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Abstract

Future generations of wireless cellular networks will vastly benefit from the

various advantages of multiple antenna techniques. It is, however, well known

that signal correlation among a closely spaced set of antennas deployed on

a small wireless mobile device can dramatically degrade the performance of

such multiple antenna techniques. The performances of two multiple antenna

reception schemes for a size limited array of antennas are investigated. Ex-

act closed-form expressions are derived for the bit error rate of binary phase

shift keying (BPSK) in Rayleigh fading with maximal ratio combining (MRC)

diversity in the presence of cochannel interference (CCI) and additive white

Gaussian noise (AWGN). The desired signal and the interferer signals are all

subject to correlated Rayleigh fading. In the next contribution, an analytical

expression is derived for the average output signal-to-interference-plus-noise

ratio (SINR) of optimum combining (OC) for a spatially correlated array of

antennas in the presence of a single interferer and Rayleigh fading. Using the

derived expression and based on an asymptotic analysis of the eigenvalues of

dense correlation matrices, the asymptotic performance of optimum combining

is evaluated as the number of the antennas increases while the total physical

size of the array is fixed. The case of multiple interferers is examined by sim-

ulation and is shown to exhibit similar asymptotic behavior to the case of one

interferer. Finally, a general analytical framework for the optimal design of

a size constrained array of antennas is developed. It is shown that the prob-

lem of optimizing the number and the positions of the antennas within a size

limited array can be formulated as a quadratic convex optimization problem

which can be solved efficiently using the available numerical methods for con-

vex optimization. Moreover, an analytical solution to this convex problem is



obtained for the special case of a linear array under exponential correlation

model. Several one-dimensional (1D) and two-dimensional (2D) array design

examples are presented within the proposed framework.
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Chapter 1

Introduction

The focus of this thesis is on the performance analysis and array design for mul-

tiple antenna diversity receivers in the presence of multipath fading, antenna

correlation, and cochannel interference (CCI). This research is motivated by

the fact that wireless mobile devices, such as cell phones, laptops, etc. can

vastly benefit from the various advantages of multiple antenna reception tech-

niques. A multiple antenna receiver on a mobile device can be designed to

compensate for the signal fading arising from the multipath propagation of

the electromagnetic waves. A multiple antenna receiver can also be used to

cancel out the undesired CCI arising from the existence of other users in the

same network. However, it is well known that the fading correlation among

the antennas due to the physical proximity of the antenna elements on a small

receiver can severely deteriorate the predicted performance of a multiple an-

tenna receiver. Therefore, it is important to study the effect of the antenna

correlation on the performance of such receivers and to find a way to minimize

its undesired effects. The contributions of this thesis can be divided into two

major parts. The first part of the thesis focuses on the analytical study of

two diversity reception techniques, namely, maximal ratio combining (MRC)

and optimum combining (OC) in the presence of CCI and fading correlation.

The second part is dedicated to the study of the optimal arrangement of the

antennas within a small size device in order to minimize the unwanted effects

of fading correlation. An introductory background on the subject as well as a

review of the available literature is presented in the following sections before
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we get into the technical details of our research work.

1.1 Cellular Wireless Communication

Networks

In a cellular mobile communication network, the geographic area under cover-

age is divided into hexagonal cells where the users inside a cell are served by

the cell’s base station(s). The base stations of different cells are connected to

the outside world through the backhaul network. Using a multiple access (MA)

technique [1] such as time division multiple access (TDMA) or code division

multiple access (CDMA), the users within a cell can communicate with the

cell’s base station simultaneously without interfering with each other. This is

done by assigning orthogonal signal signatures to different users within a cell.

In TDMA, the signal orthogonality is implemented by assigning specific time

slots to each user within which the other users remain silent and, in CDMA,

it is done by assigning orthogonal codes to different users. The neighbour-

ing cells use the same set of signal signatures for their users while a different

carrier frequency is used by them to avoid intercell interference. However,

since the radio frequency (RF) spectrum is scarce and expensive, the carrier

frequency used in a cell is reused in other nonadjacent cells according to a spe-

cific pattern. This, in turn, produces a certain amount of interference known

as cochannel interference (CCI). The CCI in addition to the inherent ther-

mal noise of the receiver’s electronics, modelled as an additive white Gaussian

noise (AWGN), are two sources of performance degradation in cellular net-

works. Another source of performance degradation in a wireless channel is

the so-called multipath fading. It is the result of the multiple reflections and

refractions of the electromagnetic waves from physical objects such as build-

ings and trees in the case of an outdoor environment, or walls and furniture

in the case of an indoor channel. Multipath fading refers to the fading of the

received signal at certain points in space and time caused by the destructive

superposition of the different copies of the signal received from multiple paths.

The amount of signal fading is random due to the dynamic nature of the un-
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derlying physical channel and is commonly modelled as a Rayleigh, Ricean,

or Nakagami random variable [2]. Multipath fading can severely degrade the

system’s performance. Therefore, finding ways of compensating its effect is

crucial in the design of wireless communication systems.

1.2 Multiple Antenna Receivers and Array

Processing

A well known technique to alleviate the undesirable effects of both CCI and

multipath fading is the use of multiple antennas in the receiver along with a

linear array processing (i.e., antenna combining) scheme. Replacing the single

antenna in the receiver with an array of antennas provides extra degrees of

freedom through which the interfering signals can be detected and cancelled

out. It can also combat multipath fading by providing spatial diversity. Spatial

diversity is based on the idea that it is unlikely for antennas located at different

points in space to be in a deep fade all at the same time. An optimum linear

array processing method in the presence of CCI, AWGN, and fading is the

so-called optimum combining (OC) [3], also known as minimum mean square

error (MMSE) combining. Essentially, OC maximizes the output signal-to-

interference-plus-noise ratio (SINR) within the class of all linear combiners

and is, in fact, a maximum-likelihood (ML) detector of the desired user’s data

when the channel state information (CSI) of the interfering users are unknown

and under the assumption that the data transmitted by the interfering users

are Gaussian. In practice, the data symbols of the interfering users may come

from a discrete constellation, e.g., quadrature amplitude modulation (QAM),

where the Gaussian assumption on the distribution of the data symbols is

not valid. A truly optimum combining receiver, in this case, is obtained by

applying the ML rule according to the actual distribution of the interferers’

data symbols. However, the performance of this complex ML combiner is only

slightly better than the conventional OC receiver which assumes Gaussian

interference 1.

1This has been confirmed by computer simulation.
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In order to implement OC, the receiver needs knowledge of the desired

user’s CSI as well as the short-term covariance matrix of the interference-plus-

noise term. The CSI of the desired user can be estimated using pilot symbols

whereas the covariance matrix of the interference-plus-noise term can be esti-

mated using a blind estimation technique [4]. Although OC is the optimum

linear processor, the suboptimum MRC scheme may be used as a simpler alter-

native. Maximal ratio combining is the optimum ML receiver in the presence

of fading and AWGN, but not CCI. It provides the maximum output signal-

to-noise ratio (SNR) among all linear combiners. To implement it, the receiver

needs only knowledge of the desired user’s CSI. It can be shown that OC is

decomposable into an interference-plus-noise decorrelator stage followed by an

MRC stage. The additional complexity of OC compared to MRC is, therefore,

due to this decorrelator stage which is also responsible for the superiority of

OC over MRC. There are other suboptimal antenna combining schemes that

are even simpler than MRC; however, they exhibit even lower overall per-

formance. Examples of such combining techniques are equal gain combining

(EGC), selection combining (SC), and generalized selection combining (GSC)

[2]. In this thesis, we will only focus on MRC and OC.

1.3 Antenna Correlation

As mentioned in Section 1.1, multipath fading can be modelled as a random

variable due to the randomness of the scattering environment. In a multiple

antenna receiver, the signals received by different antenna elements are faded

differently since they are picked up at different points in space. If the antennas

are spatially well separated, it is natural to assume that their received signals

experience independent fadings. It can be shown that the independent fading

model is accurate when the spacing between any pair of the antennas is at

least as large as half of the wavelength of the carrier wave [5]. However, for

smaller antenna spacings, the fading coefficients of different antennas become

increasingly correlated and, therefore, the independence assumption is not

accurate anymore. Realistic correlated fading models calculated based on the
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propagation properties of the electromagnetic waves are available for modelling

closely spaced antennas [5]. The fading correlation between the antennas can

severely degrade the performance of multiple antenna receivers. Therefore, it

is important to use a correct fading model when analysing the performance of

such systems. The independent fading model is appropriate for a base station

tower equipped with multiple antennas where enough space is available in

order to maintain the necessary spatial separation. On the other hand, for a

multiple antenna receiver implemented on a small handheld device such as a

cellphone where there is not enough space available, a correlated fading model

is more appropriate.

1.4 Literature Review

A review of the related research works available in the literature is provided

in this section. These research works are presented under three different cat-

egories which are the subjects of our studies in this thesis. The first category

lists a number of the most important works on the performance analysis of

MRC in the presence of CCI and under different fading scenarios. The second

list includes a review of the available literature on the performance analysis

of OC for different channel models. Finally, the last category lists a number

of research works that study the effect of the array configuration (i.e., the

number and the positions of the antennas in the array) on the performance of

multiple antenna systems.

1.4.1 Performance Analysis of MRC in the Presence of
CCI

The performance of MRC in the presence of AWGN and CCI has been exten-

sively analyzed by many researchers. The outage performance of MRC in this

scenario is investigated in [6]–[9]. Closed-form solutions for the bit error rate

(BER) of coherent binary phase shift keying (BPSK) and binary differential

phase shift keying (DPSK) using MRC in correlated Rician fading, CCI and

AWGN are derived in [10] where the probability density function (PDF) of the
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decision variable, assuming +1 transmitted, is computed by taking the inverse

Laplace transform of its moment generating function (MGF) using Cauchy’s

residue theorem [11],[12]. Then the average BER (i.e., the probability of the

decision variable being less than zero) is calculated by integrating this PDF

from minus infinity to zero. A different MGF based method is used in [13]

and [14] to derive a closed-form solution for the BER of BPSK using MRC in

correlated Rayleigh fading, CCI, and AWGN where the correlation matrices

of the desired user’s channel and that of the interfering users’ channels are as-

sumed to have the same eigenvector matrices. In contrast with [10], the PDF

of the decision variable in [13] is derived by partial fraction expansion of its

MGF and then taking the inverse Laplace transform of each term separately.

1.4.2 Performance Analysis of OC

There is also a large body of literature on the performance analysis of OC

both under the uncorrelated array assumption, e.g., [15]–[19] and the corre-

lated array assumption, e.g., [20]–[23]. However, due to the complex form

of the expression for the output SINR of OC, its analysis particularly in the

correlated case is, in general, very difficult. Therefore, various simplifying

assumptions and approximations have been adopted in the literature. For in-

stance, in [20] and [22], it is assumed that only the array signals received from

the interfering users are correlated while those received from the desired user

are independent. In [22] and [19], it is assumed that the received signal is

corrupted with only one interfering user and with AWGN. Shah et al. [23]

and Zhang et al. [21] analyze the outage performance of OC while assuming

an interference dominant environment where the effect of AWGN is neglected.

Under this assumption, it is shown in [23] that the PDF of the output signal-

to-interference ratio (SIR) of OC is independent of the correlation between

the antennas and that the average output SIR grows linearly with the number

of antennas as long as the number of interferers is large enough. However,

by neglecting the AWGN, the OC receiver exists only if the number of the

interfering users is no less than the number of the antennas. As a result, the

analysis provided in [23] and [21] is only valid for this special case.
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1.4.3 The Effect of Array Configuration on Multiple
Antenna Systems

Motivated by the application of multiple receive antennas in size constrained

mobile units, it is important to understand how the correlations between the

antennas affect the asymptotic performance of the receiver as the number of

antennas in the array increases while the total physical size of the array is

limited to the available space on the mobile device. An asymptotic analysis

of this type has been done for MRC by Beaulieu and Zhang [24], [25] where

the average SINR performance of MRC is analyzed as the number of antennas

inside a fixed length linear array or a fixed radius circular array increases.

A similar asymptotic analysis for the capacity of a multiple input multiple

output (MIMO) system with a receiver equipped with a fixed size circular

array of antennas is considered in [26]. The research works in [24], [25], and

[26] assume a uniform array structure where the antenna spacings are the

same for different pairs of adjacent antennas in the array. The problem of

optimizing the locations of the antennas has also been investigated by a few

researchers. In [27], the authors consider the optimization of the base station

antenna spacing for a uniform linear and/or circular array in a space division

multiple access (SDMA) system. They do so by plotting the average of the

squared correlation coefficient between all the antenna pairs as a function of

the antenna spacing and by searching for a point on the plot that corresponds

to the minimum average correlation. A similar problem is considered in [28] for

a SDMA scenario with four fixed (i.e., non-mobile) users and four antennas on

the base station whose locations are to be optimized. The work in [28] assumes

line of sight (LOS) channels for all the users and, using a genetic algorithm,

searches for a 2D antenna arrangement that minimizes the average MMSE of

the users.

1.5 Thesis Outline and Major Contributions

The BER performance of MRC is investigated in Chapter 2 where two novel

exact and closed-form expressions for the average BER of binary phase shift
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keying using MRC in the presence of correlated Rayleigh fading, CCI and

AWGN are derived. The derived BER expressions are much simpler than

those available in the literature. Moreover, using the derived BER expres-

sions, it is shown through some numerical examples that for a fixed number of

antennas, there is a best radius for a uniform circular array at which the array

performance is almost as if all antennas in the array were uncorrelated. The

average SINR performance analysis of OC in the presence of CCI, AWGN, and

a general form of correlated Rayleigh fading is discussed in Chapter 3. In the

case of OC, our main focus is on determining the change in the average output

SINR with the number of antennas when the total physical size of the array is

fixed. In particular, we show that if the average received power per antenna

is fixed, the average output SINR of OC increases linearly with the number

of antennas despite the fact that the array becomes more correlated as more

antennas are introduced to the array. This is not true for MRC according to

the results of [24] and [25]. The correlation between a set of antennas in a

fixed size array is a function of their number as well as their relative positions.

Therefore, one should be able to maximize the array’s performance by optimiz-

ing these parameters. This is the subject of our research in Chapter 4 where

we develop a mathematical framework for the optimization of the positions

of the antennas in a multiple antenna receiver. We adopt the average output

SINR of OC derived in Chapter 3 as a measure of the array’s performance and

attempt to maximize it by properly arranging the antennas while assuming

that the total physical dimensions of the array are fixed. We start with the

case of a linear 1D array and later generalize it to the case of a 2D array with

an arbitrary shape. The results on the performance analysis of OC presented

in Chapter 3 as well as those on optimum antenna placement in Chapter 4 are

valid for any modulation scheme. Finally, Chapter 5 concludes the thesis.
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Chapter 2

BER of MRC in Correlated
Rayleigh Fading and CCI

In this chapter1, we derive two new exact and closed-form expressions for the

average BER of BPSK using MRC in the presence of correlated Rayleigh fad-

ing, CCI and AWGN where the assumption of [13] on the eigenvector matrices

of the correlation matrices is adopted. Our derviations are based on the MGF

method [2] and the application of the residue theorem [12]. However, in con-

trast with [10], [13], and [14] (see Section 1.4), the average BER is directly

calculated from the MGF of the decision variable through a single integral re-

sulting in new simpler expressions. Using the derived expressions, it is shown

through some numerical examples that for a fixed number of antennas, there

is a best radius for a uniform circular array at which the array performance is

almost as if all antennas in the array were uncorrelated. Counter-intuitively,

at this radius, the adjacent antennas in the array are not uncorrelated. More-

over, as an additional contribution, it is shown that the assumption on the

equality of the eigenvector matrices of the desired user’s and the interferers’

correlation matrices adopted in [13] and in this work corresponds to a number

of different physical realizations and is not only limited to the case of equal

correlation matrices.

1A version of this chapter has been published in part in IEEE Transactions on Com-
munications, vol. 57, no. 3, pp. 630-634, 2009 and in Proceedings of IEEE International
Conference on Communications (ICC), 2008, pp. 1370-1376.
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2.1 System Model

The equivalent baseband signal vector received by an M−element array of

antennas in the presence of cochannel interference and AWGN is given by

r(t) =
∞
∑

k=−∞

{

√

P0g0d
(0)
k s(t−kT )+

N
∑

i=1

√

Pigid
(i)
k s(t−kT − τi)

}

+n(t) (2.1)

where s(t) is a unit energy signal waveform used by all users, T is the symbol

interval, N is the number of interfering users , d
(0)
k is the transmitted data

symbol of the desired user at the k’th time slot, and d
(i)
k , (i = 1, . . . , N) is the

transmitted data symbol of the i’th interfering user at the k’th time slot. The

d
(i)
k ’s are independent and identically distributed (i.i.d.) and chosen from a

BPSK constellation each assuming a value of +1 or −1 with a probability of

0.5. The gi’s (i = 0, . . . , N) are independent M by 1 zero-mean complex sym-

metric Gaussian random vectors representing the Rayleigh channel between

each user and the array elements in the receiver. The desired user’s channel

vector g0 has covariance matrix R0 and the interfering users’ channel vectors

gi’s (i = 1, . . . , N) all have the same covariance matrix RI. τi is the time

delay between the reception of the i’th interfering user’s signal and the desired

user’s signal. The τi’s are all equal to zero in a synchronous CCI scenario.

However, In the asynchronous CCI case, they are modeled as i.i.d. random

variables uniformly distributed over [0, T ). The parameter Pi is the received

power associated with the i’th user’s signal, and n(t) denotes the complex

AWGN vector whose elements are independent and each has a power spectral

density of N0/2 per dimension.

R0 and RI are non-negative Hermitian matrices. Therefore, their eigen-

values are all real and non-negative. Let R0 = Q0Λ0Q0
H (RI = QIΛIQI

H)

denote the eigenvalue decomposition (EVD) of R0 (RI) where Q0 (QI) is a

unitary matrix containing the eigenvectors of R0 (RI) in its columns, Λ0 (ΛI)

is a diagonal matrix containing the eigenvalues of R0 (RI), and (·)H is the

Hermitian (conjugate transpose) operator. We adopt the same assumption

as in [13] that there exist eigenvalue decompositions of R0 and RI in which

Q0 is equal to QI, however, Λ0 and ΛI can in general be different. As an
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example of a physical realization in which this assumption holds, one can con-

sider a circular array of antennas where the antenna elements are uniformly

distributed on the circumference of a circle located in the horizontal plane

and where the azimuth angle of arrival is uniformly distributed over [0, 2π)

(i.e., omnidirectional reception in the horizontal plane) for both the desired

user’s signal and the interfering signals. The symmetry arising from the om-

nidirectional reception in the horizontal plane guarantees that the correlation

coefficient between each pair of the antennas in the array is only a function of

their distance [29], [30]. This, along with the circular structure of the array,

implies that the correlation matrices R0 and RI are both circulant [31] and,

therefore, both have the same eigenvector matrix given by the discrete Fourier

transform (DFT) matrix (i.e., Q0 = QI = DFT) [31]. However, the set of

eigenvalues of R0 and that of RI which are given by the DFT transform of

the first row of R0 and RI, respectively, may be different due to a different

distribution of the elevation angle of arrival for the desired signal and the in-

terference. Other examples that satisfy the above-mentioned assumption are

the cases where either R0 or RI is the identity matrix IM , or where R0 = RI.

The last case corresponds, for example, to an urban environment, where the

multiple antenna receiver is surrounded by a large number of local scatterers

with no line of sight to the desired or the interfering base stations.

Let x(t) = s(t) ⋆ s(−t) where ⋆ denotes convolution. The signal waveform

s(t) is designed such that x(t) is a Nyquist pulse [1]. After match-filtering,

sampling and maximal ratio combining of the received signal vector in (2.1),

the decision variable for the detection of the desired user’s data at the m’th

time interval is given by [1]

ym =Re

{

g0
H

ˆ ∞

−∞

r(t)s(t−mT )dt

}

=
√

P0g0
Hg0d

(0)
m +

N
∑

i=1

√

PiRe
{

g0
Hgi

}

ai

+ Re
{

g0
Hn
}

(2.2a)

where

ai =
∞
∑

k=−∞

d
(i)
k+mx(kT + τi) (2.2b)
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and n is a complex AWGN vector whose elements are independent each with

variance N0. An estimate of d
(0)
m is then obtained by taking the sign of ym.

2.2 BER Calculation

Due to the symmetry, the total probability of error for detection of d
(0)
m is equal

to the conditional error probability when d
(0)
m = +1 is transmitted and is given

by

Pe = Pr
(

ym < 0|d(0)m = 1
)

= FYm
(0|d(0)m = 1) (2.3)

where ym is defined in (2.2) and FYm
(y|d(0)m = 1) is the conditional cumulative

distribution function (CDF) of ym. From the definition of the characteristic

function and the integration property of the Fourier transform, one can express

the conditional CDF of ym as [32]

FYm
(y|d(0)m = 1) =

1

2
− 1

2π

ˆ ∞

−∞

Φ(ω)

jω
e−jωy dω (2.4)

where Φ(ω) is the characteristic function of ym given d
(0)
m = 1. Because of the

circular symmetry of the PDF of the channel vectors gi’s, the phases of ai’s

in (2.2) do not have any effect on the distribution of ym. Therefore, each ai in

(2.2a) can be replaced by its magnitude |ai| without changing the probability

of error in (2.3).

2.2.1 Synchronous CCI

In the case of synchronous CCI, the τi’s in (2.1) are all equal to zero. Since

x(t) is a Nyquist pulse, x(kT ) = δk where δk is the Kronecker’s delta function.

Therefore ai in (2.2b) will be reduced to d
(i)
m (i.e., |ai| = 1). In this case, under

the assumption of equal eigenvector matrices for R0 and RI, it is shown in

[13] that Φ(ω) can be expressed as

Φ(ω) =
M
∏

i=1

1

1− jωλi
0 + ω2 (λi

0λ
i
I/ΓI + λi

0/Γ0) /4
(2.5)

where the λi
0’s and λi

I ’s are the eigenvalues of R0 and RI, respectively, Γ0 =

P0/N0 is the input average SNR, and ΓI = P0/
(

∑N
i=1 Pi

)

is the input average
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SIR. If the correlation matrices of the interfering users are not the same, as

long as they all have the same eigenvector matrices, one only needs to replace

λi
I in (2.5) by a weighted average of the i’th eigenvalues of the interfering

users where the weights are given by wj = Pj/
(

∑N
j=1 Pj

)

. Therefore, the

calculations in the sequel are all applicable to this general case as well. From

(2.3), (2.4), and (2.5) one can see that as long as the total interference power
∑N

i=1 Pi is kept fixed, Φ(ω) and consequently the probability of error are not

a function of either the number of interfering users N or the distribution of

the interfering users’ powers P1, . . . , PN . This is not the case for asynchronous

CCI which will be discussed in Section 2.2.2. By substituting (2.5) in (2.4),

setting y = 0, and changing the integration variable to s = jω, the probability

of error in (2.3) can be expressed as

Pe =
1

2
− 1

2πj

ˆ j∞

−j∞

A(s)ds (2.6a)

where

A(s) = 1

s

M
∏

i=1

1

1− λi
0s− 1

4
(λi

0λ
i
I/ΓI + λi

0/Γ0) s2
. (2.6b)

It is easy to show that the poles of A(s) are all real. There is a pole at s0 = 0,

M negative poles located at

siN = −2





1 +
√

1 +
λi
I

ΓIλ
i
0

+ 1
Γ0λi

0

λi
I

ΓI
+ 1

Γ0



, i = 1, . . . ,M (2.7a)

and M positive poles located at

siP = −2





1−
√

1 +
λi
I

ΓIλ
i
0

+ 1
Γ0λi

0

λi
I

ΓI
+ 1

Γ0



, i = 1, . . . ,M. (2.7b)

In general, some of the negative poles in (2.7a) can have the same values (i.e.,

repeated poles). This can happen for the positive poles in (2.7b) as well.

Since the derivation of the BER expression depends on the multiplicity of the

poles, the following definitions will be required in the sequel. Suppose that

there are Nn different values of siN in (2.7a), namely, si, i = 1, . . . , Nn, each

having a multiplicity of mi, i = 1, . . . , Nn, such that
∑Nn

i=1 mi = M . Similarly,
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Figure 2.1. An illustration of the contour integration of A(s) in the complex s-plane.
The × symbols represent the poles of A(s).

suppose that there are Np different values of siP in (2.7b), namely, si, i =

Nn+1, . . . , Nn+Np, each having a multiplicity of mi, i = Nn+1, . . . , Nn+Np,

such that
∑Nn+Np

i=Nn+1 mi = M . The pole at s0 = 0 is always a simple pole,

therefore, its multiplicity is m0 = 1.

The integral in (2.6a) can be calculated using the method of residue inte-

gration [12]. As shown in Fig.2.1, the integral of A(s) over the jω-axis can be

expressed as

ˆ j∞

−j∞

A(s)ds = lim
R→∞

lim
r→0

(

ffi

C

A(s)ds−
ˆ

CR

A(s)ds−
ˆ

Cr

A(s)ds
)

(2.8)

where, in Fig. 2.1, CR is the large half-circle with radius R, Cr is the small

half-circle with radius r, and C = MN ∪ Cr ∪ PQ ∪ CR is the entire loop.

As soon as R becomes large enough such that all non-positive poles of A(s)
are located inside C and r becomes small enough such that all positive poles

of A(s) are positioned outside C, the first term in the right of (2.8) becomes

independent of R and r, according to the residue theorem [12], and is given by

lim
R→∞

lim
r→0

ffi

C

A(s)ds = 2πj
Nn
∑

i=0

Res(si) (2.9)

where Res(si) is the complex residue of A(s) at si. To calculate the second

term in the right of (2.8) one should note that the magnitude of A(s) decreases
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at least as fast as 1/R3. Therefore
∣

∣

∣

∣

∣

∣

ˆ

CR

A(s)ds

∣

∣

∣

∣

∣

∣

≤
ˆ

CR

|A(s)|ds ≤ K

R3
· πR =

Kπ

R2
(2.10)

for some positive number K. This results in

lim
R→∞

ˆ

CR

A(z)dz = 0. (2.11)

The third term has, however, a non-zero value. The integral of A(s) over

Cr can be calculated by setting s = rejω where ω varies from 0 to π. Let

B(s) , sA(s). Then,

lim
r→0

ˆ

Cr

A(s)ds = lim
r→0

ˆ

Cr

B(s)
s

ds = lim
r→0

ˆ π

0

jB(rejω)dω = jπ lim
s→0
B(s) = jπRes(s0)

(2.12)

where the last equality is simply the definition of the residue of A(s) at s =

s0 = 0. Moreover, from the definition ofA(s) in (2.6b) one can easily show that

Res(s0) = 1. Combining this with (2.6a) and (2.8) – (2.12), the probability of

error for the synchronous CCI case can be written as

P SC
e (Γ0,ΓI ,R0,RI) = −

Nn
∑

i=1

Res(si). (2.13)

Similarly, one can calculate the integral in (2.6a) by integrating A(s) over the
mirror reflection of the contour in Fig. 2.1 about the jω-axis. This results in

an alternate expression for the probability of error given by

P SC
e (Γ0,ΓI ,R0,RI) = 1 +

Nn+Np
∑

i=Nn+1

Res(si). (2.14)

The partial fraction expansion of A(s) in (2.6b) can be written as

A(s) =
Nn+Np
∑

i=0

mi
∑

l=1

αi,l

(s− si)l
(2.15)

where the expansion coefficients αi,l’s are given in [8], [13], and [14]. In [13]

and [14], the calculation of all of the expansion coefficients is required for the

derivation of the BER. In contrast, based on (2.13) or (2.14), we only need to
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compute either the residues at the negative poles, i.e., the αi,l’s, for l = 1 and

i = 1, . . . , Nn or the residues at the positive poles, i.e., the αi,l’s, for l = 1 and

i = Nn + 1, . . . , Nn + Np. This simplifies the calculations significantly. The

values of these residues are given by [8], [13], [14]

Res(si) = αi,1 =
(−1)M+mi−1

∏M
n=1 bn

∑

Q(i)

Nn+Np
∏

k=0
k 6=i

(

mk+qk−1
qk

)

(si − sk)mk+qk
, i = 1, . . . , Nn +Np

(2.16)

where bn = 1
4
(λn

0λ
n
I /ΓI + λn

0/Γ0) and Q(i) = {(q0, . . . , qNn+Np
) | qk ∈ N0, qi =

0,
∑Nn+Np

k=0 qk = mi − 1} with N0 being the set of all nonnegative integers.

Using (2.7) and (2.16), one can use either (2.13) or (2.14) to calculate the

probability of error. However, the application of one may be computation-

ally more efficient than the other. In fact, based on (2.16), the complexity

of the BER calculation in (2.13) or (2.14) is dominated by the complexity of

the computation of the residue at the pole with the highest order. There-

fore, if max{mi | i = 1, . . . , Nn} < max{mi | i = Nn + 1, . . . , Nn + Np}, it
is computationally more efficient to use (2.13), otherwise, using (2.14) is pre-

ferred. When the negative poles of A(s) are all simple (i.e., Nn = M and

mi = 1, for i = 1, . . . ,M), the final expression for the probability of error

using (2.13) and (2.16) is simplified to

P SC
e (Γ0,ΓI ,R0,RI) =

1

2

M
∑

i=1

πi

(

1−
√

γ̄i
1 + γ̄i

)

(2.17a)

where

γ̄i =
λi
0

λi
I

ΓI
+ 1

Γ0

(2.17b)

πi =
M
∏

k=1
k 6=i

1

1− λk
0s

i
N − 1

4

(

λk
0λ

k
I/ΓI + λk

0/Γ0

)

(siN)
2

(2.17c)

and where the siN ’s are defined in (2.7a). A similar expression can be derived

using (2.14) and (2.16) when the positive poles of A(s) are all simple. In the

uncorrelated case where both R0 and RI are identity matrices, all the eigen-

values are equal to one and, therefore, A(s) has exactly one negative pole and

one positive pole each with a multiplicity of M (given by (2.7a) and (2.7b)).
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In this case, the average BER expression in (2.13) reduces to the results given

in [1, eq. (14.4-15)] and [33]. Eqs. (2.13), (2.14), and (2.17) provide new

closed-form expressions for the BER of binary phase shift keying with MRC

diversity in correlated synchronous CCI and Rayleigh fading. The derived ex-

pressions are much more efficient than Monte Carlo methods for computing

the average BER of MRC, specially at high SNR values. This is due to the

fact that the complexity of these expressions is not a function of the SNR. In

contrast, the complexity of a Monte Carlo method grows (exponentially) with

SNR as it is increasingly less likely to generate an error event at high SNR

values. For instance, using the derived expressions, the BER values on the

order of 10−8 can be calculated in a fraction of a second using MATLAB on a

desktop computer while it takes on the order of an hour to reliably calculate

it using Monte Carlo simulation.

2.2.2 Asynchronous CCI

In the presence of asynchronous CCI, the τi’s in (2.2b) are i.i.d. random vari-

ables uniformly distributed over [0, T ). Unlike the synchronous case where

|ai| = 1, (i = 1, . . . , N), the |ai|’s in this case are i.i.d. random variables

whose common PDF is, in general, a function of the pulse shape used by the

users. Although the distribution of ym is different in this case, its conditional

distribution given the |ai|’s remains the same as the synchronous case provided

that the interference powers Pi’s in (2.2a) are replaced by Pi|ai|2. Therefore,

one can still use (2.13), (2.14), and (2.17) to find the conditional probability

of error given the |ai|’s after replacing Pi with Pi|ai|2, (i = 1, . . . , N). The

average probability of error is then obtained by integrating the conditional

probability of error over the joint distribution of the |ai|’s. However, since

(2.13), (2.14), and (2.17) are related to the interference powers only through

ΓI = P0/
(

∑N
i=1 Pi

)

, the probability of error in asynchronous cochannel inter-

ference, PAC
e , is obtained by a single integral and is given by

PAC
e (Γ0,Γ1, . . . ,ΓN ,R0,RI) =

ˆ ∞

0

P SC
e (Γ0,

P0

PI

,R0,RI)f(PI)dPI (2.18a)
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where

PI =
N
∑

i=1

Pi|ai|2 (2.18b)

and

Γi =
P0

Pi

[

E{|ai|2}
]−1

=
P0

Pi

(

1

T

ˆ ∞

−∞

x2(t)dt

)−1

, i = 1, . . . , N

(2.18c)

is the average input SIR corresponding to the i’th interfering user, f(PI) is

the probability density function of PI , and E{·} is the expectation operator.

In general, f(PI) is a function of the pulse shape s(t) used by the users as well

as the number of interfering users and their power distribution. Therefore,

unlike the synchronous CCI case, the probability of error in the presence of

asynchronous CCI given in (2.18a) varies with the number of interfering users

and their power distribution, even when the total average interference power

is fixed. Although it seems difficult to calculate f(PI) analytically, one can

always find it numerically. For example, Fig. 2.2 shows f(PI) for different

values of N when the Pi’s are all normalized to unity and x(t) is a raised-cosine

pulse with roll-off factor β = 0.35. From Fig. 2.2 one can observe that f(PI)

rapidly approaches a Gaussian density as N increases. This is an immediate

result of the central limit theorem since PI defined in (2.18b) is a sum of N

i.i.d. random variables. Once f(PI) is found, the integral in (2.18a) can be

calculated numerically. At high SNR values, this semi-analytical approach in

calculating the average BER of MRC in the presence of asynchronous CCI is

still much more efficient than Monte Carlo simulation as its complexity does

not grow with SNR.

2.3 Numerical Results and Discussion

This section includes some numerical examples where the expressions derived

in Section 2.2 are used to calculate the average BER of the desired user in an

MRC diversity receiver in the presence of AWGN, correlated CCI and corre-

lated Rayleigh fading. In the first example, a circular array of M = 5 antennas
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Figure 2.2. The probability density function of the total interference power PI for
different values of the number of interfering users. The pulse shape s(t) used by
all users is a root raised-cosine pulse with a roll-off factor β = 0.35. (a) N = 1
(b) N = 2, . . . , 6.
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Figure 2.3. The average BER versus SIR for MRC in the presence of synchronous
CCI and AWGN using a circular array of radius 0.1λ containing M = 5 uniformly
distributed antennas with 2D-omnidirectional reception of the desired signal and
3D-omnidirectional reception of the interference signals.

located in the horizontal plane is considered. It is assumed that the desired

user’s signal arrive only from the broadside direction and its azimuth angle

of arrival is uniformly distributed. This is known as two-dimensional omni-

directional (2D-omnidirectional) scattering [25]. The interference signals are

assumed to arrive from any direction in the space with a uniform distribu-

tion.This is known as three-dimensional omnidirectional (3D-omnidirectional)

scattering [34], [30]. Under these assumptions, the correlation coefficient be-

tween the signals received by any pair of the antenna elements is given by

J0(2πd) for the desired user’s signal and by sinc(2πd) for the interferer signals

[30], [5], [34] where d is the ratio of the distance between the two antennas to

the carrier wavelength λ, J0(·) is the zeroth-order Bessel function of the first

kind, and sinc(x) = sin(x)/x. The CCI is assumed to be synchronous. Fig.

2.3 shows the average BER of this system as a function of the average SIR, ΓI

for different values of the average SNR, Γ0. The normalized array radius (i.e.
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the ratio of the array radius to the wavelength) is set to r = 0.1. Except for

the infinite SNR curve which corresponds to a CCI limited scenario, the other

curves exhibit a BER floor since the performance of the system in the large

SIR regime is mostly limited by the AWGN or equivalently the average SNR.

The open circles show the simulation results. It can be seen that the analyti-

cal results are in excellent agreement with the simulation results. It is worth

noting that because of the circular structure of the array in this example, the

desired signal’s correlation matrix R0 has the form

R0 =













1 ρ1 ρ2 ρ2 ρ1
ρ1 1 ρ1 ρ2 ρ2
ρ2 ρ1 1 ρ1 ρ2
ρ2 ρ2 ρ1 1 ρ1
ρ1 ρ2 ρ2 ρ1 1













(2.19)

with ρ1 and ρ2 being some real numbers between −1 and +1. The interference

correlation matrix RI has the same form but with a different set of values for

ρ1 and ρ2. This is a circulant matrix [31]. Therefore, its eigenvalues are the

DFT of its first row [31]. But, because of the symmetric structure of the first

row one can show that its DFT is a real sequence with the same symmetric

structure. This means that there are at most ⌊M/2⌋+ 1 different eigenvalues

where ⌊x⌋ is the largest integer smaller than or equal to x. Therefore, some

of the poles of A(s) in (2.7) have a multiplicity of greater than or equal to

two. This is true for any uniform circular array with an arbitrary number of

antennas under the assumption of omnidirectional reception.

In the second example, a similar scenario to the first example is considered

only with asynchronous CCI this time. The pulse shape s(t) used by all the

users is chosen to be a root raised-cosine pulse with a roll-off factor β = 0.35.

Moreover, it is assumed that the SIRs corresponding to the interfering users

(defined in (2.18c)) are all the same and equal to Γi = 17 dB. Fig. 2.4 shows the

average BER of this system versus the average input SNR for different values

of the number of interfering users N . These curves are obtained by numerically

calculating the integral in (2.18a) using f(PI) shown in Fig. 2.2. Again, there

exists an error floor in all of the curves since the system’s performance for

high SNRs is limited by the interference. As expected, this error floor moves
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Figure 2.4. The average BER versus SNR for MRC in the presence of asynchronous
CCI and AWGN with the number of interfering users N as a parameter. A root
raised-cosine pulse with β = 0.35 is used by all users. The receiver consists of
a circular array of radius 0.1λ with M = 5 uniformly distributed antennas where
2D-omnidirectional reception of the desired signal and 3D-omnidirectional reception
of the interference signals are assumed. The SIRs corresponding to the interfering
users are all set to Γi = 17 dB.

upward as the number of interfering users increases.

The next example considers the effect of antenna spacing on the BER per-

formance of the system. Fig. 2.5 shows the BER of a circular array versus

the normalized radius of the array for different values of M and average SIR

ΓI where the CCI is synchronous. It is assumed that the desired signal and

the interferer signals are both arriving from the broadside direction (i.e., 2D-

omnidirectional reception for all signals). The average SNR is set to infinity

corresponding to a CCI-limited scenario. A number of observations can be

made from this figure. First, one can see that for small values of the normal-

ized radius r, the BER is almost independent of M for any given value of the

average SIR. The reason is that when r is small, the array is extremely packed

and, therefore, both the desired signal vector and the interference vector are

highly correlated. If the optimal detector (i.e., decorrelator plus MRC) was
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Figure 2.5. The average BER of MRC using a circular array versus the radius
of the array normalized by the wavelength. The CCI is synchronous and 2D-
omnidirectional reception is assumed for both the desired signal and the interference
signals.

deployed, using more antennas would result in a better performance since the

optimal detector takes the advantage of the correlation between the interfer-

ence terms in the received signals in order to better cancel the interference.

However, from the viewpoint of the MRC receiver, a highly packed and cor-

related array is only seen as a single antenna system. In this case, adding

more antennas will only increase the system complexity while the achieved

performance enhancement is negligible. Second, for any value of M and ΓI ,

there is an error floor corresponding to an array of infinite radius where all

of the antenna elements in the array are mutually uncorrelated. This is the

best achievable BER performance given a fixed number of antennas and at a

given average SIR. As expected, this error floor shifts downward as M and/or

ΓI is increased. Finally, the BER curves do not monotonically decrease to

their asymptotic limit. This is a consequence of the fact that the magnitude

of the correlation between each pair of the antennas (i.e., J0(2πd)) is not a

decreasing function of the spacing between the two antennas as seen in [5, Fig.
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1.3-6]. Moreover, one can observe that the pattern of the oscillations (i.e., the

location of the local minima and maxima) of the BER curve is different for

different values of M . However, it is independent of the value of the average

SIR when M is fixed.

As seen in Fig. 2.5, a reasonably low BER, almost as low as the asymp-

totic BER floor, can be achieved by setting the value of the normalized radius

r to r∗(M) where the first minimum of the BER occurs. The value of r∗(M)

represents a “best” operational value of great practical interest since it de-

termines the normalized radius of the smallest circular array of M antennas

that can approximately achieve the best performance among all circular ar-

rays of M antennas. From Fig. 2.5, the best normalized radius for M = 4

is r∗(4) = 0.255. This corresponds to a normalized distance of 0.36 between

the adjacent antennas in the array and that of 0.51 between the antennas on

the opposite corners. These normalized distances correspond to correlation

coefficients of 0.075 and −0.321, respectively. This disproves the claim of [13]

and [14] which assert that in a finite uniform circular array of M = 4 antennas

(or as phrased in [13], in a square array of M = 4 antennas), the best perfor-

mance is achieved when the distance between the adjacent antennas is such

that they are uncorrelated. The best normalized radius for M = 7 is given by

r∗(7) = 0.485. This corresponds to a correlation coefficient of −0.1 between

the adjacent antennas, that of −0.248 between the second nearest pairs, and

that of 0.142 between the farthest pairs in the array. Again, it can be seen

that at the best radius, none of the antenna pairs (particularly, the adjacent

antennas) are uncorrelated.

2.4 Chapter Summary

In this chapter, new simple closed-form expressions for the average BER of

BPSK using MRC in the presence of correlated Rayleigh fading, CCI, and

AWGN were derived. The final solutions are explicitly expressed in terms of

the eigenvalues of the correlation matrices of the desired user’s channel and

that of the interfering users’ channels, and are valid for an arbitrary number
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of interfering users and an arbitrary number of receiver antennas. The derived

expressions were then used to calculate the BER performance of MRC systems

in some example scenarios. Particularly, it was shown that for a fixed number

of antennas in a uniform circular array, there is a best radius for the array

corresponding to the smallest uniform circular array that almost achieves its

best possible BER performance, as if its radius was infinite (i.e., the totally

uncorrelated array). Counter-intuitively, at this radius, the adjacent antennas

in the array are not uncorrelated.

In the next chapter, we derive a new expression for the average output

SINR of OC under correlated Rayleigh fading and CCI. Then, using the de-

rived expression, we study the the performance of OC as more antennas are

introduce to the array while the total physical dimensions of the array are

fixed.
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Chapter 3

Performance Analysis of OC for
Dense Multiple Antenna
Reception Under Rayleigh
Fading

In this chapter1, an analytical expression is derived for the average output

SINR of optimum combining for a spatially correlated array of antennas in

the presence of a single interferer, Rayleigh fading, and AWGN. Using the

derived expression and based on an asymptotic analysis of the eigenvalues of

dense correlation matrices, the asymptotic performance of optimum combining

is evaluated as the number of the antennas increases while the total physical

size of the array is fixed. Two different scenarios are considered, namely, fixed

average received power per antenna and fixed total average received power. It

is shown that in the former scenario, the average output SINR is asymptotically

a linear function of the number of the antennas while in the latter scenario

it eventually saturates at a certain value. The slope of the asymptote in the

former scenario as well as the value of the saturation limit in the latter scenario

are derived in terms of the point spectrum of the underlying array correlation

function. The case of multiple interferers is examined by simulation and is

shown to exhibit similar asymptotic behaviour to the case of one interferer.

Here, we provide an asymptotic analysis for OC where, similar to [19] and

1A version of this chapter has been published in part in Proceedings of IEEE Global
Telecommunications Conference (GLOBECOM), 2009, pp. 1-8, and in IEEE Transactions
on Communications, vol. 58, no. 7, pp. 2014-2022, 2010.
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[22], we assume only one interferer is present. However, in contrast with [19]

and [22], we consider a fully correlated model in which both the desired user’s

channel vector and the interferer’s channel vector are correlated. The effect

of AWGN is also taken into account in our analysis. A similar asymptotic

analysis has been done for MRC by Beaulieu and Zhang [24], [25].

3.1 System Model

After matched-filtering and sampling, the equivalent baseband signal received

by an M−element array of antennas in the presence of an interfering user is

given by

y =
√

P0(M)g0d0 +
√

P1(M)g1d1 + n (3.1)

where the first term on the right of (3.1) represents the received signal of the

desired user, the second term represents the interference, and the third term

represents additive noise. The parameters d0 and d1 chosen from a complex

signal constellation of unit average energy, are i.i.d. transmitted data symbols

of the desired user and the interfering user, respectively. The parameters g0

and g1 are independent M by 1 zero-mean complex symmetric Gaussian ran-

dom vectors representing the Rayleigh channel of the desired user and that of

the interfering user, respectively. The channel vectors g0 and g1 both have

the same correlation matrix Ra = E{g0g0
H} = E{g1g1

H}. The diagonal

elements of the “array correlation matrix” Ra are all equal to one correspond-

ing to normalized unit variance channel gains. Vector n denotes the complex

AWGN vector whose elements are independent each with variance N0. The

quantities P0(M) and P1(M) are the average power per branch received from

the desired user and the interfering user, respectively. They are represented

as functions of M , the number of antennas, to include two different scenarios

considered here. In one scenario the average input power per branch is fixed

as the number of antennas increases. This is equivalent to setting P0(M) = P0

and P1(M) = P1 where P0 and P1 are some constant values. As stated in [35],

this scenario would apply, for example, as small fixed-size dipole antennas are

added to a sparse array of antennas. In the other scenario, the total average in-
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put power is fixed as M increases. This is modeled by setting P0(M) = P t
0/M

and P1(M) = P t
1/M where P t

0 and P t
1 are the total average power input to

the array received from the desired user and the interfering user, respectively.

This power scenario corresponds to a situation where a single antenna with

an effective electromagnetic area A is replaced by two antennas each having

an effective area of A/2 or by three antennas each having an effective area of

A/3 and so on. Let

Ra = MQAQH (3.2)

denote the EVD of Ra/M where Q = [q1, . . . ,qM ] is a unitary matrix contain-

ing the eigenvectors of Ra in its columns and A = diag(α1,M , α2,M , . . . , αM,M)

is a diagonal matrix containing the eigenvalues of Ra/M . The correlation

matrix Ra is nonnegative definite. Therefore, the αi,M ’s are all nonnegative.

Moreover,
∑M

i=1 αi,M = tr(Ra/M) = 1 where tr(·) indicates the trace oper-

ator. Thus, the αi,M ’s are all less than or equal to one. Without loss of

generality, we assume that the eigenvalues are sorted in descending order, i.e.,

1 > α1,M > α2,M > . . . > αM,M > 0.

The optimum combining receiver combines the vector of received signals y

to obtain the decision variable x = wHy. The vector of weights w is given by

[2, p. 683]

w = R−1g0 (3.3a)

where

R = N0IM + P1(M)g1g1
H (3.3b)

is the short-term correlation matrix of the interference-plus-noise component

in the received signal. By short-term, we mean that the expectation is taken

within the coherence time of the channel where the channel vectors remain

fixed but the data symbols and the AWGN are random variables. The short

term average SINR at the output of the optimum combiner can be expressed

as [2, p. 683]

γ(M) = P0(M)g0
HR−1g0 (3.4)

with R defined in (3.3b). In the next section, we derive an exact analytical

expression for the long term average of the output SINR in (3.4), i.e., the
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ensemble average of γ(M) over the fading vectors g0 and g1.

3.2 Average Output SINR

Using the matrix inversion lemma [31, p. 50], the inverse of R in (3.3b) can

be calculated as

R−1 =
1

N0

(

IM −
g1g1

H

N0/P1(M) + g1
Hg1

)

. (3.5)

Thus, the expected value of γ in (3.4) is given by

E{γ(M)} = P0(M)E{g0
HR−1g0}

= P0(M)E{tr(g0g0
HR−1)}

= P0(M)tr
(

RaE{R−1}
)

. (3.6)

In deriving (3.6), we have made use of the fact that g0 is independent of g1

and, therefore, of R. Inserting (3.5) in (3.6), after some manipulations one

obtains

E{γ(M)} = γ̄0(M)

(

M − E

{

g1
HRag1

γ̄1(M)
γ̄0(M)

+ g1
Hg1

})

(3.7)

where we have used the fact that tr(Ra) = M . In (3.7), γ̄0(M) = P0(M)/N0 is

the average input SNR per branch and γ̄1(M) = P0(M)/P1(M) is the average

input SIR per branch. Based on the EVD of Ra in (3.2), one can express g1

as

g1 =
√
MQA

1

2h (3.8)

where h = [h1, h2, . . . , hM ]T is a vector of i.i.d. zero-mean complex symmetric

Gaussian random variables with correlation matrix E{hhH} = IM and (·)T is

the matrix transpose operator. Substituting (3.2) and (3.8) in (3.7), we get

E{γ(M)} = Mγ̄0(M)

(

1− E

{

X

Y

})

(3.9a)

where

X =
M
∑

i=1

α2
i,M |hi|2 (3.9b)

Y =
γ̄1(M)

Mγ̄0(M)
+

M
∑

i=1

αi,M |hi|2. (3.9c)
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The expected value of the ratio of X and Y in (3.9) can be calculated using

the joint MGF of X and Y . In fact, ifMX,Y (s1, s2) = E{es1X+s2Y } is the joint
MGF of X and Y , it can be shown that [36]

E

{

X

Y

}

=

ˆ ∞

0

M(1,0)
X,Y (0,−s)ds (3.10a)

where

M(1,0)
X,Y (s1, s2) =

∂

∂s1
MX,Y (s1, s2). (3.10b)

The random variables |hi|2, i = 1, . . . ,M , in (3.9) are i.i.d. unit variance chi-

square RV’s with two degrees of freedom. Therefore, the joint MGF of X and

Y can be written as [37, p. 154]

MX,Y (s1, s2) = exp

(

γ̄1(M)s2
Mγ̄0(M)

) M
∏

i=1

1

1− α2
i,Ms1 − αi,Ms2

. (3.11)

Using (3.11) in (3.10), one obtains

E

{

X

Y

}

=

ˆ ∞

0

IM(s)ds (3.12a)

where

IM(s) =

(

M
∏

i=1

1

1 + αi,Ms

)(

M
∑

i=1

α2
i,M

1 + αi,Ms

)

exp

(

− γ̄1(M)

Mγ̄0(M)
s

)

. (3.12b)

Inserting (3.12) in (3.9) gives the final expression for the average output SINR.

This expression is used in Section 3.3 to analyze the asymptotic behavior of

the average output SINR as the number of antennas increases while the total

physical size of the array is fixed.

3.3 Asymptotic Analysis of Average Output

SINR

In this section, the asymptotic behavior of the E{X/Y } in (3.12) for large val-

ues of M is studied. In order to do so, we must first understand the asymptotic

behavior of the eigenvalues, i.e., the αi,M ’s as M goes to infinity.
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tMr = c(t)

x
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z

Figure 3.1. A one-dimensional array of M antennas located on a curve with para-
metric representation r = c(t) in a 3D space.

3.3.1 Eigenvalues of Dense One-Dimensional Arrays

Let the 3 × 1 vector c(t) = [cx(t), cy(t), cz(t)]
T denote the parametric repre-

sentation of a one-dimensional (1D) curve in a three-dimensional (3D) space

where t ∈ [0, 1] (Fig. 3.1). Now, assume that an array of M isotropic anten-

nas is distributed along c(t) where the position of the i’th antenna is given

by c(ti) for some ti ∈ [0, 1], i = 1, . . . ,M . The indexing of the antennas is

such that t1 < t2 < . . . < tM . The correlation coefficient between the i’th

and the j’th antennas in the array can be written as Rg(c(ti), c(tj)) where

Rg(r1, r2) = E{g(r1)g(r2)∗} is the spatial autocorrelation function of the un-

derlying channel gain g(r) represented as a complex Gaussian spatial random

process. The parameter r is the 3 × 1 position vector and ∗ denotes com-

plex conjugate. Note that Rg(r1, r2) is independent of the array geometry

and is only a function of the properties of the scattering environment. De-

fine Ra(x, y) , Rg(c(x), c(y)) for (x, y) ∈ [0, 1] × [0, 1] where × denotes the

Cartesian product. Then, for any given M , Ra(ti, tj) is the (i, j)’th element of

the array correlation matrix Ra defined in Section 3.1. The “array correlation

function” Ra(x, y) is normalized such that Ra(x, x) = 1 for any x ∈ [0, 1].

From its definition, Ra(x, y) is Hermitian, i.e., Ra(x, y) = R∗
a(y, x). It is also

square summable over [0, 1]× [0, 1]. In fact, since the magnitude of Ra(x, y) is

always less than or equal to 1, one has

ˆ 1

0

ˆ 1

0

|Ra(x, y)|2dxdy 6 1. (3.13)
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Moreover, we assume that Ra(x, y) is a continuous function over [0, 1]× [0, 1]

as is the case in a practical system. Let Raqk = Mαk,Mqk, k = 1, . . . ,M ,

represent the eigenequations of the matrix Ra/M and define the functions

qk(t), k = 1, . . . ,M , on [0, 1] such that qk(ti) = qk(i), where qk(i) denotes the

i’th element of qk. Then, the eigenequations of Ra/M can be expanded as

1

M

M
∑

j=1

Ra(ti, tj)qk(tj) = αk,Mqk(ti) k = 1, . . . ,M. (3.14)

If the antennas are uniformly distributed in the parameter space, that is ti =

(i− 1)/M for i = 1, . . . ,M , the set of nonzero eigenvalues of Ra/M (i.e., the

set of nonzero αk,M ’s) converges to the point spectrum (i.e., eigenvalues in

this case) of a nonnegative definite self-adjoint integral operator with kernel

Ra(x, y) as M goes to infinity [35], [38, p. 248]. In the sequel, whenever

we need to refer to “the integral operator whose kernel is Ra(x, y)”, we will

simply refer to the function Ra(x, y) itself. The sorted eigenvalues of Ra(x, y)

are denoted by α̃1 > α̃2 > . . . and are determined through the set of integral

equations
ˆ 1

0

Ra(x, y)qk(y)dy = α̃kqk(x) k = 1, 2, . . . (3.15)

where the qk(x)’s are the orthonormal eigenfunctions of Ra(x, y). The α̃k’s are

all positive and less than or equal to one. Furthermore, they are either finite

or countably infinite in number. In the latter case, they form a decreasing

sequence tending to zero [35], [39]. Since Ra(x, y) is Hermitian and square

summable, it can be expanded in terms of its eigenfunctions as [39, p. 243]

Ra(x, y) =
∞
∑

k=1

α̃kqk(x)q
∗
k(y). (3.16)

Moreover, according to Mercer’s theorem [39, p. 245] the series in (3.16) is uni-

formly convergent since Ra(x, y) is nonnegative definite and continuous. This

justifies term by term integration in (3.16). As a result, using the expansion

in (3.16), one can show

∞
∑

k=1

α̃k =

ˆ 1

0

Ra(x, x)dx = 1 (3.17)
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∞
∑

k=1

α̃2
k =

ˆ 1

0

ˆ 1

0

|Ra(x, y)|2dxdy. (3.18)

The convergence of the set of nonzero αk,M ’s to their limit values α̃k’s is in

fact uniform and there exists a uniform error bound of the form |αk,M − α̃k| <
C/M for any k = 1, . . . ,M where C is some positive constant independent

of k [35]. Let Na(M) denote the number of nonzero eigenvalues of Ra/M .

As stated in [35], Na(M) is o(M), i.e., limM→∞Na(M)/M = 0. Using this

result along with the uniform convergence of the eigenvalues, the asymptotic

behavior of E{X/Y } in (3.12) is analyzed in the sequel.

3.3.2 Asymptotic Analysis of E{X/Y }

The limit of E{X/Y } in (3.12) asM tends to infinity is calculated in two steps.

First, it is shown that under certain conditions on the correlation function

Ra(x, y), the integrand in (3.12) converges to a finite function I(s) for any

value of s ∈ [0,∞) where I(s) can be expressed in terms of the α̃i’s. Then, it

is shown that the limit of the integral in (3.12) is equal to the integral of the

limit of the integrand, that is, the integral of I(s). We start with the following

lemma.

Lemma 3.1. Let f : [0, 1]→ [0,∞) be a differentiable function with a bounded

derivative, that is |f ′(x)| < B for any x ∈ [0, 1] and for some positive number

B. Then, one has

lim
M→∞

Na(M)
∑

i=1

[f(αi,M)− f(α̃i)] = 0 (3.19)

where Na(M), αi,M ’s, and α̃i’s are defined in Section 3.3.1.

The proof of this lemma is not straightforward since the number of terms

in the summation, i.e., Na(M) can, in general, grow with M . A proof of

Lemma 3.1 is given in Appendix A. The integrand in (3.12b) can be rewritten

as follows

IM(s) = exp



−
Na(M)
∑

i=1

πs(αi,M )









Na(M)
∑

i=1

σs(αi,M)



 exp

(

− γ̄1(M)

Mγ̄0(M)
s

)

(3.20a)
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where

πs(x) = ln(1 + sx) (3.20b)

σs(x) =
x2

1 + sx
. (3.20c)

Note that the summations in (3.20a) are only taken over the Na(M) nonzero

eigenvalues since the zero eigenvalues have no effect on the value of E{X/Y }
in (3.12). It is easy to see that πs(x) and σs(x) in (3.20b) and (3.20c) satisfy

the conditions of Lemma 3.1 with B = s and B = 2, respectively. Thus,

Lemma 3.1 applies to them. Moreover, as shown in Appendix B, the limits

limM→∞

∑Na(M)
i=1 πs(α̃i) and limM→∞

∑Na(M)
i=1 σs(α̃i) exist. Since these limits

exist and Lemma 3.1 applies to both πs(x) and σs(x), one has

lim
M→∞

Na(M)
∑

i=1

πs(αi,M) =
∞
∑

i=1

πs(α̃i) (3.21)

and

lim
M→∞

Na(M)
∑

i=1

σs(αi,M) =
∞
∑

i=1

σs(α̃i). (3.22)

This means that the sequence of functions {IM(s)}∞M=1 in (3.20a) converges

to a function I(s) for any s ∈ [0,∞) where I(s) is given by

I(s) = exp

(

−
∞
∑

i=1

πs(α̃i)

)(

∞
∑

i=1

σs(α̃i)

)

exp(−βs) (3.23a)

and where

β = lim
M→∞

γ̄1(M)

Mγ̄0(M)
(3.23b)

with πs(x) and σs(x) defined in (3.20b) and (3.20c), respectively. The next

step is to show that the limit of the integral in (3.12a) as M tends to infinity

is equal to the integral of I(s) defined in (3.23). This is the subject of the

following theorem.

Theorem 3.2.

lim
M→∞

ˆ ∞

0

IM(s)ds =

ˆ ∞

0

I(s)ds. (3.24)
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The proof of Theorem 3.2 is given in Appendix C. Using Theorem 3.2 and

the expression for I(s) in (3.23), the asymptotic value of E{X/Y } is obtained
as

lim
M→∞

E

{

X

Y

}

=

ˆ ∞

0

(

∞
∏

i=1

1

1 + α̃is

)(

∞
∑

i=1

α̃2
i

1 + α̃is

)

exp(−βs)ds (3.25)

where β is defined in (3.23b). As shown in (3.9), the average output SINR is

proportional to 1− E{X/Y }. Since the SINR is a positive random variable, one

can immediately conclude that E{X/Y } < 1 and, therefore, limM→∞ E{X/Y }
given in (3.25) is always less than or equal to one. However, in order to

fully understand the asymptotic behavior of the average SINR in (3.9), it

is important to determine the conditions under which limM→∞ E{X/Y } is

strictly less than one. This is particularly important in the fixed power per

branch scenario where the factor Mγ̄0(M) = MP0/N0 in (3.9) grows linearly

with M . The next theorem provides a sufficient condition.

Theorem 3.3. Assume that Ra(x, y) is nonseparable, i.e., one cannot find

any function k(·) such that Ra(x, y) can be written as Ra(x, y) = k(x)k∗(y).

Then, one has

lim
M→∞

E

{

X

Y

}

< 1. (3.26)

The proof of Theorem 3.3 is given in Appendix D. At this point, we are

ready to state our main result. Based on the above analysis of the asymp-

totic behavior of E{X/Y }, the asymptotic performance of a fixed length one-

dimensional array of antennas as the number of antennas goes to infinity is

summarized through Theorem 3.4.

Theorem 3.4. Consider an optimum combining receiver employing the array

of antennas introduced in Section 3.3.1. If the underlying array correlation

function Ra(x, y) defined in Section 3.3.1 is continuous and nonseparable (see

Theorem 3.3), the asymptotic performance of the receiver is as follows.

• Fixed average power per branch: The average output SINR for large
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values of M grows linearly with M with a positive slope given by

lim
M→∞

E{γ(M)}
M

= Γ0

{

1−
ˆ ∞

0

(

∞
∏

i=1

1

1 + α̃is

)(

∞
∑

i=1

α̃2
i

1 + α̃is

)

ds

}

(3.27)

where Γ0 = P0/N0 is the average input SNR per branch and the α̃i’s are

defined in Section 3.3.1.

• Fixed total average power: As M increases, the average output SINR

converges to a positive limit value given by

lim
M→∞

E{γ(M)} =

Γt
0

{

1−
ˆ ∞

0

(

∞
∏

i=1

1

1 + α̃is

)(

∞
∑

i=1

α̃2
i

1 + α̃is

)

exp

(

−Γt
1

Γt
0

s

)

ds

}

(3.28)

where Γt
0 = P t

0/N0 is the total average input SNR, Γt
1 = P t

0/P
t
1 is the

total average input SIR, and the α̃i’s are defined in Section 3.3.1.

Proof. The proof is immediate using Theorem 3.3, (3.9), (3.25), (3.23b), and

noting that γ̄0(M) = P0/N0, and γ̄1(M) = P0/P1 for the fixed average power

per branch scenario whereas γ̄0(M) = P t
0/(MN0), and

γ̄1(M) = (P t
0/M)/(P t

1/M) = P t
0/P

t
1 for the fixed total average power scenario.

The identities in (3.27) and (3.28) are valid even for the case of a separable

array correlation function Ra(x, y). However, in this case, one can show that

the limit in (3.25) is equal to unity. This is because, for a separable correlation

function, one has α̃1 = 1 and α̃i = 0, for all i > 1 (see the proof of Theorem

3.3 for more details). Therefore, although the identity in (3.27) is still valid,

it does not imply a linear growth of the average output SINR with M since

the expression on the right side of (3.27) will evaluate to zero. The main

contribution of Theorem 3.4 lies in the fact that it provides a mathematical

proof of the asymptotic behavior of OC for two different power scenarios and

for a broad subset of correlation functions. As a second result, Theorem 3.4

also provides the exact numerical values of the asymptotes of the SINR for

both power scenarios. These numerical values depend on the eigenvalues of
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the underlying array correlation function determined by (3.15). Solving the

eigenvalue problem in (3.15), in general, lies in the realm of functional (oper-

ator) analysis and spectral theory [39]. There are many numerical methods

in the mathematics literature for calculation of the eigenvalues of an integral

operator (e.g., see [38], [40], and the references therein). However, in some

special cases, the abovementioned eigenvalue problem has a nice closed-form

solution. One example is when Ra(x, y) in (3.15) is a circulant kernel, i.e.,

when it can be written as Ra(x, y) = R̃a(z) where z = x−y and R̃a(z) is some

periodic function with period 1. A practical scenario resulting in a circulant

array correlation function is investigated in Section 3.4.

3.4 Numerical Results and Discussion

The analytical results presented in Section 3.3, and particularly Theorem 3.4,

deal with asymptotic scenarios in which the number of antennas goes to in-

finity. However, as shown through a numerical example in this section, the

number of antennas that is required in order to put a practical receiver in

the asymptotic regime is relatively small. Consider a uniform circular array

of isotropic antennas located in the horizontal plane. Assume a scattering

environment, where the azimuth angle of arrival is uniformly distributed over

[0, 2π) while the elevation angle of arrival has an arbitrary distribution. In

this case, the spatial correlation function Rg(r1, r2) defined in Section 3.3.1 is

only a function of the distance between r1 and r2 as a result of the rotational

symmetry in the horizontal plane. The parametric representation of the array

geometry defined in Section 3.3.1 is given by c(t) = [rcos(2πt), rsin(2πt), 0],

t ∈ [0, 1] where r is the array radius. Then, one can show that the array

correlation function Ra(x, y) defined in Section 3.3.1 is only a function of

z = x − y and can be written as Ra(x, y) = R̃a(z) for some function R̃a(z)

where z ∈ [−1, 1]. Moreover, due to the circular structure of the array, R̃a(z)

is a periodic function of z with period 1. Thus, using (3.15), it can be shown

that the set of eigenfunctions {qk(x)}∞k=1 is given by {exp(j2πkx)}∞k=−∞ and

that the set of eigenvalues {α̃k}∞k=1 is equal to the set of Fourier series co-

37



0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

k

E
ig
en
va
lu
es

of
R

a
(x
,y
),

α̃
k

Figure 3.2. The sorted Fourier series coefficients of R̃a(z) = J0(
4π
λ rsin(π|z|)) (i.e.,

the eigenvalues of Ra(x, y)) for r = 0.5λ.

efficients of R̃a(z), that is {
´ 1

0
R̃a(z)exp(−j2πkz)dz}∞k=−∞. In the case of a

2D-omnidirectional scattering where the distribution of the elevation angle

of arrival is modeled as a delta function in the horizontal plane, the spatial

correlation function is given by Rg(r1, r2) = J0(
2π
λ
‖r1 − r2‖) where λ is the

carrier wavelength [5]. Thus, the array correlation function can be written as

Ra(x, y) = R̃a(z) = J0(
4π
λ
rsin(π|z|)) where z = x − y. It can be easily shown

that Ra(x, y) in this case is a nonseparable function of x and y as defined in

Theorem 3.3. Furthermore, the set of Fourier series coefficients of R̃a(z) is

given by {J2k(2πλ r)}∞k=−∞ where Jk(·) is the Bessel function of the first kind and

order k [26]. Fig. 3.2 shows the first 40 sorted Fourier coefficients of R̃a(z)

(i.e., α̃1 to α̃40) for r = 0.5λ. Figs. 3.3 and 3.4 depict the average output

SINR versus the number of antennas M for the fixed power per branch sce-

nario and the fixed total power scenario, respectively. The analytical values of

the average output SINR for different values of M are calculated using (3.9)

and (3.12). The asymptotic values are computed from (3.27) and (3.28). As

seen in Fig. 3.2, the sequence of eigenvalues rapidly converges to zero. As a re-
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Figure 3.3. The average output SINR of OC and MRC (in linear scale) for a circular
array of radius r = 0.5λ in the presence of N interfering users under Rayleigh fading
and 2D-omnidirectional scattering. The average input SNR and SIR per branch are
fixed as M increases and are given by Γ0 = 0 dB and Γ1 = 0 dB, respectively.

sult, in calculation of (3.27) and (3.28), only the first 15 dominant eigenvalues

are used. As seen in Figs. 3.3 and 3.4, the analytical results are in excellent

agreement with the simulation results.

The average output SINRs of an OC receiver in the presence of N = 5

and N = 10 interfering users obtained by simulation are also depicted in

Figs. 3.3 and 3.4 where, in both scenarios, the sum of the powers of the N

interfering users is kept fixed and equal to that of the single interfering user

case. It can be seen that even in the case of more than one interferer, the OC

receiver exhibits the same asymptotic behavior. In other words, as shown in

Fig. 3.3 when the average power per branch is fixed the average output SINR

of OC asymptotically becomes a linear function of M ; however, the line’s slope

decreases as N becomes larger. On the other hand, as seen in Fig. 3.4 when

the total power is fixed, the average output SINR of OC quickly reaches a

limit as M increases. It is also seen that the asymptotic limiting performance

decreases as N increases. Note that the SINR curves in Fig. 3.3 are plotted in
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Figure 3.4. The average output SINR of OC and MRC for a circular array of radius
r = 0.5λ in the presence of N interfering users under Rayleigh fading and 2D-
omnidirectional scattering. The total average input SNR and SIR are fixed as M
increases and are given by Γt

0 = 15 dB and Γt
1 = 0 dB, respectively.

a linear scale in order to illustrate the linear asymptotic behavior of OC. The

results in Figs. 3.3 and 3.4 indicate that, in all cases, the OC receiver enters

the asymptotic regime for a relatively small number of antennas, here being

M = 9. This confirms the applicability of the asymptotic analysis provided in

the previous section to practical scenarios.

The SINR performance of an MRC receiver for both power constraint sce-

narios is also illustrated in Figs. 3.3 and 3.4 for comparison purposes. In

contrast to the OC receiver, as long as the sum of the powers of the interfering

users is fixed, the performance of MRC does not change with the number of

interfering users N . This is because an MRC receiver does not distinguish

the interference from the AWGN. In the case of fixed power per branch, the

average SINR of MRC in the asymptotic region seems to slightly increase with

M . However, other simulation results (not shown here) as well as the ap-

proximate analytical results of [24], [25] suggest, that in both power scenarios,

the average output SINR of MRC eventually saturates as M increases. From
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Figure 3.5. The average output SINR of OC for a circular array versus the normal-
ized array radius r/λ in the presence of N interfering users under Rayleigh fading
and 2D-omnidirectional scattering. The total average input SNR and SIR are fixed
for all values of M and r/λ and are given by Γt

0 = 5 dB and Γt
1 = 0 dB, respectively.

Figs. 3.3 and 3.4, one can see the dramatic superiority of OC over MRC in

an interference dominated environment. Particularly, in the case of fixed total

power, an SINR gain of 7 dB, 4.5 dB, and 3 dB is achieved by OC over MRC

for N = 1, N = 5, and N = 10 interfering users, respectively.

Next, the effect of the array radius on the output SINR performance of

OC for the above circular array is illustrated in Fig. 3.5 where the average

output SINR is plotted versus the normalized array radius r/λ while the total

average SNR and SIR input to the array are kept fixed for all values of M and

r. Two different cases for the number of interfering users have been considered,

namely, N = 1 and N = 10. The dashed lines show the asymptotic average

output SINR obtained by letting M go to infinity for a given value of r/λ,

i.e., the best achievable performance for each value of r/λ. The solid lines

show the average output SINR versus r/λ where the number of antennas in

the array is fixed and set to M = 9. In the case of N = 1, the solid curve
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is computed from (3.9) and (3.12) and the dashed curve from (3.28). In the

case of N = 10, both curves are obtained by simulation. It can be seen in

Fig. 3.5 that for values of r/λ less than 0.5 the dashed curves and the solid

curves coincide. This means that for r/λ < 0.5 increasing the number of

antennas beyond M = 9 does not provide any additional performance benefit.

This is in agreement with the results of Fig. 3.4 where it was shown that for

r = 0.5λ the array’s performance saturates at M = 9. However, for the values

of r/λ greater than 0.5, a performance loss will be incurred by limiting the

number of antennas to M = 9. Moreover, as Fig. 3.5 shows, this performance

loss increases as r/λ grows. Particularly, at r/λ = 3, using M = 9 antennas

results in a performance loss of 0.3 dB for N = 1 and that of 0.8 dB for N = 10

compared to the best achievable SINR performance.

3.5 Chapter Summary

In this chapter, the asymptotic performance of OC was investigated as the

number of antennas in the array increases while the total physical dimensions

of the array are fixed. Two different scenarios were considered, namely, fixed

average received power per antenna and fixed total average received power.

It was shown that in the former scenario, the average output SINR of OC is

asymptotically a linear function of the number of the antennas while in the

latter scenario it eventually saturates at a certain value. In the case of a single

interferer, the slope of the asymptote in the former scenario as well as the value

of the saturation limit in the latter scenario were derived in terms of the point

spectrum of the underlying array correlation function. It was shown through a

numerical example that the receiver actually exhibits its asymptotic behavior

for a practically small number of antennas. This justifies the applicability of

the asymptotic approach used in this chapter to the design of OC receivers

implemented on size constrained communication devices.

In the next chapter, we turn our focus to the optimum design of size con-

strained antenna arrays used in OC and/or MRC receivers. To this goal, we

find a simple yet accurate approximation to the average output SINR of OC
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derived in this chapter. Then, we attempt to maximize the value of this ap-

proximate expression over the number and the positions of the antennas in

the array. We will start with the case of linear 1D arrays and consequently

generalize our formulation to the case of 2D arrays.
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Chapter 4

Optimum Antenna
Arrangement

The focus of our research work presented up to this point has been mainly on

the performance analysis of multiple antenna receivers in the presence of cor-

related fading and CCI. In this chapter1, however, we propose an array design

problem for multiple antenna receivers based on the results of the previous

chapters on the performance analysis of those systems.

As we saw in Chapter 2 and Chapter 3, the average BER performance

of MRC and the average SINR performance of OC for a correlated array of

antennas are functions of the eigenvalues of the array correlation matrix (see

Section 2.2 and Section 3.2). The array correlation matrix itself is a function

of the underlying spatial correlation function (see Section 3.3.1) as well as the

relative positions of the antennas in the array. The former, i.e., the spatial

correlation function is out of the designer’s control and is solely determined

from the statistics of the scattering environment. To be more precise, it is

obtained through the distribution of the direction of arrival (DOA) of the

electromagnetic waves received by the array [5]. The latter, however, provides

the designer with a degree of freedom that can be efficiently adjusted. In other

words, one can properly arrange the antennas in the array such that a certain

performance measure of the system is optimized. This is the subject of the

research work presented in this chapter.

1A version of this chapter has been submitted for publication in IEEE Transactions on
Information Theory and has been published in part in Proceedings of IEEE Wireless Com-
munications and Networking Conference (WCNC), 2011, pp. 1402-1407.
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We adopt the average output SINR of OC derived in Chapter 3 as a measure

of the array’s performance and attempt to maximize it by properly arranging

the antennas while assuming that the total physical dimensions of the array

are fixed. We will also show that maximizing the average output SINR of OC

is equivalent to maximizing two of the performance measures defined in [25]

for MRC in the presence of correlated Rayleigh fading, CCI, and AWGN.

4.1 System Model

The vector of complex equivalent baseband signals received by an array of M

antennas in the presence of cochannel interference and noise is given by

y =

√

P0

M
g0d0 +

N
∑

k=1

√

Pk

M
gkdk + n (4.1)

where the first term on the right of (4.1) represents the received signal of

the desired user, the second term represents the interference, and the third

term represents additive noise. The number of interfering users is N , the dk’s

(k = 0, . . . , N) are i.i.d. transmitted data symbols of different users each

chosen from a signal constellation of unit average energy, and the gk’s (k =

0, . . . , N) are independent M by 1 zero-mean complex symmetric Gaussian

random vectors representing the Rayleigh channel between each user and the

array elements in the receiver. The average received power per antenna for

User k is denoted by Pk/M . The total average power Pk of User k input to

the array is fixed as a result of the limitation on the total physical dimensions

of the array. The vector n denotes AWGN whose elements are i.i.d. each with

varianceN0. The average SNR of the desired user is defined by Γ0 = P0/N0 and

the average interference to noise ratios (INRs) of the interferers by Γk = Pk/N0

(k = 1, . . . , N).

For each k = 0, . . . , N , the elements of the channel vector gk are con-

sidered to be the samples of the zero-mean Gaussian spatial random process

(random field) gk(r) where r is the position vector in a given coordinate sys-

tem. The gk(r)’s are wide sense stationary (WSS) random processes that are

independent of each other and all have a common autocovariance (in this case,
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autocorrelation) function defined by Rg(r1− r2) = E{gk(r1)gk(r2)∗}. We refer

to Rg(·) as the “spatial correlation function”. The spatial correlation function

is conjugate symmetric, i.e., Rg(−r) = Rg(r)
∗. Thus, it has a real value at

r = 0. We normalize its value at zero to unity, i.e., Rg(0) = 1. The function

Rg(·) is also a positive definite function (a.k.a a function of positive type) [41].

Therefore, its magnitude for any value of r is always less than or equal to

Rg(0) = 1.

Two scenarios regarding the arrangement of the antennas are considered.

In the first scenario, we assume a 1D linear array where the antennas are

located on a line segment. The length of the line segment is denoted by L and

the position of the i’th antenna, i = 1, 2, . . . ,M , by ri = xi ∈ [0, L] where,

without loss of generality, we assume that 0 ≤ x1 ≤ x2 ≤ . . . ≤ xM ≤ L. In

this case, the spatial correlation function is a single variable function denoted

by Rg(x). In the second scenario, we assume a 2D array where the antennas

are located inside a bounded two-dimensional (2D) region D in R
2 where R

is the set of real numbers. The region D can, in general, consist of a finite

number of disjoint connected subregions. The boundary of D, denoted by

∂D, is assumed to be a smooth simple curve (i.e., it does not intersect itself).

The position of the i’th antenna (for some given ordering of the antennas)

is denoted by ri = (xi, yi) ∈ D. The spatial correlation function, in this

case, is a two-variable function denoted by Rg(x, y). The dimensions of length

and area in both scenarios and in all subsequent analysis are electromagnetic

dimensions, i.e., the unit of length is defined to be equal to one wavelength of

the electromagnetic wave in the free space at the carrier frequency.

Define the common correlation matrix of the channel vectors gk by Ra =

E{gkgk
H}. We refer to Ra as the “array correlation matrix”. In both sce-

narios, the (i, j)’th element of Ra is given by Rg(ri − rj). In particular, the

diagonal elements of Ra are all equal to unity since Rg(0) = 1. Note that Rg(·)
is independent of the array geometry and is only determined by the statistics

of the scattering environment around the receiver [5] whereas the array cor-

relation matrix Ra depends on both. Let α1,M , α2,M , . . . , αM,M denote the

eigenvalues of Ra/M . The eigenvalues are all real and nonnegative since Ra
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is a Hermitian positive semi-definite matrix. Moreover,

M
∑

i=1

αi,M = tr(
1

M
Ra) = 1 (4.2a)

and
M
∑

i=1

α2
i,M = tr(

1

M2
Ra

2). (4.2b)

As a result of (4.2a), the αi,M ’s are all less than or equal to one. Without loss

of generality, we assume that the eigenvalues are sorted in descending order,

i.e,

1 > α1,M > α2,M > . . . > αM,M > 0. (4.3)

The vector of received signals y in (4.1) is combined according to the OC

scheme to obtain the decision variable wHy based on which the desired user’s

signal will be detected. The vector of combining coefficients is given by [3]

w = R−1g0 (4.4a)

where

R = N0IM +
N
∑

k=1

Pk

M
gkgk

H . (4.4b)

The SINR at the output of the OC receiver is given by [2, p. 683]

γ =
P0

M
g0

HR−1g0 (4.5)

where R is defined in (4.4b).

Note that the signal model in (4.1) also represents a single user MIMO

channel. This can be seen by rewriting (4.1) as

y =
1√
M

GP
1

2d+ n (4.6)

where G = [g0 g1 . . . gN] is the M × (N + 1) MIMO channel matrix, d =

[d0 d1 . . . dN ]
T is the transmitter’s signal vector, andP = diag(P0, P1, . . . , PN)

is a diagonal matrix containing the average powers transmitted by the antennas

in the transmitter. The model in (4.6) corresponds to a MIMO system oper-

ating in the spatial multiplexing mode where N +1 independent data streams
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are transmitted to the receiver. The columns of G are independent, modeling

a transmitter array at the base station with a large spatial separation, whereas

the rows of G are correlated due to the limitation on the dimensions of the

mobile device. It can be shown that the vector MMSE receiver of d in (4.6)

corresponds to N + 1 OC receivers, one for each individual element dk of d

[42]. Therefore, the SINR of each data stream at the output of the MIMO

MMSE receiver is given by an expression similar to (4.5). In particular, (4.5)

represents the SINR of data Stream 0. In the sequel, we will only focus on

OC bearing in mind that all subsequent analyses are equally applicable to the

above mentioned MIMO case as well.

4.2 Array Design

In this section, we study the effect of the number of antennas as well as their

positions in the receiver array on the performance of the system defined in

Section 4.1. In particular, we are interested in answering the following ques-

tions. What is the maximum number of antennas that can be usefully deployed

within a physical space of fixed dimensions? What is the best arrangement of

those antennas in the given space? We consider the average over fading of the

output SINR in (4.5) as a measure of the system’s performance and attempt

to maximize it over all possible arrangements of the antennas in the array.

This performance measure allows to formulate the problem in the form of a

convex quadratic programming which can always be solved numerically using

the well known methods of convex optimization [43]. Moreover, in the special

case of an exponential correlation model for linear arrays, we are able to find

an analytical solution to this optimization problem.

4.2.1 The Objective Function

As shown in Chapter 3, the average of the output SINR in (4.5) over the fading

channel vectors g0 and g1, in the case of one interfering user (N = 1), can be

expressed as

E{γ} = Γ0(1− q) (4.7a)
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where

q = E

{

∑M
i=1 α

2
i,M |hi|2

1
Γ1

+
∑M

i=1 αi,M |hi|2

}

. (4.7b)

The parameters Γ0 and Γ1 are defined in Section 4.1. The hi’s are i.i.d zero-

mean complex symmetric Gaussian random variables with unit variance, and

the αi,M ’s are the eigenvalues of Ra/M . As mentioned in Section 4.1, the

array correlation matrix Ra is a function of the array structure and so are

its eigenvalues. Therefore, the average output SINR in (4.7) is a function

of both the number of the antennas M and their positions in the array. To

maximize the E{γ} in (4.7), one has to minimize q, given in (4.7b), over

M and the positions of the antennas. Unfortunately, finding a closed-form

solution for q in terms of the αi,M ’s is not straightforward. It was expressed

in a single integral form in Chapter 3. However, the expression given there is

rather complicated and does not provide a mathematically tractable objective

function for our optimization purposes. To circumvent this issue, we attempt

to approximate q with a more tractable expression through the following lines.

The expected value of the second term in the denominator of q in (4.7b) is

equal to 1 according to (4.2a). Thus, if the value of the INR, Γ1, is large

enough compared to unity, e.g., Γ1 ≥ 10 (i.e., 10 dB) which is typical in

an interference dominant cellular network, the parameter q in (4.7b) can be

tightly upper-bounded as

q ≤ E

{

X

Y

}

(4.8a)

where

X =
M
∑

i=1

α2
i,M |hi|2 (4.8b)

and

Y =
M
∑

i=1

αi,M |hi|2. (4.8c)

The inequality in (4.8a) becomes an equality as Γ1 tends to infinity. Now,

since X/Y is a ratio of two quadratic forms in Gaussian random variables, its

first moment can be accurately approximated by [44]

E

{

X

Y

}

≈ E{X}
E{Y } (4.9a)
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Figure 4.1. A comparison of E
{

X
Y

}

in (4.8) with its approximation in (4.9) for 100
random realizations of a linear array of antennas with length L = 1.

where
E{X}
E{Y } =

1
M2 tr

(

Ra
2
)

1
M
tr(Ra)

=
1

M2
tr
(

Ra
2
)

(4.9b)

as a result of (4.2). Note that since Ra is a Hermitian matrix, the right side

of (4.9b) is nothing but the square of the Frobenius norm of the normalized

array correlation matrix Ra/M . Figs. 4.1 and 4.2, generated by computer

simulation, are two examples that demonstrate the accuracy of the approxi-

mation in (4.9a). To produce each of these figures, 100 random realizations

of the antenna array are generated. Then, for each realization of the array

(i.e., for a fixed Ra and a fixed set of αi,M ’s), the left side of (4.9a) is cal-

culated numerically and is plotted together with the value of the right side

of (4.9b) calculated for that particular realization of the array. Fig. 4.1 cor-

responds to a linear 1D array of length L = 1. To produce a random array

realization, in this case, the number of antennas M is randomly chosen from

the set {2, 3, . . . , 8} and the position of each antenna xi, i = 1, 2, . . . ,M , is

independently chosen according to a uniform distribution over [0, L]. Fig. 4.2
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Figure 4.2. A comparison of E
{

X
Y

}

in (4.8) with its approximation in (4.9) for 100
random realizations of a 2D rectangular array of antennas with dimensions Lx = 1
and Ly = 0.5.

corresponds to a rectangular 2D array where D = [0, Lx]× [0, Ly] with Lx = 1

and Ly = 0.5. For each random array realization, the number of antennas

M is randomly chosen from the set {2, 3, . . . , 10} and the position of each an-

tenna (xi, yi), i = 1, 2, . . . ,M , is independently chosen according to a uniform

distribution over D. A 2D-omnidirectional scattering environment is assumed

in generating Figs. 4.1 and 4.2 where the spatial correlation function is given

by Rg(x) = J0(2πx) [5]. As Figs. 4.1 and 4.2 show, the graph of tr(Ra
2)/M2

closely approximates that of E{X/Y }. Moreover, it can be seen that the for-

mer is not only an accurate approximation but also an upper bound for the

latter, i.e.,

E

{

X

Y

}

≤ 1

M2
tr
(

Ra
2
)

. (4.10)

Numerous other simulation results (not shown here for the sake of brevity)

obtained for various 1D and 2D array shapes and various spatial correlation

models also exhibit this inequality relationship. In fact, based on a large

number of simulation results, we claim an even more general inequality relation
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as follows.

Conjecture 4.1. Let z1, z2, . . . , zM be a set of M i.i.d. real and positive ran-

dom variables. Then, for any set of real and positive numbers a1, a2, . . . , aM ,

one has

E

{

∑M
i=1 a

2
i zi

∑M
i=1 aizi

}

≤
∑M

i=1 a
2
i

∑M
i=1 ai

. (4.11)

The proof of Conjecture 4.1 for M = 1 is obvious. A proof for the case of

M = 2 is given in Appendix E. However, we have not been able to prove it for

M > 2 and have only resorted to computer simulation to confirm its validity.

The inequality in (4.10) is a special case of Conjecture 4.1 with zi = |hi|2 and

ai = αi,M , i = 1, 2, . . . ,M .

Using (4.7a), (4.8a), and (4.10), the average output SINR of OC, in the

case of a single interferer with Γ1 ≫ 1, can be tightly lower-bounded as

E{γ} ≥ Γ0

[

1− 1

M2
tr
(

Ra
2
)

]

. (4.12)

On the other hand, if Γ1 ≪ 1, the first term in the denominator of q in (4.7b)

will be dominant and, therefore, neglecting the second term, the E{γ} can be

tightly lower-bounded as

E{γ} ≥ Γ0

[

1− Γ1

M2
tr
(

Ra
2
)

]

. (4.13)

From (4.12) and (4.13), one arrives at two important observations. First, us-

ing the fact that (4.12) and (4.13) provide accurate approximations of the

E{γ}, one can conclude that, in the case of one interferer with either Γ1 ≫ 1

or Γ1 ≪ 1, the problem of maximizing E{γ} over the number and the posi-

tions of the antennas can be well approximated by the problem of minimizing

tr
(

Ra
2
)

/M2 over the number and the antenna positions. Second, since (4.12)

and (4.13) provide lower bounds for the E{γ}, one can use them to calculate

the minimum attainable average output SINR performance of any given array

of antennas and particularly that of the optimum array configuration. More-

over, the first of the two observations above can be generalized to the case

of N > 1 interferers with arbitrary INR values, again by verifying it through

the computer simulation. To check that, we generated several graphs similar
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to those of Figs. 4.1 and 4.2. This time, however, we numerically computed

the value of 1 − E{γ}/Γ0 from the definition of γ in (4.5) for many random

configurations of the antennas and compared the resulting plot with the plot

of tr
(

Ra
2
)

/M2 for those array configurations. We found that, for any values

of the parameters N ≥ 1 and Γk’s, k = 1, . . . , N , used in our simulations, the

locations of the global minima of the two plots always coincide, i.e., for any set

of randomly generated array configurations, the configuration that minimized

1 − E{γ}/Γ0 always minimized tr
(

Ra
2
)

/M2 as well. This is similar to what

is seen in Figs. (4.1) and (4.2) for the case of N = 1 and Γ1 = ∞ where, in

Fig. 4.1, the global minimum for both plots occurs at Configuration 42 and,

in Fig. 4.2, it occurs at Configuration 32.

Interestingly, minimizing tr
(

Ra
2
)

/M2 is also tantamount to maximizing

some average performance measures of MRC in the presence of CCI and

AWGN. This can be seen by looking at the expressions for two different

performance metrics derived for MRC in [25]. The first performance met-

ric is the long term average signal-power-to-interference-plus-noise-power ratio

(SINRP). Using our notation, the SINRP can be expressed as [25]

γSINRP = Γ0

(

1 + l2

1 + (
∑k=N

k=1 Γk)l2

)

(4.14a)

where

l2 =
tr
(

Ra
2
)

M2
. (4.14b)

It is easy to check that the γSINRP is a decreasing function of l2 if
∑k=N

k=1 Γk > 1,

i.e., if
∑k=N

k=1 Pk > N0. In other words, in an interference dominant environ-

ment which is usually the case for the cellular networks, maximizing γSINRP is

equivalent to minimizing l2. The second performance metric, defined in [25], is

the long term average signal-amplitude-to-square-root-interference-plus-noise-

power ratio (SAINPR). The expression for this performance metric is given by

[25]

γSAINPR =

√

Γ0

1 + (
∑k=N

k=1 Γk)l2
(4.15)

where l2 is defined in (4.14b). Again, one can see that minimizing l2 will

maximize γSAINPR.
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In the sequel, we develop a method to find the optimal array configuration

that minimizes the quantity tr
(

Ra
2
)

/M2 subject to the constraints imposed

by the limited physical dimensions of the array. We start with the case of 1D

linear arrays and subsequently extend our results to the case of 2D arrays.

4.2.2 Linear One Dimensional Arrays

Recalling from Section 4.1, the (i, j)’th element of Ra, in this case, is equal to

Rg(xi − xj). Thus, one has

tr
(

Ra
2
)

= tr
(

RaRa
H
)

=
M
∑

i=1

M
∑

j=1

|Rg(xi − xj)|2 =
M
∑

i=1

M
∑

j=1

f(xi − xj) (4.16)

where f(x) , |Rg(x)|2. Therefore, based on the discussion in Section 4.2.1,

our optimization problem can be formulated as

minimize
1

M2

M
∑

i=1

M
∑

j=1

f(xi − xj)

over M and x1, . . . , xM subject to

M ∈ N and x1, . . . , xM ∈ [0, L]

(4.17)

where N is the set of natural numbers. Solving the constrained optimization

problem defined in (4.17) is not an easy task, in general, due to the discrete

nature of M and also the nonlinear form of the objective function. In partic-

ular, it can be shown that, even for a fixed value of M , the objective function

in (4.17) is not a convex function of x1, . . . , xM . To circumvent this issue,

we rewrite the objective function of (4.17) in an integral form by defining the

function c(t) over the interval T = [0, 1] as follows.

c(t) =
M
∑

i=1

xiITi(t), t ∈ T = [0, 1] (4.18)

where Ti is the interval ((i − 1)/M, i/M), i = 1, . . . ,M , and IA(·) for some

set A is the indicator function, i.e., its value is equal to one for any point

inside A and zero anywhere outside A. The function c(t) is a nondecreasing

simple function that maps a uniform partitioning of [0, 1] with M points to a
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generally nonuniformly distributed set of points x1, . . . , xM in [0, L]. Using the

definition of c(t) in (4.18), the objective function in (4.17) can be expressed as

1

M2

M
∑

i=1

M
∑

j=1

f(xi − xj) =

ˆ 1

0

ˆ 1

0

f(c(t)− c(t′))dtdt′. (4.19)

Let S denote the class of all functions of the form defined in (4.18) with a

finite M . Hence, our optimization problem changes to minimizing the right

side of (4.19) over all functions in S. The new optimization problem in its

current form is not any more tractable than the original one as it still suffers

from the noncontinuous discrete nature of c(t) which prevents us from further

analytical development of the problem. However, we can proceed if we assume

that c(t) is a continuously differentiable function with positive derivative and

attempt to minimize the right side of (4.19) over this new class of functions.

The problem in its new form is then given by

minimize

ˆ 1

0

ˆ 1

0

f(c(t)− c(t′))dtdt′

over c(t) ∈ C([0, 1]) subject to
dc(t)

dt
> 0, ∀t ∈ [0, 1]

range(c(t)) = [a, b] ⊂ [0, L]

(4.20)

where C([0, 1]) is the set of continuously differentiable functions over [0, 1].

Any function in S can be thought of as a limit of a sequence of functions

in C([0, 1]) with positive derivative. Therefore, if an optimal solution of the

form (4.18) with finite M exists for the original problem, a numerical algo-

rithm solving (4.20) should be able to get as close as desired to the optimal

function. In other words, if by ever increasing the numerical precision of the

optimization algorithm, the algorithm’s output copt(t) looks more and more

like a simple function with Mopt different levels, one concludes that Mopt is

the optimal number of antennas and adding more antennas will actually de-

grade the performance. Moreover, the Mopt different levels of copt(t) provide

the optimal positions of the antennas. As we will see later, this is the case

for a 2D-omnidirectional scattering correlation model [5]. On the other hand,

if there is an optimal solution copt(t) to (4.20) with a continuously differen-

tiable part, one concludes that the optimal number of antennas is infinite, i.e.,

55



adding more and more antennas will always improve the performance. In this

case, for a practical system with M maximum available antennas, the values

of copt(t) at t̂i = (i− 1)/M , i = 1, . . . ,M , can be taken as a practical solution

for the optimal positions of the antennas. We will see that this is the case for

an exponential correlation model.

Since c(t) in (4.20) is continuously differentiable and has a positive deriva-

tive, it has an inverse function c−1(x) defined on x ∈ [a, b] where c−1(x) is also

continuously differentiable and has a positive derivative for every x ∈ [a, b].

Let p(x) , d
dx
c−1(x) for x ∈ [a, b] and extend the domain of p(x) to [0, L]

by defining it to be zero anywhere outside the interval [a, b]. Then, one has

p(x) ≥ 0 and

ˆ L

0

p(x)dx =

ˆ b

a

p(x)dx = c−1(b)− c−1(a) = 1− 0 = 1. (4.21)

Therefore, by changing the integration variables in (4.20) to x = c(t) and

x′ = c(t′), the optimization problem in (4.20) reduces to

minimize

ˆ L

0

ˆ L

0

f(x− x′)p(x)p(x′)dxdx′

over p(x) subject to

p(x) ≥ 0 and

ˆ L

0

p(x)dx = 1.

(4.22)

Note that the function p(x) in (4.22) is, in fact, a probability density function

describing the density of the antenna distribution over the interval [0, L]. Due

to the continuity of c(t) in (4.20), the p(x) in (4.22) can be zero only over

some intervals of the form [0, a] and [b, L] for some numbers a and b such that

0 ≤ a < b ≤ L. The p(x) must be positive everywhere between a and b. We

relax this assumption for the new problem defined in (4.22) by letting p(x)

assume any arbitrary nonnegative values over the entire interval [0, L]. By

doing this, we will automatically include a broader class of functions c(t) in

our optimization problem, i.e., the class of all bounded piecewise continuous

functions with positive derivative. Moreover, to include the case of discrete

antenna distributions, we further extend the class of functions p(x) to functions

of the form p(x) = pc(x) +
∑M

i=1 aiδ(x − xi) where pc(x) is a nonnegative
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continuous function over [0, L], δ(·) is the Dirac delta function, M is some finite

natural number, and x1, . . . , xM ∈ [0, L]. This is equivalent to relaxing the

“positive derivative” constraint on c(t) in (4.20) to a “nonnegative derivative”

constraint. The above relaxations allow us to add the class of all functions of

the form (4.18) to the search domain of our optimization problem.

The problem in (4.22) is a quadratic convex optimization problem over the

infinite dimensional space of the density functions p(x). The convexity is a

result of f(x) being a positive definite function. To show this, recall that Rg(x)

is a positive definite function by definition (since it is a correlation function).

Therefore, according to Bochner’s theorem [41, p. 13], its Fourier transform

Rg(ω) is a real positive function. But, the Fourier transform of f(x) = |Rg(x)|2

is given by F(ω) = Rg(ω)⋆R∗
g(−ω) where ⋆ denotes convolution. Thus, F(ω)

is also a real positive function and, consequently, its inverse Fourier transform

f(x) is a positive definite function. In the case of Rayleigh fading, considered

in this work, it is well known that the power correlation coefficients are equal

to the square of the magnitude of the channel correlation coefficients. Thus,

the function f(x) = |Rg(x)|2 is, in fact, the autocovariance function of the

spatial process |gk(r)|2 (i.e., the instantaneous channel power process) where

gk(r) is defined in Section 4.1. In other words,

f(r1 − r2) = Cov(|gk(r1)|2, |gk(r2)|2), ∀k ∈ {0, . . . , N} (4.23)

where the position vector r is just the x-coordinate in the case of a 1D array.

The convex problem in (4.22) can always be solved numerically using the

well known methods of convex optimization, for example, using the interior

point method [43]. This can be done by rectangular approximation of each

integral in (4.22) with n points. This reduces the infinite dimensional problem

in (4.22) to the n dimensional convex problem

minimize pTFp

subject to

p ≥ 0 and 1T
np = n

(4.24)

where p is an n × 1 vector in R
n, the 1n is an n × 1 vector whose elements

are all equal to 1, and the matrix F is an n×n positive definite matrix whose
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(i, j)’th entry is equal to f(xi−xj) where xi = (i−1)L/n for i = 1, . . . , n. The

value of n can be chosen according to the desired accuracy in approximating

p(x) from p. A larger n results in a better accuracy but at the same time

increases the computational complexity of the problem in (4.24).

For the special case of an exponential correlation function, we are able to

solve (4.22) analytically. This is stated in the following theorem.

Theorem 4.2. Given an exponential spatial correlation function Rg(x) =

exp(−k|x|), a solution of (4.22) is given by

popt(x) =
k

1 + kL
+

1

2 + 2kL
(δ(x) + δ(x− L)) . (4.25)

The proof of Theorem 4.2 can be found in Appendix F. The optimal

function copt(t) corresponding to the popt(x) in (4.25) is obtained by integrating

(4.25) with respect to x and calculating the inverse function. The result is

copt(t) =



















0 0 ≤ t < t0
1 + kL

k
· (t− t0) t0 ≤ t < 1− t0

L 1− t0 ≤ t ≤ 1

(4.26a)

where

t0 =
1

2 + 2kL
. (4.26b)

The physical interpretation of the expression for popt(x) in (4.25) and its cor-

responding copt(t) in (4.26) regarding the arrangement of the antennas is ex-

plained in Section 4.3.

4.2.3 Two Dimensional Arrays

The case of a 2D array can also be solved by following similar steps to those

followed in the 1D array scenario, that is, by converting the original discrete

non-convex problem to a continuous quadratic convex problem. However, the

intermediate steps, in this case need to be examined in more detail. Similar

to the 1D case, we start with expressing our objective function in terms of the
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samples of the spatial correlation function, i.e.,

tr
(

Ra
2
)

= tr
(

RaRa
H
)

=
M
∑

i=1

M
∑

j=1

|Rg(xi − xj, yi − yj)|2

=
M
∑

i=1

M
∑

j=1

f(xi − xj, yi − yj)

(4.27)

where f(x, y) , |Rg(x, y)|2 is the two-dimensional autocovariance function of

the instantaneous channel power process (see (4.23) and note that r = (x, y)

in the case of 2D arrays). Our optimization problem is then given by

minimize
1

M2

M
∑

i=1

M
∑

j=1

f(xi − xj, yi − yj)

over M and (x1, y1), . . . , (xM , yM ) subject to

M ∈ N and (x1, y1), . . . , (xM , yM ) ∈ D.

(4.28)

Next, similar to the 1D case, we attempt to rewrite the summations in the

objective function in (4.28) in terms of integrals by introducing an appropriate

mapping. In the 1D scenario, we did so by partitioning the unit-length interval

T = [0, 1] to M equal length open subintervals Ti, i = 1, . . . ,M , and then

defining a simple function c(t) that maps all the points inside the subinterval Ti
to xi. In the 2D scenario, this can be done by letting T be a bounded unit-area

subset of the plane that is partitioned into M open equal area subsets Ti, i =
1, . . . ,M and by defining a two-dimensional mapping c(s, t) = (cx(s, t), cy(s, t))

from T to D that maps every point (s, t) inside Ti to the point (xi, yi) in D.
Using indicator function notation, the mapping c(s, t) can be written as

c(s, t) =
M
∑

i=1

riITi(s, t), (s, t) ∈ T (4.29)

where ri = (xi, yi). Now, the objective function in (4.28) can be expressed in

terms of the c(s, t) as follows.

1

M2

M
∑

i=1

M
∑

j=1

f(xi − xj, yi − yj) =

ˆ

T

ˆ

T

f(cx(s, t)− cx(s
′, t′), cy(s, t)− cy(s

′, t′))dsdtds′dt′ (4.30)
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Figure 4.3. (a) An example partitioning of D into M = 5 regions. The locations of
the antennas are shown with small circles. (b) The corresponding graph G of this
partitioning of D.

where each integral in (4.30) is taken over the set T . In the 1D case, we

made use of the fact that the positions of the antennas xi’s can be sorted in

an ascending (descending) order. This enabled us to interpret the noncontin-

uous function c(t) defined in (4.18) as the limit of a sequence of increasing

(decreasing) continuously differentiable functions. The monotonicity of these

functions implies that they are injective and, thus, invertible mappings. As

a result, we are able to apply the change of variables theorem to transform

the integrals to the desired quadratic forms. To extend this method to the 2D

case, one has to show that it is possible to think of the noncontinuous mapping

c(s, t) in (4.29) as the limit of a sequence of 2D bijective (hence, invertible)

continuously differentiable mappings , a.k.a. diffeomorphisms, from T to D.
Here is how one can make such a sequence of diffeomorphisms. Let A denote

the set of M points (xi, yi) ∈ D, i = 1, . . . ,M , representing the locations of
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DiDi
DjDj

Figure 4.4. A transformation of the regions in a partitioning of D to avoid an
isolated point in the intersection of the closures of the regions.

the antennas. Partition D into M open subsets Di with smooth boundaries

such that each subset contains exactly one point of A, for example by forming

the Voronoi regions of the points in A. Fig. 4.3(a) shows an example of such

a partitioning for M = 5. It is always possible to make the partitioning in

such a way that the intersection of the closures of any two Di and Dj is either

empty or a curve with nonzero length. Because, if the closures of Di and Dj

have only a number of isolated points in common, those points can be easily

removed using the transformation shown in Fig. 4.4. This is possible because

∂D is assumed to be a simple curve. To such a partitioning of D, we assign a

planar graph G whose vertices are the regions Di, i = 1, . . . ,M , and two ver-

tices Di and Dj are connected by an edge if and only if the intersection of the

closures of Di and Dj is nonempty. Fig. 4.3(b) shows the graph corresponding

to the partitioning of D shown in Fig. 4.3(a). Now, for some partitioning of T
into Ti’s, define ĉ(s, t) to be a mapping from T to D that maps Ti to Di and,

when its domain is restricted to Ti (i = 1, . . . ,M), is continuously differen-

tiable and bijective. For this mapping to be globally continuous and injective

over the entire set T , it is necessary for the partitioning graph of Ti’s to be

isomorphic to that of the Di’s. Taking the Ti’s to be scaled versions of the Di’s

(so that their areas sum to unity) may seem to be an appropriate choice for

the Ti’s. However, this is not the case since the Ti’s generated in this way do

not necessarily have equal areas. Thus, the question is whether one can find a

partitioning of T into equal area regions such that the corresponding partition

graph is isomorphic to that of the Di’s. The following theorem answers this

question.
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Theorem 4.3. For any arbitrary partitioning of D with partition graph G,
there exists a partitioning of T into equal area regions with a partition graph

isomorphic to G.

The proof of Theorem 4.3 is given in Appendix G. Once an equal area

partitioning of T with a graph isomorphic to that of D is found, it is possible

to make a diffeomorphism ĉ(s, t) from T to D that approximates the mapping

c(s, t) in (4.29). The continuous mapping ĉ(s, t) made in this way can be made

as close as desired to the noncontinuous mapping c(s, t) in (4.29) by having it

map every point in Ti whose distance from the boundary of Ti is more than a

small number ǫ to an ǫ-neighbourhood of the point (xi, yi) in Di, i = 1, . . . ,M .

Up to this point, we have shown that any mapping c(s, t) of the form

(4.29) can be approached by a sequence of diffeomorphisms from T to D.
Thus, using a reasoning similar to that employed in the 1D case, one can

replace the original optimization problem in (4.28) by

minimize

ˆ

T

ˆ

T

f(cx(s, t)− cx(s
′, t′), cy(s, t)− cy(s

′, t′))dsdtds′dt′

over c(s, t) = (cx(s, t), cy(s, t)) subject to

c(s, t) is a diffeomorphism from T to D

(4.31)

which is the 2D equivalent of (4.20). Since c(s, t) in (4.31) is a diffeomorphism,

it has an inverse c−1(x, y) that is also a diffeomorphism. Thus, one can apply

the change of variables theorem for multiple integrals [45, p. 421] to convert

the optimization problem in (4.31) to

minimize

ˆ

D

ˆ

D

f(x− x′, y − y′)p(x, y)p(x′, y′)dxdydx′dy′

over p(x, y) subject to

p(x, y) ≥ 0 and

ˆ

D

p(x, y)dxdy = 1

(4.32)

where p(x, y) = |Jc−1(x, y)| is the absolute value of the Jacobian determinant

[45] of the inverse mapping c−1(x, y). The last constraint on p(x, y) is a con-

sequence of the fact that the area of T is equal to one and
ˆ

D

p(x, y)dxdy =

ˆ

D

|Jc−1(x, y)|dxdy =

ˆ

T

dsdt = Area(T ) = 1. (4.33)
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The function p(x, y) is, in fact, a probability density function that describes

the density of the antenna distribution over the region D. Similar to the 1D

case, we extend the class of functions p(x, y) in (4.32) to include the Dirac

delta functions. In contrast with the 1D case, however, once the optimum

density function popt(x, y) is found by solving the optimization problem in

(4.32), one cannot find a unique mapping c−1
opt(x, y) corresponding to popt(x, y).

This is because the Jacobian determinant of an invertible 2D mapping does

not uniquely define the mapping itself. However, since we are only interested

in finding the optimum density distribution of the antennas, i.e., the popt(x, y),

finding a mapping c−1
opt(x, y) corresponding to popt(x, y) is, in fact, unnecessary.

In other words, popt(x, y) contains all the information about the optimum

arrangement of the antennas.

The optimization problem in (4.32) is a quadratic convex problem since

f(x, y) is a two-variable positive definite function[46]. The positive definiteness

of f(x, y) is a result of (4.23) for the 2D case, i.e., where the position vectors

r1 and r2 in (4.23) are given by (x, y) and (x′, y′), respectively. To solve the

problem in (4.32) numerically, we can approximate it by a finite dimensional

convex problem similar to (4.24). This can be done by covering D with a

rectangular grid with n cells and assuming that the integrands in (4.32) remain

approximately constant within each cell. In this case, the (i, j)’th element of

the matrix F in (4.24) is given by f(xi − xj, yi − yj) where i and j run from

1 to n and (xi, yi) is a point inside the i’th cell for some ordering of the cells

in the grid. Once the problem is converted to the finite dimensional convex

programming of the form (4.24), it can be solved efficiently using the well

known numerical methods available for convex optimization [43].

4.3 Numerical Results and Discussion

In this section, we provide a number of examples for both the 1D and the 2D

antenna arrangement scenarios where we numerically solve the convex opti-

mization problems in (4.22) and (4.32) using the finite dimensional approxima-

tion in (4.24). We also discuss the interpretation of the optimal solutions and
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Figure 4.5. A solution of the optimization problem in (4.24) for the linear array in
Example 4.1 with n = 100

their relation to the actual antenna placements. All the numerical solutions

are obtained using the interior point convex optimization algorithm available

in MATLAB’s optimization toolbox. The first two examples consider the op-

timal design of a linear 1D array for two different correlation models while the

last three examples focus on the optimal design of a 2D array for regions with

different shapes. The physical dimensions of the arrays in all examples are in

the unit of wavelength. Finally, at the end of this section, we compare the

performance of the optimal arrangement solution obtained in one of the ex-

ample scenarios with those of a few suboptimal designs to find out how much

benefit can be achieved by deploying the optimal antenna arrangement.

Example 4.1. Consider a linear 1D array whose normalized length is equal

to L = 1.5. Assume an exponential correlation model where the spatial cor-

relation function is given by Rg(x) = exp(−|x|). We solve the optimization

problem in (4.24) with the approximation dimension n = 100. Fig. 4.5 shows

a plot of the elements of the optimum vector popt versus their indices which

approximates the plot of popt(x), the optimal solution to (4.22). It can be
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Figure 4.6. Solutions of the optimization problem in (4.24) for the linear array in
Example 4.1 for two different values of the approximation dimension n. (a) the
approximation dimension n = 200. (b) the approximation dimension n = 300.

seen that except for two sharp spikes on both ends, the plot of popt is approxi-

mately constant over [0, 1.5]. Executing the optimization algorithm for values
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Figure 4.7. The inverse of the optimum antenna arrangement function in Exam-
ple 4.1, i.e., the integral of popt(x) in Fig. 4.5.

of n larger than 100 will result in even sharper and higher spikes in the plot of

popt as seen in Fig. 4.6(a) and 4.6(b). This suggests that the observed spikes

may actually tend to two Dirac delta functions as n goes to infinity. This can

be confirmed by integrating the plot of popt, i.e., by calculating the partial

summations of the elements of popt multiplied by 1/n. Fig. 4.7 shows the plot

of the integral of popt which approximates the plot of c−1
opt(x). The two steps

in Fig. 4.7 on both ends of the interval correspond to the two spikes in the

plot of popt. Other numerical results (not shown here) show that the heights

of these steps do not change as n increases. The heights of the steps are in

fact the weights of the corresponding Dirac delta functions in popt(x). A closer

look at the plots of Figs. 4.5 – 4.7 reveals that they are in excellent agreement

with the analytical solutions in (4.25) and (4.26).

The optimal solution for c(t) in Fig. 4.7 can be interpreted as follows.

First, since the optimal solution is not a simple function of the form (4.18),

the optimal number of antennas is infinite, meaning that adding more and

more antennas in this case will always improve the performance. Second, for

a given finite number of antennas M , a reasonable choice for a near optimal

66



0 0.5 1 1.5
0

5

10

15

20

25

30

35

40

Note spike behaviour

x

p o
p
t(
x
)

Figure 4.8. A solution of the optimization problem in (4.24) for the linear array in
Example 4.2.

arrangement of the antennas is obtained by uniformly sampling the vertical

axis of Fig. 4.7 at points t̂i = (i − 1)/M , (i = 1, . . . ,M), and finding the

corresponding points xi = copt(t̂i) on the horizontal axis. For M = 2 and M =

3, this translates to a uniform placement of antennas over [0, 1.5]. However, for

M ≥ 4 the antenna distribution is not uniform at the end points. Moreover,

when 1/(M − 1) ≤ 0.2 or equivalently when M ≥ 6, the optimum placement

results in putting more than one antenna at each end. Particularly, asM grows

larger, Fig. 4.7 suggests that the optimal placement is to put 20 percent of

the antennas at each end and distribute the remaining 60 percent of them

uniformly over [0, 1.5]. Placing more than one antenna at a given point of

space may sound practically redundant. However, it can be easily shown that

two co-located antennas each receiving an average power P can be replaced

with a single antenna with an average received power 2P without changing the

value of the average output SINR. Therefore, what Fig. 4.7 means in practice

is that for the exponential correlation function of our example the optimal

array structure is the one that captures 20 percent of the total electromagnetic
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Figure 4.9. The inverse of the optimum antenna arrangement function in Exam-
ple 4.2, i.e., the integral of popt(x) in Fig. 4.8.

power incident to the array at each end-point and captures the remaining 60

percent of the total power uniformly over [0, 1.5]. In general, the antenna

distribution density p(x) introduced in Section 4.2.2 can be interpreted as the

distribution density of the power captured by the array within the interval

[0, L]. The same interpretation can be used for the two-dimensional arrays,

i.e., the density function p(x, y) defined in Section 4.2.3 can be interpreted as

the distribution density of the electromagnetic power captured by the array

within the region D.

Example 4.2. Again, consider a linear 1D array of length L = 1.5. However,

this time, assume a 2D-omnidirectional scattering model where the spatial

correlation function is given by Rg(x) = J0(2πx) [5]. We solve the optimization

problem in (4.24) with n = 200. The resulting popt(x) and its integral c−1
opt(t)

are plotted in Figs. 4.8 and 4.9, respectively. Fig. 4.8 suggests that the

optimal density, in this case, consists of 5 Dirac delta functions that are almost

uniformly positioned between 0 and 1.5. The optimal density does not have

a continuous part and its integral, shown in Fig. 4.9, is a simple function

68



0
0.2

0.4
0.6

0
0.1

0.2
0.3

0.4
0.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 4.10. A solution of the optimization problem in (4.24) for the 2D array in
Example 4.3.

with 5 different levels. Therefore, the optimal number of antennas is M = 5.

Moreover, from Fig. 4.9, one can observe that the heights of the steps (i.e., the

weights of the delta functions in Fig. 4.8) are all equal to 0.2. Therefore, one

can conclude that the optimal arrangement, in this case, is an array consisting

of M = 5 identical antennas uniformly positioned over [0, 1.5]

Example 4.3. In this example, we consider a 2D array where the available

space D for arranging the antennas is a 0.5× 0.6 rectangle. Again, we assume

a 2D-omnidirectional scattering model. Under this model, the two-variable

spatial correlation function is given by Rg(x, y) = J0(2π
√

x2 + y2). The op-

timization problem in (4.24) is solved for a rectangular grid with n = 1833

cells (see Section 4.2.3 for more details). Fig. 4.10 shows the resulting optimal

density p(x, y) normalized by n. As shown in this figure, the optimal solution

consists of 9 delta functions corresponding to M = 9 antennas located on a

rectangular lattice within the available space D. Although the optimal solu-

tion is uniform in terms of the positions of the antennas, the optimal powers

that must be captured by different antennas, i.e, the weights of different delta

functions in Fig. 4.10 are not all equal. The values of the weights of the delta
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Figure 4.11. A solution of the optimization problem in (4.24) for the 2D array in
Example 4.4.

functions in Fig. 4.10 are shown with a stem plot marked with small circle

markers. One can observe that the heights of the stems are not all equal.

Example 4.4. The available region D for antenna arrangement, in Exam-

ple 4.3, had a symmetric shape (a rectangle). However, in a practical applica-

tion, the region on the receiver board (or antenna mount) available for antenna

placement may have a more complicated shape. In this example, under the

same correlation model as in Example 4.3, we consider a trapezoidal region D
as shown in Fig. 4.11. The number of cells in the rectangular grid covering

D, i.e., the dimension of the optimization problem in (4.24) is chosen to be

n = 1107. Fig. 4.11 shows that the optimal solution placesM = 6 antennas on

the boundary of the region. Moreover, the optimal distribution of the power

absorbed by the antennas is not uniform.

Example 4.5. The optimization problem formulated in (4.32) can be virtually

applied to any two-dimensional region with a smooth boundary. The region D
neither needs to be a simply connected region (i.e., a region with no holes) nor

even a connected region. To show the versatility of the optimization problem

in (4.32), we choose D to be a disk with a hole inside it as shown in Fig. 4.12.
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Figure 4.12. A solution of the optimization problem in (4.24) for the 2D array in
Example 4.5.

We assume a 3D-omnidirectional scattering model where the spatial correlation

function is given by Rg(x, y) = sinc(2π
√

x2 + y2) [34]. The number of cells

in the approximation grid is n = 1558. Fig. 4.12 shows that the optimum

solution, in this example, consists of 20 impulses corresponding to M = 20

antennas located on the boundaries of the region.

The above array design examples clearly show the applicability of the for-

mulation derived in Section 4.2 to the design of a wide range of 1D and 2D

arrays under various spatial correlation models. However, a natural question

that arises at this point is that, for a given array shape, how much improvement

one can achieve by using the optimal arrangement solution over a suboptimal

arrangement. We answer this question by examining the performance of the

optimal solution in Example 4.3 and comparing it with those of three different

suboptimal arrangements. The first suboptimal arrangement is one with four

identical antennas located on the four corners of the available 0.5 × 0.6 rect-

angular region. The second suboptimal arrangement consists of 16 identical

antennas located on the lattice points of a 4 × 4 rectangular lattice covering

the available area. In the third suboptimal arrangement, we consider the lim-
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Figure 4.13. A comparison of the optimal arrangement in Example 4.3 with three
suboptimal arrangements in terms of their achievable average output SINR when
used in an OC receiver.

iting case of a very large number of identical antennas uniformly distributed

over the available rectangular region. This is equivalent to a uniform received

power density p(x, y) where the array captures the incident electromagnetic

power uniformly over the entire surface of the available region. In our simula-

tions, this limiting case is implemented by placing an antenna in every cell of

the approximation grid used in Example 4.3. The three suboptimal arrange-

ments are compared with the optimal solution in Example 4.3 based on three

different performance measures, namely, the average output SINR of OC, the

outage probability of OC, and the average BER of MRC in the presence of

CCI. Fig. 4.13 shows the average output SINR of OC as a function of the av-

erage input SNR for the optimal arrangement as well as the three suboptimal

arrangements. The graphs in Fig. 4.13 are generated by computer simulation.

The number of the interfering users is set to N = 3 and the total average

input SIR is set to 0 dB where the total average input SIR, in this case, is

defined as the ratio of the desired user’s power to the sum of the powers of

N equal-power interferers. One can see that the optimal arrangement out-
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Figure 4.14. A comparison of the optimal arrangement in Example 4.3 with three
suboptimal arrangements in terms of their achievable outage probability when used
in an OC receiver.

performs all the suboptimal designs at all values of the input SNR. Moreover

the improvement achieved by the optimal design over the suboptimal ones

increases as the average input SNR gets larger. For example, at an input

SNR level of 20 dB, the optimal design with 9 antennas provides an average

output SINR that is about 4 dB larger than that of the suboptimal design

with 4 antennas. An important insight is that adding more antennas than the

optimal number 9 results in a decrease in the average output SINR. As seen

in Fig. 4.13, at an input SNR value of 20 dB, the design with 16 antennas is

slightly worse than the optimal solution while the design with infinite number

of antennas (i.e., the uniform antenna density limit) is about 1.5 dB worse than

the optimal solution. Significant implementation and equipment costs can be

spared by applying the methods and results presented in this chapter. The

next performance measure considered is the outage probability of OC, i.e., the

probability that the instantaneous output SINR of OC in (4.5) drops below

a certain threshold level. Fig. 4.14 shows the outage probability of OC as a

73



0 5 10 15 20
10

−3

10
−2

10
−1

10
0

 

 

Optimum arrangement in Fig. 4.10

16 antennas

Uniform antenna density limit

4 antennas

SNR (dB)

A
ve
ra
ge

B
E
R

of
M
R
C

Figure 4.15. A comparison of the optimal arrangement in Example 4.3 with three
suboptimal arrangements in terms of their achievable BER in the presence of CCI
when used in an MRC receiver.

function of the average input SNR for the four different antenna arrangements.

The graphs in Fig. 4.14 are also obtained by computer simulation. The out-

age threshold level is set to 5 dB, the number of interferers is N = 3, and the

total average input SIR is 0 dB. It is clear from Fig. 4.14 that the optimum

arrangement outperforms all the suboptimal designs in terms of the outage

performance too. For example, at outage probability values around 10−3, the

optimal design outperforms the 16-antenna design and the infinite-antenna

limit by 0.5 dB, and 3 dB, respectively. The last performance measure consid-

ered is the average BER of MRC in the presence of CCI. Fig. 4.15 shows the

average BER of MRC in the presence of synchronous CCI as a function of the

average input SNR for the four different arrangement scenarios. The graphs

in Fig. 4.15 are generated using the expressions derived in Section 2.2 where

the total average input SIR is set to 0 dB. One can see that the performance

of the optimum arrangement is superior to those of the suboptimal designs

for this performance measure as well. For example, at an input SNR level of

20 dB, the optimal design provides a BER of about 5× 10−3 while the BERs
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of the 16-antenna design, the infinite-antenna limit, and the 4-antenna design

are about 6× 10−3, 10−2, and 2× 10−2, respectively. We observe that the bit

error rate floor caused by the cochannel interference can be lowered by using

the optimal number of antennas.

Note that the array design problem in Section 4.2 was originally developed

based on the optimization of the average output SINR of OC (and also a

similar average performance measure of MRC). However, as Figs. 4.14 and

4.15 suggest, the optimum solution based on the objective function defined in

Section 4.2 performs well in terms of two other performance measures as well.

4.4 Topic for Future Research: Array Design

Based on the Outage Probability of OC

(Preliminary Considerations)

In Section 4.2, we used the long term average of the output SINR of OC over

the fading as a measure of the array’s performance and attempted to maximize

it by properly arranging the antennas. This was also equivalent to maximizing

some similar long term average performance measures of MRC. Furthermore,

through an example design scenario, we observed that the optimum solution

obtained based on these long term average performance measures works well

in terms of the outage probability of OC too. Since the outage probability is

a more meaningful measure of performance for a receiver working in a fading

channel, one may adopt the outage probability of OC as the measure of array’s

performance in the first place. An optimum antenna arrangement, in this case,

will be one that minimizes the outage probability. In Section 4.2, we focused

on the average SINR performance of OC rather than its outage probability

mainly because of the mathematical tractability of the former. As we showed,

optimizing the average SINR performance of OC reduces to minimizing the

Frobenius norm of the normalized array correlation matrix which can be fur-

ther formulated as a convex optimization problem. On the other hand, as

we will see in this section, minimizing the outage probability of OC over all

possible antenna arrangements will result in an optimization problem with a
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much more complex objective function. Finding the global optimizer of such

a problem will require the use of more sophisticated optimization techniques.

There is no closed-form expression for the outage probability of OC in the

general case of correlated fading. However, asymptotic expressions have been

reported in the literature [47]. In the high SNR regime, the CDF of the output

SINR of OC defined in (4.5) can be approximated by its first order polynomial

expansion around zero as follows [47].

Fγ(x) ≈ E

{∣

∣

∣

∣

1

M
GIΓIGI

H + IM

∣

∣

∣

∣

}

MM

M !|Ra|

(

x

Γ0

)M

(4.34)

whereGI is theM×N matrix of the interferers’ channels obtained by removing

the first column of matrix G in (4.6). The diagonal matrix ΓI is given by

ΓI = diag(Γ1,Γ2, . . . ,ΓN) where the Γk’s are the INRs defined in Section 4.1.

In (4.34), | · | denotes matrix determinant. In the case of N = 1 interferer, the

right side of (4.34) can be simplified to

Fγ(x) ≈ (1 + Γ1)
MM

M !|Ra|

(

x

Γ0

)M

. (4.35)

By definition, the SINR outage probability of OC as a function of Γ0 and at

the threshold level γth is then given by

P γth
out (Γ0) = Fγ(γth). (4.36)

It is clear from (4.34), (4.35), and (4.36) that OC achieves the full diversity

order M even in the case of correlated antennas. That is, for fixed values of γth

and Γ1, . . . ,ΓN , the outage probability of OC is proportional to (1/Γ0)
M when

Γ0 is sufficiently larger than γth. However, this does not mean that correlation

has no effect on the performance of OC. As seen in the above equations, the

asymptotic outage probability is inversely proportional to the determinant

of the array correlation matrix. It can be shown that |Ra| decreases as the

antennas in the array become more and more correlated. In other words,

correlation will increase the outage probability. It is easy to show that the

maximum value of |Ra| is unity and is achieved when the array is uncorrelated,

i.e., whenRa = IM . In [47], an asymptotic expression is derived for the symbol
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error rate (SER) of OC as well. Similar to the outage probability, it is shown

that the SER is proportional to |Ra|−1(1/Γ0)
M in the high SNR regime.

Based on the above discussion, in order to minimize the outage probability

and/or the SER of a size limited OC receiver for a given value of M one has to

arrange the M antennas within the available space such that the determinant

of the array correlation matrix is maximized. This optimization problem in the

case of a linear array of length L and for a given value of M can be formulated

as
maximize |Ra| over x1, . . . , xM

where [Ra](i,j) = Rg(xi − xj)

subject to x1, . . . , xM ∈ [0, L]

(4.37)

where the operator [·](i,j) returns the (i, j)’th element of its matrix argument.

In the case of a 2D array, the optimization problem can be written as

maximize |Ra| over (x1, y1), . . . , (xM , yM)

where [Ra](i,j) = Rg (xi − xj, yi − yj)

subject to (x1, y1), . . . , (xM , yM ) ∈ D

(4.38)

where D is a subset of the plane. Solving the optimization problems defined in

(4.37) and (4.38) numerically and perhaps analytically for some special cases

is a potential subject for future research work. Note that, contrary to the

case of the average SINR optimization discussed in Chapter 4, it is not clear

whether the problem of SINR outage optimization can be formulated as a

convex optimization problem. In generall, the objective functions in (4.37)

and (4.38) may have many local maxima within the allowed ranges of their

variables. Therefore, in order to solve the problem numerically, one has to

resort to global optimization techniques such as simulated annealing, particle

swarm optimization, or genetic algorithms [48] since any local optimization

method may get trapped in the local maxima. Now, one may ask whether the

performance enhancement achieved by optimal arrangement of the antennas is

worth the computational complexity of such optimization methods. In other

words, the question is how much benefit one can get by deploying the optimal

arrangement over a trivial arrangement, e.g., a uniform distribution of the
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Figure 4.16. Different antenna arrangements discussed in Example 4.6.

antennas within the available space. The following two examples show that a

significant improvement may be achieved in the case of a 2D array.

Example 4.6. Consider a 2D-omnidirectional scattering model where the spa-

tial correlation function is given by Rg(x, y) = J0(2π
√

x2 + y2). Assume that

a square area of normalized size 0.5 by 0.5 (i.e., the side length is equal to

one-half of a wavelength) is available on the receiver and we are going to place

M = 4 antennas on this surface. Three different antenna arrangements are

shown in Fig. 4.16. The determinant of the corresponding array correlation

matrix is also shown under each arrangement. Note that Ra, in this example,

is a 4 by 4 matrix whose elements are defined in (4.38). In the first arrange-

ment, shown in Fig. 4.16(a), the antennas are located on the 4 corners of

the available square area. In the second scenario, shown in Fig. 4.16(b), the

antennas form a smaller square within the given area. The side length of this

square is equal to z1 where z1 = 0.3827 is the first positive zero of J0(2πx).

Finally, in the third scenario, shown in Fig. 4.16(c), the 4 antennas are lo-

cated on the vertices of the fundamental parallelotope of a hexagonal lattice

with minimum distance z1. It can be seen that the arrangement in the third

scenario exhibits the largest determinant among the three arrangements in

Fig. 4.16. Based on the asymptotic expressions for the CDF (equivalently, the

outage probability) of the SINR in (4.34) and (4.35), the quantity |Ra|1/M can

be thought as the array SNR gain. Therefore, for a fixed value of M , the SNR

advantage of a particular antenna arrangement over another arrangement can
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Figure 4.17. Different antenna arrangements discussed in Example 4.7.

be calculated, in dB units, as the difference between their corresponding values

of 10
M

log10(|Ra|). Consequently, the arrangement in Fig. 4.16(c) provides a

SNR gain of 10
4
(log10(0.855) − log10(0.132)) = 2.03 dB over the arrangement

in Fig. 4.16(a). This means that for a desired outage probability in the high

SNR regime, the required SNR for the arrangement in the third scenario is

about 2 dB smaller than that of the arrangement in the first scenario.

Example 4.7. In this example, we consider a spatial correlation model similar

to that of Example 4.6. However, we assume that a square area of normalized

size 1 by 1 is available on the receiver where M = 8 antennas are to be placed.

Fig. 4.17 shows three different antenna arrangements. The determinant of the

corresponding array correlation matrix is again shown under each arrangement.

In the first scenario, shown in Fig. 4.17(a), the antennas are uniformly located

on the perimeter of the square region. In the second scenario, shown in Fig.

4.17(b), the antennas are located on the perimeter of a smaller square where

the normalized distance between any two adjacent antennas is equal to z1

(z1 is defined in Example 4.6). In the third scenario, shown in Fig. 4.17(c),

the antennas are located on the perimeter of a circle where the normalized

distance between any two adjacent antennas is equal to z1. One can see that

the antenna arrangement in Fig. 4.17(c) outperforms the one in Fig. 4.17(a)

by a SNR gain of 10
8
(log10(0.3374)− log10(0.0068)) = 2.12 dB.

Although none of the different antenna arrangements discussed in Example

4.6 and Example 4.7 are obtained by solving the optimization problem in
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(4.38), they suggest that a SNR loss of up to at least 2 dB can be incurred

if the antennas are not placed optimally. This justifies the importance of

the search for the optimal antenna arrangement despite the relatively high

computational complexities associated with the optimization algorithms.

4.5 Chapter Summary

In this chapter, the problem of optimizing the antenna arrangement for a size

limited multiple antenna receiver was formulated as an infinite dimensional

quadratic convex programming. The formulation was originally established for

a 1D linear array and then generalized to the case of a 2D array with arbitrary

shape. The derived infinite dimensional problem was solved analytically for

the special case of linear arrays and under an exponential correlation model.

In the general case, it was shown through several numerical examples that

the infinite dimensional optimization problem can be solved accurately and

efficiently by approximating it with a finite dimensional problem. Moreover,

the achievable performance of the optimal antenna arrangement in a 2D array

example was compared with those of a few suboptimal array designs. The

comparison was made based on three different performance measures, namely,

the average output SINR of OC, the outage probability of OC, and the average

BER of MRC in the presence of CCI. Although the optimal solution was

originally obtained by maximizing the output SINR of OC, it was shown that

it outperforms all the suboptimal designs in terms of the other two performance

measures as well. Finally, adopting the outage probability and/or SER of OC

as the measure of array’s performance in the design of size limited arrays

was proposed as a possible direction for future research. It was shown that,

unlike the array optimization based on the average SINR of OC, the array

optimization based on the outage probability of OC results in a much more

complicated objective function whose global optimum solution cannot be easily

found. However, it was shown through a number of numerical examples that

solving this new optimization problem can potentially lead to a significant gain

in terms of the asymptotic outage probability at high SNR values.
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Chapter 5

Concluding Remarks

The main contributions of the thesis are summarized in this chapter. In Chap-

ter 2, new simple closed-form expressions for the average BER of BPSK using

MRC in the presence of correlated Rayleigh fading, CCI, and AWGN were de-

rived. The final solutions were explicitly expressed in terms of the eigenvalues

of the correlation matrices of the desired user’s channel and that of the inter-

fering users’ channels and are valid for an arbitrary number of interfering users

and an arbitrary number of receiver antennas. The derived expressions were

then used to calculate the BER performance of MRC systems in some example

scenarios. Particularly, it was shown that for a fixed number of antennas in

a uniform circular array, there is a best radius for the array corresponding to

the smallest uniform circular array that almost achieves its best possible BER

performance, as if its radius was infinite (i.e., the totally uncorrelated array).

Motivated by the application of multiple antenna receivers on small size

mobile units in cellular systems, in Chapter 3, the asymptotic performance of

OC was investigated as the number of antennas in the array increases while the

total physical dimensions of the array are fixed. Two different scenarios were

considered, namely, fixed average received power per antenna and fixed total

average received power. It was shown that in the former scenario, the average

output SINR is asymptotically a linear function of the number of the antennas

while in the latter scenario it eventually saturates at a certain value. In the

case of a single interferer, the slope of the asymptote in the former scenario as

well as the value of the saturation limit in the latter scenario were derived in
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terms of the point spectrum of the underlying array correlation function. It

was shown through a numerical example that the receiver actually exhibits its

asymptotic behavior for a practically small number of antennas.

In Chapter 4, we turned our focus to an array design problem where we at-

tempted to maximize the achievable performance of a size constrained multiple

antenna receiver by properly arranging the antennas within the array. Using

the average output SINR of OC as a measure of the array’s performance, it

was shown that the problem of optimizing the antenna arrangement for a size

limited multiple antenna receiver can be formulated as an infinite dimensional

quadratic convex programming. The formulation was originally established

for a 1D linear array and then generalized to the case of a 2D array with arbi-

trary shape. The derived infinite dimensional problem was solved analytically

for the special case of linear arrays and under exponential correlation model.

In the general case, it was shown through several numerical examples that

the infinite dimensional optimization problem can be solved accurately and

efficiently by approximating it with a finite dimensional problem. Moreover,

the achievable performance of the optimal antenna arrangement in a 2D array

example was compared with those of a few suboptimal array designs. The

comparison was made based on three different performance measures, namely,

the average output SINR of OC, the outage probability of OC, and the aver-

age BER of MRC in the presence of CCI. Although the optimal solution was

originally obtained by maximizing the output SINR of OC, it was shown that

it outperforms the suboptimal designs in terms of the other two performance

measures as well. Finally, adopting the outage probability and/or SER of OC

as the measure of array’s performance in the the design of size limited arrays

was proposed as a possible direction for future research.
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Appendix A

Proof of Lemma 3.1

Proof. If limM→∞Na(M) < ∞, the number of summands in (3.19) is finite

and the proof is straightforward. The proof for the general case is as follows.

∀i ∈ {1, . . . ,M} : |f(αi,M)− f(α̃i)| =
∣

∣

∣

∣

∣

ˆ α̃i

αi,M

f ′(x)dx

∣

∣

∣

∣

∣

≤ B |αi,M − α̃i|

≤ B
C

M
(A.1)

where the last inequality is a result of the uniform error bound discussed in

Section 3.3.1. Now, one can write

∣

∣

∣

∣

∣

∣

Na(M)
∑

i=1

[f(αi,M )− f(α̃i)]

∣

∣

∣

∣

∣

∣

≤
Na(M)
∑

i=1

|f(αi,M)− f(α̃i)|

≤ BC
Na(M)

M

(A.2)

where the last inequality is a result of (A.1). Using (A.2) and recalling from

Section 3.3.1 that Na(M) is o(M) one obtains

lim
M→∞

∣

∣

∣

∣

∣

∣

Na(M)
∑

i=1

[f(αi,M)− f(α̃i)]

∣

∣

∣

∣

∣

∣

= 0 (A.3)

and the proof is complete.
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Appendix B

Proof of The Existence of Two
Limits Used in Section 3.3.2

In this appendix, it is shown that limM→∞

∑Na(M)
i=1 πs(α̃i) and

limM→∞

∑Na(M)
i=1 σs(α̃i) exist.

Proof. If limM→∞Na(M) < ∞, the proof is straightforward. In the general

case, one has

Na(M)
∑

i=1

πs(α̃i) =

Na(M)
∑

i=1

ln(1 + sα̃i) 6 s

Na(M)
∑

i=1

α̃i (B.1a)

6 s
∞
∑

i=1

α̃i (B.1b)

= s (B.1c)

and

Na(M)
∑

i=1

σs(α̃i) =

Na(M)
∑

i=1

α̃2
i

1 + sα̃i

6

Na(M)
∑

i=1

α̃2
i (B.2a)

6

∞
∑

i=1

α̃2
i (B.2b)

6 1. (B.2c)

The inequality in (B.1a) comes from the inequality ln(1 + x) 6 x [49] and

the equality in (B.1c) is based on (3.17). Also, the inequality in (B.2c) is an

immediate result of (3.13) and (3.18). Now, Since the series in (B.1) and (B.2)

are both bounded from above and noting that πs(α̃i) > 0 and σs(α̃i) > 0 for all

i’s, one obtains that both series are convergent and the proof is complete.

88



Appendix C

Proof of Theorem 3.2

Proof. Define U(s) as follows

U(s) =







1

(1 + α̃1

2
s)s

, s > s0

1, 0 6 s 6 s0

(C.1)

where s0 is some positive number. It is easy to see that the integral of U(s)
over [0,∞) is finite. Now, recalling the expression for IM(s) in (3.12b), one

has

IM(s) 6
M
∑

i=1

α2
i,M 6

M
∑

i=1

αi,M = 1. (C.2)

Moreover, since α1,M approaches α̃1 as M grows, for a sufficiently large M one

has α1,M > α̃1/2. Hence, using the definition of IM(s) in (3.12b), one can

write

IM(s) <
1

1 + α̃1

2
s

(

1

s

M
∑

i=1

αi,M

)

=
1

(1 + α̃1

2
s)s

. (C.3)

From (C.2) and (C.3), one obtains IM(s) 6 U(s) for anyM > 1 and s ∈ [0,∞).

Also, as shown in Section 3.3.2, the sequence of functions {IM(s)}∞M=1 has a

limit I(s) given in (3.23). Applying the Lebesgue’s dominated convergence

theorem [45, p. 270] completes the proof.
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Appendix D

Proof of Theorem 3.3

Proof. From (3.12) and recalling that α1,M = max({αi,M}Mi=1), one has

E

{

X

Y

}

6 α1,M

ˆ ∞

0

(

M
∏

i=1

1

1 + αi,Ms

)(

M
∑

i=1

αi,M

1 + αi,Ms

)

ds

= α1,M

[

M
∏

i=1

−1
1 + αi,Ms

]∞

0

= α1,M . (D.1)

Thus,

lim
M→∞

E

{

X

Y

}

6 lim
M→∞

α1,M = α̃1. (D.2)

Now, if we show that α̃1 < 1, the proof is complete. Let us assume this is not

the case. Then α̃1 = 1 (since one cannot have α̃1 > 1). But, from (3.17), we

must have α̃i = 0 for i > 2. Hence, (3.16) reduces to Ra(x, y) = q1(x)q1(y)
∗

which contradicts the nonseparability of Ra(x, y) and Theorem 3.3 is proved

by contradiction.
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Appendix E

Proof of Conjecture 4.1 for
M = 2

Proof. If we consider the expression inside the expectation operator in (4.11)

as a function g(z1, z2, . . . , zM) of the zi’s, the right side of (4.11) is equal

to g(E(z1),E(z2), . . . ,E(zM)), provided that E{zi} exists. This suggests the

possibility of the use of Jensen’s inequality [43, p. 77] as a method of proof.

However, it cannot be applied directly since g(z1, z2, . . . , zM) is not a concave

function of the zi’s for M > 1. But, in the case of M = 2, it is possible to

convert it to a concave function h(t) as follows.

g(z1, z2) =
a21z1 + a22z2
a1z1 + a2z2

= h(t) (E.1a)

where

t ,
z1 − z2
z1 + z2

(E.1b)

and

h(t) ,
a21 + a22 + (a21 − a22)t

a1 + a2 + (a1 − a2)t
, t ∈ (−1, 1). (E.1c)

Since z1 and z2 are positive random variables, the absolute value of the new

variable t defined in (E.1b) is always less than 1. Thus, the domain of h(t) is

(−1, 1). The function h(t) is concave over its domain since its second deriva-

tive, given by

h′′(t) =
−4a1a2(a1 − a2)

2

(a1 + a2 + (a1 − a2)t)
3 (E.2)

is negative for any t ∈ (−1, 1). Therefore, we can apply Jensen’s inequality to

h(t) to get

E{h(t)} ≤ h(E{t}). (E.3)
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But, the expected value of t can be calculated as

E{t} = E

{

z1 − z2
z1 + z2

}

= E

{

z1
z1 + z2

}

− E

{

z2
z1 + z2

}

= 0 (E.4)

where the last equality is due to the symmetry arising from the fact that

z1 and z2 are identically distributed. The proof is immediate using (E.1a),

(E.1c),(E.3), and (E.4).

Note that, we did not make use of independence of the random variables

z1 and z2 in the proof. However, the independence condition seems to be

necessary for the conjecture to be true in the case of M > 2.
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Appendix F

Proof of Theorem 4.2

Proof. Using the method of Lagrange multipliers the objective functional can

be written as

J (p) =
ˆ L

0

ˆ L

0

f(x− x′)p(x)p(x′)dxdx′ − 2

ˆ L

0

λ(x)p(x)dx− 2ν

ˆ L

0

p(x)dx

(F.1)

where λ(x) is a positive function over [0, L] whose value at point x represents

the Lagrange multiplier corresponding to the inequality constraint p(x) ≥ 0

at point x. The parameter ν is the Lagrange multiplier corresponding to the

equality constraint
´ L

0
p(x)dx = 1. The multiplication by 2 of the constraint

terms in (F.1) is just a normalization of the Lagrange multipliers that has

no effect on the solution and is merely intended to simplify the form of the

expressions to be derived in the following. The next step is to find the gradient

(a.k.a. the variational derivative) of the objective functional in (F.1) with

respect to variations in function p(·). The gradient of J (p) is defined through

the usual directional derivative formula

〈∇J (p), v〉 = d

dt
J (p+ tv)

∣

∣

t=0
(F.2)

where v(·) can be any function over [0, L] and the inner product 〈·, ·〉 for a pair

of functions f(·) and g(·) is defined by

〈f, g〉 =
ˆ L

0

f(x)g(x)dx. (F.3)

The function v(·) represents an arbitrary variation in function p(·) and the

inner product 〈∇J (p), v〉 represents the variation of the functional J (p) in
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the direction of v(·). After replacing p(x) and p(x′) in (F.1) with p(x) + tv(x)

and p(x′) + tv(x′), respectively, and applying (F.2), one obtains

〈∇J (p), v〉 =
ˆ L

0

ˆ L

0

f(x−x′)(p(x)v(x′)+v(x)p(x′))dxdx′−2
ˆ L

0

(λ(x)+ν)v(x)dx.

(F.4)

But, note that f(x) = |Rg(x)|2 where Rg(x) is a conjugate symmetric function

as a result of being a correlation function. Therefore, f(x) is an even function

(i.e., f(x) = f(−x)). Thus, (F.4) can be further simplified to

〈∇J (p), v〉 =
ˆ L

0

2

[
ˆ L

0

f(x− x′)p(x′)dx′ − λ(x)− ν

]

v(x)dx. (F.5)

Using the definition of the inner product given in (F.3) and the fact that (F.5)

holds for all functions v(·) over [0, L], one can conclude

∇J (p) = 2

[
ˆ L

0

f(x− x′)p(x′)dx′ − λ(x)− ν

]

. (F.6)

The Karush-Kuhn-Tucker (KKT) conditions of optimality are given by [50]

ˆ L

0

p(x)dx = 1

p(x) ≥ 0, ∀x ∈ [0, L]

λ(x) ≥ 0, ∀x ∈ [0, L]

λ(x)p(x) = 0, ∀x ∈ [0, L]

∇J (p) = 0, ∀x ∈ [0, L]

(F.7)

where ∇J (p) is given in (F.6). Next, we show that, for an exponential spa-

tial correlation function where f(x) = |Rg(x)|2 = exp(−2k|x|), the function

popt(x) given in (4.25) along with λopt(x) = 0 and ν = 1
1+kL

satisfy the KKT

conditions in (F.7). Checking the first four conditions in (F.7) is straightfor-

ward. Moreover, using the expression for ∇J (p) in (F.6), the last condition

in (F.7) is equivalent to

ˆ L

0

e−2k|x−x′|

[

k

1 + kL
+

1

2 + 2kL
(δ(x′) + δ(x′ − L))

]

dx′ =
1

1 + kL
, ∀x ∈ [0, L]

(F.8)

which can be easily proved by direct calculation of the integral on the left side.

The KKT conditions are, in general, necessary conditions for the optimality of
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a solution. However, since the optimization problem in (4.22) is convex and its

constraints satisfy the Slater’s constraint qualification condition [43], the KKT

conditions are also sufficient for optimality. This completes the proof.
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Appendix G

Proof of Theorem 4.3

DiDi

DjDj

Figure G.1. Passing weight from the region Di to its neighboring region Dj .

Proof. First, we assume that G is a connected graph. The case of a discon-

nected graph is considered afterwards. Define a weight function w(·) over the
nodes of G where w(Di) is the area of the region Di, i = 1, . . . ,M . A node

Di can send a portion wi,j of its weight to a neighbouring node Dj. This will

update the weight of Di to w(Di)− wi,j and that of Dj to w(Dj) + wi,j . The

equivalent of this weight passing operation on the partition regions is to move

the common boundary of Di and Di toward the interior of Di such that the

area of Di is reduced by wi,j and that of Dj is increased by wi,j as shown

in Fig. G.1. The two end points of the common boundary curve are kept

fixed during this operation. This weight passing operation does not change

the partition graph G, i.e., the adjacent nodes remain adjacent and the non-

adjacent nodes remain non-adjacent. Since G is connected, any two nodes in

the graph can pass weights to each other through some intermediate nodes.

Let V0 = {D1, . . . ,DM} denote the set of the vertices (i.e., nodes) of G and

define w̄ to be the arithmetic mean of the set w{V0} = {w(D1), . . . , w(DM)}.
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Executing the following weight passing algorithm will result in a partitioning

of D into equal area Di’s while the corresponding partition graph G remains

unaltered.

1: V ← V0
2: i← max index{w(V)}
3: j ← min index{w(V)}
4: Send w̄ − w(Dj) from Node Di to Node Dj

5: V ← V − {Dj}
6: If |V| > 1 then go to Step 2

7: return

The max index (min index) function returns the index of the maximum (min-

imum) element of the set in its argument and |V| denotes the number of

elements in the set V . Once the above algorithm is completed, the Ti regions
can be obtained by scaling the Di regions with a common scaling factor such

that their areas add up to unity. Now, we consider the case where G is a

disconnected graph. In this case, G can be broken into a number of connected

subgraphs Gk’s, k = 1, . . . , r for some number r. Since each Gk is a connected

graph, one can execute the above algorithm over it. After executing the al-

gorithm for all of the subgraphs, the partition corresponding to each Gk will

have equal area regions. Therefore, one can obtain the Ti regions by properly

scaling the partitions corresponding to different Gks with different scaling fac-

tors such that all the regions in all partitions have the same area and the sum

of their areas is unity. This completes the proof.
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