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ABSTRACT

Bi-material interface is often observed in many advanced materials and
structures. Measurement of the interface bonding strength is more challenging
than the measurement of pure tensile or shear strength of a homogeneous material
because of the presence of the stress singularity at the interface corner, non-
uniform stress distribution along the interface and the co-existence of normal and
shear stress components. In this PhD research project, a new innovative test
method including specimen design, test procedure and an iterative calculation
algorithm, is developed for more accurate determination of the interface bonding
strength.

Three different types of bi-material interface are considered in this study;
interface between elastic and elastic materials, between elastic and viscoelastic
materials, and between viscoelastic and viscoelastic materials. Analytical
solutions are developed to determine the stress singularity and conditions for its
elimination for all the above three types of interface. The analytical solution for
the elastic/elastic bi-material interface is derived based on the axi-symmetric
asymptotic analysis. For the elastic/viscoelastic and viscoelastic/viscoelastic bi-
material interfaces, the analytical solutions are obtained from the solution of
elastic/elastic interface through the elastic-viscoelastic correspondence principle.
The developed analytical solutions are further verified by FEM numerical
analyses.

Three different materials; Aluminum, Epoxy and Polyvinylchloride (PVC)

are considered. The elastic material properties of the selected materials are



determined by uni-axial tensile tests. To determine the viscoelastic properties,
relaxation tests are carried out on the viscoelastic materials. It is found that the
order of the stress singularity changes with time due to the viscoelasticity of
materials. If any stress singularity exists at the interface corner, with time the
order of singularity increases. For a non-singular stress case at the interface
corner, the order of the stress singularity may increase or decrease with time,
depends on the bonding angle (specimen geometry).

With the proposed design that can eliminate the stress singularity at the bi-
material interface corner, the loading capacity of the specimen is also increased.
For example, the tensile load carrying capacity of such designed aluminum/epoxy
bonded joint is increased by 2.65 times than that of the ASTM (American Society
for Testing and Materials) butt joint design. Finally, as a practical application of
this research, the optimal ranges of bonding angles at the interface corners of
porcelain fused to metal (PFM) dental crowns with precious or non-precious

metal alloys are suggested.



PREFACE

This thesis is based on the work I have done in the Advanced Composite
Materials Engineering Group of University of Alberta from January 2009 to April
2012 on the bi-material interface bonding strength. The idea of conducting the
study on this topic came forward in order to study the debonding failure or
damage mechanism of composite materials, as the reliable interface bonding
strength data are not available. This thesis is written in mixed format. It consists
of eight different chapters. In Chapter 1, a brief review on the interface of bi-
materials is presented. At the end of this chapter, the disadvantages or
shortcomings of current methods for the interface bonding strength measurement
are summarized and the objectives of this study to overcome those
disadvantages/shortcomings are given. In Chapter 2, the developed new method to
determine the bi-material interface bonding strength is explained. In Chapter 3,
the experimental facilities and characterization of materials are presented.
Experimental determination of elastic and viscoelastic properties of three
materials (aluminum, epoxy and PVC) is described. In Chapters 4, 5 and 6, the
interface bonding strength determination of elastic/elastic, elastic/viscoelastic and
viscoelastic/viscoelastic interfaces are presented by the developed method
respectively including the analytical solutions to determine the stress singularity
at the interface corner. In Chapter 7, an optimal design of a PFM dental crown is
developed based on this study. Finally, in Chapter 8, the summary of the thesis

and further recommendations are presented.
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CHAPTER 1: INTRODUCTION

Part of this chapter has been published as

Chowdhuri, M. A. K., Xia, Z., 2010. Elimination of Stress Singularity from
Interface Corner and Measurement of Interface Bonding Strength: A review.
International Review of Mechanical Engineering, 4(7), 908-916.



CHAPTER 1

INTRODUCTION

Bi-material interfaces exist in many advanced materials and engineering
structures. It has been established that because of the presence of the stress
concentration/singularity at the interface corner, failure may initiate from the
interface corner. In order to characterize the interface properties, it is necessary to
determine the bonding strength of interface accurately by eliminating the stress
singularity. This chapter presents a brief review on the studies available in open
literature covering the stress singularity analysis at bi-material interface,
determination of the order of the stress singularity, stress singularity elimination
techniques, and measurement of the interface strength. Finally, the objectives of

the current research are presented.

1.1  BI-MATERIAL INTERFACES

Interfaces between reinforcement and matrix in composite materials; metal
and ceramic in electronic packaging and metal coating; ceramic and polymer in
biomaterials; sensor and structural components in smart structures; and solder
joints in electronics are some of the typical examples of bi-material interface. As
one kind of composite material structure, bi-material lap joints have been widely

used in aircraft, spacecraft, helicopters and automotive industries (Chaudhuri and
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Chiu, 2009). Usually, these joints can satisfy some special requirements of
engineering structures that cannot be fulfilled by using single material
components. For example, ceramics/metal joints can make full use of the
superiority of both materials, such as the resistance to high temperature and
corrosion and unique electronic functions in ceramics, and the ductility and good
machinability of metals (Hu et al., 1998). Other advantages of adhesive bonding
of dissimilar parts in the aerospace, automotive and electronic industries are high
strength to weight ratio, improved appearance, improved corrosion resistance and
cost effectiveness (Kinloch, 1993).

Adhesive bonding has been increasingly used in joining and repairing
load-carrying structural components (Adams and Wake, 1984; Baker and Jones,
1988; Kinloch, 1993). Compared to the mechanical fastening, e.g. riveting or
bolting, adhesive bonding may provide more uniform and efficient load transfer
into the patch and can reduce the risk of high stress concentrations. This leads to
the wide use of bonded repairs instead of using riveted repairs in aircraft
structures (Vlot et al., 2000). One of the common examples of bonded joint is the
single-lap joint. Existing single lap joints are made of two substrates joined by
using the mechanical connection method, chemical connection method or solid-
phase bonding process.

However, bi-material joint is sensitive to the changes in the geometrical
parameters. These geometrical parameters affect the performances of a bonded
joint. It is well known that there are discontinuities of material and geometry at

the bonding edges in these joints. These discontinuities may cause singularities in
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the stress fields or very high stress concentration near the vertex of the bonding
edges. This stress concentration/singularity may lead to the delamination initiation
in the local area, and subsequently to the global failure of the joint structures (Hu
et al., 1998; De Chen and Chue, 2003).

That is why most researches on bi-material interfaces deal with the stress
singularity. In fact, to characterize the interface properties, sound knowledge on

the stress singularity is required.

1.2 STRESS SINGULARITY AT BI-MATERIAL INTERFACE

The singularity in the stress fields near the free edges of dissimilar
material components is one of the main factors responsible for debonding under
the mechanical and/or thermal loading (Stenger et al., 2000; Wu, 2004).
Numerous studies have shown that the failure often occurs along the
interface/joint between two materials with high property mismatch (e.g., free-edge
delamination in composite laminates and debonding between thin film/substrate)
and improving the interfacial properties (especially reducing the interfacial stress
level) can enhance the overall material/structural behaviors (Kerans et al., 1989;
Hutchinson and Suo, 1992; Kallas et al., 1992; Liechti and Liang, 1992; Gundel et
al., 1995; Krawczak and Pabiot, 1995; Xu et al., 2003). Stress singularity at the
interface between the adhesive and adherend is reported by many researchers
(Williams, 1952; Hein and Erdogan, 1971; Groth, 1988; Akisanya and Fleck,

1997). The existence of bi-material interfaces is an intrinsic characteristic of



Chapter 1: Introduction 4

adhesive joints which results in asymptotic singular stress fields at the bi-material
interface corners. This type of stress singularity is the major driving force for the
failure of adhesive joints (Gradin, 1982; Reedy, 1990; Ding and Kumosa, 1994;
Ding et al., 1994). Ding et al., (1994) reported that the corner stress singularity at
an adhesive interface is a major problem for the joint design. Of the many factors
affecting the strength of a bonded joint, the magnitude and distribution of stresses
in both the adhesive layer and substrates are most crucial to the design of bonded
joints. For elastic adhesive layer and the substrates, a complex stress singularity
exists at the termination of the adhesive layer (Bogy, 1971; Hein and Erdogan,
1971). Many researchers considered the case of interface with singularity as a
crack problem in fracture mechanics. The interface corner is identified as a
potential fracture initiation site because of the stress singularity at the interface
corner (Liu and Fleck, 1999; Akisanya and Meng, 2003). Many researchers
reported that fracture always starts at the stress concentration points, which are
often the stress singularities at the corners of elastic/elastic bi-material interfaces
(Williams, 1952; Kondrat'ev, 1967; Stern and Soni, 1976; Grisvard, 1989), or at
joints consisting of anisotropic layers (Leguillon and Sanchez-Palencia, 1987;
Desmorat, 1996; Desmorat and Leckie, 1998; Liu and Fleck, 1999).

To find the analytical solutions of stress distribution near the interface
corners, extensive research has been conducted by many researchers (Bogy, 1968,
1971; Hein and Erdogan, 1971; Theocaris, 1974). Since Tranter (1948) used the
Mellin transforms to obtain an analytical stress solution for an infinite wedge, the

stress singularities in a single-material wedge under different boundary conditions



Chapter 1: Introduction 5

has been investigated extensively. For example, Williams (1952) employed the
Airy stress function and the separation of variables to study the single-material
wedge under various boundary conditions. A 7 * (0</<1) type singular stress field
was found near the apex of an isotropic elastic material. The value of ‘4’ can be
real or complex. Bogy (1968) employed the Mellin transform to treat the wedge
problems of two bonded materials subjected to the surface traction at the
boundaries. The singular stress problems have been studied for the angular
corners of isotropic materials by Williams (1952); Bogy (1968); England (1971);
Stern and Soni (1976); Reedy (1990) and for the multilayered media by
Schmauder (1989); Kelly et al. (1992); Reedy (1993). This study has been
extended to the anisotropic layers by Leguillon and Sanchez-Palencia (1987)
using a numerical method and then by Desmorat (1996) who derived a closed-
form solution. Theocaris (1974) studied a multi-material wedge by a series
solution using the Kolosov-Muskhelishvili (Muskhelishvili, 1953) complex stress
functions. Ma and Wu (1990); Munz et al. (1993); Munz and Yang (1994); Yang
and Munz (1994,1997); Chen (1995); Ma (1995); Yang (1998, 1999), all devoted
themselves to the formulation of an angular function for a single or two material
wedges. Sinclair (1999) carried out a detailed investigation on the logarithmic
stress singularities resulting from various boundary conditions in a single-material
wedge. Many other investigators (Cook and Erdogan, 1972; Fenner, 1976;
Barsoum, 1988; Yang and Munz, 1994; Pageau and Biggers, 1995) examined the
behavior of the stress singularity around the wedge, edge crack and the interface

crack.



Chapter 1: Introduction 6

Bogy (1968, 1970, 1971); Bogy and Wang (1971); Hein and Erdogan
(1971); Theocaris (1974); and Dempsey and Sinclair (1979, 1981) established the
dependence of the order of the stress singularity on the elastic constants of
materials and local geometry of the multi-material wedges or junctions. Dundurs
(1969) developed two composite elastic parameters to relate the order of the stress
singularity in a two-material wedge. Lazzarin et al. (2002) presented a method for
the evaluation of the singular stress fields in the bonded joints of different
geometries. The stress distributions are represented by a two-term stress
expansion, under the hypothesis that both the first and second terms are in the
variable separable form.

Singular solutions are also used to solve the linear elastic fracture
mechanics problems and the procedures are illustrated in the standard texts
(Liebowitz, 1968; and Kanninen and Popelar, 1985). The singular crack solutions
for the power-law hardening plasticity were studied by Hutchinson (1968); Rice
and Rosengre (1968). Desmorat and Leckie (1998) provided a fast calculation
technique for the 2D-elastic singular strains, stresses and displacements close to
the corners, edges or interface ends of joints constituted of anisotropic layers.
Isotropic results are also derived as a limiting case of the general anisotropic
study. Akisanya and Meng (2003) characterized the stresses near the interface
corner of bonded joints by the interface corner stress intensity factor and the order
of the elastic singularity. Based on the theoretical solution for the order of the

stress singularity, De Chen and Chue (2003) determined the corresponding stress
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intensity factors for a one or two-bonded wedge, under the mechanical or thermal
loadings by using the finite element approach.

Ding et al. (1994) addressed that in evaluating the asymptotic field for the
corner stress singularity, it is essential to consider various joint geometries,
adhesive and adherend elastic properties, and the non-linear material effects.
Marsavina and Craciun (2009) considered the non-linear elasto-plastic material
with Ramberg-Osgood power hardening law bonded to a rigid elastic substrate to
derive asymptotic plane-strain solution near the interface free edge with small-
scale yielding. Desmorat and Lemaitre (1998) studied the singularity of the elastic
stress field close to a sharp notch with any angle in a multi-material joint by
means of the complex potential method. The order of the singularity is obtained as
a closed-form solution depending upon the angle of the sharp notch. Studies have
also shown that for the joints bonded with brittle adhesives, the intensity of the
stress singularity at the interface corner could be used to predict the failure of the
bonded joints (Groth, 1988; Reedy, 1990).

The stress behavior at the interface corner of three materials has been
investigated by Qian and Akisanya (2001). It was found that the stresses near such
interface corner are significantly higher than those at a free-edge corner of two
materials under the same thermal loading conditions. Qian (2001) considered the
stresses near the wedge corner consisted of a singular stress term and a regular
constant stress term. The influence of adhesive joint design parameters such as
the type of joint, geometry and material properties on the generalized stress

intensity factors are presented by Lazzarin et al. (2002).
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1.3 ELIMINATION OF THE STRESS SINGULARITY FROM BI-

MATERIAL INTERFACE

There have been a lot of studies on the characterization of the stresses at
the interface corners of various joint geometries and on the minimization of the
stress singularity. Cherry and Harrison (1970); and Groth and Nordlund (1991)
suggested an iterative procedure for optimizing the geometry of the adherend to
obtain a uniform stress distribution in the adhesive layer, while Adams et al.
(1973) proposed the use of varying adhesive layer thickness to reduce the stress
singularity. Akisanya and Meng (2003) reported that the geometry profile of the
adherend needed to eliminate the stress singularity is complex and it is often
difficult to machine the adherend to the required shape. The type of singularity
depends on the choice of joint geometry, and the elastic and thermal properties of
the materials (Williams, 1952; Bogy, 1968, 1971). Goglio and Rossetto (2010)
confirmed that the most influencing parameter on the stress singularity is the edge
angle.

Sawa et al. (2009) conducted a two-dimensional stress analysis of
adhesive butt joints with elastic circular fillers in the adhesive subjected to the
external tensile loadings and reported that as the amount of filler particles
increased, the stiffness of filler increased and more filler particles approached to

the edges of the interfaces. Thus, the joint strengths were increased. However,
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though joint strengths were increased, the singularity cannot be avoided in this
process.

The shape optimization of bi-material single-lap joints was performed by
Hu et al. (1998). They investigated the free-edge stress singularity and condition
for its disappearance near the vertex of bonding edges in a single-lap joint. On the
basis of sequential linear programming, they proposed a shape-optimization
approach for the single-lap joint. They also reported that the strength of a single-
lap joint can be improved significantly by using their optimum technique because
of the stress concentration at the interface can be reduced significantly by using
their proposed optimum approach. According to their recommendation, the
general characteristic of the optimum shapes is that those parts of the two
substrates near the bonding edges should be cut appropriately to make the joint

into a taperred form as shown in Figure 1.1.

A

Do 0,=180°

)

v

v

Figure 1.1: Schematic of initial shape of a single-lap joint as presented in Hu et

al. (1998)
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They did the analysis for some ranges of shear modulus and reported that
the efficiency of the shape optimization becomes lower with increasing ratio of
shear moduli, uo/u;. It is also proved later that this design is not enough for
complete removal of the stress singularity. Qian and Akisanya (1999) proposed a
scarf joint of two materials and a scarf joint consisting of a thin layer of elastic
solid sandwiched between two substrates, as shown in Figure 1.2, to remove the

stress singularity at the interface corner.

trtrtrr Lttty
Material 1 Material 1
Interface
% Interface
7
Material 2 Material 2
RN A e e e B

(a) (b)

Figure 1.2: Scarf joint geometries as presented in Qian and Akisanya (1999) (a)
A scarf joint consisting of two long elastic materials (b) A scarf joint consisting of

a thin layer of elastic solid sandwiched between two substrates
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They concluded that it is impossible to completely eliminate the
singularity in many practical joint problems but the free edge singularity can be
minimized by an appropriate selection of materials and joint geometry
characterized by the scarf angle, y. However, they also mentioned that for some
specific material properties, their design can eliminate the stress singularity from
the interface corner considering as a plane strain problem.

An optimized losipescu specimen (Figure 1.3) for the shear testing of
adhesive joints to avoid (or reduce) the bi-material stress singularity was proposed

by Ding et al. (1996).

Material 1

Interface

Material 2

Figure 1.3: Rectangular plate with a skewed interface as presented in Ding et al.

(1996)
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They determined a critical skewed interface angle of ;= 126° (see Figure
1.3) and reported that if the skewed interface angle is greater than this value, the
singularity of asymptotic stress field at the bi-material wedge will totally
disappear irrespective of the mechanical properties of the two materials making
up the wedge. Liu and Fleck (1999) mentioned that the scarf joints are preferable
over butt joints as the adhesive is loaded by a combination of shear and tension
rather than in a tensile peel mode, resulting higher joint strengths.

It should be pointed out that all the above cases of scarf joint may
eliminate the stress singularity in the width direction only but could not eliminate
the singularity in the thickness direction. In fact, any 2D geometry with a straight
edge cannot eliminate the stress singularity completely. Any scarf joint as shown
in Figure 1.2 may remove the singularity from one corner of the interface, but
there will be stress singularity at other corner of the interface.

A three-dimensional eigen function expansion approach for the prediction
of the singular stress field in the neighborhood of the interfacial front of an
adhesively bonded scarf joint is presented by Chaudhuri and Chiu (2009). They
provided two solutions for the elimination of the stress singularity at scarf joints.
One is by changing the materials and another one is by designing the joint with
the wedge angle that satisfies certain conditions. Their specimen was made from
two pieces of rectangular plates (same dimensions), which were adhesively
bonded by means of a scarf joint. However, their proposed design has the same

limitation as described earlier for the 2D scarf joint given in Figure 1.2.
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A specimen design as shown in Figure 1.4 is proposed in Xu et al. (2004)
to remove the stress singularity at the free edge of the interface. They also
claimed that it can provide reasonable interfacial strength measurement and

suppress edge debonding of dissimilar material joints.

1

+«—Polymer
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/

<+«—Metal
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Figure 1.4: Specimen with convex interface (Plane strain) as presented in Xu et

al. (2004)

They selected typical polycarbonate/aluminum joints for the

demonstration of their proposed design through an in-situ photo elasticity
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experiment. They reported that the stress intensity (indicates the existence of
singularity) has decreased by several orders in their proposed joint. They also
mentioned that the higher fringe orders signifying larger stress intensity move
away from the interface towards the polycarbonate curved edge. In fact, this
design also cannot eliminate the stress singularity in the thickness direction since
the plane strain condition cannot be realized near the two boundary surfaces in
thickness direction. In addition, the cross-sectional area of the specimen close to
the interface is notably reduced and, as a result, the material may fail before the

interface failure.

Addressing the above problems, Lauke et al. (2003); Schneider et al.
(2003) and Lauke (2007) proposed a new type of specimen configurations by
introducing a curved interface between two materials in the flat coupon specimen

as shown in Figure 1.5.
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[

Curved “—— Material 1

Material 2

Figure 1.5: Specimen with curve interface (Planar Specimen) as presented in
Lauke (2007)

This method successfully eliminates the stress singularity along the width
direction but not along the thickness direction. The similarity and difference
between an axi-symmetric joint and a plane strain joint were pointed out by Li et
al. (2000). The similarity is that the stresses near the bond edges of the joints have
the same singularity. The difference is that the stresses in an axi-symmetric joint
cannot be determined as a plane strain deformation joint under prescribed traction.
Therefore, asymptotic descriptions for the stress fields near the bond edges of the
joints must be different under axi-symmetric deformation and under plane strain
deformation, even though the stress singularities are same (Koguchi, 1997; Li et

al., 2000). That’s why all the proposed designs presented above based on the 2D
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plane strain analysis cannot eliminate the stress singularity completely. To clearly
understand the stress singularity in all directions, 3-D analysis is needed. The fact
is clearly described by Wang and Xu (2006) in Figure 1.6. At one edge there
exists no singularity but in the other edge there exists the stress singularity. The
2D plane strain analysis only deals with the edge that has no singularity. Also, the
stress concentration in the axi-symmetric joints could be reduced by varying
suitably the edge angle and then the strength of joints could be improved (Wang

and Xu, 2006).

+«— Metal

Edge without
singularity

Edge with
singularity

<«<— Polymer

—

Figure 1.6: Specimen with convex interface (Planar Specimen) showing

singularity as presented in Wang and Xu (2006)
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Wang and Xu (2006) proposed a new axi-symmetric convex joint for the least
free-edge stress singularity shown in Figure 1.7. They conducted quasi-static
tension and dynamic tension experiments of both straight and convex bi-material
joints. They showed that the convex joint yields an increase in the final failure

strength (up to 22%) compared to the traditional straight-edged joint.

“— Metal

“— Polymer

Figure 1.7: Specimen with axi-symmetric convex interface as presented in Wang

and Xu (20006)
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Xu (2006) also proposed a similar design for determining the interface
strength between epoxy and E-glass by creating a proper bonding angle through
machining a circumferential fillet between two materials. With that design the
stress singularity is avoided but the cross-sectional area of the specimen in the
epoxy segment is reduced and the stress concentration is produced in the epoxy
material at the area near the interface, as a result, the epoxy may fail before the
interface failure.

As the complexity of stress singularity at the vertex of a general 3-D joint
can be avoided for an axi-symmetric joint (Zhixue, 2006), Wu (2008) performed
finite element analysis of a curved interface using axi-symmetric model for the
elimination of the stress singularity. However, they admitted that the practical
applications of their results may be very limited. They also mentioned that a
suitable failure criterion for a bi-material joint is very important in the situation
without any stress singularity since the influence of material mismatch parameters

and interface geometry on the different stress components is not the same.

14 MEASUREMENT OF INTERFACE BONDING STRENGTH

The measurement of the interface bonding strength of bi-materials is more
complicated than the measurement of tensile or shear strength of a homogeneous
material. The current practices for the measurement of interface strength of bi-
materials can be classified into two separate test methods: tensile test and shear

test. These two test methods are with different specimen designs and test
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procedures, or in other words, the specimen design and test setup for testing
tensile strength cannot be used for shear strength testing, and vice versa.

For the shear strength test, most commonly used methods are in the
category of lap joint tests, such as these specified in ASTM D3165 (2007) and
ASTM D3528 (2008). In these standard test setups, shear stress is generated by
the tensile load at the two ends of the specimen. The interface shear strength is
obtained through dividing the maximum tensile load by the area of the bonding
interface. Ideally, the pure shear stress should be parallel to the bonding plane in
the test to obtain the correct interface shear strength. The current test setups,
however, generate a multi-axial stress status at the bond termini areas, and as a
result, the specimen could be failed in shear, tensile, or cleavage crack mode
(Pizzi, 1994). Tensile bonding strength tests are based on the butt joint specimen
as described in ASTM D897 (2008) and ASTM D2095 (2008), where tensile
loadings are applied to the two ends of the specimen. The interface tensile
strength is obtained through dividing the maximum tensile load by the cross-
sectional area of the bonding interface. The disadvantage of this test setup is the
existence of the stress singularity at the interface free edge. Theoretically, the
stress will be infinite at the free edge of the interface due to the singularity.
Therefore, it is not accurate or doesn’t make sense to calculate the interface
strength by the ratio of the failure load to the entire bonding area. It should be
noted that the above ASTM standards are mainly for measuring the bonding

strength between two materials by using a third adhesive medium, and in this
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way, it may not be an exact bi-material interface unless the two materials are
directly bonded without the third adhesive medium.

For fiber reinforced composites, the interface failure has been the main
concern in design and applications. Many experimental methods have been
suggested to determine the interface strength between fiber and matrix in
composite materials, such as single fiber pull-out, push-out tests (Chua et al.,
1992; Drzal, 2000; Xu et al., 2005), droplet test (Miller et al., 1987), single-fiber
fragmentation test (Zhou et al., 2001) and peel-off test (Alimuddin and Piggott,
1999). Except for the peel-off test, which mainly concerns the tensile strength,
other methods quoted above are to measure the shear bonding strength.

Many investigations have been carried out on butt, scarf and lap adhesive
joints using finite element method (Gradin, 1982; Reedy, 1990), photo elastic
experiments (Ding and Kumosa, 1994) and the theory of elasticity (Weissberg,
1988; Ding et al., 1994). All those approaches encounter difficulties to accurately
determine the value of the bonding strength. Because, all of them have the same
disadvantages as ASTM standard methods: the non-uniform multi-axial stress
distribution over the interface area and/or the presence of singularities of the
interfacial stress components.

Another important consideration in determining the interface bonding
strength of bi-materials is the size effect. There are two different terms used for
size effect; the material size effect and the mechanics size effect. Material size
effect is due to the initial material defects. Even for a simple tensile test of

homogeneous material, specimens with different sizes may yield different results.
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Of course, the obtained results depend on the degree of defects. However, by
making specimens from the same material carefully, more consistent results might
be obtained. However, for a butt tensile specimen fabricated from two dissimilar
materials (singularity exist), the normal stress distribution across the flat interface
is not uniform according to the previous discussion. Obviously, this type of
specimen will provide data with a stronger size effect in the context of mechanical
behavior. Moreover, the mechanics size effect (related to the free-edge stress
singularity) will be coupled with the material size effect, and thus lead to
complexities in the measurement data because they cannot be treated as the
intrinsic material properties. Therefore, the measured nominal interfacial strengths
based on the current test standards cannot be used in mechanics predictions,
because the interfacial properties obtained from the laboratory tests are quite
different from the real values of structures in service (Xu et al., 2004). Any data
obtained from specimen containing singularity need careful consideration of the
size effect.

For the failure criterion of bi-material interface, the concept of stress is
very useful if there is no stress singularity at the interface. However, as a basis for
the prediction of failure, the concept of stress becomes meaningless when the
structure encompasses singularities as a result of discrete stiffness steps or
geometric anomalies such as cracks (Van Tooren and Krakers, 2006).

So, in order to measure the interface bonding strength more reasonably
and accurately, the singularity elimination is a must. If there is no stress

singularity at the interface, even if the stress distribution are not uniform along



Chapter 1: Introduction 22

interface, the interface debonding should initiate from certain critical point where
the interface stress state reaches certain limit value. Such limit value represents
the actual interface strength property for a given bi-material interface. Also, in
that case the mechanics size effect may be reduced to minimum if the specimens
are carefully manufactured and tested. Moreover, in practical applications, the bi-
material interface can be in multi-axial stress status with various combinations of
normal and shear stresses depending on the loading conditions. Therefore, besides
the pure tensile strength and the pure shear strength, a general biaxial normal-
shear bonding strength criterion, for example, in the form of a strength envelope
in normal-shear stress plane, is needed to realistically and adequately characterize

the strength of bi-material interface.

From the above review, it can be concluded that:

1) The current test standards for interface shear and tensile strength
measurements may merely give the loading capacity of the specimen,
instead of accurate values of the bi-material interface strength as intended
although they can still be useful as a relative comparison of bonding
strengths of different combinations of bi-materials.

i) Current test standards can only give separate nominal interface shear and
tensile strength while, in reality, multi-axial stress status and stress
singularity exist at the edge of the bonding interfaces of these specimens
even though the bonding structure is subjected to the simple tensile or

shear load.



Chapter 1: Introduction 23

1i1) Improved test methods are therefore needed to avoid the stress singularity
and to obtain reasonable results of bi-material interface bonding strength.
To adequately characterize the bi-material bonding strength for practical
applications, a biaxial normal-shear interface bonding strength criterion

(strength envelope) is also needed.

The measurement of the interface bonding strength is crucial for the design and
applications of structures with two or more materials. With the increasing
applications of bi-material, a branch of solid mechanics, the mechanics of
interface has been rapidly developing in the past two decades. It studies
mechanical behavior, strength, life and optimal design of material interfaces.
Theoretical and experimental characterization/evaluation of bonding strength of

interface is the most important topic for the mechanics of interface.

1.5 OBJECTIVES

The overall objective of this research is to develop a new test method for
the determination of biaxial bonding strength of bi-material interfaces based on,
theoretical solutions for the new designed interface geometry, and applications of
the new knowledge to the design and manufacture of stronger bi-material

interfaces. The main objectives of the proposed research are:

1) Development of a new test method to characterize the interface bonding

strength of bi-materials more accurately and realistically.
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ii)

iii)

Development of analytical models for the elastic/elastic,
elastic/viscoelastic and viscoelastic/viscoelastic bi-material interfaces,
obtaining solutions for the critical bonding angle, which delineates the
finite and singular stress fields.

Determination of the biaxial shear-normal bonding strength of bi-material
interface according to the proposed method.

Application of the new test method and theories to optimize the design of

bi-material interfaces, such as in the area of dental restorations.
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CHAPTER 2

NEW METHOD TO DETERMINE BONDING STRENGTH OF
BI-MATERIAL INTERFACE

An innovative method to determine the bonding strength of bi-material
interface is developed and presented in this Chapter. The developed method
includes a new design of the specimen with special interface geometry to
eliminate the stress singularity, test methodology and an iterative calculation
technique integrated with FEM analysis to determine the interface biaxial normal-

shear bonding strength envelope.

2.1 DESIGN OF THE SPECIMEN

A cylindrical specimen of two bulk materials with a spherical interface as
shown in Figure 2.1 is developed to measure the interface bonding strength
between the two materials. In this design, the soft material is at the convex side of
the interface, while the hard material is at the concave side of the interface. The
bonding angle, 0y, is defined as the angle between the tangent of the spherical
interface at the free edge to the generator of the cylindrical surface as shown in

Figure 2.1.
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Figure 2.1: Conceptual design of the invented cylindrical specimen with spherical

interface

It can be seen that the bonding angle is geometrically dependent on the

ratio of the specimen radius, R, to the radius of the spherical interface, a:

R
cosf, =—
a

D
o (2.1)
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For a given pair of materials, there exists a critical value of the bonding
angle, dc, which delineates the singular and non-singular stress field near the free

edge of the interface. When 6, < @, the stress singularity at the free edge can be

avoided and a finite stress field along the spherical bi-material interface can be
obtained. The stress distribution along the interface would not be uniform;
however, it can be accurately determined by either the analytical or numerical

analysis methods.

It should be noticed that the critical bonding angle, dc, is dependent on the
mechanical properties of the two materials. The critical bonding angle, dc, is

essentially an upper bound of the bonding angle ¢, to avoid the stress singularity.
Actual selection of the specimen geometry, i.e. the &,can be accommodate

according to the test equipment and specimen fabrication requirements as soon as

the condition 6, < 6. is satisfied.

Finite element stress analysis has been performed on the specimen
geometry with an extreme case of material combination by assuming a rigid hard
material bonded with a soft material (in the FEM analysis assuming the hard
material stiffness several order larger than that of the soft material). It is found
that the critical bonding angle is 45° for this combination of materials. Thus, this

design of geometry of 6, = 45°can be universally applied to any combination of

two elastic materials.
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The axi-symmetric finite element model of the specimen shown in Figure

2.2 is used for the FEM analysis.
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Figure 2.2: General axi-symmetric finite element model for checking the stress

singularity

A uniform tensile stress is applied at top end of the specimen, while the

bottom end is fixed in vertical direction. The distributions of the interface normal
stress, o,,, interface shear stress, 7 and effective stress, o, =40’ + 372 along the

interface can be determined by the FEM analysis. If for a specific bonding angle,
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excessive stresses exist near the free edge of the interface and these stress values
increase without convergent limits with the increase of mesh density, this
indicates that the stress singularity occurs at the free edge of the interface for that
bonding angle. However, if finite values of the interface stresses are exhibited and
the stress convergence is confirmed by the increase of FEM mesh density, this
indicates a non-singular stress case. Another fact should be mentioned that there
is no interface stress singularity for the application of pure torsional load on the
new designed specimen.

To accurately determine the range of bonding angles with or without the
stress singularity, the use of an analytical solution could be convenient. The stress
field near the free edge of an interface can be deduced into the following

asymptotic form (Qian and Akisanya, 1999).

o, =H""f,(6,a, B, 2) (i,j=1,2) (2.2)
In the above expression, r,& are the polar coordinate, H is the generalized stress
intensity factor, «, 8 are the Dundurs’ (1969) parameters which depend on the

combinations of elastic constants of the two materials,

o= ,ul(kz +1)_(k1 +1).U2 _ ﬂl(kz _1)_ (kl _1)/12 2.3)
lul(kz +1)+ (kl +1),U2 ’ ﬂl(kz +l)+ (kl +1),U2
where, £, =2(V—j+1) , k, =3—4v_ , uis the shear modulus, E is the elastic

modulus, v is the Poisson’s ratio and subscript m is the material index . The 4 is

eigenvalue obtained from the solution of analytical model.
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From Equation (2.2) it is clear that the order of the stress singularity at the
edge of the bonded joint is A-1. If0 < A <1, the stress component goes to infinite
when » — 0, i.e. there exists the stress singularity. Any angle less than the critical
bonding angle will lead 4 > 1, thereby eliminates the stress singularity. It can be
verified that, for the lap joint as specified in ASTM D3165 ( 2007) and ASTM
D3528 (2008) and the butt joint specimen as described in ASTM D897 (2008)
and ASTM D2095 (2008), the stress singularities always exist at the free edge of

the interfaces, i.e. A1 —-1<0.

Our interest is now on the other phase of the stress field solution: for
A >1, the stress singularity will be eliminated. If the specimen geometry is
designed as the present method to avoid the stress singularity under the global
tensile or torsional or combined loadings, a finite interface stress field could be
accurately obtained for each global loading case. Although the interface stress
field is generally not uniform and the normal and shear interface stress
components can co-exist, the interface failure (debonding) will be physically
initiated at a certain point of the interface with a certain limit stress state. Such
limit of stress states represents the bonding strength of the interface. For general
combined interface normal and shear stress states, such limit of stress states can
be mathematically formulated as a certain interface bonding strength criterion.
Note that, the interface bonding strength criterion is physically an inherent
mechanical property of each particular bi-material interface. The procedure for

obtaining the bonding strength criterion (envelope) through an appropriate
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experimental procedure with the specially designed specimen geometry (as

described earlier) will be described in the following sections.

2.2 TEST PROCEDURE

Test procedures to determine the biaxial normal-shear bonding strength

criterion (envelope) for a bi-material interface can be summarized as:

a) For a given bi-material combination the critical bonding angle for the
designed specimen geometry, Fig. 2.1 can be determined through
analytical stress analysis method (asymptotic stress analysis near the free
edge of the interface, for details, see later chapters). The critical bonding
angle result can be further verified by the FEM numerical analysis.

The appropriate geometry of the specimen, more specifically, the bonding

angle, 6, < . thus can be determined.

b) Tests on the designed specimens with pure torsional, pure normal and
different ratios of the combined normal and torsional loadings are

performed. For each test case, the maximum failure load is recorded.
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d)

2.3

FEM analysis for each test loading case is carried out and the interface
normal and shear stress distributions for the maximum failure load
obtained through experiments are determined.

It should be pointed out that the FEM analysis may not be limited to an
elastic analysis only. Depending on the types of the bi-material and the
maximum strength range of the bi-material interface, more accurate
nonlinear analyses, such as elastoplastic or viscoelastic analyses may be
necessary. There is no principal difficulty to perform the nonlinear FEM

analysis as long as the material properties can be accurately calibrated.

The biaxial normal-shear interface bonding strength criterion (envelope) is
determined by an iterative calculation method and will be described in the

following section.

ITERATION CALCULATION METHOD TO DETERMINE THE

INTERFACE STRENGTH ENVELOPE

It is noted that the interface normal and shear stress distributions are not

uniform along the interface even though there is no stress singularity. For the pure

torsional loading case, there is no normal interface stress component; therefore,

the maximum interface shear stress, denoting as z,, can be taken as the shear
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strength of the bi-material interface. For the pure global normal loading and other
combined normal-shear loading cases, both the normal and shear interface stress
components exist. Therefore, a biaxial bonding strength criterion (envelope) is
required to define the interface bonding strength. The criterion can be expressed

as,
flon,7)=C (2.4)
where o, and r are the interface normal and shear stress components,

respectively, and C is a constant. The function f and the constant C can be

determined through the following iteration procedure:

(i) The effective stress is taken as the first trial criterion, i.e.
90, 1) =402 +3r% =4/3, (2.5)
The constant C = \/§rs is obtained by applying the pure torsional loading case in

whicho, =0.

From the interface normal and shear stress curves, the location of the maximum

value of \/05 +3¢2 along the interface is identified and the corresponding pair
of normal and shear stress values which contributes for the effective stress is
recorded for each test case. These pairs of stresses are denoted as[o, ;, 7 j]‘”, j=
1, ..., N, with N being the number of tests. Note that except the point [0, 7]

obtained from the pure shear test, other N-1 points generally would not be on the

curve expressed by Eq. (2.5).
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(i) The second trial criterion is obtained by the best fitting of the above data

points, [o, ;, 7,19,/ =1, ..., N, and denoted as

n,j?!

@ ,,7)=c® (2.6)

From the interface normal and shear stress curves, the location of the maximum

value of f 2) (o,,7) along the interface are found and the corresponding pair of
normal and shear stress values are recorded for each test case. These pairs of

stresses are denoted as[o rj](z) ,j =1, ..., N, with N being the number of tests.

nj?

(iiii) The third trial criterion are obtained ' (o,,7) = C® by the best fitting of

the above data points, [o,,7,]?,/j=1, ..., N.

(iv) The steps (ii) and (iii) are repeated until converged results are obtained.

The present developed method will be illustrated in details through the application
examples in Chapters 4, 5 and 6 for the elastic/elastic, elastic/viscoelastic and

viscoelastic/viscoelastic bonded joints respectively.
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CHAPTER 3

MATERIAL CHARACTERIZATION AND TEST SET UP

The current Ph.D. research project involves a considerable amount of
experimental work. Tensile tests are conducted to determine materials’ elastic
properties. To determine the viscoelastic properties, relaxation tests are carried
out on the viscoelastic materials. Finally, tensile, torsional and combined tension-
torsional loading tests are carried out to determine the interface bonding strength
envelope. This chapter discusses about the experimental facilities and set up
preparation for conducting the above experiments. The results for characterizing
basic elastic or viscoelastic properties of three tested materials: aluminum, epoxy

and polyvinylchloride (PVC) are presented in this chapter.

3.1 EXPERIMENTAL SET UP

3.1.1 Tensile and Viscoelastic Testing System

The 810 Material Testing System (MTS Systems Corporation, USA) is
used for the tensile and relaxation tests. The system is shown in Figure 3.1. This
system has the testing capabilities for low or high force, static or dynamic testing
of materials ranging from plastics, composites to metals and alloys. By selecting

from a variety of force capacities, servo valve flow ratings, pump capacities,

50
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software, and accessories, the floor-standing 810 system can easily be configured
to meet many specific material or component testing needs. The optional Remote
Station Control (RSC) provides a convenient, portable control interface for the
specimen handling and test setup. The RSC simplifies the operation of hydraulic
controls. In addition to the hydraulic controls and an interlock indicator, it
provides run, stop, and hold controls, a display screen and function keys, and an

actuator positioning control for the specimen loading.

810 Material Test System

Remote
Station

Control

Figure 3.1: Testing machine for tensile and viscoelastic experiment
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The test set up is connected to a computer loaded with MTS 793 software.
Once a specimen is loaded, the transducers can be zeroed from the computer. All
the required tests data are stored in a text file in the computer. Two extensometers
are used to measure the displacement in the axial and transverse directions. The

extensometers are shown in Figure 3.2.

Diametrical

Figure 3.2: Axial and diametrical extensometers
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634.11/31 Axial Extensometer, which is good for both the tensile and
fatigue testing of materials, are used to record the axial displacement of the gauge
length of specimen. This extensometer provides the superior performance in
linearity, repeatability, hysteresis, low activation force, and ease of use. MTS’
cross-flexure system ensures that the strain gages are always subjected to true
center point bending, and stable clamping force. Zero set pin or zero stop provides
a quick, accurate setup that is repeatable. For displacement in transverse direction
another diametrical extensometer is used. Both the extensometers can acquire data

with very high precision and accuracy.

3.1.2 Mold Design

A new mold shown in Figure 3.3 is designed and manufactured to make
the interface testing specimen. The proposed specimen is cylindrical shape with
spherical interface as described in Chapter 2. The mold has two sections with
different diameters. The lower portion is for the hard material part of the
specimen whereas the upper portion is for the soft material. The diameter of the
mold for the hard material is chosen as equal to the specimen diameter. In order to
ensure a perfect bonding between these two materials, the soft material is allowed
to flow over the hard material by 4mm. That’s why the diameter of the mold for
the soft material is also maintained 4 mm larger than that for the hard material.
Later the extra portion of the soft material on the specimen is removed by

machining before conducting the interface bonding strength test.



Chapter 3: Material Characterization and Test Set Up 54

Soft
Material
Section

Hard
Material
Section

Figure 3.3: Mold for making interface testing specimen

3.1.3 Multi Axial Testing Machine

The multi axial testing machine shown in Figure 3.4 is used to conduct the
interface strength tests. It has the capability to apply tensile, torsional and
combined loads (torsion and tension). Details of the multi-axial test machine can

be found in Ellyin and Wolodko (1997) and Xu (2006).
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control
system

Figure 3.4: Multi axial testing machine

3.14 Grip Design

The original grips of the multi axial testing machine are too heavy for the
present specimen. A new gripping system is thus designed. Figure 3.5 shows the
grip design. The 3M™ Scotch-Weld™ Epoxy Adhesive DP460, which is cured in

24 hours at room temperature, is used to glue the specimen to the flange grip. The
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two flanges are bolted to the machine and then the adhesive is applied to both the

specimen and flanges’ center holes.

Figure 3.5: Grip to hold the interface testing specimen in multi-axial machine

The length of the adhesive area is one of the key factors to be considered
in designing the grip system. For fixed dimensions ‘D’ and “d” in Figure 3.6, glue
length */” can be calculated to ensure that the strength of the adhesion between the

grips and the specimen is much greater than the strength of the interface.
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Figure 3.6: Grip dimension to calculate glue length

For torsional load, the maximum torque the grip can transfer is

d T u
MY =" gl = =" " 4?1 where

i = Tatae L= == T e 15 the glue’s maximum shear

strength.

The torque at the interface

So the condition to be satisfied is,

ult ult
Mgrip > Mint
ult 3
T w2, Wi D
Or, Ez-glued 1>T

Epoxy is used as the soft material in this research. The adhesive’s shear
strength is higher than that of the epoxy material. Considering epoxy’s shear

strength in both sides, the above condition becomes
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D3
I>—
8d

By conducting a similar analysis for tensile loading, the condition becomes

D2
2.8d

So, the glue length should be

3 2
l>max(D =

842" 2.8d)

Considering d = 20.5 mm and D = 20 mm, the glue length is obtained as / ~ 7 mm

Considering the factor of safety the glue length is designed as 30 mm.

The grip design described above is excellent for maintaining perfect
alignment of the specimen in the testing machine. However, the main
disadvantage of the grip is the amount of time required for conducting the test, as
the adhesive/glue takes 24 hours to be completely cured. To overcome this
limitation a modified grip ER 32 system shown in Figure 3.7 is designed. The
base of the grip is a large plate with 6 bolt holes, which is used to mount the grip
securely to the test machine. The back of the plate has a 0.08 inch flat circular
indentation concentric with the base plate. The extended cylindrical portion of the
base plate is for an ER 32 collet. The internal wall of the collet mount is tapered at

8° to facilitate collet closure. Furthermore, the outer surface of the collet mount is
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threaded with M40x1.5 to accommodate an ER 32 collet nut. During operation, an
ER 32 collet is inserted into the cavity of the collet mount, followed by the test
specimen into the collet. An ER 32 collet nut is then screwed over top of the
original collet, which is then tightened using a matching collet wrench to tighten

the collet around the specimen.

ER-32
Collet

Figure 3.7: Modified grip to hold the interface testing specimen

However, this modified grip system served well for the specimen made
from elastic materials. This grip cannot hold the viscoelastic materials for a long
time because of the creep/relaxation properties of the viscoelastic materials. This
problem has been overcome by attaching a tapered aluminum end cap at the

viscoelastic end/ends of the specimen.
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3.2 MATERIAL TESTING

3.2.1  Materials Selection

Three different materials are used in this research. These materials are
selected based on their applicability, availability, machinability and low cost. The
selected materials are aluminum, epoxy and polyvinylchloride (PVC). Aluminum
and epoxy are used for the determination of the interface bonding strength
between two elastic materials. Epoxy is a viscoelastic polymer and its properties
are time and loading-rate dependent. It is assumed that the properties of a
viscoelastic material obtained with a very fast loading rate can be considered as
the elastic properties of the material. To find the effect of material’s
viscoelasticity on the interface bonding strength, the same materials combination
(Aluminum/Epoxy) is used to determine the interface bonding strength between
elastic and viscoelastic materials. For the viscoelastic/viscoelastic interface, PVC
and epoxy are used as the hard and soft materials. Short descriptions on the

selected materials are given below.

Aluminum

Aluminum is frequently observed in many engineering applications. They
are used in transportation, automobiles, airplanes, household objects, including a
varied assortment of utensils etc. They are commercially available in different

sizes and shapes. The advantages of aluminum are light weight, corrosion
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resistant, good machinability, ductility, and good electrical and thermal

conductivity.

Epoxy

Among the various types of polymers, the use of epoxy is extensive.
Epoxy is a thermosetting copolymer; generally formed from two different
chemicals: resin and hardener. Epoxies have excellent adhesion, chemical and
heat resistance, good mechanical and electrical insulating properties. Another
advantage of the epoxy material is that the properties of epoxy can be modified.
The applications of epoxy-based materials include
coatings, adhesives and composite materials. Epoxy adhesives are used in the
construction of aircraft, automobiles, bicycles, boats, golf clubs, skis, snowboards

and the rotor blades of wind turbines etc.

PVC

The use of PVC (polyvinylchloride) is also very common. PVC is a
thermoplastic vinyl polymer. The structure of PVC is (-CH,-CHCI-),, which is
similar to the polyethylene, except that, on everyother carbon in the backbone
chain, one hydrogen atom is replaced by a chlorine atom. PVC is a very popular
polymer because of its excellent corrosion resistance, weather resistance, low
moisture absorption, good dimensional strength and low cost as well. It also has a
high strength-to-weight ratio and good electrical and thermal insulating

properties. Specific applications of PVC include nuts, filters, signs, tanks, pipes,
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bolts, valves, bushings, tank, ducts, sprinkler systems, pump parts and fittings,

etc.

3.2.2 Determination of the Elastic Properties of Materials

All the materials used in this research are considered to be isotropic and
homogeneous. Thus, in order to characterize the elastic materials, only two
properties; elastic modulus and Poisson’s ratio are necessary. Elastic modulus is
the ratio of the stress to the strain up to the proportional limit and elastic Poisson’s
ratio is defined as the negative ratio of the transverse strain to the axial strain in
the above limit. These properties are determined by the uni-axial tensile tests with

very fast loading rate in the MTS testing machine shown in Figure 3.1.

The elastic properties of aluminum are determined according to the ASTM
B557 (2010) standard method. The cylindrical specimens are prepared from a
commercial Al6061-T6 aluminum rod by machining on a computer numerical
controlled (CNC) lathe. Tensile loading is applied on the test specimen and the
axial and radial displacements are measured by the axial and diametrical
extensometer as shown in Figure 3.2. The stress-strain and the transverse strain-
axial strain relations of aluminum are shown in Figures 3.8 and 3.9, respectively.
From the proportional portion of these two curves, the elastic modulus and

Poisson’s ratio of aluminum are determined as 71 GPa and 0.3 respectively.
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Figure 3.8: Stress- strain curve for aluminum
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Figure 3.9: Determination of Poisson’s ratio for aluminum
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The specimens for the determination of elastic properties of epoxy and
PVC are designed according to Shen (2004). The specimen design is shown in
Figure 3.10.

100

Figure 3.10: Tension test specimen for epoxy and PVC

Epoxy specimens are prepared from EPON 8131 resin and EPI-CURE
3072 hardener. EPON 8131 and EPI-CURE 3072 have less shrinkage rate and
greatly reduce the residual stress building up in the specimen. In addition, the
EPON 8131 is a flexibilized, 100 percent reactive, low viscosity epoxy resin and
widely used in various applications such as concrete patching/resurfacing,
reinforced plastics, adhesive and encapsulation. Both the resin and hardener are
purchased from Momentive Specialty Chemicals Inc. (Formerly known as Hexion

Specialty Chemicals Inc.) (www.momentive.com). The resin and hardener are

mixed at 79 to 21 proportions by weight. According to the product data sheet, the
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mixture has been left two weeks for complete curing at room temperature. The
cured specimens are machined to make the desired size for the experiment on a
computer numerical controlled (CNC) lathe that provides the precise machining
of any transition profile geometry. The stress-strain and the transverse strain-
axial strain curves of the epoxy are shown in Figures 3.11 and 3.12, respectively.
From the proportional limit portion of the two curves, the elastic modulus and

Poisson’s ratio of epoxy are determined as 1271 MPa and 0.415 respectively.

35 - Material: Epoxy

I
| E=1271MPa
S - -J

0

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Axial strain, & (mm/mm)

Figure 3.11: Stress- strain curve for epoxy
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Figure 3.12: Determination of Poisson’s ratio for epoxy

PVC is available as sheets, rods, and tubing of many sizes. The specimens
for the properties determination of PVC are manufactured on a computer
numerical controlled (CNC) lathe from commercial PVC rod (rigid) of diameter
22.22 mm  purchased from  Johnston  Industrial  Plastics  Ltd

(www.johnstonplastics.com). The specimen and its detail dimensions are shown

in Figure 3.10.

The stress-strain and the transverse strain-axial strain curves of the PVC
are shown in Figures 3.13 and 3.14 respectively. From the proportional limit
portion of the two curves the elastic modulus and Poisson’s ratio are determined

as 3.38 GPa and 0.362, respectively.
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Figure 3.14: Determination of Poisson’s ratio for PVC
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3.2.3 Determination of the Viscoelastic Properties of Materials

Owing to the wide use of polymeric materials, there is a growing need of
predicting the mechanical behavior of polymers under general loading conditions
(Hu et al., 2003). Viscoelasticity has been primarily focused due to the large scale
development and utilization of polymeric materials. Most of the polymeric
materials have viscoelastic properties. They possess the capacity of both storing
and dissipation of mechanical energy. In many applications, polymers are
reinforced with harder material phases such as fibers, ceramic particles, etc. Thus
viscoelastic characterization of polymeric materials is extremely important. The
time and rate dependent material properties of viscoelastic materials are not
readily available in material data handbooks. It is, therefore, necessary to perform
one or more of the experimental tests to determine the fundamental properties of
these materials (Kim et al., 2010).

To describe the stress and strain states of any linear viscoelastic material,
four basic material functions—Poisson’s ratio, uniaxial relaxation modulus, shear
modulus and bulk modulus are necessary. Similar to the case of an isotropic
elastic material, if only two of the above properties can be determined, the
remaining two can be calculated. This is referred to as the inter conversion of
material functions. Hence, two material functions are often enough for the
complete description of the mechanical behavior of linear viscoelastic materials
(Tscharnuter et al. 2011). In theory, the choice of the two material functions is

arbitrary, but in practice there are limitations that must be considered.
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Tschoegl et al. (2002) indicated that in order to avoid excessive errors
caused by specimen-to-specimen or environmental variations, the measurement of
a pair of viscoelastic material functions must be performed simultaneously on the
same specimen. The simultaneous measurement of two material functions is
possible in a confined compression setup (Qvale and Ravi-Chandar, 2004;
Jerabek et al., 2010a) or a uniaxial relaxation test when the axial and lateral
strains are measured (Jerabek et al., 2010b). The former yields the bulk and the
shear relaxation moduli, whereas, the latter provides the uniaxial relaxation
modulus and Poisson’s ratio. Tscharnuter et al. (2011) further suggest that the
uniaxial stress relaxation test is a standard method to characterize the viscoelastic
materials over the elaborate confined compression test. During the relaxation test,
axial and hoop strains can be determined directly using two strain gauges along
with the axial stress. In that case, the viscoelastic relaxation modulus and

Poisson’s ratio can be determined easily and simultaneously.
3.2.3.1 Linear viscoelastic stress-strain relation

According to the theory of liner viscoelasticity (Christensen, 1982), the

time dependent stress, o(¢) of any viscoelastic material can be expressed as,

og; ()
T

o, (1)=35, 1 At —r)%@ar+ 2§ ult —7) dr (3.1)
2 . J,

where, A(f) = M :

(1) ando(r) are the viscoelastic shear modulus and
1-20(¢)

Poisson’s ratio respectively.
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For simple uniaxial extension, the above equation can be deduced to
P t
o) = 2| )+ fuue ) o(e)dr |

or, ot)=e(@)*G() (3.2)

The time dependent stress, o(f) of a viscoelastic material subjected to the
unit step constant strain, ¢, can be expressed as
o(t)=G(t)x g, (3.3)
where, G(¢) is the relaxation modulus, which is also a function of the loading
time.
The time-dependent Poisson’s ratio, v(¢) of a linearly isotropic viscoelastic
material can be defined as the time-dependent ratio of the transverse/lateral

strain, ¢ (¢), to the axial step constant strain ¢, (Tschoegl et al. 2002).

o(t) = —‘928—“) (3.4)
0

From Equation (3.4) it is quite clear that the viscoelastic Poisson’s ratio
should be determined by a uniaxial relaxation test in which the strain in the axial

direction is maintained as constant.
3.2.3.2 Experimental Procedures

For the relaxation test of epoxy 4% axial strain is attained within a very
short time and then the strain is held for about one and half hour. During this
period, time, load, axial strain and transverse strain are recorded in every second.

From the measured data, the relaxation modulus and viscoelastic Poisson’s ratio



Chapter 3: Material Characterization and Test Set Up 71

of the epoxy are determined using Equations (3.3) and (3.4). The axial strain,
axial stress, relaxation modulus and Poisson’s ratio of epoxy obtained from the
relaxation test are shown in Figures 3.15 to 3.18. The properties equal to the
elastic properties of epoxy are considered as the viscoelastic properties of the

epoxy at time ¢ = 0.

0.045 -

0.04

0.035 A

0.03 - Relaxation Test

0.025 - Material: Epoxy

0.02 -

Applied strain, £, (mm/mm)

0 I ) I ) ) 1
0 500 1000 1500 2000 2500 3000

Time, 7 (Sec)

Figure 3.15: Applied axial strain in relaxation test of epoxy
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Figure 3.17: Relaxation modulus of epoxy
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Figure 3.18: Viscoelastic Poisson’s ratio of epoxy

Similarly, for the relaxation test of PVC, 1.04% axial strain is attended
within a very short time and then it is hold for about one and half hour. During
this period time, load, axial strain and transverse strain are recorded in every
second. The axial strain, axial stress, relaxation modulus and Poisson’s ratio of

PVC obtained from the relaxation test are shown in Figures 3.19 to 3.22.
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CHAPTER 4

ELASTIC/ELASTIC BI-MATERIAL INTERFACE

This chapter discusses about the determination of the interface bonding
strength of an elastic/elastic bonded joint by the developed method. Aluminum
and epoxy are chosen for the interface constituent materials. Both materials are

assumed to be elastic and isotropic.

41  SPECIMEN DESIGN

A cylindrical specimen of aluminum and epoxy with a spherical interface
is designed as shown in Figure 2.1 (in Chapter 2). The epoxy (material 2) is at the
convex side of the interface, while the aluminum (material 1) is at the concave
side of the interface. The elastic material properties of aluminum and epoxy are

determined in Chapter 3 and given below in Table 4.1.

Table 4.1: Material properties of aluminum and epoxy

Aluminum Epoxy
Elastic Modulus 71 GPa 1271 MPa
Poisson’s Ratio 0.3 0.415

78
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42 DETERMINATION OF THE STRESS SINGULARITY AND

CRITICAL BONDING ANGLE

4.2.1 Determination of the critical bonding angle by analytical

method

The axi- symmetric model of the developed specimen shown in Chapter 2
(Fig 2.1) is shown in Figure 4.1. The radius of the spherical interface is “a”, the

radius of the specimen is R and the bonding angle is 6.

Material 2

Material 1

Figure 4.1: Axi-symmetric model of the developed bi-material interface
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Bogy(1971); Akisanya and Fleck (1997) and Lauke et al. (2003) represented the
stress and displacement fields for a straight interface edge near the singular point

as follows;

o(r,A,0)=Hr*" f(4,0) 4.1)
U(r ,A,0)=Hr" f(4,6) (4.2)

where (7, 8) are the polar coordinates from the edge point of the interface.

For the curved interface the above representation of the stress and displacement
fields can still be used. By using Taylor series expansion, the stress functions near

the edge point can be expressed as,

o(r ,A,¢)=o(r ,/1,00)+(r/a)0'/(r,l,90)+%(r la) " (r ,2,0,) +........ (4.3a)

U(r,A,8)=U(r ,1,0,)+ (1 a)U’ (r,,1,6,) +%(r/a)2U// (r,2,0,) + eoo.....(4.3b)

Perlman and Sih (1967); and Aksentain (1967) have shown that the order
of the singularity in the vicinity of the curved edge is to be the same as that in the
two-dimensional plane wedge problem. Later, Ting (1985) repeated the same
comment while studying the stress distribution at the apex of a two—dimensional
curved wedge using axi-symmetric analysis. He concluded that the additional
terms from the curved interface changes the form of the eigen functions only.

From the above discussion, it is clear that though additional terms are
present in Equation (4.3a) due to the curved interface, to find the order of the
stress singularity, consideration of the first term in Equation (4.3a) is quite

enough. Thus, the problem leads to finding of the dependence of order of the
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singularity on the edge angle ), which is defined as the bonding angle for the

spherical bi-material interface studied.

Let consider the z-axis as the axi-symmetric axis, p is the radial direction

and R is the radius of the cylindrical specimen (Fig. 4.1). Using the elasticity

theory (Timoshenko and Goodier, 1951), the displacement and stress components

in cylindrical coordinates (p, y, z) can be represented in terms of two harmonic

functions ¢, (p, z) and @,(p, z). At the same time the following compatibility

equation (Equation 4.4) should be satisfied.

o> 1o 0
+__
op> pop 0z

+—j¢[ =0 ,wherei=1,2

The displacement and stress fields are given by

U, = (1/2mai<¢1 2z,
0
U, = (1/2#)5% +24,)— 4(1- ),
0? 0
o, —8’7(4/51 +Z¢2)_2UE(¢2)
o) =;;—22(¢1 +z¢2)—2<2—o>8—az(¢2)

0 . 0
Tpz _%[g(@ +z¢,)-2(1-0)¢,]

where, u is the shear modulus and v is the Poisson’s ratio.

From Figure 4.1, with the following geometric relations:

p=R—rsinf and z =rcosd

(4.4)

(4.52)

(4.5b)

(4.5¢)

(4.5d)

(4.5¢)
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-p

z

So, 7> =(p—R)’ +z* and tan @ = R

Using the above relations, the differential operators are defined as follows:

i——sinﬁg—cosei

op or r 06
0° Csin?o 0* +005249 o° +coszﬁi_sin20i
op° or’ r’ 06 r or r* 00

0 0 sinf 0

— =cosf—— —

0z or r 00
0° , 0> sin’@ 0> sin@ 0 sin20 0
— =c08" 00—+ + —+ —
oz’ or? r* 06° r or r: 00

Substituting these into Equations (4.4 and 4.5) and doing some algebraic
manipulations, the transformed equations into the (», 8) coordinate system are

obtained as,

2 2
O Lo 1ol 6inel 9 0 wherei=1,2
or* ror r°00° —R+rsind or r 00
(4.6)
U,=-U,sin0+U,cosd
0 (4.7a)
= (1/2,u)[a—(¢1 + ¢, .rcos@)—4cosd(1-9)¢,]
r
U,=U,cos0+U,_sin6
1,0 . (4.7b)
=(1721)[(= ;)@((A +¢,.rc0s 0) —4sin (1 - g, ]
c,=0, sin’ @+ o cos’ 0—-2t7, sinfcosb
(4.7¢)

0° 0 wvsin@ 0
=—— (¢ +¢,.rcos@)—2[(2—v)cos@—— —
P (4 +dr )—-2[(2-v) o 29

19,
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c,=0, cos’ O+o . sin’ 0+27, sinfcosd

10 18 0 (2-v)sing 8
-t + . COS9 —200059_——_
o Tt ot BT hrcesf)= or 00

(4.7d)
=(

7,,=(0,—0,)sinfcos—7, (sin® O—cos’ 0)
2.1 o cosg 0. (470

2—5(;%)(@+(p2.rcos0)—2(l—u)[sin05— e
Further, with the following expansion
— i Tgne)
—R+rsinf R R
:-lz(isine)k
Ri% R
Equation (4.6) becomes,
o> 1o 10 1& r 0 cosf 0
—t——+— — =) (—=sinf)* (sinf—+ — g =0 4.8
(87’2 ror r*of’ RZ;‘(R ) or r 80j¢' 48

Assuming the following asymptotic solutions of the harmonic functions ¢, (r,8)

and ¢,(r,0),

b(r.0) =S (r/ R £, (0)

by (.0) =S (] )™ £, (6)
In general

¢.(r,0) = i(r/R)“z’”k f.(0); i=1,2 (4.9)
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Substituting Equation (4.9) into Equation (4.8)

i[(r/R)“*k(/%+2—i+k)(/1+1—i+k)f,,k @)+ (/R (A+2—i+k)f, (0)+ (/R £,(0)

k=0

- i(r /R)" sin” H{Sin OA+2—i+k)(r/ R £, (0)+cosO(r/ R)* " f (9)}] =0

n=0

or,

i[(r/R)“*k (A+2—i+k)’ £, (O)+ (/R £,(0)

—sin” OfsinO(A+2—i+k)(r/ RYH £ (6) +cosO(r RY £ (@)1 =0

n=0

By equating the co-efficients of » “Tand """ from both sides of the equation, the

following two equations can be obtained

(A+2=0) £,y (@) + £, (@) =0 (4.10a)
and
(A+3=0) £,,(0) + £,,(0) = (Sin O)A +2—10) f,, () + cos(0) £, (6) (4.10b)
Solution of Equation (4.10 a) is determined as,

S0 (@) = 4,y sin(A +2—-1)0 + B,, cos(A +2—i)0 (4.11a)

Using Equation (4.10 a), the solution of Equation (4.10 b) is obtained as

A B.
f,(0)= A4, sin(1+3-0)0 + B, cos(A +3—1)0 + T’Ocos(/l +1-0)0 - T’O sin(A +1-1)8
(4.11b)

Based on Liu et al. (1999), the above two terms are the main dominating

terms for the stress state to be singular.
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To identify the materials, a new index ‘m’ is introduced here.

Let, m = 1 for material 1

A, (A+1) A B, (1+1) B
4, :N)Ta 4, _2_29 B, = 10R2 , By _2_;;
and m = 2 for material 2
A, (A+1) A B, ,(1+1) B
A, = 10R2 , Ay _2_2, B, = 10R2 » By _2_2

Also, R, =7r/R and using k, =3 —4v,,, Equation (4.7) could be rewritten as

2uU, =R/ %[@ +1)£10(0) + R(A =3+ 49)cos(8) £, (0)]

U _ R R[4, sin(2+1)0+B,, cos(A+1)8 + (A -k, )(sin(A +1)8 + sin(4 —1)8)4,,, |
" ou, 2|+ (A—k,)(cos(A + 1)@+ cos(1—1)0)B,,
T )= R R[4, sin(A+1D8+ B, cos(2+1)0+ (A -k )(sin(A +1)8 + sin(A —1)0)A4,, |
U 2+ (A=k)(cos(A + 1)@ + cos(A —1)0)B,,
(4.12a)
U )= R R[4, sin(A+1)8+ By, cos(A + 10 + (A~ k, )(sin(A +1)8 + sin(1 —1)8)4,, |
", 2|+ (A=k,)(cos(A +1)0 + cos(A —1)0)B,,

21U, = —[Rf % {/16(0)+ R cos(0) 3 (0) + R~ 49)sin(0) /3, («9)}}

U, =

Cu, 2| =B, (A—k,)sin(A+1D)0+(A+k,)sin(A-1)0)

(4.12b)

R' R {Alm cos(A+1)0—B,, sin(A+1)8+ 4,, {(1—k, ) cos(A+1)0+ (A +k,, ) cos(1 - 1)9}}

(4.132)

U __Rl/1 R| A4, cos(A+1)0- B, Sin(ﬂ+1)‘9+A21{(ﬁ_k1)COS(”“+1)‘9+(/1+k1)cos(/1_l)(9}
Uy, = 2| =By {(A—k,)sin(A+1)0+ (A +k,)sin(1—-1)0}

Uu,), = KR A, cos(A+1)0- B, sin(ﬂ+1)9+Azz{(ﬂ,_kz)cos(l+l)9+(/1+k2)005(1—1)‘9}
( 9)2__/12 2| =B, {(A—k,)sin(A + 1)@ + (A + k,) sin(4 —1)8}

(4.13b)
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g L {f]:) (0) +(A+1)£14(0) + Rcos(O) £, (0) + 2(1 - v)Rsin() f,(6)
O R+ Reos(®) £,y (0)(1— 20)(A + k)

—(A+1)* 4, sin(d +1)0— (A +1)* B, cos(A + )0+ (A +1){4,, sin(d + 1)@ + B, cos(d + 1)@}
= R L] 1201 - 0)sin0.R{A, cos(20) — 4By sin(A0)} + ReosOl- 22 Ay, sin(26) — By, cos(A0))

2

+ A(1—20)R cosB{ 4y, sin(16) + B,, cos(A6)}

_p| A4, sin(A+1)8 - AB,,, cos(A+1)0 + 4,,, {2/1(1 —0).2sinfcos(16) + (/1(1 —20)-A )Zcosé’sin(/w)}
'+ By, 2401 0).25inOsin(A6) + (A(1 - 20) - £ R cosOcos(26)}

o {A]m sin(A+ 1)@ + B,, cos(A+1)0+ 4, {(A—k, )sin(1 + 1)+ (A +1)sin( — 1)@} q

— MY

B, {(A=k,)cos(2+ D0+ (A -+ cos(d ~1)6}

__pH [ 4, sin(A+ 1)@+ B,, cos(A +1)0 + Ay, {(1 — k,)sin(A + 1)@ + (A + 1)sin(A —1)0} + |
(0) =~AR, | B, {(A—k,)cos(A+1)8 + (A +1)cos(A - 1)0} |
(4.14a)
R [ A, sin(A+1)0 + By, cos(A +1)0 + Ay, {(A—k,,)sin(A +1)0 + (A +1)sin(1 —1)0} +]
(o) == AR (A= ky)cos(A +1)0+(A+ D eos(A—1)0) ]
(4.14b)
r,=—R" % [4£5(0) + (A =2+ 20)Rec0s@) f3,(6) + Rsin®) £ (O)(1 - 20)]
R AMA+D A, cos@+1)0 = AL+ 1B, sin(d +1)0 + Ay, (A -2+ 20)RAcosOcos(A6)
R |- B, (A—=2+20)RAcosOsin(A6) + 4,,(1 - 20)RAsinGsin(A6) + B, (1 - 20)RAsinfcos(16)

m

_ g cos( +1)0— B, sin(A+ 10+ 4,, {(1—k, ) cos( +1)8 + (A —1)cos(A —1)6}
~ ' =B, [(A—k,)sin(A + DO+ (A—D)sin(A - 1)0)}

Ay, cos(A+1)80 — By, sin(A + 1)@ + Ay, {(1 —k,)cos(A + 1)@ + (A —1)cos(A — 1)9}}

(Trg)l = _R1/1]|: . .
— B, {(A—k))sin(A + 1) + (A —1)sin(A - 1)8}

(4.152)

Ay, cos(A+1)80 — By, sin(A+1)0 + Ay, {(A —k, ) cos(A +1)8 + (4 —1)cos(A — 1)0}}

(7,9), = _Rl/l_l . .
L By, {(A —k,)sin(A + 1)@ + (A —1)sin(A - 1)0}

(4.15b)

Continuity and boundary conditions for the problem are:

At 8 = 6, (continuity condition)

U,),=WU,),, Wy, =W,),, (0, =(0,),, (Trﬁ)l :(Tre)z
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At 6 =0 (free surface)

(04), =0, (7,,),=0
At @ =z (free surface)

(09); =0, (7,5),=0

Let,ﬂ=ﬂ,

Hs
sin(A+1)g, =S§,, sin(A-1)§,=S,, sin(A+)r=S,, sin(A-Dz=3S5,

cos(A+1)8, =C,, cos(A-1)8,=C,, cos(A+)zx=C,, cos(A-1)rz=C,

Using these expressions along with the boundary conditions to Equation (4.12)-
(4.15), the following system of homogeneous linear equations of the eight

constants 4, ., B, , A, ., B

1m»> Im> “"2m> 2m

m =1, 2 is obtained.

A1151 _//‘41251 +(/1_k1)A21(Sl +Sz) _,U(/i_kz)Azz(Sl +Sz)+BnC1 _/L‘Blzcl +(/1_k1)Bz1(C1 +C2)
—u(A=ky)By(C +G) =0

A,C, = A, C+ Ay (A=) +(A+k)Cy f= iy, (A= K,)C, +(A+K,)C, | B, S, + 1B, S,
— B, {(A—k)S, +(A+k)S, |+ 1B, {(A—k,)S, +(A+k,)S,} =0

4,8, — 4,8, +A21[(ﬂ_k1)S1 +(/1+1)Sz]_A22[(/1_k2)S1 +(/1+1)S2]+BHC1 - B,C,
+ B, [(A=k)C + (A+1)C, |- B,y [(2 = k,)C, +(A+1)C, =0

A,C, = 4,C, + Ay {(A—k)C, +(A-1)C, }— Ay, {(A—k,)C, +(A-1)C, }-B,,S, +B,,S,
=By (A=k)S, +(A=1S, |+ B, {(A-k,)S, +(A-1)S, } =0

A,0+4,0+4,.0+4,0+B,0+B,-8,.0+B,,2A+1-k,)=0
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A,0+4,+4,0+4,,.21-1-k,)+B,,0+B,0-5,,.0+B5,,,0=0
A, Sy + Ay 04 Ay, [(A=k)S; +(A+1)S, |+ 4y .0+ B, C, + B,,.0+ By, [(A—k,)C, +(A+1)C, |+ B,,.0=0

A,Cy + A, 0+ Ay, {(A—Kk)Cs +(A-1)C, }+ 4,,.0- B, S, + B, .0~ By, {(A—k,)C; +(A-1)C, }+B,,.0=0

The above equations in the matrix form

_S] _/usl (ﬂ'_kl)(‘sl +S2) _;umv_kz)(sl +S2) Cl _:ucl (/F{'_k])(cl +C2)
C, —uC, (A=k)C+(A+k)C, —l(A-k)C +(A+k)C] =S, w8, —(A=k)S, —(A+k)S,
S, =S, (A-k)S,+(A+DS,  —[A-k)S,+(A+DS,] €, -C, = (A-k)C, +(A+])C,
C, -G (A-k)C+@A-DC,  -[A-k)C+(A-DC] -8 S, —[(A-k)S, +(2-DS,]
0 0 0 0 1 0
0 1 0 21—k, 0 0
S, 0 (A—k)S, +(A+DS, 0 C, 0  (A-k)C,+(A+1C,
G, 0 (A-k)C,+(A-1DC, 0 -8, 0 —[(A-k)S, +(A-1)S,]
~ A=k )C +Cy) ][4, ]
HA=K)S, +(A+Kk,)S,] || 4,
~[A=k)C, +(A+1)C,] | | 4y
[(A=k)$, +(2=DS,] | 4| _
24+1—k, B,
0 B,
0 BZI
0 __B22_
Or,
[c][4]=0 (4.16)

where, [C] is the coefficient matrix.

The condition for the existence of the non-trivial solution of Equation (4.16) is,

Det[C]=0 4.17)
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For any angle, y = 90- 6, where, 0 is the bonding angle, Equation (4.17) is

equivalent to

sin? Az +2(24% cos® y — Dasin Az sin 24y — 4% Bsin Azsin 24y cos” O + 41* cos®
(1—cos Az cos2Ay —24% cos® y).af +[sin* 24y +4A*(A* =1)cos® y — A*sin? 2y].a” +
[427 cos® (A cos® y —1+cos A cos2Ay) + (cos Ax —cos2Ay)*]1.8% =0

(4.18)

where, «, f are the Dundurs' (1969) parameters, defined in Chapter 2 as follows

o= iy (ky +1) = (ky + Vgt
w1y (ky +1)+ (K, "‘1),“2 ’

IB =
Thus, an eigenvalue equation (4.18) for 4 is obtained. Since the lowest

order of the stress at the edge of the bonded joint is A-1, for0 < Re(1) <1, the stress
component goes to infinite whenr — 0, i.e. there exists a stress singularity. For

any combination of materials the critical bonding angle 6, is determined by using

Equation (4.18) for which the value of 4 equals one. Any angle less than the
critical angle will lead A > 1, i.e. the stress singularity can be eliminated. Thus the
condition for the elimination of the stress singularity from the interface corner is,
0p<0..

Substituting the properties of materials given in Table 4.1 into Equation (4
4.18), the real roots of “A” in the range 0 <A <1 are determined for different

bonding angles. The results are tabulated in Table 4.2.
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Table 4.2: Values of A in the range 0 < A <1 for different bonding angles

Bonding Angle, 6, A
90 0.6624
75 0.7338
60 0.8604
55 0.9215
54 0.9353
53 0.9496
52 0.9645
51 0.9801
50 0.9964
49 1.013

From the analytical result, it is quite clear that the critical bonding angle
for the considered aluminum and epoxy interface is in between 49° and 50°. In
order to eliminate the stress singularity from the interface corner, the bonding

angle at the interface corner must be less than 49°.
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4.2.2 Verification of the critical bonding angle by finite element
analysis

The axi-symmetric finite element model of the suggested specimen has

been shown earlier in Figure 2.2 (Chapter 2), where aluminum and epoxy are the
hard and soft materials, respectively. The radius of the cylindrical specimen, R, is
10 mm and a uniform tensile stress of 10 MPa is applied at the top end of the
specimen while the bottom end is kept as fixed in the axial direction. The
distributions of the interface normal stress, interface shear stress and effective
stress along the interface are shown in Figure 4.2 for two different bonding angles

of 40° and 60°, respectively.

Stress
(MPa)
20 4 —=e- Effective (60°) -©-- Effective (40°)
- —®— Normal (60°) --B-- Normal (40°)
—4— Shear (60°) --©-- Shear (40°

0 2 4 6 8 10 12
Arc distance from centre (mm)
Figure 4.2: Normal, shear and effective stress distributions along the interface for

bonding angles of 40° and 60° with pure tensile load
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It is seen that excessive stresses exist near the free edge of the interface,
when the bonding angle is 60°. These stress values increase without convergent
limits with increasing mesh density, indicating that the stress singularity occurs at
the free edge of the interface. However, for the case of 40° bonding angle, finite
values of the interface stresses are exhibited and the stress convergence is
confirmed by increasing the FEM mesh density. Then the similar analysis is
carried out for other bonding angles from 40° to 60° by the increment of 1° each
time. It is found that the shape of the effective stress curve near the free edge
starts to change from the downward to the upward direction, when the bonding

angle changes from 49° to 50° as shown in Figure 4.3.

12.5

12

10.5

10

Ll T Ll T

0 2 < 6 8 10 12

Arc distance from specimen center (mm)

Figure 4.3: Effective stress distributions at the interface corner for bonding angles

of 49° and 50° with pure tensile load



Chapter 4: Elastic/Elastic Bi-materials Interface 93

This indicates that the value of the critical bonding angle for the present
aluminum/epoxy elastic bi-materials interface is between 49° and 50°. Thus, the
finite element analysis results have verified the accuracy of the analytical method.
For any combined normal-shear loading on the specimen with bonding angle less
than 49°, finite interface normal/shear stress field can be obtained.

Another fact should be mentioned is that there is no interface stress
singularity for the application of pure torsional load on the specimen designed
according to the developed method. Figure 4.4 shows the interface shear stress
distribution along the spherical interface by applying a torque of 21 N-m at the
ends of the specimen, where the bonding angle is 50°. Note that in this case, only
interface shear stress (along the circumferential direction) is developed and there

is no interface normal stress.

14 -
12 4
= 10 -
o
Z s
?
) i
E 6 ——shear stress
7
4 -
2 -
0 T T T T T
0 2 4 6 8 10

Arc distance from specimen center (Imm)

Figure 4.4: Shear stress distribution along the interface under pure torsional load

(bonding angle of 50°)
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4.2.3 Experimental verification of the critical bonding angle

The above analytical and FEM results are verified by the following
experimental results. In order to determine the critical bonding angle by
experiment, specimens are made from aluminum and epoxy with different edge
bonding angles. Each specimen is tested under the pure tensile loading until final
failure at the interface and the failure loads are recorded. The variation of failure

loads with bonding angle is shown in Figure 4.5.

10 -
Material: Aluminum/Epoxy
8 -
o
— 6 _
€| o 0
= 0 O
44 O o
-
o
2 1 O
0 T T T T 1
25 35 45 55 65 75
Bonding Angle (Degree)

Figure 4.5: Variation of failure loads with bonding angle under pure tensile
loading

It can be seen from Figure 4.5 that the failure loads at the bonding angles
of 6p<47° are much higher than those at the bonding angles 8y > 55°. There is an
abrupt drop of the failure load from 6y = 47° to 6y = 55° indicating a transition

from a finite interface stress field to a singular interface stress field. Therefore, the
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experimental results have also verified that the critical bonding angle for the

current aluminum/epoxy interface is in the range of 47° < §,.<55°.

43  SPECIMEN AND EXPERIMENTS

The critical bonding angle 6c for the aluminum/epoxy interface is
determined as in between 49° and 50°. Therefore, the test specimens are
manufactured with a bonding angle of 47°. The detailed geometry of the specimen

is shown in Figure 4.6.

60.0 -t 60.0 —~

TE Y Y Y Y Y Y Y N Y NN Y
NN N NI T
Y NN
N N +

Epoxy |} \
N AN AN
\\\\\\\\\
W Y. . . T .

B Y
\ 47.0°

(Dimensions are in mm) 14.66 ®20.0

1/

/////////

Figure 4.6: Aluminum-epoxy specimen for interface strength test

The aluminum portion of the specimen is first fabricated to the cylindrical
shape with a spherical interface by CNC lathe machine. The same interface
roughness condition is kept for all the aluminum parts. EPON 8131/EPI-CURE
3072 is used for the epoxy portion of the specimens. EPON 8131 resin and EPI-

CURE 3072 hardener are mixed at a proportion of 79 to 21 weight percent. A
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special mold described in Chapter 3 is used to make the interface specimen. The
multi-axial testing machine is used to conduct the tests. Using the controller of the
machine, various combinations of normal and shear loads are applied on the
specimens. With the help of an accurate data acquisition system, the failure loads

are recorded for each test case.

44  EXPERIMENTAL RESULTS AND FINITE ELEMENT ANALYSIS
TO OBTAIN THE STRESS DISTRIBUTION ALONG THE

INTERFACE

Tensile load, torsional load and various combinations of tensile and

torsional loads are applied on the specimens by the multi axial testing machine. In

each case, the maximum failure load is recorded and is given in Table 4.3.

Table 4.3: Maximum failure loads of the aluminum-epoxy specimen

No Tensile load (N) Torsional Load (N. m)
1 0 37.53
2 264.4 36.96
3 1691 37.86
4 2358 37.3
5 3000 37.29
6 3250 28.27
7 3540 33.96
8 4639 23.71
9 4702 21.17
10 5727 0
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Each of the above failure loads are the average values from two tests with
same combined loading conditions. The failure loads in tests given in Table 4.3
are applied in the finite element analysis for each loading case. The normal, shear
and effective stress distributions are obtained along the interface. As an example,
the stress distributions along the interface of Specimen No. 6 with the maximum
tensile and torsional loads of 3250 N and 28.27 N-m, respectively, are shown in

Figure 4.7.

Stress

35 — (MPa) Maximum effective stress -
. —©— Effective

N —&— Normal

—&@—— Shear

30 —

20 —

15

10

- o e = - - -

0 2 4 6 8 10 12

Arc distance from centre (mm)

Figure 4.7: Stress distribution along the interface of epoxy and aluminum of

specimen No. 6.



Chapter 4: Elastic/Elastic Bi-materials Interface 98

45 OBTAINING BIAXIAL NORMAL-SHEAR INTERFACE
BONDING STRENGTH CRITERION (ENVELOPE) THROUGH

ITERATION

The pure torsion test gives the pure shear stress at the interface. Figure 4.8
shows the shear stress distribution along the interface with the specimen subjected
to the maximum pure torsional loading. The normal stress along the interface

vanishes in this case. The maximum value of the shear stress is 7; = 20.86 MPa.

25 -
Maximum Value 20.86 MPa
20 -
E
15 -
2
::
E 10 -
)
— Shear Stress
5 J
0 I I | 1
0 3 6 9 12

Arc distance from specimen center (Imm)

Figure 4.8: Shear stress distribution along the interface for pure torsional load
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Therefore, the first trial criterion (effective stress) is

U= +3¢> =40+3%20.86” =36.13 (4.19)

Or, it can be written as

Op

36.13

T

m)2 =1 (4.20)

(=22 4 (

Figure 4.9(a) shows the effective stress envelope, Equation (4.20), and the stress

points [O'n,k, z'k](l) , k=1,....,10 based on the maximum effective stress value

1/05 +3¢2 for each test case.

Next, we try to find best fit curve for the 10 points in Figure 4.9(a). It can
be seen that a quadratic expression may still be suitable to fit this set of ten points.

By keeping the value 7, = 20.86 MPa, the second trial criterion is obtained as

o )2+( T

2
=1 4.21
16.45 20.86) 21

(
Based on the above second trial criterion, a second set of the stress points
[O .k s rk](z)k = 1,....,10 is obtained based on the maximum values of the left
side of Equation (4.21) for each test case. Figure 4.9(b) shows the Equation (4.21)

and corresponding stress point set [0, 1, Tk](z) k=1,...., 10.
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Shear Stress (MPa)
(a) 25
G, .2 T 2
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Figure 4.9: (a) Interface strength envelope of epoxy and aluminum based on
maximum effective stresses (b) Interface strength envelope of epoxy and
aluminum after 1% iteration (c) Final interface strength envelope of epoxy and

aluminum interface
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Continue taking the quadratic form and keeping the value of 7, =20.86 MPa, the

third trial criterion is obtained as

o )2+( T

2
=1 4.22
19.76 20.86) (4.22)

(

The further iteration produces the same results as the Equation (4.22).
Therefore, for the tested aluminum/epoxy bi-material interface, Equation (4.22),
as shown in Figure 4.9(c), represents its normal-shear interface bonding strength
criterion (envelope) in the range of the first quarter of the normal-shear stress

plane.

46 FURTHER OBSERVATION AND REMARKS

It is interesting to compare the current test results with the results obtained
by using the butt joint specimens recommended by ASTM D897 (2008) and
ASTM D2095 (2008). The butt joint specimens are made with the same
dimension as shown in Figure 4.6 except that the interface is flat, or the bonding
angle is 6y = 90°. Both the groups of specimens with 6y = 90° and 6, = 47° (each
group of 5 specimens) are tested under the pure tensile loading for a comparison.
The average maximum failure (debonding) load for the ASTM butt specimens is
2161N with a data scatter band of 13%, while for the proposed designed

specimens this value is 5727 N with a scatter band of 12%. It can be seen that the
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tensile load carrying capacity of the aluminum/epoxy joints with the proposed
design is improved by 2.65 times over the ASTM butt joint design. The large
difference in the load carrying capability of the two groups of specimens shows
the great potential in the optimal design of bi-material interface for the advanced

materials and structures.

For the ASTM butt joint specimen, the tensile interface bonding strength
is directly calculated by dividing the failure load by the bonding area and is
obtained as 6.88 MPa in this case. This value is obviously much lower than the
actual tensile strength of the interface since the stress singularity exists at the free

edge, which initiates the failure at a lower applied tensile load.

On the other hand, the tensile strength of 19.76 MPa obtained from the
current test method is a more reliable data than that obtained by using ASTM
methods. Although both normal and shear stress components exist at the interface,
the distributions of the normal and shear stresses from the FEM analysis and the
obtained strength envelope, Figure 4.9(c) and Equation (4.22), indicate that the
failure should start near the central area of the interface where the normal stress is
dominated (o, = 21.07MPa, 7 = 0.36MPa ). Figure 4.10 shows the failed specimen

under pure tensile load in the current test.

It can be seen that the interface debonding indeed started near the central

area of the interface, not from the edge of the interface as in the case of the ASTM
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butt specimens. Therefore, the experimental observation also supports the

currently obtained bonding strength data for the aluminum/epoxy interface.

Figure 4.10: Interface of the failed specimen under pure tensile load
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CHAPTER 5

ELASTIC/VISCOELASTIC BI-MATERIAL INTERFACE

Due to the increasing utilization of polymeric materials in automobile,
aerospace, oil and gas, and marine industries, viscoelastic properties of these
polymeric materials have received much attention. This chapter presents the
determination of bi-material interface bonding strength envelope of an
elastic/viscoelastic bonded joint. As an example, the interface between aluminum
and epoxy is considered. Aluminum is considered as an elastic isotropic material,
whereas epoxy is as a linear viscoelastic material. This chapter is organized as in
the following orders: at first, shot discussions about the viscoelasticity are
presented. Next, literatures related to the elastic/viscoelastic bonded joint are
reviewed, three different cases of material modeling are discussed, the analytical
solution for the elastic/viscoelastic bonded joint to find the stress singularity and
critical bonding angle are presented, and finally, the interface bonding strength of

an aluminum (elastic)/epoxy (viscoelastic) are determined.

5.1 VISCOELASTICITY

Most of the polymeric materials exhibit mechanical response
characteristics which are outside the scope of elasticity and viscosity; thus a more

general theory is needed. The theory of elasticity deals with the materials which
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have a capacity to store mechanical energy with no dissipation and a newtonian
viscous fluid in a non-hydrostatic stress state implies a capacity for dissipating the
energy, but none for storing it (Christensen, 1982). The fundamental difference
between the polymers and other materials is that the mechanical properties of
polymers vary with time.

Under the application of a suddenly applied loading state and held
constant after that, an elastic material responds instantly with a state of
deformation which remains constant. A Newtonian viscous fluid responds to a
suddenly applied state of uniform shear stress by a steady flow process. There are
some materials, which possess the capacity to both store and dissipate mechanical
energy. For these materials some of the work done to deform them, can be
recovered. A suddenly applied and maintained state of uniform stress on these
materials induces an instantaneous deformation followed by a flow process which
may or may not be limited in magnitude as the time grows. This behavior cannot
be clearly described by either the elasticity or viscosity theory but combines
feature of each. Thus, viscoelasticity is the study of materials whose mechanical
properties have the characteristics of both elastic and viscous materials. All
polymers (fluid or solid) have time or temperature domains in which they are
viscoelastic (Brinson and Brinson, 2008).

Some other theories of mechanical behavior of materials also have a
memory of deformation but they have some fundamental differences with the
viscoelasticity. For example, the incremental theory of plasticity has memory

effect (final state of deformation depends not only the final state of stress, but also
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upon the path in stress space traversed to reached this final state). However, the
plasticity theory is independent of time scale involved in loading and unloading,
whereas, the viscoelastic theory has a specific time or rate dependences

(Christensen, 1982).

5.2 BACKGROUND STUDY

In many applications, polymers are reinforced with harder material phases
such as fibers, ceramic particles, etc. The interface strength between the polymer
and reinforcing agent is therefore critical to the overall performance of these
polymeric composite materials. Publications related to analytical solutions for the
elastic/viscoelastic bi-material interfaces are relatively limited. Since the stress,
strains and displacements of viscoelastic polymers are all time-dependent, the
stress analysis of the viscoelastic materials is thus more difficult (Nagaraja and
Alwar, 1980). The integral transform technique or the so-called correspondence
principal has been commonly used for the viscoelastic analyses: a viscoelastic
problem is first converted to an equivalent elastic one by using the Laplace
transformation, after solving the equivalent elastic problem, the viscoelastic
solution is then obtained through an inverse Laplace transformation of the elastic
solution (Lee, 1954, 1955; Schapery, 1962).

Delale and Erdogan (1981) performed the viscoelastic analyses of an
adhesively bonded lap joint using the Laplace transform technique, assuming that
the adherends are elastic and the adhesive is linearly viscoelastic. Because of the

complexity of the problem, the inverse transform can only be obtained
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numerically. They reported that at the edge of the interface, the stresses are much
higher than the stresses further away from the interface corner. Due to their use of
plate theory, the stress singularity cannot be identified. Nagaraja and Alwar
(1980) conducted a similar analysis of an adhesive-bonded lap joint using finite
element methods. Yadagiri et al. (1987) also used the finite element method to
perform the viscoelastic analyses of bonded joints. Lee (1997) presented a
solution that was used to find the order of the stress singularity and the free edge
stress intensity factor for a two-dimensional, elastic-viscoelastic bonded joint. He
used the standard Laplace transform together with the boundary element method.
However, the problem was simplified by assuming a time-independent Poisson’s
ratio for the viscoelastic material. Understanding the importance of the time-
dependent viscoelastic properties of the material in stress singularity analysis for
bi-material interfaces, Qian et al. (2000) presented the stress and displacement
solutions for an elastic-viscoelastic joint whilst considering the time-dependent
Poisson’s ratio for the viscoelastic material. However, his time-dependent
Poisson’s ratio was derived from an assumption of a time-independent bulk
modulus. Tscharnuter et al. (2011) reported that the time-dependent Poisson’s
ratio is essential for the accurate simulation results, and cannot be achieved
accurately by assuming a constant bulk modulus. In addition, the determination of
the time-dependent Poisson’s ratio from a constant bulk modulus involves some
unnecessary complexity in the analysis of the stress singularity (Qian et al., 2000).
It is also difficult to directly determine the bulk modulus from experimentation

(Deng and Knauss, 1997). There are only two independent time-dependent
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material functions for a standard linear viscoelastic solid. The simultaneous
measurements of these two materials are explained clearly in Chapter 3.

Moreover, Qian et. al (2000) used the solutions for the elastic/elastic
bonded joints (Eq (3) in Qian et. al 2000) from their previously published paper
(Qian and Akisanya, 1999) to obtain the solutions for elastic/viscoelastic joints,
but the definition of Dundurs’ (1969) parameter, f is not the same in these two
papers. The Dundurs’ parameter, £ in the viscoelastic analysis (Qian et. al 2000)
is twice than the Dundurs’ parameter, £, they used to obtain the elastic solution
(Qian and Akisanya 1999). The material parameter £ has a significant effect on
the stress singularity.

From the above review it is clear that an accurate and realistic method for
determining the order of the stress singularity and thus the interface bonding

strength for an elastic/viscoelastic bonded joint needs to be further explored.

5.3 MATERIAL MODELING

In order to determine the stress singularity at the interface corner of a
bonded joint with viscoelastic materials, the material properties need to be
modeled accurately. However, from the discussions in the earlier section it is
easily understandable that the analysis of viscoelastic materials is more difficult
than the analysis of elastic materials. There always exists a critical relation
between the accuracy and level of difficulty in the analysis. If the materials are
tried to model more accurately, the analysis will also become more challenging.

That’s why, three different cases of material modeling are considered in this study
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based on their level of difficulty and accuracy in the analysis to ensure that the
desired accuracy level in the stress singularity analysis is attained.

It is mentioned here again that only two properties; shear modulus and
Poisson’s ratio are needed to determine the stress singularity at the interface
corner. In chapter 3, the viscoelastic relaxation modulus and Poisson’s ratio are
obtained simultaneously and directly from the relaxation tests of viscoelastic
materials. The time dependent shear modulus can be obtained from the relaxation

modulus and Poisson’s ratio using Equation (5.1).

u(ty= 20

Sl G-

where, G(?) is the viscoelastic relaxation modulus, and v(¢) is the viscoelastic

Poisson’s ratio.

The three different cases of material modeling are briefly explained in the

following sections.

53.1 Case -1: The viscoelastic shear modulus is modeled as the
standard linear solid model and Poisson’s ratio is considered as

constant

This model is the simplest among the three models used in this study for
the analysis of the stress singularity at the viscoelastic material bonded joints. Lee

(1997) assumed the constant Poisson’s ratio in his analysis to determine the stress
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singularity for an elastic/viscoelastic bonded joint. Though in section 5.2, it is
mentioned that this assumption simplifies the problem very much, it is considered
in this study to see the effect of time dependent Poisson’s ratio on the stress
singularity. Another reason to consider this model is that for a
viscoelastic/viscoelastic interface bonded joint (which will be discussed in the
next chapter), there is no analytical solution available in open literature. Our
intension is to start with this model to develop the analytical solution for the stress
singularity at the viscoelastic/viscoelastic interface.

The standard linear solid model is shown in Figure 5.1. It contains a

kelvin-voigt solid model with a spring in series.

Figure 5.1: Standard linear solid model
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Based on the above model, the shear modulus of the viscoelastic material

can be expressed as Equation (5.2)
u(t) =4, + 4,e”"’ (5.2)
where, ¢ =1/¢, and ¢, is the viscoelastic relaxation time.
The coefficient 4; and 4 can be determined easily as follows
att=0, w0)=4+4,
ati=co, p(e0)= 4,

Solving, 4, = u(0)— ()

Thus from equation (5.2),

p(t) = u(0)e™ + () (1-e*") (5.3)

As described earlier that for case-1, the viscoelastic Poisson’s ratio is considered
as constant. So,

v(t)=v, (5.4)

5.3.2 Case -2: Both the viscoelastic shear modulus and Poisson’s

ratio are modeled as the standard linear solid model

It is clear that the difference between case-1 and case-2 lies in the
modeling of Poisson’s ratio. Case-1 considers the time independent Poisson’s

ratio, whereas, Case-2 considers the time dependent Poisson’s ratio. The
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importance of considering the time dependent Poisson’s ratio in the singularity

analysis is described briefly in section 5.2.

Since in both cases (case-1 and case-2), the shear moduli are modeled as
the standard linear solid model, the shear modulus for case-2 is also represented
by Equation (5.3). The Poisson’s ratio of the viscoelastic material can be
determined in the similar way as the procedure followed for the shear modulus
determination in case-1.

The time-dependent Poisson’s ratio is expressed by Equation (5.5)

according to the standard linear solid model
v(t)=B, —B,e”' (5.5)
where, ¢ =1/¢, and ¢, is the viscoelastic relaxation time

The coefficient B; and B, are determined as follows

att=0, v(0)=B,-B,
at t = oo, v(0) = B,
Solving, B, = () —0(0)

Thus, from Equation (5.5), the time-dependent Poisson’s ratio is expressed as

follows:

() =v(0)e” +u(w) (1-e’") (5.6)
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5.3.3 Case -3: Both the viscoelastic shear modulus and Poisson’s

ratio are modeled as the Wiechert Model

Q

Figure 5.2: Wiechert model consisting of two Maxwell elements with a spring in

parallel

This model is most accurate among the three models considered in this
study to represent the properties of the viscoelastic materials. This model consists
two Maxwell elements with a spring in parallel. Of course, the singularity analysis
considering this model becomes more difficult than the previous two cases.

Based on the above model, the shear modulus of the viscoelastic material

can be expressed as Equation (5.7)

,U(f) = Al + A2€7¢lt + A3€7¢21 (57)
Where, ¢, =1/t,, and ¢, =1/¢,, depends on the spring and damping constant of

the Wiechert model.
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The coefficient 4,, and 4; cannot be obtained directly as the previous two

cases. However, at =00, (o) = 4,

The other two coefficients are obtained by best fitting the measured data from the

relaxation test. Same procedure is followed for the Poisson’s ratio.

Let the Poisson’s ratio be expressed by Equation (5.8)

v(t)= B, — B,e* — B,e ™™ (5.8)
Where, ¢, =1/¢,, and ¢, =1/t,, depends on the spring and damping constant of

the Wiechert model.

54  VISCOELASTIC PROPERTIES OF EPOXY

For the cases 1 and 2, the viscoelastic properties of material depend on its
value at time, # = 0 and ¢ = o. The variation of the properties depends on the
relaxation time. Using the measured data from the relaxation tests described in
section 3.2.3 in Chapter 3, the required properties of epoxy to express as

Equations (5.3), (5.4) and (5.6) are given in Table 5.1
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Table 5.1: Experimental viscoelastic properties of epoxy

Property Att=0 Att=o0 Relaxation time
Shear Modulus, u

> 0) = 449 =135 =
(MPa) #(0) () ty= 90 sec

Poisson’s ratio, v v, =0(0) =0.415 v(©) = 0.443 ty= 90 sec

Thus the viscoelastic properties of epoxy are as follows:

Case-1:

The viscoelastic shear modulus, u(t) = 135+314 e (5.8)
and Poisson’s ratio, v(t) =0.415

Case-2:

The viscoelastic shear modulus, u(t) = 135+314 e (5.9
and Poisson’s ratio, v(t) = 0.443- 0.028 ¢”*°

Case-3:

As mentioned earlier that the viscoelastic properties for case-3 are
determined using the best fit curve technique. Figure 5.3 shows the experimental
curve of the viscoelastic shear modulus of epoxy and the fitting curve according
to the model described in Case-3. The equation of the best fitting curve is given

below (Equation 5.10)

u(t) = 135+237 13477 7650 (5.10)
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Figure 5.3: Experimental and modeled viscoelastic shear modulus of epoxy

From Figure 5.3, it is quite clear that the case-1 and case-2 can represent

the shear modulus accurately only at the beginning and end region. However,

case-3 can predict the viscoelastic shear modulus accurately for the whole tested

period.

Following the same procedure as the viscoelastic shear modulus, from

Figure 5.4, the Poisson’s ratio of epoxy for the case-3 is given by Equation (5.11)

W(t) = 0.443-0.017 ¢'°%.0.011¢™°

(5.11)
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Figure 5.4: Experimental and modeled viscoelastic Poisson’s ratio of epoxy

55  ANALYTICAL SOLUTION FOR AN ELASTIC/VISCOELASTIC
BONDED JOINT

55.1 Case-1: The Shear modulus is time dependent but Poisson’s

ratio is time independent

The Laplace transform of any function f{¢) can be defined as
L= /() e"di

where, L{ f (t)} is the Laplace transform of the function f{t) and s is the Laplace

transform parameter.
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Conducting Laplace transformation of Equations (5.2 and 5.4)

4,

— and () = Loy / s
s+¢

x A
H5(5) :Tl"'

AT 33

Where, ‘s’ is the Laplace transform parameter and the superscript of any

variable indicates that the parameter is in the transformed domain.

The elastic-viscoelastic analogy (Fung, 1965; Christensen, 1982 ) states
that elastic solutions can be converted to Laplace transformed viscoelastic
solutions through the replacement of elastic moduli and elastic Poisson’s ratio by
the transformed viscoelastic moduli and Poisson’s ratio multiplied by the Laplace
transform parameter s, respectively. Thus, using the elastic viscoelastic analogy,
the Dundurs’ Parameters (Equation 2.3) in the transformed domain for an

elastic/viscoelastic bonded joint are obtained as follows:

1,(1= 503 () ~ 543 ()1~ 0,)
1,(1— 503 () + s ()10,

sa (s) =

ul(l—um)—s(fw@)a—vl)

A o
S+¢)(l V)

or, a’ (s)=—]

y ] (5.12a)
s py(1=0y0) +s(+
S

#,(1= 250} ()~ s (s)(1~20))

and P (=505 sy ()0 )]
| =20 =521 20)
Or, B (s)=—[ SA Sj’ ] (5.12b)
Y20 (1= vy) + ("2 )(1-0))]
s s+¢
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The inverse Laplace transform of a function F(s) is defined as:

B 1 71 +io s
L {F(s)}= o LwF(s)e ‘ds

where y; is an arbitrary positive constant lying to the right of all the singularities

of the function F(s) (Schiff, 1999).

By performing the inverse Laplace transformation on Equation (5.12) the

Dundurs’ (1969) parameters in time domain are obtained as follows:

(e —D(A O =D = (U =) (4 +4,)A-0) + 4, (Vy — 1)

a(t) =

A (v, =)+ 1, (0, = 1) (A4 + A4,) (0, =D+ 1, (0y, = 1)
or. ()= (e” —D(s, ()0 =D = 4, (03 = D) | €" (1, ()A=0)) + 14, (Vy = 1)
iy () (0, =) + 1, (0, = 1) 1, (0)(0, =)+ 1, (Ly, = 1)
(5.13 a)
and,
B(t) = 11 (€ =D (1-20y) + 4,20, - 1)) N e’ ((4 + 4)(1-20) + 1,(2v,, — 1))
2 A =)+ (0 —1) 14,0y = 1) + (A4 + 4,) (v, ~1)
or, -t {(ef ~ D (1= 20,0) + £,(0)(20, 1) | € (1 (0)(1 =20)) + 44,20y ~ 1))}
2 1, (00) (0 = 1) + g1, (0y, = 1) 1 (L), =)+ 14,(0) (v, = 1)
(5.13b)
where, e=_ (A, (v, =D+ 1, (0y, — 1))
(A4 +4,)(, —D+ g (Uzo -1
or, oo (41, () (0, 1) + 11, (0, — 1)) ;

H, (0)(01 - 1) + 4 (Uzo - 1)



Chapter 5: Elastic/Viscoelastic Bi-material Interface 122

Again, following the elastic-viscoelastic analogy and using the Laplace
transformation and inverse Laplace transformation, the eigenvalue equation

(Equation 4.18) in the time domain is given as follows by Equation (5.14).

7, sin” Ax—1,.2Q4 cos y—1)sinAzsin2Ay+7,. 4% sinAzsin2Aycos y
+7,.47° cos’ y(1—cosAmcos2Ay—21" cos’ y)+z,.{sirt 2Ay+42 (& —1)cos’ y—A' sin® 2y}

+7,. 44 cos’ (X’ coS y—1+cosAncos2Ay)+(cosdz—cos24)’ 1 =0
(5.14)

Where,

7 =[0TG D" e {10~ 1(IT (Pt -DG D’ +21(IG ~D([(0) (G D+ 4 Ly~ D)+
A1) —£6(u@~Dy =D 44 -1

7, = 14 Uy =1’ ~[1,@)F (0 =)’ +€ ' [1,(0) = 1, (0)] ([14,(0) = 11, ()]t —1) = 211,(0))..

= (GO G 12 s ) 46130422 ™ O~ )Ry 124
(1400~ —D0-3u +2)+44(u ~v3) 1}

2 =;{V12(°0)]2(1—3q +20) + 6 G G~40)+30, =2+ (130, +25) —e ™ (14 (0) — 16D [4(09....
----- (61 —4f —2)+{16(0)— (It D13y +20) + 4230, +y @, -3}

7, =(6Q D4y -D) —* (10~ 16(NG DO~ 16N B —DG ~D 214G —D.....
214Uy D)]

o= IR D+ 120~ (O~ D[ 0) N -D@y -+
2040 =24) + 244203 -V}
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55.2 Case-2: Both the shear modulus and Poisson’s ratio are time

dependent

Using the Laplace transformation, the transformed equations of Equations (5.2
and 5.5) are given by:

* A A . B B
1y (s) =L+ 2 and v, (s)=—"L-—2—
s Ss+¢ s Ss+¢

where, ‘s’ is the Laplace transform parameter and the superscript “*”indicates

that the parameter is in the transformed domain.

Thus, using the elastic viscoelastic analogy, the transform Dundurs’ Parameters
are given by:

#,(1=503()) =54 (s)(1-0,)

sa'(s) = * *
ﬂl(l_suz(s))+5ﬂz(s)(1_01)
w-sBio By (A Ay
a(s) =1 3 s;¢ y S;‘é ] (5.15a)
or, (=52 ) s(Ch+ ) (1-0)
s s+¢ s s+¢
and Sﬁ*(S): lul(l_ZSU;(S))_S/J;(S)(I_ZUI)
’ 20 1,(1= s05(5)) + s ()1 - ;)]
=250 By yi- )
or, B'(s)=-[ ; S;‘/} “; Sff ] (5.15b)
S 2fu -5t = )4 s(Ch+ 2 )(1-0)]
s s+¢ s s+¢

Using the inverse Laplace transformation of Equation (5.15), the Dundurs’

parameter in time domain are given by:
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(e” — D, (0)(v = 1) = 1, (0, (0) = 1) " (1, (O)A-v) + 14, (,(0) ~ 1))

t) =
a( ) H, (OO)(U1 _1)+ H (Uz (OO) _1) H (Uz (O)_1)+ﬂ2 (O)(Ul _1)
(5.16a)
and,
sy =L {(e‘f D (1-20,(0)) + 11, (®)(20, = 1) | € (1,(0)(1=20)) + 44,20, (0) —1))}
2 1y () (0 =1) + 11, (0, () =1) 1y (0,(0) =1)+ 1, (0)(v, —1)
(5.16b)
where, &= — (4, (v, =)+ (B, -1)

(4, + 4,) (0, =D+ 4(B, —B,-1)

_ P, (0)(V, —1) + 14 (0, () — 1)) ¢
1O, ~ 1)+ 41,(0,(0) )

Or, &=

Similarly, using the same procedure as described in the earlier section, the
eigenvalue equation (Equation 4.18) in the time domain is given by:

7, sin’ Ax—1,. 222" cos’ y—1)sinAzsin2Ay+r,.44 sindzsin2Aycos’ y
+7,.47° coS’ y(1-cosAmcos2Ay—24" cos’ y)+1,.{sitt 2Ay+42 (X —1)cos y—A' sin® 2y}
+7,. {4 cos’ (A cos’ y—1+cosAmcos24y) +(cosdz—cos24y)’ 1 =0

(5.17)
where,

7, = (1, (0, (00) = 1)+ 1, ()L, =1))* =€ ([14,(0) — 1, (39)1©, —1) ~[0, ()~ 0, (0)]14,)
(14,220, (0) +[1, () =0, (0) (L= ) — 2., ()L, — 1) +[ 14, (0) — 11, () 1V, — 1)t 1))

7, = 14 (0,(09) 1) —[16, ()T (U, =1 +e ' ([14,(0)— 14, ()[4, (0) — 11, ()]t — 1) — 21, () )V, —1)’...
et [0,(00) = 0y ()]} (2= 20, (9) +[1, (20) — 1, (0) | @2 — 1))
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5= % ([ ()T (B0, =1=207) + 14, (0) 14, (1, = 0, (0)) + 17 (1-30,(o0) + 2[0, (O)T)...

e (CU2 (O) —H (OO)) [Zﬂz (OO)(?’Ul —-1- 2012) + (/‘2 (0) —H (OO))(¢t - 1)(1 - 301 + 2012)-- .
ot 1 ([115(50) = 115 (O] = 1)+ 0, — 0 (00)) 1+ 11,(00) 11, (50) = 11 (O) ..
oot [1,(0) = 11, (O 117 3 =40, (20) + 2 11, (0) — 11, (011~ $1)))}

7, % O (130, +200) + (11,0}, (4 3+, (09) 18— 40,) ~2) + 42 (1=3[0, I+ 200, () ...

........ [16,(0)~ 11, et (24 [0, (918~ 40,) + 30, [0, (0 0, OG- DA, ~I))....
et ) (2(09) =0, O (41 ~3) +[1,(0) ~ 1,(D]R 60, +407)]}

75 = (1, ()L, = 1) = £,V () = 1))* =& ' [((,(0) — 0, OV, + (11,(0) = 1, (), = D))......
...... (1,20, () = 2 + (0, () — , (0)(Bt — 1) = 244, ()(V, —1) + (11, (0) — 11, (V) (Pt — (L, — D]

7 :411{(#2 ()20, =)+ 4, (1=20,(0))) =€ 2, (@) =, O)gf + 4,20 =1)........

-------- (24, (20,(20) =1+ (0, (0) =0, ()P = 1) + (44, (0) = 11, ()Pt =120, 1) + 241, (0)(1 - 211)) }

55.3 Case-3: Both the shear modulus and Poisson’s ratios are time
dependent and more accurately represent the behavior of the

material

Using the Laplace transformation, the transform equations of Equations (5.7 and

5.8) are:

. A A A . B B B
() =-"L+—2-+-3 and 0,(s)=—"F-—"3———2—
s s+¢, s+, s S+¢, s+,

where, ‘s’ is the Laplace transform parameter and the superscript “*”indicates

that the parameter is in the transformed domain.
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Using the elastic viscoelastic analogy, the transform Dundurs’ Parameter is given

by
() - 0SB )~ s (5)1 )
(I=s0,(8)) + s, (s)(1-vy)
B, B, B A A A
. lﬂl(l_S(?_m S+¢4)) S(s +S+¢1+S+¢2)(1 b)
a (s)="1 B B 4 A 4 ]
Or, Y e B T W O, R N TRV B
r w1 S(S s+ S+¢4))+S(S+S+¢l+s+¢2)(l ;)
(5.182)
and, Sﬁ*(S): /’ll(l_ZSU;*(S))_SIU;*(S)(I_zul)
2[p,(1=s0,(5)) + 544, (s)(1 = v))]
Bl_ B, _ B, _ 4 4, A4, _
. lﬂl(l_zs(s s+ @, S+¢4)) S(s+s+¢1+s+¢2)(l 20)
Or f(s)="1 B, B B 4 4 4 |
P2 (s = R s (-]
! s S+¢, s+, s Ss+¢@, s+, :
(5.18b)

Using the properties expressed by Equations (5.10 and 5.11) and carrying

out the Laplace transformation of Equation (5.18), the Dundurs’ parameters in

time domain are given by

a(t) = (987.65—19.89¢ 27 +0.08¢ '™ — 6.48¢ % +0.043¢ ") x 10

(5.192)

B(t) = (999.38 — 4.41e 77 +16.3¢ ™7 —14.68¢ "> +26.61¢ ) x 10"

(5.19b)
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Similarly, the eigenvalue equation (Equation 4.18) in the time domain is obtained
as follows:

7,8 An—1,.224 cos y —)sindzsin2Ay+,.44 sinAzsin2Aycos y
+7,.4% coS y(1—cosdacoR2Ay—24 cos y)+1,.{sit 2Ay+4L (X —1)cos y—A'sir 2y} (5.20)
+7,. 447 cos y(X coS y—1+cosdmco2Ay) +(coshr—coAy)' } =0

where,

[ 23428641 4 €277(9.54 — 0.108¢) + €' (5.46 — 0.0781) + .......
T, =e
S G "' (14.33-0.0123¢) + *™ (1.78 = 0.27x 10 1)

2

oo [(231.39€7 42297952 — 0.1081) + €' (0.078 — 0.077) + .......
=e
........ e*? (14.33-0.0123¢) + e* ™ (0.27x 107 £ - 0.012)

3

[ 23416417 1 27 (5,43 - 0.1087) + €' (0.022¢ — 0.367) + ...
=e
........ ¢*1(7.99 - 0.0123¢) + **" (0.08 x 10 — 0.108)

i [23.12647 4 €27 (5.41-0.1081) — €' (0.022¢ +1.17) + ...
T,=e€
R e*'(7.99 - 0.01237) — e* ™" (0.08 x 107 ¢ + 0.397)

o[ 228.53¢41™ 4+ €27(9.50 — 0.108¢) — ¢ (0.078¢ + 5.30) +......
T.=e€e ~
S 12 (14.32 - 0.01231) — ¢*™ (0.27 x 101 +1.76)

[ 2:34€ 4 €27 (1.31-0.1081) — ¢ (0.063¢ + 0.236) +.......
T, =e ~
HR e (1.646 — 0.0123¢) — e*® (0.22 x 10 + 0.083)
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5.6 STRESS SINGULARITY AND CRITICAL BONDING ANGLE FOR

AN ALUMINUM/ EPOXY BONDED JOINT

The order of the stress singularity and the critical bonding angle for an
aluminum-epoxy bonded joint are determined using the analytical solutions
developed. The elastic properties of aluminum are taken from Chapter 4 (Table
4.1) and the viscoelastic properties of epoxy are described in the previous sections
for three different cases of material modeling. The time dependent Dundurs’
parameters are determined by using Equations (5.13), (5.16) and (5.19) for the
above three cases respectively. The variation in Dundurs’ parameters (a, f) with

time is shown in Figures 5.5 and 5.6.

0.99 -
0.985 -
0.98 -
= f Aluminum/Epoxy
g /
0.975 .
]
’t
0.97 I — — Case-1
— -+ Case-2
0.965
Case-3
0.96 T T T T T 1
0 3 6 9 12 15

Time, f (min)

Figure 5.5: Variation of Dundurs’ parameter a(t) with time
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Figure 5.6: Variation of Dundurs’ parameter £(t) with time

From Figure 5.5, it can be seen that the time dependency of Poisson’s ratio
has no significant influence on a. For the same viscoelastic shear modulus, the
value of a is almost the same for either the constant or time-dependent Poisson’s
ratio (Case-1 and Case- 2) of epoxy. However, a is influenced by the viscoelastic

shear modulus. Thus, the value of a for case-3 is different from those for the
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cases-1&2. However, Figure 5.6 shows that the time dependency of Poisson’s
ratio has a more significant influence on parameter f. In addition, for the same
viscoelastic shear modulus the value of § increases with time for a constant
Poisson’s ratio, whereas it decreases with a time-dependent Poisson’s ratio. For
case-3, the variation in £ with time follows the same trend as that ofcase-2 but at a
slower rate. After sufficient time, the Dundurs’ parameter f is expected to be the
same for these two cases (Case-2 and Case-3). Since, for any specific bonding
angle, the eigenvalue 4 or the order of the stress singularity depends on both the
Dundurs’ parameters (a, £), assuming a constant Poisson’s ratio, the true behavior

of the stress singularity cannot be predicted accurately.

Next, the eigenvalue A is determined for different bonding angles from
Equations (5.14), (5.17) and (5.20) for the three different material models,
respectively. It is noted that the order of the stress singularity is (4-1) and the
condition for the elimination of the stress singularity is A > 1. Higher values of 4
(when A < 1) indicates a lower order of the stress singularity at the interface
corner. Figure 5.7 shows the variation of 4 with time for a 40 degree bonding

angle.
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Figure 5.7: Variation of 4 with time for a bonding angle of 40°

At this bonding angle the value of 4 is always greater than 1 for all three
cases. This indicates that there is no stress singularity at the interface corner for
the 40 degree bonding angle. For case-1, the value of 4 increases with time;
indicates the order of the stress singularity decreases with time. However, for the
other two cases, the trend is just opposite. Therefore, prediction based on case-1 is
a more conservative one for this bonding angle. In Figure 5.8, the results are
shown for a bonding angle of 60 degrees. It is seen that for the bonding angle of

60 degrees, a stress singularity always exists (4 < 1) at the interface corner. The
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time effects on the change in value of 4 for the three different cases are clearly

noticeable here.
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Figure 5.8: Variation of 4 with time for a bonding angle of 60°

The stress singularity for cases-2 &3 are more pronounced than that for
the case-1 (constant Poisson’s ratio). These results have a considerable impact on
the design of the bi-material interface. Case-1 underestimates the order of the
stress singularity, whereas, Case-2 over estimates the order of stress singularity.
Therefore, the prediction of case-2 is a more conservative one regarding the order

of stress singularity for the bonding angle of 60 degrees. The critical bonding
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angle is determined, for which the value of A changes from less than 1 to greater
than 1. From Figures 5.7 and 5.8, it is already known that the critical bonding
angle is between 40 and 60 degrees. The eigenvalue 4 is determined for other
bonding angles between 40 and 60 degrees with increments of 1 degree. In Figure

5.9, the eigenvalue, 4, for Case-1 is shown for bonding angles of 49 and 50

degrees.
1.02 -
1.015;?92_8_5_5:::::—5—9—8 £
1.01 -
Case-1
1.005 - -5-49 degree
s —=—50 degree
r'<
1 4
I =
0.995 -
0-99 T L L L 1
0 3 6 9 12 15

Time, f (min)

Figure 5.9: Variation of 4 with time for bonding angles 49° and 50° for Case-1
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It is therefore concluded that the critical bonding angle for the present
aluminum/epoxy interface is in between 49 and 50 degrees, when the Poisson’s
ratio of the viscoelastic material (epoxy) is assumed as constant (Case-1).

Figure 5.10 shows the values of 4 for bonding angles of 49 degrees, for the
three different cases. It is interesting to see that for a bonding angle of 49 degrees,
the eigenvalue A is greater than 1 at # = 0 but evolves to be less than 1 after a few
minutes by using cases-2 & 3. It indicates that initially there is no stress
singularity for the bonding angle of 49 degrees, but after few minutes the stress

singularity appears at the interface corner.
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1.015 Arr——A—————tr 2N
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Figure 5.10: Variation of 4 with time for a bonding angle of 49°
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Figure 5.11 shows the variation of eigenvalue 4 for a bonding angle of 48
degrees. It is seen that for all three cases, the eigenvalue 4 is greater than 1(4 > 1);
means the singularity disappears for the bonding angle 48°. Thus, considering the
time-dependency of Poisson’s ratio (cases-2 and 3), the critical bonding angle for

the present aluminum/epoxy is determined as being between 48 and 49 degrees.
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Figure 5.11: Variation of A with time for a bonding angle of 48°
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5.7 DETERMINATION OF THE CRITICAL BONDING ANGLE BY

FINITE ELEMENT ANALYSIS

Finite element analysis is carried out by using commercial code ANSYS
to determine the stress distribution along the interface and to verify the results
obtained from the analytical model. The axi-symmetric finite element model of
the suggested specimen is shown in Figure 2.2, where aluminum is considered as
material-1 and epoxy as the material-2. 8-nodes PLANE 183 element is used as
the element type for both materials. This element has viscoelasticity and large
strain capabilities. The mesh sizes close to the interface are made very fine and
coarse mesh is used for the area away from the interface to reduce the
computational time. Linear viscoelastic Prony model (consistent with Case-3) is
used for the modeling of epoxy.

The radius of the cylindrical specimen, R, is 10 mm and a tensile load is
applied at the top end while the bottom end is fixed in the longitudinal direction.
The maximum axial stress of 10 MPa is applied in 30 equal load steps and the
time at the end of the load step is 15 minutes (900 seconds). After solving the
nonlinear problem (material nonlinearity), the distribution of stress components
along the interface are recorded. From the stress components, using stress

transformation, the normal and shear stress components along the interface are
determined. An effective interface stress is defined as o, = oo +3c? (where,

o,and 7 are the normal and shear interface stress components, respectively) and

are also calculated. The similar analyses are carried out for specimens with
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different bonding angles. If the stress at the interface corner increases with the
refinement of mesh size and doesn’t converge to a finite value, this indicates the
presence of the stress singularity. For a non-singular stress case the stress at the
interface corner converges to a finite value. The results obtained from the last step
of loading are presented here only.

The distributions of effective interface stress along the interface are shown
in Figure 5.12 for two different bonding angles of 40° and 60°. It is seen that
excessive stresses exist near the free edge of the interface for the bonding angle of
60°. These stress values increase without convergent limits with increasing the
mesh density, indicating that the stress singularity exists at the free edge.
However, for the case of the 40° bonding angle, finite values of the interface
stresses are exhibited and the stress convergence is confirmed by increasing FEM
mesh density. These results are consistent with those obtained from the analytical

solution.
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Figure 5.12: Effective stress along the interface for bonding angles of 40° and 60°

(Case-3)

Then the same analysis is carried out for other bonding angles from 40° to
60° by the increment of 1° each time. The distributions of the effective interface
stress along the interface for the bonding angles of 48° and 49° are shown in
Figure 5.13. It is found that the shape of the curve near the free edge starts to

change from downward to upward direction, when the bonding angle changes
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from 48" to 49°. This confirms that the value of the critical bonding angle for the
current aluminum/epoxy (elastic/viscoelastic) bi-material interface is between 48°
and 49°. This result is the same as obtained by using the analytical solution in the

previous section. Thus, the accuracy of the analytical model is also verified.

Case-3

10.5 - ——49 degree

10

9.5 -

9 T T T T T T T T T T T 1

o 1 2 3 4 5 6 7 8 9 10 11 12

Arc distance from specimen center (mm)

Figure 5.13: Effective stress along the interface for bonding angles of 48° and 49°

(Case-3)
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5.8 DETERMINATION OF THE INTERFACE BONDING STRENGTH

BETWEEN ELASTIC/VISCOELASTIC MATERIALS

The critical bonding angle Oc is determined in the previous section as
approximately 48°. Therefore, the test specimens are manufactured with a
bonding angle of 40°, which satisfies the condition of eliminating the stress
singularity (6y < 6.). The geometry of the specimen is similar as shown in Figure
4.6 (Chapter 4). The details about the specimen preparation can be found in
Section 4.3 of Chapter 4.

A multi-axial testing machine is used to conduct the tests. This machine
has the capacity to apply combined loading (torsion and tension). Using the
controller of the machine, various combinations of normal and shear load are
applied on the specimens. With the help of an accurate data acquisition system,
the failure loads and time required to reach the failure loads are recorded for each

test and are given in Table 5.2.

Table 5.2: Maximum failure loads and time required to reach failure

No Tensile load (N) Torsional Load (N.m) Time (sec)

1 0 43.6 327.03
2 1646.34 44.1 330.74
3 3368.84 33.79 287.6
4 5473.60 21.96 328.04
5 6441.28 0 580.68
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The viscoelastic epoxy material is time and rate dependent. The slower is
the loading rate, the more the viscoelastic effect. Figure 5.14 shows the stress-

strain relation for the epoxy at different loading rates.
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o ]
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0.00 0.02 0.04 0.06 0.08 0.10
Axial Strain, & (mm/mm)

Figure 5.14: Stress-strain curves of epoxy for different loading rates

5.8.1 Iterative method for determining the interface bonding
strength envelope

In order to find the stress distribution along the interface corresponding to

the failure load given in Table 5.2, finite element analyses are carried out. Non-

linear (material nonlinearity) finite element analysis is carried out by using the

commercial code ANSYS. Though axi-symmetric PLANE 183 element is used
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for the determination of the critical bonding angle, it cannot be used for the
torsional loading (non-axi-symmetric load) case. In fact, there is no 2-D element
is available in ANSYS that can be used for the torsional loading on a viscoelastic
material. Therefore a 3D analysis using SOLID 185 element is carried out for
combined torsional and normal loadings. Figure 5.15 shows the 3D finite element

model of the specimen.

L2 ' k— Epoxy —

; Interface

Corner
Centre \

L2 : Interface

—Aluminum——

!
R
Figure 5.15: 3D finite element model for the bi-material interface bonding

strength specimen
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It is given earlier (Figure 4.6 in Chapter 4) that the actual length of each
part of material in the specimen is L/2 = 60 mm. 3D modeling of the specimen in
ANSYS with this dimension requires a large number of elements, which in other
word will make the problem time consuming. To determine an optimum length of
the FEM model, four models with different lengths, L/2 = 15, 20, 25 and 30 mm
are analyzed for an arbitrary tensile load of 10 MPa applied on the top. The
bottom of the model is kept fixed. The effective interface stress at the interface
corner for the above four cases are plotted against the ratio of the model length to

the specimen diameter (D = 20 mm) and is shown in Figure 5.16.
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= 81
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1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25

Figure 5.16: Effect of finite element model length on the analysis
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It is seen that when, L/D = 2.5, means, /2 = 25 mm, the model gives an
accurate enough value. Thus, the model with /2 =25 mm and R = 10 mm is used
for this analysis. This model consists of 15,984 elements and 17, 366 nodes.

The failure loads and corresponding times to failure obtained from tests
(given in Table 5.2) are applied in the finite element analysis. The interface
normal, shear and effective interface stress curves are obtained as described
earlier. As an example, the stress curves along the interface of Specimen No. 3
with maximum tensile and torsional loads of 3368.84 N and 33.79 N-m,
respectively, are shown in Figure 5.17.
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Figure 5.17: Stress distribution along the interface for combined loading
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For the pure torsional loading case, there is no normal interface stress
component; therefore, the maximum interface shear stress along the interface,
denoting as 7, is directly taken as the shear strength of the bi-material interface.
Figure 5.18 shows the shear stress distribution along the interface for the
specimen subjected to maximum pure torsional loading. The normal stress along

the interface vanishes in this case. The maximum value of the shear stress is 7, =

21.85 MPa.

Maximum Shear

stress 21.85 MPa \ : —a—Shear Stress

20

Stress (MPa)
h

-
(=]

0 o : L ] L T L 1
0 2 4 6 8 10 12
Arc distance from specimen center (mm)

Figure 5.18: Stress distribution along the interface for pure torsional loading case
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For the pure global normal loading and other combined normal-shear
loading cases, both normal and shear interface stress components exist along the
interface. Therefore, a normal-shear bonding strength criterion (envelope) is
required to accurately define the interface bonding strength. The criterion is

expressed as,
flo,,1)=C (5.21)
where o, and 7 are interface normal and shear stress components, respectively,

and C is a constant. The function f'and the constant C can be determined through

the following iteration procedure:

(1) For the first trial condition, the effective interface stress criterion is assumed,

SO

f(l)(O'n, T)= 1/0‘5 +37° = \/grs

The constant C = \/gfs is obtained by applying the pure torsional loading case in
whicho, =0.

Therefore, the first trial criterion (effective stress) is

fV=\o+3r> =37.85

Or, it can be written as

O, \2 T 2
St/ S I GRS | 5.22
(37.85) (21.85) ( )

Now, from the interface normal and shear stress curves of each loading

test case, the location of the maximum value of 4 G,% +3¢2 along the interface 1s



Chapter 5: Elastic/Viscoelastic Bi-material Interface

147

found; the corresponding pair of normal and shear stress values for each test case

is recorded. These pairs of stresses are denoted as [O'n’k, Tk](l) k=1,...,5.

Figure 5.19 shows the points, [Un,k, rk](l) ,k=1, ..., 5 obtained and the

effective interface stress criterion curve (Equation 5.22). Except for the point

[0, 7] obtained from the pure shear test, no other points are on the curve

expressed by Equation (5.22).
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= = eee (5.22
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5 1 Eq. (5.23) \\ \
\
| \
|
0 I ) I lI I ] 1 l )
0 5 10 15 20 25 30 35 40
Normal Stress (MPa)

Figure 5.19: Interface bonding strength envelope based on

criterion

effective stress
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Next, the second trial criterion is found by applying the best fit curve technique.
By keeping the value 7, = 20.86 MPa, it is found that the following equation (Eq.

5.23) fits the previous data points very well (see Figure 5.19)

n 2 T 2
(19.67) +(21.85) =1 (5.23)

Based on the above second trial criterion, a second set of stress points
[Gn’ k> rk](z), k=1,...., 5, is obtained based on the maximum values of the left
side of Equation (5.23) for each test case. Figure 5.20 shows both Equation (5.23)

and corresponding points[o,  , Tk](z), k=1,...,5.
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Figure 5.20: Interface bonding strength envelope after 1% iteration



Chapter 5: Elastic/Viscoelastic Bi-material Interface 149

It is clear that this criterion doesn’t fit the data points very well (Figure 5.20). As
previous, the third criterion is obtained by fitting the stress points[o, 4, rk](z) , k

=1, ....,5 as follows

O, 2 T 2
(22.75) (21.85) ( )

Following the same procedure, for this trial criterion (Equation 5.24), a third set

of stress points [0, ;, 7,19, k=1,...., 5, is obtained for each test case. Figure

5.21 shows both Equation (5.24) and corresponding stress points [o, ,, 7, 19, k=

20

-
wh

Shear Stress (MPa)
=

Normal Stress (MPa)

Figure 5.21: Bonding strength envelope for the tested aluminum/epoxy interface
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Continuing the iteration procedure, the fourth criterion is obtained as

follows (Equation 5.25),

o, » T
+
(21.15) (21.85

) =1 (5.25)

(3

b

This trial condition (Equation 5.25) produces the same data points [o,,, 7, ]

i.e. a converged criterion is obtained. . Therefore, for the tested aluminum/epoxy
(elastic/viscoelastic) bi-material interface, Equation (5.25), as shown in Figure
5.21, represents its normal-shear interface bonding strength criterion (envelope) in

the range of the first quarter of the normal-shear stress plane.
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CHAPTER 6

VISCOELASTIC/VISCOELASTIC BI-MATERIAL INTERFACE

This chapter presents the bi-material interface bonding strength envelope
determination of a viscoelastic/viscoelastic bonded joint. For this case, interface
between viscoelastic PVC and epoxy materials are considered. Both PVC and
epoxy are assumed as linear viscoelastic materials. This chapter is organized as in
the following order: scope of the study, material modeling, analytical solution to
find the stress singularity and critical bonding angle, and determination of the

bonding strength of a PVC/epoxy bi-material interface.

6.1 SCOPE OF THE STUDY

In chapter 5, analyses of the stress singularity and interface bonding
strength determination for elastic/viscoelastic bonded joints has been briefly
explained. To the best of our knowledge, the analytical solution to determine the
stress singularity at the interface corner of a viscoelastic/viscoelastic bonded joint
is yet to be further explored. In this study, the analytical solution to determine the
stress singularity considering the three different cases of material modeling
described in previous chapter (Chapter 5) are developed. Once the stress

singularity is eliminated from the interface corner, the interface bonding strength

154
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between two viscoelastic materials is determined based on the proposed method

(details about the method have been given in Chapter 2).

6.2 VISCOELASTIC PROPERTIES OF PVC

The three different material models described in Chapter 5 for the
elastic/viscoelastic interface, are also considered for the material modeling of
viscoelastic/viscoelastic interface. It is noted that PVC and epoxy are considered
as constituent materials for this study of viscoelastic/viscoelastic interface. Since,
the material modeling for epoxy has already briefly described in Chapter 5, the

present discussions are kept limited to the material modeling of PVC only.

From the measured data in section 3.2.3 of Chapter 3, the required

properties of PVC to express as Equations (5.3), (5.4) and (5.6) in Chapter 5 are

given in Table 6.1.

Table 6.1: Experimental viscoelastic properties of PVC

Property Att=0 Att=o0 Relaxation time

Shear Modulus, u 1(0) = 1242

= &30 =
(MPa) () ty= 45 sec

Poisson’s ratio, v v, =0(0)=0.362 v(®) =0.395 to= 45 sec
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Based on the three cases of material models (details in Chapter 5), the viscoelastic

properties of PVC are expressed as follows:

Case-1:

The viscoelastic shear modulus, u(t) = 830+412 s (6.1)
and Poisson’s ratio, v(t) = 0.362

Case-2:

The viscoelastic shear modulus, u(t) = 830+412 A (6.2)
and Poisson’s ratio, v(t) = 0.395- 0.033¢™*

Case-3:

Figure 6.1 shows the experimental viscoelastic shear modulus curve for
PVC and the fitting curve according to the model described in Case-3. Thus,
Equation (6.3) represents the viscoelastic properties of PVC obtained from fitting

the experimental curve.

t) = 830+305 ¢*1?+107 /%% 6.3
y2!
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Figure 6.1: Experimental and modeled viscoelastic shear modulus of PVC

Similar to the epoxy, it is seen that to represent the viscoelastic behavior

of PVC, case-3 should be considered (Figure 6.1) for material modeling.

Similarly, from Figure 6.2, the Poisson’s ratio of PVC considering case-3

is given by Equation (6.4)

v(t) =0.395-0.012 ¢"*%-0.021¢™7° (6.4)



Chapter 6: Viscoelastic/Viscoelastic Bi-material Interface 158

0.41 -
Material: PVC
0.4 -
— e e o g o it b Lot Vo -

=
e
A 7 L Casel
: — .. Case-2
= Case-3
)
" Experiment
e
By

0-35 ] || 1 1 1

0 500 1000 1500 2000 2500

Time,1 (sec)

Figure 6.2: Experimental and modeled viscoelastic Poisson’s ratio of PVC

6.3 ANALYTICAL SOLUTION FOR
VISCOELASTIC/VISCOELASTIC BONDED JOINTS

6.3.1 Case-1: The shear modulus is time dependent but Poisson’s

ratio is time independent

The analytical solution for a viscoelastic/viscoelastic bonded joint is
obtained by following a similar methodology used in Chapter 5 for the
elastic/viscoelastic bonded joint. The only difference is that here both the
materials are viscoelastic, whereas only epoxy was viscoelastic in the previous

case in Chapter 5. So it is easily understandable that the calculation or formulation
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of analytical solution for a viscoelastic/viscoelastic interface is more tedious than

that for an elastic/viscoelastic interface.

For case-1, using the elastic viscoelastic analogy the Dundurs’ (1969)

Parameters in the transformed domain are obtained as follows:

sty ($)(L=s50; () =54, ()1 =50, (5))

sa’(s) =" : : :
sty (s)(A=50,(8)) + 544, (s)(1 =50, (5))
S (B B GRS CR RN (6.5)
a*(s):l[ s s+ s s+, ]
Ss(Ce S -u e L0,
s + ¢ s +¢,
And,
B (s) = st ($)(1=250; (5)) =544, (s)(1 =250, (5))
2[s; ()1 50 () + 545 ()1 = 50/ (5))]
| s(ClJrf2 )(1—2020)—S(D‘+fz¢ )(1-20,,) (6.5b)
B (s)=11 s S+ s s+, ]

S ois(Crr S 1o +sP e P ya-o,)
s s+¢ s s+,

1
where, the shear modulus of the two linear viscoelastic materials are expressed as

follows for case-1,
,ul(t):Cl +C2€_¢lt (663)

f1(£) = Dy + D™ (6.6b)

where. & =1/t,,> ¢, =1/1,, and ;9 and ¢, are the viscoelastic relaxation time for

the PVC and Epoxy, respectively.
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Using Laplace inverse transformation, the Dundurs’ parameters in time domain
are given by Equation (6.7)

a(?) =l/1/[{(—77Dl(Dl +D,)U—D +(& +e* ~DC,D, ~CD,)1, ~DLy ~D+1G (0~ D (G +C)}
+(e* =) {(@ 40, =D U, ~D+ G0y =D)GD +CD,) D)

+(Uo =Dy, ~DCDG +CD (A —24))+(C (0 —~DCD, (24 —4) -CDih )y 1)) } ]

(6.7a)

And,

_1 (D, (1=20,) + C, (20, - 1)) n _ _ _ _
p@) = 2[ (D, (0~ 1)+ C. (0 —1) + 5 (D,(0,y =)+ C, (0, =D)U(D, + D) (0yy =) +(C, + C,)(0y, — 1))

(2305 +0, (405 =3))* ((¢° +e")(C,D, = C\D,) +(e* — e )C\Dy g (1+0,)
+(e* =" )NC,D,D, (1, = 1)(¢ = 24,) + (C,D, + C,D, (D, (v, = D) + C, (3 = D), — 6,)

+C,(0y, —D(CD, (24, — $,) - C,D,¢,)))]
(6.7b)

where,
w =n(D, (0, —1) + C(Ly, = D)(D, + D,) (1 = 1) + (G, + C,)(Lyy — 1))

n= Sql’t [_4¢1¢2 (Dl (‘910 - 1) + Cl (Uzo - 1))((D1 + DZ)(UIO - 1) + (Cl + Cz)(Uzo - 1)) +
(Cl (¢1 + ¢2)(U10 T Uy — 2) + D2¢1(U10 - 1) + C2¢2 (Uzo - 1))2]

-c—n
= t’
d b
—C+77
= ['
L5

¢ =(Dy¢, +(D, + D,)p)(v,y =D+ (C,4 +(C, + C,)p)(0y — 1)
b=2((D, +D,)(, —1) +(C, +C,)(y, - 1))

The eigenvalue equation (Equation 4.18) to determine A in time domain is
obtained as Equation (6.8)

7, sin* Az +7,2(24" cos’ y—1)sin Azxsin21y —r,.42° sin Azwsin 24y cos” y
+7,.42% cos” y(1-cosAwcos2Ay —2A% cos® y)+7,.{sin* 24y +42° (1> —1)cos’ y — A" sin” 2y}
+7,.4427 cos® y(A* cos’ y —1+cosAmcos24y)+(cos Az —cos2Ay)’t =0

(6.8)
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Where,
e (4, — ¢ Ve D? +2D,D, + D (114, v, 1) +
r = e ) ( "D, (¢, - 4,)+ D, (¢z "~ e )leo 1)(”20 1)+
Y (8,-4)[2C, (8 - 8, ) (e D, + D, Yoy, —1)+ € Cy (02 — 1)y ~ 1)
_et(¢1+¢z)cl (¢1 -9, )(Uzo _1) —e*Cj (t¢1 _1)(¢2 - ¢ )(Uzo - )
—e™ (e D} +2D,D, + DX(1-t4, vy, — 1) +
Tz — e—1(¢1+¢2) et(¢1+¢z)C12 (Uzo _1)2 + 2e’¢2 CIC2 (1)20 _1)2
—e"C3(tgh — 1)y — ¢ Nvyy —1)°
[C? =D} +C\ Dy, +3D} v, — 2DV +e " Digy(1-30, + 203 ) ]
%D, [(201 +D, )¢ -, 1 =30, + 207, )J_wz” Do
1%20 1-2%20
. (¢z ¢1) _(C1(¢1 _¢2)_C2¢2 )(Ulo _Uzo)
ry = |+2C00} e uCly, (1-30, +202)
4 (C2¢1 +C, (¢1 -9, ))(Ulo _Uzo)
e
+ (¢ _¢2) +2C1(¢1 _¢2)(1_3020 +2‘)220)
O C, (¢1 -9, )(1 =30y, + 2”220)
e (g, -9 Ne D} +2D,D, + D} (1-14,))+
s (1=30,, + 207 )—e " C2 (g, — 4, )1 30,0 +203)
fa = 26(¢ - ) —e"Cy (t¢1 _1)(¢2 - )(1_3020 + 2')220)
) | p ¢
-C, (e “ D, (¢2 - )+ D, (¢2e h— ¢1et¢2 )Xz =30, + Uy, (4020 - 3))
2¢""C,(1-3v,, + 20}
+C1(¢2 _¢1 i 2,(¢2 ? 2_0) _
I ¢® (e D, + D, |2 =30, + Uy (40, —3)) |
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e (¢z - )(e% D! +2D,D, +D; (1 —19, )XUIO - 1)2
e ) | —2C, (e”’z D,(#, —¢,)+ D, (¢2e"“‘ — e )XUIO — 1oy —1)

T =
5 (¢2 -4, ) +2C, (¢2 -, )(e"’jz C, (1)20 - 1)— e'” (emz D, +D, leo - 1))(020 - 1)
e — @, Nvy — 1) = Ctd, = 1), — ¢ Nvso 1) ]
_e—t¢1 (¢2 _ ¢1 )(ef¢z D12 + 2D1D2 + D22 (1 — t¢2 )XZUIO - 1)2
_ e W) | o I (g — g, V20, —1) — e Ci (te, — 1)@, — &, N20, — 1)
o = ———

N—"

4p, - )| -2C, (e D, (¢, - 4,)+ D, — g, )20, —1)

6.3.2 Case-2: Both the shear modulus and Poisson’s ratio are time

dependent

According to the description of material properties in case-2, the shear
moduli of two materials bonded together along a common interface are expressed

as follows,

1) =C,+Ce™ (6.92)
1,(t) =D, +D,e™* (6.9b)

and
v,(t) = 4, — A,e™ (6.10a)

v,(t) =B, —Be” (6.10b)

+2C,(4, - 4 e C, (20, —1)— e (e D, + D, 20,0 — 1)) 205 — 1))
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Where, 1, , v,are the shear modulus and Poisson’s ratio of material-land 4, , v,
are the shear modulus and Poisson’s ratio of material-2; ¢ =1/¢,,, ¢, =1/¢,,and

t10 and 1,9 are the viscoelastic relaxation time for the two materials respectively.

Applying the elastic viscoelastic analogy, the transform Dundurs’ Parameters for

case-2 are given by

sty ()1 =50, () = s (s)(1 = 50 (5))

) NI =s03(5) 54 (X501 5)
o =1[(§+ Z¢ ) _S(g_sg@)) —<§+ §¢ )(1—s(‘§—s’;}1>>]
T s e s )
(6.11a)
And,
(o) - MO =2501() = sl (5)1 =250/ ()
25t ()1 503(5)) + s ()1~ 50, ()]
e ((;C+ s(i%)“ - 2s(2 - j;ﬁz)) - <§; I f;@)(l - 2s(;1 - S;}l))]
TAACHH P SCl = RN HC TRl )]
(6.11b)

Carrying out the inverse Laplace transformation and using the properties

mentioned earlier in case-2, the Dundurs’ parameter in time domain are given by:

a(t) =699.72x107 +157.04x107 e PP —422.31x 10 "' (6.12a)

L(t)=6091x107 +13.01x10 e "% ~30.87x10 ¢ ' (6.12b)
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Similarly as previous, for case-2, the eigenvalue equation (Equation 4.18)
in time domain is given by

7, sin’ Ax—1,. 222" cos’ y—1)sinAzsin2Ay+7,.44 sindzsin2Aycos’ y
+7,.477 coS’ y(1-cosAmcos2Ay—24" cos’ y)+t,.{sit 2Ay+427 (X 1) cos’ y—A' sin® 2y}

+7,. {4 cos’ (A cos’ y—1+cosAmcos2Ay) +(cosAz—cos21y)’ 1 =0
(6.13)

where,

7, =295.92+(591.84-102.85r)x e """ +(138.47 - 24.40¢) x e"'"?
7, =207.06+(286.29 —84.20f)x ™' - (47.51-21.41¢)xe™""*

7, =180.25+(288.91-7.92¢)xe"'*" = (2.74-1.39)xe™""?

7, =126.12+(8.39-6.48¢)xe " —(1.81-1.22¢)xe"/"*

7, =144.88+(72.09-68.93t)x """ —(23.27-18.79t) x ™"

7, =1.10+(0.94—0.61/) x e —(0.1-0.081)x e/

6.3.3 Case -3: Both the shear modulus and Poisson’s ratios are time
dependent and more accurately represent the behavior of the

material

For case-3, using the material properties of PVC (Equations 6.3 and 6.4)
and epoxy (Equations 5.10 and 5.11); and following the procedure mentioned

above, the Dundurs’ parameters in time domain are given by
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a(t) =(699.72 +127.17e " =293 11e > +2.216¢ 7" —8.19¢ 7"

(6.14a)
—7.46e7 """ —=31.07¢7""" =56.27¢ " +1.46e " )x107°

B(t) = (609.12 + 23.8¢ 715 — 58722 +15.65¢ 17 —5.04¢ 7

(6.14b)
—~5.30e """ —4.76e7 """ —10.02¢ " +25.83¢ ") x 107

And, the eigenvalue equation (Equation 4.18) in time domain for case-3 is given

as follows:

7,8 Ar—1,.224 cos y —1)sindzsin2Ay+1,.44 sinAzsin2Aycos y
+7,.4% cos y(1—cosdmcoAy—24 cos y)+1,.{sitt 2Ay+4L (X ~1)cos y—A'sirt 2y} (6.15)
+7,. {47 cos y(X coS y—1+cosdaco2Ay) +(coshr—coAy)' } =0

where,

0.296e'""™ + &' (172535 — 554.47¢) — """ (173198 + 507.32¢) +
T, =e ") e'"(838.95 - 5.431) — " (175.5 +1.72t) + ¥ (0.4 — 0.16¢) + ...
(0,16 = 0.71) + € x107° (9.7 = 0.1£) + ** x107° (3.1 - 0.01¢)

0.207¢"' + 3% (0.23 - 0.16¢) + &** x 107 (9.17 = 0.1£) —.....
7, =e % e %1073 (0.4 — 0.0017) — 7% (0.06 — 0.07¢) + ' ** (115.7 +1.13¢) — ..
..... 1% (552.9 —3.58¢) + ' (114159 + 334.38¢) — " (113722 — 365.5¢)

0.018¢""™ +¢'°' (24800.8 — 79.7¢) — €'** (24896.2 + 72.92¢) + .......
ry=e L "2 (120.6 — 0.78¢) — "% (25.2 + 0.25¢) + > (0.028 — 0.024¢) — ...
@”2(0.018 — 0.015¢) + % x 107 (5.4 — 0.1¢) — ¥ x 10 (1.5 - 0.017)
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0.013¢'% + """ (5608.4 —18.02¢) — '*" (5629.9 +16.5¢) + .......
T, =e 0| e (27.3-0.18¢) — "% (5.71+ 0.06¢) + €' (0.002 — 0.024¢) — ...
e@7(0.005 — 0.015¢) + 5% x 107 (4.87 — 0.1¢) — &** x 107 (1.23 - 0.01¢)

0.145¢"" + &> (0.06 — 0.16¢) + €% x 107 (8.6 = 0.1¢) — ....
ro=e | e x107(2.3-0.003¢) — 7 (0.034 — 0.07¢) + "% (73.5+ 0.72¢) — ..
..... "1 (351.3 - 2.28¢) + €' (72537 + 212.5¢) — €' (72259.8 — 232.2¢)

0.0011e''% — &' (0.0007 — 0.004¢) + *** x 10~ (1.1-0.1¢) — ....
7, =e | e®* x107(0.1 - 0.005¢) — 7> (0.0003 — 0.003¢) + €'°% (0.1+ 0.01¢) — ..
..... "1 (4.7 - 0.03¢) + €' (978.1+ 2.87¢) — €' (974.3 - 3.131¢)

6.4 STRESS SINGULARITY AND CRITICAL BONDING ANGLE FOR

A PVC/ EPOXY BONDED JOINT

The material properties of PVC are presented briefly earlier in this
chapter. The viscoelastic properties of epoxy have been described in previous
chapter (Chapter 5). Once the properties of both materials are known, the time
dependent Dundurs’ parameters are determined for the three material models
using the above analytical formulation. Variation in the Dundurs’ parameters (a,

f) with time is shown in Figures 6.3 and 6.4.
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Figure 6.3: Variation of Dundurs’ parameter a(t) with time
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Figure 6.4: Variation of Dundurs’ parameter £(t) with time

Figure 6.3 shows that the viscoelastic Poisson’s ratio has an insignificant
influence on a. For the same viscoelastic shear modulus, value of a is the same
for both constant and time-dependent Poisson’s ratio (Case-1 and Case 2).
However, o is influenced by the viscoelastic shear modulus. Thus, there exists a

difference in o for the case-3 with that for cases -1 & 2. Figure 6.4 illustrates the
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effect of Poisson’s ratio on f. It is observed that the difference between the
response of S for constant and time dependent Poisson’s ratio is noticeable. For
case -3, initially, the Dundurs’ parameter f shows the similar trend as case-1,
however, after a while it follows the similar trend as case-2 but at a slower rate. It
can be concluded that the case-1 cannot predict the behavior of the stress
singularity over a long time period and case-2 can only predict the stress

singularity after sufficient amount of time.

Next, the eigenvalue /4 is determined for different bonding angles for the
above mentioned three different cases. It can be reviewed again that the order of
the stress singularity is (4-1) and the condition for the elimination of the stress
singularity is 4 > 1. Higher the value of 4 (when 4 < 1) indicates lower the order of
the stress singularity at the interface corner. Figure 6.5 shows the variation of 4

with time for a bonding angle of 40 degrees.
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Figure 6.5: Variation of 4 with time for the bonding angle 40°

For bonding angle 40°, the value of 1 is always greater than 1 in all three
cases. This indicates that there is no stress singularity existing at the interface
corner. The value of 4 increases with time in all cases. Case-1 determines higher
value of 4 than cases- 2 &3; predicts less singularity in any structure containing
viscoelastic/viscoelastic interface than actually it has. In Figure 6.6, results are
shown for a bonding angle of 60 degrees. It is clear that for the bonding angle 60
degree, the stress singularity always exists (4 < 1) at the interface corner for all

three cases.
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Figure 6.6: Variation of 4 with time for the bonding angle 60°

It is seen from Figure 6.6 that the stress singularity increases with time for
all the three cases.

As described in earlier chapter that the critical bonding angle is
determined for which the value of 4 changes from less than 1 to greater than 1.
Figure 6.7 shows the variation of eigenvalue A with time for a bonding angle of

49°.
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Figure 6.7: Variation of 1 with time for the bonding angle 49°

In the Figure 6.7, the importance of accurate material modeling is clearly
visible. For the bonding angle 49°, case-1 predicts that, initially there exist stress
singularity at the interface corner but it disappears with time. However, this result
is completely misleading. Case-2 and case-3 ensures that for this bonding angle,
the singularity increases with time rather than decreases. It is known that the
singularity increases with time. For the case of a finite stress or non—singular
stress at the interface corner, the order of the stress singularity may increase or

decrease with time.
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Next, in Figure 6.8 the variation of eigenvalue A with time for a bonding
angle of 48° is shown. Considering the case-1 and the definition of critical
bonding angle, the critical bonding angle for the tested PVC/Epoxy interface is
determined in between 48° and 49°. However, cases -2 and 3 prove that this result

is not accurate as there exist stress singularity for the bonding angle of 48°.
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Figure 6.8: Variation of 4 with time for the bonding angle 48°
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Figure 6.9 shows the variation of eigenvalue 4 for a bonding angle of 47°.
It is seen that for all three cases the value of 4 is greater than 1 (4 > 1); means the
singularity disappears for the bonding angle 47°. Thus, the critical bonding angle
for the tested PVC/Epoxy is determined as in between 47° and 48° (47° < fc <

48°).
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Figure 6.9: Variation of 4 with time for the bonding angle 47°
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6.5 DETERMINATION OF CRITICAL BONDING ANGLE BY FINITE

ELEMENT ANALYSIS

The results obtained from the analytical solution are verified by the finite
element analysis. The axi-symmetric finite element model shown in Figure 2.2
(Chapter 2) is also used in this analysis. It is clear enough that PVC is modeled as
material -1 and Epoxy is as material-2. Similar to the elastic/viscoelastic analysis,
8-noded PLANE 183 element is used for both materials in this analysis. A
uniform tensile stress of 10 MPa is applied at top end while the bottom end is
fixed in longitudinal direction. The axi-symmetric problem is solved in 30 equal

load steps and the time at the end of load step is 15 minutes (900 seconds).

Figure 6.10 shows the distributions of interface effective stress along the
interface for two different bonding angles of 40° and 60°. From the definition of
the stress singularity it is found that for the bonding angle of 60°, there exists
stress singularity at the free edge of the interface. However, for the case of 40°
bonding angle, finite values of the interface stresses are exhibited and the stress

convergence is confirmed by increasing FEM mesh density.
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Figure 6.10: Effective stress along the interface for bonding angles of 40° and 60°

(Case-3).

The same analysis is carried out for other bonding angles from 40° to 60°
by the increment of 1° each time and the distributions of interface effective stress
along the interface for bonding angles 47°, 48° and 49° are shown in Figure 6.11.
It is seen that for the 47° bonding angle, the shape of the effective stress curve

near the free edge is clearly going to the downward direction but for 49° bonding
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angle, it is going to the upward direction. For the 48° bonding angle, the effective
stress curve near the free edge shows the similar trend to that of for the 49°
bonding angle. This confirms that the value of the critical bonding angle for the
viscoelastic PVC/Epoxy bi-material interface is in between 47° and 48°. This

result verifies the results obtained from the analytical model.
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Figure 6.11: Effective stress along the interface for the bonding angles of 47°, 48°

and 49° (Case-3).
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6.6 DETERMINATION OF INTERFACE BONDING STRENGTH

BETWEEN VISCOELASTIC/VISCOELASTIC MATERIALS

The test specimens are manufactured with a bonding angle of 40°. The
specimens are tested under various combinations of normal and shear stress. The
failure loads and time required to reach the failure load are recorded for each test

from the multi-axial testing machine and is given in Table 6.2.

Table 6.2: Maximum failure loads and time required to reach failure

No Tensile load (N) Torsional Load (N.m) Time (sec)

1 0 33.98 676.67
2 766.80 34.06 358.14
3 1620.21 28.10 265.95
4 2552.72 18.82 367.03
5 3112.75 0 368.92

Finite element analysis is carried out for each test case with the maximum
failure loads given in Table 6.2. As mentioned in the earlier chapter that 3D
analysis is needed to analyze the viscoelastic interface for the torsional and
combined loading. The 3D finite element model of the specimen and details of

this analysis can be found in Chapter 5 (Figure 5.15).
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After solving the problem, the stress components along the interface in the
last step of loading are recorded. Using the stress transformation, the interface
normal, shear and effective stress distributions along the interface are determined.
Figure 6.12 shows the stress curves along the interface of specimen under pure
tensile loading. It is now clear that both normal and shear stress components are

present in the tensile/combined loading case.

12 -

Maximum effective stress

0 1 ) + ) ) I 1
0 2 + 6 8 10 12

Arc distance from specimen center (mm)

Figure 6.12: Stress distribution along the interface for pure tensile loading

Figure 6.13 shows the stress distribution along the interface of the

specimen under pure torsional loading. There is no normal interface stress
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component for the application of pure torsional loading. Therefore, the maximum

interface shear stress along the interface, denoted by, is directly taken as the

shear strength of the bi-material interface. Thus the interface shear bonding

strength for the viscoelastic PVC/Epoxy is determined as 7, = 15.14 MPa.

16 - Maximum shear Stress: 15.14 MPa
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Arc distance from specimen center (mm)

Figure 6.13: Stress distribution along the interface for pure torsional loading case

For the pure global normal loading and other combined normal-shear
loading cases, both normal and shear interface stress components exist. So, a
normal-shear bonding strength criterion (envelope) is required to define the

interface bonding strength. As mentioned earlier that the criterion is expressed as,
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floy,7)=C
where o, and 7 are interface normal and shear stress components, respectively,

and C is a constant. The function f'and the constant C can be determined through

the following iteration procedure:

(1) The effective stress criterion in assumed as first trial condition, so

f(l)(O'n, T)= 1/0‘5 +37° = \/grs

The constant C = \/grs is obtained by applying the pure torsional loading case in
whicho, =0.

Therefore, the first trial criterion (effective stress) is

Un 2 T
+
(26.22) (15.14

) =1 (6.15)

Next, from the interface normal and shear stress curves of each loading test case,

the location of the maximum value of 4/ 05 +372 along the interface is identified

and the corresponding pair of normal and shear stress values for each test case is
recorded. These pairs of stresses are considered as the 1% stress data points and

cslst

denoted as data set”.

Figure 6.14 shows the points obtained considering the effective stress

criterion and the effective stress curve expressed by Equation 6.15.
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16

14 ( - )z + (15?14)2=1 e (6.15)
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Figure 6.14: Interface bonding strength envelope based on effective stress

criterion

It is noted that the stress data points are not fitted by the effective stress criterion.
Next, the second trial criterion is found by applying the best fit curve technique
on the 1* stress data points. By keeping the value 7, = 15.84 MPa, the second trial

criterion is obtained as Equation 6.16 (see Figure 6.14).

Ty () =1 (6.16)

(7.95 15.14
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Based on the above second trial criterion, a second set of stress data points
is obtained based on the maximum values of the left side of Equation (6.16) for

“an

each test case and denoted as data set”. Figure 6.15 shows both Equation

(6.16) and corresponding stress data points.

16

)2+( z )2=1 eer (6.17)
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Figure 6.15: Interface bonding strength envelope in different iterations

It is also clear that this criterion doesn’t fit the “2™ data set” well. The third
criterion is obtained by fitting the 2™ set of stress data points as follows

G, \2 T o
Ge3 Ts1a) =} ©.17)
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Following the same procedure, for this trial criterion (Equation 6.17), a third set
of stress points is obtained for each test case. Figure 6.15 also includes the third
set of stress data points. It is observed that Equation (6.17) also fits the third set of
stress data points. Further iteration produces the same stress data points, i.e. a
converged strength criterion 1is obtained. Therefore, for the tested
viscoelastic/viscoelastic (PVC/Epoxy) bi-material interface, Equation (6.17), as
shown in Figure 6.15, represents its normal-shear interface bonding strength
criterion (envelope) in the range of the first quarter of the normal-shear stress

plane.
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CHAPTER 7

APPLICATION IN DENTAL RESTORATIONS

Structures consisting of two dissimilar materials bonded together along a
common interface are increasingly used in various bio-medical disciplines. One of
the important examples of such applications is in the dental crowns which are
used to replace the damaged tooth structures. Porcelain fused to metal (PFM) and
all ceramic crowns are widely used in dental restorations. Optimal design for
Porcelain fused to metal crown based on the developed method is presented in

this chapter.

7.1 BACKGROUND STUDY

Structures consisting of two dissimilar materials bonded together along a
common interface are often found in various engineering and biomedical
applications, for example, in dental crowns which are used to repair damaged
teeth. Porcelain fused to metal (PFM) restorations are popular because low fusing
porcelain enamels have coefficients of thermal expansion that are similar to those
of the supporting metals (Craig et al., 1971). Clinical aspects of PFM restorations

have been extensively studied and reported in the literature; see references

186
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(Masterton and Davis, 1964; Mumford, 1965; Straussberg et al., 1966), among
others.

Although it is uncertain if the PFM bond is a van der Waals bond or a
chemical bond, the bond strength developed between porcelain enamels and gold
alloys has received considerable attention in studies that have attempted to
understand the failure of PFM crowns (Shell and Nielsen, 1962; Ryge, 1965,
Knap and Ryge, 1966). Stashevich and Guzman (1984) reported that inadequate
adhesion between the ceramic and metal layers is one of the main reasons for
fracture in ceramic—metal items such as integral prostheses formed by alloys with
porcelain shells. DeHoff and Anusavice (1984) reported that porcelain— metal
incompatibility may cause localized marginal distortion of metal-ceramic crowns.

Craig et al. (1971) examined stress distribution in restorations and the
supporting structure in considering different designs, loading sites, and
magnitudes of load using a two-dimensional (2D) photoelastic technique. They
recommended that the porcelain—gold joint at the shoulder should be at an angle
of 30° to the horizontal for better stress distribution.

Various factors can affect the long-term viability of crowns, such as
geometry of preparation, type of composite cement and adhesive system, marginal
adaptation, periodontal response, tooth morphology functional and parafunctional
activities, etc. The most common failure modes associated with dental restorations
are fracture, micro-leakage, and debonding (Clark, 2008; Whitworth et al., 2002;
Lu et al., 2008). The failure at the interface is primarily caused by a stress

concentration/singularity in the dental ceramic at the corner of the interface
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(Soboyejo et al., 2001; Lawn et al., 2002). Li et al. (2004), on the basis of finite
element analyses, suggested that a high stress concentration exists at the crown—
cement interface of dental bridges. For resin-bonded bridge structures, clinical
observations and experimental investigations have shown that debonding at the
interface is a major mode of failure (Knight, 1993; Culy and Tyas, 1998). Also,
for all ceramic crowns, the major clinical failure is observed at the interface
between the crown (dental ceramic) and cement (Kelly, 1997). In dental crown
restorations, the Young’s modulus of the crown material is different to that of the
cement. Hence, there is a stress concentration in the crown at the interface

between the crown and the cement (Soboyejo et al., 2001).

From the above review, it is clear that failures are usually initiated from
the corners of the interfaces in dental crowns or bridges, where either a high stress
concentration or a stress singularity can be created. In this study, the principles of
continuum mechanics (interface mechanics is a branch of this area) are used to
study the characteristics of interface stress distribution along the interface
between two materials and the dependence of the stress distribution on the
geometry of the interface, especially the conditions with or without stress
concentration/singularity at the free edge corners of the interface. The analysis is
based on the materials’ bulk mechanical properties (Young’s modulus and
Poisson’s ratio for elastic interfaces between two materials). The work presented
here suggests that there are two possible routes to reduce/avoid a stress singularity

at the corner of an interface: one is to change the material combination thereby
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minimizing the difference in the mechanical properties of the two materials; the
other is to optimally design the interface geometry. The focus of this research is in
fact on the latter method. Only PFM crowns containing precious or non-precious
metals are considered in this study; however, the proposed method can be applied
to other types of crown. From a micro- or nano-scale point of view the surface
structures of most materials differ from their bulk (substrate) properties; for
example, the surface structures of most metals can include an oxide layer, a
strain-hardening layer, etc. The study of micro-/nano-structural characteristics at
the interface between two materials (more accurately, the word ‘interphase’
should be used) is important in order to understand the chemical/physical bonding
mechanisms between the two materials. However, this is beyond the scope of this

study.

7.2 MATERIALS

The materials considered in this study are porcelain, cement, and metal.
Two types of metal are included: the precious-metal-based alloy, Olympia and the
non-precious-metal-based alloy, Wirobond-280. These materials are currently

used in many dental laboratories.

All of the materials used in this research are considered to be linear elastic
and isotropic. Only two elastic properties, Young’s modulus of elasticity (£) and

Poisson’s ratio (v) are therefore required to characterize these materials. The
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modulus of elasticity of porcelain has been reported several times in the literature
(Anusavice et al., 1980; Lawn et al., 2001; Li et al., 2004) as being between 68
and 68.9 GPa and the Poisson’s ratio as being between 0.25 and 0.28 (Anusavice
et al., 1980; Li et al., 2004). The modulus of elasticity of Olympia and Wirobond-
280 are specified by their respective manufacturers as approximately 124 GPa and
220 GPa respectively. The Poisson’s ratio for gold alloys varies from 0.383 to
0.397 (Suansuwan and swain, 2001). The data for the Poisson’s ratio of
Wirobond-280 is not available. Thus, the Poisson’s ratio, v of Wirobond-280 is

estimated from its constituent properties by the commonly used rule of mixing

M=

v=xv/V, (7.1)

1

1

1l
—_

where v; and V; are the Poisson’s ratio and volume fraction of each

constituent, respectively, The Volume fraction of each constituent is calculated by

v,=Lw, (7.2)

where W; is the weight fraction, p; is density of constituent i, and p is the
density of the WIROBOND-280 alloy. Thus the obtained Poisson’s ratio, v of

WIROBOND-280 is 0.275. Details of this calculation can be found Table 7.1.
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Table 7.1: Poisson’s ratio calculation for Wirobond-280

Weight Poisson’s Density, Volume
Components  fraction ratio. v fraction, v x }J7100
(%) © (gmlem’) V(%)

Co 60.2 0.31 8.9 57.49 1782

Cr 25 0.21 7.14 29.76 .0625

W 6.2 0.28 19.2 2.74 0.008
Mo 4.8 0.31 10.28 3.97 012
Ga 2.9 0.35 59 4.18 .015

Si 0.45 (let) - - - -
Mn 0.45 (let) - - - -
Total 100 0.275

Manufacturer: BEGO; Elastic modulus: 220 GPa, Density: 8.5 gm/cm’

There are numerous cements currently in use in dental practice. Zinc

phosphate, zinc silico-phosphate, and silicate cement are among the most widely

used compounds. van Noort (2002) reported that zinc phosphate cement is

extensively used in clinical practice because of its long history of success and

favorable handling properties. The elastic properties for zinc phosphate are taken

from Nakayama et al. (1974). The properties of porcelain, Olympia, Wirobond-

280, and the zinc phosphate dental cement are summarized in Table 7.2.
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Table 7.2: Elastic properties of dental materials

Modulus of Elasticity, E

Material (GPa) Poisson’s Ratio, v
Porcelain 68 0.25
OLYMPIA 124 0.38
WIROBOND 280 220 0.275
Dental Cement 60 0.32

Manufacturer of OLYMPIA: JELENKO

7.3 DEVELOPMENT OF THE MODEL

Figure 7.1 shows a sectional view of a PFM crown. One can see that the
three materials are joined together along two different interfaces: the interface
between porcelain and metal and the interface between metal and dental cement.
Of course, there exists another interface between cement and dentine (not shown
on Figure 7.1), but the properties of the cement can be considered to be similar to
dental cement according to Zarone et al. (2005). From the point of view of
interface mechanics, the closer the mechanical properties of the two materials, the
less severity of the stress concentration/singularity at their interface. Thus, the
cement/dentine interface is not included in the model. Of course, if the difference
in properties between the dental cement and dentine is large, this interface should
also be included in the analysis. In principal, there is no difficulty in applying the

proposed method to that case.
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Figure 7.1: Sectional view of a PFM crown and local model near the free edge

corner of the interface

As described in the Introduction, the main reason for the failure of a PFM
crown is debonding, which is most likely to start from the free edge corners of the
interfaces as shown in Figure 7.1. This is due to the existence of a high stress
concentration or even a stress singularity at these corners of the interface. A stress
singularity means that theoretically the stress value goes to infinity when a load is
applied on the crown. To focus the stress analysis on the area near the free edge
corners, three types of local models are obtained from the global crown model as
shown to the left of Figure 1: model 1 contains the interface between porcelain

and metal; model 2 represents the interface between metal and cement, and model
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3 contains both interfaces. The bonding angle, 6y, is defined as the angle between
the interface and the horizontal plane near the corner as shown in Figure 1. This
bonding angle is not equal to the bonding angle defined in Chapter 2 (this bonding
angle is equal to y = 90-0) in Chapter 2). The bonding angle is defined here this
way to match with the current dental specifications. For a given combination of
materials, the stress field near the corner of the interface depends on the bonding
angle 0y. The objective of this work is to find an appropriate range of bonding
angles at which the stress singularity at the free edge corners of the interface can

be eliminated.

7.4  STRESS SINGULARITY ANALYSIS USING FINITE ELEMENT

MODELING

Figure 7.2 shows the finite element models of the three considered local
models. Figure 7.2(a) is used for models 1 and 2, since both models contain a
single interface, whereas for model 3, Figure 2(b) is required. For each case a
larger mesh size is used for areas away from the interface. In the area close to the
interface, especially near the free edge interface corner, very small meshes are
used. The commercial finite element analysis code ANSYS with the 2D
axisymmetric element Plane 42 is used for the analysis. The boundary conditions
for the left-hand side and the top of the local model (these two sides are connected

by the body of the crown) are obtained from the global axisymmetric analysis
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results of the full crown. It is found in the global analysis that the displacement U,
of the left-hand side is almost constant and the pressure applied on the top of the
local model is almost the same as the applied global pressure on the full crown.
Therefore, the boundary conditions applied on the four sides of the local model
were: Uy = constant (obtained from the global analysis) at the left-hand side, U, =
0 at the bottom side, P = constant (obtained from the global analysis) at the top

side, and free traction condition at the left hand side.
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Figure 7.2: Finite element models: (a) single interface and (b) two interfaces
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After solving the problem, the normal and shear stress components, o,

andz , along the interface are determined by stress transformation, and the

= \Jo2 +37” is also calculated. If the stress at the corner of

effective stress, o,
an interface for a particular bonding angle increases with the refinement of the
mesh and does not converge to a finite value, then this is taken to indicate the
presence of a stress singularity. In contrast, for a non-singular case, the stress at
the corner of an interface converges to a finite value with the refinement of the

mesh. The same analysis is carried out for different bonding angles and the results

are shown in Figures 7.3 to 7.6.

The variation of the effective stress along the porcelain—metal interface for
precious-metal-based and non-precious-metal based alloy crowns are plotted
against the horizontal distance from the free edge corner in Figure 7.3. From
Figure 7.3(a), it can be seen that for a bonding angle between 20 and 50° the
effective stress converges to finite values at the corner of the interface, x = 0.
However, for the case of a 5° bonding angle, at x = 0, the stress value does not
converge to a finite value in fact it increases with further refinement of the mesh
size (see the enlarged figure to the left of Figure 7.3(a)). This indicates that a
stress singularity exists at the porcelain—metal interface corner of precious-metal-
based crowns for a bonding angle of 5°. Similarly, Figure 7.3(b) shows that for the
porcelain—metal interface with non-precious-metal based alloy a stress singularity
exists for a bonding angle of 5° but there are no stress singularities for bonding

angles of 32 and 50°.



Chapter 7: Application in Dental Restorations 197

1.02 1.15 -
Precious alloy crown
——5 degree Porcelain/Metal Interface
1 Wﬁ
1.01 q
F
085 -
b\‘
1 -
0.7 - ——5 degree
—-20 degree
——350 degree
0.99 0.55 1 . . . . : .
0 1 2 3 4 5 6
Distance from specimen free edge (unit)
(@)
1.4 - 1.5
Non precious alloy crown
Porcelain/Metal Interface
1.3 - 1.25 4
4
12 A f 1
= q
e
1.1 - 0.75 A
2 ——35 degree
1 - 0.5 3 —o—-32 degree
——5 degree ——50 degree
0.9 0.25 T T T T T
0 1 2 3 4 5 6
Distance from specimen free edge (unit)
(d)

Figure 7.3: Effective stress distribution along porcelain-metal interface for
different bonding angles: (a) precious-metal-based crown and (b) non-precious-

metal based crown
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The results obtained for the metal-cement interface are presented in
Figure 7.4. It is interesting to note that for the metal-cement interface stress
singularities exist for cases with smaller or larger bonding angles (5 and 50°) but
at certain bonding angles between them the stress singularity can be eliminated

(20° in Figure 7.4(a) and 32° in Figure 7.4(b)).
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Figure 7.4: Effective stress distribution along metal-cement interface for different
bonding angles: (a) precious-metal-based crown and (b) non-precious-metal based

crown

Furthermore, model 3 with two interfaces is analyzed to see if there is any
effect of the coexistence of the interfaces. Comparing the results in Figure 7.5
with the results in Figures 7.3(a) and 7.4(a) and the results in Figure 7.6 with
those in Figures 3(b) and 7.4(b) one can find that there is no difference in terms of
the existence/elimination of stress singularities. Thus, the results obtained from
the FEM of model 3 are consistent with those obtained from FEM model 1 and
model 2. This is expected since a stress singularity is a phenomenon that only

occurs very close to the interface free edge corner.
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Figure 7.5: Variation of effective stress of precious-metal-based crown along both

interfaces for bonding angles of: (a) 5° (b) 20°; and (c) 50°
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7.5 STRESS SINGULARITY ANALYSIS BY AN ANALYTICAL

METHOD

To more accurately determine the range of bonding angles with or without
a stress singularity, the use of an analytical solution could be more convenient.
There is an extensive literature on efforts to obtain analytical solutions of the
singular stress field near the free edge of an interface between two materials, see
references (Bogy, 1971; Munaz and Yang, 1992; Qian and Akisanya, 1999; Liu et
al., 1999), among others. Details about analytical solution can be found in Chapter
2 and 3. No matter what mathematical methods are used, the stress field near the

free edge tends to be cast into the following asymptotic form
g Al C .
o, = Hr' £,(0,a, B, 2) (j=12) (13)
In the above expression, r,6 are the polar coordinate, H is the stress

intensity factor, «,f are Dundurs’ (1969) parameters which depend on

combinations of the elastic constants of the two materials,

_ M (ky +1)— (ky + 1)
yo (kz + 1)"‘ (kl + l)ﬂz

. B= ﬂl(kz _1)_(k1 _l)ﬂz

a -
y (kz + 1)"‘ (kl + 1)#2

5 (7.4)

E.
j . . :
where, i/; = : , k | =3—-4y ; » u is shear modulus, £ is elastic
2‘1/ it li :
modulus, v is Poisson’s ratio and subscript j is material index . The A4 is
eigenvalue obtained from the following eigenvalue equation (see section 4.2.1 in

chapter 4 for detail derivations)
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sin® Az +2(24 cos’ 6, —1)asinAzsin246, — 41’ Bsin Axsin246, cos’ 6, +41° cos’ 6,
(1-cosAzcos2A8, — 24 cos’ 6,).af+[sin’ 246, + 41 (X' —1)cos” 6, — A’ sin’ 26, |’
[427 cos’ 6,(1’ cos” 6, —1+cosAncos2A8,) +(cosAz—cos216,)* 1.5 =0

(71.5)

In the above equation, 6, is the bonding angle defined in Figure 7.1

From the Equation (7.3), if 0 < A <1, the stress component goes to infinite
when » — 0, i.e. there exists stress singularity. For 4 > 1, the stress singularity is

eliminated.

Based on the properties of materials given in Table 2, the eigenvalue of 4
is calculated by using Equation (7.5). The results obtained for both the porcelain—
metal and metal-cement interfaces of the precious-metal-based and non-precious-
metal-based alloy crowns are listed in Tables 7.3 and 7.4, respectively. Figure 7.7
clearly shows the variation of the eigenvalue 4 as a function of the bonding angle.
To summarize the presented analysis results, one can see that for PFM crowns

made with the precious metal- based alloy Olympia and in the range of bonding

angles 15° < 6, <30°, the stress singularity can be eliminated: however, for PFM

crowns made with the non-precious-metal-based alloy Wirobond-280 the bonding

angle range that is stress singularity free is 30°< 6, <35°.



Chapter 7: Application in Dental Restorations 204

Table 7.3: Value of 4 corresponding to different bonding angles for precious alloy

crown
Porcelain/Metal (OLYMPIA) Metal (OLYMPIA) /Cement
interface interface
Bonding angle, 0y A Bonding angle, 6 A

0 0.995 0 0.9622

5 0.9945 5 0.974
10 0.997 10 0.9884
12 0.9989 15 1.0028
13 1.0001 20 1.0126

20 1.0135 25 1.013
30 1.047 30 1.0019
45 1.12 31 0.9984

60 1.149 45 0.93

75 1.086 60 0.875
90 1 75 0.866

80 0.902

85 0.942

90 1
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Table 7.4: Value of 4 corresponding to different bonding angles for non-precious

alloy crown

Porcelain/Metal (WIROBOND-280) Metal (WIROBOND-280)/Cement
interface interface

Bonding angle, 9, A Bonding angle, 6, A
0 0.93 0 0.887
5 0.926 5 0.9
20 0.952 15 0.949
25 0.975 20 0.982
27 0.986 22 0.996
28 0.992 23 1.0024
29 0.9985 24 1.0085
30 1.0052 25 1.014
35 1.041 30 1.025
40 1.087 35 1.003
45 1.137 40 0.965
60 1.228 45 0.921
65 1.207 55 0.85
70 1.17 60 0.825
75 1.128 75 0.803

90 1 90 1
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Figure 7.7: Variation of 4 with the bonding angle ) for (a) precious-metal-based
crown and (b) non-precious-metal-based crown
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7.6  OPTIMAL OFF-VERTICAL ANGLE OF THE METAL LAYER

Based on the recommendations for the bonding angles at the free edge
corners of an interface made in the previous section, FEM analyses are further
carried out on the global crown model to determine the optimal off-vertical
position of the metal layer. Figure 7.8 shows the 2D axisymmetric model and

corresponding FEM model used in the analyses.

Axi-Symimetric : p
axis ™ |
R
:
U=C
-
(b)

Figure 7.8: (a) Global axisymmetric model of PFM crown and (b) FEM mesh and
applied boundary
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The bonding angle at the interface free edge corner is taken as 6, =20°

for the precious-metal-based crown and 6, =32° for the non-precious-metal-
based crown. Thus, a stress singularity does not exist at the free edge corner of the
interface. The angle ¢ in Figure 7.8 is the defined off-vertical angle. The stress
distributions as a function of ¢ are obtained at a constant value of the applied
pressure at the top surface. Note that in the analyses a constant angle y =20° is

assumed, see Figure 7.8.

The contour plots of the effective stress at ¢ =5° 10° and 20° for the

precious-metal-based crown are shown in Figure 7.9(a) and at

@ =5°10° and 12° for the non-precious-metal-based crown are shown in Figure

7.9(b), respectively. The high stress zone in each figure is marked with a circle.
From Figure 7.9(a) (precious-metal-based crown) it can be seen that at ¢ = 5°,
there are two high stress concentration zones in the metal layer, and at ¢ = 20°
there is a very small high stress concentration zone at the lower part of the metal—
cement interface. However, no such stress concentration with a lower maximum
stress level exists at ¢ = 10°. Similarly, from Figure 9(b) (nonprecious- metal-

based crown) the optimal off-vertical angle of the metal layer is ¢ = 12°.
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® (@) (iv)

@) (i) (i) (iv)

(®)
Figure 7.9: Contour plot of nodal effective stresses of (a) precious-metal based
crown for (i) ¢=5° (i) ¢=10° (iii) =20° and (b) non-precious-metal based

crown for (i) ¢p=5°, (ii) ) p=10°, (iii) ) p=12°
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7.7 FURTHER OBSERVATION AND REMARKS

Figure 7.10 shows some alternative interface edge designs currently
adopted in dental restoration technology. Based on the presented results, the
feather edge design does not appear to be a good choice for both precious-metal-
based and non-precious- metal-based crowns. This is because if a PFM crown is
made with a feather edge with a bonding angle between 15 and 30° using a
precious-metal based alloy or between 30 and 35° for nonprecious metal-based
alloy, it will need a large amount of porcelain, which is undesirable and
unrealistic. At the same time, if the bonding angle is not in the above ranges, the
crown may be prone to failure at the free edge corners of the interface due to the

existence of stress singularities.

{ ]

Figure 7.10: Different types of margin for tooth crown: (a) feather; (b) chamfer;

(c) shoulder; (d) bevel; and (e) bevel-shoulder
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Usually for shoulder edge crowns, the bonding angle is maintained
between 0 and 5°. Such a design should also be avoided because a stress

singularity could exist at both of the free edges of the interface.

It seems that chamfer, bevel, and bevel shoulder edges might be suitable
if the bonding angle at the interface is within the safe range between 15 and 30°
for crowns made from precious-metal-based alloys and from 30 to 35° for crowns
with from nonprecious- metal-based alloys. It is interesting to note that the
bonding angle of 30° suggested in Craig et al. (1971), which is based on a 2D
photoelastic experimental method, is just within the current suggested bonding

angle ranges for either precious-metal based or non-precious-metal-based crowns.
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CHAPTER 8

CONCLUSIONS

The objective of this research was to develop a new test method for the
determination of biaxial normal-shear bonding strength envelope for bi-material
interfaces. A new method, which includes the design of a special interface
geometry, test procedure and calculation algorithm has been developed to

accomplish the objective of this study.

8.1 SUMMARY OF THE RESEARCH

The present research can be summarized as below.

o A brief review on the papers available in open literature related to the bi-
material interface strength is presented. The current practices including the
ASTM standard methods encounter difficulties to accurately determine the
value of the interface bonding strength. They have certain major
disadvantages such as the non-uniform multi-axial stress distribution over
the interface area and/or the presence of singularities of the interfacial

stress components.

217



Chapter 8: Conclusions 218

. A new test method to determine the bi-axial normal-shear bonding
strength at bi-material interface has been developed. This method includes
the design of special interface geometry to eliminate the stress singularity
at the free edge of the interface and the corresponding test and calculation

procedures to obtain the interface bonding strength envelope.

. A cylindrical specimen of two bulk materials with a spherical interface is
developed to measure the interface bonding strength of two materials by
eliminating the stress singularity. In this design, the soft material is at the
convex side of the interface, while the hard material is at the concave side
of the interface. The bonding angle, which is defined as the angle between
the tangent of the spherical interface to the generator of the cylindrical
surface, must be less than the critical bonding angle for the elimination of

the stress singularity.

. The 810-Material Testing System is used to conduct all the tensile and
relaxation tests. The multi-axial testing machine is used to conduct the
interface strength tests. It has the capacity to apply combined loading on

the specimen (torsion and tension).

o Three different materials are used in this research. These materials are
selected based on their applicability, availability, machinability and low
cost. The selected materials are aluminum, epoxy and polyvinylchloride

(PVC).
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. Aluminum and epoxy are used for the determination of the interface
bonding strength between elastic and elastic materials. It is found from
experiment that at a very fast loading rate, the viscoelastic epoxy can be

approximately treated as an elastic material.

. To see the viscoelastic effect on the interface bonding strength, the same
materials combination (Aluminum/Epoxy) is used for the bonding strength
determination of elastic/viscoelastic interface. However, for this case the

loading rate is kept much slower than the elastic/elastic case.

. PVC and epoxy are used for the viscoelastic/viscoelastic interface bonding

strength measurement.

. Analytical solution to determine the order of the stress singularity and the
critical bonding angle for the elastic/elastic interface is developed based

on an axi-symmetric asymptotic stress analysis.

. The analytical solutions for the elastic/viscoelastic  and
viscoelastic/viscoelastic interfaces are derived from the analytical solution
for elastic/elastic interface using the elastic-viscoelastic corresponding

analogy.

o To determine the analytical solution for the interface containing any
viscoelastic material, accurate modeling of the material properties is very

important. Three different cases of material modeling are considered in
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this study; (i) Viscoelastic shear modulus is modeled as a standard linear
solid model and Poisson’s ratio is assumed to be constant, (ii) Both the
viscoelastic shear modulus and Poisson’s ratio are modeled as the standard
linear solid model, (iii) Both the viscoelastic shear modulus and Poisson’s
ratio are modeled as a Wiechert Model consisting of two Maxwell
elements with a spring in parallel. This model can more accurately

simulate the viscoelastic behavior of studied materials: epoxy and PVC.

o From the analytical solution of elastic/elastic interface, the critical bonding
angle for the tested aluminum/epoxy interface is determined as in between
49° and 50°. However, considering the viscoelasticity of epoxy, from the
analytical solution for the elastic/viscoelastic interface, the critical
bonding angle for the aluminum/epoxy interface is determined as in
between 48° and 49°. The critical bonding angle for PVVC/epoxy interface
is determined as in between 47° and 48° from the analytical solution for

the viscoelastic/viscoelastic interface.

. All the results obtained from the analytical solutions are verified by the

finite element numerical analysis method.

. A detrimental time effect may have on the viscoelastic interface design
with the stress singularity because the order of the singularity may

increase with time.
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. There is no interface stress singularity for the application of pure torsional
loading on the specimen if they are designed according to the developed

method.

) Since the stress distributions are not uniform along the interface, an
iterative calculation method integrated with FEM stress analysis is
developed to determine the bi-axial normal-shear interface bonding

strength envelope.

. The normal-shear interface bonding strength envelope for the tested
aluminum/epoxy (Elastic/Elastic) in the range of the first quarter of the

normal-shear stress plane is determined as

On )2+( T

)2 =1
19.76 20.86

(
o The normal-shear interface bonding strength envelope for the tested
aluminum/epoxy (Elastic/Viscoelastic) in the range of the first quarter of

the normal-shear stress plane is determined as

T

O-n 2 2
+ =1
(21.15) (21.85)
. The normal-shear interface bonding strength envelope for the PVC/epoxy

(Viscoelastic/Viscoelastic) in the range of the first quarter of the normal-

shear stress plane is determined as
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O-n 2 T 2
+ =1
(9.63) (15.14)
. For the elastic/elastic (Aluminum/Epoxy) interface, the average maximum

failure (debonding) load with the ASTM butt joint specimens is obtained
as 2161 N with a data scatter band of 13%, while with the present
designed specimens, this value is obtained as 5727 N with a scatter band
of 12%. The large difference in the load carrying capability of these two
groups of specimen shows the great potential in the optimal design of bi-

material interface for advanced materials and structures.

. For the developed specimen design, the interface debonding started near
the central area of the interface, not from the edge of the interface as in the

case of the ASTM bultt joint specimens.

. The developed method is a more accurate and practical approach to
characterize this important mechanical property of bi-material interface.
The new test method provides a biaxial normal-shear bonding strength
criterion (envelope) for the bi-material interface. Such criterion and data
base are critical for an accurate and realistic theoretical/numerical

modeling of the damage and failure of the interfaces.

o As an application of the research in the dental restorations, an optimal

geometry design for a PFM dental crown has been carried out. It is found
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that to eliminate the stress singularity at the interface free edge corner, the
appropriate margin angle range is 15-30 degrees for the precious alloy
PFM crown and 30-35 degrees for the non-precious alloy PFM crown,

respectively.

o The optimal off-vertical angle of the metal layer in the PFM crown is 10°
for a precious-metal-based crown and 12° for the nonprecious- metal-

based crown, respectively.

. The results may serve as a general guide for the design and manufacture of

the dental crowns.

) The optimal range of the bonding angles may be different if the materials
or their properties are changed; however, the proposed numerical and
analytical methods can also be used to determine the optimal geometric

parameters in those cases.

. The interface bonding strength is an inherent physical property for a given
bi-material interface and should not be changed with the change of the
interface geometry. With the different designs of interface geometry, the
interface stress distributions are different, thus resulting in different load
carrying capabilities of the specimens. Although it is possible to design the
proper interface geometries to avoid the stress singularity, it is very

difficult (if it is not impossible) to design a specimen that could produce a
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pure uniform normal stress distribution at the bi-material interface without

any stress singularity.

o For the proposed specimen design, failure will always happen at the
interface under the tensile or shear loading if there is no defect in the two
bulk materials. This is because of the maximum stress in the specimen is
prominently at the interface due to the incompatibility of mechanical

properties of the two materials.

. The developed test method will be ineffective if the bi-material interface
bonding strength is greater than the ultimate strength of one of the
materials. Even in that case the failure of the weaker material will be most

likely initiated near the interface due to the stress concentration.

8.2 FURTHER RECOMMENDATIONS

Since, the mechanics of interface is a new developing branch of solid
mechanics, continuing research on this area will make this new branch richer. In
addition to the current research, future researches can be carried on the following

topics.

e Orthotropic Materials Structures: In the present research, all the materials are

considered as isotropic. In future, the similar research can be carried on the
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interface between orthotropic materials or between orthotropic and isotropic

materials.

e Interface Fatigue: It is well known that the corner geometry at the end of the
bonded area have a significant influence on the fatigue strength of composites
bonded joints. Determination of the accurate interface fatigue strength can be

an interesting topic for future research.

e Failure Mechanism of Structures with Interface: Further research can be
carried on to study the damage mechanism of structures with bi-material

interface.

e Smart Materials and Structures: Nowadays, composite materials are
reinforced with shape memory alloy (SMA) wires in many applications. The
interface between the SMA wire and the composite matrix plays an important
role to the overall performances of the structure. The design of such a smart

composite may be a future potential research area.

e Other Applications: In addition to the dental industry, electronic packaging
might be another prospective area for this branch of study. There are multi
interfaces between the solder and the parts in electronic packaging. This
research can be extended to make a better design of the connections to
increase resistance to damage. The interface characterization also has a great

potential in the aerospace industry.
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