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ABSTRACT 

 

Bi-material interface is often observed in many advanced materials and 

structures. Measurement of the interface bonding strength is more challenging 

than the measurement of pure tensile or shear strength of a homogeneous material 

because of the presence of the stress singularity at the interface corner, non-

uniform stress distribution along the interface and the co-existence of normal and 

shear stress components. In this PhD research project, a new innovative test 

method including specimen design, test procedure and an iterative calculation 

algorithm, is developed for more accurate determination of the interface bonding 

strength.  

Three different types of bi-material interface are considered in this study; 

interface between elastic and elastic materials, between elastic and viscoelastic 

materials, and between viscoelastic and viscoelastic materials. Analytical 

solutions are developed to determine the stress singularity and conditions for its 

elimination for all the above three types of interface. The analytical solution for 

the elastic/elastic bi-material interface is derived based on the axi-symmetric 

asymptotic analysis. For the elastic/viscoelastic and viscoelastic/viscoelastic bi-

material interfaces, the analytical solutions are obtained from the solution of 

elastic/elastic interface through the elastic-viscoelastic correspondence principle. 

The developed analytical solutions are further verified by FEM numerical 

analyses.  

Three different materials; Aluminum, Epoxy and Polyvinylchloride (PVC) 

are considered. The elastic material properties of the selected materials are 



 
 

determined by uni-axial tensile tests. To determine the viscoelastic properties, 

relaxation tests are carried out on the viscoelastic materials. It is found that the 

order of the stress singularity changes with time due to the viscoelasticity of 

materials. If any stress singularity exists at the interface corner, with time the 

order of singularity increases. For a non–singular stress case at the interface 

corner, the order of the stress singularity may increase or decrease with time, 

depends on the bonding angle (specimen geometry).  

With the proposed design that can eliminate the stress singularity at the bi-

material interface corner, the loading capacity of the specimen is also increased. 

For example, the tensile load carrying capacity of such designed aluminum/epoxy 

bonded joint is increased by 2.65 times than that of the ASTM (American Society 

for Testing and Materials) butt joint design. Finally, as a practical application of 

this research, the optimal ranges of bonding angles at the interface corners of 

porcelain fused to metal (PFM) dental crowns with precious or non-precious 

metal alloys are suggested. 

  



 
 

PREFACE 

 

This thesis is based on the work I have done in the Advanced Composite 

Materials Engineering Group of University of Alberta from January 2009 to April 

2012 on the bi-material interface bonding strength. The idea of conducting the 

study on this topic came forward in order to study the debonding failure or 

damage mechanism of composite materials, as the reliable interface bonding 

strength data are not available. This thesis is written in mixed format. It consists 

of eight different chapters. In Chapter 1, a brief review on the interface of bi-

materials is presented. At the end of this chapter, the disadvantages or 

shortcomings of current methods for the interface bonding strength measurement 

are summarized and the objectives of this study to overcome those 

disadvantages/shortcomings are given. In Chapter 2, the developed new method to 

determine the bi-material interface bonding strength is explained. In Chapter 3, 

the experimental facilities and characterization of materials are presented. 

Experimental determination of elastic and viscoelastic properties of three 

materials (aluminum, epoxy and PVC) is described. In Chapters 4, 5 and 6, the 

interface bonding strength determination of elastic/elastic, elastic/viscoelastic and 

viscoelastic/viscoelastic interfaces are presented by the developed method 

respectively including the analytical solutions to determine the stress singularity 

at the interface corner. In Chapter 7, an optimal design of a PFM dental crown is 

developed based on this study. Finally, in Chapter 8, the summary of the thesis 

and further recommendations are presented.   
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CHAPTER 1 

INTRODUCTION 

 

Bi-material interfaces exist in many advanced materials and engineering 

structures. It has been established that because of the presence of the stress 

concentration/singularity at the interface corner, failure may initiate from the 

interface corner. In order to characterize the interface properties, it is necessary to 

determine the bonding strength of interface accurately by eliminating the stress 

singularity. This chapter presents a brief review on the studies available in open 

literature covering the stress singularity analysis at bi-material interface, 

determination of the order of the stress singularity, stress singularity elimination 

techniques, and measurement of the interface strength. Finally, the objectives of 

the current research are presented. 

 

1.1 BI-MATERIAL INTERFACES  

 

Interfaces between reinforcement and matrix in composite materials; metal 

and ceramic in electronic packaging and metal coating; ceramic and polymer in 

biomaterials; sensor and structural components in smart structures; and solder 

joints in electronics are some of the typical examples of bi-material interface. As 

one kind of composite material structure, bi-material lap joints have been widely 

used in aircraft, spacecraft, helicopters and automotive industries (Chaudhuri and 
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Chiu, 2009). Usually, these joints can satisfy some special requirements of 

engineering structures that cannot be fulfilled by using single material 

components. For example, ceramics/metal joints can make full use of the 

superiority of both materials, such as the resistance to high temperature and 

corrosion and unique electronic functions in ceramics, and the ductility and good 

machinability of metals (Hu et al., 1998). Other advantages of adhesive bonding 

of dissimilar parts in the aerospace, automotive and electronic industries are high 

strength to weight ratio, improved appearance, improved corrosion resistance and 

cost effectiveness (Kinloch, 1993). 

Adhesive bonding has been increasingly used in joining and repairing 

load-carrying structural components (Adams and Wake, 1984; Baker and Jones, 

1988; Kinloch, 1993). Compared to the mechanical fastening, e.g. riveting or 

bolting, adhesive bonding may provide more uniform and efficient load transfer 

into the patch and can reduce the risk of high stress concentrations. This leads to 

the wide use of bonded repairs instead of using riveted repairs in aircraft 

structures (Vlot et al., 2000). One of the common examples of bonded joint is the 

single-lap joint. Existing single lap joints are made of two substrates joined by 

using the mechanical connection method, chemical connection method or solid-

phase bonding process.  

However, bi-material joint is sensitive to the changes in the geometrical 

parameters. These geometrical parameters affect the performances of a bonded 

joint. It is well known that there are discontinuities of material and geometry at 

the bonding edges in these joints. These discontinuities may cause singularities in 
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the stress fields or very high stress concentration near the vertex of the bonding 

edges. This stress concentration/singularity may lead to the delamination initiation 

in the local area, and subsequently to the global failure of the joint structures (Hu 

et al., 1998; De Chen and Chue, 2003).  

That is why most researches on bi-material interfaces deal with the stress 

singularity. In fact, to characterize the interface properties, sound knowledge on 

the stress singularity is required.  

 

1.2 STRESS SINGULARITY AT BI-MATERIAL INTERFACE 

 

The singularity in the stress fields near the free edges of dissimilar 

material components is one of the main factors responsible for debonding under 

the mechanical and/or thermal loading (Stenger et al., 2000; Wu, 2004). 

Numerous studies have shown that the failure often occurs along the 

interface/joint between two materials with high property mismatch (e.g., free-edge 

delamination in composite laminates and debonding between thin film/substrate) 

and improving the interfacial properties (especially reducing the interfacial stress 

level) can enhance the overall material/structural behaviors (Kerans et al., 1989; 

Hutchinson and Suo, 1992; Kallas et al., 1992; Liechti and Liang, 1992; Gundel et 

al., 1995; Krawczak and Pabiot, 1995; Xu et al., 2003). Stress singularity at the 

interface between the adhesive and adherend is reported by many researchers 

(Williams, 1952; Hein and Erdogan, 1971; Groth, 1988; Akisanya and Fleck, 

1997). The existence of bi-material interfaces is an intrinsic characteristic of 



__________________________________________________________________ 

 
 

4 Chapter 1: Introduction 

adhesive joints which results in asymptotic singular stress fields at the bi-material 

interface corners. This type of stress singularity is the major driving force for the 

failure of adhesive joints (Gradin, 1982; Reedy, 1990; Ding and Kumosa, 1994; 

Ding et al., 1994).  Ding et al., (1994) reported that the corner stress singularity at 

an adhesive interface is a major problem for the joint design. Of the many factors 

affecting the strength of a bonded joint, the magnitude and distribution of stresses 

in both the adhesive layer and substrates are most crucial to the design of bonded 

joints. For elastic adhesive layer and the substrates, a complex stress singularity 

exists at the termination of the adhesive layer (Bogy, 1971; Hein and Erdogan, 

1971). Many researchers considered the case of interface with singularity as a 

crack problem in fracture mechanics. The interface corner is identified as a 

potential fracture initiation site because of the stress singularity at the interface 

corner (Liu and Fleck, 1999; Akisanya and Meng, 2003). Many researchers 

reported that fracture always starts at the stress concentration points, which are 

often the stress singularities at the corners of elastic/elastic bi-material interfaces 

(Williams, 1952; Kondrat'ev, 1967; Stern and Soni, 1976; Grisvard, 1989), or at 

joints consisting of anisotropic layers (Leguillon and Sanchez-Palencia, 1987; 

Desmorat, 1996; Desmorat and Leckie, 1998; Liu and Fleck, 1999).  

To find the analytical solutions of stress distribution near the interface 

corners, extensive research has been conducted by many researchers (Bogy, 1968, 

1971; Hein and Erdogan, 1971; Theocaris, 1974). Since Tranter (1948) used the 

Mellin transforms to obtain an analytical stress solution for an infinite wedge, the 

stress singularities in a single-material wedge under different boundary conditions 
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has been investigated extensively. For example, Williams (1952) employed the 

Airy stress function and the separation of variables to study the single-material 

wedge under various boundary conditions. A r−λ (0<λ<1) type singular stress field 

was found near the apex of an isotropic elastic material. The value of ‘–λ’ can be 

real or complex. Bogy (1968) employed the Mellin transform to treat the wedge 

problems of two bonded materials subjected to the surface traction at the 

boundaries. The singular stress problems have been studied for the angular 

corners of isotropic materials by Williams (1952); Bogy (1968); England (1971); 

Stern and Soni (1976); Reedy (1990) and for the multilayered media by 

Schmauder (1989); Kelly et al. (1992); Reedy (1993). This study has been 

extended to the anisotropic layers by Leguillon and Sanchez-Palencia (1987) 

using a numerical method and then by Desmorat (1996) who derived a closed-

form solution.  Theocaris (1974) studied a multi-material wedge by a series 

solution using the Kolosov-Muskhelishvili (Muskhelishvili, 1953)  complex stress 

functions. Ma and Wu (1990); Munz et al. (1993); Munz and Yang (1994); Yang 

and Munz (1994,1997); Chen (1995); Ma (1995); Yang (1998, 1999), all devoted 

themselves to the formulation of an angular function for a single or two material 

wedges. Sinclair (1999) carried out a detailed investigation on the logarithmic 

stress singularities resulting from various boundary conditions in a single-material 

wedge. Many other investigators (Cook and Erdogan, 1972; Fenner, 1976; 

Barsoum, 1988; Yang and Munz, 1994; Pageau and Biggers, 1995) examined the 

behavior of the stress singularity around the wedge, edge crack and the interface 

crack.  
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Bogy (1968, 1970, 1971); Bogy and Wang (1971); Hein and Erdogan 

(1971); Theocaris (1974); and Dempsey and Sinclair (1979, 1981) established the 

dependence of the order of the stress singularity on the elastic constants of 

materials and local geometry of the multi-material wedges or junctions. Dundurs 

(1969) developed two composite elastic parameters to relate the order of the stress 

singularity in a two-material wedge. Lazzarin et al. (2002) presented a method for 

the evaluation of the singular stress fields in the bonded joints of different 

geometries. The stress distributions are represented by a two-term stress 

expansion, under the hypothesis that both the first and second terms are in the 

variable separable form. 

Singular solutions are also used to solve the linear elastic fracture 

mechanics problems and the procedures are illustrated in the standard texts 

(Liebowitz, 1968; and Kanninen and Popelar, 1985). The singular crack solutions 

for the power-law hardening plasticity were studied by Hutchinson (1968); Rice 

and Rosengre (1968). Desmorat and Leckie (1998) provided a fast calculation 

technique for the 2D-elastic singular strains, stresses and displacements close to 

the corners, edges or interface ends of joints constituted of anisotropic layers. 

Isotropic results are also derived as a limiting case of the general anisotropic 

study. Akisanya and Meng (2003) characterized the stresses near the interface 

corner of bonded joints by the interface corner stress intensity factor and the order 

of the elastic singularity. Based on the theoretical solution for the order of the 

stress singularity, De Chen and Chue (2003) determined the corresponding stress 
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intensity factors for a one or two-bonded wedge, under the mechanical or thermal 

loadings by using the finite element approach.  

Ding et al. (1994) addressed that in evaluating the asymptotic field for the 

corner stress singularity, it is essential to consider various joint geometries, 

adhesive and adherend elastic properties, and the non-linear material effects. 

Marsavina and Craciun (2009) considered the non-linear elasto-plastic material 

with Ramberg-Osgood power hardening law bonded to a rigid elastic substrate to 

derive asymptotic plane-strain solution near the interface free edge with small-

scale yielding. Desmorat and Lemaitre (1998) studied the singularity of the elastic 

stress field close to a sharp notch with any angle in a multi-material joint by 

means of the complex potential method. The order of the singularity is obtained as 

a closed-form solution depending upon the angle of the sharp notch. Studies have 

also shown that for the joints bonded with brittle adhesives, the intensity of the 

stress singularity at the interface corner could be used to predict the failure of the 

bonded joints (Groth, 1988; Reedy, 1990). 

The stress behavior at the interface corner of three materials has been 

investigated by Qian and Akisanya (2001). It was found that the stresses near such 

interface corner are significantly higher than those at a free-edge corner of two 

materials under the same thermal loading conditions. Qian (2001) considered the 

stresses near the wedge corner consisted of a singular stress term and a regular 

constant stress term.  The influence of adhesive joint design parameters such as 

the type of joint, geometry and material properties on the generalized stress 

intensity factors are presented by Lazzarin et al. (2002). 
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1.3 ELIMINATION OF THE STRESS SINGULARITY FROM BI-

MATERIAL INTERFACE 

 

There have been a lot of studies on the characterization of the stresses at 

the interface corners of various joint geometries and on the minimization of the 

stress singularity. Cherry and Harrison (1970); and Groth and Nordlund (1991) 

suggested an iterative procedure for optimizing the geometry of the adherend to 

obtain a uniform stress distribution in the adhesive layer, while Adams et al. 

(1973) proposed the use of varying adhesive layer thickness to reduce the stress 

singularity.  Akisanya and Meng (2003) reported that the geometry profile of the 

adherend needed to eliminate the stress singularity is complex and it is often 

difficult to machine the adherend to the required shape. The type of singularity 

depends on the choice of joint geometry, and the elastic and thermal properties of 

the materials (Williams, 1952; Bogy, 1968, 1971). Goglio and Rossetto (2010) 

confirmed that the most influencing parameter on the stress singularity is the edge 

angle. 

Sawa et al. (2009) conducted a two-dimensional stress analysis of 

adhesive butt joints with elastic circular fillers in the adhesive subjected to the 

external tensile loadings and reported that as the amount of filler particles 

increased, the stiffness of filler increased and more filler particles approached to 

the edges of the interfaces. Thus, the joint strengths were increased. However, 
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though joint strengths were increased, the singularity cannot be avoided in this 

process.  

The shape optimization of bi-material single-lap joints was performed by 

Hu et al. (1998). They investigated the free-edge stress singularity and condition 

for its disappearance near the vertex of bonding edges in a single-lap joint. On the 

basis of sequential linear programming, they proposed a shape-optimization 

approach for the single-lap joint. They also reported that the strength of a single-

lap joint can be improved significantly by using their optimum technique because 

of the stress concentration at the interface can be reduced significantly by using 

their proposed optimum approach. According to their recommendation, the 

general characteristic of the optimum shapes is that those parts of the two 

substrates near the bonding edges should be cut appropriately to make the joint 

into a taperred form as shown in Figure 1.1.  

 

Figure 1.1:  Schematic of initial shape of a single-lap joint as presented in Hu et 

al. (1998) 
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They determined a critical skewed interface angle of θs = 126° (see Figure 

1.3) and reported that if the skewed interface angle is greater than this value, the 

singularity of asymptotic stress field at the bi-material wedge will totally 

disappear irrespective of the mechanical properties of the two materials making 

up the wedge. Liu and Fleck (1999) mentioned that the scarf joints are preferable 

over butt joints as the adhesive is loaded by a combination of shear and tension 

rather than in a tensile peel mode, resulting higher joint strengths.  

It should be pointed out that all the above cases of scarf joint may 

eliminate the stress singularity in the width direction only but could not eliminate 

the singularity in the thickness direction. In fact, any 2D geometry with a straight 

edge cannot eliminate the stress singularity completely. Any scarf joint as shown 

in Figure 1.2 may remove the singularity from one corner of the interface, but 

there will be stress singularity at other corner of the interface.  

A three-dimensional eigen function expansion approach for the prediction 

of the singular stress field in the neighborhood of the interfacial front of an 

adhesively bonded scarf joint is presented by Chaudhuri and Chiu (2009). They 

provided two solutions for the elimination of the stress singularity at scarf joints. 

One is by changing the materials and another one is by designing the joint with 

the wedge angle that satisfies certain conditions. Their specimen was made from 

two pieces of rectangular plates (same dimensions), which were adhesively 

bonded by means of a scarf joint. However, their proposed design has the same 

limitation as described earlier for the 2D scarf joint given in Figure 1.2.    
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experiment. They reported that the stress intensity (indicates the existence of 

singularity) has decreased by several orders in their proposed joint. They also 

mentioned that the higher fringe orders signifying larger stress intensity move 

away from the interface towards the polycarbonate curved edge. In fact, this 

design also cannot eliminate the stress singularity in the thickness direction since 

the plane strain condition cannot be realized near the two boundary surfaces in 

thickness direction. In addition, the cross-sectional area of the specimen close to 

the interface is notably reduced and, as a result, the material may fail before the 

interface failure. 

 

Addressing the above problems, Lauke et al. (2003); Schneider et al. 

(2003) and Lauke (2007) proposed a new type of specimen configurations by 

introducing a curved interface between two materials in the flat coupon specimen 

as shown in Figure 1.5.  
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Xu (2006) also proposed a similar design for determining the interface 

strength between epoxy and E-glass by creating a proper bonding angle through 

machining a circumferential fillet between two materials. With that design the 

stress singularity is avoided but the cross-sectional area of the specimen in the 

epoxy segment is reduced and the stress concentration is produced in the epoxy 

material at the area near the interface, as a result, the epoxy may fail before the 

interface failure.  

As the complexity of stress singularity at the vertex of a general 3-D joint 

can be avoided for an axi-symmetric joint (Zhixue, 2006), Wu (2008) performed 

finite element analysis of a curved interface using axi-symmetric model for the 

elimination of the stress singularity. However, they admitted that the practical 

applications of their results may be very limited. They also mentioned that a 

suitable failure criterion for a bi-material joint is very important in the situation 

without any stress singularity since the influence of material mismatch parameters 

and interface geometry on the different stress components is not the same. 

 

1.4 MEASUREMENT OF INTERFACE BONDING STRENGTH 

 

The measurement of the interface bonding strength of bi-materials is more 

complicated than the measurement of tensile or shear strength of a homogeneous 

material. The current practices for the measurement of interface strength of bi-

materials can be classified into two separate test methods: tensile test and shear 

test. These two test methods are with different specimen designs and test 



__________________________________________________________________ 

 
 

19 Chapter 1: Introduction 

procedures, or in other words, the specimen design and test setup for testing 

tensile strength cannot be used for shear strength testing, and vice versa. 

For the shear strength test, most commonly used methods are in the 

category of lap joint tests, such as these specified in ASTM D3165 (2007) and 

ASTM D3528 (2008). In these standard test setups, shear stress is generated by 

the tensile load at the two ends of the specimen. The interface shear strength is 

obtained through dividing the maximum tensile load by the area of the bonding 

interface. Ideally, the pure shear stress should be parallel to the bonding plane in 

the test to obtain the correct interface shear strength. The current test setups, 

however, generate a multi-axial stress status at the bond termini areas, and as a 

result, the specimen could be failed in shear, tensile, or cleavage crack mode 

(Pizzi, 1994). Tensile bonding strength tests are based on the butt joint specimen 

as described in ASTM D897 (2008) and ASTM D2095 (2008), where tensile 

loadings are applied to the two ends of the specimen. The interface tensile 

strength is obtained through dividing the maximum tensile load by the cross-

sectional area of the bonding interface. The disadvantage of this test setup is the 

existence of the stress singularity at the interface free edge. Theoretically, the 

stress will be infinite at the free edge of the interface due to the singularity. 

Therefore, it is not accurate or doesn’t make sense to calculate the interface 

strength by the ratio of the failure load to the entire bonding area. It should be 

noted that the above ASTM standards are mainly for measuring the bonding 

strength between two materials by using a third adhesive medium, and in this 
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way, it may not be an exact bi-material interface unless the two materials are 

directly bonded without the third adhesive medium. 

For fiber reinforced composites, the interface failure has been the main 

concern in design and applications. Many experimental methods have been 

suggested to determine the interface strength between fiber and matrix in 

composite materials, such as single fiber pull-out, push-out tests (Chua et al., 

1992; Drzal, 2000; Xu et al., 2005), droplet test (Miller et al., 1987), single-fiber 

fragmentation test (Zhou et al., 2001) and peel-off test (Alimuddin and Piggott, 

1999). Except for the peel-off test, which mainly concerns the tensile strength, 

other methods quoted above are to measure the shear bonding strength.  

Many investigations have been carried out on butt, scarf and lap adhesive 

joints using finite element method (Gradin, 1982; Reedy, 1990), photo elastic 

experiments (Ding and Kumosa, 1994) and the theory of elasticity (Weissberg, 

1988; Ding et al., 1994). All those approaches encounter difficulties to accurately 

determine the value of the bonding strength. Because, all of them have the same 

disadvantages as ASTM standard methods: the non-uniform multi-axial stress 

distribution over the interface area and/or the presence of singularities of the 

interfacial stress components. 

Another important consideration in determining the interface bonding 

strength of bi-materials is the size effect. There are two different terms used for 

size effect; the material size effect and the mechanics size effect. Material size 

effect is due to the initial material defects. Even for a simple tensile test of 

homogeneous material, specimens with different sizes may yield different results. 
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Of course, the obtained results depend on the degree of defects. However, by 

making specimens from the same material carefully, more consistent results might 

be obtained. However, for a butt tensile specimen fabricated from two dissimilar 

materials (singularity exist), the normal stress distribution across the flat interface 

is not uniform according to the previous discussion. Obviously, this type of 

specimen will provide data with a stronger size effect in the context of mechanical 

behavior. Moreover, the mechanics size effect (related to the free-edge stress 

singularity) will be coupled with the material size effect, and thus lead to 

complexities in the measurement data because they cannot be treated as the 

intrinsic material properties. Therefore, the measured nominal interfacial strengths 

based on the current test standards cannot be used in mechanics predictions, 

because the interfacial properties obtained from the laboratory tests are quite 

different from the real values of structures in service (Xu et al., 2004). Any data 

obtained from specimen containing singularity need careful consideration of the 

size effect.  

For the failure criterion of bi-material interface, the concept of stress is 

very useful if there is no stress singularity at the interface. However, as a basis for 

the prediction of failure, the concept of stress becomes meaningless when the 

structure encompasses singularities as a result of discrete stiffness steps or 

geometric anomalies such as cracks (Van Tooren and Krakers, 2006).  

So, in order to measure the interface bonding strength more reasonably 

and accurately, the singularity elimination is a must. If there is no stress 

singularity at the interface, even if the stress distribution are not uniform along 
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interface, the interface debonding should initiate from certain critical point where 

the interface stress state reaches certain limit value. Such limit value represents 

the actual interface strength property for a given bi-material interface. Also, in 

that case the mechanics size effect may be reduced to minimum if the specimens 

are carefully manufactured and tested. Moreover, in practical applications, the bi-

material interface can be in multi-axial stress status with various combinations of 

normal and shear stresses depending on the loading conditions. Therefore, besides 

the pure tensile strength and the pure shear strength, a general biaxial normal-

shear bonding strength criterion, for example, in the form of a strength envelope 

in normal-shear stress plane, is needed to realistically and adequately characterize 

the strength of bi-material interface.  

 

From the above review, it can be concluded that: 

i) The current test standards for interface shear and tensile strength 

measurements may merely give the loading capacity of the specimen, 

instead of accurate values of the bi-material interface strength as intended 

although they can still be useful as a relative comparison of bonding 

strengths of different combinations of bi-materials. 

ii) Current test standards can only give separate nominal interface shear and 

tensile strength while, in reality, multi-axial stress status and stress 

singularity exist at the edge of the bonding interfaces of these specimens 

even though the bonding structure is subjected to the simple tensile or 

shear load. 
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iii) Improved test methods are therefore needed to avoid the stress singularity 

and to obtain reasonable results of bi-material interface bonding strength. 

To adequately characterize the bi-material bonding strength for practical 

applications, a biaxial normal-shear interface bonding strength criterion 

(strength envelope) is also needed. 

 
The measurement of the interface bonding strength is crucial for the design and 

applications of structures with two or more materials. With the increasing 

applications of bi-material, a branch of solid mechanics, the mechanics of 

interface has been rapidly developing in the past two decades. It studies 

mechanical behavior, strength, life and optimal design of material interfaces. 

Theoretical and experimental characterization/evaluation of bonding strength of 

interface is the most important topic for the mechanics of interface. 

 

1.5 OBJECTIVES 

 

The overall objective of this research is to develop a new test method for 

the determination of biaxial bonding strength of bi-material interfaces based on, 

theoretical solutions for the new designed interface geometry, and applications of 

the new knowledge to the design and manufacture of stronger bi-material 

interfaces. The main objectives of the proposed research are: 

 

i) Development of a new test method to characterize the interface bonding 

strength of bi-materials more accurately and realistically. 
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ii) Development of analytical models for the elastic/elastic, 

elastic/viscoelastic and viscoelastic/viscoelastic bi-material interfaces, 

obtaining solutions for the critical bonding angle, which delineates the 

finite and singular stress fields. 

iii) Determination of the biaxial shear-normal bonding strength of bi-material 

interface according to the proposed method. 

iv) Application of the new test method and theories to optimize the design of 

bi-material interfaces, such as in the area of dental restorations.  
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CHAPTER 2 

NEW METHOD TO DETERMINE BONDING STRENGTH OF 

BI-MATERIAL INTERFACE 

 

 

An innovative method to determine the bonding strength of bi-material 

interface is developed and presented in this Chapter. The developed method 

includes a new design of the specimen with special interface geometry to 

eliminate the stress singularity, test methodology and an iterative calculation 

technique integrated with FEM analysis to determine the interface biaxial normal-

shear bonding strength envelope.    

 

2.1      DESIGN OF THE SPECIMEN  

 

A cylindrical specimen of two bulk materials with a spherical interface as 

shown in Figure 2.1 is developed to measure the interface bonding strength 

between the two materials. In this design, the soft material is at the convex side of 

the interface, while the hard material is at the concave side of the interface. The 

bonding angle, θ0, is defined as the angle between the tangent of the spherical 

interface at the free edge to the generator of the cylindrical surface as shown in 

Figure 2.1. 
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For a given pair of materials, there exists a critical value of the bonding 

angle, θc, which delineates the singular and non-singular stress field near the free 

edge of the interface. When c 0 , the stress singularity at the free edge can be 

avoided and a finite stress field along the spherical bi-material interface can be 

obtained. The stress distribution along the interface would not be uniform; 

however, it can be accurately determined by either the analytical or numerical 

analysis methods.  

 

It should be noticed that the critical bonding angle, θc, is dependent on the 

mechanical properties of the two materials. The critical bonding angle, θc, is 

essentially an upper bound of the bonding angle 0  to avoid the stress singularity. 

Actual selection of the specimen geometry, i.e. the 0 can be accommodate 

according to the test equipment and specimen fabrication requirements as soon as 

the condition c 0 is satisfied. 

 

 Finite element stress analysis has been performed on the specimen 

geometry with an extreme case of material combination by assuming a rigid hard 

material bonded with a soft material (in the FEM analysis assuming the hard 

material stiffness several order larger than that of the soft material). It is found 

that the critical bonding angle is 45° for this combination of materials. Thus, this 

design of geometry of  450 can be universally applied to any combination of 

two elastic materials.          
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excessive stresses exist near the free edge of the interface and these stress values 

increase without convergent limits with the increase of mesh density, this 

indicates that the stress singularity occurs at the free edge of the interface for that 

bonding angle. However, if finite values of the interface stresses are exhibited and 

the stress convergence is confirmed by the increase of FEM mesh density, this 

indicates a non-singular stress case. Another fact should be mentioned that there 

is no interface stress singularity for the application of pure torsional load on the 

new designed specimen.  

To accurately determine the range of bonding angles with or without the 

stress singularity, the use of an analytical solution could be convenient. The stress 

field near the free edge of an interface can be deduced into the following 

asymptotic form (Qian and Akisanya, 1999).  

 

),,,(1  
ijij fHr     (i, j =1, 2)                                (2.2) 

In the above expression, ,r  are the polar coordinate, H is the generalized stress 

intensity factor,  ,  are the Dundurs’ (1969) parameters which depend on the 

combinations of elastic constants of the two materials, 
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where,  12 


m

j
m

E


 , mmk 43 , μ is the shear modulus, E is the elastic 

modulus, ν is the Poisson’s ratio and subscript m is the material index . The   is 

eigenvalue obtained from the solution of analytical model. 
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From Equation (2.2) it is clear that the order of the stress singularity at the 

edge of the bonded joint is  λ-1. If 10   , the stress component goes to infinite 

when 0r , i.e. there exists the stress singularity. Any angle less than the critical 

bonding angle will lead λ > 1, thereby eliminates the stress singularity. It can be 

verified that,  for the lap joint as specified in ASTM D3165 ( 2007) and ASTM 

D3528 (2008) and the butt joint specimen as described in ASTM D897 (2008) 

and ASTM D2095 (2008), the stress singularities always exist at the free edge of 

the interfaces, i.e. 01 .  

 

Our interest is now on the other phase of the stress field solution:  for

1 , the stress singularity will be eliminated. If the specimen geometry is 

designed as the present method to avoid the stress singularity under the global 

tensile or torsional or combined loadings, a finite interface stress field could be 

accurately obtained for each global loading case. Although the interface stress 

field is generally not uniform and the normal and shear interface stress 

components can co-exist, the interface failure (debonding) will be physically 

initiated at a certain point of the interface with a certain limit stress state. Such 

limit of stress states represents the bonding strength of the interface. For general 

combined interface normal and shear stress states, such limit of stress states can 

be mathematically formulated as a certain interface bonding strength criterion. 

Note that, the interface bonding strength criterion is physically an inherent 

mechanical property of each particular bi-material interface. The procedure for 

obtaining the bonding strength criterion (envelope) through an appropriate 
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experimental procedure with the specially designed specimen geometry (as 

described earlier) will be described in the following sections. 

     

 

2.2 TEST PROCEDURE  

 

Test procedures to determine the biaxial normal-shear bonding strength 

criterion (envelope) for a bi-material interface can be summarized as: 

 

a) For a given bi-material combination the critical bonding angle for the 

designed specimen geometry, Fig. 2.1 can be determined through 

analytical stress analysis method (asymptotic stress analysis near the free 

edge of the interface, for details, see later chapters). The critical bonding 

angle result can be further verified by the FEM numerical analysis. 

The appropriate geometry of the specimen, more specifically, the bonding 

angle, c 0  thus can be determined. 

 

b) Tests on the designed specimens with pure torsional, pure normal and 

different ratios of the combined normal and torsional loadings are 

performed. For each test case, the maximum failure load is recorded.  
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c) FEM analysis for each test loading case is carried out and the interface 

normal and shear stress distributions for the maximum failure load 

obtained through experiments are determined. 

It should be pointed out that the FEM analysis may not be limited to an 

elastic analysis only. Depending on the types of the bi-material and the 

maximum strength range of the bi-material interface, more accurate 

nonlinear analyses, such as elastoplastic or viscoelastic analyses may be 

necessary. There is no principal difficulty to perform the nonlinear FEM 

analysis as long as the material properties can be accurately calibrated.  

 

 

d) The biaxial normal-shear interface bonding strength criterion (envelope) is 

determined by an iterative calculation method and will be described in the 

following section. 

 

 
 

2.3 ITERATION CALCULATION METHOD TO DETERMINE THE 

INTERFACE STRENGTH ENVELOPE 

   

It is noted that the interface normal and shear stress distributions are not 

uniform along the interface even though there is no stress singularity. For the pure 

torsional loading case, there is no normal interface stress component; therefore, 

the maximum interface shear stress, denoting as s , can be taken as the shear 
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strength of the bi-material interface. For the pure global normal loading and other 

combined normal-shear loading cases, both the normal and shear interface stress 

components exist. Therefore, a biaxial bonding strength criterion (envelope) is 

required to define the interface bonding strength. The criterion can be expressed 

as, 

  Cf n ),(                                                                   (2.4) 

where n  and   are the interface normal and shear stress components, 

respectively, and C is a constant. The function f and the constant C can be 

determined through the following iteration procedure:    

 

(i)  The effective stress is taken as the first trial criterion, i.e.  

         snnf  33),( 22)1(                                                 (2.5)                      

The constant sC 3 is obtained by applying the pure torsional loading case in 

which 0n . 

 

From the interface normal and shear stress curves, the location of the maximum 

value of 22 3 n  along the interface is identified and the corresponding pair 

of normal and shear stress values which contributes for the effective stress is 

recorded for each test case. These pairs of stresses are denoted as )1(
, ],[ jjn  , j = 

1, …, N, with N being the number of tests. Note that except the point ],0[ s  

obtained from the pure shear test, other N-1 points generally would not be on the 

curve expressed by Eq. (2.5). 
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(ii)  The second trial criterion is obtained by the best fitting of the above data 

points, )1(
, ],[ jjn  ,

 
j = 1, …, N, and denoted as  

        )2()2( ),( Cf n                                                                 (2.6) 

  

From the interface normal and shear stress curves, the location of the maximum 

value of ),()2(  nf  along the interface are found and the corresponding pair of 

normal and shear stress values are recorded for each test case. These pairs of 

stresses are denoted as )2(
, ],[ jjn  , j = 1, …, N, with N being the number of tests. 

 

(iii) The third trial criterion are obtained )3()3( ),( Cf n  by the best fitting of 

the above data points, )2(],[ jj  , j = 1, …, N. 

 

(iv) The steps (ii) and (iii) are repeated until converged results are obtained.  

 

 

The present developed method will be illustrated in details through the application 

examples in Chapters 4, 5 and 6 for the elastic/elastic, elastic/viscoelastic and 

viscoelastic/viscoelastic bonded joints respectively. 
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CHAPTER 3 

MATERIAL CHARACTERIZATION AND TEST SET UP 
 

 

The current Ph.D. research project involves a considerable amount of 

experimental work. Tensile tests are conducted to determine materials’ elastic 

properties. To determine the viscoelastic properties, relaxation tests are carried 

out on the viscoelastic materials. Finally, tensile, torsional and combined tension-

torsional loading tests are carried out to determine the interface bonding strength 

envelope. This chapter discusses about the experimental facilities and set up 

preparation for conducting the above experiments. The results for characterizing 

basic elastic or viscoelastic properties of three tested materials: aluminum, epoxy 

and polyvinylchloride (PVC) are presented in this chapter. 

 

3.1      EXPERIMENTAL SET UP 

 

3.1.1  Tensile and Viscoelastic Testing System 
 

The 810 Material Testing System (MTS Systems Corporation, USA) is 

used for the tensile and relaxation tests. The system is shown in Figure 3.1. This 

system has the testing capabilities for low or high force, static or dynamic testing 

of materials ranging from plastics, composites to metals and alloys. By selecting 

from a variety of force capacities, servo valve flow ratings, pump capacities, 
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634.11/31 Axial Extensometer, which is good for both the tensile and 

fatigue testing of materials, are used to record the axial displacement of the gauge 

length of specimen. This extensometer provides the superior performance in 

linearity, repeatability, hysteresis, low activation force, and ease of use. MTS’ 

cross-flexure system ensures that the strain gages are always subjected to true 

center point bending, and stable clamping force. Zero set pin or zero stop provides 

a quick, accurate setup that is repeatable. For displacement in transverse direction 

another diametrical extensometer is used. Both the extensometers can acquire data 

with very high precision and accuracy. 

 
 

3.1.2 Mold Design 
 
 

A new mold shown in Figure 3.3 is designed and manufactured to make 

the interface testing specimen. The proposed specimen is cylindrical shape with 

spherical interface as described in Chapter 2. The mold has two sections with 

different diameters. The lower portion is for the hard material part of the 

specimen whereas the upper portion is for the soft material. The diameter of the 

mold for the hard material is chosen as equal to the specimen diameter. In order to 

ensure a perfect bonding between these two materials, the soft material is allowed 

to flow over the hard material by 4mm. That’s why the diameter of the mold for 

the soft material is also maintained 4 mm larger than that for the hard material. 

Later the extra portion of the soft material on the specimen is removed by 

machining before conducting the interface bonding strength test. 

 



__
 

 

C

F

 
 

in

co

b

__________
 Chapter 3: M

igure 3.3: M
 

 

 

3.1.3 

The m

nterface stre

ombined loa

e found in E

___________
Material Char

Mold for mak

Multi Axi

multi axial te

ength tests. 

ads (torsion 

Ellyin and W

__________
racterization 

king interface

ial Testing M

esting machin

It has the 

and tension)

Wolodko (199

___________

 

and Test Se

 

 

 

e testing spe

Machine 

ne shown in

capability 

). Details of

97) and Xu (2

__________
et Up

ecimen 

n Figure 3.4 i

to apply t

f the multi-a

2006). 

___________

is used to co

ensile, torsi

axial test ma

________ 
54 

 

onduct the 

ional and 

achine can 



__
 

 

C

F
 

 

 

 

pr

gr

24

__________
 Chapter 3: M

 

 

 

igure 3.4: M

3.1.4 

The o

resent specim

rip design. T

4 hours at ro

___________
Material Char

Multi axial te

Grip Desi

original grips

men. A new

The 3MTM Sc

oom tempera

__________
racterization 

sting machin

ign 

s of the mult

w gripping sy

cotch-WeldT

ature, is used

___________

 

and Test Se

ne 

ti axial testin

ystem is thu

TM Epoxy Ad

d to glue the

__________
et Up

ng machine 

us designed. 

dhesive DP4

e specimen to

___________

are too heav

Figure 3.5 s

460, which i

o the flange 

________ 
55 

 

vy for the 

shows the 

s cured in 

grip. The 



__
 

 

C

tw

sp

 

 

 

F
 

in

le

gr

 

 

 

__________
 Chapter 3: M

wo flanges a

pecimen and

igure 3.5: G

 

 

The le

n designing t

ength ‘l’ can

rips and the 

___________
Material Char

are bolted to 

d flanges’ ce

Grip to hold th

ength of the 

the grip syst

n be calculate

specimen is

__________
racterization 

the machine

nter holes. 

he interface 

adhesive ar

tem. For fixe

ed to ensure 

 much great

___________

 

and Test Se

e and then th

testing spec

rea is one of

ed dimension

that the stre

er than the s

__________
et Up

he adhesive 

cimen in mul

f the key fac

ns ‘D’ and ‘

ength of the 

strength of th

___________

is applied to

lti-axial mac

ctors to be c

‘d’ in Figure

adhesion be

he interface. 

________ 
56 

o both the 

 

chine 

onsidered 

e 3.6, glue 

etween the 



__
 

 

C

F
 

 

F

M

st

T

M

S

O

 

st

st

__________
 Chapter 3: M

igure 3.6: G

or torsional 

M ult
glue

ult
grip 

trength. 

The torque at

16intM
ult
bondult 



o the condit

uult
grip MM in

Or,  
2

ult
glu

Epoxy

trength is h

trength in bo

___________
Material Char

Grip dimensio

load, the ma

d
dl u

g22
.  

t the interfac

6

3Dd  

ion to be sat

ult
nt  

16
int2 D

ld
ult

ue




y is used as 

higher than t

oth sides, the

__________
racterization 

on to calcula

aximum torq

ldult
glue

2  , w

ce  

tisfied is, 

6

3D
 

the soft ma

that of the 

e above cond

___________

 

and Test Se

ate glue leng

que the grip c

here ult
glue

aterial in thi

epoxy mate

dition becom

__________
et Up

gth 

can transfer 

is the glue

is research. 

erial. Consid

mes 

___________

is 

e’s maximu

The adhesiv

dering epox

________ 
57 

 

um shear 

ve’s shear 

xy’s shear 



__________________________________________________________________ 
 

 
 

 58 Chapter 3: Material Characterization and Test Set Up

2

3

8d

D
l   

 

By conducting a similar analysis for tensile loading, the condition becomes 

 

d

D
l

8.2

2

  

 

So, the glue length should be 

)
8.2

,
8

max(
2

2

3

d

D

d

D
l   

Considering d = 20.5 mm and D = 20 mm, the glue length is obtained as mml 7  

Considering the factor of safety the glue length is designed as 30 mm. 

 

 The grip design described above is excellent for maintaining perfect 

alignment of the specimen in the testing machine. However, the main 

disadvantage of the grip is the amount of time required for conducting the test, as 

the adhesive/glue takes 24 hours to be completely cured. To overcome this 

limitation a modified grip ER 32 system shown in Figure 3.7 is designed. The 

base of the grip is a large plate with 6 bolt holes, which is used to mount the grip 

securely to the test machine. The back of the plate has a 0.08 inch flat circular 

indentation concentric with the base plate. The extended cylindrical portion of the 

base plate is for an ER 32 collet. The internal wall of the collet mount is tapered at 

8° to facilitate collet closure. Furthermore, the outer surface of the collet mount is 
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3.2      MATERIAL TESTING 

 

3.2.1      Materials Selection 
 

Three different materials are used in this research. These materials are 

selected based on their applicability, availability, machinability and low cost. The 

selected materials are aluminum, epoxy and polyvinylchloride (PVC). Aluminum 

and epoxy are used for the determination of the interface bonding strength 

between two elastic materials. Epoxy is a viscoelastic polymer and its properties 

are time and loading-rate dependent. It is assumed that the properties of a 

viscoelastic material obtained with a very fast loading rate can be considered as 

the elastic properties of the material. To find the effect of material’s 

viscoelasticity on the interface bonding strength, the same materials combination 

(Aluminum/Epoxy) is used to determine the interface bonding strength between 

elastic and viscoelastic materials. For the viscoelastic/viscoelastic interface, PVC 

and epoxy are used as the hard and soft materials. Short descriptions on the 

selected materials are given below. 

 

Aluminum 

Aluminum is frequently observed in many engineering applications. They 

are used in transportation, automobiles, airplanes, household objects, including a 

varied assortment of utensils etc. They are commercially available in different 

sizes and shapes. The advantages of aluminum are light weight, corrosion 
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resistant, good machinability, ductility, and good electrical and thermal 

conductivity.  

 

Epoxy 

Among the various types of polymers, the use of epoxy is extensive. 

Epoxy is a thermosetting copolymer; generally formed from two different 

chemicals: resin and hardener. Epoxies have excellent adhesion, chemical and 

heat resistance, good mechanical and electrical insulating properties. Another 

advantage of the epoxy material is that the properties of epoxy can be modified. 

The applications of epoxy-based materials include 

coatings, adhesives and composite materials. Epoxy adhesives are used in the 

construction of aircraft, automobiles, bicycles, boats, golf clubs, skis, snowboards 

and the rotor blades of wind turbines etc. 

 

PVC 

The use of PVC (polyvinylchloride) is also very common. PVC is a 

thermoplastic vinyl polymer. The structure of PVC is  (-CH2-CHCl-)n , which is 

similar to the polyethylene, except that, on everyother carbon in the backbone 

chain, one hydrogen atom is replaced by a chlorine atom. PVC is a very popular 

polymer because of its excellent corrosion resistance, weather resistance, low 

moisture absorption, good dimensional strength and low cost as well. It also has a 

high strength-to-weight ratio and good electrical and thermal insulating 

properties. Specific applications of PVC include nuts, filters, signs, tanks, pipes, 
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bolts, valves, bushings, tank, ducts, sprinkler systems, pump parts and fittings, 

etc.  

 
3.2.2  Determination of the Elastic Properties of Materials 

 

All the materials used in this research are considered to be isotropic and 

homogeneous. Thus, in order to characterize the elastic materials, only two 

properties; elastic modulus and Poisson’s ratio are necessary. Elastic modulus is 

the ratio of the stress to the strain up to the proportional limit and elastic Poisson’s 

ratio is defined as the negative ratio of the transverse strain to the axial strain in 

the above limit. These properties are determined by the uni-axial tensile tests with 

very fast loading rate in the MTS testing machine shown in Figure 3.1. 

 

The elastic properties of aluminum are determined according to the ASTM 

B557 (2010) standard method. The cylindrical specimens are prepared from a 

commercial Al6061-T6 aluminum rod by machining on a computer numerical 

controlled (CNC) lathe. Tensile loading is applied on the test specimen and the 

axial and radial displacements are measured by the axial and diametrical 

extensometer as shown in Figure 3.2. The stress-strain and the transverse strain-

axial strain relations of aluminum are shown in Figures 3.8 and 3.9, respectively. 

From the proportional portion of these two curves, the elastic modulus and 

Poisson’s ratio of aluminum are determined as 71 GPa and 0.3 respectively.  
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3.2.3  Determination of the Viscoelastic Properties of Materials 
 

Owing to the wide use of polymeric materials, there is a growing need of 

predicting the mechanical behavior of polymers under general loading conditions 

(Hu et al., 2003). Viscoelasticity has been primarily focused due to the large scale 

development and utilization of polymeric materials. Most of the polymeric 

materials have viscoelastic properties. They possess the capacity of both storing 

and dissipation of mechanical energy. In many applications, polymers are 

reinforced with harder material phases such as fibers, ceramic particles, etc. Thus 

viscoelastic characterization of polymeric materials is extremely important. The 

time and rate dependent material properties of viscoelastic materials are not 

readily available in material data handbooks. It is, therefore, necessary to perform 

one or more of the experimental tests to determine the fundamental properties of 

these materials (Kim et al., 2010). 

To describe the stress and strain states of any linear viscoelastic material, 

four basic material functions—Poisson’s ratio, uniaxial relaxation modulus, shear 

modulus and bulk modulus are necessary. Similar to the case of an isotropic 

elastic material, if only two of the above properties can be determined, the 

remaining two can be calculated. This is referred to as the inter conversion of 

material functions. Hence, two material functions are often enough for the 

complete description of the mechanical behavior of linear viscoelastic materials 

(Tscharnuter et al. 2011).  In theory, the choice of the two material functions is 

arbitrary, but in practice there are limitations that must be considered.  
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Tschoegl et al. (2002) indicated that in order to avoid excessive errors 

caused by specimen-to-specimen or environmental variations, the measurement of 

a pair of viscoelastic material functions must be performed simultaneously on the 

same specimen. The simultaneous measurement of two material functions is 

possible in a confined compression setup (Qvale and Ravi-Chandar, 2004; 

Jerabek et al., 2010a) or a uniaxial relaxation test when the axial and lateral 

strains are measured (Jerabek et al., 2010b). The former yields the bulk and the 

shear relaxation moduli, whereas, the latter provides the uniaxial relaxation 

modulus and Poisson’s ratio. Tscharnuter et al. (2011) further suggest that the 

uniaxial stress relaxation test is a standard method to characterize the viscoelastic 

materials over the elaborate confined compression test. During the relaxation test, 

axial and hoop strains can be determined directly using two strain gauges along 

with the axial stress. In that case, the viscoelastic relaxation modulus and 

Poisson’s ratio can be determined easily and simultaneously.  

 

3.2.3.1  Linear viscoelastic stress-strain relation 

 

According to the theory of liner viscoelasticity (Christensen, 1982), the 

time dependent stress, σ(t) of any viscoelastic material can be expressed as, 
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


  
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)(
)(2

)(
)()(                     (3.1) 

where, 
)(21

)()(2
)(

t

tt
t







  ; )(t  and )(t  are the viscoelastic shear modulus and 

Poisson’s ratio respectively.  
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For simple uniaxial extension, the above equation can be deduced to  





  



t

dttt  )()()(
2

)(  

or,      )(*)()( tGtt                           (3.2) 

 

The time dependent stress, σ(t) of a viscoelastic material subjected to the 

unit step constant strain, ε0 can be expressed as 

0)()(   tGt              (3.3)         

where, G(t) is the relaxation modulus, which is also a function of the loading 

time. 

The time-dependent Poisson’s ratio, ν(t) of a linearly isotropic viscoelastic 

material can be defined as the time-dependent ratio of the  transverse/lateral 

strain, ε2 (t), to the axial step constant strain ε0  (Tschoegl  et al. 2002). 

0

2 )(
)(





t

t         (3.4) 

From Equation (3.4) it is quite clear that the viscoelastic Poisson’s ratio 

should be determined by a uniaxial relaxation test in which the strain in the axial 

direction is maintained as constant.  

 
3.2.3.2  Experimental Procedures 

 
For the relaxation test of epoxy 4% axial strain is attained within a very 

short time and then the strain is held for about one and half hour. During this 

period, time, load, axial strain and transverse strain are recorded in every second. 

From the measured data, the relaxation modulus and viscoelastic Poisson’s ratio 
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CHAPTER 4 

ELASTIC/ELASTIC BI-MATERIAL INTERFACE 

 

 

This chapter discusses about the determination of the interface bonding 

strength of an elastic/elastic bonded joint by the developed method. Aluminum 

and epoxy are chosen for the interface constituent materials. Both materials are 

assumed to be elastic and isotropic. 

 

4.1  SPECIMEN DESIGN 

A cylindrical specimen of aluminum and epoxy with a spherical interface 

is designed as shown in Figure 2.1 (in Chapter 2). The epoxy (material 2) is at the 

convex side of the interface, while the aluminum (material 1) is at the concave 

side of the interface. The elastic material properties of aluminum and epoxy are 

determined in Chapter 3 and given below in Table 4.1. 

 

Table 4.1: Material properties of aluminum and epoxy 

 
Aluminum Epoxy 

Elastic Modulus 71 GPa 1271 MPa 

Poisson’s Ratio 0.3 0.415 
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Bogy(1971); Akisanya and Fleck (1997) and Lauke et al. (2003)  represented the 

stress and displacement fields for a straight interface edge near the singular point  

as follows; 

),(),,( 1   fHrr               (4.1) 

),(),,(   fHrrU           (4.2) 

where ),( r  are the polar coordinates from the edge point of the interface.  

 

For the curved interface the above representation of the stress and displacement 

fields can still be used. By using Taylor series expansion, the stress functions near 

the edge point can be expressed as, 

........),,()/(
2

1
),,()/(),,(),,( 0

//2
0

/
0   rarrarrr (4.3a) 

......),,()/(
2

1
),,()/(),,(),,( 0

//2
01

/
0   rUarrUarrUrU …(4.3b) 

Perlman and Sih (1967); and Aksentain (1967) have shown that the order 

of the singularity in the vicinity of the curved edge is to be the same as that in the 

two-dimensional plane wedge problem. Later, Ting (1985) repeated the same 

comment while studying the stress distribution at the apex of a two–dimensional 

curved wedge using axi-symmetric analysis. He concluded that the additional 

terms from the curved interface changes the form of the eigen functions only. 

From the above discussion, it is clear that though additional terms are 

present in Equation (4.3a) due to the curved interface, to find the order of the 

stress singularity, consideration of the first term in Equation (4.3a) is quite 

enough. Thus, the problem leads to finding of the dependence of order of the 
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singularity on the edge angle θ0, which is defined as the bonding angle for the 

spherical bi-material interface studied. 

Let consider the z-axis as the axi-symmetric axis, ρ is the radial direction 

and R is the radius of the cylindrical specimen (Fig. 4.1). Using the elasticity 

theory (Timoshenko and Goodier, 1951), the displacement and stress components 

in cylindrical coordinates (ρ, ψ, z) can be represented in terms of two harmonic 

functions 1 (ρ, z) and 2 (ρ, z). At the same time the following compatibility 

equation (Equation 4.4) should be satisfied. 

 

0
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2

2

2

2
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

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







iz



 , where i = 1, 2           (4.4) 

The displacement and stress fields are given by 

)()2/1( 21 


 zU 



                         (4.5a)

221 )1(4)()2/1(  

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 z
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U z                     (4.5b) 
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                     (4.5d) 

])1(2)([ 221 


  






 z
zz                      (4.5e) 

where, μ is the shear modulus and ν is the Poisson’s ratio. 

From Figure 4.1, with the following geometric relations: 

 sinrR   and cosrz   



__________________________________________________________________ 
 

 
 

 82 Chapter 4: Elastic/Elastic Bi-materials Interface

So,   222 zRr    and 
z

R  
tan  

Using the above relations, the differential operators are defined as follows: 
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Substituting these into Equations (4.4 and 4.5) and doing some algebraic 

manipulations, the transformed equations into the (r, θ) coordinate system are 

obtained as, 
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 (4.7e) 

 

Further, with the following expansion 
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Equation (4.6) becomes, 
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Assuming the following asymptotic solutions of the harmonic functions ),(1  r  

and ),(2  r , 
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Substituting Equation (4.9) into Equation (4.8) 
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By equating the co-efficients of 
ir 
and 

ir 1
from both sides of the equation, the 

following two equations can be obtained 
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Solution of Equation (4.10 a) is determined as, 

 )2cos()2sin()( 000 iBiAf iii                   (4.11a) 

 

Using Equation (4.10 a), the solution of Equation (4.10 b) is obtained as 
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Based on Liu et al. (1999), the above two terms are the main dominating 

terms for the stress state to be singular.  
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To identify the materials, a new index ‘m’ is introduced here. 

Let, m = 1 for material 1 

R

B
B

R

B
B

R

A
A

R

A
A

2
,

)1(
,

2
,

)1( 20
212

10
11

20
212

10
11 








 

and m = 2 for material 2 
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Also, RrR /1   and using mmk 43 , Equation (4.7) could be rewritten as  
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Continuity and boundary conditions for the problem are: 

At 0   (continuity condition)  
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At 0  (free surface)  
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Using these expressions along with the boundary conditions to Equation (4.12)-

(4.15), the following system of homogeneous linear equations of the eight 

constants mmmm BABA 2211 ,,, , m = 1, 2 is obtained. 
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The above equations in the matrix form  
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Or, 

    0AC        (4.16) 

where, [C] is the coefficient matrix. 

 

The condition for the existence of the non-trivial solution of Equation (4.16) is, 

0][ CDet        (4.17) 
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For any angle, γ = 90- θ0, where, θ0 is the bonding angle, Equation (4.17) is 

equivalent to  
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(4.18) 

where,  ,  are the Dundurs' (1969) parameters, defined in Chapter 2 as follows 
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Thus, an eigenvalue equation (4.18) for   is obtained. Since the lowest 

order of the stress at the edge of the bonded joint is λ-1, for 1)Re(0   , the stress 

component goes to infinite when 0r , i.e. there exists a stress singularity. For 

any combination of materials the critical bonding angle c  is determined by using 

Equation (4.18) for which the value of λ equals one. Any angle less than the 

critical angle will lead λ > 1, i.e. the stress singularity can be eliminated. Thus the 

condition for the elimination of the stress singularity from the interface corner is, 

θ0 < θc. 

Substituting the properties of materials given in Table 4.1 into Equation (4 

4.18), the real roots of “λ” in the range 10    are determined for different 

bonding angles. The results are tabulated in Table 4.2. 
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Table 4.2: Values of λ in the range 10     for different bonding angles 

Bonding Angle, θ0 λ 

 

90 

 

0.6624 

75 0.7338 

60 0.8604 

55 0.9215 

54 0.9353 

53 0.9496 

52 0.9645 

51 0.9801 

50 0.9964 

49 1.013 

 

 

From the analytical result, it is quite clear that the critical bonding angle 

for the considered aluminum and epoxy interface is in between 49˚ and 50˚. In 

order to eliminate the stress singularity from the interface corner, the bonding 

angle at the interface corner must be less than 49˚. 
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special mold described in Chapter 3 is used to make the interface specimen. The 

multi-axial testing machine is used to conduct the tests. Using the controller of the 

machine, various combinations of normal and shear loads are applied on the 

specimens. With the help of an accurate data acquisition system, the failure loads 

are recorded for each test case. 

 
 
4.4  EXPERIMENTAL RESULTS AND FINITE ELEMENT ANALYSIS 

TO OBTAIN THE STRESS DISTRIBUTION ALONG THE 

INTERFACE 

 

Tensile load, torsional load and various combinations of tensile and 

torsional loads are applied on the specimens by the multi axial testing machine. In 

each case, the maximum failure load is recorded and is given in Table 4.3.  

 

Table 4.3: Maximum failure loads of the aluminum-epoxy specimen 

No Tensile load (N) Torsional Load  (N. m) 

1 0 37.53 
2 264.4 36.96 

3 1691 37.86 

4 2358 37.3 

5 3000 37.29 

6 3250 28.27 

7 3540 33.96 

8 4639 23.71 

9 4702 21.17 

10 5727 0 
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Therefore, the first trial criterion (effective stress) is  

13.3686.20303 222)1(   nf                                        (4.19)                                

Or, it can be written as 

 1)
86.20

()
13.36

( 22 
 n                                                          (4.20) 

 

Figure 4.9(a) shows the effective stress envelope, Equation (4.20), and the stress 

points )1(
, ],[ kkn  , k = 1,….,10 based on the maximum effective stress value 

22 3 n for each test case. 

 

 Next, we try to find best fit curve for the 10 points in Figure 4.9(a). It can 

be seen that a quadratic expression may still be suitable to fit this set of ten points.  

By keeping the value s = 20.86 MPa, the second trial criterion is obtained as 

 

   1)
86.20

()
45.16

( 22 
 n                                                              (4.21) 

 

 Based on the above second trial criterion, a second set of the stress points 

)2(
, ],[ kkn  k = 1,….,10 is obtained based on the maximum values of the left 

side of Equation (4.21) for each test case. Figure 4.9(b) shows the Equation (4.21) 

and corresponding stress point set )2(
, ],[ kkn  k = 1,…., 10. 
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Continue taking the quadratic form and keeping the value of s =20.86 MPa, the 

third trial criterion is obtained as 

 

 1)
86.20

()
76.19

( 22 
 n                                                                      (4.22) 

 

The further iteration produces the same results as the Equation (4.22). 

Therefore, for the tested aluminum/epoxy bi-material interface, Equation (4.22), 

as shown in Figure 4.9(c), represents its normal-shear interface bonding strength 

criterion (envelope) in the range of the first quarter of the normal-shear stress 

plane. 

     

 

4.6  FURTHER OBSERVATION AND REMARKS  

 

It is interesting to compare the current test results with the results obtained 

by using the butt joint specimens recommended by ASTM D897 (2008) and 

ASTM D2095 (2008). The butt joint specimens are made with the same 

dimension as shown in Figure 4.6 except that the interface is flat, or the bonding 

angle is θ0 = 90º. Both the groups of specimens with θ0 = 90º and θ0 = 47º (each 

group of 5 specimens) are tested under the pure tensile loading for a comparison. 

The average maximum failure (debonding) load for the ASTM butt specimens is 

2161N with a data scatter band of 13%, while for the proposed designed 

specimens this value is 5727 N with a scatter band of 12%. It can be seen that the 
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tensile load carrying capacity of the aluminum/epoxy joints with the proposed 

design is improved by 2.65 times over the ASTM butt joint design. The large 

difference in the load carrying capability of the two groups of specimens shows 

the great potential in the optimal design of bi-material interface for the advanced 

materials and structures. 

 

For the ASTM butt joint specimen, the tensile interface bonding strength 

is directly calculated by dividing the failure load by the bonding area and is 

obtained as 6.88 MPa in this case. This value is obviously much lower than the 

actual tensile strength of the interface since the stress singularity exists at the free 

edge, which initiates the failure at a lower applied tensile load. 

 

On the other hand, the tensile strength of 19.76 MPa obtained from the 

current test method is a more reliable data than that obtained by using ASTM 

methods. Although both normal and shear stress components exist at the interface, 

the distributions of the normal and shear stresses from the FEM analysis and the 

obtained strength envelope, Figure 4.9(c) and Equation (4.22), indicate that the 

failure should start near the central area of the interface where the normal stress is 

dominated (σn = 21.07MPa, τ = 0.36MPa ). Figure 4.10 shows the failed specimen 

under pure tensile load in the current test. 

 

It can be seen that the interface debonding indeed started near the central 

area of the interface, not from the edge of the interface as in the case of the ASTM 
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CHAPTER 5 

ELASTIC/VISCOELASTIC BI-MATERIAL INTERFACE 

 

Due to the increasing utilization of polymeric materials in automobile, 

aerospace, oil and gas, and marine industries, viscoelastic properties of these 

polymeric materials have received much attention. This chapter presents the 

determination of bi-material interface bonding strength envelope of an 

elastic/viscoelastic bonded joint. As an example, the interface between aluminum 

and epoxy is considered. Aluminum is considered as an elastic isotropic material, 

whereas epoxy is as a linear viscoelastic material. This chapter is organized as in 

the following orders:  at first, shot discussions about the viscoelasticity are 

presented. Next, literatures related to the elastic/viscoelastic bonded joint are 

reviewed, three different cases of material modeling are discussed, the analytical 

solution for the elastic/viscoelastic bonded joint to find the stress singularity and 

critical bonding angle are presented, and finally, the interface bonding strength of 

an aluminum (elastic)/epoxy (viscoelastic) are determined.    

 

5.1  VISCOELASTICITY 

 

Most of the polymeric materials exhibit mechanical response 

characteristics which are outside the scope of elasticity and viscosity; thus a more 

general theory is needed. The theory of elasticity deals with the materials which 
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have a capacity to store mechanical energy with no dissipation and a newtonian 

viscous fluid in a non-hydrostatic stress state implies a capacity for dissipating the 

energy, but none for storing it (Christensen, 1982). The fundamental difference 

between the polymers and other materials is that the mechanical properties of 

polymers vary with time. 

Under the application of a suddenly applied loading state and held 

constant after that, an elastic material responds instantly with a state of 

deformation which remains constant. A Newtonian viscous fluid responds to a 

suddenly applied state of uniform shear stress by a steady flow process. There are 

some materials, which possess the capacity to both store and dissipate mechanical 

energy. For these materials some of the work done to deform them, can be 

recovered. A suddenly applied and maintained state of uniform stress on these 

materials induces an instantaneous deformation followed by a flow process which 

may or may not be limited in magnitude as the time grows. This behavior cannot 

be clearly described by either the elasticity or viscosity theory but combines 

feature of each. Thus, viscoelasticity is the study of materials whose mechanical 

properties have the characteristics of both elastic and viscous materials. All 

polymers (fluid or solid) have time or temperature domains in which they are 

viscoelastic (Brinson and Brinson, 2008). 

Some other theories of mechanical behavior of materials also have a 

memory of deformation but they have some fundamental differences with the 

viscoelasticity. For example, the incremental theory of plasticity has memory 

effect (final state of deformation depends not only the final state of stress, but also 
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upon the path in stress space traversed to reached this final state). However, the 

plasticity theory is independent of time scale involved in loading and unloading, 

whereas, the viscoelastic theory has a specific time or rate dependences 

(Christensen, 1982). 

  

5.2  BACKGROUND STUDY 

 

In many applications, polymers are reinforced with harder material phases 

such as fibers, ceramic particles, etc. The interface strength between the polymer 

and reinforcing agent is therefore critical to the overall performance of these 

polymeric composite materials. Publications related to analytical solutions for the 

elastic/viscoelastic bi-material interfaces are relatively limited. Since the stress, 

strains and displacements of viscoelastic polymers are all time-dependent, the 

stress analysis of the viscoelastic materials is thus more difficult (Nagaraja and 

Alwar, 1980). The integral transform technique or the so-called correspondence 

principal has been commonly used for the viscoelastic analyses: a viscoelastic 

problem is first converted to an equivalent elastic one by using the Laplace 

transformation, after solving the equivalent elastic problem, the viscoelastic 

solution is then obtained through an inverse Laplace transformation of the elastic 

solution (Lee, 1954, 1955; Schapery, 1962).  

Delale and Erdogan (1981) performed the viscoelastic analyses of an 

adhesively bonded lap joint using the Laplace transform technique, assuming that 

the adherends are elastic and the adhesive is linearly viscoelastic. Because of the 

complexity of the problem, the inverse transform can only be obtained 
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numerically. They reported that at the edge of the interface, the stresses are much 

higher than the stresses further away from the interface corner. Due to their use of 

plate theory, the stress singularity cannot be identified. Nagaraja and Alwar 

(1980) conducted a similar analysis of an adhesive-bonded lap joint using finite 

element methods. Yadagiri et al. (1987) also used the finite element method to 

perform the viscoelastic analyses of bonded joints. Lee (1997) presented a 

solution that was used to find the order of the stress singularity and the free edge 

stress intensity factor for a two-dimensional, elastic-viscoelastic bonded joint. He 

used the standard Laplace transform together with the boundary element method. 

However, the problem was simplified by assuming a time-independent Poisson’s 

ratio for the viscoelastic material. Understanding the importance of the time-

dependent viscoelastic properties of the material in stress singularity analysis for 

bi-material interfaces, Qian et al. (2000) presented the stress and displacement 

solutions for an elastic-viscoelastic joint whilst considering the time-dependent 

Poisson’s ratio for the viscoelastic material. However, his time-dependent 

Poisson’s ratio was derived from an assumption of a time-independent bulk 

modulus. Tscharnuter et al. (2011) reported that the time-dependent Poisson’s 

ratio is essential for the accurate simulation results, and cannot be achieved 

accurately by assuming a constant bulk modulus. In addition, the determination of 

the time-dependent Poisson’s ratio from a constant bulk modulus involves some 

unnecessary complexity in the analysis of the stress singularity (Qian et al., 2000). 

It is also difficult to directly determine the bulk modulus from experimentation 

(Deng and Knauss, 1997). There are only two independent time-dependent 
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material functions for a standard linear viscoelastic solid. The simultaneous 

measurements of these two materials are explained clearly in Chapter 3. 

Moreover, Qian et. al (2000) used the solutions for the elastic/elastic 

bonded joints (Eq (3) in Qian et. al 2000) from their previously published paper 

(Qian and Akisanya, 1999) to obtain the solutions for elastic/viscoelastic joints, 

but the definition of Dundurs’ (1969) parameter, β is not the same in these two 

papers. The Dundurs’ parameter, β in the viscoelastic analysis (Qian et. al 2000) 

is twice than the Dundurs’ parameter, β, they used to obtain the elastic solution 

(Qian and Akisanya 1999). The material parameter β has a significant effect on 

the stress singularity. 

From the above review it is clear that an accurate and realistic method for 

determining the order of the stress singularity and thus the interface bonding 

strength for an elastic/viscoelastic bonded joint needs to be further explored. 

 

5.3  MATERIAL MODELING 

 

In order to determine the stress singularity at the interface corner of a 

bonded joint with viscoelastic materials, the material properties need to be 

modeled accurately. However, from the discussions in the earlier section it is 

easily understandable that the analysis of viscoelastic materials is more difficult 

than the analysis of elastic materials. There always exists a critical relation 

between the accuracy and level of difficulty in the analysis. If the materials are 

tried to model more accurately, the analysis will also become more challenging. 

That’s why, three different cases of material modeling are considered in this study 
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based on their level of difficulty and accuracy in the analysis to ensure that the 

desired accuracy level in the stress singularity analysis is attained.  

It is mentioned here again that only two properties; shear modulus and 

Poisson’s ratio are needed to determine the stress singularity at the interface 

corner. In chapter 3, the viscoelastic relaxation modulus and Poisson’s ratio are 

obtained simultaneously and directly from the relaxation tests of viscoelastic 

materials. The time dependent shear modulus can be obtained from the relaxation 

modulus and Poisson’s ratio using Equation (5.1). 

 

)](1[2

)(
)(

t

tG
t





        (5.1) 

 

where, G(t) is the viscoelastic relaxation modulus, and ν(t) is the viscoelastic 

Poisson’s ratio. 

 

The three different cases of material modeling are briefly explained in the 

following sections. 

 

5.3.1  Case -1: The viscoelastic shear modulus is modeled as the 

standard linear solid model and Poisson’s ratio is considered as 

constant 

 

This model is the simplest among the three models used in this study for 

the analysis of the stress singularity at the viscoelastic material bonded joints. Lee 

(1997) assumed the constant Poisson’s ratio in his analysis to determine the stress 
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Based on the above model, the shear modulus of the viscoelastic material 

can be expressed as Equation (5.2)  

t
eAAt

  21)(                          (5.2) 

 where, 0/1 t  and t0 is the viscoelastic relaxation time. 

The coefficient A1 and A2 can be determined easily as follows 

at t = 0,   21)0( AA   

at t = ∞,    1)( A  

Solving,  )()0(2  A  

 

Thus from equation (5.2),  

)1()()0()(
tt eet

        (5.3) 

 

 As described earlier that for case-1, the viscoelastic Poisson’s ratio is considered 

as constant. So, 

0)(  t       (5.4)      

 

5.3.2  Case -2: Both the viscoelastic shear modulus and Poisson’s 

ratio are modeled as the standard linear solid model  

 

It is clear that the difference between case-1 and case-2 lies in the 

modeling of Poisson’s ratio. Case-1 considers the time independent Poisson’s 

ratio, whereas, Case-2 considers the time dependent Poisson’s ratio. The 
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importance of considering the time dependent Poisson’s ratio in the singularity 

analysis is described briefly in section 5.2.  

 

Since in both cases (case-1 and case-2), the shear moduli are modeled as 

the standard linear solid model, the shear modulus for case-2 is also represented 

by Equation (5.3). The Poisson’s ratio of the viscoelastic material can be 

determined in the similar way as the procedure followed for the shear modulus 

determination in case-1.  

The time-dependent Poisson’s ratio is expressed by Equation (5.5) 

according to the standard linear solid model 

teBBt   21)(                                                     (5.5) 

  where, 0/1 t  and t0 is the viscoelastic relaxation time 

The coefficient B1 and B2 are determined as follows 

at t = 0,     21)0( BB   

at t = ∞,     1)( B  

Solving,   )0()(2  B  

 

Thus, from Equation (5.5), the time-dependent Poisson’s ratio is expressed as 

follows: 

 

  )1()()0()( tt eet         (5.6) 
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The coefficient A2, and A3 cannot be obtained directly as the previous two 

cases. However, at t = ∞,    1)( A  

 

The other two coefficients are obtained by best fitting the measured data from the 

relaxation test. Same procedure is followed for the Poisson’s ratio. 

 

Let the Poisson’s ratio be expressed by Equation (5.8) 

 

  tt eBeBBt 43
321)(                              (5.8) 

 Where, 303 /1 t  and 404 /1 t  depends on the spring and damping constant of 

the Wiechert model. 

 

 

 

5.4  VISCOELASTIC PROPERTIES OF EPOXY 

 

For the cases 1 and 2, the viscoelastic properties of material depend on its 

value at time, t = 0 and t = ∞. The variation of the properties depends on the 

relaxation time. Using the measured data from the relaxation tests described in 

section 3.2.3 in Chapter 3, the required properties of epoxy to express as 

Equations (5.3), (5.4) and (5.6) are given in Table 5.1 
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Table 5.1: Experimental viscoelastic properties of epoxy 
 

 

 
Thus the viscoelastic properties of epoxy are as follows: 
 
 
Case-1:  
 
The viscoelastic shear modulus,    μ(t) = 135+314 e-t/90            (5.8) 

  
and Poisson’s ratio,    ν(t) = 0.415 
 
 
Case-2:  
 
The viscoelastic shear modulus, μ(t) = 135+314 e-t/90           (5.9) 

  
and  Poisson’s ratio,                   ν(t) = 0.443- 0.028 e-t/90 
 
 
 
 
Case-3:  

As mentioned earlier that the viscoelastic properties for case-3 are 

determined using the best fit curve technique. Figure 5.3 shows the experimental 

curve of the viscoelastic shear modulus of epoxy and the fitting curve according 

to the model described in Case-3. The equation of the best fitting curve is given 

below (Equation 5.10) 

 
μ(t) = 135+237 e-t/21.25+77 e-t/650                                                   (5.10) 

 
 

Property        At t = 0 At t = ∞ Relaxation time 

Shear Modulus, μ 
(MPa)      449)0(   135)(   

 
  t0= 90 sec 
 

Poisson’s ratio, ν 415.0)0(0   
 

443.0)(   
 

 
  t0= 90 sec 
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Conducting Laplace transformation of Equations (5.2 and 5.4)  







s

A

s

A
s 21*

2 )(
     

     and       ss /)( 20
*
2         

Where, ‘s’ is the Laplace transform parameter and  the superscript “*” of any 

variable indicates that the parameter is in the transformed domain.  

 

The elastic-viscoelastic analogy (Fung, 1965; Christensen, 1982 ) states 

that elastic solutions can be converted to Laplace transformed viscoelastic 

solutions through the replacement of elastic moduli and elastic Poisson’s ratio by 

the transformed viscoelastic moduli and Poisson’s ratio multiplied by the Laplace 

transform parameter s, respectively. Thus, using the elastic viscoelastic analogy, 

the Dundurs’ Parameters (Equation 2.3) in the transformed domain for an 

elastic/viscoelastic bonded joint are obtained as follows: 
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and,                  
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The inverse Laplace transform of a function F(s) is defined as: 

  




 
i

i

st dsesF
i

sFL
1

1

)(
2

1
)(




  

where γ1 is an arbitrary positive constant lying to the right of all the singularities 

of the function F(s) (Schiff, 1999). 

 

By performing the inverse Laplace transformation on Equation (5.12) the 

Dundurs’ (1969) parameters in time domain are obtained as follows: 
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(5.13 a) 

and,  
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(5.13b) 

where,   t
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Again, following the elastic-viscoelastic analogy and using the Laplace 

transformation and inverse Laplace transformation, the eigenvalue equation 

(Equation 4.18) in the time domain is given as follows by Equation (5.14). 

 

0})2cos(cos)2coscos1cos(cos4.{
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5.5.2  Case-2: Both the shear modulus and Poisson’s ratio are time 

dependent  

 

Using the Laplace transformation, the transformed equations of Equations (5.2 

and 5.5) are given by:  
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where, ‘s’ is the Laplace transform parameter and the superscript “*”indicates 

that the parameter is in the transformed domain.  

 

Thus, using the elastic viscoelastic analogy, the transform Dundurs’ Parameters 

are given by: 
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(5.15b) 

Using the inverse Laplace transformation of Equation (5.15), the Dundurs’ 

parameter in time domain are given by: 
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Similarly, using the same procedure as described in the earlier section, the 

eigenvalue equation (Equation 4.18) in the time domain is given by:  
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5.5.3  Case-3: Both the shear modulus and Poisson’s ratios are time 

dependent and more accurately represent the behavior of the 

material 

 
Using the Laplace transformation, the transform equations of Equations (5.7 and 

5.8) are:  
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where, ‘s’ is the Laplace transform parameter and the superscript “*”indicates 

that the parameter is in the transformed domain.  
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Using the elastic viscoelastic analogy, the transform Dundurs’ Parameter is given 

by 
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(5.18b) 

Using the properties expressed by Equations (5.10 and 5.11) and carrying 

out the Laplace transformation of Equation (5.18), the Dundurs’ parameters in 

time domain are given by 
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Similarly, the eigenvalue equation (Equation 4.18) in the time domain is obtained 

as follows: 
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cases-1&2. However, Figure 5.6 shows that the time dependency of Poisson’s 

ratio has a more significant influence on parameter β. In addition, for the same 

viscoelastic shear modulus the value of β increases with time for a constant 

Poisson’s ratio, whereas it decreases with a time-dependent Poisson’s ratio. For 

case-3, the variation in β with time follows the same trend as that ofcase-2 but at a 

slower rate. After sufficient time, the Dundurs’ parameter β is expected to be the 

same for these two cases (Case-2 and Case-3). Since, for any specific bonding 

angle, the eigenvalue λ or the order of the stress singularity depends on both the 

Dundurs’ parameters (α, β), assuming a constant Poisson’s ratio, the true behavior 

of the stress singularity cannot be predicted accurately.  

 

Next, the eigenvalue λ is determined for different bonding angles from 

Equations (5.14), (5.17) and (5.20) for the three different material models, 

respectively. It is noted that the order of the stress singularity is (λ-1) and the 

condition for the elimination of the stress singularity is λ > 1. Higher values of λ 

(when λ < 1) indicates a lower order of the stress singularity at the interface 

corner. Figure 5.7 shows the variation of λ with time for a 40 degree bonding 

angle.  
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5.7  DETERMINATION OF THE CRITICAL BONDING ANGLE BY 

FINITE ELEMENT ANALYSIS 

 
 

Finite element analysis is carried out by using commercial code ANSYS 

to determine the stress distribution along the interface and to verify the results 

obtained from the analytical model. The axi-symmetric finite element model of 

the suggested specimen is shown in Figure 2.2, where aluminum is considered as 

material-1 and epoxy as the material-2. 8-nodes PLANE 183 element is used as 

the element type for both materials. This element has viscoelasticity and large 

strain capabilities. The mesh sizes close to the interface are made very fine and 

coarse mesh is used for the area away from the interface to reduce the 

computational time. Linear viscoelastic Prony model (consistent with Case-3) is 

used for the modeling of epoxy. 

The radius of the cylindrical specimen, R, is 10 mm and a tensile load is 

applied at the top end while the bottom end is fixed in the longitudinal direction. 

The maximum axial stress of 10 MPa is applied in 30 equal load steps and the 

time at the end of the load step is 15 minutes (900 seconds). After solving the 

nonlinear problem (material nonlinearity), the distribution of stress components 

along the interface are recorded. From the stress components, using stress 

transformation, the normal and shear stress components along the interface are 

determined. An effective interface stress is defined as 22 3  neff (where, 

n and  are the normal and shear interface stress components, respectively) and 

are also calculated. The similar analyses are carried out for specimens with 
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different bonding angles. If the stress at the interface corner increases with the 

refinement of mesh size and doesn’t converge to a finite value, this indicates the 

presence of the stress singularity. For a non-singular stress case the stress at the 

interface corner converges to a finite value. The results obtained from the last step 

of loading are presented here only. 

The distributions of effective interface stress along the interface are shown 

in Figure 5.12 for two different bonding angles of 40º and 60º. It is seen that 

excessive stresses exist near the free edge of the interface for the bonding angle of 

60º. These stress values increase without convergent limits with increasing the 

mesh density, indicating that the stress singularity exists at the free edge. 

However, for the case of the 40º bonding angle, finite values of the interface 

stresses are exhibited and the stress convergence is confirmed by increasing FEM 

mesh density. These results are consistent with those obtained from the analytical 

solution.  
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5.8  DETERMINATION OF THE INTERFACE BONDING STRENGTH 

BETWEEN ELASTIC/VISCOELASTIC MATERIALS 

 

The critical bonding angle θc is determined in the previous section as 

approximately 48º. Therefore, the test specimens are manufactured with a 

bonding angle of 40°, which satisfies the condition of eliminating the stress 

singularity (θ0 < θc). The geometry of the specimen is similar as shown in Figure 

4.6 (Chapter 4). The details about the specimen preparation can be found in 

Section 4.3 of Chapter 4. 

A multi-axial testing machine is used to conduct the tests. This machine 

has the capacity to apply combined loading (torsion and tension). Using the 

controller of the machine, various combinations of normal and shear load are 

applied on the specimens. With the help of an accurate data acquisition system, 

the failure loads and time required to reach the failure loads are recorded for each 

test and are given in Table 5.2. 

 

Table 5.2: Maximum failure loads and time required to reach failure 

No Tensile load (N) Torsional Load  (N. m) Time (sec) 

1 0 43.6 327.03 
2 1646.34 44.1 330.74 

3 3368.84 33.79 287.6 

4 5473.60 21.96 328.04 

5 6441.28 0 580.68 
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For the pure global normal loading and other combined normal-shear 

loading cases, both normal and shear interface stress components exist along the 

interface. Therefore, a normal-shear bonding strength criterion (envelope) is 

required to accurately define the interface bonding strength. The criterion is 

expressed as, 

 Cf n ),(                                                                         (5.21) 

where n  and  are interface normal and shear stress components, respectively, 

and C is a constant. The function f and the constant C can be determined through 

the following iteration procedure:    

 

 (i) For the first trial condition, the effective interface stress criterion is assumed, 

so 

         snnf  33),( 22)1(                                                                                            

The constant sC 3 is obtained by applying the pure torsional loading case in 

which 0n . 

Therefore, the first trial criterion (effective stress) is 

  85.373 22)1(   nf                                                                                          

Or,  it can be written as 

  1)
85.21

()
85.37

( 22 
 n                                                           (5.22) 

Now, from the interface normal and shear stress curves of each loading 

test case, the location of the maximum value of 22 3 n  along the interface is 
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 Continuing the iteration procedure, the fourth criterion is obtained as 

follows (Equation 5.25), 

 

1)
85.21

()
15.21

( 22 
 n                                                               (5.25) 

 

This trial condition (Equation 5.25) produces the same data points )3(
, ],[ kkn  , 

i.e. a converged criterion is obtained. . Therefore, for the tested aluminum/epoxy 

(elastic/viscoelastic) bi-material interface, Equation (5.25), as shown in Figure 

5.21, represents its normal-shear interface bonding strength criterion (envelope) in 

the range of the first quarter of the normal-shear stress plane.  



__________________________________________________________________ 
 

 
 

 151 Chapter 5: Elastic/Viscoelastic Bi-material Interface 
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CHAPTER 6 

VISCOELASTIC/VISCOELASTIC BI-MATERIAL INTERFACE 

 

 

This chapter presents the bi-material interface bonding strength envelope 

determination of a viscoelastic/viscoelastic bonded joint. For this case, interface 

between viscoelastic PVC and epoxy materials are considered. Both PVC and 

epoxy are assumed as linear viscoelastic materials. This chapter is organized as in 

the following order:  scope of the study, material modeling, analytical solution to 

find the stress singularity and critical bonding angle, and determination of the 

bonding strength of a PVC/epoxy bi-material interface.    

 

6.1  SCOPE OF THE STUDY 

 

In chapter 5, analyses of the stress singularity and interface bonding 

strength determination for elastic/viscoelastic bonded joints has been briefly 

explained. To the best of our knowledge, the analytical solution to determine the 

stress singularity at the interface corner of a viscoelastic/viscoelastic bonded joint 

is yet to be further explored. In this study, the analytical solution to determine the 

stress singularity considering the three different cases of material modeling 

described in previous chapter (Chapter 5) are developed. Once the stress 

singularity is eliminated from the interface corner, the interface bonding strength 
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between two viscoelastic materials is determined based on the proposed method 

(details about the method have been given in Chapter 2). 

 

6.2  VISCOELASTIC PROPERTIES OF PVC 

 

The three different material models described in Chapter 5 for the 

elastic/viscoelastic interface, are also considered for the material modeling of 

viscoelastic/viscoelastic interface. It is noted that PVC and epoxy are considered 

as constituent materials for this study of viscoelastic/viscoelastic interface. Since, 

the material modeling for epoxy has already briefly described in Chapter 5, the 

present discussions are kept limited to the material modeling of PVC only.  

 

From the measured data in section 3.2.3 of Chapter 3, the required 

properties of PVC to express as Equations (5.3), (5.4) and (5.6) in Chapter 5 are 

given in Table 6.1. 

 

 

Table 6.1: Experimental viscoelastic properties of PVC 
 

 

 

Property        At t = 0 At t = ∞ Relaxation time 

Shear Modulus, μ 
(MPa)      1242)0(   830)(   

 
  t0= 45 sec 
 

Poisson’s ratio, ν 362.0)0(0   
 

395.0)(   
 

 
  t0= 45 sec 
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Based on the three cases of material models (details in Chapter 5), the viscoelastic 

properties of PVC are expressed as follows: 

 
 
 
 
Case-1:  
 
The viscoelastic shear modulus,    μ(t) = 830+412 e-t/45             (6.1) 
  
and Poisson’s ratio,    ν(t) = 0.362 
 
 
 
 
Case-2:  
 
The viscoelastic shear modulus,   μ(t) = 830+412 e-t/45            (6.2) 

  
and  Poisson’s ratio,                   ν(t) = 0.395- 0.033e-t/45 
 
 
 
Case-3:  

 

Figure 6.1 shows the experimental viscoelastic shear modulus curve for 

PVC and the fitting curve according to the model described in Case-3. Thus, 

Equation (6.3) represents the viscoelastic properties of PVC obtained from fitting 

the experimental curve. 

 
 

μ(t) = 830+305 e-t/12+107 e-t/695                                                   (6.3) 
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 159 Chapter 6: Viscoelastic/Viscoelastic Bi-material Interface 

of analytical solution for a viscoelastic/viscoelastic interface is more tedious than 

that for an elastic/viscoelastic interface. 

 

For case-1, using the elastic viscoelastic analogy the Dundurs’ (1969) 

Parameters in the transformed domain are obtained as follows: 
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                    (6.5b) 

where, the shear modulus of the two linear viscoelastic materials are expressed as 

follows for case-1, 

teCCt 1
211 )(                                                                     (6.6a) 

teDDt 2
212 )(                                                                    (6.6b) 

where, 101 /1 t , 
202 /1 t and t10 and t20 are the viscoelastic relaxation time for 

the PVC and Epoxy, respectively. 
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Using Laplace inverse transformation, the Dundurs’ parameters in time domain 

are given by Equation (6.7) 
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where,  
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The eigenvalue equation (Equation 4.18) to determine λ in time domain is 

obtained as Equation (6.8) 
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Where, 
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6.3.2  Case-2: Both the shear modulus and Poisson’s ratio are time 

dependent  

 

According to the description of material properties in case-2, the shear 

moduli of two materials bonded together along a common interface are expressed 

as follows,  

teCCt 1
211 )(                                                                     (6.9a) 

teDDt 2
212 )(           (6.9b) 

 and 

 teAAt 1
211 )(          (6.10a) 

teBBt 2
212 )(                       (6.10b) 
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Where, 1 , 1 are the shear modulus and Poisson’s ratio of material-1and  2 , 2  

are the shear modulus and Poisson’s ratio of material-2; 101 /1 t , 202 /1 t and 

t10 and t20 are the viscoelastic relaxation time for the two materials respectively. 

 

Applying the elastic viscoelastic analogy, the transform Dundurs’ Parameters for 

case-2 are given by 
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(6.11a) 

And, 
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(6.11b)  

Carrying out the inverse Laplace transformation and using the properties 

mentioned earlier in case-2, the Dundurs’ parameter in time domain are given by: 

  tt eet 4516.0305694.133 1031.4221004.1571072.699)(       (6.12a) 

tt eet 4516.0305694.133 1087.301001.131091.60)(                (6.12b) 
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Similarly as previous, for case-2, the eigenvalue equation (Equation 4.18) 

in time domain is given by  
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(6.13) 

where, 

5.1/75.0/
1 )40.2447.138()85.10284.591(92.295 tt etet    

5.1/75.0/
2 )41.2151.47()20.8429.286(06.207 tt etet    

5.1/75.0/
3 )39.174.2()92.791.288(25.180 tt etet  

 

5.1/75.0/
4 )22.181.1()48.639.8(12.126 tt etet    

5.1/75.0/
5 )79.1827.23()93.6809.72(88.144 tt etet    

5.1/75.0/
6 )08.01.0()61.094.0(10.1 tt etet  

 

 

6.3.3  Case -3: Both the shear modulus and Poisson’s ratios are time 

dependent and more accurately represent the behavior of the 

material 

 

 
For case-3, using the material properties of PVC (Equations 6.3 and 6.4) 

and epoxy (Equations 5.10 and 5.11); and following the procedure mentioned 

above, the Dundurs’ parameters in time domain are given by 
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And, the eigenvalue equation (Equation 4.18) in time domain for case-3 is given 

as follows:  
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6.4  STRESS SINGULARITY AND CRITICAL BONDING ANGLE FOR 

A PVC/ EPOXY BONDED JOINT 

 
 
 

The material properties of PVC are presented briefly earlier in this 

chapter. The viscoelastic properties of epoxy have been described in previous 

chapter (Chapter 5). Once the properties of both materials are known, the time 

dependent Dundurs’ parameters are determined for the three material models 

using the above analytical formulation. Variation in the Dundurs’ parameters (α, 

β) with time is shown in Figures 6.3 and 6.4.  
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effect of Poisson’s ratio on β. It is observed that the difference between the 

response of β for constant and time dependent Poisson’s ratio is noticeable. For 

case -3, initially, the Dundurs’ parameter β shows the similar trend as case-1, 

however, after a while it follows the similar trend as case-2 but at a slower rate. It 

can be concluded that the case-1 cannot predict the behavior of the stress 

singularity over a long time period and case-2 can only predict the stress 

singularity after sufficient amount of time.  

 

 

Next, the eigenvalue λ is determined for different bonding angles for the 

above mentioned three different cases. It can be reviewed again that the order of 

the stress singularity is (λ-1) and the condition for the elimination of the stress 

singularity is λ > 1. Higher the value of λ (when λ < 1) indicates lower the order of 

the stress singularity at the interface corner. Figure 6.5 shows the variation of λ 

with time for a bonding angle of 40 degrees.  
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6.5  DETERMINATION OF CRITICAL BONDING ANGLE BY FINITE 

ELEMENT ANALYSIS 

 
 

The results obtained from the analytical solution are verified by the finite 

element analysis. The axi-symmetric finite element model shown in Figure 2.2 

(Chapter 2) is also used in this analysis. It is clear enough that PVC is modeled as 

material -1 and Epoxy is as material-2. Similar to the elastic/viscoelastic analysis, 

8-noded PLANE 183 element is used for both materials in this analysis. A 

uniform tensile stress of 10 MPa is applied at top end while the bottom end is 

fixed in longitudinal direction. The axi-symmetric problem is solved in 30 equal 

load steps and the time at the end of load step is 15 minutes (900 seconds).  

 

 Figure 6.10 shows the distributions of interface effective stress along the 

interface for two different bonding angles of 40º and 60º. From the definition of 

the stress singularity it is found that for the bonding angle of 60º, there exists 

stress singularity at the free edge of the interface. However, for the case of 40º 

bonding angle, finite values of the interface stresses are exhibited and the stress 

convergence is confirmed by increasing FEM mesh density.  
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6.6  DETERMINATION OF INTERFACE BONDING STRENGTH 

BETWEEN VISCOELASTIC/VISCOELASTIC MATERIALS 

 

The test specimens are manufactured with a bonding angle of 40°. The 

specimens are tested under various combinations of normal and shear stress. The 

failure loads and time required to reach the failure load are recorded for each test 

from the multi-axial testing machine and is given in Table 6.2. 

 

Table 6.2: Maximum failure loads and time required to reach failure 

No Tensile load (N) Torsional Load  (N. m) Time (sec) 

1 0 33.98 676.67 
2 766.80 34.06 358.14 

3 1620.21 28.10 265.95 

4 2552.72 18.82 367.03 

5 3112.75 0 368.92 

 

 

Finite element analysis is carried out for each test case with the maximum 

failure loads given in Table 6.2. As mentioned in the earlier chapter that 3D 

analysis is needed to analyze the viscoelastic interface for the torsional and 

combined loading. The 3D finite element model of the specimen and details of 

this analysis can be found in Chapter 5 (Figure 5.15).  
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  Cf n ),(                                                                          

where n  and  are interface normal and shear stress components, respectively, 

and C is a constant. The function f and the constant C can be determined through 

the following iteration procedure:    

 

 (i) The effective stress criterion in assumed as first trial condition, so 

         snnf  33),( 22)1(                                                                                            

The constant sC 3 is obtained by applying the pure torsional loading case in 

which 0n . 

Therefore, the first trial criterion (effective stress) is 

 

 1)
14.15

()
22.26

( 22 
 n                                                           (6.15) 

 

Next, from the interface normal and shear stress curves of each loading test case, 

the location of the maximum value of 22 3 n  along the interface is identified 

and the corresponding pair of normal and shear stress values for each test case is 

recorded. These pairs of stresses are considered as the 1st stress data points and 

denoted as “1st data set”.  

 

Figure 6.14 shows the points obtained considering the effective stress 

criterion and the effective stress curve expressed by Equation 6.15.  
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Following the same procedure, for this trial criterion (Equation 6.17), a third set 

of stress points is obtained for each test case. Figure 6.15 also includes the third 

set of stress data points. It is observed that Equation (6.17) also fits the third set of 

stress data points. Further iteration produces the same stress data points, i.e. a 

converged strength criterion is obtained.  Therefore, for the tested 

viscoelastic/viscoelastic (PVC/Epoxy) bi-material interface, Equation (6.17), as 

shown in Figure 6.15, represents its normal-shear interface bonding strength 

criterion (envelope) in the range of the first quarter of the normal-shear stress 

plane. 
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CHAPTER 7 

APPLICATION IN DENTAL RESTORATIONS 

 

 

Structures consisting of two dissimilar materials bonded together along a 

common interface are increasingly used in various bio-medical disciplines. One of 

the important examples of such applications is in the dental crowns which are 

used to replace the damaged tooth structures. Porcelain fused to metal (PFM) and 

all ceramic crowns are widely used in dental restorations. Optimal design for 

Porcelain fused to metal crown based on the developed method is presented in 

this chapter. 

 

7.1  BACKGROUND STUDY 

 

Structures consisting of two dissimilar materials bonded together along a 

common interface are often found in various engineering and biomedical 

applications, for example, in dental crowns which are used to repair damaged 

teeth. Porcelain fused to metal (PFM) restorations are popular because low fusing 

porcelain enamels have coefficients of thermal expansion that are similar to those 

of the supporting metals (Craig et al., 1971). Clinical aspects of PFM restorations 

have been extensively studied and reported in the literature; see references 
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(Masterton and Davis, 1964; Mumford, 1965; Straussberg et al., 1966), among 

others.  

Although it is uncertain if the PFM bond is a van der Waals bond or a 

chemical bond, the bond strength developed between porcelain enamels and gold 

alloys has received considerable attention in studies that have attempted to 

understand the failure of PFM crowns (Shell and Nielsen, 1962; Ryge, 1965, 

Knap and Ryge, 1966). Stashevich and Guzman (1984) reported that inadequate 

adhesion between the ceramic and metal layers is one of the main reasons for 

fracture in ceramic–metal items such as integral prostheses formed by alloys with 

porcelain shells. DeHoff and Anusavice (1984) reported that porcelain– metal 

incompatibility may cause localized marginal distortion of metal–ceramic crowns. 

Craig et al. (1971) examined stress distribution in restorations and the 

supporting structure in considering different designs, loading sites, and 

magnitudes of load using a two-dimensional (2D) photoelastic technique. They 

recommended that the porcelain–gold joint at the shoulder should be at an angle 

of 30° to the horizontal for better stress distribution.  

Various factors can affect the long-term viability of crowns, such as 

geometry of preparation, type of composite cement and adhesive system, marginal 

adaptation, periodontal response, tooth morphology functional and parafunctional 

activities, etc. The most common failure modes associated with dental restorations 

are fracture, micro-leakage, and debonding (Clark, 2008; Whitworth et al., 2002; 

Lu et al., 2008). The failure at the interface is primarily caused by a stress 

concentration/singularity in the dental ceramic at the corner of the interface 
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(Soboyejo et al., 2001; Lawn et al., 2002). Li et al. (2004), on the basis of finite 

element analyses, suggested that a high stress concentration exists at the crown–

cement interface of dental bridges. For resin-bonded bridge structures, clinical 

observations and experimental investigations have shown that debonding at the 

interface is a major mode of failure (Knight, 1993; Culy and Tyas, 1998). Also, 

for all ceramic crowns, the major clinical failure is observed at the interface 

between the crown (dental ceramic) and cement (Kelly, 1997). In dental crown 

restorations, the Young’s modulus of the crown material is different to that of the 

cement. Hence, there is a stress concentration in the crown at the interface 

between the crown and the cement (Soboyejo et al., 2001). 

 

From the above review, it is clear that failures are usually initiated from 

the corners of the interfaces in dental crowns or bridges, where either a high stress 

concentration or a stress singularity can be created. In this study, the principles of 

continuum mechanics (interface mechanics is a branch of this area) are used to 

study the characteristics of interface stress distribution along the interface 

between two materials and the dependence of the stress distribution on the 

geometry of the interface, especially the conditions with or without stress 

concentration/singularity at the free edge corners of the interface. The analysis is 

based on the materials’ bulk mechanical properties (Young’s modulus and 

Poisson’s ratio for elastic interfaces between two materials). The work presented 

here suggests that there are two possible routes to reduce/avoid a stress singularity 

at the corner of an interface: one is to change the material combination thereby 
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minimizing the difference in the mechanical properties of the two materials; the 

other is to optimally design the interface geometry. The focus of this research is in 

fact on the latter method. Only PFM crowns containing precious or non-precious 

metals are considered in this study; however, the proposed method can be applied 

to other types of crown. From a micro- or nano-scale point of view the surface 

structures of most materials differ from their bulk (substrate) properties; for 

example, the surface structures of most metals can include an oxide layer, a 

strain-hardening layer, etc. The study of micro-/nano-structural characteristics at 

the interface between two materials (more accurately, the word ‘interphase’ 

should be used) is important in order to understand the chemical/physical bonding 

mechanisms between the two materials. However, this is beyond the scope of this 

study. 

 

7.2  MATERIALS 

 

The materials considered in this study are porcelain, cement, and metal. 

Two types of metal are included: the precious-metal-based alloy, Olympia and the 

non-precious-metal-based alloy, Wirobond-280. These materials are currently 

used in many dental laboratories.  

 

All of the materials used in this research are considered to be linear elastic 

and isotropic. Only two elastic properties, Young’s modulus of elasticity (E) and 

Poisson’s ratio (ν) are therefore required to characterize these materials. The 
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modulus of elasticity of porcelain has been reported several times in the literature 

(Anusavice et al., 1980; Lawn et al., 2001; Li et al., 2004) as being between 68 

and 68.9 GPa and the Poisson’s ratio as being between 0.25 and 0.28 (Anusavice 

et al., 1980; Li et al., 2004). The modulus of elasticity of Olympia and Wirobond-

280 are specified by their respective manufacturers as approximately 124 GPa and 

220 GPa respectively. The Poisson’s ratio for gold alloys varies from 0.383 to 

0.397 (Suansuwan and swain, 2001). The data for the Poisson’s ratio of 

Wirobond-280 is not available. Thus, the Poisson’s ratio, ν of Wirobond-280 is 

estimated from its constituent properties by the commonly used rule of mixing 

 

 



7

1i
iiV                                                                 (7.1) 

where νi and Vi are the Poisson’s ratio and volume fraction of each 

constituent, respectively, The Volume fraction of each constituent is calculated by 

 

 i
i

i WV



                                                                      (7.2) 

 

where Wi is the weight fraction, ρi is density of constituent i, and ρ is the 

density of the WIROBOND-280 alloy. Thus the obtained Poisson’s ratio, ν of 

WIROBOND-280 is 0.275. Details of this calculation can be found Table 7.1. 
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Table 7.1: Poisson’s ratio calculation for Wirobond-280 

Components 
Weight 
fraction 

(%) 

Poisson’s 
ratio, ν 

Density, 
ρ 

(gm/cm3)

Volume 
fraction, 
V (%) 

ν  × V/100 

Co 60.2 0.31 8.9 57.49 .1782 

Cr 25 0.21 7.14 29.76 .0625 

W 6.2 0.28 19.2 2.74 0.008 

Mo 4.8 0.31 10.28 3.97 .012 

Ga 2.9 0.35 5.9 4.18 .015 

Si 0.45 (let) - - - - 

Mn 0.45 (let) - - - - 

Total 100    0.275 

Manufacturer:   BEGO; Elastic modulus: 220 GPa, Density:  8.5 gm/cm3 

 

 

 

There are numerous cements currently in use in dental practice. Zinc 

phosphate, zinc silico-phosphate, and silicate cement are among the most widely 

used compounds. van Noort (2002) reported that zinc phosphate cement is 

extensively used in clinical practice because of its long history of success and 

favorable handling properties. The elastic properties for zinc phosphate are taken 

from Nakayama et al. (1974). The properties of porcelain, Olympia, Wirobond-

280, and the zinc phosphate dental cement are summarized in Table 7.2. 
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Table 7.2: Elastic properties of dental materials 

Material 
Modulus of Elasticity, E 

(GPa) 
Poisson’s Ratio, ν 

Porcelain 68 0.25 

OLYMPIA 124 0.38 

WIROBOND 280 220 0.275 

Dental Cement 60 0.32 

Manufacturer of OLYMPIA: JELENKO 

 

 

7.3  DEVELOPMENT OF THE MODEL 

 

Figure 7.1 shows a sectional view of a PFM crown. One can see that the 

three materials are joined together along two different interfaces: the interface 

between porcelain and metal and the interface between metal and dental cement. 

Of course, there exists another interface between cement and dentine (not shown 

on Figure 7.1), but the properties of the cement can be considered to be similar to 

dental cement according to Zarone et al. (2005). From the point of view of 

interface mechanics, the closer the mechanical properties of the two materials, the 

less severity of the stress concentration/singularity at their interface. Thus, the 

cement/dentine interface is not included in the model. Of course, if the difference 

in properties between the dental cement and dentine is large, this interface should 

also be included in the analysis. In principal, there is no difficulty in applying the 

proposed method to that case.  
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3 contains both interfaces. The bonding angle, θ0, is defined as the angle between 

the interface and the horizontal plane near the corner as shown in Figure 1. This 

bonding angle is not equal to the bonding angle defined in Chapter 2 (this bonding 

angle is equal to γ = 90-θ0 in Chapter 2). The bonding angle is defined here this 

way to match with the current dental specifications.  For a given combination of 

materials, the stress field near the corner of the interface depends on the bonding 

angle θ0. The objective of this work is to find an appropriate range of bonding 

angles at which the stress singularity at the free edge corners of the interface can 

be eliminated. 

 

 

7.4  STRESS SINGULARITY ANALYSIS USING FINITE ELEMENT 

MODELING 

 

Figure 7.2 shows the finite element models of the three considered local 

models. Figure 7.2(a) is used for models 1 and 2, since both models contain a 

single interface, whereas for model 3, Figure 2(b) is required. For each case a 

larger mesh size is used for areas away from the interface. In the area close to the 

interface, especially near the free edge interface corner, very small meshes are 

used. The commercial finite element analysis code ANSYS with the 2D 

axisymmetric element Plane 42 is used for the analysis. The boundary conditions 

for the left-hand side and the top of the local model (these two sides are connected 

by the body of the crown) are obtained from the global axisymmetric analysis 
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After solving the problem, the normal and shear stress components, n  

and , along the interface are determined by stress transformation, and the 

effective stress,  22 3  neff  is also calculated. If the stress at the corner of 

an interface for a particular bonding angle increases with the refinement of the 

mesh and does not converge to a finite value, then this is taken to indicate the 

presence of a stress singularity. In contrast, for a non-singular case, the stress at 

the corner of an interface converges to a finite value with the refinement of the 

mesh. The same analysis is carried out for different bonding angles and the results 

are shown in Figures 7.3 to 7.6.  

 

The variation of the effective stress along the porcelain–metal interface for 

precious-metal-based and non-precious-metal based alloy crowns are plotted 

against the horizontal distance from the free edge corner in Figure 7.3. From 

Figure 7.3(a), it can be seen that for a bonding angle between 20 and 50º the 

effective stress converges to finite values at the corner of the interface, x = 0. 

However, for the case of a 5º bonding angle, at x = 0, the stress value does not 

converge to a finite value in fact it increases with further refinement of the mesh 

size (see the enlarged figure to the left of Figure 7.3(a)). This indicates that a 

stress singularity exists at the porcelain–metal interface corner of precious-metal-

based crowns for a bonding angle of 5º. Similarly, Figure 7.3(b) shows that for the 

porcelain–metal interface with non-precious-metal based alloy a stress singularity 

exists for a bonding angle of 5º but there are no stress singularities for bonding 

angles of 32 and 50º.  



__
 

 

C

 

F

d

m

__________
 Chapter 7: Ap

igure 7.3: 

ifferent bon

metal based c

 

___________
pplication in

Effective s

nding angles

crown 

__________
n Dental Res

stress distrib

: (a) preciou

___________

 

storations

bution alon

us-metal-bas

__________
 

ng porcelain

sed crown a

___________

n-metal inte

and (b) non-

________ 
197 

 

 

erface for 

-precious-



__
 

 

C

F

si

at

(2

 

 

__________
 Chapter 7: Ap

 

 

The r

igure 7.4. I

ingularities e

t certain bon

20º in Figure

 

 

___________
pplication in

results obtai

It is interest

exist for cas

nding angles

e 7.4(a) and 

__________
n Dental Res

ined for th

ting to note

ses with sma

s between th

32º in Figur

 

___________

 

storations

e metal–cem

e that for th

aller or large

hem the stre

re 7.4(b)).  

__________
 

ment interfa

he metal–cem

er bonding a

ess singulari

___________

ace are pre

ment interfa

angles (5 and

ity can be e

________ 
198 

sented in 

ace stress 

d 50º) but 

eliminated 

 



__
 

 

C

 
 

F

b

cr

 

ef

w

th

th

th

m

o

 

__________
 Chapter 7: Ap

igure 7.4: E

onding angl

rown 

Furthe

ffect of the 

with the resu

hose in Figur

he existence

he FEM of m

model 2. Thi

ccurs very c

___________
pplication in

ffective stre

es: (a) precio

ermore, mod

coexistence

ults in Figur

res 3(b) and 

e/elimination

model 3 are

is is expecte

lose to the in

__________
n Dental Res

ess distributio

ous-metal-ba

del 3 with tw

e of the inte

res 7.3(a) an

7.4(b) one c

n of stress si

 consistent w

ed since a s

nterface free

___________

 

storations

on along me

ased crown a

wo interfaces

erfaces. Com

nd 7.4(a) an

can find that

ingularities. 

with those o

stress singul

e edge corner

__________
 

etal-cement i

and (b) non-

s is analyzed

mparing the 

nd the result

t there is no 

Thus, the r

obtained from

larity is a ph

r. 

___________

interface for

-precious-me

d to see if th

results in F

ts in Figure

difference in

results obtai

m FEM mo

henomenon 

________ 
199 

 

r different 

etal based 

here is any 

Figure 7.5 

e 7.6 with 

n terms of 

ined from 

odel 1 and 

that only 



__
 

 

C

F

in

__________
 Chapter 7: Ap

igure 7.5: V

nterfaces for

___________
pplication in

Variation of e

r bonding ang

__________
n Dental Res

effective stre

gles of: (a) 5

___________

 

storations

ess of preciou

5º; (b) 20º; a

__________
 

us-metal-bas

and (c) 50º 

___________

sed crown al

________ 
200 

 

 

long both 



__
 

 

C

F

b

__________
 Chapter 7: Ap

igure 7.6: V

oth interface

___________
pplication in

Variation of e

es for bondin

__________
n Dental Res

effective stre

ng angles of:

___________

 

storations

ess of non-p

f: (a) 5º; (b) 3

__________
 

precious-met

32º; and (c) 5

___________

tal-based cro

50º 

________ 
201 

 

 

 

own along 



__________________________________________________________________ 
 

 
 

 202 Chapter 7: Application in Dental Restorations  

7.5  STRESS SINGULARITY ANALYSIS BY AN ANALYTICAL 

METHOD 

 

To more accurately determine the range of bonding angles with or without 

a stress singularity, the use of an analytical solution could be more convenient. 

There is an extensive literature on efforts to obtain analytical solutions of the 

singular stress field near the free edge of an interface between two materials, see 

references (Bogy, 1971; Munaz and Yang, 1992; Qian and Akisanya, 1999; Liu et 

al., 1999), among others. Details about analytical solution can be found in Chapter 

2 and 3. No matter what mathematical methods are used, the stress field near the 

free edge tends to be cast into the following asymptotic form 

),,,(1  
ijij fHr                   (i, j = 1,2)                         (7.3) 

In the above expression, ,r  are the polar coordinate, H is the stress 

intensity factor,  ,  are Dundurs’ (1969) parameters which depend on 

combinations of the elastic constants of the two materials, 
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where,  12 


j

j
j

E


 , jjk 43 , μ is shear modulus, E is elastic 

modulus, ν is Poisson’s ratio and subscript j is material index . The   is 

eigenvalue obtained from the following eigenvalue equation (see section 4.2.1 in 

chapter 4 for detail derivations) 
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    (7. 5) 

 

In the above equation, θ0 is the bonding angle defined in Figure 7.1  

 

From the Equation (7.3), if 10   , the stress component goes to infinite 

when 0r , i.e. there exists stress singularity. For 1 , the stress singularity is 

eliminated.  

 

Based on the properties of materials given in Table 2, the eigenvalue of λ 

is calculated by using Equation (7.5). The results obtained for both the porcelain–

metal and metal–cement interfaces of the precious-metal-based and non-precious-

metal-based alloy crowns are listed in Tables 7.3 and 7.4, respectively. Figure 7.7 

clearly shows the variation of the eigenvalue λ as a function of the bonding angle. 

To summarize the presented analysis results, one can see that for PFM crowns 

made with the precious metal- based alloy Olympia and in the range of bonding 

angles  3015 0 , the stress singularity can be eliminated: however, for PFM 

crowns made with the non-precious-metal-based alloy Wirobond-280 the bonding 

angle range that is stress singularity free is  3530 0 .  
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Table 7.3: Value of λ corresponding to different bonding angles for precious alloy 

crown 

Porcelain/Metal (OLYMPIA) 
interface 

 

Metal (OLYMPIA) /Cement 
interface 

Bonding angle, θ0 λ Bonding angle, θ0 λ 

0 0.995 0 0.9622 

5 0.9945 5 0.974 

10 0.997 10 0.9884 

12 0.9989 15 1.0028 

13 1.0001 20 1.0126 

20 1.0135 25 1.013 

30 1.047 30 1.0019 

45 1.12 31 0.9984 

60 1.149 45 0.93 

75 1.086 60 0.875 

90 1 75 0.866 

 

80 0.902 

85 0.942 

90 1 
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Table 7.4: Value of λ corresponding to different bonding angles for non-precious 

alloy crown 

Porcelain/Metal (WIROBOND-280) 
interface 

 

Metal (WIROBOND-280)/Cement 
interface 

Bonding angle, θ0 λ Bonding angle, θ0 λ 

0 0.93 0 0.887 

5 0.926 5 0.9 

20 0.952 15 0.949 

25 0.975 20 0.982 

27 0.986 22 0.996 

28 0.992 23 1.0024 

29 0.9985 24 1.0085 

30 1.0052 25 1.014 

35 1.041 30 1.025 

40 1.087 35 1.003 

45 1.137 40 0.965 

60 1.228 45 0.921 

65 1.207 55 0.85 

70 1.17 60 0.825 

75 1.128 75 0.803 

90 1 90 1 
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The bonding angle at the interface free edge corner is taken as  200  

for the precious-metal-based crown and  320  for the non-precious-metal-

based crown. Thus, a stress singularity does not exist at the free edge corner of the 

interface. The angle   in Figure 7.8 is the defined off-vertical angle. The stress 

distributions as a function of   are obtained at a constant value of the applied 

pressure at the top surface. Note that in the analyses a constant angle  20  is 

assumed, see Figure 7.8. 

 

The contour plots of the effective stress at  2010,5 and  for the 

precious-metal-based crown are shown in Figure 7.9(a) and at 

 1210,5 and  for the non-precious-metal-based crown are shown in Figure 

7.9(b), respectively. The high stress zone in each figure is marked with a circle. 

From Figure 7.9(a) (precious-metal-based crown) it can be seen that at φ = 5°, 

there are two high stress concentration zones in the metal layer, and at φ = 20° 

there is a very small high stress concentration zone at the lower part of the metal–

cement interface. However, no such stress concentration with a lower maximum 

stress level exists at φ = 10°. Similarly, from Figure 9(b) (nonprecious- metal-

based crown) the optimal off-vertical angle of the metal layer is φ = 12°. 
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Usually for shoulder edge crowns, the bonding angle is maintained 

between 0 and 5°. Such a design should also be avoided because a stress 

singularity could exist at both of the free edges of the interface. 

 

 It seems that chamfer, bevel, and bevel shoulder edges might be suitable 

if the bonding angle at the interface is within the safe range between 15 and 30° 

for crowns made from precious-metal-based alloys and from 30 to 35° for crowns 

with from nonprecious- metal-based alloys. It is interesting to note that the 

bonding angle of 30° suggested in Craig et al. (1971), which is based on a 2D 

photoelastic experimental method, is just within the current suggested bonding 

angle ranges for either precious-metal based or non-precious-metal-based crowns. 
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CHAPTER 8 

CONCLUSIONS 

 

 

The objective of this research was to develop a new test method for the 

determination of biaxial normal-shear bonding strength envelope for bi-material 

interfaces. A new method, which includes the design of a special interface 

geometry, test procedure and calculation algorithm has been developed to 

accomplish the objective of this study.  

 

8.1  SUMMARY OF THE RESEARCH 

 

The present research can be summarized as below. 

 

 A brief review on the papers available in open literature related to the bi-

material interface strength is presented. The current practices including the 

ASTM standard methods encounter difficulties to accurately determine the 

value of the interface bonding strength. They have certain major 

disadvantages such as the non-uniform multi-axial stress distribution over 

the interface area and/or the presence of singularities of the interfacial 

stress components. 
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 A new test method to determine the bi-axial normal-shear bonding 

strength at bi-material interface has been developed. This method includes 

the design of special interface geometry to eliminate the stress singularity 

at the free edge of the interface and the corresponding test and calculation 

procedures to obtain the interface bonding strength envelope. 

 

 A cylindrical specimen of two bulk materials with a spherical interface is 

developed to measure the interface bonding strength of two materials by 

eliminating the stress singularity. In this design, the soft material is at the 

convex side of the interface, while the hard material is at the concave side 

of the interface. The bonding angle, which is defined as the angle between 

the tangent of the spherical interface to the generator of the cylindrical 

surface, must be less than the critical bonding angle for the elimination of 

the stress singularity.  

 

 The 810-Material Testing System is used to conduct all the tensile and 

relaxation tests. The multi-axial testing machine is used to conduct the 

interface strength tests. It has the capacity to apply combined loading on 

the specimen (torsion and tension). 

 

 Three different materials are used in this research. These materials are 

selected based on their applicability, availability, machinability and low 

cost. The selected materials are aluminum, epoxy and polyvinylchloride 

(PVC). 
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 Aluminum and epoxy are used for the determination of the interface 

bonding strength between elastic and elastic materials. It is found from 

experiment that at a very fast loading rate, the viscoelastic epoxy can be 

approximately treated as an elastic material.   

 

 To see the viscoelastic effect on the interface bonding strength, the same 

materials combination (Aluminum/Epoxy) is used for the bonding strength 

determination of elastic/viscoelastic interface. However, for this case the 

loading rate is kept much slower than the elastic/elastic case. 

 

 PVC and epoxy are used for the viscoelastic/viscoelastic interface bonding 

strength measurement. 

 
 Analytical solution to determine the order of the stress singularity and the 

critical bonding angle for the elastic/elastic interface is developed based 

on an axi-symmetric asymptotic stress analysis.  

 

 The analytical solutions for the elastic/viscoelastic and 

viscoelastic/viscoelastic interfaces are derived from the analytical solution 

for elastic/elastic interface using the elastic-viscoelastic corresponding 

analogy.  

 

 To determine the analytical solution for the interface containing any 

viscoelastic material, accurate modeling of the material properties is very 

important. Three different cases of material modeling are considered in 
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this study; (i) Viscoelastic shear modulus is modeled as a standard linear 

solid model and Poisson’s ratio is assumed to be constant, (ii) Both the 

viscoelastic shear modulus and Poisson’s ratio are modeled as the standard 

linear solid model, (iii) Both the viscoelastic shear modulus and Poisson’s 

ratio are modeled as a Wiechert Model consisting of two Maxwell 

elements with a spring in parallel. This model can more accurately 

simulate the viscoelastic behavior of studied materials: epoxy and PVC. 

 

 From the analytical solution of elastic/elastic interface, the critical bonding 

angle for the tested aluminum/epoxy interface is determined as in between 

49˚ and 50˚. However, considering the viscoelasticity of epoxy, from the 

analytical solution for the elastic/viscoelastic interface, the critical 

bonding angle for the aluminum/epoxy interface is determined as in 

between 48º and 49º. The critical bonding angle for PVC/epoxy interface 

is determined as in between 47º and 48º from the analytical solution for 

the viscoelastic/viscoelastic interface.  

 

 All the results obtained from the analytical solutions are verified by the 

finite element numerical analysis method. 

 

 A detrimental time effect may have on the viscoelastic interface design 

with the stress singularity because the order of the singularity may 

increase with time. 

 
 



__________________________________________________________________ 
 

 
 

 221 Chapter 8: Conclusions 

 There is no interface stress singularity for the application of pure torsional 

loading on the specimen if they are designed according to the developed 

method. 

 

  Since the stress distributions are not uniform along the interface, an 

iterative calculation method integrated with FEM stress analysis is 

developed to determine the bi-axial normal-shear interface bonding 

strength envelope.  

 

 The normal-shear interface bonding strength envelope for the tested 

aluminum/epoxy (Elastic/Elastic) in the range of the first quarter of the 

normal-shear stress plane is determined as  

1)
86.20

()
76.19

( 22 
 n

 

 

 The normal-shear interface bonding strength envelope for the tested 

aluminum/epoxy (Elastic/Viscoelastic) in the range of the first quarter of 

the normal-shear stress plane is determined as  

1)
85.21

()
15.21

( 22 
 n

 

 

 The normal-shear interface bonding strength envelope for the PVC/epoxy 

(Viscoelastic/Viscoelastic) in the range of the first quarter of the normal-

shear stress plane is determined as  
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1)
14.15

()
63.9

( 22 
 n

 

 

 For the elastic/elastic (Aluminum/Epoxy) interface, the average maximum 

failure (debonding) load with the ASTM butt joint specimens is obtained 

as 2161 N with a data scatter band of 13%, while with the present 

designed specimens, this value is obtained as 5727 N with a scatter band 

of 12%. The large difference in the load carrying capability of these two 

groups of specimen shows the great potential in the optimal design of bi-

material interface for advanced materials and structures. 

 

 For the developed specimen design, the interface debonding started near 

the central area of the interface, not from the edge of the interface as in the 

case of the ASTM butt joint specimens. 

 

 The developed method is a more accurate and practical approach to 

characterize this important mechanical property of bi-material interface. 

The new test method provides a biaxial normal-shear bonding strength 

criterion (envelope) for the bi-material interface. Such criterion and data 

base are critical for an accurate and realistic theoretical/numerical 

modeling of the damage and failure of the interfaces. 

 

 As an application of the research in the dental restorations, an optimal 

geometry design for a PFM dental crown has been carried out. It is found 
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that to eliminate the stress singularity at the interface free edge corner, the 

appropriate margin angle range is 15-30 degrees for the precious alloy 

PFM crown and 30-35 degrees for the non-precious alloy PFM crown, 

respectively.  

 

 The optimal off-vertical angle of the metal layer in the PFM crown is 10º 

for a precious-metal-based crown and 12º for the nonprecious- metal-

based crown, respectively.  

 

 The results may serve as a general guide for the design and manufacture of 

the dental crowns.  

 

 The optimal range of the bonding angles may be different if the materials 

or their properties are changed; however, the proposed numerical and 

analytical methods can also be used to determine the optimal geometric 

parameters in those cases. 

 

 The interface bonding strength is an inherent physical property for a given 

bi-material interface and should not be changed with the change of the 

interface geometry. With the different designs of interface geometry, the 

interface stress distributions are different, thus resulting in different load 

carrying capabilities of the specimens. Although it is possible to design the 

proper interface geometries to avoid the stress singularity, it is very 

difficult (if it is not impossible) to design a specimen that could produce a 
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pure uniform normal stress distribution at the bi-material interface without 

any stress singularity.  

 

 For the proposed specimen design, failure will always happen at the 

interface under the tensile or shear loading if there is no defect in the two 

bulk materials. This is because of the maximum stress in the specimen is 

prominently at the interface due to the incompatibility of mechanical 

properties of the two materials.  

 

 The developed test method will be ineffective if the bi-material interface 

bonding strength is greater than the ultimate strength of one of the 

materials. Even in that case the failure of the weaker material will be most 

likely initiated near the interface due to the stress concentration. 

 
 

8.2  FURTHER RECOMMENDATIONS 

 

Since, the mechanics of interface is a new developing branch of solid 

mechanics, continuing research on this area will make this new branch richer. In 

addition to the current research, future researches can be carried on the following 

topics. 

 

 Orthotropic Materials Structures: In the present research, all the materials are 

considered as isotropic. In future, the similar research can be carried on the 
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interface between orthotropic materials or between orthotropic and isotropic 

materials. 

 

 Interface Fatigue: It is well known that the corner geometry at the end of the 

bonded area have a significant influence on the fatigue strength of composites 

bonded joints. Determination of the accurate interface fatigue strength can be 

an interesting topic for future research. 

 

 Failure Mechanism of Structures with Interface: Further research can be 

carried on to study the damage mechanism of structures with bi-material 

interface.  

 
 Smart Materials and Structures: Nowadays, composite materials are 

reinforced with shape memory alloy (SMA) wires in many applications. The 

interface between the SMA wire and the composite matrix plays an important 

role to the overall performances of the structure. The design of such a smart 

composite may be a future potential research area. 

 

 Other Applications:  In addition to the dental industry, electronic packaging 

might be another prospective area for this branch of study. There are multi 

interfaces between the solder and the parts in electronic packaging. This 

research can be extended to make a better design of the connections to 

increase resistance to damage. The interface characterization also has a great 

potential in the aerospace industry. 
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