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Abstract

The distributed ledger technology (DLT) has been envisioned to be a disruptive

technology with applications in various industries. For the DLTs to be effectively used

in practice, it is crucial to assess their performance in different use cases and scenarios.

In this thesis, we first conduct a systematic survey on the performance evaluation

of distributed ledgers. Then we identify and present the performance evaluation

techniques, the most important performance metrics, and the bottlenecks of various

well-known DLTs. Finally, we present a list of possible directions for future research.

Our survey identifies the lack of a detailed performance evaluation for DAG-based

distributed ledgers presented so far. Compared to blockchains, DAG-based DLTs offer

better performance and scalability by design. In the second part of this thesis, we

focus on the performance evaluation of IOTA, which is the prominent implementation

of DAG-based distributed ledgers. In this work, we investigate the impact of different

design parameters on the performance of an IOTA network. We then propose a layered

model to help the users determine the optimal waiting time to resend an unconfirmed

transaction. The results can be used by both system designers and users to support

their decision making.

In the third part of this thesis, we use the findings from the previous two parts to

design an open blockchain-based serverless computing platform called ChainFaaS that

runs on personal computers. To better understand the capacity of personal computers,

we conducted a survey that aims to find their unused computational power. The results

indicate that the typical CPU utilization of a personal computer is only 24.5% and, on

average, a personal computer is only used 4.5 hours per day. This shows a significant
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computational potential that can be used towards distributed computing. In this

work, we introduce ChainFaaS with the motivation to use the computational capacity

of personal computers as well as to improve developers’ experience of internet-based

computing services by reducing their costs, enabling transparency, and providing

reliability. We propose the design of ChainFaaS and then implement and evaluate a

prototype of this platform to show the feasibility of this paradigm.

The current implementation of ChainFaaS provides payment using a monetary

smart contract on the blockchain network. For this platform to be used in practice,

ChainFaaS needs to support payment in established cryptocurrencies. As a result, the

blockchain network in ChainFaaS needs to interoperate with other distributed ledger

technologies to enable such payments. In the last part of this thesis, we investigate a

possible solution to enable interoperability in blockchains. We propose a blockchain

interoperability solution for permissioned blockchains based on the publish/subscribe

architecture. We then implement a prototype of the proposed solution and evaluate

its performance. The result of this research not only enables ChainFaaS to support

payments in established cryptocurrencies, but it also allows any other blockchain-

based application to interoperate with other blockchain networks and use the data

and information available on them.

iii



Preface

The research of this thesis has been conducted in the Performant and Available

Computing Systems (PACS) Lab, led by Dr. Hamzeh Khazaei. Chapter 2 of this thesis

has been published as C. Fan, S. Ghaemi, H. Khazaei and P. Musilek, “Performance

Evaluation of Blockchain Systems: A Systematic Survey,” in IEEE Access, vol. 8, pp.

126927-126950, 2020, doi: 10.1109/ACCESS.2020.3006078. Caixiang Fan and I shared

the responsibility of gathering and selecting related articles and forming summaries of

the articles for the survey paper.

Chapter 3 of this thesis has been submitted as C. Fan, S. Ghaemi, H. Khazaei, Y.

Chen and P. Musilek, “Performance Analysis of the IOTA DAG-based Distributed

Ledger,” in ACM Transactions on Modeling and Performance Evaluation of Computing

Systems (TOMPECS). I was responsible for extending the simulation tool for DAG-

based distributed ledgers and conducting the simulations. I also contributed to the

formation of the analytical layered model and to the manuscript edits. Caixiang Fan

was responsible for the analytical layered model and for the manuscript composition.

Chapter 4 of this thesis has been published as S. Ghaemi, H. Khazaei and P.

Musilek, “ChainFaaS: An Open Blockchain-Based Serverless Platform,” in IEEE

Access, vol. 8, pp. 131760-131778, 2020, doi: 10.1109/ACCESS.2020.3010119. I was

responsible for the design, implementation, and evaluation of the system as well as

the manuscript composition.

Chapter 5 of this thesis is part of research conducted through an internship at the

Linux Foundation. This project was a collaboration with Dr. Rui S. Cruz and Rafael
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Chapter 1

Introduction and Background

1.1 Introduction

Since the introduction of Bitcoin, distributed ledgers have attracted massive attention

from both academia and industry. Distributed ledger technologies (DLTs) are mainly

known for their application in cryptocurrency. However, many other interesting

applications for this technology are also being studied by different research groups.

DLTs can be thought of as a distributed system and database that is transparent

and immutable with enhanced security and fault tolerance compared to centralized

solutions. The participating parties keep a record of the ledger, and they are guaranteed

to reach a consensus on the order and validity of the transactions. This technology

enables parties who do not necessarily trust each other to reach an agreement without

the need for a trusted third party middleman.

Despite all of the mentioned advantages, the decentralized nature of distributed

ledgers significantly limits their performance. As a result, many researchers have

shifted their focus to the performance evaluation and performance enhancement of

DLTs. In the first part of this thesis, we present a comprehensive and systematic survey

on the performance evaluation of distributed ledgers. In this work, we present the

research done on the performance evaluation of the mainstream DLTs and compare the

advantages and disadvantages of these solutions. We identify the techniques, evaluation

metrics, and mostly used benchmark workloads for evaluating the performance of
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DLTs. We also summarize the identified bottlenecks of various well-known blockchain

systems. We conclude this work by gathering the challenges and opportunities for

further research on the performance of DLTs. The results of this research are later

used in the rest of this thesis.

Our survey identified a research gap in the literature which was a detailed perfor-

mance evaluation of distributed ledgers that leverage directed acyclic graphs (DAGs).

This type of DLT has a different data structure compared to blockchain, which is the

most popular form of distributed ledger. In blockchain, transactions are bundled into

blocks of data that are linearly chained, whereas in DAG, transactions are linked to

each other in a graph without the need to be wrapped in a block. These fundamental

differences enable DAG-based ledgers to offer lower latency, higher throughput, and

better scalability compared to most traditional blockchains. As one of the first and

most prominent DAG-based ledgers, IOTA [1] has drawn a lot of attention. In the

second part of this thesis, we focus on the performance analysis of IOTA as a repre-

sentative of the DAG-based distributed ledgers. We aim to find the most influential

design factors in the throughput of an IOTA network from the system designer’s

point of view as well as the optimal waiting time for confirmation before resubmitting

the transaction from the user’s point of view. To achieve this goal, we extend the

DAGsim [2] simulator to support the currently running consensus protocol on the

IOTA network, and we study the network under different circumstances using the

extended simulator. We also conducted experiments on an IOTA network to verify our

results from the simulation. Finally, we proposed a layered analytical model that users

can leverage to derive the optimal waiting time for resubmitting their transactions.

In the third part of this thesis, we use the findings from the previous two parts to

design an open blockchain-based serverless platform called ChainFaaS. The idea in

this work is to use the unused computational power of personal computers towards an

open serverless computing platform. To better understand the capacity of personal

computers, we conducted a survey that aims to find their unused computational power.
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The results indicate that personal computers run on an average CPU utilization

of 24.5%, and on average, a personal computer is only used 2.5 hours per day. In

this work, we leverage blockchain to run a serverless computing platform on personal

computers that is reliable, transparent, and lowers the developers’ costs. Also, personal

computer users can rent out their unused computational capacity to have some income.

We propose the design of ChainFaaS, and we implement a prototype of the platform

as a proof-of-concept to show the feasibility of our design. Finally, we evaluate the

implementation to analyze its non-functional properties.

Similar to our proposed serverless application, many other applications for blockchain

and distributed ledger technologies have been proposed by academia and industry. As

a result, there are many permissioned and permissionless heterogeneous blockchain

networks running all around the world. While this surge is promising for the blockchain

technology, it has led to data, asset, and network silos. This limits the blockchain

technology to reach its full potential as the blockchain networks cannot interoperate.

In the last part of this thesis, we propose a blockchain interoperability solution for

permissioned blockchains that works based on the publish/subscribe architecture.

We then implement a prototype of our proposed solution. Finally, we evaluate the

implementation to analyze its performance. The results of this research can be used

to allow ChainFaaS to interoperate with other blockchains. ChainFaaS can allow

payments on other cryptocurrencies or even use the assets and information available

on other blockchain networks.

1.2 Distributed Ledger Technologies

Any ledger that is stored in a distributed fashion and shared among a set of nodes

or participants can be referred to as a distributed ledger. For new information to be

added to this ledger, all participating nodes must reach a consensus on whether the

information is legitimate or not. The algorithm which determines how this decision

is made, called consensus algorithm, is an important part of the distributed ledger
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technology (DLT). Blockchain is a type of distributed ledger technology that has

recently become extremely popular. It is mainly known for its use in cryptocurrencies

such as Bitcoin [3], Ethereum [4], and Ripple [5]. However, blockchains, and distributed

ledger technologies in general, are more than just cryptocurrencies. In a recent study [6],

CB Insights has reported 55 industries that can be transformed by the distributed

ledger technology. Some examples are biomedical and health care [7–9], energy [10],

Internet of Things (IoT) [11, 12], supply chain [13, 14], and cloud computing [15].

1.2.1 Categorization of DLTs

A possible taxonomy of distributed ledger technologies is shown in Figure 1.1. Dis-

tributed ledgers can be categorized as permissioned and permissionless, based on

whether the identities of the participants are known. If the identity of everyone

is known, the ledger is permissioned, and if everyone participates in the network

anonymously, the ledger is permissionless. Also, based on who can participate in

the network, distributed ledgers can be categorized as private and public. In private

ledgers, only those who are approved can participate in the network. On the other

hand, in public ledgers, anyone can participate without the need to be approved [16].

For example, Bitcoin runs on a public permissionless blockchain. Therefore, based on

the permissions and accessibility of the ledger, DLTs can be divided into four groups,

as shown in Figure 1.1. Public permissionless ledgers, such as Bitcoin, Ethereum,

and Litecoin, have no restriction on the participating parties. In public permissioned

ledgers, the identity of participants should be known but anyone can read and validate

the ledger. EOS, Ripple, and Sovrin are examples of this type. In private permission-

less blockchains, the identities of the participants are not known but only pre-approved

nodes validate the data. Examples of this category include LTO, Holochain, and

Monet. Finally, in private permissioned ledgers, such as Hyperledger and Corda,

access is restricted to pre-approved participants and the identities of the participants

are known.
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Distributed Ledger Technology Categorization

Data Structure Permission and Accesability

Public Permissionless
e.g., Bitcoin, Ethereum, Litecoin

Private Permissionless
e.g., LTO, Holochain, Monet

Public Permissioned
e.g., EOS, Ripple, Sovrin

Private Permissioned
e.g., Hyperledger, Corda

Blockchain
e.g., Bitcoin, EOS, Litecoin

DAG
e.g., IOTA, Byteball, Nano

Others
e.g., Radix, Corda

Figure 1.1: Categories of distributed ledger technologies.

In terms of the data structure, there are two main types of distributed ledger tech-

nologies: blockchain and directed acyclic graph (DAG). In a blockchain, transactions

are bundled in blocks of data that are linearly chained to each other, just like a linked

list. The blocks are connected in a chronological order, which is unalterable. Examples

of this category are Bitcoin, Ethereum, EOS, and Litecoin. On the other hand, in

DAG, transactions are linked to each other in a graph. Usually, there is no block in

DAG, and transactions are the components of the DAG [17]. This category includes

DLTs such as IOTA, Byteball, and Nano. In addition, there are distributed ledgers

that have their unique data structure and do not fall into either of these categories,

such as Radix and Corda.

Blockchain is a distributed database that is immutable, transparent, verifiable,

and managed by a set of participants who do not necessarily trust each other. At

any point in time, each transaction can be executed and verified by the participants

based on a consensus algorithm. In public permissionless blockchains, this consensus

algorithm is usually a computationally expensive task that takes a lot of time and

energy. This type of consensus algorithm is called Proof-of-Work (PoW), which limits

the speed of the transactions. Although other solutions for public blockchains have
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been introduced, most of them are slow in terms of the number of transactions that

they can verify per second. On the other hand, in permissioned blockchains, since

the identities are known, the consensus algorithm can be less costly, which makes

them dramatically faster. Usually, these blockchains are used between participants

who have the same goal but do not necessarily trust each other. In a blockchain, each

block consists of many transactions bundled together and a header, which consists of

a hash. For each block, the hash is a unique value that is created based on the data

inside that block and the previous block’s hash. The hash is the element that makes

blockchain an immutable chain of data. No one can change the transactions in the

blocks that have already been verified because of this hash.

In blockchain, there is a concept called smart contract, which allows customization

of the contract between the entities in the blockchain. Szabo first introduced the term

smart contract in 1994 as a computerized transaction protocol that executes the terms

of a contract [18]. Within blockchain, smart contracts are the pieces of code that

contain the contract between entities and are stored on the blockchain. Participants

can trigger these contracts to use their functionalities [19]. Using smart contracts on

blockchains, trusted distributed applications can be created.

DAG-based distributed ledger, also called DAG distributed ledger or DAG ledger,

is a promising DLT that stores transaction data as vertices of a directed acyclic graph.

Different new transactions can be appended to different vertices in a DAG at the same

time. Compared to blockchain, which bundles transactions in blocks and stores blocks

one by one to a chain, DAG ledger naturally obtains better concurrency. Therefore, it

has many advantages over blockchain on transaction throughput, network scalability

and resource efficiency.

According to the graph vertex granularity, DAG ledger can be further divided

into two categories: block-based (blockDAG) and transaction-based (TDAG) [20].

The former first wraps transactions into blocks, and then appends the blocks onto

a DAG. Some examples are CDAG [21], PHANTOM [22] and SPECTRE [23]. The
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latter attaches transactions to a DAG immediately and directly, without waiting for

block composition. Three notable examples are IOTA [1], Byteball [24] and Nano [25].

Since blockDAG is still in the conceptual stage, we focus our research on TDAG. For

simplicity, DAG refers to TDAG throughout this thesis without further specification.

In the design of DAG ledgers, each end user issuing a transaction also needs to

validate the previous transactions. All participants act as validators and contribute to

maintain the network. In other words, no miners are needed in DAG distributed ledger

systems. For example, IOTA requires the network participant or node to approve two

previous transactions in order to issue a new transaction, while Byteball encourages

referencing all unapproved transactions. In addition, multiple transactions can be

added to a DAG simultaneously and concurrently to increase system throughput and

scalability.

1.2.2 DLT Abstraction Layers

Dinh et al. [26] introduced a blockchain design comprised of four identified abstraction

layers, namely application, execution engine, data model and consensus. In the Oracle

blockchain guidance book [27], the authors defined five layers to display the general

architecture of blockchain, including the application and presentation layer, consensus

layer, network layer, data layer and hardware/infrastructure layer. To better describe

the architecture of DLT for the purpose of performance evaluation, we formulate an

abstraction layer architecture following mainly Dinh’s model [26], but extend it to five

layers shown in Fig. 1.2.

Application Layer

As the top presentation of DLT’s technology stack, this layer contains the applications

that are mainly used by the end users. Up to date, the most popular one is still

cryptocurrency. As the first published digital currency, Bitcoin has controlled most of

the marketplace and developed many variants. Ethereum has its own currency called
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Application Layer
Smart Contracts, Chaincode, DApps etc.

Data Layer
Blocks, Transactions, Indexing, Signature,

Hash, Merkel Tree etc.

Consensus Layer
PoW, PoS, PBFT, BFT-SMaRt etc.

Network Layer
Peer-to-Peer network

Execution Layer
VM, Compilers, Dockers etc.

Figure 1.2: Abstraction layer model for DLT.

Ether. IOTA also has its currency with the same name as the network, IOTA [1].

Other examples include the wallet to manage cryptocurrency, smart contracts, and

all kinds of decentralized applications (DApps). In a DLT system, a smart contract

is a piece of code designed to digitally facilitate, verify, or enforce the execution

of a contract. For Ethereum, the smart contract is running on a dedicated virtual

machine (called EVM); and most contracts on the system are related to cryptocurrency.

While HLF’s smart contract is running in a container such as Docker. One of the

best-known DApps is the decentralized autonomous organization (DAO) in Ethereum,

which creates communities to raise funding for exchange and investment.

Because this layer is in charge of presenting the final results executed from the

distributed ledger system, it is supported and impacted by all the lower layers.

Therefore, the performance evaluation results of the application layer reflect the

overall performance of tested DLTs.

Execution Layer

The execution layer is in charge of executing contract or low-level machine code

(bytecode) in a runtime environment installed on DLT network nodes. Ethereum has

its own machine language and a virtual machine (EVM) developed to run the smart
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contracts code. Unlike Java virtual machine (JVM), the EVM reads and executes

a low-level representation of smart contracts called the Ethereum bytecode. The

smart contracts are programmed in a dedicated high-level language named Solidity,

which is first compiled to bytecode by Solidity compiler. The Ethereum bytecode is

an assembly language made up of multiple opcodes. Each opcode performs certain

action on the Ethereum blockchain. In contrast, HLF does not take the semantics

of language into consideration. It runs the compiled machine codes (from chaincode)

inside Docker images. In addition, HLF’s smart contract (chaincode) supports multiple

general high-level programming languages such as Go, node.js, and Java rather than a

dedicated language like Solidity of Ethereum. IOTA does not support smart contracts

up to date. It adopts Java as the main development language and runs its reference

implementation (IRI) in JVM. IOTA also has a version running in Docker image.

The runtime environment used to execute contracts or transactions needs to be

efficient. And the execution result should be deterministic to avoid the uncertainty

and inconsistency of transactions on all nodes. Any transaction abortion caused by

inconsistent execution would result in computation resource waste and further decrease

the performance. Additionally, the resource configurations (e.g., CPU and RAM) may

impact the execution performance.

Data Layer

In the data layer, a wide range of data-related topics are defined, including transaction

models, data structure, Merkel trees, hash function, encryption algorithms, etc. There

are two popular transaction models: unspent transaction output (UTXO) and account.

For UTXO, one owner completes value transfers by signing a transaction transferring

the ownership of the UTXO to the receiver’s public key. It involves an extra step of

searching for ownership of the transaction from the sender’s side. The account-based

model is more efficient as it atomically updates two accounts in one transaction. A

smart contract (chaincode for HLF) is a special type of account.
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For blockchain, blocks containing transactions and contract execution states are

chained together in a linked list by putting the hashed result of its previous block’s

content into the header of the current block. Ethereum and HLF employ a two-layer

data structure to organize the block’s content. All states are stored in a key-value

database on a disk and indexed in a hash tree. The hash tree root is contained in the

block’s header. With a similar design, different DLTs have their own storage solutions

for each level. For example, Ethereum uses LevelDB, and HLF uses CouchDB to store

the states; Ethereum and Parity employ Patricia-Merkle (key-value store) tree, while

HLF implements Bucket-Merkle tree to store the indices [26]. For IOTA, transactions

are directly appended to the DAG structure called tangle in a hashed manner. The

IRI uses RocksDB database to store the snapshot, a pruned ledger to prevent the

tangle from expanding too large in size.

Besides the factors mentioned above, there are other design parameters in the data

layer, such as hash functions (e.g., SHA 256 v.s. SHA 128), encryption algorithms

(RSA v.s. ECC), and block size. All these factors may influence the performance of a

blockchain system.

Consensus Layer

The consensus protocol is the core of a DLT system. It sets the rules and forces

all nodes to follow them to reach an agreement (e.g., transaction confirmation) on

blockchain content. Generally, there are two basic types of consensus mechanisms,

which are proof-based and vote-based consensuses [28]. The most popular proof-based

consensus is proof-of-work (PoW), which has been employed by many blockchain

systems. PoW is a very computation intensive consensus. It requires the nodes to

solve a difficult puzzle to compete for the right of recording the ledger. Only the first

node (called winner) solving the puzzle can append the block to the ledger and gets

incentives accordingly. Since PoW provides high security, integrity and decentralization

in an untrusted environment, it is very popular in public blockchains [29]. However,
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the classic PoW protocol has a poor efficiency on processing transactions. To tackle

this problem, many variations have been proposed to keep the same safety while

achieving a better performance [30]. Examples include greedy heaviest observed

subtree (GHOST), proof of authority (PoA), proof of stake (PoS) and proof of elapsed

time (PoET).

The vote-based consensuses are communication intensive. Different from PoW,

vote-based solutions always give a deterministic execution result and usually achieve a

relatively high performance. They rely on frequent message transitions among different

roles in a network to ensure that all nodes reach an agreement on the block order.

It is very popular in permissioned blockchains. Raft and Byzantine fault tolerance

(BFT)-based, (e.g., PBFT and BFT-SMaRt) algorithms are two representatives of

this consensus type. Raft has only crash fault tolerance (CFT), while PBFT and

BFT-SMaRt can address Byzantine fault.

There are also some hybrid DLTs [31] that combine different types of consensuses.

For example, Tendermint combines PoS and PBFT; EOS takes a hybrid design

combining PBFT and DPoS. Both target on improved performance and enhanced

security. Interested readers may refer to the published surveys of blockchain consensus.

Because of the deterministic properties, BFT-based consensus algorithms have a much

lower transaction delay than PoW. But the expensive communication cost makes it

difficult to scale, especially in a large network. Therefore, consensus design, evaluation

and optimization in DLTs still remain an active research topic.

Network Layer

A peer-to-peer (P2P) network is the foundation of a DLT system. It takes care of

peer discovery, transactions, and block propagation. In a public blockchain such as

Bitcoin, this network is very large, with thousands of nodes working together to reach

consensus. For private blockchain systems, the scale varies from several entities to

over a hundred. Either way, a basic requirement for the P2P network is to provide
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speed and stablility. When a new participant wants to join, this layer ensures that

nodes can discover each other. Then, all connected nodes communicate, propagate

and synchronize with each other to maintain the current state of the blockchain

network. Specifically, transaction broadcast, validation and transaction commit are all

completed via this layer, as well as the world state propagation. In the P2P network,

there are two basic types of nodes: full nodes and light nodes. Full nodes take care

of mining, transaction validation and execution of consensus rules, while light nodes

only keep the header of the blockchain (keys) and act as clients to issue transactions.

Therefore, the network layer is critical, especially for communication-intensive

DLTs. Peer discovery and ledger synchronization among neighbours directly rely

on the network, so that the speed determines the efficiency. And some detailed

metrics, such as the number of transactions per network data are also related to this

layer. Moreover, the package loss rate and network delay may have an impact on the

performance of DLT.

1.3 Serverless Computing

To understand serverless computing, we should first define cloud computing. Cloud

computing is defined as a model in which a shared pool of configurable computing

resources can be accessed conveniently and on-demand through the internet. These re-

sources can be networks, servers, storage, applications, or services that are provisioned

and released with minimal effort and service provider interaction [32].

Based on the developer’s control level over the cloud infrastructure, a few service

models are available for cloud computing. In the infrastructure-as-a-service (IaaS)

model, the developer has control over both the application and the cloud infrastructure.

The developer should manage the virtual machine provided by the cloud provider

and the deployment of the application on top of the underlying virtual machine. In

platform-as-a-service (PaaS), the developer manages the application code, and the

provider maintains the infrastructure. In software-as-a-service, full applications are
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delivered over the internet to end-users via providers. Both the infrastructure and the

application are managed by the provider [33].

Serverless computing (also known as function-as-a-service or FaaS for short) is

the latest paradigm in cloud computing in which the developer deploys functions

to the cloud and delegates the operational and management tasks of servers to the

provider [34]. The developer can focus on designing and implementing the application

instead of spending time on the management, operation, and maintenance of the

infrastructure. This characteristic makes serverless similar to PaaS solutions. However,

in serverless, costs are truly event-based, unlike in PaaS. This means that the developers

only pay for the execution time of their program. In other cloud computing solutions,

the developers are billed for the resource allocated to their tasks, even if they are not

used.

Another feature of serverless is autoscaling. When the developer deploys a function

to serverless computing, they do not need to worry about how their code should

scale. No matter how many times concurrent events to the function are triggered, the

serverless provider will serve them by running new instances.

Moreover, in serverless computing, everything is based on containers or similar

concepts, i.e., lightweight, isolated environments. Since containers are usually small in

size and fast to start, every time an event is triggered in serverless computing, the

cloud provider can spin up a new container on a virtual machine. In a serverless

platform, it can take a few hundred milliseconds to a few seconds to serve a request.

For some use cases, such as consumer-facing applications, this time is not acceptable.

For instance, imagine a website that wants to use serverless to serve requests. For each

request, the users should wait at least a few hundred milliseconds for the container to

spin up and then a few more for the function to run. Based on these characteristics,

serverless computing cannot currently be used for all types of workloads. Serverless

providers advise developers not to submit functions that are time-sensitive since they

cannot guarantee a fast response.
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The above-mentioned features make serverless computing a great solution for tasks

that are not time-critical. Currently, cloud giants are the main providers of serverless

computing. Some examples of public serverless platforms are AWS Lambda [35], Azure

Functions [36], Google Cloud Functions [37], and IBM Cloud Functions [38].

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 summarizes our systematic

survey on the performance evaluation of blockchain systems. Chapter 3 contains

our study on the performance of IOTA DAG-based distributed ledger. Chapter 4

presents our work on an open blockchain-based serverless computing platform called

ChainFaaS. Chapter 5 outlines our work on blockchain interoperability for permissioned

blockchains. Finally, chapter 6 concludes this thesis and proposes some potential

future work in this area.

14



Chapter 2

A Systematic Survey on
Performance Evaluation of
Blockchain Systems

Blockchain has been envisioned to be a disruptive technology with potential for appli-

cations in various industries. As more and more different blockchain platforms have

emerged, it is essential to assess their performance in different use cases and scenarios.

In this work, we conduct a systematic survey on the blockchain performance evaluation

by categorizing all reviewed solutions into two general categories, namely, empirical

analysis and analytical modelling. In the empirical analysis, we comparatively review

the current empirical blockchain evaluation methodologies, including benchmarking,

monitoring, experimental analysis and simulation. In analytical modelling, we in-

vestigate the stochastic models applied to performance evaluation of mainstream

blockchain consensus algorithms. Through contrasting, comparison and grouping

different methods together, we extract important criteria that can be used for selecting

the most suitable evaluation technique for optimizing the performance of blockchain

systems based on their identified bottlenecks. Finally, we conclude the survey by

presenting a list of possible directions for future research.
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2.1 Introduction

Since its first introduction in Bitcoin by Nakamoto [39] in 2008, blockchain has been

recognized as a disruptive technology in various industries beyond cryptocurrency,

including finance [40, 41], Internet of Things (IoT) [42, 43], health care [44, 45],

energy [46–48] and logistics [49, 50]. In 2019, CB Insights identified 55 industries that

can be transformed by this technology [6]. Compared to conventional, centralized

solutions, blockchain has some significant advantages such as immutability, enhanced

security, fault tolerance and transparency. However, the decentralized nature of

blockchain dramatically limits its performance (e.g., throughput and latency). For

example, Bitcoin can only achieve a low throughput of 7 transactions per second

(TPS), and it takes around 10 minutes for a transaction to get confirmed [51]. In

contrast, current centralized payment systems such as VisaNet and MasterCard can

reach thousands of TPS and almost real-time payments. By taking a similar consensus

algorithm, proof-of-work (PoW), other blockchain platforms such as Ethereum [4]

and Litecoin [52] also inherit the performance flaws of Bitcoin. Without doubt, the

performance issue has become the major constraint of blockchain’s applications in

production. This is especially true for systems demanding high performance such as

the online transaction processing (OLTP) and real-time payment systems.

To overcome this problem, many blockchains put efforts on improving their perfor-

mance, e.g., by modifying the system structure and designing new consensus algorithms.

These solutions include, but are not limited to, off-chain [53–56], side-chain [57–60],

concurrent execution (smart contract) [61–63] sharding [64–68], and directed acyclic

graph (DAG) [1, 22–25, 69–71].

Existing and new solutions should be comparatively evaluated in a meaningful

manner to show their efficiency and effectiveness. For example, different versions of

Hyperledger Fabric (HLF), e.g., HLF v0.6 and HLF v1.0, should be compared in the

same evaluation framework to demonstrate the performance advantages/disadvan-
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tages of the new release. In addition, through performance evaluation and analysis,

bottlenecks can be identified and used to inspire further optimization ideas. Therefore,

performance evaluation plays an important role in the area of blockchain research.

To this end, it would be useful to summarize, classify and survey the existing

efforts on blockchain performance evaluation and to identify future directions in this

area. However, most existing related surveys only focus on improvement (scalability)

solutions or a specific evaluation topic of blockchain performance. A representative

list of existing surveys, shown in Table 2.1, clearly identifies the need for a systematic

survey on blockchain performance evaluation.

Table 2.1: Research scope of existing blockchain performance related surveys

Year Survey Research scope

2018 Kim et al. [72] scalability solutions

2019 Rouhani and Deters [73]
security, performance, and applications of

smart contract

2019 Zheng et al. [74] challenges of performance and security

2019 Wang et al. [75]
benchmarking tools and performance

optimization methods

2020 Zhou et al. [76] scaling solutions to blockchain

2020 Yu et al. [77] sharding for blockchain scalability

In this contribution, we present a comprehensive, systematic survey on blockchain

performance evaluation. The survey covers existing studies on evaluating the per-

formance of various mainstream blockchains, and compares their advantages and

disadvantages. It addresses the following research questions:

RQ1. What are the current mainstream techniques, main evaluation metrics and

benchmark workloads for blockchain performance evaluation?

RQ2. How to comparatively evaluate the performance of two blockchain systems

with different consensuses?
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RQ3. What are the significant bottlenecks identified in various blockchain systems?

RQ4. What are the main challenges and opportunities in blockchain performance

evaluation?

To answer these questions, the authors have searched and reviewed the latest papers

published since 2015. The papers have been retrieved from major scientific databases,

including ACMDL, IEEEXplore, Elsevier, MPDI and SpringerLink. In addition,

closely related papers cited by the selected communications have also been taken

into consideration. Note that this survey focuses only on blockchain performance

evaluation, and solutions for blockchain performance or scalability improvement are

not discussed. Interested readers may refer to the published surveys of performance

improvement solutions for blockchain [72–77] listed in Table 2.1.

To the best knowledge of the authors, this is the first survey that systematically

reviews the state-of-the-art on the blockchain performance evaluation from several

different perspectives. The reviewed evaluation approaches can be classified into

two high-level groups: empirical evaluation and analytical modelling, as shown in

Figure 2.1.

DLT Performance Evaluation 

Empirical evaluation Analytical modelling

queueing
models

experimental
analysis simulation other models

stochastic
Petri nets

monitoring
benchmarking Markov chains

Figure 2.1: A landscape of DLT performance evaluation approaches and evaluated
ledgers.
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Empirical evaluation includes benchmarking, monitoring, experimental analysis

and simulation. Analytical modelling mainly covers three types of stochastic models:

Markov chains, queueing models and stochastic Petri nets (SPNs). Through this

classification, we aim to depict a big picture of the performance evaluation landscape,

identify current challenges in this area, and provide suggestions for future research.

The contributions of this survey can be summarized as follows:

• It provides a systematic survey on the blockchain performance evaluation, cover-

ing all existing evaluation (empirical and analytical) approaches for evaluating

the mainstream blockchain systems.

• It introduces existing popular models for analytical performance evaluation of

prominent blockchain platforms, categorizes them and performs a comparative

analysis of their advantages and disadvantages.

• It identifies the current challenges in this area, and subsequently provides

suggestions for future research.

The background information needed for this work can be found in Section 1.2. The

remainder of this chapter is organized as follows. Section 2.2 introduces the blockchain

performance evaluation solutions from the perspective of empirical analysis, including

benchmarking, monitoring, experimental analysis and simulation. Section 2.3 focuses

on the technical and mathematical introduction of existing commonly used performance

modelling solutions including Markov chains, queueing models and stochastic Petri

nets. The following Section 2.4 summarizes the major findings and points out potential

opportunities in this area for future research according to the identified open issues.

Finally, the survey is concluded in Section 2.5.
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2.2 Empirical Analysis in Blockchain Performance

Evaluation

In this section, we investigate existing approaches to blockchain performance evaluation

from the perspective of empirical analysis. Specifically, different solutions, including

benchmarking, monitoring measurements, self-designed experiments and simulation,

are reviewed and compared. In practice, these approaches are usually used together

to provide more evidence for blockchain performance evaluation.

2.2.1 Blockchain Benchmarking Tools

The performance benchmarking has been well studied and documented for the cloud

(e.g., Hadoop, Mapreduce and Spark) and database (e.g., relational and NoSQL)

systems. Some proposed benchmark frameworks such as TPC-C [78], YCSB [79]

and SmallBank [80] are well-established and have essentially formed the industrial

standards. For example, YCSB is widely used for benchmarking NoSQL databases

such as Cassandra [81], MongoDB [82] and HBase [83]; and SmallBank is a popular

benchmark for OLTP workload.

However, these frameworks cannot be directly applied to benchmark distributed

ledger systems due to the diversity of consensus mechanisms and APIs. As more and

more blockchain systems emerge striving to improve DTL performance, it becomes

imperative to devise a solution for comparing different platforms in a meaningful

manner.

Up to date (June 2020), there are three popular performance benchmarks dedicated

to evaluating blockchain systems, as listed in Table. 2.2.

Blockbench [26] is the first benchmark framework designed for evaluating private

blockchains in terms of performance metrics on throughput, latency, scalability and

fault-tolerance. Presently, it supports measurement on four major private blockchain

platforms, namely Ethereum, Parity, HLF and Quorum. However, it claims to support
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Table 2.2: A comparison of three popular blockchain benchmarks

Frameworks Supported DLTs Workloads Used
Evaluated
Metrics

Pros & Cons

Blockbench [26]

Ethereum,
Hyperledger Fabric
(HLF), Parity and

Quorum.

a) macro: YCSB(k-v
store), Smallbank(OLTP),
EtherId, Doubler, and
WavesPresale

b) micro: DoNothing,
Analytics, IOHeavy, and

CPUHeavy

throughput,
latency, scalability

and
fault-tolerance.

adaptor-based
framework,

scalable; carefully
designed

workloads; but
they are constant.

DAGbench [84]
IOTA, Nano and

Byteball

a) value/data transfer b)
transaction query: 1)

input/output transaction
numbers and 2) balance

for a given account

throughput,
latency, scalability,
success indicator,

resource
consumption,

transaction data
size and

transaction fee

adaptor-based
framework,

scalable; specific
for DAG DLT;

workloads are not
representatives.

Hyperledger
Caliper [85]

Hyperledger
blockchains

(Fabric, Sawtooth,
Iroha, Burrow and
Besu), Ethereum,
FISCO BCOS

Self-defined in the
configuration file

throughput,
latency, resource
consumption,
success rate

adaptor-based
framework,
scalable; no
pre-defined

workload design,
but support more
DLT systems.

the evaluation of any private blockchain by accordingly extending the workload and

blockchain adaptors.

In the design of Blockbench, four abstraction layers in blockchain are identified:

consensus, data model, execution engine and application, from the bottom (low level)

to the top (high level). The consensus layer is in charge of setting the rule of agreement

and getting all network participants to agree on the block content so that it can be

appended to the blockchain. The data model defines the data structure, content and

operations on the blockchain data. The execution engine contains resources of the

runtime environment such as the EVM and Docker, which support the execution

operations of blockchain codes. The application layer includes all kinds of blockchain

applications such as smart contracts and different types of DApps. It is worth noting

that Blockbench adopts and designs various workloads to test the performance of

different layers, as shown in Table 2.3.

Hyperledger Caliper [85] is a performance evaluation framework mainly focusing

on benchmarking Hyperledger blockchains such as Hyperledger Fabric, Sawtooth, Iroha,
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Table 2.3: Blockbench workloads for evaluating each layer of blockchain

Layer Benchmark Workload Workload
Description

Measurement
Identifier

Application Macro Workloads

YCSB Key-value store
throughput and

latency

Smallbank OLTP workload
throughput and

latency

EtherId
Name registrar

contract
throughput and

latency

Doubler
Ponzi (pyramid)

scheme
throughput and

latency

WavesPresale Crowd sale
throughput and

latency

Execution Engine

Micro Workloads

CPUHeavy Sort a large array latency

Data Model
VersionKVStore

Keep state’s
versions (HLF only)

latency

IOHeavy
Read and write a

lot of data
latency

Consensus DoNothing
Simple contract, do

nothing
latency

Burrow and Besu. In the system architecture, there are two main components: Caliper

core and Caliper adaptors. The former defines system workflow, while the latter are

used to extend evaluation for other blockchains such as Ethereum and FISCO BCOS.

Before running a test, benchmark workloads and necessary information interfacing

adaptor to the system under test (SUT) need to be predefined in configuration files.

During the test, a resource monitor runs to collect resource utilization information

(e.g., CPU, RAM, network and IO) and all clients publish their transaction rate control

information to a performance analyzer. When a test is finished, a detailed test report

is generated by a report generator.

DAGbench [84] is a relatively recent framework dedicated to benchmarking DAG

distributed ledgers such as IOTA, Nano and Byteball. The currently supported indi-

cators are throughput, latency, scalability, success indicator, resource consumption,

transaction data size and transaction fee. From the system design perspective, DAG-

bench shares the same approach with Blockbench and Caliper which adopt a modular

adaptor-based architecture. Users just need to choose (or develop if not available)

associated adaptors for different workloads and blockchain systems under evaluation.
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Besides the general performance metrics evaluation, there are also studies focusing

on specific metrics for particular blockchain. For example, OpBench [86] and another

benchmark framework [87] are proposed to evaluate if a miner’s award is proportional

against to the CPU execution time or consumed computation power for Ethereum

smart contracts.

2.2.2 Blockchain Performance Monitoring

Blockchain benchmarking usually requires a standardized environment and a well-

documented workload as input. However, for public blockchain systems, it is impossible

to have a good control against the real workload and consensus participants, which

makes the benchmarking more challenging. In terms of evaluating public blockchains,

there are two potential solutions.

The first solution is to build a private version of the associated test network and

leverage the existing benchmarks mentioned above to evaluate blockchain under ar-

tificially designed workloads. This may require new adapter development for either

workload or blockchain network. In addition, this approach should take into consid-

eration the scalability problem of blockchain because the tested private version of

blockchain may encounter scaling issues when implemented publicly. Therefore, the

tested result may show better values of performance metrics compared to the real

public network.

The second solution is to monitor and evaluate the live public system’s performance

under realistic workload [88]. Zheng et al. [89] proposed a detailed, real-time per-

formance monitoring framework using a log-based approach. It has lower overhead,

more details, and better scalability compared to its counterpart solution via remote

procedure call (RPC). The high-level system framework is shown in Fig. 2.2.
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Figure 2.2: Blockchain performance monitoring framework [89]

2.2.3 Experimental Analysis of Blockchain Systems

In this section, we look at DLT performance evaluation from the perspective of

empirical analysis based on self-designed experiments. Even though empirical analysis

can hardly provide standardized test results like benchmarking, this approach is very

flexible in parameterization. It can be used to identify potential bottlenecks and pave

the way to further performance improvements.

Experiment-based approaches have been widely employed to evaluate distributed

ledger systems such as Hyperledger, Ethereum and DAG-based ledger. Various private

blockchain platforms and different versions of a certain blockchain can be compared

on performance by running tests under a well-controlled test environment. In addition,

some studies examined the detailed performance, for example, the performance of

different encryption and hash algorithms, from the data layer in the blockchain

abstraction model.

Hyperledger Performance Analysis

Nasir et al. [90] conducted an experimental performance analysis of two versions of

HLF (v0.6 and v1.0) on their execution time, latency, throughput and scalability by

varying the workloads and node scales. The overall results indicate that HLF v1.0

consistently outperforms HLF v0.6 across all evaluated performance metrics.
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Baliga et al. [91] took an experimental approach to study throughput and latency

of HLF v1.0. Using Caliper as the benchmarking tool, the authors configured different

transaction and chaincode parameters to explore how they impact transaction latency

and throughput under micro-workloads. Fabric’s performance characteristics were

also studied by varying the number of chaincodes, channels and peers. The results

show that the throughput of HLF v1.0 is sensitive to the orderer settings, and it

is a significant drawback for the commiter in this version that it does not process

transactions in parallel, incapable of taking advantage of multiple vCPUs.

Another comprehensive empirical study was conducted by Thakkar et al. [92] who

explored the performance bottlenecks of the HLF v1.0 under different block sizes, en-

dorsement policies, number of channels, resource allocation and state database choices

(GoLevelDB vs. CouchDB). The experimental results indicated that endorsement

policy verification, sequential policy validation of transactions in a block, and state

validation and commit (with CouchDB) were the three major bottlenecks. Accordingly,

the authors suggested three optimization solutions, including parallel VSCC validation,

cache for membership service provider (MSP), and bulk read/write for CouchDB. All

these optimizations have been implemented in release HFL v1.1.

A study completed at IBM by Androulaki et al. [93] focused on HLF v1.1 to explore

the impact of block size, peer CPU, and SSD vs. RAM disk on blockchain latency,

throughput and network scalability under different numbers of peers. The results

show that HLF v1.1 achieves end-to-end throughput of 3500+ TPS in certain popular

deployment configurations, with the latency of a few hundred ms, scaling well to 100+

peers.

Nguyen et al. [94] conducted an experimental study to explore the impact of large

network delays on the performance of Fabric by deploying HLF v1.2.1 over an area

network between France and Germany. The results reveal that an obvious network

delay (3.5s) brings 134 seconds offset after the 100th block between two clouds, which

indicates that the tested version of Fabric can not provide sufficient consistency
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guaranties. Therefore, HLF v1.2.1 cannot be used in critical environments such as

banking or trading. This was the first work that experimentally demonstrated the

negative impact of network delays on a PBFT-based blockchain.

Another HLF performance evaluation work focusing on the underlying communica-

tion network was conducted by Geyer et al. [95] using Caliper [85] and a dedicated

testbed on which network parameters, such as latency or packet loss, can be con-

figured. In the experiments, the influence of transaction rate, chaincode, network

properties, local network impairment, and block size have been separately examined

and quantitatively analyzed. The experiment results identified the validation of the

transactions as the major contributor to the transaction latency in HLF.

As the first long-term support release, HLF v1.4 caught the attention of several

blockchain researchers. Kuzlu et al. [96] investigated the impact of network workloads

on the performance of a blockchain platform in terms of transaction throughput, latency,

and scalability (i.e., the number of participants serviceable by the platform). Following

network load parameters were varied in the experiment: number of transactions,

transaction rate and transaction type.

Although the practical Byzantine fault tolerance (PBFT) algorithm has been

adopted as the consensus protocol since its version 0.6, dishonest participants and

their attacks such as intentionally delaying messages, sending inconsistent messages and

distributed-denial-of-service (DDoS) never stop. Malicious behaviour may significantly

undermine the system in terms of both security and performance. To explore the

performance of HLF with malicious behaviour, Wang [97] designed multiple malicious

behaviour patterns and experimentally tested the transaction throughput and latency

on HLF. The results show that delay attacks, along with keeping some replicas out of

working, dramatically decrease the system performance.

Apart from Fabric, Z. Shi et al. [98] empirically studied the performance of Saw-

tooth, another well-known permissioned blockchain platform from Hyperledger. The

examined performance metrics include consistency (i.e., whether the platform’s per-
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formance behaves consistently each time with the same workload and cloud VM

configuration), stability (i.e., whether the platform’s performance remains stable with

the same workload, but different cloud VM configurations) and scalability (i.e., how the

platform performance achieves scalability with different workloads and configuration

parameters). The adjustable configuration parameters identified for optimizing the

performance of Sawtooth are scheduler and maximum batches per block.

From the results of empirical performance analysis summarized above, it is obvious

that Hyperledger needs improvement on both geographical scalability (limited by

the network latency) [94] and size scalability (the platform fails scaling beyond 16

nodes [26]). The bottleneck is the adopted PBFT consensus, which is a communication

bound mechanism as opposed to the computation intensive PoW [99] consensus.

Ethereum Performance Analysis

Rouhani and Deters [100] studied the performance of Ethereum on a private blockchain

by analyzing two most popular Ethereum clients: PoW-based Geth and PoA-based

Parity. The results indicate that, compared to Geth, Parity is 89.82% faster in terms

of transaction processing, on average, under different workloads.

Yasaweerasinghelage et al. [101] introduced an approach to predict the latency

of blockchain-based systems using software architectural modelling tool Palladio

workbench [102] and simulation. They leveraged the proposed method to test latency

on a private Ethereum (Geth) experimental environment. The results show a low

relative error of response time, mostly under 10%.

Bez et al. [103] conducted an initial quantitative analysis on the scalability of

Ethereum. The transaction throughput was evaluated under an extensible test en-

vironment with synthetic benchmarks. The results indicate that Ethereum follows

the scalability trilemma, which claims that a blockchain platform can hardly reach

decentralization, scalability and security simultaneously.
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DAG DLT Performance Analysis

In traditional blockchain systems, transactions are stored in blocks that are then

organized as a ledger in a single chain data structure. This structure makes it incapable

of concurrently generating blocks, and thus limiting the transaction throughput. In

DAG-based distributed ledgers, transactions or blocks are organized in different vertices

of the directed graph, which allows parallel block generation and inclusion. Based

on this idea, many distributed ledgers have been proposed with their own consensus

mechanisms. For example, IOTA [1] employs a cumulative weight approach for

transaction confirmation and Markov chain Monte Carlo (MCMC ) sampling algorithm

for random tip selection; Byteball [24] achieves consensus by relying on 12 selected

reputable Witnesses; and Nano [25] adopts a balance-weighted vote mechanism to

reach agreement on transaction confirmation.

Even though DAG-based ledgers are designed to theoretically have faster transaction

speed than blockchain, it is necessary to evaluate the performance of existing DAG

distributed ledger implementations and identify their potential bottlenecks. Fan et

al. [104] demonstrated the scalability of IOTA under IoT scenarios in a private network

with 40 nodes. The experiment results indicated that transaction throughput (TPS)

has good linear scalability against the transaction arrival rate. Three representatives of

DAG-based distributed ledgers, namely IOTA, Nano and Byteball, were comparatively

evaluated using the proposed DAGbench in [84]. From the experimental results, some

useful observations, such as the advantages and disadvantages of the three tested DAG

implementations, can be obtained.

Comparative Analysis

Before developing a blockchain-enabled application, decision makers should first assess

the suitability [105] of blockchain implementation. Then, a comparative performance

analysis is often necessary to select a blockchain platform that will perform well in

the target application environment.
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After developing Blockbench, Dinh et al. [26] used this tool to conduct a comparative

performance analysis on three mainstream private blockchains, namely Ethereum (geth

v1.4.18), Parity (v1.6.0) and HLF (v0.6.0-preview). Their findings can be summarized

as follows: 1) HLF performs consistently better than Ethereum and Parity across all

macro (e.g., throughput and latency) and micro (e.g., IOHeavy) benchmarks, but it

fails to scale up to more than 16 nodes; 2) The consensus protocols are identified as

major bottlenecks for HLF and Ethereum, while transaction signing is a bottleneck

for Parity. The authors further compared the performance of two different versions of

HLF v0.6.0 and v1.0.0 against IOHeavy workload in their more recent work [99].

Because of the lack of interface standards, evaluating different blockchains remains

difficult. To overcome this problem, a generic workload performing the same functions

on different blockchain interfaces was designed in [106] to comparatively evaluate three

prominent consortium blockchain platforms for IoT. They were HLF v0.6 with the

PBFT consensus, HLF v1.0 with the Byzantine fault-tolerant state machine replication

(BFT-SMaRt) consensus, and Ripple with the Ripple consensus. Results confirmed

that the evaluated blockchains could offer reasonable throughput but with very limited

scalability.

Pongnumkul et al. [107] conducted a preliminary performance analysis of two

popular private blockchain platforms HLF (v0.6) and Ethereum (geth 1.5.8, private

deployment) under varying workloads. The experimental results demonstrated that

HLF outperforms Ethereum in terms of all evaluated metrics (execution time, latency

and throughput). However, this study also pointed out that the performances of

both platforms are still not competitive with current mainstream database systems,

especially under high workloads. This conclusion was tested and confirmed by another,

more recent study [108], in which Ethereum and MySQL were compared.

Comparative analysis can also be conducted on consensus algorithms of differ-

ent blockchains. For example, Hao et al. [109] compared the performance between

Hyperledger (PBFT) and private Ethereum (PoW) via their proposed benchmark
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framework constructed with four modules: workload configuration module, consensus

smart contract module, data collector module and the target blockchain platforms.

The evaluation results show that HLF consistently outperforms Ethereum in terms of

average throughput (TPS) and latency. This study also points out that the consensus

mechanism induces performance bottleneck in private blockchains. Another example

is the performance analysis conducted on PoW and the Proof-of-Collatz Conjecture

(PCC) [110]. PCC [111] is a recently introduced number-based theoretic PoW using a

new metric called Collatz orbits, which are defined in the Collatz Conjecture algorithm.

Authors evaluated these two consensus algorithms with respect to the execution time,

the deployment time and the latency on a private blockchain network. The experiment

results demonstrate that PCC-based blockchain consistently outperforms PoW-based

blockchain in terms of all tested metrics and even steadily achieves 1000× faster

execution speed than of PoW.

To provide system designers suggestions on smart contract platform selection,

Benahmed et al. [112] conducted a comparative performance analysis of Hyperledger

Sawtooth, EOS and Ethereum. Following the workloads used in Blockbench [26], the

authors modified and defined three types of workloads, namely CPUHeavy, KVStore

(Key-Value Store), and SmallBank, to comparatively test CPU consumption, memory

consumption, load scalability and network scalability in distributed ledgers. The results

reveal that the third generation platform EOS outperforms the other two in both

resource consumption and speed, but with some shortcomings such as centralization.

In addition, according to their performance in the test, Sawtooth was suggested for use

in the Internet of Things and Ethereum’s PoA implementation for the fast development

of web-oriented applications.

To explore whether existing blockchain solutions can scale to large IoT networks,

Han et al. [113] comparatively evaluated the performance of five selected prominent

distributed ledgers using classic consensus protocols: Ripple, Tendermint, Corda and

v0.6 and v1.0 of HLF. A series of exclusive tests were run to evaluate the throughput
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and latency with different numbers of nodes (ranging from 2 to 32) for each of the

ledgers. The results show that even though these systems can sometimes provide

thousands of TPS throughput, their networks usually do not scale to tens of devices as

the performance drops dramatically when the number of nodes increases. Table 2.4 lists

an overview of various DLTs’ performance extracted from the reviewed experimental

analysis studies.

Table 2.4: Overview of different DLT performance (throughput and latency) under
various evaluation environments

DLT Consensus
Throughput

(TPS)
Latency
(Secs)

Network
(Size)

Node Config-
uration

HLF v0.6 [26]
PBFT 1273 38 8 nodes
PBFT 1122 51 8 nodes

Ethereum geth

v1.4.18 [26]
PoW 284 92 8 nodes

E5-1650
3.5GHz

PoW 255 114 8 nodes CPU, 32GB

Parity v1.6.0 [26]
PoA 45 3 8 nodes

RAM, 2TB
HD

PoA 46 4 8 nodes

Quorum 2.0 [91]
Raft 2,000+ 1.5 3 nodes 8 vCPUs
IBFT 1,900 3.2 4 nodes 4 cores 3.6

IBFT 1,800 3.5 4 nodes
GHz, 16GB

RAM
HL Sawtooth
v1.1.2 [112]

PoET 3 - 6 nodes
Dockers share
VM on Intel

EOS v1.5.3 [112] DPoS 21 - 6 nodes
Xeon X7350

CPU 16 Cores,
Ethereum Geth
v1.8.21 [112]

PoW 10 - 6 nodes
2.93GHz,

64GB RAM

HLF v1.0 [106]
BFT-
SMaRt

1,700 - 16 nodes E5-2630 CPU

HLF v0.6 [106] PBFT 2600 1.8 16 nodes
8 cores
2.4GHz,

Ripple
v0.60.0 [106]

XRP 1450 6 16 nodes 64GB RAM

Tendermint
v0.22.4 [113]

PBFT and
Casper

6,000 0.15 16 nodes E5-2630 CPU

Tendermint
v0.22.4 [113]

PBFT and
Casper

5,600 0.05 16 nodes
4 cores
2.4GHz,

R3 Corda
v3.2 [113]

BFT-
SMaRt

50 8 4 nodes 12GB RAM

Geth v1.7.3 [109] PoW 130 1,297 4 nodes
Geth v1.7.3 [109] - 235 569 4 nodes 8GB RAM,

HLF v1.0 [109]
BFT-
SMaRt

535 78 4 nodes 128GB SSD

HLF v1.0 [109] - 1,033 40 4 nodes
Geth [100] PoW - 0.199 1 node Core i7-6700

Parity [100] PoW - 0.105 1 node
CPU, 24GB

RAM

Geth 1.5.8 [107] - 21 361 1 node
AWS EC2

Intel E5-1650

HLF v0.6 [107] - 160 4 1 node
8 core CPU,
15GB RAM,
128GB SSD
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Encryption Performance Analysis

In addition to the end-to-end performance metrics, there are also some evaluation

works focusing on the detailed performance of a certain step or subprocess such as

the efficiency of encryption and hash function. According to Park et al. [114], the

transaction processing time equation is

T = ti + tc = (tv + tpow + tn + te) + tc, (2.1)

where ti refers to the issuance time, tc to the confirmation time, tv to the validation time,

tpow to the PoW time, tn to the network overhead, and te to the processing overheads.

The processing overheads include encryption/decryption, hashing and authentication.

Efficient encryption and hashing algorithms contribute to transaction issuance speed

in DLT. Chandel et al. [115] analyzed and compared the performance of the two most

commonly used encryption algorithms in blockchain, Rivest-Shamir-Adleman (RSA)

and elliptic-curve cryptography (ECC). Their comprehensive analysis results based on

the key size, key generation performance and signature verification performance show

that the ECC algorithm (adopted by Bitcoin and Ethereum) outperforms RSA in

general. This study also points out that ECC satisfies the security needs of blockchain

better than RSA.

More recently, Ferreira et al. [116] conducted a study on Blockchain-based IoT

(BIoT) [11] to explore the performance of hash function in blockchains. Particularly,

authors developed a blockchain in an IoT scenario to evaluate the performance of

different cryptographic hash functions such as MD5, SHA-1, SHA-224, SHA-384 and

SHA-512. The test results show that SHA-224 and SHA-384 are the best hash functions

for blockchain due to their lack of collision attacks. In hashing ciphers, a collision

attack is the problem that there exist two different messages m1 and m2, such that

hash(m1) = hash(m2). In addition, these two hash functions are more time-efficient

than others to process blockchain functions with the advantage of producing a smaller
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average block size.

2.2.4 Simulation

All the evaluation solutions mentioned above (i.e., benchmarking, monitoring and

experimental analysis) require the availability of the systems, no matter private or

public blockchains. However, the system under evaluation is not always available. For

instance, when a company needs to make a selection between two blockchain platforms

under development according to their performance, none of the previously discussed

solutions is feasible. Moreover, it is usually costly on both time and resources to

construct a real blockchain network for testing. This brings us to explore another

evaluation approach, namely, simulation. A blockchain simulator can mimic the

behaviours of network nodes in reaching the consensus, providing performance similar

to a real system. Besides, a blockchain simulator usually provides a convenient way for

users to tune the system parameters to run different settings for the sake of comparison.

In this subsection, we will take a look at the role of simulation in the blockchain world.

BlockSIM

In 2019, there were three similar simulators with the same name, BlockSim (or

BlockSIM ), proposed for simulating blockchain systems. Alharby and Moorsel [117]

proposed and implemented a framework called BlockSim to build discrete-event

dynamic system models for PoW-based blockchain systems. This framework was

organized in three layers: incentive layer, connector layer and system layer. Using the

proposed simulation tool, the authors explored the block creation performance under

the PoW consensus algorithm. This simulator helped to understand the details of

the block generation process in PoW. The predefined test cases were validated and

verified in their extension study, where the simulation outcomes were compared with

results of real-life systems such as Bitcoin and Ethereum to show the feasibility of

this approach. However, the extensibility of this simulator is still a problem for future
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research.

To help architects better understand, evaluate and plan for the system performance,

Pandey et al. [118] proposed and developed a comprehensive open-source simulation

tool called BlockSIM for simulating private blockchain systems. This tool is designed

to evaluate system stability and transaction throughput (TPS) for private blockchain

networks by running scenarios, and then decide on the optimal system parameters

suited for the purposes of architects. The comparison results between BlockSIM and

a real-world Ethereum private network running PoA consensus show that BlockSIM

can be used effectively.

More recently, Faria and Correia [119] presented a flexible discrete-event simulator

(also called BlockSim) to evaluate different blockchain implementations. With a good

design of APIs, new blockchains can be easily modelled and simulated by extending

the models. Running this simulator for Bitcoin and Ethereum, the authors got some

interesting performance conclusions. For instance, doubling the block size (number

of transactions) had a small impact on the block propagation delay (10ms), while

encrypting communication had a higher impact on that delay (more than 25%).

DAGsim

Similarly, Zander et al. [120] presented a continuous-time, multi-agent simulation

framework called DAGsim, for DAG-based distributed ledgers. Specifically, the

performance of IOTA in terms of the transaction attachment probability was analyzed

using this tool. The results indicate that agents with low latency and high connection

degrees have a higher probability of having their transactions accepted in the network.

Another multi-agent tangle simulator [121] built with NetLogo simulates both random

uniform and MCMC tip selection in a visualized and interactive way.

In addition to pure simulators, some other studies leverage simulations combined

with analytical results to conduct validation or exploration. Park et al. [114] proposed

and implemented a general DAG-based cryptocurrency simulator using Python. This
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simulator was used to validate the proposed analytical performance model, through

which they found that by issuing a transaction with a smaller average number of

parents n in DAG, the transaction speed (TPS) can be increased. Kusmierz et al. [122]

ran IOTA tangle simulations in a continuous-time model to explore how different tip

selection algorithms, i.e., uniform random tip selection (URTS) and unbiased random

walk (URW), affect the growth of the tangle. Simulations under varying transaction

arrival rates were used to analyze the performance of the tangle.

2.2.5 Comparison of Different Evaluation Solutions

In the previous subsections, we introduced four types of empirical evaluation solutions

and surveyed existing studies which adopted the associated approaches. In this

subsection, we comparatively discuss the advantages and disadvantages of the above-

mentioned solutions. This comparison is based on both the general characteristics

of the individual approaches and their suitability in evaluating different types of

blockchains. The compared items are divided into two categories: solution requirements

and solution efficiency, see Table 2.5. Solution requirements describe the network

specifications for evaluating blockchain systems in terms of the node, network and

workload. Solution efficiency provides three dimensions, namely parameterization,

extensibility and difficulty, to compare the efficiency and effectiveness of different

solutions.

Table 2.5: A comparison on different empirical performance evaluation solutions for
blockchain system

Solutions Characteristics Efficiency

Node Network Workload Parameterization Extensibility Difficulty

Monitoring Real Real Real Low Low Easy

Benchmarking Real Test Artificial Low High Easy

Experimental
Analysis

Real Test Artificial High Low Medium

Simulation Virtual Virtual Virtual Very High Very High Hard

Monitoring the performance of a blockchain system requires a realistic deployment
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of the system in production with real workloads. Even though this approach can also

be used to evaluate a private blockchain in an experimental setup, we argue that it

is more suitable to evaluate public blockchain when compared with benchmarking.

In the context of evaluating a public blockchain, it becomes difficult to change any

parameters for multiple tests. The challenge of the extensibility lies in the development

of adaptable log parser for various blockchains. But, it is easy to deploy for certain

blockchains using the existing solutions [89].

Benchmarking requires a well-controlled evaluation environment with a test network

and artificial workloads. Once a benchmark tool is selected, the supported workloads

and test metrics are limited, as well as the parameters which can be tuned. For

example, Blockbench doesn’t support tuning the network layer parameters such as

network delay and, up to date, it only supports evaluating four types of blockchain

platforms, i.e., Ethereum, HyperledgerFabric (HLF), Parity and Quorum. However,

the well-designed APIs allow users to develop their own adaptors and extend its

feasibility to evaluate any private blockchains. So, the extensibility of benchmarking

is relatively higher than monitoring. In addition, this solution is easy to deploy since

there have been several popular and well-documented benchmark tools, see Table 2.2.

Experimental analysis refers to the evaluation solution based on self-designed

experiments. This is a very general solution that is commonly used. It is very similar

to benchmarking but different in two main aspects. First, self-design gives more

flexibility in evaluating impact factors, providing a high capability of parameterization.

For example, the impact of network delay on HLF performance can be evaluated in a

self-designed experiment, which is not supported by benchmarking. Second, the test is

usually dedicated to a specific blockchain and is not as standardized as benchmarking,

which limits the extensibility. So, the deployment difficulty partly depends on the

complexity of the SUT and what to evaluate.

Simulations have a relatively greater difficulty in the stage of simulator design and

development. But, once it is completed, the simulator usually provides a number
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of advantages in comparison to other approaches. The simulation solution is very

extensible and can be used to quickly test different configuration parameters at a

low cost. As mentioned in subsection 2.2.4, another obvious advantage of simulation

is that it does not require the availability of the blockchain. However, as for the

evaluation results, there may be a relatively large difference (e.g., 10%) between

simulation and experiment, which induces concerns about the accuracy of this solution.

Moreover, some metrics cannot be evaluated in simulators such as the transactions

per CPU, transactions per memory second, transactions per disk IO, and transactions

per network data for a blockchain system.

2.3 Analytical Modelling in Blockchain Performance

Evaluation

Analytical modelling of performance leverages mathematical tools to formalize blockchain

system in an abstract way and to solve ensuing models with rigor. The model output

(e.g., average transaction latency being expressed as a function of network indicators)

provides analytical evidence for blockchain performance evaluation. In this section,

we survey the performance evaluation solutions of distributed ledger systems based on

analytical modelling. We aim to summarize the mainstream techniques, explore how

and why these models are employed for certain distributed ledgers, and then identify

the current challenges in blockchain performance modelling. In particular, we focus

on surveying the stochastic models, which have been used to successfully model many

cloud systems.

In Table. 2.6, we classify the existing popular solutions of performance modelling for

distributed ledgers into four categories: Markov chains, queueing models, stochastic

Petri nets and other models.
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Table 2.6: A summary of blockchain performance modelling studies

Model Types Models Consensus DLs Model Outputs

Markov Chains

Absorbing Discrete
Time Markov chain

(DTMC) [123]
Raft

private
blockchains

network split probability
as a function of packet

loss rate, election timeout,
and network size

Discrete Time
Markov chain
(DTMC) [124]

the tangle IOTA
cumulative weight and
transaction confirmation

delay

Queueing Models

M/GB/1 queue
variant [125]

PoW Bitcoin tx confirmation time

CTMC GI/M/1
queue [126]

PoW Bitcoin

mean number of txs in the
queue and in a block;

average tx-confirmation
time.

CTMC GI/M/1
queue [127]

PoW Bitcoin
mean stationary number
of txs in the queue and in

the block

M/G/1 queue
variant [128]

PoW Bitcoin
confirmation time and tx

delay

non-exhaustive
queue [129]

PoW NA
mean number of txs and
mean confirmation time of

txs in the system

Discrete-time
GI/GIN/1
queue [130]

Proof-of-
Authority

Ethereum
system queue size and tx

waiting time

M/MB/1 queue [95]
BFT-
SMaRt

HLF tx latency

M/G/1 and M/M/1
queue [131]

PBFT NA system delay

(n,k) fork-join
queue [132]

vote-based
consensus

permissioned
blockchain

blocks commitment delay,
block validation response
time and synchronization
processes among mining

nodes.

Fluid queue [133] the tangle IOTA

conflicting txs cannot
coexist when a random
tip-selection algorithm is

employed

Stochastic Petri
Nets

Generalized
stochastic Petri nets

(GSPN) [134]
PBFT HLF v1.2

latency and throughput of
each phase

Stochastic Reward
Nets(SRN) [135]

PBFT HLF v1.0
throughput, utilization

and mean queue length at
each peer

Other Models

World State
Prediction
model [136]

PoW Ethereum transaction time cost

Stochastic network
model [137]

PoW Ethereum tx processing rate

Random Graph
model [138]

PoW Bitcoin
block propagation delay
and traffic overhead

2.3.1 Markov Chains for Modelling DLT Consensuses

In probability theory, Markov processes are a type of stochastic process with Markov

property. Also called memoryless property, it refers to the fact that the future states
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of the process depend only on the present state, but not on the previous ones. Markov

chain is defined as a Markov process with discrete state space. It is a fundamental

mathematical tool to evaluate the performance of distributed ledger systems [139]. In

this subsection, we investigate how Markov chains are used to model two different

consensus algorithms: Raft and the tangle for IOTA. The specific type of process used

for this modelling is called discrete time Markov chain (DTMC).

DTMC for Modelling Raft: In a Raft [140] cluster, each node is at any given

time in one of the three states: follower, candidate and leader. Normally, there is only

one leader in a Raft cluster. We call it network split in the case of two or more leaders

being elected simultaneously, which may dramatically impact the performance of the

system. After the leader has been elected, it handles all requests from the client and

sends them to followers for validation. Followers simply receive requests from and

respond to leaders and candidates. Candidates are a mid-state transiting from follower

to leader. The whole Raft consensus can be divided into several ever increasing timely

manners called terms which have two processes: leader election and ledger replication.

Each term starts with a leader election, in which all nodes start from follower state.

Then, a node transits to candidate, candidate to leader or back to follower according

to the rules depicted in Fig. 2.3 [140]. Once a leader is elected successfully, the ledger

replication process starts with the leader sending heartbeat messages to all other

nodes to establish its authority and prevent new elections. Once the leader receives

responses of writing new transaction entry to the ledger from the majority of the

followers, it notifies them and the client that the transaction is committed.

To explore the impact of network properties on the blockchain performance, Huang et

al. [123] have built a simple Markov chain model for the process of a node transferring

from follower state to candidate. They consequently present the network split proba-

bility as a function of the network size, the packet loss rate, and the election timeout

period. Let us define the packet loss probability as a constant value p for a given

network, the timeout period for each round of election as Et uniformly initiated from a
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Figure 2.3: Node states transition illustration in Raft consensus.

range [a,b], and interval between two heartbeats as τ . Thus, the maximum number of

heartbeats for an election to timeout is K ∈ {K1, K2, ..., Kr}, where K1 = �a/τ� and

Kr = �b/τ�. Then, two discrete time stochastic processes at time n can be defined:

g(n) as the stage status {1,2,...,r} of a given node, and b(n) as the remaining steps

(i.e., number of heartbeats) for the election phase to timeout in a term.

Therefore, the transition process for an observed node from follower to candidate

can be modelled as a two-dimensional stochastic process {g(n),b(n)}. It can be

further transformed to an absorbing DTMC on the state space {(1,K1),...,(1,0),...,

(i,K1),...,(i,0),...,(r,Kr),...,(r,0)}.
Using the mathematical derivations proven in [123], the network split probability

before n-th step can be obtained.

DTMC for Modelling IOTA Tangle: IOTA tangle [1] is a DAG-based dis-

tributed ledger designed for the microtransactions in the IoT. Its consensus encourages

all participants to contribute in maintaining the ledger through referencing (i.e., ap-

proving) two unapproved transactions called tips before issuing any new transaction.

For the new coming transaction, IOTA tangle leverages the MCMC random walk

algorithm to select two tips. All transactions directly or indirectly approved by this

new transaction then add its weight to their cumulative weights, as shown in Fig. 2.4.

For an approved transaction, its cumulative weight gradually increases to reach a

predefined threshold. Finally, the corresponding transaction is considered confirmed
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and permanently recorded in the ledger.
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Figure 2.4: An example of the IOTA tangle.

To explore the impact of various transaction arrival rates on the cumulative weight

and confirmation delay of an observed transaction, Cao et al. [124] built a Markov

chain model to analyze the tangle consensus. They classified the network into four

different regimes, according to the load situations: high load (HR), low load (LR),

high-to-low load (H2LR) and low-to-high-load (L2HR). In each regime, the consensus

process can be divided into two stages, namely the reveal stage and accumulating

stage [1]. Since the first two steady regimes HR and LR have been analyzed in [1],

the authors only focus on two unsteady regimes H2LR and L2HR.

The system can be modelled as a two-dimensional stochastic process S(t) = W (t),

L(t) at an arbitrary time t, where W (t) is the cumulative weight of a transaction

observed at time t, and L(t) is the total number of tips in the tangle at time t, t = kh,

k = 0,1,2,...,∞. Considering that W (t+ h) and L(t+ h) are only determined by the

current states W (t) and L(t), but not related to the earlier status, the consensus

process for a new observed transaction from issuance to confirmation can be formulated

as a Markov process. Furthermore, this Markov process can be formalized as a DTMC

on discrete transaction arrival time intervals. Here, one step transition of the observed

transaction is defined as the arrival of an incoming transaction with randomly selecting

two tips for reference from L(t) tips. Based on this DTMC model, the expected

cumulative weight and confirmation delay at a certain time in both H2LR and L2HR
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can be obtained.

2.3.2 Queueing Theory for Modelling DLT Consensuses

Queueing theory was originally proposed by Agner Krarup Erlang in 1909, to describe

the Copenhagen telephone exchange. It was later developed to solve different types

of system problems that involve waiting, such as customers waiting for teller service

in banks. In recent years, queueing theory has been widely used to model computer

networks and systems [141], cloud computing centers [142], and blockchain systems.

In a blockchain system, transactions issued by clients need to wait for servers (e.g.,

miner, validator or orderer) to provide service (e.g., mining, validating or ordering),

and finally get confirmed.

Using queueing theory, different consensus processes of DLTs can be modelled

as different types of queue systems, which are named according to the Kendall’s

notation [143]. Within a queue system, it is possible to quantitatively answer some

system performance questions such as what is the expected number of transactions in

the system, what is the transaction throughput of the system and what is the average

service time (i.e., transaction time). In this subsection, we focus on introducing the

typical queueing models (e.g., M/M/1, M/G/1 and G/M/1 queues) used for addressing

these performance questions of some mainstream consensus algorithms for blockchain.

Queueing Models for Proof-based Consensuses

Proof-based consensus is a type of consensus mechanism that requires the network

participants to provide enough proof to compete for the chance of updating the ledger.

Here, we review the queue systems for modelling some popular consensus mechanisms

such as PoW and PoA.

Queueing Models for PoW: In PoW-based blockchain such as Bitcoin [39], the

ledger is maintained and updated by the mining process. In the mining process, a

bunch of nodes called miners compete for solving very difficult puzzle-like problems,
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which consume a lot of computation power. Transactions issued by users are grouped

into a container called a block, and the mining competition winner who first finds the

algorithmic puzzle answer specialized for the block has the right to add the new block

to the blockchain and accordingly gets incentives.

In 2017, Kawase and Kasahara [125] first built a modified M/GB/1 queue with

batch service to model the Bitcoin mining process, trying to deal with the transaction-

confirmation time. In this model, transaction arrival was assumed to be a Poisson

process and service time interval to be a general (or arbitrary) distribution. Arriving

transactions are served in a batch manner with a maximum batch size b. In a typical

M/GB/1 queue system, an idle server starts service immediately if there are one

or more customers awaiting service in the system [144]. But in this variant model,

newly arriving transactions wait in the queue for getting served until the next block-

generation time, even when the number of transactions is smaller than b. This is

regarded as the service with multiple vacations. This is a very straightforward model

description from the Bitcoin block generation and mining process based on Nakamoto’s

consensus, in which new transactions are grouped into a block to wait for being mined

in the next block-generation time or even later on.

To analyze this queue system, the authors leveraged the joint distribution of the

number of transactions in the system and the elapsed service time to derive the

mean transaction-confirmation time. Then, by using the method of supplementary

variables, a system of differential-difference equations was set up to formalize the

problem. However, they have not successfully provided the unique solution of the

differential-difference equations’ system, leaving analysis of the blockchain queue

system as an interesting open problem for future research.

To overcome the difficulties encountered in the original model [125], Li et al.

introduced a new blockchain queueing model [126] by decomposing the mining process

into two different exponential service stages: block-generation and blockchain-building

processes. The sum of both stages’ times is regarded as the transaction-confirmation
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time, also called service time. In this model, all Bitcoin transactions are assumed to

be arriving according to a Poisson process, namely the arrival interval times follow

an exponential distribution with arrival rate λ. Service times in two stages of batch

services are also simply assumed to be i.i.d. and exponentially distributed with rates

μ2 and μ1, respectively. First, each transaction enters a queue waiting room and waits

for services. Then, in the first service process, a group of transactions are mined into a

block with rate μ2 and, simultaneously, a nonce is appended to the block by the mining

winner. The block has a limited transaction capacity of b, also called batch size in the

model. In practice, the selection of transactions may not follow a first-come-first-serve

(FCFS) discipline, meaning that some latter coming transactions in the queue may be

preferentially first selected into the block. But in this model, all computations are

based on the FCFS discipline for the reason of simplification. Finally, a generated

block with all transactions wrapped in it is attached to the blockchain in a transaction

rate of μ1. The simple blockchain queueing model is illustrated in Fig. 2.5.

block-generation blockchain-building

FCFS

�

��

blockchain

two stages of batch services

��

Figure 2.5: Blockchain queueing model with two batch service processes.

To analyze this queueing model, the authors defined two random variables I(t) and

J(t) as the numbers of transactions in the block and in the queue at time t, respectively.

Thus, the system can be modelled as a two-dimensional continuous-time Markov chain

(CTMC) X(t) = {I(t), J(t)} on the state space Ω = {(i, j) : i = 0, 1, ..., b; j = 0, 1, 2...}.
By analyzing the state transition diagram (see [126] for details), the only three possible

transitions from an arbitrary state (i, j) are to state: (i, j+1), the same level; (0,
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j), i levels up; or (l, i+j-l), l (1 ≤ l ≤ b) levels down. With all these characteristics,

the corresponding Markov transition matrix (or infinitesimal generator) Q is a lower

Hessenberg matrix, which is constructed by different repetitive small matrix blocks.

Therefore, X(t) is a continuous-time Markov process of GI/M/1-type. This block-

structured Markov chain (the other two examples are M/M/1-type and M/G/1-type)

can be solved using the matrix-analytic (or matrix-geometric) approach.

However, this model has very strong assumptions on transaction arrival and service

processes. It is too specific and not suitable for many practical conditions of blockchain

systems. To generalize this model, in their more recent work [127], the authors changed

the transaction arrivals from Poisson to Markov arrival process (MAP), the service

times from exponential to phase-type (PH), and the service discipline from FCFS to

service-in-random-order. Under the new assumptions, the blockchain queueing model

description keeps the same. Note that this is also a structured GI/M/1-type Markov

chain. For the solution, matrix-geometric approaches are adopted to analyze and find

the stable condition. This is the same as the stationary condition of the previous

model. The simple expressions for the average stationary number of transactions in

the queue waiting room E(N1) and the average stationary number of transactions in

the block E(N2) are obtained separately.

Because of the batch service and the Service-In-Random-Order discipline for choos-

ing transactions from the queueing waiting room into a block, the Markov chain

structure becomes more complicated. This makes the computation of transaction-

confirmation time very difficult. To overcome the challenge, the authors borrowed a

computational technique by means of both the PH distributions and the RG factoriza-

tions [127].

There have been other blockchain queueing models proposed for analyzing the perfor-

mance of PoW consensus. Ricci et al. [128] proposed a framework combining machine

learning with queueing theory to study Bitcoin transaction delays. They introduced a

simple queueing model for characterization of the transaction confirmation that can
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be consiered a variant of M/G/1 queue. Different from complicated mathematical

derivations, the authors mainly leveraged the operational laws in queueing theory, such

as Little’s Law to solve the queue system. The most important result, namely average

transaction delay experienced by a user, is given as E(D) = αE(B) + E(Br), where

α is the expected number of blocks that a user needs to wait until a transaction is

confirmed, E(Br) denotes the residual time of the inter-block time, and E(B) stands

for the average time between block confirmations. This formalization is inspired by

the standard M/G/1 queueing model, where the coefficient of the residual service time

equals the system utilization. In this variant of the model, a block is always being

mined, making the utilization 100% all the time.

Zhao et al. [129] established a type of non-exhaustive queueing model to study the

average transaction confirmation time in a PoW-based blockchain system. For such

system, any block has a size limitation, and the block cannot be confirmed during the

mining process. Therefore, a non-exhaustive queue with a limited batch service and

a possible zero-transaction service is naturally more suitable to capture the system

features. In this queueing model, the mining process is treated as a vacation, and the

block-verification process is regarded as a service. Transaction arrival is assumed to be

a Poisson process with rate λ. The time duration V for a mining process and the time

duration S for a block-verification process are both i.i.d. variables that follow a general

distribution with distribution functions V (t) and S(t), respectively. Laplace-Stieltjes

transform (LST) has been widely used in modelling both mining and block-verification

processes to provide integral expressions for E[V ] and E[S]. Through a series of

mathematical transformations and derivations, the authors eventually obtained the

following expression for average transaction confirmation time: E[C] = E[S] + E[V ]

(refer to [129] for details).

Queueing Models for PoA: To evaluate the performance of the mining process

in Proof-of-X based blockchains, Geissler et al. [130] proposed a generic discrete-time

GI/GIN/1 queueing model. Their goal was to investigate key performance indicators,
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such as the mean queue size and mean transaction waiting time, and to identify

significant impact factors. To make this model general, the authors abstracted the

blockchain network as a single server by neglecting the information propagation delays

among network nodes. Then, the model was built around a fixed-point iteration of

the queue size distribution by representing the system state with queue size Qn.

In this system model, the transaction interarrival time A follows a general distribu-

tion a(k) described as A(k) = P (A < k) =
∑k

i=0 a(k), k ∈ [0,∞). The service time T

is also assumed to follow a general distribution. Every time a new transaction arrives,

the size of queue Q(k) increases by one, while every block generation decreases the

queue size by confirming a batch of transactions from the queue. Thus, the queue size

distribution can be defined recursively, with iteration based on an embedded Markov

chain with embedding times right before a block generation event. Furthermore, the

distribution of key performance indicator transaction waiting time can be defined

by the recurrence time distribution of the block generation process rT (x) and the

coefficient of weighted probability c(k). The corresponding expressions are obtained

through recursive solutions, Little’s law of queueing theory and basic probability math-

ematical derivations, see [130] for details. In the evaluation part, the authors obtained

a good match by comparing the model data and the experimental measurements,

which showed the effectiveness and accuracy of the model. Unfortunately, this general

model was only validated by using a specific Ethereum implementation based on the

Proof-of-Authority (PoA) consensus. It discounts the versatility of this model, since

the more popular PoX consensuses such as PoW and PoS have not been examined.

Queueing Models for Vote-based Consensuses

Vote-based consensus is a type of high performance algorithms relying upon voting to

reach agreement on transaction processing among participant nodes in a distributed

system. It is the most popular consensus mechanism used in permissioned blockchain.

Three widely used representatives of the vote-based consensus implementations are
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PBFT [145], BFT-SMaRt [146], and delegated Byzantine fault tolerance (dBFT).

Queueing Models for PBFT: The classic PBFT algorithm was firstly proposed

in 1999 to solve the transmission errors and Byzantine faults in distributed sys-

tems [145]. It consists of five steps: request, pre-prepare, prepare, commit and reply.

When the PBFT is adopted in constructing blockchain systems such as Hyperledger

Fabric v0.6 [93], Zilliqa [147], and EOS [148], it has different implementations and/or

combinations with other protocols. For example, EOS takes a hybrid consensus of

combining PBFT with DPoS, to greatly reduce the required consensus time. Zilliqa

uses an optimized version of classic PBFT binded with sharded PoW to achieve

consensus in an efficient manner, yielding a high throughput for the blockchain system.

HLF, as the most well-known permissioned enterprise-level distributed ledger platform,

implements the PBFT consensus algorithm among the network peers (i.e., endorser,

orderer and committer) mainly through three phases: endorsement, ordering and

validation, as illustrated in Fig. 2.6.
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Committer

Orderer (Solo)

Endorsement Ordering Validation

Endorser 1

3
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Figure 2.6: Hyperledger Fabric transaction workflow.

Phase 1. Endorsement (also called proposal or execution): 1○ The client generates

transaction proposals and submits to endorsers for execution. 2○ The endorsers

simulate the transactions by executing the operation previously written on the

chaincode, and then return responses with signed endorsements to the client.

The endorsements contain the values read or written called read/write set (or
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rw-set) by the chaincode.

Phase 2. Ordering: The client sends the transaction together with the endorsements

to the Solo orderer for ordering service. 3○ The orderer collects transactions

submitted from different clients, establishes a total order on them for each

channel, packages multiple transactions into blocks and generates a hash-chained

sequence of blocks. As for HLF v2.0, there are three implementations of ordering

peers: Solo, Kafka, and Raft.

Phase 3. Validation (also called validation and commit): 4○ The ordered blocks are

delivered to committers through gossip protocol broadcasting. All peers are

committers by default, including pure committers and committers with additional

endorser responsibilities. Subsequently, the peers validate each transaction

contained in the received blocks. If all validations are passed, the transaction’s

write set is applied to the peer’s world state, and the client gets a notification

about the successful execution of the transaction 5○. Otherwise, any check fail

will mark the transaction as invalid, and its effects are disregarded.

Geyer et al. [95] modelled the Solo ordering process of HLF as an M/MB/1 queueing

system. According to the previously described three phases, transactions with en-

dorsements arrive at the orderer at different times and are queued. While the queued

transactions reach a threshold number B (called batch size), the orderer immediately

provides ordering service and packages them all at once into a block. If the transactions

arrive according to a Poisson process with rate λ and the ordering service time is

assumed to follow exponential distribution with rate μ and FCFS discipline, the service

process can be described as an M/MB/1 queueing system, as shown in Fig. 2.7.

To solve this model, the authors borrowed the results from a well-studied general

bulk service queueing model M/Ma,b/1 [149]. They simply modified the batch size

range to a = b = B. Then, the average time spent in the ordering phase E(T ) can

be expressed by the given parameters, among which the batch size B is approved to
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Figure 2.7: Hyperledger Fabric ordering service illustration and M/MB/1 queueing
model.

be significant to E(T ) from the numeric evaluations. This model well captures the

characteristics of the ordering phase in Solo implementation. However, its shortcomings

are obvious: 1) it is not suitable for Raft or Kafka implementations; and 2) it does

not describe the whole transaction delay in the HLF system.

Alaslani et al. [131] focused on PBFT blockchain system end-to-end delay evaluation

in IoT. To study the system delay, the authors built a model with two standard queues

to capture the features of PBFT consensus from the system level. In this system, there

are M IoT devices working as clients to send transaction requests, and K intermediate

switches and R consensus replicas working together to process transactions. Since

different IoT applications have different latency requirements to guarantee their

service level agreement (SLA), network parameters need to be analyzed to meet

the requirements. In the first part of the model, an M/G/1 queue is considered in

which the maximum number of network hops K∗ needs to be calculated under the

application latency constrains. In the second part of the model, an M/M/1 queue

is used to calculate R, the number of consensus replicas (i.e., blockchain consensus

participants) needed to maintain the end-to-end requirements. Next, operational

laws such as Little’s law are used to analyze the network hops, and the number of

consensus replicas, where three main phases (i.e., preprepare, prepare, and commit)

of PBFT and its fault tolerance capability f out of N = 3f + 1 replicas are taken into

consideration.

Fork-join Queue for Vote-based Consensus: In vote-based permissioned

blockchain systems, transactions are broadcast to all authenticated voting peers
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of the P2P overlay after being proposed. These voting peers, called miner nodes or

validators, are selected and authorized to validate transactions, generate new blocks

and record data to the local ledger if a transaction gets enough validation votes, e.g.,

k out of n. For example, in the PBFT, a block is accepted and recorded if 2f + 1 out

of n = 3f + 1 peers independently agree on the block of transactions, where f is the

maximum number of Byzantine fault peers this system can tolerate.

The idea of leveraging an (n, k) fork-join queue to model vote-based blockchain

is based on the fact that the service process of this queue system matches well with

the above-mentioned transaction propagation and validation procedure. In an (n, k)

fork–join queue, the incoming jobs are split/forked on arrival for simultaneous and

independent service by numerous servers and joined before departure. While in a

vote-based blockchain system, if we consider the confirmation of a transaction as a big

job requiring enough validations from n nodes, this job can be split into n sub-tasks,

associated with being broadcast to n nodes and being validated independently at

the same time. Once any k out of n sub-tasks are finished, they are joined to finish

the service and make the transaction confirmed and recorded to the local ledger.

The remaining n− k sub-tasks keep executing until being finished. This is called a

non-purging (n, k) fork- queue. By contrast, a purging (n, k) fork-join queue removes

all remaining sub-tasks of a job from both sub-queues and service nodes once it receives

the job’s kth answer.

In the literature, this model is highly prevalent for performance modelling (e.g.,

estimating the sojourn time of jobs in the queues) of parallel and distributed systems.

Recently, it has been found effective for use in studying the delay performance of the

synchronization process of the vote-based permissioned blockchain systems [132]. A

typical non-purging (n, k) fork-join queueing model is illustrated in Fig. 2.8.

Even though few analytical results exist for fork–join queues, various approximation

solutions are known. An example is the linear transformation approach [150], which

can be used to approximately compute the sojourn time t(n, k) of a general non-purging
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Figure 2.8: A typical fork-join queueing model. All blockchain voting nodes are
homogeneous with the common service rate μ.

(n, k) fork-join queue for the vote-based blockchain system.

Fluid Queue for IOTA Tangle

In queueing theory, a fluid queue (also called fluid model) is a mathematical model

used to describe the fluid level in a reservoir, for which the periods of filling and

emptying are randomly determined. It can be viewed as a large tank connected to a

series of pipes that pour fluid into the tank and a series of pumps that remove fluid

from the tank. The capacity of this tank is typically assumed to be infinite. The fluid

level X(t) of this tank at time t is a random variable that can be calculated if the

fluid arrival and leaving rates are given.

This model was successfully used to describe the dynamic behaviour of the IOTA

tangle [133]. First, a fluid model was heuristically built based on some requisite

stochastic models and the assumptions on the transaction arrival rate. Through

solving the proposed delay differential equations system, the authors analyzed the

stability of conflicts, which impacted the performance in return.

2.3.3 Stochastic Petri Nets for Modelling DLT Consensuses

Another type of commonly used analytical tool for BFT-based consensus performance

modelling is stochastic Petri net (SPN), especially its variants generalized stochastic
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Petri net (GSPN) and stochastic reward net (SRN). Petri nets (PNs) are a type of

powerful mathematical modelling language used to model and simulate discrete-event

distributed systems. They are graphs consisting of two types of nodes: places and

transitions, which represent variables of system states represented by circles and

actions made by the system represented by rectangles. When the firing times of

all transitions are exponentially distributed (timed transitions), the model is called

SPN. Built on SPN, a GSPN allows transitions to have zero firing times (immediate

transitions) and inhibitor arc – an arc from a place to a transition that inhibits the

firing of the transition when the input place is not empty. According to the literature,

any GSPN model can be converted to an equivalent CTMC, and vice versa. At the

net level, an SRN substantially improves the modelling power of the GSPN by adding

guard functions, marking dependent arc multiplicities, general transition priorities,

and reward rates.

HLF V1.0+ adopts a highly modular architecture design by decomposing the

transaction process into three main stages as shown in Fig. 2.6. They can be also refined

into five phases, namely HTTP, endorsement, ordering, validation & committing,

and response [134]. HLF’s modular design makes it possible to separately build a

model for each phase and then cascade them to analyze the performance from the

net/system level. There have been two studies on HLF performance analysis using

GSPN [134] and SRN [135], respectively. Both follow these general steps: 1) clarify

transaction process steps and the business logic behind them; 2) create the associated

transition diagrams of Petri nets according to the corresponding rules under reasonable

assumptions; 3) translate to Markov chains for analytical solutions or directly leverage

mathematical tools for numerical simulation solutions. The second step is critical

because it bridges the real system to an analytical model and paves the way to solutions

for the performance indicators such as transaction throughput, latency, average queue

length and utilization. Here, we focus on the Petri nets’ transition diagrams of the

ordering phase from the two reviewed studies, as shown in Fig. 2.9.
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Figure 2.9: SPN models for ordering service in HLF V1.0+: (a) GPSN [134] (b)
SRN [135].

In Fig. 2.9 (a), the ordering service starts with taking endorsed transactions as

inputs under the assumptions of the exponentially distributed request arrival and

constant size of each transaction. The symbols in the figure are interpreted as follows:

Te is a transition signifying the arrival of an endorsed transaction. Pwait o is a place

signifying the transaction is queuing, the number of token #(Pwait o) denotes the

queuing length. N is the batch processing size in number of transactions. Pserve o is a

place signifying transactions are being ordered. Pidle o is a place signifying the server

is idle now, the number of token #(Pidle o) denotes the number of idle servers. Tin

is an immediate transition whose enable predicate is #(Pwait o) ¿ 0 & #(Pidle o) ¿ 0,

which means there are idle servers and queuing transactions. Pnext is a place signifying

the next processing phase.

Similarly, other phases can be modelled by following the same methodology. Con-

sequently, the proposed analytic system model based on GSPN indicates that the

HLF system is composed of multiple successive M/M/1 queue networks, and the

system throughput is equal to the lowest throughput of all those phases. Using a

tool embedded in Matlab named pntool, this system can be numerically solved to

determine the latency and throughput.
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The second part of Fig. 2.9 describes a simple SRN model for HLF ordering service

in a network with one client, two endorsers and one peer running the validation logic.

After the client receives a response from both endorsing peers, it sends the endorsed

transaction to the ordering service (transition TTx), specified by a token deposited in

place POS. When the number of pending transactions reaches block size (denoted by

M) or block timeout for general, a number of transactions are ordered into a block

(transition TOS). The block is delivered to the committing peers (place Tnext) for

validations, such as VSCC validation and MVCC validation. Finally, all successfully

validated transactions in the block are recorded into the local ledger. As for solving this

SRN model, one can use the simulation approach called Stochastic Petri net Package

(SPNP) [151] to numerically find answers for the following performance metrics.

• throughput: corresponds to the rate of each transition, using function rate() in SPNP

to capture. E.g., the rate of transition TLedger signifies the block throughput of the

system, which can be used to multiply by M to obtain transaction throughput.

• utilization: computed by the probability that the corresponding transition in SRN

is enabled, using function enabled(), or computed using reward functions for

transitions with function-dependent marking rate (such as TVSCC).

• mean queue length: obtained by the number of tokens in the corresponding phase,

using function mark(). E.g., the mean number of tokens in place POS indicates

the mean queue length at the ordering service.

2.3.4 Other Models in DLT Performance Modelling

Besides the stochastic models described earlier, there have been other analytical models

proposed for analyzing blockchain performance. For example, a prediction model [136]

derived from the core Ethereum’s structure called World State was proposed to provide

companies with a more accurate estimation of performance and required storage. By

analyzing the modified Merkle Patricia tree (MPT), which is the implementation of the
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World State in Ethereum, the expectation and the max tree height were derived as a

function of the total number of transactions n. These results linked to the performance

and storage, which were meaningful for decision making and early warnings. Another

study [137] adopted stochastic network models to analyze the overall block generation

rate for the PoW-based Ethereum. Through this model, the blockchain evolution and

dynamics can be captured and used to analyze the impact of the block dissemination

delay and hashing power of the member nodes on the block generation rate.

Random graph (also called Erdős-Rényi model) is a powerful mathematical tool first

introduced by Erdős [152] and Rényi [153] to model and analyze complex networks.

It has properties suitable for modelling the peer-to-peer overlay networks used by

blockchain systems [138]. There are two main variants of the Erdős-Rényi model.

One of them is Gp(N), which is a graph constructed by randomly connecting nodes.

Each edge is included in the graph with probability p independent from every other

edge. Shahsavari et al. [138] presented a random graph using Gp(N) to model the

Bitcoin blockchain network, where N is the total number of nodes, and p refers to the

independent probability that there exists a link between any two observed nodes in the

peer-to-peer overlay network. Based on the well-established random graph analysis

results, some key performance measures can be derived in terms of block dissemination

delay and traffic overhead.

2.4 Findings and Suggestions for Future Research

In this section, we summarize the main findings from previous evaluation sections.

First, we discuss the findings from the empirical and analytical evaluations. We then

take a look at the performance bottlenecks identified from all reviewed solutions.

Finally, we point out some open issues and provide suggestions for future research.
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2.4.1 Findings for Empirical Analysis

Performance metrics and workloads: The evaluated performance metrics can

be divided into two categories: macro (or overall) metrics and micro (or detailed)

metrics. Macro metrics provide an overview of the system’s performance for users

from the application level, such as transaction throughput, latency, scalability, fault

tolerance, transactions per CPU/memory second/disk IO/network data. The first

two metrics (transaction throughput and latency) are evaluated most frequently, over

all blockchains. Micro metrics depict the performance of different subprocesses of

transactions or specific layers in the blockchain abstract model for developers, such

as peer discovery rate, RPC response rate, transaction propagating rate, contract

execution time, state updating time, consensus-cost time, encryption and hash function

efficiency. Both macro and micro metrics are evaluated under well-designed workloads.

In blockchain performance benchmarking or monitoring frameworks, these workloads

have been designed to evaluate the performance of different layers of blockchain. Macro

workloads, such as YCSB, Smallbank, EtherId, Doubler and WavesPresale, are designed

to evaluate the application layer in blockchain. Micro workloads, such as DoNothing,

Analytics, IOHeavy and CPUHeavy, are designed to evaluate lower layers of blockchain,

including execution, data and consensus layers [26].

In general, there are two popular ways to generate workloads for experiment-based

performance evaluation. One is to construct a synthetic application with commonly

used functions (e.g., CreateAccount, IssueMoney and TransferMoney), and leverage

a client node to send requests of transactions (i.e., implemented functions) to a

blockchain system [107]. The other is to leverage HTTP performance testing toolkit

for generating requests, for example, using the loadtest library of Node.js to specify an

HTTP request as a JSON-formated object, and constructing workloads for blockchains

as separate JSON objects [106, 113].

Evaluated blockchains: HLF (v0.6 with PBFT and v1.0+ with BFT-SMaRt),
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private Ethereum (Geth with PoW and Parity with PoA/PoW) and Ripple with XRP

consensus are the most often comparatively evaluated blockchain platforms [26, 100,

107, 109]. Among them, HLF and Ripple can reach 1,000+ TPS within a small network

and outperform the Ethereum platforms in terms of throughput and latency, under

both macro and micro benchmark workloads. However, because of the underlying

consensus algorithms they use, both HLF and Ripple fail to scale beyond a certain

number of nodes in the network (e.g., 16 [26] for HLF v0.6). For HLF, it is well-

known that BFT-based consensuses (e.g., PBFT and BFT-SMaRt) rely on a leader

for processing transactions, which may act as a bottleneck and cause performance

limitations. For Ripple, a limited and fixed number of validators receive and process

numerous transaction requests, and finally fail to scale when the number of requests

goes beyond the capability of the validators. This conclusion is shared by a number of

early evaluation studies such as [26, 106, 107, 109]. Between the different versions of

HLF, its new release v1.0+ has better performance than v0.6 [90] across all evaluated

macro metrics such as execution time, latency, throughput and scalability. In addition,

another blockchain proposed for IoT (i.e., Tendermint) outperforms HLF V0.6 and

Ripple on both the throughput and the latency [113].

It is worth noting that we did not encounter any improvement solutions such as

off-chain, side-chain, concurrent execution and sharding in the evaluated blockchain

systems. In fact, many of the proposed solutions only exist at the conceptual stage at

the time of writing this survey. Some of them provide a brief comparative evaluation

and analysis under a specific use case for the purpose of proof-of-concept, but lack a

systematic evaluation in a meaningful manner to demonstrate their effectiveness and

efficiency.

Consensus finality: Consensus finality refers to the deterministic property of a

blockchain where a block is considered confirmed once it is appended to the ledger.

BFT-based blockchains are all with consensus finality, while those PoW-based are

usually not. This property has a direct impact on the transaction latency. For
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example, Bitcoin usually requires six successive confirmations as a secure finality that

a transaction will not end up being pruned and removed from the blockchain, which

makes the latency reach an unacceptable time of almost one hour. In contrast, HLF

with BFT-based consensuses can finalize a transaction within seconds right after it is

appended to the ledger. Therefore, BFT-based blockchains have an obvious advantage

over PoW-based blockchain systems in terms of performance.

2.4.2 Findings for Analytical Modelling

Performance modelling strategies: Most models neglect information propagation

delays in the network and simply collapse the whole network into a single node that

provides service to process and confirm transactions. These models are usually queue

systems that provide bulk services such as M/MB/1 and M/GB/1 queues. Only a

small portion of models consider the system as separate disjoint nodes and take the

network latency among network nodes into consideration. They aim to calculate

system end-to-end output (e.g., delays) using queue networks or by cascading different

queues such as M/G/1 and M/M/1 together to model the blockchain network.

An (n, k) fork-join queue combines both modelling strategies. It first regards the

system as a single server when the system receives a job request. Then, it splits the

job into several sub-tasks for independent and simultaneous processes on different

network nodes. In the joint phase, process results are collected from different nodes

to finish the original job (e.g., block validation).

2.4.3 Identified Performance Bottlenecks

From the perspective of users or managers, performance evaluation results can be used

for decision making on blockchain system selection. Developers and system designers,

on the other hand, may care more about the identified bottlenecks rather than the

comparison results. They can analyze these bottlenecks and propose solutions for

further performance optimization. All bottlenecks identified in the reviewed papers
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are listed in Table 2.7.

Table 2.7: Identified performance bottlenecks for different blockchain systems

Blockchain Bottlenecks Identified Evaluation Approaches Latest State

Ethereum
v1.5.9

peer discovery, transactions
propagation, consensus-cost

Monitoring [89] Unresolved

Geth v1.4.18 consensus protocols Benchmarking [26] Unresolved

HLF v0.6.0 consensus protocols Benchmarking [26] Unresolved

Parity v1.6.0 transaction signing Benchmarking [26] Unresolved

HLF v1.0

endorsement policy verification,
sequential policy validation of

transactions in a block, and state
validation and commit (with

CouchDB)

Experimental analysis [92]
Resolved (HLF

v1.1)

Byteball
data storage which is a relational

database
Benchmarking [84] Unresolved

HLF v1.0
no parallel transaction processing

on the committing peer
Experimental analysis [84] Unresolved

HLF ordering service Experimental analysis [95] Unresolved

Private
Ethereum

module responsible for reading
and writing data

Experimental
analysis [108]

Unresolved

Private
Ethereum

consensus mechanism
Experimental
analysis [109]

Unresolved

HLF consensus mechanism
Experimental
analysis [109]

Unresolved

HLF v1.0+
transmission from client to the
ordering service and ledger write

Analytical modelling [135] Resolved

HLF v1.2

committing phase if the number
of transactions in a block is small
and endorsement phase if it is

large

Analytical modelling [134] Unresolved

As we can see, most bottlenecks are still unresolved. This means that corresponding

effective solutions to solve the performance problems have not yet been found. Another

observation is that most bottlenecks are identified by empirical analysis, which can

be attributed to two reasons. First, there are more empirical analyses conducted

than performance modelling. Second, due to the involved mathematical expressions,

analytical modelling is much more difficult than experimental solutions in exploring

the impact of design parameters. In blockchain performance modelling, even one

simple extra parameter can significantly increase the model complexity. Therefore,

empirical analysis becomes more efficient and popular in bottleneck identification than

its modelling counterpart.

60



2.4.4 Open Issues and Future Directions

As a fundamental component of blockchain research, performance evaluation plays an

important role in boosting blockchain applications. Although numerous blockchain

improvements have been proposed and implemented, only a small number of them have

been well evaluated. The evaluation methods also need more analysis and explorations.

Here, we identify some open issues and suggest potential directions for future research

in this area.

• For empirical analysis, difficulties lie in comparative evaluation among different

blockchain platforms, especially for those with very different consensus algorithms

and data structures. The main reason is the lack of interface standards in running

workloads. For example, when evaluating blockchain platforms for IoT such

as HLF 1.0, Ripple and IOTA, it is difficult to design a common interface for

uploading workload. Since smart contracts are not supported by Ripple or

IOTA, one solution is to design an equivalent workload such as transferring

a unity amount from account A to another account B [106]. However, this

approach has limited extensibility, and requires to deploy a dedicated workload

for each blockchain under evaluation. Thereby, there is a great potential for

future research to develop more extensible tools for comparative evaluation of

blockchain platforms.

• Many methods of experimental analysis rely on RPCs to communicate with

blockchain consensus nodes and collect transaction statistic data (e.g., the total

number of confirmed transactions of certain duration). Although the RPC API

protocols (e.g., gRPC and JSON-RPC) claim to be efficient, they still induce

extra overhead onto the consensus peers [89], which is counted as the peer

consumption and in turn makes the evaluation results inaccurate. Therefore, a

more light-weight and low-overhead data collection approach, such as log-based

approach [89], deserves more attention in the future.
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• RPC methods are widely used for data collection in empirical performance

evaluation of blockchain systems. For micro metrics and micro workload design,

it is challenging to decouple the impact from other layers. For example, two

queries on transaction values are designed to evaluate the data model performance.

For Ethereum, both queries can be easily implemented via invoking JSON-RPC

APIs. However, for HLF, a chaincode (VersionKVStore) must be implemented

as there are no APIs to query historical states in the system. Inevitably, this

involves execution of a smart contract making the evaluation inaccurate by

adding extra overhead. Therefore, for detailed evaluation of performance metrics

in specific blockchain abstraction layers, it is an open issue to design a reasonable

workload that alleviates the impact of other layers and improves accuracy.

• Besides the classic blockchain systems such as HLF and Ethereum, there is an

urgent need for evaluating the performance of their proposed improvements. For

example, sharding claims to be a promising solution and has been implemented

in many blockchains. However, there is no evaluation work for comparing

different shard-based blockchain systems. Different solutions, such as sharding

v.s. DAG and off-chain v.s. side-chain also need to be comparatively evaluated.

In addition, it would be beneficial to combine empirical and analytical approaches

in blockchain performance evaluation in the future.

2.5 Conclusion

As blockchain has matured to receive more and more attention, its performance

problems (e.g., low throughput and high latency) have became critical. To resolve these

issues, there have been many improvements proposed, from system level optimization

to new efficient consensus protocols. However, such blockchain modifications need to

be evaluated in a meaningful manner to demonstrate their performance advantages.

In this work, we present a systematic survey covering existing blockchain performance
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evaluation approaches. From the high level perspective, they can be categorized into

empirical and analytical evaluation methods.

The empirical analysis can be further divided into four groups: performance

benchmarking, monitoring, experimental analysis and simulation. Three popular

benchmark frameworks (i.e., Blockbench, DAGbench and Hyperledger Caliper) are

introduced and comparatively analyzed. Performance monitoring is recognized as the

best solution for performance evaluation of public blockchain.

Analytical modelling approaches are more powerful than empirical solutions espe-

cially for analyzing the consensus layer of blockchain system. There are three main

types of modelling approaches compared in this survey: Markov chains, queueing

models and stochastic Petri nets. This comparison can provide directions for selecting

blockchain evaluation approach suitable for given purpose.

We also summarized the results of surveyed performance evaluation studies and

identified the bottlenecks of major blockchain platforms. The survey concludes with

identification of open issues and ascertainment of future research directions in this

important area.
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Chapter 3

Performance Analysis of the IOTA
DAG-based Distributed Ledger

Distributed ledgers provide many advantages over centralized solutions in IoT projects

including but not limited to improved security, transparency, and fault tolerance.

In order to leverage distributed ledgers at scale, their well-known limitation, i.e.,

performance, should be adequately analyzed and addressed. DAG-based distributed

ledgers have been proposed to tackle the performance and scalability issues by design.

The first among them, IOTA, has shown promising signs in addressing above issues.

However, due to the uncertainty and centralization of the deployed consensus, current

IOTA implementation exposes some performance issues, making it less performant

than the initial design. For example, the conflict resolution that solely relies on a

random walk algorithm leads to a linearly increasing number of abandoned transactions

and creates the need for a large number of reattachments. In this work, we first extend

an existing simulator to support realistic IOTA simulations and investigate the impact

of different design parameters on IOTA’s performance. Then, we propose a layered

model to help the users of IOTA determine the optimal waiting time to resend the

previously submitted but not yet confirmed transaction. Our findings reveal the

impact of the transaction arrival rate, tip selection algorithms (TSAs), weighted TSA

randomness, and network delay on the throughput. Using the proposed layered model,

we shed some light on the distribution of the confirmed transactions. The distribution
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is leveraged to calculate the optimal time for resending an unconfirmed transaction to

the distributed ledger. The performance analysis results can be used by both system

designers and users to support their decision making.

3.1 Introduction

Distributed ledger technologies (DLTs), with features such as being decentralized,

secure and trust-free, have obtained a lot of attention from both industry and academia

to overcome a number of problems in IoT systems. They are essentially distributed

systems, acting as a distributed database for storing and sharing data across all nodes

in a network. Based on different usage contexts, various types of data, including

transaction records (e.g., Bitcoin [154]), contracts [19], and even personal healthcare

information [45], can be stored on a distributed ledger (DL) system. According to a

recent survey [155], there are about 58 industries (e.g., law enforcement, ride-hailing

and stock trading) that could be transformed by DLTs in the future. Clearly, DLT

is potentially an effective solution to overcome the data management and security

challenges in IT systems. However, various technical details, such as the consensus

algorithms and the underlying data structure have a great impact on the performance

of DLTs.

Among many different types of DLTs, directed acyclic graph (DAG) is considered

to be the answer to the low latency, high throughput and scalability challenges in

applications such as M2M micro-payment [20]. Within DAG, transactions can directly

be attached to a graph without waiting to be wrapped into a block like in a standard

blockchain system. Moreover, all newly added transactions can simultaneously run

on different chains, making the performance much higher than a single chain. By

contrast, traditional blockchain systems, such as Bitcoin [154], Ethereum [156] and

Hyperledger [93], first need to put transactions into a container called block, and then

linearly process the block; this will result in low performance. For example, in Bitcoin,

it takes on average 10 minutes for a transaction to be confirmed. For the sake of
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security of large transactions, it is usually recommended that the merchants wait for

confirmation of at least six blocks, which implies one hour to complete a transaction.

To avoid forking, the block generation rate is limited, thus dramatically limiting the

transaction throughput, e.g., 7 transactions per second (TPS) in Bitcoin [154] and 20

to 30 TPS in Ethereum [156], which can hardly support the needs of IT systems in

practice. Therefore, DAG-based DLs under well-designed consensus are theoretically

more performant than traditional blockchains.

From the perspective of quality of service (QoS), service-level agreement (SLA) and

blockchain as a service (BaaS) [157], the transaction throughput, average waiting time

(transaction delay) and system scalability are extremely important for a DL system and

user experience [96]. This is because these metrics reflect the transaction processing

capacity, usability and extensibility of a DL system. In particular, transaction

throughput, expressed as TPS at the network level, refers to the rate at which valid

transactions are stored by the ledger in a defined time period [158]; transaction delay

describes a network-wide view of the time taken for a transaction to be valid across the

network since it has been issued [158]; and system scalability determines if the ledger

can handle a growing amount of TPS as more resources (e.g., CPU, RAM, or nodes)

are added to the existing network. As a counterpart to the traditional blockchain, the

DAG-based IOTA claims to be scalable and to provide high throughput because of its

innovative data structure and efficient consensus design. In our previous work [159],

we designed an energy transactive system for smart communities using IOTA and

explored the system scalability. Based on our experiments and analyses, we showed

that the proposed system was scalable and effective for IoT use cases. In this work, we

focus on the system performance, including throughput and transaction reattachment

waiting time, of DAG-based DL in the same IoT scenario presented in [159].

Here, confirmation or confirmed means that the transaction gets enough proofs or

validations to be trusted and included in the ledger. This is the target state for every

normal transaction. Validation is an examination process including amount, signature
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and time check, which is conducted by peers in a peer-to-peer network. We use

the terms throughput and CTPS ; validation, approval and reference interchangeably

throughout this chapter.

From a system designer’s perspective, it is vital to know the transaction processing

capacity of the underlying DLT network. Also, from the users’ point of view, it is

critical to know about the optimal time that they need to wait before reattaching the

transactions, if they have not been confirmed yet. If the waiting time is too short,

the premature redundant transactions cause network congestion; if the waiting time

is too long, the user experience declines as does the system throughput. Either way

leads to a poor system efficiency. In this work, we strive to answer two vital research

questions about the performance of a private IOTA network:

RQ1. From the system designer’s perspective, which factors influence the through-

put of an IOTA system? And how, quantitatively, do they impact the through-

put?

RQ2. From the user’s perspective, what is the optimal waiting time for confirmation

before resubmitting the same original transaction?

To address the above questions, we perform the following steps:

1. Like other empirical analysis approaches [160] [161], we first study the system

throughput by leveraging and extending the DAG-based DL simulator for

simulating IOTA to identify significant factors such as transaction arrival rate

(λ), different TSAs, weighted TSA randomness parameter (α), and network

delay reflected by distance (D).

2. To find a pattern or relationship between the throughput and design parameters,

we statistically analyze the performance data obtained from different configu-

rations and parameter settings to identify potential influence factors for both
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simulations and experiments. Here, experimental data are used to validate the

simulation results and then collectively to answer RQ1.

3. We decompose the transaction confirmations into layers to explore the confirma-

tion process in a fine-granular fashion. This way, we have a better understanding

of transaction confirmation time with more details on how confirmations are

distributed; provided that, we obtain a reasonable estimate for RQ2.

The key contributions of this work can be summarized as follows:

• It describes an extension of the DAGsim simulator [2], a simulation tool of DAG-

based distributed ledger protocols, to support the currently running consensus

on the public IOTA network.

• It provides abundant experimental evidence on how different design parameters

influence the IOTA performance, and fills a gap in existing research on the

optimal reattachment waiting time.

• It proposes a layered model to analyze the confirmed transactions’ distribution in

IOTA, providing a potential approach to investigate other DAG-based distributed

ledgers, such as Byteball [24] and Nano [25].

The background information about distributed ledger technologies can be found in

Section 1.2. Moreover, a detailed overview of existing work on DL system performance

evaluation, including simulation and analytical models can be found in Chapter 2. The

remainder of this chapter is organized as follows. Section 3.2 presents the background

information on IOTA. In Section 3.3, we empirically analyze IOTA’s performance

through simulations to answer RQ1. In Section 3.4, we propose an analytical layered

model to explore the distributions of confirmed transactions in IOTA, and leverage

the proposed model to answer RQ2. The experimental results and main findings are

also presented in these two sections. Finally, Section 3.5 concludes this work and

states some potential future directions of research.
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3.2 Background

In this section, we provide a brief introduction on the technical details of IOTA which

is the focus of this study. For more information on distributed ledger technologies

refer to Section 1.2.

IOTA is a DAG-based open-source value transfer platform designed for the Internet

of Things. It is currently the most popular representative of DAG ledgers. This section

briefly introduces the basic concepts and consensus mechanism of IOTA.

In the current IOTA network, nodes can be classified into two groups: full node

and light node. A full node maintains an entire ledger; it receives and validates

transactions by running an IOTA reference implementation (IRI) instance in the

background. A light node sends transaction to a full node for services, acting as a

client. There is another special participant called Coordinator, which is maintained

by the IOTA Foundation and acts as a “finality device” to confirm transactions by

periodically generating zero-value transactions, called milestones.

All transactions are linked together via a reference relationship to form a DAG (see

Figure 3.1), called Tangle in IOTA. A transaction is the fundamental operation unit

that can stand alone. A tip is a newly issued but not approved/validated transaction.

Each transaction has its own weight and a cumulative weight. The weight reflects

the computation resource that a sending node puts into this transaction. In order to

issue a new transaction, a node must select two tips to validate. Once the validation

is finished, this node will attach the issued transaction to the selected tip. This

attachment is called a reference. At the same time, the newly issued transaction

adds its own weight to all the predecessors’ cumulative weight. For example, all the

referenced transactions’ (v1 to v9) cumulative weights in Figure 3.1 will add one after

v10 is attached to the Tangle.

To find a good balance between punishing lazy behavior and not leaving too

many tips behind, IOTA recommends a sampling approach named weighted Markov
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Figure 3.1: An example of DAG in IOTA. “w” stands for weight and “W” stands for
cumulative weight.

chain Monte Carlo (MCMC) random walk or weighted MCMC to select two tips.

For example, the selected tips in Figure 3.1 are v9 and v8, with the random walk

paths (v1, v3, v6, v7, v9) and (v1, v2, v4, v5, v8), respectively. This approach leverages

equation 3.1 [1] to calculate the probability of choosing the next particular approver

in a random walk.

P xy =
eαHy

∑
z:z�x e

αHz
(3.1)

where P xy is the probability to walk from transaction x to y, Hy is the cumulative

weight of y, and z � x means z directly approves x. Therefore, in the random walk

step, a transaction with higher cumulative weight has a much higher probability to

be selected and approved. In other words, the probability of walking from x to y

increases exponentially with the cumulative weight of y, multiplied by α. Here, α is a

parameter regulating the strength of the bias in the weighted random walk. A higher

α-value means that heavier tips are favoured when attaching new transactions to the

DAG. If we set α to zero, the random walk is called unweighted MCMC. If we set α to

a very high value, we get the super-weighted walk. We can also use a uniform random
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tip selection (URTS) approach to select two from all available tips for comparison.

In IOTA, there are two consensus mechanisms: Coordinator and Coodicide [162].

The former is the currently running consensus, while the latter is still under develop-

ment. With Coordinator, IOTA leverages the above discussed weighted (or biased)

TSA to deal with conflicts and simply considers a transaction as confirmed if and

only if it is referenced by a milestone. In this consensus, an issued transaction will

continuously get approved/validated by peer nodes until it eventually gets confirmed.

The more references a transaction gets, the more trustable and acceptable it becomes.

As such, it has a higher probability to be referenced (indirectly) by the next coming

milestone, and thus confirmed. With Coordicide, IOTA proactively resolves conflicts

and reaches consensus through voting mechanism rather than the weighted MCMC

TSA [162].

3.3 IOTA Performance Simulation

All research described in this contribution has been conducted within the context of a

private IOTA network designed for smart communities. Two approaches, a simulation

and an analytical layered model, are proposed to answer two different performance

questions, i.e., system throughput and reattachment waiting time (RWT), respectively.

In this section, we focus on IOTA performance simulation, while in the next section

(Section 3.4), we discuss the layered model to explore the confirmation distributions

in IOTA.

To conduct the simulation, we leverage and extend the DAGsim simulator [2],

which is an asynchronous, continuous time, and multi-agent simulation framework for

DAG-based distributed ledgers. In addition to the analysis of simulation results, we

run experiments in a private IOTA network to validate the results.
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3.3.1 Performance Metrics

Throughput. The throughput is defined as the confirmed transactions per second

(CTPS), which represents the transaction processing power of the system. As for

the definition of confirmation, it depends on the consensus used in the system, see

Section 3.2 for details. Particularly, we choose COO as the consensus throughout this

study to make it more practical, because this is the currently running consensus in

IOTA.

Reattachment Waiting Time. Similar to a blockchain system, it may take seconds

or minutes for a transaction to eventually be added to the IOTA ledger. In our system,

latency is defined as the time between a transaction’s arrival request at a full node and

its confirmation. Based on this definition, each client wants a lower latency under the

same security conditions. Sometimes a transaction may not get confirmed for a long

time, causing high latency. It is also possible for a transaction to remain unconfirmed

for a long time and be abandoned eventually. In these cases, the transaction should be

reattached to a new position in the Tangle. Reattachment is the process of issuing the

same original transaction to a new position in the Tangle, to increase the confirmation

probability and decrease the latency. We define the time between two attachments

as the Reattachment Waiting Time (RWT). Reattachment requires performing PoW

and tip selection again for determining the two new tips to be attached. So, too short

RWT will not only waste power, but also cause network congestion due to the amount

of redundant transactions. On the other hand, a long RWT will dramatically increase

confirmation latency and decrease user satisfaction.

To explore the influence of some impact factors to the first IOTA performance metric,

transaction throughput, an empirical study is conducted through simulations. These

factors include transaction arrival rate λ, TSAs, network latency d and randomness

parameter α of the weighted MCMC TSA. For other tested parameters such as network

size, PoW difficulty and the number of Coordinators, refer to our previous work [159]
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for details. Before presenting simulations, we first talk about the simulation tool.

3.3.2 IOTA Simulator Extension

COO consensus, based on the DAGsim simulator [2], has been developed by the

authors to perform the simulations. The original DAGsim only supports consensus

without COO, no milestones are generated in between regular transactions. We

extended this simulator to support COO consensus. Then, we configured the extended

DAGsim to generate and broadcast milestones to the network every 60 seconds, just

like the current running IOTA Tangle. The generated milestones are acting exactly

like regular transactions, but with the capability to confirm transactions. When we

want to check whether a transaction is confirmed or not, we check if it is directly or

indirectly referenced by a milestone. Our extended version of DAGsim is available

publicly1.

In the original DAGsim simulator, for each transaction, we only have access to the

transactions that are directly referenced by this transaction in the simulation data.

However, we also need indirect references when using COO consensus. To fetch this

information, we propose a recursive solution named Indirect References Extraction

Algorithm (IREA) shown in Algorithm 1.

It utilizes a recursive function to find the transactions directly referenced by the

input transaction. According to the random walks, we know that there are always two

(or at least one if the walks overlap) transactions directly referenced by any issued

transaction. These two transactions are added to a list, and the recursive function

is run again for each of them. This goes on until the genesis,i.e., the first block, is

reached or a transaction that is already in the list is encountered. By running this

algorithm, all transactions confirmed by a milestone can be found from the simulation

data and, subsequently, the throughput (CTPS) can be calculated.

1https://github.com/pacslab/iota simulation
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Algorithm 1: Indirect References Extraction Algorithm

1 indirect references ← empty
2 Function find references(tx, direct references):
3 APVD 1 ← The 1st transaction approved by tx
4 APVD 2 ← The 2nd transaction approved by tx
5 if tx is genesis then
6 return
7 else if tx is in indirect references then
8 Append the new TXs to indirect references
9 return

10 else
11 if APVD 1 is not in indirect references then
12 Append APVD 1 to indirect references
13 end
14 find references(APVD 1, direct references)
15 if APVD 2 exists then
16 if APVD 2 is not in indirect references then
17 Append APVD 2 to indirect references
18 end
19 find references(APVD 2, direct references)

20 end

21 end

3.3.3 Simulation Setup and Results

To collect the simulation data, we run a group of 10 simulations with 6000 transactions,

20 agents, d=1, α=0.001 and λ varying from 1 to 10 with step=1, see Table 3.1.

This is a base-line configuration which we use to explore the influence in comparison

with other configurations. Then, we run 5 simulations by only changing λ varying

from 10 to 30 with step = 5 and transactions from 3,000 to 9,000 with step=1, 500

to explore higher rates scenarios. In total, over 90,000 transactions are simulated.

In all simulations, λM is set to be 1/60, i.e. one Milestone is issued to the Tangle

every minute, because this is the setting in current running IOTA main net; for each

simulation, transactions is set to 6,000, so that at least 10 Milestones (namely 10

replicas) are ensured for each λ configuration. The simulations are conducted on

a DELL PC with Windows 10 OS, 8th Generation Intel CoreTM i7-8700 12-Core

Processor and 16GB RAM.
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Table 3.1: Default parameter configurations

Parameter Simulation Configurable Experiment Configurable

λa 1∼10 � 1∼10 �

αb 0.001 � 0.001 �

TSAc MCMC � MCMC �

dd 1 � ≈1 ms �

agents 20 � 20 �

transactions 6000 � NA �

COOTick 60 s � 60 s �

a 1∼10 are explored in both; 15, 20, 25, and 30 are explored in simulation.
b 0.001, 0.01 and 0.1 are explored in both simulation and experiment.
c weighted MCMC, unweighted MCMC and URTS are explored in simulation.
d 1, 5 and 10 are explored in simulation.

After simulations, the proposed IREA is used to extract the transaction confir-

mations data and conduct a statistical analysis on the data. The result provides an

almost linear relationship between CTPS and λ, as shown in Figure 3.2a, in which all

CTPS values are obtained by averaging over all confirmations of 10 replicas.

In order to examine the impact of different TSAs on CTPS, we conduct two more

groups of simulations (10 simulations in each group) on the unweighted MCMC and

URTS strategies, respectively. In the weighted MCMC random walk, to explore the

influence of the randomness factor α on CTPS, we conduct 2 groups of simulations

with α=0.01 and 0.1, respectively. In addition, different network delays indicated as

distances are examined, i.e., d=1, 5 and 10, respectively. For each group of simulations,

the value of λ is varying from 1 to 10 with step = 1 (refer to Figure 3.2b, Figure 3.3a

and Figure 3.3b).

As can be seen in Figure 3.2b, there are almost no differences for CTPS under

different TSAs, i.e., weighted, unweighted and URTS. This is because when α is set

to the default value 0.001, there is sufficient randomness in tip selection random walk.

Nevertheless, the α values have an obvious impact on CTPS in weighted random walk.
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Figure 3.2: Simulation results: CTPS over λ under influence factors (a) λ only (b)
TSAs.

As can be seen from the Eq. 3.1, larger α will increase the probability to select heavier

tips so that most new coming transactions will always be attached to the heaviest path.

It shows that as α increases from 0.001 to 0.01, there is no big difference on CTPS;

but when α raises to 0.1, both CTPS and its increase rate decrease dramatically. In
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Figure 3.3: Simulation results: CTPS over λ under different influence factors (a)
randomness α (b) distance d.

more extreme case, CTPS even keeps flat when α is set to a big value, e.g., 10 [163],

which implies a linked chain rather than a DAG in IOTA.

However, different distances which simulate the network delay of IOTA do not

tell much difference in general as shown in Figure 3.3b, which means that network
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delays have a limited influence on throughput under the examined situations. This

can be explained as follows. On one hand, compared to the time spent on PoW and

transaction validation, network delay only takes a very small portion of the whole

transaction life from being sent to getting confirmed. On the other hand, all examined

d values remain quite low, which further weakens their influence on the performance.

3.3.4 Parameter Analysis

To discuss how λ influences IOTA’s performance, we model the IOTA system as a

single-server network with first-come-first-served (FCFS) servicing policy. The service

rate of this network refers to the maximum transaction processing capacity μ, which

can be obtained from the load test in practice. In most simulation settings, the

actual transaction throughput (denoted as X) keeps a near-linear growth against the

transaction arrival rate λ, i.e., X = k · λ. This trend continues until λ is larger than

μ. As transactions are continuously issued and confirmed, the throughput should be

the same as the arrival rate when λ < μ in this single-server network model. However,

since there is a probability that an issued transaction will be eventually abandoned or

orphaned under the random walk TSA, the actual transaction throughput becomes less

than λ. In addition, more transactions get abandoned in high load (see Figure 3.2a).

Therefore, λ dominates the growth of the transaction throughput when λ < μ, while

there is an obvious difference between λ and the actual transaction throughput due

to the abandoned transactions. This difference is determined by the transaction

attachment mechanism, namely TSA in the Tangle.

Different TSAs affect the growth of Tangle through impacting its properties such

as the number of tips, transaction’s cumulative weight and the time until the first

approval [122]. The simplest TSA is the URTS, which selects a tip from the set

of all available tips in a uniform random manner. Another strategy is MCMC (see

Section 3.2), which is a sampling approach based on a random walk starting from

an entry point in the Tangle towards a tip. If the random walk is biased to a more

78



weighted transaction in each step, we call it weighted MCMC ; if there is no bias in

random walks, we call it unweighted MCMC. Since the URTS and unweighted MCMC

do not encourage to validate more weighted or honest transactions to build a main

DAG, they leave vulnerabilities for attackers to build a parasite chain where double

spending attacks can be launched (see [122] for details). Therefore, they are not secure

against parasite chain attacks [122], and should be only treated as tools to study the

Tangle rather than applied in production. To address this problem, IOTA employs the

weighted MCMC (see Section 3.2) as its TSA to encourage new transactions verify

honest tips and to achieve consensus. The bias level is controlled by a randomness

parameter α. Theoretically, the greater the value of α, the greater the probability that

the random walk will choose a more weighted tip in each step. Thus, the DAG is more

secure by always expanding on the main chain. However, there are more abandoned

honest transactions in this case, which will impact the transaction throughput.

We can observe that the Tangle performs almost the same on throughput under

URTS and MCMC with α = 0, 0.01 in Figure 3.2b, as well as the weighted MCMC

with α = 0.001 in Figure 3.3a. They all have sufficient randomness to ensure that

every tip has a chance to be selected, leaving less abandoned transactions in the

Tangle. But, the throughput drops significantly when α = 0.1 in Figure 3.3a, where

more honest transactions are abandoned because of the biased tip selection strategy.

Therefore, it is an interesting research topic to find the optimal α, or propose more

TSAs (e.g., hybrid TSA [164] and first order biased random walk [165]) to tackle the

trade-off problem between security and efficiency of the Tangle. In addition, the time

complexity of URTS is O(n), while both weighted and unweighted random walk TSAs

have O(n2) time complexity.

Even though the network delay has a very limited influence on throughput compared

to on transaction latency, we can observe a drop on the throughput as the delay

increases in Figure 3.3b. In the IOTA network, an IRI node relies on TCP/IP to

broadcast transactions and synchronize local ledger to its neighbors. High network
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delay will cause asynchronization problem among different local ledgers on the nodes.

This asynchronization will further decrease the number of new tips from a delayed

node’s view. Since the weighted MCMC prefers new tips, more delayed transactions

will get older and eventually abandoned as the network delay increases. Thus, the

transaction throughput decreases.

3.3.5 Experimental Validation for Simulation

To validate the simulation , we conduct three groups of experiments on a medium-sized

network, with the α configurations of 0.001, 0.01 and 0.1. For each α, the total λ values

vary from 1 to 10 with step = 1, with other parameters remaining default as shown

in Table 3.1. We employ IOTA Implementation Reference2 (IRI 1.6.1) with Docker

to deploy a private network of 20 nodes on the SAVI OpenStack cloud platform3.

Each node is a virtual machine with the flavor of medium size, see Table 3.2 for

configuration details. The open-source Compass4 provided by the IOTA Foundation

is used as the COO to generate milestones and confirm transactions in the Tangle.

The COO is set to generate a milestone every 60 seconds, just as the simulations.

Table 3.2: Experimental environment

Network Nodes Number CPU RAM Disk

IRI Node 20 2 VCPU 4GB 40GB HD

Client Node 1 4-Core i5 8GB 256GB SSD

To better control the transaction arrival rate λ and avoid the impact of PoW to λ,

we bring all PoW to a PC client with configurations shown in Table 3.2. We run all

experiments with the transaction requests in a Poisson process, i.e., the transaction

inter-arrival time follows an exponential distribution. The socket ZeroMQ5 is employed

2https://hub.docker.com/r/iotaledger/iri
3https://www.savinetwork.ca
4https://github.com/iotaledger/compass
5https://docs.iota.org/docs/client-libraries/0.1/how-to-guides/python/listen-for-transactions
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to listen and receive transaction data. To simplify the problem, we only send zero-value

transactions.

In total, 151,104 confirmed out of around 169,701 generated transactions are

collected from the three groups of experiments. More details on experimental and

simulation results can be found in [166]. Then, we compare the experimental data

with the previous simulation data on λ and α to examine the validity and accuracy of

the simulation.

Figure 3.4: Experimental and simulation results comparison: λ only.

First, we compare the CTPS values of simulation and experiment under varying λ

1∼10 by keeping other parameters as default (see Table 3.1) to calculate the percent

error. As we can see in Figure 3.4, (1) both the simulation and experimental CTPS

results increase almost linearly as λ values increase, implying a good scalability; (2)

they match well to each other with an average percent error of 5.3%. Here, the percent

error is calculated from the following equation,

Percent Error =
|CTPSexp − CTPSsimu|

CTPSexp

∗ 100% (3.2)

Second, we compare the simulation and experimental results in terms of different
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α values. As can be seen in Figure 3.5, simulation and experiment are well in tune

for the two values of α. The average errors are 8.7% and 9.8%, respectively. Having

the average errors below 10%, we assume that the simulation data can effectively and

accurately capture the Tangle behaviour in real world.

(a)

(b)

Figure 3.5: Experimental and simulation results comparison under different α values:
(a) α=0.01 (b) α=0.1.

82



3.4 Analytical Layered Model

The previous simulation explored some CTPS influential factors, identified the most

important one and provided a quantitative relationship between CTPS and λ (i.e.,

linear relationship). However, it is difficult to describe more details such as how these

confirmations are distributed in the Tangle, which keeps the second question about

reattachment waiting time still unanswered. Therefore, we propose a layered model to

explore the confirmation distributions in each single graph layer.

3.4.1 Model Description and Solution

In the IOTA Tangle, we define a layer as all the confirmed transactions with the same

depth from a Milestone in a hierarchical architecture, as shown in Figure 3.6. In

the case of two different transactions referencing the same transaction with different

depths, we take the minimum layer index as the layer depth for this transaction. For

example, in Figure 3.6, transaction 5 holds references from both 1 and 4, which are

from different layers, Layer1 and Layer2. In this case, we assume that 5 is located in

Layer2 rather than Layer3. With respect to this layering decomposition and using

previously mentioned simulations data set with over 90,000 transactions, we extract

the transaction confirmations number in each layer of the DAG, as shown in Figure 3.6.

After plotting the confirmed transactions over layer number for each λ, we observe

a lot of bell-shaped curves, such as the blue dot “Data” curve shown in Figure 3.7,

which points us to the nonlinear models fitting, e.g., Gaussian Model. Therefore,

after taking the average confirmations of all milestones for each λ, we strive to fit our

simulation data as a nonlinear model to characterize the relationship.

In total, for each λ we use 45 nonlinear models to fit our data in CurveExpert6. The

results show that under all λ values except for λ=1, the Gaussian Model outperforms

others and is always listed in top 3 models, as we can see from the example of λ=10

in Figure 3.7. In our fitting, we use the target data set under various λ values by

6https://www.curveexpert.net
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Figure 3.6: Layered model for transaction confirmations.

taking the mean layered transactions of milestone 5, 6, 7, 8 and 9, by getting rid of

the potential warming up and cooling down phases. The fitting results of Gaussian

Model are listed in Table 3.3.

Table 3.3: Gaussian model fitting results for different λ values

λ 1 2 3 4 5 6 7 8 9 10

Correlation Coefficient 0.934 0.988 0.987 0.982 0.992 0.997 0.984 0.996 0.990 0.991

Standard Error 0.864 0.909 1.274 2.271 1.911 1.476 3.469 2.242 3.733 4.146

a 7.598 16.561 22.439 32.087 40.232 49.378 51.804 66.691 71.021 81.009

b 7.944 8.360 8.976 9.172 9.726 9.390 10.169 9.745 10.298 9.722

c 4.246 3.517 3.742 3.656 3.296 3.298 3.859 3.296 3.536 3.283

AMUB* 13.600 15.000 15.600 16.800 16.400 16.200 17.600 17.000 17.400 16.600

CIUB+ 16.265 15.252 16.310 16.337 16.187 15.854 17.733 16.205 17.229 16.156

*Actual Mean Upper Bound, +Confidence Interval Upper Bound

By checking the values of Correlation Coefficient, we carefully claim that the mean

confirmed transactions located at different layers can be fitted as a Gaussian Model.

So, we have the number of confirmed transactions to be a Gaussian function of layer

x,

f(x) = ae−
(x−b)2

2c2 (3.3)

Here, b has an almost linear increase trend as λ increases, while c almost remains the

same from our simulation data in Table 3.3. This indicates that all examined Gaussian
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Figure 3.7: Simulation data and fitted models for λ=10.

Models have a very similar shape, and the next random confirmed transaction is

expected to be located at a deeper layer in the Tangle with higher λ values. Theorem 1

summarizes our finding.

Theorem 1 If a transaction remains unconfirmed more than 2/λM seconds after

being submitted, the probability that it gets confirmed afterward is sufficiently low.

Proof. Let layer index be the discrete time dimension, then the Confidence

Interval (CI) of Gaussian models can be used to estimate the length of time to wait

before reattaching transactions. First, let us look at the Upper Bound layers in our

model. If we take a CI of 95%, the critical value (Z-value) for this CI is 1.96, where

(1− 0.95)/2 = 0.025. In our case, this means that there is a very small probability

(2.5%) for a confirmation to happen after a specific Upper Bound layer. The layer of

CIUB shown in Table 3.3 is calculated by the following estimation formula.

Given that

Z =
X − b

c
(3.4)

we have

XCIUB = Zc+ b (3.5)
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Then, we translate the Upper Bound layer to the time dimension by analyzing

the layered model. As we notice from Figure 3.7, the decreasing happens just after

a specific layer. From Figure 3.6, we know that when the confirmation layers of

Milestonen crosses the arrival time of Milestonen-1, there will be a decrease in the

number of transactions confirmed by Milestonen because of the overlap. For example,

as shown in Figure 3.6, transaction 10 and 11 will not be counted as confirmations by

Milestonen since they had already been confirmed by Milestonen-1. Therefore, we

empirically notice that the peak CTPS layer in confirmation Gaussian Model refers to

the previous Milestone arrival time, which is 1/λM seconds ago from the latest one.

Thus, the optimal waiting time before reattaching for users is estimated to be around

2/λM seconds.

3.4.2 Model Validation

To validate the deductive results of our layered model, we use the three groups of

experimental data with different α values to conduct a statistical analysis. First,

we find out all identical transactions by matching their hash values from the sent

and confirmed records, respectively. Then, we leverage the T imeStamp property to

calculate the time difference from sending to getting confirmed for each transaction.

Since some confirmed transactions recorded in a time period are generated from

the previous time segment and cannot be matched within the corresponding sent

records, the amount of matched transactions is usually less than all actually confirmed

transactions. For example, there are 40,023 sent, 39856 confirmed and 39462 matched

transactions when α = 0.001.

In total, there are 110,726 confirmed transactions with confirmation waiting time

(i.e., they are matched and have the sent-confirmed time difference). Within these

transactions, we find that only 4,948 are confirmed after 2 minutes, see Table 3.4.

The detailed transaction confirmation distribution over time under different α

values can be observed from Figure 3.8. As we know that the λM is set to be 1/60,
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Table 3.4: Statistics of confirmations over 2 minutes (2/λM seconds)

α Conf txs Conf txs(>2 mins) Percentage

0.001 39,462 2,235 5.7%

0.01 39,355 2,523 6.4%

0.1 31,909 190 0.6%

i.e., a milestone is issued every minute, so 2/λM seconds are exactly 2 minutes in

our experiments. Therefore, we have only 5.7%, 6.4% and 0.6% of the transactions

confirmed after the time of 2/λM for α=0.001, 0.01 and 0.1, respectively, which is

relatively low and well matched with the prediction of our proposed layered model.
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Figure 3.8: Experimental confirmation statistics in different time segments; the
confirmation ratios are sufficiently low after the times of 2/λM .

3.5 Conclusion

In this work, we have studied the performance of private IOTA network by experiments,

simulations and a layered model. We leverage these approaches to answer two research

questions on throughput and RWT, with high level of confidence. In particular, we

extended the DAGsim simulator and used it to empirically analyze the influence of
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transaction arrival rate λ, TSAs, randomness α in weighted random walk algorithm

and network delay d on CTPS. Among all these impact factors, λ is the most important

one, which has a near-linear relationship with the CTPS. Moreover, we leveraged

the proposed analytical layered model to explore the confirmation distributions and

found that the confirmations are normally distributed in DAG layers, which led to

characterizing the Gaussian Model. Using this model, we estimated the RWT for a

private IOTA network which was validated by our experimental results. In conclusion,

our extended DAG ledger simulator and proposed layered model provide valuable

insights into the performance of IOTA distributed ledger in private network scenarios.
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Chapter 4

ChainFaaS: An Open
Blockchain-based Serverless
Platform

Due to the rapid increase in the total amount of data generated in the world, the need

for more computational resources is also increasing dramatically. This trend results

in huge data centers and massive server farms being built around the world, which

have a negative impact on global carbon emissions. On the other hand, there are

many underutilized personal computers around the world that can be used towards

distributed computing. To better understand the capacity of personal computers, we

have conducted a survey that aims to find their unused computational power. The

results indicate that the typical CPU utilization of a personal computer is only 24.5%

and, on average, a personal computer is only used 4.5 hours per day. This shows a

significant computational potential that can be used towards distributed computing.

In this work, we introduce ChainFaaS with the motivation to use the computational

capacity of personal computers as well as to improve developers’ experience of internet-

based computing services by reducing their costs, enabling transparency, and providing

reliability. ChainFaaS is an open, public, blockchain-based serverless platform that

takes advantage of personal computers’ computational capacity to run serverless tasks.

If a substantial number of personal computers were connected to this platform, some

tasks could be offloaded from data centers. As a result, the need for building new
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data centers would be reduced with a positive impact on the environment. We have

proposed the design of ChainFaaS, and then implemented and evaluated a prototype

of this platform to show its feasibility.

4.1 Introduction

Due to the increasing need for more computational resources, many data centers with

massive server farms have been built around the globe. Data centers around the world

consumed about 416 terawatts of electricity during 2016, which was about 3% of the

world’s electricity consumption. This amount was also about 40% more than the

consumption of the entire United Kingdom in the same year. This energy expenditure

is expected to double every four years [167]. In another study, Jones [168] has found the

contribution of the data centers in the global carbon emission to be about 0.3%, and

the entire information and communications technology (ICT) ecosystem’s contribution

to be about 2%. It is hard to predict what the future holds, but in a worrying recent

study conducted by Belkhir et al. [169], the information and communication industry’s

global carbon footprint is estimated to reach about 6-14% of the total worldwide

footprint by 2040. This calls for new solutions to reduce the carbon emission of this

industry.

On the other hand, hundreds of million units of personal computers are manufactured

worldwide every year, each leaving their own share of emissions [170]. These computers

are highly underutilized both in industries and in households. At any given time,

they are either not being used at all or running on a small fraction of their capacity.

Based on our survey, which is explained in Appendix A, personal computers run on an

average CPU utilization of 24.5%. Moreover, the survey also shows that, on average,

personal computers are only being used 4.5 hours per day. These numbers confirm

the initial assumption that personal computers are highly underutilized.

The idea behind the proposed approach in this work, called ChainFaaS, is to use

the untapped computational power of the current computers as a serverless platform.
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In ChainFaaS, regular computer users can rent out their unused computational power

by connecting it to a large network of resources. On the other hand, those who need

computing resources can rent from this vast pool of compute at scale. If enough

personal computers were connected to ChainFaaS, the need for building new data

centers would decline. However, the goal in ChainFaaS is not to replace the data

centers and servers but to only offload some of their tasks by reusing the idle cycles of

personal computers.

Another motivation for creating ChainFaaS is to improve developers’ experience of

internet-based computing services. Currently, cloud giants, such as Amazon, Google,

and Microsoft, are the leading players in serverless computing. Serverless computing

platforms offered by these companies are highly centralized, and such companies

control every single detail of the platforms. There is no way for the developers to verify

the reported billing information. On the other hand, ChainFaaS offers a low-price,

transparent, reliable and easy-to-use serverless platform which is not managed by one

entity. Anyone can join the network to participate in the management of the platform

as well as to observe the transactions. Moreover, since in ChainFaaS, functions run on

personal computers, it can be a great platform for edge and fog computing. Developers

who need to run IoT applications closer to end-users can use this platform instead of

other computing services that run on servers.

For developers, one of the main incentives to use serverless computing platforms is

to reduce their costs. In serverless, unlike in other cloud computing solutions, billing

is based on the program execution time rather than on the provisioned capacity. In

ChainFaaS, one of the motivations is to reduce these costs even more by running the

tasks on excess computation power of personal computers.

ChainFaaS is designed with the motivation to provide a reliable and transparent

serverless platform. Reliability is achieved through the dispersion of nodes in the

network. Since the computing providers can be located anywhere in the world, and a

large number of computers are available, ChainFaaS is reliable by design and sheer
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scale. Moreover, transparency is achieved through the use of blockchain. Every single

transaction on the network is recorded on the immutable ledger of the blockchain.

Blockchain peers keep a record of all the changes and every user can easily access this

information at any time and verify the transactions.

Rather than being managed by a central entity, the transparent public network

of ChainFaaS uses blockchain. At first, this may seem to contrast with the initial

motivation of ChainFaaS: to decrease carbon emissions of the ICT ecosystem. The

main reason for this apparent conflict is that most well-known blockchains, based

on proof-of-work consensus algorithms, require miners to complete computationally

intensive tasks. For instance, the carbon emissions corresponding to the electricity

consumption of Bitcoin is estimated to be about 22.0 to 22.9 MtCO2, somewhere

between the amounts produced by the nations of Jordan and Sri Lanka [171]. However,

not all blockchains have such a negative impact on the environment. Many blockchain

solutions have been introduced that do not require computationally intensive tasks and

instead operate based on other consensus algorithms such as proof-of-stake, delegated

proof-of-stake, practical Byzantine fault tolerance, and many others. The blockchain

used in the prototype of ChainFaaS is Hyperledger Fabric, which works based on

practical Byzantine fault tolerance consensus algorithm. As a result, the use of

Hyperledger Fabric-based blockchain is in tune with the design goals of ChainFaaS.

To sum up, ChainFaaS offers an open blockchain-based serverless platform with

the following features:

• It is public in the sense that anyone can be either a developer, provider or both.

• It is open and transparent to everyone.

• It is based on the excess computing power available on personal computers.

• It is affordable for developers, especially compared to similar centralized (in

terms of management) cloud solutions.
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• It is user-friendly and easy to use.

• It embodies edge and fog computing by nature as ChainFaaS can get very close

to the end-user.

In this work, our objective is to design a public serverless platform with the above

mentioned features, and to investigate the feasibility of the design. We first describe

a high-level architecture of the platform and introduce the stakeholders. Then we

assess the functional and non-functional properties of the platform and present a more

detailed design. To examine the feasibility of the proposed platform, we follow a proof-

of-concept approach by implementing a prototype of ChainFaaS. The implementation

is based on a microservices architecture to better capture the needs of serverless

computing. Finally, the performance of the prototype is evaluated in a series of

experiments.

The rest of this article is organized as follows. Section 4.2 explains serverless

computing and blockchain as the two main technologies used in ChainFaaS. It also

outlines the related work done in this field. Section 4.3 presents the design details and

architecture of ChainFaaS. Section 4.4 explains the implementation and deployment

details of the prototype of ChainFaaS. Section 4.5 discusses the functional and non-

functional evaluation of this prototype. In Section 4.6, the potential threats to

the validity of the design and evaluation of ChainFaaS are discussed. Section 4.7

summarizes the conclusions of this work.

4.2 State of the Art

4.2.1 Public-Resource Computing

The idea of using the excess resources of personal computers in a distributed computing

platform is not new. The first public-resource computing projects started in the mid-

1990s. Great Internet Mersenne Prime Search (GIMPS) [172] and distributed.net [173]

were two of the very first project in this area. Both projects started to work on solving
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research questions on personal computers and they are still actively running. In 1999,

SETI@home [174] was released, attracting millions of volunteers. These are just a few

examples of many projects running on personal computers. However, there are only

a few frameworks that enable the creation of such projects, and most of them only

focus on research projects.

Public-resource computing (also known as global computing) refers to any dis-

tributed computing platform that uses the idle processing power of personal devices.

Most known public-resource computing platforms are based on volunteer computing, a

type of distributed computing in which volunteers contribute their idle computational

power to perform computationally expensive research tasks [175]. Because of the

heterogeneity of the computers in such a network, a task scheduler is needed to

properly distribute the chunks of a research project on personal computers. This task

distribution allows a peer-to-peer network to be formed that enables users to share

their resources [176]. It is worth mentioning that volunteer computing is different

from grid computing. In grid computing, the computing resources are managed and

owned by organizations, whereas, in volunteer computing, the resources are highly

unreliable and are managed by non-expert individuals.

One of the most well-known volunteer computing frameworks is the Berkeley Open

Infrastructure for Network Computing (BOINC) [177], [178], which was first introduced

in 2002. Currently, more than 700,000 devices participate in the BOINC network,

clearly demonstrating the potential that personal computers hold. This framework

consists of a central server and clients run on the volunteers’ computers. Any project

that wants to use BOINC has to host their own server and run the central BOINC

server. This makes it extremely hard for developers to use this platform. Moreover,

volunteers can choose the projects they would like to contribute to. As a result,

the developers have to ensure that their projects gain enough visibility to attract

volunteers. This makes it hard to predict if the project receives enough resources.

XtremWeb [179] is another popular volunteer computing framework, which is
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the base of XtremWeb-HEP. As explained in the blockchain-based cloud computing

subsection of Section 4.2.2, XtremWeb-HEP is used in the iExec project, which is a

blockchain-based cloud computing. In XtremWeb, collaborators can host their own

volunteer computing platform that can cooperate with the main Xtremweb server. This

framework has three main components: the workers, the client, and the coordinator.

The workers are volunteer computers that are responsible for executing the tasks. The

client is the entity that submits the tasks to the network. Finally, the coordinator

distributes the tasks, assigns workers to the tasks, and keeps track of them.

As another popular distributed computing framework, Cosm [180] provides a set

of tools and libraries for distributed applications. This framework was introduced in

1995 and research projects such as Folding@Home [181, 182], and Genome@Home[183]

used this platform. Since 1999, Folding@Home project has been running protein

folding on personal computers to find how proteins work and to find cures for diseases.

Genome@Home designed genes that match existing proteins from 2000 to 2004.

In the recent years, the development of cryptocurrencies has led to some interesting

projects that enable payment to volunteers in public-resource computing platforms.

Some research projects may choose to reward volunteers for participation in their

project. FoldingCoin [184] and CureCoin [185] provide reward tokens for participants

of the Folding@Home network. GridCoin [186] offers reward to volunteers in the

BOINC platfrom.

Although the mentioned solutions are similar to ChainFaaS, there are some funda-

mental differences between them. Most of the current solutions are based on volunteer

computing. In volunteer computing, the providers do not expect any income for the

computations they execute. Moreover, the computing providers trust that the research

tasks running on their computer would not tamper with their files and programs. This

is mainly due to the fact that the research owners are known universities. On the

other hand, in ChainFaaS, there is no trust in the developers, and the computing

providers expect the income to be worth their time and effort. Also, in most volunteer
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computing platforms, the developers need to host their own servers and promote their

projects to gain popularity. This makes it hard for developers to adopt such solutions.

Nevertheless, since ChainFaaS is a serverless computing platform, the developers only

need to submit their functions to the network through the web application, and the

network handles the rest. These characteristics make the design and implementation of

serverless platforms, such as ChainFaaS, more challenging. Due to these fundamental

differences, these platforms cannot be compared to ChainFaaS directly, especially in

terms of performance.

The mentioned drawbacks of volunteer computing platforms have prevented their

large-scale adoption. Despite the great potential that platforms such as BOINC have,

they are still only being used by a small group of people. As mentioned earlier, the

volunteers do not have any economic incentive to participate in the network and the

developers have to spend much time modifying their program (i.e. high degree of

customization) to be suitable to run on these platforms. Since these problems have

been addressed in our design, ChainFaaS has a good potential to receive attention

from both developers and providers.

4.2.2 Blockchain-based Cloud Computing

Recently, there have been a number of research activities on distributed cloud com-

puting platforms that run on personal computers. These distributed systems have

many management barriers that can be solved using blockchain. In this section, we

discuss some of the well-known blockchain-based cloud computing platforms.

The iExec [187] platform is a distributed cloud computing infrastructure, which is

based on XtremWeb-HEP [188] and Ethereum smart contracts. XtremWeb-HEP is an

open-source desktop grid software that is developed by the same team. The Ethereum

blockchain provides the support for distributed applications. For better performance, a

new consensus algorithm called Proof-of-Contribution (PoC) is proposed for use in this

platform. In iExec, there are three different types of providers: application providers,
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computing providers, and data providers. Application providers are developers who

want to use the platform to run their distributed applications. Similar to ChainFaaS,

computing providers rent out their unused CPU cycles. Data providers can make

their datasets available to others and charge them for each use. In this platform, the

developers should divide their application into tasks and send them to the scheduler.

Golem project [189] aims to create a decentralized supercomputer. Golem is

designed to use excess computational power on PCs to run heavy tasks such as deep

learning or video rendering. However, currently, the only tasks that are accepted in

this network are rendering tasks. In Golem, developers specify their price suggestions,

and providers bid on the tasks. One of the limitations in the Golem network is the

fact that computing providers are required to have public IPs, which prevents many

from participating in the network.

Another project in this area is SONM [190], which is a decentralized fog com-

puting platform. Similar to the previous two projects, in SONM, people in need

of computational power are connected to those with excess computational capacity

through a blockchain network. The main focus of this project is on IaaS, and the

main applications are machine learning and video rendering.

CloudAgora [191, 192] is an academic project that proposes a blockchain-based

platform providing access to storage and computing infrastructure. In this platform,

providers bid on any incoming request in an auction-styled manner. The provider

that offers the lowest price will be selected to execute the task. The current prototype

of CloudAgora is implemented on Ethereum blockchain.

In their paper, Uriarte et al. [193] have surveyed blockchain-based cloud computing

solutions and explained the projects in detail. They have also studied the challenges

and standards in this field. In another recent research, Yang et al. [194] have studied

the challenges and research issues of blockchain and edge computing integration.

Westerlund et al. [195] surveyed the advantages and disadvantages of both centralized

cloud computing platforms and distributed ledger technologies. They then identified
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the principles that a distributed cloud platform should follow to use the advantages of

both traditional clouds and DLTs. ChainFaaS’s design is in accordance with these

proposed principles.

All the projects mentioned above are similar to ChainFaaS in the sense that they use

personal computers to run developers’ tasks in a blockchain-based network. However,

none of them are serverless platforms. The developers have to spend a lot of time

modifying their applications for these platforms. In some platforms, developers even

have to spend time selecting the provider for their job, which can be inconvenient.

Moreover, in most of these platforms, it is hard for the providers to connect to the

network. For instance, in Golem, they need to have a public IP, which may not be

possible for most providers. In ChainFaaS, these problems are addressed, making

the new platform easy to use for everyone. Unfortunately, none of the blockchain-

based cloud computing solution providers have released performance analyses of their

platform, and they cannot be directly compared to ChainFaaS.

4.3 System Design

4.3.1 High-Level Architecture

Fig. 4.1 shows a high-level architecture of ChainFaaS. This platform has three main

parts. The blockchain network consists of all the blockchain peers who are responsible

for keeping track of the transactions on the platform. The serverless controller

manages the cloud portal and the job scheduling task. The computing resource

providers cooperate to shape the execution network.

Blockchain Network

The blockchain network has two main tasks: keeping records of all transactions and

managing payments. From now on, we will refer to the record-keeping ledger and

payment management ledger as monitoring ledger and monetary ledger, respectively.

Every single transaction is stored and kept by all blockchain peers on the monitoring
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Figure 4.1: High-level architecture of ChainFaaS. The blockchain network stores and
confirms all the transactions. The serverless controller is a blockchain peer itself and
handles the cloud portal and scheduling the jobs. The execution network consists of
all the computing resource providers.

ledger. Any user can easily access the information of a job and see how it has evolved

over time. Information such as the owner of the job, the computing resource provider

who has been responsible for the job, the time it has taken to run the job, and

its cost, are accessible through the monitoring ledger. The transparency feature of

ChainFaaS is achieved through the monitoring ledger. The monetary ledger stores the

financial account information and account balances of the users. Every time a job is

successfully executed by a provider (i.e., a personal computer owner), this monetary

ledger automatically transfers the cost from the developer’s account to the provider’s

account.

The blockchain network comprises many peers that can be owned by different

proprietors. Each peer keeps records of all the transactions occurring in the network.

To add a new transaction to the ledger, the peers should reach a consensus on whether

to accept the transaction or not. The peers receive a commission for each transaction

because of their contribution to the network. It is worth mentioning that a blockchain

peer can also act as a computing resource provider in the execution network, which

results in having two sources of income from ChainFaaS. The execution network is

described in execution network subsection of Section 4.3.1.
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Serverless controller

The serverless controller acts as the gateway and is responsible for providing the portal

of ChainFaaS, publicly available here1. This portal is designed to help all users easily

interact with the platform. Based on their enrolment in the system, users can submit

new jobs, observe the status of their job, and monitor their contribution to the network.

Moreover, the controller handles the job scheduling by finding a computing resource

provider for each job. The job scheduling is based on a selection algorithm that

may take into account many criteria to choose the provider, including the provider’s

availability and the computational power needed for the job. The serverless controller

also acts as one of the blockchain peers and, just like any other blockchain peer, it

receives a commission for the transaction.

Execution Network

The execution network consists of all computing resource providers. Anyone can easily

connect their extra computational resources or their underutilized online computers

to this network. This includes but is not limited to, personal computers, servers, and

cloud resources. These providers get paid based on the time they spend on running the

job to which they are assigned. Each job runs in an isolated execution environment

on the provider’s computer to ensure that it does not interfere with the provider’s

programs. This is also required to prevent different jobs from interfering with each

other.

4.3.2 Stakeholders of ChainFaaS

Developer

A developer, or software owner, is an individual or a company that wants to submit

a function to the serverless platform. In this role, the user wants to use an afford-

able function-as-a-service system to decrease their infrastructure costs and server

1https://chainfaas.com
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management overhead.

Computing Provider

A provider is someone who wants to rent out their computer’s idle CPU cycles and

memory to earn money. The goal of this user is to serve as many jobs as possible to

increase their income.

Blockchain Peer

Any computer with public IP address could act as a blockchain peer. The peers

are responsible for running and storing the blockchain on their computers. Other

blockchain users send requests to these peers to interact with the blockchain. As an

incentive to participate in the network, these peers receive a portion of the transactions

when they serve requests. In addition, the blockchain peers can also participate in

ChainFaaS as computing providers to increase their income from the platform.

4.3.3 Functional Properties

A detailed architecture of ChainFaaS with a complete description of the process of

serving a request is shown in Fig. 4.2. The developer is the owner of the function who

can have clients sending requests to their function. These clients can be the developer

themselves, a program owned by the developer, or anyone else. The developer can

also choose to store the result of their function in a separate storage. This can be

specified in the container they upload to the system. The result storage block in

Fig. 4.2 represents this storage unit.

The scheduler in the serverless controller is responsible for scheduling the jobs,

i.e., functions, and computing providers. It creates a new container that includes

the function, a monitoring module (MM), and the controller’s signature (Sig.). The

module is designed to send back the run-time metrics of the job to the monitoring

ledger. The signature is used to verify the container’s creator to be the controller

and not a malicious entity. When an appropriate provider is found for the job, the
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Figure 4.2: The detailed architecture of ChainFaaS and the way a request is served in
the network (MM stands for monitoring module and Sig. stands for signature.)

controller asks the monitoring ledger to keep a record of the job. The job ID stored

there should be the same as the one the monitoring module later uses to record the

job service time. The assigned provider is the only one who can have the job’s run

time recorded on the ledger. A detailed explanation of each step in Fig. 4.2 follows:

1. For a function to be available in the system, the developer first needs to submit

it to ChainFaaS. To do so, the developer sets the access link and characteristics

of the function in the ChainFaaS cloud portal. From the moment the function is

submitted, others can send requests for that function to the serverless controller.

2. As soon as the controller receives a request for a function, a job is created, and

the process starts.

3. The scheduler then adds the monitoring module (MM) to the function and wraps
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it in a new container with the controller’s signature. The monitoring module is

responsible for sending the job processing time to the monitoring chain in step 8.

The signature is used in the provider to verify that the job has been sent from

the controller.

4. The next step is for the scheduler to assign an appropriate provider to the job.

This assignment is done based on a selection algorithm that takes into account

the computational capability of the provider and its availability.

5. When a computing provider is found for the function, the controller sends a

record-request to the monitoring ledger. In this request, the controller asks the

blockchain network to add a new job to their records. The information added

to the record includes the job ID, the developer of the job, and the provider

assigned to the job. The detailed explanation of the information stored about

each job in our implementation can be found in Section 4.4.3.

6. The selected provider then pulls the container from the registry and runs it.

7. In the next step, the provider sends back the results to the target storage.

8. The monitoring module then uses the job ID received from the controller to ask

the monitoring ledger to keep a record of the job’s run time metrics.

9. In the next step, the monitoring chain charges the developer’s account by

transferring the amount of bill to the provider’s account on the monetary ledger.

10. Finally, the result storage, which is managed and owned by the developer, sends

back the results to the end-user. The developer can have the end-user manually

get the result from the results storage or have the storage share the results with

end-user whenever available.
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4.3.4 Non-Functional Properties

This section evaluates the most important non-functional properties of ChainFaaS:

performance, availability, security, and usability.

Performance

One of the most important properties of a software system is performance. To

understand the performance metrics of ChainFaaS, consider the timelines shown in

the following two figures. Fig. 4.3 shows the timeline for submitting a function to

ChainFaaS. From the developer’s point of view, the time it takes for the function to

become ready in the system after it has been submitted is a critical factor. It is called

setup time Tstp = trd − tsub.

Developer
submits function

Scheduler wraps
function in container

Function is
ready

Time

Figure 4.3: The timeline for submitting a function to ChainFaaS from the developer’s
point of view.

A new job is created in the system as soon as a request for a function is received

by the controller, as shown by treq in Fig. 4.4. The time it takes for the result storage

to receive the result of the request is called response time Trsp = tstg − treq. This time

depends on both the request processing time of ChainFaaS and the completion time.

The request processing time, Tprc, is defined as the time it takes for the provider to

receive the job after the controller receives a request for the function. It corresponds

to the time the serverless controller requires to schedule the job. The time it takes for

the provider to pull and run the function is called completion time, Tcmp. This time

depends heavily on the size of the developer’s container, the network delay, and the

104



End user sends
request

Provider
receives job

Job starts
running

Result is
ready

Result storage
receives results

Time

Payment is
done

Figure 4.4: The lifetime of a request in ChainFaaS.

job itself. Since response time depends on the function, it can only be measured for a

specific workload and not in general. Response times of sample workloads are shown

in Section 4.5.

Another important performance metric in this system is the provisioning time, Tprv.

It is the time it takes for the job to start when a request is received. The provisioning

time consists of the request processing time and the container pull time. Finally, from

the provider’s point of view, the time it takes for them to receive the payment after

the job is finished, Tbil, is of great importance.

The most important performance metrics of ChainFaaS are summarized below:

• Setup time (Tstp) is the time it takes for the function to become available in the

system after it is submitted.

• Request processing time (Tprc) is the time it takes for the provider to receive the

job after the serverless controller receives a request.

• Provisioning time (Tprv) is the time it takes for the job to start running after

the serverless controller receives a request.

• Completion time (Tcmp) is the time it takes for the provider to pull and run the

job’s container.
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• End-to-end response time (Trsp) is the time it takes for the result to be available

in the result storage after the serverless controller receives a request.

• Billing time (Tbil) is the time it takes for the provider to receive payments after

they are finished running the job.

Availability

In a software system, availability is defined as the probability that the user receives a

response for their request at a given time. There could be two main causes for jobs to

be blocked in ChainFaaS: insufficient computing resources and job queue being full.

When a new job is created in the network, there should be an available computing

provider who has enough resources for the job. If the scheduler is unable to find a

provider, the job request will be blocked.

In ChainFaaS, requests to functions will be queued until a provider is found;

requests are served according to a queuing policy. When the queue is full, the

serverless controller will block the new incoming requests. If the queue size is too big,

some end-users may experience long response times. In such cases, the usual approach

is to limit the queue size to prevent that from happening by immediate blocking.

Security

Since ChainFaaS is open to the public, security is of paramount concern. As a

computing provider, the user needs to be assured that the code running on their

computer is not going to harm their system or access their personal data. An open

platform such as ChainFaaS should run completely isolated from the rest of the

programs on the provider’s computer. For this isolated environment, access to data

and information should be restricted. The way ChainFaaS achieves this quality is

explained in detail in Section 4.4.

Moreover, all stakeholders are storing important information, such as their account

balance, on this platform. Everyone should trust the system to be secure. ChainFaaS
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uses blockchain to ensure the security of shared information. Since blockchain is

immutable, transparent, and secure, it can be used for this platform. No one, not

even the controller, can change the information stored on the blockchain, and every

single member can see all the transactions in the blockchain and verify their validity.

All these characteristics make blockchain a great solution to open public platforms

such as ChainFaaS.

Usability

ChainFaaS is designed to be used by anyone. Although it is a sophisticated platform

based on the state of the art technology, the users are not necessarily computer

professionals. Therefore, this system needs to be user-friendly. It should be designed

in such a way that anyone, including users with no background in computer science,

can easily become a computing provider or blockchain peer. To achieve this goal,

ChainFaaS has a web portal along with easy-to-setup agents to be installed on

computing nodes, as explained in Section 4.4.

4.3.5 Business Model

ChainFaaS has a few stakeholders that may benefit from this platform: the computing

providers, the blockchain peers, and the serverless controller. When designing the

system, their benefit should be considered an important factor. The computing

providers get paid based on the computational power they contribute to the platform

and the time they spend on running functions. Since the providers contribute their

idle computing cycles, whatever they make is considered profit. Providers can easily

connect their computers to ChainFaaS and rent out their excess cycle without any

interference in their usual work. As the network extends in size, the providers’ profit

is likely to increase.

The blockchain peers get a portion of the transaction fees as an incentive for running

the blockchain network. The reason blockchain peers are separate from the computing
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providers is the necessity to have a public IP for blockchain peers. All the peers should

be accessible by a public IP so that everyone can send requests to them. Anyone can

own a blockchain peer in the network and help keep the blockchain network secure

and transparent.

4.4 Implementation and Deployment

To demonstrate the feasibility of our design, we have implemented a prototype of

ChainFaaS as a proof-of-concept. In this section, we present the details of the imple-

mentation and deployment of this prototype. Details of ChainFaaS implementation,

including the complete code base, can be found on GitHub 2. Fig. 4.5 shows the

implementation and deployment view of ChainFaaS. The end-user represents the

person who sends a request to a function. The end-users are FaaS users that can be

the developers themselves, or their users who want to access the functions provided

by the developer on ChainFaaS.

4.4.1 Serverless Controller

As explained earlier in Fig. 4.1, the controller has three main parts: cloud portal, job

scheduler, and blockchain peer. The cloud portal is responsible for all interactions

between the controller and the users. At the back-end of the web application, the

job scheduler is also implemented. We have implemented a simple scheduler that

randomly selects a provider from the available providers that can fit the request. The

blockchain peer is just like other blockchain peers described in Section 4.4.3.

In our implementation of ChainFaaS, the serverless controller is running on an

instance with 4 VCPUs, 15GB RAM, and 83GB disk with Ubuntu 18.04. The cloud

portal is written in Python using the Django web framework [196]. The job scheduler

is also implemented in the backend of the cloud portal. Gunicorn is used as the

application server, and Nginx is used as a reverse proxy. Gunicorn is a Python Web

2https://github.com/pacslab/ChainFaaS
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Figure 4.5: Deployment diagram of ChainFaaS showing the technologies and compo-
nents used in different parts of the platform.

Server Gateway Interface (WSGI) HTTP server that communicates with the Python

application. Gunicorn optimally creates as many instances as needed from the web

application, distributes the requests between them, and restarts them if necessary.

Nginx is used as a reverse proxy to Gunicorn to handle all incoming requests.

New users can use the ChainFaaS cloud portal to register. Each user should select

what role they want to play in the platform: developer, provider, or blockchain peer.

After registration is complete, the user can start interacting with the platform. As

a developer, the user can submit the link to their Docker container in the Docker

registry and set its characteristics.

When the scheduler matches a provider with a job, there should be a way for

the serverless controller to inform the provider of the link to the function and all its

information. Since providers are personal computers, they are not directly accessible by

the controller. As a result, in ChainFaaS, a messaging queue has been implemented to
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manage the interactions between the serverless controller and each provider. RabbitMQ

has been chosen as the messaging broker for this system since it is a lightweight open-

source broker that can be customized for different applications. During the registration

step, the providers are also registered in the messaging broker to be able to access the

appropriate queue. Each provider has its own queue that only the serverless controller

and the provider can access. The serverless controller puts the jobs in the provider’s

queue, and the provider fetches it from the queue.

4.4.2 Compute Provider

On providers’ computers, ChainFaaS runs a program that is written in the Python

programming language. As long as the program is running on the provider’s computer,

it receives new jobs from the serverless controller, runs them, and waits for other

jobs. Jobs run in isolated environments using Docker containers to keep them from

interfering with the provider’s computer and accessing their files. In ChainFaaS,

having isolated environments for the jobs is particularly important since the provider

may not necessarily trust the source of the job. Moreover, there may be more than one

job running on the provider’s computer at the same time. Using sandboxing solutions,

we can ensure there is no conflict between the dependencies and resources of the jobs.

A popular solution for isolating the execution environment of software is using

virtual machines. In this solution, a guest operating system runs on top of a host

operating system and has virtual access to the system’s underlying hardware. Another

solution is using containers, which also provide an isolated environment for running a

software service. Unlike virtual machines that virtualize the hardware stack, containers

provide the developers with a logically isolated operating system by virtualizing the

computer resources at the OS-level. As a result, compared to virtual machines,

containers are far more lightweight, faster to start, and use far less memory.

In the current implementation of ChainFaaS, the security and privacy concerns

of providers are addressed using containers as the sandboxing solution. The reason
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for this choice is that the providers should be able to start using the platform with

minimal effort and overhead. As discussed earlier, containers are fast, lightweight,

and they provide the required isolated execution environment. Other open distributed

computing platforms have different solutions to this security challenge. In BOINC [177,

178], the provider can choose to run the project applications under an unprivileged

account on the operating system, which cannot access or modify data other than its

own. This is called account-based sandboxing. This type of sandboxing is less scalable

and secure compared to containers since it does not virtualize at the OS-level. This

may not be a problem for volunteer computing platforms since there is some notion of

trust between the researchers and the providers. However, in ChainFaaS, the providers

do not necessarily trust the developers, and there could even exist a malicious entity in

the network. In iExec [187], computing providers, which are called workers, can choose

to run the program with a virtual machine, with a Docker container, or just running

the script. Golem [189] uses a WebAssembly sandbox for this purpose. Both Golem

and iExec are working on using Intel Software Guard Extensions (SGX) for isolation.

Intel SGX offers hardware-level isolation, which is the most secure level. However, it

is only supported on some modern Intel CPUs. Since this solution is hardware-specific

and still experimental, it cannot be extended to all computers. Although beyond the

scope of this work, the security and privacy of providers and developers in an open

distributed computing platform are important topics for future research.

4.4.3 Blockchain Peer

The blockchain used in ChainFaaS is implemented using Hyperledger Fabric V1.4.

When choosing the blockchain solution, one of the most important criteria was its

energy consumption. As mentioned in Section 4.1, one of the initial motivations for

developing this platform was to decrease the carbon emission of the ICT ecosystem

by increasing the usage of personal computers. However, blockchains that use proof

of work as their consensus mechanism, such as Bitcoin, require computationally

111



powerful computers to solve meaningless puzzles to get rewards. On the other hand,

in Hyperledger Fabric, there is no need for solving such problems since the consensus

algorithm is not based on proof of work. Moreover, Hyperledger Fabric has been

designed explicitly for enterprises and takes into account their needs. In Hyperledger

Fabric, everything is highly configurable and can be customized for different use cases.

These features make it an excellent choice for ChainFaaS. The reason for selecting

V1.4 is its stability and long term support. It is the first version with long term

support, while V2.0 is still under development.

Hyperledger Fabric uses an execute-order-validate architecture for transactions. In

this architecture, transactions are first executed and checked for correctness. Then, via

a pluggable consensus algorithm, transactions are ordered. Finally, the transactions are

validated against an application-specific endorsement policy and added to the ledger.

Other blockchains that support smart contracts, such as Ethereum, Tendermint, and

Quorom, use an order-execute architecture in which the transactions are validated and

ordered first and only then executed by all peers. In order-execute based blockchains,

smart contracts must be deterministic. As a result, these blockchains require smart

contracts to be written in a domain-specific language to ensure that their operations

adhere to this requirement. On the other hand, in Hyperledger Fabric smart contracts

can be written in standard programming languages such as Go or Node.js. Also, since

in order-execute blockchains all nodes execute the transactions, these blockchains

face performance and scalability issues. Hyperledger Fabric’s architecture enables

applications to specify which peers and how many of them need to execute the

transaction. As a result, only a subset of peers that are specified by the endorsement

policy execute the transaction. This feature enables parallel execution of transactions

which increases the performance and scalability of the network [197].

The Hyperledger Fabric’s network is managed by a collection of organizations that

come together to form a blockchain. As a permissioned blockchain, Hyperledger

Fabric needs a membership component to overlook the participants in the network. A
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trusted Membership Service Provider (MSP) is used for this purpose. Similar to other

components in Hyperledger Fabric, the MSP is configurable by the network designer.

In ChainFaaS, the default Fabric Certificate Authority (CA) is used as the MSP. Peers

are important components of the blockchain network that are responsible for hosting

the ledgers and smart contracts. They receive transactions, invoke corresponding

smart contracts, and endorse the results. Each peer belongs to an organization and

each organization can have many peers in the network. In Fabric, an ordering service

is required which is responsible for collecting the endorsed transactions from the peers,

ordering them and creating the blocks. The ordering service consists of one or more

orderer nodes which reach consensus among each other based on a pluggable consensus

algorithm. Currently, Hyperledger Fabric supports Raft, Kafka, and Solo consensus

algorithms [197]. The implemented prototype of ChainFaaS uses one Solo orderer.

In the current implementation of ChainFaaS, all components of the Hyperledger

Fabric network have been deployed on an instance with 8 VCPUs, 16GB RAM, and

160GB disk with Ubuntu 18.04. There is one Fabric Certificate Authority (CA), one

Solo orderer, and two organizations, each with two peers. In the future version of

ChainFaaS, there can be included more of these components, each running on different

computers. Anyone with a public IP can run the blockchain peers. Each peer stores

all the latest information about the ledgers and verifies the new transactions.

We are using chaincodes, which are Hyperledger Fabric’s smart contracts, to

implement the functionalities needed for ChainFaaS in the blockchain. There are two

main chaincodes: monitoring and monetary. The monitoring chaincode is responsible

for keeping track of every job that has been served in ChainFaaS. Fig. 4.6 shows the

monitoring ledger with an example. Anything that is stored on Hyperledger Fabric

blockchain is shown by a key-value pair. In the case of monitoring ledger, the key is

the job ID, and the value is its developer, provider, function ID, time, cost, received,

and payment-is-done information. The time shows the time the provider spends on

running the function, received shows whether the end-user has received the result, and
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payment-done shows whether the payment has successfully taken place. In Fig. 4.6,

monitoring ledger keeps track of all changes that happen to each job. Consider JOB7

as an example. Right now, the job has finished, but the end-user has not yet received

the result. As soon as the end-user receives it, a new transaction is created that

consists of the change of JOB7’s received value from False to True. The world state

database is part of the Hyperledger Fabric structure and stores the latest version of

every job. In other words, if anyone follows all the changes in the blocks from genesis

to the last block, they will reach the value inside the world state. This implementation

makes it easy to query the latest values very fast.

Monitoring Ledger

Blockchain

World State

Key Value

JOB6
{developer: Bob, provider: Alice, function_id:
10, time: 12000, cost: 12, received: True,
payment_done: True}

JOB7
{developer: James, provider: Kate,
function_id: 14, time: 20000, cost: 20,
received: False, payment_done: False}

header

T1 T2 Tn...

header

T1 T2 Tn...

header

T1 T2 Tn...

...

Block 10 Block 11 Block n

Figure 4.6: Details of the monitoring ledger. Blockchain stores changes to each job in
terms of transactions. World state stores the latest version of the jobs.

The monetary chaincode is responsible for keeping track of user account balances.

The key in this ledger is the username of the user, and the value is how much they

own in ChainFaaS. Fig. 4.7 shows the details of the monetary ledger. Similar to the

monitoring ledger, the blockchain keeps track of changes that happen in accounts, and

the world state stores the latest version of account balances. To better understand the

functionality of the two ledgers, consider the examples shown in Fig. 4.6 and Fig. 4.7.
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Imagine that before JOB6 and JOB7, Bob, Alice, James, and Kate all had 600 units

of money in their accounts. As soon as JOB6 is finished and received by the end-user,

the cost (12 units) is deducted from Bob’s account and added to Alice’s account. Since

the end-user has not yet received JOB7, the account balance of James and Kate has

not changed.

Monetary Ledger

Blockchain

World State

Bob 588

Alice 612

James 600

Kate 600

Key Value

header

T1 T2 Tn...

header

T1 T2 Tn...

header

T1 T2 Tn...

...

Block 10 Block 11 Block n

Figure 4.7: Details of the monetary ledger. Blockchain stores changes in each account
in terms of transactions. World state stores the latest version of every account.

4.5 Experimental Evaluation

In this section, the functional and non-functional properties of the implemented

prototype of ChainFaaS are evaluated. This prototype can be accessed through

ChainFaaS’s website3.

4.5.1 Functional

We have discussed how each unit in ChainFaaS is implemented. In this part, we

will show how all the units work together to achieve the functional properties of the

platform, described in Section 4.3.3. The sequence diagram shown in Fig. 4.8 describes

3https://chainfaas.com
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Figure 4.8: Sequence diagram showing the steps of processing a request in the prototype
of ChainFaaS

the process in which the prototype of ChainFaaS serves a request from an end-user.

In the current implementation, the result storage is the serverless controller.

When the serverless controller receives a request to run a function, the scheduler

first finds an active provider capable of serving the request. When a provider is found,

the controller asks the blockchain network to store the job on the monitoring ledger.

In this step, the job is created in the ledger and information such as the developer, the

provider who is supposed to execute the job, and the function ID is set. The controller

then puts the job in the provider’s messaging queue. The provider fetches the job from

the queue, runs the Docker container, and sends back the results to the controller to be

accessed by the end-user. As mentioned earlier, the serverless controller is set as the

result storage for the prototype implementation. In the future versions of ChainFaaS,

the result storage will be chosen by the developer. After receiving the result, the

controller confirms that the result has been received by setting the status of the job

in the blockchain network. In the meantime, the provider also sets the time it took to

run the function. The provider is only able to set the run time if the job has already
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been created by the controller in the blockchain network. Moreover, only the provider

that has been assigned to the job can set the run time metrics. This ensures that

others cannot tamper with the job’s information in the blockchain network. When the

monitoring chaincode receives both the confirmation from the controller and the run

time from the provider, the service fee will be transferred to the provider’s account

from the developer’s wallet.

4.5.2 Non-functional

In this section, we evaluate the non-functional properties of the prototype, most

importantly, its performance. Our goal is to shed some light on the system response

time for various use cases. This baseline evaluation will help to enhance the platform’s

performance in future versions.

To evaluate the system, we have selected a sample function to run on the prototype

of ChainFaaS. We have created a Docker container that gets the node’s information,

such as its operating system, number of CPUs, and uptime. Two sets of experiments

have been conducted. One focuses on virtual machines running on clouds as providers,

and another focuses on personal computers as providers. From now on, we will refer to

the first and second experiments as the cloud deployment and the personal computers

deployment, respectively.

In the first experimental evaluation, the serverless controller, along with four

computing power providers, run on virtual machines in the Compute Canada cloud.

The blockchain network runs on a virtual machine on the SAVI testbed cloud. In

the second set of experiments, the same serverless controller and blockchain network

are used. However, the providers are two different personal computers. Table 4.1

summarizes the characteristics of the ChainFaaS components in the cloud deployment.

The workload generated for the cloud deployment is shown in Fig. 4.9a. Based on

a recent research by Shahrad et al. [198], 81% of applications running on Microsoft

Azure Functions are invoked, on average, once per minute or less. This information
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Table 4.1: Experimental evaluation setup in cloud deployment.

Component Size CPU RAM Disk

Serverless Controller 1 4 vCPU 15 GB 20 GB

Computing Network 4 2 vCPU 7.5 GB 20 GB

Blockchain Network 1 8 vCPU 16 GB 160 GB

shows that most applications are invoked infrequently, and the generated workload

selection, i.e. the number of requests sent to the function, is reasonable for serverless

platforms. During a one-hour period, exponentially distributed requests are sent to

the serverless controller to invoke the sample function, and the performance metrics

of the platform are recorded.

For all experiments, we use a client running on an instance in the Compute Canada

cloud with 8 vCPUs, 30 GB of memory, and 186 GB of disk, with less than 10

milliseconds latency to the controller server. A Python 3.7 script sends exponentially

distributed requests to a function on ChainFaaS. The results, the request time, and

the response time are stored in CSV files, and later processed to extract the response

time. On the serverless controller, for each request, two times are stored: the time

that the provider has received the job and the time the provider has spent to finish it.

Finally, the blockchain server records the billing time for each job.

The most important metric for the end-user is the end-to-end response time, Trsp,

shown as response time in Fig. 4.9b. During this time, the scheduler finds a provider

for the job, the provider pulls the Docker container, runs it, sends back the result

to the end-user, and the blockchain network keeps track of every change in the job’s

status. As expected, Trsp increases when the number of requests to the function is

increased.

As can be seen in Fig. 4.9b, the response time (Trsp) and provisioning time (Tprv)

follow the same pattern as the processing time (Tprc). This behaviour is expected

since Tprc is included in both other metrics. The completion time (Tcmp) contains the
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Figure 4.9: The trend of various performance metrics of ChainFaaS in the cloud
deployment. (a) Workload generated to evaluate ChainFaaS over time. (b) Average
processing time, completion time, provisioning time, and response time; averaged over
a minute. (c) Average billing time in a given minute.

pull and run time of the Docker container. Since all four compute providers are in the

same network with the same computational capacity, and they run the same function,

completion time should remain nearly constant. Fig. 4.9b confirms this assumption.

From the provider’s point of view, it is crucial to know the billing time (Tbil).

Fig. 4.9c shows the average value of Tbil in a given minute in the cloud deployment.

The billing time usually falls between 5-10 seconds and remains below 20 seconds.

Finally, for developers, it is crucial to know how fast they can deploy a new function.
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Figure 4.10: The trend of various performance metrics of ChainFaaS in the personal
computers deployment. (a) Workload generated to evaluate ChainFaaS over time.
(b) Average processing time, completion time, provisioning time, and response time;
averaged over a minute. (c) Average billing time in a given minute.

Initially, a developer who wants to submit a function to ChainFaaS needs to register on

the platform. During the registration process, an account is created for the user in the

blockchain. This process takes about 5 seconds, which is a one-time-only wait. After

that, the developer can create and submit a function in a matter of a few milliseconds

by providing the controller with the Docker registry path.

In the second set of experiments, we focus on personal computers as providers. In

these experiments, the serverless controller and the blockchain network are the same
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as the cloud deployment, but the providers are personal computers instead of virtual

machines. Table 4.2 shows the hardware specifications of the PCs used in the personal

computers deployment.

Table 4.2: Hardware specifications of providers in personal computers deployment.

Component CPU RAM Disk

Provider 1 Core i7-6700HQ 12GB 1TB

Provider 2 Core i7-6700HQ 16GB 1TB

The results of this experiment are shown in Fig. 4.10. It is interesting to see how

the two experiments differ from each other. The completion time is almost doubled

in the second set of experiments. This is mainly due to networking delays. In the

cloud deployment, both the controller and provider were running on the same network

(Compute Canada cloud), which makes communications much faster. Moreover,

virtual machines running on cloud generally have more stable networks compared

to personal computers. The provisioning time and response time are also influenced

by the networking delay. The average response time in the cloud deployment is 10.2

seconds. This value is 16.8 seconds in the personal computers deployment.

Since the processing time is not influenced by the network delays, it is expected

to be similar in both experiments when running on the same request rate. This

expectation is shown to be true in Fig. 4.9b and Fig. 4.10b. The average processing

time in personal computer deployment is 2.8 seconds. In the cloud deployment, during

the time the request rate is less than five requests per minute, the processing time

is around the same value (2.5 seconds). Similar to the cloud deployment, the billing

time, which is shown in Fig. 4.10c, for the personal computer deployment, is still

between 5-10 seconds.
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4.6 Discussions and Threats to Validity

In this section, we discuss potential threats to the validity of the design implementation,

and evaluation of ChainFaaS, as well as possible improvements of the platform.

Although the implementation and evaluation of ChainFaaS confirm that the proposed

platform is feasible, there is still much potential for its improvement.

From the computing providers’ and the blockchain peers’ point of view, their

income from this platform should be worth their time and effort. They also need to

consider the increased electricity consumption of their computers resulting from their

participation in the network. Moreover, to motivate the developers to switch from

public cloud providers to ChainFaaS, the platform should be reliable and cost-efficient.

While the initial design of ChainFaaS indicates a sustainable income for the providers

and the peers and a low-cost for the developers, a more in-depth cost analysis is

needed to confirm this. It is necessary to take into account the cost efficiency of the

platform for the developers as well as any possible costs for the providers and the

blockchain peers.

Based on qualitative analysis, we have concluded that the use of ChainFaaS can

have a positive impact on the environment by reusing the available computational

capacity of personal computers. Although this statement appears reasonable, a

quantitative analysis of power consumption is needed. This analysis should compare

the consumption of public serverless platforms with the prototype of ChainFaaS using

different scenarios and report the consumption values. However, this evaluation would

be difficult to conduct since we do not have access to the underlying infrastructure of

public serverless platforms.

In the current prototype of ChainFaaS, the scheduler randomly selects one of the

available providers with enough CPU and RAM for the request. The scheduler can

be improved to take into account other relevant factors. For instance, it can consider

the reputation of the providers: those with a higher successful job completion score
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may get a higher priority in scheduling compared to others. Moreover, instead of

having the providers delete the Docker images that they have run, they could cache

the images of recent requests they served. The scheduler can then take into account

the images that each provider has stored when distributing new tasks. This way, the

impact of cold starts will be minimized.

The compute provider’s agent has been deployed as a Docker container to prevent

the code from tampering with the provider’s programs and files. However, there

are still some concerns about the security of Docker containers [199]. An interesting

research direction on open platforms could be to increase the security for providers

while maintaining the performance and usability of the platform.

Any blockchain-based platform faces performance barriers, and ChainFaaS is not

an exception. Hyperledger Fabric performs faster than most blockchains, especially

those with a proof-of-work consensus algorithm. Nevertheless, as can be seen from

the experiments, sometimes it can take up to 20 seconds to complete a task. The

blockchain network could be optimized to enhance the overall performance of the

platform.

Current implementation of ChainFaaS lacks a policy management component that

defines different policies for the system such as fault tolerance, update and change,

as well as workload aggregation policies. Since each provider node is an unreliable

personal computer, the system’s reliability per node is low. On the other hand, since

a large number of providers participate in the network, the system achieves reliability

by number. A fault tolerance policy is needed to specify what the system should do

in case a provider node is unable to respond to a request. Also, an update policy is

needed to specify the update and upgrade mechanisms of the system. This policy

should include how the nodes are notified of the updates and what they should do if

an update is received in the middle of a task. Finally, a workload aggregation policy

would be helpful. With such policy, the network can accept large tasks and divide

them into smaller subtasks that can run on individual personal computers. In the end,
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using the aggregation policy, it could merge the results from different nodes.

In the current experiments, the number of providers in the network, and the number

of blockchain peers are fixed. Changing the scale of the system may influence the

performance. A possible future research direction is to identify the bottlenecks of the

system by changing the parameters and conducting different experiments. Knowing

the bottlenecks would help scale the system in the future versions.

4.7 Conclusion

Personal computers around the world are highly underutilized, and their computational

power is being wasted every day. We have conducted a survey to gather more details

and quantify this information. The results show that the typical CPU utilization

of a personal computer is only 24.5% and, on average, a personal computer is only

used 4.5 hours per day. Motivated by this, we have designed, implemented and

evaluated an open blockchain-based serverless platform called ChainFaaS that uses

the untapped computational power of personal computers. This platform can be used

by developers to run tasks in a scalable environment with minimal infrastructure

management overhead and a reasonable price. Any individual can rent out their

extra computational power on ChainFaaS to make a profit. As proof of concept,

we have implemented and evaluated a prototype of the proposed platform which

is publicly available4. Also, the source code, documentations, and user guides are

available on GitHub5. The prototype uses Hyperledger Fabric as the blockchain

solution which enables decentralized and transparent management of the platform.

Moreover, to ensure the security of computing providers, this platform runs jobs

in isolated environments using containerization techniques. The evaluation process

indicates the feasibility of the idea with satisfactory performance.

4https://chainfaas.com
5https://github.com/pacslab/ChainFaaS
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Chapter 5

Towards Blockchain
Interoperability Based on the
Publish/Subscribe Architecture

Since the introduction of Bitcoin, many studies have worked on using the distributed

ledger technology in different use cases and scenarios. This has resulted in many isolated

and incompatible blockchain networks around the world. While the development of

different blockchain networks shows great potential for DLTs, the isolated networks

have led to data and asset silos, limiting the applications of this technology. Blockchain

interoperability solutions are needed to enable distributed ledgers to reach their full

potential. Such solutions allow blockchains to support asset and data transfer, resulting

in the development of innovative applications. In this work, we propose a blockchain

interoperability solution for permissioned blockchains based on the publish/subscribe

architecture. We implemented a prototype of this platform to show the feasibility

of our design. We evaluated our solution by implementing some example publisher

and subscriber networks using Hyperledger Besu and two versions of Hyperledger

Fabric. We then conducted a performance analysis on the whole network to determine

its limits and bottlenecks. Finally, we discuss the extensibility and scalability of the

platform in different scenarios.
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5.1 Introduction

The distributed ledger technology (DLT) enables a set of independent untrusted nodes

to establish an agreement on the state of a shared ledger. Blockchain, a type of DLT,

is mostly known for its use cases in cryptocurrencies such as Bitcoin [3], Ethereum [4],

XRP[200], etc. However, the technology can be used for many other applications

and industries. Some examples are biomedical and health care [7], Internet of Things

(IoT) [11, 104], and cloud computing [15, 201]. Due to the fact that each industry has

its own unique sets of requirements, many isolated permissioned and permissionless

blockchains have been introduced.

Currently, developers should decide which blockchain solution to use for their

application, and they cannot use the capabilities of more than one blockchain. These

isolated, incompatible networks have resulted in silos of data and assets, which cannot

be used from other networks. Blockchain interoperability solutions are needed to

enable asset and information transfer from one blockchain to another. However,

interoperability for blockchains has some challenges that make it different from

interoperability for other software networks. First, the solution should take into

account the differences in the architecture of blockchain networks, and it should be

technology agnostic. Although all blockchains have an immutable ledger that stores the

history of assets, they usually reach a consensus using different algorithms. Moreover,

the interoperability solutions should not require changes in the underlying blockchain

networks, and it should be usable with minimal effort for existing blockchains.

In this work, we aim to tackle this problem by proposing a blockchain interoperabil-

ity solution based on the publish/subscribe architecture for permissioned blockchains.

In this platform, the goal is to provide a solution for blockchain networks to interop-

erate with minimal effort. We have implemented a broker blockchain that acts as a

middleman in the interoperability process between the source network and the desti-

nation network. It is worth noting that since the broker is itself a blockchain network,
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it is not a central authority and peers from the source and destination blockchains can

also participate in the governance of this network. The broker blockchain keeps a copy

of the information that needs to be shared in the form of a topic. A topic has a name,

message, publisher, and a set of subscribers. The publisher is the source blockchain

network that wants to share the information. The publisher is responsible for creating

the topic on the broker and publishing to the corresponding topic whenever the

information is changed. The subscribers are the destination networks that need some

information from the source network. As soon as the subscriber network subscribes to

a topic, the broker network notifies it whenever a change happens to a topic. This

solution enables interoperability between blockchains with minimal effort. The source

and destination network only need to deploy a connector smart contract on their

blockchain networks, which manages the communications with the broker network.

The rest of this work is organized as follows. Section 5.2 summarizes state of the

art in blockchain interoperability and blockchain-based publish/subscribe protocols.

Section 5.3 presents the design of the proposed platform, as well as its components

and message flow. Section 5.4 outlines the implementation and deployment details of

each component in the platform. Section 5.5 discusses the performance evaluation

of this platform. In Section 5.6, some potential threats to the validity of the design

and future research directions are discussed. Finally, Section 5.7 summarizes and

concludes this work.

5.2 State of the Art

5.2.1 Blockchain Interoperability

The research on blockchain interoperability has emerged in both the industry and

academia. A recent survey conducted by Belchior et al. [202], classifies blockchain in-

teroperability solutions into three categories: cryptocurrency-directed interoperability

approaches, blockchain engines, and blockchain connectors. Cryptocurrency-directed
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approaches are mostly industry solutions that provide interoperability across pub-

lic blockchains. This category focuses on asset interoperability and is divided into

sidechains, hash lock time contracts, notary schemes, and hybrid solutions. Sidechains

offload transactions to a secondary chain, enhancing performance, as well as providing

features that the main chain would not be able to provide. Sidechains also allow the

representation of a token from the main chain at the secondary chain. Some sidechain

solutions include the BTC Relay [203], Zendoo [204], and RSK [205]. Hash lock

time contract solutions enable cross-chain atomic operations using smart contracts.

Wanchain uses this scheme and provides loan services with cryptocurrencies [206].

Notary schemes are centralized or decentralized entities that mediate token exchange

(e.g., cryptocurrency exchanges). Finally, hybrid solutions combine characteristics

from previous approaches. The cryptocurrency-directed approaches only work for

transferring different types of cryptocurrencies between blockchain network. As a

result, these approaches cannot be used for permissioned blockchains with arbitrary

assets and smart contracts, which are the focus of this work.

The second category is blockchain engines, which enable the creation of customized

blockchains that can interoperate by providing reusable data, network, consensus,

and contract layers. Platforms like Polkadot [207] and Cosmos [208] provide such

infrastructure, with free interoperability among the instances they allow to create.

These approaches are fundamentally different from what has been proposed in this

work. Instead of enabling blockchain interoperability for currently running blockchains,

blockchain engines propose blockchain networks that are interoperable by design. As a

result, these solutions cannot be used for currently running permissioned blockchains.

The blockchain connector category is composed of interoperability solutions that

are not cryptocurrency-directed or blockchain engines. They include blockchain

agnostic protocols, blockchain of blockchains solutions, blockchain migrators, and

trusted relays. Each of these subcategories is designed for a particular set of use

cases. Blockchain agnostic protocols enable cross-blockchain communication between
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arbitrary distributed ledger technologies, which typically include refactoring and

making changes in the underlying blockchains. An example is the solution proposed

by Abebe et al. [209], which enables interoperability between Hyperledger Fabric

networks using Fabric chaincode and a protocol-buffer-based communication protocol.

Blockchain of blockchains are approaches that allow users to build decentralized

applications using multiple blockchains. Blockchain migrators enable the state of one

blockchain to be migrated to another blockchain. Currently, only simple blockchain

migration solutions have been proposed [210, 211]. Trusted relays allow the discovery of

the target blockchains, often appearing in a permissioned blockchain environment where

cross-blockchain transactions are routed by trusted escrow parties. An interesting

trusted relay approach is Hyperledger Cactus [212], the most recent Hyperledger

project aiming to connect a client to several blockchains, whereby transactions are

endorsed by trusted validators. Cactus focuses on providing multiple use case scenarios

via a trusted consortium.

The solution proposed in this work can be categorized as a trusted relay, as it

contains a blockchain mediating communication across heterogeneous blockchains [202].

While trusted relays can provide a straightforward way of achieving interoperability,

most of them are not trustless (e.g., contain a centralization point). Our solution is a

decentralized trusted relay that implements a publish/subscribe system, anchored on

the trust that underlying blockchains offer.

5.2.2 Blockchain-based Publish/Subscribe Protocol

The blockchain technology has been applied in the pub/sub paradigm in a few previous

studies. However, those studies adopt blockchain to address the existing problems in

other areas, such as IoT [213], supply chain [214], multi-tenant edge cloud [215], and

digital trading [216].

Huang et al. [215] exploit blockchain technology to enhance the security of pub/sub

communications in multi-tenant edge clouds. Mainly topic-based and broker-enabled
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pub/sub streaming systems use centralized cloud servers to store sensitive metadata

and access control lists, which can compromise the confidentiality, anonymity and

integrity of tenants’ data. Alternatively, critical data such as ACL and identity

information, as well as the hash of raw messages, and operation logs, can be stored on

the blockchain to guarantee data security and integrity. Smart contracts also implement

access control mechanisms to authorize publishers and subscribers’ requests.

Trinity [214] proposes a blockchain-based distributed publish/subscribe broker to

solve the existing flows in centralized brokers in IoT and supply chain monitoring

applications. Trinity has three main components: blockchain network, brokers, and

clients. The blockchain network is responsible for consensus in the system and

persistent storage. The broker handles the communications between the blockchain

network and clients. The clients are the publishers and subscribers of the topics. The

blockchain network is pluggable, and the authors have used Tendermint, Hyperledger

Fabric, Ethereum, and IOTA. For the broker, they have used the Mosquitto MQTT

broker.

Zhao et al. [217] have proposed Secure Pub-Sub (SPS), which provides fair payment

based on the reputation for publishers and subscribers in cyber-physical systems. They

use Bitcoin’s network to enable payments between the entities, and they propose a

reputation mechanism that helps calculate the price of data.

Lv et al. [213] presents a decentralized privacy preserving pub/sub model for IoT

systems to solve centralized brokers’ problems such as single point of failure, data

tampering due to corrupter brokers, and heavy encryption algorithms. The presented

model applies public-key encryption with equality test [218] and ElGamal [219] to

protect participants’ (both publishers and subscribers) privacy. A system prototype is

implemented and evaluated against the feasibility of the proposed model.

Bu et al. [216] and Zupan et al. [220] have proposed blockchain-based pub/sub

brokers to address the drawbacks of traditional pub/sub systems such as privacy and

accountability. However, they have not explained their implementation and evaluation
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in their studies.

As mentioned above, all the previous studies exploit blockchain to improve the

centralized predicament in traditional pub/sub systems in distinct application domains.

Our paper focuses on establishing effective and practical interoperability between

multiple permissioned blockchains with different architecture and infrastructure. To

the best of our knowledge, our paper is the first study that enhances blockchain

interoperability utilizing the pub/sub communication model.

5.3 System Design

In this section, we first discuss the design principles that a blockchain interoperability

solution should follow. We then propose our interoperability and explain its components

and message flow.

(1) Enroll as a 
publisher

Broker Blockchain

Connector
Smart Contract

(2) Create a 
new topic

(6) Publish to the 
created topic

(3) Enroll as a 
subscriber

(4) Subscribe 
to a topic

Publisher Blockchain

Connector

Application

(5) Update 
topic

Subscriber Blockchain

Connector

Application

(9) Topic is 
updated

(8) Notify 
subscriber

Topics 
Smart Contract

(7) Fetch subscribers

Figure 5.1: Architecture of the platform and the message flow.

5.3.1 Design Principles

Blockchain interoperability aims to enable applications to use the assets and informa-

tion available on blockchains other than their main blockchain network. This allows

for a greater range of applications. A blockchain interoperability solution should take

into account the following design principles:
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• The blockchain networks are independent, and they may have different architec-

tures.

• The blockchain networks are in full control of their assets and information.

• The transfer protocol should be technology agnostic.

• The interoperability solution should not require significant changes in the source

and destination networks.

• The blockchain networks should be able to incorporate the solution with minimal

effort.

Following the mentioned principles, we present our solution, which allows interoper-

ability based on a publish/subscribe architecture. Figure 5.1 shows the architecture

and message flow of the platform.

5.3.2 Components

The proposed platform in this work aims to solve the interoperability problem in

permissioned blockchains using the publish/subscribe pattern. When a blockchain

wants to use the data from another blockchain, there needs to be a way to fetch and

transfer this data between the networks securely. Moreover, if the data changes in the

source network, the destination network should be notified of the change. Figure 5.1

shows the architecture of the platform and the message flow.

The publisher blockchain is the blockchain network that sends the data, also referred

to as the source network. For a publisher to participate in this platform, it needs

to run the appropriate connector smart contract on its blockchain and enroll as a

publisher in the broker. The publisher can then create as many topics as they want

and use the connector smart contract to publish the changes to the topic.

The subscriber blockchain is the blockchain network that received the data, also

referred to as the destination network. Similar to the publisher, the subscriber also
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needs to run the appropriate connector smart contract and enroll as a subscriber. The

subscriber can then subscribe to any topic available on the broker blockchain. Every

time the topic changes, the broker notifies the subscriber by invoking the connector

smart contract. There can exist many subscribers for a topic.

The broker blockchain is the core component of the platform. It is a blockchain

network that stores all the information about the topics and the blockchains that

participate in the interoperability process. It has two different smart contracts, the

connector smart contract and the topics smart contract. The connector smart contract

stores the information about the participating blockchain networks and how the

broker can interact with them. The topics smart contract is responsible for storing

the information about the topics such as their publisher, subscribers, and the latest

message.

5.3.3 Message Flow

The complete interoperation process in the platform is shown in Figure 5.1. For

simplicity, only one publisher and one subscriber blockchains are shown in this figure.

However, for each topic, we can have an unlimited number of subscribers, and in

general, there is no limit on the number of publisher and subscriber blockchains. A

detailed explanation of each step in Figure 5.1 follows:

1. For any blockchain network to interact with the broker blockchain, it must

enroll in the connector smart contract. During this process, the information

that the broker needs to be able to interact with the blockchain is registered in

the connector smart contract. As a result, the publisher is required to enroll in

the connector smart contract as a publisher. This step only needs to be done

once when the publisher wants to create its first topic. It can then create topics

or publish to existing ones without the need to be enrolled again.

2. A publisher that is registered in the connector smart contract can create a new
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topic. In this step, the publisher needs to specify a name for the topic and the

initial topic message. This step only needs to be done once for each topic.

3. Similar to the publisher blockchain, the subscriber blockchain should also enroll

in the connector smart contract. This step only needs to be done once when the

subscriber wants to subscribe to a topic for the first time.

4. To receive a notification when a topic has been changed, the subscriber should

subscribe to the topic by sending a request to the topics smart contract. This

results in the subscriber being added to the list of all subscribers for the topic.

This step only needs to be done once for each topic.

5. Whenever needed, the application in the publisher blockchain can update the

topic by sending a request to the connector smart contract.

6. The connector smart contract sends a publish request to the topics smart contract

for the existing topic.

7. As soon as a publish request is received by the topics smart contract, the smart

contract fetches the information about all the subscribers of the topic from the

connector smart contract. This includes information on how the broker can

interact with each of the subscribers.

8. The topics smart contract then uses the data fetched from the connector smart

contract to notify all the subscribers of the change in the topic. This happens

by sending an update request to the connector smart contract in each of the

subscriber networks.

9. In each subscriber network, the connector smart contract receives the update

for the topic and notifies the application.
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5.4 Implementation and Deployment

An open-source prototype of the proposed platform has been implemented as a proof-

of-concept to demonstrate the feasibility of the design. To show the interoperability

capabilities of the platform, we implemented two example subscriber networks, as

well as an example publisher network. The broker and the example publisher are

implemented using Hyperledger Fabric v2 [221]. The two example subscribers are

implemented using Hyperledger Fabric V1.4 [93, 222], and Hyperledger Besu [223].

In this section, the implementation and deployment details of the broker and the

example networks are discussed. The codebase of the platform can be found on the

Hyperledger Lab’s GitHub1 page.

5.4.1 Broker Blockchain

The broker blockchain acts as a messaging broker between other blockchains to enable

interoperability. When choosing the blockchain solution to implement the broker

network, we had to ensure that the solution fits well with the needs of this platform.

First, since we are aiming to address interoperability in permissioned blockchains,

the broker also needs to be permissioned. Moreover, many permissioned blockchains

are enterprise-level, and they may have privacy and governance concerns. We need

a broker blockchain that takes these needs into consideration. Finally, the smart

contracts that need to be implemented on the broker blockchain are complicated, and

the blockchain needs to support this kind of smart contract. Many blockchains only

support smart contracts written in non-standard and domain-specific programming

languages, making it hard to implement complicated smart contracts. Hyperledger

Fabric has all the required features for the broker blockchain and more.

Hyperledger Fabric is an open-source permissioned blockchain that has been designed

for enterprise use cases. Unlike the open permissionless blockchains that have scalability

issues, Fabric enables high transaction throughput and low transaction confirmation

1https://github.com/hyperledger-labs/pubsub-interop
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latency. The architecture of Hyperledger Fabric is highly modular and configurable,

which enables customization for each specific use case. The consensus protocol,

ordering service, membership service, database management system, and even the

endorsement policy can be changed and modified to enable all kinds of applications.

Most blockchain platforms that support smart contracts follow an order-execute

architecture. In these blockchains, the transactions are first validated and ordered by

the consensus protocol. Only then the transactions are propagated to all the peers in

the network for sequential execution. This architecture requires the smart contracts to

be deterministic to ensure that consensus is reached among the peers in the network.

As a result, smart contracts need to be written in a non-standard and domain-specific

programming language, limiting their functionalities. On the other hand, Hyperledger

Fabric uses an execute-order-validate architecture that addresses the challenges of the

order-execute architecture, and it also improves scalability and performance. In this

architecture, the first step is to endorse the transaction by executing it and checking

its correctness. Next, the transactions are ordered based on a configurable consensus

protocol. At last, based on the application’s endorsement policy, the transaction is

validated and committed to the ledger. Since in this architecture, the transactions are

executed before being ordered, any inconsistency can be detected in the execution step.

Therefore a domain-specific language for the smart contract that ensures determinism

is not required. This enables Hyperledger Fabric to support smart contracts in

general-purpose programming languages such as Go, Node.js, and Java [221].

A Hyperledger Fabric network consists of different organizations that contribute

resources to run the network. To manage the roles and identities in the permissioned

ledger, Hyperledger Fabric uses Certificate Authorities (CAs) and Membership Service

Providers (MSPs). Usually, Each organization has its own CA and MSP. The CA

is responsible for issuing identities by generating a key-pair that consists of a public

and a private key. Using the public key, the MSP then assigns roles and defines

permissions for the identity. In Hyperledger Fabric, an ordering service is used to
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order the transactions and pack them into blocks. The ordering service consists of

orderer nodes (or orderers for short) that reach a consensus among each other based

on a pluggable consensus algorithm. Currently, Raft, Kafka, and Solo consensus

algorithms are supported by Fabric. The design of Hyperledger Fabric relies on

deterministic consensus, which prevents the creation of forks in the blockchain. Many

other blockchains, such as Bitcoin and Ethereum, rely on probabilistic consensus

algorithms, which can result in forks and many problems that come with it. As

the nodes that host instances of the ledgers and the smart contracts, peers are a

fundamental element of a blockchain network. Each peer belongs to an organization

and is responsible for validating the transactions in a block, adding the new block to the

ledger, and keeping a copy of the ledger. Some peers are also responsible for interacting

with applications, executing the smart contracts, and endorsing transactions. These

peers are called endorsers. Each smart contract has an endorsement policy that defines

which peers should run the smart contract and endorse the transactions. Hyperledger

Fabric allows a set of components, such as peer nodes, ordered nodes, and applications,

to interact privately through channels. There can exist many channels in the network,

and each peer can be a part of one or more channels. Each channel has its own ledger,

and only those with access to the channel can interact with the ledger. Like any

other blockchain that supports smart contracts, in Fabric, smart contracts define the

executable logic for generating new transactions and making changes to the ledger.

In Hyperledger Fabric, a chaincode is defined as a set of related smart contracts.

Since each chaincode only consists of one smart contract in most use cases, the words

chaincode and smart contract are often used interchangeably in the literature.

In the broker network, we leverage the capabilities of Hyperledger Fabric V2.2 to

implement a messaging broker. The broker network has two peer organizations and

an orderer organization, each with an independent certificate authority. Each of the

peer organizations hosts one peer node, and the orderer uses Raft implementation.

Two chaincodes have been implemented that run on one channel. In the current
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prototype, all components of the broker network have been deployed on an instance

with 8 VCPUs, 30GB RAM, and 288GB disk with Ubuntu 18.04.

We implement two chaincodes called the topics and the connector to support the

features needed for the broker. The topics chaincode is responsible for keeping all the

topics and their corresponding details. In Hyperledger Fabric, everything is stored as

a key-value pair. In the topics smart contract, the key is a unique topic ID. The value

is an object that includes the following properties: name, publisher, subscribers, and

message. The name of a topic is a string value set by the publisher when creating the

topic. Each topic also has one publisher, the blockchain network that has registered

the topic on the broker. The publisher is the only blockchain that can make changes

to the topic. The subscribers property stores a list of all the blockchains that have

subscribed to the topic. It is worth mentioning that the publisher and the subscribers

properties only accept objects stored on the connector blockchain. As a result, the

publisher and subscriber blockchains should enroll in the connector chaincode before

invoking the topics chaincode.

The connector chaincode is responsible for storing the connection details of other

blockchain networks. Similar to the topics chaincode, the key in the key-value pair

used in this chaincode is a unique ID for each blockchain. The value is an object

that has the following properties: name, type, server IP, port, extra information. The

name is a string value that can be selected when enrolling in the network. Type

shows what kind of blockchain technology this network is using. Currently, support

for Fabric and Besu has been implemented, and other blockchains will be added in

future versions. The server IP and port are used by the broker blockchain to access the

publisher or subscriber using an HTTP request. The extra information property stores

network-specific details that may be needed when interacting with the blockchains.

For instance, for a Hyperledger Besu network, this includes the private key, address,

and the contract application binary interface (ABI) that the broker should use to send

a request to the Besu network.
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As mentioned earlier, each channel has its own separate ledger. A ledger stores facts

about all the objects. A ledger consists of one or more world states and a blockchain.

A world state is a database that stores the latest values of each object. Each chaincode

has a separate world state, which is in a namespace that only the smart contracts

inside that chaincode can access. The blockchain keeps the immutable history of all

the objects in the ledger. In other words, each and every change that has happened to

each object from its creation can be accessed from the blockchain. Transactions, which

represent queries or updates to the world state, are bundled into blocks by the ordering

service. Each block has a hash in its header, calculated based on the hash of the

transactions in the block and the hash of the previous block. This mechanism results

in a sequentially linked list of blocks, which enables immutability and increases the

ledger’s security. Figure 5.2 shows the ledger of the broker blockchain. One blockchain

keeps records of all the objects, and there are two world states, one for the topics

chaincode and another for the connector chaincode. Each peer in the network owns a

copy of this complete ledger.

Blockchain

header

T1 T2 Tn...

header

T1 T2 Tn...

header

T1 T2 Tn...

...

Block 10 Block 11 Block n

Ledger

Topics
World State

Connector
World State

Figure 5.2: Broker blockchain’s ledger which consists of one blockchain and two world
states, one for each chaincode. The blockchain stores the history of the transactions.
The world states store the latest version of each object.

To better understand how the topics and connector chaincodes work, we need to

discuss their implemented functionalities. Figure 5.3 shows the UML class diagram
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of the implemented chaincodes. The Hyperledger Fabric contract API provides an

interface for developing smart contracts and applications. Each developed chaincode

should extend the contract class from this API and then implement the required logic.

In each smart contract, the InitLedger function is used to create a set of initial assets

on the ledger when the chaincode is deployed. In the topics chaincode, the CreateTopic

function can be used to create a new asset of type topic. The QueryTopic and the

QueryAllTopics functions can be used to query one specific topic and all the existing

topics, respectively. The connector chaincode implements the same initialize, create,

and query functionalities but for assets of type blockchain.

Topics

InitLedger

CreateTopic

QueryTopic

QueryAllTopics

SubscribeToTopic

UnsubscribeFromTopic

PublishToTopic

Connector

InitLedger

CreateBlockchain

QueryBlockchain

QueryAllBlockchains

fabric-contract-api.Contract

Figure 5.3: UML class diagram of the implemented chaincodes.

Other than the mentioned functions, the topics blockchain also implements Sub-

scribeToTopic, UnsubscribeFromTopic, and PublishToTopic functionalities. When a

destination blockchain wants to get notified of a topic’s change, it subscribes to that

topic by invoking the SubscribeToTopic function. In this case, the broker blockchain

retrieves the latest version of the topic from the world state, adds the new desti-

nation blockchain to the list of subscribers for that topic, and updates the ledger.

The subscriber can also unsubscribe from the topic at any time by invoking the

UnsubscribeFromTopic function. Finally, the PublishToTopic function is used by the
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source blockchain network when they want to update the topic’s message. An invoke

request to this function triggers update requests to all the subscribers of the topic.

Algorithm 2 shows the detailed implementation of the PublishToTopic method. First,

the broker retrieves the latest version of the topic from the topics world state. In

the case that no topic was found, it immediately throws an error. Next, the topic’s

message is updated with the new message value and the topic’s state is put to the

world state. The next step is for the broker to notify all the subscribers. For each

of the subscribers of the topic, the blockchain object is queried from the connector

contract. This inter-chaincode communication is also shown in Figure 5.3. Then given

the type of subscriber blockchain, the steps to invoke the remote network are followed.

Algorithm 2: PublishToTopic Method

Input: topicID, newMessage
Result: Subscribers are notified of the new message

1 topicState ← getState(topicID)
2 if !topicState then
3 throw error
4 end
5 topicState.message ← newMessage
6 putState(topicID, topicState)
7 for subID in topicState.subscribers do
8 subState ← query subID from connector contract
9 if subState.type = Fabric then

10 follow steps to invoke a remote Fabric network
11 else if subState.type = Besu then
12 follow steps to invoke a remote Besu network
13 end

14 end

5.4.2 Subscriber Blockchains

The subscriber, or destination blockchain, is the blockchain that requires information

from another blockchain to run a task. For the subscriber to be able to participate in

the platform, it needs to have the appropriate connector smart contract deployed on

it. We have implemented subscriber connector contracts for Hyperledger Fabric v1.4
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and Hyperledger Besu. However, the connector is a simple smart contract that can

also be developed by the owners of the subscriber blockchain. This smart contract

needs to keep track of the topics that the subscriber has subscribed to and store their

latest version for other smart contracts to access at any time. Two example subscriber

networks have been implemented to demonstrate the interoperability capabilities of

the platform.

The first example subscriber is implemented using Hyperledger Fabric V1.4. The

two versions of Fabric used in this work are similar in terms of architecture. However,

version 2 offers improved performance, usability, and security when compared to

version 1.4. The Fabric example subscriber has been implemented on an instance

with 2 VCPUs, 7.5GB RAM, and 36GB disk with Ubuntu 18.04. There are two

organizations, each hosting two peers. One Solo orderer and one Fabric certificate

authority are used by the whole network.

The second example subscriber is implemented using Hyperledger Besu, an open-

source Ethereum client that supports private and permissioned blockchains. Besu

can be used to create networks that work based on a proof of work (PoW) or a

proof of authority (PoA) consensus algorithm. In this work, we implemented a PoW

network using Besu, which can be thought of as a private Ethereum network. We then

implemented a connector smart contract in Solidity to keep a record of the subscribed

topics. The Besu network runs on an instance with 2 VCPUs, 7.5GB RAM, and 36GB

disk with Ubuntu 18.04.

5.4.3 Publisher Blockchains

The publisher, or the source blockchain, is the blockchain network that needs to send

information to other blockchains. Similar to what we have in the subscriber blockchain,

a connector smart contract is also required for the publishers. However, the connector

is slightly different in the publisher. The publisher connector should not only keep

track of the topics, but it should also connect to the broker blockchain to publish the

142



topics. We implemented an example publisher network using Hyperledger Fabric V2.2

with the same configurations as the broker network on an instance with 2 VCPUs,

7.5GB RAM, and 36GB disk with Ubuntu 18.04.

5.5 Evaluation

We have discussed the design of our interoperability solution as well as the implemen-

tation details of the prototype. In this section, we focus on evaluating the performance

of the implemented prototype of the broker blockchain. The goal is to see how the

throughput and latency of the system changes in different scenarios. We have con-

ducted two series of experiments to achieve this goal. The first set of experiments aims

to show the performance metrics of different functionalities in the broker blockchain.

The second set of experiments is focused on the publish function, which is the most

important and time-consuming part of broker blockchain.

We have used Hyperledger Caliper [224] to run the experiments. Caliper is an open-

source blockchain performance benchmark tool that allows performance measurement

for different blockchains such as Hyperledger Fabric, Ethereum, Hyperledger Besu, etc.

In Hyperledger Caliper, the workloads or benchmarks are responsible for generating

the content of each transaction that is sent to the blockchain network. Given the

network and benchmark configurations, Caliper uses a set of independent workers to

send scheduled requests to the blockchain network and monitor the response. When

the tests are finished, Caliper generates a performance report which consists of the

average throughput and minimum, maximum, and average latency throughout the test.

The throughput shows the number of transactions that were processed in the system

in a given time. The latency shows the amount of time it takes for a transaction to be

finished and added to the ledger.

We have set up Hyperledger Caliper on a separate machine to ensure that its process

does not affect the performance of the broker network. The machine has 8 VCPUs,

30GB RAM, and 288GB disk with Ubuntu 18.04. We use five workers, a fixed rate
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controller, and a test duration of 60 seconds for each benchmark round.

The first set of experiments focuses on the performance evaluation of broker

blockchain. In these experiments, we conduct a series of tests using Hyperledger

Caliper for each functionality that broker blockchain offers. Figure 5.3 summarizes all

these functionalities. Each type of transaction goes through a specific set of steps in

Hyperledger Fabric, which highly influences the response time for that transaction.

For instance, an invoke transaction goes through endorse, order and commit steps.

On the other hand, a query transaction is not transferred to the orderer, and the

response is immediately sent back by the peer. The create actions in the connector

and topics smart contract are invoke actions that have very similar implementations.

The same goes for the query actions in the two smart contracts. As a result, it would

be repetitive to run performance evaluation experiments for both smart contracts.

Therefore, we run the experiments on the topics smart contract.

The topics smart contract has five important functionalities: create a topic, query a

topic, publish to a topic, subscribe to a topic, and unsubscribe from a topic. For each

of these actions, we run a set of experiments by changing the transaction send rate in

the Hyperledger Caliper benchmark. The goal is to see how the system’s throughput

and average latency changes when the send rate is changed. Figure 5.4 shows the

details of these experiments. It can be seen that the send rate follows the same pattern

for all the actions except for PublishToTopic. The reason for this difference is that the

PublishToTopic action takes more time and needs more resources to run compared to

other actions. Consequently, the hardware limits of the broker blockchain are reached

when the network receives more than roughly 100 publish transactions in each second.

We discuss the behaviour of the network with different PublishToTopic requests in

the second set of experiments shown in Figure 5.5. As a result of this limitation, we

lowered the send rate for the PublishToTopic action in our experiments.

It can be seen in Figure 5.4 that the SubscribeToTopic, UnsubscribeFromTopic, and

CreateTopic have similar behaviours under the same send rate. These three actions are
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Figure 5.4: The trend of system throughput and average latency for various function-
alities throughout time with the change of request send rate. The words publish, sub,
unsub, query, and create in the plots stand for PublishToTopic, SubscribeToTopic,
UnsubscribeFromTopic, QueryTopic, and CreateTopic functions, respectively.
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of type invoke. As mentioned earlier, an invoke transaction goes through all the steps

of execution, endorsement, ordering, and committing. In other words, since an invoke

transaction proposes a change in the blockchain, it needs to go through the consensus

algorithm, which can be time-consuming. Since the three actions are of the same type,

and none need heavy computations in execution, the system throughput and latency

for all of them are similar. As can be seen in the experimentation results, when the

send rate is lower than a threshold (around 160 TPS in this case), the throughput

is the same as the send rate, and the average latency is only a few milliseconds.

This shows that with send rates below the threshold, all transactions are processed

immediately. When the number of create, subscribe, or unsubscribe transactions

sent in each second is more than the threshold, the processing limit of the broker

network is reached. The throughput is limited to the broker’s maximum capacity

(around 160 TPS), and the transactions are queued before being processed, which

results in an increase in the latency. Figure 5.4 shows that when the send rate for the

create, subscribe, or unsubscribe transactions is around 210 TPS, the average latency

increases to about 11 seconds. The latency keeps increasing with higher send rates

and reaches approximately 50 seconds with a send rate of 360 TPS.

The QueryTopic action is very different from the previous ones. Since a query

transaction does not go through the consensus protocol, its process is much faster.

The send rate pattern used for query is similar to that of create, subscribe, and

unsubscribe. However, the throughput and average latency act very differently. The

throughput follows the same pattern as the send rate, and the average latency is

around a few milliseconds throughout the whole experiment. These results show that

this experiment does not reach the process limit for QueryTopic.

Finally, the PublishToTopic action is very different from the previous actions. It is

similar to create, subscribe, and unsubscribe because they are all invoke transactions.

However, the publish action requires heavier computations. The implementation

details of the PublishToTopic method can be found in Algorithm 2. As mentioned
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earlier, since the publish action needs more time and computational resources, we use

a different send rate pattern for it. If we were to use the same send rate, the hardware

limits of the broker blockchain would be reached, resulting in the experiments being

halted. We discuss this in more detail in the second set of experiments shown in

Figure 5.5. To ensure that the performance of the remote source and destination

networks do not influence the performance evaluation of the broker network, we only

send dummy requests to the subscriber networks during the experiments. It can be

observed from Figure 5.4 that the publish action reaches the processing limit of the

broker network much faster than the other invoke transactions. With send rates of

about 70 TPS and more, the throughput is limited to 65 TPS. The average latency for

the publish action has more fluctuations compared to other invoke actions. The main

reason for this fluctuation is that in the publish method, depending on the number of

subscribers that the topic has, the processing time can vary. In this experiment, the

average latency gets as high as 80 seconds, with the send rate of 110 TPS.

Figure 5.5: The trend of system throughput, average latency, and request success rate
throughout time with the change of send rate.

Given the limits of the PublishToTopic action, we decided to run some extra

experiments on this type of transaction. This experiment aims to find the limits of the
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broker network and discover what happens when the limit is reached. In the previous

experiment, we discovered that the processing limit for the publish transactions is

reached at the sent rate of around 70 TPS. We also observed that the latency increases,

and the throughput is limited for send rates above 70 TPS and below 110 TPS.

However, we would like to know what happens if the send rate is more than 110 TPS.

In this experiment, we linearly increase the send rate from 50 to 150 TPS and observe

the throughput, latency, and transaction success rate. Figure 5.5 shows the results of

this experiment. Similar to the previous experiment, we see that the throughput is

limited, and the latency is increased when the send rate reaches 70 TPS. Nevertheless,

the interesting change happens at the 120 TPS send rate. At this point, a significant

drop and a significant rise is observed in the throughput and latency, respectively.

Moreover, the transaction success rate is not 100% anymore. From this point on, a

portion of the transactions fail since the broker network has reached its hardware

limits.

5.6 Discussions

To enable blockchain interoperability, we have proposed the use of a broker blockchain

as a middleman. The broker blockchain acts as a decentralized trusted relay between

the source and destination network. Using a relay enables the interoperating networks

to transfer data with minimal effort. The task of verifying the data and handling the

communications between different blockchain networks can be delegated to the relay.

As a result, there is no need for source and destination networks to make fundamental

changes to their underlying networks. The use of a middleman may seem contradictory

to the nature of blockchain at first. However, in our solution, the relay network is also

a blockchain network that runs on smart contracts. Therefore, the broker blockchain

allows the interoperation to be seamless, transparent, and secure.

In our evaluations, we identified the PublishToTopic functionality as the bottleneck

of the platform. A possible future research direction can be to improve the performance
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of this function. Different solutions can be implemented and compared for performance.

One idea is to add a time component that the subscribers can set to specify the time

interval that they want to receive updates for a topic. For instance, a subscriber may

choose to receive notifications for a topic no sooner than every 10 minutes. This way,

if the topic changes during this time, the subscriber gets notified of all the changes at

once after the time interval.

In the current prototype of our platform, everyone can subscribe to a topic, and

everything is transparent to all the participants in the network. An access control

layer can be added to the platform as an extra feature. In some use cases, the

source and destination blockchains may need to interact with each other privately

and confidentially. The channels in Hyperledger Fabric can be used to enable such

communications. Moreover, the publisher network may choose to only make a topic

available to a subset of subscribers. An access control module can be used to manage

the blockchains that can access each topic.

5.7 Conclusion

With blockchain technology gaining popularity in academia and industry every day,

many blockchain networks are being introduced worldwide. These networks are highly

isolated and incompatible with each other, resulting in silos of data. Blockchain

interoperability solutions can revolutionize this technology by enabling data and asset

transfers between heterogeneous blockchains. In this work, we propose a blockchain

interoperability solution based on the publish/subscribe architecture. Our solution

consists of a broker blockchain that keeps a record of the data being transferred between

blockchain networks. The blockchains that want to participate in the interoperability

can connect to the broker network as publishers or subscribers, depending on their role.

A prototype of the broker blockchain has been implemented using Hyperledger Fabric.

Moreover, an example publisher and two example subscribers have been implemented

using Hyperledger Besu and two versions of Hyperledger Fabric to show that the design
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works for heterogeneous blockchains. The network’s performance has been analyzed

using a benchmark tool to identify the limits and bottleneck of the platform. The

implementation and evaluations indicate the feasibility of the idea with satisfactory

performance, and the bottleneck is identified to be the process of publishing a new

message to a topic. Finally, a discussion on the extensibility, scalability, and possible

improvements of the system is presented.
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Chapter 6

Conclusion and Future Work

In this work, we first studied and analyzed the performance of different distributed

ledgers to identify their potential for cloud computing applications. We then use the

results to design an open blockchain-based serverless computing platform. Finally,

we propose a blockchain interoperability solution to enable our serverless platform to

work with other blockchain networks and offer payments in other cryptocurrencies.

The following summarizes the findings and results of each of our studies as well as

possible future research directions.

In Chapter 2, we conducted a systematic survey covering the performance evalua-

tion approaches for distributed ledger technologies that exist in the literature. We

categorized these solutions into empirical and analytical evaluation methods. The

empirical methods can further be grouped into four categories: performance bench-

marking, monitoring, experimental analysis and simulation. We identified performance

monitoring as the best solution for evaluating public blockchains. Compared to the

empirical solutions, analytical modelling approaches were found to be more powerful,

especially for analyzing the consensus layer of blockchain systems. We compared three

main types of modelling approached and discussed their advantages and disadvantages

for each blockchain network. These approaches are Markov chains, queueing models

and stochastic Petri nets. Lastly, we summarize the bottlenecks of major blockchain

platforms and proposed the open issues and possible future research directions in this
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area.

In Chapter 3, we studied the performance of IOTA, a well-known DAG-based

distributed ledger. In this work, we analyzed different performance metrics of the

IOTA network using simulation, experiments, and an analytical layered model. We

extended a DAG simulation tool to support the currently running consensus algorithm

on the public IOTA network. We then used experiments and simulations to investigate

the impact of arrival rate, tip selection algorithm, network delay, and randomness

parameter of the random walk algorithm on the number of confirmed transactions

per second in the network. Finally, we proposed an analytical model to estimate the

transaction reattachment waiting time from the user’s perspective.

As for the future work, on one hand we would like to study how other factors such

as encryption algorithms and ledger databases influence the throughput. It would be

also interesting to evaluate IOTA’s performance under consensus without COO in

further study. On the other hand, our extended simulator did not resolve the efficiency

problem in large-scale simulations, which would be another direction of our future

research.

In Chapter 4, we proposed an open blockchain-based serverless computing platform

called ChainFaaS that leverages the untapped computational power of personal

computers. Developers can use this platform to run tasks in a scalable environment with

minimal infrastructure management overhead and a reasonable price. Any individual

can rent out the extra computational power of their personal computer on ChainFaaS

to make a profit. As proof of concept, we implemented and evaluated a prototype of the

proposed platform, which is publicly available1. Also, the source code, documentation,

and user guides are available on GitHub2. The prototype uses Hyperledger Fabric as

the blockchain solution, which enables decentralized and transparent management of

the platform. Moreover, to ensure the security of computing providers, this platform

1https://chainfaas.com
2https://github.com/pacslab/ChainFaaS
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runs jobs in isolated environments using containerization techniques. The evaluation

process indicates the feasibility of the idea with satisfactory performance.

From the computing providers’ and the blockchain peers’ point of view, their

income from this platform should be worth their time and effort. They also need to

consider the increased electricity consumption of their computers resulting from their

participation in the network. Moreover, to motivate the developers to switch from

public cloud providers to ChainFaaS, the platform should be reliable and cost-efficient.

While the initial design of ChainFaaS indicates a sustainable income for the providers

and the peers and a low-cost for the developers, a more in-depth cost analysis in future

research can be valuable. It is necessary to take into account the cost efficiency of

the platform for the developers as well as any possible costs for the providers and the

blockchain peers.

In the current prototype of ChainFaaS, the scheduler randomly selects one of the

available providers with enough CPU and RAM for the request. The scheduler can

be improved to take into account other relevant factors. For instance, it can consider

the reputation of the providers: those with a higher successful job completion score

may get a higher priority in scheduling compared to others. Moreover, instead of

having the providers delete the Docker images that they have run, they could cache

the images of recent requests they served. The scheduler can then take into account

the images that each provider has stored when distributing new tasks. This way, the

impact of cold starts will be minimized.

The compute provider’s agent has been deployed as a Docker container to prevent

the code from tampering with the provider’s programs and files. However, there

are still some concerns about the security of Docker containers [199]. An interesting

research direction on open platforms could be to increase the security for providers

while maintaining the performance and usability of the platform.

Any blockchain-based platform faces performance barriers, and ChainFaaS is not

an exception. Hyperledger Fabric performs faster than most blockchains, especially
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those with a proof-of-work consensus algorithm. Nevertheless, as can be seen from

the experiments, sometimes it can take up to 20 seconds to complete a task. The

blockchain network could be optimized to enhance the overall performance of the

platform.

Current implementation of ChainFaaS lacks a policy management component that

defines different policies for the system such as fault tolerance, update and change,

as well as workload aggregation policies. Since each provider node is an unreliable

personal computer, the system’s reliability per node is low. On the other hand, since

a large number of providers participate in the network, the system achieves reliability

by number. A fault tolerance policy is needed to specify what the system should do

in case a provider node is unable to respond to a request. Also, an update policy is

needed to specify the update and upgrade mechanisms of the system. This policy

should include how the nodes are notified of the updates and what they should do if

an update is received in the middle of a task. Finally, a workload aggregation policy

would be helpful. With such policy, the network can accept large tasks and divide

them into smaller subtasks that can run on individual personal computers. In the end,

using the aggregation policy, it could merge the results from different nodes.

Finally, in Chapter 5, we proposed an interoperability solution for permissioned

blockchains based on the publish/subscribe architecture to enable different blockchain

networks to work together. In this platform, a broker blockchain acts as a messaging

broker and uses smart contracts to track the topics and messages in the network.

When a publisher blockchain publishes a new message to a topic, all the subscriber

blockchains who have subscribed to the topic will be notified of the change. This

method enables seamless interoperability as there is no need for the subscribers to keep

checking for the changes on the publisher blockchain. We implemented a prototype of

the broker blockchain and three publisher and subscriber blockchains to assess our

design. The codes base and documentation can be found on Github3. We concluded

3https://github.com/hyperledger-labs/pubsub-interop
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this work by evaluating the implemented prototype using performance benchmarking

tools. In our evaluations, we identified the PublishToTopic functionality as the

bottleneck of the platform. A possible future research direction can be to improve the

performance of this function. Different solutions can be implemented and compared

for performance. One idea is to add a time component which the subscribers can set

to specify the time interval that they want to receive updates for a topic. For instance,

a subscriber may choose to receive notifications for a topic no sooner than every 10

minutes. This way, if the topic changes during this time, the subscriber gets notified

of all the changes at once after the time interval. Moreover, in the current prototype

of our platform, everyone can subscribe to a topic and everything is transparent to all

the participants in the network. An access control can be added to the platform as an

extra feature. In some use cases, the source and destination blockchains may need to

interact with each other privately and confidentially. The channels in Hyperledger

Fabric can be used to enable such communications. Moreover, the publisher network

may choose to only make a topic available to a subset of subscribers. An access control

can be used to manage the blockchains that can access each topic.
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[198] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E.
Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless in the
wild: Characterizing and optimizing the serverless workload at a large cloud
provider,” arXiv preprint arXiv:2003.03423, 2020.

[199] T. Combe, A. Martin, and R. Di Pietro, “To docker or not to docker: A security
perspective,” IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62, 2016.

[200] B. Chase and E. MacBrough, “Analysis of the xrp ledger consensus protocol,”
arXiv preprint arXiv:1802.07242, 2018.

[201] S. Ghaemi, H. Khazaei, and P. Musilek, “Chainfaas: An open blockchain-based
serverless platform,” IEEE Access, vol. 8, pp. 131 760–131 778, 2020.

170



[202] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A survey on
blockchain interoperability: Past, present, and future trends,” arXiv preprint
arXiv:2005.14282, 2020.

[203] Ethereum Foundation and Consensys, BTC Relay, Last accessed 2020-11-6,
2015. [Online]. Available: http://btcrelay.org/.

[204] A. Garoffolo, D. Kaidalov, and R. Oliynykov, “Zendoo: A zk-snark verifiable
cross-chain transfer protocol enabling decoupled and decentralized sidechains,”
arXiv preprint arXiv:2002.01847, 2020.

[205] S. Lerner, RSK Whitepaper, Last accessed 2020-11-6, 2015. [Online]. Available:
https://docs.rsk.co/RSK White Paper-Overview.pdf.

[206] J. Lu, B. Yang, Z. Liang, Y. Zhang, S. Demmon, E. Swartz, and L. Lu,
Wanchain: Building super financial markets for the new digital economy. Last
accessed 2020-11-6, 2017. [Online]. Available: https://wanchain.org/files/
Wanchain-Whitepaper-EN-version.pdf.

[207] G. Wood, Polkadot: Vision for a heterogeneous multi-chain framework. Last
accessed 2020-11-6, 2016. [Online]. Available: https : / / github . com/w3f /
polkadotwhite-paper/raw/master/PolkaDotPaper.pdf.

[208] J. Kwon and E. Buchman, Cosmos whitepaper, Last accessed 2020-11-6, 2019.
[Online]. Available: https://cosmos.network/cosmos-whitepaper.pdf.

[209] E. Abebe, D. Behl, C. Govindarajan, Y. Hu, D. Karunamoorthy, P. Novotny,
V. Pandit, V. Ramakrishna, and C. Vecchiola, “Enabling enterprise blockchain
interoperability with trusted data transfer (industry track),” in Proceedings of
the 20th International Middleware Conference Industrial Track, 2019, pp. 29–35.

[210] E. Scheid, B. Rodrigues, and B. Stiller, “Toward a policy-based blockchain
agnostic framework,” in 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), IEEE, 2019, pp. 609–613.

[211] P. Frauenthaler, M. Borkowski, and S. Schulte, “A framework for blockchain
interoperability and runtime selection,” arXiv preprint arXiv:1905.07014, 2019.

[212] H. Montgomery, H. Borne-Pons, J. Hamilton, M. Bowman, P. Somogyvari,
S. Fujimoto, T. Takeuchi, T. Kuhrt, and R. Belchior, Hyperledger Cactus
Whitepaper, Last accessed 2020-09-28, 2020. [Online]. Available: https://github.
com/hyperledger/cactus/blob/master/whitepaper/whitepaper.md.

[213] P. Lv, L. Wang, H. Zhu, W. Deng, and L. Gu, “An iot-oriented privacy-
preserving publish/subscribe model over blockchains,” IEEE Access, vol. 7,
pp. 41 309–41 314, 2019.

[214] G. S. Ramachandran, K.-L. Wright, L. Zheng, P. Navaney, M. Naveed, B. Kr-
ishnamachari, and J. Dhaliwal, “Trinity: A byzantine fault-tolerant distributed
publish-subscribe system with immutable blockchain-based persistence,” in
2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
IEEE, 2019, pp. 227–235.

171



[215] B. Huang, R. Zhang, Z. Lu, Y. Zhang, J. Wu, L. Zhan, and P. C. Hung, “Bps: A
reliable and efficient pub/sub communication model with blockchain-enhanced
paradigm in multi-tenant edge cloud,” Journal of Parallel and Distributed
Computing, 2020.

[216] G. Bu, T. S. L. Nguyen, M. P. Butucaru, and K. L. Thai, “Hyperpubsub:
Blockchain based publish/subscribe,” in 2019 38th Symposium on Reliable
Distributed Systems (SRDS), IEEE, 2019, pp. 366–3662.

[217] Y. Zhao, Y. Li, Q. Mu, B. Yang, and Y. Yu, “Secure pub-sub: Blockchain-based
fair payment with reputation for reliable cyber physical systems,” IEEE Access,
vol. 6, pp. 12 295–12 303, 2018.

[218] G. Yang, C. H. Tan, Q. Huang, and D. S. Wong, “Probabilistic public key
encryption with equality test,” in Cryptographers’ Track at the RSA Conference,
Springer, 2010, pp. 119–131.

[219] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE transactions on information theory, vol. 31, no. 4,
pp. 469–472, 1985.

[220] N. Zupan, K. Zhang, and H.-A. Jacobsen, “Hyperpubsub: A decentralized,
permissioned, publish/subscribe service using blockchains,” in Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference: Posters and Demos,
2017, pp. 15–16.

[221] Hyperledger, Hyperledger fabric v2.2 documentation, Last accessed 2020-10-22,
2020. [Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-
2.2/.

[222] Hyperledger, Hyperledger fabric v1.4 documentation, Last accessed 2020-10-22,
2019. [Online]. Available: https://hyperledger-fabric.readthedocs.io/en/release-
1.4/.

[223] Hyperledger, Hyperledger besu documentation, Last accessed 2020-10-22, 2020.
[Online]. Available: https://besu.hyperledger.org.

[224] T. L. Foundation, Hyperledger Caliper, Last accessed 2020-11-5, 2020. [Online].
Available: https://www.hyperledger.org/use/caliper.

[225] P. Domingues, P. Marques, and L. Silva, “Resource usage of windows com-
puter laboratories,” in 2005 International Conference on Parallel Processing
Workshops (ICPPW’05), IEEE, 2005, pp. 469–476.

172



Appendix A: Personal Computer
Survey

The ChainFaaS platform is based on the assumption that personal computers are
highly underutilized. However, there are no recent studies to verify this premise. In
2005, Domingues et al. [225] studied the resource usage of Windows 10 machines from
classroom laboratories. The results show an average CPU idleness of 97.9%. Although
this study shows much wasted computational capacity, it focuses only on laboratory
computers, and it was conducted about 15 years ago. Therefore, to provide stronger
support of the idleness assumption, we conducted a survey and asked participants
to report their computer’s CPU utilization and unused memory when running their
regular programs.

In this survey, we first gathered some demographic information about the participant,
such as their age, gender, and level of education. The rest of the survey questions
were aimed to find the amount of computational power that is not being used. The
participants first state the number of personal computers that they own. Then they
answer the following questions for each of their computers:

• On average, how many hours per day do you work with your personal computer?

• What is the primary operating system that you use on your computer?

• What is your computer’s average CPU utilization when running regular pro-
grams?

• What is the amount of unused memory, in gigabytes, on your computer when
running regular programs?

About 700 people participated in this survey, mostly university students of computer
science or computer engineering. Fig. A.1 shows the demographic information of the
participants. Most of them are 20 - 29 years old, male, with a high school diploma. In
total, we gathered information about the utilization of about 1150 computers. The
gathered data in this survey is available publicly on GitHub 1.

To get a better understanding of the gathered data, the average usage time per
day, CPU utilization, and unused memory of the participants’ main computer for the
education groups and age groups are shown in Fig. A.2 and Fig. A.3, respectively.
Since there were less than 10 participants with an education level of less than a high
school diploma, it was not possible to calculate a reliable average value for this group.
The situation is similar for the age groups of 50-59 years old, and 60 years and older.

It is also interesting to see the popularity of different operating systems among the
participants. About 73.8% of the computers are running on Windows, which shows
the popularity of this operating system. 16.6% run on macOS, 8.4% on Linux, and
the remaining 1.2% run on other operating systems.

1https://github.com/pacslab/PC-Survey
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Figure A.1: Demographic information of the participants in the personal computer
survey. (a) Age (b) Gender (c) Highest level of education

Table A.1: Average usage time, CPU utilization, and unused memory for the main
computers and all the computers in the survey.

Time (Hours) CPU (%) Memory (GBs)

Main Computers 6.34 25.72 8.6

All Computers 4.53 24.54 7.91
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High school
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Usage time per day (Hours) CPU Utilization (%) Unused Memory (GBs)

Figure A.2: Average main computer’s usage time per day, CPU utilization, and unused
memory for each of the education groups.
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Figure A.3: Average main computer’s usage time per day, CPU utilization, and unused
memory for each of the age groups.

Finally, Table A.1 shows the average usage time per day, CPU utilization, and
unused memory for the main computers and all the computers in the survey. It can
be seen that the average CPU utilization for all the personal computers in this survey
is 24.54%. Since most participants are computer engineering and computer science
students, the average CPU utilization for a more general audience is expected to be
even less than this number. This result confirms our initial assumption that personal
computers are highly underutilized.
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