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Abstract

An important challenge in reservoir management is establishing reliable numerical ge-
ological models of all required flow parameters including facies, porosity and perme-
ability. These numerical models are driven by conceptual geology, seismic, production
and well data that are widely spaced early in exploration. Critical decisions are made
early in the reservoir lifecycle where limited seismic and production data may be avail-
able. Geostatistical simulation is commonly used to construct these numerical models
and quantify uncertainty. This thesis develops techniques that improve the uncertainty
represented in the final geostatistical model.

The variogram is a key parameter for geostatistical simulation. In presence of
preferential positioning of the wells to maximize production, variogram modeling is
suboptimal. A novel technique is proposed to weight variogram pairs in order to com-
pensate for preferential or clustered sampling. Weighting the variogram pairs helps
remove noise and minimize artifacts in the experimental variogram.

A new approach of variogram uncertainty is developed since variogram declustering
does not remove all uncertainty in the experimental variogram. Variogram realizations
are drawn from the uncertainty interval of lag distances honoring the correlation be-
tween lags. The realizations are transferred to geostatistical simulation to incorporate
variogram uncertainty in the numerical geological models.

A methodology to improve horizontal variogram inference from the widely spaced
well data is developed considering seismic data and the vertical well variogram. Seismic
data provide constraints on the unknown horizontal variogram of the well data. The
vertical variogram of the well data can be scaled to scenarios of the horizontal vari-

ogram. Improved horizontal variogram realizations are achieved by considering these
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constraints.

Uncertainty in the histogram of flow parameters affects resource /reserve estimation,
investment and development decisions. A new simulation-based approach of quanti-
fying histogram uncertainty is also established. A methodology to calculate the true
histogram uncertainty for a single variable in certain circumstances is proposed. This
allows checking the proposed spatial bootstrap methodology. Multivariate distribution
uncertainty is implemented considering the correlation between variables.

The applicability of the proposed methodology for variogram and histogram uncer-
tainties are shown with an offshore real reservoir located in the Dutch sector of the
North Sea. This case study confirms that the histogram uncertainty has the highest

impact on resource estimation.
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Chapter 1

Introduction

Numerical reservoir models for the upstream petroleum exploration/production busi-
ness are used for developing a recovery plan, reserves estimation, redevelopment of
old fields, accurate management throughout the production period, monitoring and
execution, KOR planning and abandonment of production. The process of reservoir
modeling is cyclic and continues through the lifetime of the reservoir (Singh, Yemez, &
Sotomayor, 2013).

Developing hydrocarbon reservoirs is risky. The industry aims to predict and mit-
igate risk (Kaleta et al., 2012; Wolff, 2010). According to Rose (2004), exploration
and production companies had delivered about half of the predicted reserves in the
last 20 years of the 20th century. Merrow (2011) shows a decreasing rate of success
for exploration and production megaprojects. One of the main reasons for this un-
derperformance is due to use of evaluation methods that do not account for the full
uncertainty, which leads to inaccurate reservoir production forecasts (McVay & Dos-
sary, 2014; Singh et al., 2013). In the past, the input statistics were held constant
and relatively small fluctuations between realizations were used to characterize reser-
voir uncertainty (Pyrcz & Deutsch, 2014). This approach underestimates uncertainty
(Wang & Wall, 2003). Uncertainty is small because local fluctuations above and below
the average cancel out between locations (Babak & Deutsch, 2009). Thus, the uncer-
tainty in each input parameter is important and must be integrated into final reservoir

modeling.



According to Singh, Hegazy, and Fontanelli (2009), major sources of uncertainty in
regionalized variables for production forecasts can be divided into four main categories:
1- Geophysical uncertainty (mainly seismic data) regarding conversion of time-to-depth,
migration, picking seismic surface and finding correct position of faults and well ties. 2-
Geological uncertainty regarding the sedimentary depositional environment, facies, spa-
tial distribution and grain size. 3- Petrophysical uncertainties in porosity, permeability,
water saturation, shale volume, net thickness of rock, and oil water contact (OWC),
and 4- Dynamic uncertainties about relative and absolute permeabilities, horizontal
barriers, thermodynamics, injectivity and productivity indexes. The uncertainty is due
to limited data and measurement errors. Limited data leads to incomplete knowledge
of petrophysical properties, subsurface structure, and fluid properties. Generating a
model that represents the real reservoir is difficult. A realistic numerical model is
required to understand the subsurface and quantify the inherent uncertainty.

The variogram is required by most geostatistical and uncertainty methods. Infer-
ring a stable variogram model in presence of preferential sampling is a longstanding
challenge. According to geological and geophysical data, the wells are likely located in
the areas of higher quality for maximizing production (Pyrcz & Deutsch, 2014). This
leads to noisy and unreliable experimental variogram due to unbalanced number of
variogram pairs in low quality and high quality areas. Although weighting the data
by declustering techniques corrects the statistics (Deutsch, 1989), this approach is not
normally considered in variogram calculation. The challenge is to decluster the experi-
mental variogram for removing noise and artifacts that occurs because of irregular and
preferential sampling. Despite improving the experimental variogram by variogram
declustering, there is unavoidable variogram uncertainty that could be calculated and
incorporated in geostatistical modeling. The variogram uncertainty is very high in case
of sparse well data.

Seismic data are more exhaustive than well data, so they can be used to improve
the variogram and histogram of regionalized variables. There is the challenge of es-
tablishing a reliable horizontal variogram from well data. A poor horizontal variogram

from well data can be improved by considering seismic data. The histogram of primary



variables constructed from few wells at the early stages of reservoir development will
not be representative of the whole area. The histogram could be improved by cali-
bration to seismic data (Deutsch, Frykman, & Xie, 1999, 2005). There is unavoidable
uncertainty in the histogram due to the fact that multiple seismic attributes (Rezvan-
dehy, Aghababaei, & Raissi, 2011) could lead to spurious correlation between well and
seismic attributes (Chambers & Yarus, 2002; Kalkomey, 1997). Therefore, uncertainty
in the representative histogram of variables (after calibration with seismic data) should
be taken into consideration in geostatistical modeling.

The main objective of this research work is to propose techniques that estimate
the correct uncertainty in input statistics such as the variogram and histogram of
regionalized variables, and develop an approach for incorporating the uncertainty in
geostatistical modeling. This leads to reservoir models with more realistic uncertainty

for decision making.

1.1 Literature Review

1.1.1 The Importance of Reservoir Uncertainty

Uncertainty is an inevitable aspect of the upstream oil and gas business. There are
many bad consequences of decisions made under uncertainty. The resources may be
underestimated or overestimated and there may be unrealistic forecasted production.

For each reservoir, an estimate of the hydrocarbon initially in place (HIIP) is re-
quired. This estimation is often computed by gross rock volume (GRV), petrophysical
properties including net-to-gross (NTG), porosity, fluid saturations, and hydrocarbon
properties such as the formation volume factor. The uncertainty in HITP depends on
the uncertainty in each parameter. For instance, GRV is the volume of a reservoir
trapped between stratigraphic surfaces and/or hydrocarbon-water contacts. Uncer-
tainty in GRV is attributed to widely spaced well data and uncertainty in the inter-
preted structural surfaces from seismic data. In case of thin reservoirs, this uncertainty
increases because of the seismic data resolution. Spectral and Cepstral decomposi-

tion approaches (Hall, 2006; Hall & Trouillot, 2004; Partyka, Gridley, & Lopez, 1999;



Rezvandehy et al., 2011) have been implemented by Fourier transform to improve res-
olution. There is no unique surface in units of depth because of uncertainty in the
interpretation (in time) and uncertainty in the time-to-depth conversion. Therefore,
the calculated GRV is uncertain. The oil water contact (OWC) can often be estimated
from the available wells. The depth of this surface is subject to uncertainty. Uncer-
tainty in all variables should be assessed and merged to compute the uncertainty in
HIIP (Alshehri, 2010).

Deterministic approaches produce a single estimate. The deterministic approach
usually includes sensitivity analysis. The analysis can be used to understand the criti-
cal variables by changing each parameter one at a time keeping the other parameters
unchanged. The results could be presented by a tornado chart that ranks the impact
of each parameter on the outcome. Then, the most important parameters can be con-
sidered for a more complete uncertainty analysis (Amudo, Graf, Dandekar, & Randle,
2009; Cebastiant & Osbon, 2011; Ehinola & Akinbodewa, 2014; Peng & Gupta, 2004;
Salinas, Di Nezio, & Huerta Petroperu, 2014; Van Elk, Guerrera, Vijayan, & Gupta,
2000). This approach provides some information on the global uncertainty but it does
not give a full picture of uncertainty. In addition, it does not account for local uncer-
tainty (Alshehri, 2010). Individual parameters are better described by a probability
distribution or different realizations instead deterministic values. This leads to a prob-
ability distribution for all response parameters of reserve estimation. The uncertainty
in acquired data and derived parameters is incorporated in geostatistical models. Sen-
sitivity analysis is performed to find the most uncertain variables. The final reserve
estimation is reported based on a probability distribution (having an uncertainty in-
terval) rather than a deterministic single value. Rose (2007) shows several merits of a
probabilistic methodology over a deterministic estimate for exploration and production.
According to Society of Petroleum Engineers (SPE) (Etherington, Pollen, & Zuccolo,
2005) and the Journal of Canadian Petroleum Technology (JCPT) (Robinson & El-
liott, 2004), P90, P50, and P10 can be applied in reporting reserves using probabilistic
methods to define proved, probable, and possible reserves respectively. The P90 (0.1

quantile) refers to proved reserves, P50 refers to proved and probable reserves, and P10



(0.9 quantile) refers to proved, probable and possible reserves.

A thorough assessment of uncertainty and tracking its evolution with time provides
decision support information. Uncertainty in estimation resource/reserve (HIIP) will
reduce with more wells. There are some examples of historical look-backs to demon-
strate the evolution of different input parameters (porosity, permeability, saturation,
etc) along with hydrocarbon in place estimates. Meddaugh, Barge, Todd, and Gri-
est (2007); Meddaugh, Griest, and Barge (2009); Meddaugh, Gross, Griest, Todd, and
Barge (2006) and Singh et al. (2013) present look-back studies for original oil in place
(OOIP) as a function of time. They show that the uncertainty look-back is useful in
tracking the impact of new data. The number of delineation wells could be optimized
for OOIP uncertainty management. The slope of uncertainty index (UI) (UI=((P90
OOIP)-(P50 OOIP))/(P50 OOIP) vs. time provides useful information during drilling
delineation. If this slope is remain constant, there is little value in drilling more wells.
Although the history look back is useful in tracking the impact of new data, it can lead
to unreliable decision if the global uncertainty in OOIP is inaccurate (overestimated or

underestimated).

1.1.2 Quantifying Uncertainty

There are many papers applying Monte Carlo simulation (MCS) to estimate reserve
volumes in early reservoir life (Murtha, 1997). Conditional simulation is proposed to
assess and quantify uncertainty of hydrocarbon properties such as porosity, permeabil-
ity, hydrocarbon pore volume with structural parameters. The methodology is based
on simulation with conditioning data considering fixed statistical parameters (Samson,
Dubrule, & Euler, 1996). Uncertainty in the univariate distribution of regionalized vari-
ables (input parameters) is found to be important. There are a number of approaches
that have been proposed to get uncertainty in the univariate distribution.

The bootstrap is the first simplest method of quantifying uncertainty in the his-
togram developed by Efron (1979). This method uses MCS simulation to draw values
from the data distribution to simulate different possible data sets; so, it can be eas-

ily applied to calculate the uncertainty in the mean and other statistical parameters.



There are two critical assumptions for applying the bootstrap: 1- The distribution of
the data should be representative of the whole domain, and 2- The data are indepen-
dent. The bootstrap may be useful when it is needed to measure the uncertainty in
the mean early in appraisal with widely spaced well data (Pyrcz & Deutsch, 2014).

The spatial bootstrap is proposed by Solow (1985) in order to consider the spatial
correlation of data. The spatial bootstrap in geostatistics (Deutsch, 2004; Journel &
Bitanov, 2004) applies unconditional LU simulation at the data locations according to
spatial correlation of the data (Deutsch & Journel, 1998). This approach considers
neither the conditioning data nor the area of interest. Increasing spatial correlation
leads to greater uncertainty because the data are more redundant (Khan, Deutsch, &
Deutsch, 2014).

The conditional finite domain (CFD) is another stochastic approach that accounts
for the conditioning data and the size of the domain. This technique permits evaluation
of uncertainty by sampling multiple configurations of the data previously simulated.
The configurations should be similar to the configuration of the original data. Generally,
CFD is very difficult to operate and leads to low uncertainty because of the conditioning
data (Babak & Deutsch, 2009).

The last technique for assessing uncertainty in the mean is using kriging for estima-
tion of the entire domain. This technique called global kriging uses the kriging variance
when estimating the entire domain. The variance will decrease when the domain size
increases due to the support effect (Deutsch & Deutsch, 2010). This technique is inde-
pendent of data values and lead to relatively low uncertainty.

Uncertainty in the variogram of regionalized variables should also be quantified
and incorporated into final modeling. Different authors (Bogaert & Russo, 1999; Web-
ster & Oliver, 1992) have considered sampling scheme for measuring variogram uncer-
tainty. Cressie (1985), Pardo-Igizquiza and Dowd (2001), Ortiz and Deutsch (2002),
and Marchant and Lark (2004) propose similar expressions related to the covariance
matrix of the experimental variogram for each lag distance. The diagonal elements
of such a covariance matrix are variances. The covariance matrix can be resolved by

quadratic covariance (Matheron, 1965).



Global uncertainty could be computed from the fluctuations between the realiza-
tions of simulation (Deutsch, 2005; Journel & Xu, 1994). This uncertainty should be
calculated by considering correct parameter uncertainty (uncertainty in input statis-
tics). Derakhshan and Deutsch (2008) proposed a methodology to directly incorporate
parameter uncertainty into sequential Gaussian simulation (SGS). The central idea is
to use a non-uniform distribution of random numbers for Monte Carlo simulation in-
corporating the uncertainty in the mean of the variable. The idea seems like an ad-hoc
engineering approach with no statistical basis. Alshehri (2010) quantifies global uncer-
tainty of HIIP by assessing parameter uncertainty of the reservoir surface, OWC and
reservoir properties (porosity, water saturation etc). A 2D surface of seismic interpreta-
tion is assumed as a reference map for considering uncertainty in reservoir volume. This
surface can even be attained by a few 2D seismic lines in the absence of 3D seismic (Rez-
vandehy, 2014). Monte Carlo simulation (MCS) is also used to quantify uncertainty
in fluid contacts levels by using the triangular distribution. A cosimulation approach
of SGS with super secondary data is utilized for quantifying uncertainty in petrophys-
ical properties for assessing uncertainty in HIIP (Babak & Deutsch, 2007b). There
are several issues in the methodology: 1- The parameter uncertainty is only calculated
for the mean of the reference distribution without considering the uncertainty in the
variance. 2- The parameter uncertainty is calculated by bootstrap, spatial bootstrap
and CFD, but there is no guidance on the most accurate approach. Since each method
has specific limitations, the correct method of quantifying parameter uncertainty is
unknown. 3- The unreliable experimental variogram of each variable is used directly
for calculating global uncertainty of HIIP without considering variogram declustering.
4- The variogram uncertainty is not discussed in this study. This uncertainty is impor-
tant for flow simulation (Meddaugh, Champenoy, Osterloh, & Tang, 2011) and could
be improved by auxiliary data and incorporated in the final model. 5- Multivariate
parameter uncertainty and transforming this uncertainty in multivariate geostatistical

modeling is discussed partially and incomplete in the end.



1.2 Problem Statement

One of the key parameters for geostatistical modeling of petrophysical properties is the
variogram for each property. Preferential sampling may bias the spatial structure and
often leads to noisy and unreliable variograms. Declustering techniques compensate
for the geometric configuration of the data locations (Deutsch, 1989); however, they
correct the histogram of data and not the experimental variogram. Some authors
consider variogram declustering. There are drawbacks with each technique. A regular
data configuration could be taken taken from the cluster data (Chiles & Delfiner, 1999).
This leads to zero weights to discarded pairs and loss of information. The average of
the univariate declustering weights for two data locations is proposed for variogram
declustering (Kovitz & Christakos, 2004; Omre, 1984; Richmond, 2002). However,
variogram declustering is only applied for the pairs originating and ending in the same
cell. Emery and Ortiz (2005, 2007) discuss variogram declustering by ordinary local
kriging. This approach has also some limitations since kriging of the local mean does
not give correct global estimation of the mean (declustered mean).

Variogram uncertainty of regionalized variables could also be quantified and in-
corporated in geostatistical simulation. According to Meddaugh et al. (2011), vari-
ogram uncertainty could have a tremendous impact on flow simulation. The current
approaches of variogram uncertainty based on sampling scheme (Bogaert & Russo,
1999; Webster & Oliver, 1992) or the covariance matrix of the experimental variogram
(Cressie, 1985; Marchant & Lark, 2004; Ortiz & Deutsch, 2002; Pardo-Igizquiza &
Dowd, 2001) are not robust and lead to a very high variogram uncertainty which may
bias the final reservoir model. Moreover, the method of incorporating variogram un-
certainty in geostatistical simulation is not fully addressed.

There is always a challenge inferring the horizontal variogram in case of widely
spaced well data. Applying the horizontal variogram of 3D seismic data is a naive
solution to this problem (Wang & Dou, 2010) since the processed seismic data are not
the same physical attribute as that under consideration; seismic data are acquired in

time domain that should be transferred to depth and there is a much different in the



scale of measurement. Pyrcz and Deutsch (2014) propose an approach of scaling the
vertical variogram based on horizontal-to-vertical anisotropy ratio. However, there is
no unique ratio for a specific reservoir (Kupfersberger & Deutsch, 1999).

Uncertainty in univariate distributions for each regionalized variable should be
quantified correctly. Geostatistical models require input parameters such as univariate
distribution for continuous variables and proportions of categorical variables. These
parameters are subject to uncertainty because of limited data and measurement error.
Each current method of parameter uncertainty gives a different result and has spe-
cific drawbacks. The uncertainty in correlation coefficients between variables should

be incorporated in the final model.

1.3 Problem Solution and Objectives

The goal of this research is quantifying correct parameter uncertainty and incorporating
this uncertainty in geostatistical reservoir models for improved forecasting and man-
agement. Figure 1.1 shows a conceptual illustration of L realization of different sources
of uncertainty in the reservoir with four well data, and Figure 1.2 shows incorporat-
ing all uncertainties (variogram plus histogram, surface, etc) in resource estimation or
flow simulation. This leads to lower risk in reservoir decision making and prevents
overestimating or underestimating production facilities. Uncertainty in the reservoir is
divided into parameter and data uncertainties (see Figure 1.1). Parameter uncertainty
includes the variogram, histogram of continuous and discrete (proportion) variables,
surface (top and thickness), domain size, etc. Instead of using one fixed set of param-
eters, different realizations of parameters are used for geostatistical simulation: one
realization of parameter uncertainty for one realization of the geostatistical simulation
process. Data uncertainty could also be calculated and incorporated in the final model
(Barnett, 2015). The focus of this thesis is quantifying correct variogram and histogram

uncertainties.
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simulation for each source of uncertainty.
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Figure 1.2: A conceptual illustration of resource estimation and flow simulation with
all uncertainties.

1.3.1 Representative Variogram with Uncertainty

An accurate variogram model is important for geostatistical modeling and for quanti-
fying parameter uncertainty. The spatial bootstrap needs a reference variogram model,
the higher variogram range, the higher the prior histogram uncertainty. The approaches
of quantifying variogram uncertainty also need a reference variogram model that should
be as accurate as possible. In case of preferential sampling, variogram declustering
should be considered. A novel approach of variogram declustering is proposed in this
work that corrects the limitation of the previous techniques. The new fitted variogram
to the declustered horizontal and vertical variograms (3D variogram model) could be
used for geostatistical modeling and quantifying parameter uncertainty.

A new approach of quantifying variogram uncertainty and how to incorporate this

uncertainty in geostatistical simulation is proposed in this thesis. In case of sparse
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well data, there is high variogram uncertainty in the horizontal variogram. This work
also proposes a novel technique to improve the horizontal variogram of well data. The
vertical variogram from wells and the horizontal variogram from seismic data are well-
defined in most cases, and could be used to improve the horizontal variogram inference
from well data: the distributions of uncertainty for each lag distance are merged in order
to achieve an improved horizontal variogram. This can be described by the following

Steps (Figure 1.3):

1. The horizontal seismic variogram is enforced on the noisy horizontal well vari-

ogram. An updated variogram distribution for each lag distance is achieved.

2. The vertical variogram of the well data can be scaled to scenarios of the horizontal
variogram using conceptual geological models. A variogram distribution for each

lag distance is attained.

3. Merge the probability distributions of each lag distance from Steps 1 and 2.

After merging variogram distributions, improved horizontal variogram realizations are

drawn from the uncertainty intervals of lag distances.

1.3.2 Histogram Uncertainty

The next challenge faced by this research is to establish uncertainty in the histogram
of regionalized variable (distribution uncertainty). Quantifying this uncertainty is an
important task of geostatistical modeling, due to the fact that it affects reservoir invest-
ment and development decisions. There are some techniques for quantifying uncertainty
in histogram. Each method has limitations (see Section 1.1.2). This work proposes a
new simulation-based approach of quantifying histogram uncertainty. An experimen-
tal framework is developed, where the true uncertainty in the histogram is known, to
evaluate histogram uncertainty approaches. Univariate distribution uncertainty can
be extended to multivariate parameter uncertainty for incorporating the correlation

between variables in the final model.

12



Horizontal Well Variogram

Yw | (Yst+Yver)

Mean —>e Variogram distribution of
each lag distance 0 ;

0 Dpistance : 50
(m) )

Figure 1.3: Illustrative work flow for improving horizontal variogram of the well data
by the horizontal seismic variogram and the vertical well variogram. The
distributions of uncertainty for each lag distance are merged to achieve
the improved horizontal variogram.
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1.4 Thesis Statement and Dissertation Outline

Thesis statement: Development of techniques to capture correct parameter
uncertainty in presence of sparse well data will improve the uncertainty repre-

sented in the final geostatistical model.

The thesis contains eight Chapters. Chapter 1 is the introduction; literature
review, problem statement and solution are presented. Chapter 2 discusses vari-
ogram declustering to improve the experimental variogram. Chapter 3 demonstrates
variogram uncertainty and incorporating this uncertainty in geostatistical modeling.

Chapter 4 shows implementation to improve the variogram of well data by the vari-
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ogram of seismic data. Chapter 5 covers final improved variogram realizations (3D) for
geostatistical modeling. Multivariate distribution uncertainty is provided in Chapter
6. Practical implementation of parameter uncertainty for a real case study is pre-
sented in Chapter 7. The last Chapter 8 wraps up the thesis with conclusions. The

description of developed Fortran codes is provided in an Appendix.
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Chapter 2

Declustering Experimental
Variograms by Global Estimation
with Fourth Order Moments

The following Chapter presents methodology and examples for variogram declustering
in presence of irregular sampling. Preferential sampling may bias the spatial structure
and often leads to noisy and unreliable variograms. A novel technique is proposed to
weight variogram pairs in order to compensate for preferential or clustered sampling:
weighting the variogram pairs gives each pair the appropriate weight, removes noise
and minimizes artifacts in the experimental variogram.

The Chapter begins with a discussion on why variogram declustering is required.
The principle of variogram declustering and previous works are discussed. A methodol-
ogy is presented to derive declustering weights of variogram pairs that best compensate
for preferential sampling. The methodology is assessed by synthetic and realistic ex-

amples.

2.1 Problem of the Equal Weighted Variogram

Geostatistical modeling is widely used to estimate and simulate properties in the
petroleum and mining industries. One of the key parameters for geostatistical model-
ing of continuous variables is the variogram or covariance function for each property.

The variogram model provides a three-dimensional definition for pairwise spatial co-
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variances (Deutsch & Journel, 1998; Pyrcz & Deutsch, 2014). Variogram modeling is
performed to fit an analytical model to a sample variogram computed from the data:
the experimental variogram points are not directly used in geostatistical modeling since
the variogram function is required for all distances and they must be positive definite
(Deutsch & Journel, 1998; Pyrcz & Deutsch, 2014). The variogram model can be at-
tained manually or by autofitting to achieve a variogram model. One conventional
approach of autofitting is measuring the goodness of fit by an objective function, which
is the sum of the squared difference between the experimental variogram and the mod-
eled variogram. Random changes to the variogram model that decrease the objective
function are accepted. This process is repeated many times (say more than 10000) to
obtain a variogram model with the minimum objective function (Larrondo, Neufeld, &
Deutsch, 2003). For more information of variogram modeling see Chiles and Delfiner
(1999); Cressie (1985); Genton (1998); Gringarten and Deutsch (2001); Pardo-Igizquiza
and Dowd (2001).

In practice, variogram modeling is suboptimal in presence of irregular and preferen-
tial positioning of the wells (Emery & Ortiz, 2007; Kovitz & Christakos, 2004). Based
on geological and geophysical data, the data are likely located in the areas of higher
quality that would be developed first or that would maximize production (Pyrcz &
Deutsch, 2014). Higher valued areas are often more variable, thus, equal-weighted ex-
perimental variograms are often noisy and biased. Weighting the data by declustering
techniques compensates for the geometric configuration of the data locations and cor-
rects the statistics (Deutsch, 1989); however, this approach is not normally considered
in variogram calculation where equal weights are often considered for the variogram
pairs (Emery & Ortiz, 2007). The experimental variogram for a particular lag vector

is computed as:

n(h)
i) = 5 D low) o + WP = L (2.1)

where n(h) is number of variogram pairs for lag distance h. Each lag of the experimental

variogram 4(h) is a variable comprised of pairs of well data y(u;), y(u;+h). Figure 2.1-a
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shows a synthetic example of clustered well locations in areas of high quality, and sketch
of its corresponding variogram for azimuth 0° £+ 10° (Figure 2.1-b). The variogram is
unstable and has fluctuations because for the short lag distance (lag distance h; in
Figure 2.1-a) the majority of pairs are located in the high quality area with greater
variability, and for a larger distance (lag distance hy in Figure 2.1-a) the majority of
pairs are located in low quality areas. This unbalanced number of pairs within low and
high quality areas leads to a noisy variogram due to the fact that the equal weighted
averaging as in Equation 2.1 does not account for preferential sampling. The objective

of variogram declustering is to correct the effect of preferential sampling.

50 b)

Experimental Variogram Az Ooi 10
Well Location
° ° .
~ 1
E .
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0 Distance (m) 25
0 East (m) 50

Figure 2.1: a) Synthetic example of clustered locations in areas of high quality (the
center right of the sketch). b) Sketch of experimental variogram (not
calculated) for azimuth 0° + 10°. The noisy and unreliable variogram is
due to clustering some variogram pairs in high valued areas.

2.2 Principle of Variogram Declustering

Estimation of the variogram could consider weighting the variogram pairs:

n(h) n(h)
. 1 Z 2 . Z
= : 2) — . = ... ;= . >
7<h) 2n(h) — Wy X [y(ul) y(uZ J’_ h)] ’ ¢ 17 7n(h) ’ — w; 1 ) w; =2 0

(2.2)
where w; are scalar weights assigned to variogram pairs [y(u;) — y(u; + h)]2. A few ap-

proaches based on the configuration of the data have been proposed to calculate these
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weights; however, their efficiency has not been proved. Chiles and Delfiner (1999)
recommend one data location from the cluster data in order to make a regular data
configuration for variogram calculation. This procedure assigns zero weights to dis-
carded pairs. This leads to a loss of information and the variogram calculation for
short lag distance may be worse.

Some authors calculate the average of the univariate declustering weights for two
data locations and used it in Equation 2.2 (Kovitz & Christakos, 2004; Omre, 1984).
Richmond (2002) proposes variogram declustering by univariate cell declustering weight.
This algorithm has drawbacks; it only down-weights pairs originating and ending in
the same cell. However, in case of omnidirectional variogram, it is likely to have pairs
originating and ending in another cell, and it is quite common to have pairs ending in
cells where other pairs originate (Emery & Ortiz, 2007). Furthermore, it needs a fixed
cell size for cell declustering. Different cell size gives different variogram declustering
weights.

Emery and Ortiz (2005, 2007) propose to minimize the variance between the experi-
mental variogram and the underlying true variogram. They use fourth order covariance
to calculate optimum declustering weights. The differences between the methodology
of this work and their technique is presented in Section 2.7. Olea (2007) selects sub-
samples of the data that do not have clusters. Although this method is simple to apply,
there is a loss of information due to eliminating some variogram pairs. There are other
techniques of variogram declustering such as kernel variogram estimator (Menezes,
Garcia-Soidén, & Febrero-Bande, 2007) and Box-Cox transformation (Pu & Tiefels-
dorf, 2015). None of those mentioned techniques give robust weights for experimental
variogram pairs and each has drawbacks. Moreover, it is not feasible to directly cal-
culate the variance of the declustered variogram by those techniques. The goal of
this work is to extend the use of declustering techniques to improve the experimental

variogram.
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2.3 Methodology

Kriging is a linear estimator of a regionalized variable. The weights assigned to the data
locations are computed based on the spatial relationship between the data locations and
the point being estimated, and the data locations and themselves. Kriging estimates the
value at an unsampled location by a maximum number of data within the search radius.
Global kriging applies all available data for estimation at either an unsampled location
or for the entire domain. If this unknown location is the entire domain, global kriging
estimates the declustered global mean and variance. This global kriging approach is
proposed for declustering the sample variogram. In this approach, global kriging is
applied to the variogram pairs of each lag distance. The ”data” value of each pair is
half of the quadratic difference of the tail and head values. Global kriging estimates
an average of all pairs for the entire area, which is the variogram value for the desired
lag distance. This process is repeated for all lag distances to achieve a declustered
variogram.

The covariance between variogram pairs should be used in the global kriging system
since pairs are the data values. The covariance between two pairs is a fourth order
covariance and can be written as a sum of second order moments (Matheron, 1965).
This requires an input variogram model as considered by other authors including Ortiz
and Deutsch (2002).

Figure 2.2 shows a schematic illustration (not calculated) of variogram declustering
by global kriging, which has three Steps: 1) Experimental variogram of the data is
calculated and a preliminary model is fitted (Figure 2.2-a). The fitted variogram model
is used for computing the fourth order covariance matrix between variogram pairs. 2)
Variogram pairs of each lag distance are assembled from the data (Figure 2.2-b). 3)
Global kriging is applied on the variogram pairs of each lag distance separately (Figure
2.2-¢). The declustered variogram is then fit again and used for geostatistical modeling.
This approach also gives a measure of variogram uncertainty at each lag distance.
This variogram uncertainty could be incorporated in geostatistical models. Variogram

uncertainty is fully discussed in Chapter 3. The main objective of this Chapter is
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Figure 2.2: Schematic illustration of variogram declustering by global kriging. a)
A variogram model is fitted to the experimental variogram of data. b)
Draw variogram pairs of each lag distance from the data. ¢) Apply global
kriging for variogram pairs of each lag distance to improve and decluster
noisy variogram.

2.4 Global Kriging of Variogram Pairs

Global kriging estimates the declustered global mean and variance provided the domain
is assumed stationary (Deutsch & Deutsch, 2010). Let z(u,), @ = 1, ....,n be the values

of variable z at n locations u,. The ordinary global kriging (OGK) estimator of z for
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the entire domain A is written:

Zoax = ) AN Z(ua)] (2.3)

a=1

where \GK

is the declustering weight of global mean assigned to each datum z(u,).
There is no need to have a stationary mean in the kriging system because ordinary

kriging enforces the sum of the weights to 1 by the Lagrange formalism:

n n

AR Cg—ua) +p=Clua—4) , a=l.n , > A% =1 (24
ps=1 a=1
where C(ug — u,) is the covariance between locations ug and u,. g is the Lagrange
parameter and C'(u, — A) is average covariance between each data location u, and the

whole area A. Estimation variance of OGK is written as:

Var{Z5art =C(A—A) — zn: NOGKC(ug — A) — p (2.5)
a=1
where C'(A — A) is the average covariance of the entire area to itself. Theoretically, the
average covariances in Equations 2.4 and 2.5 could be estimated by linear averaging of
the calculated covariances after discretization the entire study area A into small blocks
(Goovaerts, 1997).
OGK is proposed for declustering variogram pairs. In this approach, global kriging

weights are applied to the quadratic differences of pair values:

Z(u+%)

where Z(u— 1) is the tail value, and Z(u+ 35) is the head value of each variogram pair
1 for lag distance h. The expected value of the Xy, (u) is the variogram value for each

lag distance. The expected value for the entire area is estimated by the global kriging
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where declustering weights for each lag distance h are computed by:

Xi = Z )\OGK ()] (2.7)

where X is the declustered variogram, n(h) is number of variogram pairs for each lag

distance h and )\OGK

is variogram declustering weight for pair « and lag distance h
and X, n(u) is half of the quadratic differences of the pair values (see Equation 2.6).
Global kriging (Equation 2.7) should be applied on variogram pairs of each lag distance
in order to decluster and improve the variogram. Since the data are pairs instead of
locations, fourth order covariances are used in Equation 2.4 (Ortiz & Deutsch, 2002).

The fourth order covariance is briefly discussed in Section 2.5. The system of linear

equations of OGK for obtaining )\gﬁK can be written as:

Z AQFEF(Xan(u) — Xon(w) + p = F(Xon(u) — 4) , a=1..n(h)
(2.8)

Z )\OGK

where F'(Xg n(u)—Xq,n(u)) signifies fourth order covariance between pairs Xz (u) and

Xaon(u)) (left hand side), and F'(X, n(u) — A) implies average fourth order covariance
between each pair X, (u) and the entire domain A (right hand side). The average
fourth order covariance could be estimated by discretization of the entire study area A
into many variogram pairs for lag distance h. Figure 2.3 shows a discretization of the
entire domain A to 39 variogram pairs for lag distance h. The average fourth order
covariance is achieved by linear averaging of all covariances between the experimental
variogram pair and the discretized variogram pairs (red arrows). In case of exhaustive
discretization (more than 2000), the CPU time is an issue to calculate the average
fourth order covariances (right hand side covariance matrix).

Uncertainty in the variogram is very important and should be incorporated in the

final model. Variogram uncertainty can also be calculated by OGK. The minimized
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Figure 2.3: Average fourth order covariance between each variogram pair and the
entire domain A. a) The experimental variogram pair of lag distance h.
b) Discretization of the entire domain to 39 variogram pairs of lag distance
h. Average fourth order covariance is achieved by linear averaging of all
covariances. Note that there is only one 50m by 50m area; it has been
redrawn twice to illustrate the discretization.

estimation variance of each lag distance h is written as:

n(h)
Var {2X;} = F(A— A) = > ASKF(Xon(n) — A) — p = Var {29(h)} 09)
a=1 .

— Var{3(h)} = — x (Var {2X}})

ol

where F'(A — A) is the average fourth order covariance of the entire domain A to itself.

Variogram uncertainty is discussed in Chapter 3.

2.5 Fourth Order Covariance

Ortiz and Deutsch (2002) show the fourth order covariance between variogram pairs by
second order moments (variogram) under a multi-Gaussian assumption of univariate
distribution. As an example, this covariance is calculated with a synthetic example.
Figure 2.4 shows two variogram pairs ”Pair p” and ”Pair q” with lag distances h,, and
h,. These pairs are a h distance from each other. The covariance between quadratic

differences of variogram pairs Cov {(y1 —12)%, (y3 — y4)2} that is the so called fourth
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order covariance is to be calculated (Ortiz & Deutsch, 2002). Where y; and y, are tail
and head locations of ”"Pair p”, and y3 and y4 are tail and head locations of ”Pair q”,

respectively. According to the definition of the covariance:
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Figure 2.4: Two variogram pairs p and ¢ with lag distances h, and h,. The distance
between pairs is h. y; and yo are tail and head locations of ” Pair p”, and
y3 and y4 are tail and head locations of ”Pair q”, respectively.

Cou(Y,,Y;) = E{Y.Y;} - E{Yi} .E (Y} (2.10)

now, replacing Y; and Y; by the quadratic differences (y1 — y2)? and (y3 — y4)?):

Cov{(y1 —y2)*, (ys —va)?} = E{(y1 — y2)*.(y3 — ya)*} —

E{(y1 — )’} -E{(ys —ya)*}

(2.11)

where E {(y1 — yg)Q} and {(yg — y4)2} are equal 2.7 (h,) and 2.y (h,), respectively.
v (h) is a variogram model fitted to the experimental variogram. Expanding Equation

2.11 leads to a sum of fourth order moments:

Cov{(y1 —12)?, (ys — 1)’} = E{yiw3} + E{yivi} — E{2.97.y3.u4}
+E{y3. 3} + E{y3yi} —E{295.y3.u4} — E{2y1.9093} —  (2.12)

E {Z.yl.yg.yi} + E{4.91.92.y3.y4} — 2.y (hy) .2.v (hy)

under the multivariate Gaussian distribution, any fourth order moment can be com-
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puted by the pairwise covariances (Matheron, 1965):

E{y1.y2.y3.ys} = Cov{y1,y2} .Cov{ys,ys} + Cov{y1,y3} .Cov{ya,ys} + (213)

Cov{yr,ys}.Cov{y2,y3}

second order moments (variogram model) are used to estimate the fourth order covari-
ance. Table 2.1 shows the covariances between ”Pair p” and ”Pair q” (fourth order
covariance Cov(p, q)) of Figure 2.4 for lag distance h, ~ h, ~ 2m and h from 0 to
5m. h is distance between ”Pairs p” and ”Pairs q”. The initial variogram model for
this example is assumed to be an isotropic spherical model with practical range of 5m
and sill 1 (no nugget effect). The highest fourth order covariance is for h=0, which is
the covariance of each pair to itself. The covariance goes to zero for lag h=5m, which
means that there is no linear correlation between these pairs. By replacing fourth order

covariance in global kriging approach, variogram declustering weights can be calculated.

Table 2.1: The covariances between ”Pair p” and ”Pair ¢” (fourth order covariance)
of Figure 2.4 for h from 0 to 5m.

h=0 h=1m | h=2m | h=3m | h=4m | h=5m
‘Cov(p,q) 2.5810 | 0.8717 | 0.2889 | 0.0835 | 0.0127 0.0

2.6 Small Example of Variogram Declustering

A small data set is considered to show how declustering weights can be achieved by
solving a fourth order covariance matrix of variogram pairs. Figure 2.5 shows a syn-
thetic data set with nine data locations which leads to six variogram pairs for lag
distance approximately 10m and azimuth 0° & 10°. Pairs 2 and 3 plus pairs 4, 5 and

6 are clustered. Fourth order covariance matrix for declustering these pairs by OGK
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approach is written as:

[F(1-1) F(1-2) F(1-3) F(1—4) F(1-5) F(l-6) 1| |n] [Fa=4)]
F(2—1) F(2-2) F(2-3) F(2-4) F2-5) F2-6) 1 Ao F(2—A)
F(3—-1) F(3-2) F(3-3) F(3-4) F(B3-5 FB-6) 1 A3 F(3-A)
F(d—1) F(4-2) F(A—3) F(4—-4) F(A—5) F(4-6) 1| x |\|=|Fld-A4)| (2.14)
F6-1) F(5-2) F(5-3) F(—-4) F(6-5 F(G-6) 1 A5 F(5—A4)
F6-1) F(6—2) F6-3) F(6—4) F6-5) F(6—6) 1 Ag F(6— A)
| 1 1 1 1 1 1 O_ a3 | 1 |

where left hand side covariance implies fourth order covariance matrix between six
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Figure 2.5: Synthetic data set with nine well locations and six variogram pairs for lag
distance approximately 10m and azimuth 0° £ 10°. The numbers signify
data locations and variogram pairs. There are nine data locations and
six pairs.

pairs written in ordinary kriging format. The right hand side covariance is the average
fourth order covariance of each pair to the entire domain. This covariance could be
calculated by discretizing the entire study area for the desired lag distance (see Figure
2.3) and calculate linear averaging of the whole fourth order covariances. A; to g are
declustering weights that must sum to 1 by the ordinary kriging approach, and g is

Lagrange parameter. These parameters are calculated by solving the covariance matrix
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Equation 2.14 with fourth order covariances calculated from a fitted variogram model.

If it is assumed the fitted variogram model is isotropic exponential model with range

of 25m and sill 1 (no nugget effect), the left hand side covariance is calculated as:

3.78
0.016
0.0159

1

0.285 x 1077
0.899 x 10~°

0.297 x 10~*

0.016
3.71
2.87

0.376 x 1074
0.125 x 10~*

0.195 x 10~°

1

0.0159 0.285 x 1077 0.899 x 10~°> 0.297 x 10~%

2.87 0.376 x 10~% 0.125 x 10~* 0.195 x 10~°
3.72 0.184 x 10™% 0.833 x 1070 0.416 x 107°
0.184 x 10~* 3.97 3.02 2.39
0.833 x 1076 3.02 3.91 3.03
0.416 x 10~° 2.39 3.03 3.99
1 1 1 1

(2.15)

and by calculating right hand side covariance, the declustering weights for each pair

and Lagrange parameter are achieved:

0.0346
0.0343
0.0342

0.0365
0.0355
1

0.0341] = A1 =0.299, Ay = 0.172, A3 = 0.170, Ay = 0.154, A5 = 0.054, A\g = 0.151 , ;1 = —1.099

(2.16)

The calculated declustering weights appear quite reasonable: pair 1 which is not clus-

tered with other pairs receives the highest weight (A\; = 0.299) and pair 5 which is

located between pairs 4 and 6 receives the lowest weight (A5 = 0.054). The weights to

pairs 2 and 3 are a little higher than weights to pairs 4 and 6 due to smaller number of

clustered pairs (two pairs versus three pairs). The weights are positive although there

is no constraint that the weights are no negative for OGK (Equation 2.8).
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2.7 Comparison with the Methodology of Emery and Or-
tiz (2005, 2007)

The idea of ordinary global kriging for declustering variogram pairs by fourth order
covariance is discussed. The difference between this technique and the methodology
applied by Emery and Ortiz (2005, 2007) for variogram declustering is presented in
this Section. Emery and Ortiz (2005, 2007) use ordinary kriging of the local mean
(Goovaerts, 1997) by fourth order covariance for estimating the global mean (vari-
ogram). Kriging of the local mean is used for mapping a smooth picture of the trend
(Goovaerts, 1997) and it does not give correct global estimation of the mean (declus-
tered mean). The difference between ordinary kriging of the local mean and the global
mean is the right hand side covariance, which is zero for estimating the local mean.
The system of linear equations of this approach for obtaining variogram declustering

pairs is written as:

n(h) n(h)
> A F(Xpn(u) = Xon(w) + =0, a=1...,n(h) , Y A =1 (217)
B=1 a=1

where )\g’ﬁK denotes the ordinary local kriging (OLK) weights for variogram decluster-
ing approach by Emery and Ortiz (2005, 2007). In comparison with Equation 2.8, the
right-hand side covariance is zero. It means that the estimation location, which is the
entire domain A, does not appear in the ordinary kriging system (Goovaerts, 1997).

There are some limitations in their work:

1. The approach does not account for the average fourth order covariance between
each pair and the entire domain A. The higher average fourth order covariance

in left hand side for a variogram pair, the higher variogram declustering weight.

2. According to Goovaerts (1997), ordinary kriging of the local mean approach is
aimed at mapping the local mean without considering of the estimation variance.

However, Emery and Ortiz (2005, 2007) derive the estimation variance in terms

of disjunctive kriging to =, or W if there is another Lagrange parameter
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v for additional constraint. Compared with the variance of OGK (Equation
2.9), the calculated variance is independent from the area of interest. This may
lead to overestimation of the variance. For example, the estimation variance for
variogram declustering in Figure 2.5 is 0.267 by OGK, and 0.547 by OLK using

only one constrain .

3. There is no comparison between the declustered and the real variograms in their
work. Variogram declustering is not reliable unless it is evaluated by the true
variogram of the exhaustive sampling of the data set. This can be done by
synthetic examples, or realistic examples such as the data ”cluster data” (Deutsch

& Journel, 1998) in which the exhaustive sampling ”true.dat” is available.

4. The sill of the declustered variogram is not defined. After declustering variogram,
another variogram model should be fitted to the declustered variogram with a
known sill. Otherwise, the fitted variogram model might be biased because it
might violate the correct stationary variance of data after declustering. In Section

2.8, the sill of the declustered variogram is defined.

OGK improves the limitations of OLK by Emery and Ortiz (2005, 2007) for variogram

declustering. Synthetic and realistic examples confirm this improvement.

2.8 Sill of the Declustered Variogram

The sill of the declustered variogram may be different than the sill of the experimental
variogram (Figure 2.6) due to the unequal weighting of the variogram pairs. The sill of
the experimental variogram is important for variogram standardization and interpre-
tation.

Figure 2.7 shows a methodology for calculating the sill of the declustered variogram.
There is a data location u in this Figure. This location could be tail or head locations
of variogram pairs for different lag distances. The corresponding variogram pairs of this

location receive the declustering weights wy, ..., w;,. Half of each variogram declustering
w1 Wn,

—,...,——). The final received weight for
2 2

weight could be assigned to location u (
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Figure 2.6: A schematic of unknown sill of the declustered sample variogram that is
likely to be less than the variance of data.

location u could be written as the average of all received weights:

21 %

n

W= (2.18)

where n is number of all variogram pairs and W is final assigned weight to location u
calculated by all variogram declustering weights. This should be done for all locations of
data. So, declustering weight for each data location comes from variogram declustering.
These weights should sum to 1. The resulting variance using these declustering weights

is the approximate sill of the declustered sample variogram:
nd nd
m = Z Wz , of= Z W;(zj —m)? (2.19)
j=1 j=1

where z; , j = 1,...,nd are data values and W; are the weights from Equation 2.18
for each location u of data. o? is the variance of data by the variogram declustering

weights. This is the sill of the declustered variogram.

2.9 Numerical Approach

The applicability of the proposed variogram declustering approach is now verified by

considering some numerical examples. Figure 2.8 shows a two-dimensional sampling
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Figure 2.7: Schematic of variogram declustering weights assigned to data location u.

data configuration with 100 irregularly spaced data locations. Data values at these
locations are drawn by LU unconditional simulation (Davis, 1987; Deutsch & Journel,
1998) of a stationary random field having an isotropic exponential variogram model

with range of 25m and sill 1.
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Figure 2.8: Synthetic data set with 100 data locations.

To assess the quality of variogram estimators (experimental and declustered sample
variograms), 100 realizations at each data location are constructed. Then, the experi-
mental and declustered sample variogram are calculated for each realization, and the

distribution of each lag is built. The variance of each lag distance of these variograms
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are compared with each other since the means are approximately equal, converging to
the pre-specified variogram model after 100 realizations. The lower variance, the more
precise the variogram estimator.

For comparison, both the experimental and declustered sample variograms are cal-
culated after weighting the data locations by cell declustering technique (Deutsch,
1989; Journel, 1983) and normal score the data using declustering weights. The ex-
perimental variogram is standardized by the variance of data with the declustering
weights. The fitted variogram model for each realization is attained by autofitting
(auto variogram modeling) a variogram model to the experimental variogram. The
declustered variogram should be standardized based on the calculated variance by the
variogram declustering weights for each location. This is for making the experimental
variogram and the declustered variogram consistent (both have sill 1) to verify the
variogram declustering technique. Cell declustering of the data location leads to the
variance lower than 1. This variance is used to standardize the experimental variogram
of normal score data using cell declustering weights. By declustering the experimen-
tal variogram, the variance will be lower again. This variance could be calculated by
Equation 2.19 and used to standardize the declustered variogram to sill 1. Figure 2.9
shows the variance of the experimental and declustered sample variograms for seven lag
distances 1m, 3m, 6m, 9m, 12m, 15m, 18m after LU unconditional simulation of data
locations in Figure 2.8 for 100 realizations. The variance of the declustered variograms
for all lag distances is much lower than the experimental variograms. This difference is
going to increase from short to large lag distances. Hence, variogram declustering leads
to a more accurate variogram. According to this example, the variance of the declus-
tered variogram decreases as the lag distance increases, and it reaches to a maximum
variance of 0.032 at lag distance 6m and then it stays constant until a lag distance 18m
(see Figure 2.9). It can be concluded that in general the declustered variogram is more

reliable.
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Figure 2.9: Variance of the experimental and declustered sample variograms for seven
lag distances 1m, 3m, 6m, 9m, 12m, 15m, 18m achieved by 100 realiza-
tions of LU unconditional simulation for data locations in Figure 2.8.

2.10 Synthetic Examples

Two synthetic two-dimensional data sets are considered to assess the proposed vari-
ogram declustering technique by comparing the experimental and the declustered sam-
ple variograms. The methodology of Emery and Ortiz (2005, 2007) is compared with
OGK. For this assessment, reference normal score data is first simulated and then
some data are sampled from the reference data. The experimental and declustered
variograms of the sampled data are compared with the variogram of the reference data,
which is the true variogram of the sampled data. Both the experimental and declus-
tered variograms are calculated after weighting the well data (sampled data) by cell
declustering technique (Deutsch, 1989; Journel, 1983) and normal score the data using
declustering weights. The variograms are standardized.

Figure 2.10 shows the first example. Figure 2.10-a is the simulated reference data
and Figure 2.10-b is location map of 100 data sampled from the reference data. The ex-
perimental variogram and the declustered variogram of the sample data in Figure 2.10-b
are calculated for azimuth 0° 4+ 10°. A variogram model is fitted to the experimental
variogram. This fitted variogram model is used for variogram declustering. Figure 2.11

shows the comparison between the experimental and declustered sample variograms
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with the real variogram of the sample data. The real variogram is the variogram of
the reference data in Figure 2.10-a for azimuth 0°. Figure 2.11 demonstrates that the
declustered variogram by OGK is closer to the real variogram, it eliminates noise and
unrealistic fluctuations in experimental variogram especially after a lag distance 12m.
It shows the trend in the reference data at an azimuth of 0°. The declustered sample
variogram by Emery and Ortiz (2005, 2007), which is standardized by the variance of

normal score data after cell declustering, is far from the real variogram.
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Figure 2.10: a) Reference data. b) Location map of 100 samples taken from the
reference data (a).

Figure 2.12 shows a second example with 150 samples. Similar to the previous exam-
ple, variograms are calculated for azimuth 0° 4+ 10°. Figure 2.13 shows the comparison
between the experimental and declustered variograms with the real variogram. Figure
2.13 confirms that the declustered variograms work and it shows that for this example,
OGK and the approach by Emery and Ortiz (2005, 2007) are quite similar although
OGK is slightly closer to the real variogram. The right hand side covariance matrix in
this case are similar or close to zero. Moreover, the sill of the declustered variogram is
approximately equal the variance of the normal score data after cell declustering. This
data set shows that under certain conditions OGK approach may give similar results
as approach of Emery and Ortiz (2005, 2007).

The declustered variogram (both OGK and methodology of Emery and Ortiz (2005,
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Figure 2.11: Comparison between the experimental and declustered sample vari-
ograms of data (normal score) in Figure 2.10-b for azimuth 0° 4+ 10°
with their real variogram (variogram of the reference data in Figure

2.10-a).

2007)) shows the zonal anisotropy in the reference data for azimuth 0°; and it is different

from the fitted variogram. Therefore, the declustered variogram does not necessarily

return the fitted variogram just because it is used for the declustering weights.
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Figure 2.12: a) Reference data. b) Location map of 150 samples taken from the
reference data (a).
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Figure 2.13: Comparison between the experimental and declustered variograms of
data (normal score) in Figure 2.12-b for azimuth 0°+10° with their real
variogram (variogram of the reference data in Figure 2.12-a).

2.11 Realistic Examples

2.11.1 The Cluster Data Set

The data ”cluster.dat” taken from the literature (Deutsch & Journel, 1998) is now con-
sidered. The exhaustive sampling of this data set called "true.dat” is available. Hence,
it can be compared with the experimental and declustered variograms. The experimen-
tal and declustered variograms are calculated and standardized after weighting the data
by the cell declustering technique and normal score transferring the data using declus-
tering weights. For this example, variogram declustering by two-point cell declustering
approach (Richmond, 2002) is also calculated although not recommended by Emery
and Ortiz (2007). Two-point cell declustering (TPCD) weights for each variogram pair
is calculated by averaging cell declustering weights of tail and head locations of that
pair. The sum of declustering weights is 1.

Figure 2.14-a shows location of cluster data with 140 samples. Figure 2.14-b shows
exhaustive sampling of cluster data with 2500 samples. The unit of measurements for

coordinate system is assumed kilometer (km). Figure 2.15 shows the declustered vari-
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ograms by Emery and Ortiz (2005, 2007), OGK, TPCD and the experimental variogram
versus real variogram for azimuth 0° 4+ 20°. The fitted variogram model is isotropic
with two spherical structures with variance contributions 0.44 and 0.55, and ranges of
10km and 20km for each structure, and nugget effect 0.01. The result is similar to the
synthetic examples. The declustered sample variogram by OGK is a better estimate
of the true variogram. TPCD approach is close to the experimental variogram. The
declustered sample variogram by Emery and Ortiz (2005, 2007) is lower than the real
variogram due to the fact that it is standardized with the variance of normal score
data, which is higher than the variance of the declustered variogram.

Uncertainty in the estimated variogram (declustered variogram) is very important
and should be incorporated into final modeling. The variance of each lag distance
could be calculated by Equation 2.9 for OGK, and =% by Emery and Ortiz (2005,
2007) derived the estimation variance in terms of disjunctive kriging. p is Lagrange
parameter in Equation 2.17. Figure 2.16 shows variogram uncertainties (variances)
of each lag distance for these two approaches. OGK gives a reasonable variogram
uncertainty while the methodology of Emery and Ortiz (2005, 2007) leads to a very
high uncertainty. Incorporating this high uncertainty into geostatistical modeling could

bias the results.
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Figure 2.14: a) Location map of cluster data (140 samples). b) Exhaustive sampling
of cluster data with 2500 samples.
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Figure 2.16: Variogram uncertainty (variance) of each lag distance for cluster data
resulted by Emery and Ortiz (2005, 2007) and OGK (Equation 2.9).

2.11.2 The Jura Data Set

Another realistic example is considered although there is no exhaustive sampling to

compare the declustered variogram with the real variogram. The Jura data set was

collected by Swiss Federal Institute of Technology at Lausanne. There are 359 data

locations for concentration of seven heavy metal in the topsoil (Goovaerts, 1997). Var-

iogram declustering is considered for the variables nickel (Ni), lead (Pb) and zinc (Zn)
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for azimuth 0° & 20° and azimuth 90° + 20°. The experimental and declustered var-
iograms are calculated and standardized after weighting the data by cell declustering
technique and normal score the data using declustering weights. Only OGK approach
is considered for variogram declustering of the Jura data set as it was showed that
this approach is a better estimation of the real variogram in comparison with other
techniques.

Figure 2.17-a shows location map for nickel (Ni) concentration and Figures 2.17-b
and ¢ show the experimental, fitted and declustered variograms for azimuth 0° £ 20°
and azimuth 90° £ 20°, respectively. The declustered variograms especially for azimuth
0° (Figures 2.17-b) improves the experimental variogram. The declustered variogram
is fit again and used for geostatistical modeling. Figures 2.18 and 2.19 show location
maps (a) and the declustered variograms for lead (Pb) and zinc (Zn) concentrations
for azimuth 0° £ 20° (b) and azimuth 90° &+ 20° (c). The new fitted variograms to
the declustered variograms for azimuth 0° will have lower ranges than the primary
fitted variograms, and higher ranges for azimuth 90° for all metal concentrations. It
demonstrates again that the declustered variogram does not necessarily return the fitted

variogram.

2.12 Remarks

The weighted experimental variogram is a useful tool to improve the determination of
the spatial structure of a data set in the presence of preferential sampling. Ordinary
global kriging (OGK) of the entire domain is proposed for declustering variogram pairs.
Global kriging is applied on the variogram pairs of each lag distance by fourth order
covariance. The value of each pair is assigned as half of the quadratic differences of
tail and head values. Global Kriging estimates the average of all variogram pairs for
the entire domain. This process is repeated for variogram pairs of all lag distances
to decluster the variogram. Although only 2D data sets are considered to assess the
methodology, it can be applied to 3D data with vertical or horizontal wells. The declus-

tered 3D variogram is achieved by declustering the horizontal and vertical variograms.
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Figure 2.17: a) Location map of nickel (Ni) concentration for the Jura data set. b)
The experimental and declustered variograms (normal score) for az-
imuth 0°4£20°. c¢) The experimental and declustered variograms (normal
score) for azimuth 90° 4+ 20°.

The new fitted variogram to the declustered horizontal and vertical variograms (3D
variogram model) is used in geostatistical modeling.

The following Steps are required for the proposed framework of variogram declus-
tering by global kriging: 1) Univariate declustering of the data (cell declustering is
recommended) and transform to normal score using declustering weights. 2) Check
multiGaussianity (Von Eye & Bogat, 2004). Gaussianity of the univariate distribu-

tion is not enough. Fourth order moments are calculated based on multigausianity
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assumption although this is not a strong assumption. There are some tests to check
biGaussianity (Deutsch & Deutsch, 2009). 3) Calculate the experimental variogram
for the desired direction and fit a preliminary variogram model to that direction. It
is recommended to have a directional fitted model for variogram declustering of each
direction. The variogram declustering weights to each pair are influenced by the var-
iogram ranges as well as the configuration of pairs. Using a fitted variogram seems

circular for variogram estimation. However, the synthetic and realistic examples show
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a) Location map of zinc (Zn) concentration for the Jura data set. b) The
experimental and declustered variograms (normal score) for azimuth
0°+£20°. ¢) The experimental and declustered variograms (normal score)
for azimuth 90° £ 20°.

that the declustered variogram is not necessarily close to that fitted variogram; the

fitted variogram is only used for the weighting and is not used directly as a target for

declustering.

The fourth order covariance matrix between variogram pairs is positive definite.

However, as far as programming is concerned, this covariance may be close to a singular

matrix in presence of exhaustive variogram pairs (more than 5000 pairs). This happens

because of numerical precision. One solution is to use Higham’s algorithm (Higham,
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1988) to compute a nearest symmetric positive semidefinite matrix. Another simple
solution is to add a very small value to the diagonal elements before solving the ordinary
kriging. This small value will stabilize the results with no significant affect on the
declustering weights.

The global kriging is CPU intensive with very large sets of data because of matrix
inversion (Neufeld & Wilde, 2005). This problem is worse for variogram declustering
because of using the fourth order covariance and solving the covariance matrix for each
lag distance. This method is currently applicable with less than a few thousand vari-
ogram pairs. It would not be advisable to consider variogram declustering in presence
of more than 10000 variogram pairs for each lag distance. Furthermore, the CPU time
goes up with increasing the number of lag distances and discretization of the area to
variogram pairs for calculating the average fourth order covariance (see Figure 2.3).
In general, less than 10 lag distances and 1000 discretization points are reasonable for

variogram declustering.
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Chapter 3

Estimation of Variogram
Uncertainty and Transfer to
Geostatistical Modeling

Variogram modeling fits an analytical model to the experimental variogram computed
from the data to filter noise in the experimental points and provide a model for all
possible distances and directions (Chiles & Delfiner, 1999; Cressie, 1985; Genton, 1998;
Gringarten & Deutsch, 2001; Pardo-Igtizquiza & Dowd, 2001). This analytical model
is used for kriging or simulation. Although variogram declustering can remove some
noise and artifacts in the experimental variogram (Chapter 2), there is unavoidable
uncertainty associated with the experimental variogram. This variogram uncertainty
will be calculated and incorporated into geostatistical models.

Although there are many references on calculating and using the variogram, few
authors have considered variogram uncertainty. Bogaert and Russo (1999); Webster
and Oliver (1992) measure the variogram uncertainty by sampling schemes. Cressie
(1985); Marchant and Lark (2004); Ortiz and Deutsch (2002); Pardo-Igizquiza and
Dowd (2001) have suggested calculating variogram uncertainty by the covariance matrix
of the experimental variogram resolved by quadratic covariances (Matheron, 1965).

This Chapter presents a new approach of quantifying variogram uncertainty. The
Chapter begins by discussing two variogram uncertainty approaches and their lim-
itations. A new approach of quantifying variogram uncertainty is proposed, and a

methodology to transfer this uncertainty through geostatistical modeling is developed.
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Synthetic and realistic examples are presented.

3.1 Variogram Uncertainty Approaches and Limitations

3.1.1 Fourth Order Moments (FOM)

Marchant and Lark (2004); Ortiz and Deutsch (2002) have derived the variance of
each lag distance for a multivariate Gaussian field in terms of fourth order moments.
Figure 3.1 shows the fourth order covariance between two variogram pairs. Fourth
order covariance between two variogram pairs ” Pair p” and ”Pair q” with lag distances

h, and h, in Figure 3.1 is written as:

F(p—q) = Cov{(y1 — y2)*, (y3 — y4)*} (3.1)
100 .
° ° ® Pairp
o (e] VIR
o ° 9
g ‘h Pairq
e —)}2 £ :
£ e (e} o
S Y o
hp
o (o] .
Data Location
y] Q o
0
0 East (m) 100

Figure 3.1: Fourth order covariance F(p-q) between two variogram pairs ” Pair p” and
"Pair q” with lag distances h;, and hy.

under the multivariate Gaussian distribution, any fourth order moment can be com-
puted by the pairwise covariances (Matheron, 1965). The fourth order covariance was
discussed in Chapter 2, Section 2.5. The average fourth order covariance between var-
iogram pairs of each lag distance is proportional to variogram uncertainty (variance).
This is the diagonal elements of the average fourth order covariance matrix between

lag distances (see Equation 3.3). A formula for the average fourth order covariance
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between the pairs of the experimental variogram is written as:

- 1 n(hp) n(hg)
F=— Fi—3j) ,i=1,.,nMh,) , j=1,..,nh 3.2

where n(h,) and n(h;) are number of variogram pairs for lag distances h, and h,.
F(i—-3j),i=1,.,nhy,), 7 =1,..,n(hy) are the fourth order covariances. The

average fourth order covariance matrix between lag distances is written as:

Fl,l .. Fl,n

Fl=1] . . (3.3)
Fn,l .- FIL.TL

where n is number of lag distances. ﬁj, 1,7 = 1,...,n are the average fourth order
covariance. For example, F} o is the average fourth order covariance between variogram
pairs of lag distance 1 and lag distance 2. The diagonal elements of this covariance
matrix ﬁ ..., F,,, are the average fourth order covariances between variogram pairs
to themselves. Since the experimental variogram (semivariogram) is calculated as half
the average squared difference between points, the variance of each lag distance is

calculated by:

Var{2y(h)} = F;; — Var{7(h)} = i=1,...,n (3.4)

where Var {7(h)} is the variance of each lag distance. The mean of each lag distance
is the fitted variogram model y(h). The calculated variogram uncertainty by this
approach is very high (for more details and examples see Ortiz and Deutsch (2002)).
The high variogram uncertainty is because of no conditioning and not considering
the degrees of freedom of variogram pairs for calculating variogram uncertainty. The
proposed methodology developed below calculates the degrees of freedom of variogram

pairs for quantifying variogram uncertainty.
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3.1.2 Global Kriging of Variogram Pairs

The ordinary global kriging (OGK) was discussed in Chapter 2 to decluster the exper-
imental variogram and calculate variogram uncertainty (variance). Variogram uncer-
tainty by simple global kriging (SGK) can also be calculated (Rezvandehy & Deutsch,
2016). Compared to OGK (see Equation 2.3), SGK requires a stationary mean and it
does not enforce sum of the weights to 1. The simple global kriging (SGK) estimator

of z for the entire domain A is written:

Ziar —m= Y N[ Z(us) —ml (3.5)

a=1

m is a stationary mean in the kriging system and n is number of data. ASK is the
weight of global mean and variance assigned to each datum z(u,). The weight is

obtained by solving the following system of linear equations:

Y AKCug —un) =Clug—A4) , a=1.n (3.6)
B=1

where C(ug — u,) is the covariance between locations ug and u,, and C(uq — A) is
the average covariance between each data location u, and the whole area A. The

estimation variance of SGK is written as:

Var{Ziax} = C(A— A) Z)\SGK C(ug — A) (3.7)

where C'(A — A) is the average covariance of the entire area to itself (Goovaerts, 1997).

SGK of variogram pairs for lag distance h is computed by:

Z AGK [ Xan(a) — v(h)] (3.8)

where n(h) is number of variogram pairs for lag distance h, and ~(h) is the fitted
variogram model assumed as the stationary mean (see Equation 3.5) of lag distance h.

)\gcﬁK is the weight for pair a and lag distance h, and X, n(u) is half of the quadratic
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differences of the pair values (see Equation 2.6). The system of linear equations of SGK

for obtaining )\gc};f{ can be written as:

n(h)
Z NG F(Xgn(u) — Xon(w) = F(Xan(w) — 4) , a=1.n(h)  (3.9)

where F(Xgp(u) — Xq,n(u)) signifies fourth order covariance between pairs X, n(u)

and Xgn(u) (left hand side), and F(Xon(u) — A) implies the average fourth order
covariance between each pair X, ,(u) and the entire domain A (right hand side) (see

Figure 2.3). Variogram uncertainty of each lag distance h is written as:

Var {2X;} = F(A - A) — ZASGK an(w) — A) = Var {27(h)}
(3.10)

— Var{y(h)} = - x (Var{2X}})

B~ =

where F(A — A) is the average fourth order covariance of the entire domain A to itself.
The variogram distribution of each lag distance has a mean of X} and variance of
Var{7y(h)} (see Equation 3.10). The simple kriging estimator is unbiased (Goovaerts,
1997):

E{Xj(u) = Xp(w)} = Xj, —v(h) =0 —  Xj =~(h) (3.11)

where X} (u) is the estimated variogram pair for each location u and Xy (u) is the
unknown value for lag distance h. The expected value of the estimated variogram
pair X} is calculated by global kriging (see Equation 3.8). The expected value of the
unknown value is the fitted variogram model v(h) for each lag distance h. The fitted
variogram model 7(h) is assumed as the mean of the variogram distribution for each

lag distance instead of X} .

3.1.2.1 Small Example of Variogram Uncertainty by Global Kriging

A small 2D data set is considered to calculate variogram uncertainty by global kriging
approach (OGK and SGK). Figure 3.2 shows a synthetic data set with twelve data

locations which leads to seven variogram pairs for lag distance approximately 10m and
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Figure 3.2: Synthetic data set with twelve well locations and seven variogram pairs
for lag distance approximately 10m and azimuth 0° £ 10°.

azimuth 0° & 10°. The fourth order covariance matrix of these pairs for calculating

SGK weights can be written as:

[F(1-1) F1-2) F(1-3) Fl—4) F1-5 Fl-6) Fa-71] [n] [FG=2)
F(2-1) F(2-2) F(2-3) F(2-4) F@2-5) F(2-6) F2-7) Ao F(2-A)
F(3-1) F(3-2) F(3-3) F(3-4) F@B3-5) F(B3-6) F(3-7) A3 F(3—A)
F(4—1) F(4—2) F(4—3) F4—4) FA-5) F(4-6) FA-7)|x |m| = |Fa-a)| (3.12)
F(5-1) F(5-2) F(5-3) F(-4) F(-5 F(5-6) F(5-7) As F(5—-A)
F(6—1) F(6-2) F(6-3) F(6—4) F(6-5) F(6—-6) F(6-7) A6 F(6-A)
|F(T—1) F(7T-2) F(7T-3) F(T—4) F(71-5) F(71-6) F(1-7)] |M| [F(7-A4)]

where the left hand side covariance implies the fourth order covariance matrix between
seven pairs written in simple kriging format. The right hand side covariance is the
average fourth order covariance of each pair to the entire domain. This covariance
could be calculated by discretizing the entire study area for the desired lag distance
and calculating the fourth order covariances by a discretized approximation (see Figure
2.3). A1 to A7 are the weights by SGK approach. These are calculated by solving

Equation 3.12. The fitted variogram model is assumed an isotropic exponential model
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with range of 25m and sill 1, the left hand side covariance is calculated as:

0.383 x 1075
0.000513
0.000917

0.00163 0.0022
0.598 x 10~* 0.329 x 10~

0.198 x 10™* 0.279 x 10~°

0.687 x 107> 0.778 x 10~* 0.189 x 1074

3.91 0.00375 0.000601
0.00375 3.95 2.43
0.000601 2.43 3.95

(3.13)

3.93 0.137 x 1075 0.224 x 10~* 0.367 x 10~*
0.137 x 1075 3.93 0.00792 0.0631
0.224 x 107 0.00792 3.93 2.44
0.367 x 10~* 0.0631 2.44 3.99
0.383 x 1075 0.000513 0.000917  0.687 x 1073

0.0163 0.598 x 107* 0.198 x 107* 0.778 x 107*
| 0.022 0.329 x 107%  0.279 x 107> 0.189 x 104

and by calculating right hand side covariance, SGK weights for variogram pairs are

achieved:

_0.00250_
0.00285
0.00298
0.00300| = A1 = 0.006, A2 = 0.007, A3 = 0.005, A4 = 0.005, A5 = 0.008, A\ = 0.005, A7 = 0.004
0.00316

0.00288

_0.00283_
(3.14)

the difference between the weights is quite small and do not sum to 1. Therefore, SGK
is not a viable technique for variogram declustering. Variogram uncertainty by SGK is

calculated as:

Var (3(h)} = 3 x Var {23} = 3 x (F(A — A) = S0, AGK (A (Ko (w) — 4)) = 2.6 x 107

(3.15)
where F(A — A) = 1.1568 x 1072, which is the average fourth order covariance of the
entire domain A to itself. If OGK is applied on the data set of Figure 3.2, the weights

and Lagrange parameter are achieved as:

A = 0.182, A0 = 0.183, A3 = 0.115, Ay = 0.111, A5 = 0.185, \g = 0.113, Ay = 0.113, s = —0.69
(3.16)

the calculated weights are reasonable in terms of declustering: pair 5 which is not
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clustered with other pairs receives the highest weight (A5 = 0.185) followed by pairs 2
(A2 = 0.183) and 1 (A\; = 0.182). According to these weights, variogram uncertainty
by OGK is calculated as:

Var{7(h)} = 1.37 x 1072 (3.17)

the variance of OGK is much higher than SGK (more than five times) due to not
assuming a known mean value. The big difference between the calculated variogram
uncertainty by OGK and SGK signifies that the global kriging approach is not robust.
Global kriging is dependent to the size of domain. The higher domain, the lower
variogram uncertainty. This arises a challenge for choosing the correct size of the
domain. Another challenge faced by global kriging is the CPU time for calculating
the average fourth order covariance for the entire domain (right hand side covariance
matrix). A new robust approach of quantifying variogram uncertainty independent of

the domain size is proposed in this Chapter.

3.2 Shape of the Variogram Distribution

The shape of the distribution of the variogram value for a particular lag vector is impor-
tant for sampling and transferring uncertainty to downstream calculations (see Section
3.4, Figure 3.6). Ortiz and Deutsch (2002) assume the shape to be approximately
Gaussian. Koushavand, Ortiz, and Deutsch (2008) assume a Gamma distribution.
Khan and Deutsch (2016) and Marchant and Lark (2004) consider a Chi-square dis-
tribution. A numerical approach is implemented in this Section to define the shape
of the variogram distribution. Three distributions are considered: Gaussian, Gamma
and Chi-square distributions are fitted to the direct observation of variogram distri-
bution (target distribution). All distributions have the same mean and variance. The
Gaussian distribution is defined by the mean and variance.

The following notation for the Gamma distribution is from the NIST (National

Institute of Standards and Technology) Engineering and Statistics Handbook available
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on the web (see reference list (NIST, n.d.)):

(5 eap(—5")
BT(v)

flx) = x> u; v, 0 >0 where T'(y) = /OO t* et (3.18)
0

where f is the scale parameter, p is the location parameter, v is the shape parameter
and I' is the Gamma function. The Gamma distribution is defined by these three
parameters (8,7,u). The Gamma distribution is closely related to the Chi-square
and Wishart distributions (Johnson, Kotz, & Balakrishnan, 1994; Johnson & Wichern,
2002).

According to Khan and Deutsch (2016), the Chi-square distribution of each lag
distance (f(7(h))) is proportional to:

7(h)

FEW) ~ Xbor X 57 (3.19)

where x%,, - is the Chi-square distribution with a degree of freedom (DoF) and ~(h)
represents the base case or reference variogram model fitted to the experimental vari-
ogram. The only unknown parameter is DoF.

A simulation approach is considered to directly observe the variogram distribution
(target distribution). Twenty variogram pairs with lag distance 4m are taken from an
area assumed to be 18m by 18m (see Figure 3.3). 10000 unconditional realizations
are generated by sequential Gaussian simulation (SGS) (Deutsch & Journel, 1998) of
a stationary random field having an isotropic exponential variogram model with range
of 12m and sill 1. The experimental variogram of each realization is computed to
build the direct observation of variogram distribution for lag distance 4m. The best
Gaussian, Gamma and Chi-square distributions are fit. All distributions should have
approximately the same mean and the same variance as experimentally observed. The
Gamma distribution is fit iteratively (20000 iterations) with different 3, v, u to find
the closest fit to the target distribution. The Chi-square distribution is calculated by
Equation 3.19 with v(h) = 0.63, which is the fitted variogram model for lag distance

4m, and for different degrees of freedom (from 1 to 100) to find the distribution that
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has the lowest difference with the direct variogram distribution.

Figures 3.4-a, b and ¢ show the best fit Gaussian, Gamma and Chi-square distri-
butions. The Gamma distribution is defined by § = 0.116, v = 3.528, u = 0.217. The
Chi-square distribution is defined by a DoF=17. The red curve is the fitted distribu-
tion. The error (mismatch) between the direct variogram distribution and the fitted
distribution is shown, which is calculated by the sum of squared differences between the
fitted and direct variogram distributions. The error is high (1.285) for the Gaussian dis-
tribution. In general, the square of a Gaussian statistic is not Gaussian. The Gamma
and Chi-square distribution are similar. However, the error of the Chi-square distribu-
tion (0.011) is lower than the Gamma distribution (0.263). Moreover, the Chi-square
distribution is simpler to build because of only one parameter (see Equation 3.19)
whereas the Gamma distribution requires three parameters (,, . Thus, the shape of
the variogram distribution is assumed to be a Chi-square distribution achieved by only
DoF of each lag. Variogram uncertainty (variance) of each lag distance only requires
the DoF to construct the Chi-square distribution for calculating variogram realizations

(see Figure 3.6).
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Figure 3.3: 2D synthetic data set with twenty variogram pairs for lag distance 4m.
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Figure 3.4: Gaussian (a), Gamma (b) and Chi-square (c) distributions fitted to the
direct variogram distribution. The Chi-square distribution is calculated
by DoF= 17, and the Gamma distribution is calculated by g = 0.116,
v =3.528, up = 0.217.

3.3 Variogram Uncertainty by Direct Calculation of De-
grees of Freedom (DoF)

Since the shape of the variogram distribution for each lag distance is reasonably a Chi-
square distribution, the new approach of quantifying variogram uncertainty is proposed
by the theoretical calculation of degree of freedom (DoF) for variogram pairs. This is
called the DoF approach for quantifying variogram uncertainty. The mean of a Chi-

square distribution for variogram distribution of each lag distance is y(h):

B0} ~ B {xhar x gk} =(h) (3.20)
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because the mean of x%, . is DoF. v(h) is second order moments (variogram) from
fitting a variogram model to a sample variogram computed from the data (Chiles &
Delfiner, 1999; Cressie, 1985; Pardo-Igizquiza & Dowd, 2001). The variance of the
Chi-square distribution of each lag distance (Var {f(7(h))}) is written as:

2 x y(h)?
DoF

)2 x Var {XQDOF} = (3.21)

Var GO} ~ Var {xbur x Sk = (20

because Var {XZDOF} is 2 x DoF. The only unknown parameter for calculating vari-
ogram uncertainty (variance) is DoF, which is the effective or independent number of
variogram pairs. A theoretical derivation for calculating DoF is given in Bretherton,
Widmann, Dymnikov, Wallace, and Bladé (1999) achieved by covariance matrix of data

locations:
(Xizy Cii)?
Z:‘L:I Z?:l Ci2j

where Cj; and Cj; are diagonal elements and off-diagonal elements of a covariance

DoF = (3.22)

matrix between data locations (n), respectively. The diagonal elements of a covariance
matrix are the covariance of each data location to itself that are the variance of data.
Equation 3.22 gives theoretical DoF for data locations. Since there are pairs instead of
locations for the experimental variogram, fourth order covariances are used in Equation

3.22 to calculate DoF of each lag distance:

(W F(i —4))?

DoF =
n(h n(h . .
S s W R - )2

(3.23)

where n(h) is number of variogram pairs for lag distance h and F'(i — i) is the fourth
order covariance of pair ¢ to itself, and F(i — j) is the fourth order covariance between
pairs ¢ and j. By calculating DoF of each lag distance, the variogram distribution and
variogram uncertainty is achieved.

A synthetic 2D data set is considered to calculate variogram uncertainty for a lag
distance by DoF approach. Figure 3.5 shows a 2D data set with twenty eight data
locations which leads to twenty one variogram pairs for a lag distance approximately

10m and azimuth 0° £+ 15°. DoF (Equation 3.23) and variogram uncertainty (variance)
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(Equation 3.21) of each lag distance are calculated for four variogram models with
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Figure 3.5: 2D synthetic data set with forty two data locations and twenty one vari-
ogram pairs for lag distance approximately 10m and azimuth 0° + 15°.

ranges of 20m to 50m to analysis the effect of variogram range on variogram uncer-
tainty. The variogram model is an isotropic spherical model with sill 1 (no nugget
effect). Table 3.1 shows the results. As the range of the variogram model increases,
the effective number of pairs (DoF) decreases. This leads to a higher variogram uncer-
tainty for a high range variogram, and a lower variogram uncertainty for a low range
variogram (see Equation 3.21). This is similar to the spatial bootstrap (SB) technique
for quantifying histogram uncertainty. The spatial bootstrap gives high and low his-
togram uncertainties (uncertainty in the mean and variance) for high and low variogram
ranges, respectively; however, Equation 3.21 shows that small number of DoF for high
variogram range and large number of DoF for low variogram range are relatively com-
pensated by lower and higher v(h). «y(h) is the mean of the Chi-square distribution
for each lag distance: higher variogram range leads to lower mean of the Chi-square
distribution, the lower the mean of a distribution, the lower the variance and vice versa.
This is the reason the calculated DoF's change from 22 (range 20m) to 3 (range 50m)
which is a noticeable difference while the calculated variogram uncertainties change
from 0.04297 (range 20m) to 0.05841 (range 50m).

DoF approach of quantifying variogram uncertainty is more efficient than FOM
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Table 3.1: Variogram uncertainties (variances) for variogram pairs of Figure 3.5
achieved by variogram models with ranges of 20m to 50m.

Variogram Ranges (m) 20 30 40 50

~(h) 0.68750  0.48148  0.36719  0.29600

DoF 22 10 5 3
~ 2x7(h)?

Var {f(A(h))} ~ Z30° 004297 0.04636  0.05393  0.05841

approach (Section 3.1.1) (Marchant & Lark, 2004; Ortiz & Deutsch, 2002) and it ac-
counts for the degree of freedom of variogram pairs to directly build the Chi-square
distribution. Compared with global kriging technique (Section 3.1.2), DoF approach is
independent of the domain size and has less CPU time. Although the calculated var-
iogram uncertainty by DoF approach is reasonable, it is not conditioned to well data.
Thus, it leads to high variogram uncertainty and can be assumed as the prior uncer-
tainty in the variogram (similar to spatial bootstrap as the prior uncertainty in the
histogram (Chapter 6)). The high variogram uncertainty is decreased in geostatistical

modeling because of conditioning (see next Section).

3.4 Variogram Uncertainty in Geostatistcial Modeling

The DoF approach of quantifying variogram uncertainty calculates the degrees of free-
dom of each lag distance to build the Chi-square distribution. After building the
Chi-square distribution of each lag, variogram realizations should be drawn from the
uncertainty interval of the variogram lags (Figure 3.6) and used in geostatistical sim-
ulation to incorporate variogram uncertainty in the final model. These realizations
should preserve the correlation between lags. Otherwise, the variogram realizations
will be noisy and unrealistic. LU simulation (Deutsch & Journel, 1998) can be applied
with the correlation matrix of lag distances. The correlated Gaussian realizations are
back-transformed to the marginal Chi-square distribution of each lag distance. This

approach was partially discussed by Koushavand et al. (2008).
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Figure 3.6: Schematic of six variogram realizations drawn from the variogram distri-
bution of lag distances: the blue curve is the Chi-square distribution for
each lag distance, the red dot is the mean of the each Chi-square distri-
bution (the fitted variogram model) and the gray lines are the correlated
variogram realizations.

3.4.1 LU Simulation and Back-transformation

Realizations of LU simulation (Deutsch & Journel, 1998) preserve the correlation be-
tween variables. In the present context, LU simulation can be applied with the correla-
tion matrix of the variogram lag distances. LU realizations have a multivariate Gaussian
distribution and can be back-transformed to the marginal Chi-square distribution for
each lag distance approximately preserving the final correlation values. Figure 3.7-a
shows the correlation matrix p between lags. The diagonal elements of this correlation
matrix is 1, which is the correlation of each lag to itself. Figure 3.7-b shows LU sim-
ulation of the correlation matrix. Cholesky decomposition of the correlation matrix L
is multiplied by an uncorrelated standard normal deviate w = [wy....w,] (mean=0,
standard deviation=1) to achieve the correlated Gaussian realization y = [y;.....y,]-
Where n is the number of lags. The Gaussian distribution of each lag distance is com-
puted by generating many LU realizations (say 100 realizations). Then, the values

from the Gaussian distribution are back-transformed to the Chi-square distribution of
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each lag distance by quantile-quantile transformation (see Figure 3.8). The procedure

is summarized by:

1. Define a stationary covariance function C(h) that comes from the fitted variogram
model to the experimental variogram (y(h)) (after variogram declustering in case

of preferential sampling).

2. Define the Chi-square reference distribution of each lag distance Fj por(z), | =

1,...,n. Where n is the number of lag distance.
3. Construct the spatial lag-to-lag correlation matrix p.
4. Compute the Cholesky decomposition of the correlation matrix as p = LL7.
5. Simulate a vector of uncorrelated standard normal deviate w.
6. Generate a vector of correlated Gaussian realization y = Lw.

7. Lookup through the standard Gaussian CDF value of each lag distance p = G(y).

Where GG is the standard normal distribution.

8. Lookup the Chi-square distribution of each lag distance z = Fl_[% or(P). Where z

is the Chi-square correlated realization.

Steps 5 to 6 are repeated for multiple realizations (see Figure 3.7-b). Then, Steps 7 to
8 calculate the correlated variogram realizations in Chi-square distribution (see Figure
3.8). This approach ensures the variogram realizations respect the correlation between

lag distances.

3.4.2 Correlation Matrix of Lag Distances

The correlation matrix between lag distances p is required to simulate the correlated
variogram realizations by LU simulation. This correlation matrix could be achieved by

calculating the average fourth order covariance matrix of variogram pairs (see Equation
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A schematic illustration of quantile-quantile transformation of each Gaus-
sian realization (Real) to the Chi-square realization. The Gaussian distri-
bution of each lag distance (G(y)) is back-transformed to the Chi-square
distribution (Fj por(2)) to calculate the correlated variogram realizations.

erted to the Pearson correlation matrix:

Py

VFiix\/Fi1

Fin
VF1,1x\/Fnn
: (3.24)
Fun

V5 \ T |

Fn,l
LV Fn,nX V Fl,l
1,7 = 1,...,n are the average fourth order covariances between lag dis-

number of lag distance). Equation 3.24 is the correlation matrix for

isotropic or omnidirectional variogram where only one experimental variogram is cal-
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culated. In case of an anisotropic variogram, multiple directions are considered: the
major direction of continuity and the minor direction of continuity. In this case, var-
iogram realizations should respect the cross correlation between lag distances in one
direction and the other direction. A correlation matrix between lag distances of two
directions should be calculated. This correlation matrix can be constructed by the av-
erage fourth order covariance between variogram pairs of two different directions and

converted to a correlation matrix:

VFi1x\/Fi1 b VFLIX\ Fon VCFi1x\/CF1  \CFL1ix\/CFmnm
p= vV mx'\/ Fia V mx vV Fnn V CFnnXxy/CF11 \/CF:WX V CFm.m (325)
___Cha ___Chm S R __fim
VOFLix\/Ch,: " \[CR.x\/CFmm VEVFL T VFaxVFam
 CFma CFmn Fin _ Fmm
| VCFmmx VTP NCPmm\OFrn  VFmmVFia AFum A Fom

where F is the average fourth order covariance for variogram pairs of the same direction,
and CF is the average fourth order covariance for variogram pairs of cross directions. n
is number of lags for direction 1 and m is number of lags for direction 2. For example,
I 3 signifies the average fourth order covariance between lag 1 and lag 3 of either
direction 1 or direction 2. C'F} 3 denotes the average fourth order covariance between
lag 1 of direction 1 and lag 3 of direction 2. LU simulation should be applied with
this correlation matrix to produce the correlated variogram realizations that not only
preserve the correlation for the lags of the same direction but also the correlation for

the lags of different directions.

3.4.3 Variogram Realizations for Omnidirectional Variogram

A synthetic example is considered to illustrate the calculation of variogram realizations
for an ominidirectional (azimuth 0°£+90°) variogram. Variogram realizations in case of
an anisotropic variogram is discussed in Section 3.4.4. Figure 3.9-a shows a synthetic
2D example with the area of 50m x 50m and eighty data locations. Figure 3.9-b shows

omnidirectional (azimuth 0° £ 90°) experimental variogram and the fitted variogram
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Figure 3.9: a) Synthetic example with 80 data locations. b) The experimental and
fitted variogram model for azimuth 0° £ 90°.

model with a spherical model with range of 19.5m and sill 1 (no nugget effect). The
DoF approach is applied to calculate variogram uncertainty. Figure 3.10 shows the
correlation matrix of lags by Equation 3.24. The diagonal elements of this correlation
matrix is 1 which is the correlation of each lag to itself. Figure 3.11 shows 100 correlated
experimental variogram realizations after LU simulation and back transformation to the
marginal Chi-square distribution of each lag. Figure 3.12 shows the correlation matrix
between the sampled variogram realizations for six lag distances. The diagonal elements
of this matrix shows the marginal Chi-square distribution of each lag. This matrix
clearly demonstrates that the variogram realizations honor the correlation between
lags (see Figures 3.10).

Variogram models should be fit to the experimental variogram realizations. These
variogram models can be achieved by auto variogram modeling software (Larrondo et
al., 2003). The fitted variogram models are constrained to have the same variogram
structure number, type, and nugget effect as the base case variogram model (fitted
variogram). Figure 3.13-a shows the fitted variogram realizations to the experimen-
tal realizations. Figure 3.13-b shows 100 standardized fitted variogram realizations.
These realizations are used in geostatistical modeling to incorporate variogram uncer-
tainty: one standardized variogram realization (Figure 3.13-b) is used to simulate one

realization of SGS. This process is repeated to simulate 100 realizations.
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Figure 3.10: Correlation matrix between six lag distances of the experimental vari-
ogram of Figure 3.9 by Equation 3.24.
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Figure 3.11: 100 correlated experimental variogram realizations.

The sill of the variogram realizations signifies uncertainty in the variance of the
data. The uncertainty in the variance of data is accounted for in geostatistical mod-
eling workflow by parameter uncertainty approaches such as spatial bootstrap (Khan
& Deutsch, 2016). Figure 3.14 shows the cross plot between the ranked variance un-
certainty by the spatial bootstrap and the ranked sills of the variogram realizations.
There is a very high correlation which signifies that the sill of the variogram realiza-
tions are associated to the sampled variances. Incorporating variance uncertainty in

geostatistical modeling by both spatial bootstrap and variogram uncertainty leads to
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Figure 3.13: a) 100 fitted variogram realizations to the experimental realizations. b)
Standardized to sill 1.

bias in the final model. Moreover, most geostatistical simulation techniques such as
SGS needs standard normal data with variance 1, which needs the sill of the variogram
model to be 1. Thus, all variogram realizations should be standardized to sill 1: all

variance contributions of each variogram realization are divided by the total sill of that

realization after variogram modeling.
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Figure 3.14: Cross plot between the ranked variance uncertainty by the spatial boot-
strap and the ranked sills of the variogram realizations.

Figure 3.15 shows posterior variogram uncertainty: variogram of SGS realization for
nx=>50, ny=50 of data in Figure 3.9-a after incorporating variogram uncertainty. Pos-
terior variogram uncertainty is lower than the prior variograms uncertainty calculated
by the DoF approach (Figure 3.11 and 3.13). The conditioning of data in geostatistical
modeling decreases high prior variogram uncertainty and makes the results conditioned

and more realistic.

- —— - Experimental Variogram

i Variogram of SGS Realization

—— ——
0 5 10 15 20 25
Distance(m)

Figure 3.15: Posterior variogram uncertainty (variogram of SGS realization) after
incorporating variogram uncertainty.
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3.4.4 Variogram Realizations for Anisotropic Variogram

Another 2D synthetic example is considered to generate variogram realizations in pres-
ence of anisotropy. In case of an anisotropic variogram, the major direction of continu-
ity and the minor direction of continuity are considered: variogram realizations should
respect the cross correlation between lag distances in the minor and the minor direc-
tions. Figure 3.16 shows an anisotropic data set; there is more continuity for azimuth

0° than azimuth 90°. The experimental variograms are calculated for these directions.
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Figure 3.16: a) 2D synthetic example with 80 data locations. b) The experimental
variogram and fitted variogram models (dashed lines) for azimuths 0° 4
8° and 90° £ 8°.

The fitted variogram model for this example has two spherical structures with variance
contributions of 0.48 and 0.52 (with no nugget effect). Ranges for structure 1 are 15m
and 8m. Ranges for structure 2 are 30m and 15m. Figure 3.17 shows the correlation
matrix between five lag distances of two directions by Equation 3.25. Similar to the pre-
vious example, the DoF approach is applied to calculate variogram uncertainty. Figure
3.18 shows 100 correlated experimental variogram realizations after LU simulation and
back transformation to the marginal Chi-square distribution of each lag for azimuth 0°
(Figure 3.18-a) and azimuth 90° (Figure 3.18-b). Figure 3.19 shows the correlation ma-
trix between the sampled variogram realizations for five lag distances of azimuth 0° and

azimuth 90°. The diagonal elements of this matrix shows the marginal Chi-square dis-

66



Azimuth 0

Lag2 Lag3 lLag4 Llag5

Lag 1

Azimuth 90

Lag2 Lag3

Lag4 Lag5

Azimuth O

0.13 ] 0.22 | 0.20 | 0.15

0.03

0.10

0.07 | 0.08 | 0.08

0.03

0.11

0.11

0.22

0.25| 0.26 | 0.24

0.17

0.28

0.34| 0.37 | 0.36

0.17

0.32

0.41] 0.42 | 0.40

0.10

0.22

0.28

0.32

0.33

0.33

0.40 | 0.45| 0.44

0.10

0.25] 0.21 | 0.15

0.07

0.25

0.34

0.41

0.40

0.25

Azimuth 90

0.08

0.26

0.37

0.42

0.45

0.21

0.08

Lag5 Lag4 lag3 Llag2 lagl|lag5 Lag4 lLag3 lag2 Llagl

0.24

0.36

0.40

0.44

0.15

0.41

0.41

Figure 3.17: Correlation matrix between lag distances of azimuth 0° and azimuth 90°

in Figure 3

.16.

tribution of each lag and each direction. This matrix demonstrates that the variogram
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Figure 3.18: 100 correlated experimental variogram realizations for azimuth 0° (a)

and azimuth 90° (b).

realizations respect the correlation between the lag distances of the same and different

directions (see Figures 3.17). The final 2D variogram realizations are achieved by auto
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Figure 3.19: Correlation matrix between the sampled variogram realizations for five
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cell signifies correlation coefficient between lag distances. The diagonal
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variogram modeling of each realization of major and minor directions. Standardization
could be applied on each variogram realization by dividing the variance contributions
of each variogram structure by the total sill. Figure 3.20 shows the cross plot between
the ranked variance uncertainty by the spatial bootstrap and the ranked total sills of
the variogram realizations. There is a very high correlation which signifies that the sill
of variogram realizations are associated to the sampled variances. Thus, all variogram
realizations can be standardized to sill 1 and associated to a matching SB univariate
distribution. Figure 3.21-a and b shows the standardized fitted variogram realizations

for azimuths 0° and 90°, respectively. The final 2D variogram realizations are used
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Figure 3.20: Cross plot between the ranked variance uncertainty by the spatial boot-
strap and the ranked total sills of the variogram realizations.

in geostatitsical simulation to incorporate variogram uncertainty: one standardized

variogram realization (Figure 3.21) is used to simulate one realization of SGS.
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Figure 3.21: Standardized fitted variogram realizations for azimuths 0° (a) and 90°

(b).

Figure 3.22 shows posterior variogram uncertainties for azimuths 0° (a) and 90°
(b): variograms of SGS realization for nx=50 and ny=>50 of data in Figure 3.16-a after
incorporating variogram uncertainty. Posterior variogram uncertainties are lower than
the prior variograms uncertainty calculated by the DoF approach (see Figure 3.18)
because of conditioning data.

In case of a 3D data set, the final horizontal variogram realizations are calculated
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Figure 3.22: Posterior variogram uncertainty (variogram of SGS realization) for az-
imuths 0° (a) and 90° (b) after incorporating variogram uncertainty.

and then auto variogram modeling is applied with the vertical variogram to build
the final 3D variogram realization. The vertical variogram is assumed to have no

uncertainty because of many regularly spaced data in the direction of drilling.

3.5 Realistic Example: Amoco Case Study

A real case study of the Amoco 2D data (Chu, Xu, & Journel, 1994) is considered for
quantifying variogram uncertainty and transfer through geostatistical modeling. The
variable of interest is averaged permeability (in milliDarcies) over the main reservoir
layer. Figure 3.23 shows a location map (a), histogram of the permeability (b) and the
experimental variograms for azimuths 0° and 90° with the fitted models (c). Variograms
are calculated with normal score data. The fitted variogram model has two structures
with no nugget effect; the first structure is exponential with variance contribution 0.2
and variogram range of 1000ft for both 0° and 90° directions; the second structure is
spherical with ranges of 15000t and 4500ft for 0° and 90°, respectively. There is a
zonal anisotropy for azimuth 0°. Figure 3.24 shows the correlation matrix between lag
distances of the two directions by the average fourth order covariance.

Figure 3.25 shows 100 correlated variogram realizations generated by the DoF ap-
proach in azimuths 0° and 90°. For incorporating the variogram uncertainty in geo-

statistical modeling, one standardized variogram realization (Figure 3.25-b) is used to
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Figure 3.23: Permeability (milliDarcies) variable of Amoco data set: a) Location
map. b) Histogram. c) Normal score experimental variograms for az-
imuths 0° and 90° with the fitted models.

simulate one realization of SGS for nx=100, ny=100 with normal score data per time.
Gaussian realizations are transformed back to the original units (permeability). This
process is repeated to simulate 100 SGS realizations. Figure 3.26 shows 6 SGS re-
alizations of 100 realizations with variogram uncertainty, and Figure 3.27 shows the
variogram realizations used for simulation. Figure 3.28 shows the same SGS realiza-
tions using only the reference variogram model of Figure 3.23-c. The difference between
realizations in Figures 3.26 to Figure 3.28 is due to different variogram models. The
variogram model for realization 1 has the highest variogram range of the second vari-
ogram structure for azimuth 0° among all variogram realizations; however, there is not
a high continuity for realization 1, azimuth 0° (Figure 3.26) due to the fact that the

first variogram structure has a short range and high variance contribution. There are
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Figure 3.24: Correlation matrix between the sampled variogram realizations for eight
lag distances of azimuth 0° and eight lag distances of azimuth 90°.

high continuities for realizations 2 and 5 because of high variogram ranges for azimuth
0° for both first and second structures. The conditioning of data does not allow to
reproduce the large variogram range. This leads to lower uncertainty in the posterior
variogram. Conditioning of data does not affect reproduction of a very low variogram
range. For example, a pure nugget effect variogram can be reproduced by SGS real-
izations. Figures 3.29 shows the posterior variogram uncertainty (variogram of SGS
realizations) in case of using variogram uncertainty (red dashed line) and without using
variogram uncertainty (blue line). The posterior variogram uncertainty in case of using
variogram uncertainty is just a little higher than without using variogram uncertainty.

This is due to the conditioning of the data.
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Figure 3.25: 100 correlated variogram realizations (a), fitted and standardized (b)
for azimuths 0° and 90°.

3.5.1 Impact of Variogram Uncertainty

In reservoir modeling, variogram uncertainty could be applied for resource modeling or
flow simulation (Figure 1.2 of Chapter 1); the impact of variogram uncertainty on the
uncertainty of resource estimation such as hydrocarbon initially in place (HIIP), and
uncertainty on reservoir performance (flow simulation) are considered in this Section.

For resource estimation, the posterior histogram uncertainty (histograms of real-
izations after geostatistical modeling) is very important because it is related to the
uncertainty of the mean of the variable of interest for resource estimation. Figure 3.30
shows the posterior histogram uncertainty using variogram uncertainty and without
using variogram uncertainty. The posterior histogram uncertainties are approximately
equal: using variogram uncertainty leads to a little higher standard deviation of the

mean and variance in comparison with not using variogram uncertainty: 0.4171 versus
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Figure 3.26: 6 SGS realizations with variogram uncertainty.

0.4110 for mean and, 0.3148 versus 0.2972 for variance respectively (see Figure 3.30).
The reason for very low impact of variogram uncertainty on the posterior histogram
uncertainty is because the high and low values are compensated in geostatistical mod-

eling: the frequency of both high and low values are increased and decreased for high
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Figure 3.27: Variogram realizations used for SGS in Figure 3.26.

and low variogram ranges (see Figure 3.26). This leads to a little higher uncertainty
in HIIP in case of using variogram uncertainty because the posterior histogram un-
certainty of all variables associated with the HIIP calculation such as PHIE (effective
porosity), NTG (Net To Gross), S, (water saturation) and S, (oil saturation) are not
changing considerably after incorporating variogram uncertainty (see Chapter 7).
Variogram uncertainty is more influential in flow simulation because it affects the
connectivity of rock properties. According to Meddaugh et al. (2011), the variogram

could have a tremendous impact on waterflooding. The influence of variogram uncer-
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Figure 3.28: 6 SGS realizations without variogram uncertainty.

tainty on flow simulation is considered by the histogram of upscaled permeability of
each 100 SGS realizations for the entire simulation area in case of both using vari-
ogram uncertainty and without using variogram. Since there is more continuity for

azimuth 0°, upscaling of SGS realization is applied on this direction. Steady state
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Figure 3.29: Posterior variogram uncertainty for using variogram uncertainty (dashes
red line) and without using variogram uncertainty (blue line).

flow simulation is assumed for upscaling. Figure 3.31 shows the histograms of upscaled
permeability with variogram uncertainty (a) and without variogram uncertainty (b).
Using variogram uncertainty leads to higher uncertainty in the histogram than not us-
ing variogram uncertainty (o = 0.49683 versus o = 0.42874). The higher uncertainty
in the histogram of upscaled permeability in presence of variogram uncertainty signifies
the impact of variogram uncertainty on flow simulation.
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Figure 3.30: Posterior histogram uncertainty using variogram uncertainty and with-
out using variogram uncertainty.
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Figure 3.31: Histogram of upscaled permeability with steady state flow simulation us-
ing variogram uncertainty (a) and without using variogram uncertainty

(b).

3.5.2 Remarks

A methodology for quantifying variogram uncertainty and incorporating this uncer-
tainty in geostatistical modeling is provided in this Chapter. The distribution of each
lag distance should be built first and the variogram realizations should be drawn from
the distributions. The shape of the variogram distribution is considered to be a Chi-
square distribution and it needs only the degrees of freedom (DoF) for each lag distance.

A new approach of quantifying variogram uncertainty (DoF approach) is proposed
by direct calculation of degree of freedoms for each lag distance by fourth order covari-
ance since other techniques has drawbacks: FOM (Marchant & Lark, 2004; Ortiz &
Deutsch, 2002) has a very high uncertainty (for more details and examples see Ortiz
and Deutsch (2002)) because of not considering the degrees of freedom of variogram
pairs for calculating variogram uncertainty. Global kriging could also be used for quan-
tifying variogram uncertainty. However, there is a big difference between the calculated
variogram uncertainty by OGK and SGK, and global kriging is dependent to the size
of domain. The larger the domain, the lower the variogram uncertainty and it leads
to higher CPU time because of calculating the average fourth order covariance for the
entire domain (right hand side covariance matrix). The new approach of quantifying

variogram uncertainty by calculating degrees of freedom of variogram pairs is indepen-
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dent from the domain size and it is fast and simple.

Variogram realizations are drawn from the Chi-square distributions to honor the
correlation between lag distances. A methodology is presented that applies LU un-
conditional simulation based on the correlation matrix between lag distances. The
correlation matrix is achieved by the average fourth order covariance between lag dis-
tances. Each realization is transformed to the marginal Chi-square distribution of each
lag distance by quantile-quantile transformation. This ensures the correlation between
lag distances is preserved. The variogram realizations are standardized to sill 1 before
using in geostatistical simulation.

The calculated uncertainty in the variogram by the DoF approach is high because it
is not conditioned to well data. This is similar to the spatial bootstrap for quantifying
histogram uncertainty: the greater spatial correlation (variogram range), the higher
variogram uncertainty. The calculated variogram uncertainty by the DoF approach is
assumed as prior uncertainty in the variogram. The high prior variogram uncertainty
is decreased during geostatistical modeling (posterior variogram uncertainty) due to
conditioning of data: subsequent conditioning will make the result more expected. In
general, conditioning of the data in geostatistical simulation improves unrealistic very
high and low variogram ranges if there are enough data locations (say more than 80
wells). This correction is more noticeable for high range variograms; conditioning of
data cannot affect a very short variogram range. In case of sparse well data (poor
conditioning), high prior variogram uncertainty could be improved by secondary data
such as the vertical variogram from well data and the horizontal variogram from seismic
data (see Chapters 4 and 5).

The impact of variogram uncertainty for static resource estimation is low due to the
fact that the high and low values are compensated in geostatistical modeling for differ-
ent variogram realizations. Variogram uncertainty is more influential in flow simulation
because it has a direct impact on the connectivity of rock properties.

Only 2D data sets are considered in this Chapter for variogram uncertainty. In
case of 3D data set, variogram uncertainty is merely calculated for horizontal directions

since there is no uncertainty in vertical direction due to many regularly spaced data. 3D
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variogram realizations can be achieved by auto variogram modeling of the horizontal
variogram realizations with a fixed vertical variogram.

The CPU time is an issue in case of many variogram pairs. It would not be advisable
to calculate variogram uncertainty in presence of more than 10000 variogram pairs
for each lag distance. In case of 2D data set, 10000 variogram pairs signifies trivial
uncertainty in the variogram. Thus, variogram uncertainty is not required (similar to
vertical variogram). For solving this problem in case of sparse wells for 3D data set,
variogram uncertainty may be calculated after vertical upscaling the data because of

reducing variogram pairs.
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Chapter 4

Seismic Variogram to Improve
Well Variogram

Variogram uncertainty was discussed in Chapter 3. Since the approach of quantifying
variogram uncertainty (the DoF approach, Section 3.3) is not conditioned to well data,
the calculated variogram uncertainty is high, which is decreased and improved by con-
ditioning data through geostatistical modeling. However, in case of sparse well data,
the seismic data (2D lines or 3D block) could be used to reduce the high variogram
uncertainty.

The stable seismic variogram could be used in place of the well variogram (Wang &
Dou, 2010). However, the processed seismic data are not the same physical attribute
as that under consideration and the scale of measurement is much different. Ideally,
the information from seismic data could be used to improve the uncertainty in the
well variogram. To do this correctly, the spatial cross-correlation between well and
seismic data should be taken into consideration to define the constraints the seismic
variogram imposes on the well variogram. Seismic data are acquired in time domain
that should be transferred to depth. The scale of seismic data is larger than well data
so the variogram of the seismic data could be downscaled or the well data could be
upscaled to ensure a consistent scale. For this Chapter, it is assumed that the well and
seismic data are at the same scale. Variogram downscaling will be discussed in Chapter
5.

This Chapter presents three different methodologies to improve the uncertainty
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in the experimental variogram of well data by seismic variogram: 1- Merge variogram
distributions. 2- Global cokriging of the variogram pairs. 3- Seismic-derived constraints
on the variogram of well data. These techniques use the cross covariance between well
and seismic data to determine the relevance of the seismic variogram. Approaches 1 and
2 are early attempts and the drawbacks of these techniques are discussed. Approach
3 is considered the most reliable and can be reasonably applied for improving the
uncertainty in the experimental well variogram. Only 2D data sets are shown in this
Chapter, but the methodology will be applied for the horizontal variogram in case of

3D data set (Chapter 5).

4.1 Merge Variogram Distributions

The variogram distribution of each lag distance for well and seismic data could be
merged to reduce the well variogram uncertainty. A method of combining probability
distributions is required. The combined distribution should be convex: the mean of
the combined distributions should fall within the mean of the input distributions (well
and seismic) and close to the distribution with lower uncertainty. After merging well
and seismic variogram distributions for each lag distance, the improved variogram real-
izations can be achieved by LU simulation with the correlation matrix of lag distances
and back-transformed to the correct marginal distributions (see Chapter 3, Section 3.4).
This approach needs a method of merging distributions with the mentioned properties
(Section 4.1.1). Furthermore, the variogram distributions of each lag distance for well
and seismic data should be calculated for this methodology. The uncertainty in the
variogram of seismic data is negligible due to the exhaustive sampling. This leads to a
combined variogram distribution almost exactly the same as the variogram of seismic
data. To avoid this outcome, the variance of the seismic data variogram is calibrated
with the cross covariance. The variance of the seismic variogram is increased to give it

a reasonable weight.
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4.1.1 Combining Independent Information Sources for Variogram Dis-

tributions

There are different approaches of combining distributions that could be applied for
merging variogram distributions of well and seismic data for each lag distance. Com-
bining different data sources (distributions) is discussed by Winkler (1968) in a Bayesian
framework for merging information. Morris (1974, 1977) formally establishes a Bayesian
approach. The Bayesian updating technique (Doyen, Den Boer, & Pillet, 1996) is intro-
duced for data integration in geomodeling. In this method, the prior model is updated
with the likelihood model built by all secondary data to attain the final posterior or
updated model. However, there is no clear prior distribution for combining variogram
distributions. Moreover, with Bayesian updating, the mean of the final distribution may
not fall within the mean of the input distributions. Blachman (1989); Davis (2007);
Roecker (1991) discuss merging multivariate independent Gaussian distributions based

on an optimum method of combining error ellipses:
C=0_ ), m=C (G w) (4.1)
i=1 i=1

where ; is the mean vector of ith multivariate Gaussian distributions, C; is the covari-
ance matrix of i*" multivariate Gaussian distributions, 7 is the vector representing the
location of the weighted average of n distributions and C is the resultant covariance
matrix after merging error ellipses. The one-dimensional derivation of this approach
is adapted to merge independent variogram distributions (well and seismic). This ap-
proach ensures convexity and the combined mean (7) falls within the mean of the input
distributions (u; , @ = 1,...,n), closest to the distribution with lower uncertainty. It
seems reasonable for combining variogram distributions of well and seismic data for each
lag distance to achieve an improved variogram if they are assumed to be independent
from each other.

The Gaussian distribution of each lag distance is required to apply the error ellipse

approach for merging variogram distributions (well and seismic). For simplicity, the
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distribution of each lag distance is assumed Gaussian although the Chi-square distri-
bution could be transformed to the Gaussian distribution by an anamorphosis function
(see Chapter 5): the assumption of the Gaussian distribution of each lag distance in-
stead of the Chi-square distribution (see Chapter 3) will not significantly change the
final result because of the degrees of freedom and closeness of the Chi-squared distri-
butions to Gaussian distributions. The Gaussian variable of each lag is denoted as
Zinym)s ¢ = 1,....;n. Where n is multiple independent observations of the variogram
distributions. Multiple independent observations of the mean and variance for a lag dis-
tance are denoted as z; ;) and Var {zm(h)}, respectively. The estimated mean %
and variance Var {z:(h)} are achieved by merging variogram distributions of indepen-
dent observations. From the Equation 4.1 for one-dimensional combining independent

Gaussian distributions, the estimation variance is written as:

n -1

S (Var {ziym}) (4.2)

=1

Var {Zi(h) } =

optimally weighted linear combination of independent lag distributions can be written

as:

ok * - —1
Zm =Var {%(h)} Y (Var{ziym}) Zam (4.3)
=1

a linear aggregation with weights that are inversely proportional to the individual vari-
ance contributions is the solution for the optimal weights (for more information of
combining independent Gaussian distributions see Davis (2007); Orechovesky (1996);
Rezvandehy and Deutsch (2014a); Roecker (1991)). Figure 4.1 shows an example of
merging two Gaussian distributions assumed as variogram distributions for a lag dis-
tance. Distribution 1 has a mean of 0.6 and variance 0.2, and distribution 2 has a mean
0.1 and variance 0.6. The merged distribution based on Equations 4.2 and 4.3, has a
mean of 0.475 and variance 0.15. This approach enforces the mean of the combined
distribution to fall within the mean of the input distributions, which is reasonable
in this context. Moreover, the variance of the merged distribution is lower than the

variance of the distributions 1 and 2 and close to distribution 1 because it has lower
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Figure 4.1: Combining distributions 1 and 2 by Equations 4.2 and 4.3.

variance than distribution 2. This could be applied for merging variogram distributions
of well and seismic data for each lag distance to improve the high uncertainty in well
variogram. The mean of each lag distance could be the fitted variogram model to the
experimental variogram and the variance of each lag distance could be calculated by
the DoF or FOM approaches (see Chapter 4). Since the DoF approach requires the
Chi-square distribution of each lag distance, the FOM approach is used for calculation

the variance of each distance in this experiment.

4.1.2 Estimation the Variance of the Seismic Variogram Given Well

Variogram

The problem is the variance of the seismic variogram: since there are many variogram
pairs for the seismic data, the variance of the seismic variogram for each lag distance will
be close to zero. Applying the mentioned methodology (Section 4.1.1) for combining
variogram distributions of well and seismic data leads to no weight to the well variogram
and the final variogram is equal to the seismic variogram. To solve this problem,
the variance of the seismic variogram will be modified based on the cross covariance
between well and seismic data: a higher cross covariance makes the seismic variogram
more informative. The estimated variance of the seismic variogram should increase as

the cross covariance decreases. The relationship between the cross covariance and the
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variance of the seismic variogram is fit by third degree polynomial curves. This shape
is achieved based on an experiment (Rezvandehy & Deutsch, 2014c) from the positive

definite covariance between well and seismic data:

P e A B P A P oL
Cyz(h) Cy(h) =1 —~y(h) 1—7z(h)
(4.4)

where Cz(h) and Cy (h) are covariances of the well and seismic data for lag distance
h, vz(h) and 7y (h) are variograms for standardized data, and Cy z(h) is the cross co-
variance. The variograms of the well and seismic should satisfied in Equation (right) to
ensure positive definite covariance. According to this equation, vy (h) has the highest
variance when Cy z(h) = 0 because it can be any value between 0 and 1. As the Cy z(h)
increases, the variance of vy (h) drops quickly; it is approximately flatten around the
Cyz(h) = 0.5 and it drops sharply again for very high Cyz(h) since a very limited
range of vy (h) is satisfied in Equation 4.4. Figure 4.2 shows 100 possible curves. The
absolute value of the cross covariance is always between 0 and 1 for the standardized
or normal score data. The variance of the seismic variogram is within 0 to 5 where

5 denotes a very high variogram uncertainty (practically infinite in Gaussian units).

5 T T T T

Variance of Seismic Variogram
Given Well Variogram

0 0.2 0.4 0.6 0.8 1
Cross Covariance

Figure 4.2: 100 third degree polynomial curves for relationship between the cross
covariance and the variance of the seismic variogram given well variogram.

As the cross covariance decreases, the variance of the seismic variogram increases. An

appropriate curve that reasonably represents the relationship between the cross covari-
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ance and the variance of seismic given well data could be achieved by an experimental
approach: synthetic well and seismic data are simulated by unconditional sequential
Gaussian simulation (SGS). Well and seismic data should have a good correlation (p(0)
above 0.5). Some samples are drawn from the simulated well data. The experimental
variogram of the drawn samples is calculated and a variogram model is fitted. The vari-
ance of each lag distance is calculated by the FOM approach and the mean is the fitted
variogram model for each lag distance. The seismic variogram and the cross covariance
between well and seismic are calculated and fitted. The mean of the seismic variogram
distribution is the fitted model but the variance comes from the curves in Figure 4.2
according to the calculated cross covariance for each lag distance. The distribution of
each lag distance of the well and seismic data variograms are combined by Equations
4.2 and 4.3 to attain the updated variogram. The mean square error (MSE) between
the updated variogram and the real variogram of well data is calculated. This process
is repeated for all 100 curves. The curve with minimum MSE is the most accurate
curve.

Figure 4.3 shows the methodology. Figure 4.3-a shows the simulated well data by
SGS and drawn 36 samples. The variogram uncertainty for the drawn samples is calcu-
lated. Figure 4.3-b shows the simulated seismic data by SGS, that has a high correlation
with the well data. The variogram of seismic data and the cross covariance between well
and seismic are calculated. Since the real variogram of drawn samples is known, the
MSE between the update well variogram and the real variogram is calculated (Figure
4.3-c). The updated variogram is calculated by merging the well and seismic variogram
distributions (Equations 4.2 and 4.3) using the variance of the seismic variogram from
the curves (Figure 4.2). This process is repeated for several synthetic well and seismic
data. The curve that makes the average MSE minimum is the most accurate curve for
the variance of the seismic variogram given well variogram.

Variogram models are required for the unconditional SGS. Three variogram struc-
tures (spherical) with no nugget effect are considered. One variogram structure applies

to the well data, and one variogram structure applies to the seismic data. The well and
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Figure 4.3: a) Simulated well data by SGS and drawn 36 samples. b) Simulated
seismic data by SGS that has a high correlation with the well data (a).
¢) Merging the well and seismic variogram distributions using seismic
variance given well variogram from the curves (Figure 4.2) and calculate
the MSE between the updated variogram and the real variogram.

seismic data and the variograms are written as:

Yy = a1 + ag.y2 + awY  — Yo = a3.T1(h) + a3.Ta(h) + a2 Ty (h) (4.5)

where Y,, is well data with 3 geological structures: i, yo and y,,. y1 and ys are equal
with seismic data, and ¥, is the unique low range structure for well data. =, is the

variogram model of well data.

Y, =a1.y1 + as.yo + as.ys — s = ar.L'1(h) +a3.To(h) + a2.Ts(h) (4.6)
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where Y is seismic data with 3 geological structures: yi, y2 and ys. y; and yo are equal
with well data, and ys is the unique high range structure for seismic data. -, is the
variogram model of seismic data. According to LMC model (Pyrcz & Deutsch, 2014),

there are three constraints for the unknown parameters in Equations 4.5 and 4.6:

a?+ai+a2 =1
b 403+ b2 =1 (4.7)

a1.by + as.by = ,0(0)

\

p(0) is the correlation coefficient between well and seismic at zero lag distance. Monte
Carlo simulation is applied to define the unknown parameters (a and b) by satisfy-
ing Equation 4.7. The same variogram structures between well and seismic data and
the unique structures are assumed I';(h) = 50m, I's(h) = 300m, I'y(h) = 20m and
I's(h) = 400m. According to these parameters, synthetic well and seismic data are
simulated with the different correlations for the mentioned methodology. The mean
of the calculated MSEs are achieved for each curve (Figure 4.2). The most accurate
curve has the minimum average MSE. By simulating 30 synthetic well and seismic data
via SGS, the most accurate curve is found. Figure 4.4 shows the mean of MSE for 30
simulated data sets versus the curve number. Based on this experiment, curve 37 is
the most accurate curve for demonstrating the relationship between the variance of
the seismic variogram given well variogram and the cross covariance (Rezvandehy &

Deutsch, 2014c).

4.1.3 Limitation of the Technique

The curve for defining the variance of the seismic variogram given the cross covariance
could change from one data set to another because of many variables. The range of the
variance of the seismic variogram given well variogram for curves is assumed to be 0 to 5
for this experiment (see Figure 4.2). This range is reasonable for this case, but when the
data configuration and number of samples are changed, the variogram uncertainty may

decrease or increase. Each case could consider new parameters to simulate synthetic
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Figure 4.4: Mean of MSE for 30 simulated data set versus the curve number. The
most accurate curve is 37 with the lowest MSE.

well and seismic data (see Figure 4.3). The samples from the synthetic well data are
drawn based on the data configuration of the real data. According to the calculated
variogram uncertainty for the drawn samples, a range of the variance of the seismic
variogram given well variogram (from 0 to the highest possible value) for curves are
defined. Then, the most accurate curve is achieved for the data set based on the
minimum MSE. However, in practice, it is a time consuming process to find the curve
for each data set especially in case of 3D data set. Thus, it is not an efficient technique

for improving the uncertainty of well variogram by the seismic variogram.

4.2 Global Cokriging of the Variogram Pairs

A global kriging of variogram pairs was discussed in Chapter 2 to decluster the ex-
perimental variogram. The variogram pairs of the exhaustive seismic data could be
used to estimate the sparse variogram pairs of well data by global cokriging. There
are different approaches of cokriging (Goovaerts, 1998): 1- simple cokriging (SCK), 2-
ordinary cokriging (OCK), 3- standardized form of the SCK (correlogram notation),

4- standardized form of the SCK with constraint the sum of all weights to 1. These
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techniques can estimate a primary variable using secondary data for the entire domain
(global cokriging). The simple global cokriging (SGCK) estimator of z for the entire

domain A is written:

Zsaork —m1 = Z )\SGCK 1(uq,) Z )\SGCK Zs(uq,) — ma) (4.8)

a;=1 as=1

where m; and mg are stationary means for primary (well data) and secondary (seismic
data) data in the cokriging system. Agf*'CK is the weight of global mean and variance
assigned to the primary datum z;(u,,), and /\ngK is the weight of global mean and
variance assigned to the secondary datum z2(u,,). n1 and ng are the number of primary
and secondary data.

The ordinary global cokriging (OGCK) estimator of z for the entire domain A is

written:

Z5coK = Z AQCOK 71 (way)] Z AQEGOK [ Zy ()] (4.9)

ar1=1 az=1
there is no need for stationary mean of primary and secondary variable in the OGCK

system due to the following constraints:

ni n2
D OAZER =1, Y ALK =0 (4.10)
a1=1 az=1

the stationary mean of primary (mi) and secondary (mg) variables are canceled out in
OGCK system. This approach is inefficient: it reduces the influence of the secondary
information due to very small or negative weights to satisfy the constraint that the
sum of secondary weights be 0.

The standardized form of simple global kriging is achieved by scaling the auto and
cross-covariances in SGCK in terms of correlograms. This is useful when the variances
of primary and secondary variables differ considerably, which leads to a large difference
between the covariances and a risk of numerical instability (Goovaerts, 1998). The

standardized form of SGCK is obtained by dividing the terms in SGCK (see Equation
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4.8) system by the standard deviations of the variables:

Zsgox — M1 _ S USGCK[Zl(ual ml ]+ Z SGCK Z3(Ua,) — mz] (4.11)

aq
o o
1 a;=1 as=1 2

where o7 is the standard deviation of the primary variable and o9 is the standard devi-

SGCK SGC’K

ation of the secondary variable. v, and v; are the weights of the standardized
form of SGCK assigned to the primary datum and secondary datum.

The standardized form of SGCK is more efficient than SGCK for application with
the variogram pairs of the well and seismic data due to the fact that the variance of the
quadratic differences of variogram pairs for well and seismic data (fourth order covari-
ance of each pair to itself) might differ by several orders of magnitude. Since there is no
constraint on the primary and secondary weights, it might lead to unbalanced weights
(very low or very high to primary and secondary). A constraint on the standardized

form of SGCK is proposed to make the sum of all primary and secondary weights to 1

with the following system of linear equations:

Zﬁl 1 vﬁCGKCH(uBl Uy, )/0101 + 2,32 1 UﬁGCKCu(U52 — Uy, ) /0102

+u = C’H(ual — A)/Jlo'l , oap=1..m

251 1 Uﬁl 012(11/31 ua2)/0102 + 252 1 Uﬁg 022(1152 ua2)/020'2 (4.12)
tu = m/amz , ag =1...n9

SCGK SCGK __
251 1Y, +Z Ba=1"YB, =1

where nq is number of data for primary variable, and ngy is number of data for sec-
ondary variable. C’H(uﬁ — u,) is the covariance between locations ug and u, for
primary variable; Ci2(ug — u,) is the cross covariance between locations ug and ug;
and Caz(ug —u,) is the covariance between locations ug and u, for secondary variable.
m is the average covariance between each data location u, and the whole
area A for primary variable, and m is the average cross covariance between

each data location u, and the whole area A. u is Lagrange parameter. The estimation
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variance is written as:

Var {ZSGCK} CH A A Z ’USGCKCH ual - Z USGCK012 l_loé2 - A)
a1=1 as=1
(4.13)
where C11(A — A) is the average covariance of the entire area to itself (Goovaerts, 1997)
for primary variables.

The standardized form of SGCK for estimating the well variogram pairs with the

exhaustive seismic variogram pairs can be written:

aih O', az,h O‘I
a1=1 1 as=1 2

X;k,h 71 _ Z WSCOK | X1y n(w) - 1+ Z VSCOK| X2.0,n(0) —72(11)]

(4.14)
where 71 (h) and y2(h) are the fitted variogram models to the experimental variogram
of well and seismic data assumed as the stationary means for each lag distance. 0/1 and
oy are the standard deviations of the half of the quadratic differences for variogram
pairs of well and seismic data. nj(h) and ny(h) are the number of variogram pairs for
well and seismic data. X7 is the estimated variogram (standardized form of SGCK)
by the variogram pairs of well data X p(u), and seismic data Xsp(u) for each lag

distance h:

Zi(u+1)  Zy(u+B)
A Zi(u—B) — Zy(ut B2
2

(4.15)

(Zy(u—B) — Zy(u + B))2
2

ngh(u) =

where Z;(u— 1) is the tail value, and Z;(u+ 2) is the head value of the well variogram
pair 1 for lag distance h; Zy(u — %) is the tail value, and Z(u + %) is the head value
of the seismic variogram pair T for lag distance h.

The weights of the standardized SGCK for variogram pairs of each lag distance h,

UgGg K for well data and USG}? K for seismic data, are obtained by solving the following
1, az,
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system of linear equations:

h ’ i
Zﬁl 1 UﬁCGKFll(uﬂl ual)/‘flal + Zgi( 1 UBGCKFU(ub’z —Uq,) /0105

4= Fi1(u,, — A)Joyo, , oy =1..n(h)

h ’ I
Zﬁl 1 USGCKFlg(ugl Uo,)/0100 + ng( { UgQGCKFQQ(UBQ —Ug,) /0y, (4.16)

+u = Fia(ug, — A) /ooy , s =1..n9(h)

SC’GK SCGK
Zﬂl 1 VB h +Zﬁg [ Vgm =1

where F11(ug —u,) is the fourth order covariance between variogram pairs of ug and
u, for well data; F12(ug — u,) is the fourth order cross covariance between variogram
pairs of ug and u,; and Fye(ug —u,) is the fourth order covariance between variogram
pairs of ug and u, for seismic data. Fi1(u, — A) is the average fourth covariance
between each variogram pair u,, and the whole area A for well data, and Fio(u, — A)
is the average fourth order cross covariance between each variogram pair of u, and the
whole area A for seismic data. The fourth order cross covariance can be calculated
by cross second order moments (cross covariance/variogram between well and seismic

data). The estimation variance of SGCK for each lag distance is written as:

Var(2X:y) = Fi(A—A) — Z VIGTE P (U0, — A)
a1=1

ot (4.17)

=Y R Fa(Ua, —A) — . = Var {3(h)} =

as=1

x (Var {2X;,h})

e~ =

where Fy1(A — A) is the average fourth order covariance of the entire domain A to
itself. The average fourth order covariance was discussed in Chapter 2 (see Figure 2.3).
Var{#4(h)} is the variance of each lag distance by global cokriging of the well and
seismic variogram pairs.

Figure 4.5 shows location maps of synthetic well and seismic data to demonstrate
how the standardized form of SGCK can be applied on variogram pairs of the well

and seismic data for lag distance 4m. There are 9 well data and 25 seismic data. The
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estimated variogram pair for lag distance h = 4m of this example by the standardized

form of SGCK is written as:

9 25

Xin—m) scok X101 h(1) —71(h) SGOK X200 h(1) — 72(h)

— = Vo b | ; |+ Vash | ; ]
o1 ar1=1 71 az=1 92

(4.18)

where ~;(h) and ~2(h) are the fitted variogram models to well and seismic data. o}

and o, are the standard deviations of the half of the quadratic differences for variogram
pairs of well and seismic data.

Equation 4.19 shows the fourth order covariance matrix for the standardized SGCK

for 9 variogram pairs of well data and 25 variogram pairs of seismic data:

Fu(l—1)/oy0, .. Fnu(l1—9)/c0, Fiao(1—1)/oyoy .. Fia(1—25)/c,0,
Fu(9—1)/oyo, .. Fiu(9—-9)/oio; Fia(9—1)/o100 .. Fi2(9—25)/0,0,
Fio(1=1)/oy0y .. Fio(1—=9)/cv0y Fa(l—1)/ogoy .. Fan(l —25)/0q0,

F12(25 —1)/oy05 .. F12(25—9)/0,0y Fp(25 —1)/0y0y .. Faz(25 —25)/040,
1 . 1 1 . 1 0
va A, Fii(ug,—1 — A)/oy0,
Uglcz%{fl Fu(ualzg — A)/UllU/l
X os G | = | Fr2(uay=1 — A) /010y (4.19)
Ua S Fia(ay—25 — A) /00,
W 1

This covariance matrix can be calculated by the reference variogram models of the
well and seismic data 1 (h) and 73(h), and the standard deviations of the half of the

quadratic differences for variogram pairs of the well and seismic data (o] and o).
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Figure 4.5: Location maps of a synthetic well and seismic data. There are 9 well data
and 25 seismic data, which leads to the same number of variogram pairs
for lag distance 4m of each data.

These parameters for standardized data are assumed as:

;

7 (h) = 0.208ph (h) + 0.80Sph (h)
hma]‘or=15m hmajor:?)Om
hminor=15m hminor=30m
v2(h) = 0.255ph (h) + 0.75Sph (h) (4.20)
hmajo'r:15m hmajor:30m
hminor:l5m h7nin07”:30m
op,=12, 0,=0.9

\

where Sph is the spherical variogram model. Apqjor and Aminor are variogram ranges
for major and minor directions of continuity, which are equal for isotropic data. A
cross covariance model (cross variogram) between well and seismic data is achieved by
an intrinsic model (Markov model) (Pyrcz & Deutsch, 2014). The covariance matrix is

solved for two correlations between the well and seismic data: p(0) = 0.8 and p(0) = 0.4.

SGCK

o1 h and

Table 4.1 shows sum of the weights for the variogram pairs of the well data v

SGCK
aoh - The

1. For high correlation (p(0) = 0.8), sum of the weights to the seismic pairs (0.81184)

seismic data v standardized form of SGCK enforces sum of all weights be

is much higher than the sum of weights to the well pairs (0.18816). As correlation
decreases to p(0) = 0.4, sum of the weights to the well pairs increases from 0.18816

to 0.40508, and sum of the weights to the seismic pairs diminishes from 0.81184 to
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0.59492. The weights are used in Equation 4.18 to estimate variogram for lag distance

4m using the variogram pairs of seismic data.

Table 4.1: Sum of the weights for variogram pairs of the well and seismic data (Figure
4.5) for two correlations: p(0) = 0.8 and p(0) = 0.4.

p(0)=0.8 p(0) =0.4
Sum of the Weights | Sum of the Weights | Sum of the Weights | Sum of the Weights
to Well Pairs to Seismic Pairs to Well Pairs to Seismic Pairs
0.18816 0.81184 0.40508 0.59492

4.2.1 Synthetic Example

A 2D synthetic example is considered to assess the proposed methodology of global

cokriging for estimating the well data variogram. Synthetic well and seismic data are

simulated by unconditional sequential Gaussian simulation (SGS). Figure 4.6 shows
synthetic well (left Figure) and seismic data (right Figure) which are at the same scale
and have a correlation coefficient of approximately 0.6. The grid has nz = 50 xny = 50.
Instead of drawing well locations, variogram pairs (head and tale locations) are drawn
from the simulated well and seismic data to estimate well variogram pairs with the
seismic variogram pairs by SGCK. This avoids taking many variogram pairs for one
lag distance and no pair or very few pairs for another lag distance of well data. Figure
4.7 shows the middle points of the variogram pairs where tale and head locations are
drawn from the simulated well and seismic data for azimuth 0°. Sparse well pairs and
exhaustive seismic pairs are drawn to apply the global cokriging. The experimental

variograms of the well and seismic are calculated and variogram models are fit:

~v1(h) = 0.05 + 0.45Ezp

hmajo'r': 10m
hminor=10m hminor=30m

~v2(h) = 0.20 + 0.40Ezp (h) +0.35Exp (h)

hmajo’rzlom hma,jo'r:gom
minor=10m minor=30m

(h) 4+ 0.40Exp (h)

hma,jo'r:gom

(4.21)

where 1 (h) is the fitted model to the experimental well variogram, and -, (h) is the fit-

ted model to the experimental seismic variogram. The experimental seismic variogram
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is well-defined because of the exhaustive sampling. Fxp is the exponential variogram
model. hyajor and Nipinor are variogram ranges for major and minor directions of con-
tinuity, which are equal for isotropic data. A cross covariance model (cross variogram)
between well and seismic data achieved by an intrinsic model (Markov model) (Pyrcz
& Deutsch, 2014) is required to calculate the fourth order cross covariance between

well and seismic pairs.

Well Data

Seismic Data
L3

'2.0

1.0

East 50 East (m) 50

Figure 4.6: Synthetic well (left Figure) and seismic data (right Figure) simulated by
unconditional SGS.
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Figure 4.7: Middle points of the drawn variogram pairs (tale and head locations) for
azimuth 0° for well (left Figure) and seismic data (right Figure).

Figure 4.8 shows the result of the cokriging for the well and seismic variogram
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pairs by the standardized form of SGCK with the constraint that the weights sum to 1
(Equation 4.16). The experimental well variogram is noisy. Although SGCK removes
noise and artifacts in the experimental variogram, the updated variogram converges to
the fitted variogram model and not the real variogram. The estimated mean of the

simple cokriging for variogram pairs converges to the stationary mean of the primary

4 --e-- Experimental Variogram
Fitted Variogram

SGCK Variogram

Real Variogram

o 4 8 12
Distance(m)

Figure 4.8: Combination of the well and seismic variogram pairs by the standardized
form of SGCK with constraint that the weights sum to 1. The SGCK
variogram converges to the fitted variogram model not the real variogram
of well data.

variable which is the fitted variogram model to the experimental well variogram (1 (h)).
All approaches of cokriging needs stationary means for both primary and secondary
variables, which leads to convergence to the stationary mean of the primary variable
(Goovaerts, 1998), except ordinary cokriging because the sum of the weights to primary
variable is 1, and the sum of the weights to secondary variable is zero (see Equation
4.9). Ordinary cokriging is an inefficient technique due to the fact that it reduces the
influence of the secondary information to nothing. Therefore, the cokriging approach is
also considered inappropriate to improve the variogram of the well data by the seismic

variogram.
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4.3 Seismic-derived Variogram of the Well Data

The covariance matrix between well and seismic data for a variogram pair at each lag
distance provides a constraint to keep the results positive definite (Pyrcz & Deutsch,
2014) for geostatistical modeling. The only unknown covariance in the covariance
matrix is the covariance of the well data because the covariance of the seismic data and
the cross covariance are well-defined. The acceptable range of the unknown covariance
of the well data for each lag distance could be achieved by enforcing this covariance
matrix to be positive definite assuming the well and seismic covariances are at same
scale. The acceptable range for each lag distance leads to seismic-derived limits to the
well data variogram. Variogram realizations of well data should be within these limits.
A totally positive matrix (Gantmacher & Krein, 1950) of well and seismic data
is proposed to attain the seismic-derived variogram because it is more stable than a
positive semi definite matrix. A square matrix is totally positive if the determinant of
any corresponding square submatrix (including both principal and nonprincipal) are
positive (Gantmacher & Krein, 1950; Vandebril, Van Barel, & Mastronardi, 2008).
For building this covariance matrix, it is assumed that for each data location, well
data is present as well as seismic data. A variogram pair of each lag distance h in

presence of well and seismic data is written:

Y(u+3) Z(u+3)
1 (4.22)
Y(u - %)7 Z(u - %)

where Y(u — 2) and Z(u — 2) are the tail locations, and Y (u+ %) and Z(u + %) are
the head locations for seismic Y (u) and well Z(u) variables of each variogram pair 1

and lag distance h, respectively. The covariance matrix between Y (u — %), Y(u+ %),
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Z(u—1), and Z(u+ 2) for standardized data (variance 1) is written as:

Y(u-2)  zZu-%) v+  Z@+d)

Y(u—%) 1 Cyz(O) Cy(h) Cyz(h)
Z(u—12 Cyz(0 1 Cyz(h) Cz(h) ="
A P vz(0) vz(h) Cz(h) (4.23)
Y(u—f—%) Cy(h) Cyz(h) 1 Cyz(())
Z(u—i—%) i Cyz(h) Cz(h) =7 Cyz(O) 1 ]

where Cy (h) is the covariance function of the seismic data, which is always well-defined.
Cyz(h) is the cross covariance function between well and seismic data. The cross
covariance function is fairly-well defined. The diagonal elements of this covariance
matrix are the variance of the well and seismic data. These diagonal elements are
1 in case of standardized well and seismic data. The only unknown function of this
covariance matrix is the covariance function of well data C'z(h). This covariance should
be between 0 and 1 for standardized data (variance 1). The acceptable covariances of
well data based on seismic data make the covariance matrix of Equation 4.23 positive

definite: the determinant of matrix A should be positive Det {A} > 0:

Det {A} = —C%(h).(1 — C%(h)) — Cz(h).(2.Cy (h).CZ,(0) + 2.Cy (h).C% ,(h)—
4.Cy7(0).Cyz(h)) — CZ(h) + 4.Cy (h).Cy 2(0).Cy z(h) — 2.C% ,(0).C% ,(h)+
Cy2(0) — 2.C5 4(0) + Cy z(h) — 2.C5 ;(h) + 1

(4.24)

where Det { A} based on the unknown parameter Cz(h), is a quadratic function —az?4
br+c, 0 <z <1. For each lag distance h, many regular samples of Cz(h) € [0, 1] are
drawn (say 10000). The range of Cz(h) that has a positive determinant Det {A} > 0,
are calculated.

Another constraint may be taken from the totally positive matrix A. All order
leading principal and nonprincipal submatrices of matrix A should be positive definite.

All order leading principal submatrices are always positive. For example, 1%¢ order
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leading principal submatrix which include the unknown Cz(h) is:

Z(u-1) Y(utd) Z(ut+®)

Z(u—%) 1 Cyz(h) Cz(h) =7
B = Y(u—i—%) Cyz(h) 1 Cyz(O) (4'25)
Z(u+%) Cz(h) =7 Cyz(O) 1

the determinant of the matrix B is always positive for any Cz(h) € [0,1]. Hence,

another constraint could be taken from the nonprincipal submatrix of matrix A:

Y(u+%) Z(u+%)
Y(u—1B) Cy(h c h
o b y (h) yz(h) ., Det{C} =Cz(h).Cy(h) — C}%Z(h)
z(u-%) | Cyz(h) Cz(h)=?

(4.26)
the determinant of this matrix should be positive (Det {C'} > 0) to make matrix A
totally positive. Moreover, this ensures the covariance matrix between well and seismic
data for each lag distance to be positive definite. This is the condition of the linear
model of coregionalization (LMC) for variogram modeling (Pyrcz & Deutsch, 2014).
The function of the determinant matrix C' based on the unknown parameter Cz(h) is a
linear function ax +b. Upper and lower limits of seismic-derived covariance/variogram
for each lag distance can be achieved by enforcing Det {A} > 0 and Det {C} > 0
for many regular samples of Cz(h) € [0, 1] (say 10000). Figure 4.9 shows the general
upper and lower limits of seismic-derived covariance based on positive determinant of
the matrix A (Equations 4.25) and C' (Equation 4.26). There is a minimum acceptable
positive determinant §. This is true for both positive and negative correlations between

well and seismic data: the determinants of the matrices A and C' are equal for both
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positive and negative correlations:

[ 1 o0 o) —oam] [ 1 G0 o) Crs)]
e —Cyz(0) 1 ~Cyz(h)  Cz(h) | | Cyz(0) 1 Cyz(h) Cz(h)
Cy(h) —Cyz(h) 1 —Cyz(0) Cy(h) Cyz(h) 1 Cyz(0)
|—Cyz(h)  Cz(h) —Cyz(0) 1| [Cvz(h) Cz(h) Cyz(0) L]
(4.27)
oo Cy(h) —Cyz(h) _ Cy(h) Cyz(h) (4.28)
~Cyz(h)  Cz(h) Cyz(h) Cz(h)

for example:

1 —0.65 0.8 —0.45) 1 0.65 0.8 0.45)
—0.65 1 —0.45 0.7 065 1 045 0.7
Det( ) = Det( ) =0.037
0.8 —0.45 1 —0.65 08 045 1 0.65
-0.45 0.7 —0.65 1 0.45 0.7 0.65 1
(4.29)
0.8 —0.45 0.8 0.45
Det( ) = Det( ) = 0.357 (4.30)
—0.45 0.7) 0.45 0.7)

Since the range of the acceptable covariances are achieved for the standardized data,
seismic-derived covariance can be simply converted to seismic-derived variogram upper
and lower limits y(h) = 1 — C(h). The upper and lower limits of the seismic-derived
variogram may be taken from the cumulative distribution functions (CDF) of v(h),
for example, Pjg for lower limit and Py for upper limit, this ensures more reasonable
upper and lower limits. This process is repeated for all lag distances. Figure 4.10
shows a synthetic example of upper and lower limit seismic derived-variograms of the
well data for different cross covariances. The correlation between well and seismic
data increases from Figure 4.10-a to d (see the cross covariances). The higher the
correlation between well and seismic data, the lower the difference between the upper

and lower limits. Figure 4.10-d illustrates when the well and seismic data have very
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Figure 4.9: Upper and lower limits of seismic-derived covariance based on positive
determinant of matrix A (Equation 4.24) and C (Equation 4.26). ¢ is a
minimum acceptable positive determinant.

a high correlation (more than 0.9) with each other, the limits of the seismic-derived
variogram are consistent with the seismic variogram. If the correlation is very low (less
than 0.2), the variogram of the seismic data does not provide any constraint on the
well variogram (Figure 4.10-a) because upper and lower limits of the seismic-derived
variogram are very far from each other.

The experimental variogram of the seismic data is very important to calculate the
limits of the seismic-derived variogram. Using lag tolerance and azimuth tolerance for
variogram calculation leads to huge CPU cost because of the large number of seismic
data. A new approach of variogram calculation is proposed by defining a template
around the head location of variogram calculation: instead of using one pair, several
pairs are assigned based on a template around the head location of variogram calcula-
tion. This is repeated for all lag distances, which leads to more reasonable variogram
of seismic data and it is so fast.

Figure 4.11 shows a 2D and 3D schematic of using a template in variogram cal-

culation for azimuth 45°. The yellow and red cells are tail and head locations of a
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Figure 4.10: Upper and lower limits of the seismic-derived variograms for different
cross covariances, increasing from (a) to (d). The higher the cross co-
variance, the more consistent the seismic-derived variogram and seismic
variogram.

pair for variogram calculation. Instead of using one pair (black pair), several pairs are
contributed (blue pairs). These pairs are achieved by assigning a template around the
head location. The closest pairs to the head location are used for variogram calculation.
This approach could be extended for calculating the cross variogram (cross covariance)
between the well and seismic data. In this case, the tail of the variogram pairs are well
data and the head are seismic data. For more information and details of this method-
ology see Rezvandehy and Deutsch (2014b). Calculating the cross variogram (cross
covariance) at the scale of the well data is a challenge due to the fact that seismic data

have higher scale than well data.
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Figure 4.11: a) 2D schematic of using template in variogram calculation for azimuth
45°. b) 3D schematic of using template in variogram calculation for
azimuth 45°.

4.3.1 Enforce Upper and Lower Limits of the Seismic-derived Vari-

ogram

A rejection sampling is performed to enforce the upper and lower limits of seismic-
derived variogram: during simulating variogram realizations by LU simulation with
the correlation matrix of the lag distances, those realizations that fail to fall within
the upper and lower limits are rejected. This process is repeated until achieving the
required number of variogram realizations. The rejection sampling could be applied for
all lag distances which leads to the final variogram realizations with lower uncertainty;
however, it may not be reasonable to enforce the seismic-derived limits for very low
cross covariance (say below 0.2) because it implies no correlation between well data
and seismic data. Thus, it is recommended that the rejection sampling is applied up
to a minimum correlation, for example p(h) = 0.2.

Figure 4.12 shows a synthetic example of applying upper and lower limit seismic-
derived variograms on the experimental variogram realizations. Figure 4.12-a shows
variogram realizations of the well data with high uncertainty. Figure 4.12-b shows

the upper and lower limits of the seismic-derived variogram for correlation coefficient

106



p(0) = 0.65. Figure 4.12-¢ shows the improved variogram realizations by enforcing

seismic-derived limits via rejection sampling up to correlation 0.2 (p(h) = 0.2) which is
lag distance approximately 11.5m (see Figure 4.12-b). The rejection sampling ensures

the variogram realizations are within the upper and lower limits. This leads to improve

the large variogram uncertainty in Figure 4.12-a (Figure 4.12-c).
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Figure 4.12: Synthetic example of improving well variogram by the seismic-derived
variogram (limits). a) High uncertainty in the well variogram. b) Up-

per and lower limits of the seismic-derived variogram. These limits are

enforced on the well variogram realizations (a) up to correlation 0.2
(p(h) = 0.2). ¢) Final variogram realizations by enforcing the seismic-

derived variogram.
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4.4 Realistic Example: Amoco Case Study

A real case study of the 2D Amoco data (Chu et al., 1994) is considered for improving

high variogram uncertainty of well data by seismic data. The variable of interest is

averaged porosity (percentage) over the main reservoir layer. This variable is chosen

because it has higher correlation with seismic data than permeability. Figure 4.13 shows

location map of porosity (a), seismic data (b), the experimental variograms for azimuths

0° and 90° with the fitted models for porosity (c) and seismic data (d). The variograms

are calculated after normal score data. There is a zonal anisotropy for azimuth 0°. The

variogram realizations based on the methodology mentioned in Chapter 3 by the DoF

approach is calculated for azimuths 0° and 90°.
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Figure 4.13: Location map of porosity (a), seismic data (b), the experimental vari-
ograms for azimuths 0° and 90° with the fitted models for porosity (c)

and seismic data (d) for Amoco data set.
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matrix between lag distances of two directions. Figure 4.15 shows fitted variogram
realizations for azimuths 0° (a) and 90° (b). There is a high variogram uncertainty
that could be improved by seismic data if there is a good correlation. Figure 4.16

Azimuth O Azimuth 90
Lag 1 Lag 2 Lag 3 Lag4 Lag 5 Lag 6 Lag 7 Lag 8|Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

Lag1 0.0410.04|0.02]0.02]0.1110.05]0.02]0.0210.01{0.02]0.02]0.02

Lag 2 0.26]0.28(0.03]0.220.18|0.14{0.12]0.12(0.110.11

Lag 3 0.51]0.10{0.30/0.26]0.22|0.20|0.19]0.18|0.16
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Azimuth O

Lag 6(0.04 0.12]0.37|0.40|0.40(0.37|0.34]0.31|0.26
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Lag 3/0.0210.18|0.26(0.2810.49]0.40|0.360.40

Lag 410.02|0.14|0.22]0.260.47]0.40|0.36 | 0.40
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Figure 4.14: Correlation matrix between eight lag distances of azimuth 0° and eight
lag distances of azimuth 90°.

shows cross plot between normal score porosity (y axis) and seismic data (x axis).
There is a high correlation. An intrinsic model of cross covariance (Markov model) for
azimuths 0° and 90° are calculated for p(0) = 0.65 and used to attain seismic-derived
limits by the mentioned methodology. Figure 4.17 shows the upper and lower limits of
seismic-derived variogram for azimuths 0° (a) and 90° (b). The upper and the lower
limits of the seismic-derived variogram is calculated based on the assumption the well
and the seismic data have the same scale because the well data is averaged for the entire

reservoir. Otherwise, the variogram of the seismic data should be downscaled to the
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Figure 4.16: Cross plot between normal score porosity (y axis) and seismic data (x
axis).

scale of the well data (see Chapter 5 for variogram downscaling). Rejection sampling
during LU simulation with the correlation matrix of lag distances (Figure 4.14) is
applied to attain the variogram realizations that are within the upper and lower limits
up to cross covariance 0.2 (p(h) = 0.2). Figure 4.18 shows the improved variogram
realizations after applying the upper and lower limits of the seismic-derived variograms
for azimuths 0° (a) and 90° (b). There is more improvement for azimuth 0° than 90°
because of higher variogram uncertainty for azimuth 0°. The variogram realizations
could be standardized to sill 1 and used in geostatistical modeling for incorporating

variogram uncertainty.
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Figure 4.17: The upper and lower limits of seismic-derived variogram for azimuths
0° (a) and 90° (b).

4.5 Remarks

Three different approaches of improving high uncertainty in the well variogram by the
seismic variogram is presented. Merging variogram distributions and global cokriging
are not efficient. The seismic-derived variogram is an appropriate approach. The
summary of each technique is describes.

The variogram distribution of each lag distance for the well and seismic data could
be merged to reduce well variogram uncertainty. The curve for defining the variance
of the seismic variogram based on the cross covariance could change from one data set
to another. The most accurate curve could be achieved for each data set. However,
in practice, it is a time consuming process especially in case of 3D data set. Thus, it
is not an efficient approach for reducing the uncertainty of the well variogram by the
seismic variogram.

The variogram pairs of the exhaustive seismic data could be used to estimate the
sparse variogram pairs of the well data by global cokriging approach. The standardized
form of simple global cokriging (SGCK) is proposed. Although SGCK removes noise
and artifacts in the experimental variogram, the updated variogram converges to the
fitted variogram model and not the real variogram according. Therefore, global cok-

riging approach is also considered inappropriate to improve the variogram of the well
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Figure 4.18: Improved variogram realizations after applying the limits of seismic-
derived variogram for azimuths 0° (a) and 90° (b).

data by the seismic variogram.

A totally positive covariance matrix between well and seismic data for a variogram
pair at each lag distance is proposed to attain the acceptable range of the unknown
covariance of the well data. This process is repeated for all lag distances. This leads
to the upper and lower limits of the seismic-derived variogram. These limits could be
applied on the well variogram uncertainty by a rejection sampling to ensure variogram
realizations of the well data fall within the upper and lower limits. The seismic-derived
variogram is so efficient and straightforward to use; it does not has the limitations
of the approaches of merging variogram distributions and global cokriging and it is
computationally so fast. The limits are recommended to apply for a reasonable cross
covariance (say above 0.2) to achieve more reliable seismic-derived variogram. The
higher the correlation between well and seismic data, the lower the difference between
the upper and lower limits. The variogram of the seismic data do not provide any
constraint on well variogram if the correlation is very low.

Only 2D data sets are considered to apply the seismic-derived variogram in this
Chapter. In case of 3D data set, the seismic-derived variogram is applied on the
horizontal variogram of the well data after downscaling the seismic variogram (see

Chapter 5).
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Chapter 5

Variogram Realizations

This Chapter presents a methodology to improve the horizontal variogram of well data
by considering the vertical variogram of well data as well as the horizontal variogram
of seismic data because they are often well-defined. Variogram downscaling is also
developed because the horizontal variogram of seismic data is at a larger scale than the
well data. The vertical variogram is scaled to scenarios of the horizontal variogram and
merged with the experimental horizontal variogram and the seismic-derived variogram.

Synthetic and realistic examples are presented.

5.1 Methodology

An approach is developed to improve the prediction of the horizontal variogram of
properties from well data. The challenge is the horizontal variogram of widely spaced
well data; the vertical variogram is often well-defined. The main aim of this Chapter
is improving the horizontal variogram uncertainty by the horizontal variogram from
seismic data and the vertical variogram from well data.

Figure 5.1 shows a schematic illustrating the methodology for improving a noisy
horizontal variogram with all available data (seismic and vertical variogram). The
probability distributions characterizing the uncertainty in the individual lag distances
for the noisy horizontal variogram along the stratigraphic direction -, must be defined
(see Figure 5.1-a). In case of preferential sampling, variogram declustering is required to

remove artifacts in the experimental variogram. Ordinary global kriging was proposed
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for declustering the sample variogram in Chapter 2. The variogram model fitted to
the declustered sample variogram (horizontal direction) is used to calculate variogram
uncertainty. The DoF approach proposed in Chapter 3 is used for calculating variogram
uncertainty. The high variogram uncertainty computed by the DoF approach (Figure
5.1-a) is reduced by the horizontal variogram of seismic data (Figure 5.1-b) and the
vertical variogram of well data (Figure 5.1-c).

Seismic data are extensively sampled in the horizontal direction although the verti-
cal variogram of seismic data is not particularly helpful due to the resolution of surface
seismic. The horizontal variogram of seismic data v, and the cross covariance are used
to calculate the upper and lower limits of the seismic-derived variogram for horizontal
directions by enforcing the covariance matrix between well and seismic to be totally pos-
itive. These limits can be applied on the horizontal variogram uncertainty via rejection
sampling. This was discussed in Chapter 4, Section 4.3.1. The horizontal variogram
of seismic data should be down scaled to the scale of the well data to remove the in-
consistency between the scale of the horizontal well and seismic variograms. Figure
5.1-b shows the upper and lower limits of the seismic-derived variogram for horizontal
directions after downscaling the horizontal variogram of seismic data.

The vertical variogram of well data v,e,- could be scaled to scenarios of the horizon-
tal variogram (see Figure 5.1-c), and used as further data for improving the horizontal
variogram uncertainty. This can be done by considering uncertainty in horizontal to
vertical anisotropy ratios (H:V) (Kupfersberger & Deutsch, 1999), and uncertainty in
the sill (see Section 5.3). The vertical-derived variogram provides a variogram distri-
bution for each lag distance. If seismic data is not available, the variogram distribution
of the horizontal variogram (Figure 5.1-a) and the vertical-derived variogram (Figure
5.1-b) could be merged for each lag distance to achieve the final variogram (see Section
5.4). The method of combining error ellipses discussed in Chapter 4, Section 4.1.1 is
proposed for merging variogram distributions. If seismic data is available, the limits
of the seismic-derived variogram should also be taken into consideration to attain the

final improved horizontal variogram uncertainty (Figure 5.1-d).
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5.2 Variogram Downscaling

The proposed methodology for improving horizontal well variogram with seismic var-
iogram is applicable when well and seismic data are at the same scale. The scale of
seismic data is always bigger than the scale of well data. The horizontal scale of seismic
data is the bin size of seismic acquisition, which is usually 20m. The horizontal scale
of well data is the diameter of core sample or horizontal influence of well logging tools.
The vertical scale of seismic data is approximately 10m versus the vertical scale of well
data based on well logging vertical resolution is usually 0.15m. The difference between
the scale of well and seismic data leads to inconsistency between the horizontal vari-
ograms: the horizontal variogram of seismic data has lower variance contributions and
larger ranges than the horizontal variogram of the well data. The difference between
the vertical scales of well and seismic data is the most important. This is due to the
greater variability in the vertical direction. This inconsistency could be fixed by down-
scaling the horizontal variogram of seismic data to the scale of well data. The variogram
downscaling might not be required for 2D data because well and seismic data are both
vertically averaged for the entire reservoir (Chapter 4). There are some publications
on variogram downscaling (Babak & Leuangthong, 2008; Frykman & Deutsch, 2002;
Kupfersberger, Deutsch, & Journel, 1998). The small scale variogram ~,(h) and the

large scale variogram ~y (h) are written as:

n n

Yw(h) =C)+) Ciih)  and  w(h)=C) + ) Ciri(h) (5.1)

i=1 =1

where v is small scale, V is the large scale, C° is nugget effect, C* and 7'(h) are
variance contributions and variogram models for variogram structures ¢ = 1,....,n.
Variogram downscaling is established under the assumption that the variables average
linearly and the variogram shapes are unchanged after downscaling (Kupfersberger et
al., 1998). The scaling law for variogram upscaling/downscaling retrieved from Babak

and Leuangthong (2008); Frykman and Deutsch (2002); Kupfersberger et al. (1998) is

written as:
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1. The range of variogram increases when the sampling volume size goes up. This
increase depends on the volume difference (|V|—|v]). |V and |v| are volume sizes
for large scale and small scale. For example, if V' is a large scale 100 x 100 x 1
m3, then |V| is between 1m and 141.42m. The scaling law for variogram range
is written as:

ai, = iy — (V] — [o]) (5.2)

(2

where a;, and aj, are the small and the large scale variogram ranges for variogram

models 7 (h) and ~i,(h), i =1, ....,n.

2. The scaling law for nugget effect C°, and variance contribution of each nested

structure C" is written as:

; '1_77;1)'0
G=Corp Ci = O —=2 (5.3)

v L=

where 'yé%v) and VfV,V) are the average variograms or the gamma-bar (Kupfers-
berger et al., 1998) for each nested structure i. As the volume size increases,
the nugget effect and variance contributions of the large scale variogram decrease
because by increasing the volume, the gamma-bar goes up. The impact of the
vertical scale on variogram downscaling in reservoir is much higher than the hor-
izontal scale due to the fact that the length or the width of reservoir is always
higher than reservoir thickness and higher horizontal variogram range than the
vertical variogram range. This leads to approximately equal gamma-bar for the

small and large horizontal scales (’yév vy fyfv V)) if the vertical scale is constant.

The small scale variogram =, (h) and large scale variogram ~y (h) are required for
variogram downscaling. -y (h) is the variogram of the original seismic data at large
scale. The small scale variogram of seismic data ~,(h) could be assumed as the var-
iogram of the directly calculated acoustic impedance or synthetic seismogram from
well data; acoustic impedance at well scale can be calculated by density log p and
velocity log v (p.v); synthetic seismogram can be built by calculating the reflection

_ p2v2—p1.v1

coefficients R = £22-P171 and convolve with a wavelet. The downscaled horizontal
p2.v2+p1.v1
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seismic variogram should be standardized to sill 1 before calculating the seismic-derived
variogram.

The horizontal cross covariance between well and seismic data at the scale of well
data is required to calculate the seismic-derived variogram (Chapter 4, Section 4.3).
Down scaling the horizontal cross covariance may not be possible since the small scale
cross covariance between well and the calculated acoustic impedance leads to artificially
high cross covariance due to the fact that the acoustic impedance is achieved from well
data not the real seismic data. Thus, an intrinsic cross covariance model (Markov
model) (Pyrcz & Deutsch, 2014) is proposed: the covariance model of the normal score
seismic data is scaled by the correlation coefficient between the normal score well and
seismic data. The correlation coefficient between well and seismic data at the scale
of well data is required for this approach: as the scale goes down, the correlation
between well and seismic decreases. The correlation coefficient at the small scale could
be calculated by fitting an equation to the different upscaled volumes (x axis) and the
observed correlations from the data set (y axis). The resulting equation may give an
approximate correlation between well and seismic data at scales less than the vertical

resolution of seismic data (see Chapter 7).

5.3 The Vertical-derived Variogram ,,,.,

The vertical variogram of well data v, could be scaled to scenarios of the horizon-
tal variogram. The vertical variogram is often well-defined due to regular sampling in
direction of drilling, and it can be scaled to the horizontal variogram by the horizontal-
to-vertical anisotropy ratio (H:V) (Kupfersberger & Deutsch, 1999) based on the geo-
logical conceptual model or analogue information. The probability distribution of each
lag distance can be achieved by considering uncertainty in H:V and uncertainty in the
sill of the vertical-derived variogram. A triangular distribution is assumed to represent
the uncertainty in H:V. Minimum (Min), Mode and Maximum (Max) values are re-
quired. The Gaussian distribution is assumed to represent the uncertainty in the sill of

the vertical-derived variogram. The Gaussian distribution is constructed by mean=1,
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which is the sill value for the standardized data, and standard deviation o:

A,

Ay =Max((1-2),(T'-1)) 7" Py

(5.4)

where Z is zonal anisotropy, and 7' is trend for the horizontal variogram: A, is the
practical maximum deviation of the sill of the horizontal variogram from the sill 1.
There may be a zonal anisotropy or trend in the horizontal variogram that can be
inferred from the conceptual geological model or seismic data. Accounting for uncer-
tainty in the sill avoids unreasonably low variogram uncertainty in the vertical-derived
variogram. The standard deviation of the distribution of the sill o can be calculated
for Pyy (or Pjg) of the normal standard distribution. Figure 5.2-a shows the trian-
gular distribution for H:V, and Figure 5.2-b shows the Gaussian distribution of the
sill. Simulating many H:V and sill values from the corresponding triangular and Gaus-
sian distributions provides the vertical-derived variogram. This process is repeated to

calculate variogram realizations of the vertical-derived variogram.

a) b)

A Sill=1
2/(Max-Min)
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- - ( ‘E-
Min Mode Max 5
I:)10 90

Min: Minimum of H:V Ratio
Max: Maximum of H:V Ratio

Figure 5.2: a) The triangular distribution of H:V. b) The Gaussian distribution of
the sill.

Figure 5.3 shows a synthetic example of scaling the vertical variogram to scenarios
of the horizontal variogram by the mentioned approach. Min, Mode and Max of
H:V for building the triangular distribution are 80, 100 and 120 respectively. Figure
5.3-a shows the triangular distribution of the H:V. Figure 5.3-b shows the Gaussian

distribution of the sill for A, = 0.05. Figure 5.3-c shows a synthetic vertical variogram
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with two spherical structures, variance contributions of 0.4 and 0.6, and ranges of
2m and 10m, respectively. Figure 5.3-d shows 100 realizations of the vertical-derived
variogram. If the horizontal variogram cannot be calculated because of the limited
well data (less than 4 wells), the vertical-derived variogram could be replaced with the

horizontal variogram and used in geostatistical modeling.
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Figure 5.3: a) The triangular distribution of H:V with Min = 80, Mode = 100,
Max = 120. b) The Gaussian distribution of the sill for A, = 0.05.
c) Synthetic vertical variogram. d) 100 variogram realizations of the
vertical-derived variogram.

5.4 Merge the Horizontal and the Vertical-Derived Vari-
ograms

The distributions of the horizontal variogram -, and the vertical-derived variogram
Ywlyeer e merged to achieve an updated and more accurate variogram distribution for
each lag distance. The error ellipses approach from Chapter 4, Section 4.1.1 is used for

merging the variogram distributions. A transformation table is required to transform
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the Chi-square distribution of each lag distance to a Gaussian distribution, and back
transform the results to the Chi-square distribution. This transformation could be done
by quantile matching lookup analogous to the normal score transformation approach

(Deutsch & Journel, 1998). That is:

y=G(F(z) , z=F'G) (5:5)

where y is the Gaussian transformed random variable corresponding to the original
data z. F(z) is cumulative distribution function (CDF) of original data, G(y) is the
standard CDF. An anamorphosis function is constructed from Equation 5.5 based on
matching quantiles between a normal score distribution function G(y) and the standard
Chi-square distribution function with 1 degree of freedom F(z). This anamorphosis

function is denoted:

G(y) = @(Chi(z)) . Chi(z) = ¢~ (G(y)) (5.6)

where ¢ is the anamorphosis function that transform any Chi-square distribution func-
tion C'hi(z) to the Gaussian distribution function G(y). The merged Gaussian distribu-
tion function can be back transformed to the merged Chi-square distribution by inverse
of the anamorphosis function ¢~!. Figure 5.4 shows that the Chi-square distributions
1, 2 are transformed to the Gaussian distributions, merged in Gaussian space and
back transformed to the Chi-square distributions (distribution 3) by the anamorphosis
function.

Figure 5.5 shows a synthetic example of merging the Chi-square distributions as-
sumed as the variogram distributions of -, (Distribution 1) and ~,,,,, (Distribution
2) for a lag distance by the mentioned methodology. Figure 5.5-a shows the Chi-
square distributions: the left hand side with the mean of 0.2 and standard deviation of
0.141, and the right hand side with the mean of 0.9 and standard deviation of 0.635.
Each Chi-square distribution should be transformed to the Gaussian distribution by

the anamorphosis function (see Equation 5.6 and Figure 5.4). Figure 5.5-b shows the
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Figure 5.4: The Chi-square distributions 1, 2 are transformed to the Gaussian dis-
tributions by the anamorphosis function, merged in the Gaussian space
(distribution 3) by error ellipse approach and back transformed to the
Chi-square distribution by inverse of the anamorphosis function 1.
The vertical axis is the standard Chi-square distribution function and

the horizontal axis is the standard normal distribution function.

Gaussian transformed distributions of each Chi-square distribution (Figure 5.5-a). Fig-
ure 5.5-¢ shows the merged distribution in Gaussian space in left, and the Chi-square
distribution in right after back transformation the merged Gaussian distribution by
inverse of the anamorphosis function ¢ ~!. The merged Chi-square distribution is con-
vex: the updated mean is 0.317 which is in the middle of the mean of two Chi-square
distributions (0.2, 0.9) and it is close to the distribution with lower uncertainty (Dis-
tribution 1). The process of merging variogram distributions of ,, and Yewlyeer Should

be repeated to achieve the updated variogram distributions for all lag distances.

5.4.1 Variogram Realizations after Merging Variogram Distributions

After merging variograms 7, and 7y,.,, variogram realizations could be drawn from
the updated (merged) Chi-square distributions of the variogram lags. Variogram real-

izations should respect the correlation between lags by LU simulation with the corre-
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Figure 5.5: a) Two Chi-square distributions assumed to be the distributions of the
same lag distance for different variograms (Y, Yuly,.,)- b) The Gaussian
transformed distribution of each Chi-square distribution. ¢) Merged dis-
tributions in Gaussian space in left Figure and Chi-square space in right
Figure.

lation matrix of the variogram lag distances. LU simulation for calculating correlated
variogram realizations was discussed in Chapter 3, Section 3.4.

Figure 5.6 shows a synthetic example of merging the uncertainty in the horizon-
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tal variogram and the vertical-derived variogram, and sample realizations from the
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Figure 5.6: Synthetic example of merging the horizontal variogram realizations (a)
and the vertical-derived variogram realizations (b). The improved hori-

zontal variogram (c) has lower uncertainty.

merged distributions. The experimental horizontal variogram is shown on each vari-
ogram (dashed pointed line). Figure 5.6-a shows the horizontal variogram realizations
with high uncertainty. Figure 5.6-b is the vertical-derived variogram realizations. The
distribution of each lag distance of the horizontal variogram and the vertical-derived
variogram are merged with the error ellipse approach after transforming from the Chi-
square distribution to the Gaussian distribution, then back transformed to the Chi-

square distribution after merging (see the mentioned methodology above). Variogram
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realizations are drawn from the updated distributions of each lag distances. Figure
5.6-c shows the improved horizontal variogram realizations with lower uncertainty. If
exhaustive seismic data is not available, merging the horizontal variogram realizations

and the vertical-derived variogram is applied.

5.5 Improve Horizontal Variogram by the Vertical-derived
and Seismic-derived Variograms

The challenge addressed now is when seismic data is also available with a vertical-
derived horizontal variogram. This could be done by enforcing the seismic-derived
variogram on both v, and 7,l,,., and then variogram distributions are merged. A
simulation study is presented to confirm the efficiency of this approach against other
possible techniques of applying the seismic-derived variogram such as enforcing the
seismic-derived variogram on only 1- vy, 2- Y|y, 3- Merged variogram. Synthetic
well and seismic data with a high correlation are simulated. Sparse wells are drawn.
The horizontal variograms from the well and seismic data and the vertical variogram
from well data are calculated. The horizontal variogram uncertainty, the vertical-
derived and the seismic-derived variograms are computed. All possible approaches of
using the seismic-derived variogram are applied to improve the horizontal variogram
uncertainty. The approach that makes the horizontal variogram closest to the real
horizontal variogram of well data will be recommended.

Synthetic Gaussian well data are simulated by sequential Gaussian simulation (SGS)
with grid numbers of nx = 100 x ny = 100 xnz = 50. The horizontal grid size (x and y)
is 10m and the vertical grid size is 1m; the area is x = 1000m x y = 1000m x z = 50m.
The reference variogram model has two spherical structures with variance contributions
of 0.5 (no nugget effect). The horizontal and vertical variogram ranges for the first
structure are 140m and 6m, and the horizontal and the vertical variogram ranges for
the second structure are 380m and 12m. Well data are drawn from the simulated data
set. Figure 5.7 shows the simulated well data and the locations of the ten drawn wells.

Synthetic Gaussian seismic data (acoustic impedance) are simulated with the same
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Figure 5.7: Simulated Gaussian well data set with grid numbers of nz = 100 x ny =
100 x nz = 50 (volume of x = 1000m x y = 1000m x z = 50m) and
locations of the ten drawn wells.

grid numbers and grid sizes of well data enforcing a high negative correlation (p(0) =
—0.65) because in reality, well data (porosity) usually have a negative correlation with
the acoustic impedance. The variogram of the seismic data is isotropic with two spher-
ical structures and variance contributions of 0.4 and 0.6 for the first and second struc-
tures (no nugget effect). The horizontal and vertical variogram ranges for the first
structure are 160m and 6m, and the horizontal and vertical variogram ranges for the
second structure are 350m and 12m. It is assumed that well data and seismic data have
the same scale. Figure 5.8 shows that the simulated seismic data. Figure 5.9 shows the
cross plot between the well and seismic data at ten drawn well locations (p(0) ~ —0.65).
Figure 5.10 shows the horizontal variogram (Figure 5.10-a) for azimuth 0° + 30° and
the vertical variogram (Figure 5.10-b) of the ten drawn wells and fitted variogram
models. The horizontal variogram is noisy because of sparse well data (see Figure

5.7); however, the vertical variogram is well-defined. For calculating the horizontal
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Figure 5.8: Simulated seismic data set having high correlation with the Figure 5.7.
Grid numbers are nx = 100 x ny = 100 X nz = 50 and the volume is
z = 1000m x y = 1000m x z = 50m.

3 Well vs. Seismic
E Number of data 500
Number plotted 497

X Variable: mean 0.120
std. dev. 0.995

min. -2.287

max. 3.835

Y Variable: mean 0.077
std. dev. 1.009

min. -2.416

max. 2.563

correlation -0.648
‘«yank correlation -0.639

well
o
|

seismic

Figure 5.9: Cross plot between well and seismic data for the ten drawn wells.

variogram realizations, the correlation matrix between lag distances are calculated in

Figure 5.11-a, and the distribution of uncertainty of each lag distance is calculated by
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the DoF approach (Chapter 3). Since the wells are sparse and the variogram range is
not large, there is low correlation between lag distances. Variogram realizations are

drawn from the uncertainty interval of lag distances: LU simulation is applied with

a)

b)

| Horizontal variogram /l 1.0 Vertical variogram a7t
0.8
0.6
Y(h) ]
0.4
---=-- Experimental variogram 0.2] ---=--Experimental variogram
| Fitted Variogram R Fitted Variogram
0.0 - - T T | 0.0 T T T
200 300 400 500

Distance (m)

0

4 8
Distance (m)

Figure 5.10: The horizontal variogram for azimuth 0° + 30° (a) and the vertical var-
iogram of the ten wells drawn from the Figure 5.7 (b).

the correlation matrix between lag distances and back transformed to the marginal
Chi-square distributions. Figure 5.11-b shows the correlation between lag distances for
100 variogram realizations after LU simulation. There is a slight difference between
the correlation matrix (Figure 5.11-a) and correlations between variogram realizations
(Figure 5.11-b). Figure 5.12-a shows the horizontal variogram realizations and Fig-
ure 5.12-b shows the fitted variogram realizations. The uncertainty is high and can
be improved by the vertical-derived variogram and the upper and lower limits of the
horizontal seismic-derived variogram. Figure 5.13 shows the vertical-derived variogram
Yuwlyeer; UnCertainty in H:V is calculated by the triangular distribution with Min = 15,
Mode = 21.5 and Max = 28, and A, = 0.1 for calculating the uncertainty in the sill
(see Figure 5.2). Ywlyeer 18 achieved by scaling the vertical variogram in Figure 5.10-b

and accounting for the uncertainty in the sill. Figure 5.14 shows the upper and lower

limits of the horizontal seismic-derived variogram 7,,,. These limits are enforced on

variogram realizations up to correlation 0.2 (p(h) = 0.2) between the well and seis-
mic data. Figure 5.15 shows the improved horizontal variogram realizations by four
approaches: a) Enforce the seismic-derived variogram on 7, and merged with 7, -

b) Enforce the seismic-derived variogram on Yewlyer» a0d merged with . c) Merge
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lagl Lag2 Lag3 Lag4 Lag5s

lag1 0.34 | 036 | 0.02 | 0.02
lag2| 0.34 0.31 0.01 | 0.01
Lag3| 0.36 | 0.31 0.01 0.01
Lag 4| 0.02 0.01 0.01 0.33
Lag 5| 0.02 0.01 0.01 0.33

b)

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

) 0.37: ~ |-0,02, 30.02
Lag 1 1 A ﬁ’gé:, o W oo e
g Eﬁ&» °°
Lag 2 2
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Figure 5.11: a) Correlation matrix between lag distances for the horizontal variogram
of ten wells drawn from the Figure 5.7. b) Correlation matrix between
lag distances for 100 variogram realizations after LU simulation and
back transformation to the marginal Chi-square distributions.

Yw and Yoy, , and apply the seismic-derived variogram on the merged variogram. d)
Enforce the seismic-derived variogram on 7, and 7|, and merge variograms. Al-
though they look similar because of using the same merging approach (error ellipse
technique), the difference between approaches could be used to choose the most reli-
able technique: since the real variogram of the ten drawn wells is available, the mean
square error (MSE) between all variogram realizations and the real variogram for all

lag distances is calculated. The approach that leads to a minimum MSE may signify
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Figure 5.12: The horizontal variogram realizations (a) the fitted variogram realiza-
tions of ten drawn wells (b).

Variogram Realization
J ---e--- Experimental Variogram

T T 1
0. 100. 200. 300. 400.
Distance (m)

Figure 5.13: The vertical-derived variogram by scaling the vertical variogram in Fig-
ure 5.10-b via considering uncertainty in the H:V and sill: the triangular
distribution with Min = 15, Max = 28 and Mode = 21.5 for H:V, and
A, = 0.1 for building the Gaussian distribution of the sill.

the most reliable technique. The lowest MSE, which is 0.024284, achieved in case of
enforcing the seismic-derived variogram on both 7, and 7,,,., and then merge vari-
ograms (see Figure 5.15-d). This ensures that the merged variogram is situated within

the seismic-derived upper and lower limits.
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Figure 5.14: The horizontal seismic-derived variogram. The upper and lower limits
are enforced up to correlation 0.2 (p(h) = 0.2).

5.6 Multivariate Variogram Realizations

In case of multivariate geostatistical modeling, the variogram realizations should con-
sider the correlation between variables: if variables are correlated, the variogram re-
alizations between variables are correlated. For example, if two variables are highly
correlated, a variogram realization with high range of one variable cannot be used with
a variogram realization having low range of another variable in geostatistical modeling;:
both variogram realizations should have high range or low range. LU simulation is
proposed to respect the correlation between variables for variogram realizations. Real-
izations of LU simulation (Deutsch & Journel, 1998) preserves the correlation between
the elements in a correlation matrix. By LU simulation, multivariate Gaussian dis-
tribution of each variable is constructed and ranked. The variogram realizations for
a specific lag distance are calculated for each variable and ranked; the lag distance
should be reasonably chosen to differentiate variogram realizations. The ranked vari-
ogram realizations of the variables are ordered based on the ranked realizations of the

LU simulations. The Step by Step procedure is:

1. Construct the positive correlation matrix of variables p. If there is a negative

correlation between variables, that should be converted to positive correlation be-
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Figure 5.15: Improved horizontal variogram realizations by four different approaches:
a) Enforce the seismic-derived variogram on ,,, and merge with v, .. -
b) Enforce the seismic-derived variogram on the v,,,.,, and merge with
Yw- €) Merge v, and 7y, and apply the seismic-derived variogram
on the merged variogram. d) Enforce the seismic-derived variogram on
Yw and Yy|y,,, and merge variograms. Approach d leads to a minimum
mean square error (MSE).

cause even though variables are negatively correlated, the variogram realizations

are positively correlated.
2. Compute the Cholesky decomposition of the correlation matrix as p = LL”
3. Simulate a vector of uncorrelated standard normal deviate w
4. Generate a vector of correlated Gaussian realizations Y = Lw
5. Rank correlated Gaussian realizations for each variable Y

6. Calculate variogram values for a specific lag distance for all variogram realizations

of variables Z

7. Rank the variogram values of each variable Z
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8. Order Z based on Y for all variables

this ensures the positive correlations between the variables are reproduced for vari-
ogram realizations. Then, the horizontal variogram realizations of each variable can
be autofitted with the vertical variogram to achieve 3D variogram realizations of each

variable.

5.7 Realistic Example: Hekla Case Study

The Hekla data is presented for improving the horizontal variogram of well data. The
Hekla reservoir is a part of North Sea fluvial deposit (offshore) located in Norway. This
data set is suitable for the proposed methodology of improving horizontal variogram
by the vertical-derived and the seismic-derived variograms. 3D seismic data of this
data set is not available, there is only an average of acoustic impedance for the entire
thickness of the reservoir. The total thickness of the reservoir is approximately 60m
(H1+H2, H1: Horizon 1, H2: Horizon 2). The cell size for X and Y directions of seismic
data are 50m; hereby, the scale of seismic data is X = 50m x Y = 50m x Z = 60m.
Figure 5.16 shows the average acoustic impedance (H1+H2 Impedance) and location
map of the well data for this data set. There are some missing acoustic impedance
values. The input data includes twenty wells. Three wells 8, 15, and 16 are eliminated
for this study because there is no acoustic impedance: the variogram of the calculated
acoustic impedance from well data is used for downscaling the variogram of the original
seismic data to the scale of the well data (see Section 5.2). The variable of well data for
improving the horizontal variogram for this study is Log Porosity. The vertical scale of
Log Porosity is 1m after upscaling. Figure 5.17 shows Log Porosity of seventeen wells
for this data set.

Directional horizontal and vertical variograms of Log Porosity are calculated. Since
major and minor directions of continuity cannot be seen in the well data, these direc-
tions are obtained from seismic data: according to Figure 5.16, the approximate major
and minor directions of continuity are azimuths 25° and —65°. The horizontal vari-

ograms of Log Porosity are calculated for azimuths 25° +30° and —65° 4+ 30°. Both the
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Figure 5.16:

well and seismic data are normal scored. Figure 5.18 shows the normal score horizontal
and vertical variograms of Log Porosity and fitted models. Due to sparse well data, the
horizontal variograms are noisy and unreliable, and do not show the spatial correlation.
The vertical variogram is well-defined because of regular sampling in the vertical direc-
tion. For calculating the horizontal variogram realizations, correlation matrix between
the lag distances of azimuths 25° and —65° is shown in Figure 5.19. Because of sparse
well data, the correlations are relatively low. Variogram uncertainties are calculated by
the DoF approach (Chapter 3); LU simulation is applied with the correlation matrix of

lag distances and back transformed to the marginal Chi-square distribution. Figures

Average of the acoustic impedance for the entire reservoir (H14+H2

Acoustic
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Impedance) and locations of seventeen wells for Hekla data set.
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Figure 5.17: 3D Log Porosity of seventeen wells for Hekla data set (see Figure 5.16)

The wells are sparse. The approximate scale 1000m is a horizontal scale

5.20-a and 5.21-a show 100 horizontal variogram realizations for azimuths 25° + 30°
and —65° 4+ 30°, respectively. Figures 5.20-b and 5.21-b show the fitted variogram
realizations. There is a high variogram uncertainty for both directions. The objec-

tive is to reduce the horizontal variogram uncertainty using the vertical-derived and

seismic-derived variograms.
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Figure 5.18: a) The horizontal variograms of Log Porosity and fitted models for az-

imuths 25° + 30° and —65° + 30° (normal score). b) The vertical vari-
ogram of Log Porosity and fitted model (normal score).
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Figure 5.19: Correlation matrix between eight lag distances of azimuth 25° and seven
lag distances of azimuth —65°.
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Figure 5.20: The horizontal variogram realizations of Log Porosity for azimuths 25°+
30° (a) and the fitted variogram realizations (b).

The vertical-derived variogram 7,|,., could be calculated for both major and minor

directions of continuity if H:V is available for these directions from the conceptual
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Figure 5.21: The horizontal variogram realizations of Log Porosity for azimuths
—65° £ 30° (a) and the fitted variogram realizations (b).

geological models. However, there is usually one calculated H:V for reservoir. Figure
5.22 shows the vertical-derived variogram 7,|,., ; uncertainty in H:V is calculated by a
triangular distribution with Min = 80, Mode = 100 and Max = 120, and uncertainty
in the sill by the Gaussian distribution with A, = 0.2. Simulation is used to draw
samples of H:V and sill. ~,,,,, is achieved by scaling the vertical variogram (Figure
5.18-b) via the drawn H:V value and assigning the drawn sill value for each scaled-
vertical variogram.

The seismic variogram should be down scaled before calculating the upper and lower
limits of the seismic-derived variogram. For this data set, there is only a 2D average
acoustic impedance over the entire reservoir instead of 3D seismic data. According to
the variogram scaling law, both 3D large scale and small scale variograms are required
(see Equation 5.3). The large scale variogram is the variogram of seismic data at the
scale of X = b0m x Y = 50m x Z = 60m. The small scale variogram of seismic
data at the scale of well data is unknown. The variogram of the calculated acoustic
impedance at the scale of well data is available for this data set. Figure 5.23 shows the
experimental horizontal and vertical variograms of the calculated acoustic impedance

and fitted models. This leads to a 3D variogram model of the calculated acoustic
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Figure 5.22: The vertical-derived variogram realizations by scaling the vertical var-
iogram in Figure 5.18-b; uncertainty in the horizontal to vertical
anisotropy ratio (H:V) is calculated by the triangular distribution with
Min = 80, Mode = 100 and Max = 120 and the Gaussian distribution

of the sill by A, = 0.2. The horizontal variograms for azimuths 25° and
—65° are shown in this Figure.

impedance at the scale of well data used for downscaling the real seismic variogram to

the scale of the well data. The vertical scale of well data is 1m and the horizontal scale
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Figure 5.23: a) The horizontal variograms of the calculated acoustic impedance for
wells and the fitted models for azimuths 25°+30° and —65°+30° (normal

score). b) The vertical variogram of the calculated acoustic and fitted
model (normal score).

is assumed to be 0.25m. The impact of the vertical scale on downscaling is much higher
than the horizontal scale: the average variogram for the small and large horizontal scale

are approximately equal (see Equation 5.3). The scaling law for variogram range has a

little impact on the down scaled variogram (see Equation 5.2). Figure 5.24 shows the
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experimental variograms, fitted models and the standardized down scaled variograms
of the seismic data for azimuths 25° and —65°. The down scaled seismic variogram is
at the scale of the horizontal well variogram. The correlation between well and seismic

at the scale of well data is required; as the scale of the seismic data decreases, the
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Figure 5.24: The experimental variograms, fitted models and standardized down
scaled variograms of the seismic data (see Figure 5.16) for azimuths
25° (a) and —65° (b) (normal score).

correlation between well and seismic goes down. This correlation could be roughly
estimated by fitting an equation to the different upscaled volumes and the observed
correlations between well and seismic data. Since there is no 3D resolution in this
data set for finding this equation, the correlation between the well and seismic data
(acoustic impedance) at the scale of well data is assumed to be 0.4. The cross covariance
is calculated by the intrinsic model. Figure 5.25 shows the upper and lower limits of the
horizontal seismic-derived variograms 7,|,, for azimuths 25° and —65°. These limits
are enforced on the horizontal variogram realization for azimuths 25° (Figure 5.20-b)
and —65° (Figure 5.21-b) and the vertical-derived variogram 7,,,,, (Figure 5.22) up
to correlation 0.2 (p(h) = 0.2) by the rejection sampling approach with the correlation
matrix of the lag distances (Figure 5.19). The final step is merging the horizontal
variograms with the vertical-derived variogram for each direction.

Figure 5.26-a shows enforcing the seismic-derived variogram on only the horizon-
tal variogram realizations without merging with the vertical-derived variogram for az-
imuths 25° and —65°. Since, the correlation between the well and seismic data is low

(p(0) = 0.4), the impact of the seismic variogram to improve the high uncertainty in
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Figure 5.25: The upper and the lower limits of the horizontal seismic-derived vari-
ograms for azimuths 25° (a) and —65° (a). These limits are enforced
on the horizontal variogram realizations for azimuths 25° and —65° and
the vertical-derived variogram up to correlation 0.2 (p(h) = 0.2).

the horizontal variogram is not striking. Figure 5.26-b shows merging the horizon-
tal variogram realizations with the vertical-derived variogram without enforcing the
seismic-derived variogram for azimuths 25° and —65°. This is the case when seismic
data is not available. The uncertainty goes down considerably because the uncertainty
in the vertical-derived variogram is lower than the horizontal variogram and merging
variogram distributions by error ellipse approach leads to less uncertainty. Figure 5.26-c
shows the final improved variogram realizations for azimuths 25° and —65° considering
both the vertical-derived and seismic-derived variogram: enforce upper and lower limits
on both the horizontal variogram and the vertical-derived variogram realizations, and
merge variogram distributions and sample from the merged distribution by LU sim-
ulation. The final horizontal variogram is strongly influenced by the vertical-derived
variogram. These realizations are fitted with the fixed vertical variogram by auto var-
iogram modeling software to attain the 3D variogram realizations. These variogram

realizations are used in geostatistical modeling to incorporate variogram uncertainty.

5.8 Remarks

The horizontal variogram of sparse well data has high uncertainty. A new approach is

presented to improve the high uncertainty by the well-defined vertical variogram from
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Figure 5.26: a) Enforce the upper and lower of the seismic-derived variogram on
the horizontal variogram realizations without merging with the vertical-
derived variogram for azimuths 25° and —65°. b) Merge the horizontal
variogram realizations with the vertical-derived variogram without en-
forcing the seismic limits for azimuths 25° and —65°. ¢) Final improved
variogram realizations for azimuths 25° and —65° considering the hori-
zontal variogram of seismic data and the vertical variogram of well data.

well data and the horizontal variogram from seismic data. The uncertainty in the 3D

variogram of well data is quantified by the uncertainty in the horizontal variogram.
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The vertical variogram is assumed without uncertainty because of regular sampling in
the direction of drilling. By improving uncertainty in the horizontal variogram, the
3D variogram realizations will be more reliable. These realizations could be used in
geostatistical modeling to transfer variogram uncertainty to the final model. Improved
variogram uncertainty leads to more accurate forecasting due to the fact that variogram
uncertainty has more impact on flow than resource estimation (see Chapter 3).

Figure 5.27 shows a work flow for achieving the final variogram realizations. First,
the horizontal and vertical variograms of well data should be calculated and a the-
oretical model is fitted for normal score data. In case of preferential sampling, the
theoretical model could be used for declustering the experimental variogram to have a
new fitted variogram model (see Chapter 2). The new fitted variogram model is used
to calculate variogram uncertainty. The proposed methodology works for both 2D and
3D data set. For 2D data set, there is no vertical variogram (see Chapter 4). Since
well data are vertically averaged (upscaled) for the entire reservoir as well as seismic
data, well and seismic data are approximately at the same scale, hence, downscaling
the seismic variogram before calculating the seismic-derived variogram is not required.
Variogram realizations for major and minor directions of continuity are computed (see
Chapter 3). Final 2D variogram realizations are produced by enforcing the seismic-
derived variograms on the variogram realizations by rejection sampling (see Chapter 4,
Section 4.3.1).

The methodology for 2D data set can be extended for 3D data set. In this case, the
vertical variogram can also be used to improve variogram uncertainty. The horizontal
variogram realizations are calculated for major and minor directions of continuity. The
vertical variogram is converted to scenarios of the horizontal variogram by considering
uncertainty in the horizontal to vertical anisotropy ratio (H:V) and uncertainty in
the sill. The horizontal variogram of seismic data are calculated and down scaled to
the scale of well data. An intrinsic cross covariance model (Markov model) (Pyrcz &
Deutsch, 2014) is calculated by the correlation between well and seismic data at the
scale of well data. This correlation could be achieved by fitting an equation to the

different upscaled volumes and the observed correlations for data set. The resulting
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Figure 5.27: Work flow for improving variogram uncertainty.

equation may give an approximate correlation between well and seismic data at any
scale. The upper and lower limits of the seismic-derived variogram are calculated and
applied on the horizontal variogram realizations and the vertical-derived variogram
by rejection sampling. The resulting variogram distributions after applying seismic
constrains are merged and sample again by LU simulation with the correlation matrix
of lag distances to achieve the improved horizontal variogram realizations.

The horizontal variogram realizations should consider the correlation between vari-

143



ables for multivariate geostatistical modeling (Section 5.6). LU simulation is proposed
with the positive correlation matrix between variables. This ensures that the positive
correlations between the variables are reproduced for variogram realizations. Then, the
horizontal variogram realizations of each variable can be autofitted with the vertical

variogram to obtain the final 3D variogram realizations of each variable.
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Chapter 6

Multivariate Distribution
Uncertainty

Required statistics such as the mean and the variance of the variables being modeled are
often uncertain due to limited data and preferential sampling. Based on geological and
geophysical data, the wells are likely located in the areas of higher quality to maximize
production. Naive equal weighted statistics will lead to biased resource estimates and
inappropriate reservoir development planning. Similar to variogram declustering (see
Chapter 2), the univariate distributions of the variables should be declustered to achieve
representative distributions.

The conventional declustering algorithms such as cell-declustering may correct the
statistics and lead to a representative histogram if there are enough wells in good and
poor areas; however, there are unlikely to be enough wells in the stage of development of
the reservoir (Pyrcz & Deutsch, 2014). In such case, a representative distribution of the
well data for each variable could be obtained with the aid of soft data such as exhaustive
seismic data or geological interpretation. Debiasing or soft data declustering techniques
(Deutsch et al., 1999, 2005) are used to construct a representative distribution based
on conditional distributions inferred from the calibration with the soft secondary.

Similar to variogram uncertainty, there is unavoidable uncertainty in the repre-
sentative histogram. This uncertainty should be quantified correctly because it affects
resource/reserve estimation, investment and development decisions. This Chapter aims

at developing a technique to evaluate and improve univariate parameter uncertainty,
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that is, uncertainty in the distribution or histogram of each variable. The Chapter
begins by introducing a new approach of quantifying histogram uncertainty followed
by evaluating all approaches relative to the ”true” uncertainty for a single variable.
Multivariate parameter uncertainty is developed based on the correct technique. A

realistic case study is presented.

6.1 Posterior Histogram Uncertainty

Uncertainty in univariate distribution of regionalized variables (input parameters) can
be attained by different approaches. 1- The bootstrap (Efron, 1979) draw values from
the data distribution to simulate different possible data sets. Since this approach
does not account the spatial correlation between data, it may not lead to the correct
uncertainty in the histogram. 2- The spatial bootstrap is an extension of the bootstrap
technique that considers the spatial correlation of data (Deutsch, 2004; Journel &
Bitanov, 2004) by unconditional LU simulation at data locations. The conditioning
data and the area of interest are not considered in this technique. 3- Conditional
finite domain (CFD) accounts for the conditioning data and the size of the domain.
Generally, CFD is very difficult to operate and leads to very low uncertainty (Babak &
Deutsch, 2009). 4- Global kriging can estimate the variance of the mean for the entire
domain. It accounts for the conditioning data and the area of interest; the variance
will decrease when the domain size increases (Deutsch & Deutsch, 2010).

A simulation-based method for quantifying uncertainty is proposed in this Chapter.
Since the spatial bootstrap does not account for the conditioning data, it is likely to
have unreliable high histogram uncertainty. The histogram uncertainty quantified by
the spatial bootstrap is assumed to be a prior uncertainty. This prior uncertainty could
be conditioned to achieve more reliable histogram uncertainty. This is called posterior
histogram uncertainty and it is claimed to be more accurate than other techniques
(Khan & Deutsch, 2016). The posterior histogram uncertainty is attained by using the
spatial bootstrap realization as reference distribution for normal score transformation

of data, and back transforming the conditional Gaussian realizations to original units.
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This process is repeated for the number of realizations. The simulation area could be
clipped to the domain limits for more accurate posterior histogram uncertainty. The

procedure is summarized by:

1. Define a stationary covariance function C(h).
2. Define the reference distribution F(z).
3. Perform the spatial bootstrap resampling as follows:

a) Construct the spatial data-to-data covariance matrix C.

b) Compute the Cholesky decomposition of the correlation matrix as C' = LL”.
c¢) Simulate a vector of uncorrelated standard normal deviate w.

d) Generate a vector of correlated Gaussian values y = Lw.

e) Transform the unconditional Gaussian values to original units

z(u,) = F7YG(y(u,))), a=1,...,n. Where u, is a data location and n

is the number of data.

4. Conditional simulation; the spatial bootstrap realization used as a reference dis-

tribution for normal score transformation.

5. Back transform the realization to original units with the spatial bootstrap refer-

ence distribution.

6. Each realization is limited to the domain limits.

Steps 3-c to 6 are repeated to achieve the posterior histogram uncertainty. This ap-
proach accounts for the conditioning data, the domain limits and the spatial correlation
between data.

Figure 6.1 shows a 2D synthetic data set with in an area of 1000m x 1000m with
nine data locations. The variable is effective porosity. The uncertainty in the mean
of the distribution is calculated by the prior and posterior uncertainty. An anisotropic
variogram model is assumed with the range of 80m for 0° and 40m for azimuth 90°.
Prior uncertainty in the mean is attained by averaging each realization of the spatial

bootstrap. The variance of the mean is 2.11 x 10~2. Posterior uncertainty in the mean

147



is attained by using each realization of the spatial bootstrap as a reference distribution
for normal score transformation of data and back transforming the realizations from
the Gaussian space to original units. The mean of each realization is computed. This
process is repeated to attain the posterior uncertainty in the mean: the variance of
the mean decreases from 2.11 x 1072 (prior uncertainty) to 1.43 x 10~2 because of the
conditioning data and domain limits.

The posterior histogram uncertainty is considered more accurate than the other
techniques. The only way to check the approaches of quantifying histogram uncertainty
is to design an experimental framework where the true uncertainty in the histogram
is known. For this experiment, the spatial bootstrap (prior), the global kriging and
posterior approaches are considered since the bootstrap and CFD are not considered

viable alternatives for quantifying histogram uncertainty.

6.2 Methodology

The approaches of quantifying parameter uncertainty (histogram uncertainty) are eval-
uated by comparing to the ”true” uncertainty to find the most correct approach; the
spatial bootstrap, global kriging and posterior approaches are tested relative to the
true parameter uncertainty. Although the experiment is applied for a single variable,
the result of this experiment is applicable to multiple variables. The global uncer-
tainty (variance) in the mean of distribution is used to evaluate parameter uncertainty
approaches.

In practice, the true variance of the mean could be achieved by a scan-based ap-
proach, which looks for similar patterns of a data configuration within a large real
image, and calculates the mean of the specified domain as the mean of the values
within the domain conditioned to the specified data configuration. The term ”data
configuration” is a template of data locations with assigned values: the term ”tem-
plate” is only the location of data without value. The proposed scan-based approach

for computing the true distribution of the mean is summarized by the following Steps:
1. Select a large grid of real data from remote sensing.

148



Synthetic Data Prior Uncertainty in the Mean by

1000- 15755 o039 . o1s e Spatial Bootstrap
A 0.16 n =100
8007] 0145 0.15 0.14 m=0.0921
] : Py =0.0895
E 0.12 = 2 =2
E 600 3 o =2.11X10
_@ 0.141 0.953 0918 010 & 0.10
S 400l g 0.08
=2 - pud
| .05 = 0.06
0.214
200] ° 0.04
) 0.0 0.02
70.059 0.110
41 © [}
0. 0.00
o. T ‘260.‘ T ‘4{;0.‘ T ‘6(‘)0.‘ T ‘8(‘)0,‘ T ‘1000' 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
East (m) Mean
SGS Realization Using Reference Posterior Uncertainty in the Mean
Distributions from the Spatial 0.12 -
Bootstrap Realizations " 1 n—=100
L : il m=0.0958
Realization # 1 > 1 P5p=0.0955
o 3 0.08 H 5 -
5 g = 143)(10
E T 2 006 H
- 9 o
. w
0.04]
Realization # 2 H
F ) 0.02

0.00
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

\

o I
Jh
Figure 6.1: A synthetic 2D example of effective porosity. The uncertainty in the mean
is calculated by prior and posterior uncertainty. The posterior approach
leads to lower uncertainty in the mean of effective porosity: the variance
of the mean decreases from 2.11 x 10~2 (prior uncertainty) to 1.43 x 102
because of the conditioning data and domain limits.

2. Find stationary area and average variogram by discretization of the image for

different patch sizes.
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3. Pre-scan the image for a template to find common data configurations.

4. Scan again the data configuration to find exact replicates within the image and
average the whole domain near the data configuration to build the true distribu-

tion of the mean (see Figure 6.2).

Figure 6.2-a and Figure 6.2-b show a schematic and an example of the scan-based
approach. A data configuration with five locations is scanned to find similar patterns
in the image. The data configuration should have enough replicates within the image
to make a reliable true distribution of the mean. A tolerance between the specified
data configuration and the observed pattern in the image should be considered in order
to find enough replicates. By scanning many data configurations and several templates
over a large image, and calculate the mean of each replicate, the true uncertainty
(variance) in the mean is attained. This would support selection of the best approach

of quantifying histogram uncertainty.

6.3 Evaluate Parameter Uncertainty Techniques by True

Uncertainty

6.3.1 Proper Data Configurations

The true variance of the mean could be attained by scanning an image to find similar
replicates of data configuration (see Figure 6.2). The problem with the scan-based
approach is finding proper data configurations. The data configurations should have
enough replicates. This leads to a reliable distribution of the mean (more accurate
variance of the mean). The index method proposed by Deutsch (1992) is applied to

find frequent data configurations of a template in image:
N .
index =1+ [z —1].K"! (6.1)
i=1

where K is number of classes which divides the data of image into different classes. N

is number of data locations, and z; is a class number of each data location in image.
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By scanning a template (data location without value) in image, frequent indexes are
observed. Figure 6.3 shows a schematic of the index approach for finding optimum
data configurations that have enough replicates in the image. There is a template with

6 locations (N = 6), and the values of the image in this Figure are divided into 10

classes (K = 10). For example, class number 2 is between -2.3 to -1.7. This template
is scanned within the image to select the index values that have reasonable frequencies
(more than average frequency). These indexes are converted to the corresponding data
configurations. Figure 6.3 shows how an index value of 251320 is converted to a data
configuration. First, the class number of each location is calculated. Then, each class
is converted to an appropriate value of image. Since each class number denotes a range

of values, Monte Carlo Simulation (MCS) could be used to convert class numbers to

appropriate values of the image.
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Figure 6.3: Schematic of index approach for finding optimum data configurations

(high frequency in image) for the scan-based approach.
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6.3.2 Error Correction

The resulting data configurations that have enough replicates should be used in the
scan-based approach to calculate the true distribution of the mean. The bin size of the
classes should be as small as possible. The smaller the bin size, the more classes, the
more accurate and precise data configuration. However, using a large number of classes
and data points is computationally demanding. There is a trade off between the number
of classes, data locations and error between data configuration and pattern (replicate)
in image. This error should increase with increasing number of data locations and bin
size; otherwise, it would not be feasible to find sufficient replicates. Averaging each
pattern with this error may lead to an inaccurate distribution of the mean. Figure
6.4 shows the error between data configuration and a replicate in the image for each
location to the left, and the way of correcting this error at the right. The corrected
true mean could be calculated by dividing the area of the data configuration into equal
sub-areas including one data approximately in the middle of each area. For the entire
each sub-area, the error is assumed to be the same. The Equation in Figure 6.4 (right)
shows the true mean is equal to the expected value of the pattern (replicate in image)
plus the expected value of the error (E{Pattern} + E{Error}).

Error between Data and Replicate in Image Calculate Correct Mean

1

Replicate in Image
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Figure 6.4: Error between data configuration and replicate in image (left), calculating
the corrected true mean of the replicate (pattern) by adding the expected
value of the error to the expected value of the pattern (right).
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6.3.3 Stationary Area and Select Templates

Figure 6.5 shows an image applied for the scan-based approach. This image is color of
the ocean of east Tasmania taken in December 2004 (NASA, n.d.). The original image
is digitized and converted to a large numerical data having nxz = 5000 x ny = 6000
pixels. It is assumed a grid size of 1km because the length and width size of the
original image is unknown. The data are transformed to normal score. The data

Color of Ocean (East of Tasmania)

North (km)

& Dal WL
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

East (km)
Figure 6.5: Color of the ocean of east Tasmania (NASA, n.d.).

configurations with stationary area should be taken from the image. The entire image
is discretized to many square areas called patches (from small to big patches), then the
normal score variogram of each patch is calculated. If the average of all variograms
reaches to the expected sill in approximately half size of a patch, templates for the
scan-based approach are selected within this patch size (area). Figure 6.6-a shows the
discretized image (Figure 6.5) to patches 120km x 120km. The experimental variogram
of each patch is calculated. Figure 6.6-b shows the average variograms for azimuths

0° and 90° reach approximately a sill of 60km for these patches (120km x 120km): on
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Figure 6.6: a) Discretized image of Figure 6.5 to patches 120km x 120km. b) The
experimental variogram of each patch (gray lines) and the average vari-
ogram (blue line) are calculated for azimuths 0° and 90°.

average, there is no anisotropy. This area and the average variogram are used for the
approach of quantifying histogram uncertainty. According to this area, four templates
are selected with 6, 7, 8 and 9 data locations (see Figure 6.7). The result of the scan-

based approach for templates smaller than 6 data locations might not be accurate. The
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more data locations for a template, the more precise the distribution of the mean. The

templates with more than 9 data locations are not used in this study since they are
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Figure 6.7: 4 templates with 6, 7, 8, 9 data locations used for scan-based approach.

computationally demanding. Moreover, as the number of data locations increases, the
error between data configurations and patterns in the image should increase in order to
find enough replicates. Increasing this error leads to incorrect distributions of the mean
with the correction approach (Figure 6.4). The scan-based approach can be applied
automatically on the image of Figure 6.5 for many data configurations obtained for
each template (Figure 6.7) to calculate the true uncertainty in the mean. The index
approach is used to select proper (frequent) data configurations within the image (see

Section 6.3.1).

6.3.4 Quantify Uncertainty in the Mean by Parameter Uncertainty
Approaches

The variance of the mean for the drawn data configurations from the image in Fig-

ure 6.5 based on the templates in Figure 6.7 are calculated by parameter uncertainty
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approaches to compare with the true variance by the scan-based approach. The re-
quired variogram model for the spatial bootstrap, global kriging and posterior approach
is achieved by the fitted variogram to the average variogram of the stationary area

(patches 120km x 120km) in Figure 6.6-b:

~v(h) = 0.665.Gau (h) + 0.335.Sph (h) (6.2)
Bmajor=50.5km Pmajor=60.6km
hominor=50.5km hminor=060.6km

where Gau and Sph are Gaussian and spherical variogram structures. /g or and
Rminor are major (azimuth 0°) and minor (azimuth 90°) variogram ranges for each
variogram structure. The variance contributions of this variogram are scaled by the
variance of each data configuration for the global kriging estimation of the uncertainty
in the mean. Since there are just a few locations of data, quantile-quantile transfor-
mation for posterior approach may not be applicable (normal score transformation of

the data and back transform to original units). If it is assumed that each data con-

Z—m
g

figuration has Gaussian distribution, the standard normal equation (y = ) can be
used. Where z is the value of each location of data configuration, y is the standardized
value of each location, m and o are different realizations of the mean and variance
comes from the spatial bootstrap. Conditional SGS is applied with the standardized
data configuration. Then, SGS realization is back-transformed, and calculate the arith-
metic average of each realization to build the distribution of the mean. This process

is repeated for 100 realizations to compute the variance of the mean by the posterior

approach.

6.3.5 Results

Figure 6.8 shows the results of the true variance of the mean (Direct) for templates of
Figure 6.7 versus the variance of the mean by the spatial bootstrap (SB), global kriging
(GK) and posterior (Post) approaches. 150 data configurations that have enough repli-
cates (more than average) in the image (Figure 6.5) with minimum error are selected
for each template. The true variance of the mean is calculated for each data configura-

tion. The spatial bootstrap (SB) estimates the variance of the mean much higher than
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the true variance for all templates (prior uncertainty). The variance of the mean com-

ing from the global kriging (GK) is always less than the true variance (approximately

half). The posterior technique estimates the true variance of the mean more accurately
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Figure 6.8: The true variance of the mean (Direct) resulted by scanning the image in
Figure 6.5 for 150 data configurations of templates in Figure 6.7 versus
the variance of the mean achieved by the global kriging (GK), spatial
bootstrap (SB) and posterior (Post) approaches.

than other methods. Other images were considered with similar results, that is, GK

gives too low uncertainty, SB is too high until conditioned to the data and clipped by

reasonable domain limits. The updated or posterior results are reasonable. Figure 6.9

shows a schematic illustration of the variance of the mean calculated by the spatial

bootstrap, global kriging and posterior approach versus the true variance.
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Figure 6.9: Schematic illustration of the variance of the mean by the spatial boot-
strap, global kriging and the posterior approach based on Figure 6.8. The
posterior approach is the most accurate estimator of the true variance of
the mean.

6.4 Multivariate Parameter Uncertainty

The posterior histogram uncertainty for a single variable (univariate parameter uncer-
tainty) has been discussed and showed to be close to the real histogram uncertainty: the
spatial bootstrap is the prior histogram uncertainty (upper bound) which can be up-
dated and improved (posterior uncertainty) by conditioning and accounting for the area
of interest through transferring in geostatistical simulation modeling workflows. Uni-
variate parameter uncertainty can be extended to multivariate parameter uncertainty.
In this case, the joint prior parameter uncertainty is estimated by the multivariate spa-
tial bootstrap and transferred through conventional cosimulation work flow to arrive
at a final posterior uncertainty.

The spatial bootstrap for a single variable (Deutsch, 2004; Journel & Bitanov,

2004) could be extended to the multivariate spatial bootstrap to respect the corre-
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lations between variables. The multivariate extension of the spatial bootstrap to n
variables requires a data-data covariance matrix divided to direct and cross covari-
ance submatrices from the direct and cross variograms between each pair of variables.
This covariance matrix is the same as a full cokriging system of equations (left hand
side). LU simulation is applied on the covariance matrix and back-transformed to the

reference distribution of each variable. The procedure is summarized by:

1. Define stationary direct and cross covariance functions C;;(h), 4,5 = 1,..n.

(n=1)
2

Where n is the number of variables. There are n direct and 2 Cross covari-

ances.
2. Define the reference distribution of each variable Fj(z), i=1,...,n.

3. Construct the spatial data-to-data covariance matrix C that includes the data-
data covariance submatrix of each variable plus the data-data cross covariance
submatrix between the variables (full cokriging system of equations). There are
totally n? submatrices. For k locations of data, each submatrix has a dimension
of k x k (if the locations are identical for variables). Thus, C has a dimension of

(k xn) x (kxn).
4. Compute the Cholesky decomposition of the covariance matrix as C = LL” .

5. Simulate a vector of uncorrelated standard normal deviate w with dimension
(k x n).
6. Generate a vector of correlated Gaussian realization for each variable

asyy . .= Lw.

7. Transform the unconditional Gaussian values of each variable to original units

21,..n(0g) = Ffln(G(yln(ua))), a=1,....,k. Where u,, is a data location.

Steps 5 to 7 are repeated for the multivariate spatial bootstrap that provides the prior
histogram uncertainty for each variable.
The multivariate posterior uncertainty can be achieved by incorporating the mul-

tivariate prior uncertainty in geostatistical simulation: cosimulation by SGS could be
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applied through full cokriging or intrinsic collocated cokriging (ICC) using super sec-
ondary variable (Babak & Deutsch, 2007a, 2007b; Manchuk & Deutsch, 2012). The
multivariate spatial bootstrap realization is used as a reference distribution for normal
score transformation of data and back transforming the Gaussian realization of each
variable to original units. The multivariate spatial bootstrap realizations lead to uncer-
tainty in the correlation between variables. By incorporating the multivariate spatial
bootstrap in geostatistical simulation, uncertainty in correlation is also incorporated in

the final model.

6.5 Realistic Example: Amoco Data Set

A real case study of 2D Amoco data (Chu et al., 1994) is considered for multivariate
geostatistical modeling with histogram uncertainty (variogram uncertainty of this data
set was considered in Chapters 3 and 4). SGS with full cokriging is used (Manchuk
& Deutsch, 2012) for multivariate geostatistical modeling. The variables are averaged
porosity and permeability over the main reservoir layer. Permeability is in milliDarcies.
Figure 6.10 shows a location map (left Figure) and declustered histogram (right Figure)
of porosity (Figure 6.10-a), permeability (Figure 6.10-b) and cross plots between these
variables in original (left Figure) and normal score (right Figure) (Figure 6.10-c). There
is a high correlation (p(0) ~ 0.84). Cell declustering provides a more reliable reference
distribution (Pyrcz & Deutsch, 2014).

Since full cokriging is applied for multivariate geostatistical modeling, linear model
of coregionalization (LMC) is fit to direct and cross variograms of porosity and per-
meability variables. Figure 6.11 shows direct and cross variogram models fitted to the
directional experimental variograms for azimuths 0° + 25° and 90° £ 25°. The diago-
nal variograms are direct variograms and off diagonal is the cross variogram between
porosity and permeability. The experimental variograms are calculated for normal

score data. The LMC models the direct and cross variograms as:
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Figure 6.10: Location map (left Figure) and declustered histogram of porosity (right
Figure) (a), permeability (b), and cross plots in original (left Figure)
and normal score (right Figure) units (c¢) for Amoco data set.
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where Por and Per are porosity and permeability variables. Exp and Sph are expo-
nential and spherical variogram models. hpqjor and Apminor are major (azimuth 0°) and

minor (azimuth 90°) variogram ranges for each variogram structure.
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Figure 6.11: Direct and cross variogram models fitted to the directional experimental
variograms of porosity and permeability for azimuths 0° +25° and 90° +
25°. The experimental variograms are calculated for normal score data.

The multivariate spatial bootstrap is applied with the LMC in Equation 6.3. The
joint prior parameter uncertainty for porosity and permeability are calculated for 100
realizations. Figure 6.12-a shows crossplots between porosity and permeability for four

realizations of the multivariate spatial bootstrap in original units. Each realization
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shows different correlated histogram of variables. Different realizations lead to different
correlation coefficients. Figure 6.12-b shows a histogram of 100 correlation coefficients
from the multivariate spatial bootstrap in original units. This joint prior histogram
uncertainty can be transferred to the final model. Figure 6.13-a and b show the joint
prior histogram uncertainty for porosity and permeability, respectively. There is a
very high histogram uncertainty for both variables. The standard deviation of the
mean for porosity is 0.9145 and for permeability is 2.1538. This high uncertainty is
reduced by conditioning data and clipping through geostatistical simulation (posterior
uncertainty).

Figure 6.14 shows four cosimulation SGS realizations of porosity and permeability
with full cokriging using the histogram uncertainty in Figure 6.13 as reference distri-
butions for normal score transformation of the data and back transform the Gaussian
realizations of each variable to original units. The realizations are correlated. The
uncertainty in the correlation coefficient (6.12-b) is incorporated in SGS realizations
by this approach. Figure 6.15 shows the posterior histogram uncertainty for 100 re-
alizations of porosity (Figure 6.15-a) and permeability (Figure 6.15-b). Due to the
trend in the data set (see Figure 6.10), the reference distributions (red lines) are not
exactly in the middle of the posterior histogram realizations. Compared with prior
histogram uncertainty in Figure 6.13, the uncertainty goes down considerably. The
standard deviation of the mean of realizations for porosity and permeability decreases
from 0.91 to 0.12, and from 2.15 to 0.48. The standard deviation of the standard devi-
ation of realizations for porosity and permeability also reduces from 0.31 to 0.15, and
1.42 to 0.68. The posterior uncertainty accounts for conditioning, spatial correlation
of the data, the area and correlation between variables. This leads to more accurate

histogram uncertainty.

6.6 Remarks

The approaches to quantify histogram uncertainty available to the practitioner have

drawbacks; overestimating or underestimating the uncertainty. A new framework is
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Figure 6.12: a) Crossplots between porosity and permeability for four realizations of
the multivariate spatial bootstrap in original units. b) Histogram of 100
correlation coefficients resulted by the multivariate spatial bootstrap in
original units.

proposed to transfer prior uncertainty in the histogram through geostatistical simula-
tion to achieve posterior uncertainty. The prior histogram uncertainty is calculated by
the spatial bootstrap. The posterior histogram uncertainty is obtained by conditioning
the prior histogram uncertainty and accounting for the area to attain lower and more
accurate histogram uncertainty: the spatial bootstrap realizations are used as reference
distributions. The simulation volume could also be clipped to the volume of interest.

In order to evaluate the posterior approach and the current techniques of quantifying
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Figure 6.13: The joint prior histogram uncertainty for porosity (a) and permeability
(b) (black lines). The red lines are the reference distributions for each
variable.

parameter uncertainty such as spatial bootstrap and global kriging, the uncertainty in
the mean for a single variable is calculated and compared with possible true uncertainty.
A scan-based approach is considered. This approach looks for similar patterns of a data
configuration within a large image. The results of the scan-based approach confirms
that the posterior approach is a reliable estimator of histogram uncertainty. The global
kriging is found to underestimate the uncertainty (lower bound). The spatial bootstrap
is found to overestimate the uncertainty (upper bound).

The posterior histogram uncertainty for a single variable is extended to multiple
variables by calculating the joint prior parameter uncertainty through multivariate spa-
tial bootstrap. The multivariate spatial bootstrap respects the correlation between the
histogram realization of the variables. The uncertainty in the correlation between vari-
ables as well as statistics (means and variance) are accounted in the final model. Con-
sidering histogram uncertainty plus variogram uncertainty (previous Chapters) leads
to more reliable models for decision making.

Only continuous variables (porosity, permeability...) are considered in this Chapter.
However, categorical variables such as facies should be incorporated in the final model.
The prior histogram uncertainty in the proportion of each facies could be calculated
by unconditional simulation at data locations. Conditional realizations with differ-

ent realizations of prior uncertainty in proportions of facies would provide posterior
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uncertainty.
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Chapter 7

Case Study - Uncertainty in
Hydrocarbon Initially In Place
(HIIP)

The approaches of quantifying parameter uncertainty (histogram and variogram) are
developed in previous Chapters. This Chapter presents geostatistical reservoir mod-
eling with parameter uncertainty for a real case study with only four widely-spaced
wells and 3D seismic data. Uncertainty in gross rock volume (GRV) is achieved by
considering uncertainty in the top and thickness of the reservoir using seismic data.
Uncertainty in the hydrocarbon water contact (HWC) is also considered. The horizon-
tal variograms from well data, which are unreliable and noisy, are improved by applying
constraints from the seismic variogram and the vertical variogram of well data. The
joint prior histogram uncertainty is calculated by the multivariate spatial bootstrap.
All sources of uncertainty are then incorporated in geostatistical modeling to calcu-
late full uncertainty in hydrocarbon initially in place (HIIP). A sensitivity analysis is

considered to define the impact of each source of uncertainty in the final results.

7.1 Netherlands Offshore F3 Block

The case study is "F3” block that is an offshore reservoir located in the Dutch sector
of the North Sea. The F3 block is an exploration target for oil and gas made up of

Upper-Jurassic to Lower Cretaceous strata. A 3D seismic survey covers the entire
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block. There are four vertical wells F02-1, F03-2, F03-4, F06-1 within this block (see
Figure 7.1). The 3D seismic data and wells are available in the public domain. The
company dGB (dGB, n.d.) used this data to produce a demo survey for OpendTect
software (OpendTect, n.d.). Since the base version of OpendTect software is free for
academic tasks, all required data for geostatistical modeling in this Chapter such as
well data, seismic surfaces, acoustic impedance are retrieved from the demo survey of

this software (OpendTect, n.d.) with permission from dGB company.

YStockholm

Denmark

{Eopenhagen

S

F3 Block Well Locations

Amsterdam Berlin
Netherlands

Brussel’Brussel
Prague

Googlc earth

Czech Republic

Figure 7.1: 3D seismic area and four vertical wells F02-1, F03-2, F03-4, F06-1 in the
F3 block of the Dutch sector of the North Sea (OpendTect, n.d.).

Sonic and gamma-ray logs are available for all wells; however, only the wells F02-1
and F03-2 have density logs. These logs are used to predict density from sonic and
gamma-ray logs of the wells F03-4 and F06-1 (OpendTect, n.d.). Total porosity (PHIT)

is calculated from density by Equation 7.1:

PHIT = Pma — Plog (7.1)
Pma — Pf

where ppnq = 2.65-2%5 is matrix density, py = 1.05-2%5 is fluid density and pjo, is density

from the log at the point of interest (OpendTect, n.d.). Other required variables for
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computing HIIP are calculated from gamma-ray and total porosity logs. Shale volume

(Vsn) could be calculated by:

GRlog - GRmzn
GRmax - GRmm

Vi = (7.2)

(Asquith, Krygowski, Henderson, & Hurley, 2004). Where G R = 25 API is mini-
mum gamma-ray (log response in clean beds), GRyq, = 75 API is maximum gamma-
ray (log response in complete shale), and G Ry, is log response in the zone of interest.
Effective porosity (PHIE), which only accounts for the interconnected pores of the

formation and contains hydrocarbon or water could be calculated by:

PHIE = PHIT — ¢, x Vi (7.3)

(AlRuwaili & AlWaheed, 2004). Where ¢g4p, is the shale-porosity. Since the estimation
of ¢y is difficult, ¢gp is usually replaced with PHIT (AlRuwaili & AlWaheed, 2004).
Three variables PHIT, PHIE and Vsh calculated at each well are used for geostatistical
modeling and estimation of HITP uncertainty. There is no water saturation data. Vsh is
assumed as water saturation due to the fact that shale likely contains more irreducible
water saturation. The calculated variables are upscaled to 5m. This is the vertical
grid size for geostatistical modeling of this case study. Figure 7.2 shows log tube of the
variables PHIT (a), PHIE (b) and Vsh (b) at well locations after upscaling.

The original 3D seismic data, which covers the entire reservoir and four wells, is
processed and inverted to acoustic impedance (dGB, n.d.). The seismic survey param-
eters are: Inline range: from 100 to 750 with Step 1, Crossline range: from 300 to 1250
with Step 1, Bin size: 25m long (Inline) and 25m wide (Crossline), Z range (time): from
0 to 1848 millisecond (ms) with 4ms Step. The acoustic impedance is produced after
filtering the original seismic data because it is rather noisy (OpendTect, n.d.). There
are several 3D seismic surfaces in the demo survey; Truncation and MFS4 surfaces
are assumed as top and bottom of the reservoir containing oil and gas layers although

these surfaces may not be the real top and bottom surfaces of the hydrocarbon-bearing
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Figure 7.2: Log tube of the variables PHIT (a), PHIE (b) and Vsh (b) for four wells
in F3 Block: east 0-24000m and north 0-16000m (see Figure 7.1).

reservoir (there is no information which surfaces are the real top and bottom surfaces
in the data set). Figure 7.3 shows Truncation (top) and MFS4 (bottom) surfaces in

3D acoustic impedance in time domain (ms). The acoustic impedance and seismic
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Figure 7.3: Truncation (top) and MFS4 (bottom) seismic surfaces in 3D acoustic
impedance in time domain (ms).

surfaces should be converted from time to depth by a velocity model in order to be
used as secondary data in geostatistical modeling. The velocity model could be built
by time-depth model from checkshot survey, vertical seismic profiles (VSP) in wells, or

by seismic refraction operation.

7.2 Gross Rock Volume (GRV) with Parameter Uncer-
tainty

Gross rock volume (GRV) is the volume of reservoir between top and bottom surfaces.
These surfaces could be achieved from seismic data: for example, Truncation and MFS4
seismic surfaces in Figure 7.3; however, they are subject to uncertainty away from the
well data. This uncertainty should be incorporated in GRV model.

There are two sources of uncertainty in seismic surfaces: 1- Time interpretation
uncertainty: this uncertainty happens while picking stratigraphic surfaces on seismic
data. The stratigraphic surfaces are usually acquired in depth from well data and

converted to time domain by checkshot survey or VSP to be visible in time domain for
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seismic data, then the surfaces are followed over the entire 3D seismic area. This is
usually done by auto-picking software that are subject to uncertainty. 2- Time-to-depth
conversion: seismic surfaces are interpreted in time domain and must be converted to
depth by a velocity model. This is also subject to uncertainty. A combination of
time interpretation and time to depth uncertainties leads to uncertainty in the seismic
surface. Usually seismic surfaces are calibrated with well observations to remove the
mismatch. However, valuable hints can be attained from the mismatch between seismic
surfaces and actual well observations for quantifying uncertainty in surfaces (Alshehri,
2010).

The conventional approach for modeling GRV is to model top surface and thickness;
the thickness at each location is added to the top surface to build bottom surface. This
naturally accounts for the correlation between the two surfaces and avoids any artifact
crossing of surfaces. The volume of the reservoir above hydrocarbon (oil or gas) water

contact (HWC) is considered for GRV.

7.2.1 Tie Seismic to Well

The mismatch between seismic surface (top and thickness) and actual well observations
should be corrected although it is used for quantifying parameter uncertainty. Figure
7.4 shows a 2D map view of seismic top surface (Truncation) after converting from time
to depth by velocity model achieved from check shot survey of wells. The values are
depths (in meter) below sea level; low and high values signify closer and farther depths
from the sea level, respectively. There is a mismatch A = actual — seismic at each well
location. The A is negative for wells F06-1 (A = —47.6m) and F02-1 (A = —25.6m),
and positive for F03-2 (A = 1.4m) and F03-4 (A = 18.9m). Figure 7.5 shows 2D map
view of thickness resulted by difference between Truncation and MFS4 surfaces. The
thickness from seismic surfaces in time domain is converted to depth by velocity model
of the wells (check shot survey). There is a mismatch A = actual — seismic at each well
location. The A is negative for wells F06-1 (A = —13.1m) and F02-1 (A = —0.2m),
and positive for F03-2 (A = 17.5m) and F03-4 (A = 13.6m).

The seismic surface (in depth domain) could be tied to the wells by simple kriging
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Figure 7.4: 2D map view of seismic top surface (Truncation) after converting from
time to depth. The values are in meter and signify depths below see
level. The mismatch A is negative for wells F06-1 (A = —47.6m) and
F02-1 (A = —25.6m) and positive for F03-2 (A = 1.4m) and F03-4
(A =18.9m).

(SK) of A at each well. The variogram model of A is required for kriging. There are
only four conditioning A values: thus, the experimental variogram of A for top and
thickness can not be calculated. It is proposed to attain the approximate variogram
of A by the variogram of the detrended seismic. The detrended model is calculated
by the difference between seismic and trend model detrend = seismic — trend. It is
required to model the trend of top surface and thickness from seismic data. Radial
basis function is used for computing the trend models (see Qu and Deutsch (2014) for
more information). The variogram of detrended top and thickness may be assumed as
an approximate variogram of A.

Figure 7.6-a shows the trend model of top surface (Figure 7.4), and Figure 7.6-b
shows the detrended model. Figure 7.7 shows the experimental variograms and fitted
models of the detrended model (Figure 7.6-b) for azimuths —20° (major direction of
continuity) and azimuth 70° (minor direction of continuity). The 2D variogram model
has one Gaussian structure with maximum range of 5800m and minimum range of
4500m and very small nugget effect (0.000001) to avoid precision problems in simula-
tion.

Figure 7.8-a shows the trend model of thickness (Figure 7.5), and Figure 7.8-b

shows the detrended model. Figure 7.9 shows the experimental variograms and fitted
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Figure 7.5: 2D map view of thickness by difference between Truncation and MFS4
surfaces and converting to depth. The values are in meter. The mismatch
A is negative for wells F06-1 (A = —13.1m) and F02-1 (A = —0.2m) and
positive for F03-2 (A = 17.5m) and F03-4 (A = 13.6m).

models of the detrend model (Figure 7.8-b) for azimuths —20° (major direction of
continuity) and azimuth 70° (minor direction of continuity). The 2D variogram model
has two Gaussian structures with maximum and minimum range of 1500m for the
first structure, and maximum and minimum range of 8000m and 6000m for the second
structure and very small nugget effect (0.000001).

SK of A by the variogram of detrended model (Figures 7.7 and 7.9 ) and adding to
the seismic surface leads to tie seismic to wells. This leads to A = 0 at well locations.
The mean value for simple kriging estimator should be set to zero due to returning the
seismic surface for locations far away from data where the estimate is the mean. Figure
7.10 shows a 2D map view of tied seismic top surface to well. The mismatch A between
well and seismic is zero at each well location. Figure 7.11 shows a 3D map view of tied
seismic top surface to well. Figure 7.12 shows a 2D map view of tied seismic thickness
to well. Similar to the top surface, the mismatch A between well and seismic is zero
at each well. Figure 7.13 shows a 3D map view of bottom surface by adding the tied

thickness (Figure 7.12) to the tied top surface (Figure 7.10).

176



a)

1.1e+03
928
755
582
410

610000 615000 620000 625000
Easting (m)

b)

6090000 =~ | ‘

6085000

6090000

6085000

6080000

Northing (m)

6075000

87.2

41.4

Northing (m)
[ ]
A
[9,]

6080000 ®
bt -50.4

6075000

-96.2

610000 615000 620000 625000
Easting (m)

Figure 7.6: a) 2D map view of trend modeling of top surface (Figure 7.4). b) The
detrended model by difference between seismic (Figure 7.4) and trend
model (a). The values are in meter.

7.2.2 Uncertainty in GRV

Conditional sequential Gaussian simulation (SGS) is used to assess uncertainty in GRV.
Uncertainty in GRV can be calculated by quantifying uncertainty in the reference top
surface and thickness: the top surface and thickness from seismic interpretation after
tie to well are considered as reference structures (Figure 7.10 and 7.12). The realiza-
tions of the top and thickness should have zero deviation from the reference structures
at well locations, and deviation should increase for locations far away from the wells.

The deviation is assumed to be a Gaussian distribution and could be simulated by con-
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Figure 7.7: The experimental variograms and fitted models of the detrended model
(Figure 7.6-b) for azimuths —20° (major direction of continuity) and az-
imuth 70° (minor direction of continuity).

ditional SGS with zero value at well locations. SGS realizations are non-standardized
by multiplying them with some standard deviation that could be calculated from the
standard deviation of the mismatch between well and seismic (o) (standard deviations

of A in Figures 7.4 and 7.5):

OA = \/O’%P + U%tD (7.4)

(Alshehri, 2010). Where 02, is the variance of time picking, and 0%, , is time-to-depth
variance; the variance of A comes from both time picking and time to depth conversions
based on two assumptions: 1- The distributions of TP and TtD are Gaussian, 2- The
errors in TP and TtD are independent from each others (Alshehri, 2010). By adding
the deviation (non-standardized SGS realization with oa) to the reference structure
(top and thickness), the uncertainty in GRV is calculated. This technique calculates
uncertainty in GRV without considering parameter uncertainty (Alshehri, 2010).
Parameter uncertainty could be incorporated in GRV by considering variogram and
histogram uncertainty of A for the top and thickness: prior uncertainty in the experi-
mental variogram and histogram of A are calculated (Chapters 3 and 6) and incorpo-
rated in conditional SGS with zero value at well locations. The posterior uncertainty

in A is then added to the reference structure (top or thickness). This process should
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a) 2D map view of trend modeling of thickness (Figure 7.5). b) The
detrended model by difference between seismic (Figure 7.5) and trend
model (a). The values are in meter.

be applied for the top and thickness independently. This approach leads to honor well

observations

of the top and thickness for all SGS realizations. The variogram uncer-

tainty cannot be calculated due to only four wells: the variograms of detrended seismic

are assumed as fixed reference variogram models for top and thickness. Moreover, his-

togram uncertainty by the spatial bootstrap may not be applicable for this data due

to unreliable reference distribution of A with only four values. A parametric approach

is proposed to attain histogram uncertainty (only uncertainty in the mean) of A. The

Steps of this technique are as follow:

179



- - e - - Experimental Variogram (Azimuth -20)
- - e -- Experimental Variogram (Azimuth 70)
Fitted Variogram (Azimuth -20)

Fitted Variogram (Azimuth 70)

0 1000 2000 3000 4000 5000
Distance(m)
Figure 7.9: The experimental variograms and fitted models of the detrended model
(Figure 7.8-b) for azimuths —20° (major direction of continuity) and az-
imuth 70° (minor direction of continuity).
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Figure 7.10: 2D map view of tied seismic top surface (Truncation) to well observation.
The mismatch A between well and seismic is zero at each well location.
The values are in meter (depth below sea level).

1. Build a Gaussian distribution for the mean of A. This Gaussian distribution A
2

has a mean of zero and variance of %7 where n is number of independent data;

this is consistent with the spatial bootstrap of A for quantifying the uncertainty in

the mean. It is assumed four well data are independent from each other (n = 4).

2. Draw mean values from A distribution: A l, Il =1,...,L, where L is number of

drawn mean values.

3. Attain conditioning well data in the Gaussian space with zero value in original

units for each realization of the mean (A l). SGS should be applied with zero
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Figure 7.11: 3D map view of tied seismic top surface (Truncation) to well observation.
The values are in meter (depth below sea level).
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Figure 7.12: 2D map view of tied seismic thickness to well observation. The values
are in meter. The mismatch A between well and seismic is zero at each
well location.

value at well locations. The zero value should be transformed to the Gaussian
space based on a reference distribution, and back-transformed to the original
units after simulation (zero value at each well location after back transformation).
Since the mean of each histogram realization of A (A is assumed Gaussian) is

calculated (A l), and the variance of each realization is 03 (assumed constant),
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Figure 7.13: 3D map view of tied seismic bottom surface to well observation by
adding the tied thickness to the tied top surface. The values are in
meter (depth below sea level).

zero value at well locations can be transformed to the Gaussian space by:

= - . 1=1,..L (7.5)

where z = 0, which is the conditioning data for each well location in the original
space. ¢! is the conditioning data for each SGS realizations in the Gaussian space.
For example, four well locations have Gaussian conditional value ' for [** SGS

realization.

4. The Gaussian SGS realizations are back-transformed to the original units and

added to the reference structure (top or thickness):
-~ !
s = (ysas X oA+ A Y+ 500y, L=1,..,L (7.6)

where ysgg is the Gaussian SGS realization, s,.; is the reference structure (top
or thickness), and s' is the final realization of top surface or thickness accounting

for parameter uncertainty. Since SGS realization has zero value at well locations
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after beck transformation to the original space, the final realization s' has the

deviation of zero from the reference structure at well locations.

Step 1 to 5 are repeated for top and thickness separately to attain parameter uncertainty
in GRV. Realizations of thickness are added to the realizations of the top surface to
achieve bottom surface realizations. This methodology ensures that all realizations
honor Truncation and MFS4 surfaces of four wells. Figure 7.14 and 7.15 show 20
realizations of top (Truncation) and bottom surfaces (MFS4). As shown for well FO6-

1, the uncertainty at the well locations is zero.

16000m

Surface Realizations
Reference Model

500m

Figure 7.14: 3D map view of 20 realizations of top surface (Truncation). The val-
ues are in meter (depth below sea level). All surface realizations are
consistent with the reference model (Truncation) at well locations (zero
uncertainty).

The reservoir is not only bounded by the top and bottom surfaces, but also it must
be above hydrocarbon (oil or gas) water contact (HWC). The volume above HWC
surface contributes to calculate HIIP because there may be only water below HWC.
The depth of HWC could be obtained from the available wells (well logs), or it can be

assumed at the lowest known hydrocarbon level if it is not detected. HWC may also be
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Figure 7.15: 3D map view of 20 realizations of bottom surface (MFS4). The val-
ues are in meter (depth below sea level). All surface realizations are
consistent with the reference model (MFS4) at well locations (zero un-
certainty).

uncertain. Monte Carlo simulation (MCS) is widely used to quantify this uncertainty
by assuming a triangular or uniform distribution for HWC (see Alshehri (2010) for
more information). There is no information of HWC for this case study; thus, HWC is
assumed to be at 870m. The uncertainty in HWC is calculated by building a uniform
distribution with minimum value of HWC-10m and maximum value of HWC+10m.
Figure 7.16 shows the uncertainty at the top and bottom surfaces for 20 realizations
and the uncertainty in HWC. Monte Carlo simulation is applied to draw realizations
from the uniform distribution of HWC between 860m to 880m. These realizations plus
the surface realizations (top and bottom) are used to calculate the uncertainty in GRV.
Figure 7.17 shows histogram of uncertainty in GRV by 100 realizations in billion cubic
meter (BCM). The volume of the reservoir is high and seems unrealistic in comparison
with the conventional hydrocarbon reservoir. This high volume is due to high reservoir
thickness in north and south east (see Figures 7.12 and Figure 7.16). Since there is

no information of the real top and bottom surface for this reservoir, Truncation and
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MFS4 surfaces are assumed as the top and bottom surfaces of the hydrocarbon-bearing

reservoir, which they might not be the real top and bottom surfaces.

FO6:1 Fo2-1 F03-2 Fo3-4

Hydrocarbon Water Contact

Approximate Scale L‘\E
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Figure 7.16: Uncertainty for the top (Truncation) and bottom (MFS4) surfaces for
20 realizations and the uncertainty in HWC=870m, HWC+10m.
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Figure 7.17: Histogram of uncertainty in GRV for 100 realizations in billion cubic
meter (BCM).
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7.3 Variogram Calculation and Uncertainty in Variogram

The experimental variogram of the well data is calculated and improved by secondary
data for geostatistical modeling. Since there are only four wells, the horizontal vari-
ograms of the well data are not reliable. The vertical variogram from the well data and
the horizontal variogram from the seismic data are used for improving the horizontal
well variogram (Chapter 3, 4 and 5). The 3D acoustic impedance is converted from
time domain (ms) to depth domain (m) by building a velocity model from checkshot
survey of the well data. The 3D acoustic impedance model produced by dGB company
has a very high resolution due to interpolation acoustic impedance for a very small
vertical scale: the original seismic data cannot give information for a very fine verti-
cal scale. The vertical scale of the acoustic impedance is upscaled to 8m for using in
geostatistical modeling of this case study. Figure 7.18 shows the normal score acous-
tic impedance model with the vertical scale of 8m (after upscaling) after converting
from time to depth. The top and bottom surfaces of the acoustic impedance model
are clipped. There is a clear geometric anisotropy. The calculated variables of PHIT,
PHIE and Vsh from the four wells are upscaled to 5m which is the vertical grid size of
geostatistical modeling in this study; this is the vertical scale of geostatistical mapping
of a similar reservoir to this case study in West Netherlands Basin (Vis et al., 2010).
Figure 7.19 shows the correlation matrix between PHIT, PHIE and Vsh and seismic
data (acoustic impedance) for the well data in original units. The diagonal elements
show the histograms of the variables. The seismic data has the highest correlation
with PHIT (p(0) = —0.56). Since PHIE is calculated by PHIT and Vsh, it has high
correlation with these variables especially with Vsh (p(0) = —0.97) and low correlation
with the seismic data (p(0) = —0.36).

The variograms of normal score PHIT, PHIE and Vsh are calculated for geostatis-
tical modeling. A linear model of coregionalization (LMC) (Pyrcz & Deutsch, 2014)
is required for the multivariate spatial bootstrap to calculate the joint prior histogram
uncertainty of the variables (see Chapter 6). Since directional horizontal variograms

cannot be calculated from the four sparse wells, variogram uncertainty is calculated
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Figure 7.18: Normal score acoustic impedance in depth domain (vertical scale of 8m
after upscaling).
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Figure 7.19: Correlation matrix between PHIT, PHIE and Vsh and seismic data
(acoustic impedance) in original units.
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for the omnidirectional horizontal variograms (azimuth 0° £ 90°). Figure 7.20 shows
the omnidirectional horizontal direct and cross variograms for PHIT, PHIE and Vsh
variables in normal score and fitted models. The omnidirectional horizontal variograms
are noisy due to the sparse well data. Figure 7.21 shows the vertical direct and cross
variograms for PHIT, PHIE and Vsh variables in normal score and fitted models. The
vertical variogram are well-defined because of regular sampling in direction of drilling.
Due to the vertical trend in data set (see Figure 7.2), the vertical variograms (Figure
7.21) do not reach to stationary sills (the variance of data for direct variograms and the
covariance between variables at h=0 for cross variograms). All variogram models are
fitted to the stationary sills since a stationary variogram is required for geostatistical
modeling. The sill of the cross variograms for normal score data are the correlation
coefficients between variables (Pyrcz & Deutsch, 2014) and the sill of the direct vari-
ograms are 1. The linear model of coregionalization (LMC) for PHIT, PHIE and Vsh

are written as:

’ypH[T(h) = 0.10.Sph (h) + 0.90.5ph (h)
hamajor=6000m hamajor=15000m
hminor=6000m Rminor=15000m

ver:40m hveT:250m

’ypH]E(h) = 0.45.5ph (h) + 0.55.5ph (h)
P jor=6000m homajor=15000m
hminor=6000m hminor=15000m

ver=40m ver=250m
YV (h) = 0.55.5ph (h) + 0.45.5ph (h)
hamajor=6000m homajor=15000m
hminor=6000m Aminor=15000m
LMC hyer=40m hyer=250m
vpuIT,prIE(R) = 0.20.Sph (h) + 0.38.Sph (h)
Pamajor=6000m hamajor=15000m
hminor=6000m Aminor=15000m
ver=40m hyer=250m
’YPHIT,Vsh(h) = —0.05.5ph (h) — 0.35.Sph (h)
hamajor=6000m homajor=15000m
hminor=6000m Aminor=15000m
hyer=40m hyer=250m
vrHuIEvsh(h) = —0.46.Sph (h) — 0.496.Sph (h)
hamajor=6000m hamajor=15000m
Aminor=6000m hminor=15000m
hyer=40m hyer=250m
(7.7)

where Sph is the spherical variogram structure, hpqjor and Ryiner are the horizontal
variogram ranges for major and minor directions of continuity that are equal for omni-

directional variogram, and h.e, is the vertical variogram range. The variogram models
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in Equation 7.7 are used in the multivariate spatial bootstrap for calculating the joint
prior parameter uncertainty (see Section 7.5). Variogram uncertainty is not applied for

the spatial bootstrap (see Chapter 6).
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Figure 7.20: The omnidirectional horizontal direct and cross variograms (azimuth
0° £ 90°) for PHIT, PHIE and Vsh in normal score. The diagonal
variograms are direct variograms and off diagonal variograms are the
cross variograms between variables.

The omnidirectional horizontal variograms are noisy and unreliable; variogram un-
certainty for omnidirectional horizontal variograms are calculated by the DoF approach
and reduced by the seismic-derived and vertical-derived variograms (see Chapters 3,
4 and 5). Since PHIE and Vsh have very high correlation (p(0) = —0.97), the vari-
ogram realizations of these variables must be approximately equal. PHIE has higher
correlation with the seismic data than Vsh; thus, the variogram uncertainty of PHIE is
calculated, improved and assigned to Vsh. The omnidirectional horizontal variogram
of the seismic data could also be calculated and used for improving the variogram of
the well data. However, there is a clear geometric anisotropy in the seismic data for

azimuths —20° and 70°. Although this anisotropy cannot be obtained from the well
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Figure 7.21: The vertical direct and cross variograms for PHIT, PHIE and Vsh in
normal score. The diagonal variograms are direct variograms and off
diagonal variograms are the cross variograms between variables.

data, it could be incorporated in the final horizontal variogram realizations by calcu-
lating the ratio of the major to minor variogram ranges of the seismic data and enforce

it to all omnidirectional horizontal variogram realizations (see Section 7.3.3).

7.3.1 Improve Omnidirectional Horizontal Variogram Uncertainty of

PHIT

Figure 7.22-a shows 100 omnidirectional horizontal variogram realizations of PHIT,
Figure 7.22-b shows the correlation matrix of lag distances for variogram realizations,
and Figure 7.22-c shows the fitted variogram realizations (see Chapters 3, 4 and 5).
There is a high uncertainty in the variogram that could be reduced by the vertical
variogram of the well data (vertical-derived variogram) and the omnidirectional hor-
izontal variogram of the seismic data (seismic-derived variogram). Figure 7.23 shows
the vertical-derived variogram realizations (100 realizations) for PHIT. According to a

similar reservoir to this case study in West Netherlands Basin (Vis et al., 2010), the
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Figure 7.22: a) 100 omnidirectional horizontal variogram realizations of PHIT. b)
Correlation matrix of lag distances for variogram realizations. c¢) Fitted
variogram realizations.

10000m,

horizontal to vertical anisotropy ratio (H:V) of 77 wells is 100 (5,

). For calculating
the vertical-derived variogram realizations, the distribution of uncertainty in H:V is
build by the triangular distribution with Min = 75 and Mode = 100 and Maz = 125.
The Gaussian distribution of the sill is calculated by A, = 0.15 (see Chapter 5). The
constraints from the omnidirectional horizontal variogram of the acoustic impedance
in Figure 7.18 could be achieved to improve the omnidirectional horizontal variogram
realizations of PHIT. The seismic variogram should be down scaled to the scale of the

well data. The small scale variogram of the seismic data for down scaling could comes
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Figure 7.23: 100 vertical-derived variogram realizations for PHIT.

from the variogram of the calculated acoustic impedance based on the well logs (veloc-
ity and density). Since the vertical scale of well and seismic are not very different (5m
versus 8m), the down scaled seismic variogram is changed a little for variance contribu-
tions (see Chapter 5). The cross covariance between well and seismic data is required
for computing the the upper and lower limits of the seismic-derived variogram. The
cross covariance is obtained by an intrinsic model (Markov model) (Pyrcz & Deutsch,
2014). The correlation between well and seismic at the scale of well data is required.
This correlation could be calculated by fitting an Equation to the different upscaled
volumes and the observed correlations from the data set; the higher scale, the higher
correlation. Figure 7.24-a shows the cross plot between the positive correlation of the
upscaled PHIT and the seismic data versus the vertical scale (volume), and the fitted
Equation. The positive correlation between well and seismic data for the vertical scale
of 5m (the vertical scale of the well data) is approximately 0.57. The seismic-derived
upper and lower limits are calculated in Figure 7.24-b. These limits are enforced on
the omnidirectional horizontal variogram realizations of PHIT (Figure 7.22-c), and the
vertical-derived variogram realizations (Figure 7.23) up to correlation 0.2 (p(h) = 0.2)
by the rejection sampling approach with the correlation matrix of the lag distances (see
Chapter 4 and 5). The final step is merging the omnidirectional horizontal variogram
and the vertical-derived variogram after applying the seismic-derived limits.

Figure 7.25-a shows enforcing the upper and lower limits of the seismic-derived vari-

ogram on the omnidirectional horizontal variogram realizations (Figure 7.22-c) without
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Figure 7.24: a) Cross plot between the positive correlation of the upscaled PHIT and
seismic data versus the vertical scale (volume), and the fitted Equation.
The positive correlation between well and seismic data for the vertical
scale of bm is approximately 0.57. b) Calculated seismic-derived vari-
ogram used up to correlation 0.2 (p(h) = 0.2).

merging with the vertical-derived variogram. The variogram uncertainty is improved
although the improvement is not considerable. Figure 7.25-b shows merging the omni-
directional horizontal variogram realizations with the vertical-derived variogram with-
out enforcing the seismic limits. This is the case when seismic data is not used. The
uncertainty goes down considerably because the uncertainty in the vertical-derived var-
iogram is lower than the omnidirectional horizontal variogram and merging variogram
distributions leads to less uncertainty (Chapter 5). Figure 7.25-c¢ shows the final im-
proved variogram realizations considering the horizontal variogram of the seismic data
and the vertical variogram of well data: enforce upper and lower limits of the seismic-
derived variogram on the omnidirectional horizontal variogram and the vertical-derived
variogram realizations, merge variogram distributions and sample from the merged dis-
tribution by LU simulation. These realizations are standardized to sill 1 (Figure 7.25-d)
and fitted with the fixed vertical variogram to attain the 3D variogram realizations of

PHIT for univariate geostatistical modeling.
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Improved omnidirectional horizontal variogram realizations for PHIT. a)

Enforce the upper and lower limits of the seismic-derived variogram on
omnidirectional horizontal variogram realizations without merging with
the vertical-derived variogram. b) Merge the omnidirectional horizon-
tal variogram realizations with the vertical-derived variogram without
enforcing the seismic-derived variogram. c¢) Improved variogram real-
izations by enforcing the seismic-derived variogram, and the vertical-
derived variogram. d) Standardized fitted variogram realizations.

7.3.2 Improve Omnidirectional Horizontal Variogram Uncertainty of

PHIE

The similar approach is applied for improving the omnidirectional horizontal variogram

realizations of PHIE. Figure 7.26-a shows 100 omnidirectional horizontal variogram re-

alizations of PHIE, Figure 7.26-b shows the correlation matrix of lag distances for var-

iogram realizations, and Figure 7.26-c¢ shows the fitted variogram realizations. Figure

7.27 shows the vertical-derived variogram realizations (100 realizations) of the omnidi-

rectional horizontal variogram for PHIE; the distribution of uncertainty in H:V is build
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Figure 7.26: a) 100 omnidirectional horizontal variogram realizations of PHIE. b)

Correlation matrix of lag distances for variogram realizations. c¢) Fitted
variogram realizations.

by the triangular distribution with Min = 75, Mode = 100 and Max = 125. The

Gaussian distribution of the sill is calculated by A, = 0.15. The correlation between

well and seismic at the scale of the well data is calculated by fitting an Equation be-

tween the different vertical upscales and the observed correlations from the data set

(Figure 7.28-a). The seismic-derived upper and lower limits are calculated in Figure

7.28-b. These limits are enforced on the omnidirectional horizontal variogram realiza-

tions of PHIE (Figure 7.26-c), and the vertical-derived variogram realizations (Figure
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Figure 7.27: 100 vertical-derived variogram realizations for PHIE.

7.27) up to correlation 0.2 (p(h) = 0.2). Figure 7.29-a shows enforcing the upper
and lower limits of the seismic-derived variogram on the omnidirectional horizontal
variogram realizations (Figure 7.26-c) without merging with the vertical-derived vari-
ogram. The variogram uncertainty is still high because the seismic-derived variogram is
calculated based on low correlation between well and seismic data (p(0) = 0.38). Figure
7.29-b shows merging the omnidirectional horizontal variogram realizations with the
vertical-derived variogram. Figure 7.29-¢ shows the final improved variogram realiza-
tions considering the horizontal variogram of seismic data and the vertical variogram
of well data. The final omnidirectional horizontal variogram is more influenced by the
vertical-derived variogram because of low correlation between well and seismic. These
realizations are standardized to sill 1 (Figure 7.29-d) and fitted with the fixed vertical
variogram to attain the 3D variogram realizations of PHIE for univariate geostatistical

modeling.

7.3.3 Final 3D Variogram Realizations for Geostatistical Modeling

Since multivariate geostatistical modeling is considered, the omnidirectional horizon-
tal variogram realizations of PHIT and PHIE, Vsh (Vsh=PHIE) should not be used
independently without considering the correlation between variables: if the variables
are correlated, the correlations should exist in the variogram realizations between vari-
ables. LU simulation is used to respect the correlation between variables for variogram

realizations (see Chapter 5, Section 5.6). The negative correlation between variables
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Figure 7.28: a) Cross plot between the positive correlation of the upscaled PHIE and
seismic data versus the vertical scale (volume), and the fitted Equation.
The positive correlation between well and seismic data for the vertical
scale of 5m is approximately 0.38. b) Calculated seismic-derived vari-
ogram used up to correlation 0.2 (p(h) = 0.2).

should be set to positive: even if variables have negative correlations, the variogram
realizations should have positive correlations. Figure 7.30 shows the correlation matrix
between the values of omnidirectional horizontal variogram realizations of PHIT, PHIE
and Vsh for lag distances 8000m after LU simulation. The positive correlation between
variables are preserved (compare Figure 7.30 with Figure 7.19).

After calculating the omnidirectional horizontal variogram realizations and preserve
the correlation between variables, the clear anisotropy in the seismic data (Figure 7.18)
should be enforced on the variogram realizations of all variables. For the seismic data
(acoustic impedance), variogram range of azimuth —20° is approximately 3 times bigger
than the variogram range of azimuth 70°. The omnidirectional horizontal variogram re-
alizations are scaled based on this ratio: multiplying range of all variogram realizations
by V3 and % for azimuths —20° and 70°, respectively. Then, 3D variogram realiza-
tions of each variable are attained by auto variogram modeling with the fixed vertical
variogram and used in multivariate geostatistical modeling to incorporate variogram

uncertainty.
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Figure 7.29: Improved omnidirectional horizontal variogram for PHIE. a) Enforce
the upper and lower seismic-derived limits on the omnidirectional hori-
zontal variogram realizations without merging with the vertical-derived
variogram. b) Merge the omnidirectional horizontal variogram realiza-
tions with the vertical-derived variogram without enforcing the seismic
limits. ¢) Improved variogram realizations by enforcing upper and lower
seismic-derived limits, and merge variogram distributions. d) Standard-
ized fitted variogram realizations.

7.4 Univariate Geostatistical Modeling without Parame-
ter Uncertainty

Before incorporating variogram and histogram uncertainties in multivariate geostatis-
tical modeling, each variable is modeled independently with the fixed variogram model
and fixed reference distribution in SGS without using seismic data for the entire 3D
acoustic impedance model (see Figure 7.18). The main aim is checking the histogram
reproduction of variables PHIT, PHIE, Vsh after modeling. Figure 7.2 shows a clear

vertical trend especially for PHIE, Vsh (see vertical variogram in Figure 7.21). The
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Figure 7.30: Correlation matrix of 100 omnidirectional horizontal variogram realiza-
tion values for PHIT, PHIE and Vsh at lag distance 8000m after LU
simulation to preserve the positive correlations between the variables.

trend usually has an impact on histogram reproduction. Figure 7.31-a shows 100 his-
togram of SGS realizations for PHIT with the fixed reference distribution (red line)
and fixed variogram model from Equation 7.7. The histogram reproduction is good in
general but for high values (larger than 0.3), they tend to be lower than the reference
histogram. Figure 7.31-b shows histogram reproduction for unconditional simulation.
Because of no conditioning data, there is higher uncertainty in histogram of realiza-
tions; however, the reference histogram is approximately in the middle. Figure 7.31-c
shows histogram reproduction for a pure nugget effect variogram (nugget effect 1). All
SGS realizations are normal with mean 0 and standard deviation 1; so, histogram re-
production is consistent with the reference distribution. Figure 7.32 and 7.33 show the
same approach for assessment histogram reproduction of PHIE and Vsh. Since the
trend is stronger for these variables especially for Vsh and there is a zonal anisotropy
in well F03-4 (Figure 7.2), 100 histogram of SGS realizations are shifted to the left of
the reference distribution for PHIE (see Figure 7.32-a), and to the right of the reference
distribution for Vsh (Figure 7.33-a). By unconditional simulation (see Figure 7.32-b
for PHIE and Figure 7.33-b for Vsh), or SGS using a pure nugget effect variogram (see
Figure 7.32-c for PHIE and Figure 7.33-c for Vsh), the problem of shifting histogram

realizations is resolved. This confirms that there is neither a problem with the geo-
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Figure 7.31: Histogram reproduction for PHIT (black lines). The red line is the
reference distribution. a) Histogram reproduction with the fixed refer-
ence distribution (distribution of data) and fixed variogram model from
Equation 7.7. b) Histogram reproduction for unconditional simulation.
c¢) Histogram reproduction for a pure nugget effect variogram.

statistical technique nor with the reference histograms, the problem is only related to
the trend in the well data. The shifting of histogram realizations can also be seen in
multivariate geostatistical modeling with super secondary variable (see next Section).
The histogram of the well data may be declustered and improved by seismic data
(Deutsch et al., 1999, 2005). However, variables PHIE and Vsh do not have a good
correlation with the acoustic impedance (see Figure 7.19), thus, seismic data cannot be
used to decluster the histogram of these variables. Because of multivariate geostatistical
modeling, the distribution of all variables should be consistent: soft data declustering
should be applied for all variables not for one of them. Therefore, the distributions of

well data without soft data declustering are used in multivariate geostatistical modeling
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Figure 7.32: Histogram reproduction for PHIE (black lines). The red line is the
reference distribution. a) Histogram reproduction with the fixed refer-
ence distribution (distribution of data) and fixed variogram model from
Equation 7.7. b) Histogram reproduction for unconditional simulation.
c¢) Histogram reproduction for a pure nugget effect variogram.

although seismic data (acoustic impedance) is used as secondary variable for modeling

of each variable.

7.5 Multivariate Geostatistical Modeling with Parameter
Uncertainty

Multivariate geostatistcial modeling with parameter uncertainty (histogram and vari-
ogram uncertainty) is applied to simulate each variable for the entire 3D acoustic model
volume (see Figure 7.18). The joint prior histogram uncertainty is computed by the
multivariate spatial bootstrap (see Chapter 6) for PHIT, PHIE, Vsh variables using the

linear model of coregionalization (LMC) (see Equation 7.7). The correlated histogram
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Figure 7.33: Histogram reproduction for Vsh (black lines). The red line is the ref-
erence distribution. a) Histogram reproduction with the fixed refer-
ence distribution (distribution of data) and fixed variogram model from
Equation 7.7. b) Histogram reproduction for unconditional simulation.
c¢) Histogram reproduction for a pure nugget effect variogram.

realizations of PHIT, PHIE and Vsh are used as reference distributions in conditional
SGS for normal score transformation of data and back transforming the conditional
Gaussian realizations to the original units for each variable. The improved variogram
realizations of each variable (Section 7.3) are used in SGS to incorporate variogram
uncertainty.

The histogram and variogram uncertainties are applied in cosimulation work flow:
SGS with intrinsic collocated cokriging (ICC) and using super secondary variable
(Babak & Deutsch, 2007b; Manchuk & Deutsch, 2012) is applied for multivariate geo-
statistical modeling; collocated cokriging with intrinsic model is used to avoid variance
inflation (Babak & Deutsch, 2007a). 100 realizations of each variable with histogram

and variogram uncertainties are simulated by a hierarchical modeling work flow:

1. Since PHIT has the highest correlation with 3D seismic data (acoustic impedance)
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(see Figure 7.19), it is first simulated with one realization of histogram uncer-
tainty and one realization of variogram uncertainty using ICC by normal score
3D acoustic impedance. Then, it is clipped to the top and bottom surfaces of the

3D acoustic impedance model. Figure 7.34 shows one SGS realization of PHIT.

16000m

0.26088 0.27347 0.28606 0.29865 0.31124 [
PHIT

Figure 7.34: One SGS realization of PHIT with ICC using 3D acoustic impedance.

2. For simulating one realization of PHIE, super secondary variable is built by the
3D acoustic impedance and one realization of previously simulated PHIT. SGS
with one realization of histogram uncertainty and one realization of variogram
uncertainty using ICC by the super secondary variable is applied, and then it
is clipped to the top and bottom surfaces of the 3D acoustic impedance. Figure
7.35 shows one SGS realization of PHIE. The correlation between variables PHIT

and PHIE is preserved after modeling.

3. Finally, one realization of Vsh is simulated with super secondary variable built
by the 3D acoustic impedance, one realization of previously simulated PHIT and
PHIE. SGS with one realization of histogram and variogram uncertainties using
ICC by super secondary variable is applied and clipped to the top and bottom

surfaces of the 3D acoustic impedance. Figure 7.36 shows one SGS realization
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Figure 7.35: SGS realization of PHIE with ICC using super secondary variable built
by the 3D acoustic impedance and realization of PHIT.

of Vsh. The correlation between variables PHIT and Vsh, PHIE and Vsh are

preserved after modeling.

Steps 1 to 3 are repeated to simulate 100 realizations of PHIT, PHIE and Vsh incor-
porating histogram and variogram uncertainties.

The multivariate spatial bootstrap respects the correlations between PHIT, PHIE
and Vsh for each histogram realization. This leads to uncertainty in correlation between
variables. Figure 7.37 shows one histogram realization of the multivariate spatial boot-
strap for PHIT, PHIE and Vsh. Figure 7.38 shows the uncertainty in the correlations
between PHIT and PHIE (a), PHIT and Vsh (b) and PHIE and Vsh (c). There are
very low and very high correlations in the histogram of correlations. The correspond-
ing histogram realizations of these correlations may be rejected, and new histograms
are simulated to satisfy the proper correlations. By incorporating the joint prior his-
togram uncertainty in geostatistical simulation, the uncertainty in correlations between
variables will be incorporated in the final model.

The hierarchical geostatistical modeling by ICC with super secondary variable re-
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Figure 7.36: SGS realization of Vsh with ICC using super secondary variable built
by the 3D acoustic impedance, realization of PHIT and PHIE.
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Figure 7.37: One histogram realization of the multivariate spatial bootstrap for
PHIT, PHIE and Vsh.

spects the correlations between PHIT, PHIE and Vsh and the 3D acoustic impedance
model; compared Figures 7.35 and 7.36, there is a high negative correlation between

PHIE and Vsh after modeling; these variables are highly correlated before modeling.
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Figure 7.38: Uncertainty in correlations between PHIT, PHIE and Vsh by the mul-
tivariate spatial bootstrap. a) PHIT versus PHIE. b) PHIT versus Vsh.
c) PHIE versus Vsh.

Figure 7.39 and Figure 7.40 show the crossplots between PHIT versus seismic (acoustic
impedance) and PHIT versus PHIE before (a) and after modeling (b) for one realiza-
tion. These variables have high correlations before modeling. The high positive and
negative correlations between variables are reproduced after modeling. The values of
variables are changed after modeling because of using different minimum and maximum
values for tail extrapolation in SGS than the minimum and maximum of data (lower
and higher than the minimum and maximum of data for each variable). The differ-
ence between correlation coefficients before and after modeling denotes the updated
correlation coefficient between variables; this approach incorporates the uncertainty in

correlation coefficient between primary (PHIT, PHIE and Vsh) and secondary variables
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(the acoustic impedance model) in geostatistical modeling.
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Figure 7.39: Crossplots between PHIT versus seismic before modeling (a) and after
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modeling (b) for one realization.
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Figure 7.40: Crossplots between PHIT versus PHIE before modeling (a) and after

modeling (b) for one realization.

The joint prior histogram uncertainty calculated by the multivariate spatial boot-

strap is compared with histogram uncertainty by only fluctuations of SGS realizations

after multivariate geostatistical modeling (ICC with super secondary), and posterior

histogram uncertainty by multivariate geostatistical modeling using parameter uncer-

tainty (histogram and variogram uncertainties). Figures 7.41, 7.42 and 7.43 show the

prior histogram uncertainty (a), histogram uncertainty by only SGS realizations (b)

and posterior histogram uncertainty (c) for PHIT, PHIE and Vsh, respectively. For all
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variables, the prior histogram uncertainty is very high because it is calculated based
on unconditional LU simulation. The histogram uncertainty by only SGS realization is
low since it does not account for parameter uncertainty. Incorporating the high prior
histogram uncertainty in geostatistical simulation by conditioning and clipping leads to
more accurate histogram uncertainty (Chapter 6): it is lower than the prior uncertainty
and higher than the histogram uncertainty by only SGS realizations. Since there are
only four well data (conditioning data), the posterior histogram uncertainty does not
decrease noticeably in comparison with prior uncertainty. The problem of histogram
reproduction due to trend in well data discussed in univariate modeling (see Figures
7.31-a, 7.32-a and 7.33-a) also exists in multivariate geostatistical modeling without
parameter uncertainty (see Figures 7.41-b, 7.42-b and 7.43-b). By incorporating the
prior histogram uncertainty in geostatistical simulation, the shifting of the histogram
realizations of the posterior uncertainty is not noticeable especially for Vsh. This is
because of increasing the uncertainty in posterior histogram realizations.

The posterior variogram uncertainty could also be calculated by the variogram
of each SGS realization to assess the results. This uncertainty is computed without
any parameter uncertainty: no variogram uncertainty (fixed 3D variogram) and no
histogram uncertainty (fixed reference distribution), and with parameter uncertain-
ties: prior variogram and histogram uncertainties. Figures 7.44-a shows the posterior
variogram uncertainty (100 realizations) for azimuths 0° and 90° of PHIE without pa-
rameter uncertainty, and Figures 7.44-b shows the posterior variogram uncertainties
with both prior variogram and histogram uncertainties. Due to using the seismic data
in multivariate geostatistical modeling, the posterior variogram uncertainty without
parameter uncertainty and with parameter uncertainty are approximately the same:
using parameter uncertainty leads to a little higher posterior variogram uncertainty.
The posterior variogram uncertainty is influenced by the variogram of well and seismic
data because of conditioning. If there is a very high prior variogram uncertainty but
enough well data, conditioning of the well data in geostatistical modeling leads to low
posterior variogram uncertainty (see Chapter 3). Moreover, if there are sparse well

data but high correlation between well and seismic, conditioning of the seismic data
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Figure 7.41: The prior histogram uncertainty (a), histogram uncertainty by only SGS
realizations (fixed histogram and variogram) (b) and posterior histogram
uncertainty (c) for PHIT. The red line is the reference distribution and
black lines are histogram realizations.

in geostatistical modeling leads to low posterior variogram uncertainty. For this case
study, there is a relatively high correlation between PHIT and seismic data. This leads
to a super secondary (for PHIE and Vsh) which has high correlation with primary
variable (primary variables are also highly correlated). Therefore, the posterior var-
iogram uncertainties for all variables are influenced by the variogram of the acoustic
impedance: very high continuity for azimuth 0° and very low continuity for azimuth

90° for both Figures 7.44-a and b.

7.6 Uncertainty in HITP

Quantifying HIIP with parameter uncertainty is the main objective of this study. The

results of multivariate geostatistical modeling for reservoir properties and GRV with
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Figure 7.42: The prior histogram uncertainty (a), histogram uncertainty by only SGS
realizations (fixed histogram and variogram) (b) and posterior histogram
uncertainty (c) for PHIE. The red line is the reference distribution and
black lines are histogram realizations.

parameter uncertainty are used to quantify uncertainty in HIIP. There are no water
saturation data; Vsh is assumed as water saturation in this study. Since shale includes
impermeable water, this impermeable water is likely to be the irreducible water satu-
ration. One realization of HIIP is calculated by sum of VIx PHIE x(1 — Sw), (Vl=
100m x 100m x 5m) for those grids satisfied in GRV realization (realizations of top,
thickness and HWC): one realization of all variables are used to calculate one realiza-
tion of HIIP. V1 is the volume of each sugar cube grid (x = 100m, y = 100m, z = 5m)
and Sw is water saturation replaced with Vsh. This ensures that the parameter un-
certainties for reservoir properties (histogram and variogram uncertainties), surfaces
(uncertainties in top, thickness) and HWC are incorporated in the final model of HIIP.
To define the importance of each source of uncertainty, HIIP is calculated for seven

cases by incorporating the following parameter uncertainties:
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1. All uncertainties such as variogram, histogram, surface and HWC.
2. Histogram and variogram uncertainties (freeze surface and HWC uncertainties).
3. Histogram uncertainty (freeze variogram, surface and HWC uncertainties).

4. Surface uncertainties: uncertainty in top surface and thickness (freeze variogram,

histogram and HWC uncertainties).
5. HWC uncertainty (freeze variogram, histogram and surface uncertainties).
6. Variogram uncertainty (freeze histogram, surface and HWC uncertainties).
7. Only SGS realizations of PHIE and Vsh (freeze all parameter uncertainties: his-

togram, variogram, surface and HWC)

Figure 7.45 shows uncertainty in HIIP for these seven cases (values are in million cu-
bic meter (MCM)). Figure 7.46 shows a visually summary of Figure 7.45 in form of

a tornado chart. The horizontal axis shows the range of P10 and P90 for each seven
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Figure 7.44: a) The posterior variogram uncertainty (100 realizations) for azimuths
0° and 90° of PHIE using the fixed histogram and variogram. b) The
posterior variogram uncertainty with parameter uncertainty.

cases. The vertical axis is P10-P90. The seven cases are sorted from the highest to

the lowest P10-P90. Using all uncertainties leads to the highest uncertainty in HITP

(P10-P90=797.0 MCM), and only realizations leads to the lowest uncertainty (P10-

P90=390.7 MCM). Histogram plus variogram uncertainties leads to the second highest

uncertainty, followed by histogram, surface, HWC and variogram uncertainties, re-

spectively. Histogram uncertainty is the most influential parameter uncertainty in the

uncertainty of HIIP, and variogram uncertainty is the least influential parameter un-

certainty: variogram uncertainty is the second lowest uncertainty in HIIP, just higher

than only realizations (P10-P90=422.3 MCM). Variogram uncertainty has a little im-

pact on resource/reserve estimation due to the fact that the frequency of both high

and low simulated values are increased or decreased for high and low variogram ranges

in geostatistical modeling; this leads to canceling out the high and low values and the

mean of the realizations does not change noticeably in terms of variogram uncertainty.
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Figure 7.45: Uncertainty in HIIP for seven cases (values are in MCM).
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Figure 7.46: Visually summary of Figure 7.45 in the form of a tornado chart. The
horizontal axis shows the range of P10 and P90 for each seven cases.
The vertical axis is P10-P90.

Variogram uncertainty must have high impact on flow simulation such as oil production
rate or water cut.

For this case study, uncertainty in reservoir volume (surfaces and HWC uncertain-
ties) do not contribute significantly for HIIP uncertainty. However, when they are
combined with the histogram and variogram uncertainties, it leads to higher P10 and
P90 for HITP uncertainty because of higher GRV: higher P10 and P90 for HIIP in case
of all uncertainties compared with histogram and variogram uncertainties (see Figure
7.46). Since only surface uncertainties lead to higher P10 and P90, HWC uncertainty
similar to variogram uncertainty has a little influence on the final model; so, they could

be fixed without uncertainty for this reservoir.

7.7 Sensitivity Analysis

Sensitivity analysis in reservoir modeling enables investigating the relationship between

input parameters and response variables, to detect changes in values of responses caused
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by changes in the values of input parameters. The results indicate the important input
parameters in the model and those of no contribution (Saltelli et al., 2008). There
are several approaches of sensitivity analysis. This study applies the partial derivative
of a model response with respect to input variable for calculating the standardized
sensitivity coefficients (Azmy & Sartori, 2010; Balakrishnan, Castillo, & Sarabia, 2007;
Saltelli et al., 2008). First order sensitivity coefficients are known as linear regres-
sion coefficients and used for sensitivity analysis of this reservoir (for more details see
(Zagayevskiy & Deutsch, 2011)).

The input variables PHIE, Vsh, top, thickness with all uncertainties (see Figure
7.46) are assessed by sensitivity analysis. HWC is not included in the sensitivity anal-
ysis because according to Figure 7.46, it does not contribute to HIIP uncertainty.
The variable PHIT is not also considered for sensitivity analysis because it is not
used directly to calculate HIIP. The average of each realization of Vsh, top, thick-
ness are assumed as predictors, and HIIP for each realization is the response variable.
The standardized sensitivity coefficients are calculated (see (Zagayevskiy & Deutsch,
2011) for more details). Figure 7.47 shows sensitivity plot based on the values of the
standardized sensitivity coefficients for linear model. R? is the goodness of the fitted

SENSITIVITY PLOT

PREDICTORS R:HIIP Sens.
LR RA2=0.693 Coeff.

1 Vsh - — 0.500
2 PHIE + 1 0.330
3 Top - ::I 0.120
4 Thikcness - — 0.100

Figure 7.47: Sensitivity plot based on the values of the standardized sensitivity coef-
ficients for a linear model.

model, which is 0.693 out of 1.0. Vsh and PHIE are the most influential variables: the
standardized sensitivity coefficient for Vsh (-0.5) is higher than PHIE (0.33). This is
justifiable by higher uncertainty in the histogram of Vsh than PHIE (see Figure 7.43)
since histogram uncertainty has more impact on HIIP uncertainty (see Figure 7.46).

Although the standardized sensitivity coefficients of the top and thickness are similar

215



(-0.12 vs -0.1), the uncertainty in top surface has more influence on HIIP uncertainty
than thickness: similar to variogram and HWC uncertainties, thickness could also be

fixed without uncertainty for this reservoir.

7.8 Remarks

The multivariate geostatistical modeling (ICC with super secondary) with parameter
uncertainty is used to calculate full uncertainty in HIIP for a real case study called
Netherlands Offshore F3 Block with only four wells and a 3D seismic data. The
calculated parameter uncertainties are: 1- Uncertainty in GRV: uncertainty in top
and thickness of the seismic data and uncertainty in HWC. 2- Variogram uncertainty:
high uncertainty in the omnidirectional horizontal variogram is reduced by the seismic-
derived and vertical-derived variograms. 3- Histogram uncertainty: the multivariate
spatial bootstrap is used to calculate the joint prior histogram uncertainty and incorpo-
rate this uncertainty to geostatistical simulation to arrive at a final posterior histogram
uncertainty.

Since there are only four wells, the experimental variogram and variogram uncer-
tainty of top and thickness cannot be calculated; so, variogram uncertainty is not
incorporated in the top and thickness models. However, a reference variogram model
is required to model the top surface and thickness and quantify parameter uncertainty.
This variogram could be attained from the variogram of the detrended seismic: trends
in the top surface and thickness of the seismic data are modeled and removed from
the seismic data (detrend = seismic — trend, in depth domain). This variogram is
assumed as the variogram of A = actual — seismic required to tie the seismic surfaces
(top and thickness) to the well observations and quantify parameter uncertainty.

Parameter uncertainty in the top and thickness are calculated by: 1- Tie seismic
to well to achieve reference models: simple kriging is applied by the data value of
A = actual — seismic for each well location with the variogram model of the detrend
seismic (detrend = seismic — trend), and added to the seismic top and thickness

(in depth domain) to achieve the reference structures. This eliminates the mismatch
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between well and seismic for each well location; however, the mismatch could be used
to quantify parameter uncertainty. 2- Calculate histogram uncertainty of A and use
as reference distribution for SGS with conditioning data of zero value in original units.
Since there are only four wells and the reference distribution of A is not applicable for
the spatial bootstrap, a parametric approach is applied. 3- SGS realizations are back-
transformed to the histogram realizations of A and added to the reference structures.
This ensures that the realizations (top and thickness) honor the actual observations at
well locations.

Due to using seismic data in multivariate geostatistical modeling, the posterior
variogram uncertainty without parameter uncertainty and with parameter uncertainty
are approximately the same. The posterior variogram uncertainty is influenced by the
seismic data and reduced considerably if there is a high correlation between well and
seismic data.

The posterior histogram realizations without using parameter uncertainty are shifted
to the left or right of the reference distributions. This is resolved by unconditional SGS
and conditional SGS with a pure nugget effect; hence, the shifting problem is likely re-
lated to the strong trend in well data. By incorporating the prior histogram uncertainty
and increasing the uncertainty in the posterior histogram, shifting of the histogram re-
alizations is not noticeable. Unlike posterior variogram uncertainty, using seismic data
does not lead to low posterior histogram uncertainty. Only conditioning of the well data
can improve the high prior histogram uncertainty. Although the posterior histogram
uncertainty is lower than the prior histogram uncertainty for this case study, it is still
high due to the sparse well data.

In general, histogram uncertainty is the most influential parameter uncertainty in
the uncertainty of HIIP, and variogram uncertainty is the least influential one. Vari-
ogram uncertainty should have major influence on flow simulation where the connec-
tivity of rock is critical. For example, variogram uncertainty for permeability leads to
high impact on oil production rate or water cut. Since there is no permeability data,
the influence of variogram uncertainty on flow simulation is not included in the case

study of this Chapter.

217



Chapter 8

Conclusions

Numerical reservoir modeling is very important in the early stage of field development
when there are limited well data. A realistic numerical model that reasonably repre-
sents the inevitable uncertainty is required at this stage for decision making. Major
uncertainties in presence of limited data include the variogram and histogram. Uncer-
tainty in these parameters should be quantified correctly and incorporated in the final

reservoir model.

8.1 Summary of Contributions

The main contribution of this thesis is methodology to improve uncertainty quantifi-
cation in reservoir modeling. A novel approach of variogram declustering technique
is developed to remove artifacts from the experimental variogram. A new technique
of variogram uncertainty is implemented. High variogram uncertainty is improved by
the variogram of seismic data and the vertical variogram of the well data. A new ap-
proach of quantifying histogram uncertainty is proposed and verified by true histogram

uncertainty.

8.1.1 Variogram declustering

An accurate variogram model is very important for quantifying parameter uncertainty
as well as geostatistical model construction. The preferential placement of wells can

lead to an unreliable experimental variogram. Weighting the pairs entering variogram
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calculation by ordinary global kriging (OGK) is proposed for declustering the vari-
ogram. This is a useful tool to improve the determination of the spatial structure of
a data set in the presence of preferential sampling. Global kriging is applied on the
variogram pairs of each lag distance considering the fourth order covariance between
pairs. The fourth order covariances comes from a preliminary variogram model that is
updated once the declustering is performed. According to the synthetic and real exam-
ples, the declustered variogram is not necessarily close to the preliminary variogram;
the preliminary variogram is not used directly as a target for variogram decluster-
ing. The new fitted variogram model to the declustered sample variogram is used for

geostatistical modeling and quantifying uncertainty.

8.1.2 Variogram Uncertainty

There is unavoidable uncertainty associated with the experimental variogram although
variogram declustering can remove some noise and artifacts. A new approach of quan-
tifying variogram uncertainty is proposed that is independent of the domain size. The
fourth order covariance is applied to directly calculate the degrees of freedom (DoF)
for each lag. The Chi-square distribution of each lag distance is built by the calcu-
lated DoF. Variogram realizations are drawn from these distributions. The variogram
realizations reproduce the correlation between lag distances by considering LU uncon-
ditional simulation with the correlation matrix between lag distances. These variogram
realizations are used in geostatistical modeling to incorporate variogram uncertainty in
the final model.

The calculated variogram uncertainty is not conditioned to the well data. By incor-
porating variogram uncertainty in geostatistical modeling, the initial prior uncertainty

is reduced due to conditioning of the data.

8.1.3 Improve Horizontal Variogram Uncertainty by Secondary Data

In case of sparse well data, the high uncertainty in the horizontal variogram is not
reduced by the conditioning data. A mnovel technique is developed to improve the

horizontal variogram of well data by seismic data. The vertical variogram from wells
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and the horizontal variogram from seismic data are well-defined in most cases, and
these can be used to improve the horizontal variogram inference from well data. An
approach is proposed to combine information from a noisy horizontal variogram from
wells, a horizontal seismic variogram, and analogue anisotropy ratios combined with
the vertical variogram from well data.

The acceptable range of the unknown horizontal variogram of the well data is at-
tained from the horizontal seismic variogram considering the cross covariance to the
well data. A rejection sampling is proposed to ensure variogram realizations of the
well data fall within the limits. The limits are narrower if there is a high correlation
between well and seismic data. Well and seismic data should be at the same scale to
apply this methodology. In case of 2D data set, it is assumed they are scale consistent.
However, for 3D data, the vertical scale of the seismic data is always larger than the
vertical scale of the well data. Thus, the seismic variogram should be down scaled
before applying this approach, and the correlation between well and seismic data at
the scale of the well data should be achieved.

The vertical variogram of the well data can be scaled to scenarios of the horizontal
variogram by considering horizontal-to-vertical anisotropy ratios (H:V). Uncertainty in
the H:V comes from geological analogues. Samples are drawn from the distribution of
the H:V and the sill value. The updated variogram distribution for each lag distance
is calculated considering the seismic limits.

The noisy horizontal variogram and the vertical-derived variogram (after applying
seismic limits) are merged by the method of combining error ellipses for independent
Gaussian distributions by Blachman (1989). A transformation table is considered since
the distribution of each lag distance is Chi-square and not Gaussian. The final distri-
bution of uncertainty for each lag is reduced because it is achieved by integrating all
secondary data (the vertical variogram of the well data and the horizontal variogram
of the seismic data).

After merging variogram distributions, new horizontal variogram realizations are
drawn from the uncertainty intervals of lag distances considering the correlation matrix

of the variogram lags. The horizontal variogram realizations can be autofitted with a
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fixed vertical variogram to obtain the final 3D variogram realizations.

8.1.4 Histogram Uncertainty

Quantifying histogram uncertainty is an important task for geostatistical modeling
since it has a large affect on resource uncertainty. A new simulation-based approach
is developed. The histogram uncertainty from the spatial bootstrap is taken as the
prior uncertainty. This prior uncertainty could be conditioned and trimmed to the
study area to achieve more accurate posterior histogram uncertainty. The histogram
uncertainty techniques are checked against the true uncertainty in some special cases.

The true variance of the mean could be calculated by a scan-based approach. This
approach looks for similar patterns of a data configuration within a large image, and
calculates the mean of the similar patterns of the data configuration. In order to make
a reliable distribution of the mean, the data configurations should have enough repli-
cates within the image. By scanning many data configurations and several templates,
the true uncertainty in the mean is estimated. This supports selection of the best
approach of quantifying histogram uncertainty that is the posterior approach. The
spatial bootstrap and global kriging are found to overestimate and underestimate the
histogram uncertainty, respectively.

The multivariate spatial bootstrap is used to calculate the joint prior parameter un-
certainty. The posterior histogram uncertainty for multiple variables is calculated by
transferring the joint prior parameter uncertainty in multivariate geostatistical mod-
eling. Since the multivariate spatial bootstrap respects the correlation between the
variables, the uncertainty in the correlation between variables as well as statistics are
incorporated in the final model. The prior histogram uncertainty in the proportion of
each facies for categorical variables could also be computed and used in conditional
simulation to achieve the posterior uncertainty in the proportion of each variable.

According to the case study in this thesis, histogram uncertainty is the most influ-
ential parameter uncertainty in resource estimation because it affects the mean of the
realizations. Variogram uncertainty is the least influential due to the fact that both

low and high simulated values average out. Variogram uncertainty has a large impact
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on flow simulation because connectivity is crucial.

8.2 Limitations

Although the developed methodologies have been checked, there are some computa-

tional and conceptual limitations.

e Variogram declustering by global kriging with the fourth order moments is effi-
cient for less than a few thousand variogram pairs of each lag distance because
of CPU time. This is due to solving the covariance matrix of the global kriging
for each lag distance and using the fourth order covariance. This methodology
is limited to the early stages of field development with sparse sampling and less

than 10000 pairs for each lag distance.

e The experimental variogram depends on input parameters including lag distance,
lag tolerance, azimuth angle, azimuth tolerance, dip angle, dip tolerance and
bandwidth. The calculated experimental variogram is sensitive to these param-
eters. This might lead to unreliable declustered sample variogram due to using
the variogram model fitted to the calculated experimental variogram by choosing

these parameters.

e The DoF approach of quantifying variogram uncertainty is not conditioned to
well data. This leads to a high variogram uncertainty. Although conditioning of
data reduces the high variogram uncertainty if there are enough wells, there is
no proof that the results are close to the real variogram uncertainty. A similar

check as applied to the histogram uncertainty is required.

e The CPU time is also an issue for variogram uncertainty due to the fact that the
DoF technique uses the fourth order covariance of variogram pairs for calculating

the degrees of freedom.

e The proposed methodology of the seismic derived variogram requires the well and
seismic variogram to be scale consistent. The variogram downscaling approach

assumes the variables average linearly and the shape and number of variogram
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structures are unchanged after variogram downscaling. This assumption may not

be correct.

e Variogram uncertainty is only calculated for direct variograms: variogram uncer-
tainty is not considered for cross variograms. Although the uncertainty in cross
variogram could be calculated by an intrinsic model considering the uncertainty
in the direct variogram, it would be advisable to apply multivariate geostatis-
tical modeling techniques that do not require the cross variogram such as the
projection pursuit multivariate transformation (PPMT) (Barnett, Manchuk, &

Deutsch, 2014).

There are several assumptions for the methodologies proposed in this thesis. The
first assumption is that the normal score variables should be multivariate Gaussian.
This is required for variogram declustering and variogram uncertainty due to using the
fourth order covariance, and for histogram uncertainty because of LU simulation for
the spatial bootstrap. A stationary domain is another assumption for all techniques:
the variogram model fitted to the experimental variogram should reach to stationary
sill. Assumption of representative variogram and histogram models are also required
for sampling variogram and histogram realizations. If these representative models are
not accurate after declustering (variogram declustering by fourth order moments and
histogram declustering by secondary data), the drawn variogram and histogram real-

izations may be unreliable.

8.3 Future Work

Additional work may be considered for geostatistical modeling in presence of limited

data. Some ideas for future research are presented as:

e Variogram declustering could be applied to improve the indicator variogram of
each facies. The validity of the fourth order moment approach would have to be

established for categorical variables.

e The methodology for improving the horizontal variogram uncertainty of contin-
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uous variables could also be extended to categorical variables. The horizontal
indicator variogram uncertainty for each facies may be calculated and improved
by the vertical indicator variogram of the well data and horizontal variogram of

the seismic data.

e The variogram downscaling technique could be improved to address nonlinear

averaging and the change in variogram shape.

e The multivariate variogram realizations in this thesis is achieved by applying
LU simulation with the positive correlation matrix of the variables. However,
multiple variable variograms (variogram realizations) could be sampled at the

same time.

e Posterior histogram uncertainty for multi variables and proportions of the cate-

gorical variable could be evaluated with true histogram uncertainties.

Only variogram and histogram uncertainty are considered in this thesis. This work
could be extended to calculate uncertainty in other parameters such as formation vol-
ume factor, recovery factor and dynamic uncertainty, and incorporate them in geosta-

tistical modeling for more accurate reservoir forecast.
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Appendix A

Programs

This section provides documentation and description of the programs written in the
thesis for variogram calculation, variogram uncertainty and variogram improvement.
The programs include gamt for calculating the experimental variogram of exhaustive
data (seismic data) and the cross covariance between well data and seismic data, Vardec
for variogram declustering, VarUn for variogram uncertainty, VarSeis for the seismic-
derived variogram, VarVtH for the vertical-derived variogram and VarMerg for final
improved horizontal variogram realizations by applying the seismic-derived variogram

and merge with the vertical-derived variogram.

A.1 Program gamt

The program gamt provides more accurate experimental variogram of the seismic data
and cross covariance between well and seismic data with lower CPU time than avail-
able alternatives. The methodology is mentioned in Figure 4.11 of Chapter 4. The
experimental variogram of exhaustive seismic data and the cross covariance are very
important for calculating the seismic-derived variogram (Chapter 4). Due to large
number of seismic data, variogram and cross covariance calculation could lead to high
CPU time. The GSLIB code gam for gridded data (Deutsch & Journel, 1998) only
calculates variogram for certain directions and lags and cannot calculate the cross co-
variance between sparse well data and exhaustive seismic data. The new program gamt

for variogram and cross covariance calculation is implemented based on a predefined
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template around each location of variogram (or cross covariance) pair and choosing the
nearest points to this location for variogram calculation (see Figure 4.11 of Chapter 4).
This process is repeated for all lag distances to calculate the experimental variogram
(For more information see Rezvandehy and Deutsch (2014b)).

Table A.1 shows the default parameter file of the program gamt. Line 5 specifies
the gridded data file which is usually the seismic data. This data should be a simplified
Geo-EAS formated file (Deutsch & Journel, 1998). Line 6 defines number of variables
in the seismic data file (the gridded data) followed by column number for each variable.
Trimming limits are specified on Line 7. Grid specification for the seismic data are
entered on Lines 8 to 10. Line 11 denotes the primary data file (well data). This file
is only required for calculating the cross covariance. Lines 12 and 13 specify x, y, z

columns, and number of variables and column number for each variable, respectively.

Table A.1: Parameter file of gamt program.

1 Parameters for gamt

2 ok kKK ok ok ok ok o o ok kK Kok ok ok ok

3

4 START OF PARAMETERS:

5 Seismic.dat —-file with gridded data

6 2 1 2 - number of variables, column numbers

7 -100 1.0e21 - trimming limits

8 50 0.5 1.0 - nx, Xmn, xsiz

9 50 0.5 1.0 - ny, ymn, ysiz

10 1 0.5 1.0 - nz, zmn, zsiz

11  well.dat -file with well/drillhole data (optional)

12 1 2 3 - columns for X, Y and Z coordinates

13 1 4 - number of variables, column numbers

14 gamt.out -file for variogram output

15 2 - number of directional variograms

16 50.0 0.0 - azimuth and dip

17 140.0 0.0 - azimuth and dip

18 25 1.0 10 - number of lags, lag distance, tolerance number
19 1 - standardize sill? (O=no, 1=yes)
20 7 - number of variograms
21 1 1 1 -tail variable, head variable, variogram type
22 2 2 1 - tail variable, head variable, variogram type
23 1 2 2 -tail variable, head variable, variogram type
24 1 1 3 - tail variable, head variable, variogram type
25 2 2 -3 -tail variable, head variable, variogram type
26 -1 1 3 - tail variable, head variable, variogram type
27 1 -2 -3 -tail variable, head variable, variogram type

Line 14 is the output file for variogram calculation. Line 15 is number of directional

variograms followed by Lines 16 and 17 defining the azimuth and dip of each direc-
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tional variogram. Number of lags, lag distance and tolerance number are entered on
Line 18. The tolerance number is the acceptable number of the head locations in
the defined template for variogram (cross covariance) calculation, and the template is
constructed based on this tolerance number. Line 19 indicates standardization of the
calculated variogram (yes=1, no=0). Number of variograms are entered on Line 20.
The following Lines 21 to 27 define the tail and head variable, and variogram type for
each variogram number, respectively. Variogram type 1 is the traditional variogram,
so there should be the same number for both head and tail variables. Line 21 is the
traditional variogram for the first variable, and Line 22 for the second variables of
the seismic data. The tail and head variables should be positive for variogram type 1.
Variogram type 2 signifies the traditional cross variogram between two variables of the
seismic data; the tail and head variables should be different (Line 23). Variogram type
3 denotes the covariance of the seismic data (Line 24) if the tail and head variables are
the same and positive. Negative variogram type 3 (-3) means converting the calculated
covariance to variogram through subtracting the covariance by the stationary variance.
The cross covariance between the well data and seismic data is calculated if one of
the tail or the head variables. In this case, the tail variable is well data and the head
variable is the seismic data. For example, Line 26 is the cross covariance between the
first variable of the well data and the first variable of the seismic data. -3 for variogram
type in case of the cross covariance calculation denotes converting the cross covariance
to the cross variogram. Line 27 shows the cross variogram between the first variable
of the well data and the second variable of the seismic data. Variogram type 4 signifies

the correlogram.

A.2 Program Vardec

The Program Vardec is developed for variogram declustering based on the methodology
in Chapter 2; ordinary global kriging is applied on the variogram pairs of each lag
distance to give each pair an appropriate weight. Table A.2 shows the default parameter

file. The data file is entered on Line 5. This data should be a simplified Geo-EAS
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formated file (Deutsch & Journel, 1998). Line 6 defines x, y and z coordinates. Line
7 indicates column number of the variable for variogram declustering. Trimming limits
are entered on Line 8. Lines 9 to 11 define grid specification for the area of interest
for variogram declustering. Line 12 specifies grid increment for discretization the
study area into variogram pairs for each lag distance (see Figure 2.3 of Chapter 2).
The discretization of variogram pairs are used in the left hand side covariance matrix

for global kriging approach. Figure A.1 shows a schematic illustration of discretization

Table A.2: Parameter file of Vardec program.

1 Parameters for Vardec

2 sk ok ok ok ok ok ok ok ok ok ok o sk o o o o o oo o o ook ok ok oK

3

4 START OF PARAMETERS:

5 Data.dat - file with data

6 1 2 0 - columns for X, Y, Z coordinates

7 4 - col number for variable

8 -100 1.0e21 - trimming limits

9 50 0.5 1.0 - nx, Xmn, Xxsiz

10 50 0.5 1.0 - ny, ymn, ysiz

11 50 0.5 1.0 - nz, zmn, zsiz

12 3 - grid increment , 1 all blocks

13 10 - number of lags

14 5.0 - lag separation distance

15 2.5 - lag tolerance

16 1 - number of directionmns

17 0 90 50 0 90 50 - azm,atol,bandh,dip,dtol,bandv

18 1 - standardize variograms yes(1)/no(0)
19 gam.out - output file for declustered variogram
20 vargplt.ps - output file for variogam ploting
21 varfit.var - variogram model for declustered variogram
22 1 0 - nugget effect
23 11 0 0 O - it,cc,angl,ang2,ang3

24 25 25 10 a_hmax, a_hmin, a_vert

of an area into 16 variogram pairs for lag distance h, azimuth approximately 35° and
grid increment of 2. The study area in this Figure has nx = 9 X ny = 9 grids. If grid
increment is chosen to 1, all possible variogram pairs (56 pairs) are attained. In case of
large grids (say bigger than nz = 100 x ny = 100 ), grid increment 1 leads to high CPU
time. Lines 13 to 15 specify parameters for variogram calculation: number of lags
(Line 13), lag distance (Line 14) and lag tolerance (Line 15). Lines 16 to 17 define
the direction of variogram calculation. Line 18 indicates variogram standardization

(yes=1, no=0) for both the experimental and the declustered variograms (see Section
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Figure A.1: A schematic illustration of discretization of an area into 16 variogram
pairs for lag distance h and azimuth approximately 35°.

2.8 of Chapter 2). Line 19 is the output file of variogram declustering. Line 20 is
the output file for variogram plotting. The experimental variogram, the declustered
sampled variogram and the new fitted variogram to the declustered variogram are
plotted. This fitted variogram model is calculated by embedding Varfit (Larrondo et
al., 2003) software in Vardec program. Line 21 is the variogram model fitted to the
declustered sampled variogram, which can be used in geostatistical modeling. Line 22
to 24 are the base case variogram model fitted to the experimental variogram before
variogram declustering. This variogram model is required for estimating the fourth

order covariance (see Chapter 2).

A.3 Program VarUn

The program VarUn provides variogram uncertainty and draws variogram realizations
from the uncertainty interval of lag distances (see Chapter 3). Table A.3 shows the
default parameter file. Although the most reliable approach of variogram uncertainty
is probably the DoF approach (Chapter 3), FOM and global kriging approaches (both
SGK and OGK) are also included in this code for further comparison and research.
VarUn program by default calculates the variogram uncertainty by FOM and DoF

approaches. SGK and OGK are optional (see Line 9). A base case variogram model
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is required for all approaches. The experimental variogram realizations are modeled
automatically inside the code by embedding varfit GSLIB code (Larrondo et al., 2003).
The data file is given on Line 5. This data should be a simplified Geo-EAS formated
file (Deutsch & Journel, 1998). Line 6 defines x, y and z coordinates. Line 7 indi-
cates column number of the variable for calculating variogram uncertainty. Trimming
limits are entered on Line 8. Line 9 specifies variogram uncertainty by global kriging
(yves=1, no=0). If variogram uncertainty by global kriging is applied, simple kriging
is 1 and ordinary kriging is 0. Lines 10 to 12 define grid specification for the area

of interest for variogram uncertainty only by global kriging. Line 13 denotes grid

Table A.3: Parameter file of VarUn Program.

1 Parameters for VarUm

2 kKK ook o o o o o ok K KK o ok o o o o ok KKK

3

4 START OF PARAMETERS:

5 Data.dat - file with data

6 1 2 3 - columns for X, Y, Z coordinates

7 4 - col number for variable

8 -1.0e21 1.0e21 - trimming limits

9 0 1 - global kriging, simple(1)/ordinary(0)
10 50 0.5 1.0 - nxX, Xmn, xsiz

11 50 0.5 1.0 - ny, ymn, ysiz

12 50 0.5 1.0 - nz, zmn, zsiz

13 2 - grid increment, 1 considering all blocks
14 10 - number of lags

15 5.0 - lag separation distance

16 2.5 - lag tolerance

17 2 - number of directions

18 0 10 10 0 90 50 - azm,atol,bandh,dip,dtol ,bandv (major)
19 20 10 10 0 90 50 - azm,atol,bandh,dip,dtol,bandv (minor)
20 1 - standardize experimental variogram

21 1 standardize variogram realizations

22 12521 random number seed

23 100 number of variogram realizatioms

24 1 range scale

25 0o 1.3 variogram limits for variogram plot

26 corr.out correlation matrix between lag distance
27  FOM.out variogram realizations (FOM)

28  FOM.ps file for variogam ploting (FOM)

29  DoF.out variogram realizations (DOF)

30 DoF.ps file for variogram ploting (DOF)

31 GK.out variogram realizations (global kriging)
32 GK.ps file for variogam ploting (global kriging)
33 1 0 nst ,nugget effect

34 1 1 0 0 O it,cc,angl,ang2,ang3

35 35 35 10 a_hmax, a_hmin, a_vert

increment for discretization the

study area into variogram pairs (only global kriging).
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Lines 14 to 16 specify parameters for variogram calculation: number of lags (Line
14), lag distance (Line 15) and lag tolerance (Line 16). The directions of the vari-
ogram calculation are entered on Lines 17 to 19. Variogram uncertainty is applied for
one direction in case of isotopic or omnidirectional variograms, and for two directions
in case of anisotropic variograms which only major and minor directions of continuity
are needed. For anisotropic variogram, the first direction should be the major direction
of continuity and the second direction is minor direction of continuity. Lines 20 and
21 indicate variogram standardization (yes=1, no=0) for the experimental variogram
and variogram realizations as it is discussed in Chapter 3. Line 22 is random number
seed for simulating variogram realizations. Line 23 defines number of variogram re-
alizations. Autofitting software could lead to artifacts for modeling the experimental
variogram realizations: in case of more than one variogram structure, the range of the
first variogram structure may not be very low or very high. In order to avoid this,
a_hmax (variogram range for major direction) and a_hmin (variogram range for minor
direction) of the first variogram structure for all variogram realizations could be en-
forced to be within the scaled a_hmax and a_hmin of the first variogram structure of
the base case variogram model. Line 24 defines this scale. No correction is applied if
scale is 1. Line 25 defines variogram realization limits for the variogram plot. Line
26 is output file for the correlation matrix between lag distances. Lines 27 to 32
specify the output file of the variogram models and plots of the variogram realization
by FOM (Lines 27 and 28), DoF (Lines 29 and 30), SGK or OGK (Lines 31 and
32). The variogram plots give variogram realizations before (top variogram) and after
variogram fitting (bottom variogram) for each direction. The variogram models could
be used in geostatistical simulation to incorporate variogram uncertainty. The base
case variogram model is entered on Line 33 to 35. This variogram model is required

for estimating the fourth order covariance of all variogram uncertainty techniques.
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A.4 Program VarSeis

The program VarSeis calculates the seismic-derived variogram based on the method-
ology in Section 4.3 (Chapter 4). Table A.4 shows the default parameter file. This
program calculates the upper and lower limits of the seismic-derived variogram. Line
5 specifies the output file of the upper and lower limits of the seismic-derived vari-
ogram. Line 6 indicates the plots of the upper and lower limits variograms plus the
seismic variogram and the cross covariance. Lines 7 and 8 define number of lags and
lag distance. The cross covariance between well and seismic data can be calculated by
gamt (see Section A.1). If there are insufficient well data, the cross covariance could be
calculated by Markov model (Pyrcz & Deutsch, 2014). Line 9 asks if Markov model
is used for calculating cross covariance (yes=1, no=0). If so, the correlation coefficient
between well and seismic data is required. Line 10 is the percentage of the maximum
positive determinant as minimum acceptable determinant (§ in Figure 4.9 of Chapter
4). Line 11 defines the probability of the upper and lower limits taken from the cumu-
lative distribution functions (CDF) of the positive determinants. Lines 16 to 18 are
the variogram model for the seismic data, and Lines 23 to 25 are the cross covariance

model if Markov model is not used.

A.5 Program VarVtH

The program VarVitH is implemented to calculate the vertical-derived variogram based
on the methodology in Chapter 5, Section 5.3. Table A.5 shows the default parameter
file. Lines 5 to 6 specify the output files for variogram models and plot of variogram
realizations, respectively. The variogram models (realizations) could be directly used in
geostatistical modeling if the horizontal variogram cannot be calculated due to limited
well data (less than 4 wells). Lines 7 to 8 indicate number of lags and lag distance.
Line 9 defines the deviation from the sill 1, which is A, in Equation 5.4 (Chapter 5).
The minimum and maximum of the horizontal to vertical anisotropy ratio (H:V) for
building a triangular distribution are entered on Line 10. Line 11 is random number

seed for simulating variogram realizations. Line 12 is number of variogram realizations.
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Table A.4: Parameter file of VarSeis Program.

Parameters for VarSeis
sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok

START OF PARAMETERS:

Seisvar.dat - output file for seismic limits

Seisvar.ps - plot of seismic limits

200 - number of lags

0.2 - lag distance

0 0.6 - Markov model 1/0, correlation coefficient
0.0 - percentage of maximum positive determinant
10 90 - min and max probabilities

——————————————————— Seismic Variogram Model -------—-—--—--————----

Seismic Variogram Model

1 0 - nst,nugget effect
1 1 0O 0 O - it,cc,angl,ang2,ang3
30 30 30 - a_hmax, a_hmin, a_vert

-—=- - Cross Covariance Model -------------==------

Cross Covariance Model

1 -0.65 - nst,nugget effect
i 0.656 0 0 O - it,cc,angl,ang2,ang3
28 28 28 - a_hmax, a_hmin, a_vert

Lines 13 to 14 are parameters for the vertical variogram such as number of variogram

structures (nst), variogram type (it), variance contribution (cc) and variogram range

for each structure (range).

©OoO~NOO P WN -

Table A.5: Parameter file of VarVitH Program.

Parameters for VarVtH
sk sk ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok ok ok ook

START OF PARAMETERS:

Vertvar.var - output file of variogram realizations
Vertvar.ps - plot of variogram realizations

100 - number of lags

18 - lag distance

0.1 - deviation from the sill 1

75 125 - Min and Max anisotropy ratios

1211 - random number seed

100 - number of simulations

1 0.0 - nst,nugget effect

1 1.0 15.0 - it,cc,range
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A.6 Program VarMerg

The final program VarMerg is developed to achieve the final horizontal variogram re-
alizations based on the methodology in Chapter 5. Line 5 specifies the output file of
the horizontal variogram realizations calculated by VarUn program (see Section A.3).

Line 6 indicates number of directional variograms which is 1 for the omnidirectional

Table A.6: Parameter file of VarMerg Program.

1 Parameters for VarMerg

2 sk ke ok ok ok ok ok ok ok ok ok sk sk sk o oo ook sk ok ok ok ok ok ok ok

3

4 START OF PARAMETERS:

5 HorVar.dat horizontal well variogram

6 2 10 13 number of directional variograms, nlag
7 SeisVarl.dat seismic-derived for direction 1

8 SeisVar2.dat seismic-derived for direction 2

9 VerVarl.dat vertical-derived for direction 1

10 VerVar2.dat vertical-derived for direction 2

11 Corr.dat correlation matrix between lags

12 Final .dat output final variogram realizations

13 Final.ps plot of final variogram realizations
14 0.2 cross covariance to enforce seismic limits
15 12115 random number seed
16 100 number of simulations
17 1 standardize variogram realizations
18 1 45 - Hmajor:Hminor, azimuth

or isotropic variograms, and 2 in case of anisotropy variogram (for major and minor
directions of continuity). Number of lags (nlag) for each direction should be given.
Lines 7 to 8 are the seismic-derived variograms achieved by VarSeis (see Section A.4)
program for the major and minor directions of continuity. Lines 9 to 10 are the
vertical-derived variograms attained by VarVtH (see Section A.5) for the major and
minor directions of continuity. The first direction for both the seismic-derived and the
vertical-derived variograms should be the major direction of continuity. The corre-
lation matrix between lag distances calculated by VarUn program (see Section A.3)
is entered on Line 11. Line 12 is the output file for the final horizontal variogram
realizations and Line 13 is the plot of variogram realizations. Line 14 is the min-
imum value of the cross covariance between well and seismic data for applying the
seismic-derived limits: the limits are applied on the variogram realizations until the

lag distance corresponding to this correlation. Line 15 is random number seed for
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variogram realizations. Line 16 specifies number of variogram realizations. Line 17
indicates variogram standardization (yes=0, no=0): the sill of all variogram realizations
could be enforced to 1 (see Chapter 3). Line 18 specifies the ratio of the maximum
to minimum variogram ranges (Rmajor : Rminor), and azimuth of major direction for
variogram realizations. This is the case when only the omnidirectional variogram could
be calculated because of limited data, however, there is a clear anisotropy in the area.
This anisotropy could be enforced on the omnidirectional variogram realizations (see
Chapter 7, Section 7.3.3). hmajor : hminor may be achieved from the seismic data. If
hmajor @ hminor is one, no correction is applied. Although this program is aimed at
improving the horizontal variogram, the directional variograms for 2D data set can be

improved by the seismic-derived variogram.
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