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Distributed ledgers provide many advantages over centralized solutions in IoT projects, including but not

limited to improved security, transparency, and fault tolerance. To leverage distributed ledgers at scale, their

well-known limitation, i.e., performance, should be adequately analyzed and addressed. DAG-based distributed

ledgers have been proposed to tackle the performance and scalability issues by design. The first among them,

IOTA, has shown promising signs in addressing the above issues. IOTA is an open-source distributed ledger

designed for IoT. It uses a directed acyclic graph to store transactions on its ledger, to achieve a potentially

higher scalability over blockchain based distributed ledgers. However, due to the uncertainty and centralization

of the deployed consensus, the current IOTA implementation exposes some performance issues, making it

less performant than the initial design. In this paper, we first extend an existing simulator to support realistic

IOTA simulations and investigate the impact of different design parameters on IOTA’s performance. Then, we

propose a layered model to help the users of IOTA determine the optimal waiting time to resend the previously

submitted but not yet confirmed transaction. Our findings reveal the impact of the transaction arrival rate, tip

selection algorithms (TSAs), weighted TSA randomness, and network delay on the throughput. Using the

proposed layered model, we shed some light on the distribution of the confirmed transactions. The distribution

is leveraged to calculate the optimal time for resending an unconfirmed transaction to the distributed ledger.

The performance analysis results can be used by both system designers and users to support their decision

making.
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1 INTRODUCTION
Distributed ledger technologies (DLTs) have obtained a lot of attention from both industry and

academia because of some key advantages such as being decentralized, secure and trust-free. In the

DLT world, participants are no longer in need of a trusted third party such as banks to complete a

transaction, even without trust to each other. The DLTs are essentially distributed databases for

storing and sharing data across all nodes in a network. Based on different usage contexts, various

types of data, including transaction records (e.g., Bitcoin [31]), contracts [8], and even personal

healthcare information [30], can be stored on a distributed ledger (DL) system. According to a recent

survey [7], there are about 58 industries (e.g., law enforcement, ride-hailing, and stock trading)

that could be transformed by DLTs in the future. Within most DLTs such as blockchain, the data is

wrapped into a structure called blocks. Each block includes the cryptographic hash of the prior

block, a timestamp and transaction data to create a chain of linked blocks. This way, it is nearly

impossible to tamper with data on blockchain because any changes on a single block require to

change all the history before it. Clearly, DLT has a great potential to become an effective solution to

overcome the data management and security challenges in IT systems. However, various technical

details, such as the consensus algorithms and the underlying data structure have a great impact on

the performance of DLTs.

Among many types of DLTs, directed acyclic graph (DAG) is considered to be one of the answers

to the low latency, high throughput, and scalability challenges in applications such as M2M micro-

payment [44]. Within DAG, transactions can directly be attached to a graph without waiting

to be wrapped into a block like in a standard blockchain system. Moreover, all newly added

transactions can simultaneously run on different chains, making the performance much higher

than a single chain. By contrast, traditional blockchain systems, such as Bitcoin [31], Ethereum [6]

and Hyperledger [2], first need to put transactions into a block, and then linearly process the block;

this will result in low performance. For example, in Bitcoin, it takes on average 10 minutes for a

transaction to be confirmed. For the sake of security of large transactions, it is usually recommended

that the merchants wait for confirmation of at least six blocks, which implies one hour to complete

a transaction. In addition, to avoid forking, the block generation rate is limited in blockchain

systems such as Bitcoin and Ethereum, thus dramatically limiting the transaction throughput. To

address this issue, researchers have proposed many solutions such as lightning [33], FireLedger [5]

and DAG, from different perspectives. Therefore, as one of such solutions, DAG-based DLs under

well-designed consensus are theoretically more performant than traditional blockchains.

From the perspective of quality of service (QoS), service-level agreement (SLA), and blockchain

as a service (BaaS) [36], the transaction throughput, average waiting time (transaction delay) and

system scalability are essential for a DL system and user experience [24]. This is because these

metrics reflect the transaction processing capacity, usability and extensibility of a DL system. In

particular, transaction throughput, expressed as TPS at the network level, refers to the rate at

which valid transactions are stored by the ledger in a defined time period [32]; transaction delay

describes a network-wide view of the time taken for a transaction to be valid across the network

since it has been issued [32]; and system scalability determines if the ledger can handle a growing

amount of TPS as more resources (e.g., CPU, RAM, or nodes) are added to the existing network. As a

counterpart to the traditional blockchain, the DAG-based IOTA claims to be scalable and to provide

high throughput because of its innovative data structure and efficient consensus design. In our

previous work [13], we designed an energy transactive system for smart communities using IOTA

and explored the system scalability. Based on our experiments and analyses, we showed that the

proposed system was scalable and effective for IoT use cases. In this paper, we focus on the system
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performance, including throughput and transaction reattachment waiting time, of DAG-based DL

in the same IoT scenario presented in [13].

Here, confirmation or confirmed means that the transaction gets enough proofs or validations to

be trusted and included in the ledger. This is the target state for every normal transaction. Validation
is an examination process including amount, signature and time check, which is conducted by peers

in a peer-to-peer network. We use the terms “throughput” and “CTPS” ; “validation”, “approval” and
“reference” interchangeably throughout this paper.

From a system designer’s perspective, it is vital to know the transaction processing capacity

of the underlying DLT network. In addition, from the users’ point of view, it is critical to know

about the optimal time that they need to wait before reattaching the transactions, if they have not

been confirmed yet. If the waiting time is too short, the premature redundant transactions cause

network congestion; if the waiting time is too long, the user experience declines, as does the system

throughput. Either way leads to a poor system efficiency. In this paper, we strive to answer two

vital research questions about the performance of a private IOTA network:

RQ1. From the system designer’s perspective, which factors influence the throughput of an

IOTA system? And how, quantitatively, do they impact the throughput?

RQ2. From the user’s perspective, what is the optimal waiting time for confirmation before

resubmitting the same original transaction?

To address the above questions, we perform the following steps:

(1) Like other empirical analysis approaches [19] [42], we first study the system throughput by

leveraging and extending the DAG-based DL simulator for simulating IOTA to identify signif-

icant factors such as transaction arrival rate (𝜆), different TSAs, weighted TSA randomness

parameter (𝛼), and network delay reflected by distance (𝐷).

(2) To find a pattern or relationship between the throughput and design parameters, we statisti-

cally analyze the performance data obtained from different configurations and parameter

settings to identify potential influence factors for both simulations and experiments. Here,

experimental data are used to validate the simulation results and then collectively to answer

RQ1.

(3) We decompose the transaction confirmations into layers to explore the confirmation process in

a fine-granular fashion. This way, we have a better understanding of transaction confirmation

time with more details on how confirmations are distributed; provided that, we obtain a

reasonable estimate for RQ2.

The key contributions of this paper can be summarized as follows:

• It describes an extension of the DAGsim simulator [45], a simulation tool of DAG-based

distributed ledger protocols, to support the currently running consensus on the public IOTA

network.

• It provides abundant experimental evidence on how different design parameters influence the

IOTA performance and fills a gap in existing research on the optimal reattachment waiting

time.

• It proposes a layered model to analyze the confirmed transactions’ distribution in IOTA,

providing a potential approach to investigate other DAG-based distributed ledgers, such as

Byteball [9] and Nano [26].

The remainder of this paper is organized as follows. Section 2 presents the background infor-

mation on DAG-based distributed ledgers and IOTA. In Section 3, we empirically analyze IOTA’s

performance through simulations to answer RQ1. In Section 4, we propose an analytical layered

model to explore the distribution of confirmed transactions in IOTA and leverage the proposed
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model to answer RQ2. The experimental results and main findings are also presented in these two

sections. Section 5 gives a brief review of existing work on DL system performance evaluation,

including simulation and analytical models. Finally, Section 6 concludes this paper and states some

potential future directions of research.

2 BACKGROUND
In this section, we first provide a brief introduction to DAG-based distributed ledgers. Then, we

focus on describing the most popular DAG implementation, IOTA.

2.1 DAG Distributed Ledgers
DAG-based distributed ledger, also called DAG distributed ledger or DAG ledger, is a promising

DLT that stores transaction data as vertices of a directed acyclic graph. Different new transactions

can be appended to different vertices in a DAG at the same time. Compared to blockchain, which

bundles transactions in blocks and stores blocks one by one to a chain, DAG ledger naturally obtains

better concurrency, as shown in Figure 1. Therefore, it has many advantages over blockchain on

transaction throughput, network scalability and resource efficiency.

Fig. 1. Structure comparison between DAG and blockchain.

DAG ledger and blockchain are the two most popular DLTs. According to the graph vertex

granularity, DAG ledgers can be further divided into two categories: block-based (blockDAG) and

transaction-based (TDAG) [44]. The former first wraps transactions into blocks, and then appends

the blocks onto a DAG. Some examples are CDAG [16], PHANTOM [39] and SPECTRE [38].

The latter attaches transactions to a DAG immediately and directly, without waiting for block

composition. Three notable examples are IOTA [34], Byteball [9] and Nano [26]. Since blockDAG is

still in the conceptual stage, we focus our research on TDAG. For simplicity, DAG refers to TDAG

throughout this paper without further specification.

In the design of DAG ledgers, each end user issuing a transaction also needs to validate the

previous transactions. All participants act as validators and contribute to maintain the network.

In other words, no miners are needed in DAG distributed ledger systems. For example, IOTA (see

Section 2.2) requires the network participant or node to approve two previous transactions in order

to issue a new transaction, while Byteball encourages referencing all unapproved transactions. In

addition, multiple transactions can be added to a DAG simultaneously and concurrently to increase

system throughput and scalability.
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2.2 IOTA
IOTA is a DAG-based open-source value transfer platform designed for the Internet of Things. It is

currently the most popular representative of DAG ledgers. This section briefly introduces the basic

concepts and consensus mechanism of IOTA.

In IOTA, all transactions are linked together to form a DAG (see Figure 2), called Tangle. A
transaction is the fundamental operation unit that can stand alone. A tip is a newly issued but not

approved/validated transaction. Each transaction has its own weight and a cumulative weight. The

weight reflects the computation resource that a sending node puts into this transaction. In order to

issue a new transaction, a node must select two tips to validate. Once the validation is finished,

this node will attach the newly issued transaction to the selected tips. This attachment is called a

reference, through which all transactions are linked together. At the same time, the newly issued

transaction adds its own weight to all the predecessors’ cumulative weight. For example, all the

referenced transactions’ (𝑣1 to 𝑣9) cumulative weights in Figure 2 will add one after 𝑣10 is attached

to the Tangle.

Fig. 2. An example of DAG in IOTA. “w" stands for weight and “W" stands for cumulative weight.

To find a good balance between punishing lazy behavior and not leaving too many tips behind,

IOTA recommends a sampling approach namedweightedMarkov chainMonte Carlo (MCMC) random
walk or weighted MCMC to select two tips. For example, the selected tips in Figure 2 are 𝑣9 and

𝑣8, with the random walk paths (𝑣1, 𝑣3, 𝑣6, 𝑣7, 𝑣9) and (𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣8), respectively. This approach

leverages equation 1 [34] to calculate the probability of choosing the next particular approver for

each step in a random walk.

𝑃xy =

𝑒𝛼𝐻y∑
𝑧:𝑧⇝𝑥 𝑒

𝛼𝐻z

(1)

where 𝑃xy is the probability to walk from transaction 𝑥 to 𝑦, 𝐻y is the cumulative weight of 𝑦,

and 𝑧 ⇝ 𝑥 means “𝑧 directly approves 𝑥”. Therefore, in the random walk step, a transaction with

higher cumulative weight has a much higher probability to be selected and approved. In other

words, the probability of walking from 𝑥 to 𝑦 increases exponentially with the cumulative weight of

𝑦, multiplied by 𝛼 . For example, using equation 1, the probability walking from 𝑣1 to 𝑣3 in Figure 2

is calculated as 𝑃𝑣1𝑣3 =
𝑒11𝛼

𝑒11𝛼+𝑒10𝛼+𝑒6𝛼
. Here, 𝛼 is a parameter regulating the strength of the bias in

the weighted random walk. A higher 𝛼-value means that heavier tips are favoured when attaching

new transactions to the DAG. If we set 𝛼 to zero, the random walk is called unweighted MCMC. If

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. -, No. -, Article -. Publication date: September 2021.



-:6 Fan and Ghaemi, et al.

we set 𝛼 to a very high value, we get the superweighted walk. We can also use a uniform random

tip selection (URTS) approach to select two from all available tips for comparison.

In IOTA, there are two consensus mechanisms: Coordinator and Coordicide [35]. The former

is the currently running consensus, while the latter is still under development. Coordinator is a

special participant or node acting as a “finality device” to confirm transactions by periodically

generating zero-value transactions, called milestones. With Coordinator, IOTA leverages the above

discussed weighted (or biased) TSA to deal with conflicts and simply considers a transaction as

confirmed if and only if it is referenced by a milestone. In this consensus, an issued transaction will

continuously get approved/validated by peer nodes until it eventually gets confirmed. The more

references a transaction gets, the more trustable and acceptable it becomes. As such, it has a higher

probability to be referenced (indirectly) by the next coming milestone, and thus confirmed. With

Coordicide, IOTA proactively resolves conflicts and reaches consensus through a voting mechanism

rather than the weighted MCMC TSA [35].

2.3 IOTA Performance Metrics
In this subsection, we introduce two important performance metrics in IOTA, which are our interest

of research in this paper.

Throughput. The throughput is defined as the confirmed transactions per second (CTPS), which

represents the transaction processing power of the system. As for the definition of confirmation, it

depends on the consensus used in the system, see Section 2.2 for details. Particularly, we choose

COO as the consensus throughout this study to make it more practical, because this is the currently

running consensus in IOTA.

Reattachment Waiting Time. Similar to a blockchain system, it may take seconds or minutes

for a transaction to eventually be added to the IOTA ledger. In our system, latency is defined as the

time between a transaction’s arrival request at a node and its confirmation. Based on this definition,

each client wants a lower latency under the same security conditions. Sometimes a transaction

may not get confirmed for a long time, causing high latency. It is also possible for a transaction to

get abandoned eventually after a long wait. In these cases, the transaction should be reattached to a

new position in the Tangle. Reattachment is the process of issuing the same original transaction to

a new position in the Tangle, to increase the confirmation probability and decrease the latency. We

define the time between two attachments as the Reattachment Waiting Time (RWT). 𝑅𝑒𝑎𝑡𝑡𝑎𝑐ℎ𝑚𝑒𝑛𝑡

requires performing PoW and tip selection again for determining the two new tips to be attached.

Therefore, too short 𝑅𝑊𝑇 will not only waste power, but also cause network congestion due to

the number of redundant transactions. On the other hand, a long 𝑅𝑊𝑇 will dramatically increase

confirmation latency and decrease user satisfaction.

3 IOTA PERFORMANCE SIMULATION
The research described in this contribution has been conducted within the context of a private

IOTA network designed for smart communities. Two approaches, a simulation and an analytical

layered model, are proposed to answer two different performance questions, i.e., system throughput

and reattachment waiting time (RWT), respectively. In this section, we focus on IOTA performance

simulation, while in the next section (Section 4), we discuss the layered model to explore the

confirmation distribution in IOTA.

To conduct the simulation, we leverage and extend the DAGsim simulator [45], which is an

asynchronous, continuous time, and multiagent simulation framework for DAG-based distributed

ledgers. In addition to the analysis of simulation results, we run experiments in a private IOTA

network to validate the results. For better understanding, all symbols and acronyms used for

performance analysis are summarized in Table 1.
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Table 1. Descriptions of all used symbols and acronyms

Notation Description

𝜆 transaction arrival rate

𝜆M milestone arrival rate

𝛼 randomness factor for weighted random walk

𝑎𝑔𝑒𝑛𝑡𝑠 the total number of nodes in a simulated network

𝑑 distance between simulation agents, reflects network delay

𝐷 distances matrix for all agents

𝐶𝑇𝑃𝑆 confirmed transactions per second, reflects transaction throughput

𝑅𝑊𝑇 reattachment waiting time

𝐷𝐿 distributed ledger, e.g., blockchain and DAG ledger

𝐷𝐴𝐺 directed acyclic graph, a finite directed graph with no cycles

𝑇𝑎𝑛𝑔𝑙𝑒 DAG structure in IOTA, formed by all connected transactions

𝐶𝑂𝑂 coordinator, generates milestones to confirm transactions,

also refers to IOTA consensus based on the coordinator

𝑀𝐶𝑀𝐶 Markov chain Monte Carlo, a sampling approach for IOTA tip selection

𝑈𝑅𝑇𝑆 uniform random tip selection

𝑇𝑆𝐴 tip selection algorithm, e.g., weighted/unweighted MCMC and URTS

𝐼𝑅𝐸𝐴 indirect references extraction algorithm

𝑃𝑜𝑊 proof of work, a protection mechanism asking client to solve a cryptographic

puzzle before issuing transactions

To explore the influence of some impact factors on the first IOTA performance metric, transaction

throughput, an empirical study is conducted through simulations. These factors include transaction

arrival rate 𝜆, TSAs, network latency 𝑑 and randomness parameter 𝛼 of the weighted MCMC TSA.

For other tested parameters such as network size, PoW difficulty, and the number of Coordinators,

refer to our previous work [13] for details. Before presenting the simulations, we first talk about

the simulation tool.

3.1 IOTA Simulator Extension
COO consensus, based on the DAGsim simulator [45], has been developed by the authors to perform

the simulations. As the original DAGsim only supports consensus without COO, no milestones are

generated in between regular transactions.We extended this simulator to support COO consensus by

introducing milestones. Technically, we configured the extended DAGsim to generate and broadcast

milestones to the network every 60 seconds, just like the currently running IOTA mainnet. The

generated milestones are acting exactly like regular transactions, but with the ability to confirm

transactions. Our extended version of DAGsim is available publicly
1
.

When we want to find out all the confirmed transactions in the simulation data, according to the

definition of Coordinator consensus mechanism in Section 2.2, we simply check if a transaction

is directly or indirectly referenced by a milestone. In the original DAGsim simulator, for each

transaction, we only have access to the transactions that are directly referenced by this transaction

in the simulation data. However, we also need indirect references when using COO consensus.

To fetch this information, we propose a recursive solution named Indirect References Extraction
Algorithm (IREA) as shown in Algorithm 1.

1
https://github.com/pacslab/iota_simulation
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Algorithm 1 Indirect References Extraction Algorithm

1: indirect_references = empty

2: function find_references(𝑡𝑥, 𝑑𝑖𝑟𝑒𝑐𝑡_𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠)

3: APVD_1 = The 1st transaction approved by tx

4: APVD_2 = The 2nd transaction approved by tx

5: if tx is genesis then
6: End
7: else if tx is in indirect_references then
8: Append the new TXs to indirect_references

9: End
10: else
11: if APVD_1 is not in indirect_references then
12: Append APVD_1 to indirect_references

13: find_references(APVD_1, direct_references)

14: if APVD_2 exists then
15: if APVD_2 is not in indirect_references then
16: Append APVD_2 to indirect_references

17: find_references(APVD_2, direct_references)

It utilizes a recursive function to find the transactions directly referenced by the input transaction.

According to the random walks, we know that there are always two (or at least one if the walks

overlap) transactions directly referenced by any issued transaction. These two transactions are

added to a list, and the recursive function is run again for each of them. This goes on until the

genesis,i.e., the first transaction, is reached or a transaction that is already in the list is encountered.

By running this algorithm, all transactions confirmed by a milestone can be found from the

simulation data and, subsequently, the throughput (CTPS) can be calculated.

It is worth noting that we extend the DAGsim simulator only from the functional perspective,

by simply introducing milestones in simulation and proposing the IREA to identify confirmed

transactions. Our goal is to obtain transaction simulation data from this tool. We didn’t work on

any performance improvement for the simulator itself, which is beyond the scope of this study.

Therefore, it is still not efficient in support of large-scale simulations. For example, it takes more

than 8 hours to simulate 10,000 transactions on an i7-8700 processor with 16GB RAM.

3.2 Simulation Setup and Results
To collect the simulation data, we run a group of 10 simulations with 6000 transactions, 20 agents,

𝑑 =1, 𝛼 =0.001 and 𝜆 varying from 1 to 10 with 𝑠𝑡𝑒𝑝 =1, see Table 2. This is a base-line configuration

which we use to explore the influence in comparison with other configurations. Then, we run 5

independent simulations by only changing 𝜆 varying from 10 to 30 with 𝑠𝑡𝑒𝑝 = 5 and transactions

from 3,000 to 9,000 with 𝑠𝑡𝑒𝑝 =1, 500 to explore higher rate scenarios. In total, over 90,000 transac-

tions are simulated. In all simulations, 𝜆M is set to be 1/60, i.e. one𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒 is issued to the Tangle

every minute, because this is the setting in current running IOTA main net; for each simulation,

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 is set to 6,000, so that at least 10𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒𝑠 (namely 10 replicas) are ensured for each

𝜆 configuration. The simulations are conducted on a DELL PC with Windows 10 OS, 8th Generation

Intel Core
TM

i7-8700 12-Core Processor, and 16GB RAM.

After simulation, the proposed IREA is used to extract the transaction confirmation data and

conduct a statistical analysis on the data. The result provides an almost linear relationship between

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. -, No. -, Article -. Publication date: September 2021.
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Table 2. Default parameter configurations

Parameter Simulation Configurable Experiment Configurable

𝜆a 1∼10 ✓ 1∼10 ✓

𝛼b
0.001 ✓ 0.001 ✓

𝑇𝑆𝐴c
MCMC ✓ MCMC ✗

𝑑d 1 ✓ ≈1 ms ✗
𝑎𝑔𝑒𝑛𝑡𝑠 20 ✓ 20 ✓

𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 6000 ✓ NA ✗
𝐶𝑂𝑂𝑇𝑖𝑐𝑘 60 s ✓ 60 s ✓

a
1∼10 are explored in both; 15, 20, 25, and 30 are explored in simulation.

b
0.001, 0.01 and 0.1 are explored in both simulation and experiment.

c
weighted MCMC, unweighted MCMC and URTS are explored in simulation.

d
1, 5 and 10 are explored in simulation.

CTPS and 𝜆, as shown in Figure 3a, in which all CTPS values are obtained by averaging over all

confirmations of 10 replicas.
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Fig. 3. Simulation results: CTPS over 𝜆 under different influence factors (a) 𝜆 only (b) TSAs (c) randomness 𝛼
(d) distance 𝑑 .
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To examine the impact of different TSAs on CTPS, we conduct two more groups of simulations

(10 simulations in each group) on the unweighted MCMC and URTS strategies, respectively. In the

weighted MCMC random walk, to explore the influence of the randomness factor 𝛼 on CTPS, we

conduct 2 groups of simulations with 𝛼=0.01 and 0.1, respectively. In addition, different network

delays indicated as distances are examined, i.e., d=1, 5, and 10, respectively. For each group of

simulations, the value of 𝜆 is varying from 1 to 10 with 𝑠𝑡𝑒𝑝 = 1 (refer to Figure 3b, Figure 3c and

Figure 3d).

As can be seen in Figure 3b, there are almost no differences for CTPS under different TSAs, i.e.,

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 , 𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 and𝑈𝑅𝑇𝑆 . This is because when 𝛼 is set to the default value 0.001, there is

sufficient randomness in the tip selection random walk. Nevertheless, the 𝛼 values have an obvious

impact on CTPS in weighted random walk. As can be seen from the Eq. 1, larger 𝛼 will increase the

probability to select heavier tips so that most new coming transactions will always be attached

to the heaviest path. It shows that as 𝛼 increases from 0.001 to 0.01, there is no big difference on

CTPS; but when 𝛼 raises to 0.1, both CTPS and its increase rate decrease dramatically. In a more

extreme case, CTPS even keeps flat when 𝛼 is set to a big value, e.g., 10 [21], which implies a linked

chain rather than a DAG in IOTA.

However, the different distances which simulate the network delay of IOTA do not show much

difference in general as shown in Figure 3d, which means that network delays have a limited

influence on the throughput under the examined situations. This can be explained as follows. On

the one hand, compared to the time spent on PoW and transaction validation, network delay only

takes a very small portion of the whole transaction life from being sent to getting confirmed. On

the other hand, all examined 𝑑 values remain quite low, which further weakens their influence on

the performance.

3.3 Parameter Analysis
To discuss how 𝜆 influences IOTA’s performance, we model the IOTA system as a single-server

network with first-come-first-served (FCFS) servicing policy. The service rate of this network refers

to the maximum transaction processing capacity 𝜇, which can be obtained from the load test in

practice. In most simulation settings, the actual transaction throughput (denoted as 𝑋 ) keeps a

near-linear growth against the transaction arrival rate 𝜆, i.e., 𝑋 = 𝑘 · 𝜆. This trend continues until 𝜆

is larger than 𝜇. As transactions are continuously issued and confirmed, the throughput should

be the same as the arrival rate when 𝜆 < 𝜇 in this single-server network model. However, since

there is a probability that an issued transaction will be eventually abandoned or orphaned under

the random walk TSA, the actual transaction throughput becomes less than 𝜆. In addition, more

transactions get abandoned in high load (see Figure 3a). Therefore, 𝜆 dominates the growth of the

transaction throughput when 𝜆 < 𝜇, while there is an obvious difference between 𝜆 and the actual

transaction throughput due to the abandoned transactions. This difference is determined by the

transaction attachment mechanism, namely TSA in the Tangle.

Different TSAs affect the growth of Tangle through impacting its properties such as the number of

tips, transaction’s cumulative weight, and the time until the first approval [22]. The simplest TSA is

the URTS, which selects a tip from the set of all available tips in a uniform random manner. Another

strategy is MCMC (see 2.2), which is a sampling approach based on a random walk starting from an

entry point in the Tangle towards a tip. If the random walk is biased to a more weighted transaction

in each step, we call it weighted MCMC; if there is no bias in random walks, we call it unweighted
MCMC. Since the URTS and unweighted MCMC do not encourage to validate more weighted or

honest transactions to build a main DAG, they leave vulnerabilities for attackers to build a parasite

chain where double spending attacks can be launched (see [22] for details). Therefore, they are not

secure against parasite chain attacks [22], and should be only treated as tools to study the Tangle
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rather than applied in production. To address this problem, IOTA employs the weighted MCMC

(see section 2.2) as its TSA to encourage new transactions to verify honest tips and to achieve

consensus. The bias level is controlled by a randomness parameter 𝛼 . Theoretically, the greater the

value of 𝛼 , the greater the probability that the random walk will choose a more weighted tip in

each step. Thus, the DAG is more secure by always expanding on the main chain. However, there

are more abandoned honest transactions in this case, which will impact the transaction throughput.

We can observe that the Tangle performs almost the same on throughput under URTS and MCMC

with 𝛼 = 0, 0.01 in Figure 3b, as well as the weighted MCMC with 𝛼 = 0.001 in Figure 3c. They all

have sufficient randomness to ensure that every tip has a chance to be selected, leaving a smaller

number of abandoned transactions in the Tangle. However, the throughput drops significantly

when 𝛼 = 0.1 in Figure 3c, where more honest transactions are abandoned because of the biased tip

selection strategy. Therefore, it is an interesting research topic to find the optimal 𝛼 , or propose

more TSAs (e.g., hybrid TSA [14] and first order biased random walk [10]) to tackle the trade-off

problem between security and efficiency of the Tangle. In addition, the time complexity of URTS is

O(𝑛), while both weighted and unweighted random walk TSAs have O(𝑛2) time complexity.

Even though the network delay has a very limited influence on throughput compared to on

transaction latency, we can observe a drop on the throughput as the delay increases in Figure 3d.

In the IOTA network, a node relies on TCP/IP to broadcast transactions and synchronize the local

ledger with its neighbors. High network delay will cause an asynchronization problem among

different local ledgers on the nodes. This asynchronization will further decrease the number of

new tips from a delayed node’s view. Since the weighted MCMC prefers new tips, more delayed

transactions will get older and eventually abandoned as the network delay increases. Thus, the

transaction throughput decreases.

3.4 Experimental Validation for Simulation
To validate the simulation , we conduct three groups of experiments on a medium-sized network,

with the 𝛼 configurations of 0.001, 0.01, and 0.1. For each 𝛼 , the total 𝜆 values vary from 1 to 10

with 𝑠𝑡𝑒𝑝 = 1, with other parameters remaining default as shown in Table 2. We employ IOTA

Implementation Reference
2
(IRI 1.6.1) with Docker to deploy a private network of 20 nodes on the

SAVI OpenStack cloud platform
3
. Each node is a virtual machine with the flavor of medium size,

see Table 3 for configuration details. The open-source Compass
4
provided by the IOTA Foundation

is used as the COO to generate milestones and confirm transactions in the Tangle. The COO is set

to generate a milestone every 60 seconds, just as the simulations.

Table 3. Experimental environment

Network Nodes Number CPU RAM Disk

IRI Node 20 2 VCPU 4GB 40GB HD

Client Node 1 4-Core i5 8GB 256GB SSD

To better control the transaction arrival rate 𝜆 and avoid the impact of PoW to 𝜆, we bring

all PoW to a PC client with the configurations shown in Table 3. We run all experiments with

the transaction requests in a Poisson process, i.e., the transaction interarrival time follows an

2
https://hub.docker.com/r/iotaledger/iri

3
https://www.savinetwork.ca

4
https://github.com/iotaledger/compass
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exponential distribution. The socket ZeroMQ
5
is employed to listen and receive transaction data.

To simplify the problem, we only send zero-value transactions.

In total, 151,104 confirmed out of around 169,701 generated transactions are collected from the

three groups of experiments. More details on the experimental and simulation results can be found

in [11]. Then, we compare the experimental data with the previous simulation data on 𝜆 and 𝛼 to

examine the validity and accuracy of the simulation.

Fig. 4. Experimental and simulation results comparison: 𝜆 only.

First, we compare the CTPS values of the simulation and experiment under varying 𝜆 1∼10 by
keeping other parameters as default (see Table 2) to calculate the percent error. As we can see in

Figure 4, (1) both the simulation and experimental CTPS results increase almost linearly as 𝜆 values

increase, implying a good scalability; (2) they match well to each other with an average percent

error of 5.3%. Here, the percent error is calculated from the following equation,

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =
|𝐶𝑇𝑃𝑆exp −𝐶𝑇𝑃𝑆simu |

𝐶𝑇𝑃𝑆exp
∗ 100% (2)

Second, we compare the simulation and experimental results in terms of different 𝛼 values. As

can be seen in Figure 5, simulation and experiment are well in tune for the two values of 𝛼 . The

average errors are 8.7% and 9.8%, respectively. Having the average errors below 10%, we assume

that the simulation data can effectively and accurately capture the Tangle behaviour in the real

world.

4 ANALYTICAL LAYERED MODEL
The previous simulation explored some CTPS influential factors, identified the most important one,

and provided a quantitative relationship between CTPS and 𝜆 (i.e., linear relationship). However, it

is difficult to describe more details such as how these confirmations are distributed in the Tangle,

which keeps the second question about reattachment waiting time still unanswered. Therefore, we

propose a layered model to explore the confirmation distribution in each single graph layer.

5
https://docs.iota.org/docs/client-libraries/0.1/how-to-guides/python/listen-for-transactions
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(a) (b)

Fig. 5. Experimental and simulation results comparison under different 𝛼 values: (a) 𝛼=0.01 (b) 𝛼=0.1.

4.1 Model Description and Solution
In the IOTA Tangle, we define a layer as all confirmed transactions with the same depth from

a Milestone in a hierarchical architecture, as shown in Figure 6. In the case of two different

transactions referencing the same transaction with different depths, we take the minimum layer

index as the layer depth for this transaction. For example, in Figure 6, transaction 5 holds references

from both 1 and 4, which are from different layers, 𝐿𝑎𝑦𝑒𝑟 1 and 𝐿𝑎𝑦𝑒𝑟 2. In this case, we assume

that 5 is located in 𝐿𝑎𝑦𝑒𝑟 2 rather than 𝐿𝑎𝑦𝑒𝑟 3. With respect to this layering decomposition and

using the previously mentioned simulation data set with over 90,000 transactions, we extract the

transaction confirmation number in each layer of the DAG, as shown in Figure 6.

Fig. 6. Layered model for transaction confirmations.

After plotting the confirmed transactions over the layer number for each 𝜆, we observe a lot of

bell-shaped curves, such as the blue dot “Data” curve shown in Figure 7, which points us to the

nonlinear model fitting, e.g., Gaussian model. Therefore, after taking the average confirmations of

all milestones for each 𝜆, we strive to fit our simulation data as a nonlinear model to characterize

the relationship.
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In total, for each 𝜆 we use 45 nonlinear models to fit our data in CurveExpert
6
. The results show

that under all 𝜆 values except for 𝜆=1, the Gaussian Model outperforms others and is always listed

in top 3 models, as we can see from the example of 𝜆=10 in Figure 7. In our fitting, we use the

target data set under various 𝜆 values by taking the mean layered transactions of milestone 5, 6, 7,

8, and 9, by getting rid of the potential warming-up and cooling-down phases. The fitting results of

Gaussian Model are listed in Table 4.

Table 4. Gaussian model fitting results for different 𝜆 values

𝜆 1 2 3 4 5 6 7 8 9 10

Correlation Coefficient 0.934 0.988 0.987 0.982 0.992 0.997 0.984 0.996 0.990 0.991

Standard Error 0.864 0.909 1.274 2.271 1.911 1.476 3.469 2.242 3.733 4.146

𝑎 7.598 16.561 22.439 32.087 40.232 49.378 51.804 66.691 71.021 81.009

𝑏 7.944 8.360 8.976 9.172 9.726 9.390 10.169 9.745 10.298 9.722

𝑐 4.246 3.517 3.742 3.656 3.296 3.298 3.859 3.296 3.536 3.283

AMUB
*

13.600 15.000 15.600 16.800 16.400 16.200 17.600 17.000 17.400 16.600

CIUB
+

16.265 15.252 16.310 16.337 16.187 15.854 17.733 16.205 17.229 16.156

*Actual Mean Upper Bound,
+
Confidence Interval Upper Bound

Fig. 7. Simulation data and fitted models for 𝜆=10.

By checking the values of Correlation Coefficient, we carefully claim that the mean confirmed

transactions located at different layers can be fitted as a Gaussian Model. Therefore, we have the

number of confirmed transactions to be a Gaussian function of layer 𝑥 ,

𝑓 (𝑥 ) = 𝑎𝑒
− (𝑥−𝑏)2

2𝑐2 (3)

Here, 𝑏 has an almost linear increase trend as 𝜆 increases, while 𝑐 almost remains the same from

our simulation data in Table 4. This indicates that all examined Gaussian models have a very similar

shape, and the next randomly confirmed transaction is expected to be located at a deeper layer in

the Tangle with higher 𝜆 values. Theorem 1 summarizes our findings.

6
https://www.curveexpert.net
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Theorem 1. If a transaction remains unconfirmed more than 2/𝜆𝑀 seconds after being submitted,
the probability that it gets confirmed afterward is sufficiently low.

Proof. Let layer index be the discrete time dimension, then the Confidence Interval (CI) of
Gaussian models can be used to estimate the length of time to wait before reattaching transactions.

First, let us look at the Upper Bound layers in our model. If we take a 𝐶𝐼 of 95%, the critical value
(Z-value) for this 𝐶𝐼 is 1.96, where (1 − 0.95)/2 = 0.025. In our case, this means that there is a very

small probability (2.5%) for a confirmation to happen after a specific Upper Bound layer. The layer

of CIUB shown in Table 4 is calculated by the following estimation formula.

Given that

𝑍 =

𝑋 − 𝑏

𝑐
(4)

we have

𝑋CIUB = 𝑍𝑐 + 𝑏 (5)

Then, we translate the Upper Bound layer to the time dimension by analyzing the layered model.

As we notice from Figure 7, the decreasing happens just after a specific layer. From Figure 6, we

know that when the confirmation layers of𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒n crosses the arrival time of𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒n-1, there

will be a decrease in the number of transactions confirmed by𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒n because of the overlap.

For example, as shown in Figure 6, transaction 10 and 11 will not be counted as confirmations

by𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒n since they had already been confirmed by𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒n-1. Therefore, we empirically

notice that the peak CTPS layer in confirmation Gaussian Model refers to the previous𝑀𝑖𝑙𝑒𝑠𝑡𝑜𝑛𝑒

arrival time, which is 1/𝜆𝑀 seconds ago from the latest one. Thus, the optimal waiting time before

reattaching for users is estimated to be around 2/𝜆𝑀 seconds.

4.2 Model Validation
To validate the deductive results of our layered model, we use three groups of experimental data

with different 𝛼 values to conduct a statistical analysis. First, we determine all identical transactions

by matching their hash values with the sent and confirmed records, respectively. Then, we leverage

the𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝 property to calculate the time difference from sending to getting confirmed for each

transaction. Since some confirmed transactions recorded in a time period are generated from the

previous time segment and cannot be matched within the corresponding sent records, the number

of matched transactions is usually less than all actually confirmed transactions. For example, there

are 40,023 sent, 39856 confirmed, and 39462 matched transactions when 𝛼 = 0.001.

In total, there are 110,726 confirmed transactions with confirmation waiting time (i.e., they are

matched and have the sent-confirmed time difference). Within these transactions, we find that only

4,948 are confirmed after 2 minutes, see Table 5.

Table 5. Statistics of confirmations over 2 minutes (2/𝜆𝑀 seconds)

𝛼 Conf txs Conf txs(>2 mins) Percentage

0.001 39,462 2,235 5.7%

0.01 39,355 2,523 6.4%

0.1 31,909 190 0.6%

The detailed transaction confirmation distribution over time under different 𝛼 values can be

observed from Figure 8. As we know that 𝜆𝑀 is set to be 1/60, i.e., a milestone is issued every minute,

so 2/𝜆𝑀 seconds are exactly 2 minutes in our experiments. Therefore, we have only 5.7%, 6.4% and
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0.6% of the transactions confirmed after the time of 2/𝜆𝑀 for 𝛼=0.001, 0.01 and 0.1, respectively,

which is relatively low and well matched with the prediction of our proposed layered model.
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Fig. 8. Experimental confirmation statistics in different time segments; the confirmation ratios are sufficiently
low after the times of 2/𝜆𝑀 .

5 RELATEDWORK
This section reviews the related work on the performance evaluation and analysis of both blockchain

and DAG-based DL systems, which can be either public or private. In particular, we conduct a brief

literature review on leveraging simulations and analytical models (e.g., Markov chains [17]) to

analyze DLT’s performance.

5.1 DLT Simulations
To explore the block creation performance under PoW consensus algorithm of blockchain, Alharby

et al. [1] proposed BlockSim as a framework to simulate discrete events in blockchain systems. This

simulator was helpful to understand the details in the block generation process and PoW. However,

the authors left the defined test cases validation and verification for future work. Therefore, it is

hard to tell if the model is error-free and the simulator semantically works as intended. Similarly,

in blockchain-based systems, Yasaweerasinghelage et al. [43] showed the feasibility of using

architectural performance modelling and simulation tools to predict the system latency. With

a relatively high prediction accuracy of over 90%, the authors discussed how to leverage this

simulation to support architectural decision-making, especially on performance in blockchain-

based system design.

As for DAG simulations, two IOTA Foundation white papers [20] and [23] built a discrete model

and a continuous-time model for IOTA, respectively. The former gave a first glance of IOTA by

introducing a discrete model and discussing the relationship between the cumulative weights

of transactions and tip numbers over discrete time steps. The simulation results revealed that

the number of tips 𝐿(𝑡 ) as a function of time remained stable under the random tip selection

strategy. By contrast, MCMC guided tip selection strategy was stable only for small 𝛼 (0.001) in

the examined time intervals. The later paper [23] provided a continuous-time simulation model

to validate the analytical prediction about the number of tips 𝐿(𝑡 ) = 𝑘
𝑘−1𝜆ℎ, which was initially

proposed by Popov [34]. The authors also explored the cumulative transaction weights and found
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that there was a non-negligible probability of transactions being left behind for larger values of 𝛼 .

For the simulator design, they generalized the tip selection number to be 𝑘 rather than 2 and chose

3𝑘 + 4 particles to ensure 𝑘 distinct tips selected from random walks. Each walk starting position

was chosen randomly (with uniform distribution) from transactions issued between 100𝜆 and

200𝜆 transactions before. According to the simulation results, they empirically concluded that any

starting position placed further than 10𝜆 to 20𝜆 provided the same growth of the number of tips, and

it would not influence the tips number. These empirical results could provide directions for further

study to improve the simulation efficiency. However, this work did not directly examine or analyze

any specific system level performance metrics. In [21], the authors formalized and numerically

estimated the probability that a given transaction will be left behind, which means that it never

gets confirmed eventually. Through a lot of simulations and data fitting, the authors estimated

the probability of being left behind as a function of 𝜆 and 𝛼 , 𝑃𝑂𝐵𝐿𝐵(𝛼, 𝜆) = 𝑎 · 𝑒𝑥𝑝( 𝑏
𝛼
+

𝑐
𝜆
) [21].

However, this function does not take the time factor into consideration, which is very significant

to any computer system end users in practice.

To illustrate and visualize the Tangle, Gal [15] developed an IOTA visualization simulator.

Through this simulator, one could intuitively observe different tangles generated under various

TSAs such as uniform random, weighted and unweighted random walk. In the weighted random

walk, the simulator could show how the model parameters such as arrival rate 𝜆 and the built-in

randomness factor 𝛼 change the Tangle’s shape and the transaction confirmation ratio. However,

the total transaction number in this simulator was limited to 500 and the performance metrics were

not quantified.

To break out this limitation, Lathif et al. [25] proposed a configurable and interactive DAG-based

DLT simulation framework named CIDDS [25] to enable large-scale simulations at the thousand

nodes level. Moreover, Bottone et al. [4] presented and developed an extendablemultiagent simulator,

in which the authors employed NetLogo to provide a 3D visualization of the Tangle.

Similar to the previously mentioned BlockSim [1], Zander et al. [45] proposed and developed

a simulator named DAGsim, aiming to simulate the DAG-based DL systems. Different from the

BlockSim, DAGsim turned to a new type of data structure and focused on the simulation of the

IOTA [34] protocol. In their work, the authors presented and implemented an asynchronous,

continuous-time, and multi-agent simulator for DAG-based cryptocurrencies. By modelling both

honest and semi-honest actors [45], the simulations showed that the agents with lower latency and

a higher connection degree had a higher probability of having their transactions accepted in the

network. This open-sourced simulator was an efficient tool for simulating different parameters and

for understanding the IOTA consensus. However, it faced the same difficulties as other DAG-based

DL systems: 1) the starting point for each tip selection random walk, and 2) the cumulative weights

update for each transaction. It was very time-consuming when walking from genesis and updating

weights transaction by transaction, with a run-time complexity of O(𝑛3) in the implementation.

Therefore, it was very inefficient and not suitable for large-scale simulations, for instance, more

than 10,000 transactions. In addition, this research work did not go further into directly evaluating

performance metrics rather than exploring the transaction attachment probabilities of each node.

Our work borrows this simulator and builds into it the Coordinator confirmation consensus to

conduct a performance simulation. Furthermore, we leverage the extended simulator to simulate

IOTA for conducting the performance study by setting different configurations.

5.2 Analytical Models for DLT
Sukhwani et al. [41] modeled the Practical Byzantine Fault Tolerance (PBFT) consensus process

using Stochastic Reward Nets (SRN). Through this model, they analytically calculated the mean
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consensus achieving time for a network of 100 peers. A blockchain network using IBM Bluemix

service with production-grade IoT application was created, from which the collected data was

used to parameterize and validate the models. Moreover, a sensitivity analysis over a variety of

system parameters was conducted to examine the performance of larger networks. With extensive

empirical analyses on two releases of Hyperledger Fabric, H. Sukhwani concluded in [40], that the

presented Stochastic models could be used to develop Fabric Network management infrastructure.

Li et al. [27] proposed a queuing theory of blockchain systems and provided system performance

evaluation. Specifically, a Markovian batch-service queuing systemwith two different service stages,

mining process and the building of a new blockchain, were designed. By using the matrix-geometric

solution, they got a stable system condition and analyzed three key performance metrics including

mean transaction number in the queue, mean transaction number in a block, and mean transaction

confirmation time. Finally, the authors used numerical examples to validate the proposed analytical

model. In short, this paper described a clear queue problem and offered a solution based on the

commonly used Markovian chain approach. As mentioned in their conclusion, this analytical

model had the potential to open a series of promising research in the queuing theory of blockchain

systems, even though the proposed model was simple [27].

Motivated by this work, Saulo [37] built a simple M/G/1 queuing model to study the blockchain

delays in the Bitcoin network. Transaction delay was one of the most important performance

metrics, especially for user experience. The proposed model related the delay of transactions with

the time between block confirmations and could be easily parameterized using real measurements.

By analyzing the delay from the Little’s law and the standard M/G/1 queuing model [18], they found

a simple relationship between E(B)-mean time between block confirmation, E(M)-mean number of

active blocks, and E(S)-active time of a block; and a relationship between E(D)-mean delay incurred

by a typical user transaction and E(B), respectively. This way, they could answer the following

two questions: 1) whether a transaction will be confirmed after being seen; and 2) what are the

important factors that contribute to the delay of transaction confirmation.

Recently,Memon et al. [29] proposed a queuing theory-basedmodel by segregating the blockchain

network into two types of pools, named Memory-Pool and Mining-Pool, which were in charge of

handling unconfirmed transactions and mining, respectively. Based on this segregation, M/M/1

and M/M/c queues were used to model the system. In addition, a simulation model developed in

Java Modelling Tools was employed to study the blockchain system behavior and its performance

metrics such as Number of Transactions per block,Mining Time of Each Block, Number of Transactions
per Second andWaiting Time in Memory-pool. Similarly, [28] introduced Markov chain model to

investigate the impact of different network loads on the performance of DAG consensus process

(e.g., Tangle) in terms of cumulative weight growth rate and confirmation time.

More performance modelling approaches for DLTs have been discussed in detail in our recently

published survey [12]. The related publications reviewed above provide different perspectives to

explore the system performance of DAG-based IOTA. However, neither approach is perfect as

analytical models sometimes give high prediction errors if tested with improper parameters, while

simulations may encounter resource limitation problems. A good idea is to combine the above

models to provide a hybrid solution [3]. In addition, none of the reviewed articles focused on the

user waiting time in a DAG-based distributed ledger system. It is another contribution of this paper

to fill this gap.

6 CONCLUSION AND FUTUREWORK
In this paper, we have studied the performance of a private IOTA network by experiments, simula-

tions, and a layered model. We leverage these approaches to answer two research questions on
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throughput and RWT, with a high level of confidence. In particular, we extended the DAGsim simu-

lator and used it to empirically analyze the influence of transaction arrival rate 𝜆, TSAs, randomness

𝛼 in weighted random walk algorithm and network delay 𝑑 on CTPS. Among all these impact

factors, 𝜆 is the most important one, which has a near-linear relationship with the CTPS. Moreover,

we leveraged the proposed analytical layered model to explore the confirmation distribution and

found that the confirmations are normally distributed in DAG layers, which led to characterizing

the Gaussian Model. Using this model, we estimated the RWT for a private IOTA network, which

was validated by our experimental results. In conclusion, our extended DAG ledger simulator and

the proposed layered model provide valuable insights into the performance of IOTA distributed

ledger in private network scenarios.

As for the future work, on one hand, we would like to study how other factors such as encryption

algorithms and ledger databases influence the throughput. It would be also interesting to evaluate

IOTA’s performance under consensus without COO in further studies. On the other hand, our

extended simulator did not resolve the efficiency problem in large-scale simulations, which would

be another direction of our future research.
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