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ABSTRACT

The in vivo selectivity of 7-hydroxy-N.N-di-n-propyl-2-aminotetralin (7-OH-DPAT) for
the dopamine (DA) D3 receptor was evaluated in rats. Effects of 7-OH-DPAT on
locomotor activity were determined. Test conditions included low, high and nicotine-
stimulated baselines of locomotor activity. 7-OH-DPAT induced hypoactivity in rats
tested under novel conditions. Under familiar conditions, the lower doses induced
hypoactivity and higher doses induced early hypoactivity followed by hyperactivity.
The later hyperactivity was antagonized by haloperidol (HAL). 7-OH-DPAT reduced
nicotine effects. 7-OH-DPAT, injected directly into the nucleus accumbens or caudate
nucleus of the forebrain, dose-dependently decreased locomotor activity without
showing site-selectivity. Sc administration of 7-OH-DPAT at high doses induced
hyperactivity with continuous sniffing and forward walking. Clozapine reduced
hyperactivity, forward walking, and sniffing induced by 7-OH-DPAT but not by APO.
SCH 23390 blocked hyperactivity induced by APO but only attenuated the effects of 7-
OH-DPAT. HAL antagonized the effect of a high dose of APO but not of 7-OH-
DPAT. A low dose of 7-OH-DPAT decreased hyperactivity induced by a high dose of
APO in DA-intact rats but not in DA-depleted rats [reserpine + a-methyl-para tyrosine
(«-MPT)]. An attempt was made to determine a time at which animals with DA
depletion do not exhibit behavioral supersensitivity to a DA agonist. Because
behavioral supersensitivity to APO was observed as early as 24 h post medial forebrain
bundle (mfb) 6-OHDA-lesion, this DA-lesioned model was not used to test postsynaptic
effects of 7-OH-DPAT. A method for extraction and HPLC analysis of 7-OH-DPAT

was developed. A level of 043 pg/g of 7-OH-DPAT was obtained in the brain



following injection of a low dose of 7-OH-DPAT (0.3 mg/kg, sc). The lack of site-
selectivity of 7-OH-DPAT indicates that it may not act selectively on DA D3 receptors.
The ability of 7-OH-DPAT to decrease hyperactivity induced by APO supports the
hypothesis that effects of low doses of 7-OH-DPAT on locomotor activity may be
mediated via postsynaptic DA D3 receptors. Effects of high doses of 7-OH-DPAT may
not be mediated only by DA D2 receptors, as CLZ, SCH 23390 and HAL had

differential effects on the actions of a high dose of 7-OH-DPAT and APO.
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1. INTRODUCTION

1.1. Dopamine

Dopamine (DA) is an important neurotransmitter in the mammalian central nervous system
and is the metabolic precursor of norepinephrine and epinephrine. The DA system has
probably been investigated more widely than any other neurotransmitter system. It is
involved in many neuronal functions, including learning (Verma, Kulkamni, 1993), reward
processes and the control of movement (Zhang et al. 1997). Moreover, CNS DA systems
appear to mediate the behavioral effects of drugs of abuse like cocaine by inducing
locomotor activity, repetitive (stereotypy) and reward seeking behaviors (Bardo et al. 1996).
A wide range of studies has shown the association of the DA receptor system with etiology
and treatment of several neuropathological conditions including Parkinson's disease.
schizophrenia, Huntington’s chorea and drug abuse (Seeman, 1987; Elsworth. Roth. 1997).
Detailed information about DA synthesis, metabolism and pathways in the brain are shown
in figures I, 2 and 3, respectively.

1.2. DA receptors

Receptors for DA were originally classified into two categories, D1 and D2 receptors. DA
Dl and D2 receptors stimulate or inhibit the activation of adenylate cyclase, respectively
(Kebabian, Calne. 1979); their pharmacological and biochemical profiles are also different
(Creese et al. 1983; Niznik, 1987). Following the cloning of a DA D2 receptor

complementary DNA (Bunzow et al. 1988), two alternatively spliced D2 receptor isoforms
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of the receptor. termed D2A [D2(444)] and D2B [D2(415)], that display the same
pharmacology. were shown to exist on both pre- and postsynaptic DA neurons (Giros et al.
1989; Monsma et al. 1989; Dal Toso et al. 1989; Selbie et al. 1989).

Recently, molecular biology techniques have led to the identification and cloning of the
genes corresponding to five DA receptor subtypes. namely D1. D2 (Bunzow et al. 1988:
Dearry et al. 1990; Sunahara et al. 1990), D3 (Sckoloff et al. 1990), D4 and D3 (Sunahara et
al. 1991; Schwartz. 1992; Sibley, Monsma, 1992; Civelli et al. 1993). These receptors can
be classified into two subfamilies, the DA D1- and D2-like receptors. according to their
structure, pharmacology and intracellular signalling. Thus. the cloned DI1A and DI1B/D5
receptors that stimulate adenylate cyclase (Dearry et al. 1990; Sunahara et al. 1991: Tiberi et
al. 1991) belong to the DA Dl-like family: the D2. D3, and D4 receptors that inhibit
adenylate cyclase belong to the DA D2-like family ( Bunzow et al. 1988; Sokoloff et al.
1990; Van Tol et al. 1991; Cohen et al. 1992; Griffon et al. 1997). All of these DA
receptors belong to the "superfamily” of G-protein-coupled receptors. It has been proposed
that the lengths of the third cytoplasmic (i3) loop and the C-terminal tail determine the
second messenger characteristics displayed by the DA receptors (Schwartz et al. 1993). The
D3 and D4 receptors display DA D2 pharmacology and structural characteristics of a long i3

loop and a short C-terminal tail.

1.3. DA autoreceptors

It is well-known that some endogenous neurotransmitters are able to inhibit their own
synthesis and/or release by interacting with presynaptic autoreceptors (Roth, 1984).

Activation of autoreceptors on DA neurons reduces dopaminergic neuronal firing and
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synthesis and release of DA (Fedele et al. 1993: Carlsson. 1983: Clark et al. 1985b; Clark et
al. 1985a: Seeman, 1980). The autoreceptors are present in most central DA pathways on
the somatic, dendritic. and axonal parts of the neuron itself (Westerink et al. 1994; Di Chiara
et al. 1978; Roth, 1979; Hjorth, 1983). Postsynaptic DA receptors exist on various parts of
other (e.g., cholinergic) neurons. Several dopaminergic effects have been correlated with
the activation of presynaptic receptors. For example, the inhibition of DA release from
tissue slices (Starke et al. 1978). inhibition of DA synthesis in slices (Westtall et al. 1976),

reduction of electrical DA cell activity (Skirboll et al. 1979), inhibition of the increased DA
svnthesis in vivo after pretreatment with y-butyrolactone (GBL) [which reduces impulse
flow (Walters, Roth. 1976)] and a decrease in locomotor activity (Elsworth. Roth, 1997),
have all been attributed to the DA autoreceptors. Since apomorphine (APO) reduces

synaptic release (Farnebo. Hamberger. 1971) and the rate of synthesis of DA (Raiteri et al.
1978). it is thought that APO and other DA autoreceptor agonists suppress locomotion by
inhibiting synthesis and/or release of DA. Thus, if a drug acts at certain doses to decrease
locomotion via an action on DA autoreceptors then, at these doses. it is expected to inhibit
synthesis and/or release of DA. Recently, additional procedures for the study of DA
autoreceptors have been developed, including fast cyclic voltammetry (Bull et al. 1991). In
this method a time-resolution of DA release as short as 100 milliseconds is possible.

Another method is infusion of an antisense oligonucleotide directly into an area containing
the midbrain DA neurons (Elsworth, Roth, 1997). In this method a short synthetic
oligodeoxynucleotide binds to autoreceptor mRNA and blocks the synthesis of that

particular receptor.



Postsynaptic effects of activation of DA receptors are believed to include: the induction of
stereotyped behavior (Ungerstedt et al. 1969); the induction of contralateral rotation after
unilateral nigrostriatal lesions (Ungerstedt et al. 1969); and the reversal of reserpine-induced
hypomotility (Anden et al. 1973). These pre- and postsynaptic model systems have been
used in attempts to develop selective pre- and postsynaptic DA receptor agonists. Such
selective drugs may be generally useful in the study of dopaminergic mechanisms, while the
presynaptic agonists. in particular, might have interesting therapeutic applications (Meltzer,
1980). It has been suggested that DA presynaptic agonists may exhibit clinical antipsychotic
activity. As they do not eliminate brain DA neurotransmission, such compounds may lack
the extrapyramidal side effects caused by DA receptor antagonists (Carlsson. 1988). Some
agents, which have been characterised with these methods. have been identified as putative
selective presynaptic DA ligands. For example N.N-dipropyl-2-aminotetralin analogs
(Feenstra, et al., 1983); N-n-propyl-3-(3-hydroxyphenyl)-piperidine (3-PPP) (Hjorth et al.
1981; Hjorth et al. 1983); B-HT 920 (Anden et al. 1982); EMD-49980 (Sevfried et al.
1989); OPC-4392 (Yasuda et al. 1988b); N-0437 (Van der Weide et al. 1988); SDZ-208-
911 and SDZ-208-912 (Coward et al. 1990), have been introduced as DA presynaptic
agonists.  (+)-UH-232 [cis-(+)-(1S,2R)-3-methoxy-1-methyl-2-(di-n-propvlamino)tetralin.
(+)-AJ-76  [cis-(+)-(1S,2R)-5-methoxy-1-methyl-2-(n-propylamino)tetralin and CGP-
24454A are examples of putative presynaptic DA receptor antagonists (Elsworth, Roth,

1997).
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1.4. DA and locomotor activity

The role of DA systems in behavioral phenomena including locomotor activity is the topic
of a large number of scientific investigations. The effects of manipulations of DA systems
on unconditioned or spontaneous behavior have been reviewed by several authors
(Ungerstedt et al. 1969; Pijnenburg et al. 1976; Pijnenburg et al. 1975a). Following the
discovery of new DA receptor subtypes, the involvement of these receptors in different
components of locomotor activity has been studied using the antisense approach (Zhang et
al. 1997). These authors found that DA D2 and D4 antisense treatment decreased
spontaneous locomotor activity. In contrast. D3 antisense treatment increased locomotor
activity. The latter finding contrasts markedly with traditional views of the DA system. It
has been generally accepted for some time that decreased activity in DA systems of adult
animals results in hypoactivity. Thus, locomotor activity is generally reduced by
administration of DA receptor blocking drugs (Anden et al. 1970; Zhang et al. 1997),
bilateral injection of the neurotoxin 6-hydroxydopamine (6-OH-DA) or electrolytic lesions
of ascending DA systems, drugs such as reserpine and a-MPT that deplete catecholamines
(Ungerstedt, 1971) or presynaptic DA agonists that decrease DA release (Elsworth. Roth,
1997). Conversely, drugs that enhance transmission at DA synapses generally increase
locomotor activity or induce stereotyped behavior (Fray et al. 1980); these stimulant effects
are produced by direct acting DA agonists [e.g., APO, DA, quinpirole (QUIN)] and indirect
acting DA agonists [e.g., nicotine, (+)-amphetamine, cocaine, L-3.4-dihydroxyphenylalanine
(L-DOPA)] (Costall et al. 1979; [saacson et al. 1978). Direct DA receptor agonists induce

hyperactivity by stimulation of postsynaptic DA D2 receptors (Protais et al. 1986). Indirect



acting DA agonists induce hyperactivity by increasing DA release and/or synthesis and by
blocking DA uptake (Zhang et al. 1997). Nicotine receptors are involved in regulation of
DA release. Nicotine induces hyperactivity and increases DA release in rat striatum and
more selectively in the mesolimbic system (Lapin et al. 1987; Imperato et al. 1986).

Studies also have been conducted to characterize individual DA nuclei or terminal areas
involved in locomotor activity. It has been suggested that the nigrostriatal DA pathway is an
important pathway in this regard. Thus, bilateral 6-OH-DA lesions of the substantia nigra
(SN) that produce extensive (> 90%) depletion of striatal DA result in severe hypokinesia
(Marshall et al. 1974). The mesolimbic-mesocortical DA neurons also have been implicated
in the regulation of locomotor activity. Nevertheless, variable results have been reported
with bilateral 6-OH-DA lesions at the origin of these neurons, i.e. in the ventral tegmental
area (VTA): no change in locomotion, decreased locomotion or an increase in locomotor
activity (Koob et al. 1981; Le Moal et al. 1975) have been reported. It has been concluded
that these discrepancies may be due to partial damage to VTA DA neurons in some studies.
as large 6-OH-DA lesions of VTA may induce hypoactivity whereas smaller lesions may
result in hyperactivity (Koob et al. 1981). The DA cells originating in the VTA are
apparently not uniformly involved in locomotion. Whereas bilateral 6-OH-DA lesions of
the limbic terminal regions, i.e., nucleus accumbens (NAS) and olfactory tubercle, result in
decreased locomotor activity (Iversen, Koob, 1977; Koob et al. 1978). similar lesions of the
frontal cortical DA terminal area produce hyperactivity (Carter, Pycock. 1980). Also.
electrocoagulation of the VTA results in a decrease of frontal cortical DA and increased

locomotor activity (Tassin et al. 1978). Studies employing direct injections of DA or DA



agonists [e.g.. DA. APO. (+)-amphetamine] into the NAS result in hyperactivity (Amt.
1981: Costall. Naylor. 1975; Costall et al. 1977; Dill et al. 1979; Pijnenburg et al. 1976:
Wachtel et al. 1979). In summary, it has been suggested that the DA neurons projecting to
basal forebrain areas, caudate putamen, NAS. and olfactory tubercle enhance locomotor
activity whereas mesocortical DA neurons normally inhibit locomotion.

Results of a number of recent studies suggest different roles for mesolimbic and nigrostriatal
DA pathways in behaviors. The mesolimbic DA neurons may be involved primarily in an
increased locomotion induced by DA agonists such as (+)-amphetamine and APO.
Nigrostriatal DA neurons, on the other hand. may be more involved in stereotyped licking,
biting and gnawing produced by high doses of these compounds (Fray et al. 1980). In
support of this hypothesis, it has been reported that disruption of DA function in the caudate
nucleus (CN) decreases (+)-amphetamine-stimulated stereotyped behavior without affecting
locomotion induced by this drug (Creese. Iversen. 1974; Kelly et al. 1975: Pijnenburg et al.
1975b), whereas similar manipulations of the NAS disrupt locomotion stimulated by DA
agonists (Pijnenburg et al. 1975b). Costall and Naylor have shown that this distinction may
not be complete; it is possible to induce hyperactivity with intrastriatal injections of DA
and, conversely, it is possible to induce stereotypy with intraaccumbens injections of DA
agonists (Costall, Naylor, 1976). Furthermore, it is now clear that some VTA DA neurons
terminate in striatal areas, including the anteromedial part of the CN (Simon et al. 1979),
and some nigral DA neurons may project to non-neostriatal regions (Fallon et al.. 1978).
Regarding the mechanism of hypoactivity, some researchers have mentioned that damage to

the nigrostriatal system may result in sensory rather than motor impairments (Beninger,
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1983). Rats undergoing a unilateral 6-OH-DA lesion of the SN were tested for orientation
responses to mild somatosensory stimulation of specific areas of the body surface. Although
they showed well-localized orientation responses to touch stimuli ipsilateral to the lesion.
there was a marked lack of orientation to somatosensory stimuli presented to the
contralateral side of the body (Marshall, 1979). Following unilateral intrastriatal injections
of DA. these rats showed enhanced responses to stimuli presented to the side contralateral to
the injections (Joyce et al. 1981). These results suggest that DA may normally play a role in
mediating an animal’s level of responsiveness to sensory stimulation. It has been concluded
that the apparent lack of response to somatosensory stimulation {sensory neglect) probably
does not result from a motor deficit, i.e.. a simple inability to respond. This was shown by a
study on the ability of a light stimulus to produce conditioned suppression of licking in SN-
lesioned cats. The onset of a cue light produced lick suppression comparable to that seen in
control animals, if the cue light was located in the visual field ipsilateral to the lesion. But
the same stimulus presented on the contralateral side failed to produce the effect. As the
lesioned cats clearly were capable of performing the conditioned response. it has been
suggested that sensory input to the side contralateral to the lesion failed to induce normal
responses (Feeney, Wier, 1979). In a similar way, it has been argued that unilateral 6-OH-
DA lesions of the SN do not result in sensory neglect through a sensory deficit (i.e., a simple
inability to perceive the stimulus). This suggestion was based on the observation that
unilateral SN-lesioned and sham-operated rats re-learned a visual discrimination at similar
rates even though the eye ipsilateral to the lesion was occluded. The authors concluded that

the contralateral (neglected) eye does see and sensory neglect is observed because stimuli
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contralateral to DA denervation fail to arouse the animal (Siegfried, Bures, 1979).
Therefore, the apparent contralateral sensory neglect seen in animals with unilateral damage
to the SN is not the result of impaired processing of sensory input; these animals appear to

be deficient in their ability to interface sensory input with response systems.

1.5. DA D3 receptors: A literature review

1.5.1. Identification of DA D3 receptors
DA receptors have been identified by techniques that include binding studies and molecular
biology techniques. Additional DA receptors, e.g. D3. D4 and D5 receptors, recently
identified by molecular biological techniques may possibly be used to discover more
selective antipsychotic drugs. In 1990. Sokoloff and colleagues cloned and identified the
gene for the DA D3 receptor subtype (Sokoloff et al. 1990), and 7-[*H)hydroxy-2-
(N,N-di-n-propyl- amino)tetralin ([’H]7-OH-DPAT) was identified as a selective ligand for
this receptor (Levesque et al. 1992). In 1991, Snyder and co-workers also isolated a cDNA
for the rat and human DA D3 receptor (Snyder et al. 1991). Seeman and Schaus reported
that the guanine nucleotide-insensitive component of [3 H]QUIN binding (about 30%) may
be related to DA D3 receptors (Seeman, Schaus, 1991). A truncated DA D3-receptor-like
mRNA, named D3nf, predicting a protein that differs from the DA D3 receptor only in the
carboxyl terminal, has been reported (Liu et al. 1994b). It has also been shown that human
peripheral blood lymphocytes express the DA D3 receptor (Ricci, Amenta, 1994). The DA
D3 receptor shows a high degree of homology with the DA D2 receptor. It differs from the
DA D2 receptor with regard to in vitro binding pharmacology and anatomical distribution

(Sokoloff et al. 1990).






