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Abstract

While the World Wide Web (WWW) contains o vast uantity of information, it is often
difficult for Webh users to find the information thev seek. There are many recommender
systems that are designed to help users find relevant information on the Web; however, as
many of these systems are server-side, they can ouly provide information about one specific
Web site and they are typically based only on correlations amongst the pages that the
various users visit. Unfortunately, there is no reason to believe that these correlated pages
will necessarily contain useful information.

Here, a passive Goal-Directed Complete-Web (GCW) recommender system, which rec-
ommends relevant pages from anywhere on the Web to satisfy the user’s current information
need without any explicit additional input, has been developed. After identifying the search
strategy that is employed by actual users while they browse the Web, the model attempts to
locate the pages that satisfly the user’s information need based on the content of the pages
the user has visited, and the actions the user has applied to these pages.

To build such models, I develop a number of browsing features — browsing properties of
the words, in the context of the current session — to capture the actions of the Web user.
Because the method is based on how the words are used (while training on these browsing
feature values), it can be applied to make predictions about pages that have never been
visited. This model is therefore independent of users, specific words and specific Web pages,
and so it can be used to identify relevant pages in any new Web environment.

To evaluate the predictive models, we have conducted two user studies, each involving
over one hundred participants. Data from the user studies demonstrate that the models can
effectively identify the information needs of new users, leading them to previously unseen,

but relevant pages.
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Chapter 1

Introduction
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People are spending increasing amounts of time on the World Wide Web (WWW) search-
ing for information, shopping, playing on-line games, etc. The WWW has become the pri-
mary information source for many people. While the WWW contains a vast quantity of
information, it is often difficult for web users to find the information they are seeking. One
way to access information from the WIWW is to simply type in URLs (Uniform Resource
Locator), but this requires the user to explicitly know the specific URL that is needed.
Another approach is to follow links from one wely page to another. but here again, the user
must know which links to follow. In addition, most users employ information retrieval tech-
niques in the form of popular search engines to find useful pages. Search engines, however,
can only work if the users can accurately identify the kevwords appropriate for the search.
Since the user may not know how to find specific needs — e.g.; which hyperlink to follow
or which keywords to feed into the search engine -- it is critical to help her, by suggesting

relevant pages that address her current information need.

1.1 Goal-Directed Complete-Web Recommendation

Many recommendation systems have been developed to enable Web users to browse the
Internet efficiently [38, 53]. Most Web recommendation systems employ patterns that are
hased on the frequency and co-occurrence of the visited page, such as association rules [2]
and sequential patterns [3]. Unfortunately, such systems require a non-trivial support (i.e.,
many visits to each relevant page) to make each inference. This is adequate when searching
a single site with hundreds or even thousands of pages, but if the goal is to search the entire
web with billions of pages, new methods must be developed since these co-occurence based
approaches can only make recommendations over a much smaller number of pages.

Another shortcoming of such recommendation systems is that they can only point users
to pages that other users have visited. Unfortunately, these “visit-correlated” pages do not
necessarily contain information useful to the current user. Indeed, these suggested pages
may correspond simply to irrelevant pages on the paths that others have taken toward
their various goals, or worse, they may be standard dead-ends that everyone seems to hit.
For example, even though many Web users often visit a company homepages, these pages
typically do not provide the specific information the user is seeking.

Obviously, it is critical for a recommender system to generate useful recommendations,
as Trrelevant recommendations will discourage or even annoy users. This motivates us to
develop computational techniques to assist the user in finding “Information Content” pages
(i.e., IC-pages for short). An IC-page is a page the user must examine to complete her

search task, e.g., the page containing the article that the user wants to download, the page
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includes the product that the user wants to purchase, etc.
The goal of my research is a passive Goal-Directed Complete-\Web (G CW) recommender

system:

Passive: The system will not require any explicit input from the user. Instead it will gather

the information it needs by merely observing the user’s browsing behavior.

Goal-Directed: It will locate pages that satisfy the user’s current information need and

not just pages that others have found.

Complete-Web: It will suggest pages from anywhere on the Web rather than a single
site. This means the standard techniques (e.g., association rule [2] and sequential

pattern [3]) are inapplicable.

The recommender system must be dynamic as well. As a user works on various tasks
and subtasks, her needs often change dramatically from day to day and even in the course
of a single browsing session. Indeed, a typical user will often require information on various
unrelated topics, including topics the user has never investigated hefore. These fundamental
observations suggest that a recommender system needs to predict the user’s information need
dynamically based on the current browsing session, not just long-term general interests.
Moreover, a dynamic system can also adapt to different user communities and different

domains.

1.2 Thesis Statement

I propose to develop Web browsing behavior models that infer a user’s information need
based on her actions with respect to the viewed information, and moreover, show that these
modles can be learned from previous annotated data.

My research demonstrates that browsing features of words are sufficient to recommend
relevant pages from anywhere on the Web, satisfying the user’s current information need,
without requiring the user to provide any explicit input.

The browsing behavior models use a novel source of information to provide recommen-

dations when other paradigms cannot.

1.3 Outline

The remaining chapters are organized as follows. Chapter 2 summarizes other related work
to date, and explains how my work has different objectives from the recommender systems

currently in use.
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Chapter 3 describes browsing features and a browsing behavior todel. and demonstrates
how to extract browsing features from labeled sessions and train hehavior models. The
next chapters demonstrate my method for predicting [C-pages {rom anywhere on the Web,
through its application in two user studies: Travel Planning (in Chapter 1) is a laboratory
stidy on limited domains, and focuses on identifying relevant words hased on browsing fea-
tures. LILAC (in Chapter 5) is a field study of unrestricted browsing. introducing more
browsing features and a new method of locating relevant pages [rom the Web. Both user
stivdies indicate that the browsing behavior model can predict previously unseen relevant
pages effectively. Finally, Chapter 6 concludes the present study and indicates future direc-

tions for research.
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The Goal-Directed Complete-Web recommender system (GCW) is designed to suggest
relevant pages to satisfv the user's information need. To do so, it trains Web user browsing
behavior models that inters the user’s information need based on how users search for infor-
mation on the Web. This chapter presents a number of other methods (Co-occurrence Based
Methods, Collaborative Filtering. Heuristic-Based Methods, and Content Based Methods)
developed for Web recommender system, and also some research on modeling Web browsing
behavior (General User Models and Customer Behavior Models), and discusses how they

differ from my task.

2.1 Co-occurrence Based Methods

There are several co-occurrence based methods that can be used to recommend Web pages.
Most such systems generate reconumendations based on.correlations amongst the pages on
a specific Web site that various users have visited. Figure 2.1 shows soimne pages from a Web
site, where each p; represents a specific Web page (i.e., URL), and each arrow means there
exists a hyperlink in the source page pointing to the target page. For example, p; has two

links point to ps and ps.
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Figure 2.1: Part of a Web Site

Association Rules
Association rule mining has been well studied in Data Mining, especially for basket
transaction data analysis. In our Web recommendation context, an association rule

is a rule of the form “p1 — p3” where the p;s are Wely pages, with the intended
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meaning that a user who has visited the pages on the left side (here, p1), will typically
also visit the pages on the right side (here py).

The algorithm that finds association rules, first need to identify all “large itemsets”,
which are sets of items that have transaction support above minimum support. The

algorithim then generates all association rules from these large itemsets.

Many association rule mining algorithms have been proposed, such as Apriori [2, 70,
51, 34], Partition [63]. and DHP [17]. Distributed and parallel association rule mining
methods are also reported [14, 46]. Almost all of these research focus on finding
association rules as {ast as possible, rather than validating the usefulness of such rules
in supermarket transaction or in Web application. For example, in Figure 2.1, p; is
the home page of the Web site , p» and p; are intermediate pages leading to the pages
containing useful information. Since people have to go through these intermediate
pages to reach any content pages, the association rules that extracted from the Web
server log might be “py — p2” and “p; — p3”. Obviously, the recommendations

(e.g., p2 or p3} based on these association rules are not content pages.

Sequential Patterns

Given a collection of customer transactions, a sequential patterns is a maximal se-
quences among all sequences that have a certain user-specified minimum support [4,
37]. Several algorithms have been developed for efficient mining of sequential patterns,

e.g., Web access pattern tree [52] and FreeSpan [22].

A sequential pattern is a list of URLs in the form of {p;, p2, p3, p1}, where the p;s
are specific pages (see Figure 2.1). If the user has visited p; and ps, then p; and p;

could be suggested as a recommendation.

Page Clustering
Here, page clustering is the process of clustering pages according to the users’ access
to them, independent of page content and linkage [21]. The assumption is if a user
who has visited p; in Figure 2.1 would be most likely to visit p3, then p; and p; should

be grouped into one cluster.

PageGather [54] assumes that for each Web site, only a subset of its Web pages are
of importance to the visitors. It first computes the co-occurrence frequency between
any pair of Web pages, then builds a graph where each node is a page and each arc
connects two pages if their co-occurrence value is non-zero. The page clusters are the

cliques in the graph.
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Association Rule Hypergraph Partitioning (ARHP) {51, 39. 38] is a hypergraph parti-
tioning techniques based on the large itemsets generated by the association rule min-
ing. (A hypergraph is an extension of a graph that contains hyperedges, which each
hyperedge connects two or more nodes.) In ARHP. each large itemset is represented
by a hyperedge, and page clusters are these partitious identified by a hypergraph
partitioning algorithm.

Each page cluster is a set of specific URLs. To generate recomimendations, the recoms-
mender system identifies the page cluster that contains the current browsing session,

then pick out URLs in the cluster as recommiendations.

Hypertext Probabilistic Grammar (HPG)
HPG [9, 8] attempts to capture user web navigation patterns. The trails a user can
follow when navigating through a Web site are assumed to be generated by a HPG —
e.g., each node corresponds to a Web page anc the arcs represent the links between
pages. The weight of each arc is the probability that the user will follow the link,

which can be computed from these browsing sessions.

Given the current user session, we can identify the most likely path in the HPG that
can generate the session, and use it to recommend the link that the user might follow.
HPG can also be used to improve the quality of Web service, and act as a personal

assistant integrated with the Web browser.

Pattern Discovery over Aggregated Data
WUM [65, 66] merges the user browsing sessions into an Aggregated Tree, which is a
tree constructed by merging trails with the same prefix page sequence. A tree node
corresponds to a Web page in a session and is annotated with the number of visitors
having reached this page across the same prefix. This value is the “support” of a node,
computed in the context of the node’s predecessors up to the aggregate tree’s root.
The traffic of a trail is then defined as the support of the tree leaf corresponding to

the last node of the trail.

WUM extracts pattern descriptor from the Aggregated Tree. A pattern descriptor is
a sequence of identifiers and wildcards, where an identifier refers to an occurrence of a
Web page. For example a pattern descriptor extracted from Figure‘ 2.1is {p1, *, ps},
where * is a wildcard character. If the user has visited {p;, p2}, then p3 will be

suggested to the user as a recommendation.

The above models are built to produce recommendations of specific URLs based on co-

occurrence. Unfortunately, there is no reason to believe that these correlated pages will
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contain information useful. These suggested pages mayv correspond simply to intermediate
pages {e.g., p» and p3 in Figure 2.1) on the paths that others have taken towards their
various goals. Here, a GCW recommender system extends this. as it can suggest relevant

pages from anywhere on the Web.

2.2 Collaborative Filtering

Collaborative Filtering [59, 50] produces recommendations by computing the similarity be-
tween the user’s preference and the preference of other people. and it is the first attempt
using Artificial Intelligence (Al) technology for personalization [41. The basic mechanism
behind collaborative filtering systems is to recommend based on a large group of people’s
preferences.

This requires the user to rank pages explored, and it is very difficult to get enough man-
ually labeled Web pages in the real world. The Web is so diverse, and its users have such
varied backgrounds and interests, it is impractical to identify relevant recommendations
based on collaborative filtering only. GCW’s task is different in that it is a passive rec-
ommender system, which recommends relevant pages without any explicit additional input

(e.g., labelling Web pages).

2.3 Heuristic-Based Methods

Letizia [31] is an agent that tracks user browsing behavior and attempts to predict useful
Web pages. The agent infers user interest (i.e., keywords) from browsing behavior based
on a simple set of heuristics, and scouts from the user’s current position to find pages that
match the user’s interest.

Watson [11] observes how users interact with everyday applications and anticipates their
information needs using heuristics. It then automatically forms queries to information re-
trieval systems (e.g., search engines) to find the related information for the user.

The heuristic patterns used by Letizia and Watson are hand-coded. While they may
represent the users behavior, we expect models learned from actual user data, will be more
accurate. Therefore, GCW learns such patterns by training Web browsing behavior models

using actual data.

2.4 Content Based Methods

Billsus and Pazzani [6] applied two models to recommend news stories to a user. These

models were based on hand-selected words and Boolean feature word vectors. Unfortunately,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



there do nol use explicit feedback from the subject: instead, they only infer the level of
interest in the news story based on the listener’s actions, such as channel changes. It is
also very ditficult to guarantee that the selected words can cover all possible articles, and
as a resulr. the trained model would be incapable of making any predictions in a new
environment.

Jennings and Higuchi [25] trained one neural network for each user to represent a user’s
preferences for news articles. Since the Web user’s interests may drift often and the content
of the Internet changes from time to time, the neural network built on previous navigation
historsy cannot adapt to rapid task changes.

Anderson and Horvitz [5] built a NatveBayes model to predict the candidates (pages or
topics) that the user will view next in a session, selected from the previous pages or topics
in the same session. However, they provide no proof that the page the user has previously
visited will be the page that she really wants.

Alternatively, GCW suggests Web pages by using the browsing features of the viewed
information. independent of specific words, thus it can be used to recommend relevant pages

in any novel Web environment.

2.5 General User Models

Blackmon et al. [7] proposed a Cognitive Walkthrough for the Web model for limited WWW
interaction. The model uses Latent Semantic Analysis to compute the similarity between
goal statements input by the user and heading/link texts on web pages, rather than the
subjective estimation in the original Cognitive Walkthrough model. Unfortunately, people
might not begin their search with a clear understanding of their goal, and they may even
change their search task after visiting several pages. Also, users may be annoyed if forced
to input a goal statement before every browsing session.

The Choo et al. [16, 17] experiment collected feedback from Web users by recording menu
choices and web page information from the user’s ordinary browsing. The goal of Choo et
al.’s research is to build a model of web users’ information seeking model, which separates
web users into several groups. Users within each group share some specific browsing behav-
iors. Choo'’s results are very general in nature, thus it is not helpful to infer relevant pages
based on any specific browsing session.

Information foraging theory [55] incorporates measures of semantic similarity in a model
of user search behavior, and its key concept, information scent, characterizes how users
evaluate the utility of hypermedia actions. Information scent can be used to characterize

users’ cost/benefit perceptions in making decisions, such as terminating the search of one

10
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website in order to search for another site that contains more relevant information. Chi
et al. {15} identifies “Information Need” based on the context of followed hyperlinks and
information scent. Unfortunately, they provide no proof that the hyperlink context mmust
correspond to the user’s intention. For example, sonietimes the context of the hivperlink

G
LN

only provides hints about the information need, rather than defining the need itself. ¢
“Publications™ points to a page containing a list of papers. Pirolli and Fu [56] construet
Information Need based on the SNIF-ACT model that is based on the concept of information
scent. Thev use production rules to predict the user’s information need and then enlarge it
through a spreading activation network which is derived from Tipster corpus. These rules
have been created manually and are hard to maintain. GCW employs machine learning
algorithms to train browsing behavior models that can discover patterns that might not be

found by human inspection.

2.6 Customer Behavior Models

Extracting a model of the behavior of Web user is a critical task for the E-commerce com-
munity, and much work has been done here. Lynch and Ariely [35] show that if customers
can be presented with useful product-related information, their satisfaction with the mer-
chandise they buy is increased. In other words, if we can infer the goal of web users, we can
not only retrieve related information, but we can also help them effectively.

Bucklin and Sismeiro [10] developed a model to describe within-site browsing behavior:
the visitor’s decisions to stay or exit and the duration of each page view. But their research
is at the individual level, and does not attempt to determine the kind of information each
user wants. Park and Fader [49] incorporate observable outcomes and latent propensities
across web sites to build a web browsing behavior model. Moe et al. [40] use a Bayesian
Tree Model to present an online purchasing model. Johnson et al. [27] propose a model of
the users search behavior, but only provide brief descriptions and no explicit information to
infer what users want.

Customer Behavior models are therefore limited in that they do not take into account
the content of pages viewed. The search behavior model is always proposed by experts after
examining the recorded log data, and so some important aspects of the real Web user model
may be lost.

GCW use a different source of information — i.e., browsing features — to train browsing

behavior models, which can avoid the need to program complex systems by hand.

11
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2.7 Evaluation

Although there is a great deal of research on generating recommendations for Web users.
the evaluation of user models is an important, though often neglected area.

Kobsa and Fink [29] discuss the performance of a personalized web site by simulating
the users” reqguests to test the performance and scalability of the components in user moclel
(UM servers. Tt is very helpful evaluate the workload of the UM server by simulating
the real world applications, but it does not evaluate the actual recommendations that are
generated (e.g., the likelihood that these recominendations are useful).

Weibelzahl and Weber [T1] propose evaluating the accuracy of the predictive user model
by comparing its assumptions to both an external test and the learners’ true behavior.
The limitation of this approach is that it can only be applied to simple user models, while
excludes more complicated user models, such as models trained by machine learning.

Ortigosa and Carro [43, 44] describe how they acquire continuous evaluation in an
adaptive-course system. The evaluation is inferred from the action of the Web users; however
no evaluation was made on the suggested changes.

The recommended pages are expected to satisfy the user’s current information need.
The evaluation of the degree to which the suggested page can satisfy the user’s information
need should be acquired from actual users working on their day-to-day tasks, since the user

is the best judge of the page’s usefulness.

2.8 Summary

Table 2.1 compares the following types of recommender systems in terms of their key prop-

erties:
e COB: Co-occurrence Based [2, 3]
e CF: Collaborative Filtering (59
¢ CB: Content-Based [6, 25, 5]

o HBM: Heuristic-Based Model [56, 31, 11]

IC-Models: Browsing feature based Models.

The most common kinds of collaborative filtering are hased on explicit feedback, like

movie databases, where users explicitly rate the value of items. We would treat the explicit
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l COB CF CB HBM IC-Models

Limited to Specific
Site/Domain Yes Yes Yes No No
Model Acquisition Learning  Learning  Learning  Hand-coded — Learning
Annotation Required
(training) No No Yes No Yes
Annotation Required
(perforinance time) No No No No No
Training Pool Population Group  Individual None Population
Goal-Directed
Recommendation N/A N/A Yes Yes Yes
Using Sequential
Information No No No Yes Yes

Table 2.1: Techniques for Recommender Systems

reconmmendations as annotations. There are some systems that are based on weak informa-
tive choice signals from users (purchases at Amazon, views of a Web page, etc.). We view
these systems as not requiring auxiliary user annotation.

While our IC-Models require the user’s annotation to acquire training data, but the user
does not need to annotate at performance time. However, the user may want to provide these
annotations. FEach of these user annotation requires only a few seconds. If this produces a
significantly better model, which does a better job of identifying the user’s interest, it can
save the user considerably MORE time later, as it will direct the user to the 1C-page more

efficiently.
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Chapter 3

Learning Web Browsing
Behavior Models

14
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To build a GCW recommender system for predieting relevant pages. | proposed a two-
step method that first predicts the user’s information need from current session, and then
constriets an appropriate query to a search engine to return relevant pages. The first step,
identifving information need, is the most important, yet difficult step.

The goal of identifying the user’'s current information need can he satisfied by learning
the search strategy (i.e., browsing heliavior model) that is ciploved by actual users while
they search for information on the Web. The model describes how users locate relevant
information, which can be learned fron previous Annotated Web Logs (AWLs) !

This chapter first introduces the concept of Web Browsing Behavior. and then demon-
strates how browsing behavior can be used to identify “information need” with a set of

words - words that may help identifv a page that satisfy the information need.

3.1 Web Browsing Behavior

The concept Web browsing behavior model is driven by several observations concerning the
o (o]

nature of human-computer interaction while searching for information on the Web.

wis Dalphin

vr. Dolphing 4o

Pt ity
st

s 5
Falrey

Marine Mammals: Dolphing and Whales

e 4B A s

Figure 3.1: Web User’s Browsing Behavior within a Session

Imagine that we are observing a user’s browsing shown in Figure 3.1. The user starts
from a page py with links anchored with words like “Dolphins” and “Whales”. Clicking on

the “Dolphins” link takes the user to a page about the NFL Football team that goes by

IEach a sequence of webpages that a user visits, where each page is labelled with a bit that indicates

whether this page is an IC-page.
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{his name. At this point the user employs the browser’s “back up” button to return to the
previons page pr. Subsequently, the user follows another link on py anchored with “dolphins”
to reach a page p3 on marine animals whose content includes words like ~“Whales” and
“Dolphins™. We ohserve that the user follows links anchored with “Whales™ :md “Dolphing”
o1t to other pages with similar content.

What can we learn from this short example? We might conclude that the nser’s retreat
from the page about the “NFL Football Dolphins” represents a negative judgment about
the content of the page. Naturally, we do not expect single actions (e.o.. backup) to un-
ambignously reveal the user’s attitude toward page content, but by comparing the content
of pages before and after user actions, we may be able to infer the specific content within
pages that prompts the user’s actions.

Following links anchored with words like “Whale” and “Ocean” suggests that these
specific words might partially characterize the user’s interests. The discarding of pages
containing the word “football” suggests that “football” does not characterize the user’s
information needs.

Now imagine a second session in which the user is querying a search engine on “Belief
Network”. The user follows a link to reach a page on “groups (networks) of people with a
common. religious (belief) views”, but quickly discards this. We then observe the user is
following links anchored with “Bayes nets” and “probabilistic inference”. We might infer
that the user wants to find information about “belief network”. Although the keywords
have changed from the marine animals example, the trajectory of web-pages followed by the
user, the pattern of appearances of the keywords on this sequence of pages, and the actions
the user chooses at each step are identical to the marine animal example.

The two examples above suggest that our intuitions about what the user was interested
in are not based on specific words like “Dolphin” or “Belief Network”, but rather on how
these words appear in the browsing sequence and what actions the user applies to pages in
this sequence, e.g., probably not interested in words appearing on pages “backed out of”.
Since we are interested in quickly determining a user’s information need, we need a way of
capturing these patterns. Once we identify these information-need-revealing patterns, we
have no need to store the user’s historical interest in various subjects such as “Dolphins”
or “Belief Network”. In fact, storing information about specific topics can be counter pro-
ductive. For example, in a future session, this same user might be looking for the score of a
recent Miami Dolphins game. Here the word “foothall” would be important, and of course
his usage of the word “football” in this session would indicate this.

The key question, then, is which actions applied to what types of page sequences with

16
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what types of patterns of recurring words reveal the content the user is really interested
in? Intuitively, they will involve the contents of the pages, including the frequency of words
followed up in subsequent pages, the applications of actions like the “hack up” hutton, the
font size of text. aud many other features. But, we do not know the relative significance
of these features, or even whether they lend positive or negative weight to the claim that a
specific set of words heing representative of the user’s information need.

Some actions are relatively easy to interpret. For example, when a user clicks on a
hyperlink, we assume this means there is a higher probability that some anchored words are
relevant. Other actions require more subtle inferences. The key to my approach is explaining
how the user’s action choices signal the words that can be used to locate IC-pages. It can
be viewed as a learning task, i.e.. training a model that can interpret the user’s action on
viewed information. The trained model that can be used to predict the pages that will
satisfy a user’s information need within the current browsing session.

We propose a system that can learn recommendation strategies from data to tune its
internal parameters based on training examples. This has several advantages over non-
learning approaches. First, learning algorithms can discover features in enormous data
sets that might otherwise not be found by human inspection. Second, embedded machine
learning algorithms can improve the performance of the programs by endowing them with
adaptive, self-modifying behaviors. Finally, and most importantly, these methods avoid the
need to program complex systems by hand, and thus allow us to develop working systems

for tasks that are difficult, or impossible, to design and implement directly.

3.2 Learning Web Browsing Behavior

We define the pages in the current session except [C-page as session pages and the words
that appear on them as session words. We use a slightly richer representation that allows us
to express the degree to which a given session word represents the content of its respective
page, determined by features (e.g., the frequency of the word on the page), and any special
roles assigned to the word (e.g., appearances in titles, bold text or hyperlink anchors).

We also apply background knowledge to interpret user actions on a search page. We
make use of the fact that links on the page are presented in a particular order. If the user
skips over some items in an ordered list of options, we may conclude that she judged the
content of these links to be less useful. If the user does not pursue links past a certain point
in an ordered list, we might conclude that words appearing in these links are not useful, or
that the information need has been either met or abandoned.

Together, the representativeness of a word on a session page, the session level features of
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a word, the action sighals associated with a word, and specific background knowledge can
all be combined to provide evidence regarding a word’s relevance. We can think of each of
these sources of information tor the word as a feature of the word. In order to convey the
idea that these features depeud partly on the user’s actions, we call themn browsing features.

To learn a browsing hehavior model, we first extract training data from Annotated Web
Logs (AWLs). Each of the weh pages is first turned into bags of words. Then we compute
“hrowsing features” of each word in the session, and label the word according to the model
that we want to train. At this point we apply a machine learning algorithm to train the
browsing behavior model that will later be used to recommend relevant pages.

It can be reasonably argued that my work is similar to filtering emails [30] or selecting
interesting news articles [6]. However, while searching for information on WWW, informa-
tion needs change quickly and are hard to anticipate. While GCW also needs the labelled
web logs to learn the browsing behavior models, once this training has been completed, the

user can use the system in any new Web environment without annotating any Web pages.

3.3 Browsing Features

On Web pages, much of the content of the page is communicated through the words on
the page, thus the page content can be roughly approximated by examining the words that
appear on it. This list, or as it is more commonly used, bag of words, is often sufficient for
discriminating useful pages (i.e., [C-pages) from unsuitable (non IC-pages).

Formally, we represent a browsing session S as a page-action sequence with length V

§= [(p1,a1)7 (Pz,az),---7(PN,aN)]

where p; is page ¢ in the session and a; is the action applied to that page by the user. For

example, the browsing session of Figure 3.1 is:

P1, “follow link”™)

(

(p2, “back up”)
(p1, “follow link”)
(

D3, “follow link™)

(p(i: uexitn)
For each session word w, we define the role-action sequence

R = [(Ry,a1); -, (Riyai), o (Ry-r,an o))
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where R; is a vector of roles plaved by word w in page i. For example, in Figure 3.1,
“Dolphin™ appears on page py in the anchor text of hyperlinks and the main text, and also

it appears in all the remaining pages in the session. The role-action sequence of “Dolphin”

is thus:
([hyperlink. plain],, . “follow link™ )
({title. hyperlink. plain],, . “hack up”)
{Ihyperlink. plain],, . “follow link™)
([plain],,, “follow link”)

({title, hyperlink, plain),,, “exit”)
Since “Whale” only appears in page py, p3, and pg, its role-action sequence is:
([hyperlink, plain],, “follow link”)
({hyperlink, plain],, , “follow link”)
([title, hyperlink, plain],,, “follow link™)
([hyperlink, plain],,, “exit™)
The browsing features of a word can be calculated directly from its role-action sequence.
For instance we define a feature that gives the number of times a word w appears in a user’s

session. Let |R;| represent the number of roles a word plays on page i and R, i ; be the G

role of word w on page i. Then the session level feature appears is denoted as:

n-1|Rq|
fappcar(Rw) = Z Z Rw,i,j
i=1j=1
Additional functions include:
Jo(Ry) = number of times w appears in title
fi(Rw) = appearances of w in a followed hyperlink
fu(Ryw) = backed up from page with w

We can think of the set of features as a vector function that produces the feature vector

of a word for a given sequence, i.e., browsing features of w:

F(R'w) - [fO (R"H)> fl(R'm)a ceey fk‘ (Ru)]
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Let

be the set of sessions collected for training. For each session S;. let W, be the set of session
words in the browsing session pages (i.e., the union of all the words in the session pages
minus the stop words). For each w € W, we calculate a tealure vector for w based on
its role-action sequence in §;, and a label to show whether w is relevant to the current
information need or not. An illustrative example appears in Table 3.1 hased on the page

sequence in Figure 3.1,

Word } #title  #hyperlink ... #backup ... | relevant
dolphin 2 4 3 Yes
NFL 0 3 6 No
whale 4 0 Yes
football 0 4 5 No

Table 3.1: Example Browsing Features

From Table 3.1, we might infer “browsing behavior” patterns in Figure 3.2. These
patterns are the description of how the user searches for information, no matter which Web
sites she visits. It is expected that once we can acquire such patterns we will be able to use
them to predict what the user really wants based on her observable click stream.

IF w is in TITLE,
THEN w is relevant to the current information need

IF w is in a page’s content, , (3.1)
and not in the title
and that page is “backwarded”

THEN w is a Non-relevant word

Figure 3.2: Sample Behavior Patterns

We estimate the user’s information need from her current click-stream based on prop-
erties (i.e., browsing features) of the words that appear there and the labels. Given the
browsing features for a set of words in context of current session, we can use a browsing
model (i.e., classifier) to predict the probability (based on its browsing features) that any of
these words will be relevant. We can then use these predicted relevant words to locate the
relevant pages to satisfy the current {new) search task. The model is independent of users,
specific words and specific Web pages, thus it can be used to identify relevant pages on any

new Web environments.
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3.4 Training Web Browsing Behavior Models

The first step for training Web browsing behavior models is to collect training data. To do
s0. we recruit a group of subjects to search for a wide varietyv of topics on the web and have

these subjects explicitly annotated 1C-pages. Figure 3.3 shows the learning process.

Browsing

Fenture
Extraction
—_—
Featire Sef
IC-Session e l’l‘x:\um\g
Identification .
R
bl
» ’ A N
Classifier

Figure 3.3: Learning Browsing Behavior Models from AWLs

First, we segment each user’s complete click stream into a set of so-called browsing
sessions — each of which concentrates on one search task and terminates in an IC-page.
The technique for session identification and data cleaning will be discussed in Chapter 4.6.1.

Within each session, we extract all the words from the non-1C-pages, and compute
various “browsing features” of each word. Then, we label each session word according to
the model that we want to train. Next, we run a learning algorithm (e.g., C4.5) that uses
these browsing features to learn a classifier (e.g., decision tree) that we can use to predict
whether the session word is relevant or not.

The trained model can be applied to new browsing sessions to identify the user’s current
information need, which could then be used to recommend IC-pages for the user to satisfy
her information need, and hopefully shorten her search.

Here, the model learned will not involve any specific words like “Dolphin” or “Belief
Network”, but instead, use the combinations of browsing features, roughly of the form
shown in Figure 3.2. Once we have pattern rules that reveal the user’s information needs,
we no longer need the training data nor help from the users in marking pages that contain
useful content. We can apply these generic patterns to any browsing session to reveal the
user’s information needs.

At performance time, the trained classifier takes, as input, a sequence of visited web
pages S = {p1.p2, ..., py) without annotation and returns a list of words that are likely to

identify relevant pages (7.c.. relevant words). In particular, it considers every word w that

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



appears in any p;. then computes “browsing features” of this w as above. The system then
classifies cach w. determining the chance that a word with these browsing features will be
relevant. Notice that this classifier bases its decisions on the browsing properties of a word
rather than on the word itself. The performance system does NOT require that the user
annotate the web pages: this was just done in the training phase. However, if the user is
willing to do this Iabelling, we could hone the system to the muances of the current user,
and therebhy obtain superior results compared to a generic system based on only the base

population ol nsers.

3.5 Evaluation

GCW is designed to find useful pages to help the user find useful information, so the best
evaluation method is to ask for user feedback directly.

Tt is critical that we provide evaluation results to convince people that the browsing
behavior models are truly useful. As one approach, we can collect the AWLs from the
user studies, and test our model on these empirical data. Alternatively, we can acquire
the evaluation by deploying these models in a real application, and ask for feedback from
actual people using our tool. In our research, we followed both approaches for evaluation:
in Chapter 4, we followed the first method, and in Chapter 5, we conducted user studies to
evaluate the browsing behavior models by people in a real world environment. The results
show the browsing behavior model can predict relevant pages very well, even though the

predicted pages are previously unseen.

V]
[A]
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Chapter 4

User Study 1: Travel Planning

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.1 Introduction

The purpose of a GCW reconunender svstem is to help users locate the information they
want, by recommending IC-pages based on an observed page sequence. To this end we
initially use a simple method to identify IC-pages using properties of URLs in the current
annotated browsing session. Our ICPageWord model is used to identify the user’s currvent
information need, which ¢an then be used to locate relevant pages. We have conducted
user studies to collect AWLs, which are then used to train browsing hehavior models, with
promising results. This chapter first introduces the models that we want to train, then

describes the user studies that we conducted, and finally summaries our empirical results.

4.1.1 IC URL Prediction as a Classification Task

Assume at time ¢ a user has visited

<<P17i1>: (1)2~,i2>: <p37:t3>7 "'7<pt417j:t—1>7 pt>

13

where each &; is “+" if this page p; is explicitly labeled as an IC-page, and by default

«

a page that is not labeled as IC-page is “—”. We apply Sequence Recognition [67] on this
information (augmented with other data, such as the domain type of each page) to determine
whether p; is an IC-page or not.

To address the challenge here, we consider an IC-page prediction as a classification task,
and train a “IC-page classifier” that can take an annotated page sequence as input, and
determine whether the final page is an IC-page or not.

The classifier we train is not based on each individual URL. That is, we are not at-
tempting to predict whether one specific URL would be an IC-page all the time, but rather
are predicting under what circumstance a page would be an IC-page. As an example of a
possible rule, an URL will be an IC-page if 80% of the URLs with the same domain name
in the current session have been identified as IC-pages. The model is expected to be more

general than that built on specific URLs (e.g., Association Rule [2]) since the latter can only

be used on the Web site from which the training data are derived.

4.1.2 ICPageWord Prediction

Although IC URL prediction sounds promising, a shortcoming is that it requires the anno-

tation information even at performance time, which is impractical in real application.
Similar to IC URL prediction, here we also apply machine learning algorithms to train

such a browsing behavior model for identifying the current information need (i.e., ICPage-

Words) which can be used to locate IC-pages. This model is not based on a specific set
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of pre-defined words. but rather on the user’s observable behavior in response to the in-
formation within the pages visited. While there are important inter-individual differences
in users’ search hehavior, we argue that our model - due to its high level of abstraction
(that is, the way the word is used in the context of the session) — is able to capture user
independent hehavioral models that apply to broad classes of users and environments.

To train such a classifier; we first gather all the words fron each annotated page sequence,
and then compute hrowsing features for each word hased on how that word appears within
the sequence. The label for each word is whether it appears in the IC-page or not.

There are some systems that define the user's information need as a learned combination
of a set of (possibly pre-defined) words. For example. the model [19] trains a NaiveBayes
classifier to label each Web page as relevant or not. using the occurrences of a set of prede-
fined words as the features [6]. In our work, however, we attempt to label each individual
word with a measure of its likelthood to be relevant based on browsing features. (Fig. 4.1
contrasts these two approaches.) We can use this information to form a query to a search
engine as a list of the high-scored words. We therefore view this set of word-score pairs as

encoding the user’s current information need.

{IC Articled

4 ;LK\“
«Q nmng %ﬁv_a{r;} see { Paper

Word in IC Page?

T

Unknow) 4 ¢ ¢ (}gﬂll‘u‘!eta

Figure 4.1: NaiveBayes Models for (a) IC-page Identification based on Presence of Specific
Words; (b) ICPageWord Identification

#inTitle

#InSmppet

The ICPageWord classifier depends on characteristics of words, not on the specific words
themselves. For example, it might be the case that any word that appears once in a snippet
that is followed. and twice in a page title, will probably be an “ICPageWord” (see Fig. 3.1).
This means we can train our “ICPageWord classifier” in one set of sessions, and then use it

to classify a completely different set of words associated with a completely different session.
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4.2 Travel Planning Task

We conducted a series of laboratory studies to generate sets of data (i.e., AWLs), which we
used both to train our models and then to test the performance of the trained models, to
determine their ability to predict a user’s current infornation need.

A total of 144 undergraduate business students participated in the Travel study for par-
tial course credit and a lottery incentive ! Study sessions were administered in a supervised
compunter laboratory in groups of approximately 25 subjects.

The overall task consisted of selecting a new vacation spot (i.e., one that the subject
had not visited in the past) to which the subject would like to travel. Each participant was

asked to perform the following specific tasks:

[y

Identify 3 novel vacation destinations (i.c.. places you have never visited)
2. Plan o detailed vacation to each destinalion.
specifying specific travel dates, flight numbers, accommodation (hotels,
campsite, ... ), actiities, etc.

They were allotted approximately 45 minutes, and given access to our augmented brows-
ing tool - Annotation Internet Explorer (AIE: see Chapter 4.3), which recorded their specific
web-logs, and required them to provide the *“importance” (i.e., IC-page) annotation. The
participants also had to produce a short report suminarizing their vacation plans, and citing
the specific important webpages that were involved in these decisions. Here AIE made it
easy to remember and insert these citations (see Figures 4.2 and 4.4).

We chose this specific task as
o It represents a fairly standard way of using the web

e It is goal directed (in contrast to simply asking the participants to “meander about

the web”)

e A diverse set of pages may be relevant, e.g., plane schedules, travel brochures, recent
news (such as terrorist attacks). The contents of many of the travel Web sites do not

change frequently.
e It is easy to motivate students to do this task.

e The task is fairly well-defined and delimited: the references in the report help identify

which pages qualify and which do not.

IThis included both male and female students; our use of “she” in referring to a participant is merely for
notational simplicity.

o
(@
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Throughout their search, subjects were asked to identify any IC-pages that they con-
sidered to be of use with respect to their task of making a vacation choice by clicking on a
special button in their Web browser. Once they had selected their preferred vacation, par-
ticipants recorded specific aspects of their choice on a form. The subjects” Web navigation
(URLs and time stamps) during the search Lask were tracked electronically.

Usable data were obtained from 129 participants. Collectively the 129 participants in the
study requested 15,105 pages, and labeled 1,887 IC-pages, which corresponds to 14.63 1C-
pages per participant. This involved 5,995 distinet URLs, meaning each URL was requested

2.52 times on average. Table 4.1 is a histograph showing how often each page was visited.

Table 4.1: Number of Requests vs Percentage of the URLs

Number of Request(s) Percentage of the URLs
58.93%
23.46%
7.63%
4.08%
1.85%
1.16%
0.88%
0.40%
0.40%
0.18%

W00~ O U oD

—
<

Note that 82.39% of the URLs were visited only one or two times. Clearly very few
URLs had strong support in this dataset, which would make it very difficult to build a

recommendation system based on page correlation and frequency.

4.3 AIE: Annotation Internet Explorer

I developed an enhanced version of INTERNET EXPLORER, called AIE (shown in Figure 4.2)
to collect the relevant information for the travel planning user study.

AIE incorporates several relevant extensions to IE, as seen in the toolbar across the top
of Figure 4.2. First, the user can declare the current page to be an IC-page by clicking
the Important button on the top bar. When doing this, AIE will pop-up a new window
that shows this URL, and two edit fields that allow user input: a mandatory field requiring
the user to enter an alias for this page (e.g., “AirCanada Edmonton-Beijing ticket prices™)
and an optional field for writing a short description of why this page was important (e.qg.,

“provides the cost of the plane tickets”). See Figure 4.3.
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Figure 4.2: AIE Browser

"The History button on the toolbar brings up the side-panel (Figure 4.2), which shows the
set. of all pages seen so far, with a flag showing which pages the user tagged as an IC-page.?
The user can click on one of these to return to that important page; she can also reset its
“importance” designation.

The Report button will switch the browse view to the report editor, which she can use to
enter her report (Figure 4.4). Here, each subject has access to the IC-pages labeled during
browsing, which she can use in producing her report. In fact, the participant can only use
such pages in her report. She does have the option of returning to the first “browse” mode,
and adding new pages to the list of IC-pages. She can also examine all pages visited earlier,
and re-assign the pages (i.e., take a page previously considered unimportant, re-declare it
to be important, and then use that page in her report.).

After completing the report, the user can then submit the entire session using the Sub-
mat button. This records the entire sequence of web-sites visited, together with the user’s
IC-page annotations, as well as other information, such as the time-stamp for each page.
Figure 4.5 shows part of the annotated web logs. The URL in italic is the IC-page annotated
by the subject, followed by the IC-page label.

In addition to collecting these sessions, we downloaded copy of every page visited by

2The user can view only the IC-pages.
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Figure 4.3: a1t PopUp Window to Declare an “Important” Page

any of the participants. Furthermore. we drill down the Web site from the visited page by
breadth first search up to 5 levels. The 9.1GB collection of Web pages enable us to later

determine something about the structure of the Web sites at the time they were visited.

4.4 Data Preprocessing

We use our own web log format, which records the URL and time stamp of each page, along
with the one-bit IC tag. Unfortunately some of the pages in AWLs are just advertisements.
As these ads do not contribute to the participant’s information needs, leaving them in the
training data might confuse the learner. We therefore assembled a list of advertisement
domain names, such as: ads.orbitz.com, ads.realcities.com, etc. We compare each
URL’s domain name with the ad server list and ignore a URL if it is in the list.

After filtering out the advertisements, we build “page views”. This is challenging because
of the widely used frame pages. When a frame page is being loaded, all of its child pages
will be requested by the browser automatically; and thus, instead of recording only the
frame page in the log file, all of its child pages will be recorded as well. This is problematic
when the participant browses within a frame page. For example, in Figure 3.1, page ps
is a frame page, containing pages (p3, p2, p3), thus in the log file, the page sequence is
p1 — pa — ps — pi — p3. However, the second page view should contain p3, pZ, p3, and
not 3 different pages. We therefore construct the real page views that the subject has seen
when she was browsing the Internet. Here it should be p; — pgé’pz’pg), as shown in Figure
4.6.

As only 10% of the pages are important, there is a trivial way to obtain high accuracy:
just return “not important” to each instance. Of course, this will not serve our needs as
it is critical to know which pages are important. To address this problem of “imbalanced

data” [23], we have tried both down-sampling {33] and over-sampling [24] to build training
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Figure 4.4: AIE Report

2001 11 26 13 17 1 O
http://www.google.com/search?q=weather+vancouver

2001 11 26 13 17 16 1
http://www. canoe. ca/Weather/CityVancouverBC. html

weather in Vancouver

2001 11 26 13 21 5 0
http://www.google.com/search?q=weather+vancouver

2001 11 26 13 21 21 0
http://www.google.com/search?hl=en&g=hongkong

Figure 4.5: Sample Annotated Web Log
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Figure 4.6: Page View with Frames

data as follows, in which Sr¢ is the number of all [CPageWords and Syqn—7¢ is the number

of all Non-ICPageWords.

Down-Sampling Form a 2 x S training set by using all ICPageWords and randomly

selecting (without replacement) Syc Non-1CPageWords.

Over-Sampling Form a 2 X Sy, - rc training set by using all Non-ICPageWords and ran-
domly selecting (with replacement) Syon_-rc [CPageWords. (Notice some ICPage-

Words may appear several times in a single training sample.).

While we wanted to include “time” information (i.e., how long the user spent on each
page), and we did record this information, but we were unable to use it. Before we ran
the experiment, we incorrectly assumed the subjects would browse the Internet and mark
important, pages before switching to report writing. In the lab, however we found that many
users switched modes (to “Report mode”) upon finding each important page. This means
that much of the time between requesting an important page and the next page, was spent
in report writing, which skews the time statistics.

Moreover, Kelly et al. [28] report that they cannot find any direct relationship between
the time spending on each page and its usefulness; this also support the policy for ignoring

time information in our research.

4.5 IC URL Identification

After data preprocessing, we extract features for each URL, such as how often the URLs
from the same domain have been identified as IC-pages. Section 4.5.1 gives more details of

these attributes. Bach URL was annotated as "Important” or not, thus we assign class “+”

31
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to the “Important”, while “-” for non-important.
While training, we do not give the specific URLs to the learner. Thus the learner is
expected to acquire the patterns that determine what characteristics URL that are “Impor-

tant”.

4.5.1 TURL Attributes Used

We extract the following features of URLs from the click streant. and define a site-session
as the click stream within a single Wely domain (i.e., if the subject entors a new web site,

a new site-session begins.).
1. URL Properties

URL Type
wrong (e.g., “404”), search (e.g., GOOGLE), dynamic (e.g., produced by CGI
script), static, (e.g., typical *html page), misc (e.g., poiuter to jpg, mpg, or
mov file, or whatever)

DomainType
wrong (404), edu, com, net, org, gov, misc

Depth
Number of “/”s in the URL

2. User Click Stream

FollowSearchEngine
Does this page follow immediately from some search engine (e.g., GOOGLE)?
isLastEntry
Whether this page is the last one in the site-session.
inTotalNumberofPage
The number of pages that have been visited within this site-session, until now.
inTotalNumberoflmportantPage
The number of pages, within this site-session, that have been labeled as impor-
tant.
inLastImportant
The number of pages that have been visited since last important page within this
site-session. If no previous important pages, just use the number of pages visited
in this site-session until now.
TotalNumberOfPages

The number of pages have been visited so far.

32
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TotalNumberOfImportantPages
The number of important pages that have been labeled so far
LastImportant
The number of pages that have been visited since Iast important page. If no such
previous important page, just use the number of pages visited nntil now.
PercentageDomain
The percentage of the pages that have the same domain as the current page since
the user started.
Percentagelmportant
The percentage of the important pages that have the sane domain as the current
page so far.
PercentageSameDomainImportant

For all the URLs under the same domain, the percentage of the important pages.

4.5.2 Empirical Results

After the data preparation, we run several classification algorithins on the data set after

over-sampling, producing the following [79].
e Decision tree, using ¢4.5 (see [58], http://www.cse.unsw.edu.au/~quinlan/)

e NaiveBayes — a simple belief net structure of the form shown in Figure 4.7 (where
C is the class, here “Importance”, and the E;s are the various attributes shown in
Section 4.5.1) which claims that the attributes are independent of one another, con-

ditioned on the class label [19].

e Boosted NaiveBayes: In general, “boosting” is an approach to improve the result of
a learning algorithm A, by using A to learn a set of classifiers over slightly different
datasamples (which differ by reweighting the elements in training set) [64]. Here, we

boosted the NaiveBayes learner.

Note that we were able to run the above classification algorithms using the WEKA system,
which is a large collection of learning algorithms. (See [72], http://www.cs . waikato.ac.

nz/~ml/weka.)
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Table 4.2: Results for One Run
Actual label

Important  Unimportant
Important 81 48

Predicted label

Ut
[N\

Unlmportant 19

In all cases. we used the default setting, and ran 10-fold cross validation. Table 4.2 gives
the confusion matrix, based on one split, using NaiveBayes. Here. we define “Precision”
k) g

and “Recall” for Important pages prediction as follows.

o ActualImportant Predicted 81 N
Precisiony,,portant = - = = (62.8%
! - Predicted AsImportant 81 4+ 48
ActuallImportant Predicted 81 .
Recallpportant = = = 81.0%
frportant All Actual I'mportant 81+ 19 '

Actual I'mportant Predicted are those important pages that are predicted as important

as well (shown in Fig. 4.8).

Fredicted
bs
Important

All

Actual
Actual Important
Important Predicted

Figure 4.8: Precision and Recall for Important Page Prediction

We can similarly define Precision and Recall for Unimportant pages:

ActualUnimportant Predicted
Predicted AsUnimportant

PTEC@SZO”Un,i’m,parr,u.nt =

ActualUnimportant Predicted

Recallynimpor =
cattUnimportant All ActualUnimportant

The results, over all 10 CV folds appear in Table 4.3 in the form meantstandard-

deviation.

Notice that Boosted NaiveBayes has the best “worst-case” over these 4 values, averaging
around 65%. Although we can get fairly high accuracy for the IC URL prediction, the
problem is that the predictions require annotation information even at performance time,

which is not applicable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.3: Empirical Results

huportant Unlmportant
Precision Recall Precision Recall
C4d.5 0.712 £0.063  0.27 £0.05  0.5486 +0.02  0.89 £0.02
NaiveBaves 0.594 £0.035 0.82 £0.03  0.7075 +£0.06  0.46 £0.12

Boosted

oo 0.669 +0.048 0.70 £0.04 0.6861 +0.041 0.65 £0.07
NatveBaves

4.6 ICPageWord Identification

For training the ICPageWord model, we first identify the IC-session from the pre-processed

log data, which differs from those introduced in [18].

4.6.1 IC-session Identification

Each user might pursue several different information needs as she is browsing. To identify
and distinguish these needs, we separate the pages into a sequence of “IC-sessions”, where
each such IC-session pertains to a single information need. In general, each IC-session is a
consecutive sequence of pages that ends with an IC-page.

Chen et al. [12, 13] terminated each session on reaching a Maximum Forward Reference
(MFR) when the user does not follow any outlinks from a page. Of course, these final MRF
pages need not correspond to IC-pages. Cooley et al. [18] used time-outs to identify sessions:
if the time between consecutive page requests is greater than a threshold, they assume that
a new session has started. While the fact that a user remained at a single page may suggest
that it could be an IC-page, this is not the only explanation for remaining on a page. Note
that neither set of authors claims that these final pages addressed the user’s information
need, and so they provide no evidence that these pages were IC-pages.

In our case, since we focus on goal-directed browsing, we terminate a session on reaching
an IC-page. However, it is not clear that the next session should begin on the subsequent
page. For example, imagine in Figure 3.1 reaching page p; after visiting a sequence of pages
Pa — Pp — Pe — p1, and assume both pp and pg are IC-pages. Here, each IC-session should
contain the sequence before p; since it also contributes to locating each of the IC-pages. In

other words, in this instance we would produce two [C-sessions :
Po = Pb = Pe 7 P12 P2

Po = Pb 7 Pe = P12 P3 — - 76
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To identify meaningful [C-sessions, we used some heuristics. For example if the page
after an IC-page is o new search query, then we assume that starts a new session, since it
is very common that upon completion of one task, users go to a search engine to begin the
next task. Figure 4.9 summarizes our 1C-session Identification algorithm.

Algorithm 1Cs1:(page sequenice S = (pr.pa. .. .. PN oY)
outputs Sequence of [C-sessions
I Boolean; % truc iff current page is immediately after an I1C-page
L: Queue: % stores the current session
BEGIN
Set L := empty: [F = false
For i=1..N do
If p; is an IC-page then
If L is not empty, Output L
F = true;
Else
H(F) then
If p; is a search query page then Empty(L);
If p; is in L then Pop off L every page after this first p;;
F = false
Append p; to L
If L is not empty, Output L.
END Figure 4.9: 1cs1 Algorithm

4.6.2 Browsing Feature Extraction

We consider all words that appear in all pages in a browsing session, removing stop words
and stemming, using standard algorithms [57}, and then we compute 25 browsing features
for each word within the IC-session. In all cases, if the URL refers to a frame page, we

calculate all the following measures based on the page view.

Search Query Category

As our data set includes many requests to search engines, we include several attributes that
relate to the words in the search result pages.

Each search engine will generate a list of results according to the query, but the content
of each result may differ for different search engines. We consider only information produced
by every major search engine: viz., the title and the snippet. For example, in Figure 4.10,
the title of the first result is “Welcome to Dolphin Research Center!”, and its snippet is
“Information on dolphin swims at not-for-profit research facility:”.

We tag each title-snippet pair in each search result page as one of: Skipped, Chosen, or
Untouched. If the user follows a link, the words in its title and snippet will be considered

“Chosen”. The words that appear around the links that the user did not follow, but before
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Figure 4.10: Title-Snippet State in the Search Result Page

the last chosen link, will be deemed “Skipped”,* and all results after the last chosen link in
the list will be “Untouched”. Figure 4.10 shows 3 “Skipped”, 2 “Chosen”, and 1 “Untouched”
results. The third entry “Miami Dolphins” is the first one followed; the user later clicks
back to the search page, and chooses the fifth entry, “CETACEA - whales, dolphins and
porpoises”. Also, for pages in general, we say a hyperlink is backed if the user followed that
link to another page, but went back later. A page is backward if that page has been visited
before; otherwise we say a page is forward.

The actual features used for each word w appear below. Each is with respect to a single
IC-session. Notice that most have numeric scores and many are simple integers — e.g., how

many times w is in some specified category. Please refer to Appendix B for further details.

isKeywordCnit
skipped Title Cnt
skippedSnippetCnt
chosenTitleCnt
chosenSnippetCnt
untouched TitleCnt
untouchedSnippetCnt
unknownCnt
bkTitleCnt
bkSnippetCnt

Sequential Attributes

Bach of the sequential attributes is extracted from set of the pages in an IC-session, excluding

only the search result pages and the last IC-page.

These are the links that the user probably saw, but actively chose not to follow.
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The tf-idf scheme has been widely used in infornation retvieval, and it is also used for
calculating our sequential features. However, Web pages have peculiar features such as
markup tags and hyperlink structures. Thus, we compute the weight of each word in a
page based on its occurrences contained in some informative HTML tags. We pick out the
following HTML tags, as they appeared quite often i onr A13WLs, and use them to compute

the “weight” of each word w in each page.
wetght(w) = Z Cntilw) < v
J

where Cnt;(w) denotes the number of occurrences of « contained in the i** “HTML Tag” [69];

and v; is the weight associated with this context, shown as

hl | 10
h6 5 strong | 1H b 15

h2 | 9 _ . v

w3 | 8 a 50 big 20 u 10 (4.1)
title | 20 em 15 blink | 20

h4 | 7 . . - -

- cite 10 i 15 S 5
h5 | 6

For each word w in an IC-session, we compute each of the following attributes as de-
scribed in Appendix B. At training time, we also indicate whether w appears in the IC-page

or not.

ratioWordAppearance avWeight

varWeight trend Weight
ratioLinkFollow ratioFollow
rattoLinkBack ratioBackward
avWeight Backward var Weight Backward
ratioForward avWeightForward
var Weight Forward ratioln Title
ratiolnvisible bkSnippetCnt
bkTitleCnt

We compute the browsing features of all the words along all pages of the entire 1C-
session, with the goal of anticipating what the user is seeking. (Hence, this differs from
simply summarizing a single page [76].) Recall that when we train the classifier, we do not
use the words themselves, but instead we use these attribute values, and use a label whether

the word appears in the IC-page (i.e., the ICPageWord tag).

4.6.3 Empirical Results

To investigate the effectiveness of ICPageWord approach, we conducted a user study. The
material in this chapter extends [77, 79, 78].
After preparing the data, we first use Weka [72] to produce a NaiveBayes (NB) classi-

fier [19]. For each IC-session, let ws,, denotes all the words in the sequence except the last
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page (which is an 1C-page), and wy.s¢ denotes the words in that final 1C-page. We focus

on only those sessions with Wyegr C Weeq- We ran our test on (8 x 20) + 1 subject groups,

where each group involved U € {1,2,....8} subjects. For U = 1. we took each individual
as o l-user group: and for the other U € {2,3,... .8}, we randomly selected 20 different

groups from the set of participants. Note that we allowed overlap among these 20 groups.
For each group, we built 10-fold training/testing datasets. and computed the median value
of these 10 results as the final score for this group. (We report medians because they are
less sensitive to outliers than means.) To generate the training and testing data, we used

the oversampling technique described earlier.
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Figure 4.11: ICPageWord Prediction: Testing Result

Here, we found an average accuracy of around 78.3%; the precision and recall results
appear in Figure 4.11. Even though the average recall of ICPageWords is only about 45%,
we anticipate this will be sufficient to to find IC-pages, which of course is our ultimate goal.
Given the high precision of our ICPageWord prediction, even with recall around 45%, we
can anticipate finding tens of words that will surely be in the IC-page. Since the predicted
ICPageWords are exclusive of stop words, we anticipate they will be quite relevant to the
IC-page’s content. We therefore suspect that a query with these relevant words will help
retrieve the relevant IC-page, see Chapter 5.

In addition to NaiveBayes(NB) classifier, we also train a decision tree, Ripper [62],
Support Vector Machines (SVM) [68], and Bayesian Network for identifying ICPageWords.
To deal with those continuous attributes. we use estimation [20] instead of discretization [26]

since the former typically produces higher accuracy. We find down-sampling can acquire
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better accuracy than over-sampling, thus we use down-sampling in our testing experiments.

The results appear in Table 4.4.

Table 4.4: Accuracy of Prediction

Accuracy
C4.5 87.4%
Ripper 73.7%
SVM 75.4%

Bayesian Network 72.3%

The accuracy of C4.5, at about 87.4%, is much better than that of other classifiers. We
conjecture two possible reasons for C4.5°s superior performance. First, C4.5 uses local dis-
cretization of integer attributes, whereas NaiveBayes uses a global approach. Second, C4.5

does implicit selection of relevant features through its tree splitting and pruning operations.
Single-User Case

The single-user case (U = 1) is perhaps the most relevant, as it shows how well our system,
trained on a single user, will perform for that user. Here, for each user, we run 10-fold

training/testing.

(T Sl

05

0.4

Precision Recall

BMan-IC ZIC

Figure 4.12: Prediction Result for Individual Users

Figure 4.12 shows the average values for all 4 cases (Non-IC vs IC; and Precision vs
Recall) on all testing sessions. The precision of ICPageWord prediction is higher than that
of Non-ICPageWord. This is encouraging, since ICPageWords will be used for producing

IC-pages in our recommender system. The recall of Non-ICPageWord is higher than that
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of ICPageWord. possibly as the majority of all the words in the observed page sequence
are Non-ICPageWords. However, the recall of Non-ICPageWord is less useful for [C-page
prediction.

The precision of 1CPageWord prediction is above 80% for 78% users, indicating that
many individual users are very predictable. This suggests that there should exist a general
model of web user’s inforiation search — one not based on a particular website or & specific
set of words. but a general model that describes how users find useful information on the

Web.
Leave-One-Out Testing

We are also interested in the performance of the trained model for individual users. Here.
we are interested in the recall of ICPageWord prediction, since the more ICPageWords that
can be recalled, the more accurately can information need be identified. In addition to the
single user training/testing in Chapter 4.6.3 (Self-Testing), we run another two types of

leave-one-out testing as follows:

Leave-One-Out Testing: We use all data of one user as testing data, and the remaining
users’ data for training. We then compute the average recall of the prediction. This

is the case when training a population model, then testing on a new user.

Group-Based Leave-One-Out Testing: We suspect that for each specific user u, there
might exist a user group G, that shares the same browsing behavior model. The
purpose of Group-Based Leave-One-Out testing is to acquire the highest performance
for each user, but it is very time-consuming to try all subsets of the users to find such
a group for each user. In the group-based leave-one-out testing, for each user u, we
randomly select M groups from the remaining users, where each group contains U
(U = 10) users. For each group, we use all involved users’ data as training data, for
training NaiveBayes. Then, for each of u’s sessions, we choose the highest recall from
the Ms as the final result. Here, we assume that the user group that results in the
highest recall is the group that the user should bhelong to. Fig. 4.13 shows the average

recall of ICPageWord prediction for each single user with M = 20,U = 10.

Figure 4.13 shows the average recall of leave-one-out testing. We run the Wilcoxon test
on each pair of the three methods, and the results are presented in Table 4.5.

From Table 4.5, we conclude that both Group-Based testing and Self-Testing work better
than Leave-One-Out testing, but there is no significant difference between Group-Based

and Self-Testing. We can see that Group-Based testing gets the best predicting results on
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Figure 4.13: Average Leave-One-Out Testing Result for Individual User

P
Group-Based > Leave-One-Out | 0.0186

Self-Testing > Leave-One-Out | 0.0029
Group-Based > Self-Testing | 0.097

Table 4.5: Wilcoxon’s Test on Three Individual-Oriented Testing Methods

average. This is what we expected: the generic model learned from all populations cannot
compete with the model learned from a specific user group. Therefore, we can produce more
effective recommendations for any user if we can identify the user group that she belongs
to.

We also observe that the single-user training works better than the group-based method.

This also motivates us to learn personalized models in our future work.

4.6.4 General Evaluation Method

Clearly a good recommendation system should predict all-and-only the 1C-pages. It would
also be useful to predict these pages early. In Fig. 3.1 it is better to recommend an IC-page
after the user has traversed only {p1,p2 ), rather than wait until the user has visited all of
{pi.p2:...,pe ). This would save the user visiting the 4 intervening pages. We therefore

define an evaluation method based on these two objectives.

For each IC-session S = (p1, pa2, ..., pn ) of length N (where py is an IC-page), there
are NV — 1 subsessions, where each subsession Sy = (p1. pa. ..., p¢) is the first consecutive
42
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£ pages. for 1 < € < N. We will call the reconunendation model on each subsession S¢ to
generate a proposed set of [CPageWords. 11771 5 ). W {p;) denotes all the non-stop words
on page p;.

We compute precision and recall for the predicted ICPageWords, and then calculate the

F-Measure [61].

(PS5 ) O Wpw )

[Cprecision(S. 1) = TP (S
- , LIPSO W)
ICrecall(S, £) BECIS)

2 x 1Cprecision(S. £) x ICrecall(S, £)
ICprecision(S. £) + ICrecall(S, £)

F(S,0) =

In order to get a better idea of how far ahead the model is predicting, we define h to
be the horizon of prediction, which is the mumber of pages from the prefix to the actual

IC-page (i.e., h = N — £, see Figure 4.14.). Using horizon, we finally define

score(S. ) :{ penalty  if WP(S,)(\W(py) =0

F(S,¢) x b otherwise.

N-f

. DOROR——
..

i

H

i

.

00

IC Word Prediction
X xx
pes’e’s s oo
pa’s’s 'S
Word Predicted @ WP(57) Wipny: IC-words

Figure 4.14: Evaluation Specification

The penalty € R~ term penalizes the system for being non-responsive. Here we use
—0.05. Notice this score(-, -) increases the earlier the system can make a prediction, provided
that prediction is accurate (based on the F-measure). We divide by the number of predicted

words [WP( S, )| to discourage the system from simply suggesting everything.
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TFor each IC-session Sy, let

W (pa ) (VWS
(o)l

e the overlap between the words in the IC-page and the words in S, (i.e., W(S,)). coverage =

coverage(S,) =

I corresponds to the W(pn) € W(Se) condition which means all the ICPageWords can be
tound somewhere in the session.

We randomly select 90% of the IC-sessions as training data, and use the others for
testing. For each testing IC-session, we calculate the average score over all subsessions,
provided there were any recommendations. (That is, we provide no recommendation if our
svstem finds no word qualifies as an ICPageWord.) We then compute the average score for
all testing IC-sessions as the final score for this trial. Figure 4.15 graphs this information,
as a function of the coverage. We find that in most cases, where the coverage increases,
1 (U)) grows very quickly, which is the main reason that the score worsens.

We compare our method with two simple methods: let the ICPageWords be (1) All: all
words in S, or (2) Features-Only: all feature words in Sy, which are those words enclosed
hy some specific HTML tags, such as “a”, “title”, “h”, “hl1”, etc. Figure 4.15 shows that

our approach did significantly better than these two methods.

25
) e T T sl
20 g e <
=)
S 15
b N
3 10
»n
5 P
0 T T T T T v
05 0.6 07 0.8 0.9 1
Coverage
—&—All —#--Features-Only — — ICPF J

Figure 4.15: Evaluation Result

In a second analysis we evaluate the ability of the model to predict ICPageWords from
a subset of the session pages. For all the above experiments, the models were trained on
the session Sy—1 = {p1, P2, ..., Pn—-1). But here, the input to the model is a subsession
S = {p1, P2, .-, pry, where £ < N. We suspect that the model learned from the
largest subsession (¢ = N — 1) will perform better. The total length of user sessions varies
considerably from session to session. Sessions range in length from under ten pages to well

over twenty-five pages. In a session with ten pages, a model based on a prefix of length four
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will be predicting six pages ahead. In a sequence of length twenty-five a model based on a
predix of length four will be predicting twenty-one pages ahead.
All results for our long-range prediction experiment are based on leave-one-subject-out

testing. We present the results for NaiveBayes in Table 4.6 and (4.5 in Table 1.7

Table 4.6: NaiveBayes Average F-Measure Measurenient Matrix

Subhsession length (
h 1 2 3 < >5
1-10 26.50 2451 21.21  20.06  15.15
11-15 18.99 20.21  19.09 2094 16.66
16-20 26.57 26.27 26.08 21.79 11457
21-25 23.33 25.13  19.99 2021 11.82
>25 10.32 10.04 6.61 6.49 6.5:1

Table 4.7: C4.5 Average F-Measure Measurement Matrix

Subsession length /£
h 1 2 3 4 >5
1-10 37.80 45.92  54.15 49.58 29.51
11-15 40.20 4743 3824 30.96 22.67
16-20 46.72 39.67 21.72 14.23 18.73
21-25 23.41 27.04 26.11 . 2449 13.04
>25 11.22 11.22  11.22 10.18 6.98

When we compare the results for NaiveBayes in Table 4.6 to the results for C4.5 in
Table 4.7, we see that C4.5 is again clearly superior. Within each table, we see that the F-
score decreases as £ increases (i.e., as more pages are used to define the context). We suspect
this is due to problems in our use of IC-session. It introduces more noise to the learner as
we increase the number of pages that have been ohserved, since the user may have several
different information needs during a long browsing session. When one considers that many
of the ICPageWords are not even present in the limited prefix sessions, the performance is

quite impressive.

4.7 Summary

When we compare the training data with the associated testing data, we find that only
30.77% of IC-pages in the testing data appear anywhere in the training data, and that the
average support for these in-training IC-pages is only 0.269. So, for those co-occurrence
based recommendation systems that could only use page frequency, about 70% of the IC-
pages would never be recommended. There is only a small chance that the remaining 30%

would ever be selected as a recommendation.
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As we are not imposing any restriction on Web users’ access to recommend relevant pages
while no co-occurrence based methods would work. T propose to learn the [CPageWord
precdiction as the first step of the IC-page recommendation. The above testing and general
evaluation results indicate that this is very promising and that it can prodnce a fairly

accurate prediction.
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Chapter 5

User Study 2: Evaluating
Browsing Behavior Models

47
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The results of ICPageWord prediction in Chapter 4.1.2 encourage us to move forward,
that is, to predict relevant Web puges (i.e., IC-pages) that satisfy the user’'s current in-
formation need. We extend owr [CPageWord model to this task. We also developed two
new methods for training browsing hehavior models, and provide algorithm to learn how to

predict which words will retrieve relevant pages by querying a search engine.

5.1 Browsing Behavior Models

Chapter 4.1.2 describes a techuique for determining which words are relevant. Here, we
develop two other methods to label each session word w, and consequently we can train
three kinds of models: ICPageWord. ICRelevantWord! , and ICQueryWord? . Each model
produces a classifier, that takes a cdescriptions of how a word is used as input, and returns a
bit indicating whether this word is relevant or not. Each of these models use training data
to train their respective classifier.

In this way, we obtain 3 different datasets based on the same raw data (browsing fea-
tures), but with (possibly) different labels for each word. For each dataset, we then run
C4.5 [58] to produce a decision tree, which will later be used to predict which words are

significant for each of these three models.

5.1.1 Browsing Feature Extraction

We consider all words that appear in all pages viewed, and compute 35 browsing features for
each word in each IC-session including all “Search Query” features in Chapter 4.6.2 as well
as a few new sequential attributes below, mainly based on the Jewell weight (Chapter 5.1.4).

Refer to Appendix B for details.

latestAppearance relativeFreq
ratioOccurences seqTFIDFWeight
avTFIDF Weight varTFIDFWeight
avJewellWeight varJewellWeight
trend TFIDF Weight trend.Jewell Weight

avTFIDF WeightBackward wvarTFIDFWeightBackward
avJewellWeightBackward — varJewellWeight Backward
avTFIDF WeightForward — varTFIDFWeight Forward
avJewellWeight Forward varJewellWeight Forward

Ncte that all sequential features are extracted from the pages visited in an 1C-session

except for the search result pages and the last IC-page.

talso denoted as IC-Relevant in [78, 80]
Zalso denoted as IC-Query in (78, 80]
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5.1.2 ICPageWord

The label here simply indicates whether this word, w. is an ICPageWord or not. In the
training examples we know which pages are 1C-pages, and hence we can simply “Jook up”

this label.

5.1.3 ICRelevantWord

While we collect data in the user study. besides annotating 1C-pages, we also ask the user
to pick out only those words she thinks are relevant to her current search task from the

current IC-session. These “relevance” bits are then used to label each word.

5.1.4 ICQueryWord

Here, I use a new mechanism to compute the weights of each word in an IC-session, and
several new browsing features have been developed based on this new mechanism.

In general, let Google(W) be the top page returned by Google when given the list of
keywords W. For any page p, Google™*(p) is defined as a list of words in p that would cause
Google to return p as the top page. This function can be approximated by finding ways to
get Google to return sample pages from the OpenDirectory http://dmoz.org.

Here, a linear function is defined to compute a predictive score for each stemmed non-

stopword w in p:
19
score(w) = Zﬁ, x PF;(w)
i=1

where PF;(w) is the i-th page feature value of w. There are 19 page features for each w in p,
including: number of occurrences of w; normalized TF/IDF of w; number of occurrences of
w in the following “HTML context” [69]: “h1”, “h2”, “h3”, “h4”, “h5”, “h6”, “a”, “title”,
“cite”, “strong”, “big”, “em”, “i”, “b”, “u”, “blink”, and “s”.

To train these f3; parameters, we randomly select N pages P = {py,p2,...,pn} from

OpenDirectory, and set these 8 = (3;) values on the sample Web pages as follows.

BEGIN
Initialize 3; as a random number in [0, 1]
For each page p; € P
compute the scores of all its words (Wy,)
rank W, based on their scores
choose top 4 words as keywords for querying search engine
G is the top returned page
Compute accuracy = w on P
Tune f; to acquire the highest accuracy
END
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After we obtain the tuned J, for any page, we compite the predictive score of each of its
words, and choose the top m words as Google™!(p). We have tricd m € {2,3,4,5,6}, and
found that m = 4 can acquire the highest accuracy, thus we choose the top m = 4 words as
Google™ (p).

The predictive score of each word w in a Web page p can also be considered as one
special kind of weight of «, which describes how likely 1 is to contribute to locating p by
querying the search engine. Here, we denote the predictive scove of w s its “Jewell weight”.

Given this notation, our goal is simply to identify Google ™' (1C-page). We define IC-
QueryWord words as the subset of words in the session that helong to Google™ (IC-page).

This Google ' (IC-page) is similar to Lexical signature [4S]. but here we extract more
features from Web page, to acquire more accurate description of the role of each word in

the page.

5.1.5 Identifying Appropriate Search Query

Whenever we need to predict a page, we first extract the browsing features of each of these
words in the current session, and then run one of these classifiers to select a subset of these
words. Unfortunately, each of these classifiers may identify lmndreds of such significant
words — far too many to submit to any search engine. Furthermore, we need to send a
LIST of words, rather than a set. For these reasons, we also learn three sets of weights (one

for each model) to rank these predicted words as follows:

35
score,(w) = Zai X BF;(w)
=1

where BF;(w) is the i-th browsing feature value of the word w in the current session. We
use the training data to set these o = (q;) values as well. Let M be the number of
words in the training set that were labeled as significant. For any value o = {a; ), let WM
be the M words with the highest score,(-) values, and for model v (y = ICPageWord,
ICRelevantWord, or ICQueryWord), let

 Hwe W IC ~y(w) = 1)

M
be the fraction of WM that are labelled as significant. For each v , we set a to optimize

precision]
this precision, score. Note that we will find different sets of o weights for each IC-model.
At performance time, we first use the decision-tree classifier to filter away most of the

words, and then run this linear function to rank the remaining words, and finally send the

top m = 4 words to the search engine, in the order of rank.
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5.2 WeblC — A Goal-Directed Complete-Web Recom-
mender System

WeblC, whose interface is shown in Figure 5.1, is a client-side Web recommender system
that employs the three browsing behavior models (described in Chapter 5.1) to suggest
[C-pages.

As the user is browsing, she has the option of clicking the “Suggest™ button to ask
WebIC to recommend a Web page. WebIC uses information from the current session to
recommend a page. [rom anywhere on the Web, that it predicts the user will find useful.
Refer to Appendix C for a sample ICPageWord model, and page sequence that WebIC

produced a relevant page as recommendation.

Favosites: - Tools -~ Help

i

A : i 1
Back, & Stapi i Rel st History - Sammary Fork  Save As i Print

Address jhttp:;'fwww.whale»museum.mgi
Search: Ehcoogls. - L) Aavita @ tveos. . Y Wivising

Diveelcd

“Whale Hotline +

Promoting stewardship

of whales and the Salish Sea
ecosystemn through
education and research.

Figure 5.1: WebIC — A Goal-Directed Complete-Web Recommender System

We assume that the user’s current browsing activity is driven by a single information
need. WebIC first divides her browsing activities into IC-sessions, and then attempts to
recommend web pages with relevant content, using only the information available in the
browsing features of words in current session. The remainder of this section explains these

steps in more detail (Figures 5.2A-D).

Step A: Identifying Browsing Sessions The process begins with a record of the pages
the user has visited and the actions the user has applied to the pages. Heuristics (in

Chapter 4.6.1) are used to identify 1C-session; see Figure 5.2A.
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Figure 5.2: WebIC System at Performance Time
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Step B: Assigning Features WebIC next converts the hrowsing session into browsing
features. ‘This step has two substeps. The first substep is to represent the coutent
of the pages in the browsing sequence by the set of words found on the pages in the
current session. Second, WebIC extracts browsing features to represent those aspects
of a user’s actions that can be used to infer her information needs. As shown in
Figure 5.2B. this step assigns a value for each browsing feature to every word in the

session.

Step C: Interpreting Features A browsing behavior model is used to decide, for cach
word in the session based on its browsing features, whether the word is likely to
represent information content. This identifies a small subset of words likely to be

relevant (Figure 5.2C).

Step D: Recommending Pages The final step is to recommmend pages. A query formu-
lator (Chapter 5.1.5) is used to turn the set of predicted words into a much shorter.
ordered list of words that is then sent as a query to a commercial search engine. As
shown in Figure 5.2D, the top ranked page returned in the list of results from the

search engine is then presented to the user as a recommendation.

Obviously, browsing behavior models play a key role in WebIC. To collect data for
training these behavior models, we conduct a user study to obtain data for training and

evaluating these models.

5.3 The LILAC Study

The study, LILAC (Learn from the Internet: Log, Annotation, Content) [82], gathers data
from people working on common daily tasks. We use the data first to train our models, and
then collect the evaluation of browsing behavior models.

LILAC study participants needed to install the L-WebIC system (Chapter 5.3.2) on their
own computers, and browse their own choice of non-private, English language Web pages.
L-WebIC kept track of all the interactions — storing a record of the pages the user visited,
as well as the evaluation data for the pages that they considered to be relevant. Whenever
the subject discovered an IC-page, she was instructed to label this page as an 1C-page hy
clicking on the “MarkIC” button. 3 Here, L-WebIC then asked the subject to compare this
page to an alternative page that it suggested, which was produced by running one of the

models on the current user session. In the case that the subject could not find a page that

3Recall that labelling is not required for the end user.
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addressed her information need, she had the option of clicking on the “Suggest” button.
which retrieved a recommended page for her review. As before, the subject was asked to
rate the usefulness of the suggested page with respect to her current information need. Note
that rating process after both “MarkIC™ and “Suggest™ takes no more than a few seconds
to complete.

There were five distinct steps involved in the LILAC study.

Pre-Test: The main purpose of the pre-test was to make I-WebIC more stable. As such.
local colleagues were recruited to participate in the pre-test, using L-WebIC for 2
hours each week. They were asked to report any bugs and to make suggestions that

would improve the usability of L-WeblC.

Pilot Study: After all participants have confirmed their participation in the study, we
then randomly selected 10 subjects for a one-week pilot study. The purpose of the pilot
study was to evaluate L-WebIC and to test the interface mechanisms before launching
the regular study. The comments and feedback from the pilot study were very helpful

in identifying potential problems and issues prior to the main study.

LILAC Study: The five-week main study was designed to quantitatively assess the dif-
ferent browsing behavior based models relative to a baseline model, and to gather data
for additional further work. Ideally, we wanted to demonstrate that our browsing be-
havior models can work effectively on arbitrary pages taken from arbitrary sites on
the Web. As such, our goal was to test our models when used by actual users working

on real-life applications.

Follow-up Survey: We also selected 12 users for the follow-up survey. The goals of the
follow-up survey were: 1) to improve our understanding of the hypothesis that a user’s
browsing actions provide information about her needs; 2) to gain an assessment of how
significant this source of information is relative to other sources of information; 3) to
test the usefulness of our assumptions about how a user’s needs, page content and
browsing actions can be represented and how relationships between these representa-
tions can be expressed; and 4) to evaluate how well our recommender system worked

with real users during unrestricted browsing on the Web.

5.3.1 LILAC Subjects

A total of 104 subjects participated in the five-week LILAC study, of which 97 resided in
Clanada, and 7 resided in the United Stated. Table 5.1 gives the geographic locations of all

LILAC subjects.
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Canada

Edmonton 82
Montreal 7
Toronto 3
Longuenil 2
Calgary, St. Alberta. Beaumont 1 (each)
USA '
PA, AL 2 (each)
CA, NC, MA 1 (each)

Table 5.1: Location of LILAC Subjects

Of the 104 participants, 98 provided age/sex information. Among them, 47% were female

and 53% were male. The age distribution of the subjects is shown in Table 5.2.

Range  Number of Subjects

18—-20 23
21 - 25 41
26 — 30 20
31-35 11
over 35 3

Table 5.2: Age of LILAC Subjects

The subjects differed in the amount of priori experience they had using the Web. This

helped us test our models in a more meaningful way, and make the results more promising.

5.3.2 L-WebIC: Enhanced WeblC for LILAC

L-WebIC, whose interface is shown in Figure 5.3, is an enhanced WebIC for the LILAC
study. It has several features that differ from WebIC.

In L-WebIC, we not only record the URL and time stamp of each browsing action, but
also the HTML source of the web pages that the user has visited. For a frame Web page,
we download all the involved frame pages. We want to record the exact page sequence that
the user has seen while browsing. We download the exact page content that the user has

visited, and we also record the user’s action sequence in the browsing session.
Annotation
There are two purposes of the “Annotation” in L-WebIC:

1. Just as with AIE (Chapter 4.3), by distributing L-WeblC to people for their ordinary

web browsing, we can collect AWLs to train a user-independent population model.

2. Log data for one specific user can be collected and used to build the personalized

model.
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Figure 5.3: L-WebIC — An Enhanced WebIC for LILAC

Whenever a visited page qualifies as an IC-page, the user is instructed to click the
“MarkIC” button in L-WebIC. Having done so, she must give the IC-page a label and
optionally specify why it qualifies, on a pop-up window. Fig. 5.4 shows the pop-up window

that allows the user to input the label and description of the IC-page.

Set Current Page As IC-

Label

Beijing sightzeeing

Desciotion [ihs page iroduses ol the taurst locales of Beiing. +]
[Optional) | P2 e ! gj

oK ~ Eancel

Figure 5.4: Annotation of L-WebIC

Training

To help us suggest useful Web pages, the L-WebIC system trains several general “browsing

behavior models” to learn the relationship between users’ page-action sequences and their
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information needs based on browsing behavior.
Evaluation

L-WeblC provides a user interface for the subjects to evaluate the suggested [C-pages. which
is the main purpose of the LILAC study (Chapter 5.3). Figure 5.5 shows the evaluation

interface.

Evahsation ~ -
Suggested Web Fages 2 Descriptive Lepwards
3w i Please check the wds 1o o Y
Tel f, what you feel bout the suggested page the right that you et mest v‘: " _1
7 Fulip/Patly answigted ry question acturatelidescribe the; . ” . 2 ;
.. i § 9 " Zsports i
‘\. Releviant, bid dops hiok afisiser my question ;rcx'l'mmaﬁlon you ware kooking - anadian i
7" Interesting, but riot so.telewant - radio
7 Remotzly related, ik il w it field
Mot iefated 2t 3t ‘ v swim .
¢ idionne
fart
| icoach -
Selectan | Clor A §
1™ ‘None of the above refated to search task
Pleass SHIECY Ari Appiopiate action for the recommended page 1 - na i et o i i
¥ Discard the $ijgesied paga £ Operi o the clsrent tsb > Openitiranewlad

Figure 5.5: WebIC Evaluation Interface

Here, whenever the user requests a recommendation by clicking the “Suggest” button,
L-WebIC presents a recommendation page, and asks the user to evaluate this proposed page.

Another goal of LILAC is to collect annotated Web logs for future research. We there-
fore instructed these paid participants to click “MarkIC” whenever they found a page they
consider to be an IC-page. After marking an 1C-page, L-WebIC will recommend an alterna-
tive Web page (different from the IC-page), just as if the user had clicked “Suggest”. Once
again, L-WebIC will then ask the user to evaluate this recommended page.

In order to evaluate the recommendation, L-WebIC will ask the user to provide feedback
in several key areas. First, the user is instructed to “Tell us what you feel about the suggested
page”. in order to indicate whether the information provided on the page suggested by L-
WebIC was relevant to her search goal. There are two categories of relevance evaluations:
related and not related at all. We further divided the related category into four different
levels, including, “Fully answered my question”, “Somewhat relevant, but does not answer
my question fully”, “Interesting, but not so relevant”, and “Remotely related, but still in
left field”.

As mentioned, after the user has explicitly identified an IC-pageusing “MarkIC”, L-
WebIC will suggest an alternative page, and ask the user to evaluate how the content of this

page compares to the original IC-page. To accomplish this, the user needs to examine both

Ut
-1
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the sugeested page and her own IC-page, while she is asked the question. ~Comparing to
vour own [(-page. what’s your preference?”. The user must select from one of the fullowing
three options: 1 still prefer my own IC-page”, “No preference”, and “I prefer the suggested
page”.

Third. the user will be asked to select informative “Descriptive Keywords™ from « short
list of words that L-WebIC predicted as relevant words. The information collected here will
be nsed to train behavior models as described in Chapter 5.1.

Finallv, the user will be asked to, “Please select an appropriate action for the recom-
mended page”. from one of three choices: “Discard the suggested page”, “Open it on the
current, tabh”, and “Open it in a new tab”. Analysis of these data will allow us to evaluate

the user’s impression of the suggested page.

5.4 Empirical Results

In LILAC, a total of 104 subjects participated in the 5-week study, visiting 93,443 Web
pages. Over this period of time, the users marked 2977 IC-pages (i.e., clicking “MarkIC”)
and asked for recommendations by clicking the “Suggest” button 2531 times.

We used the collected data during the study period to retrain each of our IC-models.
That is, the users initially used the ICPageWordg, ICRelevantWord, and ICQueryWordy
models, which were based on a model obtained prior to this study. At the 3rd week, they
used the ICPageWord; 9y, ICRelevantWord(1 42y and ICQueryWord; +») models, based on
the training data obtained from week 1 and 2, in addition to the prior model. And so on
and so forth.

The Followed Hyperlink Word (FHW) model is used as a baseline model for this study. It
is similar to the Inferring User Need by Information Scent (IUNIS) model presented in [15].
The basic idea is to collect those words found in the anchor text of the followed hyperlinks
in the page sequence, rank based on their frequency, then pick out top 4 words as query

keywords. As such, there is no training involved in this model.

5.4.1 Overall Results

At the conclusion of the LILAC study, we collected the evaluation results of these 1C-models
and the baseline model.

As these two conditions are significantly different, we analyzed the evaluation results for
“Suggest” and “MarkIC” separately.

Figure 5.6 indicates how often the user considered the “Suggest”ed page to be “related”

(Chapter 5.3.2), and Table 5.3 shows the results in 4 sub-categories. We see that each of
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TFigure 5.6: How often Users Rated a Recommended Page as “related”, after “Suggest”

our 3 1C-models works much better than the baseline model as each returned page that was

considered to be related over 65% of the time, versus the 38% for FHW.

Model | Fully Somewhat Interesting Remotely

FHW | 0.068 0.118 0.093 0.106
ICPageWord | 0.253 0.237 0.116 0.121
ICRelevantWord | 0.202 0.246 0.158 0.098
ICQueryWord | 0.201 0.216 0.126 0.126

Table 5.3: Ratio of Relevant Recommended Pages after “Suggest”

Figure 5.7 shows the evaluation results for the recommended pages after the user clicked

“MarkIC” | which is the sum of the 4 “related” categories in Table 5.4.

T

FHAS ICMord IC-Relevant IC-GQuery

T

Figure 5.7: How Often User Rated a Recommended Page as “Related”, after “MarkIC”

We again observe that our IC-models work better than FHW. The scores for ICPageWord
and ICRelevantWord remained at around 70%, roughly the same values they had for the
“Suggest” case, while the ICQueryWord model increased from 66% to 74%. We also observed
that FHW increased by almost 10%. As an explanation, we speculate the following: If the
subject 1s able to find an IC-page, then the links followed in the current session appear to
provide a very strong hint of what constitutes the relevant information content; and FHW
benefits significantly from this hint.

To test whether there is any significant difference among these models, we ran several
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Model | Fullv. Somewhat Interesting Remotely

FHW | 0.1t 0.134 0.134 0.106
[CPageWord | 0.2533 0.227 0.125 0.117
ICRelevantWord | 0.276 0.235 0.136 0.085
ICQueryWord | 0.291 0.217 0.127 0.111

Table 5.4: Ratio of Relevant Recommended Pages after “MarkIC”

statistical tests on the evaluation results. The Friedman ANOVA is a statistical measure
of two-way analysis of variance by ranks. and as such, is a nonparametric test for use with
k repeated (or correlated) measures. In LILAC, each subject was required to evaluate the
recomnmended page generated hy one of the models, thus we need to compute each subject’s
evaluation on each of these randomly selected models. This is accomplished by evaluating
the Friedman test using & = 4. The null hypothesis states that there is no significant
difference among the four models. The result of the Friedman statistic is 56.6395, which
corresponds to p < 0.0001. Given the threshold for significance (p=0.05), these results
demonstrate that there does exist significant statistical difference among these four different
models used in the LILAC study.

The Wilcoxon signed-ranks test is another nonparametric test that can be used for 2
repeated (or correlated) measures. As such, we run the Wilcoxon test on each pair of the
four models, and the results are presented in Table 5.5.

p
FHW < ICPageWord | <0.0001
FHW < ICRelevantWord | <0.0001
FHW < ICQueryWord | <0.0001
1CPageWord# ICRelevantWord | 0.6727

ICPageWord# ICQueryWord | 0.7796
ICRelevantWord# [CQueryWord | 0.7959

Table 5.5: Wilcoxon’s Test on Overall Results

TFrom Table 5.5, we conclude that each of the three different 1C-models perform better
than the baseline model (i.e., FHW). This result validates our basic assumption that we are
able to provide useful recommendations by integrating the user’s browsing behaviors into
the prediction.

In addition to the aggregated results, we also compute how each of the three IC-models
performed over the course of the LILAC study. Table 5.6 shows the evaluation of the various
different IC-models for each week of the experiment.

From Table 5.6, we can see that performance does not increase linearly with the addi-

tional training data available over the study period. This is especially true for the percentage
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Week Fully  Somewhat  Interesting Remotely Irrelevant
1CPageWord

1 0.1559 0.2271 0.1373 0.2254 0.2542
2 0.2674 0.2396 0.0972 0.1319 0.2639
3 0.1964 0.2054 0.1964 0.0804 0.3214
4 0.3056 (.2222 0.0833 0.1667 0.2222
5 0.2593 ().2593 0.1111 0.0741 0.2963
ICRelevantWord

1 0.1270 0.2052 0.1652 0.2191 0.2835
2 0.2423 0.2500 0.1500 0.1000 0.2577
3 0.2062 0.1356 0.1340 0.1031 0.3711
4 0.3286 0.2571 0.1714 0.0429 0.2000
5 0.2143 0.2857 0.0714 0.0714 0.3571
ICQueryWord

1 0.1456 0.2253 0.1577 0.2236 0.2478
2 0.2491 0.2058 0.1227 0.1480 0.2744
3 0.3173 0.1635 0.1346 0.0865 0.2981
4 0.2195 0.3049 0.1220 0.0854 0.2683

Table 5.6: Weekly Data for IC-Models

of these “Fully” suggested pages. The training data and the subjects’ expectation might be
the main reason for this observed fluctuation in performance. Indeed, the models for the
first week are based on the pre-test data, which can be considered less reliable, and are thus
likely contributed to the lower score for these models initially. Starting from the second
week, each of the models were trained using all previous LILAC data. This resulted in an
increase in the performance of the models, as expected, since the training data now included
data submitted by the study participants. But while the subjects obtained greater experi-
ence, their expectations of the system could also be expected to change. For example, based
on the improvement in the recommendations seen in the second week, the subjects would
expect that the performance would continue to increase in the following weeks. However, if
the improvement seen in the third week did not match these higher expectations, then the
users may have interpreted the performance as lower even though the third week’s models

were actually more refined.

5.4.2 Simple Browsing Behavior Models

All the IC-models that we trained in LILAC were decision trees. After investigating these
decision trees, we found several significant browsing features including, “ratio of the pages
in the session that contain word w”, and “latest relative location of the page that contained

w”, etc. We selected three such features and ranked all the words based on these features.
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Then we selected the top n = 4 words as query keywords, The goal was Lo evaluate how
nuich other browsing features contribute to the overall prediction. To examine this question,

we compared these simplified models (described below) to the complete IC-models.

Most Frequent Word (MFW) In this model, the munber of occurrences of a word w in

the session is multiplied by the fraction of the pages that contain w.

Simple TFIDF (STFIDF) In this model, rather than computing w's TF/IDF on each
page, we just treat all the pages in the session as one page, and calculate w’s TFIDF

weight in this virtual single page.

Both the MFW and STFIDF models were tested only once during the study, week 1 for
AMFW and week 3 for STFIDY. Figure 5.8 shows the evaluations of MFW and the three
different IC-Models in Week 1 of the study.

08
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Figure 5.8: Comparison of MEW model to IC-models Data from Week 1

P
MFW < ICPageWord | 0.0704
MEW < ICRelevantWord | 0.5408
MFW < ICQueryWord | 0.2023

Table 5.7: Wilcoxon's Test on MFW and IC-models Data from Week 1

We then ran the Wilcoxon test on these data from Week 1 to see whether there exists
significant difference between MFW and any of our IC-Models. As shown in Table 5.7, we
cannot detect any significant improvement by these IC-Models. Note that for the first week
the IC-models were trained on the data from the pre-test phase of the study, and since the
main purpose of this phase was to evaluate the stability of L-WebIC, it is not suitable to use

these data for training. From the second week of the study, all the IC-Models were trained on
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LILAC data, thus we compare MFW to the average results of these [C-Models in the study
{excluding the first week of data). Figure 5.9 shows the results of the comparison between

AMEW and the three different IC-models. From these results (Table 3.8). we conclude that

there exists a significant difference between MFW and ICRelevantiVord.
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Figure 5.9: Comparison of MFW vs. IC-models on Average from Week 2

p
MFW < ICPageWord | 0.1443
MFW < ICRelevantWord | 0.0168
MFW < ICQueryWord | 0.0826

Table 5.8: Wilcoxon’s Test on MFW and IC-Models on Average From Week 2.

We also ran the Wilcoxon test on these data in Week 3 to compare STFIDF to each of
the three different IC-Models. Figure 5.10 shows the evaluation of STFIDF and IC-Models

in Week 3, and the Wilcoxon test results are presented in Table 5.9.
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Figure 5.10: Comparison of Simple TFIDF Model to IC-models Data at Week 3
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p
STFIDF < ICPageWord | 0.69083
STFIDF < ICRelevantWord | 0.3965
STFIDF < ICQueryWord | 0.0438

Table 5.9: Comparison of STFIDF vs. IC-Models at Week 3

We conclude from the results in Figure 5.9 that ICQueryWord is able to generate better
recommendations than STFIDF. In fact, following careful investigation of the log data,
we noticed that STFIDF only generates good recommendations under certain conditions.
Specifically, STFIDF was discovered to work well only when all of the sessions contain highly
correlated pages such that the user never browses more than one web site without either
returning to the search results page or terminating the session. For these highly correlated
pages, especially where the user returns to the search results page multiple times within the
same session, the appearance of some words are significantly increased, which will allow the
STFIDF model to artificially find relevant words. Indeed, for those cross-site or cross-topic

sessions, the performance of STFIDF is found to drop dramatically.

5.4.3 Alternate Training for ICQueryWord Model

In order to train our IC-models, the study participants must actively label IC-pages while
browsing the Web; this is so inconvenient for the user that is it unrealistic in a production
version of the system. To solve this data collection problem, we propose to passively train
the ICQueryWord model based on previous evaluation results. Recall that every time a user
requests a recommendation, we generate a search query using one of the models, and send the
query to search engine to produce pages, then return a page to the user, which she must then
evaluate. If we assume that the search engine (e.g., Google) remains relatively consistent
over time, we can label each query by using the actual evaluation of the recommended page.
For example, the user may evaluate the top returned page as “Fully”, which was based on
the query ¢ =“data mining software public”. We can then label ¢ as “Fully”. From these
results, we can extract only the queries that are evaluated as “Fully” as belonging to the
1CQueryWord model.

In LILAC, the ICQueryWord models derived in the first four weeks of the study were
trained based on annotations (refer to Chapter 5.1.4). In the fifth week we changed the
experimental protocol to train the ICQueryWord model based on only those queries that
resulted in a “Fully” evaluation in the previous weeks. The evaluation results of the two
training methods are presented in Figure 5.11.

We conclude from Figure 5.11 that by using the previous evaluation results we can obtain
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Figure 5.11: Training ICQueryWord Models

a similar performance as compared to when the [CQueryWord model was trained directly on
the original IC-pages. This result is significant in that it will allow us to continuously refine
the ICQueryWord model without requiring user input to label IC-pages while browsing the
Internet. Importantly, this alternate training method will make the recommender system

more realistic in real world situations, as opposed to mainly research environments.

5.5 Off-line Evaluation of Web User Models using LILAC
Data

We can conclude that these browsing behavior models work better than the baseline model
based on the evaluation results collected in LILAC, but it is time consuming and costly
financially to conduct such a user study whenever a new model has been developed. In this
section, I propose a novel method to assess the performance of Web user models off-line (i.e.,
infer the evaluation by an off-line computation). This chapter extends the work presented
in [81].

We assume that the user’s evaluation of the suggested page is based on the similarity
between her own IC-page and the suggested page. For each MarkIC session in LILAC, the
user annotated a page as an IC-page whenever it satisfied her current information need. In
such cases, the IC-page can be considered as the page that “Fully answered my question”.
If the suggested page is evaluated as “Fully”, it must contain very similar content to the IC-

page. Alternatively, a page that is evaluated as “Irrelevant” contains unrelated information.
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Here, we only consider the two extreme evaluation options: “Fully” and “Irrelevant”.
Our goal is a “similarity function”, f(A, B), that takes as input a pair of web pages, and
returns a large number iff they are similar. We could then evaluate f(p;c, pg) on the
1C-page (prc), and the suggested page (ps). Ideally, we would want this function to return

a large number if ps was a “Fully” page, and a small number if pg was an “Irrelevant” page.

5.5.1 Similarity Function

Of the multitude of functions that can be used to calculate the similarity between a given
pair of pages, it is very important to select a function that matches our understanding of the
evaluations: the values of f(pr¢c, pr) over the span of “Fully” pages pr must be significantly
different from the values of f(prc, pr) over the “Irrelevant” pages p;.

For each MarkIC session in LILAC, we collected a pair of pages: 1) an annotated IC-page
(p1c); 2) a suggested page generated by L-WebIC (pg). We then compute the similarity
f(prc, ps) together with the evaluation label of the suggested page. In doing so, we
can construct an independent sample table consisting of the similarities of “Fully” and
“Irrelevant” pages compared with the IC-page. We can then analyze these data using a
Mann-Whitney test to check whether there exists significant difference between “Fully”
and “Irrelevant”. Figure 5.12 describes the whole process to collect the data to verify any
purported similarity function.

Below we propose four different similarity functions. These use W(pg) and W{p;c),
which respectively denote the bags of words in the Suggested page and IC-page, after re-

moving stop words and stemming.

ITM: Information Theoretic Measure This function is a simplified version of the mea-

sure that was proposed in [32].

. W, NW (p;
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Recall: ICPageWord Recall This function shows how likely the suggested page is to be

able to recall the words in the IC-page.

W (prc)OW (ps
[rec(prc.ps) = %ﬁﬂ

avIFIDF: Average TF/IDF of Common Words This function returns the average

TF/IDF weight of the words in an IC-page that also appear in the suggested page.
S e Wy ) s TEFIDF (wewipie)
freipe(pre.ps) = T T G

avRankTFIDF: Mean of Ranks of the Common Words’ TFIDF This function ranks
all the words in IC-page based on TFIDF weights. from the highest to the lowest, and

returns the mean of ranks of the words in W(p;c) "W (pg).
TFIDFRank ;
Y wewin V(s ank{(weWpre))
TRant(PrC Ps) = SIS I(I[/V"()mc)ﬂw(nsﬂ

For each similarity function, we collect the testing samples by following the procedure
in Figure 5.12, and then perform the directional Mann-Whitney test (Appendix A) to de-
termine whether there is a significant difference between the “Fully” and “Irrelevant” cases.
The results, shown on Table 5.10, indicate that each of the four functions can detect the

significant difference between “Fully” and “Irrelevant” pages as compared with 1C-pages.

Hypothesis  Confidence Intervals p
ITM | Fully>Irrelevant >0.027 <0.0001
Recall | Fully>Irrelevant >0.045 <0.0001
avTFIDF | Fully>Irrelevant >0.007 <0.0001
avRankTFIDF | Fully<Irrelevant <-4.554 0.0055

Table 5.10: Mann-Whitney Test on Different Similarity Functions

5.5.2 Validating Similarity Functions on LILAC Data

In LILAC, every time the user annotates an IC-page, L-WebIC randomly chooses one of
four models to generate a suggested page for evaluation. Section 5.4.1 showed that the
three IC-models work better than the baseline model (i.e., FHW), based on the subjects’
evaluations.

To validate the functions that we proposed in Section 5.5.1, we performed an analysis
of these functions on LILAC data, to determine whether the results are consistent with the

conclusions that we have made based directly on evaluation results.
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Figure 5.13: Validation on LILAC Data

For one-quarter of the MarkIC sessions within the LILAC study data, L-WeblC selected
the baseline FIIW model. We can now compute the similarity between the user’s IC-
page, prc, and this proposed prgw page, f(prc. pruw ). using each of the 4 functions,
f e {firm: free; freipr, fRrank}-

In each such case, we will now generate 3 other proposed pages based on that user
session, one using each of the three other IC-models (ICPageWord, ICRelevantWord, and
[CQueryWord) and call them pweord, Pretevant 80d POuery. We can then compute the
similarity between IC-page prc and each of these pages: f(prc, Pword), f(Prc, PRetevant)
and f(prc, pQum‘y)-

Similarly, if any of the above 1C-Models is chosen during the user study, we can again
compute f(prc, py) for the p, suggested. We can also run the FHW model on the same
session to produce ppyw, and then compute f(prc, Praw)-

For each similarity function, we run the same process on all MarkIC sessions as shown in
Figure 5.13. For each MarkIC session, we can obtain a pair of similarities, f(pic, praw)
and f(prc, py). To test the hypothesis that each IC-Model is better than FHW, we perform
a statistical test (i.e., Wilcoxon; Appendix A) on the correlated samples. If the p value is

less than 0.05, then we can conclude that the ICModel is better than the FHW model.

| FHW <ICPageWord [ FHW <ICRelevantWord | FHW <ICQueryWord

ITM <0.0001 0.0002 <0.0001

Recall 0.087 0.0213 0.003
avTFIDF 0.1104 0.0011 0.0002
avRankTFIDF 0.0057 <0.0001 <0.0001

Table 5.11: Wilcoxon Test on LILAC Data

Table 5.11 presents all the p values of each simnilarity function on each hypothesis. It
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clearly demonstrates that the ITM and Rank (avRankTFIDFE) functions can detect a sig-
nificant difference between FHW and any of ICModels, which is consistent with the overall

resttlts in Table 5.5.
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Chapter 6

Future Work and Contribution
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6.1 Future Work

Despite the promising success of the GCW recommender system in the user studics, there
are still lots of work that should be done to make it more useful in real-life applications.

We are currently investigating more efficient ways to predict IC-pages, and wavs to
further increase the recall for the positive prediction. We also plan to collect more AW/[x
and explore the potential of content and structure mining, as well as tools for learning from
imbalanced datasets to aid us in this endeavor.

We have extracted some browsing features for each word in the observed click strean.
and we think that these features represent how the user treats the observed information.
But, there may be other attributes that are also very useful in capturing the behavior of
Web users. We intend to incorporate other browsing features.

For each word, we only compute its own attributes, but ignore its context in the page
content, such as the relationship among the words in the same sentence, same paragraph,
or same page. The attributes we are now using are applied to distinct words, but actually,
it is quite possible that several words in the IC-Session may have the same meaning. We
therefore plan to explore Natural Language processing systems to extend the range of our
predicted relevant words, such as Word Sense Disambiguation (WSD) [1, 73, 42, 75, 60].

For the learning part of the ICPageWord prediction, we have tried C4.5, which is very
reliable. In future research, we intend to try different learning algorithms, such as support
vector machines, or neural networks, to find more accurate predictors, and the emerging Web
technology such as semantic Web to get a better understanding of the context of arbitrary
pages.

To deal with the imbalanced data, we chose downsampling rather than over-sampling,
as down-sampling seems work better. But while down-sampling may increase the recall
of the prediction, it might decrease the precision. Are there any other methods that can
perform better than down-sampling, or can we develop new learning algorithms to avoid
the imbalance of the learning?

Each of our current models is basically user-independent. We are considering ways to
personalize the generic model by assigning each user individual prediction weight for the
generic one [36].

We are also exploring the best way to apply the browsing behavior models to other appli-
cations besides Web recommendation, such as prefetching [74], topic focused crawling [45],

etc.
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6.2 Contribution

The ultimate goal of my research is to help Web users by suggesting relevant pages from any-
where on the Web. To address this challenge, I have developed a Goal-Directed Complete-
Web recommender system to reconunend pages to satisfy the user’s current information
need. without requiring any explicit input. The recommender system uses browsing models
that describe how a user locates useful information (IC-pages) on the Web. The models are
not based on a specific set of words or URLs. bhut rather on a user’s observable behavior in
response to the information within the pages visited.

We conducted two user studies Lo collect annotated Web logs and evaluate the browsing
behavior models by actual people. We considered several browsing behavior models to
determine which words encountered in the current browsing session would be relevant to
the user’s search task, which are then used to locate the pages that satisfy their information
needs. In particular, we investigated a general way to extract relevant information based
only on the user’s current web session: by finding browsing features of the words that
appear, then using a classifier to determine which of these words are significant for locating
IC-pages to satisfy the current information need. Three models have been developed within
this framework: ICPageWord, ICRelevantWord, 1ICQueryWord. The results collected from
LILAC show that all three approaches work effectively, finding relevant pages approximately
70% of the time, and that all three models are superior to a plausible alternative approach
(FHW). We also provided a way to obtain comparable performance without requiring as
additional annotation from the users, which will help us in producing an even more practical

Web recommendation system.
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Non-parametric tests are often used when we want to determine statistically significant
difference but with fewer and weaker underlying assumptions than those associated with
parametric tests. We employed two non-parametric tests to evaluate the quality of our
functions : Mann-Whitney and Wisconsin.

Mann-Whitney Test The Mann-Whitney test can be used to analyse data from a two-
group independent design (Experimental vs Control). The null hypothesis Hy assumes
that the two sets are from the same population: and therefore, there will be no sig-
inificant difference between them. The alternative hypothesis states that the two
sets do differ significantly, and it can also specify the direction of the difference (i.e.,
Experimental Group is systematically higher or lower than Control Group).

Wilcoxon Signed-Ranks Test The Wilcoxon signed-ranks test is another non-parametric
test that can be used for 2 repeated measures. It takes into account both the magni-
tude and the direction of the difference.
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We consider all words that appear in a session S. removing stop words and stemming
{using standard algorithms [57]), then compute several browsing features for each word w;.
In all cases, il the URL refers to a frame page, we calcudate all the following measures based

on the page view. i denotes that the browsing feature has been used in travel study in
Section 4.1.2, and T shows that the feature used in Section 5.1.1.
isKeywordCnt{i

Number of times that w appeared within the query’s kevword list.
skippedTitleCnt71
Number of skipped titles containing w.

skippedSnippetCntti
Number of skipped snippets that contain w.

chosenTitleCntji
Number of chosen titles that include w.

chosenSnippetCntii
Number of chosen snippets that include w.

untouchedTitleCntfi
Number of untouched titles that include w.

untouchedSnippetCntii
Number of untouched snippets that include w.

unknownCntii
Number of times that w appears in the anchor of a chosen link that is not one of the
listed results — e.g., when the user clicks the hyperlink in the advertisement area.

bkTitleCntii
Number of chosen titles that include w, but where the user later goes back to the same
search result page, presumably to try another entry there.

bkSnippetCntii
Number of chosen snippets that include w but were later “backed”.

latest Appearancel
the relative position of the latest page that contains w.

relativeFreqt
In S, compute the ratio of the number of occurrences of w to the number of the
occurrences of all the words in S.

ratioOccurences}
the ratio of the number of pages contain w to the length of S.

seqTFIDFWeight}
(the absolute number of occurrences of w) x w’s 1IDF.

ratioWord Appearancefi
Number of occurrences of w divided by the number of all words.

avWeight{

Average weight of w across the whole session.
var Weight{

w’s weight variation across the whole sequence.
avIFIDFWeight}

Average TF/IDF weight of w in S.
varTFIDF Weighti

w’s TF/IDF weight variation in S.
avJewellWeight{

Average Jewell weight (Chapter 5.1.4) of w in S.
varJewell Weight 1

w’s Jewell weight variation in S.
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trendWeighty
The trend of the word’s weight in the whole sequence: { ascend, descend, unchanged }.
If the word s weight becomes higher along the session. it is expected to be ICPageWord
with high probability.

trend TFIDFWeighti
The treud of w's TFIDF weight in St { ascend. descend, unchanged }. 1f the word’s
weight becones higher along S, it is expected to be ICPageWord with high probabil-
ity.

trendJewellWeight
The trend of w's Jewell weight in S: { ascend. descend. unchanged }.

ratioLinkFollow{1
For the hyperlinks whose anchor text contain w,
L . __ followed hyperlinks whose anchor text contain w
ratioLinkFollow({w) = I e - -
hyperlinks whose anchor text contain w

ratioFollowti

How often w appeared in the anchor text of hyperlinks that were followed : ratioFollow(w)
_ number of followed hyperlinks whose anchor text contain w
- length of S —1 :

ratioLinkBackii
For the clicked hyperlinks whose anchor text contain w:
ratioLinkBack(w) — number of hyperlinks that were backed later
¢ ‘ v number of hyperlinks followed ’

ratioBackwardfi
For these pages that contain w, ratioBackward(w) = number of pages that are revisited
number of pages

avWeightBackwardf
The average weight of w in the backward pages.

varWeightBackwardf
The variance of w’s weight in the backward pages.

avITFIDF WeightBackwardi
The average TFIDF weight of w in the backward pages.

varTFIDF WeightBackward}
The variance of w’s TFIDF weight in the backward pages.

avJewellWeightBackwardf
The average Jewell weight of w in the backward pages.

varJewellWeightBackward{
The variance of w’s Jewell weight in the backward pages.

ratioForwardi}
number of pages that are forward
number of pages ’

For the pages that contain w, ratioForward(w) =

avWeightForwardj
The average weight of w in the forward pages.

var WeightForwardf

The variance of w’s weight in the forward pages.
avIFIDFWeightForwardi

The average TFIDF weight of w in the forward pages.
varTFIDFWeightForwardi}

The variance of w’s TFIDF weight in the forward pages.
avJewellWeightForwardi

The average Jewell weight of w in the forward pages.

varJewellWeightForward?
The variance of w’s Jewell weight in the forward pages.
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ratiolnTitlej1

For those pages that contain w,
~number of pages that contain w in the title
- number of such pages :

ratioluTitle(w)

ratiolnvisibleji
; : - number of pages where w is invisible
For these pages that contain w, ratiolnvisible(w) = pag :
number of pages

We only count the words in META tags (keyword & description) as invisible.!

'We thought “ratiolnvisible” might be very important, as many websites ensure that all the relevant
words appear in the META elements of the page, as a way to help establish a good position in search engine
results pages.
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Appendix C

One Sample ICPageWord
Model and Recommendation
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Figure C.1 is part of the decision tree of IC'PageWord model that has been used in LILAC
study.

A ®
Lt s

® *

Figure C.1: One sample ICPageWord decision tree

By using the decision tree in Figure C.1, we recorded the page sequence of one subject’s
browsing as follows.

http://www.google.ca/search?q=analytical+coverage+regular+placement+optimal
http://www.it.cityu.edu.hk/~clliu/
http://www.google.ca/search?q=analytical+coverage+regular+placement+optimal
http://wuw.sheridanprinting.com/typedept/dacl . htm
http://wuw.google.ca/search?q=analytical+coverage+regular+placement+optimal
http://tcad.ece.orst.edu/1ist03.html
http://wuw.google.ca/search?q=analytical+coverage+regular+placement+optimal
http://bikmrde.lm.fju.edu.tw/eee04/Long-accept-1list.htm

After the subject visited the above page sequence, s/he clicked the “Suggest” button to
request a recommendation. WebIC observed the above page sequence, and predicted the
following query:

placement+optimal+reqular+paper

It then sent the query to Google, and took the top returned page as the recommenda-
tion. The subject rated the suggested page as

“Fully answered my question”.
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