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Abstract 

The pyridoxal-5'-phosphate (PLP)-dependent enzyme LL-diaminopimelate 

aminotransferase (LL-DAP-AT) catalyzes a key step in the biosynthesis of L-

lysine in plants and Chlamydia. In this thesis, studies of mechanistic and 

inhibitory aspects of LL-DAP-AT are described.  

Two LL-DAP-ATs from Arabidopsis thaliana and Chlamydia trachomatis 

were studied using X-ray crystallography. Furthermore, synthetic analogues of 

PLP-glutamate adduct 87, PLP-LL-diaminopimelate adduct 89, and pyridoxamine-

5′-phosphate-tetrahydrodipicolinate (THDP) adduct 91 were co-crystallized with 

LL-DAP-AT. It was found that the hydrolysis product of THDP is the true 

substrate for this enzymatic transamination reaction. Crystallographic studies 

provide insights regarding the broader substrate specificity of Chlamydia LL-

DAP-AT compared to the Arabidopsis enzyme.  

Since mammals require lysine from their diet, specific inhibitors of LL-

DAP-AT could potentially serve as non-toxic antibiotics. A high-throughput 

screening study has been performed on a 29,201-compound library. N-(3-

(Hydrazinecarbonyl)naphthalen-2-yl)benzenesulfonamide (122) was identified as 

the best hit (IC50 ~ 5 µM). In addition, three potential pharmacophores 

(derivatives of rhodanine, barbiturate, and thiobarbiturate) were identified. 

Structure-activity relationship (SAR) studies were conducted based on lead 

compound 122 and rhodanine derivatives. N-(5-Fluoro-2-

(hydrazinecarbonyl)phenyl)benzenesulfonamide (155) was identified as a two-

fold better inhibitor compared to the lead compound. It was found that a free 



 

hydrazide and a phenylsulfonamide were essential for inhibition. These two 

moieties needed to be attached to an aryl system, but further substitution of the 

aryl group was tolerated. These results may provide insight for future inhibitor 

design.  

In the second portion of this thesis, efforts toward development of 

methods for small peptide (< 5 kDa) crystallization are described. A co-

crystallization approach was investigated, which involves linking a small peptide 

to a small molecule inhibitor to a readily crystallizable enzyme. Upon mixing, the 

small peptide may be co-crystallized with the enzyme. Subtilosin A (SubA, 191), 

a 35-amino acid circular bacteriocin, was selected for this co-crystallization study. 

Two bioconjugates, N-acetyl glucosamine (GlcNAc)-SubA and N,N′,N′′-

triacetylchitotriose ((GlcNAc)3)-SubA, were prepared toward co-crystallization 

with lysozyme. A bioconjugate of arylsulfonamide-SubA was also synthesized for 

co-crystallization with carbonic anhydrase II (CAII). Current attempts towards co-

crystallization were unsuccessful, likely due to the poor solubility of these 

bioconjugates. Efforts are underway towards co-crystallization by potentially 

improving the solubility of the bioconjugates.  
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Chapter 1. Structural and inhibitory studies of LL-

diaminopimelate aminotrasferase  

1.1 Introduction 

1.1.1 An overview of lysine biosynthesis 

 Lysine is an essential amino acid, as its biosynthetic pathway is absent in 

animals. Therefore animals have to acquire this amino acid from their diet. 

However, lysine biosynthesis does occur in plants, bacteria, and fungi.1  

 Lysine is perhaps the only known proteinogenic amino acid to have two 

distinctive biosynthetic pathways. In most fungi, lysine is biosynthesized by the 

α-aminoadipic acid (AAA) pathway.2, 3 However, in plants and most bacteria, the 

biosynthesis of lysine proceeds through diaminopimelate (DAP) intermediates. 

Both of these pathways will be discussed in the next sections. 

1.1.1.1 α-Aminoadipic acid (AAA) pathway  

The AAA pathway occurs mostly in fungi, as well as some bacteria (e.g., 

Thermus spp.2, 3). There are two known variants of this pathway, but both involve 

the formation of α-aminoadipic acid as a key intermediate (Figure 1-1). The 

formation of α-aminoadipic acid begins with acetyl-CoA (1) and α-ketoglutaric 

acid (α-Kg, 2). The enzyme homocitrate synthase catalyzes a condensation 

reaction between 1 and 2 to form homocitrate (3). Homocitrate (3) is converted to 

homoisocitrate (5) by homoaconitase, which belongs to the aconitase super family 

of enzymes. The homoaconitase-catalyzed reaction is proposed to be a two-step 



2 

process: first, homocitrate is dehydrated to form cis-homoaconitate (4), which is 

then hydrated to form homoisocitrate (5). This is analogous to the aconitase-

catalyzed step in the tricarboxylic acid (TCA) cycle. Homoisocitrate 

dehydrogenase then oxidizes homoisocitrate to oxo-homocitrate (6), which 

undergoes decarboxylation to form α-ketoadipic acid (7). α-Ketoadipic acid (7) is 

then converted to L-α-aminoadipic acid (8) by L-α-aminoadipate 

aminotransferase. This aminotransferase is a pyridoxal-5′-phosphate (PLP) 

dependent enzyme that uses L-glutamate as the amino donor.  

 

 

Figure 1-1. The first steps in the AAA pathway for the formation of α-
aminoadipic acid. i) Homocitrate synthase; ii) Homoaconitase; iii) 
Homoaconitase; iv) Homoisocitrate dehydrogenase; v) L-α-Aminoadipate 
aminotransferase 
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 The rest of the biosynthesis, which requires the conversion of L-α-

aminoadipic acid (8) to lysine can then follow two different pathways. For the 

fungal AAA pathway, the remaining biosynthetic steps are shown in Figure 1-2. 

In the second half, L-α-aminoadipic acid (8) is first adenylated by adenosine 

triphosphate (ATP) to L-α-aminoadipate adenyl monophosphate (9), releasing 

pyrophosphate. Subsequently, reduction by L-α-aminoadipate semialdehyde 

dehydrogenase gives L-α-aminoadipate 6-semialdehyde (10). The L-α-

aminoadipate 6-semialdehyde (10) reacts with L-glutamate (11) to form an imine 

adduct (12), which is then reduced by saccharopine reductase to form 

saccharopine (13). Finally, lysine is formed by the action of saccharopine 

dehydrogenase with the release of α-Kg (2).  

 

 

Figure 1-2. Second half of fungal AAA pathway. i) L-α-Aminoadipate 
semialdehyde dehydrogenase; ii) L-α-Aminoadipate semialdehyde 
dehydrogenase; iii) Saccharopine reductase; iv) Saccharopine reductase; v) 
Saccharopine dehydrogenase 
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 The AAA pathway also occurs in some archaea, such as Thermoproteus 

and Sulfolubus.4 In the late 1990s, a variant of the AAA pathway was observed in 

the thermophilic bacterium, Thermus thermophilus.5, 6 The first half of this 

pathway, formation of L-α-aminoadipate, is the same as the fungal AAA pathway. 

In the second half of this putative pathway (Figure 1-3), L-α-aminoadipate (8) is 

first acetylated on the amino group to give N2-acetyl-α-aminoadipate (15).7 The ε-

carboxylate is then phosphorylated to 16 by LysZ, which is an N2-acetylglutamate 

kinase (ArgB) homolog.8 Reduction of 16 catalyzed by LysY, yields N2-acetyl-α-

aminoadipate 6-semialdehyde (17). This enzyme is an N2-acetylglutamate 5-

semialdehyde dehydrogenase (ArgC) homolog.8 The last two steps are catalyzed 

by LysJ and LysK. LysJ is a PLP-dependent aminotransferase that uses L-

glutamate as the amino donor and is an N2-acetylornithine aminotransferase 

(ArgD) homolog.9 Deacetylation, catalyzed by LysK, an N2-acetylornithine 

deacetylase (ArgE) homolog, forms lysine.10 From these studies and DNA 

sequences, a hypothesis can be made that the T. thermophilus AAA pathway and 

arginine biosynthetic pathway (via ArgB, ArgC, ArgD, and ArgE) may share a 

common evolutionary origin. 
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Figure 1-3. A variant of the second half of putative AAA pathway from T. 
thermophilus. i) LysX; ii) LysZ; iii) LysY; iv) LysJ; v) LysK 
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between pyruvate and ASA is the first committed step in lysine biosynthesis via 

DAP. This step is catalyzed by L-dihydrodipicolinate synthase, and forms L-

dihydrodipicolinate (L-DHDP, 21).13 The L-DHDP is then reduced to 

tetrahydrodipicolinate (L-THDP, 22) by DHDP reductase. An N-acyltransferase-

catalyzed step generates L-α-keto-ε-(N-acylamino)pimelate (23/24). Depending 

on the species, the acyl group can either be a succinyl or an acetyl group. In most 

bacteria, a succinyl group is used, although acetyl groups are used by some 

Bacillus spp., such as B. megaterium.2, 14 L-α-Keto-ε-(N-acylamino)pimelate 

(23/24) is further converted to N-α-acyl-LL-DAP (25 a or b) by N-α-acyl-DAP 

aminotransferase, which is a PLP-dependent aminotransferase. Deacylation then 

forms LL-DAP (26) as the next intermediate.15 LL-DAP (26) is epimerized to 

meso-DAP (27) by DAP epimerase, a PLP-independent racemase.1, 16, 17 Finally, 

meso-DAP (27) is converted to L-lysine (14) by DAP decarboxylase, another PLP 

dependent enzyme.18 
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Figure 1-4. The most common bacterial DAP pathway. i) DHDP synthase; ii) 
DHDP reductase; iii) THDP acyltransferase; iv) N-acyl-DAP aminotransferase; v) 
N-acyl-DAP deacylase; vi) DAP epimerase; vii) DAP decarboxylase 

  

Although the majority of bacteria use the route shown above, there are other 

variations. The first variant is shown in Figure 1-5. This is a shorter biosynthesis 

that converts L-THDP (22) directly to meso-DAP by the enzyme meso-DAP D-

dehydrogenase. This variant of the DAP pathway occurs in a relatively small 

number of bacteria, such as Bacillus, Sphaericus,19, 20 Corynebacterium 

glutamicum, and Brevibacterium sp.21, 22 A recent phylogenomic analysis of the 

microbial genome database reveals that 77% of microorganisms containing the 

meso-DAP D-dehydrogenase ortholog also have a second DAP pathway to 

synthesize lysine.23 
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Figure 1-5. The meso-DAP formation in B. sphaericus catalyzed by meso-DAP 
D-dehydrogenase (coloured in blue) 
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Figure 1-6. LL-DAP-AT-catalyzed transamination (coloured in blue) to form LL-
DAP  

 

1.1.2 Discovery of LL-DAP-AT 
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measured.22, 33 More recently, the gene encoding plant DHDP reductase has been 

detected in Arabidopsis spp.34 The next three enzymes (an acylase, an 

aminotransferase, and a deacylase) of the standard DAP pathway have not been 

detected in plants.28 The last two enzymatic steps catalyzed by DAP epimerase 

and meso-DAP decarboxylase were detected from plant extracts prior to the 

discovery of LL-DAP-AT.22, 35-37 Recently, a crystal structure of DAP epimerase 

from A. thaliana was obtained and characterized by our group.38 These enzymatic 

steps suggests that lysine biosynthesis in plants occurs via one of the bacterial 

DAP pathways.  

 In 2000, the first complete genome sequence from a plant species, that of 

Arabidopsis thaliana, was obtained and analyzed.39 This milestone event in 

biology made it possible for researchers to identify potential enzymes involved in 

different biological pathways in this model plant. In 2005, the Leustek group 

searched the genome of A. thaliana for the enzymes involved in lysine 

biosynthesis.28 Among the DAP pathway enzymes identified, the genome 

contained orthologs of DHDP synthase, DHDP reductase, DAP epimerase, and 

meso-DAP decarboxylase. However, THDP acyltransferase, N-α-acyl-DAP 

aminotransferase, and N-α-acyl-DAP deacylase were not identified in the A. 

thaliana genome. Beyond the search of biosynthetic genes, activity tests using 

plant extracts also suggested that this plant species lacks these three enzymes. 

These studies indicated that lysine is made by a DAP pathway similar in some 

aspects to the bacterial DAP route, but with some variations.28 Another study 
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showed that meso-DAP D-dehydrogenase, is also absent from this plant species.22 

These results suggest that a previously unknown DAP pathway exists in plants.  

 Not long after, a novel aminotransferase was identified from A. thaliana, 

which represents a new DAP pathway variant.24 As mentioned earlier, this plant 

enzyme was shown to catalyze the conversion of THDP to LL-DAP, which 

normally requires three enzymes in the bacterial DAP pathway.11 LL-DAP-AT 

was predicted to be a typical PLP-dependent aminotransferase that uses glutamate 

as the amino donor.24 This was later confirmed based on an X-ray crystal structure 

obtained by our group.40 The detailed X-ray crystallographic study will be 

discussed in the later sections of this thesis.  

This shorter route (Figure 1-6) appears to be the general lysine biosynthetic 

pathway in plants and is also found in cyanobacteria.24 The phylogenetic 

distribution of LL-DAP-AT may be due to cyanobacteria and plant chloroplasts 

sharing a similar evolutionary pathway.41 LL-DAP-AT is also found in Chlamydia 

species, and has thus been identified as a trans-kingdom enzyme.42 Recently, the 

X-ray crystal structure of LL-DAP-AT from Chlamydia trachomatis was also 

obtained and analyzed by our group,43 and will be discussed in greater detail in 

subsequent sections of this thesis. Systematic biochemical and phylogenetic 

characterization indicates that the occurrence of LL-DAP-AT is limited to specific 

lineages of eubacteria, e.g., Cyanobacteria, Desulfuromonadales, Firmicutes, 

Bacteroidetes, Chlamydiae, Spirochaeta, and Chloroflexi and two archaeal 

groups, Methanobacteriaceae and Archaeoglobaceae.23, 44 More recently, two 

bacterial species, Bacteroides fragilis and Clostridium thermocellum, were found 
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to use dual DAP pathways (LL-DAP-AT and meso-DAP D-dehydrogenase) to 

synthesize lysine.45  

1.1.3 Inhibitory studies of DAP pathways 

1.1.3.1 Potential target for the development of new antibiotics  

 For decades, lysine biosynthesis in bacteria and plants has been considered 

a target for the development of new antibiotics and herbicides. Mammals do not 

biosynthesize lysine, and so they have to acquire this essential amino acid from 

their diet. On the other hand, fungi, bacteria, and plants are all able to synthesize 

lysine. Thus, if the biosynthetic route is inhibited, and the organism is unable to 

produce lysine, it may result in the death of the organism. Because lysine 

biosynthesis is absent in mammals, specific inhibitors of the enzymes involved in 

lysine biosynthesis may be expected to show low or no toxicity towards 

mammals. All of these facts make the lysine biosynthetic pathway an attractive 

target to develop new antibiotics or herbicides. However, to date there are no 

clinically used antibiotics or commercially used herbicides specifically targeting 

lysine biosynthetic pathways.12 In addition, a complete understanding of its 

biosynthetic route may assist in the engineering of plants with increased lysine 

content for better nutrition.46 

 Recently, the rapid emergence of antibiotic-resistant bacteria has drawn 

enormous attention from researchers.47 Historically, bacterial infections by 

Mycobacterium tuberculosis and Staphylococcus aureus were successfully treated 

through the use of a number of existing antibiotics. Recent occurrence of 

multidrug-resistant strains of these bacteria has made these infections difficult to 
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treat.48 Chlamydia is another infectious bacterial strain that has started to show 

drug resistance in hospitals.49 Significant numbers of severe human infections are 

caused by bacterial species within the genus Chlamydia, especially sexually 

transmitted infections (STI).43, 50 Studies have shown that over 90 million people 

are infected with chlamydia worldwide, and there are approximately five million 

new cases of chlamydial infection each year in the USA alone.51 Chlamydial 

infections can cause various associated diseases, such as pelvic inflammatory 

disease, with potential development of infertility in certain women.50 In addition 

to the STI caused by Chlamydia, it can also cause trachoma, which is a common 

cause of blindness.51 Due to the increase in the number of drug-resistant bacterial 

infections, there is a great demand for development of new antibiotics in health 

care research.  

Currently, most of the clinically used antibiotics are derived from the 

scaffolds of older generation antibiotics that were discovered between the mid-

1930s and 1960s.52 Development of new generations of older antibiotics is one of 

the commonly used solutions to fight against the rise of resistant pathogens.53 The 

tailoring and modification of the older generation of antibiotics will most likely 

continue to be effective to counter drug resistance. However, an important 

alternative approach is to find new targets that have not yet been explored.  

Bacterial lysine biosynthetic pathways are valid targets for potential 

antibiotics development. As mentioned above, lysine biosynthesis is absent in 

mammals, which may allow for the preparation of novel antibiotics with minimal 

human toxicity.1 L-Lysine is one of the major components used by Gram-positive 
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bacteria to synthesize the peptidoglycan found in the cell wall. The direct 

precursor of lysine in the bacterial DAP pathways, meso-DAP, is involved in the 

construction of Gram-negative bacterial cell walls. The cross-links between meso-

DAP/L-lysine and peptidoglycan amino acids play a significant role in 

strengthening the bacterial cell walls.54, 55 If the lysine biosynthetic pathway is 

inhibited, the construction of bacterial cell walls may be disrupted, which would 

lead to cell death. Thus, the enzymes involved in these pathways represent 

important targets with the potential for activity against multidrug-resistant 

bacteria.   

1.1.3.2 Recent inhibitory studies of DAP enzymes 

 The DAP pathways have been the subject of study for several decades, 

and have prompted numerous reviews in the literature1, 12, 15, 56 in addition to 

continuing studies on the design of inhibitors57-60 since the 1980s.61 In the 

following sections, inhibitory studies of each of the key enzymes in the various 

DAP pathways will be discussed, in order of their appearance in DAP 

biosynthetic pathway.  

1.1.3.2.1 Inhibitory studies on DHDP synthase  

 DHDP synthase is the first enzyme in the DAP pathway committed to 

lysine biosynthesis. As mentioned previously, this enzyme catalyzes the 

condensation reaction between pyruvate (19) and ASA (20). The proposed 

mechanism13, 62 is shown in Figure 1-7. Pyruvate is first bound in the enzyme 

active site, and a condensation reaction with an active site lysine residue forms an 
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enamine (27). This enamine attacks the aldehyde moiety of the ASA (20) to form 

enzyme-bound intermediate 28. A transimination reaction forms 4-

hydroxytetrahydrodipicolinate (HTHDP, 29), with the release of the active site 

lysine residue. Finally, dehydration gives DHDP (21). It was questioned whether 

the dehydration of HTHDP is catalyzed by DHDP synthase or is a spontaneous 

process. A recent report suggests that the true substrate for DHDP reductase, the 

next enzyme in the pathway, is HTHDP (29) rather than DHDP (21).63 Thus, the 

dehydration of HTHDP appears to be an enzymatic process; DHDP reductase is 

likely also acting as a dehydratase.63  

 

  

Figure 1-7. Catalytic mechanism of DHDP synthase 

 

 Efforts have been previously made toward designing DHDP synthase 

inhibitors. In one of these studies, a series of analogues of HTHDP (Figure 1-8) 

were chosen as inhibitors of DHDP synthase.64, 65 Although these inhibitors only 
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showed poor inhibition, they are still the most potent reversible inhibitors that 

have been developed for DHDP synthase.12  

  

Figure 1-8. Analogues of HTHDP and their ability to inhibit DHDP synthase 

 

 In a different study,59, 66 two 4-oxo-heptenedioic acid derivatives were 

designed as irreversible inhibitors. The structures and the proposed mechanism of 

inhibition are shown in Figure 1-9. The dieneone 34 was the best inhibitor in this 

study with an inactivation rate of 5.4 M-1s-1 against DHDP synthase.12 These 

inhibitors may be quite effective against this enzyme, but these molecules are 

extremely reactive irreversible inhibitors, and may not be suitable as 

pharmaceuticals. Since compounds 34 and 35 are good Michael acceptors, they 

can react with nucleophilic residues under physiological conditions, such as 

cysteine. This could lead to non-specific interactions with different enzymes that 

are not targeted for inhibition, resulting in inhibitors which may show high levels 

of toxicity.  
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Figure 1-9. 4-Oxo-heptenedioic acid derivatives and the proposed mode of 
inhibition of DHDP synthase 

 

1.1.3.2.2 Inhibitory studies on DHDP reductase 

Similar to DHDP synthase, DHDP reductase is also a common enzyme 

found in all of the known species that utilize the DAP pathway for meso-DAP and 

lysine biosynthesis (Figure 1-10). This enzyme is also considered a target for the 

development of broad-spectrum antibiotics and herbicides.  

 

 

Figure 1-10. DHDP reductase-catalyzed dehydration and reduction to form L-
THDP 
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derivatives (Figure 1-11a) showed good to moderate inhibition against the target 

enzyme. However, this group of compounds was not found to possess any 

antimicrobial activity in a whole cell agar diffusion assay. From the screening of 

the Merck Chemical Collection, a number of other lead compounds were 

identified in addition to the sulfonamide derivatives, three of which are shown in 

Figure 1-11b. This study could lead to the discovery of better inhibitors, based on 

the lead compounds identified.  

 

 

Figure 1-11. Inhibitors of DHDP reductase developed by the Merck research 
laboratory67 

 

 Researchers have also gained a better understanding of the structural 

features of DHDP reductase.68-71 In 2003, the enzyme was co-crystallized with the 

inhibitor 2,6-pyridinedicarboxylic acid (2,6-PDC, 44).70 Electron density 

corresponding to 2,6-PDC was found in the DHDP binding site. As mentioned 

previously, DHDP reductase is a NAD(P)H-dependent enzyme. Catechol-

rhodanine acetic acid (CRAA, 45) is a well known inhibitor of NAD(P)H binding 
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proteins.72 Recently, based on this knowledge, a bi-ligand strategy was used to 

develop inhibitors to DHDP reductase.72-74 Upon linking of 2,6-PDC (44) to 

CRAA (45) with a short tether, the resulting complex 46 (Figure 1-12) showed 

fairly potent inhibition, with an inhibition constant (Ki) of 100 nM.73 As 

mentioned in the previous section, DHDP reductase likely also acts as a 

dehydratase. Thus the true substrate may be HTHDP (29) rather than THDP,63 

and future rational design of inhibitors could be based on the structure of HTHDP.  

 

 

Figure 1-12. Inhibitors of DHDP reductase optimized by bi-ligand approach 
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been extensively studied. Some of the early attempts towards the development of 

inhibitors will be discussed in this section. 

 There are two variants of these three enzymatic steps, which utilize 

substrates with either a succinyl group or an acetyl group. As most bacteria use a 

succinyl group, most of focus on the development of inhibitors has targeted the 

succinyl pathway.  

 

 

Figure 1-13. The three enzymatic steps convert L-THDP to LL-DAP that 
catalyzed by THDP N-acyltransferase, N-acyl-LL-DAP aminotransferase, and N-
acyl-LL-DAP deacylase 
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opening hydrolysis, as shown in Figure 1-14b.79, 80 Thus the inhibitor likely acts 

as an analogue of the intermediates of 49 and 50.  

 

 

Figure 1-14. a) Inhibitor 47 of THDP N-succinyltransferase. b) Mechanism of 
THDP N-succinyltransferase 
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shown in Figure 1-15b. In a separate report, the aza-, thia-, and oxa-analogues of 

the substrate were designed as mechanism-based irreversible inhibitors, but only 

the aza-analogue (56) showed weak inhibition against the enzyme. 

 

 

Figure 1-15. Studies on N-succinyl DAP aminotransferase. a) Compounds used in 
substrate specificity study; b) Substrate analogues as inhibitors; c) A separate 
inhibitory study 
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simple compounds like 4-mercaptobutanoic acid (59) showed moderate 

inhibition. Similarly, compounds containing boronic acids (60 and 61) or 

phosphonic acids (62) are reasonable inhibitors of this enzyme. 

 

 

Figure 1-16. Inhibitors of N-succinyl DAP desuccinylase 
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Figure 1-17. Proposed transition state of DAP epimerase-catalyzed step 

 

 The irreversible inhibitors used in the mechanistic studies are shown in 

Figure 1-18. Initially, Higgins and co-workers88 designed α-(halomethyl)-DAP 

(63 a - c) as inhibitors of DAP epimerase. They realized that the active compound 

was in fact an aziridine-containing compound (64), formed by spontaneous ring 

closing. Since inactivation of the enzyme was extremely fast, the authors were 

unable to measure the inhibition constant.88 Subsequently, additional studies have 

been done both by our group and by Cox and co-workers. Our group reported the 

synthesis of the pure diastereomers of aziridine-containing DAP, LL-azi-DAP 

(65). and DL-azi-DAP (66)89, 90 The X-ray crystal structures were then obtained of 
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attacks the aziridine ring to yield covalent adduct 67, which inactivates the 

enzyme. Similarly, DL-azi-DAP resembles meso-DAP, which would be 

considered to be the substrate of the reverse reaction. These studies have provided 

further support for the two-base mechanism.  
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Figure 1-18. The irreversible inhibitors of DAP epimerase. a) Design of initial 
inhibitor 64; b) Mode of action of pure stereoisomeric inhibitors 65 and 66  
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analogues (71a and 71b) undergo rapid elimination of hydrogen fluoride 

catalyzed by DAP epimerase to form THDP.  

 

 

Figure 1-19. 3-subtituted analogues of DAP studied by Gelb et al.91 as inhibitors 
of DAP epimerase 
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the active site was reversed, with the L-amino acid center located at the distal 

position, where the D-amino acid would normally be presented.94 In a separate 

study,95 two other inhibitors (74 and 75) were found to be active against meso-

DAP D-dehydrogenase. Enzyme kinetic studies indicated that compound 74 was a 

competitive inhibitor of meso-DAP whereas 72 showed non-competitive 

inhibition to meso-DAP.95 The other unsaturated analogue 75 showed non-

competitive inhibition versus meso-DAP. This suggests that 74 may be the true 

mimic to the imine intermediate.95 The X-ray crystallography studies96 of the 

enzyme complexed with 74 revealed a more detailed binding feature of this 

enzymatic step.  

 

 

Figure 1-20. Inhibitors of meso-DAP D-dehydrogenase and their measured Ki 
values 

  

Many previous inhibitory studies have focused on meso-DAP D-

dehydrogenase.93, 95, 97-99 However, the potential antibacterial uses of these 

inhibitors are limited, as only a small number of bacterial species use meso-DAP 

D-dehydrogenase for the biosynthesis of lysine.100  
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1.1.3.2.6 Inhibitory studies of meso-DAP decarboxylase 

 The last step of lysine biosynthesis requires the enzyme meso-DAP 

decarboxylase, which converts meso-DAP to L-lysine. This enzymatic step is a 

PLP-dependent process that stereospecifically targets the D-amino acid moiety of 

meso-DAP.101 This decarboxylation reaction has been shown to proceed with an 

inversion of configuration, whereas most PLP-dependent decarboxylases operate 

with retention of configuration.102 Recently, X-ray crystallographic studies18, 103 

have provided a better understanding of the structural and mechanistic aspects of 

this enzyme. As meso-DAP decarboxylase is essential for most of the bacteria 

utilizing the DAP pathway, this enzyme is an attractive target for the development 

of antibacterial drugs.18, 104  

 Similar to the studies of the other DAP enzymes, inhibitory studies of 

meso-DAP decarboxylase were also focused on the design of substrate analogues. 

In the mid 1980s, a number of DAP analogues were prepared and tested against 

this decarboxylase.61 Our group found the racemic hydrazine DAP analogue (76) 

to be the most potent inhibitor in this series of analogues, which showed 93% 

inhibition against the meso-DAP decarboxylase from Bacillus sphaericus at 0.4 

mM.61 In another study, several unsaturated DAP analogues were synthesized and 

their biological effects were evaluated against both the enzyme and bacterial 

indicator strains.105 Based on the inhibition studies of these analogues, racemic 

compound 77 showed the greatest potency (65% inhibition at 1 mM), but this 

compound lacks in vivo antibacterial activity. Analogues 78 (mixture of 

stereoisomers, meso and the racemate) did not show potent inhibition against 
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meso-DAP decarboxylase, but they showed good antibacterial activity with a 

minimum inhibitory concentration (MIC) of 2 µg/mL and 4 µg/mL against 

Escherichia coli and Pseudomonas aeruginosa, respectively.105 These results 

indicate that the meso-DAP decarboxylase may not be the target for 78. 

Subsequently, stereospecific syntheses of phosphonate analogues of DAP (79) 

have been achieved by our group.106 Although they are weak inhibitors of meso-

DAP decarboxylase, with the best reported IC50 value being 320 µM, they may 

lead to the design of better inhibitors in the future.  

 

 

Figure 1-21. Inhibitors of meso-DAP decarboxylase 

 

1.1.3.3 LL-DAP-AT as a target for potential antibiotics or herbicides  

 As mentioned previously, there is an urgent need for the development of 

new antibiotics against Chlamydia. Recently, it has been found that Chlamydia 

use LL-DAP-AT as a key enzyme in lysine biosynthesis. Thus, LL-DAP-AT may 

represent a good target for the development of novel antibiotics to specifically 

counter Chlamydia.43 In certain cases, inhibitors of the enzymes involved in the 

DAP pathway have already shown promising antimicrobial activity.56, 57, 82 Thus, 
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the inhibitors directly targeting LL-DAP-AT could be used as antibiotics that are 

specific to Chlamydia infections,42 or used as algaecides107, or herbicides.60 

Substrate-based inhibitor design can be very effective, as shown in previous 

sections, but their in vivo antibiotic activity is often limited by their poor uptake 

into bacterial cells.56 As an alternative approach to inhibitor discovery, a robotic 

high-throughput screening (HTS) approach was used in this study.   

 HTS has been widely used in the field of drug discovery in the last few 

decades.108 Modern robotic technology can be used to identify potential drug 

leads from large libraries of drug-like compounds with great structural diversity in 

a short period of time. In general, to set up a HTS experiment, the important 

aspects are the development of a rapid and reliable assay platform, and obtaining 

a library of structurally diverse drug-like compounds. In this current study, an 

established enzymatic assay was adopted from an earlier study of LL-DAP-AT,24 

and a library of 29,201 drug-like compounds were obtained from a commercial 

source (ChemBridge Corporation).  

 The enzymatic assay used in this study is shown in Figure 1-22. Briefly, 

the assay involves monitoring the reverse of the transamination process, with α-

ketoglutarate (2) used as an amino acceptor. Introduction of o-aminobenzaldehyde 

(OAB) (80) to the assay allows for the product (L-THDP, 22) to be converted into 

a conveniently monitored chromophore 81. By adding inhibitors to the assay, the 

rate of formation of 81 is expected to decrease. Based on these data, the 

evaluation of the potency of inhibitors against this target enzyme can be achieved.  
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Figure 1-22. The enzymatic assay used in the inhibitory study of LL-DAP-AT24 

 

1.2 Project objectives 

 In the first part of this project, the structural features and mechanism of 

catalysis of LL-DAP-AT were studied by X-ray crystallography. The enzyme from 

Arabidopsis thaliana was cloned and overexpressed in E. coli with a C-terminal 

hexahistidine tag to aid in protein purification. The purified enzyme was then 

crystallized to obtain the X-ray crystal structure, allowing for the examination of 

the structural features of the enzyme. To further study the mechanism of this 

enzymatic transamination reaction, several analogues of intermediates were 

synthesized to trap the enzyme in a stable form to allow for study by X-ray 

crystallography.  

 The second part included inhibitory studies on LL-DAP-AT. Initially, a 

HTS approach was used to explore potential inhibitors to the target enzyme. After 

identifying lead compounds and potential pharmacophores, structure-activity 

relationship (SAR) studies of the hits were performed.  
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1.3 Results and discussion 

1.3.1 Expression and purification of LL-DAP-AT 

 The cloning, overexpression, and purification of LL-DAP-AT was done by 

Dr. Marco J. van Belkum and Dr. Matthew D. Clay in our group.40 The sequence 

of LL-DAP-AT from A. thaliana was used and the gene was optimized for 

bacterial codon usage. The vector pQE60 was used to overexpress LL-DAP-AT 

with a C-terminal hexa-histidine tag in E. coli at 25 °C. In a typical purification 

process, 5-10 mg of active LL-DAP-AT can be obtained from 1 L of culture.  

 The LL-DAP-AT from Chlamydia trachomatis was cloned, expressed, and 

purified in a very similar manner as the A. thaliana enzyme, also done by Dr. 

Marco J. van Belkum and Dr. Matthew D. Clay in our group.43 

1.3.2 X-ray crystallographic studies on LL-DAP-AT 

1.3.2.1 First crystal structure of LL-DAP-AT from Arabidopsis thaliana 

 The first X-ray crystal structure of LL-DAP-AT from A. thaliana was 

obtained in collaboration with the research group of Dr. Michael James in the 

Department of Biochemistry at the University of Alberta.40 The majority of the 

crystallization and crystal analysis was done by Dr. Nobuhiko Watanabe in the 

James group. The detailed crystallographic information can be found in a research 

paper published in the Journal of Molecular Biology in 2007.40 In this section, 

only the overall significance of the crystallographic work will be discussed.  

 The overall structure of LL-DAP-AT is shown in Figure 1-23. The enzyme 

is a homodimer, and the two subunits are related by a non-crystallographic 2-fold 
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axis. Upon analysis of the crystal structure, LL-DAP-AT was found to belong to 

the type I fold PLP-dependent aminotransferases.109, 110 The two subunits interact 

tightly to form two active sites in the interfacial area, and each of the active sites 

is formed by residues from both subunits. In general, a large interacting area 

between the two subunits is expected for type I fold PLP-dependent 

aminotransferases,109 and LL-DAP-AT is no exception. 21% of the total solvent 

accessible surface is involved in subunit interactions.40 Within the interfacial 

surface, 65% of residues are non-polar and the remaining 35% of residues are 

polar, which indicates that the monomers interact mainly through hydrophobic 

interactions.40 However, electrostatic interactions also play a significant role in 

the dimer interactions. In total, 54 hydrogen bonds and 15 salt bridges are 

observed in the crystal structure.40 Furthermore, the N-terminal “arm” also 

contributes significantly to the dimer stability, forming 14 hydrogen bonds and 

two salt bridges with the neighbouring subunit.40  
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Figure 1-23. Overall structure of the LL-DAP-AT homodimer in a cartoon 
representation. Subunit A is labelled in blue and B is labelled in yellow. PLP, 
sulfate, and glycerol are shown in stick form40 

 

 This X-ray crystallographic study confirmed that LL-DAP-AT is a PLP-

dependent aminotransferase,40 which had been proposed in earlier studies based 

on gene sequencing.24 Stereo diagrams of the PLP binding site are shown in 

Figure 1-24.40  
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Figure 1-24. The stereo diagram of PLP binding site of LL-DAP-AT. The active 
site residues’ side chains, PLP, and a sulfate ion are shown in stick form, the 
residues coloured in grey are from the neighbouring subunit, the red spheres 
represent water molecules, and the hydrogen bonds are shown as yellow dotted 
lines. This picture was adopted from Watanabe et al.40 

 

As shown in the active site diagram, the PLP molecule is extensively bound 

in the active site by hydrogen bonds and salt bridges, in addition to the aromatic 

π-stacking interaction between the pyridine ring of PLP and Tyr152. The 

hydroxyl group of PLP forms hydrogen bonds to Asn209, Tyr240, and the sulfate 

ion. The side chain carboxylate of Asp237 forms a hydrogen bond to the 

positively charged nitrogen in the pyridinium ring of PLP. Furthermore, the 

phosphate moiety of PLP interacts with residues in the active site via hydrogen 

bonds (one water molecule, Ala128, Lys129, Ser269, Tyr94*, and Asn309*) and 

a salt bridge to Arg278. Notably, Tyr94* and Asn309* are from the neighbouring 

subunit. The sulfate ion (from the buffer used in crystallization) shown in yellow 

is bound by a salt bridge to Arg404, in addition to hydrogen bonds with several 

residues and two water molecules. The sulfate ion is likely mimicking an LL-
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DAP-AT substrate, either DAP or glutamate, which will be discussed in later 

sections of this thesis.  

 Interestingly, the PLP molecule was expected to form an internal aldimine 

with Lys270. However, the covalent bond of the Schiff base is not observed in the 

crystal structure. A potential reason is that the high dosage of radiation could 

damage the Schiff base imine bond as has been seen previously.111 Nevertheless, 

the side chain amino group of Lys270 is pointing towards the C4′ position of PLP, 

which suggests the existence of a formal imine bond.  

1.3.2.2 Mechanism of catalysis of LL-DAP-AT from A. thaliana 

 In order to study the mechanism of this enzymatic transamination reaction, 

an X-ray crystallographic approach was used. As confirmed in the earlier study,40 

this transamination reaction is a PLP-dependent process, and it has been 

suggested that the enzyme uses glutamate as an amino donor.24 To trap the 

enzyme during catalysis, a substrate mimic was used.  

 The typical reaction mechanism of PLP-dependent transamination 

reactions is shown in Figure 1-25. Initially, PLP forms an internal aldimine (81) 

with a lysine residue in the active site of the aminotransferase. Upon binding with 

the amino donor, normally L-glutamate, L-aspartic acid, or L-alanine, an external 

aldimine (82) is formed. Proton transfer leads to another imine intermediate (83), 

followed by hydrolysis, which forms pyridoxamine-5′-phosphate (PMP, 84) with 

the release of the keto side product (e.g., α-ketoglutarate). Upon binding of the 

substrates, which acts as an amino acceptor, PMP attacks the substrate to form 

another imine intermediate (85). Tautomerization gives the external aldimine 86. 
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After transimination, the internal aldimine is formed again with the release of the 

amino product.  

 

 

Figure 1-25. Typical proposed mechanism of PLP-dependent transamination 
reactions 

 

 With this knowledge of the transamination reaction mechanism, several 

analogues that mimic intermediates were designed and prepared by former 

postdoctoral fellow in our group, Dr. Matthew D. Clay.112 As mentioned 

previously, L-glutamate has to bind to the enzyme and react with the internal PLP-
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enzyme aldimine (81) to form the first external aldimine (87). To observe binding, 

a mimic of this intermediate may be used to trap the enzyme. Reducing the imine 

bond of 87 to a C-N single bond, compound 88 would closely resemble 

intermediate 87 while preventing any further transformation. Similarly, to mimic 

the external PLP-LL-DAP aldimine 89, analogue 90 was prepared. Another 

interesting question is whether THDP or its ring open form is the true substrate of 

this enzymatic transamination process. Assuming that THDP is the true substrate, 

then PMP should react directly with THDP to form adduct 91. Removing the ring 

nitrogen, as in analogue 92, closely resembles the adduct 91, while preventing any 

further transformations.  

 

 

Figure 1-26. a) Substrate-PLP adducts; b) Analogues of substrate-PLP adducts 
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 These analogues (88, 90, and 92) were initially prepared by Dr. Matthew 

D. Clay,112 and 88 and 90 were resynthesized for the present study. Detailed 

procedures for the preparation of 88 and 90 by reductive amination are described 

in Chapter 3.  

 After synthesis of intermediate analogues, they were incorporated into the 

enzyme. First, PLP was removed from the enzyme by addition of 

phenylhydrazine, followed by dialysis to obtain the apo-enzyme. The analogues 

were then introduced to the apo-enzyme and purified by dialysis. Following 

incorporation of the analogues, the enzyme was crystallized by the hanging-drop 

vapour-diffusion method. Enzyme crystals were obtained and analyzed by Dr. 

Nobuhiko Watanabe in the group of Dr. Michael James.112 Crystal structures of 

LL-DAP-AT bound to the analogues PLP-Glu (88) and PLP-DAP (90) were 

obtained. No significant conformational changes of the enzyme upon binding of 

the analogues were observed, which indicates that the analogues indeed resemble 

the intermediates. In the case of analogue 92, only the apo-enzyme was 

crystallized suggesting that analogue 92 is unable to bind to the enzyme active 

site.  

1.3.2.2.1 Crystallographic study of the PLP-Glu analogue bound enzyme 

 The active site structure of PLP-Glu analogue (88) bound to LL-DAP-AT 

is shown in Figure 1-27. Compared to the native LL-DAP-AT structure, the PLP 

portion of the analogue is essentially bound in the active site in the same way as 

free PLP is bound. The α-carboxylate group of glutamate occupies the position 

where the sulfate ion is located in the native enzyme structure. The α-carboxylate 
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group of glutamate is bound to the active site primarily through a salt bridge to 

the guanidinium group of Arg404, in addition to hydrogen bonds with Asn209, 

and Gly64. The distal carboxylate of the glutamate is recognized by three well-

conserved residues, Tyr37, Tyr152, and Lys129, through hydrogen bonding. 

Lys270 points towards the reduced imine bond. As the imine bond has been 

reduced to a single bond, the enzyme is unable to catalyze the transamination.  

 Although binding of intermediate analogue 88 did not result in any 

significant backbone conformational changes, there were some conformational 

changes in the active site residues to accommodate the glutamate moiety. An 

overlaid diagram of the native enzyme and the enzyme-bound PLP-Glu analogue 

is shown in Figure 1-27b. Tyrosine residues Tyr152 and Tyr364 show the most 

significant conformational changes. Tyr152 shifts toward the active site to form a 

hydrogen bond with the distal carboxylate group of the glutamate. Movement also 

allows for a better aromatic π-stacking interaction between the phenol group of 

Tyr152 and the pyridine ring of PLP. Tyr364 was pointing away from the active 

site in the native enzyme structure, but in the bound structure, the side chain shifts 

about 90° toward the active site.  

 



41 

 

Figure 1-27. The stereo diagram of the structures of the PLP-Glu analogue bound 
to LL-DAP-AT. a) Active site residues and analogue 88 are shown in stick form. 
Residues from subunit A and B, and analogue 88 are coloured in green, grey, and 
yellow, respectively. b) Overlaid structure, residues from the native enzyme and 
the enzyme bound to the PLP-Glu analogue are coloured in yellow and light blue, 
respectively112 

 

a) 

b) 
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1.3.2.2.2 Crystallographic studies of LL-DAP-AT bound to the PLP-DAP 

analogue  

 The PLP-DAP analogue 90 bound to the enzyme active site in a very 

similar fashion as PLP-Glu (Figure 1-28). The PLP portion of the analogue is 

recognized in a nearly identical way as is the PLP-Glu analogue complex. 

Interestingly, carboxylate groups are also recognized in a very similar way, even 

though the backbone of DAP is two carbon atoms longer than glutamate. The α-

carboxylate of the DAP moiety binds in nearly the same way as the α-carboxylate 

of the PLP-Glu analogue, via a salt bridge to Arg404 and hydrogen bonds to 

Asn209 and Gly64. The ε-carboxylate is stabilized by hydrogen bonds to Tyr37, 

Tyr152, and Lys129. The ε-amino group is stereospecifically held in place by a 

direct hydrogen bond to Asn309*, as well as water mediated hydrogen bonds to 

Glu97*, Gly95*, and Asn309*. The LL-DAP-AT from A. thaliana is 

stereospecific for LL-DAP, while the corresponding enzyme from Chlamydia, can 

also accept meso-DAP as substrate. This stereospecific recognition is partly 

accomplished by the side chain Tyr94*, which is located near the ε-amino group 

to provide additional stability through an electrostatic interaction between the 

positively charged amino group of DAP and the aromatic ring of Tyr94*. Such an 

interaction would be unfavourable in the case of meso-DAP.  

 In Figure 1-28b, an overlaid diagram of native LL-DAP-AT, LL-DAP-AT 

bound to the PLP-Glu analogue, and LL-DAP-AT bound to the PLP-DAP 

analogue is shown. The structure of LL-DAP-AT bound to the PLP-Glu analogue 

and the PLP-DAP analogue are very similar, and both analogues adopt a V-



43 

shaped backbone configuration to accommodate the analogues into the active site. 

The only difference is the side chain of Ile63, which shifts away from the active 

site in the PLP-DAP bound enzyme, resulting in a larger pocket to accommodate 

the DAP moiety.  

 

Figure 1-28. The stereo diagram of the structure of the PLP-DAP analogue bound 
to LL-DAP-AT. a) Active site residues and the PLP-DAP analogue are shown in 
stick form. Residues from subunit A, B, and the analogue are coloured green, 
grey, and yellow, respectively. b) Overlaid structure; residues from native 
enzyme, PLP-Glu analogue, and PLP-DAP bound enzymes are coloured in 
yellow, light blue, and emerald green, respectively112 

 

a) 

b) 
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1.3.2.2.3 Crystallographic studies of mutant enzymes (K270N and K270Q) 

 The intermediate analogues 88 and 90 are stable towards enzymatic 

transformations and closely resemble the binding properties of the intermediates. 

However, they are not fully representative of the true intermediate in the 

enzymatic process. For instance, the imine bonds have been reduced, which leads 

to a greater mobility of the molecule, and may cause conformational changes in 

the active site. To address this, a mutagenesis approach was used to obtain a 

catalytically inactive enzyme. As mentioned previously, Lys270 was believed to 

be the residue that forms an internal aldimine with PLP. This lysine residue was 

mutated to asparagine or glutamine. With these mutants, natural substrates 

glutamate and LL-DAP can form the true external aldimine with PLP (87 and 89) 

in the active site. Following crystallization, structures were obtained of the 

K270N mutant with PLP (holo-enzyme) and glutamate. Additionally, crystals of 

the K270Q mutant bound to LL-DAP and glutamate were also obtained. The 

crystallization and crystal structure analysis was again performed by Dr. 

Nobuhiko Watanabe.112 Examining the crystal structures, the mutant enzymes are 

shown to be very structurally similar to the wild-type enzyme. The structure of the 

K270N mutant complexed with glutamate and LL-DAP is shown in Figure 1-29a, 

with the structure of the external aldimine shown in Figure 1-29b. The binding 

properties of natural substrates are shown to be very similar to that of substrate 

analogues, despite the replacement of Lys270 with an asparagine residue and the 

double bond between the C4′ of PLP and the nitrogen of the α-amino group of 

glutamate or LL-DAP.  
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Figure 1-29. K270N mutant of LL-DAP-AT complexed with Glu (left) and LL-
DAP (right). a) Active site structure of K270N complexed to Glu (left) and LL-
DAP (right); b) Structures of the true external aldimines  

  

 Based on X-ray crystallography, the proposed mechanism of LL-DAP-AT 

most likely follows the general mechanism shown in Figure 1-25. Specifically, 

PLP first forms an internal aldimine with Lys270, glutamate then forms an 

external aldimine 87 with PLP, which then forms PMP (84) following release of 

α-ketoglutarate (2). Substrate THDP is then likely to be hydrolyzed to give the 

open form, which then binds to the enzyme and reacts with PMP. Tautomerization 

gives the other external aldimine 89. Transimination with the active site Lys270 

reforms the internal aldimine with the release of the product LL-DAP-AT, 

allowing for the catalytic cycle to continue.  
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1.3.2.3 X-ray crystallographic study of LL-DAP-AT from Chlamydia 

trachomatis 

 In a separate study, LL-DAP-AT from Chlamydia trachomatis was cloned, 

overexpressed, and purified by our group. The isolation of the enzyme was done 

by Dr. Marco J. van Belkum and Dr. Matthew D. Clay.43 The crystallization and 

analysis of the diffraction pattern were done by Dr. Nobuhiko Watanabe. A 

similar approach was used, and we prepared substrate analogues and attempted to 

incorporate them into the enzyme. At this point, only the apo-enzyme and holo-

enzyme have been crystallized.  

 Based on comparison of the primary sequences of the Arabidopsis enzyme 

with the Chlamydia enzyme, more than 40% of their amino acid residues are 

identical. The catalytic mechanism and the active site residues are highly 

conserved between these enzymes. However, the substrate recognition appears to 

be somewhat different.42 The Arabidopsis enzyme has very strict substrate 

specificity; in the reverse reaction, only LL-DAP can be recognized as an amino 

donor. When meso-DAP is fed to the enzyme, no turnover is observed. In 

contrast, the Chlamydia enzyme is able to catalyze the transamination reaction 

using meso-DAP as a substrate almost as efficiently as LL-DAP.42, 43 To explore 

this difference in substrate recognition between the two enzymes, X-ray 

crystallography was applied.  

 A stereo diagram of the crystal structure of apo-LL-DAP-AT from 

Chlamydia trachomatis is shown in Figure 1-30. The enzyme has a similar three-

dimensional structure compared to the Arabidopsis LL-DAP-AT, with both 
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existing as homodimers. In each monomer, there is a large domain (LD) and a 

small domain (SD). The two LDs make up the PLP binding moiety, which forms 

two active sites for catalysis of the transamination reaction. This enzyme is also a 

typical type I fold PLP-dependent aminotransferase.43  

 

 

Figure 1-30. Stereo diagram of apo-LL-DAP-AT from Chlamydia trachomatis. 
The large domains (LDs) of each subunit are coloured blue and yellow, and the 
small domains (SDs) are coloured grey and green43  

 

 In order to better understand the PLP-binding properties, PLP-bound holo-

LL-DAP-AT was also crystallized. The active site structure is shown in Figure 

1-31. In this crystal structure, it is clear that PLP is bound to Lys236 through a 

covalent bond via a Schiff base linkage.43 Very similar to Arabidopsis LL-DAP-

AT, the pyridine ring of PLP is stablized by aromatic stacking with Tyr128 and 

hydrogen bonding to Tyr205, Asn174, and Asp202. The phosphate group of PLP 

is stabilized by hydrogen-bonding interactions with Ser233, Ser235, Asn275*, 

Ala104, and Lys105. There is a significant difference in the PLP binding in 
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Arabidopsis LL-DAP-AT. In this case, phosphate moiety forms a salt bridge with 

the guanidinium group of Arg278.40 In the Chlamydia enzyme, Arg244 is not 

pointing toward the phosphate group of PLP. Instead, it forms hydrogen bonds 

with the neighbouring subunit residue Asn275*, which provides a contribution to 

the dimeric interactions between the subunits.43  

 

 

Figure 1-31. Stereo diagram of the structure of the PLP binding site of Chlamydia 
LL-DAP-AT43 

 

 As mentioned previously, the substrate specificity for Chlamydia LL-DAP-

AT is broader than that of the Arabidopsis enzyme. Overlap of the structures of 

the two enzymes reveals a potential reason for this disparity in substrate 

specificity. Each of the domains are aligned individually, and the superposition of 

the domain structures between the two enzymes are shown in Figure 1-32. By 

comparison, each of the domains is well conserved in the secondary structural 

elements.43  
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Figure 1-32. The domain alignment structures between Chlamydia and 
Arabidopsis LL-DAP-AT. a) Superposition of the large domains (LDs) 
(Chlamydia enzyme in orange; Arabidopsis enzyme in grey); b) Superposition of 
the small domains (SDs) (Chlamydia enzyme in orange; Arabidopsis enzyme in 
grey). The flexible loops (A, B, and C) of Chlamydia LL-DAP-AT are coloured 
magenta43  

 

 The entire structures of the two enzymes were then aligned to compare the 

overall geometries of the enzymes. In order to obtain the differences in the 
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relative positions of each domain, only the large domain (LD) is used for the 

alignment of the entire enzyme. As shown in Figure 1-33a, after the LDs are 

aligned, there is an average 9.5 Å difference between the small domains (SDs) of 

the two enzymes. The Chlamydia LL-DAP-AT is shifted away from the dimer 

interface and adopts an open conformation relative to the closed conformation of 

LL-DAP-AT from A. thaliana. This movement of the SD appears to affect the 

conformation of the active site. As shown in Figure 1-33b, the substrate binding 

residues are well conserved between the two enzymes. However, the residues that 

coordinate to the α-carboxylate group of the DAP substrate, Asn174 and Arg369, 

have moved approximately 2.0 Å from the active site. Moreover, Tyr128 and 

Tyr14 (disordered), which are involved in binding to the distal carboxylate group 

of DAP show different conformations as well.43  

 In addition, the open conformation of the overall structure has also caused 

disorder in the active site loops (loops A, B, and C). Since these loops are directly 

involved in the substrate binding, any conformational changes are significant with 

regards to the substrate recognition.43  
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Figure 1-33. The superposition of the structures of LL-DAP-AT from C. 
trachomatis and A. thaliana. a) Displacement of the SD (9.5 Å) of LL-DAP-AT 
from C. trachomatis is indicated by the black arrow. The LDs of the Chlamydia 
and Arabidopsis enzymes are coloured gray and orange, respectively. The SDs of 
the Chlamydia and Arabidopsis enzymes are coloured magenta and green, 
respectively. b) The overlaid active site structures of Chlamydia (green) and 
Arabidopsis (yellow) enzymes. Residue names in brackets are from Arabidopsis 
LL-DAP-AT. Residues from loops A and B of the Chlamydia enzyme are not 
shown, as they are disordered43 

 

Based on this structural evidence, LL-DAP-AT from C. trachomatis adopts 

an open conformation. Upon binding with the substrate, the enzyme undergoes a 
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significant closing movement. As the SD closes toward the active site, residues 

such as Asn174 and Arg369 move closer to the substrate and become positioned 

for the correct coordination to substrates. A similar domain opening/closing 

mechanism has been observed in several other type I fold PLP-dependent 

aminotransferases, such as aspartate aminotransferase (AspAT).113-115 Such large 

movements (9.5 Å) observed in Chlamydia LL-DAP-AT are rare when compared 

to the other similar type I fold PLP-dependent aminotransferase, which move 

approximately 3.0-4.0 Å.116 This large flexibility can potentially explain the larger 

substrate specificity of LL-DAP-AT from C. trachomatis. In the future, studies of 

the closed conformation of Chlamydia LL-DAP-AT with various substrates, or 

characterizing the LL-DAP-AT from different species, may provide better 

understanding of the mechanism of this novel aminotransferase.  

1.3.3 High-throughput screening of a 29,201 compound library against LL-

DAP-AT 

 As discussed previously, a high-throughput screening (HTS) approach was 

initially used for the discovery of new inhibitors of LL-DAP-AT. Our inhibitor 

screening and structure-activity relationship (SAR) studies are based on LL-DAP-

AT from A. thaliana. Although the Chlamydia enzyme has broader substrate 

specificity than the Arabidopsis enzyme, the plant enzyme still resembles the 

bacterial enzyme in term of inhibitory studies. Studies on the Arabidopsis enzyme 

may act as a model for the development of novel antibiotics for Chlamydia. 

Furthermore, potent inhibitors against Arabidopsis LL-DAP-AT may be used as 

herbicides.  
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 In this study,60 a library of 29,201 accessible drug-like compounds were 

robotically screened against LL-DAP-AT for inhibition. IC50 determinations have 

been done for the best 46 inhibitors. Finally, preliminary SAR studies were done 

based on modification of two lead structures, an arylhydrazide and a rhodanine.  

 The library of compounds was obtained from ChemBridge Corporation. A 

known assay based on o-aminobenzaldehyde (80)24 (Figure 1-22) was used for 

the screening and SAR studies. A brief description of this assay was mentioned in 

previous sections of this thesis. Detailed experimental procedures are provided in 

Chapter 3. In the robotic screening, the percentage inhibition was determined at a 

10 µM level for all of the compounds in the library (an estimated molecular 

weight of 500 g/mol was assumed for each compound when calculating the 

concentration in this screening). 

 Following the robotic screening of the 29,201 candidates, the top 46 

compounds were selected for further manual testing and IC50 determination. 

These 46 compounds showed inhibition greater then 13% at 10 µM by both 

robotic and manual testing. The results of the robotic screening and manual 

testing of these compounds are presented in Table 1-1. 
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Table 1-1. Inhibition results of the top 46 compounds against LL-DAP-AT from 
HTS study 

Entry Structure % Inhibitiona/ 
IC50 (µM)b Entry Structure % Inhibitiona/ 

IC50 (µM)b 
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107 

 

20 

45c 
108 

 

17 

37 

109 

 

14 

65 
110 

 

18 

52 

111 

 

16 

>200 
112 

 

13 

>200 

113 

 

28 

99 
114 

 

45 

33d 

115 

 

35 

75 
116 

 

33 

69 

117 

 

48 

121 
118 

 

20 

62 

119 

 

15 

25c 
120 

 

16 

164 

121 

 

17 

>200 
122 

 

33 

5c 

N

N

O

OO

N
N

HO

N
H

N

O

OO

N

O
HO

N
H

N

O

OO

N Cl

O
HO

N
H

N

O

OO

N

O
N
H

F

N

NH

O

OO
O

O

O

N

N

O

OO

N

O2N

N
H

NH

O

OO

N

O

N
H

N

O

SO

N

O
HN

N
H

N

O

SO

N

N
H

N

O

SO

N

O2N

N
H

NH

O

SO

O

O

Cl

N
H

N

O

SO

N O

N
H

NH

O

SO

N

N
H

N

O

SO

HN

N
H

N

O

SO

O

Br

N
H

S

O

NH
H2N

O O



56 

a Robotic screening at inhibitor concentration of 10 µM 
b Manually tested for IC50 value 
c Time-independent inhibitor  
d Time-dependent inhibitor  
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 Within these 46 compounds, the best inhibitor was compound 122, with an 

IC50 value of 5 µM, which showed time-independent inhibition. In addition, these 

46 compounds can be organized into four different groups. The first group 

(compounds 93 – 105) contains a rhodanine core structure. Compounds 106 – 113 

feature a barbiturate core structure, whereas compounds 114 – 121 are 

thiobarbiturate derivatives. The remaining compounds do not belong to any of the 

previous categories, but exhibit reasonable activity against LL-DAP-AT. The large 

number of rhodanine, barbiturate, and thiobarbiturate structures are suggestive of 

potential pharmacophores (Figure 1-34). For instance, within the 29,201 

compounds, approximately 1,000 compounds (~ 3 %) possessed a barbiturate or 

thiobarbiturate ring, whereas 16 of the top 46 compounds (~ 35 %) contained one 

of these groups.  

 

 

Figure 1-34. The three potential pharmacophore structures identified from the 
HTS 

 

 Following the identification of these potential pharmacophores, one or two 

compounds were selected from each of the four groups to test the time 

dependence of inhibition. To distinguish time-dependent from time-independent 
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time before adding substrate and measuring activity. Irreversible or slow-binding 

inhibitors will inactivate enzyme more if they are kept together for a longer time. 

Rapid reversible inhibitors will inhibit to the same level, regardless of the length 

of preincubation time. Compound 101, a rhodanine derivative, showed time-

independent inhibition, suggesting that the type of inhibition is one of the 

following: competitive, uncompetitive, or non-competitive inhibition. Compound 

107, a barbiturate derivative, also showed time-independent inhibition. 

Compound 114, a thiobarbiturate derivative, showed time-dependent inhibition, 

suggesting that the type of inhibition belongs to one of the following categories: 

affinity label, mechanism-based irreversible inactivation, or slow-binding 

inhibition. Another thiobarbiturate derivative, compound 119, showed time-

independent inhibition. Within the remaining candidates, compounds 122 and 128 

were selected, and both are shown to be time-independent inhibitiors.  

1.3.4 SAR studies on the lead compounds 

1.3.4.1 Aryl-hydrazide derivatives as inhibitors of LL-DAP-AT 

 As mentioned previously compound 122 was found to be active, with an 

IC50 of 5 µM, and showed reversible inhibition. Subsequent SAR studies on this 

sulfonamide-arylhydrazide compound were performed. Based on the structure of 

the lead compound, there are several moieties that may be amenable to 

modification, including the hydrazide, the main core aryl, and the aryl 

sulfonamide groups. The modification of each moiety will be described below. 
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1.3.4.1.1 Modifications of hydrazide moiety of the lead arylhydrazide 

 The hydrazide moiety is an alkaline nucleophile, which could readily react 

with the PLP cofactor of LL-DAP-AT. Initially, two analogues were designed and 

prepared as shown in Scheme 1-1. Commercially available 3-amino-2-naphthoic 

acid (139) was used as starting material to prepare the analogues. Reaction with 

benzenesulfonyl chloride (140) yields sulfonamide acid intermediate 141. The 

activation of the carboxylic acid with oxalyl chloride (142) generates the acid 

chloride in situ, which further reacts with the hydrazine 143 to give analogue 144. 

In analogue 144, the hydrazide moiety was masked by a six-membered ring, 

which decreases the nucleophilicity while retaining the basicity of the terminal 

nitrogen atom. Similarly, activation of the carboxylic acid of intermediate 141 

with carbonyl diimidazole (145) and coupling with acetyl hydrazide yields 

analogue 147. In analogue 147, the acetylated terminal amino group leads to 

decreased nucleophilicity and basicity at the terminal nitrogen.  
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Scheme 1-1. The preparation of hydrazide analogues (144 and 147) of the lead 
arylhydrazide 122 

 

 Upon testing of both analogues (144 and 147) against LL-DAP-AT, no 

enzyme inhibition was observed. These results suggest that the free terminal of 

the hydrazide moiety may be essential for inhibition of LL-DAP-AT. A 

preliminary mode of action study has also been done regarding the hydrazide 

moiety; the results will be discussed in a later section of this thesis.  
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sulfonamide carboxylic acid was coupled with hydrazine using carbonyl 

diimidazole as a coupling reagent to form the product.  

   

Scheme 1-2. The general synthetic route for preparation of hydrazide analogues  

 

 Analogue 148, lacking the aromatic system, was devoid of inhibitory 

activity against the enzyme. Furthermore, L- and D-proline derivatives (149 and 
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NH2

OH

O

R
S

Cl

O O

Na2CO3

H2O
34-94%

i)

DMF

ii) H2N NH2

DMF

n

n = 0, 1

NH

OH

O

n

SO O

R

NH

N
H

O

n

SO O

R

NH2

32-88%

148a-163a 148-163

carbonyl
diimidazole



62 

Table 1-2. The inhibitory effects of the aryl-hydrazide analogues obtained from 
modification of naphthalene moiety against LL-DAP-AT 

Entry Structures IC50/µM Entry Structures IC50/µM 

122 

 

5 148 

 

No 
inhibition 

149 

 

No 
inhibition 150 

 

No 
inhibition 

151 

 

13.2 152 

 

4.1 

153 

 

4.5 154 

 

20.7 

155 

 

2.5 156 

 

5.9 

157 

 

7.9 158 

 

3.8 
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compound 122, implying that substitution is required on the phenyl ring in order 

to retain activity. Electronic effects were also considered, and compounds bearing 
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activity against the enzyme, suggesting that electron density in the aromatic ring 

may not play a significant role in the inhibition. Moreover, these two analogues 

showed slightly better activity than the lead compound, which supports the 

hypothesis mentioned above that substitution is required on the phenyl ring. The 

dimethoxy-substituted analogue 154 showed approximately one magnitude less 

inhibition than either the lead compound 122 or the mono-methoxy-substituted 

analogue 153. The extra methoxy group para to the sulfonamide moiety may be 

hindering enzyme-inhibitor interactions through steric effects. Since substitution 

is necessary on the phenyl ring and the size of the substituent cannot be too large, 

monofluoro- and difluoro-substituted analogues 155 and 156 were prepared and 

evaluated. Difluoro-substituted analogue 156 showed similar inhibition compared 

to the lead compound 122, whereas the monofluoro-substituted analogue 155 

showed a two-fold improvement with respect to inhibition by the lead compound 

122, and is the best inhibitor prepared in the current study. In addition, para-

methyl-hydrazide and para-trifluoromethyl-hydrazide analogues 157 and 158 

were tested. The trifluoromethyl group enhances the activity compared to the 

methyl analogue, indicating that an electron-withdrawing group on the benzene 

ring para to the hydrazide moiety can be beneficial for the inhibitory activity. 

1.3.4.1.3 Modifications of the phenylsulfonamide moiety of the lead 

arylhydrazide 

 Since the para-fluoro-hydrazide analogue 155 showed the best inhibition 

in the series of aromatic ring modifications, the SAR studies of the sulfonamide 

moiety were based on the new lead compound 155 (Table 1-3). At first, para-
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chloro 159 and para-methoxy benzenesulfonamide 160 were prepared to examine 

any electronic effects. Both analogues 159 and 160 showed slightly worse 

inhibition than compound 155. An electron-donating group at the para position 

appears to give improved activity of the benzenesulfonamide compared with an 

electron-withdrawing group. Moreover, para-fluorobenzenesulfonamide 161 and 

para-toluenesulfonamide 162 were prepared and tested against the enzyme. Both 

of these analogues were reasonable inhibitors, but were not as effective as the 

analogue with an unsubstituted phenyl ring. Finally, the methanesulfonamide 

analogue 163 was synthesized and tested. Surprisingly, this analogue did not 

show any inhibition up to 200 µM. This result indicates that an aromatic system 

connected to the sulfonyl group is necessary for inhibition. 

 

Table 1-3. The inhibitory effects of the aryl-hydrazide analogues obtained from 
modification of phenylsulfonamide moiety against LL-DAP-AT 

Entry Structures IC50/µM Entry Structures IC50/µM 
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1.3.4.1.4 Preliminary study on the mode of action of the aryl-hydrazide 

derivatives as inhibitors to LL-DAP-AT 

 It has been shown that if the terminal amino group of the hydrazide moiety 

is masked by a ring or an acetyl group, the corresponding analogue loses activity 

against the enzyme, suggesting that a free hydrazide group is essential for 

inhibition.60 Although the lead compound 122 shows reversible time-independent 

inhibition, the free hydrazide moiety is a strong nucleophile and could react with 

the enzyme cofactor, PLP. To determine whether or not the hydrazide inhibitor 

reacts with PLP, analogue 155 was mixed with one molar equivalent of PLP, in a 

1:1 mixture of deuterated water and deuterated methanol at room temperature. 1H- 

and 13C-NMR characterization of the mixture suggested the presence of the 

proposed imine adduct 164 (Scheme 1-3). The imine adduct was further isolated, 

and its identity was confirmed by high-resolution electrospray mass-spectrometry 

(HR-ESI-MS). These results indicate that, as expected, the hydrazide moiety 

reacts with PLP to form an imine (hydrazone) adduct. 

 

   

Scheme 1-3. Hydrazone formation between the hydrazide group of inhibitor 155 
and the aldehyde group of PLP 
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 To test whether the free hydrazide is the only requirement for inhibition, a 

clinically used anti-tuberculosis drug, isoniazid, was tested against LL-DAP-AT 

for inhibitory activity. Isoniazid shows no inhibition up to 200 µM against LL-

DAP-AT. Since isoniazid (165) has a hydrazide moiety with a free terminus, the 

hydrazone adduct is readily formed between isoniazid and PLP in the absence of 

enzyme (Scheme 1-4). If the formation of the PLP-hydrazone adduct or 

sequestration of the co-factor was the main requirement for enzyme inhibition, 

then isoniazid should show similar activity against LL-DAP-AT; this is not 

observed. Similarly, several other hydrazide analogues, such as 148, 149, 150 and 

163, did not show inhibition against the enzyme, at concentrations up to 200 µM. 

The hydrazone adduct may form only after the analogues enter the enzyme active 

site, which contains PLP bound as an imine to Lys270.40 Hydrazone formation is 

clearly not the only factor required for enzyme inhibition. Additional interactions 

between the inhibitor and enzyme active site are most likely required. 

Furthermore, since hydrazone formation is a reversible process by transimination 

whose rate can be catalyzed by other nucleophilic groups,117, 118 active 

compounds, such as lead compound 122, act as reversible inhibitors. 
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Scheme 1-4. Hydrazone formation between the hydrazine group of isoniazid and 
the aldehyde group of PLP 

 

 Finally, the preformed adduct 164 was also tested for inhibition against 

LL-DAP-AT. However, this adduct only showed 40% inhibition at 100 µM. In 

contrast, the free hydrazide analogue 155 displayed ~98% inhibition at 100 µM. 

Although it is not possible to fully prevent the hydrolysis of 164 to 155 in the 

enzyme assay, this preliminary result suggests that cofactor exchange is relatively 

slow.117, 118 The detailed mechanism of inhibition of the hydrazide inhibitors to 

LL-DAP-AT would be benefit from further study through X-ray crystallography 

and detailed enzyme kinetics. 
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barbiturate derivatives are likely to be very good Michael acceptors and may react 

with enzymes in a non-specific way, potentially leading to mammalian toxicity. 

From the time-dependence test on the selected inhibitors, one barbiturate-derived 

compound (107) showed time-independent inhibition. Two thiobarbiturate-

derived compounds (114 and 119) were also tested, with one (114) showing time-

dependent inhibition, whereas the other (119) showed time-independent 

inhibition. Such a time-dependent inhibitor (114) may be reacting with enzyme or 

may be a slow-binding inhibitor. Thus, we chose to examine the rhodanine-

derived compounds, to avoid complications arising from the ability of the 

barbiturate-based compounds to behave as Michael acceptors.  

 Of the top 46 hits in the screening study, compounds 93 to 105 are 

rhodanine-derived inhibitors. There are no obvious functional groups expected to 

be reactive toward PLP or the enzyme, so these compounds are more likely to be 

time-independent inhibitors. The inhibitory activity of these compounds is not 

particularly high and trends in SAR are unclear. Thus, the top two inhibitors, 100 

and 101, with IC50 values of 46 and 41 µM, respectively, were selected for further 

SAR investigation. The synthesis of analogues followed a general route as shown 

in Scheme 1-5. Various commercially available rhodanine starting materials 167 

were reacted with different aromatic aldehydes 168 under refluxing conditions to 

form analogues 169 through a Knoevenagel condensation.  

 



69 

  

Scheme 1-5. General synthetic route for rhodanine-derived inhibitors for LL-
DAP-AT 

 

1.3.4.2.1 Inhibitory studies of rhodanine-based analogues against LL-DAP-AT 

 The first series of analogues were based on rhodanine analogue 167 where 
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Table 1-4. Inhibitory effects of N-unsubstituted rhodanine analogues against LL-
DAP-AT 

Entry Structures IC50/µM Entry Structures IC50/µM 

100 

 

46 101 

 

41 

170 

 

No 
inhibition 171 

 

> 200 

172 

 

127 173 

 

142 

174 

 

No 
inhibition 175 

 

No 
inhibition 

176 

 

> 200    
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lacking a large aromatic substituent on the position para to the hydroxyl group on 

the analogue 178 showed no significant inhibitory activity against LL-DAP-AT, 

which suggests that an additional aromatic ring is required for inhibition. 

 

Table 1-5. The inhibitory effect of N-ethyl-rhodanine analogues against LL-DAP-
AT 

Entry Structures IC50/µM Entry Structures IC50/µM 
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~ 200 
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~ 200 182 
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IC50 value of 155 µM.  
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Table 1-6. The inhibitory effects of N-amino-rhodanine analogues against LL-
DAP-AT 

Entry Structures IC50/µM Entry Structures IC50/µM 

183 

 

No 
inhibition 184 

 

155 

185 

 

No 
inhibition    

 

1.3.4.2.4 N-Aminoacetyl-rhodanine based analogues 

Finally, analogues of lead compound 101 were prepared and tested against 

LL-DAP-AT. In the preparation of this series of analogues, an N-aminoacetyl-

rhodanine was used as starting material. The compounds with either an 

unsubstituted or substituted phenyl ring next to the rhodanine moiety did not show 

inhibition, with the exception of compound 187. Compound 187 contained a 

methoxy group para to the rhodanine moiety, and showed very weak activity with 

an IC50 value greater than 200 µM. Compound 189 is an analogue of lead 

compound 101 with a furan ring attached to the rhodanine. Instead of a bromo 

group on the furan ring, a para-nitrophenyl was used. This analogue showed a 

similar level of inhibition as the lead compound with an IC50 value of 73 µM. 

These results indicate that the furan ring may play a role in the inhibitory process. 

Additionally, an electron-withdrawing substituent in the 5-position of the furan 

ring may enhance the inhibitory activity.  
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Table 1-7. The inhibitory effects of N-aminoacetyl-rhodanine analogues against 
LL-DAP-AT 

Entry Structures IC50/µM Entry Structures IC50/µM 

186 

 

No 
inhibition 187 

 

> 200 

188 

 

No 
inhibition 189 

 

73 

 

1.3.4.2.5 Overall analysis of the SAR studies based on rhodanine-based 

analogues 

Based on this rhodanine-based SAR study, no analogues exhibited better 

inhibition than the lead compounds. However, several conclusions can be drawn 

that may prove useful in guiding future studies. Substitution on the nitrogen of the 

rhodanine ring does not appear to have significant effect on the inhibitory potency 

of the compounds, as two of the best analogues (172 and 173) possessed only a 

hydrogen atom on the nitrogen. Furthermore, comparison of analogues in which 

only the substituent on the nitrogen was varied (e.g., [170, 177, 183, 186], [171, 

180, 185, 188], or [173, 179, 184, 187]) does not reveal any significant 

differences. These results imply that the substituent on the rhodanine does not 

dramatically affect the activity. Comparison of analogues in which the substituent 

on the nitrogen was kept the same while varying the substituents on the aromatic 
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ring reveals that an electron-donating group (e.g., methoxy) on the aromatic ring 

enhanced the activity of the inhibitor. This effect is most pronounced for those 

analogues in which the nitrogen either bears a hydrogen atom or an amino group 

(Table 1-4 and Table 1-6). Replacement of the methoxy group with an electron-

withdrawing chlorine atom results in a decrease in inhibitory activity in three of 

the four examples. The location of the substituent also appears to play a role, as 

an electron-donating group (hydroxyl) added to the ortho position (176) decreases 

the inhibition compared to 173, although it is still better than the unsubstituted 

ring.  

1.4 Conclusion and future direction 

 In this work, LL-DAP-AT, a PLP-dependent aminotransferase that 

catalyzes a key transformation in the lysine biosynthetic pathway utilized by 

plants and some bacteria, has been investigated by X-ray crystallography. With 

the results from these studies, a better understanding of this enzyme has been 

gained. This enzyme belongs to the type I fold PLP-dependent aminotransferases 

and uses glutamate as the amino donor. The mechanism of substrate recognition 

has been illustrated, and the open form of THDP was found to be the substrate for 

transamination. Furthermore, both LL-DAP-ATs from Arabidopsis thaliana and 

Chlamydia trachomatis have been studied. Essentially, the two enzymes work in a 

very similar way to catalyze the transamination reaction. However, slight 

structural differences provide the Chlamydia enzyme with a broader substrate 

specificity. In the future, the substrate analogues bound to Chlamydia LL-DAP-AT 

could be studied and may provide further insights toward a better understanding 
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of the substrate specificity of this enzyme. In addition, the study of LL-DAP-AT 

from different species may also provide valuable information to better understand 

this enzyme, and may furnish new insights towards the development of antibiotics 

using the enzyme as a target.  

 Inhibitory studies against LL-DAP-AT have been performed as well. As 

this enzyme is involved in a key transformation in lysine biosynthesis, which is 

absent in mammals but present in plants and bacteria, it may represent an ideal 

target for herbicides and antibiotics. A HTS approach was initially used to 

identify lead compounds. Three potential pharmacophores (barbiturate, 

thiobarbiturate, and rhodanine) were identified based on their prevalence in the 

HTS hits. Using HTS, the best inhibitor was found to be a sulfonamide-

arylhydrazide compound 122 which displays time-independent inhibition with an 

IC50 value of 5 µM. A SAR study based on lead compound 122 has been 

performed. In total, 18 of inhibitors were developed based on lead compound 122, 

five of these analogues showed improved inhibition against LL-DAP-AT. A two-

fold better inhibitor, a para-fluoro-phenylhydrazide 155, was identified with an 

IC50 value of 2.5 µM. Besides the identification of a better inhibitor, other 

valuable trends have been observed that provide insights regarding the SAR of the 

analogues against LL-DAP-AT. Similarly, SAR studies of 20 rhodanine-derived 

analogues were performed. Although this series of analogues did not show 

superior inhibition compared to the lead compounds, some useful trends were 

drawn from this study, which may prove useful for guiding future inhibitor 

development. In the future, X-ray crystallography could be applied to study the 
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enzyme-inhibitor complex, which may then provide a better understanding of the 

inhibitory mechanism and allow for the design of better inhibitors. Similarly, 

detailed enzyme kinetics will provide information on how the inhibitors interact 

with the enzyme and can potentially provide new ideas for the design of 

inhibitors, which may prove crucial in the development of novel antimicrobial or 

herbicidal agents.  
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Chapter 2. Investigation of methods for crystallization of 

small peptides 

2.1 Introduction 

 It is well known that small peptides (< 5 kDa) are difficult to crystallize. 

Many known bacteriocins are small peptides in the range of 20 to 50 amino acid 

residues, and only a few of them have been crystallized. For example, mersacidin, 

a lantibiotic, was crystallized in the early 2000s.121 This was the first crystal 

structure of a lantibiotic peptide. A 39-amino acid glucagon-like peptide, 

glucagon-Cex, a potential drug candidate for metabolic disease (e.g., diabetes and 

obesity) treatment, was crystallized under standard protein crystallization 

conditions in 2007.122 An example of the 19-amino acid lasso peptide, BI-32169, 

has also been crystallized in 2010.123 A 47-amino acid antifungal plant defensin, 

NaD1, was successfully crystallized earlier this year.124 There are additional 

examples of small peptide crystallization examples, but indeed not many. Thus, a 

general and easy-accessible method for small peptide crystallization is needed for 

improved structural studies. 

2.1.1 Potential approaches for crystallization of small peptides 

2.1.1.1 Racemic peptide crystallization 

 Despite the difficulties in crystallizing small peptides, there are methods 

that have been used to overcome this issue. For instance, Kent and co-workers 

have developed a racemic protein crystallization method that has been used to 
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successfully crystallize small peptides (3-5 kDa).125-128 This method takes 

advantage of the fact that more space groups are available for racemates to 

crystallize, than pure enantiomers.129, 130 As an example, D- and L-BmBKTx1, a 

31-amino acid scorpion toxin, was crystallized using racemic crystallization 

(Figure 2-1). This method involves the preparation of both enantiomers of the 

peptide of interest, and combining them in a one to one mixture to form a 

racemate. These racemates are then exposed to crystallization conditions. This 

method could be useful in bacteriocin crystallization.  

 

 

Figure 2-1. D- and L-BmBKTx1 were crystallization by racemic crystallization126  

 

2.1.1.2 Co-crystallization method for protein crystallization 

There are many examples of co-crystal structures of proteins containing 

ligand-bound protein complexes. For instance, substrate analogue-bound LL-DAP-

AT crystal structures were described in Chapter 1. The co-crystallization 

approach has become a popular method to study biological machinery.  

There have been small peptides co-crystallized with large proteins, when the 

small peptides are bound in the active site of the large proteins. For example, a 

21-amino acid interleukin-1 (IL-1) antagonist peptide (AF10874) was co-
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crystallized with extracellular domains of IL-1 receptor type 1 (IL-1R1) as shown 

in Figure 2-2.131 Normally, this approach requires a good inhibitor. In this 

particular case, the IL-1 antagonist peptide binds to IL-1R1 with a IC50 value of 

2.6 nM.131 For many natural peptides, such as bacteriocins, this approach is not 

available, since many receptor proteins for these peptides are not identified.  

 

Figure 2-2. The extracellular domains of interleukin-1 receptor type 1 (IL-1R1, in 
green, blue, and orange) bound to an IL-1 antagonist peptide (AF10847, in red).131 
PDB code: 1G0Y 

 

 This approach has also been used in the co-crystallization of a molecule of 

interest with a readily crystallizable enzyme. In 2008, Christianson and co-

workers successfully crystallized a 129Xe-cryptophane biosensor (190) complexed 

with human carbonic anhydrase II (CAII).132, 133 In this study, cryptophane134 was 

used as a small molecule host, with xenon bound in the hydrophobic cavity of the 

cryptophane (190). Cryptophane was linked with a benzenesulfonamide, via click 
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chemistry, with the intention of using the benzenesulfonamide moiety as a well-

known inhibitor to the Zn-dependent CAII. In the presence of CAII, 

benzenesulfonamide coordinates to the zinc cofactor in the active site, and the 

enzyme complex is then co-crystallized under normal protein crystallization 

conditions (Figure 2-3 right).  

 

 

Figure 2-3. 129Xe-cryptophane biosensor (190) complexed with CAII. The Xe-
cryptophane complex is shown on the left, and the co-crystal structure is shown 
on the right133 

 

 Using this approach to crystallization, a small peptide could be linked to a 

small molecule inhibitor of a readily crystallizable enzyme. Then, upon mixing, 

the small peptide may be co-crystallized with the enzyme.  

190 
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2.1.2 Subtilosin A (SubA) as a target for development of method for 

crystallization of small peptides 

Subtilosin A (SubA, 191, Figure 2-4) is an antimicrobial cyclic bacteriocin 

that was originally isolated from the Gram-positive, spore-forming soil bacterium 

Bacillus subtilis.135 SubA has also recently been found in other Bacillus species, 

such as B. atrophaeus136 and B. amyloliquefaciens.137 Through a series of solution 

multi-dimensional NMR structural elucidation studies,138-140 SubA was found to 

be an N- to C-terminal linked cyclic peptide that is composed of 35 amino acids. 

It also has three unusual thioether bridges between the sulfur atom of three 

cysteine residues and the α-carbon atoms of threonine 28 and two phenylalanine 

residues 22 and 31 (Figure 2-4).  

 

  

Figure 2-4. Amino acid sequence of subtilosin A showing the three crosslinking 
thioether bridges 

 

2.1.2.1 Subtilosin A as a bacteriocin 

 SubA, as a circular bacteriocin, has attracted much attention in the 

bacteriocin research community since its initial isolation in the mid-1980s.135 This 

Asn Lys Gly Cys Ala Thr Cys Ser Ile Gly Ala Ala Cys Leu Val Asp

Gly

Pro

Ile

Gly

Trp ProAspPheGluIleAlaGlyAlaThrGlyLeuPheGlyLeu

N

C

1

4 7 13

222831

35
S S S

Subtilosin A
191



82 

is due to its potent antimicrobial activity against a relatively wide range of 

bacteria compared to most known bacteriocins141 and also its unique structure 

features.139, 140 These subjects will be discussed in the later sections in this thesis. 

2.1.2.2 General background of bacteriocin 

Bacteriocins are potent antimicrobial peptides that are produced by bacteria 

and archaea. These peptides are ribosomally synthesized and often 

posttranslationally modified. Some bacteriocins are only active against 

microorganisms closely related to the producer strain.142 Bacteriocins are the most 

abundant and diverse bacterial defense weapons,143 and it is believed by some that 

almost all bacteria (99%) produce at least one bacteriocin.144 Compared to the 

total number of different bacteriocins existing in nature, the number of isolated 

ones is very low. Microorganisms spend significant energy producing 

bacteriocins. However, the evolutionary origins of bacteriocins and the exact 

physiological mechanisms of these bacterial defense tools are still unclear.142, 143  

2.1.2.2.1 Classification of bacteriocins 

 Bacteriocins can be grouped into several classes. Based on their size, 

structural features, and modifications. The bacteriocins produced by Gram-

negative bacteria are normally large proteins. The mode of action of these large 

proteinogenic bacteriocins ranges from pore formation to nuclease-type 

mechanism.142 For instance, colicins are pore-forming bacteriocins produced by 

E. coli that often have sizes ranging from 449 to 629 amino acid residues. 
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Nuclease-type bacteriocins have an even broader range of sizes, from 178 to 777 

amino acids.142 

The bacteriocins produced by Gram-positive bacteria have more diversity 

than those of Gram-negative bacteria. In general, the currently accepted 

classification separates these bacteriocins into three different classes (Table 2-1). 

However, there are still ongoing revisions.145-148 

 

Table 2-1. Classification of bacteriocins produced by Gram-positive bacteria 

Classes Sub-classes Example 
Class I Lantibiotics 

 
Post-translationally 
modified peptides 

containing lanthionine and 
methyllanthionine149-151 

Type A 
Elongated and cationic 

Type B 
Globular and 
neutral/basic 

nisin152 
 

mersacidin153 

Class II Non-Lantibiotics 
 

Type IIa145 
Pediocin-llike 

Type IIb 
Two-component 

Type IIc148 
Circular peptides 

pediocin PA-1154 
 

lactococcin G155 
 

subtilosin A139 

Class III Bacteriolysins146 Large lytic proteins lysostaphin156 
 

2.1.2.2.2 Application of bacteriocins as antibiotics and food preservative 

As mentioned in Chapter 1, multi-drug resistant bacterial pathogens have 

rapidly emerged and spread in recent years. Traditional antibiotics are broad-

spectrum drugs, which kill bacteria with very limited selectivity. The high 

frequency of usage of these antibiotics results in the evolution of antibiotic 

resistance in both pathogenic and commensal bacteria.142 Once drug resistance 

develops, the pathogenic bacteria will acquire the resistance very quickly.157 One 
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way to overcome this issue is to find new targets for novel antibiotic development 

as discussed previously. Alternatively, bacteriocins can be used as antibiotics with 

a relatively narrower spectrum of action compared to traditional antibiotics; it is a 

matter of finding a specific bacteriocin for a specific pathogen. This approach 

may extend the lifespan of the antibiotics since each of the antibiotics is used 

much less frequently.142 Due to the limited knowledge of bacteriocins existing in 

nature, this is an avenue of antibiotic development that can be explored further.  

In addition, bacteriocins such as nisin have been previously utilized in food 

preservation. The only bacteriocins presently used in the food industry are those 

produced by lactic acid bacteria (LAB). In fact, LAB have been used in food 

preservation for centuries. However, bacteriocins produced by other kinds of 

bacteria will likely be useful in the future for food preservation purposes.  

2.1.2.3 Structure elucidation of Subtilosin A  

 Following the isolation of SubA from the wild type strain B. subtilis 

168,135 researchers proposed an incomplete amino acid sequence based upon their 

knowledge of the blocked N- and C-terminal residues and few unknown linkages 

between middle residues. Subsequently, genetic studies have revealed the 

completed and corrected primary sequence of SubA.158, 159 Earlier studies 

proposed that SubA is a N- and C-terminal blocked peptide with unusual linkages 

between the sulfurs of cysteines and other residues; however, the linkages were 

not identified.  

 The structural hypothesis was further supported by a 1H-NMR experiment 

in the early 2000s.138 This circular bacteriocin, SubA, was found to have three 
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unusual linkages between Cys4, Cys7, Cys13 and Phe31, Thr28, Phe22, 

respectively, based on this NMR study. However, the authors could not confirm 

the exact covalent connections between these residues. Interestingly, the authors 

suggested that sulfur-carbon and sulfur-oxygen linkages could be the unusual 

connections between the cysteine residues and two phenylalanines and a 

threonine.  

 Concurrently, isotopic labeling and multi-dimensional NMR experiments 

were performed in our research group,139, 140 to determine the primary and three-

dimensional structure of SubA. In this study, [13C, 15N]-labeled SubA was 

obtained by fermentation of B. subtilis JH642 in the presence of [13C, 15N] 

peptone derived from cyanobacterium (Anabaena sp.) grown in [13C]-labeled 

sodium bicarbonate and [15N]-labeled sodium nitrate, as previously developed by 

our research group.140, 160 Upon assignment of all proton, carbon, and nitrogen 

chemical shifts, it was revealed that Phe22, Thr28, and Phe31 were missing α-

proton signals. Additionally the α-carbons had higher chemical shifts (~ 10 ppm 

higher than normal) for these three residues. To further confirm the abnormal 

chemical shift signals for these α-carbons, [13C, 15N]-labeled L-phenylalanine and 

L-theronine were used in the fermentation of SubA, resulting in the phenylalanine 

and threonine residues being predominantly labeled. Upon NMR analysis, the 

chemical shifts corresponding to the α-carbons of Phe22, Phe31, and Thr28 were 

found to be 69.4, 69.8, and 72.8 ppm, respectively. Two model molecules (Figure 

2-5) were synthesized to compare the chemical shift values for the α-carbons. 

Compound 192, a racemic phenylalanine derivative, showed a chemical shift of 
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68.0 ppm for the α-carbon. The threonine derivative 193 showed 74.9 ppm for the 

α-carbon. Both of the model compounds showed very similar chemical shifts for 

the fully substituted α-carbons compared to SubA. Based on these results, the 

authors proposed that the linkage between the three cysteines residues and two 

phenylalanines and a threonine residue were thioethers, in which the sulfur atom 

of cysteines were linked to the α-carbons of the phenylalanines and threonine.  

 

  

Figure 2-5. Model compounds for the fully substituted phenylalanine and 
threonine to confirm sulfur-carbon linkage of SubA 

 

 This was the first time that such a linkage was observed in bacteriocins. 

Several more thioether-bridge containing bacteriocins have since been discovered, 

such as thuricin CD,161, 162 a two-component bacteriocin, and thurincin H.163 

However, thuricin CD and thurincin H are not C- and N-terminal cyclized 

bacteriocins. The classification of these thioether-containing bacteriocins is still 

an ongoing issue.  

 After the identification of the thioether bridges in SubA, the 

stereochemistry of the residues was the next issue to be considered. In this regard, 

the desulfurization of SubA has been performed under nickel boride reduction 
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conditions to form a circular SubA peptide without the thioether bridges (Figure 

2-6a).139, 140 The resulting circular peptide was hydrolyzed under acidic conditions 

to give individual amino acids which were subsequently derivatized to the 

corresponding pentafluoropropanamide isopropyl esters as shown in Figure 

2-6b.140 The resulting esters were analyzed by chiral GC-MS. All previously 

unmodified residues were found to exist in the L-configuration.140 The derivatized 

threonine residue was found to be in the L-configuration as well, and the 

phenylalanines were found to be a mixture of D, L-configuration.140 Since the 

desulfurization technique could give a racemic amino acid residue, chiral GC-MS 

analysis could not confirm the stereochemistry of the modified amino acids 

present at the sites of the thioether linkages.  

 

 

Figure 2-6. a) Desulfurization using nickel boride reduction. b) Conversion 
between free amino acid to the corresponding pentafluoropropanamide isopropyl 
esters 
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 Multi-dimensional NMR experiments were then used to study the three-

dimensional solution structure of SubA. Through NMR data assignments and 

energy-minimization calculations,164 the SubA isomer containing L-Phe22, D-

Thr28, and D-Phe31 was found to be the lowest energy isomer.140 The overall 

proposed structure of SubA with assigned stereochemistry is shown in Figure 

2-7. 

 

 

Figure 2-7. Structure of SubA with proposed stereochemistry of sulfur-α-carbon 
crosslinks labelled in magenta 

 

Through solution NMR studies, a three-dimensional structure of SubA was 

generated, as shown in Figure 2-8. Although the stereochemistries of the 

modified residues are proposed based on extensive solution NMR studies, it is 

still desirable to confirm the exact stereochemistry at these three quaternary 

centres using X-ray crystallography.  

 

N

O

HN

N

O

N
H

H
N

!N
H

H
N

N
H

H
N

N
H

NH

COOH

NH

H
N

N
H

H
N

N
H

H
N

COOH

S

COOH

N
H

H
N

N
H

H
N

HO

S

H
N

!N
H

H
N

N
H

!

H
N

N
H

H
N

NH

NH

N
H

H
N

N
H

H
N

N
H

HN

S

NH2

H2N O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O

OH

HO

O

D D L

4 7 13

222831



89 

 

Figure 2-8. A) Superposition of the backbone of residues of the eight lowest 
energy structures of SubA. B) Representative conformer of SubA with indication 
of stereochemistry of the modified residues. C) Coil representation of the 
backbone of SubA, the break shown is at the position of C- and N-terminal 
cyclization. (This figure adopted Kawulka et al.140)  

 

2.2 Project goal 

 In this project, the goal is to develop a general method to crystallize small 

peptides (e.g., SubA). SubA has not been crystallized by itself despite many 

attempts in our laboratory. The racemic crystallization is also not suitable for 

crystallization of SubA, since there is no synthetic method available to generate a 
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peptide with sulfur-α-carbon crosslinks yet. This makes it impractical to obtain 

the enantiomer of SubA. It is still unknown whether there are receptor proteins of 

SubA. Thus, direct co-crystallization of SubA with its receptor was also not a 

suitable method. In this study, a bioconjugation approach is used to link SubA 

with various small molecules that are inhibitors of readily crystallizable enzymes, 

such as lysozyme and CAII. The small molecule inhibitors are chitin derivatives 

and benzenesulfonamide derivatives for lysozyme and CAII, respectively. The 

attempts toward the co-crystallization of SubA bioconjugates with enzymes were 

thus performed. 

2.3 Results and discussion 

2.3.1 Glucosamine and chitotriose as lysozyme inhibitors  

2.3.1.1 Previous crystallographic studies on lysozyme 

Lysozyme was initially selected as a readily crystallizable enzyme, with N-

acetylglucosamine and chitotriose as potential inhibitors. There have been 

extensive studies on lysozyme. Lysozyme is also known as N-acetylmuramide 

glycanhydrolase, and it was first isolated from hen egg white.165 Due to its ability 

to hydrolyse the 1,4-β-linkage between N-acetylmuramic acid and N-acetyl-D-

glucosamine within the peptidoglycan of the bacterial cell wall, lysozyme is one 

of the first known natural antimicrobial agents.  

Lysozyme was also one of the earliest crystallized enzymes. Phillips and co-

workers successfully crystallized lysozyme in the mid-1960s.166 They also studied 

a lysozyme-inhibitor complex by crystallography.167 N-acetylglucosamine 
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(GlcNAc, 194), N,N′-diacetylchitobiose (195), and 6-iodo-α-methylglucosamine 

(196) were co-crystallized with lysozyme, whereas, glucosamine hydrochloride 

(197) and muramic acid (198) were unable to bind into the active site of 

lysozyme. The authors proposed that the N-acetyl groups are essential for the 

binding; however, the functional groups at the 1 and 6 position of glucosamine are 

not essential.  

 

  

Figure 2-9. Compounds used in the co-crystallography studies of lysozyme by 
Phillips and co-workers167  

 

 Subsequently, additional crystallography studies of lysozyme have been 

conducted, and lysozyme became one of the most readily crystallizable proteins. 

In the late 1990s, two chitin derivatives with fluorogenic groups were co-

crystallized with rainbow trout lysozyme.168 The two saccharides used in this 

study, 4MeU-(GlcNAc)3 (199) and 4MeU-(GlcNAc)2 (200), are shown in Figure 

2-10. These types of fluorogenic glycosides have been used for detection of 

chitinase activity.169, 170  

6-iodo !-methyl-N-acetylglucosamine
196

N-acetylglucosamine
194

O
OH

OHAcHN

HO
HO O

OH

AcHN
HO

HO O
OH

OHAcHN
HO
O

N,N'-diacetylchitobiose
195

O
I

HO
HO

AcHN
OMe

O
OH

OHH3N
HO

HO

glucosamine hydrochloride
197

Cl

muramic acid
198

O
OH

OHH2N
O

HO

COOH



92 

 

   

Figure 2-10. 4-Methylumbelliferyl β-glycosides used in the co-crystallization of 
lysozyme168 

 

 A surface model of the lysozyme-4MeU-(GlcNAc)3 complex is shown in 

Figure 2-11. Upon analyzing the crystal structure, the N-acetyl groups clearly 

play a role in binding. The N-acetyl group at the reducing end of chitotriose is 

especially important for binding, as it is deeply buried in the active site cavity.168 
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Figure 2-11. Crystal structure of lysozyme complex with 4MeU-(GlcNAc)3 (199) 
PDB code: 1BB6  

 

2.3.1.2 Bioconjugation of N-acetylglucosamine to SubA  

 Based on the studies reported above, we initially attempted preparation of 

a co-crystallizable SubA analogue involved using N-acetylglucosamine (GlcNAc, 

194) as the small inhibitor to lysozyme. The bioconjugation of GlcNAc and SubA 

was explored through two approaches: a squarate linking strategy and click 

chemistry.  
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2.3.1.2.1 Squarate as linker in the bioconjugation of N-acetylglucosamine to 

SubA 

 Squarate was chosen as the linker in the initial bioconjugate preparation. 

GlcNAc was first linked to squarate by the synthetic route shown in Scheme 2-1. 

Previous studies showed that the 1 and 6 positions of glucosamine do not play a 

significant role in binding,167 and since there has been success in modification at 

position 1,168 the anomeric position was selected as the linking site.  

Commercially available cystamine dihydrochloride (201) was first protected 

with di-tert-butyl dicarbonate (Boc anhydride, 202) as N-Boc-cystamine (203) 

under basic conditions. The disulfide bond was then cleaved by tributylphosphine 

in situ, and the resulting thiol 204 was further reacted with commercially 

available 3,4,6-tri-O-acetyl-2-(acetamido)-2-deoxy-α-D-glucopyranosyl chloride 

(205) to form the protected glucosamine derivative 206. Removal of the Boc 

protecting group and further nucleophilic reaction with methyl squarate (207) 

yielded the protected glucosamine-squarate adduct 208. Global deprotection of O-

acetyl groups under basic conditions gave the GlcNAc-squarate adduct 209. It 

was hoped that 209 would react with the ε-amino group of the only lysine residue 

of SubA with the other half of the squarate ester, to form the bioconjugate 

(GlcNAc-squarate-SubA). Since SubA is not stable under basic conditions, the 

reaction was done at neutral pH, but this was unsuccessful. 
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Scheme 2-1. Synthetic approach towards GlcNAc-squarate-SubA bioconjugate 
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2.3.1.2.2 Preparation of bioconjugate of N-acetylglucosamine-SubA via click 

chemistry 

 Since the squarate based linking strategy was unsuccessful, a neutral 

linking approach was required for this study, such as a 1,3-dipolar cycloaddition. 

The 1,3-dipolar cycloaddition was initially developed by Huisgen.171, 172 

Subsequently, copper (I) catalyzed 1,3-dipolar cycloaddition has been developed 

by two individual groups led by Meldal173 and Sharpless174, and is commonly 

referred to as click chemistry. This reaction has been used widely in 

bioconjugation research, because of its simplicity, orthogonality to conventional 

protecting groups, and mild reaction conditions.  

2.3.1.2.2.1 Preparation of azido-glucosamine derivative and model study of 

click chemistry 

Initially, azido-N-acetylglucosamine was prepared under nucleophilic 

substitution reaction conditions (Scheme 2-2). Chlorine was replaced with an 

azido group to form azido-glucosamine derivative 210. A model click chemistry 

reaction was done between 5-hexynoic acid (211) and 210. Copper acetate and 

sodium ascorbate (NaAsc) were used to generate the copper (I) species, affording 

the product 212. 

 

 

Scheme 2-2. Model click chemistry reaction on glucosamine derivative 
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2.3.1.2.2.2 Preparation of the alkynyl-SubA 

 Since the model reaction was successful, alkynyl-SubA was prepared as 

shown in Scheme 2-3. 5-Hexynoic acid was converted to the corresponding acid 

fluoride by treatment with tetramethylfluoroformamidinium hexafluoro-phosphate 

(TFFH, 213).175 The resulting acid fluoride 214 was used without purification. 

SubA was mixed with the acid fluoride (214) in a mixture of acetonitrile and 

aqueous buffer solution at pH 7.2. Upon mixing at 4 °C for two days under argon, 

alkynyl-SubA (215) was purified using high-performance liquid chromatography 

(HPLC). 

 

   

Scheme 2-3. Preparation of alkynyl-SubA 
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Due to the fact that SubA only contains one lysine residue, and thus has 

only one amino acid containing a free amino group on its side chain, the reaction 

should take place at the Lys2 position. To confirm reaction occurs at Lys2, 

MS/MS analysis was performed. Since SubA is not readily degraded under 

MS/MS conditions, due to its circular structure,140 enzymatic digestion was 

applied to SubA. To cleave the circular structure in a controlled fashion, 

endoproteinase Asp-N was used to digest SubA. After two hours, a small portion 

of the mixture was analyzed by MALDI-MS. The MS signals suggested that 

SubA was cleaved into two fragments (216 and 217) as shown in Scheme 2-4.  
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Scheme 2-4. Enzymatic digestion of alkynyl-SubA by endoproteinase Asp-N 
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confirmed based upon MS/MS analysis. More importantly, based on the y-ion 

analysis, it was shown that the lysine residue was successfully modified as 5-

hexynamide.  

   

Figure 2-12. MS/MS analysis of enzymatic digested alkynyl-SubA. a) b-ion 
labeled in red; b) y-ion labeled in blue 
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Figure 2-13. Spot on lawn antimicrobial activity testing results of SubA and 
alkynyl-SubA against L. lactis subsp. cremoris HP. The spots labelled C1, T1, 
and T2 were used for a separate study, and should be ignored. The spot labelled 
C2 was used as a negative control (spotted with 10 µL of 1:1 mixture of 
acetonitrile and water). The spots labelled as A1, A2, and A3 correspond to SubA 
at 200 µM, 100 µM, and 50 µM concentrations, respectively. The spots labelled 
as A′1, A′2, and A′3 correspond to alkynyl-SubA at 200 µM, 100 µM, and 50 µM 
concentrations, respectively 

 

These results indicate that the modified lysine residue does not significantly 

affect the antimicrobial activity. Based on earlier studies,176 the mode of action of 

the antimicrobial activity of SubA is derived from membrane permeabilization 

process, and lysine was thought to interact with the lipid bilayers of the bacterial 

cell membrane. However, the exact mode of action is still unclear. Based on these 

current results, it seems that Lys2 is not a key residue with respect to the 
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antimicrobial activity of SubA. Furthermore, it provides a convenient handle for 

functionalization of SubA for mode of action studies in the future.  

2.3.1.2.2.4 Preparation of N-acetylglucosamine-SubA bioconjugate and 

attempts to co-crystallize with lysozyme 

 After obtaining alkynyl-SubA (215), the bioconjugate of SubA and 

GlcNAc was then generated by click chemistry as shown in Scheme 2-5. The 

protected azido-glucosamine derivative 210 was deprotected under basic 

conditions to generate compound 219. Click chemistry with 215 was performed 

under standard copper (I) catalyzed conditions to form bioconjugate 220. It is 

important to note that 20 equivalents of the copper (I) species were required to 

afford the product, with low yield. 
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Scheme 2-5. Preparation of GlcNAc-SubA bioconjugate (220) using click 
chemistry 
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2.3.1.3 Bioconjugate of N,N′ ,N′ ′-triacetylchitotriose (GlcNAc)3-SubA  

 Despite the fact that the monosaccharide-SubA adduct was unable to be 

co-crystallized with lysozyme, we chose to use chitotriose as a potential inhibitor 

instead. Since chitotriose is a trisaccharide, the bioconjugate would be more polar, 

which would improve its water solubility. The (GlcNAc)3-SubA adduct was 

prepared by click chemistry in a similar manner as previously done for the 

GlcNAc-SubA adduct. Again the anomeric position was chosen as the site of 

modification.  

 The synthesis of the bioconjugate followed the synthetic route shown in 

Scheme 2-6. First, commercially available peracetylated chitotriose (221) was 

deprotected under basic conditions to give N,N′ ,N′ ′-triacetylchitotriose 222. 

Anomeric azido-chitotriose was prepared by treatment of 222 with 2-chloro-1,3-

dimethylimidazolinium chloride (DMC, 223) and sodium azide under basic 

conditions.177 The β-glycosyl azide (224) was generated in this one-pot reaction. 

Upon obtaining the azido-chitotriose (224), click chemistry conditions were 

applied to alkynyl-SubA (215) and the azidosaccharide 224. The resulting adduct 

225 was purified by HPLC. Again, a low yield was observed even in the presence 

of more than 20 equivalents of copper. 
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Scheme 2-6. Preparation of (GlcNAc)3-SubA bioconjugate 225 using click 
chemistry 
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more polar than the GlcNAc-SubA adduct; however, it is still quite hydrophobic. 

In fact, the solubility of these bioconjugates was the major issue throughout the 

co-crystallization trials, and will be discussed in the later sections. 

2.3.2 Benzenesulfonamide-SubA bioconjugates as inhibitors of carbonic 

anhydrase II (CAII). 

 As mentioned previously, CAII is a readily crystallizable enzyme; many 

crystal structures of this enzyme are available in the literature. Importantly, a 

benzenesulfonamide-linked 129Xe-cryptophane biosensor (190) has been co-

crystallized with CAII.132, 133 Based on this knowledge, we decided to use a 

similar approach to link benzenesulfonamide to SubA. Click chemistry was used 

as the initial linking strategy.  

2.3.2.1 Click chemistry as a linking approach between benzenesulfonamide 

and SubA 

2.3.2.1.1 Copper (I) catalyzed click chemistry between benzenesulfonamide 

and SubA 

 Based on Christianson’s work,132, 133 a SubA-benzenesulfonamide adduct 

with a short linker was designed. The azido-benzenesulfonamide was prepared as 

shown in Scheme 2-7. The diazotransfer reagent 226 was prepared according to 

literature procedure,178 in which sulfuryl chloride was reacted with sodium azide 

and imidazole in a stepwise process. Commercially available amino-

benzenesulfonamide 227 was then reacted with 226 to form adduct 228, the 

desired azido-benzenesulfonamide.  
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Scheme 2-7. Preparation of azido-benzenesulfonamide 228 
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copper (I), Bertozzi and co-workers179, 180 have developed a copper-free click 

chemistry method. In their initial study, a strained cyclooctyne compound 229 

was examined as the click chemistry substrate. The eight-membered ring is the 

smallest size capable of containing a carbon-carbon triple bond. The ring strain 

activates the alkynyl group, and so it is more reactive than a normal alkyne. Thus, 

click chemistry with a cyclooctyne species can proceed without copper (I) 

catalysis.179 Subsequently, a difluorinated cyclooctyne (DIFO, 230) was 

developed.180 The difluoro group further activates the triple bond via an electron-

withdrawing effect, making DIFO more reactive than non-fluorinated cyclooctyne 

compounds. However, one limitation of the application of DIFO in copper-free 

click chemistry is the complicated preparation, which typically requires more than 

ten synthetic steps.  

 

 

Figure 2-14. Literature examples of cyclooctyne derivatives 229, 230, and 231 
used in copper-free click chemistry179-182  

 

 Since the synthesis of DIFO (230) is complicated and lengthy, a simpler 

cyclooctyne derivative (231) has recently been developed.181 This compound was 

found to be very effective toward click chemistry as well. The rate of reaction for 

this monofluoro-substituted 231 when reacting with benzyl azide was two-fold 

slower than the reaction with DIFO.181, 182 However, the monofluoro-substituted 

229

F

F

O

HO2C

230

O

HO2C

OH

O

F

231



109 

cyclooctyne reacts about one order of magnitude faster than the compound 

without fluorine as a substituent (229).181, 182 The monofluorinated cyclooctyne 

231 was selected for the copper-free click chemistry linkage between SubA and 

the benzenesulfonamide inhibitor in the present study because of the reasonable 

rate of the reaction and relatively simple synthesis. 

2.3.2.1.2.1 Preparation of the monofluorinated cyclooctyne derivative 

Preparation of the monofluorinated cyclooctyne 231 followed literature 

procedures181 and is shown in Scheme 2-8. Commercially available 

cyclooctanone (232) and diethyl carbonate (233) were used to facilitate the 

formation of 234 and 235, which were obtained in 1:3 ratio. The mixture was then 

reacted with Selectfluor (236) to form the monofluorinated intermediate 237. 

Subsequently, introduction of a triflate leaving group on the corresponding 

enolate under basic conditions, followed by elimination, afforded acetylene 238. 

Saponification gave the desired monofluorinated cyclooctyne derivative 231 with 

a carboxylic acid substituent as a handle for further linkage to biomolecules. 
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Scheme 2-8. Preparation of the monofluorinated cyclooctyne 231 
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Scheme 2-9. Click chemistry with monofluorinated cyclooctyne derivative and 
azido-benzenesulfonamide derivative affords isomers 239 and 240 

  

2.3.2.1.2.3 Testing inhibitory activity of the click chemistry adduct against 

CAII 

After obtaining the click chemistry adducts of azido-benzenesulfonamide 

and cyclooctyne, the compounds were tested for inhibitory activity against CAII 

to ensure that they retained activity. The plasmid containing the gene for CAII 

was obtained from Professor David Christianson, and then the enzyme was 

transformed and expressed in E. coli, and purified by ion exchange 

chromatography with the help of Dr. Marco J. van Belkum in our laboratory. A 

detailed purification procedure is described in Chapter 3. A literature assay was 

adopted, using p-nitrophenol acetate as a substrate for the esterase activity of the 

CAII as shown in Figure 2-15.183 A detailed procedure for assay of the inhibitory 

activity is described in Chapter 3. 
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The results of testing are shown in Figure 2-16. In this preliminary 

inhibitory study, only IC50 values were measured, since the important aspect is 

whether the adduct retains activity compared to the starting material azido-

benzenesulfonamide.184 In this assay, the inhibitors were shown to have IC50 

values in the 100 nM range. Based on these results, click chemistry adduct 239 

(IC50 176 nM) showed very similar inhibitory activity to the azido-

benzenesulfonamide 228 (IC50 171 nM). The regioisomer 240 showed slightly 

lower inhibitory activity (IC50 250 nM), however, it is still a very effective 

inhibitor of CAII.  

 

 

Figure 2-16. Inhibitory activity testing of the sulfonamide inhibitors against CAII 
as tested using p-nitrophenol acetate assay 
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However, the coupling reactions between SubA and the generated acid fluorides 

were unsuccessful for all three cases, potentially due to the sterically hindered 

nature of the cyclooctyne substrate. This reaction could still be explored further 

with different coupling conditions. 

2.3.2.2 Ureido-containing arylsulfonamide coupled SubA bioconjugate 

2.3.2.2.1 Literature precedent for ureido-containing arylsulfonamide 

inhibitors to CAII 

The ultimate goal for this project is to develop a general method for small 

peptide co-crystallization. At the same time, parallel to the click chemistry 

strategy, a simpler linking method was also investigated. Since carbonic 

anhydrases are interesting targets for medicinal chemistry development, new 

inhibitors of these enzymes frequently appear in the literature. In 2010, a group of 

ureido-benzenesulfonamide derivatives (241a-e, Figure 2-17) were reported as 

inhibitors of CAII.185 These compounds have potent inhibitory activity against 

CAII with inhibition constant values in the range of 3.3 to 226 nM. Compound 

241c is especially potent with a Ki of 3.3 nM.  
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Figure 2-17. Examples of ureido-containing arylsulfonamides reported in the 
literature as inhibitors of CAII185 
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a) R = 4-F-C6H4

b) R = C6F5

c) R = 2-iso-Pr-C6H4

d) R = 3-NO2-C6H4

e) R = cyclopentyl

Ki (nM)
96 ± 8
50 ± 4
3.3 ± 0.07
15 ± 0.8
226 ± 14
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Figure 2-18. Crystal structure of CAII with overlays of various ureido-containing 
arylsulfonamides, 241a-e, labeled in orange, pink, yellow, grey, and cyan, 
respectively185 Reproduced with permission from Pacchiano et al.185 

 

2.3.2.2.2 Synthesis of the ureido-containing arylsulfonamide compounds 

 Since benzenesulfonamides with ureido moieties are well conserved in the 

active site and appear to be required for binding, this part of the molecule was 

kept constant. It seems that the inhibitors with higher potency against CAII have 

aromatic systems at the second ring position, further from sulfonamide moiety. 

We decided to use coupling reactions to link the benzenesulfonamide inhibitors 

and SubA through an amide bond. Thus, the second ring of the ureido-containing 

benzenesulfonamide was designed as 4-carboxy-benzene 242 and 2-methyl-4-

carboxy-benzene 243. The extra methyl group on compound 243 is a homologue 
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to the compound 241c. The two carboxyl groups are designed to be the coupling 

site for linking to Lys2 of SubA. 

 

 

Figure 2-19. Proposed ureido-containing benzenesulfonamide inhibitors to CAII 

 

 The ethyl ester of compound 242 was prepared from two commercially 

available compounds, p-aminobenzenesulfonamide (244) and ethyl p-

isocyanatobenzoate (245), as shown in Scheme 2-10.  

 

 

Scheme 2-10. Preparation of ureido-containing benzenesulfonamide 246 

  

 The second inhibitor was prepared by the route shown in Scheme 2-11. 

First, 4-amino-3-methylbenzoic acid (247) was esterified to form 248. The amino 

group was then reacted with triphosgene to yield isocyanate derivative 249. The 

isocyanate was then reacted with 4-aminobenzenesulfonamide (244) to form the 

ethyl ester of the ureido-containing benzenesulfonamide inhibitor 250. Finally, 

saponification gave the desired inhibitor with a carboxyl group substituent on the 

second benzene ring.  
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Scheme 2-11. Preparation of 243, the second ureido-containing benzene- 
sulfonamide inhibitor 

 

2.3.2.2.3 Inhibitory activity testing of ureido-containing benzenesulfonamide 

inhibitors against CAII 

 The ethyl ester forms of the two designed inhibitors were tested against 

CAII using the p-nitrophenyl acetate assay, as described previously. As shown in 

Figure 2-20, the two inhibitors (246 and 250) showed nearly identical inhibition 

against the enzyme and higher potency than the cyclooctyne derivatives (239 and 

240). Thus, compound 250 with an extra methyl group on the aromatic system 

was selected for further bioconjugation with SubA. 
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Figure 2-20. Results of activity testing of the ureido-containing benzene- 
sulfonamide inhibitors against CAII 

 

2.3.2.2.4 Coupling between the ureido-containing benzenesulfonamide and 

SubA 

 Upon synthesis of the ureido-containing inhibitors, compound 243 was 

selected for coupling with SubA. Based on previous experiences of coupling 

reactions with SubA, the rate of reaction is always slow under neutral conditions. 

SubA is known to be unstable under basic conditions. To overcome both the 

stability and rate of reaction issues, slightly basic conditions with a shorter 

reaction time were applied in this coupling reaction (Scheme 2-12), resulting in 

the successful formation of the bioconjugate product of ureido-

benzenesulfonamide and SubA. It is possible that SubA decomposes under basic 

conditions, in which the thioether bridges are potentially cleaved as observed 

under MS/MS conditions (Scheme 2-4). After purification by HPLC, the 

bioconjugate was applied to co-crystallization trials with CAII, which are 

currently in progress and being performed by Dr. Cory Brooks in the group of Dr. 

Joanne Lemieux.  
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Scheme 2-12. Preparation of ureido-benzenesulfonamide-SubA bioconjugate 

 

2.4 Conclusion and future directions 

 During this project, several bioconjugates of SubA with various small 

molecules were synthesized. Several linking strategies were attempted including 

using squarate as a linker, click chemistry, copper-free click chemistry, and 

coupling through an amide linkage. The GlcNAc-SubA and (GlcNAc)3-SubA 

adducts were obtained by copper (I) catalyzed click chemistry. An ureido-

containing benzenesulfonamide-SubA bioconjugate was prepared through an 

amide bond linkage.  

 Although the ultimate goal of this project (a general method for co-

crystallization) has not yet been achieved, several conclusions can be drawn from 

this study. Based on the antimicrobial activity testing of alkynyl-SubA, retention 
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of the activity indicates that the lysine residue does not play a major role in the 

antimicrobial mechanism of SubA. This is in contrast to previous hypotheses.176 

In terms of co-crystallization studies, the solubility of SubA bioconjugates 

appeared to be the major issue due to the hydrophobic nature of SubA.  

 Since the lysine-modified-SubA retained antimicrobial activity, this 

provides an opportunity towards mode of action studies of SubA by utilizing the 

lysine residue as a handle to link various molecules, such as fluorescent probes. 

Efforts are still underway towards co-crystallization. A different approach 

might be required to overcome solubility issues, such as the use of detergents or 

various organic solvents as co-solvents in the crystallization process. In this 

regard, the enzyme involved in co-crystallization has to be compatible with the 

co-solvent. To ensure that enzyme activity is retained, enzymatic testing in 

different solvent systems is currently in progress.  
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Chapter 3. Experimental Procedures 

3.1 General Information 

3.1.1 Reagents, solvents and purifications 

 All commercially available reagents were purchased from Sigma-Aldrich 

Canada Ltd., Fisher Scientific Ltd., Alfa Aesar Ltd., AB Chem Inc., ChemBridge 

Corporation or VWR International and used without further purification. All 

solvents were of American Chemical Society (ACS) grade and were used without 

further purification unless otherwise stated. All anhydrous reactions were 

performed under a positive pressure of argon using flame or oven-dried glassware. 

Solvents for anhydrous reactions were distilled prior to use: dichloromethane, 1,2-

dichloroethane, pyridine, and triethylamine were distilled over calcium hydride, 

tetrahydrofuran was distilled over sodium with benzophenone as an indicator, and 

ethyl acetate and methanol were distilled over potassium carbonate. HPLC grade 

acetonitrile, dimethylformamide, isopropyl alcohol and methanol were used 

without further purification. Commercially available ACS grade solvents (>99.0% 

purity) were used for column chromatography without any further purification. 

Deionized water was obtained from a Milli-Q reagent water system (Millipore 

Co., Milford, MA). Air sensitive reactions were performed under an atmosphere 

of argon. All reactions and fractions from column chromatography were 

monitored by thin layer chromatography (TLC) using glass plates with a UV 

fluorescent indicator (normal SiO2, Merck 60 F254). One or more of the following 

methods were used for visualization: UV absorption by fluorescence quenching, 
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staining with phosphomolybdic acid in ethanol (10 g/100 mL), ninhydrin 

(ninhydrin : acetic acid : n-butanol/ 0.6 g : 6 mL : 200 mL), or p-anisaldehyde (p-

anisaldehyde : acetic acid : 95 % ethanol : conc. H2SO4/ 9.2 mL : 3.75 mL : 338 

mL : 12.5 mL). Flash chromatography was performed using Merck type 60, 230-

400 mesh silica gel. The removal of solvents in vacuo was performed via 

evaporation under reduced pressure at a temperature below 40 °C using a Büchi 

rotary evaporator followed by evacuation (< 0.1 mm Hg) to a constant sample 

mass.  

 Analytical scale high performance liquid chromatography (HPLC) was 

performed on one or more following systems: Beckman System Gold 

chromatograph equipped with a model 166 variable wavelength UV detector and a 

Rheodyne 7725i injector fitted with a 100 µL sample loop; Varian ProStar 

chromatograph equipped with model 210 pump heads, a model 325 dual 

wavelength UV detector, and a Rheodyne 7725i injector fitted with a 100 µL 

sample loop; or a Gilson chromatograph equipped with model 322 pump heads, a 

model 171 diode array detector, a FC 203B fraction collector, and a Rheodyne 

7725i injector fitted with a 500 µL sample loop. Preparative and semi-preparative 

scale HPLC was performed on one or more following systems: Beckman System 

Gold chromatograph equipped with a model 125P solvent module, a model 166P 

variable wavelength UV detector, and a Rheodyne 7725i injector fitted with a 

1000 µL sample loop; Gilson chromatograph equipped with model 322 pump 

heads, a model UV/VIS-156 detector, and a GX-271 liquid handler; Varian 

ProStar chromatograph equipped with model 210 pump heads, a model 325 dual 
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wavelength UV detector, and a Rheodyne 7725i injector fitted with a 1000 µL 

sample loop. The columns used were Vydac 208TP C8 reverse phase (300 Å, 5 

µm, 4.6 × 250 mm (analytical) or 10 × 250 mm (semipreparative)). All HPLC 

solvents were filtered through a Millipore filtration system under vacuum before 

use. 

3.1.2 Characterization 

 Nuclear magnetic resonance (NMR) spectra were recorded on a Varian 

Inova 600, Inova 500, Inova 400, Inova 300 or Unity 500 spectrometers at 27 °C. 

For 1H (300, 400, 500 or 600 MHz) spectra, δ values were referenced to CDCl3 

(7.26 ppm), CD3OD (3.30 ppm), DMSO-d6 (2.50 ppm), or DOH (4.79 ppm) and 

for 13C (75, 100, 125 or 150 MHz) spectra, δ values were referenced to CDCl3 

(77.0 ppm), CD3OD (49.0 ppm), or DMSO-d6 (39.5 ppm). Reported splitting 

patterns are abbreviated as s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet. When appropriate, a signal splitting pattern is preceded by br to indicate 

that it is broad.  

 Infrared spectra (IR) were recorded on either a Nicolet Magna 750 FT-IR 

spectrometer or a Nic-Plan FT-IR microscope. The term cast refers to the 

evaporation of a solution on a NaCl plate.  

 Mass spectra (MS) were recorded on a Agilent Technologies 6220 oaTOF, a 

Kratos AEIMS-50, an Applied BioSystems Mariner BioSpectrometry 

Workstation, or a Perspective Biosystems VoyagerTM Elite MALDI-TOF MS 

using either α-cyano-4-hydroxycinnamic acid (CHCA) or 3,5-dimethoxy-4-
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hydroxycinnamic acid (sinapinic acid) as a matrix. MS/MS was performed on a 

Bruker Ultraflextreme MALDI/TOF/TOF. For MALDI-TOF MS, a typical 

sample preparation is described as follows. A solution of sample peptide (1 μL) in 

0.1% TFA (aq.) is mixed in a 1:1 ratio (vol/vol) with a stock solution of sinapinic 

acid (10 mg/mL) in 50% acetonitrile containing 0.1% TFA (aq.). To prepare the 

sample plate, a sinapinic acid layer (0.7μL; 10mg/mL sinapinic acid in 3:2 

acetone:methanol) is pipetted onto a stainless steel target plate. The solvent is 

allowed to evaporate, leaving a thin layer of sinapinic acid on the surface of the 

plate. The sample-matrix solution (0.6 μL) is then spotted onto the dried layer of 

sinapinic acid and allowed to dry.  

 Optical rotations were measured on a Perkin Elmer 241 polarimeter with a 

microcell (10 cm, 1 mL) at ambient temperature and are reported in units of 10-1 

deg cm2 g-1. All reported optical rotations were referenced against air and 

measured at the sodium D line (λ = 589.3 nm) 
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3.2 Substrate mimic 88 and 90 into LL-DAP-AT 

 The substrate mimic and the PLP-Glu and PLP-DAP adducts were 

synthesized following the procedure published by Dr. Matthew Clay.112  

3.2.1 Synthesis of substrate-PLP imine adduct mimic 

 

(S)-2-((3-Hydroxy-2-methyl-5-(phosphonooxymethyl)pyridin-4-

yl)methylamino)pentanedioic acid (88) 

Pyridoxal 5′-phosphate (0.100 g, 0.405 mmol) and glutamic acid (0.119 g, 0.809 

mmol) were added to water (7 mL) and the pH was adjusted to ~9.3 using 2 M 

KOH to give a brilliant yellow solution. The mixture was then stirred for 90 

minutes at room temperature, after which time solid NaBH4 (0.062 g, 1.62 mmol) 

was carefully added in small portions over a period of 3 minutes. The colorless 

solution was stirred for an additional 15 minutes and then neutralized via the 

dropwise addition of formic acid. The solution was then concentrated to ~4 mL 

under reduced pressure to provide 0.390 g of sticky solid which was then loaded 

onto an anion exchange column (Biorad AG1-X8 resin, 100-200 mesh size, 

HCO3
- form, column dimensions 1 cm x 40 cm). Elution using a gradient of 0 – 

0.5 M NH4HCO3 (2 mL/min flow rate) followed by repeated lyophilization then 

provided pure PLP-Glu (0.110 g, 73%). White solid; IR (microscope):  ν = 3081, 
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2823, 2737, 1603, 1420, 1353, 1178, 1084, 854, 760, 707 cm-1; 1H NMR (500 

MHz, D2O) δ 7.77 (s, 1H, Ph-H), 4.94 (d, J = 7.5 Hz, 2H, O-CH2), 4.38 (m, 2H, 

N-CH2), 3.72 (m, 1H, N-CH), 2.47-2.51 (m, 5H), 2.13-2.17 (m, 2H); 13C NMR 

(125 MHz, D2O) δ 178.5, 173.9, 162.1, 145.3, 134.9, 132.0, 125.7, 62.9, 62.4, 

44.5, 31.5, 25.9, 15.7; ESI-HRMS m/z calcd for C13H18N2O9P: 377.0745 [M-H-], 

found: 377.0745. 

  

(2S,6S)-2-Amino-6-(2-hydroxy-3-methyl-6-

(phosphonooxymethyl)benzylamino)heptanedioic acid (90) 

PLP-DAP was prepared analogously to PLP-Glu.  Pyridoxal 5′-phosphate (0.0250 

g, 0.101 mmol) and LL-DAP (0.0385 g, 0.202 mmol) were added to water (2 mL) 

and the pH was adjusted to ~9.3 using 2 M KOH to give a brilliant yellow 

solution. The reaction was then stirred for 90 minutes at room temperature, after 

which time solid NaBH4 (0.0153 g, 0.405 mmol) was carefully added in small 

portions over a period of 3 minutes. The colorless solution was stirred for an 

additional 15 minutes and then quenched via the dropwise addition of formic acid 

until the pH was approximately 2. The solution was then neutralized using 2 M 

KOH and loaded onto an anion exchange column (Biorad AG1-X8 resin, 100-200 

mesh size, HCO3
- form, column dimensions 1 cm x 40 cm). Elution using a 
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gradient of 0-0.35 M NH4HCO3 (2 mL/min flow rate) followed by repeated 

lyophilization then provided pure PLP-DAP (34 mg, 40%). White solid; IR 

(microscope): ν = 3122, 3036, 2811, 1605, 1404, 1042, 970, 927 cm-1; 1H NMR 

(500 MHz, D2O) δ 7.63 (s, 1H, Ph-H), 4.83-4.84 (m, 2H, O-CH2), 4.29-4.39 (m, 

2H, N-CH2), 3.69-3.70 (m, 2H), 2.42 (s, 3H, CH3), 1.84-1.94 (br m, 4H), 1.46-

1.48 (br m, 2H); 13C (125 MHz, D2O) δ 175.5, 174.4, 164.0, 145.4, 134.9, 132.5, 

124.1, 62.7, 62.5, 55.3, 44.9, 31.0, 30.0, 21.3, 15.7; ESI-HRMS m/z calcd for 

C15H23N3O9P: 420.1167 [M-H-], found: 420.1168. 

3.2.2 Incorporation of PLP-Glu and PLP-DAP into LL-DAP-AT 

 LL-DAP-AT (3 mg, 9 mg/mL) in a buffer, which contains 200 mM NaCl, 20 

mM HEPES-KOH, pH 7.6, 3 mM DTT, was diluted to 2.5 mL using a buffer 

containing 200 mM NaCl, 200 mM potassium phosphate, pH 7.6, 3 mM DTT.  

Phenylhydrazine (0.500 mL of a 0.03 M aqueous solution) was then added and the 

mixture was incubated at 22 ºC with occasional gentle mixing. After 1 h the 

solution was transferred to a dialysis tubing (12-14,000 MWCO) and dialyzed for 

2 h at 22 ºC against 300 mL of buffer containing 200 mM potassium phosphate, 

pH 7.6, 200 mM HEPES-KOH, pH 7.6, 3 mM DTT. The dialysis buffer was then 

changed to a buffer containing 200 mM NaCl, 200 mM HEPES-KOH, pH 7.6, 3 

mM DTT. The enzyme solution was supplemented with ~3 mg of the appropriate 

substrate analogue (PLP-Glu or PLP-DAP). After 2 hours at 22 ºC the buffer was 

exchanged and another 3 mg of compound was added to the enzyme solution. A 

final buffer exchange was permitted to stir overnight at 22 ºC. The following day, 

the contents of the dialysis bag were transferred to an Amicon Ultra 30,000 
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MWCO centrifugal filter (Millipore) and the buffer was exchanged for buffer 

containing 200 mM NaCl, 200 mM HEPES-KOH, pH 7.6, 3 mM DTT, followed 

by concentration of the solution to ~300 µL.  

3.3 General procedure for high-throughput screening of LL-DAP-AT 

inhibitors  

 The screening of a library of 30,000 compounds from ChemBridge 

Corporation for potential inhibitors of LL-DAP-AT was done in collaboration with 

Dr. Michael Deyholos (Department of Biological Sciences, University of 

Alberta). This initial screening was performed by Dr. Matthew Clay of our group. 

The published 2-aminobenzaldehyde-based assay24 was adapted to reliably work 

in a 96-well plate (100 µL volume).  Column 1 served as a positive control (no 

inhibitor) whereas column 12 served as a negative control (no enzyme).  Initial 

and final absorbances were measured and the difference was used as a measure of 

enzyme activity. Activity was measured relative to the average of column 1 

(positive control).  The assay consisted of four steps and was performed using a 

Beckman Coulter Biomek® 2000 work station. 

Aliquot buffer solution: 420 mg of α-Kg, 280 mg 2-aminobenzaldehyde (OAB), 

and 480 mg of racemic DAP were dissolved in 280 mL of 100 mM HEPES-KOH, 

pH 7.6, and 85 µL of this stock was aliquoted into the 96-well assay plates using 

an automated protocol on a Beckman Coulter Biomek 2000 Laboratory 

Automation Workstation.  The final concentration of each component in the stock 

solution was:  α-Kg (10 mM); OAB (8.3 mM); LL-DAP (assuming 25% of total 
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DAP:  2.3 mM).  Upon dilution to 100 µL in the well plate, the final 

concentrations were:  α-Kg (8.5 mM); OAB (7 mM); LL-DAP (2.0 mM).  

Preparation of inhibitor working stock: The inhibitor source plates contained 

0.25 mg of inhibitor in 25 µL of DMSO.  Inhibitor was present in columns 2-11 of 

the 96-well plates, and columns 1 and 12 contained pure DMSO.  Using an 

automated protocol on the Biomek 2000, 99 µL of DMSO was added to each well 

of a 96-well plate, followed by 1.0 µL of inhibitor to create the inhibitor working 

stock.  Assuming a molecular weight of 500 g/mol, the final concentration of 

inhibitor in each well was 200 µM.  The working plates were stored at -20 °C.    

Addition of inhibitor: A 5 µL solution of inhibitor working stock was then added 

to the assay plates containing buffer using an automated protocol on the Biomek 

2000.  Columns 1 and 12 of the assay plates received pure DMSO as no inhibitor 

was present in these columns. Assuming a molecular weight of 500 g/mol, the 

final concentration of inhibitor in each well was 10 µM.  To remove air bubbles, 

the assay plates were then centrifuged at 2400 rpm for 3 minutes. The absorbance 

was then recorded at 440 nm in triplicate on a Bio-TEK PowerWave XS Universal 

Microplate Spectrophotometer. 

Addition of enzyme: A 0.043 mg/mL solution of LL-DAP-AT in 100 mM 

HEPES-KOH, pH 7.6 was prepared and 10 µL of this was added to each well 

(with the exception of the wells in column 12, which served as a negative control) 

using an automated protocol on the Biomek 2000.  This resulted in 0.43 µg of 

enzyme in each well, or a concentration of 0.0043 mg/mL of LL-DAP-AT.  The 
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assay plates were then allowed to sit at room temperature for 3 hours, at which 

time a second absorbance reading at 440 nm was taken in triplicate.   

3.4 General procedure for determination of IC 50 values of inhibitors of 

LL-DAP-AT  

 IC50 determinations were done using a Varian Cary 100 Bio UV-Visible 

spectrophotometer using the Enzyme Kinetic program. The data were then 

analyzed using Microsoft® Excel 2000.  

Aliquot buffer solution: 420 mg of α-Kg and 480 mg of racemic DAP 

(commercial) were dissolved in 280 mL of 100 mM HEPES-KOH, pH 7.6. 7 mL 

of this solution was used to dissolve 7 mg of 2-aminobenzaldehyde (OAB) and 

850 µL of this stock was added into 8 assay cells (1mL). The final concentration 

of each component in the stock solution was:  α-Kg (10 mM); OAB (8.3 mM); LL-

DAP (assuming 25% of total DAP:  2.3 mM).  Upon dilution to 1 mL in the assay 

cells, the final concentrations were:  α-Kg (8.5 mM); OAB (7 mM); LL-DAP (2.0 

mM). 

Preparation of inhibitor working stock: 8 µmol of inhibitor was dissolved in 2 

mL of DMSO, which resulted in a concentration of 4 µmol/mL. Serial dilutions 

were performed to prepare 2 µmol/mL, 1 µmol/mL, 0.5 µmol/mL, 0.2 µmol/mL, 

and 0.1 µmol/mL solutions, the final inhibitor concentrations were 200 µM, 100 

µM, 50 µM, 25 µM, 10 µM, and 5 µM, respectively. 

Addition of inhibitor: 50 µL of each different concentration of inhibitor solution 

was added into cell 2 to 7. And 50 µL of pure DMSO was then added into cell 1 
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and 8, which act as the negative control. A Varian Cary 100 Bio UV-Visible 

spectrophotometer was used to measure the absorbance at 440 nm. Using the 

Enzyme Kinetics program, the absorbance for all the cells was then multi-zeroed.  

Addition of enzyme: A 0.043 mg/mL solution of LL-DAP-AT in 100 mM 

HEPES-KOH pH 7.6 was prepared and 100 µL of this was added to each cell, 

excluding the negative control (cell 8). The final concentration of the enzyme was 

0.0043 mg/mL. The absorbance was recorded over a period of 120 min with 20 

sec/cycle.  

Calculation of IC50: The slope of the linear portion (normally 5 – 15 minutes) of 

each absorbance curve was used to determine the initial rate of the enzymatic 

conversion. The initial rates were measured for several different inhibitor 

concentrations, in addition to the positive control, which contained no inhibitor. 

This allowed for the determination of the percent inhibition for each concentration 

of the inhibitor. The percent inhibitions were then plotted against the inhibitor 

concentrations, and the resulting curve was then fitted to a natural logarithm 

function. Finally, the IC50 value was calculated using this formula.  

3.5 General procedure for time dependence testing of inhibitors of LL-

DAP-AT 

 The concentration of inhibitor stock was chosen based on the IC50 value. 

The substrate buffer solution and the enzyme were prepared, as described above. 

Six portions containing 100 µL of enzyme and 50 µL of the inhibitor solution 

were pre-incubated for different lengths of time prior to addition into the cell, 

which contains 850 µL of substrate buffer solution. Cells 1 and 8 served as 
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positive and negative control, respectively. The absorbance values were recorded 

as described above. For the time-independent inhibitors, the percentage inhibition 

did not change with different incubation times. For the time-dependent inhibitors, 

the percentage inhibition increased with longer pre-incubation times.  

3.6 Sulfonamido-arylhydrazide derived inhibitors of LL-DAP-AT 

3.6.1 Preparation of the hydrazide-modified analogues (144 and 147)  

 

3-(Phenylsulfonamido)-2-naphthoic acid (141) 

3-Amino-2-naphthoic acid (80%, 0.4680g, 2 mmol) and sodium carbonate 

(0.5148g, 4.8 mmol) were mixed with distilled water (5 mL). The mixture was 

heated in an oil-bath to ~60 °C. Benzenesulfonyl chloride (0.31 mL, 2.4 mmol) 

was slowly added into the hot mixture over the course of 15 min. The mixture was 

then heated to 85 °C for a further 3 h. Norite (~20 mg) was used if the mixture 

was coloured dark red or brown. The hot mixture was filtered through a pre-

heated funnel. The hot filtrate was slowly poured with vigorous swirling into a 50 

mL Erlenmeyer flask, which contained 1 mL of 6 N hydrochloride acid. After 

cooling, the precipitated solid was filtered and washed with 2 mL of 1 N 

hydrochloride acid. The product was then used in the next step without any further 
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purification. The title compound was obtained as a light red solid; 0.6064g, 93% 

yield; IR (Microscope) 3221, 3070, 2861 (br), 1676, 1448, 1160 cm-1; 1H NMR 

(400 MHz, DMSO-d6): δ = 8.59 (s, 1H, Ph-H), 7.97 (d, J = 7.5, 1H, Ph-H), 7.91 

(s, 1H, Ph-H), 7.89 (d, J = 7.5, 1H, Ph-H), 7.82 (m, 2H, Ph-H), 7.59 (m, 2H, Ph-

H), 7.48 (m, 3H, Ph-H); 13C NMR (100 MHz, DMSO-d6): δ = 170.3, 139.3, 

135.9, 135.7, 134.3, 134.1, 130.2, 130.1, 129.8, 129.2, 127.7, 127.6, 126.6, 118.3, 

116.6; ESI-HRMS m/z calcd for C17H14NO4S: 326.0493 [M+H+], found: 

326.0488. 

 

3-(Phenylsulfonamido)-N-(piperidin-1-yl)-2-naphthamide (144) 

3-(Phenylsulfonamido)-2-naphthoic acid (141, 0.0818 g, 0.250 mmol) was 

dissolved in dry THF (5 mL). The solution was then cooled in an ice-bath. After 

10 minutes, oxalyl chloride (28 µL, 0.32 mmol) was added. Then 2 drops of DMF 

were added to the mixture. The mixture was stirred for 30 min, and then warmed 

to 20 oC. The mixture was then stirred for another hour. The solvent and excess 

oxalyl chloride was removed in vacuo. Dry THF (5 mL) was then added to the 

residue. N,N-diisopropylethylamine (0.3 mL, 1.7 mmol) was added, followed by 

the slow addition of 1-aminopiperidine (0.054 mL, 0.50 mmol). The mixture was 
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stirred for 16 h, and then the solvent was removed in vacuo. The residue was 

dissolved in ethyl acetate (10 mL), and washed with saturated sodium bicarbonate 

solution (2×15 mL), water (15 mL), and brine (15 mL). The organic layer was 

dried over sodium sulfate, filtered, and the solvent was removed in vacuo. The 

product was purified by column chromatography (silica gel, EtOAc/hexanes = 

2:1), yielding a white solid (0.073 g, 68%); IR (Microscope) 3221, 3070, 2861 

(br), 1676, 1448, 1160 cm-1; 1H NMR (400 MHz, CDCl3): δ = 10.42 (br, 1H, SO2-

NH), 8.04 (s, 1H, Ph-H), 7.94 (br, 1H, CO-NH), 7.89 (d, J = 7.6 Hz, 2H, Ph-H), 

7.72 (t, J = 8.0Hz, 2H, Ph-H), 7.50 (t, J = 8.0Hz, 2H, Ph-H), 7.36 (m, 3H, Ph-H), 

2.84 (br, 4H), 1.76 (br, 4H), 1.47 (br, 2H); 13C NMR (100 MHz, CDCl3): δ = 

166.9, 139.9, 135.1, 134.4, 132.9, 129.4, 129.1, 128.8, 128.6, 128.5, 127.7, 127.4, 

126.3, 122.1, 119.1, 57.0, 25.3, 23.2; ESI-HRMS m/z calcd for C22H23N3NaO3S: 

432.1352 [M+Na+], found: 432.1348. 

 

N-(3-(2-Acetylhydrazinecarbonyl)naphthalen-2-yl)benzenesulfonamide (147) 

3-(Phenylsulfonamido)-2-naphthoic acid (141, 0.0818 g, 0.250 mmol) and 

carbonyl diimidazole (0.0410 g, 0.25 mmol) were dissolved in dry DMF (5 mL). 

The mixture was then stirred for 4 hours. Acetohydrazide (0.0250 g, 0.3 mL) was 

dissolved in DMF (1 mL). The activated sulfonamide – carboxylic acid 
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intermediate was then slowly added to the acetohydrazide solution. The reaction 

was allowed to stir for 16 h at room temperature. The solvent was removed in 

vacuo, and the residue was purified via column chromatography (silica gel, 

EtOAc) to yield the title product as a white solid; 0.070 g, 73% yield; IR 

(Microscope) 3267, 3225, 3020, 1698, 1412, 1156 cm-1; 1H NMR (400 MHz, 

DMSO-d6): δ = 10.73 (s, 2H, CO-NH), 10.08 (s, 1H, SO2-NH), 8.28 (s, 1H, Ph-

H), 7.84 (m, 5H, Ph-H), 7.53 (m, 5H, Ph-H), 1.99 (s, 3H, CH3); 13C NMR (100 

MHz, DMSO-d6): δ = 169.4, 168.0, 139.2, 134.9, 134.3, 134.0, 130.5, 130.1, 

129.7, 129.2, 129.1, 127.8, 127.7, 126.9, 121.1, 117.0, 21.2; ESI-HRMS m/z calcd 

for C19H17N3NaO4S: 406.0832 [M+Na+], found: 406.0827. 

3.6.2 Preparation of naphthalene and sulfonamide modified sulfonamide-

arylhydrazide analogues 

3.6.2.1 General procedure for synthesis of sulfonamide - carboxylic acid 

intermediate (148a-163a) 

 One equivalent of the appropriate amino acid and 2.5 equivalents of sodium 

carbonate were mixed with distilled water to prepare a 0.4 M amino acid 

concentration. The mixture was heated in an oil-bath to ~60 °C. An appropriate 

sulfonyl chloride (1.25 equiv.) was slowly added into the hot mixture over the 

course of 15 min. The mixture was then heated to 85 °C for a further 3 h. Norite 

(~20 mg) was used if the mixture was coloured dark red or brown. The hot 

mixture was filtered through a pre-heated funnel. The hot filtrate was slowly 

poured with vigorous swirling into a 50 mL Erlenmeyer flask, which contained 1 
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mL of 6 N hydrochloride acid. After cooling, the precipitated solid was filtered 

and washed with 2 mL of 1 N hydrochloride acid. The product was then used in 

the next step without any further purification. 

3.6.2.2 General procedure for synthesis of naphthalene and sulfonamide 

modified sulfonamide – hydrazide analogues (148b-163b) using sulfonamide 

– carboxylic acid intermediate  

 The inhibitor analogues were synthesized from the sulfonamide – carboxylic 

acid intermediates using the following general procedure unless otherwise stated. 

One equivalent of the appropriate sulfonamide – carboxylic acid intermediate and 

1.2 equivalents of carbonyl diimidazole were dissolved in dry DMF to a substrate 

concentration of 0.075 M. The mixture was then stirred for 4 hours. The 

appropriate hydrazine (2 equiv.) was dissolved in dry DMF to a concentration of 

0.15 M. The activated sulfonamide – carboxylic acid intermediate was then slowly 

added to the hydrazine solution. The reaction was allowed to stir for 16 h at room 

temperature. The solvent was removed in vacuo, and the residue was purified via 

column chromatography to yield the desired sulfonamide–hydrazide analogue. 

3.6.2.3 Characterization data of sulfonamide – carboxylic acid intermediates 

and sulfonamide – hydrazide analogues 
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3-(Phenylsulfonamido)propanoic acid (148a) 

White solid; 72% yield; IR (Microscope): 3273, 3066, 3150 – 2830 (br), 1701, 

1447, 1435, 1413, 1168 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.85 (m, 2H, Ph-

H), 7.63 (m, 1H, Ph-H), 7.56 (m, 2H, Ph-H), 3.10 (t, J = 7.0 Hz, 2 H, NH-CH2), 

2.44 (t, J = 7.0 Hz, 2 H, CO-CH2); 13C NMR (125 MHz, CD3OD): δ = 174.8, 

141.8, 133.7, 130.3, 128.0, 39.9, 35.4; ESI-HRMS m/z calcd for C9H10NO4S: 

228.0336 [M-H]-, found: 228.0333. 

 

N-(3-Hydrazinyl-3-oxopropyl)benzenesulfonamide (148b) 

White solid; 32% yield; IR (KBr pellet): 3417, 3302, 3246, 3194, 3096, 3057, 

2914, 2859, 1643, 1534, 1445 cm-1; 1H NMR (400 MHz, CD3OD): δ = 7.85 (m, 

2H, Ph-H), 7.57 (m, 3H, Ph-H), 3.11 (t, J = 6.8 Hz, 2H, NH-CH2), 2.33 (t, J = 6.8 

Hz, 2H, CO-CH2); 13C NMR (100 MHz, CD3OD): δ = 171.1, 140.3, 132.3, 128.8, 

126.6, 39.0, 34.0; ESI-HRMS m/z calcd for C9H13N3NaO3S: 266.0568 [M+Na]+, 

found: 266.0570.  
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(S)-1-(Phenylsulfonyl)pyrrolidine-2-carbohydrazide (149b) 

White solid; 25% yield over two steps; [α]D = -130.2 (c 0.19, CH3OH); IR (KBr 

pellet): 3600 – 3120 (br), 3061, 2953, 2926, 2874, 1659, 1512, 1479, 1446 cm-1; 

1H NMR (400 MHz, CD3OD): δ = 7.85 (m, 2H, Ph-H), 7.66 (m, 3H, Ph-H), 4.10 

(dd, J = 4.0, 8.4 Hz, 1H, N-CH), 3.55 (m, 1H), 3.23 (td, J = 7.2, 10.0 Hz, 1H, N-

CH2), 1.84 (m, 3H), 1.56 (m, 1H); 13C NMR (100 MHz, CD3OD): δ = 173.0, 

137.6, 134.2, 130.2, 128.5, 62.1, 50.3, 31.4, 25.1; ESI-HRMS m/z calcd for 

C11H16N3O3S: 270.0907 [M+H]+, found: 270.0908. 

 

(R)-1-(Phenylsulfonyl)pyrrolidine-2-carbohydrazide (150b) 

White solid; 28% yield over two steps; [α]D = 144.4 (c 0.165, CH3OH); IR (KBr 

pellet): 3600 – 3050 (br), 3061, 2976, 2921, 2874, 1660, 1515, 1480, 1446 cm-1; 

1H NMR (500 MHz, CD3OD): δ = 7.88 (m, 2H, Ph-H), 7.68 (m, 1H, Ph-H), 7.60 

(m, 2H, Ph-H), 4.11 (dd, J = 4.0, 9.0 Hz, 1H, N-CH), 3.55 (ddd, J = 4.5, 7.0, 10.0 

Hz, 1H, N-CH2), 3.23 (td, J = 7.0, 10.0 Hz, 1H, N-CH2), 1.84 (m, 3H), 1.54 (m, 

1H); 13C NMR (125 MHz, CD3OD): δ = 173.4, 137.9, 134.6, 130.6, 128.9, 62.6, 

50.7, 32.0, 25.5; ESI-HRMS m/z calcd for C11H15N3NaO3S: 292.0726 [M+Na]+, 

found: 292.0726. 
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2-(Phenylsulfonamido)benzoic acid (151a)186 

Solid; 68% yield; IR (microscope): 3179, 3100, 3200 – 2850 (br), 2885, 1680, 

1600, 1582, 1492, 1448, 1431 cm-1; 1H NMR (400 MHz, DMSO-d6): δ = 7.87 (m, 

1H, Ph-H), 7.80 (m, 2H, Ph-H), 7.63 (m, 1H, Ph-H), 7.53 (m, 4H, Ph-H), 7.10 (m, 

1H, Ph-H); 13C NMR (100 MHz, DMSO-d6): δ = 170.4, 140.5, 139.3, 135.2, 

134.3, 132.2, 130.2, 127.5, 124.1, 119.2, 117.5; ESI-HRMS m/z calcd for 

C13H11NO4S: 276.0336 [M-H]-, found: 276.0336. 

 

N-(2-(Hydrazinecarbonyl)phenyl)benzenesulfonamide (151b)  

White solid; 76% yield; IR (CH2Cl2 cast): 3327, 3400 – 2900 (br), 3064, 1631, 

1598, 1518, 1494, 1447 cm-1; 1H NMR (500 MHz, CDCl3): δ = 7.78 (m, 2H, Ph-

H), 7.65 (m, 1H, Ph-H), 7.51 (m, 1H, Ph-H), 7.39 (m, 4H, Ph-H), 7.07 (m, 1H, 

Ph-H); 13C NMR (100 MHz, CDCl3): δ = 179.2, 139.5, 138.6, 133.2, 129.3, 129.2, 
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127.4, 126.9, 124.3, 122.0, 120.5; ESI-HRMS m/z calcd for C13H13N3NaO3S: 

314.0570 [M+Na]+, found: 314.0571. 

 

4-Chloro-2-(phenylsulfonamido)benzoic acid (152a)  

Solid; 85% yield; IR (microscope): 3179, 3106, 3060, 3200 – 2700 (br),1672, 

1597, 1566, 1488, 1449, 1433 cm-1; 1H NMR (500 MHz, DMSO-d6): δ = 7.88 (d, 

J = 8.5 Hz, 1H, 2-carboxyl-Ph-H), 7.82 (m, 2H, Ph-H), 7.66 (m, 1H, Ph-H), 7.58 

(m, 2H, Ph-H), 7.45 (d, J = 1.5 Hz, 1H, 2-sulfonamide-Ph-H), 7.16 (dd, J = 1.5, 

8.5 Hz, 1H, 4-sulfonamide-Ph-H); 13C NMR (125 MHz, DMSO-d6): δ = 168.9, 

141.3, 138.6, 138.5, 133.7, 133.2, 129.6, 126.7, 123.1, 117.7, 116.0; ESI-HRMS 

m/z calcd for C13H9ClNO4S: 309.9946 [M-H]-, found: 309.9945. 

 

N-(5-Chloro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide (152b)  

Light yellow solid; 58% yield; IR (CH2Cl2 cast): 3328, 3400 – 2900 (br), 3066, 

1633, 1593, 1520, 1492, 1447 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.75 (m, 

2H, Ph-H), 7.60 (m, 1H, Ph-H), 7.56 (m, 1H, Ph-H), 7.46 (m, 3H, Ph-H), 7.08 (m, 
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1H, Ph-H); 13C NMR (125 MHz, CD3OD): δ = 168.6, 140.8, 140.2, 139.1, 134.5, 

130.3, 130.2, 128.3, 125.2, 122.3, 121.0; ESI-HRMS m/z calcd for 

C13H12ClN3NaO3S: 348.0180 [M+Na]+, found: 348.0180. 

 

4-Methoxy-2-(phenylsulfonamido)benzoic acid (153a)  

Light grey solid; 88% yield; IR (microscope): 3170, 2975, 3200 – 2700 (br), 

1637, 1615, 1570, 1510, 1441 cm-1; 1H NMR (500 MHz, DMSO-d6): δ = 7.83 (m, 

3H, Ph-H), 7.65 (m, 1H, Ph-H), 7.57 (m, 2H, Ph-H), 6.97 (d, J = 2.5 Hz, 1H, 2-

sulfonamide-Ph-H), 6.67 (dd, J = 2.5, 9.0 Hz, 1H, 4-sulfonamide-Ph-H), 3.76 (s, 

3H, CH3); 13C NMR (125 MHz, DMSO-d6): δ = 169.7, 163.6, 141.8, 138.4, 133.7, 

133.5, 129.6, 126.8, 108.9, 108.6, 103.1, 55.6; ESI-HRMS m/z calcd for 

C14H12NO5S: 306.0442 [M-H]-, found: 306.0439. 
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N-(2-(Hydrazinecarbonyl)-5-methoxyphenyl)benzenesulfonamide (153b)  

White solid; 74% yield; IR (CH2Cl2 cast): 3328, 3400 – 2900 (br), 3065, 3009, 

2968, 2843, 1611, 1578, 1503, 1464, 1447 cm-1; 1H NMR (500 MHz, CD3OD): δ 

= 7.75 (m, 2H, Ph-H), 7.53 (m, 1H, Ph-H), 7.45 (m, 3H, Ph-H), 7.13 (d, J = 2.5 

Hz, 1H, 2-sulfonamide-Ph-H), 6.60 (dd, J = 2.5, 9.0 Hz, 1H, 4-sulfonamide-Ph-

H), 3.77 (s, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 169.7, 164.1, 141.6, 

140.4, 134.3, 130.3, 130.2, 128.4, 114.0, 110.7, 107.2, 56.1; ESI-HRMS m/z calcd 

for C14H15N3NaO4S: 344.0675 [M+Na]+, found: 344.0680. 

 

4,5-Dimethoxy-2-(phenylsulfonamido)benzoic acid (154a)  

Grey solid; 70% yield; IR (microscope): 3160, 3078, 3030, 2976, 2941, 2843, 

3300 – 2700 (br), 1662, 1610, 1587, 1520, 1448, 1417 cm-1; 1H NMR (500 MHz, 

DMSO-d6): δ = 7.74 (m, 2H, Ph-H), 7.61 (m, 1H, Ph-H), 7.52 (m, 2H, Ph-H), 7.26 

(s, 1H, 2-carboxyl-Ph-H), 7.11 (s, 1H, 3-carboxyl-Ph-H), 3.79 (s, 3H, CH3), 3.68 
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(s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6): δ = 169.9, 153.8, 145.0, 138.8, 

135.4, 134.0, 129.9, 127.3, 113.2, 109.2, 103.2, 56.2, 56.0; ESI-HRMS m/z calcd 

for C15H14NO6S: 336.0547 [M-H]-, found: 336.0549. 

 

N-(2-(Hydrazinecarbonyl)-4,5-dimethoxyphenyl)benzenesulfonamide (154b)  

White solid; 37% yield; IR (CHCl3 cast): 3335, 3400 – 3250 (br), 3022, 2917, 

2849, 1606, 1515, 1465, 1448 cm-1; 1H NMR (500 MHz, CDCl3): δ = 7.73 (m, 

2H, Ph-H), 7.52 (m, 1H, Ph-H), 7.41 (m, 2H, Ph-H), 7.25 (s, 1H, 2-carboxyl-Ph-

H), 6.77 (s, 1H, 3-carboxyl-Ph-H), 3.92 (s, 3H, CH3), 3.82 (s, 3H, CH3); 13C NMR 

(125 MHz, CDCl3): δ = 168.8, 152.6, 145.8, 139.0, 133.1, 132.9, 128.8, 127.3, 

112.9, 108.7, 106.5, 56.3, 56.2; ESI-HRMS m/z calcd for C15H17N3NaO5S: 

374.0781 [M+Na]+, found: 374.0781. 
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4-Fluoro-2-(phenylsulfonamido)benzoic acid (155a)187  

Light yellow solid; 76% yield; IR (microscope): 3490, 3101, 3300 – 2750 (br), 

1670, 1613, 1592, 1506, 1448, 1430 cm-1; 1H NMR (500 MHz, DMSO-d6): δ = 

7.97 (dd, J = 6.5, 9.0 Hz, 1H, Ph-H), 7.86 (m, 2H, Ph-H), 7.67 (m, 1H, Ph-H), 

7.58 (m, 2H, Ph-H), 7.24 (dd, J = 2.5, 11.0 Hz, 1H, Ph-H), 6.97 (m, 1H, Ph-H); 

13C NMR (100 MHz, DMSO-d6): δ = 169.5, 165.4 (d, J = 250.4 Hz), 142.5 (d, J = 

11.9 Hz), 138.7, 134.9 (d, J = 10.9 Hz), 134.3, 130.2, 127.3, 113.6 (d, J = 2.9 Hz), 

111.0 (d, J = 21.6 Hz), 105.4 (d, J = 27.0 Hz); 19F NMR (380 MHz, DMSO-d6): δ 

= -102.2 (ddd, J = 7.2, 7.2, 12.1 Hz); ESI-HRMS m/z calcd for C13H9FNO4S: 

294.0242 [M-H]-, found: 294.0245. 

 

N-(5-Fluoro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide (155b)  

Light yellow solid; 58% yield; IR (CH2Cl2 cast): 3334, 3400 – 3250 (br), 3093, 

3027, 1631, 1596, 1502, 1448, 1423 cm-1; 1H NMR (500 MHz, CDCl3): δ = 7.85 
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(m, 2H, Ph-H), 7.56 (m, 1H, Ph-H), 7.46 (m, 2H, Ph-H), 7.41 (m, 2H, Ph-H), 6.75 

(m, 1H, Ph-H); 13C NMR (125 MHz, CDCl3): δ = 168.5, 165.0 (d, J = 252.3 Hz), 

141.2 (d, J = 11.8 Hz), 139.1, 133.3, 129.2, 128.7 (d, J = 10.3 Hz), 127.2, 115.2 

(d, J = 3.0 Hz), 110.7 (d, J = 22.4 Hz), 107.8 (d, J = 26.4 Hz); 19F NMR (380 

MHz, CDCCl3): δ = -103.0 (ddd, J = 7.6, 7.6, 11.0 Hz); ESI-HRMS m/z calcd for 

C13H12FN3NaO3S: 332.0476 [M+Na]+, found: 332.0475. 

 

4,5-Difluoro-2-(phenylsulfonamido)benzoic acid (156a)  

Solid; 89% yield; IR (microscope): 3161, 3087, 3400 – 2750 (br), 1686, 1604, 

1522, 1481, 1449, 1401 cm-1; 1H NMR (500 MHz, DMSO-d6): δ = 7.84 (dd, J = 

9.0, 11.0 Hz, 1H, Ph-H), 7.80 (m, 2H, Ph-H), 7.64 (m, 1H, Ph-H), 7.55 (m, 2H, 

Ph-H), 7.45 (dd, J = 7.0, 12.5 Hz, 1H, Ph-H); 13C NMR (100 MHz, DMSO-d6): δ 

= 168.4 (d, J = 1.0 Hz), 153.0 (dd, J = 13.6, 252.0 Hz), 145.6 (dd, J = 12.9, 243.0 

Hz), 138.6, 137.7 (dd, J = 2.5, 9.7 Hz), 134.3, 130.1, 127.3, 120.5 (dd, J = 2.1, 

19.2 Hz), 115.1 (dd, J = 3.3, 4.7 Hz), 108.8 (d, J = 21.9 Hz); 19F NMR (380 MHz, 

DMSO-d6): δ = -127.4 (ddd, J = 9.9, 12.2, 23.2 Hz), -142.9 (ddd, J = 7.2, 11.0, 

23.2 Hz); ESI-HRMS m/z calcd for C13H8F2NO4S: 312.0148 [M-H]-, found: 

312.0151. 
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N-(4,5-Difluoro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide (156b)  

Light yellow solid; 48% yield; IR (microscope): 3345, 3400 – 3250 (br), 3065, 

1606, 1509,1448, 1392 cm-1; 1H NMR (500 MHz, CDCl3): δ = 7.80 (m, 2H, Ph-

H), 7.58 (m, 2H, Ph-H), 7.47 (m, 2H, Ph-H), 7.22 (dd, J = 8.5, 10.0 Hz, 1H, Ph-

H); 13C NMR (125 MHz, CDCl3): δ = 167.4, 152.6 (dd, J = 13.1, 254.6 Hz), 146.4 

(dd, J = 13.0, 247.3 Hz), 138.8, 135.9 (dd, J = 2.8, 9.3 Hz), 133.4, 129.2, 127.2, 

116.4, 115.5 (d, J = 17.8 Hz), 111.5 (d, J = 21.5 Hz); 19F NMR (380 MHz, 

CDCl3): δ = -127.3 (ddd, J = 9.5, 11.8, 20.7 Hz), -140.7 (ddd, J = 7.6, 9.9, 22.8 

Hz); ESI-HRMS m/z calcd for C13H11F2N3NaO3S: 350.0382 [M+Na]+, found: 

350.0381. 

 

4-Methyl-2-(phenylsulfonamido)benzoic acid (157a)  

Light grey solid; 93% yield; IR (CHCl3 cast): 3178, 3071, 3100 – 2750 (br), 2871, 

1644, 1568, 1479, 1447 cm-1; 1H NMR (500 MHz, DMSO-d6): δ = 7.79 (m, 2H, 
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Ph-H), 7.75 (d, J = 8.0 Hz, 1H, Ph-H), 7.62 (m, 1H, Ph-H), 7.54 (m, 2H, Ph-H), 

7.33 (m, 1H, Ph-H), 6.92 (m, 1H, Ph-H), 2.28 (s, 3H, CH3); 13C NMR (100 MHz, 

DMSO-d6): δ = 170.2, 145.6, 140.3, 139.0, 134.0, 131.9, 130.0, 127.3, 124.7, 

119.2, 114.4, 21.9; ESI-HRMS m/z calcd for C14H13NNaO4S: 314.0457 [M+Na]+, 

found: 314.0459. 

 

N-(2-(Hydrazinecarbonyl)-5-methylphenyl)benzenesulfonamide (157b)  

Light yellow solid; 55% yield; IR (CHCl3 cast): 3328, 3400 – 3250 (br), 3059, 

3028, 2918, 1630, 1523, 1447 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.71 (d, J 

= 7.5 Hz, 2H, Ph-H), 7.54 (m, 1H, Ph-H), 7.43 (m, 3H, Ph-H), 7.37 (d, J = 8.0 Hz, 

1H, Ph-H), 6.90 (d, J = 8.0 Hz, 1H, Ph-H), 2.30 (s, 3H, CH3); 13C NMR (125 

MHz, CD3OD): δ = 169.6, 144.4, 140.6, 139.7, 134.1, 130.1, 128.7, 128.3, 125.9, 

123.4, 120.1, 21.6; ESI-HRMS m/z calcd for C14H15N3NaO3S: 328.0726 

[M+Na]+, found: 328.0722. 
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2-(Phenylsulfonamido)-4-(trifluoromethyl)benzoic acid (158a)188  

Light orange solid; 94% yield; IR (CHCl3 cast): 3184, 3300 – 2750 (br), 3105, 

3066, 1683, 1584, 1540, 1511, 1449, 1420 cm-1; 1H NMR (500 MHz, DMSO-d6): 

δ = 8.05 (d, J = 8.0 Hz, 1H, 2-carboxyl-Ph-H), 7.79 (m, 2H, Ph-H), 7.67 (d, J = 

1.5 Hz, 1H, 2-sulfonamide-Ph-H), 7.62 (m, 1H, Ph-H), 7.55 (m, 2H, Ph-H), 7.39 

(dd, J = 1.5, 8.0 Hz, 1H, 4-sulfonamide-Ph-H); 13C NMR (100 MHz, DMSO-d6): 

δ = 168.8, 141.3, 139.3, 133.5 (d, J = 84.4 Hz), 133.5 (d, J = 32.0 Hz), 130.0, 

127.7, 127.2, 125.0, 122.2 (d, J = 9.2), 119.6 (d, J = 3.1 Hz), 115.2 (m); 19F NMR 

(380 MHz, DMSO-d6): δ = -62.3; ESI-HRMS m/z calcd for C14H9F3NO4S: 

344.0210 [M-H]-, found: 344.0240. 
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N-(2-(Hydrazinecarbonyl)-5-(trifluoromethyl)phenyl)benzenesulfonamide 

(158b)  

Light yellow solid; 36% yield; IR (CHCl3 cast): 3331, 3400 – 3250 (br), 3069, 

1647, 1610, 1521, 1449, 1422 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.84 (d, J 

= 1.5 Hz, 1H, 2-sulfonamide-Ph-H), 7.74 (m, 2H, Ph-H), 7.64 (d, J = 8.5 Hz, 1H, 

2-carboxyl-Ph-H), 7.57 (m, 1H, Ph-H), 7.47 (m, 2H, Ph-H), 7.37 (dd, J = 1.5, 8.5 

Hz, 1H, 4-sulfonamide-Ph-H); 13C NMR (125 MHz, CD3OD): δ = 168.1, 139.9 

(d, J = 23 Hz), 134.6 (q, J = 32.8 Hz), 134.6, 130.4, 129.9, 128.3, 126.4, 125.8, 

123.6, 121.7 (q, J = 3.5 Hz), 119.4 (q, J = 3.8 Hz); 19F NMR (380 MHz, CD3OD): 

δ = -65.0; ESI-HRMS m/z calcd for C14H12F3N3NaO3S: 382.0444 [M+Na]+, 

found: 382.0440. 
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2-(4-Chlorophenylsulfonamido)-4-fluorobenzoic acid (159a)  

Yellow solid; 37% yield; IR (CHCl3 cast): 3099, 3300 – 2750 (br), 1662, 1608, 

1588, 1501, 1476, 1443, 1424 cm-1; 1H NMR (500 MHz, DMSO-d6): δ = 7.98 

(dd, J = 6.5, 9.0 Hz, 1H, 2-carboxyl-Ph-H), 7.87 (m, 2H, Ph-H), 7.66 (m, 2H, Ph-

H), 7.23 (dd, J = 3.0, 11.0 Hz, 1H, 2-sulfonamide-Ph-H), 7.00 (ddd, J = 3.0, 8.5, 

9.0 Hz, 1H, 4-sulfonaimde-Ph-H); 13C NMR (125 MHz, DMSO-d6): δ = 168.9, 

164.9 (d, J = 250.8 Hz), 141.7 (d, J = 11.8 Hz), 138.7, 137.2, 134.5 (d, J = 11.0 

Hz), 129.8 (d, J = 8.0 Hz), 128.8, 113.6 (d, J = 2.3 Hz), 110.7 (d, J = 21.3 Hz), 

105.2 (d, J = 27.0 Hz); 19F NMR (380 MHz, DMSO-d6): δ = -102.2 (q, J = 8.7 

Hz); ESI-HRMS m/z calcd for C13H8ClFNO4S: 327.9852 [M-H]-, found: 

327.9849. 
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4-Chloro-N-(5-fluoro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide 

(159b)  

Light yellow solid; 40% yield; IR (CHCl3 cast): 3327, 3400 – 3250 (br), 3093, 

2924, 1639, 1594, 1505, 1478, 1423 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.74 

(m, 2H, Ph-H), 7.55 (dd, J = 6.0, 9.0 Hz, 1H, 2-carboxyl-Ph-H), 7.49 (m, 2H, Ph-

H), 7.35 (dd, J = 3.0, 11.0 Hz, 1H, 2-sulfonamide-Ph-H), 6.84 (ddd, J = 2.5, 8.0, 

8.5 Hz, 1H, 4-sulfonamide-Ph-H); 13C NMR (125 MHz, CD3OD): δ = 168.7, 

165.9 (d, J = 250.3 Hz), 141.7 (d, J = 11.4 Hz), 140.8, 139.0, 131.2 (d, J = 10.3 

Hz), 130.5 (d, J = 3.9 Hz), 130.0, 118.6 (d, J = 3.1 Hz), 112.1 (d, J = 21.9 Hz), 

109.3 (d, J = 26.5 Hz); 19F NMR (380 MHz, CD3OD): δ = -107.2 (ddd, J = 7.6, 

7.6, 9.9 Hz); ESI-HRMS m/z calcd for C13H11ClFN3NaO3S: 366.0086 [M+Na]+, 

found: 366.0086. 
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4-Fluoro-2-(4-methoxyphenylsulfonamido)benzoic acid (160a) 

Yellow solid; 63% yield; IR (CHCl3 cast): 3099, 3300 – 2750 (br), 2954, 2923, 

2852, 1690, 1672, 1612, 1595, 1500, 1462, 1429 cm-1; 1H NMR (500 MHz, 

DMSO-d6): δ = 7.97 (dd, J = 6.5, 9.0 Hz, 1H, 2-carboxyl-Ph-H), 7.79 (m, 2H, Ph-

H), 7.23 (dd, J = 2.5, 11.0 Hz, 1H, 2-sulfonamide-Ph-H), 7.09 (m, 2H, Ph-H), 

6.96 (ddd, J = 2.5, 8.0, 9.0 Hz, 1H, 4-sulfonamide-Ph-H), 3.80 (s, 3H, CH3); 13C 

NMR (125 MHz, DMSO-d6): δ = 169.0, 164.9 (d, J = 250.4 Hz), 163.1, 142.3 (d, 

J = 12.0 Hz), 134.4 (d, J = 11.1 Hz), 129.6, 129.2, 114.8, 112.9, 110.2 (d, J = 21.8 

Hz), 104.6 (d, J = 27.0 Hz), 55.7; 19F NMR (380 MHz, DMSO-d6): δ = -102.2 

(ddd, J = 7.6, 7.6, 11.0 Hz); ESI-HRMS m/z calcd for C14H11FNO5S: 324.0347 

[M-H]-, found: 324.0346. 
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N-(5-Fluoro-2-(hydrazinecarbonyl)phenyl)-4-methoxybenzenesulfonamide 

(160b)  

Light yellow solid; 58% yield; IR (CHCl3 cast): 3330, 3400 – 3250 (br), 3099, 

3022, 2973, 2946, 2843, 1633, 1596, 1499, 1463, 1440, 1422 cm-1; 1H NMR (400 

MHz, CD3OD): δ = 7.79 (m, 2H, Ph-H), 7.54 (dd, J = 6.0, 8.8 Hz, 1H, 2-carboxyl-

Ph-H), 7.33 (dd, J = 2.8, 10.8 Hz, 1H, 2-sulfonamide-Ph-H), 6.96 (m, 2H, Ph-H), 

6.81 (ddd, J = 2.4, 8.0, 8.8 Hz, 1H, 4-sulfonamide-Ph-H), 3.80 (s, 3H, CH3); 13C 

NMR (100 MHz, CD3OD): δ = 167.5, 164.5 (d, J = 249.0 Hz), 163.6, 140.7 (d, J 

= 11.5 Hz), 130.1, 129.7 (d, J = 10.1 Hz), 129.1, 116.9 (d, J = 3.1 Hz), 114.0, 

110.3 (d, J = 22.3 Hz), 107.6 (d, J = 26.5 Hz), 54.8; 19F NMR (380 MHz, 

CD3OD): δ = -107.6 (ddd, J = 7.6, 7.6, 11.4 Hz); ESI-HRMS m/z calcd for 

C14H14FN3NaO4S: 362.0581 [M+Na]+, found: 362.0578. 
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4-Fluoro-2-(4-fluorophenylsulfonamido)benzoic acid (161a)  

Yellow solid; 53% yield; IR (microscope): 3169, 3106, 3071, 3300 – 2750 (br), 

1653, 1611, 1592, 1508, 1498, 1445, 1422 cm-1; 1H NMR (600 MHz, CD3OD): δ 

= 8.02 (dd, J = 6.6, 9.0 Hz, 1H, 2-carboxyl-Ph-H), 7.89 (m, 2H, Ph-H), 7.39 (dd, J 

= 2.4, 10.8 Hz, 1H, 2-sulfonamide-Ph-H), 7.25 (m, 2H, Ph-H), 6.84 (ddd, J = 2.4, 

8.4, 9.0 Hz, 1H, 4-sulfonamide-Ph-H); 13C NMR (125 MHz, CD3OD): δ = 170.6, 

167.2 (d, J = 251.8 Hz), 166.9 (d, J = 253.0 Hz), 144.0 (d, J = 12.0 Hz), 136.4 (d, 

J = 3.0 Hz), 135.6 (d, J = 10.8 Hz), 131.4 (d, J = 9.8 Hz), 117.5 (d, J = 23.0 Hz), 

114.4 (d, J = 2.9 Hz), 111.6 (d, J = 22.3 Hz), 107.0 (d, J = 27.4 Hz); 19F NMR 

(380 MHz, CD3OD): δ = -103.9 (ddd, J = 7.2, 7.2, 11.2 Hz), -106.4 (ddd, J = 4.9, 

8.7, 13.7 Hz); ESI-HRMS m/z calcd for C13H8F2NO4S: 312.0148 [M-H]-, found: 

312.0153. 
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4-Fluoro-N-(5-fluoro-2-(hydrazinecarbonyl)phenyl)benzenesulfonamide 

(161b)  

White solid; 43% yield; IR (CHCl3 cast): 3331, 3400 – 3250 (br), 3106, 1637, 

1593, 1496, 1423 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.83 (m, 2H, Ph-H), 

7.56 (dd, J = 8.0, 11.0 Hz, 1H, 2-carboxyl-Ph-H), 7.36 (dd, J = 3.5, 13.5 Hz, 1H, 

2-sulfonamide-Ph-H), 7.22 (m, 2H, Ph-H), 6.85 (ddd, J = 3.0, 10.0, 11.0 Hz, 1H, 

4-sulfonamide-Ph-H); 13C NMR (125 MHz, CD3OD): δ = 168.7, 166.8 (d, J = 

252.5 Hz), 165.8 (d, J = 249.4 Hz), 141.8 (d, J = 11.4 Hz), 136.4 (d, J = 3.0 Hz), 

131.3 (d, J = 9.8 Hz), 131.2 (d, J = 10.3 Hz), 118.7 (d, J = 2.6 Hz), 117.4 (d, J = 

23.0 Hz), 112.1 (d, J = 22.0 Hz), 109.4 (d, J = 26.4 Hz); 19F NMR (380 MHz, 

CD3OD): δ = -106.7 (ddd, J = 4.9, 8.4, 13.3 Hz), -107.3 (ddd, J = 7.2, 7.2, 11.0 

Hz); ESI-HRMS m/z calcd for C13H12F2N3O3S: 328.0562 [M+H]+, found: 

328.0561. 

 

NH

N
H

O

S OO

F

NH2

F



156 

 

4-Fluoro-2-(4-methylphenylsulfonamido)benzoic acid (162a)189  

Yellow solid; 34% yield; IR (microscope): 3192, 3103, 3300 – 2750 (br), 2925, 

2864, 1681, 1611, 1593, 1504, 1436, 1397 cm-1; 1H NMR (500 MHz, CD3OD): δ 

= 8.00 (dd, J = 6.5, 9.0 Hz, 1H, 2-carboxyl-Ph-H), 7.71 (d, J = 8.5 Hz, 2H, 3-

methyl-Ph-H), 7.37 (dd, J = 2.5, 11.0 Hz, 1H, 2-sulfonamide-Ph-H), 7.31 (d, J = 

8.5 Hz, 2H, 2-methyl-Ph-H), 6.80 (ddd, J = 2.5, 8.0, 9.0 Hz, 1H, 4-sulfonamide-

Ph-H), 2.36 (s, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 170.6, 167.2 (d, J = 

251.4 Hz), 146.0, 144.3 (d, J = 12.1 Hz), 137.3, 135.6 (d, J = 10.8 Hz), 130.9, 

128.4, 114.0 (d, J = 2.8 Hz), 111.2 (d, J = 22.3 Hz), 106.7 (d, J = 27.4 Hz), 21.5; 

19F NMR (380 MHz, CD3OD): δ = -104.2 (ddd, J = 7.2, 7.2, 12.2 Hz); ESI-

HRMS m/z calcd for C14H11FNO4S: 308.0398 [M-H]-, found: 308.0404. 
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N-(5-Fluoro-2-(hydrazinecarbonyl)phenyl)-4-methylbenzenesulfonamide 

(162b)  

Yellow solid; 77% yield; IR (CHCl3 cast): 3329, 3400 – 3250 (br), 3094, 2926, 

1636, 1596, 1503, 1423 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.64 (m, 2H, 3-

methyl-Ph-H), 7.54 (dd, J = 6.5, 9.0 Hz, 1H, 2-carboxyl-Ph-H), 7.34 (dd, J = 2.5, 

11.0 Hz, 1H, 2-sulfonamide-Ph-H), 7.28 (m, 2H, 2-methyl-Ph-H), 6.81 (ddd, J = 

2.5, 8.0, 9.0 Hz, 1H, 4-sulfonamide-Ph-H), 2.36 (s, 3H, CH3); 13C NMR (125 

MHz, CD3OD): δ = 168.8, 165.8 (d, J = 250.0 Hz), 145.8, 142.1 (d, J = 11.4 Hz), 

137.3, 131.1 (d, J = 10.3 Hz), 130.8, 128.3, 118.2 (d, J = 2.9 Hz), 111.7 (d, J = 

22.3 Hz), 109.0 (d, J = 26.5 Hz), 21.5; 19F NMR (380 MHz, CD3OD): δ = -107.4 

(ddd, J = 7.2, 7.2, 9.9 Hz); ESI-HRMS m/z calcd for C14H15FN3O3S: 324.0813 

[M+H]+, found: 324.0813. 
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4-Fluoro-2-(methylsulfonamido)benzoic acid (163a)  

Grey solid; 41% yield; IR (CHCl3 cast): 3220, 3109, 3300 – 2750 (br), 2931, 

2851, 1660, 1623, 1588, 1506, 1430, 1416 cm-1; 1H NMR (500 MHz, CD3OD): δ 

= 8.16 (dd, J = 6.5, 9.0 Hz, 1H, 2-carboxyl-Ph-H), 7.44 (dd, J = 2.5, 11.0 Hz, 1H, 

2-sulfonamide-Ph-H), 6.89 (ddd, J = 2.4, 8.0, 8.8 Hz, 1H, 4-sulfonamide-Ph-H), 

3.11 (s, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 170.6, 167.5 (d, J = 251.1 

Hz), 144.7 (d, J = 12.0 Hz), 135.8 (d, J = 11.0 Hz), 113.5 (d, J = 2.5 Hz), 110.8 

(d, J = 22.4 Hz), 105.8 (d, J = 27.8 Hz), 40.2; 19F NMR (380 MHz, CD3OD): δ = -

103.9 (ddd, J = 7.6, 7.6, 11.4 Hz); ESI-HRMS m/z calcd for C8H7FNO4S: 

232.0085 [M-H]-, found: 232.0085. 

 

N-(5-Fluoro-2-(hydrazinecarbonyl)phenyl)methanesulfonamide (163b)  

White solid; 88% yield; IR (CHCl3 cast): 3300, 3400 – 3250 (br), 3093, 3026, 

2932, 1641, 1595, 1506, 1426 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.71 (dd, J 

= 6.0, 8.5 Hz, 1H, 2-carboxyl-Ph-H), 7.41 (dd, J = 2.5, 11.0 Hz, 1H, 2-

sulfonamide-Ph-H), 6.90 (ddd, J = 2.5, 8.0, 9.0 Hz, 1H, 4-sulfonamide-Ph-H), 
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3.06 (s, 3H, CH3); 13C NMR (125 MHz, CD3OD): δ = 169.1, 166.2 (d, J = 248.9 

Hz), 142.5 (d, J = 11.3 Hz), 131.4 (d, J = 10.3 Hz), 117.5 (d, J = 3.1 Hz), 111.2 

(d, J = 22.3 Hz), 107.6 (d, J = 27.1 Hz), 40.0; 19F NMR (380 MHz, CD3OD): δ = -

107.2 (ddd, J = 7.2, 7.2, 11.0 Hz); ESI-HRMS m/z calcd for C8H10FN3NaO3S: 

270.0319 [M+Na]+, found: 270.0319.  

 

(E)-(4-((2-(4-Fluoro-2-(phenylsulfonamido)benzoyl)hydrazono)methyl)-5-

hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (164)  

Compound 155 (7.1 mg, 2.3×10-5 mol) and PLP (5.7 mg, 2.3 ×10-5 mol) were 

mixed in 1 mL of CD3OD and 1 mL of D2O. The resulting yellow solution was 

analyzed by 1H and 13C NMR. The mixture was dried in vacuo, then IR and 

HRMS data for the solid material was collected. Yellow solid; quantitative yield; 

IR (CHCl3 cast): 3500 – 2500 (br), 3062, 2918, 1651, 1605, 1511, 1480, 1447, 

1427 cm-1; 1H NMR (500 MHz, D2O): δ = 8.54 (s, 1H, 2-Pyr-H), 7.95 (s, 1H, 

CH=N), 7.71 (m, 3H, Ph-H), 7.56 (m, 1H, Ph-H), 7.49 (m, 2H, Ph-H), 7.14 (m, 

1H, Ph-H), 6.91 (m, 1H, Ph-H), 5.00 (d, J = 5 Hz, 2H, CH2), 2.47 (s, 3H, CH3); 

13C NMR (125 MHz, D2O): δ = 166.8, 165.7, 164.8, 153.5 (d, J = 4.9 Hz), 149.1, 

147.7, 142.2 (m), 139.6, 136.6 (m), 134.3, 132.5 (d, J = 10.8 Hz), 131.6 (d, J = 6.1 

Hz), 130.4, 127.5 (d, J = 5.1 Hz), 123.4 (d, J = 2.8 Hz), 120.7 (d, J = 3.1 Hz), 

NH

N
H

O

S OO

F

N

N
HO

O

P OHO

OH



160 

112.4 (m), 62.9 (d, J = 3.0 Hz), 18.1; 19F NMR (380 MHz, D2O): δ = -105.0 (m); 

ESI-HRMS m/z calcd for C21H19FN4O8PS: 537.0651 [M-H]-, found: 537.0652. 

3.7 Synthesis of Rhodanine derived inhibitors of LL-DAP-AT 

3.7.1 General procedure for synthesis of rhodanine-based analogues (170-

190) 

 The rhodanine-based analogues were prepared using a Knoevenagel 

condensation reaction.190 Acetic acid (10 mL) was heated to ~80 °C in an oil-bath. 

The rhodanine derivative (2.5 mmol) and 10 mmol sodium acetate were then 

added to the heated acid. The mixture was stirred for 5 min before the addition of 

2.5 mmol of the aldehyde. The mixture was then heated to reflux for 16 h, and 

subsequently cooled to room temperature to give a crystalline product. The 

mixture was poured into ice-cold water (30 mL) and chilled in an ice bath for an 

additional 30 min. The solid was filtered under suction. The crude compounds 

were then purified by recrystallization with ethanol or a multi-solvent method 

(i.e., ethyl acetate with hexanes). The yields ranged from 37% to quantitative. 

Compounds were characterized by IR, 1H NMR, 13C NMR, and high resolution 

ESI-MS. 
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3.7.2 Characterization data for rhodanine-based analogues 

 

 

(Z)-5-Benzylidene-2-thioxothiazolidin-4-one (170)191, 192 

Yellow crystal; m.p. 196 – 197 °C [Lit. 204 – 205 °C]191; 94% yield; IR 

(Microscope) 3157, 3064, 2852, 1701, 1445, 1195 cm-1; 1H NMR (400 MHz, 

DMSO-d6): δ = 13.81 (br, 1H, NH), 7.63 (s, 1H, C=CH), 7.52 (m, 5H, Ph-H); 13C 

NMR (100 MHz, DMSO-d6): δ = 196.4, 170.1, 133.7, 132.3, 131.4, 131.2, 130.1, 

126.2; EI-HRMS m/z calcd for C10H7NOS2: 220.9969 [M+], found: 220.9969. 

 

(Z)-5-(4-Chlorobenzylidene)-2-thioxothiazolidin-4-one (171)191 

Light yellow crystal; m.p. 220 – 222 °C [Lit. 228 – 229 °C]191; 56% yield: IR 

(Microscope) 3086, 3015, 2852, 1718, 1488, 1188 cm-1; 1H NMR (400 MHz, 

DMSO-d6): δ = 7.61 (s, 1H, C=CH), 7.58 (d, J = 2, 4H, Ph-H); 13C NMR (100 

MHz, DMSO-d6): δ = 196.1, 170.0, 136.0, 132.7, 132.6, 130.9, 130.2, 127.0; EI-

HRMS m/z calcd for C10H6ClNOS2: 254.9579 [M+], found: 254.9578. 
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(Z)-5-(4-(Dimethylamino)benzylidene)-2-thioxothiazolidin-4-one (172)191 

Red crystal; decomposed at 265 °C [Lit. m.p. 247 – 248 °C]191; 61% yield: IR 

(Microscope) 3139, 3042, 2909, 2853, 1682, 1436, 1180 cm-1; 1H NMR (400 

MHz, DMSO-d6): δ = 13.50 (br, 1H, NH), 7.47 (s, 1H, C=CH), 7.37 (d, J = 8.8 

Hz, 2H, Ph-H), 6.77 (d, J = 8.8Hz, 2H, Ph-H), 2.99 (s, 6H, 2×CH3); 13C NMR 

(100 MHz, DMSO-d6): δ = 195.7, 170.1, 152.4, 133.9, 133.6, 120.5, 118.0, 112.9, 

40.3; ESI-HRMS m/z calcd for C12H12N2NaOS2: 287.0283 [M+Na+], found: 

287.0283. 

 

(Z)-5-(4-Methoxybenzylidene)-2-thioxothiazolidin-4-one (173)191 

Yellow crystal; m.p. 254 – 255 °C [Lit. decomposed at 247 °C]191; 85% yield: IR 

(Microscope) 3134, 3017, 2934, 2853, 1687, 1446, 1170 cm-1; 1H NMR (400 

MHz, DMSO-d6): δ = 7.59 (s, 1H, C=CH), 7.55 (d, J = 8.8 Hz, 2H, Ph-H), 7.10 

(d, J = 8.8Hz, 2H, Ph-H), 3.82 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6): δ = 
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195.5, 169.4, 161.3, 132.7, 131.9, 125.5, 122.2, 115.1, 55.5; ESI-HRMS m/z calcd 

for C11H9NNaO2S2: 273.9967 [M+Na+], found: 273.9968. 

 

(Z)-5-(Naphthalen-1-ylmethylene)-2-thioxothiazolidin-4-one (174)192 

Light yellow crystal; m.p. 222 – 224 °C [Lit. 224 – 225 °C]192; 82% yield: IR 

(Microscope) 3152, 3056, 3017, 2857, 1691, 1437, 1170 cm-1; 1H NMR (400 

MHz, DMSO-d6): δ = 8.27 (s, 1H, Ph-H), 8.15 (d, J = 8.4 Hz, 1H, Ph-H), 8.07 

(dd, J = 6.4Hz, 3.2Hz, 1H, Ph-H), 8.02 (d, J = 8.8Hz, 1H, Ph-H), 7.65 (m, 4H); 

13C NMR (100 MHz, DMSO-d6): δ = 196.8, 169.5, 134.0, 131.8, 131.7, 130.8, 

129.6, 129.5, 128.8, 128.2, 127.6, 127.5, 126.4, 124.0; EI-HRMS m/z calcd for 

C14H9NOS2: 271. 0125 [M+], found: 271.0123. 

 

(Z)-5-(2-Nitrobenzylidene)-2-thioxothiazolidin-4-one (175)193 

Light green crystal; m.p. 198 – 199 °C [Lit. 204 – 205 °C]193; 98% yield: IR 

(Microscope) 3099, 3033, 2853, 1732, 1533, 1455, 1302, 1200 cm-1; 1H NMR 

(400 MHz, DMSO-d6): δ = 8.16 (dd, J = 10.8Hz, 1.6Hz, 1H, Ph-H), 7.84 (td, J = 

10 Hz, 1.6Hz, 1H, Ph-H), 7.82 (s, 1H, C=CH), 7.68 (m, 2H, Ph-H); 13C NMR 
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(100 MHz, DMSO-d6): δ = 196.5, 169.3, 148.7, 135.3, 131.9, 131.0, 130.1, 129.4, 

128.5, 126.2; ESI-HRMS m/z calcd for C10H6N2NaO3S2: 288.9712 [M+Na+], 

found: 288.9716. 

 

(Z)-5-(2-Hydroxybenzylidene)-2-thioxothiazolidin-4-one (176)191 

Orange crystal; decomposed at 208 °C [Lit. decomposed at 208 °C]191; 76% yield: 

IR (Microscope) 3496, 3437, 3096, 2846, 1699, 1450, 1163 cm-1; 1H NMR (400 

MHz, DMSO-d6): δ = 13.66 (br, 1H, NH), 10.62 (s, 1H, OH), 7.83 (s, 1H, C=CH), 

7.28 (m, 2H, Ph-H), 6.94 (m, 2H, Ph-H); 13C NMR (100 MHz, DMSO-d6): δ = 

196.7, 170.2, 158.2, 133.5, 129.9, 128.0, 124.5, 120.6, 120.6, 116.9; ESI-HRMS 

m/z calcd for C10H7NNaO2S2: 259.9810 [M+Na+], found: 259.9815. 

 

(Z)-5-Benzylidene-3-ethyl-2-thioxothiazolidin-4-one (177)194 

Bright yellow crystal; m.p. 145 – 146 °C [Lit. 148 – 149 °C]194; 82% yield: IR 

(dichloromethane cast) 3015, 2982, 2934, 2873, 1705, 1445, 1132 cm-1; 1H NMR 

(400 MHz, DMSO-d6): δ = 7.79 (s, 1H, C=CH), 7.61 (dt, J = 8 Hz, 1.6Hz, 2H, Ph-

H), 7.52 (m, 3H, Ph-H), 4.04 (q, J = 7.2, 2H, CH2), 1.17 (t, J = 7.2, 3H, CH3); 13C 
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NMR (100 MHz, DMSO-d6): δ = 193.9, 167.4, 133.7, 133.6, 131.6, 131.3, 130.2, 

123.3, 40.2, 12.6; ESI-HRMS m/z calcd for C12H12NOS2: 250.0355 [M+H+], 

found: 250.0358. 

 

(Z)-3-Ethyl-5-(2-hydroxybenzylidene)-2-thioxothiazolidin-4-one (178) 

Yellow crystal; m.p. 210 – 212 °C; 56% yield: IR (dichloromethane cast) 3256, 

3052, 2980, 2916, 2849, 1678, 1456, 1131 cm-1; 1H NMR (400 MHz, DMSO-d6): 

δ = 10.71 (br, 1H, OH), 7.99 (s, 1H, C=CH), 7.34 (m, 2H, Ph-H), 6.96 (m, 2H, 

Ph-H), 4.06 (q, J = 7.2, 2H, CH2), 1.18 (t, J = 7.2, 3H, CH3); 13C NMR (100 MHz, 

DMSO-d6): δ = 193.5, 166.8, 157.6, 133.0, 129.6, 128.6, 120.8, 120.0, 119.9, 

116.3, 40.2, 11.9; ESI-HRMS m/z calcd for C12H11NNaO2S2: 288.0123 [M+Na+], 

found: 288.0119. 

 

(Z)-3-Ethyl-5-(4-methoxybenzylidene)-2-thioxothiazolidin-4-one (179)194 

Bright yellow crystal; m.p. 138 – 139 °C [Lit. 133 – 134 °C]194; 53% yield: IR 

(dichloromethane cast) 3004, 2983, 2961, 2833, 1703, 1457, 1127 cm-1; 1H NMR 
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(400 MHz, DMSO-d6): δ = 7.75 (s, 1H, C=CH), 7.58 (d, J = 8.8Hz, 2H, Ph-H), 

7.09 (d, J = 8.8, 2H, Ph-H), 4.03 (q, J = 7.2, 2H, CH2), 3.82 (s, 3H, O-CH3), 1.16 

(t, J = 7.2, 3H, CH2CH3); 13C NMR (100 MHz, DMSO-d6): δ = 193.7, 167.5, 

162.2, 133.8, 133.6, 126.2, 119.9, 115.9, 56.3, 40.2, 12.6; ESI-HRMS m/z calcd 

for C13H14NO2S2: 280.0461 [M+H+], found: 280.0467. 

 

(Z)-5-(4-Chlorobenzylidene)-3-ethyl-2-thioxothiazolidin-4-one (180)195 

Yellow crystal; m.p. 149 – 150 °C; 79% yield: IR (dichloromethane cast) 3004, 

2983, 2971, 2872, 1705, 1433, 1137 cm-1; 1H NMR (400 MHz, DMSO-d6): δ = 

7.78 (s, 1H, C=CH), 7.63 (d, J = 8.8Hz, 2H, Ph-H), 7.58 (d, J = 8.8, 2H, Ph-H), 

4.03 (q, J = 7.2, 2H, CH2), 1.16 (t, J = 7.2, 3H, CH3); 13C NMR (100 MHz, 

DMSO-d6): δ = 193.6, 167.3, 133.3, 132.9, 132.6, 132.1, 130.3, 124.0, 40.2, 12.6; 

EI-HRMS m/z calcd for C12H10ClNOS2: 282.9892 [M+], found: 282.9895. 
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(Z)-3-Ethyl-5-(naphthalen-1-ylmethylene)-2-thioxothiazolidin-4-one (181)196 

Yellow-brown crystal; m.p. 126 – 127 °C; 31% yield: IR (dichloromethane cast) 

3075, 3055, 2974, 2931, 2873, 1704, 1431, 1133 cm-1; 1H NMR (400 MHz, 

CDCl3): δ = 8.49 (s, 1H, C=CH), 8.16 (d, J = 8.8Hz, 1H, Ph-H), 7.93 (m, 2H, Ph-

H), 7.57 (m, 4H, Ph-H), 4.24 (q, J = 7.2, 2H, CH2), 1.33 (t, J = 7.2, 3H, CH3); 13C 

NMR (100 MHz, CDCl3): δ = 194.0, 167.4, 134.0, 132.1, 131.7, 130.8, 130.0, 

129.3, 127.7, 127.3, 127.1, 126.3, 125.6, 123.6, 40.0, 12.6; EI-HRMS m/z calcd 

for C16H13NOS2: 299.0439 [M+], found: 299.0440. 

 

(Z)-3-Ethyl-5-(quinolin-5-ylmethylene)-2-thioxothiazolidin-4-one (182)197 

Light yellow crystal; m.p. 172 – 173 °C; 40% yield: IR (dichloromethane cast) 

3063, 3042, 2978, 2935, 2876, 1712, 1439, 1134 cm-1; 1H NMR (400 MHz, 

CDCl3): δ = 9.04 (d, J = 4.4Hz, 1H, Ph-H), 8.38 (s, 1H, C=CH), 8.23 (d, J = 

8.4Hz, 1H, Ph-H), 8.16 (d, J = 8.4Hz, 1H, Ph-H), 7.84 (m, 1H, Ph-H), 7.71 (m, 

1H, Ph-H), 7.47 (d, J = 4.8Hz, 1H, Ph-H), 4.26 (q, J = 7.2, 2H, CH2), 1.36 (t, J = 
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7.2, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ = 192.6, 167.0, 150.0, 148.8, 

139.0, 130.7, 130.6, 130.6, 128.1, 126.4, 126.3, 123.5, 119.7, 40.3, 12.5; ESI-

HRMS m/z calcd for C15H13N2OS2: 301.0464 [M+H+], found: 301.0464. 

 

(Z)-3-Amino-5-benzylidene-2-thioxothiazolidin-4-one (183)198 

Bright yellow crystal; m.p. 196 – 197 °C [Lit. 192 – 195 °C]198; 53% yield: IR 

(dichloromethane cast) 3299, 3225, 3031, 1706, 1448, 1125 cm-1; 1H NMR (400 

MHz, DMSO-d6): δ = 7.85 (s, 1H, C=CH), 7.64 (m, 2H, Ph-H), 7.53 (m, 3H, Ph-

H), 5.93 (s, 2H, NH2); 13C NMR (100 MHz, DMSO-d6): δ = 187.7, 163.7, 133.3, 

133.0, 131.0, 130.7, 129.5, 120.3; ESI-HRMS m/z calcd for C10H8N2NaOS2: 

258.9970 [M+Na+], found: 258.9975. 

 

(Z)-3-Amino-5-(4-methoxybenzylidene)-2-thioxothiazolidin-4-one (184)195 

Yellow crystal; m.p. 178 – 179 °C; 26% yield: IR (dichloromethane cast) 3288, 

3195, 2942, 2842, 1702, 1509, 1131 cm-1; 1H NMR (400 MHz, DMSO-d6): δ = 

7.76 (s, 1H, C=CH), 7.57 (d, J = 8.8Hz, 2H, Ph-H), 7.04 (d, J = 8.8Hz, 2H, Ph-H), 
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5.90 (s, 2H, NH2), 3.80 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6): δ = 187.9, 

164.4, 162.3, 134.3, 133.7, 126.2, 117.6, 115.8, 56.3; ESI-HRMS m/z calcd for 

C11H10N2NaO2S2: 289.0076 [M+Na+], found: 289.0070. 

 

(Z)-3-Amino-5-(4-chlorobenzylidene)-2-thioxothiazolidin-4-one (185)195 

Bright yellow crystal; m.p. 216 – 217 °C; 73% yield: IR (dichloromethane cast) 

3299, 3234, 3169, 3071, 1727, 1709, 1493, 1128 cm-1; 1H NMR (400 MHz, 

DMSO-d6): δ = 7.83 (s, 1H, C=CH), 7.65 (d, J = 8.8Hz, 2H, Ph-H), 7.59 (d, J = 

8.8Hz, 2H, Ph-H), 5.92 (s, 2H, NH2); 13C NMR (100 MHz, DMSO-d6): δ = 188.2, 

164.4, 136.3, 133.0, 132.6, 132.5, 130.3, 121.8; ESI-HRMS m/z calcd for 

C10H7ClN2NaOS2: 292.9581 [M+Na+], found: 292.9579. 

 

(Z)-N-(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)acetamide (186)199 

Bright yellow crystal; m.p. 206 – 207 °C [Lit. 203 – 205 °C]199; 88% yield: IR 

(dichloromethane cast) 3192, 3017, 1737, 1679, 1447, 1125 cm-1; 1H NMR (400 

S

N

S

O

NH2

Cl

S

N

S

O

HN

O



170 

MHz, DMSO-d6): δ = 7.92 (s, 1H, C=CH), 7.68 (m, 2H, Ph-H), 7.56 (m, 3H, Ph-

H), 2.07 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6): δ = 190.5, 167.7, 163.3, 

134.6, 132.7, 131.3, 130.8, 129.5, 119.4, 20.3; ESI-HRMS m/z calcd for 

C12H10N2NaO2S2: 301.0076 [M+Na+], found: 301.0071. 

 

(Z)-N-(5-(4-Methoxybenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetamide 

(187) 

Bright yellow crystal; m.p. 220 – 221 °C; 30% yield: IR (dichloromethane cast) 

3194, 3013, 2963, 1729, 1679, 1421, 1134 cm-1; 1H NMR (400 MHz, DMSO-d6): 

δ = 11.12 (s, 1H, NH), 7.85 (s, 1H, C=CH), 7.63 (d, J = 8.8Hz, 2H, Ph-H), 7.11 

(d, J = 8.8 Hz, 2H, Ph-H), 3.83 (s, 3H, O-CH3), 2.05 (s, 3H, CO-CH3); 13C NMR 

(100 MHz, DMSO-d6): δ = 191.2, 168.4, 164.1, 162.5, 135.5, 133.9, 126.0, 116.7, 

115.9, 56.3, 21.0; ESI-HRMS m/z calcd for C13H12N2NaO3S2: 331.0182 [M+Na+], 

found: 331.0182. 
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(Z)-N-(5-(4-Chlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetamide 

(188) 

Yellow crystal; m.p. 255 – 256 °C; 80% yield: IR (dichloromethane cast) 3199, 

3013, 1732, 1680, 1405, 1128 cm-1; 1H NMR (400 MHz, DMSO-d6): δ = 7.92 (s, 

1H, C=CH), 7.72 (d, J = 8.5Hz, 2H, Ph-H), 7.63 (d, J = 8.5Hz, 2H, Ph-H), 2.07 (s, 

3H, CH3); 13C NMR (100 MHz, DMSO-d6): δ = 190.1, 167.6, 163.1, 135.8, 133.1, 

132.3, 131.5, 129.5, 120.1, 20.2; ESI-HRMS m/z calcd for C12H9ClN2NaO2S2: 

334.9686 [M+Na+], found: 334.9682. 

 

 

 

 

 

S

N

S

O

HN

O

Cl



172 

 

(Z)-N-(5-((5-(4-Nitrophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-

3-yl) acetamide (189)  

Orange solid; 90% yield: IR (dichloromethane cast) 3239, 3038, 1729, 1678, 

1511, 1139 cm-1 ; 1H NMR (400 MHz, DMSO-d6): δ = 11.14 (s, 1H, NH), 8.37 (d, 

J = 9.2, 2H, Ph-H), 8.05 (d, J = 9.2, 2H, Ph-H), 7.79 (s, 1H, C=CH), 7.61 (d, J = 

4.0Hz, 1H, furan-H), 7.44 (d, J = 4.0Hz, 1H, furan-H), 2.06 (s, 3H, CH3); 13C 

NMR (100 MHz, DMSO-d6): δ = 191.8, 168.4, 163.7, 156.5, 151.5, 147.7, 134.8, 

126.0, 125.5, 124.3, 120.1, 118.0, 114.6, 21.0; ESI-HRMS m/z calcd for 

C16H11N3NaO5S2: 412.0032 [M+Na+], found: 412.0028. 
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3.8 Preparation of glucosamine linked to SubA 

3.8.1 Using squarate as the linker 

 

tert-Butyl 2,2′-disulfanediylbis(ethane-2,1-diyl)dicarbamate (203)200 

Cystamine dihydrochloride (0.4504 g, 2 mmol) was mixed with 9 mL of MeOH. 

After adding 1 mL of triethylamine into the mixture, the solid was dissolved. Di-

tert-butyl dicarbonate (0.92 mL, 4 mmol) was then added into the reaction 

mixture. The mixture was stirred for three hours. Solvent was removed in vacuo. 

The product was purified by flash column chromatography (silica gel, EtOAc/Hex 

= 1:1). The title compound was obtained as white solid (0.55 g, 78%). IR 

(Microscope): 3365, 3346, 2970, 1684 cm-1; 1H NMR (400 MHz, CDCl3): δ = 

5.00 (br, 2H, NH), 3.45 (m, 4H, NH-CH2), 2.80 (t, J = 6.4 Hz, 4H, S-CH2), 1.45 

(s, 18H, CH3); 13C NMR (100 MHz, CDCl3): δ = 156.0, 80.0, 39.5, 38.7, 28.6; 

ESI-HRMS m/z calcd for C14H28N2NaO4S2: 375.1383 [M+Na]+, found: 375.1383. 

  

(1S,2R,3R,4S,5R)-2-Acetamido-5-(acetoxymethyl)-1-(2-(tert-

butoxycarbonylamino)ethylthio)tetrahydro-2H-pyran-3,4-diyl diacetate (206) 

The protected cystamine 203 (0.3525 g, 1 mmol) was dissolved in 15 mL of THF, 

to which tributylphosphine (0.37 mL, 1.5 mmol) was added. After half hour of 
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stirring, 1.5 mL of water was added into the mixture, which was further stirred for 

20 hours. THF was then removed in vacuo. The residue was dissolved in 20 mL 

of ethyl acetate and washed with 10% citric acid (2 × 20 mL), water (2 × 20 mL), 

and brine (20 mL). The organic layer was dried over anhydrous sodium sulfate, 

the solvent was removed in vacuo, and the crude thiol was used directly for the 

next step. Commercially available 3,4,6-tri-O-acetyl-2-(acetamido)-2-deoxy-

alpha-D-glucopyranosyl chloride (205, 0.3657 g, 1 mmol) and 

tetrabutylammonium hydrogen sulfate (0.3395 g, 1 mmol) were mixed with 5 mL 

ethyl acetate. The free thiol was mixed with 5 mL of 1.5 M sodium carbonate 

solution and 3 mL of ethyl acetate, and this mixture was added to the carbohydrate 

solution. The mixture was clear initially, and the upper layer turned light pink 

during the reaction. The mixture was stirred vigorously for 16 hours, and 

monitored by TLC until all of the monosaccharide had reacted. The reaction 

mixture was diluted with 15 mL of ethyl acetate, and the organic layer was 

washed with saturated sodium bicarbonate solution (2 × 15 mL), water (2 × 15 

mL), and brine(15 mL). The organic layer was dried over anhydrous sodium 

sulfate and the solvent was removed in vacuo. The residue was then purified by 

column chromatography (silica gel, EtOAc/hexanes = 1:4). The title compound 

was obtained as a white solid (0.3061 g, 60%). [α]D = -21.5 (c 0.78, CHCl3); IR 

(Microscope): 3350, 3294,3088, 2976, 2949, 2886, 1742, 1677, 1662 cm-1; 1H 

NMR (400 MHz, CDCl3): δ = 5.69 (d, J = 9.6 Hz, 1H, C-2-N-H), 5.13 (m, 3H, C-

8-N-H, H-3, H-4), 4.62 (d, J = 10.4 Hz, 1H, H-1), 4.15 (m, 3H, H-2 & H2-6), 3.71 

(ddd, J = 2.4, 4.8, 9.6 Hz, 1H, H-5), 3.36 (m, 2H, H2-8), 2.91 (dt, J = 6, 14 Hz, 
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1H, H-7a), 2.71 (m, 1H, H-7b), 2.08 (s, 3H, COCH3), 2.03 (s, 3H, COCH3), 2.03 

(s, 3H, COCH3), 1.96 (s, 3H, COCH3), 1.44 (s, 9H, Boc-CH3); 13C NMR (100 

MHz, CDCl3): δ = 171.3, 170.9, 170.4, 169.5, 156.1, 85.1, 80.0, 76.3, 74.0, 68.5, 

62.4, 53.5, 40.8, 31.5, 28.7, 23.5, 20.9, 20.9, 20.8; ESI-HRMS m/z calcd for 

C21H35N2O10S: 507.2007 [M+H]+, found: 507.2007. 

 

(1S,2R,3R,4S,5R)-2-Acetamido-5-(acetoxymethyl)-1-(2-(2-methoxy-3,4-

dioxocyclobut-1-enylamino)ethylthio)tetrahydro-2H-pyran-3,4-diyl diacetate 

and (1S,2R,3R,4S,5R)-2-acetamido-5-(acetoxymethyl)-1-(2-((Z)-3-hydroxy-2-

methoxy-4-oxocyclobut-2-enylideneamino)ethylthio)tetrahydro-2H-pyran-

3,4-diyl diacetate (208) 

The Boc protected compound 206 (0.5060 g, 1 mmol) was dissolved in 10 mL of 

dry CH2Cl2, to which was added 10 mL of trifluoroacetic acid. After half an hour, 

the mixture turned light yellow. After all of the starting material was consumed 

based on TLC monitoring, the solvent and the excess of TFA were removed in 

vacuo. The residue was dissolved in 4 mL of dry MeOH and mixed with 0.5 mL 

of diisopropylethylamine. This solution was then added into a dimethyl squarate 

solution which was prepared by mixing dimethyl squarate (0.1563 g, 1.1 mmol) 

with 6 mL of dry MeOH and 0.5 mL of diisopropylethylamine. The progress of 

the reaction was monitored by TLC. After the reaction was complete, the mixture 
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was concentrated and purified by column chromatography (silica gel, EtOAc). 

The titled compound was obtained as white solid (0.4281 g, 83%). [α]D = -46.6 (c 

0.80, CHCl3); IR (Microscope): 3291 (br), 3077, 3014, 2956, 2875, 1804, 1748, 

1710, 1665, 1610 cm-1; 1H NMR (500 MHz, CDCl3): δ = 6.97 (br, 0.5H, H-10), 

6.59 (br, 0.5H, H-10′), 6.28 (m, 1H, H-11), 5.17 (m, 1H, H-3), 5.07 (m, 1H, H-4), 

4.69 (m, 1H, H-1), 4.40 (s, 3H, H-9), 4.22 – 4.10 (m, 3H, H2-6 & H-2), 4.00 – 

3.59 (m, 3H, H-5 & H2-8), 3.04 (dt, J = 5.5, 14.5 Hz, 1H, H-7a), 2.84 (br, 1H, H-

7b), 2.07 (s, 3H, COCH3), 2.02 (s, 3H, COCH3), 2.02 (s, 3H, COCH3), 1.96 (s, 

3H, COCH3); 13C NMR (100 MHz, CDCl3): δ = 188.8, 183.6, 177.6, 172.5, 170.7, 

169.3, 84.1, 76.0, 73.5, 68.3, 62.1, 60.6, 52.8, 44.5, 43.7, 31.4, 30.5, 23.2, 20.7, 

20.7, 20.6; ESI-HRMS m/z calcd for C21H29N2O11S: 517.1487 [M+H]+, found: 

517.1486. 

 

N-((1S,2R,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)-1-(2-(2-methoxy-3,4-

dioxocyclobut-1-enylamino)ethylthio)tetrahydro-2H-pyran-2-yl)acetamide 

(209) 

Compound 208 (0.3350 g, 0.65 mmol) was dissolved in 10 mL of dry MeOH. 

Approximately 1 mL of 1 M sodium methoxide in MeOH was added to adjust the 

pH to 9. The progress of the reaction was monitored by TLC. Once all of the 

starting material was converted to product, the mixture was neutralized with 
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Amberlyst acidic resin, Amberlite® IR120. The mixture was filtered and the resin 

was washed with 2 mL of MeOH. The filtrate was then concentrated and purified 

by column chromatography (silica gel, 15% MeOH in CH2Cl2). The titled 

compound was obtained as white solid (0.2210 g, 87%). [α]D = -23.8 (c 1.10, 

CH3OH); IR (Microscope): 3301 (br), 2950, 2881, 1805, 1703, 1609 cm-1; 1H 

NMR (300 MHz, CD3OD): δ = 4.51 (m, 1H, H-1), 4.37 (m, 3H, H-9), 3.94 – 3.54 

(m, 5H, H-2, H-3, H-4 & H2-6), 3.44 (m, 1H, H-5), 3.29 (m, 2H, H-8), 3.01 (m, 

1H, H-7a), 2.77 (m, 1H, H-7b), 1.95 (s, 3H, COCH3); 13C NMR (100 MHz, 

CD3OD): δ = 173.3, 172.8, 172.4, 84.6, 82.7, 81.0, 76.1, 70.8, 61.7, 60.1, 54.9, 

44.9, 31.1, 30.5, 21.8; ESI-HRMS m/z calcd for C15H22N2NaO8S: 413.0989 

[M+Na]+, found: 413.0986. 

3.8.2 Click chemistry used in linking glucosamine and SubA 

 

(1R,2R,3R,4S,5R,)-2-Acetamido-5-(acetoxymethyl)-1-azidotetrahydro-2H-

pyran-3,4-diyl diacetate (210)201 

Compound 205 (1.03 g, 2.7 mmol) was dissolved in 8 mL of CH2Cl2. A solution 

of sodium azide (0.51 g, 7.8 mmol) in 8 mL of saturated sodium bicarbonate was 

added into the monosaccharide solution, which followed by the addition of 

tetrabutylammonium hydrogen sulfate (0.89 g, 2.6 mmol). The reaction mixture 

was stirred for 2 hours before being diluted with 15 mL of CH2Cl2. The organic 

layer was washed with 20 mL of water, followed by 20 mL of brine and dried 
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over anhydrous sodium sulfate. The solvent was then removed in vacuo. The oil-

like crude product was purified by column chromatography (silica gel, 

EtOAc/hexanes = 2:1). The title compound was obtained as white solid (0.963 g, 

96%). [α]D = -48.7 (c 0.80, CHCl3); m.p. 165 – 170 IR (CHCl3 Cast Microscope): 

3286, 3076, 2957, 2119, 1750, 1663 cm-1; 1H NMR (400 MHz, CDCl3): δ = 5.58 

(d, J = 8.8 Hz, 1H, NHAc), 5.24 (m, 1H, H-3), 5.10 (m, 1H, H-4), 4.75 (d, J = 9.2 

Hz, 1H, H-1), 4.27 (m, 1H, H-6), 4.17 (m, 1H, H-6′), 3.90 (dt, J = 9.2, 10.4 Hz, 

1H, H-2), 3.78 (ddd, J = 2.4, 4.8, 10 Hz, 1H, H-5), 2.10 (s, 3H, COCH3), 2.04 (s, 

3H, COCH3), 2.03 (s, 3H, COCH3), 1.98 (s, 3H, COCH3); 13C NMR (125 MHz, 

CDCl3): δ = 171.0, 170.6, 170.4, 169.2, 88.4, 74.0, 72.1, 68.1, 61.9, 54.2, 23.2, 

20.7, 20.6, 20.5; ESI-HRMS m/z calcd for C14H20N4NaO8: 395.1173 [M+Na]+, 

found: 395.1178. 

 

4-(1-((2R,3R,4R,5S,6R)-3-Acetamido-4,5-diacetoxy-6-

(acetoxymethyl)tetrahydro-2H-pyran-2-yl)-1H-1,2,3-triazol-4-yl)butanoic 

acid (212) 

The azido-monosaccharide 210 (0.1860 g, 0.5 mmol) and 5-hexynoic acid (0.055 

mL, 0.5 mmol) were mixed with 1 mL of t-butanol. Copper acetate (0.0180 g, 0.1 

mmol) and sodium L-ascorbate (0.0396 g, 0.2 mmol) were mixed with 1 mL of 

water. The latter solution, which turned a brown colour, was added into the t-

butanol solution. The resulting reaction mixture then turned light yellow. After 
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stirring at room temperature for 6 hours, the clear reaction mixture was diluted 

with 10 mL water. The product was extracted with CH2Cl2 (2 × 20 mL). The 

organic layer was washed with water (20 mL) and brine (20 mL) before being 

dried over anhydrous sodium sulfate. The solvent was then removed in vacuo. The 

titled compound was obtained as white solid (0.2251 g, 93%). [α]D = -30.2 (c 

2.30, CH3OH); IR (CHCl3 Cast Microscope): 3275, 3146, 3070, 2941, 1750, 

1671, 1558 cm-1; 1H NMR (400 MHz, CD3OD): δ = 7.97 (s, 1H, H-7), 6.08 (d, J = 

9.6 Hz, 1H, H-1), 5.48 (dd, J = 9.6 Hz, 1H, H-3), 5.21 (dd, J = 9.6 Hz, 1H, H-4), 

4.51 (t, J = 10.4 Hz, 1H, H-2), 4.31 (dd, J = 4.8, 12.8 Hz, 1H, H-6), 4.14 (m, 2H, 

H-6′ & H-5), 2.74 (t, J = 7.2 Hz, 2H, H2-8), 2.26 (m, 2H, H2-10), 2.04 (m, 6H, 

2×COCH3), 2.00 (s, 3H, COCH3), 1.95 (m, 2H, H2-9), 1.71 (s, 3H, COCH3); 13C 

NMR (100 MHz, CD3OD): δ = 173.3, 171.2, 171.1, 170.5, 170.0, 154.4, 120.9, 

85.6, 74.8, 72.5, 68.5, 61.9, 53.6, 25.8, 22.4, 20.9, 20.6, 20.5, 15.4, 14.4; ESI-

HRMS m/z calcd for C20H28N4NaO10: 507.1698 [M+Na]+, found: 507.1693. 

 

Subtilosin A-lysine-ε-amido-5-hexyne (215) 

5-Hexynoic acid (0.11 mL, 1 mmol) and dry pyridine (0.08 mL, 1 mmol) were 

mixed with 10 mL dry CH2Cl2. Fluoro-N,N,N′,N′-tetramethylformamidimium 
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hexafluorophosphate (0.3962 g, 1.5 mmol) was then added into the mixture. The 

reaction mixture was stirred for 5 hours at room temperature. A white precipitate 

formed, indicating the formation of insoluble tetramethylurea. The reaction 

mixture was diluted with 20 mL CH2Cl2, and the organic layer was washed with 

ice-cold water (2 × 15 mL). The CH2Cl2 solution was dried over anhydrous 

sodium sulfate and the solvent was removed in vacuo. The crude acid fluoride 

(0.0512 g, 44%) was used without any further purification. The crude acid 

fluoride was dissolved in 50 mL of acetonitrile, and 0.5 mL of this solution was 

mixed with a solution of 3 mg subtilosin A, which was prepared in 1 mL 

acetonitrile and 1.5 mL 100 mM sodium phosphate buffer pH 7.2. The reaction 

mixture was stirred at 4 °C for two days, and the product was purified by HPLC. 

HPLC method: Analytical C8 column, flow rate 1.0 mL/min, detected at 220 nm. 

Gradient: Starting from 20% MeCN (0.1% TFA) and 80% water (0.1% TFA) for 

5 min, ramping up to 80% MeCN over 28 min, keeping 80% MeCN for 5min, 

ramping down to 20% MeCN over 2 min, then keeping 20% MeCN for 5min. The 

product (tR = 29.3 minutes) was analyzed by MALDI-TOF-MS m/z calcd for 

C158H233N38O46S3: 3494.6 [M+H]+, found 3494.5. The white solid material was 

obtained by lyophilization (1.8 mg, 60%). 

 



181 

  

Alkynyl-SubA digestion product (216 & 217) using endoproteinase Asp-N 

The alkynyl-SubA 215 (0.6 mg) was dissolved in 150 µL of 1:1 mixture of 

acetonitrile and water. Endoproteinase Asp-N (2 µg) was dissolved in 28 µL of 

200 mM phosphate buffer, pH 7.8. Subsequently, 12 µL of the alkynyl-SubA 

solution was mixed with the enzyme solution and incubated at 37 °C for two 

hours. Compound 216 was detected by MALDI-TOF-MS m/z calcd for 

C136H200N33O40S3: 3031.4 [M-H]-, found 3031.3. 
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MS/MS analysis of alkynyl-SubA digestion product (218) 
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N-((1R,2R,3R,4S,5R)-1-azido-3,4-dihydroxy-5-(hydroxymethyl)tetrahydro-

2H-pyran-2-yl)acetamide (219)201 

The azido-monosaccharide 210 (0.7210 g, 1.9 mmol) was dissolved in 5 mL dry 

methanol. Approximately 1 mL of 1 M sodium methoxide in MeOH was added to 

this solution to adjust the pH to 9. After all of the starting material was converted 

to product as monitored by TLC, the mixture was neutralized with amberlyst 

acidic resin, Amberlite® IR120. The mixture was filtered and the resin was 

washed with another 2 mL of MeOH. The filtrate was concentrated and purified 

by column chromatography (silica gel, EtOAc/hexanes = 9:1). The title compound 

was obtained as white solid (0.4502 g, 90%). [α]D = -27.2 (c 0.36, CH3OH); IR 

(Microscope): 3600 – 3100 (br), 2959, 2932, 2911, 2884, 2852, 2118, 2118, 1660, 

1560 cm-1;  1H NMR (400 MHz, CD3OD): δ = 4.50 (d, J = 9.2 Hz, 1H, H-1), 3.89 

(dd, J = 1.6, 12 Hz, 1H, H-6), 3.68 (m, 2H, H-6′ & H-2), 3.45 (dd, J = 8.4, 10 Hz, 

1H, H-4), 3.35 (m, 2H, H-3 & H-5), 1.98 (s, 3H, COCH3); 13C NMR (100 MHz, 

CD3OD): δ = 173.8, 90.2, 80.4, 75.8, 71.7, 62.6, 56.7, 22.9; ESI-HRMS m/z calcd 

for C8H14N4NaO5: 269.0856 [M+Na]+, found: 269.0853. 
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GlcNAc – SubA click chemistry adduct (220) 

The deprotected azido-monosaccharide 219 (1 mg, 3.8 × 10-6 mol) and the 

alkynyl-SubA 215 (2 mg, 5.7 × 10-7 mol) were mixed with 1 mL of t-butanol. 

Copper acetate (0.21 mg, 1.1 × 10-5 mol) and sodium L-ascorbate (0.45 mg, 2.3 × 

10-5 mol) were mixed with 1 mL of water, resulting in a brown mixture. This 

brown mixture was added into the t-butanol solution, resulting in a light yellow 

mixture. The progress of the reaction was monitored by HPLC and MALDI-TOF-

MS. The product was purified by HPLC with method: Analytical C8 column, flow 

rate 1.0 mL/min, detected at 220 nm. Gradient: Starting from 20% MeCN (0.1% 

TFA) and 80% water (0.1% TFA) for 5 min, ramping up to 80% MeCN over 28 

min, keeping 80% MeCN for 5min, ramping down to 20% MeCN over 2 min, 

then keeping 20% MeCN for 5min. The product (tR = 27.0 minutes) was analyzed 

by MALDI-TOF-MS m/z calcd for C167H249N42O50S3: 3738.7 [M+H]+, found 

3738.9. The white solid material was obtained by lyophilization (0.4 mg, 20%). 
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3.9 Click chemistry used in linking chitotriose to SubA  

 

N-((2S,3R,5S,6R)-5-((2S,3R,4R,5S,6R)-3-Acetamido-4,5-dihydroxy-6-

(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-2-((2R,3S,5R,6R)-5-

acetamido-6-azido-4-hydroxy-2-(hydroxymethyl)tetrahydro-2H-pyran-3-

yloxy)-4-hydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide 

(224)177 

Peracetylated chitotriose (0.1020 g, 0.1 mmol) was mixed with 4 mL of dry 

methanol. Sodium methoxide (1M, 1mL) was then added into the trisaccharide 

solution. The mixture turned clear after five minutes, and then turned cloudy again 

after another five minutes. The mixture was stirred for 20 hours at room 

temperature, followed by the addition of 10 mL of water, resulting in a clear 

solution once again. The solution was neutralized by adding Amberlite® IR120 

acidic resin. The resin was removed by filtration, and the filtrate was then 

concentrated in vacuo. Water was removed by lyophilization, and the deprotected 

chitotriose was used without further purification. This chitotriose was then 

dissolved in 2 mL of D2O. 2-Chloro-1,3-dimethylimidazolinium chloride (0.1690 

g, 1 mmol) and sodium azide (0.3250 g, 5 mmol) were then added to this sugar 

solution followed by addition of 2,6-lutidine (0.23 mL, 2 mmol). The mixture was 

stirred for 48 hours, followed by purification by column chromatography (silica 

gel, 20% MeOH/CHCl3). The title compound was obtained as white solid (0.0420 
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g, 64%). [α]D = -3.4 (c 2.00, H2O); IR (Microscope): 3700 – 3200 (br), 3390, 

3299, 3280, 3100 (br), 2939, 2876, 2119, 2042, 1964, 1654, 1560 cm-1; 1H NMR 

(500 MHz, D2O): δ = 4.85 (d, J = 9.0 Hz, 1H, H-1), 4.67 (d, J = 8.5 Hz, 2H, H-1′ 

& H-1′′), 4.01 – 3.91 (m, 3H, H-6a, H-6′a & H-6′′a), 3.85 – 3.50 (m, 16H), 2.15 (s, 

3H, COCH3), 2.14 (s, 3H, COCH3), 2.13 (s, 3H, COCH3); 13C NMR (125 MHz, 

D2O): δ = 175.8, 175.6, 175.6, 165.0, 102.4, 102.1, 89.5, 80.1, 79.7, 77.5, 76.9, 

75.5, 74.4, 73.2, 73.1, 70.7, 61.5, 61.0, 56.6, 56.0, 55.5, 46.0, 31.9, 23.2; ESI-

HRMS m/z calcd for C24H40N6NaO15: 675.2444 [M+Na]+, found: 675.2437. 

 

(GlcNAc)3 – SubA click chemistry adduct (225) 

The click chemistry was performed by mixing the azido-chitotriose (3 mg, 4.6 × 

10-6 mol) and alkynyl-subtilosin A (3 mg, 8.6 × 10-7 mol). Copper acetate (0.62 

mg, 3.4 × 10-5 mol) and sodium ascorbate (1.34 mg, 6.8 × 10-5 mol) were added as 

catalysts. The reaction was performed in a 1:1 mixture of t-butanol and water (4 

mL). The progress of the reaction was monitored by HPLC and MALDI-TOF-MS. 

The product was purified by HPLC with the following method: Analytical C8 
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column, flow rate 1.0 mL/min, detected at 220 nm. Gradient: Starting from 20% 

MeCN (0.1% TFA) and 80% water (0.1% TFA) for 5 min, ramping up to 80% 

MeCN over 28 min, keeping 80% MeCN for 5min, ramping down to 20% MeCN 

over 2 min, then keeping 20% MeCN for 5min. The product (tR = 25.2 minutes) 

was analyzed by MALDI-TOF-MS m/z calcd for C182H273N44O61S3: 4146.9 

[M+H]+, found 4146.4. The white solid material was obtained by lyophilization 

(0.3 mg, 10%). 

3.10 Linking benzenesulfonamides to SubA as CAII inhibitors 

3.10.1 Purification of CAII 

 The plasmid pACA was obtained from the group of Dr. David W. 

Christianson in the Department of Chemistry at the University of Pennsylvania. 

The plasmid was transformed into E. coli BL21 (DE3) cells, which were plated on 

LB agar supplemented with ampicillin. After the cells were allowed to grow for 

16 hours, a single colony was picked into 5 mL LB media with 0.6 mg/mL of 

ampicillin. The culture was incubated at 37 °C with shaking at 220 rpm for 16 

hours. 1 L of 6×M9 minimal medium was prepared and autoclaved, which 

contained 20 g tryptone, 10 g yeast extract, 5 g NaCl, 2.2 g Na2HPO4, 1.1 g 

KH2PO4, 0.2 g NaCl, and 0.4 g NH4Cl. After autoclaving 20 mL of 20% glucose, 

200 µL of 300 mM ZnSO4, 2 mL of 50 mg/mL ampicillin, and 5 mL of the 

overnight bacterial culture were added into the 1 L medium. The culture was 

incubated at 37 °C with shaking at 260 rpm for 5.5 hours. At this point, the OD of 

the culture was measured to be 0.9 at 600 nm. The culture was induced with 1.5 
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mL ZnSO4 (300 mM) and 2.5 mL isopropyl β-D-1-thiogalactopyranoside (IPTG, 

100 mM) and was incubated at 30 °C with shaking at 260 rpm for three hours. 2 

mL phenylmethanesulfonylfloride (PMSF, 4 mg/mL) was then added into the cell 

culture. After an additional three hours, the cells were harvested by centrifugation 

(20 minutes, 6000 xg). The cell pellets were then resuspended in 50 mL of lysis 

buffer, which contained 50 mM Tris-SO4, pH 8.0, 50 mM NaCl, 10 mM EDTA, 

pH 8.0, 0.2 mM ZnSO4, 1 mM dithiothreitol (DTT), 10 µg/mL PMSF, 1 mM 

benzamidine, and one tablet of Complete Protease Inhibitor Cocktail Tablets from 

Roche Applied Science. The cells were lysed with a cell disruptor, and the 

mixture was centrifuged at 14,000 rpm for 45 minutes. The supernatant was 

collected, and 8 mL of 10% (w/v) streptomycin-SO4 was added to the stirred 

solution in four aliquots over 15 minutes to precipitate nucleic acids. The 

precipitate was removed by centrifugation at 10,000 rpm for 30 minutes. The 

supernatant was dialyzed against 4 L 10 mM Tris-SO4 buffer, supplemented with 

0.1 mM ZnSO4 and 1 mM DTT for 16 hours.  

 The supernatant was then passed through DEAE Sephacel (GE 

Healthcare) for anion exchange chromatography. Approximately 100 mL of resin 

was equilibrated with 2×100 mL Tris-SO4, pH 8.0 (0.5 – 1.0 M), followed by 

rinsing with 5×100 mL equilibration buffer (10 mM Tris-SO4, 0.1 mM ZnSO4, 

and 1 mM DTT). The protein solution was then centrifuged, and the supernatant 

was loaded onto the DEAE SephacelTM resin, and shaken for 30 minutes. The 

mixture was filtered and the resin was washed with 100 mL of equilibration 
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buffer. The filtrates were combined and dialyzed against 4 L of 10 mM 2-(N-

morpholino)ethanesulfonic aicd (MES), pH 7.0 and 1 mM DTT. 

 A cation exchange resin, SP Sepharose Fast Flow, from GE Healthcare was 

then used to further purify the enzyme. Approximately 7 mL of resin was used to 

prepare a column. The resin was washed with 35 mL water, 35 mL buffer A (10 

mM MES, pH 7.0, and 1 mM DTT), and 35 mL buffer B (10 mM MES, 1 mM 

DTT, and 0.5 M (NH4)2SO4). The resin was then washed again with 35 mL buffer 

A before loading the protein. After the protein was loaded, the resin was washed 

with 70 mL of buffer A. The protein was eluted with a 70 mL gradient ranging 

from 0 – 100% of buffer B. The elution was monitored by UV absorption at 280 

nm, and the trace is shown in Figure 3-1. Both fractions (peak 1: tR = 20 – 30 

min; peak 2: tR = 30 – 40 min) were collected and separately dialyzed against 2 L 

of 50 mM Tris-SO4, pH 8.0 for 16 hours. 

 

 

Figure 3-1. Purification of CAII using SP Sepharose Fast Flow resin 
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 The purity of CAII was examined by SDS-PAGE, as shown in Figure 3-2. 

From right to left, lane 1: standard molecular weight markers, lane 2: prior to 

induction with IPTG, lane 3: three hours after the induction, lane 4: prior to 

harvesting cells, lane 5: supernatant after cell disruption, lane 6: following 

removal of nucleic acids, lane 7: following the first dialysis, lane 8: following the 

anion exchange column, lane 9: peak 1 from the cation exchange column 

(retention time: 20 – 30 minutes), lane 10: peak 2 from the cation exchange 

column (retention time: 30 – 40 minutes). 

 

 

Figure 3-2. SDS-PAGE gel showing the CAII purification. From right to left, 
lane 1 to lane 10 

  

 Finally the enzyme solution was concentrated to 3.36 mg/mL, calculated 

using a molar absorptivity of ε280 = 54,000 L/mol/cm at 280 nm.  
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3.10.2 Inhibitor testing against CAII 

 The inhibitor testing was done using a p-nitrophenol acetate assay modified 

from the literature.183 A buffer of 20 mM Tris-SO4, pH 8.3 was used in this assay. 

The substrate stock solution was 5×10-3 M of p-nitrophenol acetate in DMSO. The 

CAII stock was diluted to 0.336 mg/mL (1.12×10-5 M). Inhibitor stocks were 

prepared at various concentrations in DMSO. In a 1 mL assay cuvette, 780 µL 

assay buffer, 10 µL substrate stock solution (or DMSO for the negative control), 

and 10 µL inhibitor stock solution (or DMSO for the positive control) were added. 

Then, 200 µL of the CAII stock solution was added, and the change in absorbance 

at 400 nm was monitored using a Varian Cary 100 Bio UV-Visible 

spectrophotometer. The data were then analyzed using Microsoft Excel. The 

initial rate of increase of the absorbance is proportional to the rate of reaction. By 

comparing the initial slope of each absorbance curve of the inhibitor assay cell to 

the control cell, the percentage inhibition was determined and the IC50 value was 

calculated based on these data according to the method described in section 3.4. 
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3.10.3 Benzenesulfonamide derivatives – SubA linkage 

 

 

Imidazole-1-sulfonyl azide (226)178 

(Attention: explosive and small scale only) Sulfuryl chloride (0.4 mL, 5.0 

mmol) was added drop-wise to an ice-cold mixture of sodium azide (0.320 g, 5.0 

mmol) in MeCN (5 mL) and the resulting mixture was stirred for 15 hours at 

room temperature. Imidazole (0.681 g, 10 mmol) was then added to the ice-cold 

mixture, and the mixture was then stirred for 3 hours at room temperature. The 

mixture was diluted with EtOAc (10 mL) and water (10 mL). The organic layer 

was separated and washed with water (10 mL), saturated aqueous sodium 

bicarbonate (2 × 15 mL), brine (10 mL), dried over anhydrous sodium sulfate and 

filtered. The filtrate was concentrated and purified by flash column 

chromatography (silica gel, EtOAc/diethyl ether = 1:3) to give the title compound 

as a colourless liquid (0.560 g, 65%). IR (Film): 3116, 2170, 1599 cm-1; 1H NMR 

(500 MHz, CDCl3): δ = 8.02 (dd, J = 1.0, 1.4 Hz, 1H, H-1), 7.41 (dd, J = 1.4, 1.7 

Hz, 1H, H-2), 7.23 (dd, J = 1.0, 1.7 Hz, 1H, H-3); 13C NMR (125 MHz, CDCl3): δ 

= 117.2, 131.4, 136.2; EI-HRMS m/z calcd for C3H3N5O2S: 173.0010 [M]+, 

found: 173.0015. 
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4-(2-Azidoethyl)benzenesulfonamide (227)133  

Imidazole-1-sulfonyl azide 226 (0.207 g, 1.2 mmol), 4-(2-aminoethyl) 

benzenesulfonamide (0.203 g, 1.0 mmol), potassium carbonate sesquihydrate 

(0.248 g, 1.5 mmol), and copper sulfate pentahydrate (2.5 mg, 10 µmol) were 

mixed with methanol (5 mL), and the reaction was stirred for 15 hours at room 

temperature. The solvent was then removed in vacuo. The residue was diluted 

with 15 mL of water, and acidified with 1 M HCl. The mixture was then extracted 

with EtOAc (3 × 15 mL). The combined organic layer was washed with water (15 

mL), brine (15 mL), dried over anhydrous sodium sulfate, and filtered. The filtrate 

was then concentrated and purified by flash column chromatography (silica gel, 

EtOAc/hexanes = 2:1) to give the title compound as a white solid (0.155 g, 69%). 

IR (solid): 3357, 3259, 3116, 2158, 2115, 1599, 1568 cm-1; 1H NMR (500 MHz, 

CDCl3): δ = 7.89 (d, J = 8.5 Hz, 2H, H-1), 7.38 (d, J = 8.5 Hz, 2H, H-2), 4.88 (br, 

2H, NH), 3.56 (t, J = 7 Hz, 2H, H2-3), 2.96 (t, J = 7 Hz, 2H, H2-4); 13C NMR (125 

MHz, CDCl3): δ = 143.6, 140.5, 129.6, 126.9, 51.9, 35.2; EI-HRMS m/z calcd for 

C8H10N4NaO2S: 249.0417 [M+Na]+, found: 249.0413. 
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1-Fluorocyclooct-2-ynecarboxylic acid (231)181 

Ethyl 1-fluorocyclooct-2-ynecarboxylate 238 (0.32 g, 1.88 mmol) was mixed with 

5 mL 50% aqueous methanol and lithium hydroxide monohydrate (0.158 g, 3.76 

mmol) was added into the mixture. The mixture was then heated to 50 °C to 

dissolve the solid. The mixture was then cooled to room temperature and stirred 

for an additional two hours. The reaction was cooled to 0 °C and diluted with 

water (5 mL). The mixture was acidified to pH 2 with 2 M HCl. The mixture was 

extracted with EtOAc (3 × 20 mL). The combined organic layers were washed 

with water (20 mL), brine (20 mL), dried over anhydrous sodium sulfate, and 

filtered. The solvent was then removed in vacuo to give the titled compound as a 

pale yellow liquid (0.3105 g, 97%). IR (Neat): 3500 – 2600, 2933, 2857, 2227, 

1733, 1451 cm-1; 1H NMR (500 MHz, CDCl3): δ = 10.19 (br, 1H, COOH), 2.49 – 

2.30 (m, 4H, H-1 & H-5), 2.12 – 1.88 (m, 4H, H-2 & H-4), 1.80 – 1.72 (m, 1H, H-

3a), 1.55 – 1.47 (m, 1H, H-3b); 13C NMR (125 MHz, CDCl3): δ = 173.4 (d, J2
C-F 

= 29.0 Hz), 109.4 (d, J3
C-F = 10.0 Hz), 91.5 (d, JC-F = 185.9 Hz), 86.1 (d, J2

C-F = 

31.5 Hz), 46.3 (d, J2
C-F = 24.9 Hz), 33.8, 29.0, 25.5, 20.5; ESI-HRMS m/z calcd 

for C9H11FNaO2: 193.0635 [M+Na]+, found: 193.0637. 
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Ethyl 2-oxocyclooctanecarboxylate and (Z)-ethyl 2-hydroxycyclooct-1-

enecarbo-xylate (234 and 235)202 

Sodium hydride (60% in mineral oil, 3.4 g, 85 mmol) and diethyl carbonate (7.26 

mL, 60 mmol) were mixed with benzene (40 mL). The mixture was heated to 

reflux, and a solution of cyclooctanone (3.95 mL, 30 mmol) in benzene (10 mL) 

was added drop-wise using an additional funnel over the course of three hours. 

After addition, the mixture was cooled to room temperature and glacial acetic acid 

(6 mL) was added drop-wise. Ice-cold water (20 mL) was added drop-wise until 

all solids went into solution. The benzene layer was separated, and the aqueous 

layer was extracted with benzene (3 × 10 mL). The combined benzene layer was 

washed with ice-cold water (3 × 10 mL), brine (10 mL), dried over anhydrous 

sodium sulfate, and filtered. The filtrate was concentrated and purified by column 

chromatography (silica gel, EtOAc/hexanes = 1:10) to give the title compound as 

a colourless liquid (5.55 g, 93%). IR (Neat): 2980, 2927, 2856, 1747, 1708, 1644, 

1613 cm-1; Ethyl 2-oxocyclooctanecarboxylate (234): 1H NMR (400 MHz, 

CDCl3): δ = 4.14 (q, J = 7.2 Hz, 2H, H-8), 3.56 (dd, J = 4.4, 11.2 Hz, 1H, H-1), 

2.61 (m, 1H, H-2a), 2.47 (m, 1H, H-2b), 2.19 – 2.04 (m, 2H, H-7), 1.96 – 1.83 (m, 

2H, H-3), 1.75 – 1.35 (m, 6H, H-4, H-5 & H-6), 1.23 (t, J = 7.2 Hz, 3H, H-9); 13C 

NMR (125 MHz, CDCl3): δ = 212.2, 170.1, 61.1, 57.1, 41.6, 28.9, 27.0, 25.5, 

25.3, 24.5, 14.0; (Z)-ethyl 2-hydroxycyclooct-1-enecarboxylate (235): 1H NMR 
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(400 MHz, CDCl3): δ = 4.21 (q, J = 7.2 Hz, 2H, H-7), 2.39 (m, 2H, H-1), 2.35 (m, 

2H, H-6), 1.75 – 1.35 (m, 10H, H-2, H-3, H-4 & H-5), 1.30 (t, J = 7.2 Hz, 3H, H-

8); 13C NMR (125 MHz, CDCl3): δ = 176.0, 172.9, 99.2, 60.1, 32.3, 29.9, 28.7, 

26.5, 26.0, 23.9, 14.3; ESI-HRMS m/z calcd for C11H18NaO3: 221.1148 [M+Na]+, 

found: 221.1148. 

 

Ethyl 1-fluoro-2-oxocyclooctanecarboxylate (237)181 

Ethyl 2-oxocyclooctanecarboxylate 234 and its tautomer 235 (1.98 g, 10 mmol) 

was dissolved in dry MeCN (25 mL) and cooled to 0 °C. Selectfluor (4.25 g, 12 

mmol) was then added into the solution. The mixture was heated to 55 °C and 

stirred for 8 hours. After cooling to room temperature, the reaction was quenched 

with water (20 mL). Following the removal of MeCN under reduced pressure, the 

residue was extracted with EtOAc (4 × 20 mL). The combined organic layer was 

washed with water (20 mL), brine (20 mL), dried over anhydrous sodium sulfate, 

and filtered. The filtrate was concentrated to yield a clear oil which was then 

dissolved in small amount of CH2Cl2 and filtered through a plug of silica gel to 

give the title compound as clear liquid (2.052 g, 95%). IR (Neat): 2983, 2935, 

2862, 1760, 1725 cm-1; 1H NMR (500 MHz, CDCl3): δ = 4.26 (q, J = 7.2 Hz, 2H, 

H-7), 2.74 (ddt, J = 1.0, 4.0, 12.5 Hz, 1H, H-1a), 2.70 – 2.52 (m, 2H, H-1b & H-

6a), 2.26 (dddd, J = 3.5, 4.5, 8.0, 16 Hz, 1H, H-6b), 2.06 – 1.96 (m, 1H, H-5a), 

1.92 – 1.85 (m, 1H, H-5b), 1.80 – 1.68 (m, 2H, H-2), 1.68 – 1.59 (m, 1H, H-3a), 
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1.55 – 1.36 (m, 3H, H-3b & H-4), 1.31 (t, J = 7.2 Hz, 3H, H-8); 13C NMR (125 

MHz, CDCl3): δ = 208.7 (d, J2
C-F = 21.6 Hz), 167.0 (d, J2

C-F = 24.7 Hz), 99.1 (d, 

JC-F = 199.9 Hz), 62.5, 38.8, 33.3 (d, J2
C-F = 22.1 Hz), 27.5 (d, J3

C-F = 2.0 Hz), 

26.5, 24.4, 21.3 (d, J3
C-F = 1.4 Hz), 13.9; ESI-HRMS m/z calcd for C11H18FO3: 

217.1234 [M+H]+, found: 217.1233. 

 

Ethyl 1-fluorocyclooct-2-ynecarboxylate (238)181 

Ethyl 1-fluoro-2-oxocyclooctanecarboxylate 237 (2.12 g, 9.8 mmol) was 

dissolved in dry THF (125 mL) and stirred at -78 °C. KHMDS (0.5 M, 45 mL) 

was then added dropwise into the reaction mixture. The reaction mixture was 

stirred for 30 minutes before the N-phenyl-bis(trifluoromethanesulfonimide) (3.90 

g, 10.9 mmol) in dry THF (25 mL) was slowly added to the reaction mixture via 

syringe. The reaction was stirred for one additional hour at -78 °C, and was then 

allowed to warm to room temperature. The reaction mixture was then stirred an 

additional five hours at room temperature. After quenching the reaction with 

ethanol, the mixture was concentrated in vacuo. The resulting dark red residue 

was washed with hexanes and filtered. The sticky residue was removed, and the 

filtrate was concentrated and purified by column chromatography (silica gel, 3% 

EtOAc in hexanes) to give the title compound as a light red liquid (1.025 g, 48%). 

IR (Neat): 2930, 2855, 1755 cm-1; 1H NMR (500 MHz, CDCl3): δ = 4.28 (dq, J = 

2.0, 7.0 Hz, 2H, H-6), 2.41 – 2.23 (m, 4H, H-1 & H-5), 2.04 – 1.85 (m, 4H, H-2 & 
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H-4), 1.76 – 1.68 (m, 1H, H-3a), 1.49 – 1.42 (m, 1H, H-3b), 1.33 (t, J = 7.0 Hz, 

3H, H-7); 13C NMR (125 MHz, CDCl3): δ = 168.7 (d, J2
C-F = 28.6 Hz), 108.5 (d, 

J3
C-F = 10.1 Hz), 91.8 (d, JC-F = 185.6 Hz), 86.8 (d, J2

C-F = 31.7 Hz), 62.3, 46.2 (d, 

J2
C-F = 24.8 Hz), 33.8, 29.1, 25.4, 20.5, 14.0; ESI-HRMS m/z calcd for 

C11H16FO2: 199.1128 [M+H]+, found: 199.1124. 

 

Ethyl 9-fluoro-1-(4-sulfamoylphenethyl)-4,5,6,7,8,9-hexahydro-1H-cycloocta- 

[d][1,2,3]triazole-9-carboxylate (239) 

4-(2-Azidoethyl)benzenesulfonamide 227 (100 mg, 4.4 × 10-4 mol) and ethyl 1-

fluorocyclooct-2-ynecarboxylate (70 mg, 3.5 × 10-4 mol) were mixed in ethanol (3 

mL). The resulting mixture was stirred for 5 hours at room temperature, after 

which the solvent was removed in vacuo. The resulting residue was purified by 

column chromatography (silica gel, EtOAc/hexanes = 1:1) to yield both title 

compound as white solid and its regioisomer 240 as a colourless liquid (47.5 mg + 

55.1 mg, 70%). IR (Microscope): 3250 (br), 3100, 2954, 2931, 2866, 1763, 1598, 

1560 cm-1; 1H NMR (500 MHz, CD3OD): δ = 7.80 (d, J = 8.5 Hz, 2H, H-1), 7.32 

(d, J = 8.5 Hz, 2H, H-2), 4.55 (dddd, J = 7.0, 8.5, 14.0, 41.5 Hz, 2H, H-4), 4.17 

(qdd, J = 7.5, 11.0, 54.5 Hz, 2H, H-10), 3.31 (m, 2H, H-3), 3.11 (ddd, J = 4.5, 6.5, 

15.0 Hz, 1H, H-5a), 2.91 (m, 1H, H-5b), 2.59 (m, 1H, H-9a), 2.41 (m, 1H, H-9b), 
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1.85 (m, 1H, H-6a), 1.72 (m, 2H, H-8), 1.58 (m, 1H, H-6b), 1.47 (m, 1H, H-7a), 

1.32 (m, 1H, H-7b), 1.17 (t, J = 7.5 Hz, 3H, H-11); 13C NMR (125 MHz, 

CD3OD): δ = 170.2 (d, J2
C-F = 29.1 Hz), 146.4, 143.5 (d, J2

C-F = 40.0 Hz), 132.2 

(d, J3
C-F = 23.5 Hz), 130.6, 127.4, 91.8 (d, JC-F = 185.1 Hz), 64.2, 51.6 (d, J3

C-F = 

4.1 Hz), 36.7, 34.6 (d, J2
C-F = 22.1 Hz), 27.4, 25.6, 24.5, 23.4 (d, J3

C-F = 3.9 Hz), 

14.2; ESI-HRMS m/z calcd for C19H26FN4O4S: 425.1653 [M+H]+, found: 

425.1656. The structure was confirmed by X-ray crystallographic studies, a report 

is included in Appendix. 

 

Ethyl 4-fluoro-1-(4-sulfamoylphenethyl)-4,5,6,7,8,9-hexahydro-1H-cycloocta- 

[d][1,2,3]triazole-4-carboxylate (240) 

Colourless liquid. IR (Microscope): 3248 (br), 3100, 2949, 2928, 2865, 1760, 

1595, 1560 cm-1; 1H NMR (500 MHz, CDCl3): δ = 7.78 (d, J = 8.5 Hz, 2H, H-1), 

7.15 (d, J = 8.5 Hz, 2H, H-2), 4.48 (t, J = 7.0 Hz, 2H, H-4), 4.27 (qdd, J = 7.0, 

10.5, 25.0 Hz, 2H, H-10), 3.28 (t, J = 7.0 Hz, 2H, H-3), 2.80 (m, 1H, H-5a), 2.67 

(m, 1H, H-5b), 2.33 (m, 2H, H-9), 1.79 (m, 1H, H-8a), 1.61 (m, 1H, H-8b), 1.54 – 

1.30 (m, 4H, H-6 & H-7), 1.26 (t, J = 7.5 Hz, 3H, H-11); 13C NMR (125 MHz, 

CDCl3): δ = 170.0 (d, J2
C-F = 27.9 Hz), 142.2 (d, J2

C-F = 25.0 Hz), 142.1, 141.2, 

134.6 (d, J3
C-F = 3.1 Hz), 129.5, 126.8, 91.9 (d, JC-F = 185.4 Hz), 62.2, 48.3, 36.3, 
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34.0 (d, J2
C-F = 23.5 Hz), 25.8, 23.4, 21.7 (d, J3

C-F = 3.9 Hz), 20.8, 14.1; ESI-

HRMS m/z calcd for C19H25FN4NaO4S: 447.1473 [M+Na]+, found: 447.1470. 

 

3-methyl-4-(3-(4-sulfamoylphenyl)ureido)benzoic acid (243) 

The ethyl ester 250 (68.3 mg, 1.8 × 10-4 mol) was mixed with 50% aqueous 

methanol (1.2 mL). Lithium hydroxide monohydrate (16.6 mg, 4 × 10-4 mol) was 

added into the mixture. The mixture was then heated to 50 °C to assist the 

dissolution of the solid. The mixture was then cooled to room temperature and 

stirred for an additional two hours. The reaction was cooled to 0 °C and diluted 

with water (5 mL). The mixture was acidified to pH 2 with 2 M HCl. The title 

compound then precipitated out and was collected via filtration as a white solid 

(62.3 mg, 99%). IR (Film): 3500 – 2700, 3377, 3277, 3065, 2981, 1722, 1680, 

1611, 1588 cm-1; 1H NMR (500 MHz, DMSO-d6): δ = 9.63 (br, 1H, CONH), 8.28 

(br, 1H, CONH), 8.11 (d, J = 8.5 Hz, 1H, Ph-H), 7.75 (m, 4H, Ph-H), 7.62 (d, J = 

9.5 Hz, 2H, Ph-H), 7.20 (br, 2H, SO2NH2), 2.30 (s, 3H, CH3); 13C NMR (125 

MHz, DMSO-d6): δ = 170.7, 167.1, 152.0, 142.5, 141.5, 137.1, 131.4, 127.9, 

126.9, 126.2, 118.9, 117.5, 17.8; ESI-HRMS m/z calcd for C17H15F3N3O7S: 

462.0588 [M+CF3CO2]-, found: 462.0587. 

H2N
S

O O

N
H

N
H

O OH

O



201 

 

Ethyl 4-(3-(4-sulfamoylphenyl)ureido)benzoate (246)185, 203 

4-Aminobenzenesulfonamide (0.2311 g, 1.3 × 10-3 mol) and ethyl 4-

isocyanatobenzoate (0.2561 g, 1.3 × 10-3 mol) were mixed in MeCN (15 mL) and 

stirred for 16 hours at room temperature. A white precipitate was formed, which 

was filtered under suction and washed with diethyl ether (15 mL). The titled 

compound was obtained as white solid (0.406 g, 83%). IR (Film): 3375, 3352, 

3331, 3307, 3214, 3074, 2980, 1701, 1594, 1537 cm-1; 1H NMR (500 MHz, 

DMSO-d6): δ = 9.20 (br, 2H, NHCONH), 7.89 (d, J = 9.0 Hz, 2H, Ph-H), 7.73 (d, 

J = 9 Hz, 2H, Ph-H), 7.60 (m, 4H, Ph-H), 7.20 (br, 2H, SO2NH2), 4.27 (q, J = 7.0 

Hz, 2H, OCH2), 1.30 (t, J = 7.0 Hz, 3H, CH2CH3); 13C NMR (125 MHz, DMSO-

d6): δ = 165.3, 151.9, 143.9, 142.4, 137.2, 130.3, 126.8, 123.1, 117.7, 117.5, 60.3, 

14.2; ESI-HRMS m/z calcd for C16H17N3NaO5S: 386.0781 [M+Na]+, found: 

386.0784. 

 

Ethyl 4-amino-3-methylbenzoate (248)204 

Acetyl chloride (1.78 mL) was added slowly to ice-cold ethanol (15 mL) in an 

ice-bath. The mixture was then added into a 4-amino-3-methylbenzoic acid 
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solution in ethanol (15 mL). The mixture was refluxed for two days, after which 

this dark red mixture was cooled to room temperature. The ethanol was removed 

in vacuo, and the residue was mixed with EtOAc (90 mL). The mixture was then 

washed with aqueous saturated sodium bicarbonate (70 mL). The separated 

aqueous layer was extracted one additional time with EtOAc (60 mL). The 

combined organic layer was then washed with water (60 mL), brine (60 mL), 

dried over anhydrous sodium sulfate, and filtered. After the solvent was removed, 

the title compound was obtained as a red solid (1.72 g, 96%). IR (Film): 3479, 

3374, 3243, 2980, 2934, 2904, 1693, 1628, 1607, 1579 cm-1; 1H NMR (500 MHz, 

CDCl3): δ = 7.75 (m, 2H, Ph-H), 6.64 (d, J = 8.0 Hz, 1H, Ph-H), 4.32 (q, J = 7.3 

Hz, 2H, OCH2), 3.98 (br, 2H, NH2), 2.18 (s, 3H, Ph-CH3), 1.36(t, J = 7.3 Hz, 3H, 

CH2CH3); 13C NMR (125 MHz, DMSO-d6): δ = 166.9, 149.0, 132.2, 129.3, 

121.0, 120.1, 113.7, 60.3, 17.2, 14.5; ESI-HRMS m/z calcd for C10H13NNaO2: 

202.0838 [M+Na]+, found: 202.0841. 

 

Ethyl 3-methyl-4-(3-(4-sulfamoylphenyl)ureido)benzoate (250)185, 203, 205 

Ethyl 4-amino-3-methylbenzoate 248 (0.1790 g, 1.0 mmol) and triphosgene 

(0.2961 g, 1 mmol) were mixed in CH2Cl2 (6 mL). A solution of sodium 

bicarbonate (0.21 g, 2.5 mmol) in water (6 mL) was then added into the ethyl 

ester solution. The mixture was stirred for 30 minutes, and then poured into water 
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(5 mL). The separated aqueous layer was extracted with CH2Cl2 (2 × 10 mL). The 

combined organic layer was then washed with brine (10 mL), dried over 

anhydrous sodium sulfate, and filtered. After removal of the solvent, the 

isocyanate was obtained and used without any further purification. The obtained 

isocyanate was then mixed with 4-aminobenzenesulfonamide (0.1721 g, 1 mmol) 

in MeCN (10 mL), and stirred for 16 hours at room temperature. A white 

precipitate was formed, which was filtered under suction and washed with diethyl 

ether (15 mL). The title compound was obtained as a white solid (0.3167 g, 84%). 

IR (Film): 3384, 3349, 3217, 2994, 1700, 1681, 1594, 1546 cm-1; 1H NMR (500 

MHz, DMSO-d6): δ = 9.59 (br, 1H, CONH), 8.27 (br, 1H, CONH), 8.15 (d, J = 

8.5 Hz, 1H, Ph-H), 7.75 (m, 4H, Ph-H), 7.62 (d, J = 8.5 Hz, 2H, Ph-H), 7.21 (br, 

2H, SO2NH2), 4.27 (q, J = 7.0 Hz, 2H, OCH2), 2.31 (s, 3H, Ph-CH3), 1.30 (t, J = 

7.0 Hz, 3H, CH2CH3); 13C NMR (125 MHz, DMSO-d6): δ = 165.5, 151.9, 142.4, 

141.9, 137.2, 131.2, 127.8, 126.9, 126.3, 123.3, 118.8, 117.5, 60.3, 17.8, 14.2; 

ESI-HRMS m/z calcd for C17H19N3NaO5S: 400.0938 [M+Na]+, found: 400.0934. 
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Ureido-containing sulfonamide 243– SubA coupling adduct (251) 

3-Methyl-4-(3-(4-sulfamoylphenyl)ureido)benzoic acid (7 mg, 2 × 10-5 mol), 

PyBop (7.8 mg, 1.5 × 10-5 mol), and HOBt (2.1 mg, 1.5 × 10-5 mol) were 

dissolved in DMF (1 mL), to which was added triethylamine (2.1 µL, 1.5 × 10-5 

mol). The mixture was then stirred for one hour. 250 µL of the mixture was added 

to mixture of SubA (1 mg, 3 × 10-7 mol) in an aqueous buffer (20 mM tris-SO4 pH 

8, 50 µL). The mixture was left on an orbital shaker at 1500 rpm for 16 hours 

before being quenched with 2 M HCl. The title compound was purified by HPLC, 

method: Analytical C8 column, flow rate 1.0 mL/min, detected at 220 nm. 

Gradient: Starting from 5% MeCN (0.1% TFA) and 95% water (0.1% TFA) for 5 

min, ramping up to 50% MeCN over 10 min, ramping up to 95% MeCN over 

other 9 min, keeping 95% MeCN for 4 min, ramping down to 5% MeCN over 3 

min, then keeping 5% MeCN for 2min. The product (tR = 21.9 minutes) was 

analyzed by MALDI-TOF-MS m/z calcd for C167H239N41NaO49S4: 3753.6 

[M+Na]+, found 3753.7. The title compound was obtained as a white solid after 

lyophilization (0.5 mg, 50%). 
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Appendix: X-ray crystal structure of compound 239 

 
XCL Code: JCV1101 Date: 5 May 2011 

Compound: ethyl 9-fluoro-1-{2-(4-sulfamoylphenyl)ethyl-4,5,6,7,8,9-hexahydro-1H-
cycloocta[d][1,2,3]triazole-9-carboxylate 

Formula: C19H25FN4O4S 
Supervisor: J. C. Vederas Crystallographer: M. J. 

Ferguson 
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Figure Legends 

 
Figure I. Perspective view of the ethyl 9-fluoro-1-{2-(4-sulfamoylphenyl)ethyl}-

4,5,6,7,8,9-hexahydro-1H-cycloocta[d][1,2,3]triazole-9-carboxylate molecule 
showing the atom labelling scheme.  Non-hydrogen atoms are represented by 
Gaussian ellipsoids at the 20% probability level.  Hydrogen atoms are shown with 
arbitrarily small thermal parameters. 

 
Figure II. Alternate view of the molecule. 
 



207 
 



208 
  



209 

List of Tables 

 

Table I. Crystallographic Experimental Details 

Table II. Atomic Coordinates and Equivalent Isotropic Displacement Parameters 

Table III. Selected Interatomic Distances 

Table IV. Selected Interatomic Angles 

Table V. Torsional Angles 

Table VI. Hydrogen-Bonded Interactions 

Table VII. Anisotropic Displacement Parameters 

Table VIII. Derived Atomic Coordinates and Displacement Parameters for Hydrogen Atoms 



210 

Table I.  Crystallographic Experimental Details 

A.  Crystal Data 
formula C19H25FN4O4S 
formula weight 424.49 
crystal dimensions (mm) 0.61 × 0.18 × 0.15 
crystal system triclinic 
space group P1’ (No. 2) 
unit cell parametersa 
 a (Å) 8.6519 (4) 
 b (Å) 8.9370 (4) 
 c (Å) 13.7359 (6) 
 α (deg) 82.1623 (5) 
 β (deg) 81.9087 (5) 
 γ (deg) 77.5942 (5) 
 V (Å3) 1020.76 (8) 
 Z 2 
ρcalcd (g cm-3) 1.381 
µ (mm-1) 0.201 

B.  Data Collection and Refinement Conditions 
diffractometer Bruker PLATFORM/APEX II CCDb 
radiation (λ [Å]) graphite-monochromated Mo Kα (0.71073)  
temperature (°C) –100  
scan type ω scans (0.3°) (20 s exposures) 
data collection 2θ limit (deg) 53.14 
total data collected 8307 (-10 ≤ h ≤ 10, -11 ≤ k ≤ 11, -17 ≤ l ≤ 17) 
independent reflections 4226 (Rint = 0.0111) 
number of observed reflections (NO) 3849 [Fo2 ≥ 2σ(Fo2)] 
structure solution method direct methods (SHELXDc) 
refinement method full-matrix least-squares on F2 (SHELXL–97d) 
absorption correction method Gaussian integration (face-indexed) 
range of transmission factors 0.9705–0.8865 
data/restraints/parameters 4226 / 0 / 270 
goodness-of-fit (S)e [all data] 1.052 
final R indicesf 
 R1 [Fo2 ≥ 2σ(Fo2)] 0.0324 
 wR2 [all data] 0.0897 
largest difference peak and hole 0.301 and –0.399 e Å-3 
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aObtained from least-squares refinement of 9360 reflections with 4.70° < 2θ < 53.14°. 
 

      (continued) 

Table I.  Crystallographic Experimental Details (continued) 

bPrograms for diffractometer operation, data collection, data reduction and absorption correction 
were those supplied by Bruker.   

cSchneider, T. R.; Sheldrick, G. M.  Acta Crystallogr. 2002, D58, 1772-1779. 
dSheldrick, G. M.  Acta Crystallogr. 2008, A64, 112–122. 
eS = [Σw(Fo2 – Fc2)2/(n – p)]1/2 (n = number of data; p = number of parameters varied; w = 

[σ2(Fo2) + (0.0456P)2 + 0.3672P]-1 where P = [Max(Fo2, 0) + 2Fc2]/3). 
fR1 = Σ||Fo| – |Fc||/Σ|Fo|; wR2 = [Σw(Fo2 – Fc2)2/Σw(Fo4)]1/2. 
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Table II.  Atomic Coordinates and Equivalent Isotropic Displacement Parameters 

Atom x y z Ueq, Å2 
S 0.58848(4) 0.26968(4) 0.33533(2) 0.02623(10)* 
F -0.14641(10) 0.27704(10) 0.82236(6) 0.0366(2)* 
O1 0.05844(12) 0.02906(14) 0.88166(8) 0.0430(3)* 
O2 -0.10521(11) -0.12480(11) 0.85961(8) 0.0346(2)* 
O3 0.66770(13) 0.38229(13) 0.36040(8) 0.0405(3)* 
O4 0.57821(12) 0.25757(12) 0.23356(7) 0.0352(2)* 
N1 -0.22049(12) 0.12233(12) 0.66622(7) 0.0214(2)* 
N2 -0.32060(13) 0.10396(13) 0.60497(8) 0.0253(2)* 
N3 -0.45721(13) 0.09291(13) 0.65849(8) 0.0254(2)* 
N4 0.67933(13) 0.10271(14) 0.38248(9) 0.0276(2)* 
H4NA 0.690(2) 0.105(2) 0.4449(14) 0.038(5) 
H4NB 0.631(2) 0.029(2) 0.3737(13) 0.042(5) 
C1 -0.29339(14) 0.12525(13) 0.76062(9) 0.0203(2)* 
C2 -0.44545(14) 0.10510(14) 0.75452(9) 0.0221(2)* 
C3 -0.58550(16) 0.10017(17) 0.83106(10) 0.0317(3)* 
C4 -0.66436(18) 0.2593(2) 0.86411(12) 0.0416(4)* 
C5 -0.5512(2) 0.36150(18) 0.87750(12) 0.0403(4)* 
C6 -0.4378(2) 0.3037(2) 0.95530(12) 0.0431(4)* 
C7 -0.31623(17) 0.15263(18) 0.94417(10) 0.0338(3)* 
C8 -0.20960(15) 0.14287(15) 0.84553(9) 0.0249(3)* 
C9 -0.06644(15) 0.01039(16) 0.86285(9) 0.0278(3)* 
C10 0.01443(18) -0.26110(19) 0.88843(13) 0.0423(4)* 
C11 -0.0459(3) -0.3995(2) 0.87290(15) 0.0562(5)* 
C12 -0.06024(14) 0.14252(15) 0.62321(9) 0.0246(3)* 
C13 -0.06568(15) 0.30216(15) 0.56587(11) 0.0295(3)* 
C14 0.09360(15) 0.30912(14) 0.50556(10) 0.0253(3)* 
C15 0.21720(16) 0.34473(15) 0.54703(9) 0.0264(3)* 
C16 0.36649(15) 0.34111(15) 0.49330(9) 0.0250(3)* 
C17 0.39220(14) 0.29927(14) 0.39760(9) 0.0235(3)* 
C18 0.26892(16) 0.26758(15) 0.35372(10) 0.0273(3)* 
C19 0.11991(16) 0.27359(15) 0.40809(10) 0.0279(3)* 
 

 Anisotropically-refined atoms are marked with an asterisk (*).  The form of the 
anisotropic displacement parameter is: exp[-2π2(h2a*2U11 + k2b*2U22 + l2c*2U33 + 2klb*c*U23 
+ 2hla*c*U13 + 2hka*b*U12)]. 
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Table III.  Selected Interatomic Distances (Å) 

Atom1 Atom2 Distance Atom1 Atom2 Distance 
S O3 1.4347(10) 
S O4 1.4332(10) 
S N4 1.6247(12) 
S C17 1.7735(12) 
F C8 1.4023(15) 
O1 C9 1.1957(16) 
O2 C9 1.3293(17) 
O2 C10 1.4677(16) 
N1 N2 1.3375(15) 
N1 C1 1.3608(15) 
N1 C12 1.4668(15) 
N2 N3 1.3164(15) 
N3 C2 1.3579(16) 
C1 C2 1.3810(17) 
C1 C8 1.4993(17) 
C2 C3 1.4923(17) 
 

C3 C4 1.538(2) 
C4 C5 1.519(2) 
C5 C6 1.517(2) 
C6 C7 1.534(2) 
C7 C8 1.5298(18) 
C8 C9 1.5390(18) 
C10 C11 1.492(3) 
C12 C13 1.5275(17) 
C13 C14 1.5134(17) 
C14 C15 1.3916(19) 
C14 C19 1.3944(19) 
C15 C16 1.3908(18) 
C16 C17 1.3903(18) 
C17 C18 1.3924(18) 
C18 C19 1.3903(18) 



214 

Table IV.  Selected Interatomic Angles (deg) 

Atom1 Atom2 Atom3 Angle Atom1 Atom2 Atom3 Angle 
O3 S O4 119.82(6) 
O3 S N4 106.71(7) 
O3 S C17 108.36(6) 
O4 S N4 107.27(6) 
O4 S C17 107.84(6) 
N4 S C17 106.06(6) 
C9 O2 C10 115.60(11) 
N2 N1 C1 110.82(10) 
N2 N1 C12 117.82(10) 
C1 N1 C12 131.29(10) 
N1 N2 N3 107.41(10) 
N2 N3 C2 109.38(10) 
N1 C1 C2 104.45(10) 
N1 C1 C8 122.71(11) 
C2 C1 C8 132.82(11) 
N3 C2 C1 107.94(11) 
N3 C2 C3 120.45(11) 
C1 C2 C3 131.58(12) 
C2 C3 C4 113.10(12) 
C3 C4 C5 115.81(12) 
C4 C5 C6 117.48(14) 
C5 C6 C7 118.65(12) 
C6 C7 C8 116.27(13) 
 

F C8 C1 108.31(10) 
F C8 C7 108.90(11) 
F C8 C9 105.73(10) 
C1 C8 C7 114.12(11) 
C1 C8 C9 112.71(11) 
C7 C8 C9 106.69(10) 
O1 C9 O2 125.83(13) 
O1 C9 C8 123.54(13) 
O2 C9 C8 110.52(10) 
O2 C10 C11 107.31(13) 
N1 C12 C13 110.82(10) 
C12 C13 C14 109.80(10) 
C13 C14 C15 121.00(12) 
C13 C14 C19 119.85(12) 
C15 C14 C19 119.10(12) 
C14 C15 C16 120.74(12) 
C15 C16 C17 119.27(12) 
S C17 C16 119.17(10) 
S C17 C18 119.72(10) 
C16 C17 C18 120.87(11) 
C17 C18 C19 119.04(12) 
C14 C19 C18 120.89(12) 
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Table V.  Torsional Angles (deg) 

Atom1 Atom2 Atom3 Atom4 Angle Atom1 Atom2 Atom3 Atom4 Angle 
O3 S C17 C16 -37.94(12) 
O3 S C17 C18 147.58(11) 
O4 S C17 C16 -169.02(10) 
O4 S C17 C18 16.50(12) 
N4 S C17 C16 76.32(11) 
N4 S C17 C18 -98.16(11) 
C10 O2 C9 O1 4.3(2) 
C10 O2 C9 C8 -171.99(11) 
C9 O2 C10 C11 -175.97(13) 
C1 N1 N2 N3 -0.78(14) 
C12 N1 N2 N3 -178.08(10) 
N2 N1 C1 C2 0.87(13) 
N2 N1 C1 C8 179.35(11) 
C12 N1 C1 C2 177.70(12) 
C12 N1 C1 C8 -3.83(19) 
N2 N1 C12 C13 72.79(14) 
C1 N1 C12 C13 -103.85(15) 
N1 N2 N3 C2 0.35(13) 
N2 N3 C2 C1 0.19(14) 
N2 N3 C2 C3 178.52(11) 
N1 C1 C2 N3 -0.64(13) 
N1 C1 C2 C3 -178.71(13) 
C8 C1 C2 N3 -178.89(12) 
C8 C1 C2 C3 3.0(2) 
N1 C1 C8 F 55.17(15) 
N1 C1 C8 C7 176.64(11) 
N1 C1 C8 C9 -61.45(15) 
C2 C1 C8 F -126.84(14) 
C2 C1 C8 C7 -5.4(2) 
 

C2 C1 C8 C9 116.54(15) 
N3 C2 C3 C4 -104.93(14) 
C1 C2 C3 C4 72.95(19) 
C2 C3 C4 C5 -40.67(19) 
C3 C4 C5 C6 -61.94(19) 
C4 C5 C6 C7 61.2(2) 
C5 C6 C7 C8 53.9(2) 
C6 C7 C8 F 48.17(16) 
C6 C7 C8 C1 -72.97(16) 
C6 C7 C8 C9 161.86(12) 
F C8 C9 O1 20.01(17) 
F C8 C9 O2 -163.62(10) 
C1 C8 C9 O1 138.15(13) 
C1 C8 C9 O2 -45.48(14) 
C7 C8 C9 O1 -95.83(15) 
C7 C8 C9 O2 80.54(13) 
N1 C12 C13 C14 -168.65(11) 
C12 C13 C14 C15 -85.42(15) 
C12 C13 C14 C19 92.04(14) 
C13 C14 C15 C16 175.77(11) 
C19 C14 C15 C16 -1.71(19) 
C13 C14 C19 C18 -175.00(12) 
C15 C14 C19 C18 2.51(19) 
C14 C15 C16 C17 -0.89(19) 
C15 C16 C17 S -171.64(9) 
C15 C16 C17 C18 2.77(19) 
S C17 C18 C19 172.39(10) 
C16 C17 C18 C19 -1.99(19) 
C17 C18 C19 C14 -0.68(19) 
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Table VI.  Hydrogen-Bonded Interactions 

 

D–H…A D–H 

(Å) 

H…A 

(Å) 

D…A  

(Å) 

∠D–H…A  

(deg) 

Note 

N4 –H4NA …N21 0.878(18) 2.186(19) 3.0577(16) 171.4(16) 1At 1+x, y, z. 

N4 –H4NB …N32 0.88(2) 2.16(2) 3.0138(16) 162.8(17) 2At x’, y’, 1-z. 
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Table VII.  Anisotropic Displacement Parameters (Uij, Å2) 

Atom U11 U22 U33 U23 U13 U12 
S 0.02319(16) 0.03036(18) 0.02606(17) -0.00473(13) 0.00266(12) -0.00987(13) 
F 0.0423(5) 0.0326(4) 0.0419(5) -0.0022(4) -0.0122(4) -0.0188(4) 
O1 0.0250(5) 0.0564(7) 0.0488(6) 0.0060(5) -0.0121(5) -0.0134(5) 
O2 0.0265(5) 0.0303(5) 0.0454(6) 0.0019(4) -0.0121(4) -0.0007(4) 
O3 0.0352(6) 0.0415(6) 0.0498(6) -0.0133(5) 0.0074(5) -0.0215(5) 
O4 0.0350(5) 0.0445(6) 0.0245(5) -0.0013(4) 0.0023(4) -0.0095(4) 
N1 0.0209(5) 0.0225(5) 0.0205(5) 0.0000(4) -0.0017(4) -0.0055(4) 
N2 0.0266(5) 0.0283(6) 0.0219(5) -0.0024(4) -0.0037(4) -0.0071(4) 
N3 0.0244(5) 0.0275(6) 0.0256(5) -0.0032(4) -0.0043(4) -0.0071(4) 
N4 0.0219(5) 0.0339(6) 0.0280(6) -0.0080(5) -0.0035(4) -0.0048(5) 
C1 0.0213(6) 0.0192(6) 0.0196(5) -0.0002(4) -0.0019(4) -0.0041(4) 
C2 0.0219(6) 0.0215(6) 0.0235(6) -0.0028(5) -0.0028(5) -0.0053(5) 
C3 0.0239(6) 0.0413(8) 0.0319(7) -0.0090(6) 0.0042(5) -0.0123(6) 
C4 0.0271(7) 0.0512(10) 0.0455(9) -0.0196(7) 0.0017(6) -0.0006(7) 
C5 0.0440(9) 0.0314(8) 0.0422(8) -0.0113(6) -0.0029(7) 0.0025(6) 
C6 0.0436(9) 0.0477(9) 0.0400(8) -0.0216(7) -0.0040(7) -0.0033(7) 
C7 0.0324(7) 0.0469(8) 0.0221(6) -0.0069(6) -0.0060(5) -0.0045(6) 
C8 0.0257(6) 0.0269(6) 0.0244(6) -0.0012(5) -0.0057(5) -0.0093(5) 
C9 0.0226(6) 0.0385(7) 0.0216(6) 0.0027(5) -0.0033(5) -0.0076(5) 
C10 0.0303(7) 0.0389(8) 0.0497(9) 0.0069(7) -0.0083(7) 0.0060(6) 
C11 0.0680(12) 0.0380(9) 0.0575(11) -0.0046(8) -0.0207(9) 0.0087(8) 
C12 0.0199(6) 0.0249(6) 0.0263(6) 0.0007(5) 0.0026(5) -0.0044(5) 
C13 0.0230(6) 0.0234(6) 0.0377(7) 0.0022(5) 0.0037(5) -0.0032(5) 
C14 0.0228(6) 0.0180(6) 0.0316(7) 0.0036(5) 0.0010(5) -0.0027(5) 
C15 0.0283(6) 0.0247(6) 0.0239(6) -0.0007(5) 0.0003(5) -0.0034(5) 
C16 0.0241(6) 0.0238(6) 0.0273(6) -0.0016(5) -0.0036(5) -0.0053(5) 
C17 0.0216(6) 0.0216(6) 0.0257(6) 0.0003(5) 0.0006(5) -0.0049(5) 
C18 0.0271(6) 0.0284(7) 0.0267(6) -0.0037(5) -0.0026(5) -0.0061(5) 
C19 0.0237(6) 0.0269(7) 0.0340(7) -0.0013(5) -0.0050(5) -0.0073(5) 
 

The form of the anisotropic displacement parameter is: 
exp[-2π2(h2a*2U11 + k2b*2U22 + l2c*2U33 + 2klb*c*U23 + 2hla*c*U13 + 
2hka*b*U12)] 
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Table VIII.  Derived Atomic Coordinates and Displacement Parameters for 

Hydrogen Atoms 

Atom x y z Ueq, Å2 
H3A -0.5507 0.0296 0.8895 0.038 
H3B -0.6654 0.0577 0.8042 0.038 
H4A -0.7354 0.3147 0.8146 0.050 
H4B -0.7320 0.2438 0.9276 0.050 
H5A -0.4869 0.3799 0.8131 0.048 
H5B -0.6160 0.4624 0.8938 0.048 
H6A -0.5027 0.2916 1.0201 0.052 
H6B -0.3778 0.3855 0.9580 0.052 
H7A -0.2470 0.1359 0.9978 0.041 
H7B -0.3749 0.0670 0.9541 0.041 
H10A 0.0302 -0.2643 0.9588 0.051 
H10B 0.1176 -0.2580 0.8474 0.051 
H11A 0.0330 -0.4928 0.8894 0.067 
H11B -0.0641 -0.3933 0.8035 0.067 
H11C -0.1461 -0.4031 0.9155 0.067 
H12A -0.0138 0.0627 0.5782 0.029 
H12B 0.0089 0.1294 0.6766 0.029 
H13A -0.1504 0.3238 0.5214 0.035 
H13B -0.0908 0.3814 0.6126 0.035 
H15 0.1994 0.3718 0.6128 0.032 
H16 0.4500 0.3669 0.5217 0.030 
H18 0.2864 0.2422 0.2876 0.033 
H19 0.0349 0.2532 0.3784 0.033 
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