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Abstract

An important challenge in reservoir management is establishing reliable numerical ge-

ological models of all required flow parameters including facies, porosity and perme-

ability. These numerical models are driven by conceptual geology, seismic, production

and well data that are widely spaced early in exploration. Critical decisions are made

early in the reservoir lifecycle where limited seismic and production data may be avail-

able. Geostatistical simulation is commonly used to construct these numerical models

and quantify uncertainty. This thesis develops techniques that improve the uncertainty

represented in the final geostatistical model.

The variogram is a key parameter for geostatistical simulation. In presence of

preferential positioning of the wells to maximize production, variogram modeling is

suboptimal. A novel technique is proposed to weight variogram pairs in order to com-

pensate for preferential or clustered sampling. Weighting the variogram pairs helps

remove noise and minimize artifacts in the experimental variogram.

A new approach of variogram uncertainty is developed since variogram declustering

does not remove all uncertainty in the experimental variogram. Variogram realizations

are drawn from the uncertainty interval of lag distances honoring the correlation be-

tween lags. The realizations are transferred to geostatistical simulation to incorporate

variogram uncertainty in the numerical geological models.

A methodology to improve horizontal variogram inference from the widely spaced

well data is developed considering seismic data and the vertical well variogram. Seismic

data provide constraints on the unknown horizontal variogram of the well data. The

vertical variogram of the well data can be scaled to scenarios of the horizontal vari-

ogram. Improved horizontal variogram realizations are achieved by considering these

ii



constraints.

Uncertainty in the histogram of flow parameters affects resource/reserve estimation,

investment and development decisions. A new simulation-based approach of quanti-

fying histogram uncertainty is also established. A methodology to calculate the true

histogram uncertainty for a single variable in certain circumstances is proposed. This

allows checking the proposed spatial bootstrap methodology. Multivariate distribution

uncertainty is implemented considering the correlation between variables.

The applicability of the proposed methodology for variogram and histogram uncer-

tainties are shown with an offshore real reservoir located in the Dutch sector of the

North Sea. This case study confirms that the histogram uncertainty has the highest

impact on resource estimation.
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Chapter 1

Introduction

Numerical reservoir models for the upstream petroleum exploration/production busi-

ness are used for developing a recovery plan, reserves estimation, redevelopment of

old fields, accurate management throughout the production period, monitoring and

execution, EOR planning and abandonment of production. The process of reservoir

modeling is cyclic and continues through the lifetime of the reservoir (Singh, Yemez, &

Sotomayor, 2013).

Developing hydrocarbon reservoirs is risky. The industry aims to predict and mit-

igate risk (Kaleta et al., 2012; Wolff, 2010). According to Rose (2004), exploration

and production companies had delivered about half of the predicted reserves in the

last 20 years of the 20th century. Merrow (2011) shows a decreasing rate of success

for exploration and production megaprojects. One of the main reasons for this un-

derperformance is due to use of evaluation methods that do not account for the full

uncertainty, which leads to inaccurate reservoir production forecasts (McVay & Dos-

sary, 2014; Singh et al., 2013). In the past, the input statistics were held constant

and relatively small fluctuations between realizations were used to characterize reser-

voir uncertainty (Pyrcz & Deutsch, 2014). This approach underestimates uncertainty

(Wang & Wall, 2003). Uncertainty is small because local fluctuations above and below

the average cancel out between locations (Babak & Deutsch, 2009). Thus, the uncer-

tainty in each input parameter is important and must be integrated into final reservoir

modeling.
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According to Singh, Hegazy, and Fontanelli (2009), major sources of uncertainty in

regionalized variables for production forecasts can be divided into four main categories:

1- Geophysical uncertainty (mainly seismic data) regarding conversion of time-to-depth,

migration, picking seismic surface and finding correct position of faults and well ties. 2-

Geological uncertainty regarding the sedimentary depositional environment, facies, spa-

tial distribution and grain size. 3- Petrophysical uncertainties in porosity, permeability,

water saturation, shale volume, net thickness of rock, and oil water contact (OWC),

and 4- Dynamic uncertainties about relative and absolute permeabilities, horizontal

barriers, thermodynamics, injectivity and productivity indexes. The uncertainty is due

to limited data and measurement errors. Limited data leads to incomplete knowledge

of petrophysical properties, subsurface structure, and fluid properties. Generating a

model that represents the real reservoir is difficult. A realistic numerical model is

required to understand the subsurface and quantify the inherent uncertainty.

The variogram is required by most geostatistical and uncertainty methods. Infer-

ring a stable variogram model in presence of preferential sampling is a longstanding

challenge. According to geological and geophysical data, the wells are likely located in

the areas of higher quality for maximizing production (Pyrcz & Deutsch, 2014). This

leads to noisy and unreliable experimental variogram due to unbalanced number of

variogram pairs in low quality and high quality areas. Although weighting the data

by declustering techniques corrects the statistics (Deutsch, 1989), this approach is not

normally considered in variogram calculation. The challenge is to decluster the experi-

mental variogram for removing noise and artifacts that occurs because of irregular and

preferential sampling. Despite improving the experimental variogram by variogram

declustering, there is unavoidable variogram uncertainty that could be calculated and

incorporated in geostatistical modeling. The variogram uncertainty is very high in case

of sparse well data.

Seismic data are more exhaustive than well data, so they can be used to improve

the variogram and histogram of regionalized variables. There is the challenge of es-

tablishing a reliable horizontal variogram from well data. A poor horizontal variogram

from well data can be improved by considering seismic data. The histogram of primary
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variables constructed from few wells at the early stages of reservoir development will

not be representative of the whole area. The histogram could be improved by cali-

bration to seismic data (Deutsch, Frykman, & Xie, 1999, 2005). There is unavoidable

uncertainty in the histogram due to the fact that multiple seismic attributes (Rezvan-

dehy, Aghababaei, & Raissi, 2011) could lead to spurious correlation between well and

seismic attributes (Chambers & Yarus, 2002; Kalkomey, 1997). Therefore, uncertainty

in the representative histogram of variables (after calibration with seismic data) should

be taken into consideration in geostatistical modeling.

The main objective of this research work is to propose techniques that estimate

the correct uncertainty in input statistics such as the variogram and histogram of

regionalized variables, and develop an approach for incorporating the uncertainty in

geostatistical modeling. This leads to reservoir models with more realistic uncertainty

for decision making.

1.1 Literature Review

1.1.1 The Importance of Reservoir Uncertainty

Uncertainty is an inevitable aspect of the upstream oil and gas business. There are

many bad consequences of decisions made under uncertainty. The resources may be

underestimated or overestimated and there may be unrealistic forecasted production.

For each reservoir, an estimate of the hydrocarbon initially in place (HIIP) is re-

quired. This estimation is often computed by gross rock volume (GRV), petrophysical

properties including net-to-gross (NTG), porosity, fluid saturations, and hydrocarbon

properties such as the formation volume factor. The uncertainty in HIIP depends on

the uncertainty in each parameter. For instance, GRV is the volume of a reservoir

trapped between stratigraphic surfaces and/or hydrocarbon-water contacts. Uncer-

tainty in GRV is attributed to widely spaced well data and uncertainty in the inter-

preted structural surfaces from seismic data. In case of thin reservoirs, this uncertainty

increases because of the seismic data resolution. Spectral and Cepstral decomposi-

tion approaches (Hall, 2006; Hall & Trouillot, 2004; Partyka, Gridley, & Lopez, 1999;
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Rezvandehy et al., 2011) have been implemented by Fourier transform to improve res-

olution. There is no unique surface in units of depth because of uncertainty in the

interpretation (in time) and uncertainty in the time-to-depth conversion. Therefore,

the calculated GRV is uncertain. The oil water contact (OWC) can often be estimated

from the available wells. The depth of this surface is subject to uncertainty. Uncer-

tainty in all variables should be assessed and merged to compute the uncertainty in

HIIP (Alshehri, 2010).

Deterministic approaches produce a single estimate. The deterministic approach

usually includes sensitivity analysis. The analysis can be used to understand the criti-

cal variables by changing each parameter one at a time keeping the other parameters

unchanged. The results could be presented by a tornado chart that ranks the impact

of each parameter on the outcome. Then, the most important parameters can be con-

sidered for a more complete uncertainty analysis (Amudo, Graf, Dandekar, & Randle,

2009; Cebastiant & Osbon, 2011; Ehinola & Akinbodewa, 2014; Peng & Gupta, 2004;

Salinas, Di Nezio, & Huerta Petroperu, 2014; Van Elk, Guerrera, Vijayan, & Gupta,

2000). This approach provides some information on the global uncertainty but it does

not give a full picture of uncertainty. In addition, it does not account for local uncer-

tainty (Alshehri, 2010). Individual parameters are better described by a probability

distribution or different realizations instead deterministic values. This leads to a prob-

ability distribution for all response parameters of reserve estimation. The uncertainty

in acquired data and derived parameters is incorporated in geostatistical models. Sen-

sitivity analysis is performed to find the most uncertain variables. The final reserve

estimation is reported based on a probability distribution (having an uncertainty in-

terval) rather than a deterministic single value. Rose (2007) shows several merits of a

probabilistic methodology over a deterministic estimate for exploration and production.

According to Society of Petroleum Engineers (SPE) (Etherington, Pollen, & Zuccolo,

2005) and the Journal of Canadian Petroleum Technology (JCPT) (Robinson & El-

liott, 2004), P90, P50, and P10 can be applied in reporting reserves using probabilistic

methods to define proved, probable, and possible reserves respectively. The P90 (0.1

quantile) refers to proved reserves, P50 refers to proved and probable reserves, and P10
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(0.9 quantile) refers to proved, probable and possible reserves.

A thorough assessment of uncertainty and tracking its evolution with time provides

decision support information. Uncertainty in estimation resource/reserve (HIIP) will

reduce with more wells. There are some examples of historical look-backs to demon-

strate the evolution of different input parameters (porosity, permeability, saturation,

etc) along with hydrocarbon in place estimates. Meddaugh, Barge, Todd, and Gri-

est (2007); Meddaugh, Griest, and Barge (2009); Meddaugh, Gross, Griest, Todd, and

Barge (2006) and Singh et al. (2013) present look-back studies for original oil in place

(OOIP) as a function of time. They show that the uncertainty look-back is useful in

tracking the impact of new data. The number of delineation wells could be optimized

for OOIP uncertainty management. The slope of uncertainty index (UI) (UI=((P90

OOIP)-(P50 OOIP))/(P50 OOIP) vs. time provides useful information during drilling

delineation. If this slope is remain constant, there is little value in drilling more wells.

Although the history look back is useful in tracking the impact of new data, it can lead

to unreliable decision if the global uncertainty in OOIP is inaccurate (overestimated or

underestimated).

1.1.2 Quantifying Uncertainty

There are many papers applying Monte Carlo simulation (MCS) to estimate reserve

volumes in early reservoir life (Murtha, 1997). Conditional simulation is proposed to

assess and quantify uncertainty of hydrocarbon properties such as porosity, permeabil-

ity, hydrocarbon pore volume with structural parameters. The methodology is based

on simulation with conditioning data considering fixed statistical parameters (Samson,

Dubrule, & Euler, 1996). Uncertainty in the univariate distribution of regionalized vari-

ables (input parameters) is found to be important. There are a number of approaches

that have been proposed to get uncertainty in the univariate distribution.

The bootstrap is the first simplest method of quantifying uncertainty in the his-

togram developed by Efron (1979). This method uses MCS simulation to draw values

from the data distribution to simulate different possible data sets; so, it can be eas-

ily applied to calculate the uncertainty in the mean and other statistical parameters.
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There are two critical assumptions for applying the bootstrap: 1- The distribution of

the data should be representative of the whole domain, and 2- The data are indepen-

dent. The bootstrap may be useful when it is needed to measure the uncertainty in

the mean early in appraisal with widely spaced well data (Pyrcz & Deutsch, 2014).

The spatial bootstrap is proposed by Solow (1985) in order to consider the spatial

correlation of data. The spatial bootstrap in geostatistics (Deutsch, 2004; Journel &

Bitanov, 2004) applies unconditional LU simulation at the data locations according to

spatial correlation of the data (Deutsch & Journel, 1998). This approach considers

neither the conditioning data nor the area of interest. Increasing spatial correlation

leads to greater uncertainty because the data are more redundant (Khan, Deutsch, &

Deutsch, 2014).

The conditional finite domain (CFD) is another stochastic approach that accounts

for the conditioning data and the size of the domain. This technique permits evaluation

of uncertainty by sampling multiple configurations of the data previously simulated.

The configurations should be similar to the configuration of the original data. Generally,

CFD is very difficult to operate and leads to low uncertainty because of the conditioning

data (Babak & Deutsch, 2009).

The last technique for assessing uncertainty in the mean is using kriging for estima-

tion of the entire domain. This technique called global kriging uses the kriging variance

when estimating the entire domain. The variance will decrease when the domain size

increases due to the support effect (Deutsch & Deutsch, 2010). This technique is inde-

pendent of data values and lead to relatively low uncertainty.

Uncertainty in the variogram of regionalized variables should also be quantified

and incorporated into final modeling. Different authors (Bogaert & Russo, 1999; Web-

ster & Oliver, 1992) have considered sampling scheme for measuring variogram uncer-

tainty. Cressie (1985), Pardo-Igúzquiza and Dowd (2001), Ortiz and Deutsch (2002),

and Marchant and Lark (2004) propose similar expressions related to the covariance

matrix of the experimental variogram for each lag distance. The diagonal elements

of such a covariance matrix are variances. The covariance matrix can be resolved by

quadratic covariance (Matheron, 1965).
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Global uncertainty could be computed from the fluctuations between the realiza-

tions of simulation (Deutsch, 2005; Journel & Xu, 1994). This uncertainty should be

calculated by considering correct parameter uncertainty (uncertainty in input statis-

tics). Derakhshan and Deutsch (2008) proposed a methodology to directly incorporate

parameter uncertainty into sequential Gaussian simulation (SGS). The central idea is

to use a non-uniform distribution of random numbers for Monte Carlo simulation in-

corporating the uncertainty in the mean of the variable. The idea seems like an ad-hoc

engineering approach with no statistical basis. Alshehri (2010) quantifies global uncer-

tainty of HIIP by assessing parameter uncertainty of the reservoir surface, OWC and

reservoir properties (porosity, water saturation etc). A 2D surface of seismic interpreta-

tion is assumed as a reference map for considering uncertainty in reservoir volume. This

surface can even be attained by a few 2D seismic lines in the absence of 3D seismic (Rez-

vandehy, 2014). Monte Carlo simulation (MCS) is also used to quantify uncertainty

in fluid contacts levels by using the triangular distribution. A cosimulation approach

of SGS with super secondary data is utilized for quantifying uncertainty in petrophys-

ical properties for assessing uncertainty in HIIP (Babak & Deutsch, 2007b). There

are several issues in the methodology: 1- The parameter uncertainty is only calculated

for the mean of the reference distribution without considering the uncertainty in the

variance. 2- The parameter uncertainty is calculated by bootstrap, spatial bootstrap

and CFD, but there is no guidance on the most accurate approach. Since each method

has specific limitations, the correct method of quantifying parameter uncertainty is

unknown. 3- The unreliable experimental variogram of each variable is used directly

for calculating global uncertainty of HIIP without considering variogram declustering.

4- The variogram uncertainty is not discussed in this study. This uncertainty is impor-

tant for flow simulation (Meddaugh, Champenoy, Osterloh, & Tang, 2011) and could

be improved by auxiliary data and incorporated in the final model. 5- Multivariate

parameter uncertainty and transforming this uncertainty in multivariate geostatistical

modeling is discussed partially and incomplete in the end.
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1.2 Problem Statement

One of the key parameters for geostatistical modeling of petrophysical properties is the

variogram for each property. Preferential sampling may bias the spatial structure and

often leads to noisy and unreliable variograms. Declustering techniques compensate

for the geometric configuration of the data locations (Deutsch, 1989); however, they

correct the histogram of data and not the experimental variogram. Some authors

consider variogram declustering. There are drawbacks with each technique. A regular

data configuration could be taken taken from the cluster data (Chiles & Delfiner, 1999).

This leads to zero weights to discarded pairs and loss of information. The average of

the univariate declustering weights for two data locations is proposed for variogram

declustering (Kovitz & Christakos, 2004; Omre, 1984; Richmond, 2002). However,

variogram declustering is only applied for the pairs originating and ending in the same

cell. Emery and Ortiz (2005, 2007) discuss variogram declustering by ordinary local

kriging. This approach has also some limitations since kriging of the local mean does

not give correct global estimation of the mean (declustered mean).

Variogram uncertainty of regionalized variables could also be quantified and in-

corporated in geostatistical simulation. According to Meddaugh et al. (2011), vari-

ogram uncertainty could have a tremendous impact on flow simulation. The current

approaches of variogram uncertainty based on sampling scheme (Bogaert & Russo,

1999; Webster & Oliver, 1992) or the covariance matrix of the experimental variogram

(Cressie, 1985; Marchant & Lark, 2004; Ortiz & Deutsch, 2002; Pardo-Igúzquiza &

Dowd, 2001) are not robust and lead to a very high variogram uncertainty which may

bias the final reservoir model. Moreover, the method of incorporating variogram un-

certainty in geostatistical simulation is not fully addressed.

There is always a challenge inferring the horizontal variogram in case of widely

spaced well data. Applying the horizontal variogram of 3D seismic data is a naive

solution to this problem (Wang & Dou, 2010) since the processed seismic data are not

the same physical attribute as that under consideration; seismic data are acquired in

time domain that should be transferred to depth and there is a much different in the
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scale of measurement. Pyrcz and Deutsch (2014) propose an approach of scaling the

vertical variogram based on horizontal-to-vertical anisotropy ratio. However, there is

no unique ratio for a specific reservoir (Kupfersberger & Deutsch, 1999).

Uncertainty in univariate distributions for each regionalized variable should be

quantified correctly. Geostatistical models require input parameters such as univariate

distribution for continuous variables and proportions of categorical variables. These

parameters are subject to uncertainty because of limited data and measurement error.

Each current method of parameter uncertainty gives a different result and has spe-

cific drawbacks. The uncertainty in correlation coefficients between variables should

be incorporated in the final model.

1.3 Problem Solution and Objectives

The goal of this research is quantifying correct parameter uncertainty and incorporating

this uncertainty in geostatistical reservoir models for improved forecasting and man-

agement. Figure 1.1 shows a conceptual illustration of L realization of different sources

of uncertainty in the reservoir with four well data, and Figure 1.2 shows incorporat-

ing all uncertainties (variogram plus histogram, surface, etc) in resource estimation or

flow simulation. This leads to lower risk in reservoir decision making and prevents

overestimating or underestimating production facilities. Uncertainty in the reservoir is

divided into parameter and data uncertainties (see Figure 1.1). Parameter uncertainty

includes the variogram, histogram of continuous and discrete (proportion) variables,

surface (top and thickness), domain size, etc. Instead of using one fixed set of param-

eters, different realizations of parameters are used for geostatistical simulation: one

realization of parameter uncertainty for one realization of the geostatistical simulation

process. Data uncertainty could also be calculated and incorporated in the final model

(Barnett, 2015). The focus of this thesis is quantifying correct variogram and histogram

uncertainties.
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Figure 1.1: A conceptual illustration of parameter and data uncertainties in the reser-
voir modeling (in presence of four widely-spaced wells). L is number of
simulation for each source of uncertainty.
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Figure 1.2: A conceptual illustration of resource estimation and flow simulation with
all uncertainties.

1.3.1 Representative Variogram with Uncertainty

An accurate variogram model is important for geostatistical modeling and for quanti-

fying parameter uncertainty. The spatial bootstrap needs a reference variogram model,

the higher variogram range, the higher the prior histogram uncertainty. The approaches

of quantifying variogram uncertainty also need a reference variogram model that should

be as accurate as possible. In case of preferential sampling, variogram declustering

should be considered. A novel approach of variogram declustering is proposed in this

work that corrects the limitation of the previous techniques. The new fitted variogram

to the declustered horizontal and vertical variograms (3D variogram model) could be

used for geostatistical modeling and quantifying parameter uncertainty.

A new approach of quantifying variogram uncertainty and how to incorporate this

uncertainty in geostatistical simulation is proposed in this thesis. In case of sparse
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well data, there is high variogram uncertainty in the horizontal variogram. This work

also proposes a novel technique to improve the horizontal variogram of well data. The

vertical variogram from wells and the horizontal variogram from seismic data are well-

defined in most cases, and could be used to improve the horizontal variogram inference

from well data: the distributions of uncertainty for each lag distance are merged in order

to achieve an improved horizontal variogram. This can be described by the following

Steps (Figure 1.3):

1. The horizontal seismic variogram is enforced on the noisy horizontal well vari-

ogram. An updated variogram distribution for each lag distance is achieved.

2. The vertical variogram of the well data can be scaled to scenarios of the horizontal

variogram using conceptual geological models. A variogram distribution for each

lag distance is attained.

3. Merge the probability distributions of each lag distance from Steps 1 and 2.

After merging variogram distributions, improved horizontal variogram realizations are

drawn from the uncertainty intervals of lag distances.

1.3.2 Histogram Uncertainty

The next challenge faced by this research is to establish uncertainty in the histogram

of regionalized variable (distribution uncertainty). Quantifying this uncertainty is an

important task of geostatistical modeling, due to the fact that it affects reservoir invest-

ment and development decisions. There are some techniques for quantifying uncertainty

in histogram. Each method has limitations (see Section 1.1.2). This work proposes a

new simulation-based approach of quantifying histogram uncertainty. An experimen-

tal framework is developed, where the true uncertainty in the histogram is known, to

evaluate histogram uncertainty approaches. Univariate distribution uncertainty can

be extended to multivariate parameter uncertainty for incorporating the correlation

between variables in the final model.
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Figure 1.3: Illustrative work flow for improving horizontal variogram of the well data
by the horizontal seismic variogram and the vertical well variogram. The
distributions of uncertainty for each lag distance are merged to achieve
the improved horizontal variogram.

1.4 Thesis Statement and Dissertation Outline

Thesis statement: Development of techniques to capture correct parameter

uncertainty in presence of sparse well data will improve the uncertainty repre-

sented in the final geostatistical model.

The thesis contains eight Chapters. Chapter 1 is the introduction; literature

review, problem statement and solution are presented. Chapter 2 discusses vari-

ogram declustering to improve the experimental variogram. Chapter 3 demonstrates

variogram uncertainty and incorporating this uncertainty in geostatistical modeling.

Chapter 4 shows implementation to improve the variogram of well data by the vari-
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ogram of seismic data. Chapter 5 covers final improved variogram realizations (3D) for

geostatistical modeling. Multivariate distribution uncertainty is provided in Chapter

6. Practical implementation of parameter uncertainty for a real case study is pre-

sented in Chapter 7. The last Chapter 8 wraps up the thesis with conclusions. The

description of developed Fortran codes is provided in an Appendix.
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Chapter 2

Declustering Experimental
Variograms by Global Estimation
with Fourth Order Moments

The following Chapter presents methodology and examples for variogram declustering

in presence of irregular sampling. Preferential sampling may bias the spatial structure

and often leads to noisy and unreliable variograms. A novel technique is proposed to

weight variogram pairs in order to compensate for preferential or clustered sampling:

weighting the variogram pairs gives each pair the appropriate weight, removes noise

and minimizes artifacts in the experimental variogram.

The Chapter begins with a discussion on why variogram declustering is required.

The principle of variogram declustering and previous works are discussed. A methodol-

ogy is presented to derive declustering weights of variogram pairs that best compensate

for preferential sampling. The methodology is assessed by synthetic and realistic ex-

amples.

2.1 Problem of the Equal Weighted Variogram

Geostatistical modeling is widely used to estimate and simulate properties in the

petroleum and mining industries. One of the key parameters for geostatistical model-

ing of continuous variables is the variogram or covariance function for each property.

The variogram model provides a three-dimensional definition for pairwise spatial co-
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variances (Deutsch & Journel, 1998; Pyrcz & Deutsch, 2014). Variogram modeling is

performed to fit an analytical model to a sample variogram computed from the data:

the experimental variogram points are not directly used in geostatistical modeling since

the variogram function is required for all distances and they must be positive definite

(Deutsch & Journel, 1998; Pyrcz & Deutsch, 2014). The variogram model can be at-

tained manually or by autofitting to achieve a variogram model. One conventional

approach of autofitting is measuring the goodness of fit by an objective function, which

is the sum of the squared difference between the experimental variogram and the mod-

eled variogram. Random changes to the variogram model that decrease the objective

function are accepted. This process is repeated many times (say more than 10000) to

obtain a variogram model with the minimum objective function (Larrondo, Neufeld, &

Deutsch, 2003). For more information of variogram modeling see Chiles and Delfiner

(1999); Cressie (1985); Genton (1998); Gringarten and Deutsch (2001); Pardo-Igúzquiza

and Dowd (2001).

In practice, variogram modeling is suboptimal in presence of irregular and preferen-

tial positioning of the wells (Emery & Ortiz, 2007; Kovitz & Christakos, 2004). Based

on geological and geophysical data, the data are likely located in the areas of higher

quality that would be developed first or that would maximize production (Pyrcz &

Deutsch, 2014). Higher valued areas are often more variable, thus, equal-weighted ex-

perimental variograms are often noisy and biased. Weighting the data by declustering

techniques compensates for the geometric configuration of the data locations and cor-

rects the statistics (Deutsch, 1989); however, this approach is not normally considered

in variogram calculation where equal weights are often considered for the variogram

pairs (Emery & Ortiz, 2007). The experimental variogram for a particular lag vector

is computed as:

γ̂(h) =
1

2n(h)

n(h)∑
i=1

[y(ui)− y(ui + h)]2 , i = 1, ..., n(h) (2.1)

where n(h) is number of variogram pairs for lag distance h. Each lag of the experimental

variogram γ̂(h) is a variable comprised of pairs of well data y(ui), y(ui+h). Figure 2.1-a
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shows a synthetic example of clustered well locations in areas of high quality, and sketch

of its corresponding variogram for azimuth 0◦ ± 10◦ (Figure 2.1-b). The variogram is

unstable and has fluctuations because for the short lag distance (lag distance h1 in

Figure 2.1-a) the majority of pairs are located in the high quality area with greater

variability, and for a larger distance (lag distance h2 in Figure 2.1-a) the majority of

pairs are located in low quality areas. This unbalanced number of pairs within low and

high quality areas leads to a noisy variogram due to the fact that the equal weighted

averaging as in Equation 2.1 does not account for preferential sampling. The objective

of variogram declustering is to correct the effect of preferential sampling.

Figure 2.1: a) Synthetic example of clustered locations in areas of high quality (the
center right of the sketch). b) Sketch of experimental variogram (not
calculated) for azimuth 0◦ ± 10◦. The noisy and unreliable variogram is
due to clustering some variogram pairs in high valued areas.

2.2 Principle of Variogram Declustering

Estimation of the variogram could consider weighting the variogram pairs:

γ̂(h) =
1

2n(h)

n(h)∑
i=1

wi × [y(ui)− y(ui + h)]2 , i = 1, ..., n(h) ,

n(h)∑
i=1

wi = 1 , wi ≥ 0

(2.2)

where wi are scalar weights assigned to variogram pairs [y(ui)− y(ui + h)]2. A few ap-

proaches based on the configuration of the data have been proposed to calculate these
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weights; however, their efficiency has not been proved. Chiles and Delfiner (1999)

recommend one data location from the cluster data in order to make a regular data

configuration for variogram calculation. This procedure assigns zero weights to dis-

carded pairs. This leads to a loss of information and the variogram calculation for

short lag distance may be worse.

Some authors calculate the average of the univariate declustering weights for two

data locations and used it in Equation 2.2 (Kovitz & Christakos, 2004; Omre, 1984).

Richmond (2002) proposes variogram declustering by univariate cell declustering weight.

This algorithm has drawbacks; it only down-weights pairs originating and ending in

the same cell. However, in case of omnidirectional variogram, it is likely to have pairs

originating and ending in another cell, and it is quite common to have pairs ending in

cells where other pairs originate (Emery & Ortiz, 2007). Furthermore, it needs a fixed

cell size for cell declustering. Different cell size gives different variogram declustering

weights.

Emery and Ortiz (2005, 2007) propose to minimize the variance between the experi-

mental variogram and the underlying true variogram. They use fourth order covariance

to calculate optimum declustering weights. The differences between the methodology

of this work and their technique is presented in Section 2.7. Olea (2007) selects sub-

samples of the data that do not have clusters. Although this method is simple to apply,

there is a loss of information due to eliminating some variogram pairs. There are other

techniques of variogram declustering such as kernel variogram estimator (Menezes,

Garcia-Soidán, & Febrero-Bande, 2007) and Box-Cox transformation (Pu & Tiefels-

dorf, 2015). None of those mentioned techniques give robust weights for experimental

variogram pairs and each has drawbacks. Moreover, it is not feasible to directly cal-

culate the variance of the declustered variogram by those techniques. The goal of

this work is to extend the use of declustering techniques to improve the experimental

variogram.
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2.3 Methodology

Kriging is a linear estimator of a regionalized variable. The weights assigned to the data

locations are computed based on the spatial relationship between the data locations and

the point being estimated, and the data locations and themselves. Kriging estimates the

value at an unsampled location by a maximum number of data within the search radius.

Global kriging applies all available data for estimation at either an unsampled location

or for the entire domain. If this unknown location is the entire domain, global kriging

estimates the declustered global mean and variance. This global kriging approach is

proposed for declustering the sample variogram. In this approach, global kriging is

applied to the variogram pairs of each lag distance. The ”data” value of each pair is

half of the quadratic difference of the tail and head values. Global kriging estimates

an average of all pairs for the entire area, which is the variogram value for the desired

lag distance. This process is repeated for all lag distances to achieve a declustered

variogram.

The covariance between variogram pairs should be used in the global kriging system

since pairs are the data values. The covariance between two pairs is a fourth order

covariance and can be written as a sum of second order moments (Matheron, 1965).

This requires an input variogram model as considered by other authors including Ortiz

and Deutsch (2002).

Figure 2.2 shows a schematic illustration (not calculated) of variogram declustering

by global kriging, which has three Steps: 1) Experimental variogram of the data is

calculated and a preliminary model is fitted (Figure 2.2-a). The fitted variogram model

is used for computing the fourth order covariance matrix between variogram pairs. 2)

Variogram pairs of each lag distance are assembled from the data (Figure 2.2-b). 3)

Global kriging is applied on the variogram pairs of each lag distance separately (Figure

2.2-c). The declustered variogram is then fit again and used for geostatistical modeling.

This approach also gives a measure of variogram uncertainty at each lag distance.

This variogram uncertainty could be incorporated in geostatistical models. Variogram

uncertainty is fully discussed in Chapter 3. The main objective of this Chapter is
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variogram declustering.

Figure 2.2: Schematic illustration of variogram declustering by global kriging. a)
A variogram model is fitted to the experimental variogram of data. b)
Draw variogram pairs of each lag distance from the data. c) Apply global
kriging for variogram pairs of each lag distance to improve and decluster
noisy variogram.

2.4 Global Kriging of Variogram Pairs

Global kriging estimates the declustered global mean and variance provided the domain

is assumed stationary (Deutsch & Deutsch, 2010). Let z(uα), α = 1, ...., n be the values

of variable z at n locations uα. The ordinary global kriging (OGK) estimator of z for
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the entire domain A is written:

Z∗OGK =
n∑

α=1

λOGKα [Z(uα)] (2.3)

where λOGKα is the declustering weight of global mean assigned to each datum z(uα).

There is no need to have a stationary mean in the kriging system because ordinary

kriging enforces the sum of the weights to 1 by the Lagrange formalism:

n∑
β=1

λOGKβ C(uβ − uα) + µ = C(uα −A) , α = 1....n ,
n∑

α=1

λOGKα = 1 (2.4)

where C(uβ − uα) is the covariance between locations uβ and uα. µ is the Lagrange

parameter and C(uα −A) is average covariance between each data location uα and the

whole area A. Estimation variance of OGK is written as:

V ar {Z∗OGK} = C(A−A)−
n∑

α=1

λOGKα C(uα −A)− µ (2.5)

where C(A−A) is the average covariance of the entire area to itself. Theoretically, the

average covariances in Equations 2.4 and 2.5 could be estimated by linear averaging of

the calculated covariances after discretization the entire study area A into small blocks

(Goovaerts, 1997).

OGK is proposed for declustering variogram pairs. In this approach, global kriging

weights are applied to the quadratic differences of pair values:

Z(u + h
2 )

↑

Z(u− h
2 )

, Xh(u) =
[Z(u− h

2 )− Z(u + h
2 )]2

2
(2.6)

where Z(u− h
2 ) is the tail value, and Z(u+ h

2 ) is the head value of each variogram pair

↑ for lag distance h. The expected value of the Xh(u) is the variogram value for each

lag distance. The expected value for the entire area is estimated by the global kriging
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where declustering weights for each lag distance h are computed by:

X∗h =

n(h)∑
α=1

λOGKα,h [Xα,h(u)] (2.7)

where X∗h is the declustered variogram, n(h) is number of variogram pairs for each lag

distance h and λOGKα,h is variogram declustering weight for pair α and lag distance h

and Xα,h(u) is half of the quadratic differences of the pair values (see Equation 2.6).

Global kriging (Equation 2.7) should be applied on variogram pairs of each lag distance

in order to decluster and improve the variogram. Since the data are pairs instead of

locations, fourth order covariances are used in Equation 2.4 (Ortiz & Deutsch, 2002).

The fourth order covariance is briefly discussed in Section 2.5. The system of linear

equations of OGK for obtaining λOGKα,h can be written as:

n(h)∑
β=1

λOGKβ,h F (Xβ,h(u)−Xα,h(u)) + µ = F (Xα,h(u)−A) , α = 1....n(h)

,

n(h)∑
α=1

λOGKα,h = 1

(2.8)

where F (Xβ,h(u)−Xα,h(u)) signifies fourth order covariance between pairs Xβ,h(u) and

Xα,h(u)) (left hand side), and F (Xα,h(u)−A) implies average fourth order covariance

between each pair Xα,h(u) and the entire domain A (right hand side). The average

fourth order covariance could be estimated by discretization of the entire study area A

into many variogram pairs for lag distance h. Figure 2.3 shows a discretization of the

entire domain A to 39 variogram pairs for lag distance h. The average fourth order

covariance is achieved by linear averaging of all covariances between the experimental

variogram pair and the discretized variogram pairs (red arrows). In case of exhaustive

discretization (more than 2000), the CPU time is an issue to calculate the average

fourth order covariances (right hand side covariance matrix).

Uncertainty in the variogram is very important and should be incorporated in the

final model. Variogram uncertainty can also be calculated by OGK. The minimized
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Figure 2.3: Average fourth order covariance between each variogram pair and the
entire domain A. a) The experimental variogram pair of lag distance h.
b) Discretization of the entire domain to 39 variogram pairs of lag distance
h. Average fourth order covariance is achieved by linear averaging of all
covariances. Note that there is only one 50m by 50m area; it has been
redrawn twice to illustrate the discretization.

estimation variance of each lag distance h is written as:

V ar {2X∗h} = F (A−A)−
n(h)∑
α=1

λOGKα,h F (Xα,h(u)−A)− µ = V ar {2γ̂(h)}

→ V ar {γ̂(h)} =
1

4
× (V ar {2X∗h})

(2.9)

where F (A−A) is the average fourth order covariance of the entire domain A to itself.

Variogram uncertainty is discussed in Chapter 3.

2.5 Fourth Order Covariance

Ortiz and Deutsch (2002) show the fourth order covariance between variogram pairs by

second order moments (variogram) under a multi-Gaussian assumption of univariate

distribution. As an example, this covariance is calculated with a synthetic example.

Figure 2.4 shows two variogram pairs ”Pair p” and ”Pair q” with lag distances hp and

hq. These pairs are a h distance from each other. The covariance between quadratic

differences of variogram pairs Cov
{

(y1 − y2)2, (y3 − y4)2
}

that is the so called fourth

23



order covariance is to be calculated (Ortiz & Deutsch, 2002). Where y1 and y2 are tail

and head locations of ”Pair p”, and y3 and y4 are tail and head locations of ”Pair q”,

respectively. According to the definition of the covariance:

Figure 2.4: Two variogram pairs p and q with lag distances hp and hq. The distance
between pairs is h. y1 and y2 are tail and head locations of ”Pair p”, and
y3 and y4 are tail and head locations of ”Pair q”, respectively.

Cov(Yi, Yj) = E {Yi.Yj} − E {Yi} .E {Yj} (2.10)

now, replacing Yi and Yj by the quadratic differences (y1 − y2)2 and (y3 − y4)2):

Cov
{

(y1 − y2)2, (y3 − y4)2
}

= E
{

(y1 − y2)2.(y3 − y4)2
}
−

E
{

(y1 − y2)2
}
.E
{

(y3 − y4)2
} (2.11)

where E
{

(y1 − y2)2
}

and E
{

(y3 − y4)2
}

are equal 2.γ (hp) and 2.γ (hq), respectively.

γ (h) is a variogram model fitted to the experimental variogram. Expanding Equation

2.11 leads to a sum of fourth order moments:

Cov
{

(y1 − y2)2, (y3 − y4)2
}

= E
{
y2

1.y
2
3

}
+ E

{
y2

1.y
2
4

}
− E

{
2.y2

1.y3.y4

}
+E

{
y2

2.y
2
3

}
+ E

{
y2

2.y
2
4

}
− E

{
2.y2

2.y3.y4

}
− E

{
2.y1.y2.y

2
3

}
−

E
{

2.y1.y2.y
2
4

}
+ E {4.y1.y2.y3.y4} − 2.γ (hp) .2.γ (hq)

(2.12)

under the multivariate Gaussian distribution, any fourth order moment can be com-
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puted by the pairwise covariances (Matheron, 1965):

E {y1.y2.y3.y4} = Cov {y1, y2} .Cov {y3, y4}+ Cov {y1, y3} .Cov {y2, y4}+

Cov {y1, y4} .Cov {y2, y3}
(2.13)

second order moments (variogram model) are used to estimate the fourth order covari-

ance. Table 2.1 shows the covariances between ”Pair p” and ”Pair q” (fourth order

covariance Cov(p, q)) of Figure 2.4 for lag distance hp ≈ hq ≈ 2m and h from 0 to

5m. h is distance between ”Pairs p” and ”Pairs q”. The initial variogram model for

this example is assumed to be an isotropic spherical model with practical range of 5m

and sill 1 (no nugget effect). The highest fourth order covariance is for h=0, which is

the covariance of each pair to itself. The covariance goes to zero for lag h=5m, which

means that there is no linear correlation between these pairs. By replacing fourth order

covariance in global kriging approach, variogram declustering weights can be calculated.

Table 2.1: The covariances between ”Pair p” and ”Pair q” (fourth order covariance)
of Figure 2.4 for h from 0 to 5m.

2.6 Small Example of Variogram Declustering

A small data set is considered to show how declustering weights can be achieved by

solving a fourth order covariance matrix of variogram pairs. Figure 2.5 shows a syn-

thetic data set with nine data locations which leads to six variogram pairs for lag

distance approximately 10m and azimuth 0◦ ± 10◦. Pairs 2 and 3 plus pairs 4, 5 and

6 are clustered. Fourth order covariance matrix for declustering these pairs by OGK
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approach is written as:



F (1− 1) F (1− 2) F (1− 3) F (1− 4) F (1− 5) F (1− 6) 1

F (2− 1) F (2− 2) F (2− 3) F (2− 4) F (2− 5) F (2− 6) 1

F (3− 1) F (3− 2) F (3− 3) F (3− 4) F (3− 5) F (3− 6) 1

F (4− 1) F (4− 2) F (4− 3) F (4− 4) F (4− 5) F (4− 6) 1

F (5− 1) F (5− 2) F (5− 3) F (5− 4) F (5− 5) F (5− 6) 1

F (6− 1) F (6− 2) F (6− 3) F (6− 4) F (6− 5) F (6− 6) 1

1 1 1 1 1 1 0



×



λ1

λ2

λ3

λ4

λ5

λ6

µ



=



F (1−A)

F (2−A)

F (3−A)

F (4−A)

F (5−A)

F (6−A)

1



(2.14)

where left hand side covariance implies fourth order covariance matrix between six

Figure 2.5: Synthetic data set with nine well locations and six variogram pairs for lag
distance approximately 10m and azimuth 0◦ ± 10◦. The numbers signify
data locations and variogram pairs. There are nine data locations and
six pairs.

pairs written in ordinary kriging format. The right hand side covariance is the average

fourth order covariance of each pair to the entire domain. This covariance could be

calculated by discretizing the entire study area for the desired lag distance (see Figure

2.3) and calculate linear averaging of the whole fourth order covariances. λ1 to λ6 are

declustering weights that must sum to 1 by the ordinary kriging approach, and µ is

Lagrange parameter. These parameters are calculated by solving the covariance matrix
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Equation 2.14 with fourth order covariances calculated from a fitted variogram model.

If it is assumed the fitted variogram model is isotropic exponential model with range

of 25m and sill 1 (no nugget effect), the left hand side covariance is calculated as:



3.78 0.016 0.0159 0.285× 10−7 0.899× 10−5 0.297× 10−4 1

0.016 3.71 2.87 0.376× 10−4 0.125× 10−4 0.195× 10−5 1

0.0159 2.87 3.72 0.184× 10−4 0.833× 10−6 0.416× 10−5 1

0.285× 10−7 0.376× 10−4 0.184× 10−4 3.97 3.02 2.39 1

0.899× 10−5 0.125× 10−4 0.833× 10−6 3.02 3.91 3.03 1

0.297× 10−4 0.195× 10−5 0.416× 10−5 2.39 3.03 3.99 1

1 1 1 1 1 1 0



(2.15)

and by calculating right hand side covariance, the declustering weights for each pair

and Lagrange parameter are achieved:



0.0346

0.0343

0.0342

0.0341

0.0365

0.0355

1



⇒ λ1 = 0.299 , λ2 = 0.172 , λ3 = 0.170 , λ4 = 0.154 , λ5 = 0.054 , λ6 = 0.151 , µ = −1.099

(2.16)

The calculated declustering weights appear quite reasonable: pair 1 which is not clus-

tered with other pairs receives the highest weight (λ1 = 0.299) and pair 5 which is

located between pairs 4 and 6 receives the lowest weight (λ5 = 0.054). The weights to

pairs 2 and 3 are a little higher than weights to pairs 4 and 6 due to smaller number of

clustered pairs (two pairs versus three pairs). The weights are positive although there

is no constraint that the weights are no negative for OGK (Equation 2.8).
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2.7 Comparison with the Methodology of Emery and Or-

tiz (2005, 2007)

The idea of ordinary global kriging for declustering variogram pairs by fourth order

covariance is discussed. The difference between this technique and the methodology

applied by Emery and Ortiz (2005, 2007) for variogram declustering is presented in

this Section. Emery and Ortiz (2005, 2007) use ordinary kriging of the local mean

(Goovaerts, 1997) by fourth order covariance for estimating the global mean (vari-

ogram). Kriging of the local mean is used for mapping a smooth picture of the trend

(Goovaerts, 1997) and it does not give correct global estimation of the mean (declus-

tered mean). The difference between ordinary kriging of the local mean and the global

mean is the right hand side covariance, which is zero for estimating the local mean.

The system of linear equations of this approach for obtaining variogram declustering

pairs is written as:

n(h)∑
β=1

λOLKβ,h F (Xβ,h(u)−Xα,h(u)) + µ = 0 , α = 1, ...., n(h) ,

n(h)∑
α=1

λOLKα,h = 1 (2.17)

where λOLKα,h denotes the ordinary local kriging (OLK) weights for variogram decluster-

ing approach by Emery and Ortiz (2005, 2007). In comparison with Equation 2.8, the

right-hand side covariance is zero. It means that the estimation location, which is the

entire domain A, does not appear in the ordinary kriging system (Goovaerts, 1997).

There are some limitations in their work:

1. The approach does not account for the average fourth order covariance between

each pair and the entire domain A. The higher average fourth order covariance

in left hand side for a variogram pair, the higher variogram declustering weight.

2. According to Goovaerts (1997), ordinary kriging of the local mean approach is

aimed at mapping the local mean without considering of the estimation variance.

However, Emery and Ortiz (2005, 2007) derive the estimation variance in terms

of disjunctive kriging to −µ2 , or −(µ+ν)
2 if there is another Lagrange parameter
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ν for additional constraint. Compared with the variance of OGK (Equation

2.9), the calculated variance is independent from the area of interest. This may

lead to overestimation of the variance. For example, the estimation variance for

variogram declustering in Figure 2.5 is 0.267 by OGK, and 0.547 by OLK using

only one constrain µ.

3. There is no comparison between the declustered and the real variograms in their

work. Variogram declustering is not reliable unless it is evaluated by the true

variogram of the exhaustive sampling of the data set. This can be done by

synthetic examples, or realistic examples such as the data ”cluster data” (Deutsch

& Journel, 1998) in which the exhaustive sampling ”true.dat” is available.

4. The sill of the declustered variogram is not defined. After declustering variogram,

another variogram model should be fitted to the declustered variogram with a

known sill. Otherwise, the fitted variogram model might be biased because it

might violate the correct stationary variance of data after declustering. In Section

2.8, the sill of the declustered variogram is defined.

OGK improves the limitations of OLK by Emery and Ortiz (2005, 2007) for variogram

declustering. Synthetic and realistic examples confirm this improvement.

2.8 Sill of the Declustered Variogram

The sill of the declustered variogram may be different than the sill of the experimental

variogram (Figure 2.6) due to the unequal weighting of the variogram pairs. The sill of

the experimental variogram is important for variogram standardization and interpre-

tation.

Figure 2.7 shows a methodology for calculating the sill of the declustered variogram.

There is a data location u in this Figure. This location could be tail or head locations

of variogram pairs for different lag distances. The corresponding variogram pairs of this

location receive the declustering weights w1, ..., wn. Half of each variogram declustering

weight could be assigned to location u (
w1

2
,...,

wn
2

). The final received weight for
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Figure 2.6: A schematic of unknown sill of the declustered sample variogram that is
likely to be less than the variance of data.

location u could be written as the average of all received weights:

W =

∑n
i=1

wi
2

n
(2.18)

where n is number of all variogram pairs and W is final assigned weight to location u

calculated by all variogram declustering weights. This should be done for all locations of

data. So, declustering weight for each data location comes from variogram declustering.

These weights should sum to 1. The resulting variance using these declustering weights

is the approximate sill of the declustered sample variogram:

m =
nd∑
j=1

Wjzj , σ2 =
nd∑
j=1

Wj(zj −m)2 (2.19)

where zj , j = 1, ..., nd are data values and Wj are the weights from Equation 2.18

for each location u of data. σ2 is the variance of data by the variogram declustering

weights. This is the sill of the declustered variogram.

2.9 Numerical Approach

The applicability of the proposed variogram declustering approach is now verified by

considering some numerical examples. Figure 2.8 shows a two-dimensional sampling
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Figure 2.7: Schematic of variogram declustering weights assigned to data location u.

data configuration with 100 irregularly spaced data locations. Data values at these

locations are drawn by LU unconditional simulation (Davis, 1987; Deutsch & Journel,

1998) of a stationary random field having an isotropic exponential variogram model

with range of 25m and sill 1.

Figure 2.8: Synthetic data set with 100 data locations.

To assess the quality of variogram estimators (experimental and declustered sample

variograms), 100 realizations at each data location are constructed. Then, the experi-

mental and declustered sample variogram are calculated for each realization, and the

distribution of each lag is built. The variance of each lag distance of these variograms
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are compared with each other since the means are approximately equal, converging to

the pre-specified variogram model after 100 realizations. The lower variance, the more

precise the variogram estimator.

For comparison, both the experimental and declustered sample variograms are cal-

culated after weighting the data locations by cell declustering technique (Deutsch,

1989; Journel, 1983) and normal score the data using declustering weights. The ex-

perimental variogram is standardized by the variance of data with the declustering

weights. The fitted variogram model for each realization is attained by autofitting

(auto variogram modeling) a variogram model to the experimental variogram. The

declustered variogram should be standardized based on the calculated variance by the

variogram declustering weights for each location. This is for making the experimental

variogram and the declustered variogram consistent (both have sill 1) to verify the

variogram declustering technique. Cell declustering of the data location leads to the

variance lower than 1. This variance is used to standardize the experimental variogram

of normal score data using cell declustering weights. By declustering the experimen-

tal variogram, the variance will be lower again. This variance could be calculated by

Equation 2.19 and used to standardize the declustered variogram to sill 1. Figure 2.9

shows the variance of the experimental and declustered sample variograms for seven lag

distances 1m, 3m, 6m, 9m, 12m, 15m, 18m after LU unconditional simulation of data

locations in Figure 2.8 for 100 realizations. The variance of the declustered variograms

for all lag distances is much lower than the experimental variograms. This difference is

going to increase from short to large lag distances. Hence, variogram declustering leads

to a more accurate variogram. According to this example, the variance of the declus-

tered variogram decreases as the lag distance increases, and it reaches to a maximum

variance of 0.032 at lag distance 6m and then it stays constant until a lag distance 18m

(see Figure 2.9). It can be concluded that in general the declustered variogram is more

reliable.
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Figure 2.9: Variance of the experimental and declustered sample variograms for seven
lag distances 1m, 3m, 6m, 9m, 12m, 15m, 18m achieved by 100 realiza-
tions of LU unconditional simulation for data locations in Figure 2.8.

2.10 Synthetic Examples

Two synthetic two-dimensional data sets are considered to assess the proposed vari-

ogram declustering technique by comparing the experimental and the declustered sam-

ple variograms. The methodology of Emery and Ortiz (2005, 2007) is compared with

OGK. For this assessment, reference normal score data is first simulated and then

some data are sampled from the reference data. The experimental and declustered

variograms of the sampled data are compared with the variogram of the reference data,

which is the true variogram of the sampled data. Both the experimental and declus-

tered variograms are calculated after weighting the well data (sampled data) by cell

declustering technique (Deutsch, 1989; Journel, 1983) and normal score the data using

declustering weights. The variograms are standardized.

Figure 2.10 shows the first example. Figure 2.10-a is the simulated reference data

and Figure 2.10-b is location map of 100 data sampled from the reference data. The ex-

perimental variogram and the declustered variogram of the sample data in Figure 2.10-b

are calculated for azimuth 0◦ ± 10◦. A variogram model is fitted to the experimental

variogram. This fitted variogram model is used for variogram declustering. Figure 2.11

shows the comparison between the experimental and declustered sample variograms
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with the real variogram of the sample data. The real variogram is the variogram of

the reference data in Figure 2.10-a for azimuth 0◦. Figure 2.11 demonstrates that the

declustered variogram by OGK is closer to the real variogram, it eliminates noise and

unrealistic fluctuations in experimental variogram especially after a lag distance 12m.

It shows the trend in the reference data at an azimuth of 0◦. The declustered sample

variogram by Emery and Ortiz (2005, 2007), which is standardized by the variance of

normal score data after cell declustering, is far from the real variogram.

Figure 2.10: a) Reference data. b) Location map of 100 samples taken from the
reference data (a).

Figure 2.12 shows a second example with 150 samples. Similar to the previous exam-

ple, variograms are calculated for azimuth 0◦± 10◦. Figure 2.13 shows the comparison

between the experimental and declustered variograms with the real variogram. Figure

2.13 confirms that the declustered variograms work and it shows that for this example,

OGK and the approach by Emery and Ortiz (2005, 2007) are quite similar although

OGK is slightly closer to the real variogram. The right hand side covariance matrix in

this case are similar or close to zero. Moreover, the sill of the declustered variogram is

approximately equal the variance of the normal score data after cell declustering. This

data set shows that under certain conditions OGK approach may give similar results

as approach of Emery and Ortiz (2005, 2007).

The declustered variogram (both OGK and methodology of Emery and Ortiz (2005,
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Figure 2.11: Comparison between the experimental and declustered sample vari-
ograms of data (normal score) in Figure 2.10-b for azimuth 0◦ ± 10◦

with their real variogram (variogram of the reference data in Figure
2.10-a).

2007)) shows the zonal anisotropy in the reference data for azimuth 0◦; and it is different

from the fitted variogram. Therefore, the declustered variogram does not necessarily

return the fitted variogram just because it is used for the declustering weights.

Figure 2.12: a) Reference data. b) Location map of 150 samples taken from the
reference data (a).

35



Figure 2.13: Comparison between the experimental and declustered variograms of
data (normal score) in Figure 2.12-b for azimuth 0◦±10◦ with their real
variogram (variogram of the reference data in Figure 2.12-a).

2.11 Realistic Examples

2.11.1 The Cluster Data Set

The data ”cluster.dat” taken from the literature (Deutsch & Journel, 1998) is now con-

sidered. The exhaustive sampling of this data set called ”true.dat” is available. Hence,

it can be compared with the experimental and declustered variograms. The experimen-

tal and declustered variograms are calculated and standardized after weighting the data

by the cell declustering technique and normal score transferring the data using declus-

tering weights. For this example, variogram declustering by two-point cell declustering

approach (Richmond, 2002) is also calculated although not recommended by Emery

and Ortiz (2007). Two-point cell declustering (TPCD) weights for each variogram pair

is calculated by averaging cell declustering weights of tail and head locations of that

pair. The sum of declustering weights is 1.

Figure 2.14-a shows location of cluster data with 140 samples. Figure 2.14-b shows

exhaustive sampling of cluster data with 2500 samples. The unit of measurements for

coordinate system is assumed kilometer (km). Figure 2.15 shows the declustered vari-

36



ograms by Emery and Ortiz (2005, 2007), OGK, TPCD and the experimental variogram

versus real variogram for azimuth 0◦ ± 20◦. The fitted variogram model is isotropic

with two spherical structures with variance contributions 0.44 and 0.55, and ranges of

10km and 20km for each structure, and nugget effect 0.01. The result is similar to the

synthetic examples. The declustered sample variogram by OGK is a better estimate

of the true variogram. TPCD approach is close to the experimental variogram. The

declustered sample variogram by Emery and Ortiz (2005, 2007) is lower than the real

variogram due to the fact that it is standardized with the variance of normal score

data, which is higher than the variance of the declustered variogram.

Uncertainty in the estimated variogram (declustered variogram) is very important

and should be incorporated into final modeling. The variance of each lag distance

could be calculated by Equation 2.9 for OGK, and −µ
2 by Emery and Ortiz (2005,

2007) derived the estimation variance in terms of disjunctive kriging. µ is Lagrange

parameter in Equation 2.17. Figure 2.16 shows variogram uncertainties (variances)

of each lag distance for these two approaches. OGK gives a reasonable variogram

uncertainty while the methodology of Emery and Ortiz (2005, 2007) leads to a very

high uncertainty. Incorporating this high uncertainty into geostatistical modeling could

bias the results.

Figure 2.14: a) Location map of cluster data (140 samples). b) Exhaustive sampling
of cluster data with 2500 samples.
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Figure 2.15: The experimental and real variograms (normal score) versus the declus-
tered sample variograms by Emery and Ortiz (2005, 2007), OGK (ordi-
nary global kriging) and TPCD (two-point cell declustering) for azimuth
0◦ ± 20◦.

Figure 2.16: Variogram uncertainty (variance) of each lag distance for cluster data
resulted by Emery and Ortiz (2005, 2007) and OGK (Equation 2.9).

2.11.2 The Jura Data Set

Another realistic example is considered although there is no exhaustive sampling to

compare the declustered variogram with the real variogram. The Jura data set was

collected by Swiss Federal Institute of Technology at Lausanne. There are 359 data

locations for concentration of seven heavy metal in the topsoil (Goovaerts, 1997). Var-

iogram declustering is considered for the variables nickel (Ni), lead (Pb) and zinc (Zn)
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for azimuth 0◦ ± 20◦ and azimuth 90◦ ± 20◦. The experimental and declustered var-

iograms are calculated and standardized after weighting the data by cell declustering

technique and normal score the data using declustering weights. Only OGK approach

is considered for variogram declustering of the Jura data set as it was showed that

this approach is a better estimation of the real variogram in comparison with other

techniques.

Figure 2.17-a shows location map for nickel (Ni) concentration and Figures 2.17-b

and c show the experimental, fitted and declustered variograms for azimuth 0◦ ± 20◦

and azimuth 90◦±20◦, respectively. The declustered variograms especially for azimuth

0◦ (Figures 2.17-b) improves the experimental variogram. The declustered variogram

is fit again and used for geostatistical modeling. Figures 2.18 and 2.19 show location

maps (a) and the declustered variograms for lead (Pb) and zinc (Zn) concentrations

for azimuth 0◦ ± 20◦ (b) and azimuth 90◦ ± 20◦ (c). The new fitted variograms to

the declustered variograms for azimuth 0◦ will have lower ranges than the primary

fitted variograms, and higher ranges for azimuth 90◦ for all metal concentrations. It

demonstrates again that the declustered variogram does not necessarily return the fitted

variogram.

2.12 Remarks

The weighted experimental variogram is a useful tool to improve the determination of

the spatial structure of a data set in the presence of preferential sampling. Ordinary

global kriging (OGK) of the entire domain is proposed for declustering variogram pairs.

Global kriging is applied on the variogram pairs of each lag distance by fourth order

covariance. The value of each pair is assigned as half of the quadratic differences of

tail and head values. Global Kriging estimates the average of all variogram pairs for

the entire domain. This process is repeated for variogram pairs of all lag distances

to decluster the variogram. Although only 2D data sets are considered to assess the

methodology, it can be applied to 3D data with vertical or horizontal wells. The declus-

tered 3D variogram is achieved by declustering the horizontal and vertical variograms.
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Figure 2.17: a) Location map of nickel (Ni) concentration for the Jura data set. b)
The experimental and declustered variograms (normal score) for az-
imuth 0◦±20◦. c) The experimental and declustered variograms (normal
score) for azimuth 90◦ ± 20◦.

The new fitted variogram to the declustered horizontal and vertical variograms (3D

variogram model) is used in geostatistical modeling.

The following Steps are required for the proposed framework of variogram declus-

tering by global kriging: 1) Univariate declustering of the data (cell declustering is

recommended) and transform to normal score using declustering weights. 2) Check

multiGaussianity (Von Eye & Bogat, 2004). Gaussianity of the univariate distribu-

tion is not enough. Fourth order moments are calculated based on multigausianity
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Figure 2.18: a) Location map of lead (Pb) concentration for the Jura data set. b) The
experimental and declustered variograms (normal score) for azimuth
0◦±20◦. c) The experimental and declustered variograms (normal score)
for azimuth 90◦ ± 20◦.

assumption although this is not a strong assumption. There are some tests to check

biGaussianity (Deutsch & Deutsch, 2009). 3) Calculate the experimental variogram

for the desired direction and fit a preliminary variogram model to that direction. It

is recommended to have a directional fitted model for variogram declustering of each

direction. The variogram declustering weights to each pair are influenced by the var-

iogram ranges as well as the configuration of pairs. Using a fitted variogram seems

circular for variogram estimation. However, the synthetic and realistic examples show
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Figure 2.19: a) Location map of zinc (Zn) concentration for the Jura data set. b) The
experimental and declustered variograms (normal score) for azimuth
0◦±20◦. c) The experimental and declustered variograms (normal score)
for azimuth 90◦ ± 20◦.

that the declustered variogram is not necessarily close to that fitted variogram; the

fitted variogram is only used for the weighting and is not used directly as a target for

declustering.

The fourth order covariance matrix between variogram pairs is positive definite.

However, as far as programming is concerned, this covariance may be close to a singular

matrix in presence of exhaustive variogram pairs (more than 5000 pairs). This happens

because of numerical precision. One solution is to use Higham’s algorithm (Higham,
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1988) to compute a nearest symmetric positive semidefinite matrix. Another simple

solution is to add a very small value to the diagonal elements before solving the ordinary

kriging. This small value will stabilize the results with no significant affect on the

declustering weights.

The global kriging is CPU intensive with very large sets of data because of matrix

inversion (Neufeld & Wilde, 2005). This problem is worse for variogram declustering

because of using the fourth order covariance and solving the covariance matrix for each

lag distance. This method is currently applicable with less than a few thousand vari-

ogram pairs. It would not be advisable to consider variogram declustering in presence

of more than 10000 variogram pairs for each lag distance. Furthermore, the CPU time

goes up with increasing the number of lag distances and discretization of the area to

variogram pairs for calculating the average fourth order covariance (see Figure 2.3).

In general, less than 10 lag distances and 1000 discretization points are reasonable for

variogram declustering.
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Chapter 3

Estimation of Variogram
Uncertainty and Transfer to
Geostatistical Modeling

Variogram modeling fits an analytical model to the experimental variogram computed

from the data to filter noise in the experimental points and provide a model for all

possible distances and directions (Chiles & Delfiner, 1999; Cressie, 1985; Genton, 1998;

Gringarten & Deutsch, 2001; Pardo-Igúzquiza & Dowd, 2001). This analytical model

is used for kriging or simulation. Although variogram declustering can remove some

noise and artifacts in the experimental variogram (Chapter 2), there is unavoidable

uncertainty associated with the experimental variogram. This variogram uncertainty

will be calculated and incorporated into geostatistical models.

Although there are many references on calculating and using the variogram, few

authors have considered variogram uncertainty. Bogaert and Russo (1999); Webster

and Oliver (1992) measure the variogram uncertainty by sampling schemes. Cressie

(1985); Marchant and Lark (2004); Ortiz and Deutsch (2002); Pardo-Igúzquiza and

Dowd (2001) have suggested calculating variogram uncertainty by the covariance matrix

of the experimental variogram resolved by quadratic covariances (Matheron, 1965).

This Chapter presents a new approach of quantifying variogram uncertainty. The

Chapter begins by discussing two variogram uncertainty approaches and their lim-

itations. A new approach of quantifying variogram uncertainty is proposed, and a

methodology to transfer this uncertainty through geostatistical modeling is developed.
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Synthetic and realistic examples are presented.

3.1 Variogram Uncertainty Approaches and Limitations

3.1.1 Fourth Order Moments (FOM)

Marchant and Lark (2004); Ortiz and Deutsch (2002) have derived the variance of

each lag distance for a multivariate Gaussian field in terms of fourth order moments.

Figure 3.1 shows the fourth order covariance between two variogram pairs. Fourth

order covariance between two variogram pairs ”Pair p” and ”Pair q” with lag distances

hp and hq in Figure 3.1 is written as:

F (p− q) = Cov
{

(y1 − y2)2, (y3 − y4)2
}

(3.1)

Figure 3.1: Fourth order covariance F(p-q) between two variogram pairs ”Pair p” and
”Pair q” with lag distances hp and hq.

under the multivariate Gaussian distribution, any fourth order moment can be com-

puted by the pairwise covariances (Matheron, 1965). The fourth order covariance was

discussed in Chapter 2, Section 2.5. The average fourth order covariance between var-

iogram pairs of each lag distance is proportional to variogram uncertainty (variance).

This is the diagonal elements of the average fourth order covariance matrix between

lag distances (see Equation 3.3). A formula for the average fourth order covariance
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between the pairs of the experimental variogram is written as:

F =
1

n(hp).n(hq)

n(hp)∑
i=1

n(hq)∑
j=1

F (i− j) , i = 1, ..., n(hp) , j = 1, ..., n(hq) (3.2)

where n(hp) and n(hq) are number of variogram pairs for lag distances hp and hq.

F (i − j) , i = 1, ..., n(hp) , j = 1, ..., n(hq) are the fourth order covariances. The

average fourth order covariance matrix between lag distances is written as:

[
F
]

=


F1,1 .. F1,n

:
. . . :

Fn,1 .. Fn,n

 (3.3)

where n is number of lag distances. Fi,j , i, j = 1, ..., n are the average fourth order

covariance. For example, F1,2 is the average fourth order covariance between variogram

pairs of lag distance 1 and lag distance 2. The diagonal elements of this covariance

matrix F1,1 , ... , Fn,n are the average fourth order covariances between variogram pairs

to themselves. Since the experimental variogram (semivariogram) is calculated as half

the average squared difference between points, the variance of each lag distance is

calculated by:

V ar {2γ̂(h)} = Fi,i → V ar {γ̂(h)} =
Fi,i
4

, i = 1, ...., n (3.4)

where V ar {γ̂(h)} is the variance of each lag distance. The mean of each lag distance

is the fitted variogram model γ(h). The calculated variogram uncertainty by this

approach is very high (for more details and examples see Ortiz and Deutsch (2002)).

The high variogram uncertainty is because of no conditioning and not considering

the degrees of freedom of variogram pairs for calculating variogram uncertainty. The

proposed methodology developed below calculates the degrees of freedom of variogram

pairs for quantifying variogram uncertainty.
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3.1.2 Global Kriging of Variogram Pairs

The ordinary global kriging (OGK) was discussed in Chapter 2 to decluster the exper-

imental variogram and calculate variogram uncertainty (variance). Variogram uncer-

tainty by simple global kriging (SGK) can also be calculated (Rezvandehy & Deutsch,

2016). Compared to OGK (see Equation 2.3), SGK requires a stationary mean and it

does not enforce sum of the weights to 1. The simple global kriging (SGK) estimator

of z for the entire domain A is written:

Z∗SGK −m =
n∑

α=1

λSGKα [Z(uα)−m] (3.5)

m is a stationary mean in the kriging system and n is number of data. λSGKα is the

weight of global mean and variance assigned to each datum z(uα). The weight is

obtained by solving the following system of linear equations:

n∑
β=1

λSGKβ C(uβ − uα) = C(uα −A) , α = 1....n (3.6)

where C(uβ − uα) is the covariance between locations uβ and uα, and C(uα −A) is

the average covariance between each data location uα and the whole area A. The

estimation variance of SGK is written as:

V ar {Z∗SGK} = C(A−A)−
n∑

α=1

λSGKα (A)C(uα −A) (3.7)

where C(A−A) is the average covariance of the entire area to itself (Goovaerts, 1997).

SGK of variogram pairs for lag distance h is computed by:

X∗h − γ(h) =

n(h)∑
α=1

λSGKα,h [Xα,h(u)− γ(h)] (3.8)

where n(h) is number of variogram pairs for lag distance h, and γ(h) is the fitted

variogram model assumed as the stationary mean (see Equation 3.5) of lag distance h.

λSGKα,h is the weight for pair α and lag distance h, and Xα,h(u) is half of the quadratic
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differences of the pair values (see Equation 2.6). The system of linear equations of SGK

for obtaining λSGKα,h can be written as:

n(h)∑
β=1

λSGKβ,h F (Xβ,h(u)−Xα,h(u)) = F (Xα,h(u)−A) , α = 1....n(h) (3.9)

where F (Xβ,h(u) − Xα,h(u)) signifies fourth order covariance between pairs Xα,h(u)

and Xβ,h(u) (left hand side), and F (Xα,h(u)−A) implies the average fourth order

covariance between each pair Xα,h(u) and the entire domain A (right hand side) (see

Figure 2.3). Variogram uncertainty of each lag distance h is written as:

V ar {2X∗h} = F (A−A)−
n(h)∑
α=1

λSGKα,h F (Xα,h(u)−A) = V ar {2γ̂(h)}

→ V ar {γ̂(h)} =
1

4
× (V ar {2X∗h})

(3.10)

where F (A−A) is the average fourth order covariance of the entire domain A to itself.

The variogram distribution of each lag distance has a mean of X∗h and variance of

V ar {γ̂(h)} (see Equation 3.10). The simple kriging estimator is unbiased (Goovaerts,

1997):

E {X∗h(u)−Xh(u)} = X∗h − γ(h) = 0 → X∗h = γ(h) (3.11)

where X∗h(u) is the estimated variogram pair for each location u and Xh(u) is the

unknown value for lag distance h. The expected value of the estimated variogram

pair X∗h is calculated by global kriging (see Equation 3.8). The expected value of the

unknown value is the fitted variogram model γ(h) for each lag distance h. The fitted

variogram model γ(h) is assumed as the mean of the variogram distribution for each

lag distance instead of X∗h.

3.1.2.1 Small Example of Variogram Uncertainty by Global Kriging

A small 2D data set is considered to calculate variogram uncertainty by global kriging

approach (OGK and SGK). Figure 3.2 shows a synthetic data set with twelve data

locations which leads to seven variogram pairs for lag distance approximately 10m and
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Figure 3.2: Synthetic data set with twelve well locations and seven variogram pairs
for lag distance approximately 10m and azimuth 0◦ ± 10◦.

azimuth 0◦ ± 10◦. The fourth order covariance matrix of these pairs for calculating

SGK weights can be written as:



F (1− 1) F (1− 2) F (1− 3) F (1− 4) F (1− 5) F (1− 6) F (1− 7)

F (2− 1) F (2− 2) F (2− 3) F (2− 4) F (2− 5) F (2− 6) F (2− 7)

F (3− 1) F (3− 2) F (3− 3) F (3− 4) F (3− 5) F (3− 6) F (3− 7)

F (4− 1) F (4− 2) F (4− 3) F (4− 4) F (4− 5) F (4− 6) F (4− 7)

F (5− 1) F (5− 2) F (5− 3) F (5− 4) F (5− 5) F (5− 6) F (5− 7)

F (6− 1) F (6− 2) F (6− 3) F (6− 4) F (6− 5) F (6− 6) F (6− 7)

F (7− 1) F (7− 2) F (7− 3) F (7− 4) F (7− 5) F (7− 6) F (7− 7)



×



λ1

λ2

λ3

λ4

λ5

λ6

λ7



=



F (1−A)

F (2−A)

F (3−A)

F (4−A)

F (5−A)

F (6−A)

F (7−A)



(3.12)

where the left hand side covariance implies the fourth order covariance matrix between

seven pairs written in simple kriging format. The right hand side covariance is the

average fourth order covariance of each pair to the entire domain. This covariance

could be calculated by discretizing the entire study area for the desired lag distance

and calculating the fourth order covariances by a discretized approximation (see Figure

2.3). λ1 to λ7 are the weights by SGK approach. These are calculated by solving

Equation 3.12. The fitted variogram model is assumed an isotropic exponential model
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with range of 25m and sill 1, the left hand side covariance is calculated as:



3.93 0.137× 10−5 0.224× 10−4 0.367× 10−4 0.383× 10−5 0.00163 0.0022

0.137× 10−5 3.93 0.00792 0.0631 0.000513 0.598× 10−4 0.329× 10−4

0.224× 10−4 0.00792 3.93 2.44 0.000917 0.198× 10−4 0.279× 10−5

0.367× 10−4 0.0631 2.44 3.99 0.687× 10−5 0.778× 10−4 0.189× 10−4

0.383× 10−5 0.000513 0.000917 0.687× 10−5 3.91 0.00375 0.000601

0.0163 0.598× 10−4 0.198× 10−4 0.778× 10−4 0.00375 3.95 2.43

0.022 0.329× 10−4 0.279× 10−5 0.189× 10−4 0.000601 2.43 3.95



(3.13)

and by calculating right hand side covariance, SGK weights for variogram pairs are

achieved:



0.00250

0.00285

0.00298

0.00300

0.00316

0.00288

0.00283



⇒ λ1 = 0.006 , λ2 = 0.007 , λ3 = 0.005 , λ4 = 0.005 , λ5 = 0.008 , λ6 = 0.005 , λ7 = 0.004

(3.14)

the difference between the weights is quite small and do not sum to 1. Therefore, SGK

is not a viable technique for variogram declustering. Variogram uncertainty by SGK is

calculated as:

V ar {γ̂(h)} =
1

4
× V ar {2X∗h} =

1

4
× (F (A−A)−

∑7
α=1 λ

SGK
α,h (A)F (Xα,h(u)−A)) = 2.6× 10−3

(3.15)

where F (A−A) = 1.1568 × 10−2, which is the average fourth order covariance of the

entire domain A to itself. If OGK is applied on the data set of Figure 3.2, the weights

and Lagrange parameter are achieved as:

λ1 = 0.182 , λ2 = 0.183 , λ3 = 0.115 , λ4 = 0.111 , λ5 = 0.185 , λ6 = 0.113 , λ7 = 0.113 , µ = −0.69

(3.16)

the calculated weights are reasonable in terms of declustering: pair 5 which is not
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clustered with other pairs receives the highest weight (λ5 = 0.185) followed by pairs 2

(λ2 = 0.183) and 1 (λ1 = 0.182). According to these weights, variogram uncertainty

by OGK is calculated as:

V ar {γ̂(h)} = 1.37× 10−2 (3.17)

the variance of OGK is much higher than SGK (more than five times) due to not

assuming a known mean value. The big difference between the calculated variogram

uncertainty by OGK and SGK signifies that the global kriging approach is not robust.

Global kriging is dependent to the size of domain. The higher domain, the lower

variogram uncertainty. This arises a challenge for choosing the correct size of the

domain. Another challenge faced by global kriging is the CPU time for calculating

the average fourth order covariance for the entire domain (right hand side covariance

matrix). A new robust approach of quantifying variogram uncertainty independent of

the domain size is proposed in this Chapter.

3.2 Shape of the Variogram Distribution

The shape of the distribution of the variogram value for a particular lag vector is impor-

tant for sampling and transferring uncertainty to downstream calculations (see Section

3.4, Figure 3.6). Ortiz and Deutsch (2002) assume the shape to be approximately

Gaussian. Koushavand, Ortiz, and Deutsch (2008) assume a Gamma distribution.

Khan and Deutsch (2016) and Marchant and Lark (2004) consider a Chi-square dis-

tribution. A numerical approach is implemented in this Section to define the shape

of the variogram distribution. Three distributions are considered: Gaussian, Gamma

and Chi-square distributions are fitted to the direct observation of variogram distri-

bution (target distribution). All distributions have the same mean and variance. The

Gaussian distribution is defined by the mean and variance.

The following notation for the Gamma distribution is from the NIST (National

Institute of Standards and Technology) Engineering and Statistics Handbook available
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on the web (see reference list (NIST, n.d.)):

f(x) =
(x−µβ )γ−1.exp(−x−µ

β )

βΓ(γ)
x ≥ µ; γ, β > 0 where Γ(γ) =

∫ ∞
0

tα−1e−t (3.18)

where β is the scale parameter, µ is the location parameter, γ is the shape parameter

and Γ is the Gamma function. The Gamma distribution is defined by these three

parameters (β, γ, µ). The Gamma distribution is closely related to the Chi-square

and Wishart distributions (Johnson, Kotz, & Balakrishnan, 1994; Johnson & Wichern,

2002).

According to Khan and Deutsch (2016), the Chi-square distribution of each lag

distance (f(γ̂(h))) is proportional to:

f(γ̂(h)) ∼ χ2
DoF ×

γ(h)

DoF
(3.19)

where χ2
DoF is the Chi-square distribution with a degree of freedom (DoF) and γ(h)

represents the base case or reference variogram model fitted to the experimental vari-

ogram. The only unknown parameter is DoF.

A simulation approach is considered to directly observe the variogram distribution

(target distribution). Twenty variogram pairs with lag distance 4m are taken from an

area assumed to be 18m by 18m (see Figure 3.3). 10000 unconditional realizations

are generated by sequential Gaussian simulation (SGS) (Deutsch & Journel, 1998) of

a stationary random field having an isotropic exponential variogram model with range

of 12m and sill 1. The experimental variogram of each realization is computed to

build the direct observation of variogram distribution for lag distance 4m. The best

Gaussian, Gamma and Chi-square distributions are fit. All distributions should have

approximately the same mean and the same variance as experimentally observed. The

Gamma distribution is fit iteratively (20000 iterations) with different β, γ, µ to find

the closest fit to the target distribution. The Chi-square distribution is calculated by

Equation 3.19 with γ(h) = 0.63, which is the fitted variogram model for lag distance

4m, and for different degrees of freedom (from 1 to 100) to find the distribution that
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has the lowest difference with the direct variogram distribution.

Figures 3.4-a, b and c show the best fit Gaussian, Gamma and Chi-square distri-

butions. The Gamma distribution is defined by β = 0.116, γ = 3.528, µ = 0.217. The

Chi-square distribution is defined by a DoF=17. The red curve is the fitted distribu-

tion. The error (mismatch) between the direct variogram distribution and the fitted

distribution is shown, which is calculated by the sum of squared differences between the

fitted and direct variogram distributions. The error is high (1.285) for the Gaussian dis-

tribution. In general, the square of a Gaussian statistic is not Gaussian. The Gamma

and Chi-square distribution are similar. However, the error of the Chi-square distribu-

tion (0.011) is lower than the Gamma distribution (0.263). Moreover, the Chi-square

distribution is simpler to build because of only one parameter (see Equation 3.19)

whereas the Gamma distribution requires three parameters β, γ, µ. Thus, the shape of

the variogram distribution is assumed to be a Chi-square distribution achieved by only

DoF of each lag. Variogram uncertainty (variance) of each lag distance only requires

the DoF to construct the Chi-square distribution for calculating variogram realizations

(see Figure 3.6).

Figure 3.3: 2D synthetic data set with twenty variogram pairs for lag distance 4m.

53



Figure 3.4: Gaussian (a), Gamma (b) and Chi-square (c) distributions fitted to the
direct variogram distribution. The Chi-square distribution is calculated
by DoF= 17, and the Gamma distribution is calculated by β = 0.116,
γ = 3.528, µ = 0.217.

3.3 Variogram Uncertainty by Direct Calculation of De-

grees of Freedom (DoF)

Since the shape of the variogram distribution for each lag distance is reasonably a Chi-

square distribution, the new approach of quantifying variogram uncertainty is proposed

by the theoretical calculation of degree of freedom (DoF) for variogram pairs. This is

called the DoF approach for quantifying variogram uncertainty. The mean of a Chi-

square distribution for variogram distribution of each lag distance is γ(h):

E {f(γ̂(h))} ∼ E
{
χ2
DoF ×

γ(h)

DoF

}
= γ(h) (3.20)
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because the mean of χ2
DoF is DoF. γ(h) is second order moments (variogram) from

fitting a variogram model to a sample variogram computed from the data (Chiles &

Delfiner, 1999; Cressie, 1985; Pardo-Igúzquiza & Dowd, 2001). The variance of the

Chi-square distribution of each lag distance (V ar {f(γ̂(h))}) is written as:

V ar {f(γ̂(h))} ∼ V ar
{
χ2
DoF ×

γ(h)

DoF

}
= (

γ(h)

DoF
)2×V ar

{
χ2
DoF

}
=

2× γ(h)2

DoF
(3.21)

because V ar
{
χ2
DoF

}
is 2 × DoF . The only unknown parameter for calculating vari-

ogram uncertainty (variance) is DoF, which is the effective or independent number of

variogram pairs. A theoretical derivation for calculating DoF is given in Bretherton,

Widmann, Dymnikov, Wallace, and Bladé (1999) achieved by covariance matrix of data

locations:

DoF =
(
∑n

i=1Cii)
2∑n

i=1

∑n
j=1C

2
ij

(3.22)

where Cii and Cij are diagonal elements and off-diagonal elements of a covariance

matrix between data locations (n), respectively. The diagonal elements of a covariance

matrix are the covariance of each data location to itself that are the variance of data.

Equation 3.22 gives theoretical DoF for data locations. Since there are pairs instead of

locations for the experimental variogram, fourth order covariances are used in Equation

3.22 to calculate DoF of each lag distance:

DoF =
(
∑n(h)

i=1 F (i− i))2∑n(h)
i=1

∑n(h)
j=1 F (i− j)2

(3.23)

where n(h) is number of variogram pairs for lag distance h and F (i− i) is the fourth

order covariance of pair i to itself, and F (i− j) is the fourth order covariance between

pairs i and j. By calculating DoF of each lag distance, the variogram distribution and

variogram uncertainty is achieved.

A synthetic 2D data set is considered to calculate variogram uncertainty for a lag

distance by DoF approach. Figure 3.5 shows a 2D data set with twenty eight data

locations which leads to twenty one variogram pairs for a lag distance approximately

10m and azimuth 0◦±15◦. DoF (Equation 3.23) and variogram uncertainty (variance)
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(Equation 3.21) of each lag distance are calculated for four variogram models with

Figure 3.5: 2D synthetic data set with forty two data locations and twenty one vari-
ogram pairs for lag distance approximately 10m and azimuth 0◦ ± 15◦.

ranges of 20m to 50m to analysis the effect of variogram range on variogram uncer-

tainty. The variogram model is an isotropic spherical model with sill 1 (no nugget

effect). Table 3.1 shows the results. As the range of the variogram model increases,

the effective number of pairs (DoF) decreases. This leads to a higher variogram uncer-

tainty for a high range variogram, and a lower variogram uncertainty for a low range

variogram (see Equation 3.21). This is similar to the spatial bootstrap (SB) technique

for quantifying histogram uncertainty. The spatial bootstrap gives high and low his-

togram uncertainties (uncertainty in the mean and variance) for high and low variogram

ranges, respectively; however, Equation 3.21 shows that small number of DoF for high

variogram range and large number of DoF for low variogram range are relatively com-

pensated by lower and higher γ(h). γ(h) is the mean of the Chi-square distribution

for each lag distance: higher variogram range leads to lower mean of the Chi-square

distribution, the lower the mean of a distribution, the lower the variance and vice versa.

This is the reason the calculated DoFs change from 22 (range 20m) to 3 (range 50m)

which is a noticeable difference while the calculated variogram uncertainties change

from 0.04297 (range 20m) to 0.05841 (range 50m).

DoF approach of quantifying variogram uncertainty is more efficient than FOM
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Table 3.1: Variogram uncertainties (variances) for variogram pairs of Figure 3.5
achieved by variogram models with ranges of 20m to 50m.

Variogram Ranges (m) 20 30 40 50

γ(h) 0.68750 0.48148 0.36719 0.29600

DoF 22 10 5 3

V ar {f(γ̂(h))} ∼ 2×γ(h)2

DoF 0.04297 0.04636 0.05393 0.05841

approach (Section 3.1.1) (Marchant & Lark, 2004; Ortiz & Deutsch, 2002) and it ac-

counts for the degree of freedom of variogram pairs to directly build the Chi-square

distribution. Compared with global kriging technique (Section 3.1.2), DoF approach is

independent of the domain size and has less CPU time. Although the calculated var-

iogram uncertainty by DoF approach is reasonable, it is not conditioned to well data.

Thus, it leads to high variogram uncertainty and can be assumed as the prior uncer-

tainty in the variogram (similar to spatial bootstrap as the prior uncertainty in the

histogram (Chapter 6)). The high variogram uncertainty is decreased in geostatistical

modeling because of conditioning (see next Section).

3.4 Variogram Uncertainty in Geostatistcial Modeling

The DoF approach of quantifying variogram uncertainty calculates the degrees of free-

dom of each lag distance to build the Chi-square distribution. After building the

Chi-square distribution of each lag, variogram realizations should be drawn from the

uncertainty interval of the variogram lags (Figure 3.6) and used in geostatistical sim-

ulation to incorporate variogram uncertainty in the final model. These realizations

should preserve the correlation between lags. Otherwise, the variogram realizations

will be noisy and unrealistic. LU simulation (Deutsch & Journel, 1998) can be applied

with the correlation matrix of lag distances. The correlated Gaussian realizations are

back-transformed to the marginal Chi-square distribution of each lag distance. This

approach was partially discussed by Koushavand et al. (2008).
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Figure 3.6: Schematic of six variogram realizations drawn from the variogram distri-
bution of lag distances: the blue curve is the Chi-square distribution for
each lag distance, the red dot is the mean of the each Chi-square distri-
bution (the fitted variogram model) and the gray lines are the correlated
variogram realizations.

3.4.1 LU Simulation and Back-transformation

Realizations of LU simulation (Deutsch & Journel, 1998) preserve the correlation be-

tween variables. In the present context, LU simulation can be applied with the correla-

tion matrix of the variogram lag distances. LU realizations have a multivariate Gaussian

distribution and can be back-transformed to the marginal Chi-square distribution for

each lag distance approximately preserving the final correlation values. Figure 3.7-a

shows the correlation matrix ρ between lags. The diagonal elements of this correlation

matrix is 1, which is the correlation of each lag to itself. Figure 3.7-b shows LU sim-

ulation of the correlation matrix. Cholesky decomposition of the correlation matrix L

is multiplied by an uncorrelated standard normal deviate w = [w1.....wn] (mean=0,

standard deviation=1) to achieve the correlated Gaussian realization y = [y1.....yn].

Where n is the number of lags. The Gaussian distribution of each lag distance is com-

puted by generating many LU realizations (say 100 realizations). Then, the values

from the Gaussian distribution are back-transformed to the Chi-square distribution of
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each lag distance by quantile-quantile transformation (see Figure 3.8). The procedure

is summarized by:

1. Define a stationary covariance function C(h) that comes from the fitted variogram

model to the experimental variogram (γ(h)) (after variogram declustering in case

of preferential sampling).

2. Define the Chi-square reference distribution of each lag distance Fl,DoF (z), l =

1, ..., n. Where n is the number of lag distance.

3. Construct the spatial lag-to-lag correlation matrix ρ.

4. Compute the Cholesky decomposition of the correlation matrix as ρ = LLT .

5. Simulate a vector of uncorrelated standard normal deviate w.

6. Generate a vector of correlated Gaussian realization y = Lw.

7. Lookup through the standard Gaussian CDF value of each lag distance p = G(y).

Where G is the standard normal distribution.

8. Lookup the Chi-square distribution of each lag distance z = F−1
l,DoF (p). Where z

is the Chi-square correlated realization.

Steps 5 to 6 are repeated for multiple realizations (see Figure 3.7-b). Then, Steps 7 to

8 calculate the correlated variogram realizations in Chi-square distribution (see Figure

3.8). This approach ensures the variogram realizations respect the correlation between

lag distances.

3.4.2 Correlation Matrix of Lag Distances

The correlation matrix between lag distances ρ is required to simulate the correlated

variogram realizations by LU simulation. This correlation matrix could be achieved by

calculating the average fourth order covariance matrix of variogram pairs (see Equation

59



Figure 3.7: a) Correlation matrix ρ between lags. The diagonal elements of this
covariance matrix is 1. b) LU simulation with the correlation matrix.
Cholesky decomposition of the correlation matrix is multiplied by an
uncorrelated standard normal deviate to achieve the correlated Gaussian
realizations.

Figure 3.8: A schematic illustration of quantile-quantile transformation of each Gaus-
sian realization (Real) to the Chi-square realization. The Gaussian distri-
bution of each lag distance (G(y)) is back-transformed to the Chi-square
distribution (Fl,DoF (z)) to calculate the correlated variogram realizations.

3.3) and converted to the Pearson correlation matrix:

ρ =


F1,1√

F1,1×
√
F1,1

..
F1,n√

F1,1×
√
Fn,n

:
. . . :

Fn,1√
Fn,n×

√
F1,1

..
Fn,n√

Fn,n×
√
Fn,n

 (3.24)

where Fi,j , i, j = 1, ..., n are the average fourth order covariances between lag dis-

tances (n is number of lag distance). Equation 3.24 is the correlation matrix for

isotropic or omnidirectional variogram where only one experimental variogram is cal-
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culated. In case of an anisotropic variogram, multiple directions are considered: the

major direction of continuity and the minor direction of continuity. In this case, var-

iogram realizations should respect the cross correlation between lag distances in one

direction and the other direction. A correlation matrix between lag distances of two

directions should be calculated. This correlation matrix can be constructed by the av-

erage fourth order covariance between variogram pairs of two different directions and

converted to a correlation matrix:

ρ =



F1,1√
F1,1×

√
F1,1

..
F1,n√

F1,1×
√
Fn,n

CF1,1√
CF1,1×

√
CF1,1

..
CF1,m√

CF1,1×
√
CFm,m

:
. . . : :

. . .

Fn,1√
Fn,n×

√
F1,1

..
Fn,n√

Fn,n×
√
Fn,n

CFn,1√
CFn,n×

√
CF1,1

..
CFn,m√

CFn,n×
√
CFm,m

CF1,1√
CF1,1×

√
CF1,1

..
CF1,m√

CF1,1×
√
CFm,m

F1,1√
F1,1×

√
F1,1

..
F1,m√

F1,1×
√
Fm,m

:
. . . : :

. . . :

CFm,1√
CFm,m×

√
CF1,1

..
CFm,n√

CFm,m×
√
CFn,n

Fm,1√
Fm,m×

√
F1,1

..
Fm,m√

Fm,m×
√
Fm,m


(3.25)

where F is the average fourth order covariance for variogram pairs of the same direction,

and CF is the average fourth order covariance for variogram pairs of cross directions. n

is number of lags for direction 1 and m is number of lags for direction 2. For example,

F1,3 signifies the average fourth order covariance between lag 1 and lag 3 of either

direction 1 or direction 2. CF1,3 denotes the average fourth order covariance between

lag 1 of direction 1 and lag 3 of direction 2. LU simulation should be applied with

this correlation matrix to produce the correlated variogram realizations that not only

preserve the correlation for the lags of the same direction but also the correlation for

the lags of different directions.

3.4.3 Variogram Realizations for Omnidirectional Variogram

A synthetic example is considered to illustrate the calculation of variogram realizations

for an ominidirectional (azimuth 0◦±90◦) variogram. Variogram realizations in case of

an anisotropic variogram is discussed in Section 3.4.4. Figure 3.9-a shows a synthetic

2D example with the area of 50m× 50m and eighty data locations. Figure 3.9-b shows

omnidirectional (azimuth 0◦ ± 90◦) experimental variogram and the fitted variogram
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Figure 3.9: a) Synthetic example with 80 data locations. b) The experimental and
fitted variogram model for azimuth 0◦ ± 90◦.

model with a spherical model with range of 19.5m and sill 1 (no nugget effect). The

DoF approach is applied to calculate variogram uncertainty. Figure 3.10 shows the

correlation matrix of lags by Equation 3.24. The diagonal elements of this correlation

matrix is 1 which is the correlation of each lag to itself. Figure 3.11 shows 100 correlated

experimental variogram realizations after LU simulation and back transformation to the

marginal Chi-square distribution of each lag. Figure 3.12 shows the correlation matrix

between the sampled variogram realizations for six lag distances. The diagonal elements

of this matrix shows the marginal Chi-square distribution of each lag. This matrix

clearly demonstrates that the variogram realizations honor the correlation between

lags (see Figures 3.10).

Variogram models should be fit to the experimental variogram realizations. These

variogram models can be achieved by auto variogram modeling software (Larrondo et

al., 2003). The fitted variogram models are constrained to have the same variogram

structure number, type, and nugget effect as the base case variogram model (fitted

variogram). Figure 3.13-a shows the fitted variogram realizations to the experimen-

tal realizations. Figure 3.13-b shows 100 standardized fitted variogram realizations.

These realizations are used in geostatistical modeling to incorporate variogram uncer-

tainty: one standardized variogram realization (Figure 3.13-b) is used to simulate one

realization of SGS. This process is repeated to simulate 100 realizations.
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Lag…1 Lag…2 Lag…3 Lag…4 Lag…5 Lag…6

La
g…

1
La

g…
2

La
g…

3
La

g…
4

La
g…

5
La

g…
6

1.00 0.49 0.34 0.21 0.15 0.14

0.49 1.00 0.84 0.49 0.31 0.31

0.34 0.84 1.00 0.63 0.40 0.40

0.21 0.49 0.63 1.00 0.74 0.67

0.15 0.31 0.40 0.74 1.00 0.82

0.14 0.31 0.40 0.67 0.82 1.00

Figure 3.10: Correlation matrix between six lag distances of the experimental vari-
ogram of Figure 3.9 by Equation 3.24.

Figure 3.11: 100 correlated experimental variogram realizations.

The sill of the variogram realizations signifies uncertainty in the variance of the

data. The uncertainty in the variance of data is accounted for in geostatistical mod-

eling workflow by parameter uncertainty approaches such as spatial bootstrap (Khan

& Deutsch, 2016). Figure 3.14 shows the cross plot between the ranked variance un-

certainty by the spatial bootstrap and the ranked sills of the variogram realizations.

There is a very high correlation which signifies that the sill of the variogram realiza-

tions are associated to the sampled variances. Incorporating variance uncertainty in

geostatistical modeling by both spatial bootstrap and variogram uncertainty leads to
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Figure 3.12: Correlation matrix between variogram realizations of six lag distances
after LU simulation and back transformation to the marginal Chi-square
distribution of each lag distance. The number on each cell signifies the
correlation coefficient between lag distances. The diagonal elements are
the marginal Chi-square distribution of each lag distance.

Figure 3.13: a) 100 fitted variogram realizations to the experimental realizations. b)
Standardized to sill 1.

bias in the final model. Moreover, most geostatistical simulation techniques such as

SGS needs standard normal data with variance 1, which needs the sill of the variogram

model to be 1. Thus, all variogram realizations should be standardized to sill 1: all

variance contributions of each variogram realization are divided by the total sill of that

realization after variogram modeling.
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Figure 3.14: Cross plot between the ranked variance uncertainty by the spatial boot-
strap and the ranked sills of the variogram realizations.

Figure 3.15 shows posterior variogram uncertainty: variogram of SGS realization for

nx=50, ny=50 of data in Figure 3.9-a after incorporating variogram uncertainty. Pos-

terior variogram uncertainty is lower than the prior variograms uncertainty calculated

by the DoF approach (Figure 3.11 and 3.13). The conditioning of data in geostatistical

modeling decreases high prior variogram uncertainty and makes the results conditioned

and more realistic.

Figure 3.15: Posterior variogram uncertainty (variogram of SGS realization) after
incorporating variogram uncertainty.

65



3.4.4 Variogram Realizations for Anisotropic Variogram

Another 2D synthetic example is considered to generate variogram realizations in pres-

ence of anisotropy. In case of an anisotropic variogram, the major direction of continu-

ity and the minor direction of continuity are considered: variogram realizations should

respect the cross correlation between lag distances in the minor and the minor direc-

tions. Figure 3.16 shows an anisotropic data set; there is more continuity for azimuth

0◦ than azimuth 90◦. The experimental variograms are calculated for these directions.

Figure 3.16: a) 2D synthetic example with 80 data locations. b) The experimental
variogram and fitted variogram models (dashed lines) for azimuths 0◦±
8◦ and 90◦ ± 8◦.

The fitted variogram model for this example has two spherical structures with variance

contributions of 0.48 and 0.52 (with no nugget effect). Ranges for structure 1 are 15m

and 8m. Ranges for structure 2 are 30m and 15m. Figure 3.17 shows the correlation

matrix between five lag distances of two directions by Equation 3.25. Similar to the pre-

vious example, the DoF approach is applied to calculate variogram uncertainty. Figure

3.18 shows 100 correlated experimental variogram realizations after LU simulation and

back transformation to the marginal Chi-square distribution of each lag for azimuth 0◦

(Figure 3.18-a) and azimuth 90◦ (Figure 3.18-b). Figure 3.19 shows the correlation ma-

trix between the sampled variogram realizations for five lag distances of azimuth 0◦ and

azimuth 90◦. The diagonal elements of this matrix shows the marginal Chi-square dis-
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Figure 3.17: Correlation matrix between lag distances of azimuth 0◦ and azimuth 90◦

in Figure 3.16.

tribution of each lag and each direction. This matrix demonstrates that the variogram

Figure 3.18: 100 correlated experimental variogram realizations for azimuth 0◦ (a)
and azimuth 90◦ (b).

realizations respect the correlation between the lag distances of the same and different

directions (see Figures 3.17). The final 2D variogram realizations are achieved by auto
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Figure 3.19: Correlation matrix between the sampled variogram realizations for five
lag distances of azimuth 0◦ and azimuth 90◦. The number on each
cell signifies correlation coefficient between lag distances. The diagonal
elements are the marginal Chi-square distribution of each lag distance.

variogram modeling of each realization of major and minor directions. Standardization

could be applied on each variogram realization by dividing the variance contributions

of each variogram structure by the total sill. Figure 3.20 shows the cross plot between

the ranked variance uncertainty by the spatial bootstrap and the ranked total sills of

the variogram realizations. There is a very high correlation which signifies that the sill

of variogram realizations are associated to the sampled variances. Thus, all variogram

realizations can be standardized to sill 1 and associated to a matching SB univariate

distribution. Figure 3.21-a and b shows the standardized fitted variogram realizations

for azimuths 0◦ and 90◦, respectively. The final 2D variogram realizations are used
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Figure 3.20: Cross plot between the ranked variance uncertainty by the spatial boot-
strap and the ranked total sills of the variogram realizations.

in geostatitsical simulation to incorporate variogram uncertainty: one standardized

variogram realization (Figure 3.21) is used to simulate one realization of SGS.

Figure 3.21: Standardized fitted variogram realizations for azimuths 0◦ (a) and 90◦

(b).

Figure 3.22 shows posterior variogram uncertainties for azimuths 0◦ (a) and 90◦

(b): variograms of SGS realization for nx=50 and ny=50 of data in Figure 3.16-a after

incorporating variogram uncertainty. Posterior variogram uncertainties are lower than

the prior variograms uncertainty calculated by the DoF approach (see Figure 3.18)

because of conditioning data.

In case of a 3D data set, the final horizontal variogram realizations are calculated
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Figure 3.22: Posterior variogram uncertainty (variogram of SGS realization) for az-
imuths 0◦ (a) and 90◦ (b) after incorporating variogram uncertainty.

and then auto variogram modeling is applied with the vertical variogram to build

the final 3D variogram realization. The vertical variogram is assumed to have no

uncertainty because of many regularly spaced data in the direction of drilling.

3.5 Realistic Example: Amoco Case Study

A real case study of the Amoco 2D data (Chu, Xu, & Journel, 1994) is considered for

quantifying variogram uncertainty and transfer through geostatistical modeling. The

variable of interest is averaged permeability (in milliDarcies) over the main reservoir

layer. Figure 3.23 shows a location map (a), histogram of the permeability (b) and the

experimental variograms for azimuths 0◦ and 90◦ with the fitted models (c). Variograms

are calculated with normal score data. The fitted variogram model has two structures

with no nugget effect; the first structure is exponential with variance contribution 0.2

and variogram range of 1000ft for both 0◦ and 90◦ directions; the second structure is

spherical with ranges of 15000ft and 4500ft for 0◦ and 90◦, respectively. There is a

zonal anisotropy for azimuth 0◦. Figure 3.24 shows the correlation matrix between lag

distances of the two directions by the average fourth order covariance.

Figure 3.25 shows 100 correlated variogram realizations generated by the DoF ap-

proach in azimuths 0◦ and 90◦. For incorporating the variogram uncertainty in geo-

statistical modeling, one standardized variogram realization (Figure 3.25-b) is used to
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Figure 3.23: Permeability (milliDarcies) variable of Amoco data set: a) Location
map. b) Histogram. c) Normal score experimental variograms for az-
imuths 0◦ and 90◦ with the fitted models.

simulate one realization of SGS for nx=100, ny=100 with normal score data per time.

Gaussian realizations are transformed back to the original units (permeability). This

process is repeated to simulate 100 SGS realizations. Figure 3.26 shows 6 SGS re-

alizations of 100 realizations with variogram uncertainty, and Figure 3.27 shows the

variogram realizations used for simulation. Figure 3.28 shows the same SGS realiza-

tions using only the reference variogram model of Figure 3.23-c. The difference between

realizations in Figures 3.26 to Figure 3.28 is due to different variogram models. The

variogram model for realization 1 has the highest variogram range of the second vari-

ogram structure for azimuth 0◦ among all variogram realizations; however, there is not

a high continuity for realization 1, azimuth 0◦ (Figure 3.26) due to the fact that the

first variogram structure has a short range and high variance contribution. There are
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Figure 3.24: Correlation matrix between the sampled variogram realizations for eight
lag distances of azimuth 0◦ and eight lag distances of azimuth 90◦.

high continuities for realizations 2 and 5 because of high variogram ranges for azimuth

0◦ for both first and second structures. The conditioning of data does not allow to

reproduce the large variogram range. This leads to lower uncertainty in the posterior

variogram. Conditioning of data does not affect reproduction of a very low variogram

range. For example, a pure nugget effect variogram can be reproduced by SGS real-

izations. Figures 3.29 shows the posterior variogram uncertainty (variogram of SGS

realizations) in case of using variogram uncertainty (red dashed line) and without using

variogram uncertainty (blue line). The posterior variogram uncertainty in case of using

variogram uncertainty is just a little higher than without using variogram uncertainty.

This is due to the conditioning of the data.
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Figure 3.25: 100 correlated variogram realizations (a), fitted and standardized (b)
for azimuths 0◦ and 90◦.

3.5.1 Impact of Variogram Uncertainty

In reservoir modeling, variogram uncertainty could be applied for resource modeling or

flow simulation (Figure 1.2 of Chapter 1); the impact of variogram uncertainty on the

uncertainty of resource estimation such as hydrocarbon initially in place (HIIP), and

uncertainty on reservoir performance (flow simulation) are considered in this Section.

For resource estimation, the posterior histogram uncertainty (histograms of real-

izations after geostatistical modeling) is very important because it is related to the

uncertainty of the mean of the variable of interest for resource estimation. Figure 3.30

shows the posterior histogram uncertainty using variogram uncertainty and without

using variogram uncertainty. The posterior histogram uncertainties are approximately

equal: using variogram uncertainty leads to a little higher standard deviation of the

mean and variance in comparison with not using variogram uncertainty: 0.4171 versus
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Figure 3.26: 6 SGS realizations with variogram uncertainty.

0.4110 for mean and, 0.3148 versus 0.2972 for variance respectively (see Figure 3.30).

The reason for very low impact of variogram uncertainty on the posterior histogram

uncertainty is because the high and low values are compensated in geostatistical mod-

eling: the frequency of both high and low values are increased and decreased for high
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Figure 3.27: Variogram realizations used for SGS in Figure 3.26.

and low variogram ranges (see Figure 3.26). This leads to a little higher uncertainty

in HIIP in case of using variogram uncertainty because the posterior histogram un-

certainty of all variables associated with the HIIP calculation such as PHIE (effective

porosity), NTG (Net To Gross), Sw (water saturation) and So (oil saturation) are not

changing considerably after incorporating variogram uncertainty (see Chapter 7).

Variogram uncertainty is more influential in flow simulation because it affects the

connectivity of rock properties. According to Meddaugh et al. (2011), the variogram

could have a tremendous impact on waterflooding. The influence of variogram uncer-
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Figure 3.28: 6 SGS realizations without variogram uncertainty.

tainty on flow simulation is considered by the histogram of upscaled permeability of

each 100 SGS realizations for the entire simulation area in case of both using vari-

ogram uncertainty and without using variogram. Since there is more continuity for

azimuth 0◦, upscaling of SGS realization is applied on this direction. Steady state
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Figure 3.29: Posterior variogram uncertainty for using variogram uncertainty (dashes
red line) and without using variogram uncertainty (blue line).

flow simulation is assumed for upscaling. Figure 3.31 shows the histograms of upscaled

permeability with variogram uncertainty (a) and without variogram uncertainty (b).

Using variogram uncertainty leads to higher uncertainty in the histogram than not us-

ing variogram uncertainty (σ = 0.49683 versus σ = 0.42874). The higher uncertainty

in the histogram of upscaled permeability in presence of variogram uncertainty signifies

the impact of variogram uncertainty on flow simulation.

Figure 3.30: Posterior histogram uncertainty using variogram uncertainty and with-
out using variogram uncertainty.
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Figure 3.31: Histogram of upscaled permeability with steady state flow simulation us-
ing variogram uncertainty (a) and without using variogram uncertainty
(b).

3.5.2 Remarks

A methodology for quantifying variogram uncertainty and incorporating this uncer-

tainty in geostatistical modeling is provided in this Chapter. The distribution of each

lag distance should be built first and the variogram realizations should be drawn from

the distributions. The shape of the variogram distribution is considered to be a Chi-

square distribution and it needs only the degrees of freedom (DoF) for each lag distance.

A new approach of quantifying variogram uncertainty (DoF approach) is proposed

by direct calculation of degree of freedoms for each lag distance by fourth order covari-

ance since other techniques has drawbacks: FOM (Marchant & Lark, 2004; Ortiz &

Deutsch, 2002) has a very high uncertainty (for more details and examples see Ortiz

and Deutsch (2002)) because of not considering the degrees of freedom of variogram

pairs for calculating variogram uncertainty. Global kriging could also be used for quan-

tifying variogram uncertainty. However, there is a big difference between the calculated

variogram uncertainty by OGK and SGK, and global kriging is dependent to the size

of domain. The larger the domain, the lower the variogram uncertainty and it leads

to higher CPU time because of calculating the average fourth order covariance for the

entire domain (right hand side covariance matrix). The new approach of quantifying

variogram uncertainty by calculating degrees of freedom of variogram pairs is indepen-
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dent from the domain size and it is fast and simple.

Variogram realizations are drawn from the Chi-square distributions to honor the

correlation between lag distances. A methodology is presented that applies LU un-

conditional simulation based on the correlation matrix between lag distances. The

correlation matrix is achieved by the average fourth order covariance between lag dis-

tances. Each realization is transformed to the marginal Chi-square distribution of each

lag distance by quantile-quantile transformation. This ensures the correlation between

lag distances is preserved. The variogram realizations are standardized to sill 1 before

using in geostatistical simulation.

The calculated uncertainty in the variogram by the DoF approach is high because it

is not conditioned to well data. This is similar to the spatial bootstrap for quantifying

histogram uncertainty: the greater spatial correlation (variogram range), the higher

variogram uncertainty. The calculated variogram uncertainty by the DoF approach is

assumed as prior uncertainty in the variogram. The high prior variogram uncertainty

is decreased during geostatistical modeling (posterior variogram uncertainty) due to

conditioning of data: subsequent conditioning will make the result more expected. In

general, conditioning of the data in geostatistical simulation improves unrealistic very

high and low variogram ranges if there are enough data locations (say more than 80

wells). This correction is more noticeable for high range variograms; conditioning of

data cannot affect a very short variogram range. In case of sparse well data (poor

conditioning), high prior variogram uncertainty could be improved by secondary data

such as the vertical variogram from well data and the horizontal variogram from seismic

data (see Chapters 4 and 5).

The impact of variogram uncertainty for static resource estimation is low due to the

fact that the high and low values are compensated in geostatistical modeling for differ-

ent variogram realizations. Variogram uncertainty is more influential in flow simulation

because it has a direct impact on the connectivity of rock properties.

Only 2D data sets are considered in this Chapter for variogram uncertainty. In

case of 3D data set, variogram uncertainty is merely calculated for horizontal directions

since there is no uncertainty in vertical direction due to many regularly spaced data. 3D
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variogram realizations can be achieved by auto variogram modeling of the horizontal

variogram realizations with a fixed vertical variogram.

The CPU time is an issue in case of many variogram pairs. It would not be advisable

to calculate variogram uncertainty in presence of more than 10000 variogram pairs

for each lag distance. In case of 2D data set, 10000 variogram pairs signifies trivial

uncertainty in the variogram. Thus, variogram uncertainty is not required (similar to

vertical variogram). For solving this problem in case of sparse wells for 3D data set,

variogram uncertainty may be calculated after vertical upscaling the data because of

reducing variogram pairs.
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Chapter 4

Seismic Variogram to Improve
Well Variogram

Variogram uncertainty was discussed in Chapter 3. Since the approach of quantifying

variogram uncertainty (the DoF approach, Section 3.3) is not conditioned to well data,

the calculated variogram uncertainty is high, which is decreased and improved by con-

ditioning data through geostatistical modeling. However, in case of sparse well data,

the seismic data (2D lines or 3D block) could be used to reduce the high variogram

uncertainty.

The stable seismic variogram could be used in place of the well variogram (Wang &

Dou, 2010). However, the processed seismic data are not the same physical attribute

as that under consideration and the scale of measurement is much different. Ideally,

the information from seismic data could be used to improve the uncertainty in the

well variogram. To do this correctly, the spatial cross-correlation between well and

seismic data should be taken into consideration to define the constraints the seismic

variogram imposes on the well variogram. Seismic data are acquired in time domain

that should be transferred to depth. The scale of seismic data is larger than well data

so the variogram of the seismic data could be downscaled or the well data could be

upscaled to ensure a consistent scale. For this Chapter, it is assumed that the well and

seismic data are at the same scale. Variogram downscaling will be discussed in Chapter

5.

This Chapter presents three different methodologies to improve the uncertainty
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in the experimental variogram of well data by seismic variogram: 1- Merge variogram

distributions. 2- Global cokriging of the variogram pairs. 3- Seismic-derived constraints

on the variogram of well data. These techniques use the cross covariance between well

and seismic data to determine the relevance of the seismic variogram. Approaches 1 and

2 are early attempts and the drawbacks of these techniques are discussed. Approach

3 is considered the most reliable and can be reasonably applied for improving the

uncertainty in the experimental well variogram. Only 2D data sets are shown in this

Chapter, but the methodology will be applied for the horizontal variogram in case of

3D data set (Chapter 5).

4.1 Merge Variogram Distributions

The variogram distribution of each lag distance for well and seismic data could be

merged to reduce the well variogram uncertainty. A method of combining probability

distributions is required. The combined distribution should be convex: the mean of

the combined distributions should fall within the mean of the input distributions (well

and seismic) and close to the distribution with lower uncertainty. After merging well

and seismic variogram distributions for each lag distance, the improved variogram real-

izations can be achieved by LU simulation with the correlation matrix of lag distances

and back-transformed to the correct marginal distributions (see Chapter 3, Section 3.4).

This approach needs a method of merging distributions with the mentioned properties

(Section 4.1.1). Furthermore, the variogram distributions of each lag distance for well

and seismic data should be calculated for this methodology. The uncertainty in the

variogram of seismic data is negligible due to the exhaustive sampling. This leads to a

combined variogram distribution almost exactly the same as the variogram of seismic

data. To avoid this outcome, the variance of the seismic data variogram is calibrated

with the cross covariance. The variance of the seismic variogram is increased to give it

a reasonable weight.
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4.1.1 Combining Independent Information Sources for Variogram Dis-

tributions

There are different approaches of combining distributions that could be applied for

merging variogram distributions of well and seismic data for each lag distance. Com-

bining different data sources (distributions) is discussed by Winkler (1968) in a Bayesian

framework for merging information. Morris (1974, 1977) formally establishes a Bayesian

approach. The Bayesian updating technique (Doyen, Den Boer, & Pillet, 1996) is intro-

duced for data integration in geomodeling. In this method, the prior model is updated

with the likelihood model built by all secondary data to attain the final posterior or

updated model. However, there is no clear prior distribution for combining variogram

distributions. Moreover, with Bayesian updating, the mean of the final distribution may

not fall within the mean of the input distributions. Blachman (1989); Davis (2007);

Roecker (1991) discuss merging multivariate independent Gaussian distributions based

on an optimum method of combining error ellipses:

C = (

n∑
i=1

C−1
i )−1 , µ = C

n∑
i=1

(C−1
i µi) (4.1)

where µi is the mean vector of ith multivariate Gaussian distributions, Ci is the covari-

ance matrix of ith multivariate Gaussian distributions, µ is the vector representing the

location of the weighted average of n distributions and C is the resultant covariance

matrix after merging error ellipses. The one-dimensional derivation of this approach

is adapted to merge independent variogram distributions (well and seismic). This ap-

proach ensures convexity and the combined mean (µ) falls within the mean of the input

distributions (µi , i = 1, ..., n), closest to the distribution with lower uncertainty. It

seems reasonable for combining variogram distributions of well and seismic data for each

lag distance to achieve an improved variogram if they are assumed to be independent

from each other.

The Gaussian distribution of each lag distance is required to apply the error ellipse

approach for merging variogram distributions (well and seismic). For simplicity, the
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distribution of each lag distance is assumed Gaussian although the Chi-square distri-

bution could be transformed to the Gaussian distribution by an anamorphosis function

(see Chapter 5): the assumption of the Gaussian distribution of each lag distance in-

stead of the Chi-square distribution (see Chapter 3) will not significantly change the

final result because of the degrees of freedom and closeness of the Chi-squared distri-

butions to Gaussian distributions. The Gaussian variable of each lag is denoted as

zi,γ(h) , i = 1, ...., n. Where n is multiple independent observations of the variogram

distributions. Multiple independent observations of the mean and variance for a lag dis-

tance are denoted as zi,γ(h) and V ar
{
zi,γ(h)

}
, respectively. The estimated mean z∗γ(h)

and variance V ar
{
z∗γ(h)

}
are achieved by merging variogram distributions of indepen-

dent observations. From the Equation 4.1 for one-dimensional combining independent

Gaussian distributions, the estimation variance is written as:

V ar
{
z∗γ(h)

}
=

[
n∑
i=1

(
V ar

{
zi,γ(h)

})−1

]−1

(4.2)

optimally weighted linear combination of independent lag distributions can be written

as:

z∗γ(h) = V ar
{
z∗γ(h)

} n∑
i=1

(
V ar

{
zi,γ(h)

})−1
zi,γ(h) (4.3)

a linear aggregation with weights that are inversely proportional to the individual vari-

ance contributions is the solution for the optimal weights (for more information of

combining independent Gaussian distributions see Davis (2007); Orechovesky (1996);

Rezvandehy and Deutsch (2014a); Roecker (1991)). Figure 4.1 shows an example of

merging two Gaussian distributions assumed as variogram distributions for a lag dis-

tance. Distribution 1 has a mean of 0.6 and variance 0.2, and distribution 2 has a mean

0.1 and variance 0.6. The merged distribution based on Equations 4.2 and 4.3, has a

mean of 0.475 and variance 0.15. This approach enforces the mean of the combined

distribution to fall within the mean of the input distributions, which is reasonable

in this context. Moreover, the variance of the merged distribution is lower than the

variance of the distributions 1 and 2 and close to distribution 1 because it has lower
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Figure 4.1: Combining distributions 1 and 2 by Equations 4.2 and 4.3.

variance than distribution 2. This could be applied for merging variogram distributions

of well and seismic data for each lag distance to improve the high uncertainty in well

variogram. The mean of each lag distance could be the fitted variogram model to the

experimental variogram and the variance of each lag distance could be calculated by

the DoF or FOM approaches (see Chapter 4). Since the DoF approach requires the

Chi-square distribution of each lag distance, the FOM approach is used for calculation

the variance of each distance in this experiment.

4.1.2 Estimation the Variance of the Seismic Variogram Given Well

Variogram

The problem is the variance of the seismic variogram: since there are many variogram

pairs for the seismic data, the variance of the seismic variogram for each lag distance will

be close to zero. Applying the mentioned methodology (Section 4.1.1) for combining

variogram distributions of well and seismic data leads to no weight to the well variogram

and the final variogram is equal to the seismic variogram. To solve this problem,

the variance of the seismic variogram will be modified based on the cross covariance

between well and seismic data: a higher cross covariance makes the seismic variogram

more informative. The estimated variance of the seismic variogram should increase as

the cross covariance decreases. The relationship between the cross covariance and the
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variance of the seismic variogram is fit by third degree polynomial curves. This shape

is achieved based on an experiment (Rezvandehy & Deutsch, 2014c) from the positive

definite covariance between well and seismic data:

Det(

CZ(h) = 1− γZ(h) CY Z(h)

CY Z(h) CY (h) = 1− γY (h)

) ≥ 0 ⇒ γY (h) ≤ 1− CY Z(h)2

1− γZ(h)

(4.4)

where CZ(h) and CY (h) are covariances of the well and seismic data for lag distance

h, γZ(h) and γY (h) are variograms for standardized data, and CY Z(h) is the cross co-

variance. The variograms of the well and seismic should satisfied in Equation (right) to

ensure positive definite covariance. According to this equation, γY (h) has the highest

variance when CY Z(h) = 0 because it can be any value between 0 and 1. As the CY Z(h)

increases, the variance of γY (h) drops quickly; it is approximately flatten around the

CY Z(h) = 0.5 and it drops sharply again for very high CY Z(h) since a very limited

range of γY (h) is satisfied in Equation 4.4. Figure 4.2 shows 100 possible curves. The

absolute value of the cross covariance is always between 0 and 1 for the standardized

or normal score data. The variance of the seismic variogram is within 0 to 5 where

5 denotes a very high variogram uncertainty (practically infinite in Gaussian units).

Figure 4.2: 100 third degree polynomial curves for relationship between the cross
covariance and the variance of the seismic variogram given well variogram.

As the cross covariance decreases, the variance of the seismic variogram increases. An

appropriate curve that reasonably represents the relationship between the cross covari-
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ance and the variance of seismic given well data could be achieved by an experimental

approach: synthetic well and seismic data are simulated by unconditional sequential

Gaussian simulation (SGS). Well and seismic data should have a good correlation (ρ(0)

above 0.5). Some samples are drawn from the simulated well data. The experimental

variogram of the drawn samples is calculated and a variogram model is fitted. The vari-

ance of each lag distance is calculated by the FOM approach and the mean is the fitted

variogram model for each lag distance. The seismic variogram and the cross covariance

between well and seismic are calculated and fitted. The mean of the seismic variogram

distribution is the fitted model but the variance comes from the curves in Figure 4.2

according to the calculated cross covariance for each lag distance. The distribution of

each lag distance of the well and seismic data variograms are combined by Equations

4.2 and 4.3 to attain the updated variogram. The mean square error (MSE) between

the updated variogram and the real variogram of well data is calculated. This process

is repeated for all 100 curves. The curve with minimum MSE is the most accurate

curve.

Figure 4.3 shows the methodology. Figure 4.3-a shows the simulated well data by

SGS and drawn 36 samples. The variogram uncertainty for the drawn samples is calcu-

lated. Figure 4.3-b shows the simulated seismic data by SGS, that has a high correlation

with the well data. The variogram of seismic data and the cross covariance between well

and seismic are calculated. Since the real variogram of drawn samples is known, the

MSE between the update well variogram and the real variogram is calculated (Figure

4.3-c). The updated variogram is calculated by merging the well and seismic variogram

distributions (Equations 4.2 and 4.3) using the variance of the seismic variogram from

the curves (Figure 4.2). This process is repeated for several synthetic well and seismic

data. The curve that makes the average MSE minimum is the most accurate curve for

the variance of the seismic variogram given well variogram.

Variogram models are required for the unconditional SGS. Three variogram struc-

tures (spherical) with no nugget effect are considered. One variogram structure applies

to the well data, and one variogram structure applies to the seismic data. The well and
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Figure 4.3: a) Simulated well data by SGS and drawn 36 samples. b) Simulated
seismic data by SGS that has a high correlation with the well data (a).
c) Merging the well and seismic variogram distributions using seismic
variance given well variogram from the curves (Figure 4.2) and calculate
the MSE between the updated variogram and the real variogram.

seismic data and the variograms are written as:

Yw = a1.y1 + a2.y2 + aw.yw → γw = a2
1.Γ1(h) + a2

2.Γ2(h) + a2
w.Γw(h) (4.5)

where Yw is well data with 3 geological structures: y1, y2 and yw. y1 and y2 are equal

with seismic data, and yw is the unique low range structure for well data. γw is the

variogram model of well data.

Ys = a1.y1 + a2.y2 + as.ys → γs = a2
1.Γ1(h) + a2

2.Γ2(h) + a2
s.Γs(h) (4.6)
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where Ys is seismic data with 3 geological structures: y1, y2 and ys. y1 and y2 are equal

with well data, and ys is the unique high range structure for seismic data. γs is the

variogram model of seismic data. According to LMC model (Pyrcz & Deutsch, 2014),

there are three constraints for the unknown parameters in Equations 4.5 and 4.6:


a2

1 + a2
2 + a2

w = 1

b21 + b22 + b2s = 1

a1.b1 + a2.b2 = ρ(0)

(4.7)

ρ(0) is the correlation coefficient between well and seismic at zero lag distance. Monte

Carlo simulation is applied to define the unknown parameters (a and b) by satisfy-

ing Equation 4.7. The same variogram structures between well and seismic data and

the unique structures are assumed Γ1(h) = 50m, Γ2(h) = 300m, Γw(h) = 20m and

Γs(h) = 400m. According to these parameters, synthetic well and seismic data are

simulated with the different correlations for the mentioned methodology. The mean

of the calculated MSEs are achieved for each curve (Figure 4.2). The most accurate

curve has the minimum average MSE. By simulating 30 synthetic well and seismic data

via SGS, the most accurate curve is found. Figure 4.4 shows the mean of MSE for 30

simulated data sets versus the curve number. Based on this experiment, curve 37 is

the most accurate curve for demonstrating the relationship between the variance of

the seismic variogram given well variogram and the cross covariance (Rezvandehy &

Deutsch, 2014c).

4.1.3 Limitation of the Technique

The curve for defining the variance of the seismic variogram given the cross covariance

could change from one data set to another because of many variables. The range of the

variance of the seismic variogram given well variogram for curves is assumed to be 0 to 5

for this experiment (see Figure 4.2). This range is reasonable for this case, but when the

data configuration and number of samples are changed, the variogram uncertainty may

decrease or increase. Each case could consider new parameters to simulate synthetic
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Figure 4.4: Mean of MSE for 30 simulated data set versus the curve number. The
most accurate curve is 37 with the lowest MSE.

well and seismic data (see Figure 4.3). The samples from the synthetic well data are

drawn based on the data configuration of the real data. According to the calculated

variogram uncertainty for the drawn samples, a range of the variance of the seismic

variogram given well variogram (from 0 to the highest possible value) for curves are

defined. Then, the most accurate curve is achieved for the data set based on the

minimum MSE. However, in practice, it is a time consuming process to find the curve

for each data set especially in case of 3D data set. Thus, it is not an efficient technique

for improving the uncertainty of well variogram by the seismic variogram.

4.2 Global Cokriging of the Variogram Pairs

A global kriging of variogram pairs was discussed in Chapter 2 to decluster the ex-

perimental variogram. The variogram pairs of the exhaustive seismic data could be

used to estimate the sparse variogram pairs of well data by global cokriging. There

are different approaches of cokriging (Goovaerts, 1998): 1- simple cokriging (SCK), 2-

ordinary cokriging (OCK), 3- standardized form of the SCK (correlogram notation),

4- standardized form of the SCK with constraint the sum of all weights to 1. These
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techniques can estimate a primary variable using secondary data for the entire domain

(global cokriging). The simple global cokriging (SGCK) estimator of z for the entire

domain A is written:

Z∗SGCK −m1 =

n1∑
α1=1

λSGCKα1
[Z1(uα1)−m1] +

n2∑
α2=1

λSGCKα2
[Z2(uα2)−m2] (4.8)

where m1 and m2 are stationary means for primary (well data) and secondary (seismic

data) data in the cokriging system. λSGCKα1
is the weight of global mean and variance

assigned to the primary datum z1(uα1), and λSGCKα2
is the weight of global mean and

variance assigned to the secondary datum z2(uα2). n1 and n2 are the number of primary

and secondary data.

The ordinary global cokriging (OGCK) estimator of z for the entire domain A is

written:

Z∗OGCK =

n1∑
α1=1

λOGCKα1
[Z1(uα1)] +

n2∑
α2=1

λOGCKα2
[Z2(uα2)] (4.9)

there is no need for stationary mean of primary and secondary variable in the OGCK

system due to the following constraints:

n1∑
α1=1

λOGCKα1
= 1 ,

n2∑
α2=1

λOGCKα2
= 0 (4.10)

the stationary mean of primary (m1) and secondary (m2) variables are canceled out in

OGCK system. This approach is inefficient: it reduces the influence of the secondary

information due to very small or negative weights to satisfy the constraint that the

sum of secondary weights be 0.

The standardized form of simple global kriging is achieved by scaling the auto and

cross-covariances in SGCK in terms of correlograms. This is useful when the variances

of primary and secondary variables differ considerably, which leads to a large difference

between the covariances and a risk of numerical instability (Goovaerts, 1998). The

standardized form of SGCK is obtained by dividing the terms in SGCK (see Equation
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4.8) system by the standard deviations of the variables:

Z∗SGCK −m1

σ1
=

n1∑
α1=1

υSGCKα1
[
Z1(uα1)−m1

σ1
] +

n2∑
α2=1

υSGCKα2
[
Z2(uα2)−m2

σ2
] (4.11)

where σ1 is the standard deviation of the primary variable and σ2 is the standard devi-

ation of the secondary variable. υSGCKα1
and υSGCKα2

are the weights of the standardized

form of SGCK assigned to the primary datum and secondary datum.

The standardized form of SGCK is more efficient than SGCK for application with

the variogram pairs of the well and seismic data due to the fact that the variance of the

quadratic differences of variogram pairs for well and seismic data (fourth order covari-

ance of each pair to itself) might differ by several orders of magnitude. Since there is no

constraint on the primary and secondary weights, it might lead to unbalanced weights

(very low or very high to primary and secondary). A constraint on the standardized

form of SGCK is proposed to make the sum of all primary and secondary weights to 1

with the following system of linear equations:



∑n1
β1=1 υ

SCGK
β1

C11(uβ1 − uα1)/σ1σ1 +
∑n2

β2=1 υ
SGCK
β2

C12(uβ2 − uα1)/σ1σ2

+µ = C11(uα1 −A)/σ1σ1 , α1 = 1....n1

∑n1
β1=1 υ

SGCK
β1

C12(uβ1 − uα2)/σ1σ2 +
∑n2

β2=1 υ
SGCK
β2

C22(uβ2 − uα2)/σ2σ2

+µ = C12(uα2 −A)/σ1σ2 , α2 = 1....n2

∑n1
β1=1 υ

SCGK
β1

+
∑n2

β2=1 υ
SCGK
β2

= 1

(4.12)

where n1 is number of data for primary variable, and n2 is number of data for sec-

ondary variable. C11(uβ − uα) is the covariance between locations uβ and uα for

primary variable; C12(uβ − uα) is the cross covariance between locations uβ and uα;

and C22(uβ−uα) is the covariance between locations uβ and uα for secondary variable.

C11(uα −A) is the average covariance between each data location uα and the whole

area A for primary variable, and C12(uα −A) is the average cross covariance between

each data location uα and the whole area A. µ is Lagrange parameter. The estimation
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variance is written as:

V ar {Z∗SGCK} = C11(A−A)−
n1∑

α1=1

υSGCKα1
C11(uα1 −A)−

n2∑
α2=1

υSGCKα2
C12(uα2 −A)−µ

(4.13)

where C11(A−A) is the average covariance of the entire area to itself (Goovaerts, 1997)

for primary variables.

The standardized form of SGCK for estimating the well variogram pairs with the

exhaustive seismic variogram pairs can be written:

X∗s,h − γ1(h)

σ
′
1

=

n1(h)∑
α1=1

υSGCKα1,h [
X1,α1,h(u)− γ1(h)

σ
′
1

] +

n2(h)∑
α2=1

υSGCKα2,h [
X2,α2,h(u)− γ2(h)

σ
′
2

]

(4.14)

where γ1(h) and γ2(h) are the fitted variogram models to the experimental variogram

of well and seismic data assumed as the stationary means for each lag distance. σ
′
1 and

σ
′
2 are the standard deviations of the half of the quadratic differences for variogram

pairs of well and seismic data. n1(h) and n2(h) are the number of variogram pairs for

well and seismic data. X∗s,h is the estimated variogram (standardized form of SGCK)

by the variogram pairs of well data X1,h(u), and seismic data X2,h(u) for each lag

distance h:

Z1(u + h
2 )

↑

Z1(u− h
2 )

,

Z2(u + h
2 )

↑

Z2(u− h
2 )

X1,h(u) =
[Z1(u− h

2 )− Z1(u + h
2 )]2

2

X2,h(u) =
[Z2(u− h

2 )− Z2(u + h
2 )]2

2

(4.15)

where Z1(u− h
2 ) is the tail value, and Z1(u+ h

2 ) is the head value of the well variogram

pair ↑ for lag distance h; Z2(u− h
2 ) is the tail value, and Z2(u + h

2 ) is the head value

of the seismic variogram pair ↑ for lag distance h.

The weights of the standardized SGCK for variogram pairs of each lag distance h,

υSGCKα1,h
for well data and υSGCKα2,h

for seismic data, are obtained by solving the following
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system of linear equations:



∑n1(h)
β1=1 υ

SCGK
β1,h

F11(uβ1 − uα1)/σ
′
1σ

′
1 +

∑n2(h)
β2=1 υ

SGCK
β2,h

F12(uβ2 − uα1)/σ
′
1σ

′
2

+µ = F11(uα1 −A)/σ
′
1σ

′
1 , α1 = 1....n1(h)

∑n1(h)
β1=1 υ

SGCK
β1

F12(uβ1 − uα2)/σ
′
1σ

′
2 +

∑n2(h)
β2=1 υ

SGCK
β2

F22(uβ2 − uα2)/σ
′
1σ

′
2

+µ = F12(uα2 −A)/σ
′
1σ

′
2 , α2 = 1....n2(h)

∑n1(h)
β1=1 υ

SCGK
β1,h

+
∑n2(h)

β2=1 υ
SCGK
β2,h

= 1

(4.16)

where F11(uβ − uα) is the fourth order covariance between variogram pairs of uβ and

uα for well data; F12(uβ − uα) is the fourth order cross covariance between variogram

pairs of uβ and uα; and F22(uβ−uα) is the fourth order covariance between variogram

pairs of uβ and uα for seismic data. F11(uα −A) is the average fourth covariance

between each variogram pair uα and the whole area A for well data, and F12(uα −A)

is the average fourth order cross covariance between each variogram pair of uα and the

whole area A for seismic data. The fourth order cross covariance can be calculated

by cross second order moments (cross covariance/variogram between well and seismic

data). The estimation variance of SGCK for each lag distance is written as:

V ar(2X∗s,h) = F11(A−A)−
n1(h)∑
α1=1

υSGCKα1,h F11(uα1 −A)

−
n2(h)∑
α2=1

υSGCKα2,h F12(uα2 −A)− µ → V ar {γ̂(h)} =
1

4
× (V ar

{
2X∗s,h

}
)

(4.17)

where F11(A−A) is the average fourth order covariance of the entire domain A to

itself. The average fourth order covariance was discussed in Chapter 2 (see Figure 2.3).

V ar {γ̂(h)} is the variance of each lag distance by global cokriging of the well and

seismic variogram pairs.

Figure 4.5 shows location maps of synthetic well and seismic data to demonstrate

how the standardized form of SGCK can be applied on variogram pairs of the well

and seismic data for lag distance 4m. There are 9 well data and 25 seismic data. The
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estimated variogram pair for lag distance h = 4m of this example by the standardized

form of SGCK is written as:

X∗s,h − γ1(h)

σ
′
1

=
9∑

α1=1

υSGCKα1,h [
X1,α1,h(u)− γ1(h)

σ
′
1

] +
25∑

α2=1

υSGCKα2,h [
X2,α2,h(u)− γ2(h)

σ
′
2

]

(4.18)

where γ1(h) and γ2(h) are the fitted variogram models to well and seismic data. σ
′
1

and σ
′
2 are the standard deviations of the half of the quadratic differences for variogram

pairs of well and seismic data.

Equation 4.19 shows the fourth order covariance matrix for the standardized SGCK

for 9 variogram pairs of well data and 25 variogram pairs of seismic data:



F11(1− 1)/σ
′
1σ

′
1 .. F11(1− 9)/σ

′
1σ

′
1 F12(1− 1)/σ

′
1σ

′
2 .. F12(1− 25)/σ

′
1σ

′
2 1

: : : : :

F11(9− 1)/σ
′
1σ

′
1 .. F11(9− 9)/σ

′
1σ

′
1 F12(9− 1)/σ

′
1σ

′
2 .. F12(9− 25)/σ

′
1σ

′
2 1

F12(1− 1)/σ
′
1σ

′
2 .. F12(1− 9)/σ

′
1σ

′
2 F22(1− 1)/σ

′
2σ

′
2 .. F22(1− 25)/σ

′
2σ

′
2 1

: : : : :

F12(25− 1)/σ
′
1σ

′
2 .. F12(25− 9)/σ

′
1σ

′
2 F22(25− 1)/σ

′
2σ

′
2 .. F22(25− 25)/σ

′
2σ

′
2 1

1 .. 1 1 .. 1 0



×



υSCGKα1=1,h

:

υSCGKα1=9,h

υSCGKα2=1,h

:

υSCGKα2=25,h

µ



=



F11(uα1=1 −A)/σ
′
1σ

′
1

:

F11(uα1=9 −A)/σ
′
1σ

′
1

F12(uα2=1 −A)/σ
′
1σ

′
2

:

F12(uα2=25 −A)/σ
′
1σ

′
2

1



(4.19)

This covariance matrix can be calculated by the reference variogram models of the

well and seismic data γ1(h) and γ2(h), and the standard deviations of the half of the

quadratic differences for variogram pairs of the well and seismic data (σ
′
1 and σ

′
2).
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Figure 4.5: Location maps of a synthetic well and seismic data. There are 9 well data
and 25 seismic data, which leads to the same number of variogram pairs
for lag distance 4m of each data.

These parameters for standardized data are assumed as:



γ1(h) = 0.20Sph
hmajor=15m
hminor=15m

(h) + 0.80Sph
hmajor=30m
hminor=30m

(h)

γ2(h) = 0.25Sph
hmajor=15m
hminor=15m

(h) + 0.75Sph
hmajor=30m
hminor=30m

(h)

σ
′
1 = 1.2 , σ

′
2 = 0.9

(4.20)

where Sph is the spherical variogram model. hmajor and hminor are variogram ranges

for major and minor directions of continuity, which are equal for isotropic data. A

cross covariance model (cross variogram) between well and seismic data is achieved by

an intrinsic model (Markov model) (Pyrcz & Deutsch, 2014). The covariance matrix is

solved for two correlations between the well and seismic data: ρ(0) = 0.8 and ρ(0) = 0.4.

Table 4.1 shows sum of the weights for the variogram pairs of the well data υSGCKα1,h
and

seismic data υSGCKα2,h
. The standardized form of SGCK enforces sum of all weights be

1. For high correlation (ρ(0) = 0.8), sum of the weights to the seismic pairs (0.81184)

is much higher than the sum of weights to the well pairs (0.18816). As correlation

decreases to ρ(0) = 0.4, sum of the weights to the well pairs increases from 0.18816

to 0.40508, and sum of the weights to the seismic pairs diminishes from 0.81184 to
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0.59492. The weights are used in Equation 4.18 to estimate variogram for lag distance

4m using the variogram pairs of seismic data.

Table 4.1: Sum of the weights for variogram pairs of the well and seismic data (Figure
4.5) for two correlations: ρ(0) = 0.8 and ρ(0) = 0.4.

Sum of the Weights 

to Well Pairs

Sum of the Weights 

to Seismic Pairs

Sum of the Weights 

to Well Pairs

Sum of the Weights 

to Seismic Pairs

0.18816 0.81184 0.40508 0.59492

𝝆 𝟎 = 𝟎. 𝟖 𝝆 𝟎 = 𝟎. 𝟒 

4.2.1 Synthetic Example

A 2D synthetic example is considered to assess the proposed methodology of global

cokriging for estimating the well data variogram. Synthetic well and seismic data are

simulated by unconditional sequential Gaussian simulation (SGS). Figure 4.6 shows

synthetic well (left Figure) and seismic data (right Figure) which are at the same scale

and have a correlation coefficient of approximately 0.6. The grid has nx = 50×ny = 50.

Instead of drawing well locations, variogram pairs (head and tale locations) are drawn

from the simulated well and seismic data to estimate well variogram pairs with the

seismic variogram pairs by SGCK. This avoids taking many variogram pairs for one

lag distance and no pair or very few pairs for another lag distance of well data. Figure

4.7 shows the middle points of the variogram pairs where tale and head locations are

drawn from the simulated well and seismic data for azimuth 0◦. Sparse well pairs and

exhaustive seismic pairs are drawn to apply the global cokriging. The experimental

variograms of the well and seismic are calculated and variogram models are fit:


γ1(h) = 0.05 + 0.45Exp

hmajor=10m
hminor=10m

(h) + 0.40Exp
hmajor=30m
hminor=30m

(h)

γ2(h) = 0.20 + 0.40Exp
hmajor=10m
hminor=10m

(h) + 0.35Exp
hmajor=30m
hminor=30m

(h)

(4.21)

where γ1(h) is the fitted model to the experimental well variogram, and γ2(h) is the fit-

ted model to the experimental seismic variogram. The experimental seismic variogram
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is well-defined because of the exhaustive sampling. Exp is the exponential variogram

model. hmajor and hminor are variogram ranges for major and minor directions of con-

tinuity, which are equal for isotropic data. A cross covariance model (cross variogram)

between well and seismic data achieved by an intrinsic model (Markov model) (Pyrcz

& Deutsch, 2014) is required to calculate the fourth order cross covariance between

well and seismic pairs.

Figure 4.6: Synthetic well (left Figure) and seismic data (right Figure) simulated by
unconditional SGS.

Figure 4.7: Middle points of the drawn variogram pairs (tale and head locations) for
azimuth 0◦ for well (left Figure) and seismic data (right Figure).

Figure 4.8 shows the result of the cokriging for the well and seismic variogram
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pairs by the standardized form of SGCK with the constraint that the weights sum to 1

(Equation 4.16). The experimental well variogram is noisy. Although SGCK removes

noise and artifacts in the experimental variogram, the updated variogram converges to

the fitted variogram model and not the real variogram. The estimated mean of the

simple cokriging for variogram pairs converges to the stationary mean of the primary

Figure 4.8: Combination of the well and seismic variogram pairs by the standardized
form of SGCK with constraint that the weights sum to 1. The SGCK
variogram converges to the fitted variogram model not the real variogram
of well data.

variable which is the fitted variogram model to the experimental well variogram (γ1(h)).

All approaches of cokriging needs stationary means for both primary and secondary

variables, which leads to convergence to the stationary mean of the primary variable

(Goovaerts, 1998), except ordinary cokriging because the sum of the weights to primary

variable is 1, and the sum of the weights to secondary variable is zero (see Equation

4.9). Ordinary cokriging is an inefficient technique due to the fact that it reduces the

influence of the secondary information to nothing. Therefore, the cokriging approach is

also considered inappropriate to improve the variogram of the well data by the seismic

variogram.
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4.3 Seismic-derived Variogram of the Well Data

The covariance matrix between well and seismic data for a variogram pair at each lag

distance provides a constraint to keep the results positive definite (Pyrcz & Deutsch,

2014) for geostatistical modeling. The only unknown covariance in the covariance

matrix is the covariance of the well data because the covariance of the seismic data and

the cross covariance are well-defined. The acceptable range of the unknown covariance

of the well data for each lag distance could be achieved by enforcing this covariance

matrix to be positive definite assuming the well and seismic covariances are at same

scale. The acceptable range for each lag distance leads to seismic-derived limits to the

well data variogram. Variogram realizations of well data should be within these limits.

A totally positive matrix (Gantmacher & Krein, 1950) of well and seismic data

is proposed to attain the seismic-derived variogram because it is more stable than a

positive semi definite matrix. A square matrix is totally positive if the determinant of

any corresponding square submatrix (including both principal and nonprincipal) are

positive (Gantmacher & Krein, 1950; Vandebril, Van Barel, & Mastronardi, 2008).

For building this covariance matrix, it is assumed that for each data location, well

data is present as well as seismic data. A variogram pair of each lag distance h in

presence of well and seismic data is written:

Y (u + h
2 ), Z(u + h

2 )

↑

Y (u− h
2 ), Z(u− h

2 )

(4.22)

where Y (u− h
2 ) and Z(u− h

2 ) are the tail locations, and Y (u + h
2 ) and Z(u + h

2 ) are

the head locations for seismic Y (u) and well Z(u) variables of each variogram pair ↑

and lag distance h, respectively. The covariance matrix between Y (u− h
2 ), Y (u + h

2 ),
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Z(u− h
2 ), and Z(u + h

2 ) for standardized data (variance 1) is written as:

A =



Y (u−h
2

) Z(u−h
2

) Y (u+h
2

) Z(u+h
2

)

Y (u−h
2

) 1 CY Z(0) CY (h) CY Z(h)

Z(u−h
2

) CY Z(0) 1 CY Z(h) CZ(h) =?

Y (u+h
2

) CY (h) CY Z(h) 1 CY Z(0)

Z(u+h
2

) CY Z(h) CZ(h) =? CY Z(0) 1


(4.23)

where CY (h) is the covariance function of the seismic data, which is always well-defined.

CY Z(h) is the cross covariance function between well and seismic data. The cross

covariance function is fairly-well defined. The diagonal elements of this covariance

matrix are the variance of the well and seismic data. These diagonal elements are

1 in case of standardized well and seismic data. The only unknown function of this

covariance matrix is the covariance function of well data CZ(h). This covariance should

be between 0 and 1 for standardized data (variance 1). The acceptable covariances of

well data based on seismic data make the covariance matrix of Equation 4.23 positive

definite: the determinant of matrix A should be positive Det {A} > 0:

Det {A} = −C2
Z(h).(1− C2

Y (h))− CZ(h).(2.CY (h).C2
Y Z(0) + 2.CY (h).C2

Y Z(h)−

4.CY Z(0).CY Z(h))− C2
Y (h) + 4.CY (h).CY Z(0).CY Z(h)− 2.C2

Y Z(0).C2
Y Z(h)+

C4
Y Z(0)− 2.C2

Y Z(0) + C4
Y Z(h)− 2.C2

Y Z(h) + 1

(4.24)

where Det {A} based on the unknown parameter CZ(h), is a quadratic function −ax2±

bx± c , 0 ≤ x ≤ 1. For each lag distance h, many regular samples of CZ(h) ∈ [0, 1] are

drawn (say 10000). The range of CZ(h) that has a positive determinant Det {A} > 0,

are calculated.

Another constraint may be taken from the totally positive matrix A. All order

leading principal and nonprincipal submatrices of matrix A should be positive definite.

All order leading principal submatrices are always positive. For example, 1st order
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leading principal submatrix which include the unknown CZ(h) is:

B =



Z(u−h
2

) Y (u+h
2

) Z(u+h
2

)

Z(u−h
2

) 1 CY Z(h) CZ(h) =?

Y (u+h
2

) CY Z(h) 1 CY Z(0)

Z(u+h
2

) CZ(h) =? CY Z(0) 1

 (4.25)

the determinant of the matrix B is always positive for any CZ(h) ∈ [0, 1]. Hence,

another constraint could be taken from the nonprincipal submatrix of matrix A:

C =


Y (u+h

2
) Z(u+h

2
)

Y (u−h
2

) CY (h) CY Z(h)

Z(u−h
2

) CY Z(h) CZ(h) =?

 , Det {C} = CZ(h).CY (h)− C2
Y Z(h)

(4.26)

the determinant of this matrix should be positive (Det {C} > 0) to make matrix A

totally positive. Moreover, this ensures the covariance matrix between well and seismic

data for each lag distance to be positive definite. This is the condition of the linear

model of coregionalization (LMC) for variogram modeling (Pyrcz & Deutsch, 2014).

The function of the determinant matrix C based on the unknown parameter CZ(h) is a

linear function ax± b. Upper and lower limits of seismic-derived covariance/variogram

for each lag distance can be achieved by enforcing Det {A} > 0 and Det {C} > 0

for many regular samples of CZ(h) ∈ [0, 1] (say 10000). Figure 4.9 shows the general

upper and lower limits of seismic-derived covariance based on positive determinant of

the matrix A (Equations 4.25) and C (Equation 4.26). There is a minimum acceptable

positive determinant δ. This is true for both positive and negative correlations between

well and seismic data: the determinants of the matrices A and C are equal for both
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positive and negative correlations:

A =



1 −CY Z(0) CY (h) −CY Z(h)

−CY Z(0) 1 −CY Z(h) CZ(h)

CY (h) −CY Z(h) 1 −CY Z(0)

−CY Z(h) CZ(h) −CY Z(0) 1


=



1 CY Z(0) CY (h) CY Z(h)

CY Z(0) 1 CY Z(h) CZ(h)

CY (h) CY Z(h) 1 CY Z(0)

CY Z(h) CZ(h) CY Z(0) 1


(4.27)

C =

 CY (h) −CY Z(h)

−CY Z(h) CZ(h)

 =

 CY (h) CY Z(h)

CY Z(h) CZ(h)

 (4.28)

for example:

Det(



1 −0.65 0.8 −0.45)

−0.65 1 −0.45 0.7

0.8 −0.45 1 −0.65

−0.45 0.7 −0.65 1


) = Det(



1 0.65 0.8 0.45)

0.65 1 0.45 0.7

0.8 0.45 1 0.65

0.45 0.7 0.65 1


) = 0.037

(4.29)

Det(

 0.8 −0.45

−0.45 0.7)

) = Det(

 0.8 0.45

0.45 0.7)

) = 0.357 (4.30)

Since the range of the acceptable covariances are achieved for the standardized data,

seismic-derived covariance can be simply converted to seismic-derived variogram upper

and lower limits γ(h) = 1 − C(h). The upper and lower limits of the seismic-derived

variogram may be taken from the cumulative distribution functions (CDF) of γ(h),

for example, P10 for lower limit and P90 for upper limit, this ensures more reasonable

upper and lower limits. This process is repeated for all lag distances. Figure 4.10

shows a synthetic example of upper and lower limit seismic derived-variograms of the

well data for different cross covariances. The correlation between well and seismic

data increases from Figure 4.10-a to d (see the cross covariances). The higher the

correlation between well and seismic data, the lower the difference between the upper

and lower limits. Figure 4.10-d illustrates when the well and seismic data have very
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Figure 4.9: Upper and lower limits of seismic-derived covariance based on positive
determinant of matrix A (Equation 4.24) and C (Equation 4.26). δ is a
minimum acceptable positive determinant.

a high correlation (more than 0.9) with each other, the limits of the seismic-derived

variogram are consistent with the seismic variogram. If the correlation is very low (less

than 0.2), the variogram of the seismic data does not provide any constraint on the

well variogram (Figure 4.10-a) because upper and lower limits of the seismic-derived

variogram are very far from each other.

The experimental variogram of the seismic data is very important to calculate the

limits of the seismic-derived variogram. Using lag tolerance and azimuth tolerance for

variogram calculation leads to huge CPU cost because of the large number of seismic

data. A new approach of variogram calculation is proposed by defining a template

around the head location of variogram calculation: instead of using one pair, several

pairs are assigned based on a template around the head location of variogram calcula-

tion. This is repeated for all lag distances, which leads to more reasonable variogram

of seismic data and it is so fast.

Figure 4.11 shows a 2D and 3D schematic of using a template in variogram cal-

culation for azimuth 45◦. The yellow and red cells are tail and head locations of a
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Figure 4.10: Upper and lower limits of the seismic-derived variograms for different
cross covariances, increasing from (a) to (d). The higher the cross co-
variance, the more consistent the seismic-derived variogram and seismic
variogram.

pair for variogram calculation. Instead of using one pair (black pair), several pairs are

contributed (blue pairs). These pairs are achieved by assigning a template around the

head location. The closest pairs to the head location are used for variogram calculation.

This approach could be extended for calculating the cross variogram (cross covariance)

between the well and seismic data. In this case, the tail of the variogram pairs are well

data and the head are seismic data. For more information and details of this method-

ology see Rezvandehy and Deutsch (2014b). Calculating the cross variogram (cross

covariance) at the scale of the well data is a challenge due to the fact that seismic data

have higher scale than well data.
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Figure 4.11: a) 2D schematic of using template in variogram calculation for azimuth
45◦. b) 3D schematic of using template in variogram calculation for
azimuth 45◦.

4.3.1 Enforce Upper and Lower Limits of the Seismic-derived Vari-

ogram

A rejection sampling is performed to enforce the upper and lower limits of seismic-

derived variogram: during simulating variogram realizations by LU simulation with

the correlation matrix of the lag distances, those realizations that fail to fall within

the upper and lower limits are rejected. This process is repeated until achieving the

required number of variogram realizations. The rejection sampling could be applied for

all lag distances which leads to the final variogram realizations with lower uncertainty;

however, it may not be reasonable to enforce the seismic-derived limits for very low

cross covariance (say below 0.2) because it implies no correlation between well data

and seismic data. Thus, it is recommended that the rejection sampling is applied up

to a minimum correlation, for example ρ(h) = 0.2.

Figure 4.12 shows a synthetic example of applying upper and lower limit seismic-

derived variograms on the experimental variogram realizations. Figure 4.12-a shows

variogram realizations of the well data with high uncertainty. Figure 4.12-b shows

the upper and lower limits of the seismic-derived variogram for correlation coefficient
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ρ(0) = 0.65. Figure 4.12-c shows the improved variogram realizations by enforcing

seismic-derived limits via rejection sampling up to correlation 0.2 (ρ(h) = 0.2) which is

lag distance approximately 11.5m (see Figure 4.12-b). The rejection sampling ensures

the variogram realizations are within the upper and lower limits. This leads to improve

the large variogram uncertainty in Figure 4.12-a (Figure 4.12-c).

Figure 4.12: Synthetic example of improving well variogram by the seismic-derived
variogram (limits). a) High uncertainty in the well variogram. b) Up-
per and lower limits of the seismic-derived variogram. These limits are
enforced on the well variogram realizations (a) up to correlation 0.2
(ρ(h) = 0.2). c) Final variogram realizations by enforcing the seismic-
derived variogram.
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4.4 Realistic Example: Amoco Case Study

A real case study of the 2D Amoco data (Chu et al., 1994) is considered for improving

high variogram uncertainty of well data by seismic data. The variable of interest is

averaged porosity (percentage) over the main reservoir layer. This variable is chosen

because it has higher correlation with seismic data than permeability. Figure 4.13 shows

location map of porosity (a), seismic data (b), the experimental variograms for azimuths

0◦ and 90◦ with the fitted models for porosity (c) and seismic data (d). The variograms

are calculated after normal score data. There is a zonal anisotropy for azimuth 0◦. The

variogram realizations based on the methodology mentioned in Chapter 3 by the DoF

approach is calculated for azimuths 0◦ and 90◦. Figure 4.14 shows the correlation

Figure 4.13: Location map of porosity (a), seismic data (b), the experimental vari-
ograms for azimuths 0◦ and 90◦ with the fitted models for porosity (c)
and seismic data (d) for Amoco data set.
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matrix between lag distances of two directions. Figure 4.15 shows fitted variogram

realizations for azimuths 0◦ (a) and 90◦ (b). There is a high variogram uncertainty

that could be improved by seismic data if there is a good correlation. Figure 4.16

Figure 4.14: Correlation matrix between eight lag distances of azimuth 0◦ and eight
lag distances of azimuth 90◦.

shows cross plot between normal score porosity (y axis) and seismic data (x axis).

There is a high correlation. An intrinsic model of cross covariance (Markov model) for

azimuths 0◦ and 90◦ are calculated for ρ(0) = 0.65 and used to attain seismic-derived

limits by the mentioned methodology. Figure 4.17 shows the upper and lower limits of

seismic-derived variogram for azimuths 0◦ (a) and 90◦ (b). The upper and the lower

limits of the seismic-derived variogram is calculated based on the assumption the well

and the seismic data have the same scale because the well data is averaged for the entire

reservoir. Otherwise, the variogram of the seismic data should be downscaled to the
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Figure 4.15: Fitted variogram realizations for azimuths 0◦ (a) and 90◦ (b).

Figure 4.16: Cross plot between normal score porosity (y axis) and seismic data (x
axis).

scale of the well data (see Chapter 5 for variogram downscaling). Rejection sampling

during LU simulation with the correlation matrix of lag distances (Figure 4.14) is

applied to attain the variogram realizations that are within the upper and lower limits

up to cross covariance 0.2 (ρ(h) = 0.2). Figure 4.18 shows the improved variogram

realizations after applying the upper and lower limits of the seismic-derived variograms

for azimuths 0◦ (a) and 90◦ (b). There is more improvement for azimuth 0◦ than 90◦

because of higher variogram uncertainty for azimuth 0◦. The variogram realizations

could be standardized to sill 1 and used in geostatistical modeling for incorporating

variogram uncertainty.
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Figure 4.17: The upper and lower limits of seismic-derived variogram for azimuths
0◦ (a) and 90◦ (b).

4.5 Remarks

Three different approaches of improving high uncertainty in the well variogram by the

seismic variogram is presented. Merging variogram distributions and global cokriging

are not efficient. The seismic-derived variogram is an appropriate approach. The

summary of each technique is describes.

The variogram distribution of each lag distance for the well and seismic data could

be merged to reduce well variogram uncertainty. The curve for defining the variance

of the seismic variogram based on the cross covariance could change from one data set

to another. The most accurate curve could be achieved for each data set. However,

in practice, it is a time consuming process especially in case of 3D data set. Thus, it

is not an efficient approach for reducing the uncertainty of the well variogram by the

seismic variogram.

The variogram pairs of the exhaustive seismic data could be used to estimate the

sparse variogram pairs of the well data by global cokriging approach. The standardized

form of simple global cokriging (SGCK) is proposed. Although SGCK removes noise

and artifacts in the experimental variogram, the updated variogram converges to the

fitted variogram model and not the real variogram according. Therefore, global cok-

riging approach is also considered inappropriate to improve the variogram of the well
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Figure 4.18: Improved variogram realizations after applying the limits of seismic-
derived variogram for azimuths 0◦ (a) and 90◦ (b).

data by the seismic variogram.

A totally positive covariance matrix between well and seismic data for a variogram

pair at each lag distance is proposed to attain the acceptable range of the unknown

covariance of the well data. This process is repeated for all lag distances. This leads

to the upper and lower limits of the seismic-derived variogram. These limits could be

applied on the well variogram uncertainty by a rejection sampling to ensure variogram

realizations of the well data fall within the upper and lower limits. The seismic-derived

variogram is so efficient and straightforward to use; it does not has the limitations

of the approaches of merging variogram distributions and global cokriging and it is

computationally so fast. The limits are recommended to apply for a reasonable cross

covariance (say above 0.2) to achieve more reliable seismic-derived variogram. The

higher the correlation between well and seismic data, the lower the difference between

the upper and lower limits. The variogram of the seismic data do not provide any

constraint on well variogram if the correlation is very low.

Only 2D data sets are considered to apply the seismic-derived variogram in this

Chapter. In case of 3D data set, the seismic-derived variogram is applied on the

horizontal variogram of the well data after downscaling the seismic variogram (see

Chapter 5).
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Chapter 5

Variogram Realizations

This Chapter presents a methodology to improve the horizontal variogram of well data

by considering the vertical variogram of well data as well as the horizontal variogram

of seismic data because they are often well-defined. Variogram downscaling is also

developed because the horizontal variogram of seismic data is at a larger scale than the

well data. The vertical variogram is scaled to scenarios of the horizontal variogram and

merged with the experimental horizontal variogram and the seismic-derived variogram.

Synthetic and realistic examples are presented.

5.1 Methodology

An approach is developed to improve the prediction of the horizontal variogram of

properties from well data. The challenge is the horizontal variogram of widely spaced

well data; the vertical variogram is often well-defined. The main aim of this Chapter

is improving the horizontal variogram uncertainty by the horizontal variogram from

seismic data and the vertical variogram from well data.

Figure 5.1 shows a schematic illustrating the methodology for improving a noisy

horizontal variogram with all available data (seismic and vertical variogram). The

probability distributions characterizing the uncertainty in the individual lag distances

for the noisy horizontal variogram along the stratigraphic direction γw must be defined

(see Figure 5.1-a). In case of preferential sampling, variogram declustering is required to

remove artifacts in the experimental variogram. Ordinary global kriging was proposed
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Figure 5.1: Schematic of improving the horizontal variogram of well data (a) by the
horizontal variogram of seismic data (b) and the vertical variogram of
well data (c).
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for declustering the sample variogram in Chapter 2. The variogram model fitted to

the declustered sample variogram (horizontal direction) is used to calculate variogram

uncertainty. The DoF approach proposed in Chapter 3 is used for calculating variogram

uncertainty. The high variogram uncertainty computed by the DoF approach (Figure

5.1-a) is reduced by the horizontal variogram of seismic data (Figure 5.1-b) and the

vertical variogram of well data (Figure 5.1-c).

Seismic data are extensively sampled in the horizontal direction although the verti-

cal variogram of seismic data is not particularly helpful due to the resolution of surface

seismic. The horizontal variogram of seismic data γs and the cross covariance are used

to calculate the upper and lower limits of the seismic-derived variogram for horizontal

directions by enforcing the covariance matrix between well and seismic to be totally pos-

itive. These limits can be applied on the horizontal variogram uncertainty via rejection

sampling. This was discussed in Chapter 4, Section 4.3.1. The horizontal variogram

of seismic data should be down scaled to the scale of the well data to remove the in-

consistency between the scale of the horizontal well and seismic variograms. Figure

5.1-b shows the upper and lower limits of the seismic-derived variogram for horizontal

directions after downscaling the horizontal variogram of seismic data.

The vertical variogram of well data γver could be scaled to scenarios of the horizon-

tal variogram (see Figure 5.1-c), and used as further data for improving the horizontal

variogram uncertainty. This can be done by considering uncertainty in horizontal to

vertical anisotropy ratios (H:V) (Kupfersberger & Deutsch, 1999), and uncertainty in

the sill (see Section 5.3). The vertical-derived variogram provides a variogram distri-

bution for each lag distance. If seismic data is not available, the variogram distribution

of the horizontal variogram (Figure 5.1-a) and the vertical-derived variogram (Figure

5.1-b) could be merged for each lag distance to achieve the final variogram (see Section

5.4). The method of combining error ellipses discussed in Chapter 4, Section 4.1.1 is

proposed for merging variogram distributions. If seismic data is available, the limits

of the seismic-derived variogram should also be taken into consideration to attain the

final improved horizontal variogram uncertainty (Figure 5.1-d).
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5.2 Variogram Downscaling

The proposed methodology for improving horizontal well variogram with seismic var-

iogram is applicable when well and seismic data are at the same scale. The scale of

seismic data is always bigger than the scale of well data. The horizontal scale of seismic

data is the bin size of seismic acquisition, which is usually 20m. The horizontal scale

of well data is the diameter of core sample or horizontal influence of well logging tools.

The vertical scale of seismic data is approximately 10m versus the vertical scale of well

data based on well logging vertical resolution is usually 0.15m. The difference between

the scale of well and seismic data leads to inconsistency between the horizontal vari-

ograms: the horizontal variogram of seismic data has lower variance contributions and

larger ranges than the horizontal variogram of the well data. The difference between

the vertical scales of well and seismic data is the most important. This is due to the

greater variability in the vertical direction. This inconsistency could be fixed by down-

scaling the horizontal variogram of seismic data to the scale of well data. The variogram

downscaling might not be required for 2D data because well and seismic data are both

vertically averaged for the entire reservoir (Chapter 4). There are some publications

on variogram downscaling (Babak & Leuangthong, 2008; Frykman & Deutsch, 2002;

Kupfersberger, Deutsch, & Journel, 1998). The small scale variogram γv(h) and the

large scale variogram γV (h) are written as:

γv(h) = C0
v +

n∑
i=1

Civγ
i
v(h) and γV (h) = C0

V +

n∑
i=1

CiV γ
i
V (h) (5.1)

where v is small scale, V is the large scale, C0 is nugget effect, Ci and γi(h) are

variance contributions and variogram models for variogram structures i = 1, ...., n.

Variogram downscaling is established under the assumption that the variables average

linearly and the variogram shapes are unchanged after downscaling (Kupfersberger et

al., 1998). The scaling law for variogram upscaling/downscaling retrieved from Babak

and Leuangthong (2008); Frykman and Deutsch (2002); Kupfersberger et al. (1998) is

written as:
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1. The range of variogram increases when the sampling volume size goes up. This

increase depends on the volume difference (|V |−|v|). |V | and |v| are volume sizes

for large scale and small scale. For example, if V is a large scale 100 × 100 × 1

m3, then |V | is between 1m and 141.42m. The scaling law for variogram range

is written as:

aiv = aiV − (|V | − |v|) (5.2)

where aiv and aiV are the small and the large scale variogram ranges for variogram

models γiv(h) and γiV (h), i = 1, ...., n.

2. The scaling law for nugget effect C0, and variance contribution of each nested

structure Ci is written as:

C0
v = C0

V

|V |
|v|

, Civ = CiV
1− γi(v,v)

1− γi(V,V )

(5.3)

where γi(v,v) and γi(V,V ) are the average variograms or the gamma-bar (Kupfers-

berger et al., 1998) for each nested structure i. As the volume size increases,

the nugget effect and variance contributions of the large scale variogram decrease

because by increasing the volume, the gamma-bar goes up. The impact of the

vertical scale on variogram downscaling in reservoir is much higher than the hor-

izontal scale due to the fact that the length or the width of reservoir is always

higher than reservoir thickness and higher horizontal variogram range than the

vertical variogram range. This leads to approximately equal gamma-bar for the

small and large horizontal scales (γi(v,v), γ
i
(V,V )) if the vertical scale is constant.

The small scale variogram γv(h) and large scale variogram γV (h) are required for

variogram downscaling. γV (h) is the variogram of the original seismic data at large

scale. The small scale variogram of seismic data γv(h) could be assumed as the var-

iogram of the directly calculated acoustic impedance or synthetic seismogram from

well data; acoustic impedance at well scale can be calculated by density log ρ and

velocity log ν (ρ.ν); synthetic seismogram can be built by calculating the reflection

coefficients R = ρ2.ν2−ρ1.ν1

ρ2.ν2+ρ1.ν1
and convolve with a wavelet. The downscaled horizontal
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seismic variogram should be standardized to sill 1 before calculating the seismic-derived

variogram.

The horizontal cross covariance between well and seismic data at the scale of well

data is required to calculate the seismic-derived variogram (Chapter 4, Section 4.3).

Down scaling the horizontal cross covariance may not be possible since the small scale

cross covariance between well and the calculated acoustic impedance leads to artificially

high cross covariance due to the fact that the acoustic impedance is achieved from well

data not the real seismic data. Thus, an intrinsic cross covariance model (Markov

model) (Pyrcz & Deutsch, 2014) is proposed: the covariance model of the normal score

seismic data is scaled by the correlation coefficient between the normal score well and

seismic data. The correlation coefficient between well and seismic data at the scale

of well data is required for this approach: as the scale goes down, the correlation

between well and seismic decreases. The correlation coefficient at the small scale could

be calculated by fitting an equation to the different upscaled volumes (x axis) and the

observed correlations from the data set (y axis). The resulting equation may give an

approximate correlation between well and seismic data at scales less than the vertical

resolution of seismic data (see Chapter 7).

5.3 The Vertical-derived Variogram γw|γver

The vertical variogram of well data γver could be scaled to scenarios of the horizon-

tal variogram. The vertical variogram is often well-defined due to regular sampling in

direction of drilling, and it can be scaled to the horizontal variogram by the horizontal-

to-vertical anisotropy ratio (H:V) (Kupfersberger & Deutsch, 1999) based on the geo-

logical conceptual model or analogue information. The probability distribution of each

lag distance can be achieved by considering uncertainty in H:V and uncertainty in the

sill of the vertical-derived variogram. A triangular distribution is assumed to represent

the uncertainty in H:V. Minimum (Min), Mode and Maximum (Max) values are re-

quired. The Gaussian distribution is assumed to represent the uncertainty in the sill of

the vertical-derived variogram. The Gaussian distribution is constructed by mean=1,
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which is the sill value for the standardized data, and standard deviation σ:

∆v = Max((1− Z), (T − 1)) , σ =
∆v

P90
(5.4)

where Z is zonal anisotropy, and T is trend for the horizontal variogram: ∆v is the

practical maximum deviation of the sill of the horizontal variogram from the sill 1.

There may be a zonal anisotropy or trend in the horizontal variogram that can be

inferred from the conceptual geological model or seismic data. Accounting for uncer-

tainty in the sill avoids unreasonably low variogram uncertainty in the vertical-derived

variogram. The standard deviation of the distribution of the sill σ can be calculated

for P90 (or P10) of the normal standard distribution. Figure 5.2-a shows the trian-

gular distribution for H:V, and Figure 5.2-b shows the Gaussian distribution of the

sill. Simulating many H:V and sill values from the corresponding triangular and Gaus-

sian distributions provides the vertical-derived variogram. This process is repeated to

calculate variogram realizations of the vertical-derived variogram.

Figure 5.2: a) The triangular distribution of H:V. b) The Gaussian distribution of
the sill.

Figure 5.3 shows a synthetic example of scaling the vertical variogram to scenarios

of the horizontal variogram by the mentioned approach. Min, Mode and Max of

H:V for building the triangular distribution are 80, 100 and 120 respectively. Figure

5.3-a shows the triangular distribution of the H:V. Figure 5.3-b shows the Gaussian

distribution of the sill for ∆v = 0.05. Figure 5.3-c shows a synthetic vertical variogram
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with two spherical structures, variance contributions of 0.4 and 0.6, and ranges of

2m and 10m, respectively. Figure 5.3-d shows 100 realizations of the vertical-derived

variogram. If the horizontal variogram cannot be calculated because of the limited

well data (less than 4 wells), the vertical-derived variogram could be replaced with the

horizontal variogram and used in geostatistical modeling.

Figure 5.3: a) The triangular distribution of H:V with Min = 80, Mode = 100,
Max = 120. b) The Gaussian distribution of the sill for ∆v = 0.05.
c) Synthetic vertical variogram. d) 100 variogram realizations of the
vertical-derived variogram.

5.4 Merge the Horizontal and the Vertical-Derived Vari-

ograms

The distributions of the horizontal variogram γw and the vertical-derived variogram

γw|γver are merged to achieve an updated and more accurate variogram distribution for

each lag distance. The error ellipses approach from Chapter 4, Section 4.1.1 is used for

merging the variogram distributions. A transformation table is required to transform
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the Chi-square distribution of each lag distance to a Gaussian distribution, and back

transform the results to the Chi-square distribution. This transformation could be done

by quantile matching lookup analogous to the normal score transformation approach

(Deutsch & Journel, 1998). That is:

y = G−1(F (z)) , z = F−1(G(y)) (5.5)

where y is the Gaussian transformed random variable corresponding to the original

data z. F (z) is cumulative distribution function (CDF) of original data, G(y) is the

standard CDF. An anamorphosis function is constructed from Equation 5.5 based on

matching quantiles between a normal score distribution function G(y) and the standard

Chi-square distribution function with 1 degree of freedom F (z). This anamorphosis

function is denoted:

G(y) = ϕ(Chi(z)) , Chi(z) = ϕ−1(G(y)) (5.6)

where ϕ is the anamorphosis function that transform any Chi-square distribution func-

tion Chi(z) to the Gaussian distribution function G(y). The merged Gaussian distribu-

tion function can be back transformed to the merged Chi-square distribution by inverse

of the anamorphosis function ϕ−1. Figure 5.4 shows that the Chi-square distributions

1, 2 are transformed to the Gaussian distributions, merged in Gaussian space and

back transformed to the Chi-square distributions (distribution 3) by the anamorphosis

function.

Figure 5.5 shows a synthetic example of merging the Chi-square distributions as-

sumed as the variogram distributions of γw (Distribution 1) and γw|γver (Distribution

2) for a lag distance by the mentioned methodology. Figure 5.5-a shows the Chi-

square distributions: the left hand side with the mean of 0.2 and standard deviation of

0.141, and the right hand side with the mean of 0.9 and standard deviation of 0.635.

Each Chi-square distribution should be transformed to the Gaussian distribution by

the anamorphosis function (see Equation 5.6 and Figure 5.4). Figure 5.5-b shows the
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Figure 5.4: The Chi-square distributions 1, 2 are transformed to the Gaussian dis-
tributions by the anamorphosis function, merged in the Gaussian space
(distribution 3) by error ellipse approach and back transformed to the
Chi-square distribution by inverse of the anamorphosis function ϕ−1.
The vertical axis is the standard Chi-square distribution function and
the horizontal axis is the standard normal distribution function.

Gaussian transformed distributions of each Chi-square distribution (Figure 5.5-a). Fig-

ure 5.5-c shows the merged distribution in Gaussian space in left, and the Chi-square

distribution in right after back transformation the merged Gaussian distribution by

inverse of the anamorphosis function ϕ−1. The merged Chi-square distribution is con-

vex: the updated mean is 0.317 which is in the middle of the mean of two Chi-square

distributions (0.2, 0.9) and it is close to the distribution with lower uncertainty (Dis-

tribution 1). The process of merging variogram distributions of γw and γw|γver should

be repeated to achieve the updated variogram distributions for all lag distances.

5.4.1 Variogram Realizations after Merging Variogram Distributions

After merging variograms γw and γw|γver , variogram realizations could be drawn from

the updated (merged) Chi-square distributions of the variogram lags. Variogram real-

izations should respect the correlation between lags by LU simulation with the corre-
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Figure 5.5: a) Two Chi-square distributions assumed to be the distributions of the
same lag distance for different variograms (γw, γw|γver). b) The Gaussian
transformed distribution of each Chi-square distribution. c) Merged dis-
tributions in Gaussian space in left Figure and Chi-square space in right
Figure.

lation matrix of the variogram lag distances. LU simulation for calculating correlated

variogram realizations was discussed in Chapter 3, Section 3.4.

Figure 5.6 shows a synthetic example of merging the uncertainty in the horizon-
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tal variogram and the vertical-derived variogram, and sample realizations from the

Figure 5.6: Synthetic example of merging the horizontal variogram realizations (a)
and the vertical-derived variogram realizations (b). The improved hori-
zontal variogram (c) has lower uncertainty.

merged distributions. The experimental horizontal variogram is shown on each vari-

ogram (dashed pointed line). Figure 5.6-a shows the horizontal variogram realizations

with high uncertainty. Figure 5.6-b is the vertical-derived variogram realizations. The

distribution of each lag distance of the horizontal variogram and the vertical-derived

variogram are merged with the error ellipse approach after transforming from the Chi-

square distribution to the Gaussian distribution, then back transformed to the Chi-

square distribution after merging (see the mentioned methodology above). Variogram
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realizations are drawn from the updated distributions of each lag distances. Figure

5.6-c shows the improved horizontal variogram realizations with lower uncertainty. If

exhaustive seismic data is not available, merging the horizontal variogram realizations

and the vertical-derived variogram is applied.

5.5 Improve Horizontal Variogram by the Vertical-derived

and Seismic-derived Variograms

The challenge addressed now is when seismic data is also available with a vertical-

derived horizontal variogram. This could be done by enforcing the seismic-derived

variogram on both γw and γw|γver and then variogram distributions are merged. A

simulation study is presented to confirm the efficiency of this approach against other

possible techniques of applying the seismic-derived variogram such as enforcing the

seismic-derived variogram on only 1- γw, 2- γw|γver , 3- Merged variogram. Synthetic

well and seismic data with a high correlation are simulated. Sparse wells are drawn.

The horizontal variograms from the well and seismic data and the vertical variogram

from well data are calculated. The horizontal variogram uncertainty, the vertical-

derived and the seismic-derived variograms are computed. All possible approaches of

using the seismic-derived variogram are applied to improve the horizontal variogram

uncertainty. The approach that makes the horizontal variogram closest to the real

horizontal variogram of well data will be recommended.

Synthetic Gaussian well data are simulated by sequential Gaussian simulation (SGS)

with grid numbers of nx = 100×ny = 100×nz = 50. The horizontal grid size (x and y)

is 10m and the vertical grid size is 1m; the area is x = 1000m× y = 1000m× z = 50m.

The reference variogram model has two spherical structures with variance contributions

of 0.5 (no nugget effect). The horizontal and vertical variogram ranges for the first

structure are 140m and 6m, and the horizontal and the vertical variogram ranges for

the second structure are 380m and 12m. Well data are drawn from the simulated data

set. Figure 5.7 shows the simulated well data and the locations of the ten drawn wells.

Synthetic Gaussian seismic data (acoustic impedance) are simulated with the same
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Figure 5.7: Simulated Gaussian well data set with grid numbers of nx = 100× ny =
100 × nz = 50 (volume of x = 1000m × y = 1000m × z = 50m) and
locations of the ten drawn wells.

grid numbers and grid sizes of well data enforcing a high negative correlation (ρ(0) =

−0.65) because in reality, well data (porosity) usually have a negative correlation with

the acoustic impedance. The variogram of the seismic data is isotropic with two spher-

ical structures and variance contributions of 0.4 and 0.6 for the first and second struc-

tures (no nugget effect). The horizontal and vertical variogram ranges for the first

structure are 160m and 6m, and the horizontal and vertical variogram ranges for the

second structure are 350m and 12m. It is assumed that well data and seismic data have

the same scale. Figure 5.8 shows that the simulated seismic data. Figure 5.9 shows the

cross plot between the well and seismic data at ten drawn well locations (ρ(0) ≈ −0.65).

Figure 5.10 shows the horizontal variogram (Figure 5.10-a) for azimuth 0◦ ± 30◦ and

the vertical variogram (Figure 5.10-b) of the ten drawn wells and fitted variogram

models. The horizontal variogram is noisy because of sparse well data (see Figure

5.7); however, the vertical variogram is well-defined. For calculating the horizontal

126



Figure 5.8: Simulated seismic data set having high correlation with the Figure 5.7.
Grid numbers are nx = 100 × ny = 100 × nz = 50 and the volume is
x = 1000m× y = 1000m× z = 50m.

Figure 5.9: Cross plot between well and seismic data for the ten drawn wells.

variogram realizations, the correlation matrix between lag distances are calculated in

Figure 5.11-a, and the distribution of uncertainty of each lag distance is calculated by
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the DoF approach (Chapter 3). Since the wells are sparse and the variogram range is

not large, there is low correlation between lag distances. Variogram realizations are

drawn from the uncertainty interval of lag distances: LU simulation is applied with

Figure 5.10: The horizontal variogram for azimuth 0◦ ± 30◦ (a) and the vertical var-
iogram of the ten wells drawn from the Figure 5.7 (b).

the correlation matrix between lag distances and back transformed to the marginal

Chi-square distributions. Figure 5.11-b shows the correlation between lag distances for

100 variogram realizations after LU simulation. There is a slight difference between

the correlation matrix (Figure 5.11-a) and correlations between variogram realizations

(Figure 5.11-b). Figure 5.12-a shows the horizontal variogram realizations and Fig-

ure 5.12-b shows the fitted variogram realizations. The uncertainty is high and can

be improved by the vertical-derived variogram and the upper and lower limits of the

horizontal seismic-derived variogram. Figure 5.13 shows the vertical-derived variogram

γw|γver ; uncertainty in H:V is calculated by the triangular distribution with Min = 15,

Mode = 21.5 and Max = 28, and ∆v = 0.1 for calculating the uncertainty in the sill

(see Figure 5.2). γw|γver is achieved by scaling the vertical variogram in Figure 5.10-b

and accounting for the uncertainty in the sill. Figure 5.14 shows the upper and lower

limits of the horizontal seismic-derived variogram γw|γs . These limits are enforced on

variogram realizations up to correlation 0.2 (ρ(h) = 0.2) between the well and seis-

mic data. Figure 5.15 shows the improved horizontal variogram realizations by four

approaches: a) Enforce the seismic-derived variogram on γw, and merged with γw|γver .

b) Enforce the seismic-derived variogram on γw|γver , and merged with γw. c) Merge
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Lag 1
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Lag 4

Lag 5

Lag 2

Figure 5.11: a) Correlation matrix between lag distances for the horizontal variogram
of ten wells drawn from the Figure 5.7. b) Correlation matrix between
lag distances for 100 variogram realizations after LU simulation and
back transformation to the marginal Chi-square distributions.

γw and γw|γver , and apply the seismic-derived variogram on the merged variogram. d)

Enforce the seismic-derived variogram on γw and γw|γver and merge variograms. Al-

though they look similar because of using the same merging approach (error ellipse

technique), the difference between approaches could be used to choose the most reli-

able technique: since the real variogram of the ten drawn wells is available, the mean

square error (MSE) between all variogram realizations and the real variogram for all

lag distances is calculated. The approach that leads to a minimum MSE may signify
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Figure 5.12: The horizontal variogram realizations (a) the fitted variogram realiza-
tions of ten drawn wells (b).

Figure 5.13: The vertical-derived variogram by scaling the vertical variogram in Fig-
ure 5.10-b via considering uncertainty in the H:V and sill: the triangular
distribution with Min = 15,Max = 28 and Mode = 21.5 for H:V, and
∆v = 0.1 for building the Gaussian distribution of the sill.

the most reliable technique. The lowest MSE, which is 0.024284, achieved in case of

enforcing the seismic-derived variogram on both γw and γw|γver and then merge vari-

ograms (see Figure 5.15-d). This ensures that the merged variogram is situated within

the seismic-derived upper and lower limits.
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Figure 5.14: The horizontal seismic-derived variogram. The upper and lower limits
are enforced up to correlation 0.2 (ρ(h) = 0.2).

5.6 Multivariate Variogram Realizations

In case of multivariate geostatistical modeling, the variogram realizations should con-

sider the correlation between variables: if variables are correlated, the variogram re-

alizations between variables are correlated. For example, if two variables are highly

correlated, a variogram realization with high range of one variable cannot be used with

a variogram realization having low range of another variable in geostatistical modeling:

both variogram realizations should have high range or low range. LU simulation is

proposed to respect the correlation between variables for variogram realizations. Real-

izations of LU simulation (Deutsch & Journel, 1998) preserves the correlation between

the elements in a correlation matrix. By LU simulation, multivariate Gaussian dis-

tribution of each variable is constructed and ranked. The variogram realizations for

a specific lag distance are calculated for each variable and ranked; the lag distance

should be reasonably chosen to differentiate variogram realizations. The ranked vari-

ogram realizations of the variables are ordered based on the ranked realizations of the

LU simulations. The Step by Step procedure is:

1. Construct the positive correlation matrix of variables ρ. If there is a negative

correlation between variables, that should be converted to positive correlation be-
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Figure 5.15: Improved horizontal variogram realizations by four different approaches:
a) Enforce the seismic-derived variogram on γw, and merge with γw|γver .
b) Enforce the seismic-derived variogram on the γw|γver , and merge with
γw. c) Merge γw and γw|γver , and apply the seismic-derived variogram
on the merged variogram. d) Enforce the seismic-derived variogram on
γw and γw|γver and merge variograms. Approach d leads to a minimum
mean square error (MSE).

cause even though variables are negatively correlated, the variogram realizations

are positively correlated.

2. Compute the Cholesky decomposition of the correlation matrix as ρ = LLT

3. Simulate a vector of uncorrelated standard normal deviate w

4. Generate a vector of correlated Gaussian realizations Y = Lw

5. Rank correlated Gaussian realizations for each variable Y

6. Calculate variogram values for a specific lag distance for all variogram realizations

of variables Z

7. Rank the variogram values of each variable Z
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8. Order Z based on Y for all variables

this ensures the positive correlations between the variables are reproduced for vari-

ogram realizations. Then, the horizontal variogram realizations of each variable can

be autofitted with the vertical variogram to achieve 3D variogram realizations of each

variable.

5.7 Realistic Example: Hekla Case Study

The Hekla data is presented for improving the horizontal variogram of well data. The

Hekla reservoir is a part of North Sea fluvial deposit (offshore) located in Norway. This

data set is suitable for the proposed methodology of improving horizontal variogram

by the vertical-derived and the seismic-derived variograms. 3D seismic data of this

data set is not available, there is only an average of acoustic impedance for the entire

thickness of the reservoir. The total thickness of the reservoir is approximately 60m

(H1+H2, H1: Horizon 1, H2: Horizon 2). The cell size for X and Y directions of seismic

data are 50m; hereby, the scale of seismic data is X = 50m × Y = 50m × Z = 60m.

Figure 5.16 shows the average acoustic impedance (H1+H2 Impedance) and location

map of the well data for this data set. There are some missing acoustic impedance

values. The input data includes twenty wells. Three wells 8, 15, and 16 are eliminated

for this study because there is no acoustic impedance: the variogram of the calculated

acoustic impedance from well data is used for downscaling the variogram of the original

seismic data to the scale of the well data (see Section 5.2). The variable of well data for

improving the horizontal variogram for this study is Log Porosity. The vertical scale of

Log Porosity is 1m after upscaling. Figure 5.17 shows Log Porosity of seventeen wells

for this data set.

Directional horizontal and vertical variograms of Log Porosity are calculated. Since

major and minor directions of continuity cannot be seen in the well data, these direc-

tions are obtained from seismic data: according to Figure 5.16, the approximate major

and minor directions of continuity are azimuths 25◦ and −65◦. The horizontal vari-

ograms of Log Porosity are calculated for azimuths 25◦±30◦ and −65◦±30◦. Both the
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Figure 5.16: Average of the acoustic impedance for the entire reservoir (H1+H2
Impedance) and locations of seventeen wells for Hekla data set.

well and seismic data are normal scored. Figure 5.18 shows the normal score horizontal

and vertical variograms of Log Porosity and fitted models. Due to sparse well data, the

horizontal variograms are noisy and unreliable, and do not show the spatial correlation.

The vertical variogram is well-defined because of regular sampling in the vertical direc-

tion. For calculating the horizontal variogram realizations, correlation matrix between

the lag distances of azimuths 25◦ and −65◦ is shown in Figure 5.19. Because of sparse

well data, the correlations are relatively low. Variogram uncertainties are calculated by

the DoF approach (Chapter 3); LU simulation is applied with the correlation matrix of

lag distances and back transformed to the marginal Chi-square distribution. Figures
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Figure 5.17: 3D Log Porosity of seventeen wells for Hekla data set (see Figure 5.16).
The wells are sparse. The approximate scale 1000m is a horizontal scale.

5.20-a and 5.21-a show 100 horizontal variogram realizations for azimuths 25◦ ± 30◦

and −65◦ ± 30◦, respectively. Figures 5.20-b and 5.21-b show the fitted variogram

realizations. There is a high variogram uncertainty for both directions. The objec-

tive is to reduce the horizontal variogram uncertainty using the vertical-derived and

seismic-derived variograms.

Figure 5.18: a) The horizontal variograms of Log Porosity and fitted models for az-
imuths 25◦ ± 30◦ and −65◦ ± 30◦ (normal score). b) The vertical vari-
ogram of Log Porosity and fitted model (normal score).
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Figure 5.19: Correlation matrix between eight lag distances of azimuth 25◦ and seven
lag distances of azimuth −65◦.

Figure 5.20: The horizontal variogram realizations of Log Porosity for azimuths 25◦±
30◦ (a) and the fitted variogram realizations (b).

The vertical-derived variogram γw|γver could be calculated for both major and minor

directions of continuity if H:V is available for these directions from the conceptual
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Figure 5.21: The horizontal variogram realizations of Log Porosity for azimuths
−65◦ ± 30◦ (a) and the fitted variogram realizations (b).

geological models. However, there is usually one calculated H:V for reservoir. Figure

5.22 shows the vertical-derived variogram γw|γver ; uncertainty in H:V is calculated by a

triangular distribution with Min = 80, Mode = 100 and Max = 120, and uncertainty

in the sill by the Gaussian distribution with ∆v = 0.2. Simulation is used to draw

samples of H:V and sill. γw|γver is achieved by scaling the vertical variogram (Figure

5.18-b) via the drawn H:V value and assigning the drawn sill value for each scaled-

vertical variogram.

The seismic variogram should be down scaled before calculating the upper and lower

limits of the seismic-derived variogram. For this data set, there is only a 2D average

acoustic impedance over the entire reservoir instead of 3D seismic data. According to

the variogram scaling law, both 3D large scale and small scale variograms are required

(see Equation 5.3). The large scale variogram is the variogram of seismic data at the

scale of X = 50m × Y = 50m × Z = 60m. The small scale variogram of seismic

data at the scale of well data is unknown. The variogram of the calculated acoustic

impedance at the scale of well data is available for this data set. Figure 5.23 shows the

experimental horizontal and vertical variograms of the calculated acoustic impedance

and fitted models. This leads to a 3D variogram model of the calculated acoustic
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Figure 5.22: The vertical-derived variogram realizations by scaling the vertical var-
iogram in Figure 5.18-b; uncertainty in the horizontal to vertical
anisotropy ratio (H:V) is calculated by the triangular distribution with
Min = 80, Mode = 100 and Max = 120 and the Gaussian distribution
of the sill by ∆v = 0.2. The horizontal variograms for azimuths 25◦ and
−65◦ are shown in this Figure.

impedance at the scale of well data used for downscaling the real seismic variogram to

the scale of the well data. The vertical scale of well data is 1m and the horizontal scale

Figure 5.23: a) The horizontal variograms of the calculated acoustic impedance for
wells and the fitted models for azimuths 25◦±30◦ and−65◦±30◦ (normal
score). b) The vertical variogram of the calculated acoustic and fitted
model (normal score).

is assumed to be 0.25m. The impact of the vertical scale on downscaling is much higher

than the horizontal scale: the average variogram for the small and large horizontal scale

are approximately equal (see Equation 5.3). The scaling law for variogram range has a

little impact on the down scaled variogram (see Equation 5.2). Figure 5.24 shows the
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experimental variograms, fitted models and the standardized down scaled variograms

of the seismic data for azimuths 25◦ and −65◦. The down scaled seismic variogram is

at the scale of the horizontal well variogram. The correlation between well and seismic

at the scale of well data is required; as the scale of the seismic data decreases, the

Figure 5.24: The experimental variograms, fitted models and standardized down
scaled variograms of the seismic data (see Figure 5.16) for azimuths
25◦ (a) and −65◦ (b) (normal score).

correlation between well and seismic goes down. This correlation could be roughly

estimated by fitting an equation to the different upscaled volumes and the observed

correlations between well and seismic data. Since there is no 3D resolution in this

data set for finding this equation, the correlation between the well and seismic data

(acoustic impedance) at the scale of well data is assumed to be 0.4. The cross covariance

is calculated by the intrinsic model. Figure 5.25 shows the upper and lower limits of the

horizontal seismic-derived variograms γw|γs for azimuths 25◦ and −65◦. These limits

are enforced on the horizontal variogram realization for azimuths 25◦ (Figure 5.20-b)

and −65◦ (Figure 5.21-b) and the vertical-derived variogram γw|γver (Figure 5.22) up

to correlation 0.2 (ρ(h) = 0.2) by the rejection sampling approach with the correlation

matrix of the lag distances (Figure 5.19). The final step is merging the horizontal

variograms with the vertical-derived variogram for each direction.

Figure 5.26-a shows enforcing the seismic-derived variogram on only the horizon-

tal variogram realizations without merging with the vertical-derived variogram for az-

imuths 25◦ and −65◦. Since, the correlation between the well and seismic data is low

(ρ(0) = 0.4), the impact of the seismic variogram to improve the high uncertainty in
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Figure 5.25: The upper and the lower limits of the horizontal seismic-derived vari-
ograms for azimuths 25◦ (a) and −65◦ (a). These limits are enforced
on the horizontal variogram realizations for azimuths 25◦ and −65◦ and
the vertical-derived variogram up to correlation 0.2 (ρ(h) = 0.2).

the horizontal variogram is not striking. Figure 5.26-b shows merging the horizon-

tal variogram realizations with the vertical-derived variogram without enforcing the

seismic-derived variogram for azimuths 25◦ and −65◦. This is the case when seismic

data is not available. The uncertainty goes down considerably because the uncertainty

in the vertical-derived variogram is lower than the horizontal variogram and merging

variogram distributions by error ellipse approach leads to less uncertainty. Figure 5.26-c

shows the final improved variogram realizations for azimuths 25◦ and −65◦ considering

both the vertical-derived and seismic-derived variogram: enforce upper and lower limits

on both the horizontal variogram and the vertical-derived variogram realizations, and

merge variogram distributions and sample from the merged distribution by LU sim-

ulation. The final horizontal variogram is strongly influenced by the vertical-derived

variogram. These realizations are fitted with the fixed vertical variogram by auto var-

iogram modeling software to attain the 3D variogram realizations. These variogram

realizations are used in geostatistical modeling to incorporate variogram uncertainty.

5.8 Remarks

The horizontal variogram of sparse well data has high uncertainty. A new approach is

presented to improve the high uncertainty by the well-defined vertical variogram from
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Figure 5.26: a) Enforce the upper and lower of the seismic-derived variogram on
the horizontal variogram realizations without merging with the vertical-
derived variogram for azimuths 25◦ and −65◦. b) Merge the horizontal
variogram realizations with the vertical-derived variogram without en-
forcing the seismic limits for azimuths 25◦ and −65◦. c) Final improved
variogram realizations for azimuths 25◦ and −65◦ considering the hori-
zontal variogram of seismic data and the vertical variogram of well data.

well data and the horizontal variogram from seismic data. The uncertainty in the 3D

variogram of well data is quantified by the uncertainty in the horizontal variogram.
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The vertical variogram is assumed without uncertainty because of regular sampling in

the direction of drilling. By improving uncertainty in the horizontal variogram, the

3D variogram realizations will be more reliable. These realizations could be used in

geostatistical modeling to transfer variogram uncertainty to the final model. Improved

variogram uncertainty leads to more accurate forecasting due to the fact that variogram

uncertainty has more impact on flow than resource estimation (see Chapter 3).

Figure 5.27 shows a work flow for achieving the final variogram realizations. First,

the horizontal and vertical variograms of well data should be calculated and a the-

oretical model is fitted for normal score data. In case of preferential sampling, the

theoretical model could be used for declustering the experimental variogram to have a

new fitted variogram model (see Chapter 2). The new fitted variogram model is used

to calculate variogram uncertainty. The proposed methodology works for both 2D and

3D data set. For 2D data set, there is no vertical variogram (see Chapter 4). Since

well data are vertically averaged (upscaled) for the entire reservoir as well as seismic

data, well and seismic data are approximately at the same scale, hence, downscaling

the seismic variogram before calculating the seismic-derived variogram is not required.

Variogram realizations for major and minor directions of continuity are computed (see

Chapter 3). Final 2D variogram realizations are produced by enforcing the seismic-

derived variograms on the variogram realizations by rejection sampling (see Chapter 4,

Section 4.3.1).

The methodology for 2D data set can be extended for 3D data set. In this case, the

vertical variogram can also be used to improve variogram uncertainty. The horizontal

variogram realizations are calculated for major and minor directions of continuity. The

vertical variogram is converted to scenarios of the horizontal variogram by considering

uncertainty in the horizontal to vertical anisotropy ratio (H:V) and uncertainty in

the sill. The horizontal variogram of seismic data are calculated and down scaled to

the scale of well data. An intrinsic cross covariance model (Markov model) (Pyrcz &

Deutsch, 2014) is calculated by the correlation between well and seismic data at the

scale of well data. This correlation could be achieved by fitting an equation to the

different upscaled volumes and the observed correlations for data set. The resulting
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Figure 5.27: Work flow for improving variogram uncertainty.

equation may give an approximate correlation between well and seismic data at any

scale. The upper and lower limits of the seismic-derived variogram are calculated and

applied on the horizontal variogram realizations and the vertical-derived variogram

by rejection sampling. The resulting variogram distributions after applying seismic

constrains are merged and sample again by LU simulation with the correlation matrix

of lag distances to achieve the improved horizontal variogram realizations.

The horizontal variogram realizations should consider the correlation between vari-
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ables for multivariate geostatistical modeling (Section 5.6). LU simulation is proposed

with the positive correlation matrix between variables. This ensures that the positive

correlations between the variables are reproduced for variogram realizations. Then, the

horizontal variogram realizations of each variable can be autofitted with the vertical

variogram to obtain the final 3D variogram realizations of each variable.
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Chapter 6

Multivariate Distribution
Uncertainty

Required statistics such as the mean and the variance of the variables being modeled are

often uncertain due to limited data and preferential sampling. Based on geological and

geophysical data, the wells are likely located in the areas of higher quality to maximize

production. Naive equal weighted statistics will lead to biased resource estimates and

inappropriate reservoir development planning. Similar to variogram declustering (see

Chapter 2), the univariate distributions of the variables should be declustered to achieve

representative distributions.

The conventional declustering algorithms such as cell-declustering may correct the

statistics and lead to a representative histogram if there are enough wells in good and

poor areas; however, there are unlikely to be enough wells in the stage of development of

the reservoir (Pyrcz & Deutsch, 2014). In such case, a representative distribution of the

well data for each variable could be obtained with the aid of soft data such as exhaustive

seismic data or geological interpretation. Debiasing or soft data declustering techniques

(Deutsch et al., 1999, 2005) are used to construct a representative distribution based

on conditional distributions inferred from the calibration with the soft secondary.

Similar to variogram uncertainty, there is unavoidable uncertainty in the repre-

sentative histogram. This uncertainty should be quantified correctly because it affects

resource/reserve estimation, investment and development decisions. This Chapter aims

at developing a technique to evaluate and improve univariate parameter uncertainty,
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that is, uncertainty in the distribution or histogram of each variable. The Chapter

begins by introducing a new approach of quantifying histogram uncertainty followed

by evaluating all approaches relative to the ”true” uncertainty for a single variable.

Multivariate parameter uncertainty is developed based on the correct technique. A

realistic case study is presented.

6.1 Posterior Histogram Uncertainty

Uncertainty in univariate distribution of regionalized variables (input parameters) can

be attained by different approaches. 1- The bootstrap (Efron, 1979) draw values from

the data distribution to simulate different possible data sets. Since this approach

does not account the spatial correlation between data, it may not lead to the correct

uncertainty in the histogram. 2- The spatial bootstrap is an extension of the bootstrap

technique that considers the spatial correlation of data (Deutsch, 2004; Journel &

Bitanov, 2004) by unconditional LU simulation at data locations. The conditioning

data and the area of interest are not considered in this technique. 3- Conditional

finite domain (CFD) accounts for the conditioning data and the size of the domain.

Generally, CFD is very difficult to operate and leads to very low uncertainty (Babak &

Deutsch, 2009). 4- Global kriging can estimate the variance of the mean for the entire

domain. It accounts for the conditioning data and the area of interest; the variance

will decrease when the domain size increases (Deutsch & Deutsch, 2010).

A simulation-based method for quantifying uncertainty is proposed in this Chapter.

Since the spatial bootstrap does not account for the conditioning data, it is likely to

have unreliable high histogram uncertainty. The histogram uncertainty quantified by

the spatial bootstrap is assumed to be a prior uncertainty. This prior uncertainty could

be conditioned to achieve more reliable histogram uncertainty. This is called posterior

histogram uncertainty and it is claimed to be more accurate than other techniques

(Khan & Deutsch, 2016). The posterior histogram uncertainty is attained by using the

spatial bootstrap realization as reference distribution for normal score transformation

of data, and back transforming the conditional Gaussian realizations to original units.
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This process is repeated for the number of realizations. The simulation area could be

clipped to the domain limits for more accurate posterior histogram uncertainty. The

procedure is summarized by:

1. Define a stationary covariance function C(h).

2. Define the reference distribution F(z).

3. Perform the spatial bootstrap resampling as follows:

a) Construct the spatial data-to-data covariance matrix C.

b) Compute the Cholesky decomposition of the correlation matrix asC = LLT .

c) Simulate a vector of uncorrelated standard normal deviate w.

d) Generate a vector of correlated Gaussian values y = Lw.

e) Transform the unconditional Gaussian values to original units

z(uα) = F−1(G(y(uα))), α = 1, ..., n. Where uα is a data location and n

is the number of data.

4. Conditional simulation; the spatial bootstrap realization used as a reference dis-

tribution for normal score transformation.

5. Back transform the realization to original units with the spatial bootstrap refer-

ence distribution.

6. Each realization is limited to the domain limits.

Steps 3-c to 6 are repeated to achieve the posterior histogram uncertainty. This ap-

proach accounts for the conditioning data, the domain limits and the spatial correlation

between data.

Figure 6.1 shows a 2D synthetic data set with in an area of 1000m × 1000m with

nine data locations. The variable is effective porosity. The uncertainty in the mean

of the distribution is calculated by the prior and posterior uncertainty. An anisotropic

variogram model is assumed with the range of 80m for 0◦ and 40m for azimuth 90◦.

Prior uncertainty in the mean is attained by averaging each realization of the spatial

bootstrap. The variance of the mean is 2.11× 10−2. Posterior uncertainty in the mean
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is attained by using each realization of the spatial bootstrap as a reference distribution

for normal score transformation of data and back transforming the realizations from

the Gaussian space to original units. The mean of each realization is computed. This

process is repeated to attain the posterior uncertainty in the mean: the variance of

the mean decreases from 2.11× 10−2 (prior uncertainty) to 1.43× 10−2 because of the

conditioning data and domain limits.

The posterior histogram uncertainty is considered more accurate than the other

techniques. The only way to check the approaches of quantifying histogram uncertainty

is to design an experimental framework where the true uncertainty in the histogram

is known. For this experiment, the spatial bootstrap (prior), the global kriging and

posterior approaches are considered since the bootstrap and CFD are not considered

viable alternatives for quantifying histogram uncertainty.

6.2 Methodology

The approaches of quantifying parameter uncertainty (histogram uncertainty) are eval-

uated by comparing to the ”true” uncertainty to find the most correct approach; the

spatial bootstrap, global kriging and posterior approaches are tested relative to the

true parameter uncertainty. Although the experiment is applied for a single variable,

the result of this experiment is applicable to multiple variables. The global uncer-

tainty (variance) in the mean of distribution is used to evaluate parameter uncertainty

approaches.

In practice, the true variance of the mean could be achieved by a scan-based ap-

proach, which looks for similar patterns of a data configuration within a large real

image, and calculates the mean of the specified domain as the mean of the values

within the domain conditioned to the specified data configuration. The term ”data

configuration” is a template of data locations with assigned values: the term ”tem-

plate” is only the location of data without value. The proposed scan-based approach

for computing the true distribution of the mean is summarized by the following Steps:

1. Select a large grid of real data from remote sensing.
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Figure 6.1: A synthetic 2D example of effective porosity. The uncertainty in the mean
is calculated by prior and posterior uncertainty. The posterior approach
leads to lower uncertainty in the mean of effective porosity: the variance
of the mean decreases from 2.11×10−2 (prior uncertainty) to 1.43×10−2

because of the conditioning data and domain limits.

2. Find stationary area and average variogram by discretization of the image for

different patch sizes.
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3. Pre-scan the image for a template to find common data configurations.

4. Scan again the data configuration to find exact replicates within the image and

average the whole domain near the data configuration to build the true distribu-

tion of the mean (see Figure 6.2).

Figure 6.2-a and Figure 6.2-b show a schematic and an example of the scan-based

approach. A data configuration with five locations is scanned to find similar patterns

in the image. The data configuration should have enough replicates within the image

to make a reliable true distribution of the mean. A tolerance between the specified

data configuration and the observed pattern in the image should be considered in order

to find enough replicates. By scanning many data configurations and several templates

over a large image, and calculate the mean of each replicate, the true uncertainty

(variance) in the mean is attained. This would support selection of the best approach

of quantifying histogram uncertainty.

6.3 Evaluate Parameter Uncertainty Techniques by True

Uncertainty

6.3.1 Proper Data Configurations

The true variance of the mean could be attained by scanning an image to find similar

replicates of data configuration (see Figure 6.2). The problem with the scan-based

approach is finding proper data configurations. The data configurations should have

enough replicates. This leads to a reliable distribution of the mean (more accurate

variance of the mean). The index method proposed by Deutsch (1992) is applied to

find frequent data configurations of a template in image:

index = 1 +
N∑
i=1

[zi − 1].Ki−1 (6.1)

where K is number of classes which divides the data of image into different classes. N

is number of data locations, and zi is a class number of each data location in image.
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Figure 6.2: a) Schematic of the image-based approach for calculating direct observa-
tion of the mean uncertainty. b) An example of the scan-based approach:
a data configuration with five locations is scanned within the image and
similar patterns of this data configuration are found to build the true
distribution of the mean.
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By scanning a template (data location without value) in image, frequent indexes are

observed. Figure 6.3 shows a schematic of the index approach for finding optimum

data configurations that have enough replicates in the image. There is a template with

6 locations (N = 6), and the values of the image in this Figure are divided into 10

classes (K = 10). For example, class number 2 is between -2.3 to -1.7. This template

is scanned within the image to select the index values that have reasonable frequencies

(more than average frequency). These indexes are converted to the corresponding data

configurations. Figure 6.3 shows how an index value of 251320 is converted to a data

configuration. First, the class number of each location is calculated. Then, each class

is converted to an appropriate value of image. Since each class number denotes a range

of values, Monte Carlo Simulation (MCS) could be used to convert class numbers to

appropriate values of the image.

Figure 6.3: Schematic of index approach for finding optimum data configurations
(high frequency in image) for the scan-based approach.
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6.3.2 Error Correction

The resulting data configurations that have enough replicates should be used in the

scan-based approach to calculate the true distribution of the mean. The bin size of the

classes should be as small as possible. The smaller the bin size, the more classes, the

more accurate and precise data configuration. However, using a large number of classes

and data points is computationally demanding. There is a trade off between the number

of classes, data locations and error between data configuration and pattern (replicate)

in image. This error should increase with increasing number of data locations and bin

size; otherwise, it would not be feasible to find sufficient replicates. Averaging each

pattern with this error may lead to an inaccurate distribution of the mean. Figure

6.4 shows the error between data configuration and a replicate in the image for each

location to the left, and the way of correcting this error at the right. The corrected

true mean could be calculated by dividing the area of the data configuration into equal

sub-areas including one data approximately in the middle of each area. For the entire

each sub-area, the error is assumed to be the same. The Equation in Figure 6.4 (right)

shows the true mean is equal to the expected value of the pattern (replicate in image)

plus the expected value of the error (E{Pattern}+ E{Error}).

Figure 6.4: Error between data configuration and replicate in image (left), calculating
the corrected true mean of the replicate (pattern) by adding the expected
value of the error to the expected value of the pattern (right).
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6.3.3 Stationary Area and Select Templates

Figure 6.5 shows an image applied for the scan-based approach. This image is color of

the ocean of east Tasmania taken in December 2004 (NASA, n.d.). The original image

is digitized and converted to a large numerical data having nx = 5000 × ny = 6000

pixels. It is assumed a grid size of 1km because the length and width size of the

original image is unknown. The data are transformed to normal score. The data

Figure 6.5: Color of the ocean of east Tasmania (NASA, n.d.).

configurations with stationary area should be taken from the image. The entire image

is discretized to many square areas called patches (from small to big patches), then the

normal score variogram of each patch is calculated. If the average of all variograms

reaches to the expected sill in approximately half size of a patch, templates for the

scan-based approach are selected within this patch size (area). Figure 6.6-a shows the

discretized image (Figure 6.5) to patches 120km×120km. The experimental variogram

of each patch is calculated. Figure 6.6-b shows the average variograms for azimuths

0◦ and 90◦ reach approximately a sill of 60km for these patches (120km× 120km): on
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Figure 6.6: a) Discretized image of Figure 6.5 to patches 120km × 120km. b) The
experimental variogram of each patch (gray lines) and the average vari-
ogram (blue line) are calculated for azimuths 0◦ and 90◦.

average, there is no anisotropy. This area and the average variogram are used for the

approach of quantifying histogram uncertainty. According to this area, four templates

are selected with 6, 7, 8 and 9 data locations (see Figure 6.7). The result of the scan-

based approach for templates smaller than 6 data locations might not be accurate. The
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more data locations for a template, the more precise the distribution of the mean. The

templates with more than 9 data locations are not used in this study since they are

Figure 6.7: 4 templates with 6, 7, 8, 9 data locations used for scan-based approach.

computationally demanding. Moreover, as the number of data locations increases, the

error between data configurations and patterns in the image should increase in order to

find enough replicates. Increasing this error leads to incorrect distributions of the mean

with the correction approach (Figure 6.4). The scan-based approach can be applied

automatically on the image of Figure 6.5 for many data configurations obtained for

each template (Figure 6.7) to calculate the true uncertainty in the mean. The index

approach is used to select proper (frequent) data configurations within the image (see

Section 6.3.1).

6.3.4 Quantify Uncertainty in the Mean by Parameter Uncertainty

Approaches

The variance of the mean for the drawn data configurations from the image in Fig-

ure 6.5 based on the templates in Figure 6.7 are calculated by parameter uncertainty

156



approaches to compare with the true variance by the scan-based approach. The re-

quired variogram model for the spatial bootstrap, global kriging and posterior approach

is achieved by the fitted variogram to the average variogram of the stationary area

(patches 120km× 120km) in Figure 6.6-b:

γ(h) = 0.665.Gau
hmajor=50.5km
hminor=50.5km

(h) + 0.335.Sph
hmajor=60.6km
hminor=60.6km

(h) (6.2)

where Gau and Sph are Gaussian and spherical variogram structures. hmajor and

hminor are major (azimuth 0◦) and minor (azimuth 90◦) variogram ranges for each

variogram structure. The variance contributions of this variogram are scaled by the

variance of each data configuration for the global kriging estimation of the uncertainty

in the mean. Since there are just a few locations of data, quantile-quantile transfor-

mation for posterior approach may not be applicable (normal score transformation of

the data and back transform to original units). If it is assumed that each data con-

figuration has Gaussian distribution, the standard normal equation (y = z−m
σ ) can be

used. Where z is the value of each location of data configuration, y is the standardized

value of each location, m and σ are different realizations of the mean and variance

comes from the spatial bootstrap. Conditional SGS is applied with the standardized

data configuration. Then, SGS realization is back-transformed, and calculate the arith-

metic average of each realization to build the distribution of the mean. This process

is repeated for 100 realizations to compute the variance of the mean by the posterior

approach.

6.3.5 Results

Figure 6.8 shows the results of the true variance of the mean (Direct) for templates of

Figure 6.7 versus the variance of the mean by the spatial bootstrap (SB), global kriging

(GK) and posterior (Post) approaches. 150 data configurations that have enough repli-

cates (more than average) in the image (Figure 6.5) with minimum error are selected

for each template. The true variance of the mean is calculated for each data configura-

tion. The spatial bootstrap (SB) estimates the variance of the mean much higher than
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the true variance for all templates (prior uncertainty). The variance of the mean com-

ing from the global kriging (GK) is always less than the true variance (approximately

half). The posterior technique estimates the true variance of the mean more accurately

Figure 6.8: The true variance of the mean (Direct) resulted by scanning the image in
Figure 6.5 for 150 data configurations of templates in Figure 6.7 versus
the variance of the mean achieved by the global kriging (GK), spatial
bootstrap (SB) and posterior (Post) approaches.

than other methods. Other images were considered with similar results, that is, GK

gives too low uncertainty, SB is too high until conditioned to the data and clipped by

reasonable domain limits. The updated or posterior results are reasonable. Figure 6.9

shows a schematic illustration of the variance of the mean calculated by the spatial

bootstrap, global kriging and posterior approach versus the true variance.
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Figure 6.9: Schematic illustration of the variance of the mean by the spatial boot-
strap, global kriging and the posterior approach based on Figure 6.8. The
posterior approach is the most accurate estimator of the true variance of
the mean.

6.4 Multivariate Parameter Uncertainty

The posterior histogram uncertainty for a single variable (univariate parameter uncer-

tainty) has been discussed and showed to be close to the real histogram uncertainty: the

spatial bootstrap is the prior histogram uncertainty (upper bound) which can be up-

dated and improved (posterior uncertainty) by conditioning and accounting for the area

of interest through transferring in geostatistical simulation modeling workflows. Uni-

variate parameter uncertainty can be extended to multivariate parameter uncertainty.

In this case, the joint prior parameter uncertainty is estimated by the multivariate spa-

tial bootstrap and transferred through conventional cosimulation work flow to arrive

at a final posterior uncertainty.

The spatial bootstrap for a single variable (Deutsch, 2004; Journel & Bitanov,

2004) could be extended to the multivariate spatial bootstrap to respect the corre-
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lations between variables. The multivariate extension of the spatial bootstrap to n

variables requires a data-data covariance matrix divided to direct and cross covari-

ance submatrices from the direct and cross variograms between each pair of variables.

This covariance matrix is the same as a full cokriging system of equations (left hand

side). LU simulation is applied on the covariance matrix and back-transformed to the

reference distribution of each variable. The procedure is summarized by:

1. Define stationary direct and cross covariance functions Ci,j(h), i, j = 1, ...n.

Where n is the number of variables. There are n direct and n(n−1)
2 cross covari-

ances.

2. Define the reference distribution of each variable Fi(z), i = 1, ..., n.

3. Construct the spatial data-to-data covariance matrix C that includes the data-

data covariance submatrix of each variable plus the data-data cross covariance

submatrix between the variables (full cokriging system of equations). There are

totally n2 submatrices. For k locations of data, each submatrix has a dimension

of k× k (if the locations are identical for variables). Thus, C has a dimension of

(k × n)× (k × n).

4. Compute the Cholesky decomposition of the covariance matrix as C = LLT .

5. Simulate a vector of uncorrelated standard normal deviate w with dimension

(k × n).

6. Generate a vector of correlated Gaussian realization for each variable

as y1,...,n = Lw.

7. Transform the unconditional Gaussian values of each variable to original units

z1,...,n(uα) = F−1
1,...,n(G(y1,...,n(uα))), α = 1, ..., k. Where uα is a data location.

Steps 5 to 7 are repeated for the multivariate spatial bootstrap that provides the prior

histogram uncertainty for each variable.

The multivariate posterior uncertainty can be achieved by incorporating the mul-

tivariate prior uncertainty in geostatistical simulation: cosimulation by SGS could be
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applied through full cokriging or intrinsic collocated cokriging (ICC) using super sec-

ondary variable (Babak & Deutsch, 2007a, 2007b; Manchuk & Deutsch, 2012). The

multivariate spatial bootstrap realization is used as a reference distribution for normal

score transformation of data and back transforming the Gaussian realization of each

variable to original units. The multivariate spatial bootstrap realizations lead to uncer-

tainty in the correlation between variables. By incorporating the multivariate spatial

bootstrap in geostatistical simulation, uncertainty in correlation is also incorporated in

the final model.

6.5 Realistic Example: Amoco Data Set

A real case study of 2D Amoco data (Chu et al., 1994) is considered for multivariate

geostatistical modeling with histogram uncertainty (variogram uncertainty of this data

set was considered in Chapters 3 and 4). SGS with full cokriging is used (Manchuk

& Deutsch, 2012) for multivariate geostatistical modeling. The variables are averaged

porosity and permeability over the main reservoir layer. Permeability is in milliDarcies.

Figure 6.10 shows a location map (left Figure) and declustered histogram (right Figure)

of porosity (Figure 6.10-a), permeability (Figure 6.10-b) and cross plots between these

variables in original (left Figure) and normal score (right Figure) (Figure 6.10-c). There

is a high correlation (ρ(0) ≈ 0.84). Cell declustering provides a more reliable reference

distribution (Pyrcz & Deutsch, 2014).

Since full cokriging is applied for multivariate geostatistical modeling, linear model

of coregionalization (LMC) is fit to direct and cross variograms of porosity and per-

meability variables. Figure 6.11 shows direct and cross variogram models fitted to the

directional experimental variograms for azimuths 0◦ ± 25◦ and 90◦ ± 25◦. The diago-

nal variograms are direct variograms and off diagonal is the cross variogram between

porosity and permeability. The experimental variograms are calculated for normal

score data. The LMC models the direct and cross variograms as:
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Figure 6.10: Location map (left Figure) and declustered histogram of porosity (right
Figure) (a), permeability (b), and cross plots in original (left Figure)
and normal score (right Figure) units (c) for Amoco data set.
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LMC



γPor(h) = 0.10.Exp
hmajor=2900ft
hminor=1000ft

(h) + 0.90.Sph
hmajor=17000ft
hminor=5000ft

(h)

γPer(h) = 0.30.Exp
hmajor=2900ft
hminor=1000ft

(h) + 0.70.Sph
hmajor=17000ft
hminor=5000ft

(h)

γPor,Per(h) = 0.17.Exp
hmajor=2900ft
hminor=1000ft

(h) + 0.67.Sph
hmajor=17000ft
hminor=5000ft

(h)

(6.3)

where Por and Per are porosity and permeability variables. Exp and Sph are expo-

nential and spherical variogram models. hmajor and hminor are major (azimuth 0◦) and

minor (azimuth 90◦) variogram ranges for each variogram structure.

Figure 6.11: Direct and cross variogram models fitted to the directional experimental
variograms of porosity and permeability for azimuths 0◦±25◦ and 90◦±
25◦. The experimental variograms are calculated for normal score data.

The multivariate spatial bootstrap is applied with the LMC in Equation 6.3. The

joint prior parameter uncertainty for porosity and permeability are calculated for 100

realizations. Figure 6.12-a shows crossplots between porosity and permeability for four

realizations of the multivariate spatial bootstrap in original units. Each realization
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shows different correlated histogram of variables. Different realizations lead to different

correlation coefficients. Figure 6.12-b shows a histogram of 100 correlation coefficients

from the multivariate spatial bootstrap in original units. This joint prior histogram

uncertainty can be transferred to the final model. Figure 6.13-a and b show the joint

prior histogram uncertainty for porosity and permeability, respectively. There is a

very high histogram uncertainty for both variables. The standard deviation of the

mean for porosity is 0.9145 and for permeability is 2.1538. This high uncertainty is

reduced by conditioning data and clipping through geostatistical simulation (posterior

uncertainty).

Figure 6.14 shows four cosimulation SGS realizations of porosity and permeability

with full cokriging using the histogram uncertainty in Figure 6.13 as reference distri-

butions for normal score transformation of the data and back transform the Gaussian

realizations of each variable to original units. The realizations are correlated. The

uncertainty in the correlation coefficient (6.12-b) is incorporated in SGS realizations

by this approach. Figure 6.15 shows the posterior histogram uncertainty for 100 re-

alizations of porosity (Figure 6.15-a) and permeability (Figure 6.15-b). Due to the

trend in the data set (see Figure 6.10), the reference distributions (red lines) are not

exactly in the middle of the posterior histogram realizations. Compared with prior

histogram uncertainty in Figure 6.13, the uncertainty goes down considerably. The

standard deviation of the mean of realizations for porosity and permeability decreases

from 0.91 to 0.12, and from 2.15 to 0.48. The standard deviation of the standard devi-

ation of realizations for porosity and permeability also reduces from 0.31 to 0.15, and

1.42 to 0.68. The posterior uncertainty accounts for conditioning, spatial correlation

of the data, the area and correlation between variables. This leads to more accurate

histogram uncertainty.

6.6 Remarks

The approaches to quantify histogram uncertainty available to the practitioner have

drawbacks; overestimating or underestimating the uncertainty. A new framework is
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Figure 6.12: a) Crossplots between porosity and permeability for four realizations of
the multivariate spatial bootstrap in original units. b) Histogram of 100
correlation coefficients resulted by the multivariate spatial bootstrap in
original units.

proposed to transfer prior uncertainty in the histogram through geostatistical simula-

tion to achieve posterior uncertainty. The prior histogram uncertainty is calculated by

the spatial bootstrap. The posterior histogram uncertainty is obtained by conditioning

the prior histogram uncertainty and accounting for the area to attain lower and more

accurate histogram uncertainty: the spatial bootstrap realizations are used as reference

distributions. The simulation volume could also be clipped to the volume of interest.

In order to evaluate the posterior approach and the current techniques of quantifying
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Figure 6.13: The joint prior histogram uncertainty for porosity (a) and permeability
(b) (black lines). The red lines are the reference distributions for each
variable.

parameter uncertainty such as spatial bootstrap and global kriging, the uncertainty in

the mean for a single variable is calculated and compared with possible true uncertainty.

A scan-based approach is considered. This approach looks for similar patterns of a data

configuration within a large image. The results of the scan-based approach confirms

that the posterior approach is a reliable estimator of histogram uncertainty. The global

kriging is found to underestimate the uncertainty (lower bound). The spatial bootstrap

is found to overestimate the uncertainty (upper bound).

The posterior histogram uncertainty for a single variable is extended to multiple

variables by calculating the joint prior parameter uncertainty through multivariate spa-

tial bootstrap. The multivariate spatial bootstrap respects the correlation between the

histogram realization of the variables. The uncertainty in the correlation between vari-

ables as well as statistics (means and variance) are accounted in the final model. Con-

sidering histogram uncertainty plus variogram uncertainty (previous Chapters) leads

to more reliable models for decision making.

Only continuous variables (porosity, permeability...) are considered in this Chapter.

However, categorical variables such as facies should be incorporated in the final model.

The prior histogram uncertainty in the proportion of each facies could be calculated

by unconditional simulation at data locations. Conditional realizations with differ-

ent realizations of prior uncertainty in proportions of facies would provide posterior
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Figure 6.14: Four cosimulation SGS realizations of porosity and permeability with
full cokriging using the histogram uncertainty in Figure 6.13 as reference
distributions.
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Figure 6.15: Posterior histogram uncertainty for porosity (a) and permeability (b)
(black lines). The red lines are the reference distributions for each vari-
able.

uncertainty.
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Chapter 7

Case Study - Uncertainty in
Hydrocarbon Initially In Place
(HIIP)

The approaches of quantifying parameter uncertainty (histogram and variogram) are

developed in previous Chapters. This Chapter presents geostatistical reservoir mod-

eling with parameter uncertainty for a real case study with only four widely-spaced

wells and 3D seismic data. Uncertainty in gross rock volume (GRV) is achieved by

considering uncertainty in the top and thickness of the reservoir using seismic data.

Uncertainty in the hydrocarbon water contact (HWC) is also considered. The horizon-

tal variograms from well data, which are unreliable and noisy, are improved by applying

constraints from the seismic variogram and the vertical variogram of well data. The

joint prior histogram uncertainty is calculated by the multivariate spatial bootstrap.

All sources of uncertainty are then incorporated in geostatistical modeling to calcu-

late full uncertainty in hydrocarbon initially in place (HIIP). A sensitivity analysis is

considered to define the impact of each source of uncertainty in the final results.

7.1 Netherlands Offshore F3 Block

The case study is ”F3” block that is an offshore reservoir located in the Dutch sector

of the North Sea. The F3 block is an exploration target for oil and gas made up of

Upper-Jurassic to Lower Cretaceous strata. A 3D seismic survey covers the entire
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block. There are four vertical wells F02-1, F03-2, F03-4, F06-1 within this block (see

Figure 7.1). The 3D seismic data and wells are available in the public domain. The

company dGB (dGB, n.d.) used this data to produce a demo survey for OpendTect

software (OpendTect, n.d.). Since the base version of OpendTect software is free for

academic tasks, all required data for geostatistical modeling in this Chapter such as

well data, seismic surfaces, acoustic impedance are retrieved from the demo survey of

this software (OpendTect, n.d.) with permission from dGB company.

Figure 7.1: 3D seismic area and four vertical wells F02-1, F03-2, F03-4, F06-1 in the
F3 block of the Dutch sector of the North Sea (OpendTect, n.d.).

Sonic and gamma-ray logs are available for all wells; however, only the wells F02-1

and F03-2 have density logs. These logs are used to predict density from sonic and

gamma-ray logs of the wells F03-4 and F06-1 (OpendTect, n.d.). Total porosity (PHIT)

is calculated from density by Equation 7.1:

PHIT =
ρma − ρlog
ρma − ρf

(7.1)

where ρma = 2.65 gr
cm3 is matrix density, ρf = 1.05 gr

cm3 is fluid density and ρlog is density

from the log at the point of interest (OpendTect, n.d.). Other required variables for
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computing HIIP are calculated from gamma-ray and total porosity logs. Shale volume

(Vsh) could be calculated by:

Vsh =
GRlog −GRmin
GRmax −GRmin

(7.2)

(Asquith, Krygowski, Henderson, & Hurley, 2004). Where GRmin = 25API is mini-

mum gamma-ray (log response in clean beds), GRmax = 75API is maximum gamma-

ray (log response in complete shale), and GRlog is log response in the zone of interest.

Effective porosity (PHIE), which only accounts for the interconnected pores of the

formation and contains hydrocarbon or water could be calculated by:

PHIE = PHIT − φsh × Vsh (7.3)

(AlRuwaili & AlWaheed, 2004). Where φsh is the shale-porosity. Since the estimation

of φsh is difficult, φsh is usually replaced with PHIT (AlRuwaili & AlWaheed, 2004).

Three variables PHIT, PHIE and Vsh calculated at each well are used for geostatistical

modeling and estimation of HIIP uncertainty. There is no water saturation data. Vsh is

assumed as water saturation due to the fact that shale likely contains more irreducible

water saturation. The calculated variables are upscaled to 5m. This is the vertical

grid size for geostatistical modeling of this case study. Figure 7.2 shows log tube of the

variables PHIT (a), PHIE (b) and Vsh (b) at well locations after upscaling.

The original 3D seismic data, which covers the entire reservoir and four wells, is

processed and inverted to acoustic impedance (dGB, n.d.). The seismic survey param-

eters are: Inline range: from 100 to 750 with Step 1, Crossline range: from 300 to 1250

with Step 1, Bin size: 25m long (Inline) and 25m wide (Crossline), Z range (time): from

0 to 1848 millisecond (ms) with 4ms Step. The acoustic impedance is produced after

filtering the original seismic data because it is rather noisy (OpendTect, n.d.). There

are several 3D seismic surfaces in the demo survey; Truncation and MFS4 surfaces

are assumed as top and bottom of the reservoir containing oil and gas layers although

these surfaces may not be the real top and bottom surfaces of the hydrocarbon-bearing
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Figure 7.2: Log tube of the variables PHIT (a), PHIE (b) and Vsh (b) for four wells
in F3 Block: east 0-24000m and north 0-16000m (see Figure 7.1).

reservoir (there is no information which surfaces are the real top and bottom surfaces

in the data set). Figure 7.3 shows Truncation (top) and MFS4 (bottom) surfaces in

3D acoustic impedance in time domain (ms). The acoustic impedance and seismic
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Figure 7.3: Truncation (top) and MFS4 (bottom) seismic surfaces in 3D acoustic
impedance in time domain (ms).

surfaces should be converted from time to depth by a velocity model in order to be

used as secondary data in geostatistical modeling. The velocity model could be built

by time-depth model from checkshot survey, vertical seismic profiles (VSP) in wells, or

by seismic refraction operation.

7.2 Gross Rock Volume (GRV) with Parameter Uncer-

tainty

Gross rock volume (GRV) is the volume of reservoir between top and bottom surfaces.

These surfaces could be achieved from seismic data: for example, Truncation and MFS4

seismic surfaces in Figure 7.3; however, they are subject to uncertainty away from the

well data. This uncertainty should be incorporated in GRV model.

There are two sources of uncertainty in seismic surfaces: 1- Time interpretation

uncertainty: this uncertainty happens while picking stratigraphic surfaces on seismic

data. The stratigraphic surfaces are usually acquired in depth from well data and

converted to time domain by checkshot survey or VSP to be visible in time domain for

173



seismic data, then the surfaces are followed over the entire 3D seismic area. This is

usually done by auto-picking software that are subject to uncertainty. 2- Time-to-depth

conversion: seismic surfaces are interpreted in time domain and must be converted to

depth by a velocity model. This is also subject to uncertainty. A combination of

time interpretation and time to depth uncertainties leads to uncertainty in the seismic

surface. Usually seismic surfaces are calibrated with well observations to remove the

mismatch. However, valuable hints can be attained from the mismatch between seismic

surfaces and actual well observations for quantifying uncertainty in surfaces (Alshehri,

2010).

The conventional approach for modeling GRV is to model top surface and thickness;

the thickness at each location is added to the top surface to build bottom surface. This

naturally accounts for the correlation between the two surfaces and avoids any artifact

crossing of surfaces. The volume of the reservoir above hydrocarbon (oil or gas) water

contact (HWC) is considered for GRV.

7.2.1 Tie Seismic to Well

The mismatch between seismic surface (top and thickness) and actual well observations

should be corrected although it is used for quantifying parameter uncertainty. Figure

7.4 shows a 2D map view of seismic top surface (Truncation) after converting from time

to depth by velocity model achieved from check shot survey of wells. The values are

depths (in meter) below sea level; low and high values signify closer and farther depths

from the sea level, respectively. There is a mismatch ∆ = actual−seismic at each well

location. The ∆ is negative for wells F06-1 (∆ = −47.6m) and F02-1 (∆ = −25.6m),

and positive for F03-2 (∆ = 1.4m) and F03-4 (∆ = 18.9m). Figure 7.5 shows 2D map

view of thickness resulted by difference between Truncation and MFS4 surfaces. The

thickness from seismic surfaces in time domain is converted to depth by velocity model

of the wells (check shot survey). There is a mismatch ∆ = actual−seismic at each well

location. The ∆ is negative for wells F06-1 (∆ = −13.1m) and F02-1 (∆ = −0.2m),

and positive for F03-2 (∆ = 17.5m) and F03-4 (∆ = 13.6m).

The seismic surface (in depth domain) could be tied to the wells by simple kriging
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Figure 7.4: 2D map view of seismic top surface (Truncation) after converting from
time to depth. The values are in meter and signify depths below see
level. The mismatch ∆ is negative for wells F06-1 (∆ = −47.6m) and
F02-1 (∆ = −25.6m) and positive for F03-2 (∆ = 1.4m) and F03-4
(∆ = 18.9m).

(SK) of ∆ at each well. The variogram model of ∆ is required for kriging. There are

only four conditioning ∆ values: thus, the experimental variogram of ∆ for top and

thickness can not be calculated. It is proposed to attain the approximate variogram

of ∆ by the variogram of the detrended seismic. The detrended model is calculated

by the difference between seismic and trend model detrend = seismic − trend. It is

required to model the trend of top surface and thickness from seismic data. Radial

basis function is used for computing the trend models (see Qu and Deutsch (2014) for

more information). The variogram of detrended top and thickness may be assumed as

an approximate variogram of ∆.

Figure 7.6-a shows the trend model of top surface (Figure 7.4), and Figure 7.6-b

shows the detrended model. Figure 7.7 shows the experimental variograms and fitted

models of the detrended model (Figure 7.6-b) for azimuths −20◦ (major direction of

continuity) and azimuth 70◦ (minor direction of continuity). The 2D variogram model

has one Gaussian structure with maximum range of 5800m and minimum range of

4500m and very small nugget effect (0.000001) to avoid precision problems in simula-

tion.

Figure 7.8-a shows the trend model of thickness (Figure 7.5), and Figure 7.8-b

shows the detrended model. Figure 7.9 shows the experimental variograms and fitted
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Figure 7.5: 2D map view of thickness by difference between Truncation and MFS4
surfaces and converting to depth. The values are in meter. The mismatch
∆ is negative for wells F06-1 (∆ = −13.1m) and F02-1 (∆ = −0.2m) and
positive for F03-2 (∆ = 17.5m) and F03-4 (∆ = 13.6m).

models of the detrend model (Figure 7.8-b) for azimuths −20◦ (major direction of

continuity) and azimuth 70◦ (minor direction of continuity). The 2D variogram model

has two Gaussian structures with maximum and minimum range of 1500m for the

first structure, and maximum and minimum range of 8000m and 6000m for the second

structure and very small nugget effect (0.000001).

SK of ∆ by the variogram of detrended model (Figures 7.7 and 7.9 ) and adding to

the seismic surface leads to tie seismic to wells. This leads to ∆ = 0 at well locations.

The mean value for simple kriging estimator should be set to zero due to returning the

seismic surface for locations far away from data where the estimate is the mean. Figure

7.10 shows a 2D map view of tied seismic top surface to well. The mismatch ∆ between

well and seismic is zero at each well location. Figure 7.11 shows a 3D map view of tied

seismic top surface to well. Figure 7.12 shows a 2D map view of tied seismic thickness

to well. Similar to the top surface, the mismatch ∆ between well and seismic is zero

at each well. Figure 7.13 shows a 3D map view of bottom surface by adding the tied

thickness (Figure 7.12) to the tied top surface (Figure 7.10).
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Figure 7.6: a) 2D map view of trend modeling of top surface (Figure 7.4). b) The
detrended model by difference between seismic (Figure 7.4) and trend
model (a). The values are in meter.

7.2.2 Uncertainty in GRV

Conditional sequential Gaussian simulation (SGS) is used to assess uncertainty in GRV.

Uncertainty in GRV can be calculated by quantifying uncertainty in the reference top

surface and thickness: the top surface and thickness from seismic interpretation after

tie to well are considered as reference structures (Figure 7.10 and 7.12). The realiza-

tions of the top and thickness should have zero deviation from the reference structures

at well locations, and deviation should increase for locations far away from the wells.

The deviation is assumed to be a Gaussian distribution and could be simulated by con-
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Figure 7.7: The experimental variograms and fitted models of the detrended model
(Figure 7.6-b) for azimuths −20◦ (major direction of continuity) and az-
imuth 70◦ (minor direction of continuity).

ditional SGS with zero value at well locations. SGS realizations are non-standardized

by multiplying them with some standard deviation that could be calculated from the

standard deviation of the mismatch between well and seismic (σ∆) (standard deviations

of ∆ in Figures 7.4 and 7.5):

σ∆ =
√
σ2
TP + σ2

TtD (7.4)

(Alshehri, 2010). Where σ2
TP is the variance of time picking, and σ2

TtD is time-to-depth

variance; the variance of ∆ comes from both time picking and time to depth conversions

based on two assumptions: 1- The distributions of TP and TtD are Gaussian, 2- The

errors in TP and TtD are independent from each others (Alshehri, 2010). By adding

the deviation (non-standardized SGS realization with σ∆) to the reference structure

(top and thickness), the uncertainty in GRV is calculated. This technique calculates

uncertainty in GRV without considering parameter uncertainty (Alshehri, 2010).

Parameter uncertainty could be incorporated in GRV by considering variogram and

histogram uncertainty of ∆ for the top and thickness: prior uncertainty in the experi-

mental variogram and histogram of ∆ are calculated (Chapters 3 and 6) and incorpo-

rated in conditional SGS with zero value at well locations. The posterior uncertainty

in ∆ is then added to the reference structure (top or thickness). This process should
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Figure 7.8: a) 2D map view of trend modeling of thickness (Figure 7.5). b) The
detrended model by difference between seismic (Figure 7.5) and trend
model (a). The values are in meter.

be applied for the top and thickness independently. This approach leads to honor well

observations of the top and thickness for all SGS realizations. The variogram uncer-

tainty cannot be calculated due to only four wells: the variograms of detrended seismic

are assumed as fixed reference variogram models for top and thickness. Moreover, his-

togram uncertainty by the spatial bootstrap may not be applicable for this data due

to unreliable reference distribution of ∆ with only four values. A parametric approach

is proposed to attain histogram uncertainty (only uncertainty in the mean) of ∆. The

Steps of this technique are as follow:
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Figure 7.9: The experimental variograms and fitted models of the detrended model
(Figure 7.8-b) for azimuths −20◦ (major direction of continuity) and az-
imuth 70◦ (minor direction of continuity).

Figure 7.10: 2D map view of tied seismic top surface (Truncation) to well observation.
The mismatch ∆ between well and seismic is zero at each well location.
The values are in meter (depth below sea level).

1. Build a Gaussian distribution for the mean of ∆. This Gaussian distribution ∆

has a mean of zero and variance of
σ2

∆
n , where n is number of independent data;

this is consistent with the spatial bootstrap of ∆ for quantifying the uncertainty in

the mean. It is assumed four well data are independent from each other (n = 4).

2. Draw mean values from ∆ distribution: ∆
l
, l = 1, ..., L, where L is number of

drawn mean values.

3. Attain conditioning well data in the Gaussian space with zero value in original

units for each realization of the mean (∆
l
). SGS should be applied with zero
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Figure 7.11: 3D map view of tied seismic top surface (Truncation) to well observation.
The values are in meter (depth below sea level).

Figure 7.12: 2D map view of tied seismic thickness to well observation. The values
are in meter. The mismatch ∆ between well and seismic is zero at each
well location.

value at well locations. The zero value should be transformed to the Gaussian

space based on a reference distribution, and back-transformed to the original

units after simulation (zero value at each well location after back transformation).

Since the mean of each histogram realization of ∆ (∆ is assumed Gaussian) is

calculated (∆
l
), and the variance of each realization is σ2

∆ (assumed constant),
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Figure 7.13: 3D map view of tied seismic bottom surface to well observation by
adding the tied thickness to the tied top surface. The values are in
meter (depth below sea level).

zero value at well locations can be transformed to the Gaussian space by:

yl =
z −m
σ

=
−∆

l

σ∆
, l = 1, ...., L (7.5)

where z = 0, which is the conditioning data for each well location in the original

space. yl is the conditioning data for each SGS realizations in the Gaussian space.

For example, four well locations have Gaussian conditional value yl for lth SGS

realization.

4. The Gaussian SGS realizations are back-transformed to the original units and

added to the reference structure (top or thickness):

sl = (ySGS × σ∆ + ∆
l
) + sref , l = 1, ...., L (7.6)

where ySGS is the Gaussian SGS realization, sref is the reference structure (top

or thickness), and sl is the final realization of top surface or thickness accounting

for parameter uncertainty. Since SGS realization has zero value at well locations
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after beck transformation to the original space, the final realization sl has the

deviation of zero from the reference structure at well locations.

Step 1 to 5 are repeated for top and thickness separately to attain parameter uncertainty

in GRV. Realizations of thickness are added to the realizations of the top surface to

achieve bottom surface realizations. This methodology ensures that all realizations

honor Truncation and MFS4 surfaces of four wells. Figure 7.14 and 7.15 show 20

realizations of top (Truncation) and bottom surfaces (MFS4). As shown for well F06-

1, the uncertainty at the well locations is zero.

Figure 7.14: 3D map view of 20 realizations of top surface (Truncation). The val-
ues are in meter (depth below sea level). All surface realizations are
consistent with the reference model (Truncation) at well locations (zero
uncertainty).

The reservoir is not only bounded by the top and bottom surfaces, but also it must

be above hydrocarbon (oil or gas) water contact (HWC). The volume above HWC

surface contributes to calculate HIIP because there may be only water below HWC.

The depth of HWC could be obtained from the available wells (well logs), or it can be

assumed at the lowest known hydrocarbon level if it is not detected. HWC may also be

183



Figure 7.15: 3D map view of 20 realizations of bottom surface (MFS4). The val-
ues are in meter (depth below sea level). All surface realizations are
consistent with the reference model (MFS4) at well locations (zero un-
certainty).

uncertain. Monte Carlo simulation (MCS) is widely used to quantify this uncertainty

by assuming a triangular or uniform distribution for HWC (see Alshehri (2010) for

more information). There is no information of HWC for this case study; thus, HWC is

assumed to be at 870m. The uncertainty in HWC is calculated by building a uniform

distribution with minimum value of HWC-10m and maximum value of HWC+10m.

Figure 7.16 shows the uncertainty at the top and bottom surfaces for 20 realizations

and the uncertainty in HWC. Monte Carlo simulation is applied to draw realizations

from the uniform distribution of HWC between 860m to 880m. These realizations plus

the surface realizations (top and bottom) are used to calculate the uncertainty in GRV.

Figure 7.17 shows histogram of uncertainty in GRV by 100 realizations in billion cubic

meter (BCM). The volume of the reservoir is high and seems unrealistic in comparison

with the conventional hydrocarbon reservoir. This high volume is due to high reservoir

thickness in north and south east (see Figures 7.12 and Figure 7.16). Since there is

no information of the real top and bottom surface for this reservoir, Truncation and
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MFS4 surfaces are assumed as the top and bottom surfaces of the hydrocarbon-bearing

reservoir, which they might not be the real top and bottom surfaces.

Figure 7.16: Uncertainty for the top (Truncation) and bottom (MFS4) surfaces for
20 realizations and the uncertainty in HWC=870m, HWC±10m.

Figure 7.17: Histogram of uncertainty in GRV for 100 realizations in billion cubic
meter (BCM).
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7.3 Variogram Calculation and Uncertainty in Variogram

The experimental variogram of the well data is calculated and improved by secondary

data for geostatistical modeling. Since there are only four wells, the horizontal vari-

ograms of the well data are not reliable. The vertical variogram from the well data and

the horizontal variogram from the seismic data are used for improving the horizontal

well variogram (Chapter 3, 4 and 5). The 3D acoustic impedance is converted from

time domain (ms) to depth domain (m) by building a velocity model from checkshot

survey of the well data. The 3D acoustic impedance model produced by dGB company

has a very high resolution due to interpolation acoustic impedance for a very small

vertical scale: the original seismic data cannot give information for a very fine verti-

cal scale. The vertical scale of the acoustic impedance is upscaled to 8m for using in

geostatistical modeling of this case study. Figure 7.18 shows the normal score acous-

tic impedance model with the vertical scale of 8m (after upscaling) after converting

from time to depth. The top and bottom surfaces of the acoustic impedance model

are clipped. There is a clear geometric anisotropy. The calculated variables of PHIT,

PHIE and Vsh from the four wells are upscaled to 5m which is the vertical grid size of

geostatistical modeling in this study; this is the vertical scale of geostatistical mapping

of a similar reservoir to this case study in West Netherlands Basin (Vis et al., 2010).

Figure 7.19 shows the correlation matrix between PHIT, PHIE and Vsh and seismic

data (acoustic impedance) for the well data in original units. The diagonal elements

show the histograms of the variables. The seismic data has the highest correlation

with PHIT (ρ(0) = −0.56). Since PHIE is calculated by PHIT and Vsh, it has high

correlation with these variables especially with Vsh (ρ(0) = −0.97) and low correlation

with the seismic data (ρ(0) = −0.36).

The variograms of normal score PHIT, PHIE and Vsh are calculated for geostatis-

tical modeling. A linear model of coregionalization (LMC) (Pyrcz & Deutsch, 2014)

is required for the multivariate spatial bootstrap to calculate the joint prior histogram

uncertainty of the variables (see Chapter 6). Since directional horizontal variograms

cannot be calculated from the four sparse wells, variogram uncertainty is calculated
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Figure 7.18: Normal score acoustic impedance in depth domain (vertical scale of 8m
after upscaling).

Figure 7.19: Correlation matrix between PHIT, PHIE and Vsh and seismic data
(acoustic impedance) in original units.
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for the omnidirectional horizontal variograms (azimuth 0◦ ± 90◦). Figure 7.20 shows

the omnidirectional horizontal direct and cross variograms for PHIT, PHIE and Vsh

variables in normal score and fitted models. The omnidirectional horizontal variograms

are noisy due to the sparse well data. Figure 7.21 shows the vertical direct and cross

variograms for PHIT, PHIE and Vsh variables in normal score and fitted models. The

vertical variogram are well-defined because of regular sampling in direction of drilling.

Due to the vertical trend in data set (see Figure 7.2), the vertical variograms (Figure

7.21) do not reach to stationary sills (the variance of data for direct variograms and the

covariance between variables at h=0 for cross variograms). All variogram models are

fitted to the stationary sills since a stationary variogram is required for geostatistical

modeling. The sill of the cross variograms for normal score data are the correlation

coefficients between variables (Pyrcz & Deutsch, 2014) and the sill of the direct vari-

ograms are 1. The linear model of coregionalization (LMC) for PHIT, PHIE and Vsh

are written as:

LMC



γPHIT (h) = 0.10.Sph
hmajor=6000m
hminor=6000m
hver=40m

(h) + 0.90.Sph
hmajor=15000m
hminor=15000m
hver=250m

(h)

γPHIE(h) = 0.45.Sph
hmajor=6000m
hminor=6000m
hver=40m

(h) + 0.55.Sph
hmajor=15000m
hminor=15000m
hver=250m

(h)

γVsh(h) = 0.55.Sph
hmajor=6000m
hminor=6000m
hver=40m

(h) + 0.45.Sph
hmajor=15000m
hminor=15000m
hver=250m

(h)

γPHIT,PHIE(h) = 0.20.Sph
hmajor=6000m
hminor=6000m
hver=40m

(h) + 0.38.Sph
hmajor=15000m
hminor=15000m
hver=250m

(h)

γPHIT,V sh(h) = −0.05.Sph
hmajor=6000m
hminor=6000m
hver=40m

(h)− 0.35.Sph
hmajor=15000m
hminor=15000m
hver=250m

(h)

γPHIE,V sh(h) = −0.46.Sph
hmajor=6000m
hminor=6000m
hver=40m

(h)− 0.496.Sph
hmajor=15000m
hminor=15000m
hver=250m

(h)

(7.7)

where Sph is the spherical variogram structure, hmajor and hminor are the horizontal

variogram ranges for major and minor directions of continuity that are equal for omni-

directional variogram, and hver is the vertical variogram range. The variogram models
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in Equation 7.7 are used in the multivariate spatial bootstrap for calculating the joint

prior parameter uncertainty (see Section 7.5). Variogram uncertainty is not applied for

the spatial bootstrap (see Chapter 6).

Figure 7.20: The omnidirectional horizontal direct and cross variograms (azimuth
0◦ ± 90◦) for PHIT, PHIE and Vsh in normal score. The diagonal
variograms are direct variograms and off diagonal variograms are the
cross variograms between variables.

The omnidirectional horizontal variograms are noisy and unreliable; variogram un-

certainty for omnidirectional horizontal variograms are calculated by the DoF approach

and reduced by the seismic-derived and vertical-derived variograms (see Chapters 3,

4 and 5). Since PHIE and Vsh have very high correlation (ρ(0) = −0.97), the vari-

ogram realizations of these variables must be approximately equal. PHIE has higher

correlation with the seismic data than Vsh; thus, the variogram uncertainty of PHIE is

calculated, improved and assigned to Vsh. The omnidirectional horizontal variogram

of the seismic data could also be calculated and used for improving the variogram of

the well data. However, there is a clear geometric anisotropy in the seismic data for

azimuths −20◦ and 70◦. Although this anisotropy cannot be obtained from the well
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Figure 7.21: The vertical direct and cross variograms for PHIT, PHIE and Vsh in
normal score. The diagonal variograms are direct variograms and off
diagonal variograms are the cross variograms between variables.

data, it could be incorporated in the final horizontal variogram realizations by calcu-

lating the ratio of the major to minor variogram ranges of the seismic data and enforce

it to all omnidirectional horizontal variogram realizations (see Section 7.3.3).

7.3.1 Improve Omnidirectional Horizontal Variogram Uncertainty of

PHIT

Figure 7.22-a shows 100 omnidirectional horizontal variogram realizations of PHIT,

Figure 7.22-b shows the correlation matrix of lag distances for variogram realizations,

and Figure 7.22-c shows the fitted variogram realizations (see Chapters 3, 4 and 5).

There is a high uncertainty in the variogram that could be reduced by the vertical

variogram of the well data (vertical-derived variogram) and the omnidirectional hor-

izontal variogram of the seismic data (seismic-derived variogram). Figure 7.23 shows

the vertical-derived variogram realizations (100 realizations) for PHIT. According to a

similar reservoir to this case study in West Netherlands Basin (Vis et al., 2010), the
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Figure 7.22: a) 100 omnidirectional horizontal variogram realizations of PHIT. b)
Correlation matrix of lag distances for variogram realizations. c) Fitted
variogram realizations.

horizontal to vertical anisotropy ratio (H:V) of 77 wells is 100 (10000m
100m ). For calculating

the vertical-derived variogram realizations, the distribution of uncertainty in H:V is

build by the triangular distribution with Min = 75 and Mode = 100 and Max = 125.

The Gaussian distribution of the sill is calculated by ∆v = 0.15 (see Chapter 5). The

constraints from the omnidirectional horizontal variogram of the acoustic impedance

in Figure 7.18 could be achieved to improve the omnidirectional horizontal variogram

realizations of PHIT. The seismic variogram should be down scaled to the scale of the

well data. The small scale variogram of the seismic data for down scaling could comes
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Figure 7.23: 100 vertical-derived variogram realizations for PHIT.

from the variogram of the calculated acoustic impedance based on the well logs (veloc-

ity and density). Since the vertical scale of well and seismic are not very different (5m

versus 8m), the down scaled seismic variogram is changed a little for variance contribu-

tions (see Chapter 5). The cross covariance between well and seismic data is required

for computing the the upper and lower limits of the seismic-derived variogram. The

cross covariance is obtained by an intrinsic model (Markov model) (Pyrcz & Deutsch,

2014). The correlation between well and seismic at the scale of well data is required.

This correlation could be calculated by fitting an Equation to the different upscaled

volumes and the observed correlations from the data set; the higher scale, the higher

correlation. Figure 7.24-a shows the cross plot between the positive correlation of the

upscaled PHIT and the seismic data versus the vertical scale (volume), and the fitted

Equation. The positive correlation between well and seismic data for the vertical scale

of 5m (the vertical scale of the well data) is approximately 0.57. The seismic-derived

upper and lower limits are calculated in Figure 7.24-b. These limits are enforced on

the omnidirectional horizontal variogram realizations of PHIT (Figure 7.22-c), and the

vertical-derived variogram realizations (Figure 7.23) up to correlation 0.2 (ρ(h) = 0.2)

by the rejection sampling approach with the correlation matrix of the lag distances (see

Chapter 4 and 5). The final step is merging the omnidirectional horizontal variogram

and the vertical-derived variogram after applying the seismic-derived limits.

Figure 7.25-a shows enforcing the upper and lower limits of the seismic-derived vari-

ogram on the omnidirectional horizontal variogram realizations (Figure 7.22-c) without
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Figure 7.24: a) Cross plot between the positive correlation of the upscaled PHIT and
seismic data versus the vertical scale (volume), and the fitted Equation.
The positive correlation between well and seismic data for the vertical
scale of 5m is approximately 0.57. b) Calculated seismic-derived vari-
ogram used up to correlation 0.2 (ρ(h) = 0.2).

merging with the vertical-derived variogram. The variogram uncertainty is improved

although the improvement is not considerable. Figure 7.25-b shows merging the omni-

directional horizontal variogram realizations with the vertical-derived variogram with-

out enforcing the seismic limits. This is the case when seismic data is not used. The

uncertainty goes down considerably because the uncertainty in the vertical-derived var-

iogram is lower than the omnidirectional horizontal variogram and merging variogram

distributions leads to less uncertainty (Chapter 5). Figure 7.25-c shows the final im-

proved variogram realizations considering the horizontal variogram of the seismic data

and the vertical variogram of well data: enforce upper and lower limits of the seismic-

derived variogram on the omnidirectional horizontal variogram and the vertical-derived

variogram realizations, merge variogram distributions and sample from the merged dis-

tribution by LU simulation. These realizations are standardized to sill 1 (Figure 7.25-d)

and fitted with the fixed vertical variogram to attain the 3D variogram realizations of

PHIT for univariate geostatistical modeling.
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Figure 7.25: Improved omnidirectional horizontal variogram realizations for PHIT. a)
Enforce the upper and lower limits of the seismic-derived variogram on
omnidirectional horizontal variogram realizations without merging with
the vertical-derived variogram. b) Merge the omnidirectional horizon-
tal variogram realizations with the vertical-derived variogram without
enforcing the seismic-derived variogram. c) Improved variogram real-
izations by enforcing the seismic-derived variogram, and the vertical-
derived variogram. d) Standardized fitted variogram realizations.

7.3.2 Improve Omnidirectional Horizontal Variogram Uncertainty of

PHIE

The similar approach is applied for improving the omnidirectional horizontal variogram

realizations of PHIE. Figure 7.26-a shows 100 omnidirectional horizontal variogram re-

alizations of PHIE, Figure 7.26-b shows the correlation matrix of lag distances for var-

iogram realizations, and Figure 7.26-c shows the fitted variogram realizations. Figure

7.27 shows the vertical-derived variogram realizations (100 realizations) of the omnidi-

rectional horizontal variogram for PHIE; the distribution of uncertainty in H:V is build
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Figure 7.26: a) 100 omnidirectional horizontal variogram realizations of PHIE. b)
Correlation matrix of lag distances for variogram realizations. c) Fitted
variogram realizations.

by the triangular distribution with Min = 75, Mode = 100 and Max = 125. The

Gaussian distribution of the sill is calculated by ∆v = 0.15. The correlation between

well and seismic at the scale of the well data is calculated by fitting an Equation be-

tween the different vertical upscales and the observed correlations from the data set

(Figure 7.28-a). The seismic-derived upper and lower limits are calculated in Figure

7.28-b. These limits are enforced on the omnidirectional horizontal variogram realiza-

tions of PHIE (Figure 7.26-c), and the vertical-derived variogram realizations (Figure
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Figure 7.27: 100 vertical-derived variogram realizations for PHIE.

7.27) up to correlation 0.2 (ρ(h) = 0.2). Figure 7.29-a shows enforcing the upper

and lower limits of the seismic-derived variogram on the omnidirectional horizontal

variogram realizations (Figure 7.26-c) without merging with the vertical-derived vari-

ogram. The variogram uncertainty is still high because the seismic-derived variogram is

calculated based on low correlation between well and seismic data (ρ(0) = 0.38). Figure

7.29-b shows merging the omnidirectional horizontal variogram realizations with the

vertical-derived variogram. Figure 7.29-c shows the final improved variogram realiza-

tions considering the horizontal variogram of seismic data and the vertical variogram

of well data. The final omnidirectional horizontal variogram is more influenced by the

vertical-derived variogram because of low correlation between well and seismic. These

realizations are standardized to sill 1 (Figure 7.29-d) and fitted with the fixed vertical

variogram to attain the 3D variogram realizations of PHIE for univariate geostatistical

modeling.

7.3.3 Final 3D Variogram Realizations for Geostatistical Modeling

Since multivariate geostatistical modeling is considered, the omnidirectional horizon-

tal variogram realizations of PHIT and PHIE, Vsh (Vsh=PHIE) should not be used

independently without considering the correlation between variables: if the variables

are correlated, the correlations should exist in the variogram realizations between vari-

ables. LU simulation is used to respect the correlation between variables for variogram

realizations (see Chapter 5, Section 5.6). The negative correlation between variables
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Figure 7.28: a) Cross plot between the positive correlation of the upscaled PHIE and
seismic data versus the vertical scale (volume), and the fitted Equation.
The positive correlation between well and seismic data for the vertical
scale of 5m is approximately 0.38. b) Calculated seismic-derived vari-
ogram used up to correlation 0.2 (ρ(h) = 0.2).

should be set to positive: even if variables have negative correlations, the variogram

realizations should have positive correlations. Figure 7.30 shows the correlation matrix

between the values of omnidirectional horizontal variogram realizations of PHIT, PHIE

and Vsh for lag distances 8000m after LU simulation. The positive correlation between

variables are preserved (compare Figure 7.30 with Figure 7.19).

After calculating the omnidirectional horizontal variogram realizations and preserve

the correlation between variables, the clear anisotropy in the seismic data (Figure 7.18)

should be enforced on the variogram realizations of all variables. For the seismic data

(acoustic impedance), variogram range of azimuth −20◦ is approximately 3 times bigger

than the variogram range of azimuth 70◦. The omnidirectional horizontal variogram re-

alizations are scaled based on this ratio: multiplying range of all variogram realizations

by
√

3 and 1√
3

for azimuths −20◦ and 70◦, respectively. Then, 3D variogram realiza-

tions of each variable are attained by auto variogram modeling with the fixed vertical

variogram and used in multivariate geostatistical modeling to incorporate variogram

uncertainty.
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Figure 7.29: Improved omnidirectional horizontal variogram for PHIE. a) Enforce
the upper and lower seismic-derived limits on the omnidirectional hori-
zontal variogram realizations without merging with the vertical-derived
variogram. b) Merge the omnidirectional horizontal variogram realiza-
tions with the vertical-derived variogram without enforcing the seismic
limits. c) Improved variogram realizations by enforcing upper and lower
seismic-derived limits, and merge variogram distributions. d) Standard-
ized fitted variogram realizations.

7.4 Univariate Geostatistical Modeling without Parame-

ter Uncertainty

Before incorporating variogram and histogram uncertainties in multivariate geostatis-

tical modeling, each variable is modeled independently with the fixed variogram model

and fixed reference distribution in SGS without using seismic data for the entire 3D

acoustic impedance model (see Figure 7.18). The main aim is checking the histogram

reproduction of variables PHIT, PHIE, Vsh after modeling. Figure 7.2 shows a clear

vertical trend especially for PHIE, Vsh (see vertical variogram in Figure 7.21). The
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Figure 7.30: Correlation matrix of 100 omnidirectional horizontal variogram realiza-
tion values for PHIT, PHIE and Vsh at lag distance 8000m after LU
simulation to preserve the positive correlations between the variables.

trend usually has an impact on histogram reproduction. Figure 7.31-a shows 100 his-

togram of SGS realizations for PHIT with the fixed reference distribution (red line)

and fixed variogram model from Equation 7.7. The histogram reproduction is good in

general but for high values (larger than 0.3), they tend to be lower than the reference

histogram. Figure 7.31-b shows histogram reproduction for unconditional simulation.

Because of no conditioning data, there is higher uncertainty in histogram of realiza-

tions; however, the reference histogram is approximately in the middle. Figure 7.31-c

shows histogram reproduction for a pure nugget effect variogram (nugget effect 1). All

SGS realizations are normal with mean 0 and standard deviation 1; so, histogram re-

production is consistent with the reference distribution. Figure 7.32 and 7.33 show the

same approach for assessment histogram reproduction of PHIE and Vsh. Since the

trend is stronger for these variables especially for Vsh and there is a zonal anisotropy

in well F03-4 (Figure 7.2), 100 histogram of SGS realizations are shifted to the left of

the reference distribution for PHIE (see Figure 7.32-a), and to the right of the reference

distribution for Vsh (Figure 7.33-a). By unconditional simulation (see Figure 7.32-b

for PHIE and Figure 7.33-b for Vsh), or SGS using a pure nugget effect variogram (see

Figure 7.32-c for PHIE and Figure 7.33-c for Vsh), the problem of shifting histogram

realizations is resolved. This confirms that there is neither a problem with the geo-
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Figure 7.31: Histogram reproduction for PHIT (black lines). The red line is the
reference distribution. a) Histogram reproduction with the fixed refer-
ence distribution (distribution of data) and fixed variogram model from
Equation 7.7. b) Histogram reproduction for unconditional simulation.
c) Histogram reproduction for a pure nugget effect variogram.

statistical technique nor with the reference histograms, the problem is only related to

the trend in the well data. The shifting of histogram realizations can also be seen in

multivariate geostatistical modeling with super secondary variable (see next Section).

The histogram of the well data may be declustered and improved by seismic data

(Deutsch et al., 1999, 2005). However, variables PHIE and Vsh do not have a good

correlation with the acoustic impedance (see Figure 7.19), thus, seismic data cannot be

used to decluster the histogram of these variables. Because of multivariate geostatistical

modeling, the distribution of all variables should be consistent: soft data declustering

should be applied for all variables not for one of them. Therefore, the distributions of

well data without soft data declustering are used in multivariate geostatistical modeling
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Figure 7.32: Histogram reproduction for PHIE (black lines). The red line is the
reference distribution. a) Histogram reproduction with the fixed refer-
ence distribution (distribution of data) and fixed variogram model from
Equation 7.7. b) Histogram reproduction for unconditional simulation.
c) Histogram reproduction for a pure nugget effect variogram.

although seismic data (acoustic impedance) is used as secondary variable for modeling

of each variable.

7.5 Multivariate Geostatistical Modeling with Parameter

Uncertainty

Multivariate geostatistcial modeling with parameter uncertainty (histogram and vari-

ogram uncertainty) is applied to simulate each variable for the entire 3D acoustic model

volume (see Figure 7.18). The joint prior histogram uncertainty is computed by the

multivariate spatial bootstrap (see Chapter 6) for PHIT, PHIE, Vsh variables using the

linear model of coregionalization (LMC) (see Equation 7.7). The correlated histogram
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Figure 7.33: Histogram reproduction for Vsh (black lines). The red line is the ref-
erence distribution. a) Histogram reproduction with the fixed refer-
ence distribution (distribution of data) and fixed variogram model from
Equation 7.7. b) Histogram reproduction for unconditional simulation.
c) Histogram reproduction for a pure nugget effect variogram.

realizations of PHIT, PHIE and Vsh are used as reference distributions in conditional

SGS for normal score transformation of data and back transforming the conditional

Gaussian realizations to the original units for each variable. The improved variogram

realizations of each variable (Section 7.3) are used in SGS to incorporate variogram

uncertainty.

The histogram and variogram uncertainties are applied in cosimulation work flow:

SGS with intrinsic collocated cokriging (ICC) and using super secondary variable

(Babak & Deutsch, 2007b; Manchuk & Deutsch, 2012) is applied for multivariate geo-

statistical modeling; collocated cokriging with intrinsic model is used to avoid variance

inflation (Babak & Deutsch, 2007a). 100 realizations of each variable with histogram

and variogram uncertainties are simulated by a hierarchical modeling work flow:

1. Since PHIT has the highest correlation with 3D seismic data (acoustic impedance)
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(see Figure 7.19), it is first simulated with one realization of histogram uncer-

tainty and one realization of variogram uncertainty using ICC by normal score

3D acoustic impedance. Then, it is clipped to the top and bottom surfaces of the

3D acoustic impedance model. Figure 7.34 shows one SGS realization of PHIT.

Figure 7.34: One SGS realization of PHIT with ICC using 3D acoustic impedance.

2. For simulating one realization of PHIE, super secondary variable is built by the

3D acoustic impedance and one realization of previously simulated PHIT. SGS

with one realization of histogram uncertainty and one realization of variogram

uncertainty using ICC by the super secondary variable is applied, and then it

is clipped to the top and bottom surfaces of the 3D acoustic impedance. Figure

7.35 shows one SGS realization of PHIE. The correlation between variables PHIT

and PHIE is preserved after modeling.

3. Finally, one realization of Vsh is simulated with super secondary variable built

by the 3D acoustic impedance, one realization of previously simulated PHIT and

PHIE. SGS with one realization of histogram and variogram uncertainties using

ICC by super secondary variable is applied and clipped to the top and bottom

surfaces of the 3D acoustic impedance. Figure 7.36 shows one SGS realization
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Figure 7.35: SGS realization of PHIE with ICC using super secondary variable built
by the 3D acoustic impedance and realization of PHIT.

of Vsh. The correlation between variables PHIT and Vsh, PHIE and Vsh are

preserved after modeling.

Steps 1 to 3 are repeated to simulate 100 realizations of PHIT, PHIE and Vsh incor-

porating histogram and variogram uncertainties.

The multivariate spatial bootstrap respects the correlations between PHIT, PHIE

and Vsh for each histogram realization. This leads to uncertainty in correlation between

variables. Figure 7.37 shows one histogram realization of the multivariate spatial boot-

strap for PHIT, PHIE and Vsh. Figure 7.38 shows the uncertainty in the correlations

between PHIT and PHIE (a), PHIT and Vsh (b) and PHIE and Vsh (c). There are

very low and very high correlations in the histogram of correlations. The correspond-

ing histogram realizations of these correlations may be rejected, and new histograms

are simulated to satisfy the proper correlations. By incorporating the joint prior his-

togram uncertainty in geostatistical simulation, the uncertainty in correlations between

variables will be incorporated in the final model.

The hierarchical geostatistical modeling by ICC with super secondary variable re-
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Figure 7.36: SGS realization of Vsh with ICC using super secondary variable built
by the 3D acoustic impedance, realization of PHIT and PHIE.

Figure 7.37: One histogram realization of the multivariate spatial bootstrap for
PHIT, PHIE and Vsh.

spects the correlations between PHIT, PHIE and Vsh and the 3D acoustic impedance

model; compared Figures 7.35 and 7.36, there is a high negative correlation between

PHIE and Vsh after modeling; these variables are highly correlated before modeling.
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Figure 7.38: Uncertainty in correlations between PHIT, PHIE and Vsh by the mul-
tivariate spatial bootstrap. a) PHIT versus PHIE. b) PHIT versus Vsh.
c) PHIE versus Vsh.

Figure 7.39 and Figure 7.40 show the crossplots between PHIT versus seismic (acoustic

impedance) and PHIT versus PHIE before (a) and after modeling (b) for one realiza-

tion. These variables have high correlations before modeling. The high positive and

negative correlations between variables are reproduced after modeling. The values of

variables are changed after modeling because of using different minimum and maximum

values for tail extrapolation in SGS than the minimum and maximum of data (lower

and higher than the minimum and maximum of data for each variable). The differ-

ence between correlation coefficients before and after modeling denotes the updated

correlation coefficient between variables; this approach incorporates the uncertainty in

correlation coefficient between primary (PHIT, PHIE and Vsh) and secondary variables
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(the acoustic impedance model) in geostatistical modeling.

Figure 7.39: Crossplots between PHIT versus seismic before modeling (a) and after
modeling (b) for one realization.

Figure 7.40: Crossplots between PHIT versus PHIE before modeling (a) and after
modeling (b) for one realization.

The joint prior histogram uncertainty calculated by the multivariate spatial boot-

strap is compared with histogram uncertainty by only fluctuations of SGS realizations

after multivariate geostatistical modeling (ICC with super secondary), and posterior

histogram uncertainty by multivariate geostatistical modeling using parameter uncer-

tainty (histogram and variogram uncertainties). Figures 7.41, 7.42 and 7.43 show the

prior histogram uncertainty (a), histogram uncertainty by only SGS realizations (b)

and posterior histogram uncertainty (c) for PHIT, PHIE and Vsh, respectively. For all
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variables, the prior histogram uncertainty is very high because it is calculated based

on unconditional LU simulation. The histogram uncertainty by only SGS realization is

low since it does not account for parameter uncertainty. Incorporating the high prior

histogram uncertainty in geostatistical simulation by conditioning and clipping leads to

more accurate histogram uncertainty (Chapter 6): it is lower than the prior uncertainty

and higher than the histogram uncertainty by only SGS realizations. Since there are

only four well data (conditioning data), the posterior histogram uncertainty does not

decrease noticeably in comparison with prior uncertainty. The problem of histogram

reproduction due to trend in well data discussed in univariate modeling (see Figures

7.31-a, 7.32-a and 7.33-a) also exists in multivariate geostatistical modeling without

parameter uncertainty (see Figures 7.41-b, 7.42-b and 7.43-b). By incorporating the

prior histogram uncertainty in geostatistical simulation, the shifting of the histogram

realizations of the posterior uncertainty is not noticeable especially for Vsh. This is

because of increasing the uncertainty in posterior histogram realizations.

The posterior variogram uncertainty could also be calculated by the variogram

of each SGS realization to assess the results. This uncertainty is computed without

any parameter uncertainty: no variogram uncertainty (fixed 3D variogram) and no

histogram uncertainty (fixed reference distribution), and with parameter uncertain-

ties: prior variogram and histogram uncertainties. Figures 7.44-a shows the posterior

variogram uncertainty (100 realizations) for azimuths 0◦ and 90◦ of PHIE without pa-

rameter uncertainty, and Figures 7.44-b shows the posterior variogram uncertainties

with both prior variogram and histogram uncertainties. Due to using the seismic data

in multivariate geostatistical modeling, the posterior variogram uncertainty without

parameter uncertainty and with parameter uncertainty are approximately the same:

using parameter uncertainty leads to a little higher posterior variogram uncertainty.

The posterior variogram uncertainty is influenced by the variogram of well and seismic

data because of conditioning. If there is a very high prior variogram uncertainty but

enough well data, conditioning of the well data in geostatistical modeling leads to low

posterior variogram uncertainty (see Chapter 3). Moreover, if there are sparse well

data but high correlation between well and seismic, conditioning of the seismic data

208



Figure 7.41: The prior histogram uncertainty (a), histogram uncertainty by only SGS
realizations (fixed histogram and variogram) (b) and posterior histogram
uncertainty (c) for PHIT. The red line is the reference distribution and
black lines are histogram realizations.

in geostatistical modeling leads to low posterior variogram uncertainty. For this case

study, there is a relatively high correlation between PHIT and seismic data. This leads

to a super secondary (for PHIE and Vsh) which has high correlation with primary

variable (primary variables are also highly correlated). Therefore, the posterior var-

iogram uncertainties for all variables are influenced by the variogram of the acoustic

impedance: very high continuity for azimuth 0◦ and very low continuity for azimuth

90◦ for both Figures 7.44-a and b.

7.6 Uncertainty in HIIP

Quantifying HIIP with parameter uncertainty is the main objective of this study. The

results of multivariate geostatistical modeling for reservoir properties and GRV with
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Figure 7.42: The prior histogram uncertainty (a), histogram uncertainty by only SGS
realizations (fixed histogram and variogram) (b) and posterior histogram
uncertainty (c) for PHIE. The red line is the reference distribution and
black lines are histogram realizations.

parameter uncertainty are used to quantify uncertainty in HIIP. There are no water

saturation data; Vsh is assumed as water saturation in this study. Since shale includes

impermeable water, this impermeable water is likely to be the irreducible water satu-

ration. One realization of HIIP is calculated by sum of Vl× PHIE ×(1 − Sw), (Vl=

100m × 100m × 5m) for those grids satisfied in GRV realization (realizations of top,

thickness and HWC): one realization of all variables are used to calculate one realiza-

tion of HIIP. Vl is the volume of each sugar cube grid (x = 100m, y = 100m, z = 5m)

and Sw is water saturation replaced with Vsh. This ensures that the parameter un-

certainties for reservoir properties (histogram and variogram uncertainties), surfaces

(uncertainties in top, thickness) and HWC are incorporated in the final model of HIIP.

To define the importance of each source of uncertainty, HIIP is calculated for seven

cases by incorporating the following parameter uncertainties:
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Figure 7.43: The prior histogram uncertainty (a), histogram uncertainty by only SGS
realizations (fixed histogram and variogram) (b) and posterior histogram
uncertainty (c) for Vsh. The red line is the reference distribution and
black lines are histogram realizations.

1. All uncertainties such as variogram, histogram, surface and HWC.

2. Histogram and variogram uncertainties (freeze surface and HWC uncertainties).

3. Histogram uncertainty (freeze variogram, surface and HWC uncertainties).

4. Surface uncertainties: uncertainty in top surface and thickness (freeze variogram,

histogram and HWC uncertainties).

5. HWC uncertainty (freeze variogram, histogram and surface uncertainties).

6. Variogram uncertainty (freeze histogram, surface and HWC uncertainties).

7. Only SGS realizations of PHIE and Vsh (freeze all parameter uncertainties: his-

togram, variogram, surface and HWC)

Figure 7.45 shows uncertainty in HIIP for these seven cases (values are in million cu-

bic meter (MCM)). Figure 7.46 shows a visually summary of Figure 7.45 in form of

a tornado chart. The horizontal axis shows the range of P10 and P90 for each seven
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Figure 7.44: a) The posterior variogram uncertainty (100 realizations) for azimuths
0◦ and 90◦ of PHIE using the fixed histogram and variogram. b) The
posterior variogram uncertainty with parameter uncertainty.

cases. The vertical axis is P10-P90. The seven cases are sorted from the highest to

the lowest P10-P90. Using all uncertainties leads to the highest uncertainty in HIIP

(P10-P90=797.0 MCM), and only realizations leads to the lowest uncertainty (P10-

P90=390.7 MCM). Histogram plus variogram uncertainties leads to the second highest

uncertainty, followed by histogram, surface, HWC and variogram uncertainties, re-

spectively. Histogram uncertainty is the most influential parameter uncertainty in the

uncertainty of HIIP, and variogram uncertainty is the least influential parameter un-

certainty: variogram uncertainty is the second lowest uncertainty in HIIP, just higher

than only realizations (P10-P90=422.3 MCM). Variogram uncertainty has a little im-

pact on resource/reserve estimation due to the fact that the frequency of both high

and low simulated values are increased or decreased for high and low variogram ranges

in geostatistical modeling; this leads to canceling out the high and low values and the

mean of the realizations does not change noticeably in terms of variogram uncertainty.
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Figure 7.45: Uncertainty in HIIP for seven cases (values are in MCM).
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Figure 7.46: Visually summary of Figure 7.45 in the form of a tornado chart. The
horizontal axis shows the range of P10 and P90 for each seven cases.
The vertical axis is P10-P90.

Variogram uncertainty must have high impact on flow simulation such as oil production

rate or water cut.

For this case study, uncertainty in reservoir volume (surfaces and HWC uncertain-

ties) do not contribute significantly for HIIP uncertainty. However, when they are

combined with the histogram and variogram uncertainties, it leads to higher P10 and

P90 for HIIP uncertainty because of higher GRV: higher P10 and P90 for HIIP in case

of all uncertainties compared with histogram and variogram uncertainties (see Figure

7.46). Since only surface uncertainties lead to higher P10 and P90, HWC uncertainty

similar to variogram uncertainty has a little influence on the final model; so, they could

be fixed without uncertainty for this reservoir.

7.7 Sensitivity Analysis

Sensitivity analysis in reservoir modeling enables investigating the relationship between

input parameters and response variables, to detect changes in values of responses caused
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by changes in the values of input parameters. The results indicate the important input

parameters in the model and those of no contribution (Saltelli et al., 2008). There

are several approaches of sensitivity analysis. This study applies the partial derivative

of a model response with respect to input variable for calculating the standardized

sensitivity coefficients (Azmy & Sartori, 2010; Balakrishnan, Castillo, & Sarabia, 2007;

Saltelli et al., 2008). First order sensitivity coefficients are known as linear regres-

sion coefficients and used for sensitivity analysis of this reservoir (for more details see

(Zagayevskiy & Deutsch, 2011)).

The input variables PHIE, Vsh, top, thickness with all uncertainties (see Figure

7.46) are assessed by sensitivity analysis. HWC is not included in the sensitivity anal-

ysis because according to Figure 7.46, it does not contribute to HIIP uncertainty.

The variable PHIT is not also considered for sensitivity analysis because it is not

used directly to calculate HIIP. The average of each realization of Vsh, top, thick-

ness are assumed as predictors, and HIIP for each realization is the response variable.

The standardized sensitivity coefficients are calculated (see (Zagayevskiy & Deutsch,

2011) for more details). Figure 7.47 shows sensitivity plot based on the values of the

standardized sensitivity coefficients for linear model. R2 is the goodness of the fitted

Figure 7.47: Sensitivity plot based on the values of the standardized sensitivity coef-
ficients for a linear model.

model, which is 0.693 out of 1.0. Vsh and PHIE are the most influential variables: the

standardized sensitivity coefficient for Vsh (-0.5) is higher than PHIE (0.33). This is

justifiable by higher uncertainty in the histogram of Vsh than PHIE (see Figure 7.43)

since histogram uncertainty has more impact on HIIP uncertainty (see Figure 7.46).

Although the standardized sensitivity coefficients of the top and thickness are similar
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(-0.12 vs -0.1), the uncertainty in top surface has more influence on HIIP uncertainty

than thickness: similar to variogram and HWC uncertainties, thickness could also be

fixed without uncertainty for this reservoir.

7.8 Remarks

The multivariate geostatistical modeling (ICC with super secondary) with parameter

uncertainty is used to calculate full uncertainty in HIIP for a real case study called

Netherlands Offshore F3 Block with only four wells and a 3D seismic data. The

calculated parameter uncertainties are: 1- Uncertainty in GRV: uncertainty in top

and thickness of the seismic data and uncertainty in HWC. 2- Variogram uncertainty:

high uncertainty in the omnidirectional horizontal variogram is reduced by the seismic-

derived and vertical-derived variograms. 3- Histogram uncertainty: the multivariate

spatial bootstrap is used to calculate the joint prior histogram uncertainty and incorpo-

rate this uncertainty to geostatistical simulation to arrive at a final posterior histogram

uncertainty.

Since there are only four wells, the experimental variogram and variogram uncer-

tainty of top and thickness cannot be calculated; so, variogram uncertainty is not

incorporated in the top and thickness models. However, a reference variogram model

is required to model the top surface and thickness and quantify parameter uncertainty.

This variogram could be attained from the variogram of the detrended seismic: trends

in the top surface and thickness of the seismic data are modeled and removed from

the seismic data (detrend = seismic − trend, in depth domain). This variogram is

assumed as the variogram of ∆ = actual− seismic required to tie the seismic surfaces

(top and thickness) to the well observations and quantify parameter uncertainty.

Parameter uncertainty in the top and thickness are calculated by: 1- Tie seismic

to well to achieve reference models: simple kriging is applied by the data value of

∆ = actual − seismic for each well location with the variogram model of the detrend

seismic (detrend = seismic − trend), and added to the seismic top and thickness

(in depth domain) to achieve the reference structures. This eliminates the mismatch
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between well and seismic for each well location; however, the mismatch could be used

to quantify parameter uncertainty. 2- Calculate histogram uncertainty of ∆ and use

as reference distribution for SGS with conditioning data of zero value in original units.

Since there are only four wells and the reference distribution of ∆ is not applicable for

the spatial bootstrap, a parametric approach is applied. 3- SGS realizations are back-

transformed to the histogram realizations of ∆ and added to the reference structures.

This ensures that the realizations (top and thickness) honor the actual observations at

well locations.

Due to using seismic data in multivariate geostatistical modeling, the posterior

variogram uncertainty without parameter uncertainty and with parameter uncertainty

are approximately the same. The posterior variogram uncertainty is influenced by the

seismic data and reduced considerably if there is a high correlation between well and

seismic data.

The posterior histogram realizations without using parameter uncertainty are shifted

to the left or right of the reference distributions. This is resolved by unconditional SGS

and conditional SGS with a pure nugget effect; hence, the shifting problem is likely re-

lated to the strong trend in well data. By incorporating the prior histogram uncertainty

and increasing the uncertainty in the posterior histogram, shifting of the histogram re-

alizations is not noticeable. Unlike posterior variogram uncertainty, using seismic data

does not lead to low posterior histogram uncertainty. Only conditioning of the well data

can improve the high prior histogram uncertainty. Although the posterior histogram

uncertainty is lower than the prior histogram uncertainty for this case study, it is still

high due to the sparse well data.

In general, histogram uncertainty is the most influential parameter uncertainty in

the uncertainty of HIIP, and variogram uncertainty is the least influential one. Vari-

ogram uncertainty should have major influence on flow simulation where the connec-

tivity of rock is critical. For example, variogram uncertainty for permeability leads to

high impact on oil production rate or water cut. Since there is no permeability data,

the influence of variogram uncertainty on flow simulation is not included in the case

study of this Chapter.
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Chapter 8

Conclusions

Numerical reservoir modeling is very important in the early stage of field development

when there are limited well data. A realistic numerical model that reasonably repre-

sents the inevitable uncertainty is required at this stage for decision making. Major

uncertainties in presence of limited data include the variogram and histogram. Uncer-

tainty in these parameters should be quantified correctly and incorporated in the final

reservoir model.

8.1 Summary of Contributions

The main contribution of this thesis is methodology to improve uncertainty quantifi-

cation in reservoir modeling. A novel approach of variogram declustering technique

is developed to remove artifacts from the experimental variogram. A new technique

of variogram uncertainty is implemented. High variogram uncertainty is improved by

the variogram of seismic data and the vertical variogram of the well data. A new ap-

proach of quantifying histogram uncertainty is proposed and verified by true histogram

uncertainty.

8.1.1 Variogram declustering

An accurate variogram model is very important for quantifying parameter uncertainty

as well as geostatistical model construction. The preferential placement of wells can

lead to an unreliable experimental variogram. Weighting the pairs entering variogram
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calculation by ordinary global kriging (OGK) is proposed for declustering the vari-

ogram. This is a useful tool to improve the determination of the spatial structure of

a data set in the presence of preferential sampling. Global kriging is applied on the

variogram pairs of each lag distance considering the fourth order covariance between

pairs. The fourth order covariances comes from a preliminary variogram model that is

updated once the declustering is performed. According to the synthetic and real exam-

ples, the declustered variogram is not necessarily close to the preliminary variogram;

the preliminary variogram is not used directly as a target for variogram decluster-

ing. The new fitted variogram model to the declustered sample variogram is used for

geostatistical modeling and quantifying uncertainty.

8.1.2 Variogram Uncertainty

There is unavoidable uncertainty associated with the experimental variogram although

variogram declustering can remove some noise and artifacts. A new approach of quan-

tifying variogram uncertainty is proposed that is independent of the domain size. The

fourth order covariance is applied to directly calculate the degrees of freedom (DoF)

for each lag. The Chi-square distribution of each lag distance is built by the calcu-

lated DoF. Variogram realizations are drawn from these distributions. The variogram

realizations reproduce the correlation between lag distances by considering LU uncon-

ditional simulation with the correlation matrix between lag distances. These variogram

realizations are used in geostatistical modeling to incorporate variogram uncertainty in

the final model.

The calculated variogram uncertainty is not conditioned to the well data. By incor-

porating variogram uncertainty in geostatistical modeling, the initial prior uncertainty

is reduced due to conditioning of the data.

8.1.3 Improve Horizontal Variogram Uncertainty by Secondary Data

In case of sparse well data, the high uncertainty in the horizontal variogram is not

reduced by the conditioning data. A novel technique is developed to improve the

horizontal variogram of well data by seismic data. The vertical variogram from wells
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and the horizontal variogram from seismic data are well-defined in most cases, and

these can be used to improve the horizontal variogram inference from well data. An

approach is proposed to combine information from a noisy horizontal variogram from

wells, a horizontal seismic variogram, and analogue anisotropy ratios combined with

the vertical variogram from well data.

The acceptable range of the unknown horizontal variogram of the well data is at-

tained from the horizontal seismic variogram considering the cross covariance to the

well data. A rejection sampling is proposed to ensure variogram realizations of the

well data fall within the limits. The limits are narrower if there is a high correlation

between well and seismic data. Well and seismic data should be at the same scale to

apply this methodology. In case of 2D data set, it is assumed they are scale consistent.

However, for 3D data, the vertical scale of the seismic data is always larger than the

vertical scale of the well data. Thus, the seismic variogram should be down scaled

before applying this approach, and the correlation between well and seismic data at

the scale of the well data should be achieved.

The vertical variogram of the well data can be scaled to scenarios of the horizontal

variogram by considering horizontal-to-vertical anisotropy ratios (H:V). Uncertainty in

the H:V comes from geological analogues. Samples are drawn from the distribution of

the H:V and the sill value. The updated variogram distribution for each lag distance

is calculated considering the seismic limits.

The noisy horizontal variogram and the vertical-derived variogram (after applying

seismic limits) are merged by the method of combining error ellipses for independent

Gaussian distributions by Blachman (1989). A transformation table is considered since

the distribution of each lag distance is Chi-square and not Gaussian. The final distri-

bution of uncertainty for each lag is reduced because it is achieved by integrating all

secondary data (the vertical variogram of the well data and the horizontal variogram

of the seismic data).

After merging variogram distributions, new horizontal variogram realizations are

drawn from the uncertainty intervals of lag distances considering the correlation matrix

of the variogram lags. The horizontal variogram realizations can be autofitted with a
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fixed vertical variogram to obtain the final 3D variogram realizations.

8.1.4 Histogram Uncertainty

Quantifying histogram uncertainty is an important task for geostatistical modeling

since it has a large affect on resource uncertainty. A new simulation-based approach

is developed. The histogram uncertainty from the spatial bootstrap is taken as the

prior uncertainty. This prior uncertainty could be conditioned and trimmed to the

study area to achieve more accurate posterior histogram uncertainty. The histogram

uncertainty techniques are checked against the true uncertainty in some special cases.

The true variance of the mean could be calculated by a scan-based approach. This

approach looks for similar patterns of a data configuration within a large image, and

calculates the mean of the similar patterns of the data configuration. In order to make

a reliable distribution of the mean, the data configurations should have enough repli-

cates within the image. By scanning many data configurations and several templates,

the true uncertainty in the mean is estimated. This supports selection of the best

approach of quantifying histogram uncertainty that is the posterior approach. The

spatial bootstrap and global kriging are found to overestimate and underestimate the

histogram uncertainty, respectively.

The multivariate spatial bootstrap is used to calculate the joint prior parameter un-

certainty. The posterior histogram uncertainty for multiple variables is calculated by

transferring the joint prior parameter uncertainty in multivariate geostatistical mod-

eling. Since the multivariate spatial bootstrap respects the correlation between the

variables, the uncertainty in the correlation between variables as well as statistics are

incorporated in the final model. The prior histogram uncertainty in the proportion of

each facies for categorical variables could also be computed and used in conditional

simulation to achieve the posterior uncertainty in the proportion of each variable.

According to the case study in this thesis, histogram uncertainty is the most influ-

ential parameter uncertainty in resource estimation because it affects the mean of the

realizations. Variogram uncertainty is the least influential due to the fact that both

low and high simulated values average out. Variogram uncertainty has a large impact
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on flow simulation because connectivity is crucial.

8.2 Limitations

Although the developed methodologies have been checked, there are some computa-

tional and conceptual limitations.

� Variogram declustering by global kriging with the fourth order moments is effi-

cient for less than a few thousand variogram pairs of each lag distance because

of CPU time. This is due to solving the covariance matrix of the global kriging

for each lag distance and using the fourth order covariance. This methodology

is limited to the early stages of field development with sparse sampling and less

than 10000 pairs for each lag distance.

� The experimental variogram depends on input parameters including lag distance,

lag tolerance, azimuth angle, azimuth tolerance, dip angle, dip tolerance and

bandwidth. The calculated experimental variogram is sensitive to these param-

eters. This might lead to unreliable declustered sample variogram due to using

the variogram model fitted to the calculated experimental variogram by choosing

these parameters.

� The DoF approach of quantifying variogram uncertainty is not conditioned to

well data. This leads to a high variogram uncertainty. Although conditioning of

data reduces the high variogram uncertainty if there are enough wells, there is

no proof that the results are close to the real variogram uncertainty. A similar

check as applied to the histogram uncertainty is required.

� The CPU time is also an issue for variogram uncertainty due to the fact that the

DoF technique uses the fourth order covariance of variogram pairs for calculating

the degrees of freedom.

� The proposed methodology of the seismic derived variogram requires the well and

seismic variogram to be scale consistent. The variogram downscaling approach

assumes the variables average linearly and the shape and number of variogram
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structures are unchanged after variogram downscaling. This assumption may not

be correct.

� Variogram uncertainty is only calculated for direct variograms: variogram uncer-

tainty is not considered for cross variograms. Although the uncertainty in cross

variogram could be calculated by an intrinsic model considering the uncertainty

in the direct variogram, it would be advisable to apply multivariate geostatis-

tical modeling techniques that do not require the cross variogram such as the

projection pursuit multivariate transformation (PPMT) (Barnett, Manchuk, &

Deutsch, 2014).

There are several assumptions for the methodologies proposed in this thesis. The

first assumption is that the normal score variables should be multivariate Gaussian.

This is required for variogram declustering and variogram uncertainty due to using the

fourth order covariance, and for histogram uncertainty because of LU simulation for

the spatial bootstrap. A stationary domain is another assumption for all techniques:

the variogram model fitted to the experimental variogram should reach to stationary

sill. Assumption of representative variogram and histogram models are also required

for sampling variogram and histogram realizations. If these representative models are

not accurate after declustering (variogram declustering by fourth order moments and

histogram declustering by secondary data), the drawn variogram and histogram real-

izations may be unreliable.

8.3 Future Work

Additional work may be considered for geostatistical modeling in presence of limited

data. Some ideas for future research are presented as:

� Variogram declustering could be applied to improve the indicator variogram of

each facies. The validity of the fourth order moment approach would have to be

established for categorical variables.

� The methodology for improving the horizontal variogram uncertainty of contin-
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uous variables could also be extended to categorical variables. The horizontal

indicator variogram uncertainty for each facies may be calculated and improved

by the vertical indicator variogram of the well data and horizontal variogram of

the seismic data.

� The variogram downscaling technique could be improved to address nonlinear

averaging and the change in variogram shape.

� The multivariate variogram realizations in this thesis is achieved by applying

LU simulation with the positive correlation matrix of the variables. However,

multiple variable variograms (variogram realizations) could be sampled at the

same time.

� Posterior histogram uncertainty for multi variables and proportions of the cate-

gorical variable could be evaluated with true histogram uncertainties.

Only variogram and histogram uncertainty are considered in this thesis. This work

could be extended to calculate uncertainty in other parameters such as formation vol-

ume factor, recovery factor and dynamic uncertainty, and incorporate them in geosta-

tistical modeling for more accurate reservoir forecast.
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Appendix A

Programs

This section provides documentation and description of the programs written in the

thesis for variogram calculation, variogram uncertainty and variogram improvement.

The programs include gamt for calculating the experimental variogram of exhaustive

data (seismic data) and the cross covariance between well data and seismic data, Vardec

for variogram declustering, VarUn for variogram uncertainty, VarSeis for the seismic-

derived variogram, VarVtH for the vertical-derived variogram and VarMerg for final

improved horizontal variogram realizations by applying the seismic-derived variogram

and merge with the vertical-derived variogram.

A.1 Program gamt

The program gamt provides more accurate experimental variogram of the seismic data

and cross covariance between well and seismic data with lower CPU time than avail-

able alternatives. The methodology is mentioned in Figure 4.11 of Chapter 4. The

experimental variogram of exhaustive seismic data and the cross covariance are very

important for calculating the seismic-derived variogram (Chapter 4). Due to large

number of seismic data, variogram and cross covariance calculation could lead to high

CPU time. The GSLIB code gam for gridded data (Deutsch & Journel, 1998) only

calculates variogram for certain directions and lags and cannot calculate the cross co-

variance between sparse well data and exhaustive seismic data. The new program gamt

for variogram and cross covariance calculation is implemented based on a predefined
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template around each location of variogram (or cross covariance) pair and choosing the

nearest points to this location for variogram calculation (see Figure 4.11 of Chapter 4).

This process is repeated for all lag distances to calculate the experimental variogram

(For more information see Rezvandehy and Deutsch (2014b)).

Table A.1 shows the default parameter file of the program gamt . Line 5 specifies

the gridded data file which is usually the seismic data. This data should be a simplified

Geo-EAS formated file (Deutsch & Journel, 1998). Line 6 defines number of variables

in the seismic data file (the gridded data) followed by column number for each variable.

Trimming limits are specified on Line 7. Grid specification for the seismic data are

entered on Lines 8 to 10. Line 11 denotes the primary data file (well data). This file

is only required for calculating the cross covariance. Lines 12 and 13 specify x, y, z

columns, and number of variables and column number for each variable, respectively.

Table A.1: Parameter file of gamt program.

Line 14 is the output file for variogram calculation. Line 15 is number of directional

variograms followed by Lines 16 and 17 defining the azimuth and dip of each direc-
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tional variogram. Number of lags, lag distance and tolerance number are entered on

Line 18. The tolerance number is the acceptable number of the head locations in

the defined template for variogram (cross covariance) calculation, and the template is

constructed based on this tolerance number. Line 19 indicates standardization of the

calculated variogram (yes=1, no=0). Number of variograms are entered on Line 20.

The following Lines 21 to 27 define the tail and head variable, and variogram type for

each variogram number, respectively. Variogram type 1 is the traditional variogram,

so there should be the same number for both head and tail variables. Line 21 is the

traditional variogram for the first variable, and Line 22 for the second variables of

the seismic data. The tail and head variables should be positive for variogram type 1.

Variogram type 2 signifies the traditional cross variogram between two variables of the

seismic data; the tail and head variables should be different (Line 23). Variogram type

3 denotes the covariance of the seismic data (Line 24) if the tail and head variables are

the same and positive. Negative variogram type 3 (-3) means converting the calculated

covariance to variogram through subtracting the covariance by the stationary variance.

The cross covariance between the well data and seismic data is calculated if one of

the tail or the head variables. In this case, the tail variable is well data and the head

variable is the seismic data. For example, Line 26 is the cross covariance between the

first variable of the well data and the first variable of the seismic data. -3 for variogram

type in case of the cross covariance calculation denotes converting the cross covariance

to the cross variogram. Line 27 shows the cross variogram between the first variable

of the well data and the second variable of the seismic data. Variogram type 4 signifies

the correlogram.

A.2 Program Vardec

The Program Vardec is developed for variogram declustering based on the methodology

in Chapter 2; ordinary global kriging is applied on the variogram pairs of each lag

distance to give each pair an appropriate weight. Table A.2 shows the default parameter

file. The data file is entered on Line 5. This data should be a simplified Geo-EAS
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formated file (Deutsch & Journel, 1998). Line 6 defines x, y and z coordinates. Line

7 indicates column number of the variable for variogram declustering. Trimming limits

are entered on Line 8. Lines 9 to 11 define grid specification for the area of interest

for variogram declustering. Line 12 specifies grid increment for discretization the

study area into variogram pairs for each lag distance (see Figure 2.3 of Chapter 2).

The discretization of variogram pairs are used in the left hand side covariance matrix

for global kriging approach. Figure A.1 shows a schematic illustration of discretization

Table A.2: Parameter file of Vardec program.

of an area into 16 variogram pairs for lag distance h, azimuth approximately 35◦ and

grid increment of 2. The study area in this Figure has nx = 9× ny = 9 grids. If grid

increment is chosen to 1, all possible variogram pairs (56 pairs) are attained. In case of

large grids (say bigger than nx = 100×ny = 100 ), grid increment 1 leads to high CPU

time. Lines 13 to 15 specify parameters for variogram calculation: number of lags

(Line 13), lag distance (Line 14) and lag tolerance (Line 15). Lines 16 to 17 define

the direction of variogram calculation. Line 18 indicates variogram standardization

(yes=1, no=0) for both the experimental and the declustered variograms (see Section
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Figure A.1: A schematic illustration of discretization of an area into 16 variogram
pairs for lag distance h and azimuth approximately 35◦.

2.8 of Chapter 2). Line 19 is the output file of variogram declustering. Line 20 is

the output file for variogram plotting. The experimental variogram, the declustered

sampled variogram and the new fitted variogram to the declustered variogram are

plotted. This fitted variogram model is calculated by embedding Varfit (Larrondo et

al., 2003) software in Vardec program. Line 21 is the variogram model fitted to the

declustered sampled variogram, which can be used in geostatistical modeling. Line 22

to 24 are the base case variogram model fitted to the experimental variogram before

variogram declustering. This variogram model is required for estimating the fourth

order covariance (see Chapter 2).

A.3 Program VarUn

The program VarUn provides variogram uncertainty and draws variogram realizations

from the uncertainty interval of lag distances (see Chapter 3). Table A.3 shows the

default parameter file. Although the most reliable approach of variogram uncertainty

is probably the DoF approach (Chapter 3), FOM and global kriging approaches (both

SGK and OGK) are also included in this code for further comparison and research.

VarUn program by default calculates the variogram uncertainty by FOM and DoF

approaches. SGK and OGK are optional (see Line 9). A base case variogram model
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is required for all approaches. The experimental variogram realizations are modeled

automatically inside the code by embedding varfit GSLIB code (Larrondo et al., 2003).

The data file is given on Line 5. This data should be a simplified Geo-EAS formated

file (Deutsch & Journel, 1998). Line 6 defines x, y and z coordinates. Line 7 indi-

cates column number of the variable for calculating variogram uncertainty. Trimming

limits are entered on Line 8. Line 9 specifies variogram uncertainty by global kriging

(yes=1, no=0). If variogram uncertainty by global kriging is applied, simple kriging

is 1 and ordinary kriging is 0. Lines 10 to 12 define grid specification for the area

of interest for variogram uncertainty only by global kriging. Line 13 denotes grid

Table A.3: Parameter file of VarUn Program.

increment for discretization the study area into variogram pairs (only global kriging).
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Lines 14 to 16 specify parameters for variogram calculation: number of lags (Line

14), lag distance (Line 15) and lag tolerance (Line 16). The directions of the vari-

ogram calculation are entered on Lines 17 to 19. Variogram uncertainty is applied for

one direction in case of isotopic or omnidirectional variograms, and for two directions

in case of anisotropic variograms which only major and minor directions of continuity

are needed. For anisotropic variogram, the first direction should be the major direction

of continuity and the second direction is minor direction of continuity. Lines 20 and

21 indicate variogram standardization (yes=1, no=0) for the experimental variogram

and variogram realizations as it is discussed in Chapter 3. Line 22 is random number

seed for simulating variogram realizations. Line 23 defines number of variogram re-

alizations. Autofitting software could lead to artifacts for modeling the experimental

variogram realizations: in case of more than one variogram structure, the range of the

first variogram structure may not be very low or very high. In order to avoid this,

a hmax (variogram range for major direction) and a hmin (variogram range for minor

direction) of the first variogram structure for all variogram realizations could be en-

forced to be within the scaled a hmax and a hmin of the first variogram structure of

the base case variogram model. Line 24 defines this scale. No correction is applied if

scale is 1. Line 25 defines variogram realization limits for the variogram plot. Line

26 is output file for the correlation matrix between lag distances. Lines 27 to 32

specify the output file of the variogram models and plots of the variogram realization

by FOM (Lines 27 and 28), DoF (Lines 29 and 30), SGK or OGK (Lines 31 and

32). The variogram plots give variogram realizations before (top variogram) and after

variogram fitting (bottom variogram) for each direction. The variogram models could

be used in geostatistical simulation to incorporate variogram uncertainty. The base

case variogram model is entered on Line 33 to 35. This variogram model is required

for estimating the fourth order covariance of all variogram uncertainty techniques.
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A.4 Program VarSeis

The program VarSeis calculates the seismic-derived variogram based on the method-

ology in Section 4.3 (Chapter 4). Table A.4 shows the default parameter file. This

program calculates the upper and lower limits of the seismic-derived variogram. Line

5 specifies the output file of the upper and lower limits of the seismic-derived vari-

ogram. Line 6 indicates the plots of the upper and lower limits variograms plus the

seismic variogram and the cross covariance. Lines 7 and 8 define number of lags and

lag distance. The cross covariance between well and seismic data can be calculated by

gamt (see Section A.1). If there are insufficient well data, the cross covariance could be

calculated by Markov model (Pyrcz & Deutsch, 2014). Line 9 asks if Markov model

is used for calculating cross covariance (yes=1, no=0). If so, the correlation coefficient

between well and seismic data is required. Line 10 is the percentage of the maximum

positive determinant as minimum acceptable determinant (δ in Figure 4.9 of Chapter

4). Line 11 defines the probability of the upper and lower limits taken from the cumu-

lative distribution functions (CDF) of the positive determinants. Lines 16 to 18 are

the variogram model for the seismic data, and Lines 23 to 25 are the cross covariance

model if Markov model is not used.

A.5 Program VarVtH

The program VarVtH is implemented to calculate the vertical-derived variogram based

on the methodology in Chapter 5, Section 5.3. Table A.5 shows the default parameter

file. Lines 5 to 6 specify the output files for variogram models and plot of variogram

realizations, respectively. The variogram models (realizations) could be directly used in

geostatistical modeling if the horizontal variogram cannot be calculated due to limited

well data (less than 4 wells). Lines 7 to 8 indicate number of lags and lag distance.

Line 9 defines the deviation from the sill 1, which is ∆v in Equation 5.4 (Chapter 5).

The minimum and maximum of the horizontal to vertical anisotropy ratio (H:V) for

building a triangular distribution are entered on Line 10. Line 11 is random number

seed for simulating variogram realizations. Line 12 is number of variogram realizations.
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Table A.4: Parameter file of VarSeis Program.

Lines 13 to 14 are parameters for the vertical variogram such as number of variogram

structures (nst), variogram type (it), variance contribution (cc) and variogram range

for each structure (range).

Table A.5: Parameter file of VarVtH Program.

244



A.6 Program VarMerg

The final program VarMerg is developed to achieve the final horizontal variogram re-

alizations based on the methodology in Chapter 5. Line 5 specifies the output file of

the horizontal variogram realizations calculated by VarUn program (see Section A.3).

Line 6 indicates number of directional variograms which is 1 for the omnidirectional

Table A.6: Parameter file of VarMerg Program.

or isotropic variograms, and 2 in case of anisotropy variogram (for major and minor

directions of continuity). Number of lags (nlag) for each direction should be given.

Lines 7 to 8 are the seismic-derived variograms achieved by VarSeis (see Section A.4)

program for the major and minor directions of continuity. Lines 9 to 10 are the

vertical-derived variograms attained by VarVtH (see Section A.5) for the major and

minor directions of continuity. The first direction for both the seismic-derived and the

vertical-derived variograms should be the major direction of continuity. The corre-

lation matrix between lag distances calculated by VarUn program (see Section A.3)

is entered on Line 11. Line 12 is the output file for the final horizontal variogram

realizations and Line 13 is the plot of variogram realizations. Line 14 is the min-

imum value of the cross covariance between well and seismic data for applying the

seismic-derived limits: the limits are applied on the variogram realizations until the

lag distance corresponding to this correlation. Line 15 is random number seed for
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variogram realizations. Line 16 specifies number of variogram realizations. Line 17

indicates variogram standardization (yes=0, no=0): the sill of all variogram realizations

could be enforced to 1 (see Chapter 3). Line 18 specifies the ratio of the maximum

to minimum variogram ranges (hmajor : hminor), and azimuth of major direction for

variogram realizations. This is the case when only the omnidirectional variogram could

be calculated because of limited data, however, there is a clear anisotropy in the area.

This anisotropy could be enforced on the omnidirectional variogram realizations (see

Chapter 7, Section 7.3.3). hmajor : hminor may be achieved from the seismic data. If

hmajor : hminor is one, no correction is applied. Although this program is aimed at

improving the horizontal variogram, the directional variograms for 2D data set can be

improved by the seismic-derived variogram.
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