes for process monitoring has been

reviewed in this section. Further, literature pointing to achieve the same when us-

ing HMMs and its extended capabilities in modeling time-scales through duration

distributions has also been presented.

Strategies for mode identification when process data statistics change with oper-

ating conditions in multi-modal processes involve static and dynamic methods. The

global approach of clustering statistically similar observation data from a mode into

a cluster [305],[306] paves the way for static mode identification as it assumes modes

are independent. However, dynamic mode transitions have been captured by the use

of Gaussian mixture models (GMM) to cluster process data into modes, followed by

the Bayesian estimation of the state transition matrix based on the mode membership

of the data history, that is updated upon receiving new data [307]. Dynamics of a

process have also been captured by developing robust adaptive local models such as a

Partial Least Squares (PLS) model for each mode followed by tracking mode transi-

tions in a moving window of data by comparing the similarity of its PLS model with

that of the local modes for online identification [210]. The similarity of process cor-

relation in temporal slice of data is used to segment the sequence in condition-driven

analytics, followed by using slow feature analysis to track the dynamics along the con-

dition mode with changing process conditions[308].In the context of tracking mode

transitions, the mathematically rich structure of HMMs that captures stochasticity

in temporal dynamics using a doubly-embedded model structure of observation data

being emitted probabilistically by hidden states representing the otherwise obscure

source characteristics, has been historically used in speech recognition [309]. The
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type of system being modeled by HMMs enables interpretability of the hidden states

as regimes in financial markets [310], machine degradation states in condition-based

monitoring [311], operating modes characterized by ranges of analyte concentration

in pharmaceutical production [312], and user preference when used for change point

detection to generate sequential recommendations [313]. In the event that process

shifts are driven by standard operating procedures, HMMs with mode reachability

constraints in state decoding via the Viterbi algorithm adds interpretability to the

mode dynamics and also reduce model complexity [314], [315].

HMMs are trained offline followed by using the model to infer in real-time the op-

timum dynamic sequence of modes using the Viterbi algorithm on a moving window

of data, instead of identifying modes independently for the samples using the maxi-

mum a posteriori probability [316]. MSPM models like mixture principal component

analysis (PCA), PLS [317], kernel PCA [318] and independent component analysis

(ICA) [319] are then fit locally to the data from each of the modes, followed by kernel

density estimation to determine the threshold for the MSPM test statistics viz. the

Hotelling’s T2 and squared prediction error (SPE) for the detection of faults in each

mode. The combined approaches of using MSPM for fault detection in the localized

modes identified by HMMs, process knowledge structure encoded as Bayesian net-

works for mode diagnosis [320], or the use of models like self-organizing feature maps

[321], PCA, ICA for feature extraction as a dimension reduction pre-processing step is

seen to increase the sensitivity of fault detection algorithms by reducing false alarms

and even the computational load of HMMs [322]. A probability ratio strategy based

on the premise that probability of an observation generated by its own mode is far

greater than the rest if the mode is stable, rather than if it is transitional when two

or more modes have comparable probabilities of generating the observation, has been

used prior to state decoding in the stable modes [323]. Subsequently, localized fault

detection among the identified states of the stable modes using information theoretic-

based novel process monitoring indices like the Mahalanobis distance to capture local
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information, the negative log-likelihood that encompasses global information or the

weighted combination of both is seen to outperform HMM-PCA, HMM-ICA in mon-

itoring performance [324].

Typically, in a HMM, the state duration or the number of observation samples

emitted while in a state inherently follows a geometric distribution [309] and does

not take into account the dependence of a given mode and its duration on that of the

previous mode. This lacuna while modeling processes that have modes with an ex-

plicit sojourn time like in condition-based monitoring for the predictive maintenance

of machines to estimate the remaining useful life of machines [325] or pattern recog-

nition for change point detection in genome sequences of continuous segments [326],

is overcome by using a generalized HMM also called a Hidden Semi-Markov Model

(HSMM). The ability to model the state as a complex entity comprising not only the

state but also its duration, resulting in a transition being described as a function of

the previous state and its duration, is seen to make the HSMM a superior modeling

choice. Evidence of diagnosing process operating conditions by modeling transition

probabilities as a function of a mode indicating scheduling variable is seen to account

for the asymmetric temporal transitions of the different modes [327]. However, ac-

counting for the mode and its duration as a complex state in HSMMs, facilitates

tracking the probabilities of both mode transitions and duration while modeling tem-

poral state dynamics [328]. It comes at the expense of model complexity, which

can be handled either by using efficient algorithms for parameter estimation using

incremental mapping over the conventional Expectation Maximization (EM) Baum

Welch algorithm [329], or by leaning towards parsimonious models by incorporating

constraints [314], [315] and relaxing assumptions of the complex state in a HSMM

[328]. The simplest and least computationally complex HSMM is the explicit du-

ration model that assumes transition to be independent of the previous state and

duration to be conditioned upon the current state only [328]. HSMM with duration

explicitly modeled using a non-parametric distribution has resulted in better mode
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localization before using PCA for fault detection in each of the modes [330]. However,

the model has many parameters to estimate and requires the a priori specification

of the maximum duration in each state. In this work, an explicit duration HSMM

with the duration modeled by a parametric Poisson distribution is proposed to limit

the parametric complexity of a typical HSMM when used for the purpose of mode

localization by capturing both the mode shifts and duration probabilities during the

time-varying system of a complex reaction mixture. The main contributions of this

paper are as follows:

1. Addresses limitations of HMMs in monitoring reactive systems using spectral

data [331] by developing HSMMs that characterize both the dynamics and time-

scales of a process.

2. Interprets the identified HSMM modes by constructing probabilistic graphical

models for structure learning among latent features of data in localized obser-

vation segments of online spectra [250].

The rest of the paper is structured as follows: Section 5.2 describes the data

generating process. Section 5.3 has a detailed description of the model, comprising

Section 5.3.1 that outlines the distributions, assumptions and boundary conditions

of the HSMM, Section 5.3.2 describes the Expectation-Maximization algorithm for

parameter estimation of the HSMM, and Section 5.3.3 presents the use of the Viterbi

algorithm for mode identification using the HSMM. Section 5.4 presents the find-

ings of the mechanisms inferred in the locally identified HSMM modes for 2 cases of

an operating temperature signal, and consists of Section 5.4.1 that discusses model

complexity, Section 5.4.2 that presents results for a decreasing temperature signal,

Section 5.4.3 that presents the findings for a randomized temperature signal, Section

5.4.4 that investigates the impact of increasing the model complexity on the find-

ings reported in Section 5.4.3, and Section 5.4.5 that discusses the results of online

monitoring with real-time data for the cases of both the temperature signals. Fi-
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nally, Section 5.5 summarizes the work in the paper and highlights future avenues for

research.

5.2 Problem description

This work seeks to use an explicit duration HSMM model to monitor reaction mecha-

nisms with changing temperatures by dynamically identifying groups of samples that

belong to a mode. The reaction mechanism associated with samples of a mode is

then deduced by extracting latent features among spectra of the mode and learning

a probabilistic graphical structure among the features using Bayesian networks, as

a way of hypothesizing reactions [250]. The proposed framework uses a sequence

of spectroscopic observations to infer the time scales and dynamics of the reaction

mechanisms associated with the identified modes, by way of the state duration and

state transition probabilities of the HSMM, respectively.

The FTIR spectroscopic data [196], [197] of the products of low-temperature ther-

mal cracking of Cold Lake bitumen over residence times at each temperature in the

range of 150◦C-400◦C are shown in Figure 5.1. A total of 42 FTIR spectra were

collected in that work, in addition to a measurement at 20◦C and 0 min reaction

time that was used for the purpose of baseline correction; these have been reported

in Table D.1. The tabulated spectra are measured at fewer conditions of residence

time at each of the reacting temperatures, prompting us to generate synthetic data

that bears semblance to a continuous reaction process.

We have generated realistic synthetic spectra by random linear interpolation [332]

of spectra at each temperature such that successive spectra differ by a sampling in-

terval of ∼ 10 seconds. This is followed by randomly sampling spectra over residence

times in the range 60 to 90 min at half hour intervals, at each temperature as shown

in Figure 5.1a. FTIR spectra at an intermediate reaction time for each of the tem-

peratures have been shown alongside in Figure 5.1b, for the purpose of illustration.

Each spectrum is an observation sample whose absorption intensities across the spec-
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(a) Residence times associated with tem-
perature

(b) Illustrative FTIR spectra

Figure 5.1: Spectral data over randomly sampled residence times at decreasing tem-
peratures

tral channels changes during the visbreaking process across varying temperatures,

thereby pointing to different reaction mechanisms. The synthetic spectral datasets

that are used to develop the HSMM models to identify the modes and their state

durations, have been published on the following link: https://github.com/Anjana-T-

Puliyanda/HSMM-for-realtime-reaction-mechanism-monitoring. The physical inter-

pretation of the identified modes as reaction mechanisms, and their durations as time

scales of the mechanisms, is facilitated by developing causal maps among the latent

factors extracted from the spectra of each mode using multivariate factor decompo-

sition models. [250], [273]

5.3 Methods

This section outlines the model used to implement the explicit duration HSMM, the

use of information theory-based metrics to limit model complexity, the EM algorithm

for parameter estimation from the process data and finally the Viterbi algorithm for

deducing the globally optimal dynamic sequence of states underlying the observation

data for the given trained HSMM. The states are then structurally characterized

using the associated spectra to deduce the reaction mechanism of the process mode
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[250]. State, in the context of a HSMM for our system, refers to a complex state that

encompasses not just the notion of the reaction mechanism characterizing the spectra

emitted in a particular operating mode but also the duration for which it remains in

that mode.

5.3.1 Model description

Figure 5.2: Schematic representation of the explicit duration HSMM as a doubly
embedded stochastic process

The HSMM is a doubly embedded process that captures the dynamic transitions

among the states that persist over durations [309],[333], stochastically generating the

given observation sequence as illustrated in Figure 5.2. The observation sequence

of given length T is denoted as O1:T = {O1, O2, · · ·OT}, where each observation

Ot ∈ Rd is a multivariate data sample. The discrete sequence of hidden states is

given by S1:T = {(i1, d1), (i2, d2), · · · (iN , dN)}, where the state in ∈ S = {1, 2, · · ·K}

corresponds to the chemical mechanisms associated with changing operating condi-

tions belonging to one of the K modes, and its duration dn ∈ D = {1, 2, · · ·T} is a

random variable such that
∑︁N

n=1 dn = T . Since the number of observations a state
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can emit is discrete, the mode duration is explicitly modeled using a Poisson distri-

bution in this work, as has been done for modeling state duration distributions for

automatic speech recognition [334]. The probability of the in mode having a duration

dn given by P (St+1:t+dn = in), where t =
∑︁n−1

l=0 dl ∀ n ∈ [1, N ] is given in Equation

5.1, which is parametric in λin , which is the average duration of the in mode.

Pin(dn) = e−λin
λdn
in

dn!
(5.1)

Generally, the first and the last state can exist before and after t = 1 and t = T

respectively, if the process ranges from (−∞,+∞) [309]. However, we assume that the

first state begins at t=1 and the last state ends at t=T. Hence, the initial state (i0, d0),

is defined using a state distribution given in Equation 5.2, under the assumption that

its duration is zero, i.e., d0 = 0 as this is prior to obtaining the first sample.

πi0 = P (St = i0) ∀ t ≤ 0 S.T.
∑︂
i0∈S

πi0 = 1 (5.2)

The probability of state transitions (in−1, dn−1) → (in, dn) ∀n ∈ [1, N ], ∀in−1, in ∈

S, ∀dn−1, dn ∈ D is denoted by a(in−1,dn−1)(in,dn) = P (St+1:t+dn = in|St−dn−1+1:t = in−1)

such that in ̸= in−1, as the state in−1 ending at time t cannot transition to itself at

time t+1, because the state durations have been modeled explicitly. Equation 5.3

indicates that the transition probability can be simplified under the assumption of

an explicit duration HSMM such that the transition is independent of the duration

of the previous state and the duration of the present state is conditioned only upon

itself [328].

a(in−1,dn−1)(in,dn) = ain−1,inPin(dn) ∀in−1, in ∈ S, ∀dn ∈ D S.T.
∑︂

in ̸=in−1

∑︂
dn

a(in−1,dn−1)(in,dn) = 1

(5.3)

The probability of emitting dn observations while in mode in, is modeled using

a mixture of Gaussian distributions as the observations are continuous multivari-
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ate spectra [335], [336]. The emission probability of the observations is denoted by

bin,dn(Ot+1:t+dn) = P (Ot+1:t+dn|St+1:t+dn = in). The observations are assumed to be

conditionally independent given the mode, leading to an expression for the emission

probability distribution as given in Equation 5.4. The number of mixture components

are denoted by M, while the Cinm are the mixing weights of each of the multivariate

Gaussian distributions denoted by N .

bin,dn(Ot+1:t+dn) =
t+dn∏︂
τ=t+1

bin(Oτ ) =
dn∏︂
τ=1

M∑︂
m=1

CinmN (Oτ , µinm,Σinm) ∀in ∈ S, dn ∈ D,M ≥ 1

S.T. Cinm ≥ 0,
M∑︂

m=1

Cinm = 1

(5.4)

5.3.2 EM algorithm for parameter re-estimation

It can be seen from Section 5.3.1 that the complete specification of the given HSMM

model involves specifying the length of the observation sequence T, the dimension of

each observation Ot ∈ Rd, the number of hidden states K and the mixture components

M in the Gaussian distribution of the emission probabilities. The parameters of the

resulting model can be outlined as follows:

– The initial state distribution π comprising K-1 parameters.

– The average duration for state duration distribution λ comprising K parameters.

– The state transition probability matrix A ∈ RK×K where self-transitions are

not allowed aij = 0 ∀i = j as state duration is explicitly modeled, thereby

comprising K(K-2) parameters.

– The emission distribution characterized by the mixing coefficient matrix C ∈

RK×M comprising K(M-1) parameters, the mean µ ∈ RK×d and covariance Σ ∈

RK×1 of the multivariate Gaussian with KdM and KM parameters respectively.
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All of the above enumerated model parameters can be collectively represented as

Θ = (π, λ,A,C, µ,Σ) for simplicity. These parameters are estimated by the iterative

routine of maximizing likelihood through expectation maximization using the Baum

Welch forward backward algorithm until the estimated relative error of the parameters

falls below a certain threshold [337], [309], [329].

The joint probability of observing a sequence of samples O1:T and states S1:T given

the model parameters is given by Equation 5.5, where t =
∑︁n−1

l=1 dl

P (S1:TO1:T |Θ) =
N∏︂

n=1

P (S1:T )P (O1:T |S1:T ,Θ) =
N∏︂

n=1

a(in−1,jn)Pjn(d′n)bjnd′n(Ot+1:t+d′n)

(5.5)

The likelihood of observation sequence is obtained by marginalizing the joint prob-

ability across all possible values of the state sequence as given in Equation 5.6

P (O1:T |Θ) =
∑︂

S1:T∈{S,D}

P (S1:TO1:T |Θ) (5.6)

The computational effort involved in maximizing the above likelihood for parame-

ter estimation using EM is simplified using the forward-backward algorithm based on

probabilities of the partial observation and state sequences. They are defined using

[338]: (i) forward variable αt(j, d) = P (St−d+1:t, O1:t|Θ), which is the joint probability

of the mode j existing for a duration d upto the current time t and the partial obser-

vation sequence until the current time step, given the model parameters (ii) backward

variable βt(j, d) = P (Ot+1:T |St−d+1:t = j,Θ), which is the conditional probability of

observing the sequence of samples from the next time step to the end, given the model

parameters and the state j existing for a duration d upto the current time. Based

on the assumptions of the Markov property that the current/future observations are

dependent on the current state and independent of the previous observations, and the

conditional independence of the observations, the forward and backward variables can

be recursively computed as indicated in Equation 5.7 and Equation 5.8.
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αt(j, d) =
∑︂

i ̸=j∈S,h∈D

P (St−d−h+1:t−d = i, St−d+1:t = j, O1:t|Θ)

=
∑︂

i ̸=j∈S,h∈D

αt−d(i, h)aijPj(d)
t∏︂

τ=t−d+1

bj(Oτ ) ∀t > 0

S.T.
∑︂
i ̸=j

αt(i)aij =

{︄
πj if t = 0,

0 if t < 0.

(5.7)

βt(j, d) =
∑︂

i ̸=j∈S,h∈D

P (St+1:t+h = i, Ot+1:T |St−d+1:t = j,Θ)

=
∑︂

i ̸=j∈S,h∈D

ajiPi(h)
t+h∏︂

τ=t+1

bi(Oτ ).βt+h(i, h) ∀t < T

S.T.βt(i) =

{︄
1 if t = T,

0 if t > T.

(5.8)

It must be noted that marginalizing the above forward-backward recursive prob-

ability definitions over the duration results in αt(j) and βt(j) ∀j ∈ S, which are

used to compute (i) the Probability of being in mode i at time t and mode j at t+1

given the model and the partial observation sequence ξt(i, j) = P (St = i, St+1 =

j|O1:t,Θ) = αt(i)aij
∑︁
d∈D

Pj(d).
t+d∏︁

τ=t+1

bj(Oτ ).βt+d(j) ∀i, j ∈ D, t ∈ [1, T ] (ii) the Proba-

bility of being in state i at time t given the model and the partial observation sequence

γt(i) = P (St = i|O1:t,Θ) =
K∑︁
j=1

ξt(i, j) ∀i, j ∈ D, t ∈ [1, T ]. Since the probability of

being in a state at a certain time takes into account all M components of the Gaus-

sian distribution for the emission probability of the observation at that instant, the

probability of the mth component’s contribution alone is weighted as follows:

γt(i,m) = γt(i)
CimN (Ot, µim,Σim)
M∑︁
l=1

CilN (Ot, µil,Σil)

(5.9)

The parameters of the HSMM are then re-estimated using the above computed

probabilities over multiple iterations of the Baum Welch algorithm using Equations

5.10- 5.15 [339], [328], [340]:
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π̄i = γ1(i) (5.10)

āij =

T−1∑︁
t=1

ξt(i, j)

T−1∑︁
t=1

K∑︁
j=1,̸=i

ξt(i, j)

(5.11)

µ̄im =

T∑︁
t=1

γt(i,m)Ot

T∑︁
t=1

γt(i,m)

(5.12)

Σ̄im =

T∑︁
t=1

γt(i,m)(Ot − µim)(Ot − µT
im)

T∑︁
t=1

γt(i,m)

(5.13)

C̄im =

T∑︁
t=1

γt(i,m)

T∑︁
t=1

γt(i)

(5.14)

λ̄i =

T∑︁
t0=1

T∑︁
t1=t0

χt0,t1(i).(t1 − t0 + 1)

T∑︁
t0=1

T∑︁
t1=t0

χt0,t1(i)

(5.15)

where χt0,t1(i) =

K∑︁
j=1, ̸=i

αt0−1(j)aji
t1∏︁

τ=t0

bi(Oτ )Pi(t1 − t0 + 1)βt1(i)

P (O1:T |Θ)

5.3.3 Viterbi state decoding

Once the parameters of the HSMM have been learned by maximizing the expectation

across the observation data sequence, the most likely sequence of hidden states that

may have generated the observation samples is decoded using the Viterbi algorithm.

The Viterbi algorithm is designed to find the global optimal sequence of states by

maximizing the probability of the observation data sequence conditioned on all pos-

sible hidden state sequence combinations [309], [328]. The most likely partial state

sequence that ends at time t in state j of duration d, δt(j, d) and the partial best path

191



that achieves the maximum probability Ψ(t, j, d) is recorded by caching the ending

time of the state, the state and its duration as backpointers for traceback [340]. The

probability of the best partial state sequence is computed recursively whilst caching

its path ∀1 ≤ t ≤ T, j ∈ S, d ∈ D as given in Equations 5.16-5.18. The previous state

selected by δt(j, d), and its ending time is recorded in Ψ(t, j, d), as given in Equation

5.18 where i∗ is the previous state that has survived, h∗ being its duration and (t-d)

is its ending time.

δt(j, d) = max
i ̸=j∈S,h∈D

δt−d(i, h)aijPj(d)
t∏︂

τ=t−d+1

bj(Oτ ) (5.16)

(S∗,D∗) =i ̸=j∈S,d∈D δt−d(i, h)aijPj(d)
t∏︂

τ=t−d+1

bj(Oτ ) δt(j, d) =

{︄
πj if t = 0,

0 if t < 0.

(5.17)

Ψ(t, j, d) ≡ t− d, i∗, h∗ where, i∗ ∈ S∗, h∗ ∈ D∗ (5.18)

The partial probability computed recursively in Equation 5.16 differs from those

calculated in the forward-backward algorithm, since it represents the probability

of the most likely path to a state j at time t, and not the cumulative probabil-

ity of all paths to the state. With this in mind, the state decoding is performed

by looking at the whole sequence to estimate the most probable state sequence

(j∗n, d
∗
n), (j∗n−1, d

∗
n−1), · · · , (j∗1 , d∗1) by tracing back the cached pointers to decipher the

globally optimal path as outlined in Equations 5.19-5.20.

(S∗
1,D∗

1) =j∈S,d∈D δt1(j, d) where, t1 = T (5.19)

tn, j
∗
n, d

∗
n = Ψ(tn−1, j

∗
n−1, d

∗
n−1) where, j∗n−1 ∈ S∗

n−1, d
∗
n−1 ∈ D∗

n−1 and,

n = 2, 3, · · · until tn − d∗n + 1 ≤ 1 (5.20)

For a detailed description of the methods used to develop reaction mechanisms for

each mode that has been identified, we refer readers to our previous work [250].
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5.4 Results and Discussion

In this section, we discuss the results obtained by the mode localization of spectral

measurements collected across temperature sequences in the range of 150 ◦C-400 ◦C,

with the process residing at each temperature for randomly sampled time durations

in the range 60-90 minutes. All the spectra belonging to identical modes are then

queried into a factor decomposition model to obtain latent spectral features, and

structure learning in Bayesian networks is used as a graph theoretic approach of

causally inferring reaction mechanisms from these spectral features. The hypothe-

sized reaction mechanisms associated with each of the identified modes resembles the

underlying temperature sequence. Results presented in Section 5.4.2 monitor reac-

tion mechanisms over a decreasing temperature sequence, while Section 5.4.3 presents

mechanisms of the identified local modes for a randomized temperature sequence us-

ing a HSMM model with 4 states, and Section 5.4.4 discusses the findings if a larger

number of states were used instead. The decreasing temperature sequence is represen-

tative of ’optimal’ recipes that are developed offline, and the randomized temperature

sequence is representative, from the viewpoint of the HSMM modeling, of changes to

temperature that may be made by a feedback controller.

5.4.1 Model complexity

It can be seen from Section 5.3.2 that the total number of parameters for a given

HSMM model scale according the choice of the number of hidden states K and the

number of mixture components M chosen to model the emission probability distribu-

tion. A parsimonious model with fewer parameters is generally preferred to minimize

computational effort; hence, a choice of M=2 has been used to model the GMM of the

emission probabilities in this work. However, order selection of the HSMM concern-

ing the choice of the number of hidden states is done using the maximum likelihood

approach based on information criteria like the Akaike information criteria (AIC)
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and the Bayesian information criteria (BIC) [341],[337]. Equations 5.21-5.22 define

the information criteria that are to be minimized in order to maximize the model

likelihoods, while being used to determine the model order.

AIC = −2 log(P (O1:T |Θ)) + 2Nparams (5.21)

BIC = −2 log(P (O1:T |Θ)) + Nparams log(T ) (5.22)

The aforementioned approach for model order selection could lead to the selec-

tion of more states than required for a particular model, as additional states may

capture fine-grained data structure, i.e., outliers, heterogenity, thereby demanding

a pragmatic approach of using practical system knowledge besides these criteria for

applications concerning interpretability of these states [342].

Figure 5.3: Model order selection based on information criteria to maximize model
likelihood

In this work, the states are interpreted as the reaction mechanisms associated with

the operating conditions during the partial upgrading of bitumen. These reaction

mechanisms are inferred probabilistically using structure learning of Bayesian net-

works [250] among features extracted from the spectra of the associated states. The
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Viterbi algorithm is used to decode the state sequences dynamically, as a way of track-

ing how the reaction mechanisms transition across varying temperature conditions.

There are 6 different temperature conditions, because of which it is believed that the

number of states may not exceed 6, even if there were distinct reaction mechanisms

associated with each of the temperatures. The information theoretic criteria used to

assess the model complexity that adequately fits the data differ in terms of how the

free parameters of a model are penalized to limit overfitting. The penalty term in the

BIC incorporates a prior notion of the data generating process in terms of its sequence

length, in addition to the model parameters and runs the risk of underfitting, espe-

cially when the length of the observation sequence is large. However, the AIC aims at

finding the best model when the data generating process is unknown.These informa-

tion criteria obtained by varying the model order upto a maximum of 6 states have

been reported in Figure 5.3, from which it can be seen that models with fewer states

than the temperature conditions perform better, with the optimal being 3 states be-

cause the least AIC is achieved for a model with 3 states, while for the BIC only a

marginal increase has been observed in going from from 2 to 3 states as opposed to

further increasing the model complexity. However, simulations in Section 5.4.2 and

Section 5.4.3 have been reported with the choice of an additional state to capture

aberrations in the data structure as discussed earlier [342]. The performance of the

HSMMs in tracking reaction mechanisms associated with a decreasing temperature

sequence has been investigated in Section 5.4.2, while an investigation on the similar

lines in the event of a randomized temperature sequence is outlined in Section 5.4.3.

Further, Section 5.4.4 elucidates insights into tracking the reaction dynamics accom-

panying the aforementioned randomized temperature sequence with a fine grained

HSMM comprising a larger number of states.
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5.4.2 Decreasing temperature sequence

Randomly sampled spectra over a decreasing temperature sequence of 400◦C, 360◦C,

340◦C, 300◦C, 200◦C and 150◦C, at residence times of an hour or an hour and a half

at each of the temperatures have been used to train a HSMM model. The model

is trained with 4 states, in accordance with the AIC/BIC model complexity curves

shown in Figure 5.3. Since the states are physically interpreted as the mechanisms as-

sociated with the underlying temperature sequence, it is believed that the maximum

number of states can only be as many as the number of unique operating temper-

atures. Also, it is physically possible that similar mechanisms exist across certain

operating temperatures, owing to which a fewer number of states have been consid-

ered in accordance with information theoretic criteria to limit the model complexity.

The localized modes identified by the Viterbi state decoding of the input spectral

data have been plotted against the underlying decreasing temperature sequence is

shown in Figure 5.4.

Figure 5.4: Mode identification of the decreasing temperature sequence

The temperature sequence has been scaled to lie in the range between 1 and 6,

with 1 being the least temperature and 6 being the highest temperature. The du-
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ration distributions of each of the modes is given in Figure D.1, and the posterior

probabilities of the modes are given in Figure D.2. The reaction mechanisms inferred

by Bayesian structure learning of all the spectra identified as a unique mode, and

the latent spectral features of each mode are given in Figure 5.5a and Figure 5.5b,

respectively.

(a) Reaction mechanisms of the modes with the state
transition probabilities

(b) Pseudocomponent spectra associated with the modes

Figure 5.5: Reaction mechanisms associated with the pseudocomponent spectra of
each state

It can be seen from Figure 5.4 and Figure D.1 that state 3 and state 4 represent
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mechanisms associated with higher temperatures and persist over marginally longer

duration as compared to that of state 2 and state 1, which represent lower tem-

perature mechanisms. The spectral signatures of the pseudocomponents can provide

indications of the nature of the reactions in the mechanisms. From the spectral signa-

tures of the states given in Figure 5.5b, it can be seen that all the pseudocomponents

exhibit strong absorption peaks at 2950 cm−1, 2920 cm−1 and 2850 cm−1 indicating

sp3 C-H stretching, in addition to peaks at 1380 cm−1 and 1450 cm−1 that point to

the C-H bending vibrations.

Besides these peaks, for state 3, PC1 is seen to have peaks at 740 cm−1, 810 cm−1

and 864 cm−1 indicating the presence of ortho, meta and para substituted aromat-

ics, along with a peak at 1600 cm−1 corresponding to the C=C stretch and one at

1717 cm−1, implying that it primarily constitutes esters. PC2 has a sharper peak

at 740 cm−1 that runs with a peak at 1607 cm−1, pointing to naphthenearomatics,

in addition to a very small peak at 1032 cm−1, indicating the presence of aliphatic

alcohols (C-O aliphatic stretch) or aliphatic straight chains with an alcohol func-

tional group, attached as a substituent to the naphthearomatic ring. PC3, aside from

having peaks representing the substituted aromatics, has a peak at 1034 cm−1 (C-O

aliphatic stretch) and 1600 cm−1 (C=C stretch), indicating that it may consist of

condensed aliphatic alcohols and olefins. PC4 also has peaks at 740 cm−1 and 1600

cm−1, indicating that it primarily comprises naphthenearomatics. Having identified

the compound classes belonging to each of the pseudocomponents, the reaction net-

work associated with state 3 represents the hydrolysis of esters (PC1 → PC2) to

give naphthenearomatics with substituents of aliphatic straight chains with alcohol

functional groups which upon cracking and hydrogen transfer results in olefins and

substituted aromatics (PC2 → PC4). The hydrolysis of esters, followed by thermal

cracking and hydrogen transfer leads to the formation of condensed alcohols and

olefins (PC1 → PC3), while the direct decarboxylation and cracking of esters could

also produce substituted aromatics and olefins (PC1 → PC4).
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Similarly, elucidating the compound classes in each of the pseudocomponents in

State 4: PC1 is seen to comprise naphthenearomatics and phenols owing to the peaks

at 740 cm−1, 1600 cm−1 and the C-O phenolic stretch at 1261 cm−1. PC2 has peaks

at 740 cm−1, 1600 cm−1 and 1730 cm−1, indicating that it represents a class of o-

substituted phenyl esters. PC3 is also shown to contain peaks indicative of naphthen-

earomatics and the C-O aliphatic stretch of alcohols besides the C=C stretch at 1600

cm−1, pointing to condensed alcohols. PC4, in addition to comprising substituted

aromatics, also comprises olefins and condensed alcohols. Hence, the reaction mech-

anism associated with state 4 corresponds to the reaction of phenols with carboxylic

acid to give phenyl esters (PC1 → PC2), the subsequent hydrolysis and cracking ac-

companied by free radical hydrogen transfer of which produces condensed alcohols

and olefins (PC2 → PC4 and PC3). Thermal cracking of the saturated ring attached

to the aromatic phenol ring could directly result in olefins, as well (PC1 → PC3).

When it comes to characterizing the low temperature states, it can be seen that

for state 2: PC1 comprises phenols and esters, while PC2 primarily constitutes con-

densed alcohols and phenols, PC3 and PC4 comprise naphthenearomatics, condensed

alcohols and olefins. The reaction mechanism underlying state 2 can be hypothesized

to include hydrogen transfer of condensed alcohols and phenols to produce naphthen-

earomatics, followed by cracking of side chain substituents to give condensed aliphatic

alcohols (PC2 → PC4 and PC3). The alcohols and phenol functional groups present

in PC2, PC4 and PC3 potentially combines with carboxylic acids to yield esters,

unconverted phenols and substituted aromatics (PC2, PC4 and PC3 → PC1).

For the other low temperature state, i.e., state 1, PC1 encompasses phenyl es-

ters due to peaks at 740 cm−1, 1600 cm−1 and 1738 cm−1. PC2 includes condensed

alcohols and phenols, PC3 has o-substituted phenols and alcohols, while PC4 has

naphthenearomatics and olefins. Hence, the reaction mechanism representing this

state primarily focuses on hydrolysis and cracking of phenyl esters to give condensed

alcohols and phenols (PC1 → PC2), which further undergo cracking and hydrogen
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disproportionation to give olefins and susbstituted aromatics (PC2 → PC3 and PC4).

The phenyl esters could also hydrolyze to give phenols and alcohols (PC1 → PC3),

which on further cracking and hydrogen transfer result in olefins and naphthenearo-

matics (PC3 → PC4).

It can be seen that the reaction mechanisms over decreasing temperatures point

to the hydrolysis, cracking and decarboxylation of esters at higher temperatures to

result in substituted aromatics, condensed alcohols and phenols. The alchols and

phenols may reversibly combine with acids present, to form esters that again undergo

hydrolysis and milder cracking at slightly lower temperatures. The decreasing severity

of thermal cracking accompanied by the hydrolysis of esters followed by the reaction

of the phenols and alcohols thus formed, to reversibly form esters again, leads to

the formation of lighter aliphatics and olefins produced at the expense of substituted

aromatics, condensed alchols and phenols.

5.4.3 Randomized temperature sequence using 4 states

This section investigates the mode localization performance of the HSMM, when

spectroscopic data over a residence time of 1 -1.5 hours is randomly sampled at

each of the 6 temperatures occurring in an arbitrary sequence. The model has been

trained using 4 states; however, the identification of the reaction mechanisms (modes)

associated with the temperature signal, as shown in Figure 5.6, is seen to visit only

3 states, as corroborated by the posterior probability of the states given in Figure

5.7, where state 3 is found to have the least posterior probability at all sample times

because of which the process does not transit through this mode in the optimal Viterbi

sequence. The duration distribution of the states in Figure D.3 indicates that state

1 and state 2, which are the frequently encountered reaction mechanisms, have a

slightly higher model residence time, as compared to state 4 (which is the mechanism

prevalent at 300 ◦C and 150 ◦C and early stages of 200 ◦C). The reaction mechanisms

associated with each of the modes are given in Figure 5.8, with the corresponding
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pseudocomponent spectra of each of the states in Figure D.4. The compound classes

are enumerated on the basis of the pseudocomponent spectra of the states, and the

reaction mechanisms associated with the corresponding states are hypothesized by

using Bayesian networks. The pseudocomponent spectra are modeled as the random

variables at the nodes among which the directed acyclic paths are learned via score

search optimization routines, to arrive at a network structure that maximizes the

Bayesian Information criteria.

Figure 5.6: Mode identification of the randomized temperature sequence

Compound classes representative of the pseudocomponent spectra are enumerated

on the same lines, as done in Section 5.4.2. The peaks at 2950 cm−1, 2920 cm−1

and 2850 cm−1 are common across all the pseudocomponent spectra and point to

the sp3 C-H stretching, while the peaks at 1380 cm−1 and 1450 cm−1 indicate the

C-H bending vibrations. In addition to these peaks, it is seen that for State 4,

PC1 has peaks at 740 cm−1, 1014 cm−1, 1171 cm−1 and 1600 cm−1, indicating that

it constitutes naphthenearomatics, condensed alcohols and phenols; PC2 has peaks

corresponding to -o,-m and -p substitutions that run along with peaks at 1050 cm−1

, 1260 cm−1 , 1600 cm−1 and 1750 cm−1, pointing to a class of phenyl esters with
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Figure 5.7: Posterior probabilities of the states

Figure 5.8: Reaction mechanisms of the modes with the state transition probabilities

substituents; PC3 has substituted aromatic peaks and also peaks at 1040 cm−1, 1217

cm−1 and 1740 cm−1, indicating that it comprises phenols and carboxylic acids; and

finally PC4 is seen to comprise substituted aromatics and condensed alcohols owing to

its peaks at 1020 cm−1 and 1600 cm−1. From the reaction network structure for State

4, as shown in Figure 5.8, it can be hypothesized that phenyl esters hydrolyse to give
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phenyl carboxylates (PC2 → PC3). The phenyl esters (PC2 → PC1 and PC4) and

phenyl carboxylates (PC3 → PC1 and PC4) may either undergo decarboxylation and

subsequent cracking or even hydrolyse with further cracking to result in the formation

of substituted aromatics, alcohols and phenols. Intermolecular hydrogen transfer can

result in a more saturated class of products in going from PC4 → PC1.

Similarly, analyzing the peaks of the pseudocomponents of State 2, it can be seen

that PC1 comprises substituted aromatics, PC2 comprises naphthenearomatics owing

to peaks at 740 cm−1 and 1600 cm−1, PC3 and PC4 both consist of substituted aro-

matics and condensed alcohols owing to peaks at 1035 cm−1 and 1600 cm−1. From

the reaction network structure of state 2, we may infer that cracking of side chains in

substituted aromatics followed by ring closure could lead to the formation of naphthe-

nearomatics (PC1 → PC2). Cracking and hydrogen transfer of substituted aromatics

with -OH functional groups in the substituents could give rise to condensed alco-

hols (PC1 → PC3 and PC4). Condensed aromatics through intermolecular hydrogen

transfer could give rise to naphthenearomatics (PC4 → PC2).

In state 1, PC1 is seen to comprise naphthenearomatics and alcohols due to peaks at

740 cm−1, 1600 cm−1 and 1050 cm−1; PC2 consists of substituted aromatics, phenols

(1165cm−1) and alcohols (1038 cm−1); PC3 in addition to the peaks for alcohols and

phenols also consists of naphthenearomatics due to peaks at 740 cm−1 and 1600 cm−1;

PC4 is seen to have condensed substituted aromatics owing to the C=C stretch at

1600 cm−1 and also alcohols. From the reaction network structure learned among the

pseudocomponent spectral features, we may hypothesize that naphthenearomatics

undergo ring opening of the saturated ring by cracking, followed by intramolecular

hydrogen transfer to produce condensed substituted aromatics (PC1 → PC4, PC3 →

PC2). Intermolecular hydrogen transfer to the condensed aromatics could lead to

the formation of more saturated products (PC4 → PC3).The cracking could also be

confined to the longer alkyl chains attached to the naphthenearomatics to produce

lighter aliphatics (PC1 → PC3, PC4 → PC2).
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Having identified the reaction mechanisms associated with each of the identified

modes along the temperature signal, the state transitions of Figure 5.8 determined

from the HSMM model point to the reaction dynamics. The decarboxylation and

subsequent cracking of phenyl esters, or even the hydrolysis and subsequent decar-

boxylation and cracking of phenyl esters produce substituted aromatics, alcohols and

phenols. This mechanism then transitions into one where further cracking of the sub-

stituted aromatics , accompanied by intermolecular hydrogen transfer leads to the

formation of saturated lighter products formed at the expense of condensed aromat-

ics. This reaction state then transitions to one where the saturated lighter aromatics

could be subject to ring opening and intramolecular hydrogen transfer to produce

aromatics with shorter condensed chains that could further crack to produce lighter

aliphatics. The mechanism is also seen to reversibly transition back to ring closure

and intermolecular hydrogen transfer to result in naphthenearomatics, or could also

go down the path of hydrolysis and decarboxylation of esters, formed by the reversible

combination of phenols and alcohols with acids present in the mixture.

5.4.4 Randomized temperature sequence using 6 states

The results obtained by training the HSMM model on the randomized temperature

sequence data of Section 5.4.3 with 6 states have been presented in this section. The

localized modes identified by the Viterbi state decoding as given in Figure 5.9 are seen

to transition among 5 states. States 1,2 and 3 are seen to prevail over shorter duration

as compared with the other states, as shown in Figure D.5. The posterior probabilities

of the states as shown in Figure D.6 indicate states 5 and 6 to not only have the least

probabilities over sampling times but also to be identical. It may be inferred that

states 5 and 6 are identical, implying that a HSMM model with at most 5 states would

suffice to capture the process dynamics. The pseudocomponent spectra obtained by

the factor decomposition of the spectra associated with each of the states are given

in Figure 5.10b. The Bayesian network structure learned from the pseudocomponent
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Figure 5.9: Mode identification of the randomized temperature sequence

spectra, used to hypothesize reaction mechanisms of the states visited by the process,

is outlined in Figure 5.10a. The peaks in the pseudocomponent spectra have been

interpreted on the similar lines as done in the previous sections. The peaks at 2950

cm−1, 2920 cm−1 and 2850 cm−1 are common across all the pseudocomponent spectra

and point to sp3 C-H stretching, while the peaks at 1380 cm−1 and 1450 cm−1 indicate

C-H bending vibrations.

In addition to these peaks, in state 4, PC1 has peaks corresponding to substituted

aromatics, and smaller peaks at 1030 cm−1 and 1217 cm−1 pointing to the C-O

stretch of alcohols and phenols respectively, with a few noisy peaks around 1700 cm−1,

indicating that it mainly constitutes phenyl carboxylates. PC2 consists of substituted

aromatics and condensed phenols (peak at 1250 cm−1 for C-O phenolic stretch and

1600 cm−1 for C=C stretch), while PC3 is representative of phenyl esters (peaks

at 740 cm−1, 1600 cm−1, 1730 cm−1) and PC4 comprises substituted aromatics and

condensed alcohols (C-O alcohol stretch at 1050cm−1 along with a peak at 1600 cm−1).

From the structure of the Bayesian networks, it can be seen that the state represents

the reaction of condensed alcohols and phenols with carboxylic acids to give phenyl
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(a) Reaction mechanisms of the modes with the state transition
probabilities

(b) Pseudocomponent spectra associated with the modes

Figure 5.10: Reaction mechanisms associated with the pseudocomponent spectra of
each state

esters (PC2 → PC3) and phenyl carboxylates (PC2 → PC1). The condensed phenols

and alchols may also undergo thermal cracking of aliphatic alcohol substituents to

produce aromatics and alcohols (PC2 → PC4), which may recombine with acids

present to form carboxylates (PC4 → PC1). The phenyl esters may also hydrolyse

to produce phenyl carboxylates (PC3 → PC1) and further cracking upon hydrolysis

may even produce aliphatic alcohols and condensed aromatics (PC3 → PC4).

Analysis of the pseudocomponent spectra for State 1 indicates that PC1 consti-

206



tutes naphthenearomatics and phenols due to peaks at 740 cm−1 corresponding to -o

substitutions running along with a peak for the C=C stretch at 1600 cm−1 , and a

C-O phenolic stretching peak at 1260 cm−1. The spectra of PC2, PC3 and PC4 are

all characterized by peaks pointing to substituted aromatics and the C=C olefinic

stretch at 1600 cm−1. From the reaction network, it can be hypothesized that naph-

thenearomatics form condensed substituted aromatics by intermolecular hydrogen

transfer (PC1 → PC2, PC3, PC4), which further undergo cracking and intramolecular

hydrogen transfer to shorter chained condensed aromatics (PC2 → PC3, PC4 and

PC3 → PC4).

For state 2, the pseudocomponent spectrum of PC1 is seen to include peaks for

substituted aromatics, weak peaks at 1030 cm−1 and 1190 cm−1 pointing to the C-O

stretch of alcohols and phenols, respectively and a noisy peak in the 1600 cm−1 in-

dicating the C=C olefinic stretch. Consequently, PC1 is seen to represent condensed

substituted aromatics with alcohol groups in the aliphatic side chains. Similarly, it can

be seen that a sharp peak at 740 cm−1 (-o substituted aromatics) along with peaks at

1050 cm−1 (C-O alcohol stretch), 1261 cm−1 (C-O phenol stretch), 1630 cm−1 (C=C

stretch) and 1750 cm−1 (C=O stretch), indicate -o substituted phenyl esters to be

representative of PC2. PC3 is considered to be predominantly naphthenearomatic due

to peaks at 740 cm−1 and 1600 cm−1, while PC4 represents condensed substituted

aromatics, alcohols and phenols. It can be inferred from the reaction network that

condensed phenols react with carboxylic acids to yield phenyl esters (PC1 → PC2)

that subsequently hydrolyse and crack to form naphthenearomatics by intermolecular

hydrogen transfer (PC2 → PC3). The naphthenearomatics may undergo ring open-

ing and intramolecular hydrogen transfer to form condensed substituted aromatics

(PC3 → PC4). Cracking of aliphatic side chains with alcohol functional groups fol-

lowed by hydrogen transfer in the aromatics of PC1 may also result in condensed

alcohols and aromatics (PC1 → PC4).

Analysis of the spectra in state 3 indicates PC1 to comprise peaks pointing to
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the presence of substituted aromatics alongside peaks at 1600 cm−1 and 1700 cm−1

representing the C=C stretch and the C=O stretch, respectively. Consequently, PC1

could be hypothesized to consist of condensed substituted aromatic anhydrides. PC2

is seen to have peaks at 1710 cm−1 (C=O stretch), 1217 cm−1 (C-O phenolic stretch),

1040 cm−1 (C-O alcohol stretch) besides the substituted aromatic peaks, implying

that the representative compounds could include phenyl carboxylates. The spectra

of PC3 and PC4 are seen to comprise condensed aromatics and phenols, owing to

the peaks corresponding to the C-O stretch of alcohols and phenols along with the

C=C olefinic stretch. The mechanism inferred from the reaction networks, points to

the hydrolysis of aromatic anhydrides to produce phenyl carboxylates (PC1 → PC2),

which on further hydrolysis and cracking produces condensed aromatics and phenols

(PC2 → PC3,PC4). The aromatic anhydrides may also directly undergo hydrolysis

and subsequent thermal cracking to form to form condensed aromatics and phenols

(PC1 → PC3,PC4).

Finally, analyzing the spectra of state 6, reveals that PC1 and PC4 comprise sub-

stituted aromatics and condensed alcohols (owing to peaks ar 1015cm−1 and 1600

cm−1). PC2 has a sharp peak at 740 cm−1 along with peaks at 1610 cm−1 and 1700

cm−1, thereby consisting of phenyl esters, while PC3 primarily constitutes naphthe-

nearomatics due to a sharp peak at 740cm−1 besides a few noisy peaks in the 1600

cm−1 region. It can be inferred from the reaction networks that condensed alcohols

combine with acids to form phenyl esters (PC1,PC4 → PC2), which upon decarboxy-

lation and hydrogen disproportionation result in naphthenearomatics (PC2 → PC3).

The condensed aromatics with aliphatic alcohols attached as substitutents may also

undergo side chain cracking and intermolecular hydrogen transfer to produce naph-

thenearomatics (PC1,PC4 → PC3).
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(a) Number of mode changes vs. the number of temperature changes across windows

(b) Modes identification in sample windows

Figure 5.11: Online monitoring of reaction mechanisms by mode identification in a
moving window of samples for the decreasing temperature sequence

5.4.5 Online monitoring

Non-stationarity in process data arising from a shift in operating conditions is typ-

ically handled by online monitoring using moving windows of process data [301].

Alternatively, modifications to the Viterbi algorithm for real-time state decoding by

developing partial path hypotheses on successively expanding windows until conver-
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(a) Number of mode changes vs. the number of temperature changes across windows

(b) Modes identification in sample windows

Figure 5.12: Online monitoring of reaction mechanisms by mode identification in a
moving window of samples for the randomized temperature sequence trained using 4
states

gence is reached, overcomes the limitation of tracing back from the end of the sequence

using backpointers [343]. While using HMMs, state decoding can be achieved based

on different optimality criteria [309], the two most popular being posterior decoding,

which gives the minimum error path by deciphering the most likely state at a given

instant, and the maximum a posteriori probability (MAP) path obtained by Viterbi
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state decoding, where a valid sequence of states that generates the observation se-

quence O1:t is obtained [344]. It must be noted that posterior decoding yields the

most likely state at each sample time but does not guarantee a valid sequence of

states as the states in consecutive positions may have zero transition probability.

For fault detection, HMMs have been trained offline to learn the model param-

eters, based on which process monitoring indices are evaluated, followed by using

kernel density estimation to determine an index threshold for normal operation [324].

Online fault detection is then realized by calculating these indices based on posterior

decoding for each new sample and comparing against the threshold. Recently, model-

ing the state durations using probability distribution matrices via training a HSMM

for multi-modal processes has been used to determine mode affiliation by posterior

decoding for improved fault detection [330]. However, monitoring just one sample

at a time using posterior decoding for mode identification treats consecutive samples

to be independent, fails to capture the process dynamics and is susceptible to noise,

because of which the aforementioned fault detection framework has been modified to

include a moving window of samples for online Viterbi state decoding [315]. Addi-

tionally, modeling the state duration using a probability matrix increases the number

of parameters to be estimated and also depends on specifying the maximum amount

of time spent in each state [333]. This has led to the use of parametric distributions

to model state duration densities [340]. There is evidence of using a HMM model

trained offline for online fault detection by determining if the variance of posterior

probability over a moving window of samples exceeds a threshold to assess if the

underlying process mode is known [322], followed by using either process monitoring

indices [324] or the probability ratio strategy to identify [323] faults in stable and

transient process operation. It is imperative to use a correct window size when using

moving window approaches for online monitoring, as a large window could increase

the computational load and a small window may not capture the essential process

dynamics [316]. There is not a standard way to ascertain the correct window size.

211



In order to overcome some of the shortcomings discussed above, we use a HSMM

model with the state duration modeled using the Poisson probability distribution,

parametrized by the average duration of the state. The size of the moving window

is ascertained based on the value of the average state duration of the HSMM model

trained offline. It can be seen from Figure D.1, Figure D.3 and Figure D.5 that

the average state duration is ∼ 100. Consequently, a moving window size of 100

observation samples is chosen for online monitoring. A stride length of half the

window size is chosen, as it is believed to be reasonable to assume that half the

average state duration captures the time scale of the reaction dynamics in real-time

monitoring. The parameters of the HSMM model trained offline are updated in each

window of the streaming sample spectral data, and are used as an initial point for each

subsequent window. The Viterbi algorithm used for the MAP state decoding takes

into account the dependence of the sample window instead of considering each sample

to be independent, as is the case with posterior decoding. The model parameters of

each window are used to determine the optimal sequence of states in a given window,

that physically correspond to a change in reaction mechanisms associated with the

change in the operating temperature. The results of online monitoring using a HSMM

model with 4 states using moving windows of observation data on the decreasing

temperature sequence of data as in Section 5.4.2 is given in Figure 5.11, while Figure

5.12 are the results for the same, but using random temperature sequence data as that

in Section 5.4.3. In Figure 5.11a and Figure 5.12a, the number of times a state change

is registered in the Viterbi path is indicated as the predicted mode changes, and is

compared against the actual temperature changes in each window. The differential

mode vector of a sliding window of samples could then be used as an indicator to

switch to a suitable diagnostic strategy, to facilitate monitoring multi-modal processes

[317].
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5.5 Conclusions

A framework for the process monitoring of reaction mechanism dynamics from spec-

troscopic data has been developed. The process data is deemed to be multi-modal,

owing to the varying modes of temperatures and residence times across which the

spectra are recorded. Hidden Markov models which capture the dynamic interactions

in multi-modal data have been extended to include a distributional assumption on the

duration of the process modes, by way of the explicit duration hidden semi-Markov

model. The Viterbi state decoding based on the HSMM has enabled optimal mode

localization by accounting for the sequential dependence of the FTIR observation

data. Building a two-step statistical inferential model on the mode localized data has

enabled each of the modes to be interpreted as a reaction mechanism hypotheses asso-

ciated with the changing process operating temperature. The first step concerns the

statistical factor decomposition of spectra constrained by Beer’s law to obtain latent

spectral features, while the second concerns causally inferring reaction hypotheses by

a graph theoretic approach of Bayesian structure learning using the spectral features.

The HSMM has been trained to monitor reaction dynamics by accounting for the

probabilistic transition of a reaction hypotheses representing a mode to another, and

also the duration probability distributions of the modes that physically translate to

time scales of the mechanisms.

It has been observed from the duration probability of the states that reaction

mechanisms hypothesized at higher temperatures have longer average state durations

than those at lower temperatures. The cyclical dynamics of reaction mechanisms ac-

companying the underlying temperature changes as discovered by the HSMM point

to the hydrolysis and cracking of esters to give condensed substituted aromatics, al-

cohols and phenols; the intermolecular hydrogen transfer and cracking of condensed

aromatics to give napthenearomatics and lighter aliphatic products; and finally the

recombination of alcohols and phenols with acids to give esters, which subsequently
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hydrolyse and crack again. The data-driven process monitoring framework has also

been demonstrated to detect temporal patterns of changing mechanism hypotheses

from online spectroscopic data across varying temperatures, using Viterbi state de-

coding on a moving window of sample data based on adaptively updated HSMM

parameters. Validating the hypothesized reaction mechanism dynamics by mapping

to domain knowledge demonstrates the importance of semantic descriptors used in

tandem with data-driven inferential methods, presenting a step toward developing

expert systems for monitoring unknown complex reacting systems.
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Chapter 6

Chemical reaction neural ODEs
and latent factorization to deduce
kinetic models from spectroscopic
data

Abstract

Kinetic model identification generally relies on accurate measurements of non-equilibrium

temporal concentration of the reacting species, which in most cases is difficult to ob-

tain. The lack of prior knowledge of species, poses an added challenge in developing

kinetic models. This work demonstrates a framework wherein the latent factorization

of realtime spectroscopic data tackles the aforementioned setbacks. The projection of

the spectra onto the temporal mode of data collection is shown to gain interpretabil-

ity as the time varying concentrations, whose direct measurements would otherwise

be challenging. Also the latent spectral features corresponding to these temporal

concentrations, characterizes the species in obscure chemical systems. Furthermore,

the adjacency matrix deduced from the structure of reaction pathways hypothesized

by causal structure inference among the latent spectral features is used to constrain

the development of kinetic models using the temporal concentrations as inputs to a

chemical reaction neural ODE. The incorporation of the law of mass action, the Ar-

rhenius law of temperature dependence in addition to the structural constraints of the

reaction network, are seen to enable the neural network recover kinetic models, even
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in the presence of considerable noise that challenges the accuracy of spectroscopic de-

convolution. The framework has been illustrated using synthetic spectroscopic data

from a known reaction template in the database, due to the absence of a precise

ground truth model for validation in complex systems like bitumen.

6.1 Introduction

Process intensification by rationalizing the design and optimization of processes in-

volving the conversion of complex reactive feedstocks, depends on modeling the

underlying kinetic framework [2]. Developing kinetic models requires mechanistic

knowledge of the reactive species and the pathways detailing their conversion, fol-

lowing which the kinetic parameters are estimated from experimental data [345].

However, it is daunting to develop a kinetic framework for complex systems like bi-

tumen/biomass that lack an exhaustive enumeration of the underlying species, let

alone the reaction mechanisms underlying their conversion. This has prompted the

integration of reactors with spectroscopic sensors that provide molecular-level infor-

mation of the reactive mixtures [11],[12], which is then used as a basis for developing

data-driven models for species identification and the generation of plausible reaction

hypotheses [273]. Upon species identification, reaction pathways can be deduced by

perceiving chemistry as a series of graph transformations in the space of all possi-

ble reactions [346], wherein a molecular fingerprint at the reactant node results in

candidate fingerprints at the product nodes, a distribution across which is learned

via neural networks to rank the candidates[45]. Statistical models like multivariate

curve resolution have been extended to jointly resolve data from multiple spectro-

scopic sensors in compliance with Beer’s law, so that the latent factor projections

onto the spectral channels and the temporal mode of data collection are physically

interpreted as the pseudo-spectra of the reactive species and their corresponding con-

centrations, respectively [250]. Domain knowledge is used to identify species from

their pseudo-component spectra, while reaction pathways among them are devised
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by Bayesian structure learning among the pseudo-component spectra. The present

work seeks to develop a chemical reaction neural ODE constrained by the adjacency

matrix derived from the Bayesian network structure, pertaining to the hypothesized

reaction pathways, aside from incorporating the physical laws of mass action and the

Arrhenius law of temperature dependence [347] to fit a kinetic model to the temporal

concentration data from the latent projections. The proposed framework paves way

for a system-agnostic approach of identifying species, hypothesizing reaction pathways

among them and subsequently estimating kinetic models constrained by the reaction

network adjacency matrix, purely from the spectroscopic data of the reactive system.

The general form of a kinetic model for the time evolution of n species is given by a

function parametrized by the kinetic parameters (θ), for a vector C(t) = [C1(t), C2(t), · · ·Cn(t)]T

dC

dt
= fθ(t, T, C1(t), C2(t), · · · , Cn(t)) (6.1)

The kinetic model function f described by ODEs, Markov processes and state space

representations using the law of mass action kinetics, S-system or polynomial models

[51] is characterized by a structure that is derived from the reaction pathways among

the species and a set of parameters θ (rate constants, stoichiometric coefficients, or-

ders). Estimating the parameters by fitting the model to experimental concentration

data [348] is known as the inverse problem in chemical kinetics and could lead to

multiple solutions resulting from the same reaction dynamics [349]. Attempts to use

sparsity constraints are found not to be reliable in recovering unique solutions, thereby

pushing for the incorporation of additional knowledge about the system [350]. Yet,

in the absence of prior knowledge of the network topology, the structure is learned

by virtue of kinetic parameter estimation [53] resulting in larger degrees of freedom

that challenge a unique solution owing to the fundamental dogma of chemical kinetics

[349]. Additionally, when it comes to the inverse problem, obtaining measurements of

non-equilibrium temporal concentrations of the species is challenging [81]. Therefore,

the present work seeks to use knowledge of the reaction mechanisms causally inferred
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from spectral resolution to constrain the inverse kinetic model development using the

temporal concentrations from the latent factorization. Also, the knowledge of phys-

ical laws such as mass action and Arrhenius temperature dependence encapsulated

in a system of coupled ODEs indicated by f in Equation 6.1 are used to structurally

constrain neural networks that are trained as function approximators of the true ki-

netic model. This is believed to be superior to cases where the reaction dynamics are

modeled as a linear combination of weighted polynomial basis functions representing

individual reactions [58], and its sparse variant with a curated library of vector-valued

ansatz functions called ’reactive SINDy’ [351], where the parameters are estimated

by regressing against the temporal concentration data but lack interpretability in the

context of the true kinetic model, as physical laws are not explicitly accounted for,

and are limited in their function approximation ability as compared to neural net-

works [352]. We shall now proceed to review some works where neural networks have

been used to model chemical kinetics.

Solving kinetic models in multi-dimensional vector fields of reactive flow problems

from direct numerical solution of stiff ODEs, owing to varied reaction time-scales,

is seen to be computationally expensive and scales with the number of species [353].

Instead of using simplifying assumptions like quasi-steady state, neural networks have

been used for thermokinetic modeling [354] by learning a functional mapping between

the true kinetic model (encompassing all mechanisms and transport limitations) and

the time evolution of species concentration [355]. Although these neural networks

maps are computationally efficient in evaluating kinetic models, they come with a

training overhead that requires data obtained either by solving first principle ODEs

if the system is known, or from experimental data in the absence of prior knowledge

of the system. The training data overhead can be reduced by using hybrid neural

networks that are structured with prior knowledge of physical laws, besides improving

the generalizability of the function approximation [356]. A Physics-informed neural

networks used to model chemical kinetics [357], [358] by mapping a discrete space of
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time points to species concentrations, encodes physical laws in its training by mini-

mizing the residual loss between the species conversion rates obtained by automatic

differentiation of the predicted concentrations, and the underlying physical ODEs.

There is evidence of using experimental data from gas chromatography and heat flux

calorimetry to train neural networks to fit kinetic models for complex reactions like

esterification and heterogeneous liquid-liquid mononitration [359], and also from re-

action colorimeter data for a heterogeneous oxidation process [360]. These outputs

of neural network models that learn a mapping between the input species concen-

trations and the rates of the chemical state space modeled by the ODEs, when time

integrated, are seen to diverge from the true species concentration profiles, thereby

shifting focus to neural ODEs that integrate the outputs while training, leading to

parameter gradients being backpropagated across the ODE solver, while minimizing

the difference between the neural network predictions and the true ODE solution

[361]. Neural ODEs have also shown promise in learning model dynamics from tem-

poral data obtained from stiff ODEs that are prevalent in kinetic models of chemical

and biological systems [362], and differ from physics-informed neural networks in that

they can model irregular and incomplete sampled time series data.

Neural ODEs where physical laws are enforced as structural constraints have been

used to autonomously infer reaction pathways from time series concentration data, by

virtue of kinetic parameter estimation, but rely on grid search to optimize the num-

ber of reactions as hyperparameters [347]. There is evidence of using spectroscopic

data to propose kinetic models by way of the Deep kinetic spectroscopy network

(DeepSKAN) that uses convolution neural networks to obtain time resolved features

from the spectra in the affine space of the data collection axes, namely, probe delay

and wavenumbers [363]. The latent space of probe delay reveals velocity constants

of the mechanisms underlying the photoinduced electronic excitation process, and is

used to develop kinetic models but lacks prior knowledge of the potential reaction

pathways. The present work seeks to bridge the gap in developing kinetic models
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from spectroscopic data, where we develop chemical reaction neural ODEs to incor-

porate prior knowledge of reactions and network adjacency constraints deduced from

the reaction pathways that are hypothesized by Bayesian structure learning among

the pseudocomponent spectra. Multivariate curve resolution algorithms that project

FTIR spectra onto the data collection axes using a fixed number of components,

ascertained by the chemical ’rank’, resulting in the pseudo-component spectra from

the wavenumber axis, and their corresponding concentrations from the temporal axis,

are used at the backend with Bayesian structure learning [273],[250] to provide the

temporal concentration data, and reaction pathway constraints, respectively, for the

training of chemical reaction neural ODEs that have been implemented using the

torchdiffeq library on PyTorch [364], [365].

6.2 Description of datasets

(a) Reaction template from database (b) Synthetic FTIR spectra

Figure 6.1: Synthetic data generation from the reaction network template

We seek to demonstrate our framework of deducing kinetics from spectroscopic

deconvolution and causal inference, by choosing a model system from a database

where the pure component spectra and the pathways among them are known a pri-

ori. Knowledge of the ground truth enables us to verify the predictions from our

framework, which would otherwise be a non-trivial task for complex systems like

bitumen/biomass where the ground truth concerning species enumeration, their re-

actions pathways and kinetics have not yet been ascertained exhaustively. Hence, in

this work, synthetic spectroscopic data is generated from the pure component FTIR
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profiles of species following a reaction template that has been obtained from the NIST

database [366]. For a given system with NS species and NR reaction pathways from

the database, the kinetic model constrained by the reaction network adjacency and

following the law of mass action can be described by the following system of ODEs,

where n ∈ {1, 2, · · ·NS} and m ∈ {1, 2, · · ·NR}

dCn

dt
=

NR∑︂
m=1

1(Adjmn = 1)Km

NS∏︂
n=1

COn
n −

NR∑︂
m=1

1(Adjmn = −1)Km

NS∏︂
n=1

COn
n (6.2)

The ODEs in Equation 6.2 are parametrized by the kinetic parameters viz. the order

of the nth species given by On and the rate constant of the mth reaction pathway

that are modeled to account for their temperature dependence in accordance with

the Arrhenius law, as given below

Km = Km0e
−Ea
RT (6.3)

The ODEs are also constrained by the adjacency matrix (Adj ∈ ℜNR×NS) using

an indicator function (1) as given in Equation 6.2. The adjacency matrix derives its

structure from the reaction pathway network, where each row corresponds to a certain

mth reaction, and comprises entries -1 or 1 for each of the NS species, indicating its

participation in the said reaction, either as a reactant or product, respectively. A

zero entry is used for species that are non-participating in the reaction.

The reaction template that has been chosen for this study is shown in Figure 6.1a,

and is seen to have NS = 4 species that are undergoing NR = 2 reactions as follows

A + B
K1−→ C

A + C
K2−→ D (6.4)

For the above reaction template, the ODEs in Equation 6.2 are solved over a time

interval t ∈ [0, 100min] using a random choice of kinetic parameters and a multi-level

pseudo-random temperature signal in the interval T ∈ [200◦C, 400◦C] to perturb the
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system dynamics via the rate constants, as modeled in Equation 6.3. The pure com-

ponent spectra of the species are then weighted by the concentration profiles from

the ODE solutions, followed by the addition of white Gaussian noise that mimics the

effects of random processes while generating synthetic spectra over the time interval

t [367]. Illustrative samples of the synthetic spectra at a select few points in the time

interval are shown in Figure 6.1b. The framework and results of training a chemical

neural ODE on the deconvolved concentration profiles from this synthetic spectral

dataset, constrained by the causal structure inferred from among the pseudocompo-

nent spectra, are described in the subsequent sections.

6.3 Methods

Figure 6.2: Schematic representation of the chemical reaction neural ODE

The synthetic spectroscopic data generated as outlined in Section 6.2 comprises

absorbances recorded across time and the spectral channels (wavenumbers). Multi-

variate curve resolution is used to obtain latent projections of the absorbances across

the time and wavenumber axes, as described in our earlier works [273]. The number of

components in the latent space is determined using the mathematical notion of ’rank’

that indicates the number of latent components that sufficiently capture the variance
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of the data in the original space. Since, the latent factorization constrains the pro-

jections to be non-negative, the latent components can be interpreted as a chemical

species, and their projections onto the axes of time and spectral channels gain inter-

pretability as the concentrations and pseudo-component spectra, respectively. The

pseudo-component spectra are then represented as random variables at the nodes,

and are modeled using probability distributions to learn a directed acyclic graphical

structure among the nodes via heuristic score-search methods in order to maximize

the Bayesian Information Criteria (BIC) [250]. The adjacency matrix deduced from

the structure of the Bayesian networks inferred from the pseudo-component spectra

is used to constrain the development of kinetic models using their corresponding con-

centration profiles by training chemical neural ODEs, the underpinnings of which are

described in this section.

Let us consider the following reaction involving 4 species

νAA + νBB
k−→ νCC + νDD (6.5)

The rate R, of this reaction can be represented in terms of the time rate of change

of concentrations of the species (ĊA, ĊB, ĊC , ĊD)and their respective stoichiometric

coefficients (νA, νB, νC , νD) that indicate the number of moles of each of the species

that participates in the reaction, as indicated from the balanced chemical equation

of the reaction [368].

r =
−1

νA

dCA

dt
=
−1

νB

dCB

dt
=

1

νC

dCC

dt
=

1

νD

dCD

dt
(6.6)

The kinetic rate expressions based on the law of mass action [369] is as follows

r = kCa
AC

b
B (6.7)

In Equation 6.7, k is the rate constant, while a,b are the reactant orders that indicate

the degree to which the rate depends on the concentration of a specific reactant.

The orders are neither related nor identical to the stoichiometric coefficients, with
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the exception of elementary reactions. Since it is difficult to determine beforehand,

whether or not a reaction is elementary, we would like to proceed by assuming that the

orders and stoichiometric coefficients are not the same. Incorporating the temperature

dependence of the rate constant as outlined in Equation 6.3, the rate expression in

Equation 6.7 can be expressed as an exponential of the linear combination of the

logarithm of the species concentrations, weighted by their orders, and that of the

negative reciprocal of the temperature, weighted by the ratio of the activation energy

and the universal gas constant (Ea/R) to which the logarithm of the pre-exponential

rate constant (K0) is added as a bias term.

r = exp

[︃
ln k0 −

Ea

RT
+ a lnCA + b lnCB

]︃
(6.8)

Representing the rate in this manner enables the weights and biases to be in-

terpreted as kinetic parameters, and makes the choice of the non-linear activation

domain-informed, when neural networks are used as function approximators to learn

the dynamics by mapping time series concentrations to reaction rates. Inspired from

neurobiology, neural networks combine multiple inputs as their linear weighted sum

translated by a bias term, the result of which is non-linearly transformed by the choice

of an activation function to result in hidden features that are similarly combined to

result in outputs that are trained to approximate any function to arbitrary precision

[370]. Neural networks where the computed hidden features are re-used by similar

weighted combination and non-linear activation to produce a hierarchy of hidden fea-

tures over subsequent layers are said to be deep, whereas those with just one layer

of hidden features are considered shallow. The number of hidden features in each

layer, referred to as the neurons, and the number of layers themselves comprise the

hyperparameters (network topology) and guide the precision of the neural network as

a universal function approximator, parametrized by the weights and biases that are

learned by gradient descent optimization (backpropagation i.e. the gradients of the

loss function computed at the output with respect to the parameters are propagated
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backwards through the successive layers) [371]. Deep neural networks comprise more

hyperparameters than shallow neural networks, and thereby suffer from overfitting

due to the model complexity that is sought to be handled by effective regularization

of the parameters [372] and the reconciliation of domain knowledge into the network

structure [351], [373]. These approaches to limit the overfitting and improve the gen-

eralizability of the neural networks also promote model interpretability and reduce

the requirement of large amounts of training data.

In this work, we demonstrate the use of a shallow neural ODE, a schematic of

which has been indicated in Figure 6.2. The neural network is seen to comprise i)

an input layer consisting of the logarithm of the temporal concentration of species

obtained from multivariate curve resolution of the synthetic spectra, and the negative

of the reciprocal of time varying temperature. Let us denote the input data at time t

by a vector Xt = [lnC1(t), lnC2(t), · · · lnCNS
(t),−1/T (t)]T , such that Xt ∈ ℜ(NS+1)×1

is the temporal vector fed into the network. ii) a single hidden layer consisting of

as many neurons as the number of reaction pathways. The features in the hidden

layer are denoted by a vector Ht ∈ ℜNR×1 that consists of the reaction rates Ht =

[r1(t), r2(t), · · · rNR
(t)]T iii) an output layer with as many nodes as the number of

species, where each node corresponds to the predicted time rate of change of the

species concentration, given by a vector Ĉ̇t ∈ ℜNS×1 and iv) an ODESolve function

to integrate the time rate of the species’ concentration over an interval to result

in predictions of their corresponding concentration profiles, in vector Ĉt ∈ ℜNS×1

given by Ĉt =
[︂
Ĉ1(t), Ĉ2(t), · · · ĈNS

(t)
]︂T

. The parameters of the network denoted

by θ comprise the weights of the first two layers, denoted by W (1) ∈ ℜNR×(NS+1)

and W (2) ∈ ℜNS×NR , and the bias associated with the first layer, denoted by b(1) ∈

ℜNR×1. The weights of the two layers are interpreted as the order and stoichiometric

coefficients, respectively, while the bias points to the pre-exponential rate constants,

as can be seen from Equation 6.7 and Equation 6.8. The weights of the network are

regularized by the adjacency matrix Adj ∈ ℜNR×NS as illustrated in the following
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set of equations in the forward pass of the neural ODE, where 1 is the indicator

function, while 1 is a notation for a vector of ones appended to the adjacency matrix

to account for the temperature term in the input, aside from the logarithm of the

species concentrations.

Ht = exp
[︁(︁
W (1) ∗

[︁
1(Adj = −1)¦1NR×1

]︁)︁
Xt + b(1)

]︁
(6.9)

Ĉ̇t =
(︁
W (2) ∗ 1(Adj ̸= 0)T

)︁
Ht (6.10)

Ĉt = Ĉt−1 +
∫︁ t

t−1
Ĉ̇t−1 dt

= ODESolve(Ĉt−1, Ĉ̇t−1, [t− 1, t] , θ) (6.11)

The network is trained to not only reconcile the predicted concentration profiles

with that obtained from the deconvolution of synthetic spectra, but also to minimize

the difference between the predicted time rate of change of the species concentration

and the numerically computed values from finite differences of the temporal concen-

trations from the spectral curve resolution across all time points, as indicated by the

loss function given below. Additionally, sparsity among the weights is enforced via

the adjacency matrix deduced from the Bayesian network structure, penalized by the

regularization weight α. All of the weights not used in the forward pass computa-

tions, given in Equations 6.9-6.11 as constrained by the adjacency matrix, are forced

towards sparsity.

L(θ) =
∑︂
t

(︂
Ct − Ĉt

)︂2

+
∑︂
t

(︂
Ċt − Ĉ̇t

)︂2

+ α
(︁
W (1) ∗

[︁
1(Adj ̸= −1)¦0NR×1

]︁
+

W (2) ∗ 1(Adj = 0)T )

(6.12)

Minimizing the loss function in Equation 6.12 involves solving the ODE in the

forward pass, and the continuous backpropagation of the gradient requires solving the

augmented ODE backwards in time [364] as it involves computing the derivatives of

the ODE solution with respect to the network parameters. This has been implemented
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using the adjoint sensitivity analysis by framing a set of auxiliary ODEs, the solution

of which evaluates to provide the aforementioned derivatives, while training the neural

ODE. The PyTorch library, torchdiffeq [364], [365] encapsulates code for the same,

and has been used to train the neural ODE presented in this work.

6.4 Results and Discussion

(a)

(b)

(c)

Figure 6.3: (a) Multi-level pseudo random temperature signal, (b) Pure component
spectra from the database, (c) Predictions of the chemical reaction neural ODE com-
pared against the temporal concentration data obtained by solving a known ODE
system for kinetics.

A known reaction template from literature, for cyclohexanol production via the

esterification of cyclohexene with formic acid and the subsequent hydration of formic

acid cyclohexyl ester to form cyclohexanol, is considered [374]. The reaction template

is outlined in Figure 6.1a. As an initial test to validate the capabilities of the proposed
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chemical reaction neural ODE to accurately capture kinetics, temporal concentration

profiles are obtained by solving the system of ODEs as outlined in Section 6.2. Base-

line neural ODE predictions are tested on the data from solving the ODEs to ensure

that kinetic models can be reliably deciphered in the event spectral deconvolution

perfectly recovers the underlying pure component spectral profiles (Figure 6.3b) and

their corresponding temporal concentrations, in an ideal case not limited by process

and measurement noise. A multi-level pseudorandom temperature signal signal as

shown in Figure 6.3a was used to perturb the the kinetic model of Equation 6.2. The

kinetic mechanism is seen to comprise 4 species undergoing 2 reactions, as indicated

by Equation 6.4. Random initializations were used for the concentrations of the react-

ing species (A and B), to obtain concentration profiles using Equation 6.2 which are

supplied to the chemical neural ODE constrained by the following adjacency matrix

deduced from the template structure:

Adj =
[︂−1 −1 1 0
−1 0 −1 1

]︂
The concentration predictions from the neural ODE are compared against the profiles

of the temporal concentrations recovered from solving the ODEs, as shown in Figure

6.3c. It can clearly be seen that constraints on the neural networks structure and

parameters, prevents it from overfitting the data. Hence, in the future when the

model is trained on synthetically generated noisy data, it is expected to run a low

risk of fitting the noise.

On the above lines, we proceed to test the model performance in the presence of

noise. Two cases, one with Gaussian white noise at a signal to noise ratio (SNR) of 35,

and another at a SNR of 100 have been used for synthetic data generation. The impact

of the noise threshold in data on the spectral curve resolution, the subsequent identi-

fication of species and inference of reaction pathways among the pseudo-component

spectra, and thereafter the pathway constrained kinetic model identification using

temporal projections of the resolved spectra via chemical neural ODEs, is investi-
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gated.

In the first case, white Gaussian noise at a signal to noise ratio of 35 is added to the

synthetically generated data as described in Section 6.2, before it is supplied to spec-

tral curve resolution. The curve resolution with a rank of 4 is seen not to perfectly re-

cover the pure component spectra, as shown in the noise contaminated deconvolution

results of Figure E.1 in Appendix E. The similarity of the recovered pseudo-component

spectra (Figure E.1c) with the pure component spectra (Figure 6.3b) helps in iden-

tifying the species from the database template that the pseudo-components map to.

It can be seen that arriving at perfectly resolved pseudo-component spectra is chal-

lenging in the presence of noise. Confounding patterns are observed in the resolved

peaks of pseudo-component 4 (PC4) and pseudo-component 2 (PC2) that correspond

to compounds B and C from the database (Figure 6.1a), respectively. Consequently,

the causally inferred reaction network among the pseudo-components spectra (Figure

E.1b) when compared with the reaction template structure (Figure 6.1a), points to

the presence of an additional conversion pathway (A → B). This could largely be at-

tributed to the fact that a directed edge, PC3 (compound A) → PC2 (compound C)

in Figure E.1b) with the highest arc strength points to the conversion of compound

A to compound C. In the event that peaks in PC2, corresponding to compound C

are confounded with PC4, corresponding to compound B, there exists a fair chance

of observing an additional directed arc from PC3 (compound A) to PC4 (compound

B). The structure of the adjacency matrix in this case assumes the following form:

Adj =

[︄
−1 −1 1 0
−1 0 −1 1
−1 1 0 0

]︄

The predictions of the chemical neural ODE with the above adjacency constraints

are compared against the reconstructed data from integration of the smoothed time

derivative of the noisy concentration profiles from spectral deconvolution as given

in Figure E.2. The neural predictions are seen to capture trends in the noisy con-

centration profiles, without fitting the noise, except for the profiles of PC2. Thereby,
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despite improper spectral deconvolution, it has been demonstrated that fairly reliable

kinetic models for most of the identified species can be recovered, starting from noisy

spectroscopic data.

(a) Temporal concentrations

(b) Pseudo-component spectra

(c) Reaction network structure, arc
strengths and score inferred from the
pseudo-component spectra

(d) Reaction network arc strengths and
score inferred from the reaction template

Figure 6.4: Spectral deconvolution and causal inference using noisy synthetic data at
a signal to noise ratio of 100.

In the second case, white Gaussian noise at a signal to noise ratio of 100 is added

during the synthetic data generation process. At relatively lower noise levels, the

spectral curve resolution is seen to result in cleaner temporal concentration profiles
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Figure 6.5: Comparison of the predictions from the chemical neural ODE against
the reconstructed data from integration of the smoothed time derivative of temporal
concentration obtained by the deconvolution of synthetic spectroscopic data, at a
signal to noise ratio of 100.

(Figure 6.4a) and pseudo-component spectra (Figure 6.4b) where there are fewer con-

founding peaks in the deconvolved spectral profiles that are found to be increasingly

comparable with the pure component spectra from the database (Figure 6.3b). The

pseudo-components are mapped to the pure components based on the similarity be-

tween their spectra, followed by inferring reaction pathways among them by causal

structure learning as shown in Figure 6.4c. The skeleton of the inferred network struc-

ture is exactly the same as the reaction template (Figure 6.1a), except for the reversal

of the arc between the nodes of compound A and compound C. This is largely owing

to the fact that greedy heuristic score search algorithms for causal structure inference

by maximizing the Bayesian Information Criteria (BIC) are faced with a large num-

ber of locally optimal network structures [375]. This has been verified by computing

the arc strengths and the BIC score shown in Figure 6.4d, given the directed edges

among the compounds nodes from the reaction template network structure of Figure

6.1a. The arc strengths and the BIC score, given the network structure from the

template are found to be comparable to those when the network structure is inferred

by heuristic score-search algorithms as shown in Figure 6.4c. Hence, the reversal of

the arc between nodes A and C, in comparison with the original template can be

rationalized as occurring due to multiple local optima in the search space of feasible

network structures during causal inference.
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The issue of local optima in structure learning can be circumvented by preferen-

tially weighting and even eliminating certain wavenumber absorption bands in the

deconvolved pseudo-component spectra, as shown in Figure E.3. Four absorption

band regions, viz. 786- 1310 cm−1, 1570-1898 cm−1, 2686- 3122 cm−1 and 3530-3806

cm−1 that are predominantly seen to exhibit convoluted peaks, as seen in Figure

6.4b, are chosen. The absorbances in these wavenumber bands are then preferen-

tially weighted using a Gaussian filter that is centered in each of the bands, with a

standard deviation of 200, with weights for the bands in the regions 1570-1898 cm−1

and 3530-3806 cm−1 being scaled by a factor of 10 times as compared to the two

other bands, in order to obtain a clear distinction between the spectral profiles of

formic acid and its derivatives (compounds B and C), and that of cyclohexene and

its derivatives (compounds A and D), as seen in Figure E.3a. It can be seen that the

arc strengths, score and network structure learned from the preferentially weighted

pseudo-component spectra, as shown in Figure E.3b concur with those, given the

reaction template structure, as outlined in Figure E.3c. Hence, it can be seen that

the use of prior knowledge to preferentially weight certain absorption bands in the

pseudo-component spectra, facilitates distinction of the identified species, to over-

come the limitation of confounded peaks in the deconvolution. However, since the

discussion in this chapter focuses on limiting the use of prior knowledge-based heuris-

tics in the end-to-end modeling framework, proceeding further on these lines is out

of the scope of the current work.

Therefore, the adjacency matrix, following from the causally inferred network struc-

ture (Figure 6.4c), in the absence of any prior knowledge-based preferential weighting

heuristics of the pseudo-component spectra, is used to constrain the kinetic model

identification as follows:

Adj =

[︄
0 −1 1 0
1 0 −1 0
−1 0 −1 1

]︄

The predictions from the chemical neural ODE used to fit a kinetic model is compared
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against the reconstructed data from integration of the smoothed time derivative of the

temporal concentration projections from spectral resolution (Figure 6.4a) as shown

in Figure 6.5. It can be seen that the neural kinetic model predictions very closely

capture the trends in the resolved concentration profiles for all of the identified species,

at a much lower noise threshold (as compared to the case where a SNR of 35 was

used), despite being constrained by a network structure that slightly differs from the

original reaction template.

6.5 Conclusions

We have presented a chemically constrained neural ODE to fit kinetic models to tem-

poral concentration data. Latent factorization of spectroscopic data that results in

projections onto the temporal mode of data collection and the spectral channels, gain

interpretability as time varying concentrations and the associated pseudo-component

spectra of the underlying species, respectively. This overcomes the difficulty in di-

rectly measuring species concentrations, more so in cases when the underlying species

lack enumeration. The adjacency matrix deduced from the Bayesian networks learned

by causal structure inference among the pseudo-component spectra is used to con-

strain the weights of the neural ODE that is also structured to incorporate the law of

mass action and the Arrhenius law of temperature dependence, to achieve a two-fold

purpose: (i) facilitate interpretability of the neural ODE model that learns the system

kinetics, (ii) limit the tendency of the neural ODE to fit process noise that is ubiq-

uitous when it comes to spectroscopic measurements. However, the accuracy of the

causally inferred Bayesian network structure is seen to be limited at the level of un-

certainty not only by way of the confounding peaks in two or more pseudo-component

spectra, owing to improper constrained latent deconvolution in the presence of noise

beyond a particular threshold, but also by way of multiple local optima faced by

the heuristic structure learning score-search algorithms. Despite these limitations,

this framework is shown to have the potential in reliably developing an end-to-end
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modeling framework for species, reaction pathway and kinetic model identification of

reactive systems without reliance on prior knowledge. Future work seeks to extend

this framework fro complex hydrocarbon systems like bitumen and biomass.
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Chapter 7

3D Convolution neural network
autoencoder for the prediction of
solvent reorganization from MD
simulation data

Abstract

Assessing the impact of solvent reorganization in reactive chemical systems is vital

in deciding whether or not computational effort in simulating the solvent molecules

when running first principles ab initio molecular dynamics simulations for these mech-

anistic reactions, must be expended. A 3D CNN autoencoder is proposed to extract

spatio-temporal features from the reactant trajectory simulations, followed by using

a distance-based quadratic classifier to assess their closeness to features correspond-

ing to the reactant trajectories of systems with strong solvent reorganization. To

establish the ground truth of the extent of solvent reorganization in systems, the re-

actant and product simulations for the condensed phase pyrolytic decomposition of

cellobiose was used. Kernel density estimation was used to analyze the probability

distributions across the difference in the encoded features between the product and

reactant trajectories of the cellobiose systems at different temperatures, as a way of

establishing the ground truth. It was found that the cellobiose systems at lower tem-

peratures (100 K, 500K) exhibited larger solvent reorganization, as opposed to the

ones at 900 K and 1200 K. To make predictions to quantify solvent reorganization
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in other systems other than cellobiose, the reactant trajectories of the aqueous phase

acid catalyzed conversion of fructose to HMF in the presence of water as the solvent

and DMSO as the cosolvent was chosen. The extent of solvent reorganization in the

fructose systems was predicted to increase at first, followed by a linear decrease with

increasing DMSO concentrations, and was found to be consistent with trends in the

difference between the free energy surface minima.

7.1 Introduction

First-principles (ab initio) simulation of chemical systems at the atomistic level pro-

vides insights that experiments limited by costs or the feasibility of achieving physical

conditions, fail to provide in practice. However, these simulations involve obtaining

the energy and forces of a hypothetical configuration of atoms based on computation-

ally expensive quantum mechanical (QM) calculations using wave function theory,

on-the-fly electron structure calculations via density function theory (DFT) and po-

tential energy surface (PES) methods, making them intractable for systems with large

number of atoms and longer time scales [7]. This can be overcome either by sacrific-

ing accuracy by coarse-graining atomic calculation methods using empiricism-based

classical molecular mechanics, or by using machine learning to accelerate QM based

(ab initio molecular dynamics (AIMD)) simulations [376]. The acceleration of QM

simulations broadly encompasses (a) machine learning to estimate the PES as a func-

tion of atomic coordinates. The force fields computed as gradients of the PES speed

up molecular dynamics simulations of chemical structures [377], (b) predictive ma-

chine learning to draw inferences from copious amounts of AIMD simulation data, so

that it can serve as a computationally efficient surrogate of the same, in the property

prediction of molecular systems [71], and (c) generative machine learning to learn

probability distributions of molecular representations from AIMD data over macro-

scopic properties to advance computer aided molecular design [8]. This work seeks to

develop a self-supervised machine learning model by way of using a 3D convolution
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neural network (CNN) autoencoder for spatio-temporal feature extraction from the

AIMD data of the reactant and product configurations, the difference between the

features of which is fit to a probability distribution to assess the extent of molec-

ular re-organization. This subsequently informs the development of a Mahalanobis

distance-based classifier to predict the extent of solvent reorganization in newer sys-

tems by assessing the distance of its reactant features from the distribution of those

encoded from systems where the reorganization extent has already been quantified.

The rest of this section will outline some works where ML has accelerated either QM

or classical molecular mechanical (MM) simulations so as to access larger length and

time scales that would have otherwise been impossible via experiments or simulations

alone. This has led to advancements in drug design [9], computational chemistry in

molecular and materials modeling [72], retrosynthesis and catalysis [7]. The discussion

elaborates the broad areas listed earlier (except generative machine learning, which

is still in its infancy [378]), and contextualizes our work and its novelty.

The first application of ML in chemistry was the use of neural networks, Gaus-

sian process regression and kernel regression to extract features from the PES before

fitting them to predict energy (machine learning potentials (MLP)) or force fields

(machine learning force fields (MLFF)) from QM or DFT-based calculations [71].

MLPs like the Behler-Parrinello networks, or MLFFs trained on DFT calculations

(ANInet) were trained to learn from the PES; however, there is evidence of learn-

ing from AIMD trajectories from which physically meaningful distance-based power

series of atomic coordinates are extracted to be regressed against force fields from

DFT [77]. MLPs as computationally tractable surrogates for ab initio calculations

using neural network architectures to capture spatial atomic interactions via convo-

lutions (SchNet) and physical symmetries via local frame coordinates (DeepPMD),

are seen to speed up catalyst screening by efficiently computing reaction activation

energies [379] and modeling solid-liquid interfaces [380] in heterogeneous catalysis.

DeepPMD has demonstrated how ML can scale the accuracy of ab initio calcula-
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tions in surface chemistry, from a system with 1000 atoms to that with 100 million

atoms by determining the total potential energy as a sum in parts of that of the local

atomic environments by using their extracted symmetrical spatio-temporal features,

to assess whether or not solvent molecules dissociate at the interface [381]. Developing

MLFFs via delta-learning schemes, whereby the loss function minimizes the difference

between force fields calculated from ML and that from reference DFT calculations

(∆-NetFF) [382], is only as good as the reference data. To handle this, and also in-

clude quantum effects in the reference data, biased sub-sampling of configurations to

increase the presence of the least accessible high-energy states from AIMD data[383],

and the incorporation of spatio-temporal symmetries [384], has been used to train

MLFFs. The high dimensionality of the data, typically 3N atomic coordinates for a

system with N atoms, not only limits the use of ML to sample from QM/MM data

to construct the PES, but also causes the computational cost of reference data from

DFT calculations to scale cubically as the number of electrons in the system [385].

This has been surmounted by using deep neural networks (time-lagged autoencoders

(TAE)) to project high dimensional atomic coordinates to a low dimensional space,

by constraining the latent features (collective variables) to reproduce the conforma-

tional dynamics by maximizing time-lagged autocorrelation within the original space

[345].

Deploying ML to derive interpretable insights from AIMD data by predicting the

mechanism, rate and yield of chemical systems as functions of thermodynamic prop-

erties has been recognized as one of the six grand challenges of the 21st century

[85]. Preserving chemical physical intuition by supplying physically meaningful data

representations like molecular fingerprints, local environment descriptors or distance

metrics [7] facilitates the ML model to recognize meaningful correlations between the

system properties and the features extracted from data. ML regression models viz.

LASSO, random forest, gradient tree boosting and support vector regression, trained

on fingerprints extracted from MD simulations are shown to predict solvation free en-
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ergy and partition coefficients that have been experimentally validated [74]. However,

such ML frameworks perform poorly when they encounter an atomic configuration

not present in the training data. Hence, an adaptive ML regression framework that

uses a decision engine to query the similarity of fingerprints in the newer configura-

tions to that in the training dataset, based on which the ML model is retrained on

the fly using the simulation data of the newer configuration, has been shown to result

in more reliable predictions [386]. Aside from regression models, ML classifiers viz.

Linear discriminant analysis (LDA), support vector classifier (SVC) have been trained

on the AIMD data of the decomposition of dioxetane, to extract features from the

nuclear coordinates that correspond to either successful or frustrated dissociations

[79]. Since the chemexcitation yield is impacted by the time scale of dissociation,

it is beneficial to use ML to screen those systems that have successful dissociations

before training models to predict dissociation times. Evidence of training Bayesian

neural networks on atomic coordinates and velocities from AIMD simulations to pre-

dict dissociation times conditioned on a distribution of network weights and biases

is seen to be robust to uncertainties and provides physical insights by revealing cor-

relations between inputs and the output predictions via feature saliency maps [387].

The emphasis on retaining physical intuition like symmetry or translation invariance

of the atomic configurations in the ML models has popularized the use of convolu-

tion neural networks (CNNs) that capture spatio-temporal patterns via parameter

sharing, thereby making the predictive ML regression and classification models more

efficient [388]. This demands physically informed representations like density grids

of molecules to be parsed from simulation data. It can be seen that the density of

water molecules stacked over time resulting in 3D grids, or the time-averaged den-

sity maps of water, resulting in 2D grids when fed into 3D CNNs and 2D CNNs

respectively, efficiently captures spatio-temporal variation in water density while pre-

dicting the hydration free energy that rationalizes interfacial hydrophobicity, which

drives protein folding mechanisms [75]. However, some reactive systems, for instance
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catalytic biomass conversion, not only involve water that dissolves biomass, but also

polar aprotic cosolvents to accelerate reaction rates. Maximizing the rate and yield of

biomass conversion depends on an optimal solvent:cosolvent ratio, the high through-

put screening of which is facilitated by training a ML surrogate that is faster, and

eliminates the need of prior knowledge of the reactions involved in biomass conversion

processes to generate descriptors computed from simulation data, against which the

reaction rates are regressed [80]. In such cases, a 3D histogram that captures the

density of water, the cosolvent and the reactant in discrete volume elements of the

simulation box was used to generate voxel representations from classical MD data,

across 3 separate channels of the molecular species, before being fed into a 3D CNN

that is trained to predict reaction rates. This pre-trained model called SolventNet

has also been used to predict kinetic solvent parameters which is then used to cal-

culate the thermodynamic selectivity of the product, using just 2ns of classical MD

trajectories, thereby speeding up the screening of solvent compositions [389].

From the above discussion, it can be deduced that ML models are effective in accel-

erating MD simulations only if the cost of training ML models and that of generating

the training data (simulation data and labels) is lesser than the cost of explicitly

performing first principles calculations. Generating labels to train predictive ML

models like reaction rates [80], dissociation time [387] involves experiments or indi-

rect sampling calculations from simulation data to obtain hydration free energies [75].

In this work, we seek to overcome the cost of assigning labels using experiments or

sampling calculations by proposing a self-supervised 3D CNN autoencoder to extract

spatio-temporal features from the reactant and product trajectories supplied from

AIMD simulation. The probability distribution of the root mean square deviation

(RMSD) between the features of the trajectories in the reacting cellobiose system is

fit via kernel density estimation (KDE), and is used to assess the extent of solvent

reorganization. A threshold set on the RMSD is used to assign labels to the features

extracted from the initial snapshot. This framework is tested out for another sys-
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tem, wherein fructose converts to hydroxymethylfurfural (HMF), given water as the

solvent and DMSO as the cosolvent. The distance of the encoded fructose features

from the distributions of the encoded features of the cellobiose systems, is used to

develop a simple quadratic classifier to assess the extents of solvent reorganization in

fructose systems with varying solvent:cosolvent ratios, without reliance on simulating

the product (HMF) profiles. The rationale behind the choice of this distance-based

classifier was to avoid the training costs, as with neural network-based classifiers [86].

This framework has the potential to reduce the cost of MD simulations and that of

training ML models by predicting the extent of solvent reorganization, as a basis to

inform if the solvent molecules are to be considered while simulating the final product

configuration or not.

7.2 Methods

CNNs have been used to extract rotational and translation invariant features from a

wide variety of data modalities that are represented as grids, viz. 1D grid of vectors

for signals, sequences and language models, 2D grid of image pixel matrices stacked

into red, green, blue channels, 3D grid of image voxel tensors that comprise snapshots

of image pixel matrices along the time axis, as with video data, and higher order grids

like 4D grids of image voxel tensors that are stacked into red, blue, green intensity

channels [390]. Aside from traditionally using CNNs to process grids of image and

video data, the recent past has witnessed their wider application to datasets from

molecular simulations that can be expressed as grid data. There is evidence of using

the coordinates of all the atoms in a protein structure, stacked in x,y,z channels

corresponding to the axes, as an input to train a 1D CNN to learn features in the

protein conformation [391]. However, in systems with an arbitrary number of atoms,

the input data would have to be padded or truncated accordingly, thereby impacting

the patterns the CNN learns. Hence, the representation of atomic coordinates or

molecular features extracted from the MD simulations before being fed into the CNN

241



is vital. 3D molecular features constructed from the atomic partial charges, average

number of water contact points, the number of hydrogen bonds, their shapes and sizes,

as extracted from MD data, are deemed to be better than the traditional molecular

fingerprints in training a CNN to predict free energies of drug-protein binding [76]. In

some cases, image-based representations of electrostatic potential that retain spatial

information, evaluated using a Gaussian kernel, given the atomic coordinates from

simulation data, have been used to train CNNs to predict the energy of the atomic

configurations, otherwise obtained from expensive DFT calculations [392]. In the

present work, we seek to use a voxel representation of the atomic configurations to

train the 3D CNN autoencoder, where the x, y, z atomic coordinates with respect

to the size of the simulation box are discretized into volume elements bound by

grids [393]. In order for the spatial location of the atoms to be invariant of the grid

resolution, the density distribution of atoms in the voxels have widely been used as

inputs [388]. Positional atomic densities from MD simulations have been supplied

as x-y grids averaged across simulation time steps to train 2D CNNs, or as tensors

where separate x-y grids generated for the water and hydrogen molecules have been

stacked into channels along the simulation time steps to train 3D CNNs to predict

interfacial hydrophobicity [75]. Similarly, positional densities of atoms in the x-y-z

space recovered from classical MD simulations, averaged across simulation time steps,

have been supplied as tensors stacked into channels grouped by the category of the

molecules viz., reactant, solvent and co-solvent, to train 3D CNNs to predict reaction

rates[80]. This work differs from those efforts in that the positional densities of the

atoms in the x-y-z space from AIMD coordinate trajectories are represented as voxels

that are stacked across several simulation time steps, shown in Figure 7.1, to train a

self-supervised 3D CNN autoencoder to extract spatio-temporal features.

The x-y-z atomic positions of cellobiose with respect to the simulation box of di-

mension Lx × Ly × Lz, is represented as a probability density distribution of the

atoms existing in a certain discrete volume element of dimension Lx

Nx
× Ly

Ny
× Lz

Nz
, where
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(a) Voxel representation of atomic density distribution in the
simulation box

(b) Voxels stacked across the channel of simulation time steps

Figure 7.1: Spatio-temporal representations of atomic coordinates from AIMD simu-
lation data.

Nx, Ny, Nz (all chosen to be 20 in the present work) are the number of grid elements

that the simulation box is discretized into along each axes, as illustrated in Figure

7.1a. Each simulation of the reactant and product configurations for the transglyco-

sylation of cellobiose at four different temperatures (100K, 500K, 900K, 1200K) has

been performed over 8ns using GROMACS [394], and the coordinate positions have

been recorded every 1ps. The positional voxel density representations of the atomic

coordinates are stacked across NT = (100ps) simulation time steps as shown in Figure

7.1b, to generate T=80 spatiotemporal tensor samples X ∈ ℜNx×Ny×Nz×NT , from the

simulation trajectory of either the reactant or product, for a given system.

For the total number of N (= 2T × number of systems modeled) input tensor
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Figure 7.2: Architecture of the 3D CNN autoencoder-based classification model

samples from both the reactant and product trajectories of all systems, X (i) for

i = {1, 2, · · ·N}, a 3D CNN autoencoder is trained as a hierarchical model that uses

a sequence of convolution, activation, pooling, flattening and fully connected layers

in the encoder (E), before symmetrically unrolling the sequence in the decoder (D) to

reconstruct the input as X̂ (i)
= fD(fE(X (i), θE), θD). The parameters of the encoder

and decoder functions (θ = {θE, θD}) of the self-supervised autoencoder network are

learned by minimizing the following loss function

L(θ) =
1

N

N∑︂
i=1

(X (i) − X̂ (i)
)2 (7.1)

The number of parameters in the 3D CNN autoencoder scales with the choice of

hyperparameters that govern the network architecture in the hierarchy of operations.

The convolution operation given by C ∈ ℜncx×ncy×ncz×NT×q comprises a 3D kernel of

dimension (ncx × ncy × ncz) that performs convolutions across a stride of s voxels

in each dimension over the NT time slices to produce q feature maps in the output

ϕ ∈ ℜnϕx×nϕy×nϕz×q, as given by the following equation, where x1 ∈ {1, 2, · · · , nϕx},

x2 ∈ {1, 2, · · · , nϕy}, x3 ∈ {1, 2, · · · , nϕz}, j ∈ {1, 2 · · · , q} and bj ∈ ℜ is the bias

term
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ϕ(j) [x1, x2, x3] = bj +

NT∑︂
i=1

ncx∑︂
x′
1=1

ncy∑︂
x′
2=1

ncz∑︂
x′
3=1

C(i,j) [x′
1, x

′
2, x

′
3]X (i) [x1 + x′

1 + s− 1, x2 + x′
2 + s− 1,

x3 + x′
3 + s− 1]

(7.2)

nϕ =
N − nu + 2P

s
+ 1 (7.3)

The dimensions of the output (nϕ) across any specific axis is impacted by the respec-

tive kernel dimension (nu), stride (s) and padding (P ), if any, given an input of size

N, as indicated by Equation 7.3. The purpose of padding is to preserve the input

dimensions in the convolved output [395]. However, since the convolution operation is

used to downsample the inputs for feature extraction, zero padding has been used in

this work. The convolved features are then passed through the a nonlinear activation

function that does not modify the dimensions.

f(ϕ) = max(0, ϕ) (7.4)

v′ = f(Wfcv + bfc) (7.5)

As compared to activation functions like the tanh, sigmoid, the rectified linear unit,

given by Equation 7.4, is preferred as it does not suffer from gradient saturation in the

event of large magnitude inputs, thereby increasing the sensitivity of the model to in-

put representations[396]. Following this, the pooling operation (P ∈ ℜnpx×npy×npz×q)

is used to downsample the activated output, to make the encoded representations

invariant to minor translations in the input [397], resulting in a pooled output ϕp ∈

ℜnϕx′×nϕy′×nϕz′×q. This follows on the same lines as Equation 7.2 and Equation 7.3,

except that there is no bias translation and the 3D max pooling kernel of dimension

(npx × npy × npz) merely outputs a maximum valued scalar as it strides over s voxels

at a time along the axes, for all the input feature maps. Several units comprising the
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aforementioned convolution, activation and pooling operations can be hierarchically

stacked to transform the input sample X (i) to a tensor ϕ′ ∈ ℜN ′
x×N ′

y×N ′
z×p, of p feature

maps, before finally flattening it to result in a vector v ∈ ℜN ′
x.N

′
y .N

′
z .p×1 that is fed

into a fully connected layer to result in an output feature vector v′ ∈ ℜf×1, given in

Equation 7.5, where Wfc ∈ ℜf×N ′
x.N

′
y .N

′
z .p and bfc ∈ ℜf×1 are the weights and biases,

parametrizing the fully connected layer, respectively. There can be many such fully

connected layers as indicated by the schematic in Figure 7.2, to finally obtain f ′ latent

features in the bottleneck layer of the encoder. The structure of the decoder is seen

to mirror that of the encoder in reconstructing the input from the features of the bot-

tleneck layer via a series of upsampling operations like deconvolution and unpooling.

If the convolution operation is expressed as the multiplication of the Toeplitz block

of strided kernel coefficients with the input, then the deconvolution can be expressed

its inverse, where upsampling is achieved by mulipication with the transpose Toeplitz

block [398]. Similarly, unpooling is performed by inserting the maximum values into

their index positions, cached during the pooling operation.

Once trained, the bottleneck layer of the encoder is used to extract latent fea-

tures from the AIMD trajectories of the reactant that are plugged into the quadratic

distance-based classifier, to predict whether or not the solvent molecules reorganize

significantly in the product configuration. This is based on the key assumption that

samples with the same label should have similar latent features extracted by the

autoencoder [399]. However, developing a classifier to discriminate between latent

features is supervised, in that there is a requirement of ground truth labels, the

generation of which is expensive and time consuming [400]. This is surmounted by

calculating the root mean square deviation between features of the product and reac-

tant trajectory for a system, followed by using KDE to probabilistically assess systems

with a higher extent of reorganization using a threshold, based on which labels are

assigned to the features extracted from the reactant trajectory samples to develop

the Mahalanobis classifier, a choice deliberately made to also eliminate the cost of
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training neural network classifiers [86].

RMSD = fE(Xproduct)−
1

T

T∑︂
t=1

fE(X (t)
reactant) (7.6)

P (x) =
T∑︂
t=1

K

(︃
x−RMSDt

b

)︃
(7.7)

P (y = 1|RMSD) =

T∑︁
t=1

P (RMSDt|y = 1)

T∑︁
t=1

P (RMSDt|y = 0) +
T∑︁
t=1

P (RMSDt|y = 1)

(7.8)

For a particular system, the RMSD ∈ ℜT×1, pointing to the deviation of features

of the product trajectory samples from the average of features across the reactant

trajectory samples, is given in Equation 7.4. The probability distribution of x ∈

[min(RMSD),max(RMSD)] for each of the systems is fit using kernel density estima-

tion (Equation 7.7), where the choice of the kernel function (K) and bandwidth (b)

are guided by grid search optimization [401]. The systems with the highest and least

RMSD distributional modes are designated labels, y = {0, 1} corresponding to a large

and small extent of solvent reorganization, respectively. The posterior probability of

the other systems being labelled 1, given their RMSDs and the assumption of equally

likely priors is determined using Equation 7.8 [402]. If the posterior probability of the

system exceeds a certain threshold, all the features corresponding to the samples in

the reaction trajectory are designated a label 1, else 0, giving rise to labeled samples

{fE(X (i)
reactant), y

(i)} for all i ∈ {1, 2, · · ·N} supplied as training data to a quadratic

classifier based on the Mahalanobis distance. The classifier is trained to detect sol-

vent reorganization patterns from a reduced set of encoded features of the reactant

trajectories in a kernel space (f ′
E(X (i)

reactant)), by assessing their closeness to positively

labelled trajectories, using the mean and covariances of their kernelized features as
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follows:[︂
f ′
E(X (i)

reactant)− fE(X (i)
reactant|y(i) = 1)

]︂T
Cov−1

[︂
f ′
E(X (i)

reactant)− fE(X (i)
reactant|y(i) = 1)

]︂
(7.9)

The loss function of the 3D CNN autoencoder is minimized by stochastic gradient

descent, implemented using the Adam optimizer on PyTorch with a learning rate of

10−3. The process of gradient descent involves computing the gradient of the loss

function with respect to the weights of the layers and is efficiently performed via

the backpropagation algorithm. The distance-based classifier is then implemented

to assess the extent of solvent reorganization in newer systems by measuring the

distance between their features and the distribution of features extracted from the

labelled systems.

7.3 Results and Discussion

This section demonstrates the above developed framework with application to assess-

ing the impact of solvent reorganization in two of the following reactive systems: (i)

the condensed phase pyrolytic decomposition of cellobiose, and (ii) the aqueous phase

acid catalyzed conversion of fructose to 5-hydroxyl methyl furfural (HMF). The prob-

ability distribution across the root mean square deviation (RMSD) between features

of the reactant and product configurations of the reacting cellobiose system, extracted

from the 3D CNN autoencoder have been used to assess the extent of solvent reor-

ganization. Insights drawn from the map between features of the reactant cellobiose

profiles and the extent of solvent reorganization, are shown to generalize well across

the starkly different reacting fructose systems, when it comes to predicting the extent

solvent reorganization from just its reactant profiles. This eliminates computational

efforts in explicitly simulating the product HMF configurations to deduce the same.

The results from the machine learning framework have been validated against a ther-

modynamic basis, for both the training process on the cellobiose systems as outlined
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in Section 7.3.1, and, for the testing process on the fructose systems as outlined in

Section 7.3.2.

7.3.1 Training the machine learning model on the cellobiose
systems

(a) Glucose residues in cellobiose shift from ground state chair conformers to boat confor-
mations prior to glycosidic bond cleavage [403]

(b) DFT calculated transition state for transglycosylation

Figure 7.3: Condensed phase pyrolytic decomposition of cellobiose

Pyrolytic cellobiose decomposition in the condensed phase is primarily initiated

by the glycosidic C-O-C bond cleavage, as shown in Figure 7.3a. Gas phase DFT

calculations carried out on an isolated molecule for the transglycosylation mechanism

(Figure 7.3a) that exhibits one of the least enthalpic barriers for cellobiose decompo-

sition is given in Figure 7.3b. In the condensed phase, the influence of the neighboring

molecules could potentially alter the reaction chemistry and energetics. The reorga-

nization of molecules around the reacting species long the reaction coordinates, sheds

light on how the condensed phase affects reaction energetics. The solvent reorgani-

zation around the reactant cellobiose for the transglycosylation mechanism has been
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simulated on GROMACS 2018.7 at four different temperature viz. 100 K, 500 K, 900

K and 1200 K. Configurations of the reacting species from the first-principles calcula-

tions has resulted in MD trajectories for the reactant and product profiles, recorded

evert 500 simulation steps over a duration of 8ns.

(a) (b)

(c) (d)

Figure 7.4: RMSD between encoded features of samples in the product trajectory
and the mean encoded features across samples in the reactant profile

The voxels of atomic densities stacked over evert 100ps, results in 80 samples each,

from the reactant and product profiles, at each finite temperature simulation of cel-

lobiose. A 3D CNN autoencoder with a structure as given in Figure 7.2 is trained

on these samples to extract encoded feature representations in the bottleneck layer.

The root mean square deviation (RMSD) between these features of the samples in
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the product profiles and the average of the encoded features across all samples in

the reactant profiles have been indicated in Figure 7.4 across the four temperatures.

Since the encoded features are extracted from equilibrium simulations of the cellobiose

systems, it is permissible to average the encoded features across all samples in the

reactant trajectory, as a reference against which the encoded features of the product

trajectory are compared, when defining the RMSD. The use of RMSD as a descriptor

of the extent of solvent reorganization circumvents the need of expensive sampling

strategies [75] to compute metrics from the simulation data. It can be seen quali-

tatively from Figure 7.4c and Figure 7.4d that the effects of reorganization are less

prominent at higher temperatures. A kernel density estimation is used to quantify

the probability distributions of the RMSDs in accordance with Equation 7.7 using a

Gaussian kernel (K). The bandwidth chosen by grid search cross validation is found

to be optimal at 0.1, and results in cumulative density distributions given in Figure

7.5a, from which the CB 100K system and the CB 900K system, are seen to have the

most (class 1) and least possible (class 0) solvent reorganizations, respectively. The

density distributions of the CB 100K and CB 900K systems are then used to quantify

the posterior probability of a system being recognized as significantly reorganized,

conditioned on its RMSD, as outlined in Equation 7.8. The average of the posterior

probabilities of across all the cellobiose systems is then used as threshold as shown in

Figure 7.5c, to recognize if significant solvent reorganization has been observed in a

system or not.

In Figure 7.5, the kernel density estimation of the RMSD to quantify the extent

of solvent reorganization from the posterior computations (Figure 7.5c)is shown to

be consistent with trends in the Gibbs free energy barrier for the transglycosylation

mechanism of the reacting cellobiose molecules in the melt phase across the four differ-

ent temperatures, as given by Figure 7.5b. The activation free energy barrier(FEB) is

seen to decrease almost linearly with increasing temperatures and asymptotes above

900 K, at a constant value of ∼ 105 KJ/mol. The reduction in the FEB in going
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(a) (b)

(c)

Figure 7.5: (a)Cumulative probability distributions of the RMSD, (b) Free energy bar-
rier vs temperature profile for cellulose decomposition showing two reaction regimes
transitioning at 900K. The slope and y-intercept gives the entropic and enthalpic
contributions to the free energy barrier, respectively. The tangents are fitted between
500K-900K for the low temperature (blue dash lines) and 900K-1200K for high tem-
perature regime (red dash lines), (c)Posterior probabilities

from 100 K to 900 K is 267.76 KJ/mol, and suggests a strong impact of the finite

temperature environment on tranglycosylation. The slope and the y-intercept of the

free energy vs. temperature plot gives the entropic and enthalpic contributions, re-

spectively. The constant slope of the FEB curve at low temperature is indicative of

the constant gain in entropy (∆S‡
m) of 334.69 J/mol-K for the decomposition of the

cellobiose melt to LGA. At higher temperatures the FEB flattens indicating that the

entropic contribution to the barrier is zero, making it an enthalpy-controlled regime.
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Hence the linear slopes of the low temperature and the high temperature curves form

distinct decomposition regimes [404]. The finite temperature affects the reorganiza-

tion of the neighboring molecules in going from the crystal phase to the melt, and

is seen to thus impact the cellulose chemistry. This validates the inferences drawn

from the RMSD probability distributions in quantitatively deciphering the extents of

reorganization in the decomposition of cellobiose across different temperatures.

7.3.2 Testing the machine learning model predictions on the
fructose systems

(a) (b)

Figure 7.6: Predictions of the extent of solvent reorganization in fructose: (a) Average
distance of the sample features of the fructose trajectory from the cellobiose 100 K and
500 K systems across different solvent composition, (b) Free energy difference between
the FES minima corresponding to the migration of the hydronium ion from the bulk
solvent to the first solvation shell of fructose at different DMSO concentrations.

This section focuses on using the above framework that has been trained on the

cellobiose systems to decipher the extents of solvent reorganization in other react-

ing systems impacted by solvents. The aqueous phase acid-catalyzed reaction of the

biomass-derived species, fructose, is a chosen as a system to test the model predic-

tions. Polar aprotic solvents like dimethylsulfoxide (DMSO) are known to result in

higher reactivities in the conversion of fructose to 5-hydroxyl methyl furfural (HMF).

The stability of the catalyst (hydronium ion) in the first solvation shell of fructose

as compared to the bulk of the solvent is seen to differ across the composition ratios
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of the solvent:cosolvent, thereby impacting the reaction kinetics in the conversion of

fructose to the final HMF product. It would be beneficial to assess from just the

AIMD simulations of the fructose trajectory at different solvent compositions, the

impact of solvent reorganization on the final product formation, without explicitly

simulating the HMF trajectories. This is proposed to be achieved by obtaining the

spatio-temporal encoded features of the reactant trajectory of the different fructose

systems, from the 3D CNN autoencoder before classifying them using the Maha-

lanobis classifier in terms of the distance of the features of these systems from the

distributions of features from the cellobiose systems, for which the ground truth of

the extents of reorganization has already been established.

The AIMD simulations of the fructose systems on GROMACS 2018.7 at different

solvent compositions have been recorded every 200 time steps for a duration of 10ns.

Hence, a voxel sample over every 100ps, would lead to 100 samples from each of these

trajectories. The spatio-temporal 3D CNN provides encoded latent features for the

100 samples of each fructose trajectory. Comparing the distances of each of these

100 fructose features from the distributions of features of the cellobiose systems at

100K and 500K (systems established to reorganize significantly), followed by a similar

comparison against features from the lesser reorganizing cellobiose systems, before as-

signing a 0/1 class label to each of the samples in the fructose trajectory, does not have

a sound basis. This is because we are interested in quantifying the overall extent of

reorganization of the system as a whole using these equilibrium simulations, and even

highly reorganizing systems may have points in their trajectories where reorganiza-

tion is not significant. Therefore, the average of the Mahalanobis distance of features

across all samples in the fructose trajectory, from the significantly reorganizing cel-

lobiose systems, for different solvent compositions is shown in Figure 7.6a. When

assessing the extent of solvent reorganization, it is better to compare the distance of

the average sample features of the reactant trajectory from the highly reorganizing

cellobiose systems, instead of how much further away they are from the weakly re-
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organizing systems (i.e Class 0) because it is not that reorganization is completely

absent in them. This would then bias the reference used to make the comparison.

The results in Figure 7.6a are seen to concur with the trends of the relative stability

of hydronium ions at different DMSO concetrations given by the difference (∆G) in

the free energy surface (FES) minimum corresponding to the hydronium ion in the

first solvation shell of fructose and that of the FES minimum corresponding to the

hydronium ion in the bulk solvent [405], as shown in Figure 7.6b. The increase in ∆G

when DMSO goes from 0 to 5 % wt can be attributed to the instability of DMSO

molecules in the bulk solvent, generating a rich local domain of DMSO molecules near

fructose while the water (solvent) molecules in the bulk stabilize the hydronium ion.

However, as the DMSO concentrations increase from 5 to 80 % wt. a clear descending

trend is observed in ∆G and the average distance from Class=1 cellobiose systems,

suggesting that the relative stability of hydronium ions in the first solvation shell of

fructose increases. This is largely owing to the limited availability of water molecules

in the bulk to stabilize the hydronium ions, forcing them to interact with the reactant

fructose, thereby making the effects of solvent reorganization more pronounced.

7.4 Conclusions

This study has demonstrated the effectiveness of a self-supervised framework of train-

ing predictive machine learning models that are not only computationally efficient to

train but also propose to reduce the cost of AIMD simulations. A 3D CNN au-

toencoder for spatio-temporal feature extraction is trained on both the reactant and

product configurations in the condensed phase reaction of cellobiose at different tem-

peratures. The probability distributions across the RMSD of the features between

the product and the reactant profiles are seen to show a higher probability of reor-

ganization for the lower temperature finite simulations at 100 K and 500 K. These

findings are consistent with the linear decrease in the free energy barrier with increas-

ing temperatures. A quadratic classifier based on the Mahalonobis distance metric
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is then used to calculate the average distance of the reactant features in the fructose

trajectory from the distribution of the reactant features of the strongly reorganizing

cellobiose systems, as a means of assessing the extent of solvent reorganization from

just the reactant profiles of starkly different systems. The average Mahalanobis dis-

tance is seen to increase at first, and then decrease almost linearly with increasing

concentrations of DMSO, consistent with the trends in the difference between the

FES minima, thereby pointing to a larger impact of solvent reorganization with in-

creasing DMSO concentrations when the fructose systems are seen to get closer to the

cellobiose systems at 100 K and 500 K. The generalization of predictions to arrive at

consistent results for systems other than what the ML models were trained on, can be

used to limit computational efforts when simulating solvent effects in systems where

its effects are found to be lower. This has the potential to accelerate the screening of

systems for solvent impact when designing processes for chemical reactions.
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Chapter 8

Concluding remarks and future
scope

The use of machine learning to enhance the interpretability of data-driven models and

also the automation capabilities of predictive models, is seen to make it an attrac-

tive tool for modeling complex reactive systems. This facilitates process monitoring

strategies for the mitigation of the environmental impact in designing processes for

the upgrading of complex feedstocks to produce chemicals of value and their compli-

ance with pipeline transport. However, the setbacks of building inferential machine

learning models for reactive systems where prior knowledge of species and reaction

pathways underlying their conversion is obscure, concern the recovery of interpretable

insights. Also, predictive ML models face deployment challenges when being used to

limit the computational cost of AIMD simulations, when screening reactive systems

on a mechanistic basis.

In this context, the following are the two overarching aims of this thesis: (i) the

development of interpretable end to end machine learning models for species and

reaction pathway identification, followed by estimating kinetics by using molecular-

level information of reactive systems, from spectroscopic sensors (ii) the development

of a computationally efficient self-supervised predictive ML model to increase the

automation capabilities of AIMD simulations for reactive systems, where mechanistic

knowledge is available. This chapter summarizes the key findings of this thesis and
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highlights directions for future work.

8.1 Summary

Inferential machine learning models for black box systems.

Chapters 2, 3 and 4 demonstrate an increasing order of sophistication in spectro-

scopic decomposition to extract latent features to facilitate the generation of plausible

reaction hypotheses. The first approach applies i.e. the self-modeling multivariate

curve resolution (SMCR) of FTIR data, followed by the use of quantitative metrics

based on the absorption intensity bands of the recovered spectral features to hypoth-

esize reaction pathways. The next approach, developed the joint non-negative matrix

factorization (JNMF) as a data fusion analogue of SMCR to extract complementary

information from the FTIR and 1H-NMR sensors, the latent features amongst which

Bayesian structure learning is used to causally infer reaction pathways. Finally, joint

non-negative tensor factorization (JNTF) was developed to be a structure-preserving

data fusion analogue of JNMF. JNTF was seen to limit the loss of chemical informa-

tion as opposed to JNMF where heuristically relaxing the latent factorization rank

was seen to recover additional pathways that the JNTF was seen to recover without

such relaxation heuristics to begin with. The latent factorization and causal inference

were then used to interpret the dynamic modes identified from realtime spectroscopic

data, via hidden semi-Markov models in Chapter 5. The time scales and cyclical

dynamics of reaction mechanisms were inferred from the duration and transition dy-

namics of the modes, using spectroscopic data associated with realtime changes in

operating temperatures. Reaction mechanisms at higher temperatures were seen to

persist over longer durations than the ones at lower temperatures, and the cyclical

reactions dynamics recovered points to the hydrolysis of esters to give alcohols that

reversibly combine with acids to results in esters, while encountering thermal cracking

and hydrogen transfer in the interim to form condensed products. Finally, in Chapter

6 the latent projections onto the temporal mode of data collection has been used to
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develop kinetic models constrained by the adjacency matrix from the Bayesian net-

work structure, causally inferred among the spectral features, by way of using the

chemical reaction neural ODEs that are structured to incorporate the law of mass

action and the Arrhenius law of temperature dependence. However, the kinetic model

development was demonstrated using synthetic data from a reaaction template but

not from spectroscopic data of complex feedstocks, owing to the lack of an exhaustive

ground truth kinetic model for validation.

Predictive machine learning models for mechanistic systems.

Chapter 7 leverages self-supervised deep learning architectures to extract spatio-

temporal features from the AIMD simulation trajectories of reacting systems to pre-

dict the extent of solvent reorganization from just the reactant profiles, so that in

the event reorganization is found to be minimal, a decision can be made to eliminate

the solvent molecules when simulating the final product profiles. This is proposed

to save computational efforts of the AIMD simulations and increase its automation

capacity when deployed to screen multiple reactant systems. In addition to using a

self-supervised model that circumvents the need of expensive sampling calculations

to compute target labels from the simulation data, the use of a simple distance-based

quadratic classifier that obviates the need for training as with typical neural network

classifiers that learn a decision boundary, the cost of developing predictive machine

learning framework is considerably minimized. The probability distribution across

the differences in the encoded features between the reactant and product simulations

of the condensed phase pyrolytic decomposition of cellobiose, fit using kernel density

estimation was seen to point to higher extents of solvent reorganization in systems at

lower temperatures (100 K, 500K). This was then used as a basis to predict the ex-

tent of solvent reorganization in the acid catalyzed conversion of fructose to HMF, by

computing the distance of the encoded features of the fructose trajectories from the

features corresponding to the reactant trajectories of cellobiose at 100 K and 500 K,

at different concentrations of DMSO. It was seen that the distance slightly increased
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before decreasing almost linearly with increasing DMSO concentrations, pointing to

more significant solvent reorganizations. The findings for the cellobiose and the fruc-

tose systems have been validated using a thermodynamic basis of these conversion

processes.

8.2 Future research directions

The development of high fidelity models for reactive systems where the prior knowl-

edge of the exhaustive enumeration of species and the underlying conversion pathways

is obscure, could be used to further investigations in the following research directions:

• Control and optimization strategies for processes concerning complex reactive

systems based on the system inferential models that have been developed, has

the potential for realtime applications.

• Automated mapping of the reaction network hypotheses generated from the

Bayesian networks to real chemistry in the databases, thereby surmounting the

heuristics in validating the inferences drawn from the modelling efforts demon-

strated in this thesis. The use of molecular fingerprint representations of the

latent spectral features to query candidate molecules from a reaction template

in the database, based on a similarity index could pave way for the automation.

• Attention-based feature selection using 3D-Resnet architectures to focus on only

specific absorption intensity spectral channels by eliminating redundant infor-

mation in spectroscopic data has the potential to accelerate spectroscopic de-

convolutions, and when incorporated in the data fusion architectures for latent

factorization that have been demonstrated in this thesis, could reduce the com-

putational burden of these models for realtime applications.

The development of computationally efficient predictive machine learning models

to increase the automation capabilities of AIMD simulations for mechanistic reactive
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systems opens up the following research avenues:

• Machine learning surrogates for the long term predictions of the solvent coor-

dinates in the final product profiles, given the reactant trajectories in systems

where solvent reorganization is identified to be significant, using the framework

demonstrated in Chapter 7.

• Data-driven approach of designing an interpretable low-dimensional manifold

of collective variables onto which the evolution of the mechanistic simulations

in the high dimensional space of the atomic coordinates can be effectively pro-

jected. Advances in this direction have the potential to use the low-dimensional

manifold in simulating reaction events in reduced time.

• The reaction hypotheses generated from the inferential machine learning mod-

els that have been developed for reactive systems where the prior knowledge of

the species and reactions is obscure, could be used to inform the search space

of running mechanistic simulations, the insights from which could foster a syn-

ergy between data-driven models and first-principles simulations in modeling

complex feedstocks across different length and time scales.
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Appendix A: Chapter 2

A.1 Introduction

Detailed information on extraction of concentration and spectral profiles of the liquid

products obtained at different experimental conditions of thermal conversion by self-

modeling curve resolution (SMCR) and a parallel method to detect the underlying

network structure from Bayesian cluster groups is provided in the manuscript. How-

ever, some sections do not require that all figures, plots and tables be supplied in the

manuscript itself, at the same time not causing difficulty for the readers in relating

to the global aim of the study. These additional details are given in this Supporting

Information document.

A.2 Experimental

All experimental details are provided in the main manuscript.

A.3 Methods and parameters used

A.3.1 FTIR data available

All the data regarding the FTIR spectra of the liquid products from thermal con-

version at different temperatures and residence times is provided in the manuscript

itself.
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A.3.2 Pre-processed and residual data for temperatures of
420◦C, 400◦C, 380◦C, 300◦C

The FTIR spectra of liquid samples obtained after thermal conversion at 350◦C after

baseline correction and SG filtering are provided in the manuscript. The respective

plots along with the residual obtained from smoothing and the raw data for the other

4 temperatures are given in Figure A.1, Figure A.2, Figure A.3 and Figure A.4.
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Figure A.1: Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR
spectra of the liquid products from thermal conversion of Athabasca bitumen at
420◦C; (c) residual after smoothing.

A.3.3 SMCR-ALS and SMCR-ALS-PSO methods

To deal with some of the limitations of MCR like rotational and intensity ambiguities,

datasets from different runs and techniques are combined together into a single data
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Figure A.2: Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR
spectra of the liquid products from thermal conversion of Athabasca bitumen at
400◦C; (c) residual after smoothing.

matrix. A row-wise combination is performed when the same batch of experiments

is monitored by different sets of techniques like FTIR, NMR, ESR, etc. The parent

equation is illustrated in equation A.1. A column-wise matrix is obtained when

multiple batches of experiments conducted at different experimental conditions are

monitored by the same technique. This is given in equation A.2.

[D1D2D3 · · ·Dn] = C [S1S2S3 · · ·Sn]T + [E1E2E3 · · ·En] (A.1)

[︄
D1
D2
D3

]︄
=

[︄
C1
C2
C3

]︄
ST (A.2)

Intensity ambiguity is represented by:
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Figure A.3: Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR
spectra of the liquid products from thermal conversion of Athabasca bitumen at
380◦C; (c) residual after smoothing.

D = (Ck)(S
1
k )T (A.3)

where k is a scalar.

Rotational ambiguity is given in equation A.4 by:

D = (CT )(T−1ST ) + E (A.4)

where T is a non-singular invertible matrix that multiplies with C and whose in-

verse multiplies with S. There are infinite possibilities for T in the absence of other

constraints.

The ALS-optimization algorithm and the accompanying constraints is described
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Figure A.4: Plots of: (a) Baseline corrected and smoothed data; (b) the raw FTIR
spectra of the liquid products from thermal conversion of Athabasca bitumen at
300◦C; (c) residual after smoothing.

in the manuscript. The respective equations of the alternative minimization of the

Frobenius norm of the residual are given below:

min
S≥0

(||D − CST ||2) (A.5)

min
C≥0

(||DT − SCT ||2) (A.6)

Table A.1 gives some of the common strategies of choosing the inertia weight

parameter for velocity updating in PSO.

As mentioned in the manuscript, ‘fmincon’ was used to further carry out a local

search for the PSO-optimized concentration profiles inside the ALS loop. The next
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Table A.1: Common strategies for inertia weight employed in the PSO literature.

Type of strategy Remarks
Constant [406] A value between 0.7 – 1 shows lower

error but larger number of iterations for
convergence

Random [407] Increases convergence in early stages of
PSO; Gives faster overall convergence

Linearly decreasing [408] Decreasing values in the range 0.9 – 0.4
are employed but risk of local optimum
exists; Gives low error

Global-local best inertia weight [409] Falls in between constant and random
inertia weight strategies; takes global
and local best particle positions into
consideration but gives large error

few paragraphs discuss two algorithms used by ‘fmincon’ for the optimization process

in further detail. These are the ‘Sequential Quadratic Programming’ algorithm and

the ‘Interior Point’ algorithm. First, a nonlinear unconstrained minimization prob-

lem of a general nature is explained, followed by the algorithms for the constrained

optimization.

a Unconstrained minimization:

Consider a scalar function f(x) whose minimum point and the corresponding

value needs to be found. Most algorithms are based on building trust regions

around the neighborhood (N) for a simplified version q of f . [410] The trust

region sub-problem is expressed in equation A.7 as:

min
s

q(s), s ∈ N (A.7)

where s is a sample step that assists in updating the present position if f (x + s) <

f(x).

The challenge is to define q and the trust region N . Expressing q in terms of the

first two terms of the Taylor’s expansion, the quadratic programming problem

comes down to solving the equation:

min
1

2
sTHs + sTg for||Ds|| ≤ ∆ (A.8)
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In equation A.8, D is the diagonal scaling matrix, ∆ is a positive tolerance level

for the constraint and can be adjusted according to whether the updated value

of f meets the inequality condition or not, H is the square matrix of second

derivatives of f (Hessian) and g is the gradient of f . A number of approaches

to solve this equation are given in the literature.[411],[412] All these algorithms

require rigorous calculations of eigenvalues but it is easier to solve using the

definition of a sub-space s that forms a boundary for the trust region. s is

constructed in the 2-D space as a combination of the gradient direction (s1)

and the Newton direction (s2), which is the solution to the following equation

H.s2 = −g (A.9)

The solution to equation A.9, which is a system of linear equations, is given by

the preconditioned conjugate gradient (CG) method whose output direction, p

is used to build the sub-space. The key step in solving unconstrained optimiza-

tion problems is determining the 2-D sub-space. It is chosen such that global

convergence is achieved through the steepest descent direction while local con-

vergence is accomplished through the Newton step. Nonlinear least squares and

linear least squares solutions also work on similar principles of trust regions and

2-D sub-space.

b Constrained minimization:

Two common constraints for these kinds of problems are linear equality and box

constraints. The linear equality constrained problems are solved considering an

initial point that satisfies the equalityAx0 = b, where A and b are known. A

matrix system is created to calculate s and is elaborated by Coleman and Verma.

[413] Box constraints consist of lower and upper bounds and a scaled Newton

step evolving from the Karush-Kuhn-Tucker (KKT) conditions is considered to

find the sub-space for solving the problem. [414] The solution also comprises of

a reflection step that delineates the step size.
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c Algorithms used by ‘fmincon’

Active set algorithm:

This is a medium-scale algorithm where full matrices are generated and complex

linear algebra is used to solve the constrained equations. They were based on

the conversion of the constrained problem into an unconstrained one by the

use of a penalty function. The KKT conditions are necessary and sufficient for

optimality when both the objective function and the constraints are convex.

The KKT conditions of the quadratic programming problem are given as:

∇f(xs) +
m∑︂
i=1

λi.∇Gi(xs) = 0

λi.Gi(xs) = 0 and λi ≥ 0 (A.10)

where λi are the Lagrange multipliers that take positive values only and serve

as a link between the objective and constraint functions. The solution revolves

around finding the Lagrange multipliers for each data point.

Sequential Quadratic Programming (SQP) algorithm:

‘fmincon’ utilizes SQP methods frequently to solve the constrained optimization

problems. The principle of SQP rests on creating quadratic programming sub-

problems at each loop iteration. [415] It is analogous to the active-set algorithm

explained in the previous section and instead of a Newton step used for the

unconstrained optimization (equation A.9), a quasi-Newton updating procedure

is used for dealing with the Hessian matrix (H). Detailed reviews of the method

are available in various texts in the literature. [416],[417].

The solution of the quadratic sub-problem is used to form a search direction for

the variable x as:

xk+1 = xk + αkdk (A.11)

Here, dk is the search direction and

αk
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is the step length parameter obtained by line search. It helps the solution to

progress toward the function minimum by decreasing the value of the objective

function. Schittkowski [417] also opined that the advantage of utilizing the SQP

method is that it makes the constrained optimization converge faster than an

unconstrained problem due to a fixed search area and αk. The SQP algorithm

has 4 major steps:

i Updating the Hessian (Hk) of the Lagrangian formulation

The Lagrangian formulation of the quadratic problem is given by the fol-

lowing equation:

L(λ, x) = f(x) +
∑︂

λi.gi(x) (A.12)

A quasi-Newton approximation of H(L(λ, x)) is conducted at each itera-

tion. In order to track the convergence path in MATLAB, the ‘Display’

option can be set to ‘iter’. When this is done, messages such as ‘Hes-

sian modified’, ‘infeasible’ are displayed that indicate that the extent of

nonlinearity is high.

ii Solution of the QP sub-problem

The solution of this problem is executed by the active-set method described

in the previous section. It is also called a projection method. This involves

primarily two steps: estimating a feasible starting point and then generat-

ing a number of points that remain active throughout the iterations and

subsequently converge to the final solution. The active points lead to the

search direction (dk in equation A.11) that is present on the boundaries

of the given constraints. This search direction facilitates the calculation

of the new point of x in the search space (equation A.11). dk is usually

obtained through a linear combination of a vector that is orthogonal to

the active points.
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Two directional choices are available for αk during the line search proce-

dure. One is the direct step along dk that would lead to the optimum of

f(x) considering the active point set and thus, the solution of the QP sub-

problem. If this does not occur, further iterations are required to reach

the solution. The condition of positive Lagrange multipliers needs to be

satisfied, otherwise the equality constraint is violated and the data point

corresponding to this violation is removed from the algorithm.

iii Finding the starting point

This can be done by finding an x that satisfies the equality constraint in

the QP sub-problem. A system of linear equations needs to be solved to

obtain the initial point. The initial search direction can be obtained by

substituting dk for s in equation A.9.

iv Merit function and step length

A merit function proposed by Han [418] is used and a penalty parame-

ter was introduced by Powell. [419] The merit function is similar to the

Lagrangian function L but has more parameters. The penalty parame-

ter distinguishes between constraints having smaller and larger gradients

and penalizes the smaller gradients more. The step length parameter, as

discussed before, reduces the merit function value.

From the implementation viewpoint, the algorithm in MATLAB allows for

failed steps in the case of a bogus value for the objective function. During

the running of the algorithm, lesser memory and time is consumed as com-

pared to the active-set strategy though both are medium-scale algorithms.

In addition, in the case of some nonlinear constraints being violated, SQP

calculates a second order approximation for the constraints and proceeds

with the iteration, though it sacrifices convergence speed.

Interior Point Algorithm:
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This is the default algorithm adopted by MATLAB for the ‘fmincon’ function.

A detailed description of this method is given by Waltz et al. [420] and only

the two important steps of the solution process are described in this section.

The main objective function is split into constituent small-scale optimization

problems given by equation A.13:

min
x,s

f(x, s) = min f(x, s)− µ
∑︂

ln(si) (A.13)

where si are the slack variables and µ is a positive parameter that controls the

barrier function
∑︁

ln(si).

The purpose of the approximate problem is the conversion of inequality con-

straints to equality constraints to make it easier for problem solving. Equation

A.13 can be solved by taking either of the following 2 steps: direct step or a CG

step. The KKT conditions are applied to the QP and the obtained system of

equations are tried to be solved by linear approximation. This is the first and

default step attempted by the algorithm. The CG step comes into play when

the objective functions fails to remain convex at any iteration. In either case,

a merit function that combines the objective function and the constraints is

required to be decreased in value as much as possible. The algorithm can deal

with constraint violations when a particular point xj returns an unreal value

for the constraint function. In this situation, the step length is modified to a

shorter value and the iteration is continued.

In the direct step, matrix factorization gives information about the Hessian. If

the Hessian is not positive definite, the algorithm attempts to solve the system

of equations using the CG method. Similar to the unconstrained minimization,

CG utilizes a trust region to create a sub-space for the solution to the QP

problem. As with other cases, Lagrangian multipliers are obtained from solving

KKT condition equations to obtain the solution for the interior point algorithm.
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Unlike SQP, interior point algorithm is a large-scale algorithm that does not

store or generate full sized matrices and thus, lesser space is used and is the

preferred approach for computer programming.

A.3.4 Bayesian networks

Figure A.5 shows the importance index for the first 1550 wavenumbers. The procedure

behind the choice of these wavenumbers is given in the main manuscript.

Figure A.5: Plot of importance index of the selected 1550 wavenumbers.

A.4 Results and Discussion

A.4.1 Rank determination of each sub-matrix

Figure A.6 gives the plots of residuals obtained after performing SVD on the 400◦C

data set choosing 2 and 4 components while the manuscript gives the residual plot for

SVD performed with optimal 3 components. The ROD, SD, residual after performing

SVD with 3 components and the scree plots for data sets at the other 4 temperatures

(300◦C, 350◦C, 380◦C, 420◦C) are given in Figure A.7, Figure A.8, Figure A.9 and

Figure A.10 respectively.
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Figure A.6: Residuals obtained after performing SVD on the 400◦Cdata set consid-
ering: (a) 2 components and (b) 4 components.

The values of performance indicators (LOF and R2) for SVD with 2, 3 and 4

pseudo-components are given in Table A.2.

Table A.2: LOF and R2 values (% contribution to variance) on reconstruction of the
original matrix after performing SVD for the datasets at 300◦C, 350◦C, 380◦C and
420◦C.

300◦C 350◦C 380◦C 420◦C
# Components 2 3 2 3 4 2 3 4 2 3 4

LOF 2.38 8.27E-14 3.09 2.17 1.54 7.2 4.99 3.71 4.72 2.93 1.83

R2 99.94 100 99.9 99.95 99.97 99.48 99.75 99.86 99.78 99.91 99.96
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Figure A.7: Plots for (a) ROD with respect to each component; (b) SD with respect to
each component; (c) Residual after performing SVD considering 3 components on the
FTIR data set for all 1738 wavenumbers; (d) Percentage contribution to the variance
explained by the eigenvalues corresponding to each component in the system. These
results correspond to data obtained at 300 ◦C.
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Figure A.8: Plots for (a) ROD with respect to each component; (b) SD with respect to
each component; (c) Residual after performing SVD considering 3 components on the
FTIR data set for all 1738 wavenumbers; (d) Percentage contribution to the variance
explained by the eigenvalues corresponding to each component in the system. These
results correspond to data obtained at 350 ◦C.
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Figure A.9: Plots for (a) ROD with respect to each component; (b) SD with respect to
each component; (c) Residual after performing SVD considering 3 components on the
FTIR data set for all 1738 wavenumbers; (d) Percentage contribution to the variance
explained by the eigenvalues corresponding to each component in the system. These
results correspond to data obtained at 380 ◦C.
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Figure A.10: Plots for (a) ROD with respect to each component; (b) SD with respect
to each component; (c) Residual after performing SVD considering 3 components
on the FTIR data set for all 1738 wavenumbers; (d) Percentage contribution to the
variance explained by the eigenvalues corresponding to each component in the system.
These results correspond to data obtained at 420◦C.
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A.4.2 Initial concentration estimates

The initial estimates of concentration profiles at 300◦C are given in Figure A.11.
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Figure A.11: Initial concentration estimates for S1, S2 and S3 at 300◦C.

A.4.3 ALS-optimized profiles and spectra-derived quantita-
tive parameters

The residuals obtained after subtracting the ALS-reproduced matrix from the original

matrix for datasets at all temperatures are given in Figure A.12.

A.4.4 PSO-optimized concentration and spectral profiles

Results at 300◦C

The concentration and spectral profiles when the ALS-PSO algorithm was used to

resolve the FTIR spectra obtained at 300◦C for Athabasca bitumen is given in Figure

A.13. The residual when the reproduced matrix from the ALS-PSO-resolved profiles is

subtracted from the original data matrix is also provided in this figure (Figure A.17b).

Discussion on the differences of these profiles with respect to ALS-optimized results

in terms of resolution quality and convergence speed is provided in the manuscript.

Results at 350◦C

The concentration and spectral profiles when the ALS-PSO algorithm was used to

resolve the FTIR spectra obtained at 350◦C for Athabasca bitumen are given in Figure
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Figure A.12: ALS residuals for datasets obtained at: (a) 300◦C; (b) 350◦C; (c) 380◦C;
(d) 400◦C; (e) 420◦C.

A.14. The residual when the reproduced matrix from the ALS-PSO-resolved profiles is

subtracted from the original data matrix is also provided in this figure. Discussion on

the differences of these profiles from the ALS-optimized results in terms of resolution
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Figure A.13: Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products
from thermal conversion of Athabasca bitumen at 300◦C. The profiles are arranged
as: (a) concentration vs. reaction time for the three pseudo-components; (b) resid-
ual plot; and resolved spectra for each pseudo-component shown as absorbance vs.
wavenumber in the ranges: (c) 3200 – 2750 cm−1; (d) 1800 – 1500 cm−1; (e) 1500 –
900 cm−1; (f) 900 – 650 cm−1.
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quality and convergence speed is given in the manuscript.
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Figure A.14: Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products
from thermal conversion of Athabasca bitumen at 350◦C. The profiles are arranged
as: (a) concentration vs. reaction time for the three pseudo-components; (b) resid-
ual plot; and resolved spectra for each pseudo-component shown as absorbance vs.
wavenumber in the ranges: (c) 3200 – 2750 cm−1; (d) 1800 – 1500 cm−1; (e) 1500 –
900 cm−1; (f) 900 – 650 cm−1.
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Results at 380◦C

Figure A.15 provides the ALS-PSO-resolved concentration and spectral profiles for

the 380 ◦C dataset. The residual plot when the reproduced matrix is subtracted from

the original data matrix is also provided in the figure.

Results at 400◦C

Figure A.16 gives the ALS-PSO resolved final profiles for the dataset obtained at

400◦C. The residual plot when the reproduced matrix is subtracted from the original

data matrix is also provided in the figure.

Results at 420◦C

Figure A.17 provides the concentration and spectral profiles for the ALS-PSO opti-

mized profiles including the residual obtained when the reproduced data matrix is

subtracted from the original matrix.

Comparison of ALS and ALS-PSO methods

The results and corresponding discussion of this section are provided in the manuscript

itself.

A.4.5 BHC and associated chemical signatures relative to
the clusters

The variation of effective intensity for each wavenumber in this cluster is shown in

Figure A.18. Other necessary information regarding this section is provided in the

manuscript.

A.4.6 Deriving chemical reaction pathway through Bayesian
networks applied on the BHC clusters

All the required details of this section are provided in the manuscript.
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Figure A.15: Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products
from thermal conversion of Athabasca bitumen at 380◦C. The profiles are arranged
as: (a) concentration vs. reaction time for the three pseudo-components; (b) resid-
ual plot; and resolved spectra for each pseudo-component shown as absorbance vs.
wavenumber in the ranges: (c) 3200 – 2750 cm−1; (d) 1800 – 1500 cm−1; (e) 1500 –
900 cm−1; (f) 900 – 650 cm−1.
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Figure A.16: Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products
from thermal conversion of Athabasca bitumen at 400◦C. The profiles are arranged
as: (a) concentration vs. reaction time for the three pseudo-components; (b) resid-
ual plot; and resolved spectra for each pseudo-component shown as absorbance vs.
wavenumber in the ranges: (c) 3200 – 2750 cm−1; (d) 1800 – 1500 cm−1; (e) 1500 –
900 cm−1; (f) 900 – 650 cm−1.
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Figure A.17: Results of SMCR-ALS-PSO applied to FTIR spectra of liquid products
from thermal conversion of Athabasca bitumen at 420◦C. The profiles are arranged
as: (a) concentration vs. reaction time for the three pseudo-components; (b) resid-
ual plot; and resolved spectra for each pseudo-component shown as absorbance vs.
wavenumber in the ranges: (c) 3200 – 2750 cm−1; (d) 1800 – 1500 cm−1; (e) 1500 –
900 cm−1; (f) 900 – 650 cm−1.
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Figure A.18: Effective intensity for each wavenumber in the fifth cluster (Table 14 in
the manuscript). Some of the important peaks are indicated.
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Figure A.19: Plots of: (a) ROD vs. number of components and (b) initial estimates of
concentration obtained through EFA for the 35 samples at various process conditions
used in the SMCR-ALS global model.

A.4.7 ALS-optimized profiles for the global model

Figure A.19 provides the plots for the ROD and initial concentration estimates ob-

tained through EFA for the 35 samples when the augmented matrix consisting of all

temperatures and respective reaction times was used for SMCR analysis.
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Appendix B: Chapter 3

B.1 Process Conditions

Table B.1: Process conditions for spectral data collection

Spectral sensor Process conditions

FTIR

Temperature(◦C) Residence time (min)
150 66, 126, 186, 246, 306, 366, 426, 486

200 66, 126, 186, 246, 306, 486

250 246

300 126, 186, 246, 306, 366, 426, 486

340 6, 66, 126, 246, 486

360 6, 16.02, 25.98, 36, 66, 246, 583.02

400 6, 16.02, 25.98, 36, 66, 96, 126

1H-NMR

150 60, 120, 180, 240, 300, 360, 420, 480

200 60, 120, 180, 240, 300, 360, 420, 480

250 60, 120, 180, 240, 300, 360, 420, 480

300 60, 120, 180, 240, 300, 360, 420, 480

B.2 Highly correlated spectral channels

Table B.2: Wavenumbers of FTIR spectra with correlation > 0.9

609.46 619.11 1323.07 1911.32 1448.43 2634.57 3116.74 3193.89 3242.10 3627.84 1920.96 3946.07
763.76 802.00 1810.00 1911.32 734.83 2644.21 2297.05 3203.53 1390.57 3637.48 2750.29 3946.07

783.04 841.00 1294.14 1920.96 1631.66 2644.21 2287.41 3213.17 1911.32 3637.48 3830.35 3946.07

599.82 870.00 1487.01 1930.60 2605.64 2644.21 2239.19 3222.82 2711.72 3637.48 1303.78 3955.71

648.04 937.00 1890.00 1930.60 1467.72 2653.86 1053.06 3232.46 1361.64 3647.12 1853.46 3955.71

667.32 966.00 1420.00 1940.25 1853.46 2653.86 1564.16 3232.46 3242.10 3647.12 2682.79 3955.71

898.76 1010.00 1600.00 1949.89 1949.89 2663.50 1940.25 3232.46 1409.86 3656.77 3685.70 3955.71

1014.48 1050.00 1197.71 1969.18 1062.70 2682.79 2991.37 3232.46 2557.42 3656.77 1101.27 3965.35

1014.48 1080.00 1245.92 1978.82 1650.95 2682.79 2412.77 3242.10 3637.48 3656.77 1776.31 3965.35

1081.99 1100.00 1640.00 1978.82 2615.28 2682.79 3087.81 3251.75 1487.01 3666.41 2557.42 3965.35

811.97 1140.00 1770.00 1988.46 1323.07 2692.43 1458.08 3261.39 2499.56 3666.41 3531.40 3965.35

763.76 1160.00 1700.00 2007.75 1814.88 2692.43 2769.58 3271.03 3531.40 3666.41 1004.84 3975.00

1139.85 1170.00 1020.00 2036.68 2644.21 2692.43 821.62 3280.68 3569.98 3676.05 1660.59 3975.00

1188.06 1220.00 1700.00 2036.68 1390.57 2702.07 3261.39 3280.68 1487.01 3685.70 2162.04 3975.00

898.76 1260.00 1550.00 2046.32 1882.39 2702.07 2846.72 3290.32 2499.56 3685.70 3483.19 3975.00

1101.27 1270.00 860.00 2055.97 744.47 2711.72 831.26 3309.61 3531.40 3685.70 3946.07 3975.00
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Table B.2 continued from previous page
1014.48 1280.00 1062.70 2075.25 1487.01 2711.72 667.32 3319.25 1294.14 3695.34 1400.22 3984.64

1101.27 1290.00 744.47 2084.90 1882.39 2711.72 2866.01 3328.89 1853.46 3695.34 1920.96 3984.64

706.00 1310.00 1487.01 2084.90 734.83 2721.36 667.32 3348.18 2624.93 3695.34 2731.00 3984.64

1024.13 1320.00 1872.74 2084.90 1525.58 2721.36 2663.50 3357.82 3656.77 3695.34 3782.13 3984.64

1101.27 1330.00 1294.14 2094.54 2499.56 2721.36 2914.23 3367.47 1400.22 3704.98 1110.92 3994.29

1207.35 1370.00 1043.41 2104.18 1110.92 2731.00 2952.80 3377.11 1901.67 3704.98 1805.24 3994.29

1280.00 1390.00 1630.00 2104.18 1795.60 2731.00 3377.11 3386.75 2721.36 3704.98 2567.07 3994.29

1332.71 1400.00 706.00 2113.83 2567.07 2731.00 3386.75 3396.40 705.90 3714.63 3550.69 3994.29

638.39 1420.00 1487.01 2113.83 1255.57 2740.65 2875.65 3406.04 2200.62 3714.63

1313.43 1430.00 1024.13 2123.47 1824.53 2740.65 1612.37 3415.68 1380.93 3724.27

831.26 1460.00 1795.60 2123.47 2586.35 2740.65 3299.96 3415.68 1506.30 3733.91

1091.63 1480.00 1720.00 2142.76 1294.14 2750.29 2644.21 3425.33 1506.30 3743.56

1101.27 1490.00 1710.00 2162.04 2094.54 2750.29 1544.87 3434.97 1352.00 3753.20

1080.00 1500.00 1390.57 2171.69 946.98 2759.93 2084.90 3434.97 3222.82 3753.20

1014.48 1520.00 1100.00 2181.33 1564.16 2759.93 811.97 3444.61 1323.07 3762.84

1024.13 1530.00 908.00 2190.97 1978.82 2759.93 3261.39 3444.61 2509.21 3762.84

734.83 1540.00 2162.04 2200.62 918.05 2769.58 1390.57 3454.26 3560.33 3762.84

1525.58 1540.00 1371.29 2229.55 2316.34 2779.22 1911.32 3454.26 1294.14 3772.49

879.48 1554.51 1730.00 2248.83 821.62 2798.51 2711.72 3454.26 2036.68 3772.49

1438.79 1564.16 1371.29 2268.12 937.34 2808.15 1583.44 3463.90 2972.09 3772.49

744.47 1583.44 2258.48 2277.76 1168.78 2817.79 2538.14 3463.90 1043.41 3782.13

1290.00 1590.00 1371.29 2297.05 2769.58 2827.44 1043.41 3473.54 1920.96 3782.13

1515.94 1602.73 725.00 2316.34 2779.22 2837.08 1631.66 3473.54 2972.09 3782.13

1564.16 1612.37 975.91 2325.98 2325.98 2846.72 2596.00 3473.54 1014.48 3791.77

1602.73 1620.00 976.00 2345.27 2335.63 2856.37 1033.77 3483.19 1535.23 3791.77

1602.73 1631.66 957.00 2364.56 1959.53 2875.65 1564.16 3483.19 2084.90 3791.77

1544.87 1641.30 2350.00 2374.20 1901.67 2885.30 2104.18 3483.19 3001.02 3791.77

1303.78 1650.95 1350.00 2393.49 1949.89 2894.94 3454.26 3483.19 1361.64 3801.42

1024.13 1660.59 1747.38 2403.13 667.32 2914.23 1535.23 3492.83 3733.91 3801.42

1583.44 1660.59 2133.11 2412.77 667.32 2933.51 1930.60 3492.83 1400.22 3811.06

1294.14 1670.23 2268.12 2422.42 2904.58 2943.16 3463.90 3492.83 1901.67 3811.06

734.83 1679.88 2297.05 2432.06 1689.52 2952.80 2190.97 3502.47 2721.36 3811.06

1477.37 1679.88 1370.00 2451.35 705.90 2962.44 1091.63 3512.12 3772.49 3811.06

1053.06 1689.52 2130.00 2460.99 1438.79 2962.44 1689.52 3512.12 3222.82 3820.70

1564.16 1689.52 2210.00 2470.63 1853.46 2962.44 2547.78 3512.12 1419.50 3830.35

1400.22 1699.16 638.00 2489.92 2731.00 2962.44 744.47 3521.76 2721.36 3830.35

1361.64 1728.09 1080.00 2499.56 1400.22 2972.09 1525.58 3521.76 3811.06 3830.35

686.61 1760.00 2480.00 2499.56 2489.92 2972.09 1901.67 3521.76 3618.19 3839.99

1072.34 1776.31 1430.00 2509.21 1053.06 2981.73 3434.97 3521.76 3724.27 3849.63

1062.70 1785.95 2490.00 2509.21 1679.88 2981.73 1313.43 3531.40 1795.60 3859.28

1689.52 1785.95 1070.00 2528.49 2181.33 2981.73 1872.74 3531.40 2981.73 3859.28

1400.22 1795.60 2080.00 2528.49 1043.41 2991.37 2682.79 3531.40 1226.64 3868.92

1081.99 1805.24 1930.00 2538.14 1795.60 2991.37 1043.41 3541.05 3020.30 3868.92

1593.09 1805.24 1795.60 2547.78 2605.64 2991.37 1554.51 3541.05 1255.57 3878.56

1245.92 1814.88 1110.92 2557.42 1265.21 3001.02 1949.89 3541.05 2499.56 3878.56

1641.30 1814.88 2499.56 2557.42 2181.33 3001.02 2991.37 3541.05 3695.34 3878.56

1284.50 1824.53 1390.57 2567.07 1419.50 3010.66 1274.85 3550.69 1795.60 3888.21

1679.88 1824.53 1901.67 2567.07 3001.02 3010.66 1843.81 3550.69 3001.02 3888.21

1323.07 1834.17 1062.70 2576.71 628.75 3029.95 2605.64 3550.69 1419.50 3897.85

1814.88 1834.17 1602.73 2576.71 2788.86 3039.59 1014.48 3560.33 676.97 3907.49

1400.22 1843.81 2080.00 2576.71 783.04 3058.88 1689.52 3560.33 1699.16 3907.49

1824.53 1843.81 1290.00 2586.35 2142.76 3068.52 2528.49 3560.33 2692.43 3907.49

1490.00 1850.00 1680.00 2586.35 1197.71 3087.81 3550.69 3560.33 3762.84 3907.49

744.00 1860.00 744.00 2596.00 3058.88 3097.45 3001.02 3569.98 1776.31 3917.14

1535.23 1863.10 1480.00 2596.00 773.40 3116.74 1409.86 3579.62 2981.73 3917.14

1004.84 1870.00 1860.00 2596.00 715.54 3126.38 2123.47 3579.62 705.90 3926.78

1544.87 1870.00 1070.00 2605.64 1352.00 3136.03 3454.26 3579.62 1776.31 3926.78

1004.84 1880.00 1580.00 2605.64 773.40 3145.67 2403.13 3589.26 2702.07 3926.78

1520.00 1882.39 2080.00 2605.64 3116.74 3145.67 1265.21 3598.91 3772.49 3926.78

734.83 1890.00 1270.00 2615.28 3097.45 3155.31 1978.82 3598.91 1284.50 3936.42
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Table B.2 continued from previous page
1470.00 1892.03 1670.00 2615.28 2837.08 3164.96 2962.44 3598.91 1834.17 3936.42

1853.46 1892.03 706.00 2624.93 2769.58 3174.60 2248.83 3608.55 2615.28 3936.42

1467.72 1901.67 1440.00 2624.93 850.55 3184.24 2229.55 3618.19 3637.48 3936.42

1853.46 1901.67 1840.00 2624.93 773.40 3193.89 1371.29 3627.84 1110.92 3946.07

Table B.3: Wavenumbers of FTIR spectra with correlation < −0.9

609.46 638.39 918.05 2094.54 2065.61 2798.51 1014.48 3107.09 2277.76 3367.47 3425.33 3753.2
705.9 783.04 773.4 2113.83 898.76 2808.15 1535.23 3107.09 2287.41 3377.11 3039.59 3762.84

821.62 898.76 1149.49 2123.47 1785.95 2808.15 1911.32 3107.09 2239.19 3386.75 1149.49 3772.49

686.61 966.27 1477.37 2142.76 2711.72 2808.15 2962.44 3107.09 1747.38 3396.4 754.11 3782.13

792.69 1024.13 1882.39 2142.76 1699.16 2817.79 1390.57 3116.74 1747.38 3406.04 2846.72 3782.13

783.04 1053.06 802.33 2162.04 2731 2817.79 1940.25 3116.74 1747.38 3415.68 2306.7 3791.77

754.11 1081.99 927.69 2171.69 1776.31 2827.44 2740.65 3116.74 1737.74 3425.33 1448.43 3801.42

811.97 1101.27 648.04 2190.97 2750.29 2827.44 1303.78 3126.38 1737.74 3434.97 754.11 3811.06

1043.41 1130.2 956.62 2200.62 2171.69 2837.08 1785.95 3126.38 2065.61 3444.61 3097.45 3811.06

1062.7 1149.49 889.12 2229.55 2075.25 2846.72 2644.21 3126.38 1149.49 3454.26 2046.32 3820.7

1072.34 1178.42 869.83 2268.12 2200.62 2856.37 2663.5 3136.03 3280.68 3454.26 831.26 3830.35

879.48 1226.64 1448.43 2297.05 2470.63 2866.01 1920.96 3145.67 628.75 3473.54 3280.68 3830.35

763.76 1255.57 1487.01 2306.7 2432.06 2875.65 3010.66 3145.67 715.54 3483.19 2894.94 3839.99

773.4 1274.85 1882.39 2306.7 1188.06 2894.94 1409.86 3155.31 3107.09 3483.19 2335.63 3849.63

918.05 1294.14 2181.33 2316.34 1236.28 2904.58 1853.46 3155.31 3087.81 3492.83 1178.42 3859.28

1149.49 1313.43 2065.61 2335.63 1352 2914.23 2702.07 3155.31 2316.34 3502.47 1959.53 3868.92

1130.2 1332.71 1988.46 2354.91 1342.36 2923.87 1284.5 3164.96 918.05 3512.12 811.97 3878.56

995.2 1371.29 1419.5 2374.2 2210.26 2933.51 2162.04 3164.96 3251.75 3512.12 3261.39 3878.56

1159.13 1390.57 1930.6 2383.84 1737.74 2943.16 898.76 3174.6 3271.03 3521.76 2798.51 3888.21

918.05 1409.86 879.48 2412.77 1728.09 2952.8 1496.65 3174.6 3078.16 3531.4 956.62 3897.85

773.4 1429.15 956.62 2441.7 821.62 2972.09 1978.82 3174.6 3029.95 3541.05 792.69 3907.49

1371.29 1448.43 648.04 2470.63 1130.2 2981.73 2972.09 3174.6 1168.78 3550.69 3145.67 3907.49

715.54 1467.72 975.91 2480.28 1178.42 2991.37 1400.22 3184.24 628.75 3560.33 1458.08 3917.14

1178.42 1496.65 1149.49 2489.92 1178.42 3001.02 2557.42 3184.24 3078.16 3560.33 811.97 3926.78

1207.35 1515.94 628.75 2509.21 1159.13 3010.66 1062.7 3193.89 937.34 3569.98 3164.96 3926.78

1216.99 1544.87 1159.13 2518.85 2933.51 3020.3 1689.52 3193.89 773.4 3579.62 2808.15 3936.42

1506.3 1573.8 1458.08 2528.49 1641.3 3029.95 2499.56 3193.89 3126.38 3579.62 840.9 3946.07

1130.2 1612.37 783.04 2547.78 2624.93 3029.95 1448.43 3203.53 3319.25 3589.26 3261.39 3946.07

1197.71 1641.3 850.55 2557.42 1255.57 3039.59 2904.58 3213.17 2808.15 3598.91 3058.88 3955.71

1207.35 1670.23 715.54 2576.71 1650.95 3039.59 763.76 3232.46 1959.53 3608.55 1458.08 3965.35

802.33 1699.16 2142.76 2586.35 2576.71 3039.59 3126.38 3232.46 2634.57 3618.19 783.04 3975

937.34 1708.81 715.54 2615.28 1033.77 3049.23 898.76 3251.75 2538.14 3627.84 3145.67 3975

1573.8 1728.09 1226.64 2634.57 1544.87 3049.23 1496.65 3251.75 811.97 3637.48 2798.51 3984.64

1438.79 1747.38 2142.76 2644.21 1920.96 3049.23 1882.39 3251.75 3164.96 3637.48 811.97 3994.29

937.34 1766.67 1969.18 2663.5 2972.09 3049.23 2759.93 3251.75 3299.96 3647.12 3164.96 3994.29

783.04 1785.95 1757.02 2673.14 1332.71 3058.88 2123.47 3261.39 2769.58 3656.77

1458.08 1795.6 2142.76 2682.79 1805.24 3058.88 1043.41 3271.03 792.69 3666.41

1178.42 1824.53 918.05 2702.07 2653.86 3058.88 1554.51 3271.03 3155.31 3666.41

715.54 1853.46 773.4 2721.36 1101.27 3068.52 1978.82 3271.03 2846.72 3676.05

715.54 1882.39 1178.42 2731 1612.37 3068.52 3001.02 3271.03 2837.08 3685.7

1737.74 1901.67 831.26 2750.29 2113.83 3068.52 2094.54 3280.68 1130.2 3695.34

1178.42 1920.96 1053.06 2769.58 946.98 3078.16 1419.5 3290.32 3251.75 3695.34

1159.13 1940.25 1679.88 2769.58 1535.23 3078.16 1371.29 3299.96 3058.88 3704.98

879.48 1969.18 2181.33 2769.58 1911.32 3078.16 696.25 3309.61 927.69 3714.63

725.18 1988.46 1053.06 2779.22 2981.73 3078.16 1766.67 3319.25 619.11 3724.27

1747.38 1998.11 1940.25 2779.22 1535.23 3087.81 1728.09 3328.89 879.48 3733.91

599.82 2027.04 705.9 2788.86 1930.6 3087.81 1236.28 3338.54 1834.17 3733.91

1197.71 2046.32 1487.01 2788.86 946.98 3097.45 3222.82 3338.54 3377.11 3733.91

792.69 2065.61 2499.56 2788.86 1564.16 3097.45 2451.35 3348.18 1930.6 3743.56

937.34 2075.25 1081.99 2798.51 1978.82 3097.45 2403.13 3357.82 879.48 3753.2
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Table B.4: Chemical shifts of 1H-NMR spectra with correlation > 0.9

-0.997 -0.956 3.031 3.642 3.316 5.595 6.042 7.548 4.415 9.460 4.415 11.943
-0.916 -0.549 1.650 3.682 4.171 5.595 1.119 7.589 5.717 9.460 7.874 11.943

-0.468 -0.427 2.584 3.682 5.554 5.595 2.218 7.629 8.158 9.460 9.745 11.943

-0.712 -0.305 3.560 3.682 4.293 5.676 4.049 7.629 5.432 9.542 8.606 11.983

-0.427 -0.224 3.070 3.723 2.136 5.717 5.595 7.629 2.340 9.583 9.054 12.024

-0.875 -0.142 2.050 3.764 3.601 5.717 2.096 7.670 3.235 9.583 5.147 12.065

-0.183 -0.102 3.230 3.764 4.659 5.717 2.991 7.670 4.049 9.583 7.019 12.065

-0.956 0.020 2.014 3.805 2.096 5.798 3.805 7.670 4.985 9.583 8.036 12.105

-0.997 0.102 2.909 3.805 2.991 5.798 4.659 7.670 7.914 9.583 11.292 12.105

-0.102 0.142 3.720 3.805 3.845 5.798 6.205 7.670 8.077 9.623 5.961 12.146

0.142 0.183 2.950 3.845 4.700 5.798 1.648 7.711 9.135 9.664 10.925 12.146

0.061 0.264 3.800 3.845 4.496 5.839 1.973 7.751 3.764 9.745 9.013 12.187

-0.956 0.346 2.750 3.886 4.008 5.880 2.869 7.751 4.740 9.745 4.822 12.227

-0.102 0.387 3.560 3.886 5.758 5.880 3.682 7.751 6.246 9.745 9.827 12.227

0.102 0.427 3.360 3.927 4.618 5.920 4.862 7.751 8.565 9.745 -0.509 12.309

0.264 0.468 2.050 3.967 4.537 5.961 1.933 7.792 8.158 9.827 10.763 12.309

0.346 0.509 2.991 3.967 3.764 6.002 3.031 7.792 4.252 9.867 8.972 12.390

0.387 0.549 3.805 3.967 5.147 6.002 3.886 7.792 8.077 9.867 2.502 12.431

0.264 0.590 3.153 4.008 3.438 6.083 4.700 7.792 9.745 9.867 6.246 12.431

0.061 0.631 1.892 4.049 5.595 6.083 6.612 7.792 3.031 9.908 7.589 12.431

-0.142 0.671 3.072 4.049 2.747 6.124 3.194 7.833 3.886 9.908 11.861 12.472

-0.956 0.712 3.927 4.049 3.601 6.124 4.049 7.833 4.700 9.908 5.107 12.594

0.671 0.712 3.030 4.089 4.618 6.124 4.862 7.833 7.792 9.908 8.525 12.594

-0.549 0.793 3.890 4.089 1.811 6.165 7.670 7.833 5.229 9.949 0.061 12.675

0.793 0.875 2.665 4.130 3.113 6.165 3.601 7.874 3.357 10.071 7.385 12.716

0.793 0.956 3.560 4.130 3.967 6.165 4.659 7.874 4.333 10.071 -0.916 12.878

-0.549 1.040 3.276 4.171 2.502 6.205 6.002 7.874 8.077 10.071 12.349 12.878

0.916 1.080 4.130 4.171 4.130 6.205 3.194 7.914 9.867 10.071

-0.916 1.160 2.460 4.211 5.920 6.205 4.049 7.914 8.565 10.111

0.793 1.200 3.276 4.211 2.747 6.246 4.862 7.914 2.625 10.152

0.916 1.280 4.090 4.211 3.560 6.246 7.833 7.914 6.205 10.152

1.038 1.360 3.190 4.252 4.700 6.246 3.805 7.955 7.548 10.152

1.404 1.530 4.049 4.252 2.258 6.287 4.740 7.955 3.560 10.274

1.445 1.690 2.502 4.293 4.415 6.287 6.246 7.955 4.496 10.274

1.648 1.770 3.360 4.293 6.246 6.287 1.933 7.996 7.467 10.274

1.811 1.851 4.211 4.293 2.258 6.327 2.828 7.996 8.931 10.274

1.770 1.973 3.438 4.333 3.194 6.327 3.642 7.996 5.920 10.356

1.690 2.050 4.293 4.333 4.903 6.327 4.496 7.996 7.548 10.396

2.055 2.096 3.110 4.374 6.002 6.368 5.920 7.996 2.828 10.518

2.014 2.177 4.089 4.374 6.246 6.409 7.833 7.996 4.374 10.518

1.811 2.260 3.600 4.415 6.287 6.449 4.130 8.036 5.961 10.518

1.973 2.299 1.970 4.456 2.177 6.490 7.833 8.036 7.670 10.518

2.055 2.340 2.950 4.456 3.113 6.490 4.293 8.077 4.985 10.559

1.648 2.502 3.760 4.456 4.659 6.490 8.036 8.077 7.019 10.559

1.485 2.543 2.299 4.496 2.462 6.531 6.490 8.118 8.077 10.600

2.462 2.543 3.642 4.496 3.276 6.531 3.967 8.158 5.391 10.640

2.177 2.584 2.096 4.537 4.415 6.531 6.083 8.158 7.711 10.681

1.933 2.625 3.357 4.537 6.124 6.531 3.479 8.199 1.038 10.763

1.648 2.665 4.250 4.537 1.973 6.571 4.415 8.199 5.920 10.763

2.543 2.665 2.140 4.578 3.113 6.571 5.880 8.199 10.559 10.763

2.136 2.706 3.030 4.578 1.933 6.612 5.758 8.240 2.909 10.925

1.770 2.747 3.850 4.578 2.828 6.612 8.077 8.280 4.252 10.925

2.665 2.747 3.190 4.618 3.642 6.612 2.991 8.321 5.798 10.925

2.218 2.790 4.330 4.618 4.618 6.612 3.845 8.321 7.792 10.925

1.811 2.828 2.180 4.659 6.124 6.612 4.659 8.321 -0.793 10.966

2.706 2.828 3.070 4.659 4.903 6.653 6.205 8.321 0.956 10.966

2.177 2.869 3.890 4.659 -0.916 6.694 4.333 8.362 8.728 11.007

1.729 2.909 1.890 4.700 0.916 6.734 3.316 8.403 9.664 11.047

2.625 2.909 3.030 4.700 5.798 6.734 4.252 8.403 3.153 11.088
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Table B.4 continued from previous page
2.014 2.950 3.886 4.700 4.944 6.775 5.717 8.403 4.008 11.088

2.909 2.950 1.811 4.740 1.200 6.816 8.280 8.403 5.880 11.088

2.462 2.991 2.869 4.740 2.828 6.816 2.869 8.443 8.769 11.088

1.851 3.031 3.764 4.740 6.694 6.816 3.682 8.443 9.216 11.210

2.747 3.031 4.700 4.740 6.409 6.856 4.578 8.443 9.257 11.292

2.136 3.072 4.089 4.781 1.200 6.897 8.036 8.443 9.623 11.332

3.031 3.072 2.014 4.822 2.543 6.938 2.787 8.525 0.509 11.373

2.340 3.113 3.190 4.822 5.025 6.938 5.025 8.525 2.665 11.414

1.729 3.153 4.010 4.822 6.856 6.938 6.734 8.525 3.601 11.414

2.620 3.150 2.340 4.862 2.543 6.978 4.089 8.565 4.659 11.414

1.970 3.190 3.280 4.862 1.200 7.019 5.798 8.565 9.583 11.414

2.869 3.194 4.290 4.862 2.665 7.019 8.403 8.565 5.066 11.454

2.218 3.230 1.810 4.903 5.920 7.019 7.792 8.606 6.897 11.454

3.113 3.230 2.710 4.903 1.445 7.060 4.496 8.687 5.514 11.495

2.340 3.280 3.520 4.903 2.869 7.060 8.036 8.687 8.809 11.495

3.230 3.276 4.500 4.903 6.612 7.060 5.758 8.728 6.449 11.536

2.828 3.320 2.790 4.944 1.322 7.100 1.973 8.769 11.332 11.576

2.050 3.357 4.860 4.944 2.869 7.100 3.601 8.769 1.322 11.617

2.991 3.357 3.110 4.985 -0.916 7.141 4.537 8.769 2.177 11.658

2.258 3.398 4.500 4.985 6.694 7.141 8.321 8.769 3.276 11.658

3.276 3.398 2.010 5.025 2.421 7.263 5.514 8.850 4.130 11.658

2.787 3.438 2.909 5.025 1.729 7.426 5.391 8.891 4.985 11.658

1.973 3.479 3.723 5.025 2.665 7.426 4.781 8.931 7.792 11.658

2.909 3.479 4.659 5.025 4.211 7.426 8.565 8.931 10.274 11.658

2.014 3.520 4.862 5.066 2.258 7.467 8.606 9.013 3.398 11.698

2.950 3.520 3.031 5.107 3.276 7.467 8.728 9.135 4.252 11.698

1.973 3.560 2.706 5.147 4.130 7.467 8.809 9.216 6.083 11.698

2.869 3.560 4.618 5.147 4.985 7.467 4.496 9.338 8.565 11.698

1.933 3.601 4.171 5.473 2.462 7.507 8.158 9.338 9.013 11.739

3.031 3.601 3.886 5.554 4.578 7.507 -0.509 9.420 5.636 11.820

2.014 3.642 4.985 5.554 6.531 7.507 3.520 9.460 11.292 11.820

Table B.5: Chemical shifts of 1H-NMR spectra with correlation < −0.9

1.322 2.380 2.787 7.222 0.387 9.298 0.183 11.129 9.501 12.756
1.445 2.421 5.107 7.222 -0.712 9.664 0.387 11.292 12.716 12.797

2.421 2.665 1.689 7.263 1.322 9.949 0.346 11.332

-0.875 5.229 2.625 7.263 2.828 9.949 -0.509 11.576

1.729 5.229 3.642 7.263 -0.671 10.030 0.509 11.576

1.363 5.269 1.526 7.304 0.346 10.030 0.590 11.739

1.322 5.310 2.625 7.304 9.786 10.437 0.387 11.820

0.142 5.351 6.490 7.304 0.224 10.478 0.387 11.983

0.509 5.391 7.345 7.426 0.305 10.600 0.509 12.105

5.229 6.571 7.263 7.996 0.102 10.640 10.437 12.349

5.269 7.019 0.305 8.362 5.269 10.681 10.234 12.634

1.770 7.182 0.142 8.891 0.061 10.722 11.576 12.675

2.747 7.182 0.305 9.013 7.222 10.763 3.072 12.756

5.025 7.182 0.264 9.135 1.160 10.844 3.927 12.756

1.770 7.222 0.346 9.257 0.305 11.007 5.880 12.756

Table B.6: Wavenumbers of FTIR and chemical shifts of 1H-NMR spectra with cross-
correlation > 0.7

750.25 -1.00 3299.96 1.85 2960.52 3.44 3230.53 5.35 1409.86 8.24 1035.70 10.60
850.55 -0.96 1580.00 1.89 1487.01 3.48 1093.56 5.39 2096.47 8.24 1317.28 10.60

607.53 -0.92 2659.64 1.89 1679.88 3.48 2092.61 5.39 2725.22 8.24 1845.74 10.60

2864.08 -0.92 3508.26 1.89 2655.78 3.48 2752.22 5.39 3596.98 8.24 2582.49 10.60
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2335.62 -0.88 1620.00 1.93 892.98 3.52 3728.13 5.39 3932.57 8.24 3454.26 10.60

935.41 -0.83 2650.00 1.93 1645.16 3.52 892.98 5.59 1610.44 8.32 3789.85 10.60

619.10 -0.79 3470.00 1.93 2879.51 3.52 1633.59 5.59 3481.26 8.32 1240.14 10.64

2933.51 -0.79 1614.30 1.97 885.26 3.56 1984.61 5.59 1247.85 8.36 2559.35 10.64

2324.05 -0.71 2678.93 1.97 1637.44 3.56 3504.40 5.59 1780.17 8.36 2910.37 10.68

854.40 -0.63 3490.00 1.97 2648.07 3.56 1247.85 5.64 2513.06 8.36 2486.06 10.72

2856.37 -0.63 1900.00 2.01 3492.83 3.56 1687.59 5.64 2983.66 8.36 3890.14 10.72

2362.63 -0.59 3300.00 2.01 1579.58 3.60 2096.47 5.64 3728.13 8.36 3338.54 10.76

2366.48 -0.55 1550.00 2.05 1880.46 3.60 2717.50 5.64 997.12 8.44 2262.34 10.84

2042.47 -0.51 2660.00 2.05 2659.64 3.60 3593.12 5.64 1629.73 8.44 931.55 10.97

777.26 -0.39 689.00 2.10 881.40 3.64 3948.00 5.64 1934.46 8.44 900.69 11.01

2042.47 -0.39 1640.00 2.10 1618.16 3.64 1444.58 5.72 2894.94 8.44 1325.00 11.01

669.25 -0.35 2879.51 2.10 1957.60 3.64 1645.16 5.72 1081.99 8.48 2177.47 11.01

2374.20 -0.35 665.39 2.14 2960.52 3.64 1911.32 5.72 2115.76 8.48 2987.52 11.01

3280.00 -0.31 1610.44 2.14 1463.86 3.68 2655.78 5.72 3531.40 8.48 3789.85 11.01

2864.08 -0.26 2632.64 2.14 3388.68 3.68 707.82 5.76 3948.00 8.48 1000.98 11.09

973.98 -0.18 3442.68 2.14 1525.58 3.72 1309.57 5.76 1070.41 8.61 1587.30 11.09

3311.53 -0.18 1568.01 2.18 1814.88 3.72 2732.93 5.76 1429.15 8.61 1849.60 11.09

2350.00 -0.14 1950.00 2.18 2574.78 3.72 3955.71 5.76 1656.73 8.61 2613.35 11.09

862.12 -0.10 3380.00 2.18 3485.11 3.72 3539.12 5.88 1903.60 8.61 3500.54 11.09

3141.81 -0.10 1483.15 2.22 1564.15 3.76 1290.28 6.08 2605.64 8.61 1112.85 11.29

923.84 -0.06 1876.60 2.22 1865.03 3.76 1687.59 6.08 2987.52 8.61 1703.02 11.29

2852.51 -0.06 2945.09 2.22 2682.79 3.76 2084.90 6.08 3681.84 8.61 2524.63 11.29

854.40 -0.02 893.00 2.26 1452.29 3.80 3454.26 6.08 946.98 8.77 3002.95 11.29

3265.25 -0.02 1960.00 2.26 2594.07 3.80 730.97 6.16 1514.01 8.77 3774.42 11.29

1140.00 0.02 3407.97 2.26 3465.83 3.80 1606.59 6.16 1687.59 8.77 703.97 11.33

3284.53 0.02 1600.00 2.30 1610.44 3.85 1903.60 6.16 1984.61 8.77 1429.15 11.33

1143.70 0.06 2880.00 2.30 2628.78 3.85 2690.50 6.16 2713.64 8.77 2524.63 11.33

3261.39 0.06 889.12 2.34 1467.72 3.89 889.12 6.33 1012.55 8.85 3569.98 11.33

1135.99 0.10 2069.47 2.34 1024.13 3.93 2945.09 6.33 1402.15 8.85 3909.42 11.33

3292.25 0.10 3420.00 2.34 1514.01 3.93 1575.73 6.49 2729.07 8.85 1490.87 11.41

1124.42 0.14 1992.32 2.38 1687.59 3.93 3396.40 6.49 3704.98 8.85 1672.16 11.41

3122.52 0.14 2435.92 2.38 1980.75 3.93 2887.23 6.57 1024.13 8.89 2536.21 11.41

916.00 0.18 1236.28 2.42 2705.93 3.93 1444.58 6.61 1305.71 8.89 3434.97 11.41

2856.37 0.18 2300.00 2.42 3936.42 3.93 607.53 6.69 1880.46 8.89 2189.05 11.58

846.69 0.22 3855.42 2.42 1614.30 3.97 2925.80 6.69 2586.35 8.89 3924.85 11.58

2833.22 0.22 2910.00 2.50 2644.21 3.97 2937.37 6.82 3512.12 8.89 2933.51 11.62

835.12 0.26 1460.00 2.54 3504.40 3.97 3342.39 6.90 3793.70 8.89 1548.73 11.66

2813.94 0.26 3430.00 2.54 1529.44 4.01 603.68 7.02 1039.56 9.01 1872.74 11.66

808.11 0.31 2910.00 2.58 1695.30 4.01 3365.54 7.02 1413.72 9.01 2690.50 11.66

2783.08 0.31 1448.43 2.62 2077.18 4.01 2941.23 7.06 2729.07 9.01 1008.70 11.70

765.68 0.35 3299.96 2.62 3434.97 4.01 2675.07 7.10 3693.41 9.01 1602.73 11.70

1170.71 0.35 1957.60 2.67 1533.30 4.05 877.55 7.14 1390.57 9.13 1861.17 11.70

3265.25 0.35 3384.82 2.67 1930.60 4.05 1359.72 7.18 2972.09 9.13 2628.78 11.70

935.41 0.39 2880.00 2.71 3481.26 4.05 2293.19 7.18 703.97 9.26 900.69 11.74

3122.52 0.39 889.00 2.75 2536.21 4.09 3816.85 7.18 1398.29 9.26 2115.76 11.74

850.55 0.43 3350.00 2.75 1579.58 4.13 1969.18 7.22 2189.05 9.26 3577.69 11.74

2829.37 0.43 2670.00 2.79 2644.21 4.13 2462.92 7.22 2995.23 9.26 615.25 11.82

831.26 0.47 689.00 2.83 1305.71 4.17 1224.71 7.26 3774.42 9.26 2169.76 11.82

2817.79 0.47 2940.00 2.83 1641.30 4.17 2297.05 7.26 1776.31 9.30 3654.84 11.82

823.54 0.51 1470.00 2.87 1915.17 4.17 3836.13 7.26 1051.13 9.50 1008.70 11.98

2802.36 0.51 3360.00 2.87 3469.69 4.17 2281.62 7.30 1514.01 9.50 1290.28 11.98

811.97 0.55 2050.00 2.91 1587.30 4.21 746.40 7.43 1865.03 9.50 1811.03 11.98

2813.94 0.55 3430.00 2.91 2648.07 4.21 3234.39 7.43 2698.22 9.50 2559.35 11.98

854.40 0.59 2680.00 2.95 3465.83 4.21 1564.15 7.47 3604.69 9.50 3006.80 11.98

3292.25 0.59 881.40 2.99 2594.07 4.25 2590.21 7.47 1552.58 9.58 3778.27 11.98

1170.71 0.63 2034.75 2.99 1575.73 4.29 865.97 7.59 1980.75 9.58 1016.41 12.11

927.69 0.67 3407.97 2.99 1980.75 4.29 2046.32 7.67 3396.40 9.58 1298.00 12.11

2351.05 0.71 2536.21 3.03 3461.97 4.29 746.40 7.75 1043.41 9.62 2000.04 12.11

2362.63 0.96 3442.68 3.03 1568.01 4.33 2046.32 7.75 1325.00 9.62 2709.79 12.11
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970.12 1.00 1895.89 3.07 1853.46 4.33 3415.68 7.75 1911.32 9.62 3635.55 12.11

3346.25 1.00 3299.96 3.07 2648.07 4.33 1544.87 7.79 2624.93 9.62 3940.28 12.11

2366.48 1.04 1570.00 3.11 1444.58 4.46 1853.46 7.79 3539.12 9.62 1066.56 12.19

966.27 1.08 2880.00 3.11 1645.16 4.46 2648.07 7.79 3920.99 9.62 1402.15 12.19

3360.00 1.08 885.00 3.15 2084.90 4.46 889.12 8.00 1062.70 9.83 1849.60 12.19

2920.00 1.12 1930.00 3.15 3407.97 4.46 2894.94 8.00 1398.29 9.83 2555.49 12.19

2929.66 1.16 2960.00 3.15 1606.59 4.58 1004.84 8.04 2092.61 9.83 2983.66 12.19

2864.08 1.32 1440.00 3.19 3380.97 4.58 1301.86 8.04 2744.50 9.83 3704.98 12.19

2038.61 1.40 2880.00 3.19 1587.30 4.66 1606.59 8.04 3658.70 9.83 892.98 12.23

989.41 1.44 1470.00 3.23 2675.07 4.66 1857.31 8.04 3994.28 9.83 1267.14 12.23

3380.00 1.44 1900.00 3.23 3508.26 4.66 2601.78 8.04 1583.44 9.91 1548.73 12.23

2933.51 1.49 2950.00 3.23 1595.01 4.70 3473.54 8.04 1865.03 9.91 1814.88 12.23

1450.00 1.53 1450.00 3.28 1895.89 4.70 3971.14 8.04 2640.36 9.91 2100.33 12.23

3380.97 1.53 1980.00 3.28 2690.50 4.70 1089.70 8.08 711.68 9.95 2721.36 12.23

2914.23 1.57 3400.00 3.28 1440.72 4.82 1502.44 8.08 2266.19 9.95 3531.40 12.23

1463.86 1.61 1580.00 3.32 1641.30 4.82 1799.45 8.08 3589.26 9.95 3955.71 12.23

3388.68 1.61 2883.37 3.32 1949.89 4.82 2084.90 8.08 2181.33 10.03 2362.63 12.31

2891.08 1.65 1529.44 3.36 2952.80 4.82 2759.93 8.08 3890.14 10.03 804.26 12.67

889.12 1.69 1895.89 3.36 1463.86 4.90 3701.13 8.08 1108.99 10.07 2786.93 12.67

3377.11 1.69 2956.66 3.36 3388.68 4.90 1043.41 8.16 1533.30 10.07 1213.14 12.76

2883.37 1.73 1467.72 3.40 2879.51 5.03 1490.87 8.16 1795.60 10.07 3161.10 12.76

885.26 1.77 1656.73 3.40 1379.00 5.23 1676.02 8.16 2050.18 10.07

2941.23 1.77 2636.50 3.40 2428.20 5.23 1953.75 8.16 2736.79 10.07

1448.43 1.81 665.39 3.44 1236.28 5.27 2729.07 8.16 3662.55 10.07

3361.68 1.81 1606.59 3.44 2420.49 5.27 3697.27 8.16 2007.75 10.48

1602.73 1.85 1946.03 3.44 676.96 5.35 1074.27 8.24 3677.98 10.48

Table B.7: Wavenumbers of FTIR and chemical shifts of 1H-NMR spectra with cross-
correlation < −0.7

615.247 -0.997 3569.976 0.468 1517.867 2.218 2281.622 3.682 3870.849 7.100 1182.277 11.088
3874.707 -0.997 676.965 0.509 3211.243 2.218 3851.563 3.682 2455.202 7.141 3091.665 11.088

3010.661 -0.956 2111.898 0.509 1517.867 2.258 3072.378 3.723 2069.468 7.182 808.115 11.292

2023.179 -0.916 3002.946 0.509 3249.816 2.258 1213.136 3.764 3427.254 7.182 2806.221 11.292

622.962 -0.875 3920.995 0.509 1718.449 2.299 3735.842 3.764 2910.370 7.222 781.113 11.332

2470.632 -0.875 2092.612 0.549 3245.959 2.299 2003.893 3.805 1448.434 7.263 2019.322 11.332

1988.463 -0.834 3600.835 0.549 1436.862 2.340 715.538 3.845 3380.966 7.263 3307.677 11.332

3832.276 -0.834 1699.162 0.590 3161.097 2.340 3238.244 3.845 2887.226 7.304 3072.378 11.414

2459.060 -0.793 3670.267 0.590 1452.292 2.380 1189.992 3.927 1236.280 7.426 854.403 11.576

2007.750 -0.712 1776.309 0.631 3384.824 2.380 3110.952 3.927 2412.772 7.426 657.678 11.617

3758.986 -0.712 3631.694 0.631 2925.799 2.421 1521.724 3.967 1201.564 7.467 2451.345 11.617

2189.045 -0.631 2127.328 0.671 1236.280 2.502 3735.842 3.967 3751.272 7.467 1436.862 11.658

642.249 -0.590 1386.717 0.712 2389.628 2.502 3049.234 4.008 3546.832 7.589 3743.557 11.658

3882.421 -0.590 692.394 0.956 3901.708 2.502 1197.707 4.049 1969.177 7.670 3083.950 11.698

3708.841 -0.549 3172.669 0.956 2262.335 2.543 1189.992 4.089 1213.136 7.751 819.687 11.739

2470.632 -0.509 2150.472 0.997 3627.836 2.543 1216.994 4.130 2393.485 7.751 719.396 11.820

1240.138 -0.387 3805.275 0.997 1733.878 2.584 1189.992 4.171 673.107 7.792 1151.419 11.820

2486.061 -0.387 2439.773 1.038 3026.090 2.584 3272.960 4.171 3095.522 7.792 3265.246 11.820

3720.413 -0.387 1344.286 1.078 1213.136 2.625 1749.308 4.211 1714.592 7.996 1556.440 11.983

1768.594 -0.346 2466.775 1.078 2293.194 2.625 3743.557 4.211 3566.119 7.996 3176.527 11.983

3797.560 -0.346 1942.175 1.119 3855.420 2.625 1205.422 4.293 3049.234 8.036 919.978 12.105

3797.560 -0.305 3608.550 1.119 1992.321 2.665 3731.985 4.293 1521.724 8.077 3122.524 12.105

2462.917 -0.264 2462.917 1.160 3731.985 2.665 3107.094 4.333 3272.960 8.077 1139.847 12.187

1768.594 -0.183 2219.904 1.322 1737.736 2.706 1737.736 4.456 3103.237 8.158 3103.237 12.187

3758.986 -0.183 3612.407 1.322 3195.813 2.706 3585.406 4.456 823.544 8.240 1556.440 12.227

2192.903 -0.142 2262.335 1.404 1363.573 2.747 1749.308 4.578 3049.234 8.240 3180.384 12.227

615.247 -0.102 3816.847 1.404 2405.057 2.747 3839.991 4.578 2304.766 8.321 2239.191 12.309

2497.633 -0.102 2277.764 1.445 3870.849 2.747 1749.308 4.659 1178.420 8.362 3905.566 12.309

3924.852 -0.102 3816.847 1.445 2254.620 2.787 3743.557 4.659 3191.956 8.362 2123.470 12.675
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2162.044 -0.061 2243.048 1.485 3855.420 2.787 3026.090 4.700 3029.947 8.443 3577.691 12.675

3596.978 -0.061 3211.243 1.485 2003.893 2.828 1193.849 4.822 754.112 8.484 734.825 12.756

904.548 -0.020 1730.021 1.526 3820.704 2.828 3103.237 4.822 2802.364 8.484 1494.723 12.756

2547.779 -0.020 2416.629 1.526 1753.165 2.869 1232.423 4.903 1560.298 8.606 1676.018 12.756

676.965 0.020 680.822 1.567 3616.264 2.869 3022.233 4.903 3191.956 8.606 1980.749 12.756

2185.188 0.020 2258.478 1.567 1714.592 2.909 1359.715 5.025 3049.234 8.769 2952.800 12.756

3782.130 0.020 3245.959 1.567 3218.958 2.909 3735.842 5.025 916.120 8.850

1706.877 0.061 1726.164 1.607 1359.715 2.950 2933.514 5.229 796.543 8.891

2748.361 0.061 2412.772 1.607 3095.522 2.950 2667.357 5.269 2817.793 8.891

3886.279 0.061 3901.708 1.607 1209.279 2.991 862.117 5.351 1132.132 9.013

2165.901 0.102 2246.906 1.648 2397.342 2.991 3265.246 5.351 808.115 9.135

3720.413 0.102 3222.815 1.648 1120.560 3.031 1132.132 5.391 2833.223 9.135

1394.432 0.142 1375.145 1.689 2385.770 3.031 3164.955 5.391 850.545 9.257

2505.348 0.142 2393.485 1.689 680.822 3.072 3161.097 5.595 2833.223 9.257

3693.411 0.142 3901.708 1.689 2142.757 3.072 1178.420 5.636 2829.365 9.298

1240.138 0.183 2235.334 1.729 3836.133 3.072 3126.381 5.636 3276.818 9.501

2505.348 0.183 3242.102 1.729 1749.308 3.113 2304.766 5.717 2003.893 9.583

3878.564 0.183 1359.715 1.770 3585.406 3.113 3747.414 5.717 3839.991 9.583

1922.888 0.224 2412.772 1.770 1517.867 3.153 3107.094 5.880 2790.792 9.623

2968.230 0.224 1201.564 1.811 3203.528 3.153 3199.671 6.083 719.396 9.827

3874.707 0.224 2385.770 1.811 1510.152 3.194 3037.662 6.165 3041.519 9.827

1429.148 0.264 3870.849 1.811 3731.985 3.194 1213.136 6.327 1216.994 9.908

2543.922 0.264 2003.893 1.851 1741.593 3.235 2408.914 6.327 3188.099 9.908

3720.413 0.264 3801.417 1.851 3801.417 3.235 1197.707 6.490 2879.511 9.949

1078.129 0.305 1737.736 1.892 1745.450 3.276 2393.485 6.490 811.972 10.030

2000.035 0.305 3249.816 1.892 3743.557 3.276 626.819 6.571 2856.367 10.030

2725.217 0.305 1510.152 1.933 3195.813 3.316 2250.763 6.571 3064.664 10.071

3685.697 0.305 3195.813 1.933 1737.736 3.357 3242.102 6.571 827.401 10.478

3986.570 0.305 1363.573 1.973 3751.272 3.357 1733.878 6.612 2825.508 10.478

1703.019 0.346 3095.522 1.973 3033.805 3.398 1379.002 6.694 819.687 10.600

2532.349 0.346 1213.136 2.014 1220.851 3.438 3527.545 6.694 3056.949 10.600

3639.409 0.346 2389.628 2.014 3735.842 3.438 2258.478 6.816 846.688 10.640

3951.854 0.346 3870.849 2.014 3033.805 3.479 3863.135 6.816 2852.509 10.640

1919.031 0.387 1969.177 2.055 1216.994 3.520 2451.345 6.897 757.969 10.722

2597.924 0.387 3735.842 2.055 3195.813 3.520 2266.192 6.978 2316.338 10.722

3782.130 0.387 1722.306 2.096 1517.867 3.560 1359.715 7.019 2216.047 10.763

1332.714 0.427 3245.959 2.096 3211.243 3.560 2389.628 7.019 3546.832 10.763

2185.188 0.427 1541.011 2.136 1737.736 3.601 3901.708 7.019 2061.753 10.844

3635.551 0.427 3238.244 2.136 3751.272 3.601 2285.479 7.060 700.109 10.966

3959.568 0.427 1521.724 2.177 2300.909 3.642 3870.849 7.060 3832.276 10.966

2119.613 0.468 3211.243 2.177 680.822 3.682 2293.194 7.100 1170.705 11.007
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B.3 For α = 10−3

(a) β = 10−3 (b) β = 10−2

(c) β = 10−1 (d) β = 100

(e) β = 0 (f) β = 101

(g) β = 102 (h) β = 103

Figure B.1: Isocontours for reconstruction error E ≤ 200
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(a) β = 0 (b) Concentration

(c) Pseudo-component spectra

Figure B.2: JNMF profiles for α = 10−3, β = 0, γ = 0, λ = 10−1

Figure B.3: Bayesian networks constructed from the PC spectra
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B.4 For α = 10−2

(a) β = 10−3 (b) β = 10−2

(c) β = 10−1 (d) β = 100

(e) β = 0 (f) β = 101

(g) β = 102 (h) β = 103

Figure B.4: Isocontours for reconstruction error E ≤ 200
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(a) β = 10−3 (b) Concentration

(c) Pseudo-component spectra

Figure B.5: JNMF profiles for α = 10−2, β = 10−3, γ = 101, λ = 10−2

Figure B.6: Bayesian networks constructed from the PC spectra
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(a) β = 0 (b) Concentration

(c) Pseudo-component spectra

Figure B.7: JNMF profiles for α = 10−2, β = 0, γ = 10−1, λ = 10−2

Figure B.8: Bayesian networks constructed from the PC spectra
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B.5 For α = 100

(a) β = 10−3 (b) β = 10−2

(c) β = 10−1 (d) β = 100

(e) β = 0 (f) β = 101

(g) β = 102 (h) β = 103

Figure B.9: Isocontours for reconstruction error E ≤ 200
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(a) β = 0 (b) Concentration

(c) Pseudo-component spectra

Figure B.10: JNMF profiles for α = 100, β = 0, γ = 0, λ = 100

Figure B.11: Bayesian networks constructed from the PC spectra

342



B.6 For α = 0

(a) β = 10−3 (b) β = 10−2

(c) β = 10−1 (d) β = 100

(e) β = 0 (f) β = 101

(g) β = 102 (h) β = 103

Figure B.12: Isocontours for reconstruction error E ≤ 200
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(a) β = 0 (b) Concentration

(c) Pseudo-component spectra

Figure B.13: JNMF profiles for α = 0, β = 0, γ = 10−2, λ = 10−2

Figure B.14: Bayesian networks constructed from the PC spectra
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B.7 For α = 10

(a) β = 10−3 (b) β = 10−2

(c) β = 10−1 (d) β = 100

(e) β = 0 (f) β = 101

(g) β = 102 (h) β = 103

Figure B.15: Isocontours for reconstruction error E ≤ 200
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(a) β = 0 (b) Concentration

(c) Pseudo-component spectra

Figure B.16: JNMF profiles for α = 101, β = 0, γ = 10−1, λ = 0

Figure B.17: Bayesian networks constructed from the PC spectra
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B.8 For α = 102

(a) β = 10−3 (b) β = 10−2

(c) β = 10−1 (d) β = 100

(e) β = 0 (f) β = 101

(g) β = 102 (h) β = 103

Figure B.18: Isocontours for reconstruction error E ≤ 200
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(a) β = 0 (b) Concentration

(c) Pseudo-component spectra

Figure B.19: JNMF profiles for α = 102, β = 0, γ = 10−2, λ = 100

Figure B.20: Bayesian networks constructed from the PC spectra
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B.9 For α = 103

(a) β = 10−3 (b) β = 10−2

(c) β = 10−1 (d) β = 100

(e) β = 0 (f) β = 101

(g) β = 102 (h) β = 103

Figure B.21: Isocontours for reconstruction error E ≤ 200
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(a) β = 0 (b) Concentration

(c) Pseudo-component spectra

Figure B.22: JNMF profiles for α = 103, β = 0, γ = 10−3, λ = 101

Figure B.23: Bayesian networks constructed from the PC spectra
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B.10 ROD=4 for orthogonal case

Relaxing the rank in the factorization of the objective beyond 4 factors in noisy

pseudocomponents which is undesirable. The reported results of the factorization for

a rank of 4 pseudocomponents given below did not satisfy the convergence criteria

within 5000 iterations and had a relatively higher reconstruction error.

Figure B.24: Concentration profiles

Figure B.25: Bayesian networks constructed from the PC spectra

351



(a) PC1

(b) PC2

Figure B.26: Pseudo-component spectra for rank= 4
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(c) PC3

(d) PC4

Figure B.26: Pseudo-component spectra for rank= 4
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Appendix C: Chapter 4

C.1 Process Conditions

Table C.1: Process conditions for spectral data collection

Spectral sensor Process conditions

FTIR

Temperature(◦C) Residence time (min)
150 66, 126, 186, 246, 306, 366, 426, 486

200 66, 126, 186, 246, 306, 486

250 246

300 126, 186, 246, 306, 366, 426, 486

340 6, 66, 126, 246, 486

360 6, 16.02, 25.98, 36, 66, 246, 583.02

400 6, 16.02, 25.98, 36, 66, 96, 126

1H-NMR

150 60, 120, 180, 240, 300, 360, 420, 480

200 60, 120, 180, 240, 300, 360, 420, 480

250 60, 120, 180, 240, 300, 360, 420, 480

300 60, 120, 180, 240, 300, 360, 420, 480

C.2 Robust formulation of JNTF using subtensors

This section outlines the approach to gradient-based optimization of simultaneously

solving for mode matrices. Individual sub-problems in eqn C.1-eqn C.3 are simple

rank R approximations of the mode-n matricized tensors, solved in an ALS-based

round robbin scheme.
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min
A

I1∑︂
i=1

I2I3∑︂
j=1

√︂
(Z(1) − (A(C⊙B)T )ij)2 (C.1)

min
B

I2∑︂
i=1

I3I1∑︂
j=1

√︂
(Z(2) − (B(C⊙A)T )ij)2 (C.2)

min
C

I3∑︂
i=1

I1I2∑︂
j=1

√︂
(Z(3) − (C(B⊙A)T )ij)2 (C.3)

It is desired to combine these into a single objective function designed to minimize

the L21 norm of the nth mode matricized tensor. The L21 norm of a certain matrix

Xm×n is as given below:

||X||21 =
n∑︂

i=1

⌜⃓⃓⎷ m∑︂
j=1

x2
ji (C.4)

From matrix algebra it is known that ||X||2F = Tr[XXT ]. Following on these lines for

an L21 norm has a similar expression in terms of the trace ||X||21 = Tr[X D XT ],

with an additional diagonal scaling matrix D defined as follows:

D(X) =
In×n√︃
m∑︁
i=1

x2
ij

for any Xm×n (C.5)

Using eqn C.4 and eqn C.5 in eqn 15 we have the following formulation of the objective

function:

min
A,B,C≥0

F (A,B,C) = Tr
(︂
{W(1) ∗ [Z(1) −A(C⊙B)T ]}D1{W(1) ∗ [Z(1) −A(C⊙B)T ]}T

+ {W(2) ∗ [Z(2) −B(C⊙A)T ]}D2{W(2) ∗ [Z(2) −B(C⊙A)T ]}T

+ {W(3) ∗ [Z(3) −C(B⊙A)T ]}D3{W(3) ∗ [Z(3) −C(B⊙A)T ]}T
)︂

(C.6)

where D1 = D(W(1)∗ [Z(1)−A(C⊙B)T ]), D2 = D(W(2)∗ [Z(2)−B(C⊙A)T ]), D3 =

D(W(3) ∗ [Z(3) − C(B ⊙ A)T ]) are the diagonal scaling matrices for the nth mode

matricized tensor.
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The gradients of the objective function in eqn C.6 with respect to each of the factor

matrices is given below:

∇FA =W(1) ∗
(︂
A(C⊙B)T − Z(1)

)︂
D1(C⊙B)

+
∂(C⊙A)

∂A
BTW(2) ∗

(︂
B(C⊙A)T − Z(2)

)︂
D2(C⊙A)

+
∂(B⊙A)

∂A
CTW(3) ∗

(︂
C(B⊙A)T − Z(3)

)︂
D3(B⊙A)

(C.7)

∇FB =W(2) ∗
(︂
B(C⊙A)T − Z(2)

)︂
D2(C⊙A)

+
∂(C⊙B)

∂B
ATW(1) ∗

(︂
A(C⊙B)T − Z(1)

)︂
D1(C⊙B)

+
∂(B⊙A)

∂B
CTW(3) ∗

(︂
C(B⊙A)T − Z(3)

)︂
D3(B⊙A)

(C.8)

∇FC =W(3) ∗
(︂
C(B⊙A)T − Z(3)

)︂
D3(B⊙A)

+
∂(C⊙B)

∂C
ATW(1) ∗

(︂
A(C⊙B)T − Z(1)

)︂
D1(C⊙B)

+
∂(C⊙A)

∂C
BTW(2) ∗

(︂
B(C⊙A)T − Z(2)

)︂
D2(C⊙A)

(C.9)

To tackle the derivatives of the Khatri-rao (⊙) aka columnwise Kronecker product

(| ⊗ |) in the above expression for gradients we resort to the use of vectorizing the

product expressions using principles of tensor algebra, computing the gradients of the

vectors and then re-shaping them to matrices.

For example let us say we have two matrices X1 and X2 of dimensions m × n and

p×n respectively, then the derivative of their column-wise Kronecker product is given

by:

∂(X1 ⊙X2)

∂Xi

= Reshape

(︃
∂ vec{X1 ⊙X2}

∂xi

)︃
= Reshape

(︂
KT

i Ki vec{Xi}
)︂

(C.10)

Expressions for Ki come from the following two equations from tensor algebra:

vec{X1 ⊙X2} = ([IN ⊙X1]⊗ IP ) vec{X2} = K2vec{X2} (C.11)

vec{X1 ⊙X2} = [IMN ⊙ (X2 [IN ⊗ 11×M ])] vec{X1} = K1vec{X1} (C.12)
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It can be seen that the gradient computation of mode matricized tensors involve the

derivatives of the Khatri-Rao products of the matrix modes, the computation of which

is memory intensive for large-scale tensors making it challenge in the implementation

of JNTF [271]. Hence a large tensor is typically divided into subtensors, parallelzing

the JNTF over the small-sized subtensors using the divide and conquer technique

[421].

The concepts discussed in this section are now put together as we extend it to the

framework of joint weighted robust non-negative tensor factorization with respect

to our case of factorizing tensor blocks of FTIR and 1H-NMR data. Since the di-

mension of the spectral channel modes are much higher than that of the process

modes, it is proposed to divide the tensors into subtensors along the spectral chan-

nel modes. Hence, the grid tensor factorization (GTF) is also implemented in the

high dimensional mode of wavenumbers/chemical shifts. Let N1, N2 be the num-

ber of FTIR and HNMR subtensors respectively. For FTIR i=1 for HNMR i=2 :

Z [ni] ∈ ℜI1×I2×Kni So from CPD Z [ni] ≈ I×1A
[ni]×2B

[ni]×3H
[ni]
i where ni = 1, 2 · · ·Ni

and A[ni] ∈ ℜI1×R,B[ni] ∈ ℜI2×R,H
[ni]
i ∈ ℜKni×R such that

Ni∑︁
ni=1

Kni
= I3 followed by

Hi = [H
[1]T
i ,H

[2]T
i , · · ·H[Ni]T

i ]T

The objective function :

min
A[ni],B[ni],H

[ni]
i ≥0

∑︂
i=1,2

Ni∑︂
ni=1

||W [ni] ∗ (Z [ni] − [[A[ni],B[ni],H
[ni]
i ]])||21 (C.13)

Writing out eqn C.13 out explicitly in terms of the matricized n-mode tensor:

min
A[ni],B[ni],H

[ni]
i ≥0

F (A,B,Hi) =
∑︂
i=1,2

Ni∑︂
ni=1

||W [ni]
(1) ∗ [Z [ni]

(1) −A[ni](H
[ni]
i ⊙B[ni])T ]||

21
+

||W [ni]
(2) ∗ [Z [ni]

(2) −B[ni](H
[ni]
i ⊙A[ni])T ]||

21

+ ||W [ni]
(3) ∗ [Z [ni]

(3) −H
[ni]
i (B[ni] ⊙A[ni])T ]||

21

(C.14)

Using eqn C.4 and eqn C.5 in eqn C.14 we have the following formulation of the
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objective function:

min
A[ni],B[ni],H

[ni]
i

≥0

F (A,B,Hi)=
∑︁

i=1,2

Ni∑︁
ni=1

Tr

(︂
{W [ni]

(1)
∗[Z [ni]

(1)
−A[ni](H

[ni]
i ⊙B[ni])T ]}D[ni]

1 {W [ni]

(1)
∗[Z [ni]

(1)
−A[ni](H

[ni]
i ⊙B[ni])T ]}T

+{W [ni]

(2)
∗[Z [ni]

(2)
−B[ni](H

[ni]
i ⊙A[ni])T ]}D[ni]

2 {W [ni]

(2)
∗[Z [ni]

(2)
−B[ni](H

[ni]
i ⊙A[ni])T ]}T

+{W [ni]

(3)
∗[Z [ni]

(3)
−H

[ni]
i (B[ni]⊙A[ni])T ]}D[ni]

3 {W [ni]

(3)
∗[Z [ni]

(3)
−H

[ni]
i (B[ni]⊙A[ni])T ]}T

)︂
(C.15)

The gradients of the objective function wrt to the factor matrices are given below:

∇FA =
∑︂
i=1,2

Ni∑︂
ni=1

W [ni]
(1) ∗

(︂
A[ni](H

[ni]
i ⊙B[ni])T − Z [ni]

(1)

)︂
D

[ni]
1 (H

[ni]
i ⊙B[ni])

+
∂(H

[ni]
i ⊙A[ni])

∂A[ni]
B[ni]TW [ni]

(2) ∗
(︂
B[ni](H

[ni]
i ⊙A[ni])T − Z [ni]

(2)

)︂
D

[ni]
2 (H

[ni]
i ⊙A[ni])

+
∂(B[ni] ⊙A[ni])

∂A[ni]
H

[ni]T
i W [ni]

(3) ∗
(︂
H

[ni]
i (B[ni] ⊙A[ni]T )− Z [ni]

(3)

)︂
D

[ni]
3 (B[ni] ⊙A[ni])

(C.16)

∇FB =
∑︂
i=1,2

Ni∑︂
ni=1

W [ni]
(2) ∗

(︂
B[ni](H

[ni]
i ⊙A[ni])T − Z [ni]

(2)

)︂
D

[ni]
2 (H

[ni]
i ⊙A[ni])

+
∂(H

[ni]
i ⊙B[ni])

∂B[ni]
A[ni]TW [ni]

(1) ∗
(︂
A[ni](H

[ni]
i ⊙B[ni])T − Z [ni]

(1)

)︂
D

[ni]
1 (H

[ni]
i ⊙B[ni])

+
∂(B[ni] ⊙A[ni])

∂B[ni]
H

[ni]T
i W [ni]

(3) ∗
(︂
H

[ni]
i (B[ni] ⊙A[ni])T − Z [ni]

(3)

)︂
D

[ni]
3 (B[ni] ⊙A[ni])

(C.17)

∇FHi
=W [ni]

(3) ∗
(︂
H

[ni]
i (B[ni] ⊙A[ni])T − Z [ni]

(3)

)︂
D

[ni]
3 (B[ni] ⊙A[ni])

+
∂(H

[ni]
i ⊙B[ni])

∂H
[ni]
i

A[ni]TW [ni]
(1) ∗

(︂
A[ni](H

[ni]
i ⊙B[ni])T − Z [ni]

(1)

)︂
D

[ni]
1 (H

[ni]
i ⊙B[ni])

+
∂(H

[ni]
i ⊙A[ni])

∂H
[ni]
i

B[ni]TW [ni]
(2) ∗

(︂
B[ni](H

[ni]
i ⊙A[ni])T − Z [ni]

(2)

)︂
D

[ni]
2 (H

[ni]
i ⊙A[ni])

(C.18)

The above problem has been formulated as a gradient-based optimization and is

solved using the LBFGSB solver of the Poblano optimization toolbox developed by

Sandia Laboratories on Matlab [267].

358



C.3 NTF of synthetically generated FTIR spectra

Section 4.1 describes the results of performing robust non-negative tensor factorization

on the FTIR spectra for the 41 temperature and residence time conditions given in

Table ??, in addition to the baseline spectrum. The absence of spectral data across

certain reaction times at each temperature are accorded as missing values, and are

imputed in the process of factorization. In this section, we investigate the results of

NTF in the event of being able to collect data extensively across all times at each

temperature, at several intermediate temperature conditions. The spectral data at

the intermediate temperature-time conditions have been generated synthetically by

random interpolation of the existing spectral data in Table ??, followed by baseline

correction before being fed into the NTF objective.

Figure C.1 provides the concentration profiles across the reaction space of temper-

ature and residence times, for the 4 pseudo-components, while Figure C.2 gives the

extracted spectral profiles obtained by projection onto the FTIR spectral channels

for the 4 pseudo-components. It can be seen that the concentration surface of PC3

is more pronounced at intermediate residence times, whereas PC1 is seen to have a

sharp decreasing trend, while PC2 and PC4 have smaller increases in concentration,

that later rise at higher temperatures. It can be inferred that PC1 represents a class

of starting reactants that finally give rise to a class of final products, represented

by PC3, while PC2 and PC4 could be treated as a class of reaction intermediates

obtained by various mechanisms underlying the conversion of PC1 → PC3.

The reaction mechanisms inferred by using Bayesian structure learning among the

pseudo-component spectra of Figure C.2, as given by Figure C.3 is found to corrobo-

rate with the qualitative inferences drawn from the concentration profiles. The details

of the reaction mechanisms underlying the hypotheses generated from the Bayesian

networks can be deciphered by chemically interpreting the functional groups in the

spectra of the associated pseudo-components.
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(a) Pseudo-component 1

(b) Pseudo-component 2

(c) Pseudo-component 3

(d) Pseudo-component 4

Figure C.1: Concentrations of the pseudo-components across the reaction space of
the synthetic FTIR dataset
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Figure C.2: Spectra of pseudo-components from the synthetic FTIR tensor decom-
position

Figure C.3: Bayesian networks from the synthetic FTIR pseudo-component spectra

C.4 Individual analysis of 1H-NMR data

The extracted concentration profiles of the pseudo-components from tensor decompo-

sition in the reaction space of the temperature and residence time modes are given in

Figure C.4. The extracted 1H-NMR profiles for the 4 pseudo-components are given

in Figure C.5. The Bayesian networks depicting causal relationships among the 4

groups are given in Figure C.6. Hill climbing and the maximum minimum hill climb-

ing score search methods result in similar network structures that indicate PC1 as

the reactant species. The concentration of PC1 is seen to be much higher than the
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(a) Pseudo-component 1

(b) Pseudo-component 2

(c) Pseudo-component 3

(d) Pseudo-component 4

Figure C.4: Concentrations of the pseudo-components across the reaction space of
the 1H-NMR spectra

362



other pseudo-components at all temperatures and residence times, corroborate with

PC1 being the starting reactant species. The concentrations of PC2 are prominent at

higher temperatures and lower residence times, while PC3 and PC4 appear at lower

temperatures reacted over longer durations, towards the later part of the reaction res-

idence time, indicating that they represent a class of the product species, as indicated

by the Bayesian networks as well.

Figure C.5: Spectra of pseudo-components from 1HNMR tensor decomposition

Figure C.6: Bayesian networks from the unique 1H-NMR pseudo-component spectra

1H-NMR spectra alone does not provide as much information as the FTIR spectra,

especially in the aromatic region since it just shows a single overlapped lump from 7
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– 9 ppm (Figure C.5), except for PC3 that has a distinct aromatic hydrogen peak at

∼7.2 ppm. Peaks for aliphatic methylene and methyl protons are distinct and common

to all pseudo-components with CH2 showing higher intensity. All spectra also show

the peak for benzylic proton at ∼2.5 ppm confirming the presence of aromatics, but

this does not indicate the number of substitutions. Another distinct characteristic

of 1H-NMR profiles is the peak at ∼5.2 ppm that depicts hydrogen from methylene

chloride which points to the solvent that remains in the converted samples. This is

present in all pseudo-components, although an inverted peak in PC2, and also falls

in the olefinic range. Overall, not much conversion chemistry can be proposed from

1H-NMR profiles alone so it is worthwhile to look at the joint decomposition in section

4.2.

C.5 Gaussian tensor factorization

C.5.1 Individual tensor factorization of FTIR spectra

The major peaks in the FTIR spectra of the pseudo-components have been tabulated

in Table C.2

Table C.2: Absorption regions for all groups in robust FTIR formulation.

Wavenumber
(cm−1)

Functional group Vibration
type

PCs/groups present

1597 C=C aromatic Stretch PC1, PC2, PC4
1701 C=O of carboxylic acid Stretch All 4 PCs
1172 –
1203

C-O of acyl group Stretch PC1, PC2, PC3

1018 C-O of aliphatics Stretch PC1, PC2, PC3
862 C-H in p-substituted aro-

matics
Bend Least intensity but present

in all 4 PCs
810 C-H in m-substituted aro-

matics
Bend Clearly present in all 4 PCs

740 C-H in o-substituted aro-
matics

Bend All 4 PCs but highest for
PC4

723 C-H in mono-substituted
aromatics

Bend All 4 PCs – as a shoulder
with 740 cm-1

1730 C=O in esters/anhydrides Stretch PC4
2360 S-H in thiols Stretch PC2, PC3
2150 Alkyne triple bond Stretch PC3, PC4
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(a) Pseudo-component 1

(b) Pseudo-component 2

(c) Pseudo-component 3

(d) Pseudo-component 4

Figure C.7: Concentrations of the pseudo-components across the reaction space of
the FTIR spectra
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Figure C.8: Spectra of pseudo-components from FTIR tensor decomposition

Figure C.9: Bayesian networks from the unique FTIR pseudo-component spectra

For PC1, absorption at 1700 cm−1 indicated the presence of carboxylic acid and its

co-existence with C-O acylic group at 1175 cm−1 confirmed this observation. Presence

of aliphatic alcohol was also marked by absorption at 1018 cm−1. All sp2 C-H bends

for aromatics in the 700 – 900 cm−1 region were of almost equal intensity ( 0.035

units) except the p-compounds as already mentioned. The representative compounds

for each group are shown in Figure C.10, Figure C.11, Figure C.12 and Figure C.13
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that depict the proposed reaction pathways based on the results of Bayesian networks

from Gaussian tensor decomposition of FTIR data. Compound (1) is a representative

molecule for G1 since it has a carboxylic acid, aliphatic alcohol in the naphthene ring,

a side chain and an aromatic ring that is substituted in o-, m- and p- positions. The

chemical composition of G2 species is not much different than G1 but it was speculated

to be a condensed version of the tri-cyclic compound (1), where the middle or the third

ring becomes aromatic in addition to the already existing aromatic first ring. When

the middle ring turns aromatic, it leads to a phenolic entity (compound (2)) while if

the end ring turns aromatic, it remains an aliphatic alcoholic species. Probability of

the end ring turning into aromatic is lower than that of the middle ring due to the

requirement of the loss of a lower number of hydrogens but since G2 has a higher

intensity for alkoxy C-O absorption (Figure C.8 and Table 1), compound (3) could

represent G2 species better. Nevertheless, both compound (2) and compound (3) in

Figure C.10 are good representatives of G2/PC2.

Figure C.10: Proposed reaction pathway of group 1 to group 2 conversion.

Moving on to PC3, it was interesting to note that although it had aromatic C-H bends

in the 700 – 900 cm−1 region, it had more olefinic characteristics due to the C=C

stretch at 1650 cm−1 (Table 1).In order to realize PC3, we need to look at Figure
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C.11 that gives the conversion pathway of G2 to G3 species as proposed from the

developed Bayesian networks.

Figure C.11: Proposed reaction pathway of group 2 to group 3 conversion.

Compounds (4), (5) and (6) are all representatives of G3, where (4) has aromatic

and olefinic C=C bonds, (5) is an olefinic carboxylic acid while (6) has conjugated

C=C double bonds with the C=O of the carboxylic acid group. In a similar way, to

realize the composition of PC4, we look at Figure C.12 and Figure C.13 that depict

the conversion of G2 to G4 and G1 to G4 respectively. Stretching of C=O at 1730

cm−1 and the absorption of acylic C-O at 1202 cm−1 for PC4 indicated the presence

of ester/anhydride-type species. Furthermore, among the aromatic C-H bends, the

intensity for the ortho-substituted aromatics was the highest.

Compound (9) in Figure C.12 and compound (13) in Figure C.13 are good represen-

tatives for G4 species. Compound (9) has 3 fused aromatic rings out of which the first

and the 3rd ring excluding the middle one is ortho-substituted while compound (13)

is entirely ortho-substituted. Although compound (13) is stabilized by tautomerism

due to the olefinic conjugation with the C=O of the ester group, compound (9) is a

better representation of G4 since the middle ring has para- and meta- substitutions

as well.
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Figure C.12: Proposed reaction pathway of group 2 to group 4 conversion.

Once the representative molecules for each pseudo-component were identified, a reac-

tion pathway was developed according the algorithms in Bayesian structure learning.

Here, the hill-climbing and MMHC networks are chosen and the reason for this has

been highlighted at the start of this section. From Figure C.9, it can be seen that

G1 →G2 has maximum arc-strength indicating the most probable reaction, followed

by G2 → G3, G2 → G4 and G1 → G4 in decreasing order. The proposed conversion

chemistries are given in Figure C.10– C.13. Conversion of G1 → G2 is the easiest

since it involves only hydrogen transfer from the middle or end rings to terminate

other free radicals in the bitumen matrix or alternatively get transferred to other

aromatics. Bond dissociation energy of benzylic C-H is 301 kJ/mol, which is 30 kJ/-

mol lesser than C-H in aliphatics. [422] Compound (2) can undergo cracking in the

aliphatic side chain to yield olefins (4) and (5), which can further lose 2 hydrogens to

give a conjugated diene pentanoic acid. The conjugated dienoic acid is stabilized by

double bond resonance. This chemistry provides a path from G2→ G3, that requires

an additional step as compared to G1→G2 and is depicted in Figure C.11. The same

sequence of reactions is possible with compound (3) as the starting material for G2

but in that case, only the olefin will be present only in the carboxylic acid product
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Figure C.13: Proposed reaction pathway for group 1 to group 4 conversion.

and the benzylic free radical would be stabilized by a hydrogen or an alkyl free rad-

ical. In this case, the alkoxy group in the middle ring would also exist, supporting

the absorption at 1018 cm−1 for G2 species.

Next, in order to account for the formation of esters from G2-type species, cracking

at the carbon attached to the naphthene ring in compound (2) needs to be considered

(Figure C.12). This would not be possible in (3) since it is much more difficult to

break an sp2 C-sp3 C bond rather than an sp3 C-C bond at these milder reaction

conditions of ¡ 400 ◦C. Once the sp3 C-C bond breaks, the ring can lose 3 more H

free radicals to produce a tri-cyclic condensed aromatic phenol (8) (Figure C.12).

This can add to a carboxylic acid from the reaction medium to give an ester (9),

370



that has all the characteristics of a G4 entity. The path from G2 → G4 involved

an additional esterification step apart from cracking and hydrogen transfer through

hydrogen disproportionation and hence is concomitant with the Bayesian networks

produced from HC and MMHC where this path is the third most probable. G4→ G3

would involve hydrolysis of an ester but that requires the presence of water which is

unlikely at these temperatures of bitumen conversion. This could be an explanation

for the absence of this path in the MMHC network and being the least probable

pathway in the HC network.

Lastly, to explain the conversion of G1 → G4 even if that was the least probable

pathway in the MMHC-produced network, we consider a separate compound that

satisfied the absorptions of G1 (compound (10) in Figure C.13). This has charac-

teristics to the archipelago structure [423] of asphaltenes where 2 aromatic cores are

bridged by aliphatic chains. Compound (10) can crack in the aliphatic bridge and

yield an o-substituted alcohol (11) while the other part is m- and p-substituted as

well and is not shown. The side chain possessing a COOH group in (10) can crack and

add to (11) and compound (13), which is an ester and also stabilized by tautomerism

between the C=C and C=O groups. Compound (13) is another representative of G4.

C.5.2 Individual tensor factorization of 1H-NMR spectra

The drawback of this section is that NMR spectra alone does not provide as much

information as the FTIR spectra, especially in the aromatic region since it just shows

a single overlapped lump from 7 – 9 ppm (Figure C.15). Peaks for aliphatic methy-

lene and methyl protons are distinct and common to all pseudo-components with

CH2 showing higher intensity. All spectra also show the peak for benzylic proton at

∼2.5 ppm confirming the presence of aromatics but does not indicate the number of

substitutions. One interesting observation was that PC3 and PC4 showed a peak for

hydrogen attached to an alkyne group at 3.1 ppm and this was also reflected in the

FTIR spectra for the same pseudo-components (Figure C.8). Triple bonds are quite
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(a) Pseudo-component 1

(b) Pseudo-component 2

(c) Pseudo-component 3

(d) Pseudo-component 4

Figure C.14: Concentrations of the pseudo-components across the reaction space of
the 1H-NMR spectra
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Figure C.15: Spectra of pseudo-components from 1H-NMR tensor decomposition

Figure C.16: Bayesian networks from the unique 1H-NMR pseudo-component spectra

stable and their possible participation in the reaction could be such that hydrogens

from disproportionation could add across the triple bond. Another distinct character-

istic of NMR profiles is the peak at ∼5.2 ppm that depicts hydrogen from methylene

chloride that might be remaining in the converted samples. This is present in all

pseudo-components but of higher intensity in PC3, PC4 and also falls in the olefin

range. Overall, not much conversion chemistry can be proposed from NMR profiles

alone so it is worthwhile to look at the joint decomposition in Section C.5.3.
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C.5.3 Joint Gaussian tensor factorization

Figure C.17, Figure C.18 and Figure C.19 give the concentration profiles across

time and temperature modes, spectral profiles for all 4 pseudo-components and the

Bayesian networks obtained from tensor decomposition of FTIR and 1H-NMR fused

data, respectively, for the non-robust formulation. The absorption peaks for all

pseudo-components were similar to those reported in Table 1. The Bayesian network

structures are as reported in Figure C.19. Here, G1 →G3 was the most probable

pathway which meant cracking leading to olefin formation had a higher chance of

occurring than hydrogen transfer. Alcohol groups in these olefins have more prob-

ability of finding carboxylic acids from the matrix to yield an ester (G4) and this

pathway is the second most and third most probable in the MMHC and HC network,

respectively. This is because carboxylic acids are more prominent and available to

react in bitumen than alcohols. [278]

G4→ G2 had the lowest arc strength in the MMHC network and this meant that

hydrolysis of esters was least probable which corroborated with the observations from

the robust method. In conclusion, the robust method indicates a better flow in

the reaction chemistry as hydrogen transfer occurs more easily than cracking. Also,

a conjugated double bonded carboxylic acid like (6) that belongs to G3 would react

slower than an unconjugated carboxylic acid (G2) to yield G4 esters, which is captured

in robust formulation. Hence, overall, it is suggested that the robust formulation gives

a better representation of bitumen conversion chemistry at these process conditions.
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(a) Pseudo-component 1

(b) Pseudo-component 2

(c) Pseudo-component 3

(d) Pseudo-component 4

Figure C.17: Concentrations of the pseudo-components across the reaction space from
the joint decomposition of FTIR and 1H-NMR spectra
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Figure C.18: Spectra of pseudo-components from joint tensor decomposition

Figure C.19: Bayesian networks from the unique joint pseudo-component spectra
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Appendix D: Chapter 5

D.1 Process Conditions

Table D.1: Process conditions for spectral data collection

Spectral sensor Process conditions

FTIR

Temperature(◦C) Residence time (min)
150 66, 126, 186, 246, 306, 366, 426, 486

200 66, 126, 186, 246, 306, 486

250 246

300 126, 186, 246, 306, 366, 426, 486

340 6, 66, 126, 246, 486

360 6, 16.02, 25.98, 36, 66, 246, 583.02

400 6, 16.02, 25.98, 36, 66, 96, 126

1H-NMR

150 60, 120, 180, 240, 300, 360, 420, 480

200 60, 120, 180, 240, 300, 360, 420, 480

250 60, 120, 180, 240, 300, 360, 420, 480

300 60, 120, 180, 240, 300, 360, 420, 480
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D.2 Additional figures for the case studies inves-

tigated

D.2.1 Decreasing temperature sequence

Figure D.1: Duration distribution of the identified modes

Figure D.2: Posterior probabilities of the states
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D.2.2 Randomized temperature sequence using 4 states

Figure D.3: Duration distribution of the identified modes

Figure D.4: Pseudocomponent spectra associated with the modes
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D.2.3 Randomized temperature sequence using 6 states

Figure D.5: Duration distribution of the identified modes

Figure D.6: Posterior probabilities of the states
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Appendix E: Chapter 6

(a) Temporal concentrations

(b) Reaction network structure,
arc strengths and score inferred
from the pseudo-component
spectra

(c) Pseudo-component spectra

Figure E.1: Spectral deconvolution and causal inference using noisy synthetic data
at a signal to noise ratio of 35.
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Figure E.2: Comparison of the predictions from the chemical neural ODE against
the reconstructed data from integration of the smoothed time derivative of temporal
concentration obtained by the deconvolution of synthetic spectroscopic data, at a
signal to noise ratio of 35.
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(a) Preferentially weighted pseudo-component spectra after deconvolution

(b) Reaction network structure, arc
strengths and score inferred from
the preferentially weighted pseudo-
component spectra

(c) Arc strengths and score inferred from
the preferentially weighted spectra, given
the reaction template

Figure E.3: Preferential weighting of the wavenumber absorption bands of the decon-
volved pseudo-component spectra followed by causal inference using noisy synthetic
data at a signal to noise ratio of 100.
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