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Abstract

Quantum optical sensing is a maturing field that offers the capability to achieve ex-

traordinary sensitivity. Atomic magnetometers, for example, now have the capability

to detect brain signals and to precisely measure Earth’s gravity field. In optical

atomic magnetometers, the electronic spins of the atoms in vapor form are aligned in

the same direction by “pumping” the ensemble using laser light at a select frequency.

Any magnetic field alters the spin states, which changes the optical properties of

the vapor, such as the transmission of the laser light, providing a way to measure

magnetic fields.

After reviewing the theory of atomic structure and atom-light interactions relevant

to the research presented here, I describe in the first part of this thesis a vector mag-

netometry method using microwave-assisted optical pumping, in which a microwave

field resonant to the ground state hyperfine splitting of 87Rb pumps an ensemble of

warm rubidium vapor, in addition to a strong optical pump beam, and a weaker

optical probe beam. I present theoretical details as well as preliminary data demon-

strating magnetic field measurements of a DC magnetic field. The measurements

were taken when the DC field was aligned at various angles relative to the microwave

magnetic field alignment. I compare theoretical and experimental differences in the

measurements.

With new methods for quantum devices comes the need for portability. In the

second part of this thesis, we demonstrate the fabrication of millimeter-sized rubid-

ium vapor cells using silicon micro-machining techniques. This method is relatively

inexpensive compared to glass-blowing methods and allows rapid, large-scale produc-
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tion. I describe our process flow and demonstrate the presence of rubidium atoms

inside our vapor cells. To conclude, suggestions for improvement are discussed.
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Preface

The vector magnetometry idea and the terminology “microwave-assisted optical pump-

ing” was proposed by Andrei Tretiakov. The data were taken together by both An-
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myself, with input from Andrei. The optical setup was borrowed from the Hybrid
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done by myself, except the silicon nitride deposition, which was done as a fee-for-

service at the nanoFAB. The optical setup and activation of the rubidium dispensers

were done by myself, with input from my supervisor Lindsay Leblanc, and with help

from Benjamin Smith and Logan Cooke, who showed me how to set up the Faraday

isolator and how to operate the 1064 laser. The rubidium absorption measurements

were done with assistance from Andrei Tretiakov.
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Chapter 1

Introduction

Quantum mechanics, in contrast to classical physics, takes a probabilistic rather than

deterministic view of nature. It is arguably one of the most profound theories ever

formulated, exploring phenomena that cannot be explained by classical physics. The

non-intuitive nature of quantum mechanics is embodied by the wave-particle duality

concept. In quantum mechanics, particles can behave both as a particle and as a

wave. Particles such as the electron occupy discrete [quantized] energy levels, which

can be described by wave functions. They can also be in a superposition of one or

several energy states until measured.

Quantum theory was born in the early 1900s out of research exploring the absorp-

tion of light at the subatomic level and other phenomena such as the behavior of heat

in solids. The branch of physics concerning the interaction of matter with light at

the subatomic scale is encompassed by atomic, molecular, and optical [AMO] physics.

Atoms are studied by manipulating their quantum states with radiation such as light.

While quantum computing may be one of the most talked-about revolutionary

applications of quantum mechanics, other successful, more readily commercialized

quantum technologies include quantum atomic sensors. By definition, quantum sens-

ing refers to one of the following: (i) the use of a quantum object that is characterized

by discrete energy levels, to measure a classical or quantum quantity, (ii) the use of

quantum coherence [a spatial or temporal superposition of states] to measure a phys-
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ical quantity, or (iii) the use of quantum entanglement to improve the sensitivity or

precision of a measurement, beyond the classical limit [1]. There has been much effort

to replace classical technologies such as communication, where electromagnetic fields

are transmitted and received, and magnetometry, where the strengths and/or direc-

tions of static magnetic fields are measured, by their quantum counterparts. Since

atoms can interact strongly with electric and magnetic fields, these phenomena can

be exploited for detecting electromagnetic waves. A subclass of quantum sensors is

atomic interferometers, which are used for gravity sensing in geological surveying for

detecting the density properties of subsurface materials. The atomic interferometer

method depends on the wave nature of particles and measures the difference in phase

between the wave functions of atoms at different positions in space to obtain the

gradient of Earth’s gravitational field [2].

One particular interest in the AMO community is the interaction of microwave

fields with atoms because certain frequency spacing between energy levels in alkali

atoms lie in the radio to microwave frequency regime. Traditionally, microwave sens-

ing has been used for imaging dielectric bodies, as in remote sensing, i.e. imaging

weather patterns, and shorter-range applications such as weapon detection [3]. An

example of atom-microwave fields technology is the Rydberg-atom-based quantum

receiver, which measures the entire radio-frequency range and surpasses the funda-

mental sensitivity, bandwidth, and frequency range of traditional electronics. Ry-

dberg sensors use laser beams and amplitude-modulated microwave fields from a

circuit to excite atoms into high energy Rydberg states. These highly excited states

are extremely sensitive changes to the microwave circuit’s voltage [4]. The RF sig-

nals are transduced into optical signals, which are detected via optical homodyne on a

balanced photodetector. Other AMO applications of microwave fields include atomic-

to-microwave optical transduction [5] and microwave-optical double resonance-based

atomic clocks [6]. Atomic frequency standards are one of the most stable frequency

references available. Standard atomic clocks vibrate at microwave frequencies, ap-
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proximately 9 billion cycles per second, while optical atomic clocks vibrate at a much

faster rate of about 500 000 billion cycles per second [7]. No electronic system can di-

rectly count the oscillations of optical clocks, and so optical clocks must be combined

with optical frequency combs, which divide their oscillations into lower frequencies

that can be linked with microwave standards. There is now demand for portable,

chip-scale, low-power atomic clocks [8]. One of the main challenges of miniaturiza-

tion is the size reduction of the microwave cavity resonator [MWR] [used to confine the

microwave field for enhancing atom-field interactions] to below the wavelength of the

atomic transition [9]. Existing solutions for millimeter-sized cells include strip-lines

and micro-coupling loops [10], as well as a novel µ-MWR composed of a multi-layer

stack of planar loop-gap resonator structures printed onto substrates coupled to a

coaxial fed strip-line, having a total volume less than 0.9 cm3 [9].

Quantum sensing is not limited to communications or surveying applications - it

also has a niche in biology. Atomic magnetometers now have the sensitivity to probe

the human brain better than other methods, such as SQUID-based magnetometers,

which are expensive and occupy large spaces, as they require cryogenics. In optically

pumped magnetometers, the spins of the electrons are pumped by a laser such that

they are aligned in the same direction. The presence of a magnetic field acts as a

torque to the spins, altering the amount of absorption of laser light. By monitoring

the light absorption, the magnetic field strength can be measured. In 2018, a team at

the University of Nottingham demonstrated the use of an array of wearable optically

pumped magnetometers mounted on a human subject’s head and detected activity

in the motor cortex when the subject moved their finger [11].

Microwave detection techniques have also been actively researched as an alternative

to existing biomedical imaging modalities, for example, for imaging breast tumors [3,

12]. Microwave fields are non-ionizing, posing low health risk compared to X-ray

imaging, and can penetrate many optically opaque mediums such as living tissue.

They operate over the frequency range covering hundreds of megahertz to tens of
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gigahertz, are low cost, and less time-consuming compared to magnetic resonance

imaging. A few atomic microwave sensors have been recently demonstrated, including

one capable of detecting microwave magnetic fields at arbitrary frequencies, from the

gigahertz to tens of gigahertz regime [13].

At the heart of all these sensors are the vapor cells and optical components. With

the advancements in quantum sensors, there is now demand for small, portable,

or wearable quantum devices, which can be accomplished by reducing the size of

the optical setup. About twenty years ago, researchers adopted silicon microma-

chining techniques to fabricate chip-sized atomic vapor cells, which can be made in

large batches compared to the traditional glass-blowing method [8]. The precision of

nanofabrication allows the integration of millimeter-sized optics components such as

the vertical-cavity surface-emitting laser and waveguides.

The research presented here focuses on two aspects: the study of microwave-optical

double resonance in warm rubidium vapor and the micro-fabrication of chip-sized ru-

bidium vapor cells. We work with alkali atoms, which have a single outer valence

electron that can interact with electromagnetic fields to change optical properties in

the medium. In particular, we worked with the isotope 87Rb, which has a natural

abundance of approximately 27%. Our lab also focuses on ultracold atom experi-

ments, and rubidium-87 is more easily cooled by evaporative cooling. Because of

its positive scattering length, it also allows a more stable Bose-Einstein condensate.

Therefore, the lasers we have available operate at frequencies corresponding to some

of the optical transitions in 87Rb and 85Rb, the latter which has a high natural abun-

dance of 72%. In principle, for the work demonstrated in this research, the isotope

85Rb can be used, but we would need to re-design and enlarge the microwave cav-

ity used in our microwave-assisted optical pumping experiment, as the ground-state

hyperfine transition frequency is lower in 85Rb. Other isotopes have a much smaller

natural abundance, and would not provide us with the atomic number density suffi-

cient for absorption spectroscopy.
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First, in Chapter 2 of this thesis, I cover the basics of light-matter interactions

from a semi-classical perspective relevant to our experiments. Then in Chapter 3, I

present a vector magnetometry experiment based on microwave-optical double reso-

nance [MODR], in which the atoms are pumped by both optical and microwave fields.

I measured the strength of a DC magnetic field by looking at the double-resonance

spectrum and study the relationship between the direction of the static field rela-

tive to the microwave field direction. I describe our setup, discuss MODR theory,

and provide preliminary data. In Chapter 4, I demonstrate the micro-fabrication of

millimeter-sized vapor cells and show the results of our test for the presence of ru-

bidium inside these cells. I outline the process flow step-by-step and conclude the

chapter by discussing improvements in the fabrication process that would make them

suitable for magnetometry purposes.
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Chapter 2

Atomic Physics

In this chapter, we will briefly introduce alkali atoms, cover the origins of atomic

energy levels, and discuss absorption spectroscopy using a two-level atom model,

which will help us better understand how we use light to probe the energy levels of

an atomic vapor.

2.1 Alkali Atoms

Alkali metal atoms, which are soft, shiny, and have a low melting temperature, are the

group of atoms in which chemical elements lithium [Li], sodium [Na], potassium [K],

rubidium [Rb], and francium [Fr] belong. They have a single unpaired electron, called

the valence electron, in their outermost electronic orbital. Alkali atoms are used in

quantum sensing applications because their optical properties can be manipulated by

interacting the atoms, and hence their electrons, with electromagnetic fields. Being

unpaired, the electron can be readily lost, making alkali metals very reactive at room

temperature and standard atmospheric pressure. Only unpaired electrons will exhibit

the spin properties described in this chapter. The energy of an alkali metal can be

approximated by considering only the outermost electron and the nucleus. Although

not part of the alkali group, hydrogen is in the same column as alkali atoms in

the periodic table, labeled Group 1A. In the classical picture, the hydrogen atom is

composed of one negatively charged electron that orbits around a nucleus formed from
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a single positive charge, the proton. The electronic wave function of the hydrogen

atom is well-studied and the results obtained for the hydrogen atom can be transposed

to the case of rubidium atoms, the type of alkali atoms used in this research. Rubidium

atoms are well studied, and their properties are well-documented, allowing us to better

design experimental parameters.

2.2 Atomic and Interaction Hamiltonian

In this section, we give an expression for the general Hamiltonian that describes

the interaction of a particle of charge q with a time-dependent electromagnetic field.

Consider an electromagnetic wave with wave vector k and angular frequency ω = ck,

where c is the speed of light and k = |k|. In terms of the vector and scalar potentials

A(r, t) and φ(r, t) respectively, the electric field is

E(r, t) = −∂A(r, t)
∂t

−∇φ (2.1)

and the magnetic field is

B(r, t) = ∇×A(r, t). (2.2)

With a suitable choice of gauge, we can set φ = 0 and consider only A(r, t), which

has the form

A(r, t) = Aoe
ikz−iωterad + A∗

oe
−(ikz−iωt)erad, (2.3)

where erad is the polarization direction of of the vector potential and is the same as

the electric field polarization. The amplitude of the vector potential, Ao, is related to

the amplitude of the electric field, Eo, via Ao = Eo/(2iω). The general Hamiltonian

for a particle of mass m and charge q in a gauge potential is

Ĥ =
1

2m
[p̂− qA(r, t)]2 + V (r)− q

m
S ·B, (2.4)

where p̂ is the momentum operator of the particle and V (r) is the potential energy of

the system in which the particle resides. Usually, the momentum term is much larger
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than the vector potential term. In position space, the momentum operator is given

by p̂ = −iℏ∇, where ∇ =
∑︁n

i ei∂/∂xi is the vector differential operator. The first

term in the Hamiltonian accounts for the force of the electromagnetic field, while the

last term accounts for the magnetic field acting on the spin. We can separate this

Hamiltonian into a part containing the non-relativistic atomic Hamiltonian Ĥo that

is intrinsic to the particle,

Ĥo =
p̂

2m
+ V (r) = −ℏ2∇2

2m
+ V (r), (2.5)

and a part containing terms where the particle interacts with the field,

Ĥ int = − q

m
A(r, t) · p̂− q

m
Ŝ ·B(r, t) +

q2

2m
[A(r, t)]2. (2.6)

The interaction Hamiltonian can be expanded into terms with different orders, cor-

responding to electric-dipole [Section 2.5.1], magnetic-dipole [Section 2.5.2], electric-

quadrupole, magnetic-quadrupole and higher-order terms. In the next section, we

will use our atomic Hamiltonian in Eq. 2.5 to solve for the energy states of an atom.

2.3 Energy States

2.3.1 Orbital Angular Momentum

We now consider the charged particle to be an electron of charge −e, mass m that

orbits around a positively charged nucleus with Z positive charges e, mass M , in

a single-electron atomic system. The electron and the nucleus interact due to the

Coulomb potential given by,

VC(r) = − Ze2

4πϵo|r|
, (2.7)

where ϵo is the permittivity of free space and |r| is the absolute distance between

the electron and the nucleus. This form of the potential energy in an atomic system

neglects relativistic effects and the intrinsic spin angular momentum of the electron

and the nucleus.

8



The Coulomb interaction between the electron and the positively charged nucleus

causes the electron to reside in discrete energy levels characterized by principal quan-

tum number n. The energy levels En are found from the eigenvalue equation,

Ĥ |ψ(r)⟩ = En |ψ(r)⟩ , (2.8)

where Ĥ is the Hamiltonian that is associated with the energy of the system [the ˆ

denotes an operator], |ψ(r)⟩ is the eigenfunction that corresponds to the wave func-

tion of the electron, and |r| is the electron-proton distance. For a review on matrix

representation of state vectors and operators, see Appendix A. If there are no external

fields, considering only the effect of the nucleus, the Hamiltonian for this system is

the atomic Hamiltonian,

Ĥ = Ĥat =
p̂2

2µ
+ VC(r), (2.9)

where µ = Mm/(M +m) is the reduced mass of the system. If M ≫ m, then

µ ≈ m, and Eq. 2.9 reduces to Eq. 2.5. The first term in the Hamiltonian represents

the kinetic energy of the atom in the center of mass frame. From the eigenvalue

equation Eq. 2.8, we can solve for the eigenfunctions and and eigenvalues, which

give the wave functions and the energy levels of the atomic system, respectively. In

spherical coordinates, where ϕ is the azimuthal angle and θ the polar angle, the wave

function split into radial and angular components is

ψn(r, θ, ϕ) = Rn,ℓ(r)Yℓ,mℓ
(θ, ϕ). (2.10)

Rn,ℓ(r) is the radial part of the wave function and Yℓ,mℓ
(θ, ϕ) is the angular dependent

part. The radial part depends on two integers, n and ℓ, and has the form

Rn,ℓ(r) ∝ e−r/aon

[︃
2r

nao

]︃ℓ
L2l+1

n−ℓ−1

(︃
2r

nao

)︃
, (2.11)

where ao is the Bohr radius and L(x) are the associated Laguerre polynomials. The

spherical component depends on two integers, l and ml, and has the form

Yℓ,mℓ
(θ, ϕ) = ℓ(ℓ+ 1)Pℓ,mℓ

(cos θ)eimℓϕ, (2.12)
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where Pℓ,m(x) are the associated Legendre polynomials. In Dirac notation, eigen-

functions of the electron are written as |n, ℓ,mℓ⟩. Here, n is the principal quantum

number and can take on integer values from 1, 2, . . . ,∞. The orbital angular mo-

mentum quantum number l can assume values 0, 1, . . . , n− 1. For the single-electron

atom, the energy levels that satisfy Eq. 2.8 for the wave function in Eq. 2.10 are given

by

En = −hcR∞
1

n2
, (2.13)

which is n2-fold degenerate, as there are multiple states for a given n that have this

energy. When ℓ = 0, the electron is said to be in the ground, or S, state. When

l = 1, the electron is in the first excited, or P , state. Physically, this orbital angular

momentum arises from the electron orbiting around the nucleus. The orbital angular

momentum operator l̂ is related to the quantum number l through

ℓ̂
2
|n, ℓ,mℓ⟩ = ℏ2ℓ(ℓ+ 1) |n, ℓ,mℓ⟩ . (2.14)

The magnitude of the orbital angular momentum ℓ̂ can be obtained from Eq. 2.14,⃓⃓⃓
ℓ̂
⃓⃓⃓
=

√︂
⟨n, ℓ,mℓ| ℓ̂ · ℓ̂ |n, ℓ,mℓ⟩ = ℏ

√︁
ℓ(ℓ+ 1). (2.15)

Note that l̂ = l̂xex + l̂yey + l̂zez is a vector operator specified by its magnitude and

direction [14]. However, in quantum mechanics, it is impossible to know the direction

in space. In other words, we cannot simultaneously know all three components of

the angular momentum. The maximal information we can obtain is the projection

of angular momentum along a chosen axis called the quantization axis. For the rest

of this thesis, the z-axis will be chosen as our quantization axis. The projection of

angular momentum along this axis is

ℓz = ℓ̂z |n, ℓ,mℓ⟩ = mℓℏ |n, ℓ,mℓ⟩ , (2.16)

where mℓ can take on integer values −ℓ,−ℓ + 1, . . . , 0, . . . , ℓ − 1, ℓ. The x and y

components of the angular momentum can be obtained from the raising and lowering
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operators which satisfy

ℓ̂± |ℓ,mℓ⟩ = ℏ
√︁

(ℓ∓mℓ)(ℓ±mℓ + 1) |ℓ,mℓ ± 1⟩ (2.17)

which can be shown using the relations

ℓ̂x =
1

2

(︂
ℓ̂+ + ℓ̂−

)︂
(2.18a)

ℓ̂y = − i

2

(︂
ℓ̂+ − ℓ̂−

)︂
. (2.18b)

The raising and lowering operators act on states |ℓ,mℓ⟩ by adding or removing one

unit of angular momentum, bringing the particle to the final state |ℓ,mℓ ± 1⟩. Exper-

imentally, this can be achieved with a time-dependent oscillating electric field with

left and right-hand polarization [Section 2.5.1].

2.3.2 Time Dependence

In the previous section, we did not consider the time dependence of the system.

However, to describe quantum motion, we need to consider how a system in a partic-

ular state |ψ(t)⟩ evolves with time. This time evolution is governed by Schrödinger’s

equation

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ |ψ(t)⟩ . (2.19)

Equation 2.19 can be used to look at the evolution of energy eigenstates |ψn⟩ of a

Hamiltonian

iℏ
∂

∂t
|ψn(t)⟩ = Ĥ |ψn(t)⟩ = En |ψn(t)⟩ , (2.20)

where En are the eigenvalues. The solution to this first order differential equation for

|ψn(t)⟩ is

|ψn(t)⟩ = e−iEnt/ℏ |ψn(0)⟩ . (2.21)

The effect of time evolution is to multiply the initial state by a phase factor e−iEnt/ℏ.

Since the phase does not influence the outcome of an observation, we can see that

a system in an eigenstate is a stationary state and does not evolve. Therefore, if an
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electron finds itself in the state |n, ℓ,m⟩, it will remain in that state forever. In this

case, we say that the quantum numbers n, ℓ, m are “good quantum numbers”. Good

quantum numbers are so named because the operators associated with these numbers

commute with the total Hamiltonian of the system, satisfying the eigenvalue equation.

The eigenvalues are conserved quantities - the state does not evolve. Physically, this

means that the wave function does not change if there are no other perturbations to

the system. Of course, in reality, atomic systems are constantly perturbed; external

factors such as collisions and interactions with the environment can cause their states

to evolve.

2.3.3 Spin Angular Momentum

In addition to orbital angular momentum, the electron also has intrinsic angular

momentum caused by a quantum property called spin. The spin appears naturally

from the Dirac equation, which is an equation for the electron that satisfies both the

postulates of special relativity and quantum mechanics [15]. For a single electron,

the spin quantum number is s = 1/2. The modulus of the spin angular momentum

is always [14]

|ŝ| =
√︁
s(s+ 1)ℏ, (2.22)

and the projection of the spin angular momentum along the quantization axis is sz =

msℏ, where ms = ±1
2
is the magnetic spin quantum number. Including the effect of

spin, the eigenfunction of the electron in Dirac notation is labelled as |n, l,ml, s,ms⟩.

The nucleus also has spin and orbital angular momentum, denoted by Î. For the

isotope 87Rb, the value of the quantum number I is 3/2. that we use lower case letters

for a single electron or single proton system, and capital letters for a system that is

multi-electron or multi-proton.
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2.3.4 Quantum Defect

For hydrogen atoms, the energy levels depend only on n, not ℓ. But for atoms with

more than one electron, such as alkali atoms, this is not the case: the energy levels

are not degenerate. This is due to the screening effect, where electrons closer to the

nucleus see more of the nuclear charge, while electrons further away are “screened”

by other electrons and experience almost the same potential as in a hydrogen atom.

Therefore, s-electrons are lower in energy than p-electrons. The correction for the

energy levels in a multi-electron atom is [16]

En,ℓ = −hc R∞

(n− δℓ)2
, (2.23)

where δℓ is a quantity known as the quantum defect.

2.3.5 Fine Structure and Total Electronic Angular Momen-
tum

Relativistic effects lead to small shifts in the atomic energy called the fine-structure

splitting. The fine-structure Hamiltonian is

ĤFS =
1

2m2c2
1

R

dV (r)

dr
ℓ̂ · ŝ− p̂4

8m3c2
+

h2

8m2c2
∇2V (r). (2.24)

The first term contributing to the fine-structure splitting is due to spin-orbit inter-

action, which couples the orbital and spin angular momentum of the electron. The

interaction arises from the motion of the electron in the electrostatic field created

by the positively charged nucleus. Special relativity indicates that, in the electron’s

rest frame, the orbiting of the nucleus around the electron produces a magnetic field.

This magnetic field interacts with the magnetic moment of the electron associated

with its spin. The Hamiltonian has the form ξℓ · s, where ξ is the spin-orbit coupling

constant and is typically measured. When the spin-orbit interaction is taken into

account, the quantum numbers n, ℓ,mℓ, s,ms are no longer “good quantum numbers”

because the hyperfine structure Hamiltonian does not commute with ℓ̂ and ŝ, due to
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its ℓ̂ · ŝ term. Instead, we need to consider the total electronic angular momentum

operator ĵ = l̂+ ŝ, which does commute with ĤFS, as well as a new set of eigenstates

|n, ℓ, s, j,mj⟩. When working with a state of fixed n, ℓ, s, it is common to label an

eigenstate by its total [electronic] angular momentum. For example, |n, ℓ, s, j,mj⟩ be-

comes |j,mj⟩. The magnitude of the total electronic angular momentum j is related

to the quantum number j,

|ĵ| =
√︁
j(j + 1)ℏ, (2.25)

where j lies in the range

|ℓ− s| ≤ j ≤ ℓ+ s. (2.26)

Due to the spin-orbit interaction, the energy level of a state |j,mj⟩ is shifted by an

amount

ESO = ⟨j,mj| ξℓ̂ · ŝ |j,mj⟩ =
ξ

2
[j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)]. (2.27)

For heavier atoms such as rubidium, the spin-orbit coupling can be significant. Other

terms that contribute to the fine-structure splitting arise from the relativistic variation

of the electron mass with its velocity [second term], and from the non-local interaction

between the electron and the Coulomb field, called the Darwin term [third term], in

which the electron is affected by all the values taken on by the field in a region

centered at the point r, instead of the value of the field at point r [15]. The Darwin

correction only affects electrons in the ground state where ℓ = 0. Compared to the

non-relativistic Hamiltonian Ho, the fine-structure Hamiltonian terms are an order

α2 smaller, where α ≈ 1/137 is the fine-structure constant.

2.3.6 Russell-Saunders Notation

The energy state of an atom in the eigenstate |n, ℓ, j = l + s⟩ can be written as n2s+1ℓj.

This is called the Russell-Saunders notation. For example, for the valence electron in

the n = 5 shell of 87Rb, the ground state is written as 52S1/2. The first excited state,

with n = 5, ℓ = 1, splits into two states j = ℓ± 1/2 = 1/2, 3/2, due to fine-structure
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splitting. These two excited states are written as 52P1/2 and 52P3/2. This results

in the D1 and D2 transitions, as shown in Fig. 2.1 for 87Rb [a D transitions is a

transition from ℓ = 0 to l = 1].

orbital  
structure

fine  
structure

S-shell 
l = 0

P-shell 
l = 1

52P3/2

52P1/2

51S1/2

hyperfine  
structure

F = 1

F = 2

F = 1

F = 2

F = 3
F = 2
F = 1
F = 0

energy

 
(795 nm)

D1

 
(780 nm)

D2

6.834 GHz

266.6 MHz
156.9 MHz
72.22 MHz

Figure 2.1: Energy level diagram for the n = 5 shell of 87Rb, where the valence
electron resides. The S and the P shell are split due to screening effects and other
factors. Adapted from [17].

2.3.7 Hyperfine Structure and Total Angular Momentum

Associated with the spin Î of a nucleus is a magnetic moment equal to µ̂I = gIµN Î,

where µN is the nuclear Bohr magneton and gI the nuclear g-factor. In its own rest

frame, the nucleus sees the orbiting electron as an effective magnetic field Beff and

interacts with it. The hyperfine Hamiltonian describing this interaction is

ĤHFS = AHFSÎ · ĵ, (2.28)
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where AHFS is the hyperfine constant. Note that for ground-state electrons, ĵ = ŝ.

When the hyperfine splitting effect is in play, the quantum numbers j, mj are no

longer good quantum numbers. We define a new quantum number F̂ = Î + ĵ, an

operator associated with the total atomic angular momentum. The projection of

the total angular momentum along the quantization axis, mF , are integers in the

range −F ≤ mF ≤ F . The corresponding eigenstates |F,mF ⟩ are eigenstates of

ℓ̂
2
, ŝ2, ĵ

2
, F̂

2
and F̂ z, but not of ℓ̂z, ŝz and ĵz. These new eigenstates can be written

as superpositions of the |j,mj⟩ eigenstates using Clebsh-Gordan coefficients. The

energy shift of the |F,mF ⟩ states due to the hyperfine interaction is

EHFS = ⟨F,mF | ĤHFS |F,mF ⟩ =
AHFS

2
[F (F + 1)− I(I + 1)− j(j + 1)]. (2.29)

In the ground-state, the separation energy between adjacent levels F ± 1
2
is ∆EHFS =

2AHFS; this is approximately 6.834 GHz for 87Rb in units of ℏ. The hyperfine inter-

action lifts the degeneracies between levels of different F , but not between different

mF . For example, the 52S1/2 ground-state fine structure level of 87Rb splits into two

hyperfine states, F = |1/2− 3/2| = 1 and F = 3/2 + 1/2 = 2. Each of these levels

has 2F +1 sublevels, which are degenerate in the absence of a static magnetic field.

2.4 Zeeman Effect and the Hyperfine Structure

In the presence of an external static magnetic field B, the mF sublevels are not

degenerate. Each Zeeman sublevel shifts by an amount proportional to the magnitude

of the magnetic field. This energy shift is called the Zeeman shift. Physically, the

magnetic moment µ of the atoms interacts with the magnetic field, with the Zeeman

interaction Hamiltonian given by,

ĤZ = −µ ·B. (2.30)

In the approximation that the nuclear magnetic moment is much smaller than the

electron magnetic moment, the magnetic dipole moment in the presence of hyperfine
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Figure 2.2: Energy level due to the low field Zeeman effect in the ground state of 87Rb.
Adjacent sublevels are shifted by an amount ∆EZ = ℏωL. Nine possible magnetic
dipole transitions exist at seven different frequencies. The magnitude of the matrix
elements of these transitions are labeled. Transitions (iii) and (iv) have a degeneracy
of two.

splitting is

µ̂ = gJµB ĵ+ gIµN Î ≈ gJµB ĵ. (2.31)

Here µB = − eℏ
2m

is the Bohr magneton, which is a measure of how much magnetic

moment there is for every bit of charge q, and µN is the nuclear Bohr magneton,

which is much smaller than µB.

When the field strength is low, the Zeeman shift is smaller than the hyperfine

splitting: ⟨HZ⟩ ≪ ⟨HHFS⟩, and the magnetic field interaction acts as a perturbation

to the hyperfine interaction. In this situation, F and mF are good quantum numbers

and can be used to describe the state of the atom. We may wish then to write ĤZ as

a function of F̂. This can be done via the Wigner-Eckart theorem, which says that

for any operator V̂ whose effect is small compared to another operator Ĵ acting on

state |J,mJ⟩, V̂ can be expressed in terms of Ĵ by projecting V̂ onto Ĵ:

V̂ =

{︄
⟨J,mJ | V̂ · Ĵ |J,mJ⟩

J(J + 1)

}︄
Ĵ. (2.32)

The term in curly brackets is just a number and determines how much of V̂ is in the

new operator Ĵ, This theorem is also known as the projection theorem. To replace
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ĵ in ĤZ with F̂, we project ĵ onto F̂. The resulting Hamiltonian in the basis of F̂

simplifies to

ĤZ = gFµBF̂ ·B. (2.33)

where the factor gF is given by

gF = gJ

[︃
1

2
+
J(J + 1)− I(I + 1)

2F (F + 1)

]︃
. (2.34)

For 87Rb, the Landé factor gJ is approximately equal to 2. Thus, for F = 1, gF =

−1/2, and for F = 2, gF = 1/2. If we choose the direction of the magnetic field as

our quantization axis, so that F̂ ·B = Fz|B|, the low-field Zeeman energy shift is

EZ = gFµB|B| × ⟨F,mF |Fz |F,mF ⟩ = gFmFµB|B|, (2.35)

which is linear in magnetic field strength. Figure 2.2 shows a visual representation

of Zeeman energy shifts for the ground state of 87Rb. The energy difference between

adjacent mF sublevels is ∆EZ = gFµBB = ℏωL, where ωL is the Larmor frequency.

Measuring the Larmor frequency provides a method for magnetometry, discussed in

Section 3.1. Note that the mF = 0 sublevel is unaffected by the magnetic field in this

approximation. In our experiments, we work in the low magnetic field regime, so we

refrain from discussing the high-field Zeeman effect.

2.5 Atom-Laser Interactions

We now turn our attention back to the interaction Hamiltonian, Eq. 2.6, which de-

scribes a charged particle interacting with an oscillating electromagnetic field. We

restrict our discussion to electric-dipole and magnetic-dipole interactions and ignore

higher-order terms in the Hamiltonian.

2.5.1 Electric-Dipole Transitions

The leading term in the interaction Hamiltonian is the first term. If we suppose that

the spatial distance over which the interaction occurs is of the order of the atom’s
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size, then eikz = 1+(ikz)+ (ikz)2/2+ ... ≈ 1. Working in the basis of the eigenstates

of Ho,

Ĥo |ψi⟩ = hωi |ψi⟩ (2.36)

and considering only transitions where the electromagnetic field is near-resonant to

the transition between two states |ψ1⟩ and |ψ2⟩,

ω ≈ ω2 − ω2, (2.37)

we can use the commutation relationship

p̂ =
im

ℏ
[r̂, Ĥo], (2.38)

to express the first term in Eq. 2.6 [ q
m
A · p̂] as

ĤE1 = −q
2
Eo

(︁
e−iωt + e+iωt

)︁
erad · r̂ = −qE(t) · r̂. (2.39)

This Hamiltonian is the electric-dipole [E1] Hamiltonian and describes the interaction

between the oscillating electric field and the charged particle. Assuming that E2 > E1,

the first term e−iωt corresponds to an absorption process, while the second term with

eiωt corresponds to a spontaneous emission process. The physical implications are as

follows: when the oscillating electromagnetic field interacts with an atomic gas, it

induces oscillating electric-dipole moments in the atoms. The average dipole moment

of the ensemble orients itself along the direction of the field. In an isotropic medium,

this field generates a polarization P(ω) proportional to the electric field,

P(ω) = ϵoχ(ω)E(ω). (2.40)

The proportionality factor is determined by the linear susceptibility χ(ω), given by

the quadrature components of the oscillating dipole moments. It provides information

on the absorption and dispersion properties of the gas. These optical properties can

be measured by looking at the absorption of an oscillating electromagnetic field in

the atomic medium. Note that in an anisotropic medium, the relationship between

19



the polarization and the electric field are related by the susceptibility tensor, which

can induce birefringence [see Section 3.1].

The oscillating field can impart angular momentum to the electron and excite it

to a state with higher angular momentum. We can derive the “selection rules” for

allowed transitions between an initial state |ni, ℓi,mi⟩ = Rni,ℓi×Yℓi,mi
and a final state

|nf , ℓf ,mf⟩ = Rnf ,ℓf × Yℓf ,mf
by looking at the static part of ⟨ℓf ,mf |HE1 |ℓi,mi⟩

− eE0 ⟨ℓf ,mf | erad · r̂ |ℓi,mi⟩ = D12Iang, (2.41)

The equation has been separated into a radial part D12 depending only on r and an

angular part depending only on θ and ϕ. Expressed as an integral, the angular part

in position space is

Iang =

∫︂ 2π

0

sin θdθ

∫︂ π

0

Y ∗
ℓf ,mf

(θ, ϕ)

(︃
r

|r|
· eradYℓi,mi

(θ, ϕ)

)︃
. (2.42)

and is non-zero unless ∆ℓ = ℓf − ℓi = ±1, meaning that the electric-dipole Hamilto-

nian drives only transitions from the final state |ℓf = l ± 1,mf⟩ from the initial state

|ℓi = l,mi⟩. The frequency difference between states corresponding to such transi-

tions is usually in the optical regime. Depending on the polarization of the electric

field, there are three possible values for ∆m = mf −mi: ∆m = 0,±1, corresponding

to a π- and σ±-transition, respectively. A π-transition is excited by light polarized

linearly along the quantization axis,

Eπ(t) = Eo Re
{︁
eiωt
}︁
ez = Eo cos(ωt)ez, (2.43)

while σ∓ transitions are excited by left and right circularly polarized light, respec-

tively,

Eσ− = Eo Re

{︃
eiωt
(︃
ex − iey√

2

)︃}︃
=
Eo√
2
[cos(ωt)ex − sin(ωt)ey] (2.44a)

Eσ+ = EoRe

{︃
eiωt
(︃
ex + iey√

2

)︃}︃
=
Eo√
2
[cos(ωt)ex + sin(ωt)ey] (2.44b)
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The time dependence of the different electric fields is shown in Fig. 2.3. Physically,

polarization can be thought of as carrying angular momentum that can be transferred

to the electron to change its angular momentum state. A π-transition corresponds

to a situation where there is no change in electronic angular momentum along ±z

since the force from the electric field is parallel to z. For σ+ transitions, electronic

angular momentum is added along the +z direction, while for σ− transitions, angular

momentum can be thought of as being removed from the atom along +z, or as being

added along −z.

x

y

z

Eocos(ωt)ez 

x

y

z

Eo[cos(ωt)ex - sin(ωt)ey]

x

y

z

Eo[cos(ωt)ex - sin(ωt)ey]

lz

lz

(a) (b) (c)

Figure 2.3: (a) Linearly polarized light does not change the angular momentum along
the quantization axis z, driving π-transitions, (b) left circularly polarized light re-
moves angular momentum, driving σ− transitions, and (c) right circularly polarized
light adds angular angular momentum, driving σ+ transitions. The red arrows indi-
cate the time dependence of the direction of the electric field.

2.5.2 Magnetic Dipole Interactions

The next higher-order term is the magnetic dipole [M1] interaction, generated by the

interactions between an oscillating magnetic field B(t) with the electronic, spin, and

nuclear magnetic moments. The magnitude of M1 interactions is usually smaller than

E1 interactions by a factor of ao/λ, where λ is the corresponding wavelength of the

transition. Magnetic dipole interactions have different selection rules. This can be
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seen from the M1 interaction Hamiltonian

HM1 =
(︂
µB l̂+ gsµB ŝ− gIµB Î

)︂
·B(t), (2.45)

which, unlike the E1 Hamiltonian, does not have spatial dependence [no dependence

on r]. The magnetic field interacts only with the orbital and spin angular momentum

of the electron. Since there is no spatial dependence in the Hamiltonian and neither

operators l̂ nor ŝ changes the quantum numbers ℓ and s, the selection rules for M1

transitions must be ∆l = 0 and ∆s = 0. However, components of ℓ or s perpendicular

to the quantization axis can induce transitions in which ∆mℓ,s = ±1, and components

parallel to z can induce transitions where ∆mℓ,s = 0. Transitions where ∆f = 0,±1

and ∆j = 0,±1 are permitted, with the restriction that ji = 0 → jf = 0 and

Fi = 0 → Ff = 0 are not allowed.

Microwave-Induced Ground State Transitions
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Rb 
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BB
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Figure 2.4: The microwave field Bµ lies at an angle θ with respect to the static
magnetic field BDC. Bµ is confined along the axis of a microwave cavity. BDC defines
the quantization axis.

Consider a linearly polarized microwave field of the form B = Bµ cos(ωµt) that cou-

ples the two hyperfine ground states, |F = 1,mF ⟩ and |F ′ = 2,mF ′⟩, in an ensemble

of 87Rb atoms. Suppose that a weak external static magnetic field is applied along

ez, lifting the degeneracies of the Zeeman sublevels, and defining the quantization

axis. The polarization of the microwave field lies in the xz-plane at an angle θ with

respect to the magnetic field direction, as shown in Fig. 2.4. In this DC field strength
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regime, F, and mF are good quantum numbers. There are nine possible magnetic

dipole transitions, indicated by the dotted green lines in Fig. 2.2, but two pairs of

them, labeled by (iii) and (iv) have the same frequency. In the approximation that

the nuclear magnetic moment is small compared to the electronic magnetic moment,

the magnetic dipole interaction Hamiltonian is, from Eq. 2.45,

Ĥµ = gJµBŜ ·Bµ cos(ωµt) (2.46)

= gJµB

(︂
ŜxBµ sin θex + ŜzBµ cos θez

)︂
. (2.47)

As in Section 2.5.1, the π-transitions [∆mF = 0] are induced by the component of

the field parallel to the quantization axis,

Bπ
µ = Bµ · ez = Bµ cos θ. (2.48)

and have transition amplitudes [18] equal to

Mπ(I,mF ) = −
µBB

π
µ

2I + 1

√︃
I(I + 1)−m2

F +
1

4
. (2.49)

Since linearly polarized light is an equal superposition of left and right handed circu-

larly polarized light, σ± transitions [∆mF = ±1], are induced by components of the

field perpendicular to the quantization axis,

Bσ±
µ = Bµ · ex = Bµ sin θ. (2.50)

The σ± transition amplitudes between F = I ± 1
2
levels are equal to

Mσ±(I,mF ) = ∓
µBB

σ±
µ

2I + 1

√︃
(I ∓mF )2 −

1

4
. (2.51)

The amplitudes of the magnetic dipole matrix elementsMπ,σ± = ⟨F ′ = 2,m′
F |Sz |F = 1,mF ⟩

are labeled in Fig. 2.2.

In our experiment, the microwave field direction was fixed along the axis of a

microwave-cavity resonator, but the direction of an external static magnetic field

BDC could be varied. The full setup is presented in Section 3.2.
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2.5.3 Two Level System

As an example on how the electromagnetic field induces transitions between states, we

will study the dynamics of a two-level system under the influence of an electromagnetic

field of the form E(t) = Eo cos(ωt)erad, which can be a monochromatic laser beam.

We will assume that the oscillation frequency is near resonance to the transition

between the two states, ω ≈ (ωb − ωa) = ωo. As before, we will work in the basis of

atomic states; for a two-level system, the eigenstates are |ψa(r)⟩ and |ψb(r)⟩, and the

eigenvalues satisfying Eq. 2.8 are Ea = ℏωa and Eb = ℏωb. We assume that ωb > ωa,

i.e. state |ψb(r)⟩ is a higher energy state than state |ψa(r)⟩, and that the states have

opposite parity, so E1 interactions are allowed.

Since shifting the origin of the energy levels does not affect the eigenfunctions, we

can lower the origin of zero energy by 1
2
(ωb+ωa), so that Ea → Ea− 1

2
(ωb+ωa) = −1

2
ωo

and Eb → Eb − 1
2
(ωb + ωa) =

1
2
ωo. The general time-dependent state Ψ(r, t) of the

entire system is a linear combination of all the possible time-dependent states,

|Ψ(r, t)⟩ = ca(t)e
iωot/2 |ψa(r)⟩+ cb(t)e

−iωot/2 |ψb(r)⟩ →

⎛⎝ ca(t)e
iωot/2

cb(t)e
−iωot/2

⎞⎠ . (2.52)

where ca and cb are linear expansion coefficients that relate to observables, such as

population, and are in general time-dependent.

When we have an ensemble of atoms, we are interested in the probabilities of the

populations and coherences of the system as a whole, instead of wave functions. We

introduce the density operator,

ρ̂(t) =
∑︂
nm

cn(t)c
∗
m(t) |ψn⟩ ⟨ψm| =

∑︂
nm

ρnm |ψn⟩ ⟨ψm| , (2.53)

which is a collection of the amplitudes of the states of interest. For the two-level

system, the matrix representation of the density operator in the atomic basis |ψa⟩ , |ψb⟩

is

ρ̂ =

⎛⎝|ca|2 c1c
∗
2

c∗1c2 |cb|2

⎞⎠ . (2.54)
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The diagonal elements ρii represent the probability of occupying a state |ψi⟩ and is

related to the population of a state, while the off-diagonal elements ρij represent the

coherences between the states |ψi⟩ and |ψj⟩ and provide information on how much

superposition there is in the state |Ψ⟩. For a two-level system, the normalization of

the density matrix imposes the condition ρ11+ρ22 = 1. If the coherences are non-zero,

then the system exhibits an electronic dipole moment. The evolution of the density

matrix can be calculated from the following equation

iℏ
∂ρ̂

dt
= [Ĥ, ρ̂], (2.55)

which is known as Liouville’s equation and can be derived from Schrödinger’s equa-

tion.

For this two-level system, the atomic Hamiltonian is

Ĥat =
ℏωo

2

⎛⎝−1 0

0 1

⎞⎠ , (2.56)

From Eq. 2.39, the interaction Hamiltonian for this system is

ĤE1 = −ℏ

⎛⎝⟨ψa| ĤE1 |ψa⟩ ⟨ψb| ĤE1 |ψa⟩

⟨ψa| ĤE1 |ψb⟩ ⟨ψa| ĤE1 |ψb⟩

⎞⎠ = −ℏ

⎛⎝ 0 ΩR cosωt

ΩR cosωt 0

⎞⎠ , (2.57)

where ΩR = ⟨ψb| er ·Eo |ψa⟩ /ℏ is called the Rabi frequency and is assumed to be real,

ΩR = Ω∗
R. Since the electric-dipole Hamiltonian does not couple the same state to

itself, ⟨ψa| ĤE1 |ψa⟩ = ⟨ψb| ĤE1 |ψb⟩ = 0, meaning that there is no permanent dipole

moment in an atom.

The electromagnetic field drives the system at frequency ω, which is usually of high-

frequency in the 1012 Hz regime. To uncover the slower processes of the system, we will

move into the frame that rotates at the laser frequency. Obtaining the Hamiltonian

in the rotating basis requires applying a unitary transformation operator Û , such that

Ĥ̃ = Û
−1
ĤÛ + iℏ

(︃
d

dt
Û

−1
)︃
Û . (2.58)

25



For this two-level system, we apply the following transformation operator

Û =

⎛⎝eiωt/2 0

0 e−iωt/2

⎞⎠ . (2.59)

The transformation Û
−1
ĤÛ does not change the atomic Hamiltonian, however, if ΩR

were not real, there will be a phase shift in ca and cb, which would present itself in the

atomic Hamiltonian [Eq. 2.56]. A different transformation would then be necessary

to eliminate the phase shift.

After the transformation, the E1 Hamiltonian becomes

Û
−1
ĤE1Û =

ℏΩR

2

⎛⎝ 0 e−2iωt + 1

e2iωt + 1 0

⎞⎠ . (2.60)

In the rotating-wave approximation, the terms that contain 2ω are discarded, as these

terms are non-resonant with the atomic transition of interest. Doing so gives us the

total Hamiltonian in the rotating frame

Ĥ̃ = −ℏ
2
{δσ̂z + Ωoσ̂x} = −ℏ

2
Ω · σ, (2.61)

where Ω = (ΩR, 0, δ)
T is a vector that we will later see acts as a torque vector,

σ = (σx, σy, σz)
T is a vector that has the Pauli spin matrices σx, σy, σy as its

components, and δ = ωo − ω is the laser detuning frequency. This Hamiltonian has

no time-dependence, which is expected since we are in a frame that rotates at the

frequency of the laser field. We writes the rotating frame states by applying the

inverse transformation to the state in the laboratory frame

Ψ̃(r, t) = Û
−1
Ψ(r, t) =

⎛⎝ca(t)
cb(t)

⎞⎠ =

⎛⎝c̃a(t)
c̃b(t)

⎞⎠ (2.62)

while the density operator in the rotating frame is given by

ρ̂̃ = Û
−1
ρ̂Û . (2.63)

In the rotating frame, the solutions to the time-dependent Schrodinger equation with

initial conditions c̃a(t = 0) = 1, c̃b(t = 0) = 0 are

c̃a(t) = cos
Ωt

2
− iδ

Ω
sin

Ωt

2
(2.64a)
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c̃b(t) = −iΩR

Ω
sin

Ωt

2
, (2.64b)

where Ω =
√︁

Ω2
R + δ2 is the generalized Rabi-frequency. The dynamics of the system

can also be analyzed in terms of population and coherence, by evaluating Liouville’s

equation and by substituting the results for c̃a and c̃b into the definitions of ρnm. The

solutions can be re-written in terms of the Bloch vector

R =
(︂
Rx Ry Rz

)︂T
=

⎛⎜⎜⎜⎝
ρ̃ab + ρ̃ba

−i(ρ̃ab − ρ̃ba)

ρ̃aa − ρ̃bb

⎞⎟⎟⎟⎠ , (2.65)

where the transverse components Rx and Ry describe the in- and out-of-phase coher-

ence, while Rz describes the population difference between the two states. In terms

of the Bloch vector and the Pauli spin vector, the density matrix for the two-level

atom can be written as

ρ̂̃ =
1

2

(︂
Îˆ+R · σ̂

)︂
, (2.66)

which converts the density matrix into a vector that lies on a three-dimensional

sphere, called the Bloch sphere [Fig. 2.5]. The dynamics of the system can be better

visualized by considering the equation of motion of the Bloch vector, which can be

obtained by substituting Eqs. 2.66 and 2.61 into Liouville’s equation and using the

commutation relations for the Pauli spin matrices. This gives

dR

dt
= R×Ω =

⎛⎜⎜⎜⎝
δRy

−δRx + ΩRRz

−ΩoRy

⎞⎟⎟⎟⎠ . (2.67)

These equations constitute the “Bloch Equations” and describe the precession of

the Bloch vector about the “torque” vector Ω = (ΩR, 0, δ)
T at angular frequency

|Ω| =
√︁

Ω2
R + δ2. The solutions to the equations of motion for the Bloch vector are

Rx(t) = c̃ac̃
∗
b + c̃bc̃

∗
a =

δΩR

Ω2
(1− cosΩt) (2.68a)

Ry(t) = −i(c̃ac̃∗b − c̃bc̃
∗
a) =

Ωr

Ω
sinΩt (2.68b)
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Figure 2.5: The Bloch vector lies on the Bloch sphere and precesses about the torque
vector Ω, shown here to lie along the x-axis in the case where δ = 0. The blue dots
trace out the trajectory of the Bloch vector, which oscillates between the two states
|ψa⟩ and |ψb⟩.

Rz(t) = |c̃a|2 − |c̃b|2 = 1− Ω2
R

Ω2
(1− cosΩt). (2.68c)

The time evolution depends on the generalized Rabi frequency Ω and the field de-

tuning from resonance δ. We can visualize the Bloch vector on the Bloch sphere,

where every point on the surface of the sphere represents a possible state
⃓⃓⃓
ψ̃
⟩︂

=

ca

⃓⃓⃓
ψ̃a

⟩︂
+ cb

⃓⃓⃓
ψ̃b

⟩︂
. The north pole of the sphere represents the pure state

⃓⃓⃓
ψ̃a

⟩︂
while

south pole represents the pure state
⃓⃓⃓
ψ̃b

⟩︂
. Physically, the radiation field “pumps” the

atoms out of the ground state, polarizing the ensemble. A polarized ensemble can be

described by a single wave function, and for a two-level system, there exists a fixed

phase relationship between the two levels. For example, all points on the equator of

the Bloch sphere correspond to states of equal superposition between |ψa⟩ and |ψb⟩,

but with different phase ϕ, such that
⃓⃓⃓
ψ̃
⟩︂
= 1√

2

(︂⃓⃓⃓
ψ̃a

⟩︂
+ eiϕ

⃓⃓⃓
ψ̃b

⟩︂)︂
. In contrast, for a

mixed state system, the atoms are in a disordered state, with no correlation existing

between each of the individual wave functions.

In the case of zero detuning [δ = 0], Ω is aligned along the x-axis, and R rotates

about it at frequency ΩR, corresponding to a situation where the state oscillates
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between the two eigenstates, which can be seen by substituting Eq. 2.64 into the

expression for the Bloch vector. This is called “Rabi flopping”.

2.6 Relaxation

In reality, atomic systems are subjected to random perturbations arising from in-

teractions from the environment that can have a damping effect on coherence and

population dynamics. These perturbations cause relaxation processes, such as spon-

taneous emission, a fully quantum mechanical process in which the atoms interact

with the vacuum electromagnetic field modes [19]. We can account for relaxation by

introducing phenomenological parameters into the Bloch equations. The first param-

eter is the decay rate, or the longitudinal relaxation term, Γ1, which describes the

transfer of population from the excited state to the ground state,

ρ̇̃11 = −ρ̇̃22 = Γ1ρ̃22. (2.69)

The decay rate is inversely proportional to the lifetime τ1 of the excited state. The

lifetime, which denotes energy relaxation, is affected by spontaneous emission and

interactions with the environment that may cause energy transfer to other atoms

[20]. In terms of Rz,

Ṙz = Γ1(1−Rz). (2.70)

The second parameter Γ2 = 1/τ2 describes the decay of coherence due to spontaneous

emission and other causes such as collisions and the Doppler effect. The transverse

relaxation time τ2, which denotes phase relaxation, is the correlation time between

the amplitudes c̃a and c̃b [21]. The effect of relaxation on the transverse components

of the Bloch vector is

Ṙx = −Γ2Rx (2.71a)

Ṙy = −Γ2Ry (2.71b)

In free atoms, the phase relaxation rate is half the energy relaxation rate, Γ2 =

Γ1/2 [τ1 = 2τ2]. The energy relaxation rate is due to spontaneous emission and
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can be calculated by comparing Einstein’s rate equations and the blackbody energy

radiation formula, giving

Γ1 =
ω3d2ab
3πϵoℏc3

, (2.72)

where dab = ⟨ψb| er |ψa⟩. The polarization of the emitted light depends on the transi-

tion: if the transition has ∆m = +1, then the emitted light is σ− polarized, whereas

if the transition has ∆m = −1, then the emitted light is σ+ polarized. If there is no

change in angular momentum [∆m = 0], then the emitted light is linearly polarized.

The ω3 dependence originates from counting the modes available for the radiation.

Low-frequency transitions are much less susceptible to spontaneous emission and can

have a longer lifetime. For example, the hyperfine transitions in alkali metal, which

correspond to microwave transitions, are much longer lived than the optical transi-

tions. Atoms are also in constant collision with each other and the walls confining the

gas, shortening their excited state and coherence lifetimes. These processes may be

elastic, affecting only the phase relaxation and not the energy relaxation. In general,

the decoherence time is shorter than the excited state lifetime, τ2 ≤ 2τ1.

Relaxation can be accounted for by adding Eqs. 2.70 and 2.71 to the Bloch equa-

tions [Eq. 2.67], forming optical Bloch equations,

dR

dt
= Ω×R+

⎛⎜⎜⎜⎝
−Γ2Rx

−Γ2Ry

Γ1(1−Rz)

⎞⎟⎟⎟⎠ . (2.73)

In the Bloch sphere picture, relaxation causes the Bloch vector to shrink. The Bloch

vector is no longer restricted to the surface of the Bloch sphere. As time goes on, the

vector decays to the point (0, 0, 0). The solution to the optical Bloch equations in

steady state [t = ∞] is found by setting Ṙ = 0,

R∞ =
1

Ω2
RΓ2

Γ1
+ δ2 + Γ2

2

⎛⎜⎜⎜⎝
ΩRδ

ΩRΓ2

δ2 + Γ2
2

⎞⎟⎟⎟⎠ . (2.74)
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2.6.1 Absorption

The amount of absorption of a propagating wave with angular frequency ω in a two-

level ensemble can be obtained from the stationary solutions of the Bloch vector. The

Beer-Lambert law relates the incident intensity Io to the output intensity I(z) in a

medium of thickness z

I(z) = Ioe
−κ(ω)z. (2.75)

The absorption coefficient κ(ω) can be obtained from χ′′, the imaginary part of the

susceptibility of the medium [see Appendix B.2],

κ(ω) =
ω

c
χ′′. (2.76)

As previously mentioned in Section. 2.5.1, the two quadrature components of the

coherence, Rx + iRy, gives the complex susceptibility of the medium [20], which is

equal to [see Appendix B.1 for derivation]

χ = χ′ − iχ′′ = n
d2ab
3ϵoℏ

⎛⎝ δ + iΓ2

Ω2
RΓ2

Γ1
+ δ2 + Γ2

2

⎞⎠, (2.77)

where n is the density of the medium. Thus, for a two-level system, the absorption

coefficient is

κ(ω) =
ω

c
Im{χ} =

Nω

V c

d2ab
3ϵoℏ

⎛⎝ Γ2

Ω2
RΓ2

Γ1
+ δ2 + Γ2

2

⎞⎠. (2.78)

2.6.2 Weak Driving Intensity

When the driving intensity is weak ΩR ≤ Γ1,Γ2, the first term in the denominator

in Eqs. 2.78 and 2.77 can be neglected. In this regime, the susceptibility is linear in

Eo. The absorption coefficient as a function of the applied frequency has the form of

Lorentzian:

κ(ω) =
Nω

V c

d2ab
3ℏϵo

(︃
Γ2

δ2 + Γ2
2

)︃
. (2.79)

The full-width at half maximum is ∆ω1/2 = 2Γ2. Thus, the broadening of the ab-

sorption spectrum is determined by the transverse relaxation rate Γ2. If the finite
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excited state lifetime τ = 1/Γ is the only factor contributing to the transverse relax-

ation rate, then this type of broadening is called natural line broadening. Natural

line broadening can also be explained by the time-energy uncertainty principle:

∆E∆t ∼ h. (2.80)

Because of the uncertainty in the excited state lifetime, there is a range of possible

frequencies ∆ω ∼ 1/(2π∆t) from the photon emitted as a result of spontaneous

emission. The natural linewidth is generally small and is not often observed because

other broadening factors, such as the Doppler shift, dominate [see Appendix C for

more on other broadening factors]. For the D2 transition in 87Rb, decay rate is

Γ = 38.11× 106 s−1, giving a natural linewidth of ∆ω = 2π × 6.065 MHz [17].

2.6.3 High Intensity Limit
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Figure 2.6: Absorption coefficient κ(ω) at high and low light intensities, in units of
Nσo, for Isat = I. At high intensities, absorption is reduced and the full-width half
maximum is broadened, compared to the situation at low intensities.

When the amplitude of the driving field is large, the Ω2
R term in the denominator
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of Eq. 2.78 cannot be neglected, and the pumping process becomes nonlinear. Re-

writing the absorption coefficient for free atoms in terms of the resonant scattering

cross section σo = 3λ2/(2π) [see Eq. B.23 in Appendix B.2.1] gives us

κ(ω) =
N

V
σo

Γ2
2

Ω2
R

2
+ δ2 + Γ2

2

. (2.81)

We can show that in the high-intensity limit, the absorption is reduced by re-writing

κ(ω) in terms of the saturation intensity Is(ω), which is defined as

Is(ω) =
δ2 + Γ2

2

6πc2Γ2

ℏω3. (2.82)

On resonance, δ = 0, the saturation intensity is

Isat =
4π2ℏc
3λ3

Γ2, (2.83)

which allows us to write

I

Is(ω)
=

I

Isat

Γ2
2

δ2 + Γ2
2

. (2.84)

Noting that the square of the Rabi frequency Ω2
R = d2abE

2
o can be written as [from

Eq. B.22]

|ΩR|2 =
12πc2

ℏω3
Γ2I, (2.85)

where I = ϵocE
2
o/2 is the intensity of the radiation field, the terms in Eq. 2.78 may

be rearranged to give

κ(ω) =
N

V

Γ2
2

δ2 + Γ2
2(1 + I/Isat)

, (2.86)

which is a Lorentzian and has a full-width-half-maximum equal to

∆ω = 2Γ2

√︃
1 +

I

Isat
. (2.87)

On resonance, the absorption coefficient is equal to κ(ωo) = Nσo/(1 + I/Isat),

smaller than in the case of the low intensity limit where κ(ωo) = Nσo. By comparing

a plot of the high and low-intensity limit in Fig. 2.6, we can see that the absorption is

reduced and the full-width at half-maximum is broadened. This phenomenon is called
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“power broadening” or “saturated absorption”. Physically, this occurs because when

Rabi frequency is greater than the spontaneous emission rate, there is no chance for

the atoms in the excited state to undergo spontaneous emission and re-absorb the

radiation.

2.7 Optical Pumping
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Figure 2.7: A three level ground-state system with one excited state that is (a)
unpolarized and absent of light interactions, (b) optically pumped by light linearly
polarized along z, and (c) optically pumped by light linearly polarized along x. The
angular momentum probability surfaces are shown on the right and the light prop-
agates along y. Asymmetry in the AMPS indicates that there is anisotropy in the
system.

Optical pumping is a process in which atoms are pumped out of an energy level

into high energy level[s] by the use of polarized light at the proper frequency. Ideally,

atoms are brought from a disordered state into a polarized, ordered state where the
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internal states of the atoms are identical due to the interaction with the light. We

will use the terminology ”atomic polarization” to refer to a state where the atoms

in an ensemble are a preferred angular momentum state, to avoid confusion with the

electromagnetic field polarization, which specifies the geometric orientation of the

wave oscillations. We will discuss optical pumping in the context of a system with

excited state F ′ = 0 and ground states |F = 1,mF = 0,±1⟩.

For an unpolarized atomic sensemble, the three Zeeman ground states have equal

populations, and no coherence exists. This means that if we measure the angular

momentum along any axis, the result would be the same, as the system overall is not

in a preferred angular momentum state. The density matrix for such a system in the

basis |mF = 1⟩ , |mF = 0⟩ , |mF = −1⟩

ρ =

⎛⎜⎜⎜⎝
1/3 0 0

0 1/3 0

0 0 1/3

⎞⎟⎟⎟⎠ , (2.88)

which we can visualize by plotting the angular momentum probability surface [AMPS]

for the density matrix, as in Fig. 2.7(a). The surface gives the probability of finding

the maximum projection along the (θ, ϕ) direction. More details can be found in [14];

we will only briefly present the mathematical formulation here. Suppose we measure

the projection of the angular momentum of a system with total angular momentum

F along some axis: the possible outcomes are −F,−F + 1, . . . , F . The probability

of measuring a given value m along the quantization axis is ρmm = ⟨F,m| ρ |F,m⟩

and the probability of maximum possible projection m = F is ρFF = ⟨F, F | ρ |F, F ⟩.

We will use this maximum possible projection probability to characterize the atomic

polarization state along the quantization axis. Along an arbitrary (θ, ϕ) direction,

ρFF is given by

ρFF (θ, ϕ) = ⟨FF (θ, ϕ)| ρ |FF (θ, ϕ)⟩ (2.89)

=
∑︂
mm′

D
(F )∗
mF (ϕ, θ, 0)ρmm′D

(F )∗
m′F (ϕ, θ, 0), (2.90)
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where the Wigner-D functions are

D
(F )
mF (ϕ, θ, 0) = e−i(ϕm′)d

(F )
m′m(θ) (2.91)

and d
(F )
m′m(θ) is the matrix of rotations about the y-axis. The Wigner formula for

d
(F )
m′m(θ) is

d
(F )
m′m(θ)

∑︂
k

(−1)k−m+m′ (F +m)!(F −m)!(F +m′)!(F −m′)!

F +m− k)!k!(F − k −m′)!(k −m+m′)!
, (2.92)

where the sum runs over values of k for which none of the arguments of the factorials

are negative. In this case, the probability distribution is a sphere with a radius of 1/3.

The results were calculated and plotted in Mathematica [22]. In Fig. 2.7(a), we plot

the probability surface for the unpolarized ensemble under consideration. The shape

is hollow inside and the volume of the shape is generally different between atomic

polarization states of the same ensemble, even if we have the same amount of atoms.

One of the purposes of visualizing the surface is to show the rotational symmetry

properties of the density matrix, which determines the kind of optical anisotropy a

system can have. There is no preferred direction for an unpolarized atomic ensemble

because the states have equal population. Moreover, optical properties such as the

absorption coefficient and the refractive index are independent of the light polariza-

tion. If the system has k-fold symmetry about the quantization axis, then coherences

exist between states only for which |∆m| = k.

Now, suppose that we apply a beam linearly polarized along z to the unpolarized

ensemble. Because of the selection rule ∆mF = 0, only atoms in mF = 0 are excited

to mF ′ = 0, and then decay with equal probability into all three sublevels. After

enough absorption cycles, the population in mF = 0 is eventually depleted, filling the

states mF = ±1, which become non-absorbing dark states as they do not interact

with the beam. The density matrix in this case is

ρ =

⎛⎜⎜⎜⎝
1/2 0 0

0 0 0

0 0 1/2

⎞⎟⎟⎟⎠ , (2.93)
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and is plotted in Fig. 2.7(b). The distribution is peanut-shaped and is aligned along

z, as there is a high probability of measuring maximum angular momentum in that

direction. The rotational symmetry about z indicates that the density matrix has no

coherence. When the distribution is asymmetric, absorption depends on the direction

of the field. Here, the vapor will tend to transmit light linearly polarized along z while

absorbing orthogonally polarized light, since, in the spherical basis, linearly polarized

light is an equal superposition of left and right circularly polarized light.

The same analysis can be applied for optical pumping by linearly polarized light

along x. To find the density matrix, we can rotate the coordinate system about y by

π/2, taking z into x. The density matrix transformation is

ρ′ = D(0, π/2, 0)ρD(0, π/2, 0)†, (2.94)

where

D(α, β, γ) = e−iĴzα/ℏe−iĴyβ/ℏe−iĴxγ/ℏ (2.95)

is the rotation operator and Ĵ i, i = x, y, z are the angular momentum spin operators.

The result is [14]

ρ =

⎛⎜⎜⎜⎝
1/4 0 1/4

0 1/2 0

1/4 0 1/4

⎞⎟⎟⎟⎠ , (2.96)

which is plotted in Fig. 2.7(c). The peanut shape is now aligned along x, and preferen-

tially transmits light linearly polarized along this axis. There is k = 2 fold symmetry

about z, which correspond to the ∆m = 2 coherences. From the density matrix,

we can see that there is a coherent superposition between the mF = ±1 sublevels

and the population in the mF = ±1 states are not all absorbing atoms; some of the

atoms in mF = 0 are in a dark state. The state with equal superposition between the

mF = ±1 sublevels with the same phase is also a dark state [14].

To summarize, optical pumping creates ground state atomic polarization, caused by

population imbalance or existence of coherence between the ground states, changing
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the optical properties of the medium which depend on the characteristics of the light

field [14]. In practice, however, relaxation processes such as collisions can redistribute

the atoms between ground states.
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Chapter 3

Magnetometry with MAOP

We present in this chapter a vector magnetometry experiment with rubidium vapor

inside a microwave cavity resonator. Our method is based on measuring the frequency

and amplitude differences of microwave-assisted optical pumping [MAOP] curves for

different magnetic-dipole transitions. First, we give a brief overview of general mag-

netometry based on optical pumping and discuss zero-field magnetometers. Second,

our experimental setup is described Section 3.2. We then discuss microwave-optical

double resonance, provide a theoretical model, and then explain how we use the

double resonance spectrum for vector magnetometry. Finally, we present some pre-

liminary data. These results motivate the micro-fabrication of rubidium vapor cells

for magnetometry, which is presented in the following chapter.

3.1 Alkali Vapor Magnetometers

Alkali vapor cell magnetometers use the coherent precession of atomic spins to detect

and measure magnetic fields [23]. By observing the resonance frequency of the Larmor

precession due to the magnetic field, we can measure the magnetic field amplitude.

Alkali atoms-based magnetometers have come to rival SQUID-based magnetometers

in terms of sensitivity, which is the smallest change in magnetic field a sensor can

discern, usually given in units of T/
√
Hz. Alkali magnetometers have been able to

achieve fT/
√
Hz sensitivities at low bandwidths, and nT/

√
Hz at higher bandwidths
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of 100 Hz [24]. The sensitivity depends on the polarization lifetime of the spins,

reduced by wall collisions and other relaxation effects. The polarization lifetime is

maximized by using high-pressure buffer gases in the vapor to inhibit diffusion and/or

by using anti-relaxation coatings on the cell walls [see Section 4.6.3]. Because all of

the types of alkali atoms have different excited-state lifetimes, sensors made with

one type of alkali atoms will have a different sensitivity compared to sensors made

with another kind of alkali atom. Which type of atoms are best depends on the

application’s needs.

3.1.1 General Magnetometry

As previously discussed in Section 2.7, optical pumping can give rise to Zeeman co-

herences, which creates anisotropy in the angular momentum distribution, polarizing

the atomic spins in the direction of the beam. For example, for the F = 1 → F ′ = 0

transition, light linearly polarized along x creates coherence between the ground states

m = ±1 with a momentum distribution symmetric about x. Application of a static

magnetic field transverse to the pump field, shown in Fig. 3.1(b) causes the atomic

density matrix to evolve, which manifests as a rotation of the atomic polarization

about the magnetic field axis at a rate equal to the Larmor frequency. The transverse

magnetic field reduces the efficiency of the optical pumping. In the Bloch vector pic-

ture, the magnetic field vector acts as the torque vector Ω about which the atomic

polarization vector precesses.

Simultaneous to pumping and precession is relaxation; all three effects generate

a net anisotropy that causes circular birefringence, where the circular components

of the linearly polarized field see different indices of refraction. These components

transmit through the medium at different speeds, causing a phase difference to build

up, resulting in a polarization rotation of the electric field at an angle θ; this effect is

called nonlinear Faraday rotation or nonlinear magneto-optic rotation [NMOR] [25].

In this case, the NMOR effect is due to Zeeman coherences. One method of detecting
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the rotation angle is by using balanced polarimetry, where we measure the difference

between the intensities of x and y component of the transmitted field, Ix − Iy, which

is proportional to θ for small-angle rotations [Fig. 3.1(d)].
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Figure 3.1: (a) Energy level diagram for optical pumping schematic with linearly
polarized light along x [red arrows]. (a) Presence of transverse static magnetic field
BDC causes the atomic polarization of the ensemble to precess about the magnetic
field axis, z. (b) When pumping is synchronized with the Larmor frequency ωL,
the anisotropy axes of the atoms pumped at different times are aligned, generating
a macroscopic dynamic polarization. Here, we show amplitude-modulated light, the
time-dependence of the beam intensity is illustrated by different shading of the double-
headed red arrows. The k direction indicated by the dotted black arrow along y
indicates the propagation direction of the beam. Adapted from [25]. (c) Anisotropy
causes circular birefringence, in which left and right hand circularly polarized light
travel at different speeds in the medium. Linearly polarized light is rotated about
the precession axis by an amount θ. (d) Balanced polarimetry setup for detecting
Faraday rotation. A half-wave plate [HWP] rotates the plane of polarization of the
beam at 45◦ with respect to the polarizing beam splitter [PBS]. Two photodetectors
PD1 and PD2 detect the x- and y-components, respectively, of the intensity of the
laser field.

Because of the simultaneous pumping and rotation of the anisotropy axis, atoms

with all spatial orientations exist. To generate a macroscopic atomic polarization,

we can use synchronous pumping, where we modulate the pumping frequency ωP so

that it coincides with ωL. In the amplitude modulation scheme, light is on when

the anisotropy axis is parallel to the polarization direction of the field, and light is
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attenuated when the anisotropy axis is perpendicular to the field. The amplitude of

the signal is maximized when ωP = 2ωL because the atomic polarization surface is

the same when it is oriented at 0◦ and 180◦. By extracting Larmor frequency, we can

determine the strength of the magnetic field.

This type of effect, where the component of the magnetic field vector that is trans-

verse to the pumping direction is measured by probing the atomic polarization trans-

verse to the electric field polarization, is known as the Hanle effect [26]. In the setup

described above, if the transmission of an unmodulated pump beam is measured as

a function of the magnitude of the transverse magnetic field, then we will obtain a

Lorentzian curve that is symmetric about |BDC| = 0.

3.1.2 Zero-Field Magnetometers

Atomic zero-field magnetometers operate near the zero-field regime [nT scale] and

are highly sensitive, requiring magnetic shielding and additional coils to cancel the

ambient field. Their operation is based on the ground-state Hanle effect. The magne-

tometer can be made selectively sensitive to a component of the magnetic field vector

[27, 28] by modulating one or several components of an external AC magnetic field.

These types of magnetometers are classified as vector magnetometers. A sub-class of

zero-field magnetometers are spin-exchange relaxation-free [SERF] magnetometers.

In low magnetic fields, the dominant relaxation is due to the spin-exchange mecha-

nism, which, counter-intuitively, can be suppressed by increasing the spin-exchange

collision rate [23]. When this collision rate is high, the atomic spins are more likely to

precess in phase and maintain their polarization longer, giving a better optical signal.

The collision rate can be increased by increasing the temperature of the atomic vapor,

which increases the density and hence the frequency of collisions. SERF magnetome-

ters, which typically have sensitivities in the fT/
√
Hz regime, are used to measure

biomagnetism, such as for fetal magnetocardiography [28] and magnetoencephalog-

raphy [29], however, their fundamental sensitivity limits have not yet been attained,
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which is on the aT/
√
Hz scale [30]. Miniaturization and portability are also impor-

tant for magnetoencephalography. There is considerable research on chip-scale SERF

magnetometers based on MEMS technology [31], which motivates our research on

micro-fabricating Rb vapor cells.

3.2 Experimental Setup
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Figure 3.2: Experimental setup of the microwave vector magnetometry experiment.
Abbreviations: beam blocker [BB], polarizing beam splitter [PBS], 50/50 beamsplitter
[50/50], quarter-wave plate [QWP], photodetector [PD].

Before discussing the theoretical concepts of our experiment, we first describe the

setup. The schematic is shown in Fig. 3.2.
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Figure 3.3: Schematic of microwave cavity geometry [not to scale]. Right: main cavity
body made of polished copper. White indicates the outer surface of the cavity. Left:
cavity end cap. A 2-by-2 mm ring on the end cap splits the modes of the cavity.
There are two end caps, only one is shown.

3.2.1 Microwave Cavity

A rubidium vapor glass cell was placed at the center of a high-quality tunable cylin-

drical microwave copper cavity [5]. The cavity was designed and fabricated by Clinton

Potts. Because of the high-quality factor of Q = 27, 000 at room temperature, only

frequencies close to the resonance frequency are enhanced, while frequencies that fur-

ther away are suppressed [32]. The outer diameter of the cavity is 68 mm, while the

inner diameter is 58 mm [Fig. 3.3]. The main body of the cavity has a length of 47.5

mm. The microwave cavity was specifically designed to work so that for the dimen-

sions of our vapor cell, in the TE011 mode, the resonance frequency, which depends

on the ratio of the cavity diameter and the cavity length, is equal to the ground-state

hyperfine splitting frequency of 87Rb. The fields of the TE011 modes for a perfect

cylinder are, in spherical coordinates (ρ, ϕ, z), [33]

Bz = BoJ0

(︂p11ρ
a

)︂
sin

πz

d
(3.1a)

Bρ =
βa

p11
BoJ1

(︂p11ρ
a

)︂
cos

πz

d
(3.1b)

Eϕ =
ikηa

p11

Bo

µ
J1

(︂p11ρ
a

)︂
sin

πz

d
, (3.1c)
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where pnm is the mth zero of the Jn(x) Bessel functions [p11 ≈ 3.83], Ho is the

amplitude of the microwave field, a is the radius of the cavity, d is the cavity length,

β =
√︁
k2 − (p11/a)2 is the propagation constant, k = ω

√
µϵ is the wavenumber in

the medium filling the cavity, and η =
√︁
µ/ϵ, where µ and ϵ are the permeability

and permittivity, respectively, of the filling medium. The microwave magnetic field

in the TE011 mode is localized at the center of the cavity, where the vapor cell is

located, and points along the cavity axis [Fig. 2.4, green arrow]. The TE011 mode

is degenerate with the TM111 mode [34], so a 2-by-2 mm ring on the end cap of the

cavity separated the modes by geometrical perturbation. The microwave cavity can

be tuned by adjusting the position of its end cap, which changes the ratio of the

cavity length to cavity diameter and thus the resonance frequency. Two holes were

drilled on opposite sides of the body, allowing light to pass through the cavity and

the cell for atomic interrogation.

3.2.2 Microwave Source

The microwave signal derived from a microwave source was externally frequency-

modulated [1 MHz depth] by a signal generator with a ramp function [100 Hz, 1

VPP] to generate a range of microwave frequencies -1 MHz to +1 MHz detuned from

the ground state hyperfine transition frequency. The signal was delivered to the cavity

by an SMA pin coupler. We set the microwave power to -10 dBm.

3.2.3 Rubidium Dispensing System

The stem of the vapor cell was unsealed and connected to a vacuum system, where

rubidium gas, evaporated from a dispenser housed inside the vacuum system and

heated by a current source, flowed in. 5A of current was usually sufficient to observe

fluorescence inside the viewing chamber. However, higher currents were required a

few days after replacing the dispenser, which we later found out was due to a leak. A

vacuum turbopump was connected to the system and a valve allowed us to open or
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seal the system from the atmosphere; it was open when the turbopump was running.

We heated the system to temperatures above 50 ◦C [the heater is not shown] by

current flow. A digital temperature meter and a thermocouple monitored the system

temperature.

3.2.4 Helmholtz Coils

A set of three-axis Helmholtz coils placed around the cavity allowed us to apply

a static field along, vertical to, and horizontally transverse to the cavity axis, as

represented by the dotted lines in Fig. 3.2. The direction of the DC field, BDC defines

the quantization axis to which we reference the microwave field alignment.

3.2.5 Optical Setup

We used circularly polarized light tuned to the F = 1 → F ′ = 0 D2 transition to

probe the rubidium atoms and linearly polarized light tuned to the F = 2 → F ′ = 2

D2 transition to pump the atoms. Here, F [without the prime] denotes the hyperfine

ground state where ℓ = 0, while F ′ denotes the excited hyperfine states where ℓ = 1.

The laser setup was part of the hybrid quantum systems project. The probe and the

pump light counter propagate through the cell. A quarter-wave plate [QWP] placed at

the entrance of the cavity generates circularly polarized probe light. After exiting the

cavity, part of the probe beam reflected off a 50/50 beamsplitter [50/50], transmitted

50% of the light towards to polarizing beamsplitter [PBS]. The PBS separates the

horizontal and vertical components of the beam, which are transmitted and reflected

into two photodetectors [PD1, PD2]. Both photodetectors were connected to the

oscilloscope to view and collect the transmission signals. Note that we define the light

polarization relative to its propagation direction k, while the microwave direction is

defined relative to the applied static magnetic field.

46



3.3 Microwave-Optical Double Resonance

In the presence of a low-strength DC magnetic field, the Zeeman sublevels are shifted

by an amount ℏωL from each other, where ωL is the Larmor frequency. Through

optical pumping, the populations of atomic energy levels can be selectively altered.

Despite the terminology, pumping can also be done with microwave magnetic fields

to alter the Zeeman sublevel populations. In our experiment, a microwave field res-

onantly pumps atoms from the |F = 1,m1⟩ ground-state to the |F = 2,m2⟩ ground

state, which subsequently decays with equal probability into all the Zeeman sublevels

in F = 1. Eventually, the m1 sublevel will be depleted. For example, a left circularly

polarized microwave field of frequency ωo − 3ωL can induce transition (i) [the other

nine transitions are shown in Fig. 2.2], as shown schematically in Fig. 3.4(b). Atoms

pumped out of m1 = −1 redistribute themselves into m1 = 0, 1.

(a) (b)

2〉

1〉

e'

relaxation
𝛾1, 𝛾2 ωμ

e〉e〉

2〉

1〉

ωL

ωμ

(b)

F' = 2
F' = 1
F' = 0

F = 2

F = 1

pump probe

microwave

(a) (c)

Γ*

ωL

ωo(i)

mF

-2 -1 0 1 2

(a)

ωo+2ωLωo

ωL

mF

-2 -1 0 1 2

(b)

ωo+ωL

ωL

mF

-2 -1 0 1 2

F = 1

F' = 0

mF = -1 mF = 0 mF = 1
F = 1

F' = 0

mF = -1 mF = 0 mF = 1

Figure 3.4: (a) Energy level diagram showing our microwave-optical double resonance
setup. A strong pump beam [red arrow] connects F = 2 to F ′ = 2, while a probe
beam [blue arrow] is tuned to the F = 1 → F ′ = 0 transition. A microwave field
[green arrow] of frequency ωµ pumps atoms between |1⟩ = |F = 1,m1⟩ and |2⟩ =
|F = 2,m2⟩. (b) In the presence of a static magnetic field, there is hyperfine splitting
and adjacent mF sublevels within the same hyperfine state F are split by an amount
proportional to ωL. When the microwave field frequency is equal to ωo − 3ωL, atoms
are pumped out of m1 = −1. The pump removes atoms from F = 2 while the
probe measures the population in F = 2. (c) Three level approximation used in
our theoretical model. We ignore the pump by treating the removal of atoms from
|F ′ = 2⟩ as a transverse relaxation represented by γ2.
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Figure 3.5: MAOP spectra in the presence of (a) Earth’s magnetic field, which causes
Zeeman splitting of the hyperfine levels, and (b) zero field. The fields were zeroed by
applying magnetic fields in the direction opposite to the ambient field using Helmholtz
coils. The amplitudes have been normalized such that the maximum amplitude is 1.
The data shown are from one of the photodetectors.

Figure 3.4(a) shows the pumping scheme. We apply a strong beam, the “pump”,

tuned to the F = 2 to F ′ = 2 transition, to atoms in the F = 1 states, since atoms will

decay from F ′ = 2 to either F = 2 or F = 1. Atoms in the F = 1 sublevels are then

redistributed by the microwave field, emptyingmF = −1. The population in the lower

state can be probed by another electromagnetic field. In our experiment, we apply a

weak laser beam, the “probe”, tuned to the optical F = 1 → F ′ = 0 transition and

measure its transmission through the atomic gas. The probe field has a spectrum

that is broad enough to cover the possible splitting of each hyperfine level caused

by an applied magnetic field but is much narrower than that of the ground-state

hyperfine splitting. When the two fields, laser, and microwave, are simultaneously

resonant with their respective transitions, the situation is called “double resonance”

[DR] [35]. Specifically, in our case, we have a microwave-optical double resonance.

Through a measurement of transmission, the probe beam measures the population of

atoms in the F = 1 sublevels, allowing us to resolve each of the hyperfine transitions.
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Ideally, most of the probe light will be transmitted as there are no absorbing atoms

in m1 = −1. The probe beam power was on the order of tens of µW while the pump

beam was 1-2 mW. If either beam power is too high, then we get saturation, and the

DR signal disappears. The absorption cross-section is on the order of 10−15 m−3.

When the microwave field has both parallel and perpendicular components with

respect to BDC and is swept through the frequency range covering ωo ± 3ωL, a mea-

surement of the probe transmission as a function of microwave frequency would give

us seven curves corresponding to 3 π-transitions and 6 σ± transitions, two of which

are degenerate [Fig. 3.5(a)]. The peaks are shifted from the center by an amount

proportional to their Zeeman shifts. Therefore, measuring the frequency shifts of the

transitions provides a method for scalar magnetometry. The linewidth is determined

by the quality factor of the microwave cavity, which acts as an amplifier, as well as the

sweep rate of the microwave source. A smaller linewidth indicates less loss of photons,

although a misaligned cavity will also give us sharper, but asymmetric peaks.

When the microwave field is parallel to the direction of the static magnetic field

[π-polarization], three peaks are observed [Fig. 3.6(a)]. When the field is perpendic-

ular to BDC [σ-polarization], four peaks are observed [Fig. 3.6(b)]. The presence of

a peak at the center of Fig. 3.6(b) indicates that the microwave field is not precisely

perpendicular and has a parallel component. We note that this experimental setup

does not differentiate between the two perpendicular fields in the vertical and hori-

zontally transverse directions; the spectrum appears to look the same regardless of

which perpendicular field direction we have.

When there is no field, accomplished by canceling the ambient field using the

Helmholtz coils, the Zeeman sublevels are degenerate. Therefore, there is only one

double resonance peak [Fig. 3.5(b)]. This peak appears to have a broader FWHM

compared to the peaks in the presence of Earth’s field. One reason may be because

the static magnetic field is not precisely zero, so there exist closely spaced Zeeman

sub-levels. The nine transitions are not resolved and overlap, giving a broader peak.
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Figure 3.6: Double resonance spectra when the microwave field is (a) parallel to
BDC [π-polarization] and (b) when the field is perpendicular to BDC [equal parts
σ±-polarization]. The amplitudes have been normalized such that the maximum
amplitude is 1.

To verify, we will need to modify our setup to betters null the ambient field.

3.3.1 Three Level Model

We can analyze the system using a three-level approximation [36], as shown in

Fig. 3.4(c). The ground states |1⟩ and |2⟩ with energies ℏω1 and ℏω2 respectively,

represent each of the two pairs of hyperfine ground states involved in the transi-

tions driven by the microwave field. The excited state |e⟩ of energy ℏωe represents

the state |F ′ = 0,mF ′ = 0⟩. The microwave field is assumed to be on resonance and

homogeneous over the cell, having the following form

Bµ(r, t) = Bµ cos (ωµt)eµ, (3.2)

The microwave field has angular Rabi frequency equal to ℏΩµ = µBBµM
n
π,σ± , where

Mπ,σ± is the M1 matrix element from Eqs. 2.49 and 2.51 for transition number n.

The probe addressing levels |1⟩ and |e⟩ has the form

EP(ωL, t, r) = Eo cos (ωPt)erad. (3.3)
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The interaction Hamiltonian is HE1 = −er · EP, giving an optical Rabi frequency of

ℏΩP = Eo ⟨e| er · erad |1, 2⟩. Only atoms in |1⟩ contribute to absorption. The decay

from the excited state proceeds at a rate Γ∗ and includes the effect of spontaneous

emission. If the pumping rate is greater than the microwave Rabi frequency rate,

which is true for our pump beam, we can treat the optical pumping rate as a longi-

tudinal relaxation [Γ1 in Section 2.6] between the two ground states, which we will

denote as γ1. The total Hamiltonian for this system in the basis |1⟩ , |2⟩ , |e⟩ is

Ĥ = ℏ

⎛⎜⎜⎜⎝
ω1 Ωµe

−iωµt ΩPe
−iωPt

Ωµe
iωµt ω2 0

ΩPe
iωPt 0 ωe

⎞⎟⎟⎟⎠ . (3.4)

We calculate the evolution of the density matrix elements,

ρ =

⎛⎜⎜⎜⎝
ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

⎞⎟⎟⎟⎠ , (3.5)

using Liouville’s equation and then add the decay terms in a phenomenological man-

ner, as was done in Sections 2.5.3 and 2.6. The results are

d

dt
ρ11 = Ωµ Im

{︁
ρ12e

−iωµt
}︁
+ ΩP Im

{︁
ρ1ee

−iωPt
}︁
+

Γ∗

2
ρee − γ1

(︃
ρ11 −

1

2

)︃
(3.6)

d

dt
ρ22 = −Ωµ Im

{︁
ρ12e

−iωµt
}︁
+

Γ∗

2
ρee − γ1

(︃
ρ12 −

1

2

)︃
(3.7)

d

dt
ρee = −ΩP Im

{︁
ρ1ee

−iωPt
}︁
− Γ∗ρee (3.8)

d

dt
ρ12 = iω21ρ12 + i

Ωµ

2
eiωµt(ρ11 − ρ22) + i

ΩP

2
eiωPtρe2 − γ2ρ12 (3.9)

d

dt
ρ1e = iωeµρ1e + i

ΩP

eiωPt
(ρee − ρ11) + i

Ωµ

2
eiωmutρ2e −

Γ∗

2
ρ1e (3.10)

d

dt
ρ2es = iωe2ρ2e + i

Ωµ

2
e−iωµtρ1e − i

ΩP

2
eiωPtρ21 −

Γ∗

2
ρ1e, (3.11)

where we have written for short ωi − ωj = ωij. We have also used the simplification,

Im(ρnme
iωat) = −1

i
ρnm

(︁
eiωat − e−iωat

)︁
= −ρnm sin(ωat). (3.12)
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If the intensity of the probe is low, which is true for our case, we can assume that

ρee ≈ 0 and ρ11+ ρ22 = 1, which says that the total population is equal to the sum of

the population in the ground states. We move into the rotating frame by substituting

[37]

ρ12 = δ12e
iωµt (3.13a)

ρ1e = δ1ee
iωPt + ϵ1ee

i(ωP−ωµ)t (3.13b)

ρ2e = δ2ee
iωPt + ϵ2ee

i(ωP−ωµ)t, (3.13c)

into Eqs. 3.6(a)-(f), which we then solve for the coherence terms “rotating” with the

same frequency as the probe frequency, δij, in the steady-state. As the probe laser

frequency is narrower than the hyperfine splitting [MHz vs. GHz], we can assume that

only atoms in |1⟩ contribute to absorption. Starting from the Maxwell’s equation,

∇× EL = −∂B
∂t

(3.14)

can derive the relationship between the electric field EL and the medium polarization

P = ϵoχ(ω)EL in a polarized medium with atom density n. We use the following

equations,

∇×H = J+
∂

∂t
D (3.15a)

B = µo(H+M) (3.15b)

D = ϵoEL +P (3.15c)

J = σEL (3.15d)

We assume that our medium, the rubidium vapor, has zero conductivity, σ = 0, and

that the magnetization, M, is zero. Taking the curl of Eq. 3.14 and simplifying the

result using Eqs. 3.15a-d, we obtain the following relation between the electric field

interacting with the atoms and the polarization created,

∂2EL

∂z2
− ϵoµo

∂2EL

∂t2
= µo

∂2P

∂z2
. (3.16)
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This can be rewritten in terms of the optical Rabi frequency as [37]

∂ΩP

∂z
= κ(ω1e) Im{δ1e}, (3.17)

where

κ(ωe1) = Im{χ} = n
ωe1

cϵoℏ
|⟨e| er · EL |1⟩|2 m−1s−1 (3.18)

is the absorption coefficient. We integrate Eq. 3.17 as a function of z to obtain the

Rabi frequency, which is proportional to the electric field EL at any point z in the

atomic vapor. In particular, we are interested in EL at the end of the vapor cell where

the light exits. Therefore, to find the transmission of the intensity of the laser, we

need to calculate the complex amplitude of the optical coherence, Im{δ1e}. In the

limit where the decay rate Γ∗ is much greater than the optical Rabi frequency, the

optical coherence in steady state after moving to the rotating frame is [37]

δ1e = −i ΩL/2
Γ∗

2
+ i(ΩL − ωe1)

ρ11, (3.19)

where

ρ11 =
1

2

γ1
γ′1

+
1

4γ1

(︃
Sn

Sn + 1

)︃(︃
ΓP

1 + ∆2
µ/[γ

′
2(S + 1)]

)︃
. (3.20)

Here, γ′i = γi+ΓP/2, ∆µ = ωµ−ω21 is the microwave field detuning for the transition

of interest, and

Sn =
Ω2

µ

γ′1γ
′
2

=

{︄
(Bµ cos θ)2

γ′
1γ

′
2

Mn
π = Sπ, π transitions

(Bµ sin θ)2

γ′
1γ

′
2

Mn
σ± = Sσπ , σ± transitions.

(3.21)

is the saturation factor for transition number n. The optical pumping rate ΓP from

|1⟩ in the numerator of the second term of ρ11 is

ΓP =
|Ωµ/2|2Γ∗

(Γ∗/2)2 + (ΩL − ωµ − ωe2)2
, (3.22)

and is obtained by solving for the solutions to the coherence terms in the rotating

frame in steady state. When the laser radiation is on resonance with the |1⟩ → |e⟩

transition, the pumping rate is equal to ΓP = |Ωµ|2/Γ∗.
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The first term in Eq. 3.20 gives the equilibrium population due to optical pumping

and the second term is the double resonance signal under the influence of the applied

microwave field. As our oscilloscope was set to AC coupling, the DC signal corre-

sponding to the first term is subtracted out during data collection, so we observe only

the second term. The double resonance signal is a Lorentzian and has a full-width

half-maximum equal to

∆ω1/2 =
1

π
γ′2(S

n + 1)1/2. (3.23)

The maximum amplitude of the resonance curve depends on the projection of the

microwave field along the x or z axis as well as the transition matrix element. It

was obtained by taking the second term in Eq. 3.20 at zero-detuning. For π and σ±

transitions, the maximum amplitudes are

An
π =

ΓP

4γ1γ2

(︃
Sn
π

Sn
π + 1

)︃
(3.24a)

An
σ± =

ΓP

4γ1γ2

(︄
Sn
σ±

Sn
σ± + 1

)︄
. (3.24b)

We note that the resonance linewidth depends on how well the cavity is tuned to

the correct resonance [32]. The linewidth is thinner when the cavity is off resonance.

Furthermore, the symmetry of the spectra depends on how close the cavity resonance

frequency is to the hyperfine splitting: if the cavity is mismatched, then the double

resonance spectra is asymmetric instead of the symmetric form shown in Fig. 3.5(a).

3.4 Vector Magnetometry

In the following section, we discuss the possibility of vector magnetometry using the

double resonance spectrum. We look at it from a theoretical perspective and then

show preliminary data in the next sections. This discussion motivates an application

of micro-fabricated vapor cells.
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Figure 3.7: (a) Theoretical [blue triangles] and experimental [red circles] plot of

A
(iv)
π /A

(v)
σ± [Eq. 3.26] as a function the angle θ between BDC and Bµ. For the the-

oretical plot, ΩP = 106 Hz, Ωµ = 0.5 × 103 Hz, γ1 = γ2 = 10 Hz, Γ∗ = 109 Hz.
The values of γi were selected to try to match the maximum relative amplitudes of
the theoretical and experimental data. (b) DR spectrum as a function of microwave
detuning and increasing axial field strength when we apply a bias field of 0.2 G along
the vertical direction.

3.4.1 Theory

The transitions induced by the parallel and perpendicular components of the mi-

crowave fieldBµ with respect toBDC are independent of each other and can be treated

separately. This means that if we increase (Bµ)z keeping (Bµ)⊥ fixed, then only the

amplitudes of peaks (ii), (iv) and (vi) corresponding to π-transitions will grow, while

the amplitudes of peaks (i), (iii), (v) and (vii) corresponding to σ-transitions will

remain the same. Similarly, if we increase (Bµ)⊥ keeping (Bµ)z fixed, then only the

amplitudes of peaks (i), (iii), (v) and (vii) will grow. The ratio between the ampli-

tudes of the σ± and π transitions gives a measure of the the relative angle θ between
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the microwave and the static magnetic field, since, from Fig. 2.4,

θ = arctan
Bµ sin θ

Bµ cos θ
= arctan

B⊥
DC

B
∥
DC

. (3.25)

Between π transition n and σ transition m, the expression for the ratio is

An
π

Am
σ±

=
Mn

π

Mm
σ±

(︃
B2

µ

tan θ

)︃(︄
B2

µ sin
2 θ + γ′1γ

′
2

B2
µ cos

2 θ + γ′1γ
′
2

)︄
(3.26)

depends on θ. This gives us a method for vector magnetometry, where the ratio

provides information on the direction of the DC field with respect to the microwave

field alignment. In Fig 3.7(a), we plot with blue triangles the theoretical maximum

amplitude ratio between transitions (iv) and (v), A
(iv)
π /A

(v)
σ+ , as a function of θ, which

shows that as the axial field is increased [decrease in θ], the π transition amplitude

increases relative to its neighbouring σ+ transitions. To find the magnitude of the

field, it suffices to look at the frequency shifts of the peak due to Zeeman splitting.

However, with the current configuration, we can only determine one angle, not the

two needed to determine a unique direction in 3D space. With our setup, there is an

infinite number of possible directions for BDC on a cone with angle θ relative to its

axis [Fig 3.8].
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Figure 3.8: The infinite possible directions of BDC lie on a cone with aperture 2θ.
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Figure 3.9: Calibrating the axial coils. (a) σ+ transitions are detuned by +ωL while
(b) the right right π transitions are detuned by 2ωL. MAOP spectra as a function of
microwave detuning and increasing current in the axial coils due to a magnetic field
applied in the (b) vertical and (e) axial direction. Labeled on the last curves are the
corresponding frequency shift ωL and 2ωL, which are measured from the first peak
on the right to the center peak as shown by the dotted lines. The frequency shift (c)
ωL are plotted as a function of applied vertical current and (f) 2ωL as a function of
applied axial current, both fitted to a linear function to obtain the calibration factor
m.
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3.4.2 Experimental Data

Coil Calibration

To determine the relationship between the input current and the output magnetic

field strength, the Helmholtz coils need to be calibrated. Calibration was done by

measuring the current I through the wires with a multimeter and by measuring the

Larmor frequency ωL from the DR spectrum. Due to the low field Zeeman effect,

the resonance frequency of the π-transitions occur at ωo ± 2ωL [Fig. 3.9(a)], which

appears as curves shifted by ±2ωL from zero detuning. For σ± transitions numbers

(iii) and (iv), the frequency shift is ωL [Fig. 3.9(d)], where

ωL =
µBgF
ℏ

× |BDC| = 0.6998
MHz

G
× |BDC|. (3.27)

Therefore, to find |BDC(I)|, we need to measure the frequency shift of the first right-

hand peak with respect to the center as a function of applied current I and then fit

the data to the function

ωL

0.6998MHz
G

= mI + b, (3.28)

where m is the slope corresponding to the magnitude of the field at a given current I,

and b is the offset. A non-zero b indicates that the ambient field was not completely

zeroed when calibrating the coils. As an example, shown in Fig. 3.9(a) is the double

resonance spectra as a function of increasing axial current and microwave detuning.

The frequency shift of the peaks appears to increase linearly with the applied current.

This is confirmed by inspecting a plot of ωL versus the applied current in Fig. 3.9(b).

The results of the linear fits give the following calibration factors: 34 ± 4 mT/A for

the vertical coils, 1.44 ± 0.09 mT/A for the axial coils, and 85 ± 1 mT/A for the

horizontally transverse coils. The errors were taken from the standard error of the

fit.

This technique for measuring the magnetic field strength is quick, taking only a few

seconds for the signal to respond to a change in magnetic field strength or orientation

as it depends only on the steady-state distribution of the atoms in the ground-state.
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Unlike pump-probe experiments, we do not have to optically pump the atoms, probe

the system during relaxation, and repeat the process to get an accurate measurement

of the Larmor frequency. However, our sensitivity is limited by the linewidth of the

peaks; we need to be able to resolve two peaks in order to measure their frequency

separation. We estimate the smallest magnetic field strength we would be able to

measure is about 0.15 G.

Vector Magnetometry (Preliminary Data)

Because the π-transitions are visually the same for both perpendicular fields, we apply

only two combinations of the field: along the vertical and axial directions, or along

the horizontally transverse or axial directions. An example is shown in Fig. 3.7(b),

where we increase the net field B
∥
DC = [0, 0.44] G along the axial direction in the

presence of a net bias field of B⊥
DC = 2.0 G along the vertical direction. We calculate

θ by inserting in our values for the static fields in the second equality in Eq. 3.25.

When θ = 90◦, the net field BDC points along the perpendicular direction. As the

axial field increase, θ decreases. In Fig. 3.7(a) with red circles, we plot A
(iv)
π /A

(v)
σ+ ,

the ratio of amplitudes between π-transition (iv) and σ+-transition (v), against the

θ. We can see from both plots that as we increase the axial field [decrease in θ], the

center peak amplitude, which is caused by a π-transitions, increases relative to the

neighbouring peaks caused by σ+.

The linewidth of each of the double-resonance peaks limits our ability to measure

the Larmor frequency. When the magnetic field strength is small, the DR curves

merge, and the curves are not well resolved. When the magnetic field strength is

higher, we require a higher microwave detuning range to cover the spectrum. However,

the further we move away from resonance, the lower the coupling efficiency is for the

microwave field with the cavity, and the peak amplitudes begin to diminish. These

factors limit the sensitivity of the magnetometer.

We calculated the amplitudes by subtracting the noise floor from the maximum
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amplitude. Between measurements, the noise floor fluctuates quite a bit, possibly

because of vibrations, and the cavity often became misaligned, which altered the peak

amplitudes. Other issues with our data were inconsistency between measurements

due to various factors such as insufficient and inconsistent vapor density, laser power

instability due to perhaps the temperature in the room, and other unknown reasons.

Between the same type of measurements, the relative amplitudes curves do not look

the same. Compared to the theoretical curve, the experimental curve is shifted more

to the right. Theory predicts that when the axial field is zero, the relative amplitude

should be zero because we should not see any π-transitions. However, the height of

the last red point corresponding to θ = 90◦ in Fig. 3.7(a) is non-zero, indicating that

there is a residual field along the microwave field direction. The experimental data is

shifted more to the right, indicating that the maximum amplitude difference between

the transitions (iv) and (v) is less than predicted. This may be because the decay

terms γ1,2 between the ground state is lower, due to the low density of our vapor.

We did not measure atomic number density as we discovered a leak in our system,

which was rapidly depleting our rubidium source within a day. We did not calibrate

the pump and microwave Rabi frequency in the experiment, which is something to

explore in the future to better understand our model.

Due to these inconsistencies, we do not fit our data to our model, as they look

different, and we do not perform any statistical analysis. We also did not perform

measurements to estimate the microwave Rabi frequency. Moreover, the model does

not account for the cavity quality factor, which affects the signal linewidth and am-

plitudes. Therefore, the data presented seeks only to give a qualitative picture of the

relationship between the peak amplitudes and the direction of the magnetic field. In

principle, we would calibrate our “magnetometer” by fitting it to a curve, extract

the damping terms, and then use those values to extrapolate the angle for a given

amplitude ratio. s
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Chapter 4

Microfabricated Vapor Cells

This chapter covers the micro-fabrication of a rubidium vapor cell. The primary mo-

tivation is to combine miniaturized cells with smaller microwave cavity resonators,

which can be used for applications such as microwave-to-optical transduction [5] and

optical switching [32]. Other applications include quantum sensing, such as magne-

tometry, as discussed in the previous chapter. As a first step, our goal was the test

for the presence of rubidium, which was successful.

We introduce the basics of microfabricated vapor cells in Sections 4.1–4.3 and

outline the fabrication steps in Section 4.4. Finally, in Section 4.5, we show results

confirming the presence of both rubidium isotopes. As we have not yet optimized the

cell to be compatible with quantum sensing applications, we outline future steps for

improving vapor purity, cell lifetime, and reducing decoherence effects in Section 4.6.

4.1 Background

Glass-blowing is a common technique for fabricating vapor cells, but it is difficult

to create cells with volumes less than a few mm3 [8]. As such, many have adopted

methods based on silicon micromachining to fabricate alkali vapor cells. In these cells,

chambers that confine the alkali atoms are etched into a Si wafer. Glass wafers are

bonded to the polished upper and lower surfaces of the Si wafer, forming a sealed glass-

silicon-glass three-layer “sandwich”. The glass windows allow light to pass through
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the cell for atom-light interrogation. There are a few advantages of silicon microma-

chined vapor cells. Firstly, the dimensions can be specified in the etch pattern and

wafer thickness with sub-millimeter precision. Secondly, chambers can be fabricated

in parallel on one wafer, allowing multiple cells to be made simultaneously. Moreover,

microfabrication techniques easily permit the integration of optical components, such

as micromirrors and vertical-cavity surface-emitting lasers.

4.2 Alkali Atom Source

Because alkali atoms are highly reactive and readily oxidize at standard room tem-

perature and pressure, a challenging aspect of vapor cell fabrication is introducing

alkali atoms and sealing the cell [8]. Pure alkali metal must be handled in an inert

atmosphere, such as in N2, and stored in hermetically sealed containers. To circum-

vent challenges associated with the handling of pure alkali metals, one method is

to react stable alkali-based compounds with reducing agents or by dissociating the

compounds with heat or light within the sealed cell. For example, alkali molybdates

or chromates, which are stable in air and ambient temperature, can be reacted with

zirconium, titanium, aluminum, or silicon at temperatures above 350◦C to produce

alkali metal in elemental form. In our process, we used micro-pills containing 85Rb

and 87Rb from SAES Getters [Italy]. These micro-pills are composed of rubidium

molybdate and an alloy of zirconium and aluminum, all compressed together [38].

The pill is placed inside the vapor cell which is then subsequently sealed. A laser

beam at high power heats the dispenser to temperatures above 600◦C, evaporating

Rb. The process yields the following chemical reaction

2Rb2MbO4 + Zr3Al2 → Mb2O3 +Al2O3 + 3ZrO2 + 4Rb [gas]. (4.1)

The byproducts of this reaction are chemically and thermally stable at temperatures

below 1000◦C [39]. The oxides and an excess of Zr3Al2 remain in the dispenser.
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4.3 Architecture

Within the chamber, a transparent light path is necessary for laser interrogation. To

avoid the disturbance of impurities in the optical path, we designed cells with two

connected chambers, one of which contains the rubidium source and the other for

laser interrogation. The interrogation chamber confines the atoms so that they can

be excited and probed by electromagnetic fields. Because we were unable to acquire

double-sided polish wafers, our cells have a blind hole instead of a through-hole design.

The depth of the chamber is limited by the wafer thickness (in our case, 1 mm); the

back panel cannot be too thin otherwise the wafer can easily shatter. Recalling

the Beer-Lambert law, which relates the outgoing beam intensity I(z) through an

absorbing medium of density n to the initial intensity Io,

I(z) = Ioe
−nσ(ω)z, (4.2)

where σ(ω) is the photon absorption scattering cross-section [see Appendix B.2.1] and

z is the optical path length. Therefore, if the optical path length increases, then there

is more absorption. In the conventional glass-silicon-glass three-layer sandwich design,

the wafer thickness limits the optical path length. Since polishing machines cannot

accommodate thicker wafers, the thickness of Si wafers is usually less than 2 mm

thick [40]. Instead of propagating the laser beam through the cell, the beam reflects

off angled sidewalls [created by potassium hydroxide wet etching in the interrogation

chamber], traveling along the chamber surface, as shown in Fig. 4.1. By increasing

the chamber dimensions, we can increase the optical path length without sacrificing

cell thickness. The entire process flow is detailed in Section 4.4. To increase the

reflectance of the walls, we deposited a thin layer of pure aluminum [Al] on some of

the samples. During the deposition process, a shadow mask covered parts of the cell

that did not need a mirror coating. However, due to difficulties with beam size and

angle alignment, we did not use the sidewalls. Instead, we reflected the beam from

the back walls, which gave us an appreciable atomic signal.
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(a) (b)

Figure 4.1: Vapor cell with reflecting sidewalls schematic; (a) 3D view and (b) side
view cut out.

4.3.1 Silicon

Single-crystal silicon is an excellent electronics material. A common method for

growing silicon crystals is the Czochralski [CZ] process but it tends to introduce more

impurities compared to another popular method, the float-zone process. However,

purity is not a concern for our purposes; the prime-grade wafers purchased for our

experiments were grown with the CZ process. Similarly, for our purposes, the grade

of the wafer is not of high importance and we purchased what was readily available.

Silicon belongs to the crystal cubic system and has a diamond structure. Each

atom is symmetrically surrounded by four equally spaced neighbors in a tetrahedral

arrangement, as shown in Fig. 4.2(b). By convention, the length of each edge is

unity. The directions and planes in a crystal are identified by Miller indices h, k,

and l. The Miller indices are determined by taking the reciprocal of the intercepts

of that plane with the axes x, y, and z, and then multiplying them by the small-

est common denominator to obtain whole numbers. Planes are denoted by paren-

theses and a family of planes are represented by curly brackets, e.g. the planes

(001), (100), (010), (001), (100) and (010) are grouped under {100} [the overline

indicates negative direction]. The vector normal to the surface, written in square

brackets, determines the direction, while the set of crystallographically equivalent di-
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rections that form the same group is written with angular brackets, e.g. [100], [010],

and [001] are part of the group of ⟨100⟩ directions. Planes (hkl) are perpendicular to

the direction [hkl]. The angle θ between two planes (h1, k1, l1) and (h2, k2, l2) is given

by

θ = cos−1 h1h2 + k1k2 + l1l2√︁
h21 + k21 + l21

√︁
h22 + k22 + l22

. (4.3)

(a) (b)

(111)

(110)

(100)

θ=54.7°
(100)

(111)〈100〉

Figure 4.2: (a) Miller indices for the [100], [110], and [111] directions, and the cor-
responding (100), (110), (111) planes, which are perpendicular to their respective
directions. (b) Diamond structure of silicon. Each atom has four adjacent neigh-
bours.

Silicon wafers come in different crystal orientations, which determines how a wafer

is etched. A flat segment on a wafer helps determine the wafer orientation and con-

ductivity type. Silicon can be p-type, where most of the charge carriers are positive,

or n-type, where most of the charge carriers are negative. For vapor cells, the con-

ductivity is not important, but the type of dopant can affect the plasma etching rates

of silicon. Conventions for wafer flats are given in Fig. 4.3(a). On a {100} wafer, the

[110] direction is given by the primary flat; an example with a {100} n-type wafer

showing the {100} plane is illustrated in Fig. 4.3(c). We used ⟨100⟩, p-type [boron
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Figure 4.3: (a) Conventions for silicon wafer flat orientations. (b) 100 n-type wafer
showing the {100} plane and [100] direction. The primary flat gives the [110] direction.
(c) Schematic of anisotropically etched features on a ⟨100⟩ wafer with a square mask.

doped] Si wafers for our vapor cells. From Eq. 4.3, the {111} planes are angled 54.7◦

relative to the {100} plane. Using KOH, we can anisotropically etch preferentially

along ⟨111⟩ to create angled sidewalls.

4.3.2 Design

In the first round of fabrication, we patterned three sets of cells having interrogation

chamber lengths l = 6, 9, 12 mm, giving a total of nine cells. In the second round,

sixteen cells were made, with chamber lengths l = 6, 9, 12, 15 mm [not shown]. The

cell patterns were designed in MATLAB using the Raith GDSII Toolbox [41]

and is shown in Fig. 4.4. We did not design a shadow mask for the second set of cells,

as we omitted the aluminum deposition step.
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Figure 4.4: Vapor cell [red line] and shadow mask (purple line) pattern. The numbers
beside each cell indicates the width of the interrogation chamber on the vapor cell
wafer.

4.3.3 Sealing

The entire cell must be hermetic to prevent reactive contaminants such as oxygen

and water from entering and oxidizing the alkali atoms and to prevent non-reactive

contaminants such as He or N2 from entering and leaving the cell, causing shifts in

the transition frequency of the alkali atoms. The glass and silicon wafers are bonded

under vacuum using anodic bonding [Section 4.4.8]. Bonding is only effective between

two polished surfaces. Since we could only acquire single-sided polished wafers at the

time, we did not design through-hole cells. We also chose to work with 100 mm in

diameter wafers as some of the equipment in the nanoFAB were only compatible with

100 mm wafers.

4.4 Process Flow

The vapor cell pattern was created on the wafer by wet etching using potassium

hydroxide [KOH]. Any part of the silicon wafer not covered by silicon nitride was

etched away. The vapor cell pattern thus depends on the low-stress silicon nitride

pattern. To create a silicon nitride pattern, we coat the layer of SiN with a photoresist

pattern generated by direct-write laser lithography. Reactive ion etching then removes

any part of the silicon nitride layer not protected by the photoresist. Finally, the

photoresist was removed by plasma etching, exposing the silicon nitride layer. The

etching of the Si wafer begins when we immerse the wafers in a solution of KOH.

67



1. Piranha cleaning

2. LPCVD SiN deposition

3. Photoresist spin coating

4. Maskless photolithography

5. Development

6. SiN reactive ion etching

7. Photoresist etching

8. KOH Si etching 

9. SiN reactive ion etching

10. Shadow mask alignment

11. E-beam evaporation of Al

12. Addtion of dispenser

13. Anodic bonding

14. Dispenser activation via laser heating

Si SiN Photoresist

Al Glass

Si (shadow mask)

Dispenser

Figure 4.5: Process flow showing the 3D and side views of the wafers at each step.
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4.4.1 Wafer Cleaning

As a first step, the vapor cell, shadow mask, and glass wafers were cleaned using the

standard nanoFAB “Piranha” bath to remove organic and metallic components from

substrates. We used a 3:1 mixture of sulphuric acid [H2SO4, 96% concentration], a

highly corrosive strong mineral acid, and hydrogen peroxide [H2O2, 30% concentrate],

a strong oxidizer. The solution can self-heat up to 120◦C. Most surfaces become

hydroxylated [addition of -OH group], becoming strongly hydrophilic. The wafers

were placed in a Teflon carrier and immersed for 15 minutes in the Piranha bath.

After 15 minutes, the solution cools, and the reaction is no longer vigorous enough to

clean effectively. The wafers were removed from the bath and rinsed with de-ionized

water.

4.4.2 LPCVD Nitride Deposition

After the Piranha cleaning process, a 75 nm thick film of low-stress silicon nitride [LS

SiN] was deposited onto both silicon wafers by low-pressure chemical vapor deposi-

tion [LPCVD]. This process was done as a fee-for-surface by nanoFAB staff. Silicon

nitride is a dielectric material that can be used as a KOH etch mask. The most

thermodynamically stable silicon nitride is Si3N4, but it does not always have that

stoichiometry. LS SiN is richer in silicon, giving it very high tensile strength [tensile

strength is a measure of the force required to pull something apart to the point it

breaks]. Because the etch rate of LS SiN in KOH is very slow, it can be used as an

etch-resistant barrier. In 44% KOH at 85◦C for example, the etch rate of LPCVD SiN

is less than 0.1 nm/min, which is slower than Si3N4 at 1 nm/min [42]. The reaction

that occurs during LPCVD is

3SiH2Cl2 + 4NH3 → Si3N4 + 6HCl + 6H2. (4.4)

To produce LS SiN, a higher ratio of dichlorosilane SiH2Cl2 [DCS] to ammonia NH3

is used. In chemical vapor deposition [CVD], the reactants DCS and 4NH3 are trans-
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ported as gases into the CVD reaction chamber where the substrate [Si wafer in our

case] is located. The surface of the substrate exposed to the gases acts as the growth

surface. The film precursor molecules adsorb onto this surface. The substrate is

heated to very high temperatures to initiate surface reactions, causing continuous

film growth. Any byproducts are then desorbed and flow away towards the reactor

exit. The deposition method affects quality and dielectric strength. LPCVD usually

occurs at pressures of 100 Pa, while atmospheric CVD occurs at 10-100 kPa. LPCVD

decreases any unwanted gas-phase reactions, as well as increases the uniformity of the

film. For LPCVD LS SiN growth, the deposition temperature is 800-840◦C.

4.4.3 Resist Spin Coat

Resists are mainly composed of a polymer [a base resin], a sensitizer, and a casting

solvent [42]. When exposed to radiation, the polymer changes structure and can be

dissolved by a developer to form the design pattern. The solvent allows layers to be

forms on the wafer surface and the sensitizer controls the chemical reactions in the

polymeric phase.

Before coating the wafer with photoresist, which will be needed for the pho-

tolithography step, the wafer is first coated with hexamethyldisilazane [HMDS], a

surface linking adhesion promoter [43]. Surface priming was introduced to improve

the photoresist-wafer contacts. SiN is polar whereas photoresist is nonpolar, which

creates adhesion problems between the two layers. The polar bonds on the SiN sur-

face form long-range hydrogen bonds with water adsorbed onto the surface. The

photoresist does not adhere to hydrated silicon surfaces, so the surface of the wafer

must be dehydrated as well.

Wafer priming was accomplished in the YES3TA HMDS Oven, which elevates

the wafer temperature and reduces the pressure, lowering the boiling point of water

molecules. The chamber is then flooded with HMDS vapor, which when deposited,

silates the silicon nitride surface. This introduces a silyl group, R3Si, leaving a non-

70



polar surface. We apply 1.1 µm thick layer of AZ1512 photoresist (approximately 5

mL), which bonds to HMDS, using the CEE 200CB Coat Bake System. The

photoresist is poured onto the wafer which sits on a rotating mount. The wafer is

first spun at 500 RPM for 10 seconds [s] to spread the photoresist, followed by 40 s

at 5000 RPM.

After resist coating, the resist may contain built-in stresses. To remove these

stresses and to promote adhesion, the wafer is soft-baked [also known as pre-baked]

on a hotplate at 100 ◦C for 60 s. Soft-baking reduces the thickness of the photoresist by

10-25% [42]. Excessive baking can destroy the photosensitive compound and reduce

sensitivity.

(b) (c) (d)

(a)

Figure 4.6: (a) Photoresist exposed to UV light. The mask serves as a photoresist
pattern. After exposure (b) for negative-tone photoresist, parts that are not exposed
to light are removed during development, (c) while for positive-tone photoresist, parts
that are exposed to light are removed during development.

AZ1512 is a positive tone photoresist, suitable for both wet and dry etching. Ex-

posure to light causes a reaction: the polymers break down and become soluble in

a developer solution, as shown in Fig. 4.6(c). On the other hand, for negative-tone
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photoresists, parts that have not been exposed to light are removed by the developer

solution. Positive photoresists have better resistance to etchants, such as KOH, than

negative photoresists, but do not adhere to silicon wafers as well as negative photore-

sists. The AZ1500 series photoresists have a wide process latitude, a larger extent to

which they can be over or underexposed, while still providing acceptable results. The

wavelengths of light used in photolithography range from very short wavelengths of

extreme UV [10-14 nm] to near UV [350-500 nm]. AZ1500 photoresists provide good

resolution in broadband and near UV. Typically, the “g” [436 nm], “h” [405 nm], or

“i” [365 nm] line of a mercury lamp are used for near UV light.

4.4.4 Direct-Write Laser Lithography

In traditional lithography, a stencil, called a mask, is used to generate the lithography

pattern [42]. A photomask, either a glass [transparent to near-ultraviolet (UV)] or

quartz [transparent to deep UV] plate patterned with an absorber metal opaque to

UV light, is placed in direct or near contact with the resist-coated wafer. The mask-

wafer system is then exposed to UV light and then developed to generate the pattern

on the substrate.

However, in our process, we use a maskless photolithography system, which does

not require the use of a photomask. The Heidelberg MLA150 is ideal for designs

that involve size features over one micron [44]. In maskless photolithography, a spatial

light modulator acts as a programmable, dynamic mask that is used to directly project

the design onto the wafer.

After exposure to near UV light [we used the “h” line], the photoresist layer needs to

developing: unpolymerized resist that forms the latent image needs to be dissolved to

form the design pattern. We developed our photoresist pattern at room temperature

by placing the wafer in a glass container filled with a sufficient amount of AZ 400K

1:4 developer, a buffered potassium-based inorganic developer pre-diluted with de-

ionized [DI] water. The container was gently agitated for about a minute to improve
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Figure 4.7: Maskless lithography uses a spatial light modulator. Figure from [44].

development uniformity. The wafer is then rinsed with DI water and dried with a

nitrogen spray gun.

4.4.5 Nitride Etch and Resist Strip

The photoresist pattern now exposes certain regions of the nitride layer. These ex-

posed nitride regions must be etched away to form the KOH etching mask. Reactive

ion etching [RIE] is a dry etching technique that combines physical and chemical

mechanisms to remove the surface of a material. The substrate is physically bom-

barded with ions with sufficient energy to break the chemical bonds of the surface

atoms, which reduces the activation energy required for chemical etching reactions.

In the Trion Phantom RIE, plasma, which are ionized gas molecules that are neu-

tral with equal numbers of ions and electrons, is produced using a radiofrequency

[RF] field. The wafer is placed on an RF power electrode, taking on a potential that

accelerates ions towards its surface. The surface then chemically reacts with plasma

molecules, and the reactants in the gas or vapor phase are removed by pumping. The

ion bombardment is highly directional, so RIE is highly anisotropic, forming verti-

cally etched sidewalls. RIE also has a high etch rate and high selectivity [selectivity
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Figure 4.8: Vapor cell after (a) photoresist patterning, exposure, and development,
(b) nitride stripping, (c) photoresist stripping, and (d) KOH etching.

is the ratio between the etch rate of the material to be removed and the etched rate

of the material to remain]. The etch rate for the standard nanoFAB LS SiN recipe is

118 nm/min. We set the process to run for 42 seconds, which was sufficient to remove

75 nm of LS SiN.

The photoresist on both wafers was removed by oxygen plasma stripping in the

Branson 3000 Barrel Etcher [42]. In the pre-heating step, which ran for 3 minutes,

N2 gas fills the chamber. The pressure reduces down to 1.4 Torr. In the second step,

reactive atomic oxygen [O], formed by splitting molecular oxygen [O2] using a low-

pressure electrical discharge, converts an organic photoresist such as AZ1512 into a

gaseous product that is pumped away. This step ran for 10 minutes, which is generally
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enough time to remove 1-2 µm of resist.

4.4.6 KOH Wet Etch

Potassium hydroxide was used to wet etch the wafers, covered by an LS SiN mask.

We used a solution of 32% KOH [961 ml of 45% KOH diluted with 569 ml of water],

to which we added 150 ml of isopropyl alcohol [IPA] in the first round of fabrication.

IPA reduces surface roughness, which would improve reflectance. In the second round

of cell fabrication, we did not use IPA, and the surface appeared to have more bumps

on the tens of nm scale.

During the etching process, a circular stir bar at the bottom of the bath stirred the

solution at a rate of 60 RPM. The bath was heated to a temperature of 85◦C, which

took approximately 30 minutes to heat up from room temperature. A probe inserted

into the bath monitored the temperature. The first vapor cell wafer was etched 726

µm deep, for a total of 7 hours, giving an etch rate of approximately 1.7 µm/min.

The second vapor cell wafer was etched for seven hours to a depth of 680 µm. The

shadow mask, which will be placed on top of the vapor cell during electron beam

[e-beam] deposition, was etched all the way through, forming 525 µm deep through-

holes. The shadow mask was left in the solution until the vapor cell wafer was taken

out. After the etching process, the wafers were rinsed in DI water and then dried

using a nitrogen spray gun. The result is shown in Fig. 4.9(c).

KOH etching is an anisotropic, or directional, process. It etches preferentially in

the ⟨100⟩ plane compared to the ⟨111⟩ plane, with a selectivity [etch rate ratio] of

S = R⟨100⟩/R⟨111⟩ = 400 [42], where R⟨abc⟩ is the etch rate along the ⟨abc⟩ direction.

This causes ⟨111⟩ planes to be oriented 54.7◦ relative to the ⟨100⟩ plane. Since we

use ⟨100⟩ wafers, sidewalls are formed relative to the surface of the wafer, as shown

in Fig. 4.9. To determine the final feature size of the final etch for a ⟨100⟩ wafer, we

can use the following formula

w = A+ 2d cot 54.7◦, (4.5)
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where A is the final [desired] feature size of the etch, w is the size of the photomask

pattern, and d is the etch depth. The size of the hole on the shadow mask needs to

54.7∘
< 100 >< 111 >

A

w

d

54.7∘

m525μ

shadowmask 
wafer

vapor cell  
wafer

d

a) b) 

B

δ

B

Figure 4.9: KOH etching on a ⟨100⟩ Si wafer produces sidewalls oriented at 54.7◦ rel-
ative to the surface. (a) KOH etching is highly selective: parts that are not protected
by a mask [pink] are etched away. (b) The shadow mask wafer is etched all the way
through, while the vapor cell wafer is etched partly through, to a depth of X µm. The
bottom width of the shadow mask pattern needs to be the same size as the opening
of the chamber, so the pattern was designed to be 2δ = 2× 525µm× cot 54.7◦ wider
than B.

match the opening of the vapor cell cavities. The shadow mask square pattern was

designed to be 2× δ = 2× 525µm× cot 54.7◦ wider than B, the opening of the vapor

cell chamber, as shown in Fig. 4.9(b).

Wet etching is highly selective; with two materials present, one is etched at a much

faster rate than the other. In our case, we have LPCVD SiN and Si. The selectivity

of our KOH solution is S = RSi/RSiN = 49000. SiN is etched very slowly compared to

Si. Note that high selectivity does not imply that the etching process is anisotropic.

4.4.7 Electron-Beam Deposition of Thin Films

Electron-Beam Evaporation

A bell-jar electron-beam [e-beam] evaporation system [nicknamed “Gomez”] from

Kurt J. Lesker deposited a 100 nm thick layer of aluminum onto the vapor cell

wafer, forming the reflecting sidewalls. Aluminum was placed inside a crucible located

underneath the wafer, as shown in Fig. 4.10(a), (c), and (d). E-beam evaporation
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uses an electron beam to heat the material that is to be deposited. The electron beam

source generates electrons, accelerates, and deflects them towards the crucible. The

electron beam position was controlled by electric and magnetic fields. Under vacuum,

this created sufficient vapor pressure, causing it to evaporate and deposit onto the

substrate. During the evaporation step, the electron beam dithers [sweeps] across the

crucible. The dither rate and beam position was controlled by adjusting the current

that produces the fields. The beam position needs to be at the center of the material;

if the beam hits the crucible, film purity is affected.

Located next to the wafer in Fig. 4.10(c) and (d) is a crystal thickness moni-

tor [CTM]. The CTM monitors the deposition rate and helps to calculate the film

thickness. It contains a quartz crystal, which mechanically oscillates due to the piezo-

electric effect when an AC voltage is applied. The resonance frequency depends on

the mass of the film deposited onto it. Therefore, the CTM program needs to account

for the material density [2.700 g/cc for Al] and the Z-ratio [1.080 for Al]. The Z-ratio

corrects the frequency-change-to-thickness transfer function for the effects of acoustic

impedance mismatch between the crystal and the deposited material.

Between the substrate and the crucible is a shutter. The shutter can be rotated to

the “closed” position such that it covers the wafer when the e-beam is on [Fig. 4.10(c)],

to stop deposition. It can also be rotated to the “open” position where it does not

block the wafer [Fig. 4.10(d)]. To begin, we loaded the substrate, closed the shutter,

and pumped the system down, first to below 300 mTorr with a roughing [mechanical]

pump, and then to less than 10−6 Torr with a cryopump. The pump-down process

took about an hour.

Because aluminum tends to creep up along the crucible walls when heated, the

emission current of the e-beam was slowly increased to 20 mA, to prevent aluminum

from overflowing out of the crucible. Increasing the emission current increases the

temperature, which increases the deposition rate. We then adjusted the current until

we achieved our target deposition rate. If the Al overflows out of the crucible, the
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emission current needs to be reduced, allowing Al to sink back into the crucible.

Through a glass windowpane located on the bell jar, we monitored the position of the

beam and crucible. The final emission current during the process was set at around

10 mA, which gave us a deposition rate of approximately 10 Å/s [0.1 nm/s], typical

for Al deposition on this system. Deposition commenced once the shutter was rotated

to its open position and the CTM was reset to zero to start to timer and thickness

counter. The shutter was closed once we achieved the desired thickness, which took

about 20 minutes for 100 nm of Al.

vapor cell

e-beam source

Al pellets

crucible

Al film

Al molecules

shutter

shadowmask

CTM

(a) (b)

(c)

(d)

shutterCTM

wafer

(e)

Figure 4.10: (a) Electron beam deposition schematic. A CTM measures the thickness
of the film. (b) The electron beams scan across the crucible which contains the film
material. (c) Closed position of the shutter to prevents unwanted deposition. (d)
Open position of the shutter. The shinier part of the interrogation chamber is where
the Al was deposited, which was not covered by the shadow mask. (e) vapor cell
wafer after Al deposition.
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Figure 4.11: (a) The two wafers are fixed by a clamp on the fixture and placed on
top of the bottom plate of the bonding system. The top plate is also the lid of the
bonder and is the cathode. (b) Result of bonding. The wafer is noticeably cracked
where the clamps/spacers were located.

At 780 nm, which corresponds to the D1 transition, n = 2.50, k = 8.44 for Al;

these values can be calculated from the Lorenz-Drude model [45]. The reflectivity is

obtained from the following equation,

R =
[n(ω)− 1]2 + k2(ω)

[n(ω) + 1]2 + k2(ω)
, (4.6)

and is equal to 88% for aluminum.

4.4.8 Anodic Bonding

Anodic bonding, also known as field-assisted thermal bonding, is commonly used in

MEMS fabrication to bond certain types of glass with conductive materials [8]. In

our case, our substrate stack comprises a layer of glass and the Si wafer. Bonding

involves pushing two substrates together using two heated plates that sandwich the

layers. It occurs at high voltages, typically between 200-1000 V, and at high tem-

peratures, 180-500◦C, which necessitates using glass with a linear thermal expansion

coefficient similar to that of the Si wafer. The linear thermal expansion coefficient is
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Figure 4.12: Schematic of anodic bonding. (a) The Si wafer [purple] ]is placed on the
bottom of the fixture and the glass wafer [blue] on top. A spacer separates the two
wafers. The sandwich is clamped and the fixture is placed on top of the bottom plate.
(b) During anodic bonding, the spacer and clamps spring outwards, and a force is
applied, pushing down the top plate. A cathode located on the top plate applies a
voltage. The bottom plate kept electrically grounded, causing positive ions in the Si
wafer to flow upwards towards the boundary and negative ions in the glass to flow
downwards. Both plates are kept heated.

the fractional change in length of a material per degree change in temperature [linear

expansion means a change in one dimension, as opposed to area expansion, two di-

mensions, and volumetric expansion, three dimensions]. During bonding, both wafers

remain rigid. We used 100 mm diameter round Borofloat R○ glass wafers, which are

borosilicate [silica and boron trioxide] based glass wafers manufactured by Schott.

Pyrex 7740 glass wafers, Corning’s trademark borosilicate glass that contains ap-

proximately 3-5% sodium, can also be used for anodic bonding in our vapor cells but

was unavailable for purchase at the time. Borosilicate [silica and boron trioxide] glass

has a low thermal expansion coefficient, meaning that it is more resistant to thermal

shock. At temperatures between 0-300◦C, the average thermal expansion coefficient

of Pyrex is 3.25 × 106/◦C; for silicon at 300 K, it is 2.62 × 106/◦C. The thermal

expansion of the bonding substrates should be similar to avoid thermal stresses.

Bonding was done on the SUSSMicrotech CB6L Substrate Bonder [Fig. 4.11(a)],

which can bond 100 mm and 150 mm wafers. A transport fixture mechanically clamps
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Figure 4.13: Anodic bonding steps. The actions in the cell editor are as follows:
in step 5 the clamps are removed; in 6, the spacers are removed; in 8, the universal
bonding tool is moved down; in 10, two electrodes are set; in 15 the universal bonding
tool [a combination of the pressure and the bond head] is moved up.

the substrate stack. The stack is secured at the center of the fixture by three clamps

[spaced at 120◦ intervals], with three spacers between the wafers to separate them

before the bonding process. We put three dispensers into three separate cavities.

To form the bond, a voltage is applied, polarizing the sandwich. The bottom

surface of the silicon wafer is electrically grounded while the top surface of the glass

is placed into contact with a point electrode cathode, as illustrated in Fig. 4.12,

keeping it at constant negative bias with respect to the grounded Si wafer. Since the

top plate is the electrode, the glass must be placed on top of the fixture. The SUSS

Microtech CB6L contains two electrodes on the top plate. In the preliminary steps

1-2 [Fig. 4.13], both plates are heated to 200◦C, then to 350◦C. At temperatures above

450◦C, the thermal properties of the materials begin to deviate; therefore, bonding

should be kept below 450◦C.

The exact mechanism of anodic bonding is unclear, but electrochemical, electro-

static, and thermal mechanisms have been used to explain bond formation. At high
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temperatures, glass becomes a solid conducting electrolyte and the sodium in the glass

migrates towards the cathode, creating a sodium depletion layer at the glass-silicon

interface, forming a capacitor. The applied voltage drops at this boundary, resulting

in an attractive electrostatic force that pulls the wafers towards each other [46]. The

wafers are held together by Van der Waals forces [46]. As the capacitor charges, the

electric field is high enough that the oxygen in the glass drifts towards the positive

silicon electrode to forming siloxane [Si-O] covalent bonds [which involves the sharing

of electron pairs between atoms] at the glass-silicon interface.

To ensure that any vapor released by the pill is pumped out of the system, the

bonding process is done under vacuum, down to 2.0 × 10−3 Torr. We modified the

standard anodic bonding recipe; the steps are shown in Fig. 4.13. The entire process

ran for approximately 2 hours. Bonding occurs during step 10 when the electrodes

turn on. The process caused cracks on our first wafer sandwich near the clamps/s-

pacers, as shown in Fig. 4.11(b). The cracks may have been caused by the spacers

not retracting before applying the pressure. The cracks did not affect the cavities

containing the dispensers. For the second set of cells, there were no issues with

bonding.

4.4.9 Laser Activation

The dispensers were activated using a linearly polarized continuous wave (CW) Ytter-

bium laser from IPG Photonics, model YLR-10-RP, which can emit wavelengths

between 1.03-1.07 µm with a maximum power output of 10 W.

Linearly polarized light exits through a fiber output and passes through a Faraday

isolator, to prevent the beam from back-reflecting into the laser. It functions by

rotating the polarization axis of the field with the help of a static magnetic field in

the middle of the isolator and two beam-splitters on either end. Any light that is

reflected into the isolator will have a different polarization axis angle. If the isolator is

aligned such that maximal light is transmitted through one direction [away from the
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Figure 4.14: Imaging and dispenser activation setup. f1 = f2 = f = 150 mm.

laser], then in the opposite direction [towards the laser], minimum light is transmitted.

(a) (b)

Figure 4.15: Image of (a) the 1064 laser beam [bright circle] and dispenser [grey circle]
and (b) a target with a 0.5 mm diameter hole.

The entire wafer stack was clipped onto a sample holder. The beam is directed

towards the vapor cell by reflecting it through a polarizing beam-splitter [PBS], which

split the horizontally and vertically polarized components of the laser beam into dif-

ferent ports. A half-wave plate [HWP], which when rotated, changes the polarization

angle of the linearly polarized field, is placed before the PBS to control the power out-
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put through each port. We aligned the HWP such that minimal power is transmitted

through the PBS. Any excess power goes into the beam blocker. An f -2f -f imaging

system was set up for aligning the beam with the dispenser. We used the Blackfly S

BFS-U3-16S2M monochrome 1.6 MP camera with a progressive scan CMOS sensor

from Flir Systems Inc., capturing live, continuous images. The CCD is placed one

focal length f1 = 150 mm away from a plano-convex lens [L1]. Another plano-convex

lens, L2, is placed f2 = 150 mm away from the mounted cell. The distance between

L1 and L2 is f1 + f2 = 300 mm. An image of the beam and the dispenser is shown

in Fig. 4.15(a). Because the system was enclosed in a black box and the camera was

unable to capture images in total darkness, we used an LED flashlight to illuminate

the sample when capturing images. Using this setup, we were able to image a hole

that was approximately 0.5 mm in diameter. [Fig. 4.15(b)].

Figure 4.16: Activated Rb dispenser [bottom left] and inactivated dispenser [top
right].

The dispenser was activated at the 1064 nm wavelength and 6.2 W power for 10

minutes. After 10 minutes, the power of the beam was decreased in increments of 30

s to avoid large temperature changes; from 6.2 W, to 5 W, to 3.7 W, to 2.5 W, to

1.2 W, to 0.1 W to 0 W. Due to the high heating of the laser beam, the dispenser

cracked [Fig. 4.16], which was an issue in [47].
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4.5 Rubidium Spectroscopy

4.5.1 Optical Setup

We used a Moglabs CEL 780 nm external chamber diode laser to measure the

D2 absorption spectra of the released Rb in our cell. The optical setup is borrowed

from the Hybrid Quantum Systems project and is described in [48]. The ECDL was

connected to an external diode laser controller (EDLC) from Moglabs. The output

channel A on the EDLC is used for monitoring the output. We connected channel A

to channel 2 on an oscilloscope to simultaneously monitor the scan range of the laser

while taking absorption data. The beam output is split by a beamsplitter [BS]. One

of the ports is directed towards a photodetector [PD1] to measure the beam output,

while output from the other BS port is reflected off the vapor cell. The reflected light

is collected by another photodetector [PD2]. PD1 and PD2 are connected to channels

4 and 3, respectively, on our oscilloscope, which was triggered on rising edge by the

signal from channel 1. Monitoring the signal of the beam on PD1 allows us to ensure

that the data collected from PD2 is signal due to the rubidium in the cell and not

the modulation due to the laser setup. Acquiring a good signal required adjusting

the power of the beam, the sensitivity of the photodetector, the frequency span, and

the diode current on the EDLC [which controls the laser frequency]. All collected

signals were AC coupled on the oscilloscope, which removes the DC signal. For all

measurements, the laser was unlocked and set to scan over a large frequency range

that covers the absorption spectra of 85Rb and 87Rb.

4.5.2 Reflectance

We estimated the reflectance of the coated and uncoated parts of an empty cell by

taking the ratio of the input and reflected power of the laser beam. For the part of

the cell coated by the Al film, the measured reflectance was 87%, which is close to our

estimated value of 88% from the Lorenz-Drudee model for an Al surface not covered
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by glass. For the cell with the Si surface, the reflectance is 21%. The Al coating

was unevenly distributed for parts of the cell, so the measurement was done on areas

where the surface appeared to be smoother.

4.5.3 Absorption Measurements

Initially, we checked for the presence of rubidium by looking for fluorescence in the

cell. The laser output was coupled to an aspherical pig-tailed collimator and reflected

off the sidewalls. We used an IR viewer and turned off the lights in the room to

reduce background light. However, the reflection of the laser is strong. Also, because

the cell is small, we could not see any noticeable fluorescence because the reflected

light dominated. Usually, by scanning the laser, the fluorescence from the atoms will

flicker.

An alternative was to perform absorption measurements. To eliminate background

noise, we turned off the lights in the room. As parts of the beam scattered off of the

sidewalls, we did not use the reflecting sidewalls. Instead, the laser was reflected at

an angle off of the back panel of the wafer. This allowed us to use a beam with a

larger diameter, allowing more atoms to interact with the beam. We estimate the

optical path length of the beam to be at least l = 2 × cell depth = 1452 µm. The

power into the cell was 1.35 µW and the reflected beam power was 0.64 µW. The

sensitivity on both photodetectors was +70 dB. To acquire a good signal, we heated

the cell by hot air flow with a heat gun directed towards the glass surface. The cell

temperature was measured by attaching a thermocouple to the Si side of the wafer.

When the temperature reading was above 35◦C, we were able to see the Doppler

broadened peaks corresponding to the D2 transitions F = 2 → F ′ of 87Rb, as well as

the transitions from F = 3 → F ′ and F = 2 → F ′ of 85Rb in the absorption spectra.

The laser scan was unable to cover the F = 1 → F ′ transition 87Rb. Figure 4.17 shows

absorption spectra of the cell at room and warmer temperatures, with the reference

laser scan. When the temperature increases, the dips become deeper, meaning that
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there is more absorption because the atomic density increases.
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Figure 4.17: Doppler broadened spectra of rubidium at various cell temperatures [solid
lines] give four peaks. The dotted red dotted line shows the reference signal from the
EDCL. The transmission amplitudes were shifted in such a way that the maximum
amplitudes were equal to the maximum amplitude of the reference signal. Because the
reference signal, which was used to trigger the signal on the oscilloscope, shifted along
the frequency axis between measurements, and because we show only one reference
signal from one temperature measurement, the data points were shifted along the
frequency axis so that the dips are located at the proper frequency detunings. All of
the data were convoluted with a box of unit magnitude of size 100 to smooth out the
digital noise from the oscilloscope. The laser scan was unable to cover the full range
of the absorption spectrum of 87Rb.

The atomic density n of rubidium atoms can be estimated by comparing the trans-

mitted intensity A1 and A2 of any two peaks:

n =
ln(A1/A2)

(σ2 − σ1)l
, (4.7)

where

σ(ω, ωo) =
∑︂
F,iso

σF→F ′(ω, ωo)fisonF ′ (4.8)

is the total optical absorption cross-sections over all dipole allowed transitions in both

isotopes, weighted by nF the fraction of the sample in the absorbing state [49]. This

87



fraction is given by

nF =
(2F + 1) exp(EF/kBT )∑︁
F (2F + 1) exp(EF/kBT )

, (4.9)

where E(F ) is the energy of the hyperfine ground state level F , and fiso is the nat-

ural abundance of a particular isotope. For a given transition |J, F ⟩ → |J ′, F ′⟩, the

absorption cross section is

σF→F ′(ω, ωo) =
λ2

8π

2J ′ + 1

2J + 1
gD(ω, ωo)ΓSF→F ′ , (4.10)

where Γ is the excited state decay rate, SF→F ′ is the transition strength and ωo is the

resonance frequency of the transition F → F ′. The Maxwell-Boltzmann distribution

gD is

gD(ω, ωo) =

√︃
miso

2πkBT

c

ωo

exp

(︄
−
(︃
c
ω − ωo

ωo

)︃2
miso

kBT

)︄
, (4.11)

where miso is the mass of the isotope, kB is Boltzmann’s constant, T is the temper-

ature, c is the speed of light. Plotted in Fig. 4.18 is the absorption cross-section for

87Rb F = 2 and the 85Rb F = 3 transitions at T = 315 K [42◦C]. For the 85Rb peak,

σ2 = 9.5 × 10−15, and for 87Rb, σ2 = 5 × 10−15. We estimate the light path to be

l = 1.5 mm, and from the graph in Fig. 4.17, A2 = −47, A1 = −17, giving us a

total atomic number density of n = 1.5 × 1017 molecules · m−3. Since the fractional

abundance of 87Rb is 27%, the number of moles per unit volume of 87Rb contained in

the cell is about nmol = 6.7× 10−7 mol · m−3. From this result, we can use the ideal

gas law P = nmolRT to find the vapor pressure P in the cell, where R is the ideal

gas constant. We estimate the vapor pressure to be P = 1.3× 10−6 Torr. Comparing

this value to the one obtained from the vapor-pressure model given in [17], which is

meant only to serve as a rough guide, at 42◦C, we expect a vapor pressure of 87Rb

to be about 2× 10−6 Torr. Therefore, the calculated values are reasonable. We note,

however, that the temperature inside the chamber may be higher than the silicon

back surface where we placed the thermocoupler, so our pressure calculation may be

an underestimate. The hot air was directed from the glass front surface of the cell

and so does not directly heat back surface; the heat would have to flow through the
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Figure 4.18: Absorption cross-section for the 87Rb F = 2 and the 85Rb F = 3
transitions at T = 315 K. Dotted colored lines show the individual absorption cross
sections for a given transition |J, F ⟩ → |J ′, F ′⟩ [4.9], and the solid black line show
the total absorption cross section [Eq. 4.8]. Only two peaks are shown because these
transitions will be used to estimate the number density n.

chamber to warm up the silicon wafer. A better method to measure temperature

inside the cell may be to use infrared cameras.

As a side note, if we wanted to resolve the hyperfine levels in the excited state, we

can do so using saturated absorption spectroscopy, also known as Doppler-free spec-

troscopy, where two beams, a pump, and a probe, propagating in different directions,

are used to address atoms in the velocity class v = 0. These atoms see both beams

as being on resonance.
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4.6 Future Directions

4.6.1 Optimizing Rb Vapor Release

Further investigation could be done on activating the dispenser without causing

cracks. This could be done by adjusting the laser heating parameters, such as slowly

increasing the laser power or by heating it at a slightly lower laser power for longer

times.

4.6.2 Through-Hole Cells

We have since purchased 1 mm thick double-sided polished Si wafers. We plan to

fabricate vapor cells with through-holes, which would allow more flexibility in the

optical setup as we do not have to adjust the angle when reflecting off the back panel

of the wafer. Through-hole chambers can be done by deep reactive ion etching [DRIE],

which creates vertical sidewalls. SiN cannot be used as a mask as it etches easily in

the SF6-based etch chemistry used in DRIE. The selectivity of Si to photoresist and

SiO2 is 100:1 and 300:1, respectively. Typically, the SiO2 is first etched via RIE [as

was done for LPCVD SiN in step 6 in Fig. 4.5] to create the mask pattern. To provide

more masking, the photoresist is kept for the subsequent deep-reactive ion etching of

the Si wafer, instead of removed as in step 7. DRIE etching would also be beneficial

to create micron-sized features that are needed for channels between the interrogation

and the dispenser chamber. Our approach using KOH etching caused over-etching

and widened channels.

4.6.3 Extending Polarization Lifetimes

Miniaturized quantum-based sensing devices have a lower sensitivity due to increased

collisions of the atoms with the walls, leading to reduced atomic polarization lifetimes.

An approach to remedy this issue is to introduce buffer gases. Another method is to

use anti-relaxation wall-coatings.
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Buffer Gas

Buffer gases such as H2, He, Ne, N2, Kr, and Ar are used to slow down the diffu-

sion of the atoms in the cell, increasing the time taken to collide with the chamber

walls, which reduces decoherence. However, the interaction between buffer gases and

rubidium atoms causes a shift in the hyperfine frequency [50]. The shift depends on

the temperature and the buffer gas density. For lighter atoms such as H2, He, Ne,

and N2, the shift is positive, while for heavier atoms such as Kr and Ar, the shift is

negative. The hyperfine frequency shift can be used to estimate the partial pressure

of the buffer gas[es] in a cell. Depending on the purpose of the vapor cell, such as for

SERF magnetometry, we may wish to include them. Buffer gases can be introduced

during the anodic bonding step when the cell is sealed under the partial pressure of

the gas instead of under vacuum. The SUSS Microtech CB6L Substrate Bonder

only allows sealing under vacuum or N2 gas. Previous studies have shown that Zr in

the pill traps the N2 and is therefore not compatible with the micro-pill method of

Rb introduction [51]. However, we could try to bond under a higher partial pressure

of N2 to see if there would be an excess of N2 not trapped by Zr.

Another way to introduce Rb vapor and a buffer gas into the cell is to use rubidium

azide RbN3, which decomposes into Rb vapor and N2 gas under several days of UV

light exposure [52]. However, this method restricts the ratio of buffer gas to Rb atoms.

Anti-Relaxation Coatings

Compared to buffer gases, anti-relaxation coatings are advantageous because they

require less laser power to get an optical signal [53]. There are three main groups of

coatings with good anti-relaxation properties for alkali metals: alkenes, alkanes, and

organosilanes. Alkenes are the most efficient, allowing more than 106 wall collisions

before depolarization, but their melting temperature is around 30◦C. Most working

temperatures of vapor cells are above 50◦C, as in our case with the microwave cavity

setup. Alkanes have higher melting temperatures of 70 − 90◦C but allow fewer wall
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collisions, 104 before depolarization. Organosilanes have the highest working temper-

atures. They degrade irreversibly at temperatures above 170◦C in the presence of Rb

but allow only up to 2000 wall collisions. The melting temperatures of anti-relaxation

coatings are all lower than the elevated temperature required for anodic bonding. A

low-temperature thin-film indium thermo-compression bonding technique was intro-

duced in [54] and used in [55] to microfabricate a rubidium vapor cell coated with

octadecyl trichlorosilane, an organosilane. This method avoids anodically bonding

glass to the wafer in the presence of the coating, by first bonding the glass to the Si

wafer, applying the coating, and then sealing from Si sides of the two stacks together

at 140◦C with the help of an indium ring.

4.6.4 Cell Lifetime

Rubidium metal consumption, attributed to the reaction of rubidium with contami-

nants on the cell surface or in the chamber and the reduction of silicon oxide/dioxide

in the glass by rubidium, is a failure mode of alkali vapor cells [51]. When used as

part of a commercial device, the alkali vapor present needs to be maintained over

the device’s lifetime. The initial amount of atoms present has to compensate for any

consumption that may occur. Oxidic materials have been used as passivation layers

against alkali vapor [52, 56]. To be suitable as a passivation layer, the Gibbs free

energy [a measure of the spontaneity of the creation of the compound] of the oxide

must be greater than the Gibbs free energy of the alkali metal oxide. It was reported

in [56] that a 20 nm aluminum oxide [Al2O3] coating did not affect transmittance of

the cell and improved the lifetime of a cesium cell by a factor of approximately 100,

because of the extremely slow reduction of Al2O3 by Cs. Al2O3 can be deposited

onto the glass wafers before anodic bonding by atomic layer deposition [ALD] or by

molecular vapor deposition [MVD]. The latter improves the density, smoothness, and

stability of the film, compared to standard liquid or vapor-deposited coatings [51].
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Chapter 5

Conclusion and Future Prospects

In the first part of this thesis, we suggested a technique for vector magnetometry using

microwave-assisted optical pumping [32]. In microwave-assisted optical pumping, a

microwave field resonant to the ground state hyperfine transition of 87Rb redistributes

atoms in the F = 1 sublevels, which are split in the presence of a static magnetic

field, while an optical field resonant with the F = 1 → F ′ = 0 transition probed

the population of the atoms in the ground state. This method allows us to resolve

each of the nine transitions magnetic dipole transitions occurring at seven different

microwave frequencies. We measured the Larmor precession frequency by measuring

the frequency difference between neighboring DR peaks, providing a method for scalar

magnetometry. To do vector magnetometry - where we find the direction of the field

in space - we can look at the amplitude ratio between σ± and π transitions. The

amplitudes depend on the parallel and perpendicular components of the microwave

field with respect to the direction of the static magnetic field and excite π and σ±

transitions, respectively.

We did not acquire consistent data because of various problems, including fluctu-

ating atomic densities due to leakage in the vacuum system, laser power instability,

vibrations, and other unknown reasons. We have since replaced our setup with a

sealed vapor cell enhanced with 87Rb. However, the double-resonance signal from the

new cell was weak, because the cavity quality factor was low. Further investigation is
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needed to understand why the cavity appears to be incompatible with the new cell.

The microwave-assisted optical pumping method provides a rapid method for mea-

suring DC magnetic field strengths because we can directly look at the frequency

separation between peaks in the double-resonance spectrum to extract the Larmor

frequency, without having to run a pump-probe sequence to measure the change in

anisotropy of the system [as described in Section 3.1.1]. This setup does not rival

other magnetometry techniques in terms of sensitivity and precision, and so would

not be suitable for bio-magnetism or for geographical surveying. However, it would be

worth re-taking the measurements in a zero-field environment with consistent atom

number density and stable signals to gain a better idea of the limitations. It can pro-

vide a quick, in-situ measurement of the ambient magnetic field in microwave-cavity

atomic physics setups.

The second part of the thesis presents the microfabrication process Rb vapor cells

with a blind-hole design. We coated the silicon wafer with a 100 nm layer of aluminum

to create a mirror finish with 87% reflectance. We etched the wafers in KOH to create

angled sidewalls, hoping to utilize them to increase the optical path length. However,

the sidewalls as is were difficult to work with. Instead, we reflected light off the back

panel of the wafer. Rubidium atoms were introduced into the cell by heating a micro-

dispenser pill containing a mixture of rubidium chromate, zirconium, and aluminum.

The first step of this project was to test for the presence of rubidium atoms, which was

successful. We were able to see Doppler-broadened peaks of the D1 transitions of both

isotopes of rubidium. More research is needed to find optimal heating parameters for

activating the dispenser. Furthermore, we need to design through-hole cells having

the dispenser and the interrogation chambers connected by narrow filtration channels.

These filtration channels should be sufficiently narrow, in the 10s of µm in width to

prevent impurities from entering the interrogation chamber. We could also consider

making several cells with the same dimensions and test for consistency in atomic

density. Consistency between cells is important when manufacturing quantum sensing
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devices. For example, in magnetic field gradiometers where we measure the difference

signal between two identical magnetometers, one placed at the source of the magnetic

field of interest and the other further away, cell consistency is necessary, because we

want the response function of the two magnetometers to be the same.

Chip-scale cells are important for portable quantum technologies. Traditional

atomic physics experiments reside on a large optical bench that can take up more

than two meters of space, making the technology nearly impossible to move out to

real-world environments. However, there is much progress in microwave atom tools.

Microwave technologies are important in telecommunications and have potential in

microwave medical imaging [3, 13]. Atom-microwave couplings experiments have been

realized in microwave-to-optical transduction [5], and Rydberg-based receivers [4], to

name a few. Immediate future directions could focus on marrying chip-scale vapor

cells and microwave fields sources. While there are difficulties when the dimension of

the interaction region is smaller than the wavelength of the microwave field, minia-

ture microwave cavities or micro-strip line circuits have been designed and shown

to work in atomic clocks. In addition, RF pulses are also important in the cooling

process of ultracold atoms, and these have applications in quantum memories and

quantum repeaters. With an appropriate vapor cell design, microwave circuit, and

integrated optics to enhance laser-atom and microwave-atom interactions, we may be

able to create on-chip laser-cooled atoms, and design portable ultracold atom chips

for photonic quantum memory applications [0].

As explained above, there are many avenues we could explore once we have a good

working prototype. The convenience of silicon micro-machining tools and techniques

makes it easy to modify our process flow to suit our application needs.
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Appendix A: Matrix
Representation of State Vectors
and Operators

A.1 Bra and Ket Vectors

An arbitrary state vector |Ψ⟩ can be expressed as a linear combination of basis states

{|ψn⟩ , n = 1, 2, 3 . . . },

|Ψ⟩ =
∑︂
n

|ψn⟩ ⟨ψn|Ψ⟩ =
∑︂
n

cn |ψn⟩ , (A.1)

where ⟨ψn|Ψ⟩ = cn are scalars, not all zeros, that give the weights of the linear

combination. In vector notation, the ket |Ψ⟩ is a column vector with respect to the

set of basis states {|ψn⟩ , n = 1, 2, 3 . . . },

|Ψ⟩ =

⎛⎜⎜⎜⎜⎜⎜⎝
c1

c2

c3
...

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.2)

while the bra ⟨Ψ| is a row vector, with elements that are complex conjugates of the

elements of |Ψ⟩

⟨Ψ| =
(︂
c∗1 c∗2 c∗3 . . .

)︂
. (A.3)

The basis states {|ψn⟩ , n = 1, 2, 3 . . . } are orthogonal, satisfying

⟨ψm|ψn⟩ = δmn, (A.4)
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where δmn is the Delta-Dirac function. It follows that the basis states are column

vectors of the form

|ψ1⟩ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

0

0
...

⎞⎟⎟⎟⎟⎟⎟⎠ |ψ2⟩ =

⎛⎜⎜⎜⎜⎜⎜⎝
0

1

0
...

⎞⎟⎟⎟⎟⎟⎟⎠ |ψ3⟩ =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

1
...

⎞⎟⎟⎟⎟⎟⎟⎠ . (A.5)

An inner product ⟨χ|Ψ⟩ in terms of the basis states is defined as

⟨χ|Ψ⟩ =
∑︂
n

⟨ψn| ⟨χ|ψn⟩ |ψn⟩ ⟨ψn|Ψ⟩ =
∑︂
n

⟨χ|ψn⟩ ⟨Ψ|ψn⟩ . (A.6)

Defining ⟨χ|ψn⟩ = b∗n, the inner product can be expressed as

⟨χ|Ψ⟩ =
(︂
b∗1 b∗2 b∗3 . . .

)︂
⎛⎜⎜⎜⎜⎜⎜⎝
c1

c2

c3
...

⎞⎟⎟⎟⎟⎟⎟⎠ =
∑︂
n

b∗ncn. (A.7)

A.2 Operator Matrices

The operator equation

Ĥ |Ψ⟩ = |Φ⟩ (A.8)

can be expanded out as

|Φ⟩ =
∑︂
n

Ĥ |ψn⟩ ⟨ψn|Ψ⟩ . (A.9)

To find the element of the operators in terms of the basis states {|ψn⟩ , n = 1, 2, 3 . . . },

we take the inner product

⟨ψm|Φ⟩ =
∑︂
n

⟨ψm| Ĥ |ψn⟩ ⟨ψn|Ψ⟩ , (A.10)

which can be written as

am =
∑︂
n

⟨ψm| Ĥ |ψn⟩ cn, (A.11)
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where

am = ⟨ψm|Φ⟩ (A.12)

In matrix notation, the operator equation is⎛⎜⎜⎜⎝
a1

a2
...

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
H11 H12 . . .

H21 H22 · · ·
...

...

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
c1

c2
...

⎞⎟⎟⎟⎠ , (A.13)

where the operator Ĥ is represented by a matrix

Ĥ =

⎛⎜⎜⎜⎝
H11 H12 . . .

H21 H22 · · ·
...

...

⎞⎟⎟⎟⎠ , (A.14)

with its matrix elements defined by

Hmn =
∑︂
n

⟨ψm| Ĥ |ψn⟩ . (A.15)
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Appendix B: Linear Optics

B.1 Polarization and Susceptibility

The polarization P, or dipole moment per unit volume of a medium with density n,

is given by the product of the average quantum mechanical dipole moment ⟨µ⟩ and

the density of the system

P = n⟨µ⟩. (B.1)

The polarization can also be expressed in terms of the complex susceptibility of the

medium, χ = χ′ − iχ′′, and the electromagnetic field, E(t) = Eo cosωlt, that induces

the polarization. If the medium is isotropic, the polarization is parallel to the electric

field of the incident wave

P = ϵoχEo cosωlt. (B.2)

If the medium is anisotropic, the relationship is described by a tensor and not by

a scalar as in Eq. B.2, and the medium can exhibit birefringence, which can occur

in a multi-level system where the ground states are unequally populated. Real sys-

tems are multi-leveled and interactions with external fields break two-level symmetry.

However, if the system is weakly perturbed, it is isotropic and can be approximated

with two energy levels, which we will work with here. Expanding the polarization in

terms of the real and imaginary components of the complex susceptibility gives

P = ϵoEo(χ
′ cosωlt+ χ′′ sinωlt). (B.3)

We relate the susceptibility to the components of the Bloch vector first by re-writing

the dipole moment in terms of the Bloch vector components. For a two-level atomic
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system, the average dipole moment in the rotating frame is

⟨µ⟩ = Tr
{︂
ρ̂̃µ̂
}︂

(B.4)

= Tr

⎧⎨⎩
⎛⎝ 0 µ12

µ21 0

⎞⎠⎛⎝ρ̃11 ρ̃12

ρ̃21 ρ̃22

⎞⎠⎫⎬⎭ (B.5)

= µ12(ρ̃21 + ρ̃∗21), (B.6)

where µ12 = e ⟨2| r̂ |1⟩ is the dipole moment between states |1⟩ and |2⟩. In going to

the last line, we have assumed that the dipole moment is real, i.e. µ12 = µ∗
21. Since

from the transformation ρ̂̃ = U−1ρ̂Û ,

ρ̂̃ =

⎛⎝ ρ11 ρ12e
−iωlt

ρ21e
iωlt ρ22

⎞⎠ , (B.7)

the average dipole moment in terms of the laboratory frame density matrix element

is

⟨µ⟩ = µ12

[︁
ρ21e

iωlt +
(︁
ρ21e

iωlt
)︁∗]︁

(B.8)

= µ12[(ρ12 + ρ21) cosωlt− i(ρ12 − ρ21) sinωlt] (B.9)

= µ12(Rx cosωlt+Ry sinωlt), (B.10)

where Rx and Ry are the x and y components of the Bloch vector, respectfully. Thus

P = nµ12(Rx cosωlt+Ry sinωlt). (B.11)

A comparison of Eq. B.11 with Eq. B.3 shows that the real part of the complex

susceptibility is given by Rx,

χ′ =
nµ12

ϵoEo

Rx =
nµ2

12

ϵoℏ
δ

Ω2
R

Γ1Γ2
+ δ2 + Γ2

2

, (B.12)

while the imaginary part of the complex susceptibility is given by Ry,

χ′′ =
nµ12

ϵoEo

Ry =
nµ2

12

ϵoℏ
Γ2

Ω2
R

Γ1Γ2
+ δ2 + Γ2

2

. (B.13)
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B.2 Absorption

A linear medium supports the propagation of an electromagnetic field with complex

wave vector k = nωl

c
= k′ − ik′′, where c is the speed of light, ωl is the angular

frequency of the field and n is the refractive index,

n =
√︁

1 + χ ≈ 1 +
1

2
(χ′ − iχ′′). (B.14)

The approximation in Eq. B.14 is valid when χ is less than unity, which occurs when

the energy losses or the phase shifts by the medium on wavelengths distances are

small, as in the case for a dilute gas. In this approximation, from the definition of k,

the imaginary and real parts of the wave vector are given by

k′′ =
1

2

ωl

c
χ′′ (B.15a)

k′ = 1 +
1

2

ωl

c
χ′. (B.15b)

A wave propagating along +z in the linear medium can thus be written as

E(z, t) = Re
{︁
Eoe

i(kz−ωt)
}︁

(B.16)

= e−k′′z Re
{︂
Eoe

i(k′z−ωt)
}︂
, (B.17)

which shows that the amplitude of the field decreases exponentially along the direction

of the propagation when k′′ ̸= 0. We can see from Eq. B.16 that the imaginary part

of the susceptibility is attributed to absorption, while the real part is related to the

propagation of the wave. Since intensity is proportional to the square of the electric

field, the change in intensity of a field propagating a distance z through an absorptive

medium is given by the Beer-Lambert law,

I(z) = I(0)e−κ(ωl)z, (B.18)

which can be measured experimentally. Here, κ(ωl) = 2k′′ωl/c is the absorption

coefficient. Alternatively, in terms of the susceptibility,

κ(ωl) =
ωl

c
χ′′. (B.19)
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B.2.1 Absorption Cross Section

It is common to define the absorption coefficient in terms of the absorption [or scat-

tering] cross section,

κ(ω) = Nσ(ω). (B.20)

In the weak intensity limit, the absorption cross section is equal to

σ(ω) =
ω

c

d2ab
3ℏϵo

Γ2

δ2 + Γ2
2

. (B.21)

We can interpret the absorption cross section as the effective area of absorption of

an atom. The value of the absorption cross section is maximized on resonance and

when Γ2 is minimized, which occurs when spontaneous emission is the only source of

dephasing. From Eq. 2.72, this rate is equal to

Γ2 =
1

2
Γ1 =

d2ab
6πϵoℏ

ω3

c3
. (B.22)

Substituting this into Eq. 2.79 and solving for σo = σ(ω = ωo) gives an expression for

the resonant absorption cross section

σo =
ω

3c

d2ab
ℏϵo

1

Γ2

=
3λ2

2π
, (B.23)

where λ is the wave length of the transition. In arriving at this result, it was assumed

that the ground state has angular momentum J = 1 [57]. More generally, for a sys-

tem in thermal equilibrium with equal populations in the ground state, the resonant

absorption cross section is [57]

σo =
2Jb + 1

2Ja + 1

λ

2π
, (B.24)

where Ja and Jb are the total angular momentum for the lower and upper levels

respectively. If the ground state population is unequally distributed, due to optical

pumping effects for example, the expression for σo needs to be multiplied by a factor

between 0 and 3. From Eq. B.20, the absorption coefficient may be rewritten as

κ(ω) =
N

V
σo

(︃
Γ2
2

δ2 + Γ2
2

)︃
. (B.25)
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If buffer gases are present in an alkali vapour cell, then the absorption cross section

would depend on the buffer gas pressure and temperature.

108



Appendix C: Broadening
Mechanisms

C.0.1 Collision Broadening

Collision broadening is another type of lifetime broadening, with the lifetime of a

state set by collision time interval. In atomic gases, atoms constantly collide with

each other and with the wall. If the collision is inelastic, then there will be a change

in states. This process also gives a Lorenztian line profile in the absorption spectrum.

The effect of collision broadening adds a factor of γcol to the decay rate Γ, so that

∆ω ∼ 1

∆t
= Γ + γcol. (C.1)

Collision broadening depends on the atomic species present in the gas, pressure, and

temperature. In general, the collision broadening effect is much greater than the

natural linewidth effect. Decoherence due to collision broadening can be reduced by

introducing buffer gases in an atomic vapor, or by applying anti-relaxation coatings

on the vapor cell walls.

C.0.2 Doppler Broadening

Due to thermal motion, the atoms in a gas have a distribution of velocities, leading to

the Doppler effect on the absorption of radiation [16], where only radiation resonant

with the atoms are absorbed. To illustrate, consider an atom moving at velocity

v in the laboratory frame, in the presence of a laser beam with wave vector k and

frequency fL = c|k|. Due to the Doppler effect, in the frame moving at velocity v,
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the frequency of the radiation seen by the atom is

f ′ = fL − k · v. (C.2)

If the atom is moving in the same direction as the electromagnetic field, then k ·v > 0

and the perceived frequency is less than the frequency in the lab frame and is said

to be red-shifted. If however, the atom is moving in the opposite direction as the

field, k · v < 0 and the perceived frequency is greater than the frequency in the lab

frame and is said to be blue-shifted. Absorption occurs only when the laser radiation

frequency perceived by the atom, f ′, is equal to an atomic transition frequency fo [the

resonance frequency when the atom is at rest with respect to the moving radiation],

i.e. f ′ = fo. This occurs only for the class of atoms with a velocity v satisfying

fL − fo = k · v. (C.3)

Maxwell’s velocity distribution gives the fraction of atoms at temperature T with

velocities between v and v + dv. This distribution has a Gaussian profile, and con-

sequently, so does the absorption spectrum. The absorption probability of radiation

with frequencies between fL and fL + dfL is

gD(fL)dfL =
c

u
√
π

1

fo
exp

[︄
− c2

u2

(︃
fL − fo
fo

)︃2
]︄
dfL, (C.4)

where the most probable speed for atoms of mass M at temperature T is u =√︁
2kBT/M . This Gaussian curve has full-width at half maximum of

∆fdop = 2
√
ln 2

u

c
fo. (C.5)

For 87Rb, which has an atomic mass of 86.91 amu [= 1.4415138 × 10−25 kg], the

Doppler width at 300 K for the D2 transition [780 nm] is ∆fdop = 513 MHz, which

is much larger than the natural line width. Since the frequency spacing between the

5P3/2 hyperfine energy levels are less than the Doppler width, these levels cannot

be individually resolved. To see these transitions, the Doppler width needs to be
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subtracted, which can be done using saturation absorption spectroscopy [16], where

a second laser beam is used and atoms with velocity class v = 0 are excited.

Doppler broadening is a type of inhomogeneous broadening mechanism where only

certain classes of atoms are affected. For a low-pressure gas at high temperatures,

Doppler broadening is the main source of line broadening of spectral lines. In contrast,

broadening effects due to excited state lifetime and collision intervals homogeneous

broadening because they affect all the atoms in the same manner. Many situations

require us to consider all these broadening mechanisms, which combine to give the

Voigt profile.
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