
Cost-effective Strategies to Develop Energy-Efficient Mobile Applications

by

Abdul Ali Bangash

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Abdul Ali Bangash, 2023

Abstract

Smartphone users rely on mobile applications (apps) to perform various functionalities. However,

if an app is developed inefficiently, such that it over-consumes energy, it could negatively impact

user experience and lead to poor user reviews. To ensure that an app does not consume energy

unnecessarily, app developers measure and optimize the energy consumption of their apps before

releasing them to the end users.

However, the current energy optimization and measurement techniques have certain limita-

tions. API events consume 85% of the energy in an app [110], yet the current optimization tech-

niques focus on developer-written instructions and system events only. Moreover, each API con-

figuration may consume different amounts of energy, yet none of the current techniques guide

developers on how a specific configuration may affect the energy consumption of their app. On

the other hand, the current measurement techniques are cumbersome and require developers to

generate test cases and execute them on sophisticated hardware. Hardware is expensive, test-case

generation requires regular maintenance, and test-case execution costs time. Therefore, it is im-

practical for the developers to execute test cases after each code modification, such as declaring a

new variable or adding a new method call.

As a solution to the aforementioned problems, this thesis explores a new direction of using

static-analysis to optimize and estimate smartphone-app energy consumption, making four key

contributions. The first contribution evaluates the practicality of current state-of-the-art techniques,

such as search-based energy optimization and test-case execution-based energy measurement. The

second contribution introduces an open-source hardware-based energy-measurement framework

ii

for iOS applications. The third contribution focuses on providing guidelines on how to config-

ure and use an API in an energy-efficient manner, specifically the Core Location Framework API.

The fourth and final contribution provides an energy-estimation model that helps identify energy-

inefficient API usage in code without test case execution. The proposed energy-efficient guidelines

reduce the energy consumption of real-world iOS apps by 26.91%. Additionally, the energy es-

timation model can estimate energy consumption and provide information on energy-inefficient

usage at an app’s version and method-level within 20% mean absolute error.

The techniques presented in this thesis are helpful when developers do not have test cases

readily available or hardware to run them on. Moreover, this thesis is particularly useful in an

Integrated Development Environment (IDE) or a Continuous Integration/Continuous Deployment

(CI/CD) pipeline. In such scenarios, developers cannot wait for test-case execution after each code

modification and may require energy insights in real-time.

iii

Teaching and Learning. Purification and Correction. Preachment and Rectification. Service of

Creation.

– Mufti Syed Mukhtaruddin Shah DB.

iv

Acknowledgements

I am eternally grateful to Allah for all the blessings, and particularly for the wonderful people

Allah placed in my life, including those mentioned below, who supported me throughout my Ph.D.

journey.

I thank Mufti Syed Adnan Kakakhail, my spiritual mentor, for his inspiration and support

throughout my Ph.D. journey. He has imparted valuable lessons on patience, perseverance, truth-

fulness, honesty, and humbleness, which helped me to overcome my faults such as ego, pride,

arrogance, and selfishness. I am deeply grateful for his prayers and affection, which sustained me

during my pursuit of knowledge.

I would like to express my gratitude to Dr. Karim Ali and Dr. Abram Hindle, my Ph.D.

advisors, for their patience and guidance throughout my learning journey. They have not only

helped me to enhance my research capabilities but also to refine my interpersonal skills.

I extend my sincere appreciation to my family, particularly my wife, for their unwavering

support throughout my Ph.D. journey. I am also grateful to my parents for their patience and

understanding, allowing me to continue my studies even when I was needed at home. I also

express my gratitude for their constant support and encouragement through their prayers.

I am grateful to my teachers Mufti Imran Farooq and Mufti Faisal Al Mahmudi for their guid-

ance and support during the demanding period of my Ph.D. I also wish to express my appreciation

to my friends Rafsanjany Kushol, Haseeb Munawwar, and Mubashir Tamboli for their invaluable

assistance which made my Ph.D. journey more manageable. My dear friend Mazhar Shahzad’s

tireless efforts in taking care of things back home while I was studying abroad will always be

remembered and appreciated.

v

Contents

1 Introduction 1
1.1 Structure of the Thesis and Underlying Contributions 3
1.2 Publication Details . 5

2 Background 7
2.1 Smartphone Apps and API Usage . 7
2.2 Energy Consumption of an App . 8
2.3 Energy Consumption of API Usage . 10
2.4 Energy Regression Testing of Apps . 10
2.5 Energy Consumption in the Context of IDEs and CI/CD 11
2.6 Static Analysis of Smartphone Apps . 12
2.7 Performance Testing and Energy Consumption 13
2.8 Background Related Contributions . 16

3 Feasibility of current energy measurement approaches 18
3.1 Introduction . 18
3.2 Related Work . 19
3.3 Do byte-code transformations affect energy consumption? 20
3.4 Using Genetic Search to Optimize Energy Consumption 24
3.5 Results . 28

3.5.1 Genetic search reduced the energy consumption of all apps. 29
3.5.2 Cost-effectiveness of the proposed technique 29

3.6 Discussion . 30
3.7 Threats to Validity . 31
3.8 Conclusion . 32

4 iGreenMiner: An iOS Energy Measurement Framework 34
4.1 Introduction . 34
4.2 Related Work . 35
4.3 How iGreenMiner works . 36

4.3.1 iOS Device . 36
4.3.2 Measurement Device . 37
4.3.3 Controller . 38
4.3.4 Webservice . 39

4.4 Reliability and Reproducibility of iGreenMiner 39
4.5 Potential research direction . 41

vi

5 Energy-aware configuration guidelines for API parameters: A case-study of iOS Core
Location Framework 43
5.1 Introduction . 43
5.2 Related Work . 45

5.2.1 Recommendation Guidelines . 45
5.2.2 Optimization Techniques . 45

5.3 iOS Core Location Framework . 46
5.4 Energy Profiling of the Location Services . 49

5.4.1 Microbenchmark Creation . 49
5.4.2 Energy Measurement through iGreenMiner 50
5.4.3 Accurate Energy Measurement . 52

5.5 Which Location Service Should You Use? . 52
5.5.1 Effect of Using A Particular Location Service (RQ1) 53
5.5.2 Effect of Configuring Location Services (RQ2) 54
5.5.3 Effect of Default Configuration Parameters (RQ3) 56
5.5.4 Background vs Foreground Service (RQ4) 57
5.5.5 Dominating Configurations (RQ5) . 58

5.6 Discussion . 60
5.6.1 Comparing Our Guidelines with the Apple iOS Energy Guidelines 60
5.6.2 Why Are There Energy Differences Among the Location Service Config-

urations? . 61
5.6.3 Do Our Guidelines Help Improve the Energy Consumption of Real-World

Apps? . 63
5.7 Threats to Validity . 65
5.8 Conclusion . 66

6 A Static-Analysis Based Energy Estimation Approach 68
6.1 Introduction . 68
6.2 Motivating Example . 70
6.3 Related Work . 73
6.4 How Do We Compute Energy Profile of an API? 75

6.4.1 Computing Energy Profile for a new API 76
6.5 How Do We Calculate E-factor? . 77

6.5.1 General Approach For Calculating E-factor 77
6.5.2 Specific Instantiation for SQLite . 78

6.6 Evaluation . 83
6.6.1 Dataset Preparation . 83
6.6.2 E-factor for Comparing Versions (RQ1) 87
6.6.3 E-factor for Fine-grained Energy Review (RQ2) 89
6.6.4 E-factor’s Automation Capability (RQ3) 91

6.7 Threats to Validity . 92
6.7.1 Construct Validity . 92
6.7.2 Internal Validity . 93
6.7.3 External Validity . 94

6.8 Conclusion . 95

7 Conclusion 97
7.1 Future Work . 99
7.2 Summary . 100

References 101

vii

List of Tables

3.1 A brief description of the byte-code transformations used in this study [71]. 20
3.2 Description of the apps used in preliminary study 21
3.3 Energy consumption difference between 22 Android apps and their transformed

versions when SM, MIL, SIR and AT are applied. Negative values represent the
reduced value of energy consumption in (% Joules) 22

3.4 A comparison between the energy consumption of the original version of an app
and its best solution. Energy improvement shows the energy optimized using ge-
netic search. Test suite execution is the time to run a test suite. Solutions explored
are the number of solutions explored in genetic search. Analysis time shows the
overall time spent for genetic search. The energy consumption is measured in
Joules, the test suite execution is measured in seconds, and the analysis time is
measured in hours. 28

3.5 Difference in size of the original app and its best solution. Overall Diff. includes
resource, binary code, and meta files, while classes.dex includes binary code. . . . 30

5.1 The microbenchmark configurations that we have created for evaluation. Each
configuration implements a different location service with different parameter val-
ues. S1–S20 represent configurations for Standard Location Service. V1–V6
represent configurations for Visits Location Service. SG and RM (not part of this
table) represent the Significant Location Service and Regional Monitoring Service,
respectively. 49

5.2 Energy consumption difference (p-values for Wilcoxon rank sum test) among the
configurations of Visits Location Service for the activityType parameter. 54

5.3 Energy consumption difference (p-values for Wilcoxon rank sum test) among the
configurations of Standard Location Service for the desiredAccuracy parameter. . . 54

6.1 The energy profile of SQLite (in joules). Baseexec is the cost of an operation exe-
cuted once. 75

6.2 Energy consumption (in joules) of the method-to-API mappings for the sample app
in Figure 6.2. The value “−” means “not applicable”, and we use it for operations
that are not in a loop. 80

6.3 E-factor values (in joules) of the aggregated methods from Table 6.2. The value
“−” means “not applicable”, and we use it for operations that are not in a loop. . . 80

6.4 Comparing E-factor to hardware-based energy measurements for methods from
real-world apps. The number of iterations assumed for the SQLite usages that are
in a loop is 104. 89

viii

List of Figures

3.1 Graphical representation of the search-based optimization approach. 25
3.2 An example of applying two different combinations of three transformations on an

app to generate a search space of two possible solutions (transformed apps). 26
3.3 Optimal solutions’ energy consumption in the search-space. The x-axis indexes

the solutions of each app. 28

4.1 The iGreenMiner framework for measuring the energy consumption of an iOS device. 36

5.1 An example illustrating how to configure various services offered by the iOS Core
Location framework. 48

5.2 A path for a user traveling from Northgate Centre to Kingsway Mall. 51
5.3 The energy profile of each microbenchmark configuration from Table 5.1. Values

above the microbenchmark name along the x-axis represent the median energy
consumption in Joules. Y-axis represents the average energy consumption in Joules. 53

5.4 The energy profile for each configuration of Standard Location Service. The de-
fault values of desiredAccuracy and distanceFilter are Best and None
(i.e., zero meters). 55

5.5 The energy profile for each configuration of Visits Location Service. The default
value of parameter activityType is other. 56

5.6 The graph represents microbenchmarks which are better than the others when run
at the background or foreground of a device. For example, an edge (line) from
S12 to S13 means that S12 is better, it has lower energy cost and higher location
access rate than S13. Optimality Level represents configurations that collectively
dominate other configurations, e.g., Level 1 to Level 7 means most optimal to least
optimal. 59

6.1 Three versions of a sample Swift iOS app, each using DB to perform various SQ-
Lite operations. 71

6.2 Three Swift classes: A, B, and C in a sample iOS app that use DB to perform SQLite
API operations. 79

6.3 Information about the main app categories for the real-world apps in our dataset. . 84
6.4 The E-factor values of each app category. The range 100–107 is the number of

times that each app may execute its SQLite operations during runtime. 85
6.5 E-factor for commits from CarTrack, Inventario, and Planner. The commits are

ordered left-to-right in sequence over time (i.e., oldest to latest commit). Commits
whose E-factor change over time are highlighted in a red box. The number of
iterations assumed for the SQLite usages that are in a loop is 104. 86

ix

Chapter 1

Introduction

The advancement of technology has made it possible for people to access a wide range of personal

and business services through software applications (i.e., apps) that run on smartphones. These

apps offer a range of functionalities, such as GPS navigation, bluetooth connectivity, camera us-

age, and processing power from the CPU and GPU. However, when an app does not use these

hardware components efficiently, it can lead to excessive energy consumption and quickly make

the phone run out of battery. Excessive energy consumption of an app concerns app developers be-

cause it results in a poor user experience, negative reviews, and even the removal of their app from

the smartphone [103], [142]. While hardware engineers and researchers are working to enhance

the energy efficiency of hardware components [108], [128], [161], app developers are exploring

software-based solutions to identify energy bottlenecks in their code and reduce energy consump-

tion. However, the current software-based energy measurement and optimization solutions have

several limitations:

Optimization techniques and their limitations. The current optimization techniques provide

app developers with design patterns to develop energy-efficient code structure [55], user-interface

(UI) guidelines to have energy-efficient design aesthetics [116], refactoring techniques to remove

energy-greedy patterns from code [30], and API-guidelines [83] to choose an energy-efficient API

in code.

According to studies such as Li et al. [110], API events in an app typically account for 85%

of its energy consumption. Therefore, measuring the energy consumption of these API events

is generally considered sufficient for estimating the overall energy consumption of the app [97].

1

However, most of the aforementioned techniques focus on developer-written instructions (e.g.,

branch or arithmetic instructions) and system events (e.g., garbage collection or process switching),

instead of API-level usage [110].

A few state-of-the-art techniques that focus on API-level energy consumption include a ge-

netic search-based technique by Manotas et al. [120] that helps developers optimize API usage in

an app. This technique is time-consuming because it works on the principles of genetic search,

where a developer has to execute all test cases multiple times to evaluate several generations of

their mutated code until they find the best version of their code. Furthermore, Hassan et al. [83]

provide guidelines for developers to choose an energy-efficient collection from the Java Collections

API. Although this approach helps developers make an informed decision on the class level of an

API, it still does not provide information on how specific API parameters may affect energy con-

sumption. Varying parameter configurations affect the API performance and energy consumption

differently [110], yet none of the current approaches guide developers on how a specific config-

uration may affect an app’s energy consumption and if they could configure API parameters to

reduce energy consumption. For instance, suppose a developer uses the iOS Core Location API

(corelocation-API) to access user-location in their app. This API offers several tuning parameters,

such as desiredAccuracy and distanceFilter. The current approaches do not guide devel-

opers on how these underlying parameters could impact their app’s overall energy consumption.

To address this limitation, this thesis aims to provide API parameter-level energy-efficient

guidelines for developers to help them identify, avoid, and fix energy inefficiencies in their code.

Measurement techniques and their limitations. The current measurement techniques provide

developers: with hardware-based measurement tools [87], [89] and software-based estimation

models [67]. However, hardware-based techniques demand developers to establish a sophisticated

measurement setup, a process that requires specialized knowledge and is therefore considered

a hindrance by many developers [142]. Furthermore, acquiring the necessary hardware is costly,

adding a financial burden. As a cost-effective alternative, developers use software-based techniques

that rely on estimation [67], [81] and prediction [53], [106] models. However, these techniques re-

quire developers to generate and execute test cases, a process that consumes significant resources

such as computing time, power, and storage [46]. Moreover, test-case generation is a difficult

2

task because developers are required to generate test cases that cover most of an app’s function-

alities [95], [96]. Additionally, as software evolves, developers may need additional or updated

test cases [124], [126], which may not always be readily available. After generation, execution

of these test cases requires a smartphone and a script to collect the app’s runtime information. In

short, generating and executing test cases is a time-consuming process. A state-of-the-art tech-

nique by Jabbarvand et al. [95] takes an average of 8 minutes to generate and execute test cases.

This lengthy duration means that a developer who is writing code in an Integrated Development

Environment (IDE) and expecting real-time updates will have to endure an impractical wait time

after each code modification.

To address these limitations, this thesis aims to use static analysis so that the energy consump-

tion of an app can be estimated within milliseconds, without the need for generating or executing

test cases.

Thesis statement. Static analysis can be used to optimize and measure the energy

consumption of API usage in an app. This use of static analysis relieves developers

from the effort of generating and executing test cases to obtain energy insights into

their code.

1.1 Structure of the Thesis and Underlying Contributions

This thesis proposes, implements, and evaluates energy optimization and energy estimation ap-

proaches that work at the API usage level. After laying out the motivation in Chapter 1, this thesis

outlines the necessary background concepts in Chapter 2. The thesis then presents four distinct

contributions, with the relevant related work discussed at the end of each chapter.

To determine the feasibility of integrating current energy measurement and optimization tech-

niques into developers’ existing development tools, as its first contribution, this thesis conducts a

preliminary study in Chapter 3. This chapter evaluates the state-of-the-art by adopting the prac-

tices of test case execution using search-based software engineering [120] for energy optimization.

The results in this chapter lay the foundation of this thesis and explain why a static-analysis-based

energy optimization and estimation approach is required to help energy-aware developers.

3

As its second contribution, in Chapter 4, the thesis presents an open-source hardware-based

iOS apps energy measurement framework, iGreenMiner. The purpose of iGreenMiner is to obtain

the hardware-based energy measurements of real-world apps. This thesis later uses these energy

measurements as ground truth to validate the results of its contributions. iGreenMiner is the first-

of-its-kind framework because it is publicly available to the iOS community through a web service,

and its execution scripts are also open-source. iOS app developers can freely upload their apps to

this web service and measure their energy consumption.

As its third contribution, in Chapter 5, this thesis proposes energy-aware configuration guide-

lines for API parameters to reduce an app’s energy consumption. Specifically, this chapter extracts

energy-aware guidelines for the iOS Core Location framework. The results in this chapter guide

the developers to make an informed, energy-efficient design choice before runtime for accessing

user location in an app. Furthermore, app developers may use the proposed approach to develop

energy-aware guidelines for other utility APIs such as Core Graphics, Core Animation, Core Blue-

tooth, etc.

As its fourth contribution in Chapter 6, this thesis proposes and validates a static-analysis-

based estimation model that estimates the energy consumption, or E-factor, of API usage in an app.

Energy-aware developers may use this model to estimate energy consumption without a hardware

setup, test-case generation, or execution. We evaluate the model on 16 versions and 11 methods

of 3 real-world iOS apps and find that the estimated values of E-factor have a strong positive

correlation within the hardware-based energy measurements. This result means that E-factor is a

good estimator to compare the relative energy consumption of API use between the versions of an

app and within the methods of an app. Furthermore, the proposed estimation approach is 106 times

faster than the state-of-the-art. Therefore, developers can integrate E-factor in a CI/CD pipeline

and development IDEs to receive energy consumption warnings within milliseconds.

Chapter 7 summarizes the benefits of adopting a static-analysis approach for energy-efficient

development and proposes potential avenues for future research, emphasizing the significance of

creating methods and tools to estimate and optimize the energy consumption of apps in real-time.

4

1.2 Publication Details

During my Ph.D., I was the main author to 5 peer-reviewed publications, including 4 conference

papers (at MSR-Challenge2019, ICSME2019, ICSE-NIER2022, MSR2023) and 1 journal article

(at EMSE2019), under the supervision of Dr. Abram Hindle and Dr. Karim Ali. I also co-authored

2 additional conference papers (at MSR-Challenge2023).

This thesis is primarily based on 3 conference papers, for which I designed the methodology,

conducted experiments, analyzed the results, and wrote the articles. Dr. Abram Hindle and Dr.

Karim Ali supervised all the experiments and provided feedback on methodology and presentation

of the work. In the third paper [34], Qasim Jamal helped in manual executions of the benchmarks

to collect their energy measurements and Kalvin Eng helped in collecting project versions from

various version-control repositories.

Chapter 3 of this thesis has been published as:

• Abdul Ali Bangash, Karim Ali, Abram Hindle, “A Black Box Technique to Reduce Energy

Consumption of Android Apps.” Proceedings of the ACM/IEEE 44th International Confer-

ence on Software Engineering: New Ideas and Emerging Results (ICSE-NIER, short paper).

ACM, [33], 2022.

Chapter 5 of this thesis has been published as:

• Abdul Ali Bangash, Karim Ali, Abram Hindle, “Energy Efficient Guidelines for iOS Core

Location Framework.” 2021 IEEE International Conference on Software Maintenance and

Evolution (ICSME, technical track). IEEE, [37], 2021.

Chapter 6 of this thesis has been published as:

• Abdul Ali Bangash, Qasim Jamal, Kalvin Eng, Karim Ali, Abram Hindle “Energy Con-

sumption Estimation of API-usage in Smartphone Apps via Static Analysis.” 2023 IEEE In-

ternational Conference on Mining Software Repositories (MSR, technical track). IEEE, [34],

2023.

The following is a list of peer-reviewed publications (including papers I co-authored) during

my Ph.D. but have not included in this thesis.
5

• Abdul Ali Bangash, et al. “On the time-based conclusion stability of cross-project defect

prediction models.” Empirical Software Engineering 25.6 (EMSE), [36], 2023.

• Abdul Ali Bangash, et al. “What do developers know about machine learning: a study of ml

discussions on StackOverflow.” 2019 IEEE/ACM 16th International Conference on Mining

Software Repositories (MSR). IEEE, [35], 2019.

• Anisha Islam, et al. “Evolution of the Practice of Software Testing in Java Projects.” 20th

International Conference on Mining Software Repositories, [94], 2023.

• Weijie Sun, et al. “An Empirical Study to Investigate Collaboration Among Developers in

Open Source Software (OSS).” 20th International Conference on Mining Software Reposi-

tories, [160], 2023.

6

Chapter 2

Background

The main theme of this thesis is to use static analysis to analyze the energy consumption of API

usage in smartphone apps so that a developer does not have to generate and execute test cases to

collect runtime information. This technique is expected to generate energy insights quickly so that

developers can integrate it into their IDE or CI/CD pipeline. This chapter explains all the technical

terminologies used in this paragraph.

This chapter first explains what a smartphone app is, what an API is, and what API usage

is in the context of an app (Section 2.1). Second, it explains how apps consume energy from a

smartphone (Section 2.2), how API use energy in an app (Section 2.3), and how energy consump-

tion varies by app’s versions (Section 2.4). Third, it explains what an IDE means, what a CI/CD

pipeline is, and how energy insights are useful in both of these environments (Section 2.5). Finally,

this chapter explains static analysis and how we use it to generate call graphs of the code to iden-

tify methods that use an API. Moreover, we explain why current static-analysis approaches that

reason about runtime can not be used as a proxy for energy consumption (Section 2.6). Additional

background information on topics relevant to a specific chapter, such as the Core Location API and

the SQLite API, is provided in the corresponding chapters.

2.1 Smartphone Apps and API Usage

Smartphone apps: A smartphone app is a software application that developers write to help

users perform specific functions on their smartphones through a UI. Depending on the functional-

ities that an app offers, users may perform a wide range of tasks, from essential functions such as

7

making phone calls or sending text messages to more complicated activities like playing games,

organizing and managing personal information, and accessing news, weather, and other useful in-

formation [172]. Smartphone users can download these apps from app stores, such as the Apple

App Store [21] or the Google Play Store [78], and developers can download the source code of

these apps from public software version control repositories unless the code is under proprietor-

ship.

Application Programming Interface (API): An application programming interface (API) is a

piece of code that provides app developers with a well-defined interface to an application, library,

data structure, or a smartphone hardware component [44]. For example, a developer may use a

networking API to add a network connection facility in their app. Similarly, developers may use

a Bluetooth API to use the Bluetooth component in their app, a cloud-storage API to manage the

storage of their app on a cloud service, or a collections API to maintain data structures in their

code.

API usage in apps: Each API comes with a set of methods and parameters to configure. App

developers may configure the API parameters before invoking a method to complete a task. For

example, the iOS Core location API provides functionality to fetch user location via GPS and

network components. The iOS Core location API provides methods to invoke a location fetching

service and provides parameters, such as a distanceFilter parameter, to configure the service.

The distanceFilter specifies the distance a user may travel before the service would fetch their

latest location. Suppose an app developer sets the value of distanceFilter short before invok-

ing the service, the service will fetch the user location after every little movement. However, if the

app developer uses a considerable value for distanceFilter, the service will fetch the user lo-

cation only after each significant user movement. The point to consider here is that each parameter

configuration may exploit the hardware components, in this case, GPS and WiFi, differently.

2.2 Energy Consumption of an App

Smartphone apps use various hardware components to perform various functions, such as GPS for

navigation, memory for computation, and camera for taking pictures. These components require

8

power in watts (W) in order to operate properly. Power is a measure of how much energy is used

per unit time and it is calculated by the product of current and voltage. Current represents the flow

of electrons and is expressed in Amperes (A), while voltage represents the direction and strength

of the current and is expressed in Volts (V) [127]. To control the flow of electrons (current) through

the logic circuits of the components, the smartphone’s transistors and semiconductors switch the

current on and off. At the same time, the smartphone’s battery regulates the direction and strength

of the current (voltage) [162].

Calculating energy from power: Power is typically used in the context of long-running systems,

such as power plants or home appliances, because these systems are operated continuously over

a long period. For short-running tasks such as smartphone apps, energy is used to describe their

consumption [85], since the duration of the task can be easily tracked.

For example, consider a smartphone camera that requires a voltage of 3V and a current of 2A.

The power required to operate this component can be calculated as follows:

Watts(W) = ApparentPower(V A)× PowerFactor(PF)

The power factor represents the efficiency of electrical power usage by indicating the phase re-

lationship between voltage and current in an electrical system. In our case, the power factor is

1 because smartphone components operate on direct current (DC), whereas V A = V olt(V) ×

Current(I). Therefore, the smartphone camera would require 6W to operate.

If a smartphone app’s test case utilizes this camera for a duration of 2 seconds, the energy

consumed by the app can be determined using the formula [127]:

Energy(Joules) = Watts(W)× Time(seconds)

In our case, its 6W and 2 seconds, and consequently the energy consumption required to use the

camera for a duration of 2 seconds will be 12 Joules.

Every app consumes different amounts of energy: In a smartphone app, the amount of energy

consumption may vary depending on its complexity, the hardware component it uses, and the

size of the data it processes [167]. For instance, a simple weather app that retrieves and displays

weather information may consume less energy over a more extended period compared to a complex

3D game that renders and animates complex graphics, even if the latter is run for a shorter period.
9

2.3 Energy Consumption of API Usage

Every API provides different functionality, such as storing data structures in memory or accessing

the user’s location through GPS. As a result, each API may consume different amounts of energy

in an app. For example, consider an app that uses the SQLite API [88] for data persistence and the

Core Location API [20] to access user location. Depending on the usage of these APIs within the

app’s code, each API may consume different amounts of energy. For instance, if the SQLite API is

used multiple times within a loop structure, it may consume more energy than the Core Location

API used outside a loop. We compare the energy consumption between the different tasks of an

API, with examples in Chapter 6.

Additionally, the energy consumption of a single API can vary within an app’s code based

on its configuration. For instance, if a developer configures the Core Location API to retrieve

location with high accuracy, even when it is not required, the API may consume more energy than

needed. We discuss the impacts of different API configurations on energy consumption, along with

examples in Chapter 5.

2.4 Energy Regression Testing of Apps

Due to code modifications, each version of an app may consume varying amounts of energy. Ob-

serving the impact of code modifications on energy consumption to alert developers of potentially

costly changes is referred to as energy regression testing [147], [176]. This testing provides a

relative comparison between two versions of an app and plays a crucial role in software develop-

ment. It helps developers ensure a better user experience and satisfaction by mitigating the risk of

introducing an energy-intensive update in a newer release of an app.

The current energy regression testing techniques face the challenges of test case generation

and execution, requiring developers to dedicate effort, cost, and time to obtain insights into energy

consumption of their new release. This effort involves test case generation, cost involves owning

smartphones for running test cases, and time is consumed in test case execution (several hours).

This thesis addresses these current challenges by providing developers with quick insights (within

milliseconds) into the impact of their code modifications on energy consumption, eliminating the

need for test case generation, execution, and hardware ownership. The approach in this thesis

10

achieves this by combining static analysis and energy modeling techniques to analyze app’s energy

consumption without any runtime information. By integrating our approach into the software

development process, particularly within a continuous integration pipeline, developers can utilize

the contributions of this thesis to manage energy consumption and ensure overall software energy

efficiency.

2.5 Energy Consumption in the Context of IDEs and CI/CD

Integrated Development Environment (IDE): An Integrated Development Environment (IDE)

is a software application that provides a comprehensive development environment for app devel-

opers. It includes an editor for writing, debugging, and compiling code and features such as code

completion and error highlighting that provide insights and speed up the development process.

Popular IDEs for smartphone app development include Xcode [22] for iOS app development and

Android Studio [77] for Android app development.

Continuous Integration and Continuous Deployment (CI/CD): CI/CD is a software develop-

ment practice that regularly integrates code modifications of a project into its codebase. The CI/CD

pipeline helps developers automate the process of building, testing, and releasing new versions of

their apps. This process can speed up development, reduce errors, and improve the app’s quality by

catching bugs and performance issues before they make it to the end user. CI/CD provides several

benefits, including the faster release of versions to the end user, increased collaboration among

developers, and insights into code’s status in terms of quality and performance.

Energy consumption insights in IDE and CI/CD: During app development in an IDE, if devel-

opers receive real-time feedback on the energy consumption of their code, they can save significant

amounts of time. Similarly, if the CI/CD pipeline provides energy consumption insights, devel-

opers can quickly identify any energy bottlenecks in their app and take action to rectify them.

Consider a scenario as an example where a developer is continuously making code modifications

in an IDE or sending pull-requests to a version-control system’s CI/CD pipeline. In such a sce-

nario, real-time energy insights are most relevant because they can quickly inform the developer

about possible energy-inefficient code modifications.

11

Some energy and runtime profilers that come with an IDE include Android Studio’s Android

Profiler [79], XCode’s Log Instrument Profiler [92], Visual Studio’s Performance Profiler [125],

and JProfiler [70]. The Android Profiler provides real-time insights about an app’s CPU, memory,

network usage, and battery consumption [79]. The Energy Log Instrument allows measuring an

app’s energy consumption while running on an iOS device [92]. The Performance Profiler provides

real-time information about an app’s CPU, memory, network, and disk I/O usage [125]. JProfiler is

a profiling tool for Java applications. It provides real-time information about various performance

metrics, including energy consumption. It can be used to identify performance bottlenecks and

memory leaks in applications [70]. However, all of these tools are limited in requiring runtime

information of an app to provide insights about its energy consumption, while this thesis aims to

provide the app-developers energy insights without any runtime information.

2.6 Static Analysis of Smartphone Apps

Static analysis, in the context of smartphone app development, refers to examining and analyzing

an app’s code without executing it. This practice allows developers to uncover the semantic prop-

erties of the app, which are crucial to ensuring its proper functioning [146]. Examples of these

properties include correctness (i.e., whether the program produces the correct output), termination

(i.e., whether the program terminates correctly), and reusability (i.e., whether the program can be

used inside other programs).

Researchers and developers initially used static analysis to optimize compilers and generate

efficient machine code. However, over time, it has become an integral part of various phases of

app development, including security verification, evaluation of code quality, and maintenance and

refactoring of code [130].

In this thesis, we employ several static analysis techniques, including byte-code transforma-

tions and call graph analysis, to analyze the energy consumption of mobile applications. These

analyses operate at different granularity levels, allowing us to optimize energy consumption and

comprehensively understand an app’s energy consumption. To optimize the app’s byte-code, we

use byte-code level transformations [71] to relieve the developers from code modification. Addi-

tionally, we utilize call graph analysis [150] to analyze the app code’s API usage and configuration

in terms of energy consumption. At a fine-grained level, we analyze the app’s code to detect po-

12

tential energy-consuming patterns, such as inefficient API usage, excessive loops that use APIs,

and unnecessary computations. By scrutinizing these fine-grained details, we can identify specific

energy-consuming operations, enabling developers to optimize critical code segments that signifi-

cantly impact their apps’ energy consumption.

Intermediate Representation (IR): IR is an intermediate form of a program that the compiler

generates during the compilation process. IR provides a platform-independent representation of the

source code, which allows compilers to perform various transformations and optimizations before

generating the final machine code. IR is an integral part of the compiler architecture, as it bridges

the source code and target machine code [165]. An example of IR is Swift Intermediate Language

(SIL) [27], a high-level representation of the semantics of the Swift language program. The Swift

language compiler generates SIL from the source code and then uses it to perform optimizations

and transformations into machine code.

Call Graph (CG) from IR: A CG is a graphical representation of a program’s control flow. It

shows the relationships between functions in the program and how they call each other [2]. A CG

may be generated from the control flow information present in the IR of a program. The process

of generating a CG from an IR involves identifying the function and subroutine calls in the IR and

using that information to build a graph [150]. Developers may use this graph for various purposes,

such as identifying performance bottlenecks and security vulnerabilities.

2.7 Performance Testing and Energy Consumption

In this section, we discuss the relevant literature on performance testing and its relationship to this

thesis. Performance testing is a technique used to assess a system’s stability and response time by

subjecting it to various system workloads. Danciu et al. [63] conducted a survey that highlights

the common areas of research in performance testing, including network optimization, architec-

ture analysis, response time evaluation, execution time measurement, data structure optimization,

power consumption analysis, database performance, and energy consumption analysis. We have

extensively covered the literature related to energy consumption in the related work section of each

chapter in this thesis. Therefore, in this section, we focus on the remaining performance estimation

13

and optimization aspects.

Carvalho et al.[64] build upon the notion that hand-written APIs outperform auto-generated

code in terms of execution speed. They develop a tool that automates the replacement of appli-

cation code with API calls known for their speed efficiency. This approach aligns with our work

in Chapter 5, although there is a slight difference in focus. Instead of replacing energy-consuming

code with better API calls, our objective is to identify energy-efficient configurations of an API

itself.

In order to enhance the throughput and latency of various workloads in an application, Berube

et al.[39] introduce the concept of developing combined profiles that represent the combined

behavior derived from multiple program runs. These profiles can then be utilized in Feedback-

directed optimization (FDO) of programs [154]; FDO optimizes program performance based on

past runtime information. Our contributions to this thesis are closely related to this work. In Chap-

ter 5, we develop an energy profile of iOS core location frameworks to identify inefficient API

usages. Additionally, in Chapter 6, we develop an energy profile of SQLite API to estimate its

energy consumption in smartphone apps’ API usages.

Developers fine-tune the hyper-parameters of their Deep Neural Network (DNN) models to

maximize training accuracy and minimize training loss. Liao et al.[112] investigate the impact of

hyper-parameter tuning on the optimized models’ inference latency, accuracy, model size, and en-

ergy consumption. They identify a trade-off between parameter tuning and the aforementioned per-

formance metrics, and highlight the parameters that influence specific types of tuning for optimal

performance. Similarly, in Chapter 5, we analyze the impact of different parameter configurations

of an API on the energy consumption of an app.

Chen et al. [51] examine performance regressions resulting from source code changes, focus-

ing on response time degradation and increased resource utilization in software systems. They

categorize and identify performance regressions that developers can avoid and those that are un-

avoidable. In contrast, this thesis takes a different approach to addressing the issue of source code

changes. In Chapter 6, our approach uses static analysis techniques to assess the impact of specific

code modifications on energy consumption.

Similar to this thesis, Bezemer et al. [40] highlight the detrimental impact of long execution

times in performance load testing, which can negatively affect the efficiency of a CI/CD pipeline.

14

Their industrial survey reveals the need for simpler performance analysis tools that seamlessly

integrate into the CI/CD pipeline for practical adoption. This finding further reinforces the con-

tributions made in this thesis. Recognizing that energy testing can also be time-consuming due

to the need for executing test cases, we address this challenge in Chapter 6 by providing energy

consumption details within milliseconds. Developers can easily integrate our approach into their

CI/CD pipeline.

Schuler et al. [151] conducted a study to investigate whether the utilization profiles of APIs can

be utilized to estimate their energy consumption. By analyzing the usage patterns of an external

library API, they identified the specific System API calls it relied on to access system resources.

Based on this usage information, they successfully predicted the energy consumption of the API.

This work is highly relevant to Chapter 6 in this thesis as it complements our proposed approach. In

Chapter 6, we profile the energy consumption of tasks associated with external APIs and leverage

these profiles to estimate an app’s API usage energy consumption without the need for actual

execution. Although our approach does not require executing the app, it does require pre-existing

energy profiles for the APIs, which typically necessitate the use of hardware resources. However,

the work by Schuler et al. [151] contributes to our energy profile collection process by enabling

developers to utilize an API’s utilization profile for estimating its energy profile. Schuler et al.’s

work [151], in turn, facilitates the reasoning about the energy consumption of an app based on its

API usage.

Can execution time be used as a proxy to reason about energy consumption: Researchers

identify performance bottlenecks by profiling the execution time of each function in a program

using a profiling tool. These tools generate a call graph to represent the functions that execute in a

program most frequently and those that will take the most time to execute [68], [173]. This infor-

mation can assists developers in optimizing functions that are slowing down a program. However,

can this information be used to reason about energy consumption as well?

The idea to use execution time as a proxy to reason about energy consumption has been widely

held [167]. This idea is based on the belief that energy consumption is simply the integration of

power over time. Therefore, measuring execution time statically should be sufficient to reason

about energy consumption. However, recent research by Weber et al. [167] has challenged this

15

hypothesis for configurable systems. Configurable systems provide performance customization

to the developers and users to meet the needs of different use cases or scenarios. According to

Weber et al. [167], execution time can not be used as a proxy to reason about the energy consump-

tion of such systems. Additionally, current software estimation models require more information

than just runtime data, such as execution time, to estimate energy consumption accurately. This

information includes operating system logs, the types of components used, and the operations

performed during execution.

2.8 Background Related Contributions

In this section, we explain what concepts the following chapters use in order to contribute towards

this thesis.

Chapter 3 employs genetic algorithms to find optimal combinations of byte-code transforma-

tions for reducing energy consumption in apps. To understand this chapter, it is necessary to have

a general understanding of byte-code transformations, which is explained within the chapter itself.

While this approach alleviates the need for code-level modifications, it does suffer from the limi-

tation of long test case execution. To address this limitation, we use static analysis approaches in

the thesis to optimize and measure energy consumption in apps, in Chapter 5 and Chapter 6.

However, before proposing the optimization methodology (Chapter 5) and measurement model

(Chapter 6), we chose to shift our focus from Android to iOS apps. Therefore, in Chapter 4, we de-

velop an iOS-based energy measurement framework to collect ground truth energy measurements.

For this chapter, an understanding of energy measurement techniques in the literature is required,

and such background covered within the chapter itself. We use this framework in the subsequent

chapters (Chapter 5 and Chapter 6) to validate their results.

Chapter 5 acknowledges the limitations of long test case execution identified in Chapter 3 and

presents API-level configuration guidelines that developers can statically apply in their code to

optimize API-usage in terms of energy consumption. For this chapter, a general understanding

of how developers use and configure APIs in their code is required. The background information

on how API-level configuration can affect energy consumption is provided in the chapter with an

example.

Finally, Chapter 6 addresses the limitations of long test case execution identified in Chap-

16

ter 3 and provides energy consumption estimates of apps’ API usage based on call-graph traversal

without the need for actual test case execution. This chapter requires a basic understanding of

call-graph traversal, the use of intermediate representations to generate call graphs, and how APIs

consume energy and can be analyzed for energy consumption within loops using static analysis.

Many of these concepts are already covered in the Background chapter, while the rest are explained

in Chapter 6 itself.

17

Chapter 3

Feasibility of current energy measurement
approaches

This chapter proposes a novel energy optimization technique that uses byte-code transformations

to optimize energy without requiring code modification. The technique’s underlying methodol-

ogy relies on state-of-the-art concept of search-based energy optimization and test-case execution

based energy measurement. Thus, as the first contribution of this thesis, this chapter highlights the

costliness of test case execution and supports the idea that there is a need for alternative methods

of energy measurement. This chapter is published at ICSE-NIER 2022 [33].

3.1 Introduction

Energy-aware app developers continuously strive to adopt development practices that optimize the

energy consumption of their apps to avoid negative user reviews and decreased market share [104],

[142]. Energy efficient development practices are extremely important because apps rely on the

limited energy stored in smartphone batteries to operate [142]. High energy consumption can

quickly drain the battery, leading to user frustration and dissatisfaction. Therefore, developers

need to optimize their app’s energy usage to ensure a positive user experience and maintain market

competitiveness [135], [143].

According to prior work, developers may optimize the energy consumption of an app by adopt-

ing energy-efficient design patterns [55], APIs [83], [120], and UI elements [116]. Unfortunately,

all of these approaches require developers to make source-code level changes that leave them with

no choice but to: (1) modify their code structure [30], [62] that could affect code-quality attributes

18

such as maintainability, (2) select a specific API [37], [83], [120], [136] that could confine develop-

ers’ choice, or (3) change the UI structure [115], [166] that could compromise the design aesthetics

of graphic designers. As a solution, in this chapter, we introduce a byte-code-transformation-level

energy optimization technique so that developers do not have to modify their code.

We initially investigate if byte-code transformations affect the energy consumption of an app

by applying a set of byte-code transformations on real-world Android apps. After discovering

that byte-code transformations affect an app’s energy consumption, we identify the most effective

combination of the transformations for each app. To identify the best combination, we mutate

an app’s byte code with random transformation combinations and execute the test cases multiple

times on the mutated code to measure its energy consumption. We repeat this process until we find

the least energy-consuming version of the app. During the whole process, we were able to measure

the costliness of test case execution in terms of time as well.

Results show that byte-code transformations can potentially reduce real-world apps’ energy

consumption by up to 11%. However, we are inconclusive on which byte-code transformation

combination is generally effective. We also found out that test case execution, in some cases, may

take up to 40 hours. Therefore it is impractical to integrate such an approach in an IDE or CI/CD

pipeline where developers require quick insights about the status of their code.

3.2 Related Work

Search-based software engineering works on the principles of genetic algorithms. Literature has

used genetic algorithms to reduce the energy consumption of smart-buildings [170], wireless net-

works [100], subway trains [45], grid systems [107], and also smartphone apps.

Researchers have previously used genetic search to find energy-efficient libraries usage in soft-

ware [48], [120]. Some researchers used genetic search to address matrix multiplication energy

tuning [31], energy efficient SAT solver [47], and energy efficient assembly code exploration [152].

The closest work is by [74], [138], in which they found the effect of the GCC and LLVM compiler

configurations on energy consumption. However, since they evaluated their approach on embedded

systems’ benchmarks, their results can not be generalized over real-world Android apps running

on a smartphone device. In this chapter, we leverage genetic algorithms to optimize the energy

consumption of Android apps.

19

Table 3.1: A brief description of the byte-code transformations used in this study [71].

Type Description

(CTP) Constant Propagation Substitute the values of known constants in expressions.
(CPP) Copy Propagation Replaces the occurrences of targets of direct assignments

with their values.
(DCE) Dead Code Elimination Removes dead code from methods.
(DSI) Delete Super Interface Ensures that the method arguments pass directly

through to the super invocation.
(MIL) Method Inlining Inlines methods that are sufficiently small (or called only a

few times).
(MRA) Minimum Register Allocation Uses graph coloring to use minimum number of

registers.
(PHO) Peephole Optimization Eliminates redundant code patterns.
(RDB) Remove Duplicate Blocks Removes duplicate blocks.
(REC) Remove Empty Classes Removes classes with no-functionality.
(ROI) Reorder Interfaces Reorders Interface list for each class to improve the linear

walk of list.
(RBI) Rebind Invocations Rebinds all invocations of a virtual method or interface to

their most abstract type.
(RGT) Remove Gotos Removes gotos that are chained together by rearranging the

instruction blocks to be in order.
(RSM) Remove Synthetic Methods Removes synthetic methods by javac.
(RUC) Remove Unreachable Code Removes un-reachable methods, fields and classes.
(SIR) Single Interface Removal Removes interfaces that are implemented only once.
(SMF) String Minification Minify constant string literals to reduce APK size.
(SBR) Synthetic bridge removal Removes bridge methods that javac creates to provide

argument and return-type covariance.

3.3 Do byte-code transformations affect energy consumption?

Developers already use byte-code transformations to minimize their app’s byte-code size and op-

timize its runtime performance. However, in this section, we investigate if these optimizations

affect energy consumption because if they do, then developers need to be careful while applying

such transformations to their code.

To observe the effects of byte-code transformations on the energy consumption of real-world

applications, we carry out a preliminary investigation by randomly choosing three transformations

from the Redex framework [71]. These transformations include: SMF – String Minification; MIL

– Method Inlining; and SIR – Single Interface Removal. Redex is Facebook Inc.’s official byte-

20

Table 3.2: Description of the apps used in preliminary study

Application Category No. of versions No. of unique systems calls

2048 Game 44 60
24game Game 1 50
Acrylic Paint Entertainment 40 49
AndQuote Utility 21 51
Agram Algorithm 3 46
Bomber Game 79 47
Budget Utility 59 56
Calculator Utility 97 48
Chrome Browser 50 76
DalvikExplorer Utility 13 54
Exodus Utility 3 60
Eye in Sky Utility 1 77
Face Slim Utility 1 65
GnuCash Utility 16 56
Memopad Utility 52 47
Paint Electric Sheep Entertainment 1 66
Pinball Game 54 48
Sensor Readout Utility 37 51
Temaki Utility 66 50
VLC Entertainment 46 61
Wikimedia Utility 58 67
Yelp Utility 12 78

21

Table 3.3: Energy consumption difference between 22 Android apps and their transformed versions
when SM, MIL, SIR and AT are applied. Negative values represent the reduced value of energy
consumption in (% Joules)

Application
Original
Energy
(Joules)

SMF Affect
on Energy
(Joules %)

MIL Affect
on Energy
(Joules %)

SIR Affect
on Energy
(Joules %)

AT Affect
on Energy
(Joules %)

2048 58.67 -0.79 -3.07 -4.12 0.77
24game 93.58 -6.19 -5.87 -7.09 1.52
Acrylic Paint 112.89 -0.03 0.03 0.04 0.32
Agram 65.42 0.49 0.16 1.88 0.41
AndQuote 38.05 -0.95 -0.58 -0.62 -0.44
Bomber 171.83 0.33 -0.10 -0.83 -0.83
Budget 112.89 -0.03 0.03 0.04 0.32
Calculator 108.35 0.032 0.49 0.30 0.32
ChromeShell 109.39 -0.39 -0.13 -0.19 -0.35
DalvikExplorer 63.28 0.13 -0.31 -0.27 0.14
Eye in Sky 104.82 -0.14 -0.11 0.08 1.24
Exodus 99.88 0.36 0.75 0.18 0.57
Face Slim 62.08 -0.35 0.21 -1.14 0.22
GnuCash 73.07 0.14 0.01 0.24 0.19
Memopad 81.35 -0.34 -0.22 -0.26 -0.32
Paint Electric 90.69 -0.06 0.11 0.41 -0.13
Pinball 112.38 1.34 0.22 1.66 1.05
Sensor Readout 172.91 -0.04 0.33 -0.19 0.13
Temaki 71.76 -0.09 -0.17 -0.23 0.06
VLC 114.26 -3.89 -3.70 -3.99 -3.93
Wikimedia 194.82 -0.13 0.03 -0.15 -0.21
Yelp 251.96 -1.08 -0.87 0.77 0.22

22

code transformation framework designed to reduce the size and improve the runtime performance

of Android apps. We provide the details of each of these transformations and the other 14 trans-

formations that will be used later in this chapter in Table 3.1.

The reason for selecting only three transformations is to initially understand the impact of these

transformations on energy consumption. By applying these three transformations to 22 applica-

tions, we will have a total of 66 transformed applications for which we need to measure their

energy consumption. Considering more than three transformations would result in an impracti-

cal number of versions (22 multiplied by the number of additional transformations) to evaluate,

making it infeasible in terms of energy measurement cost. Therefore, examining a smaller set of

transformations allows us to gather insights and establish a foundation for further analysis and

evaluation of the remaining 14 transformations, which will be explored later in this chapter.

To apply the selected transformations, we use the publicly available Android apps dataset by

Chowdhury et al. [54]. The dataset contains 24 diverse apps accompanied by 106 hand-written

test cases that exploit various unique system calls. These test cases aim to emulate typical user

behavior when interacting with an application, encompassing actions such as opening the app and

performing its core tasks. For instance, in the case of the 2048Game game, the app is launched,

and multiple tiles are touched to generate a random sequence. Similarly, in the AcrylicPaint paint

app, the user opens the app and proceeds to draw a picture. In the Agram app, fixed letters are

added to generate multiple sequences. Lastly, in the ChromeShell browser, the user opens the app

and performs a website search.

We failed to build two apps; hence we conducted our experiment on 22 Android apps: 2048-

Game, 24Game, AcrylicPaint, Agram, AndQuote, Bomber, Budget, Calculator, ChromeShell,

DalvikExplorer, EyeInSky, Exodus, FaceSlim, GnuCash, Memopad, PaintElectric, Pinball, Sensor-

Readout, Temaki, VLC, Wikimedia, and Yelp. We present the details about these apps in Table 3.2

where category represents the type of application and number of unique system calls represent

how many unique system calls are invoked by the test case of that application. To determine the

energy consumption of the apps, we execute each app’s test case in its entirety and record the

corresponding energy consumption.

To observe the individual effect of each transformation, we apply SMF, MIL, and SIR on the

apps individually. Moreover, to observe the collective effect of these transformations, we apply all

23

three together on the apps and refer to such a collective transformation event as aggregate trans-

formation (AT). Altogether, we generate 22 × 4 = 88 transformed solutions (i.e., transformed ver-

sions of the apps). To measure the energy consumption of the solutions, we ran each solution’s test

suite 10 times on GreenMiner [87], a hardware-based Android apps energy measurement frame-

work. From the results, we found that byte-code transformations do affect the energy consumption

of apps, as energy consumption got reduced for 12 out of 22 apps, with an average reduction of

1.24% ± 1.96% joules, and with a maximum outlier reduction of 7.1% joules. The detailed result

of all the transformations’ effect on energy consumption of these 22 applications is available in Ta-

ble 3.3. The Original Energy column represents the energy consumption of test cases in the apps

without any applied transformations, while the remaining columns indicate the difference between

the transformed version’s energy consumption and the original energy consumption.

To determine if applying byte-code transformations affects all the apps similarly, we applied

a Wilcoxon Signed Rank Test [84] with α = 0.05. The results imply that each transformation

affects each app differently, and none of the transformations holds a universal effect. For example,

AT reduced the energy consumption of VLC, but it increased the energy consumption of 24Game.

Similarly, SMF reduced the energy consumption of 24Game, but it increased the energy consump-

tion of Pinball.

Once it is established that some byte-code transformations do affect energy consumption, we

employ genetic search to identify the best combination of transformations to optimize the energy

consumption of each of the apps.

3.4 Using Genetic Search to Optimize Energy Consumption

After confirming that certain byte-code transformations can reduce energy consumption, our inves-

tigation turns to evaluating a set of 17 Redex transformations to identify the optimal combination

for each app. Table 3.1 provides a brief description of each transformation. We avoid selecting

transformations that cannot be applied independently, that is, those that depend on the results of

other transformations.

Applying all the combinations of these 17 transformations will yield 217 solutions (i.e. trans-

formed versions of the app) for each app, and measuring the energy consumption of those many

solutions is impractical. As a solution, we employ genetic search to find an effective combination

24

Search-space
for versions

Energy
Measurement

Energy
Optimal
Version

Android
Application

17 Byte-code
Transformations

Green Miner

Generate
different
combinations
of
transformations

Tournament
Selection

Apply
Transformations

to generate
versions

Figure 3.1: Graphical representation of the search-based optimization approach.

of transformations that could reduce energy consumption.

Genetic search is based on the principles of the theory of evolution [82], [153]. Genetic search

samples from a large population of possible solutions, mutates the solutions for a new genera-

tion and keeps sampling and mutating generations for several rounds until the best solution is

found [82].

We present our methodology in Figure 3.1. To identify the best variant of each app, we use

three elements: (1) the app’s byte code, (2) 17 transformations, and (3) an energy measurement

framework such as GreenMiner [87]. First, we generate a large search space of byte-code versions

of the app by applying the transformations and then measuring their energy consumption. We then

apply mutation and selection criteria to identify the most energy-optimal version of the app and

repeat the process until we find the best variant.

The following sections explain our approach for selecting apps and performing a genetic search

to identify the best variant.

Selecting real-world apps We choose 4 apps from the initially studied 22 apps of our dataset.

The criteria used to reduce the 22 Android apps to the 4 apps studied was based on random se-

lection. By randomly selecting one app from each category in the dataset, it ensured a diverse

representation of app types. This approach allowed for a broader examination of energy consump-

tion optimization across different categories of apps. The four apps include a game (2048Game);

25

App

0 0 1

0 1 0 Solution 1

Solution 2

T1 T2 T3

T1 T2 T3

Transformations
Applied

Search
Space

Figure 3.2: An example of applying two different combinations of three transformations on an app
to generate a search space of two possible solutions (transformed apps).

an internet browser (ChromeShell); an entertainment app (AcrylicPaint); and anagram algorithm

utility (Agram). The test cases of these apps that we consider to execute were auto-generated by

Chowdhury et al. [54] in their study. These test cases invoke multiple unique system calls.

Step-1: Initial population

Initially, we generate a search space for each app. We apply 50 random combinations of 17 trans-

formations on each app to generate this space. This process yields 50 solutions for each of the apps

to begin with.

We represent each solution as a 17-bit vector showing which transformations were applied.

Each index of the bit-vector represents a specific transformation, and its value 0/1 represents if that

transformation was applied or not. To explain, in Figure 3.2, we demonstrate an example of ap-

plying 3 transformations’ 2 different combinations on an app and show how these transformations

yield 2 different solutions.

Step-2: Fitness function

The solutions in the initial population and its successive generations are evaluated using a fitness

function. A fitness function evaluates each solution’s performance and assigns it a fitness score. In

our case, the fitness function measures the energy consumption of each solution.

Energy Measurement To calculate the fitness score, we use GreenMiner [87], a hardware-based

energy measurement tool that runs on Galaxy Nexus running Android OS 4.2.2; an Arduino Uno;

and an Adafruit INA219 current sensor for monitoring power usage. We run each solution’s test

26

cases 3 times for accurate measurements and aggregate their results with a median function, a

function used in literature for aggregating energy measurements [87]. The fitness score of the

solution is set to the inverse of the calculated energy consumption to ensure a higher fitness score

for lower energy consumption.

Step-3: Selection

For each successive generation, a sample from the existing population is drawn out to develop a

new generation. Depending on the selection technique adopted, solutions can be selected based on

their fitness scores, or solutions can be randomly sampled from the population.

In this work, we used the elitist selection strategy [29] and the tournament selection strat-

egy [43]. The elitist selection allows passing several solutions with the best fitness score to the

next generation. For elitists, we kept its value to 2 solutions, i.e., forwarding the 2 best fitness

score solutions in the population to the next generation. In tournament selection, multiple solu-

tions are sampled randomly from the population, and the solution with the highest fitness score is

selected. We apply tournament selection twice and select two solutions, a pair, to perform the next

step of crossover and mutation.

Step-4: Crossover and mutation

This process increases diversity among solutions in a search space.

Crossover We apply uniform crossover [72] among the previously selected pair of solutions.

Using each half of the bit-vector values from each solution in the pair, two new solutions are

generated and added to the next generation.

Mutation After crossover, we mutate all the solutions in the search-space [90]. To mutate each

solution, we flip the bits of its 17-bit vector with a flipping probability of 1/17 for each bit.

Step-5: Termination

Finally, we terminate the genetic search if there has not been any noticeable improvement in the

fitness score of the solutions for several generations. We terminate genetic search when either the

27

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

55
.0

57
.5

60
.0

0 20 40 60

2048Game

E
ne

rg
y

(J
ou

le
s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●83
.4

83
.6

83
.8

0 10 20 30

AcrylicPaint

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

75
76

77
78

79

0 50 100 150

Agram

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

10
6

10
7

10
8

10
9

11
0

0 10 20 30

ChromeShell

Figure 3.3: Optimal solutions’ energy consumption in the search-space. The x-axis indexes the
solutions of each app.

energy has not improved in the last 10 generations, or a total of 20 generations have elapsed. We

chose this termination criterion according to the cost we could afford regarding test execution time

for energy measurement.

3.5 Results

After applying multiple combinations of the byte-code transformations with the help of genetic

search on the apps, we get the following results.

Table 3.4: A comparison between the energy consumption of the original version of an app and
its best solution. Energy improvement shows the energy optimized using genetic search. Test
suite execution is the time to run a test suite. Solutions explored are the number of solutions
explored in genetic search. Analysis time shows the overall time spent for genetic search. The
energy consumption is measured in Joules, the test suite execution is measured in seconds, and the
analysis time is measured in hours.

Apps Original Best
Solution

AT Reduction
(%)

Test suite
exec. (s)

Solutions
explored

Analysis
time (hrs)

2048Game 60.31 53.64 55.52 11.05% 60 234 11.7
AcrylicPaint 83.62 83.27 83.74 0.42% 95 116 9.2
Agram 76.39 75.02 crashed 1.79% 77 637 40.9
ChromeShell 107.18 105.95 crashed 1.15% 100 106 8.9

28

3.5.1 Genetic search reduced the energy consumption of all apps.

We present the search space of each app in Figure 3.3. This figure shows how diverse the search

space is, for each app, throughout the process. To understand the variability among the solutions’

energy consumption in the search-space, we measure the relative standard deviation [41] among

the solutions of each app and found 6.91% among 234 solutions of 2048Game, 0.31% among

116 solutions of AcrylicPaint, 1.32% among 637 solutions of Agram, and 0.95% among 106 so-

lutions of ChromeShell. In conclusion, we were able to identify the combinations of byte-code

transformations that reduced the energy consumption of the apps and reduced energy consumption

— 0.42% in AcrylicPaint, 1.15% in ChromeShell, 1.79% in Agram, and 11.05% in 2048Game

app. However, it is important to note that the significant gain in 2048 might be an outlier due

to the non-deterministic behavior of the game app. The randomness in the game stems from the

generation of new tiles on the grid, with values of 2 or 4, which occurs at the start and after each

move. This randomness introduces an element of unpredictability, resulting in a unique experience

with every execution and necessitating strategic decision-making based on the randomly placed

new tiles. We have also measured the effects of applying all transformations on apps and find out

that such a process may increase the energy consumption of an app instead of reducing it.

Energy consumption could have been reduced even further if we had increased the search

space size (i.e., exploration) and the number of generations explored (i.e., exploitation) [113].

Another aspect that should have been investigated is the impact of the order in which transfor-

mations are applied. Prior research has demonstrated that the order of compilation can produce

different outcomes depending on the nature of the code [3]. However, we were constrained by

the time-consuming nature of executing test cases for each solution and therefore we explored the

combinations only.

3.5.2 Cost-effectiveness of the proposed technique

Table 3.4 presents the estimated cost in terms of time consumption to find the most energy-optimal

solution for an app. In the table, Test suite exec. presents the total time to run a solution’s test

suite. Solutions explored are the number of solutions explored in the search space. Analysis time

represents the overall time (actual cost of our technique) in hours to explore all search space gen-

erations, including test suite execution, energy measurement and result aggregation. The overall

29

Table 3.5: Difference in size of the original app and its best solution. Overall Diff. includes
resource, binary code, and meta files, while classes.dex includes binary code.

Application Total app size difference Binary code size difference

2048Game +0.37% -23.46%
AcrylicPaint -0.07% -0.66%
Agram -0.16% +0.30%
ChromeShell 0.02% -1.26%

cost of running a genetic search on the selected apps with energy measurement is 9–41 hours.

3.6 Discussion

Out of 217 possible combinations of byte-code transformations, genetic search concludes that some

combinations reduce energy consumption. To investigate the reasons for this reduction, we study

the effect of byte-code transformations on the structure of the apps.

To compare the structural difference between the best solution and the original app, we used

APK Analyzer [4]. Table 3.5 shows the size difference between the best solution and the original

app. The overall difference includes the app’s binary code, resource files, and meta files. The

difference in classes.dex indicates the size difference in the binary code.

To investigate the structural differences inside the classes’ byte-code, we have extracted the

Chidamber and Kemerer object-oriented metrics (CKJM metrics) metrics [156] from classes.dex.

In the literature, a sub-set of CKJM metrics has proven to correlate with energy consumption [149].

We used a CKJM tool [156] to measure the difference between the original app and its best solution

for those CKJM metrics that have a strong correlation with energy, such as Depth of Inheritance

Tree (DIT), Number of Immediate Sub-classes (NOC), Coupling between Object (CBO) and Af-

ferent Coupling (Ca). For 2048Game, we observed the following changes: DIT +28.3%, NOC

-100% and CBO +0.3%. For ChromeShell, we observed the following changes: CBO +1% and Ca

+1.62%. For AcrylicPaint and Agram, only those metrics that do not correlate with energy were

affected. According to Sahar et al. [149], DIT has a positive correlation while NOC, CBO and Ca

have a negative correlation with energy consumption. Therefore, for ChromeShell, the change in

CBO and Ca might be one of the reasons for energy reduction. However, the reasons for energy

reduction remain inconclusive for the remaining apps and require further investigation.

30

3.7 Threats to Validity

We evaluated our approach on a limited number of byte-code transformations and benchmarks.

Our approach may perform worse for other Android apps regarding overall analysis time cost.

In this context, our approach needs to be investigated further on more Android applications. To

minimize this threat, we selected 22 applications previously used in the literature [54]. Also, all

applications are unique as each belongs to a separate software category, such as utility, game,

algorithm and entertainment. The test suites imitate a normal application user behavior hand-

written by Chowdhury et al. [54]. However, our test suite does not cover every single line of code

within an app, and therefore, our test cases may fail to cover the parts of the code that were affected

by a transformation. As a result, our test suite may introduce some bias when measuring the effects

of transformations on the entire app. Secondly, we did not investigate if a transformation can be

applied to a part of an app. Applying transformations to specific parts of an app’s code can increase

the capability of our genetic algorithm, as different parts of the app can be targeted for fine-grained

exploration. Finally, it is important to acknowledge that we did not specifically consider whether

our test case workload intersects with the effects of the transformations. In other words, we do not

have information on whether our test cases cover the specific code properties that are influenced

by a transformation or not.

The selected transformations are all of the optimizations that were being offered by the Redex

framework during the time of this study. These transformations are prevalent since Facebook

currently uses them to speed up runtime and minimize the size of their official Facebook Android

application - which has over 5 billion downloads on Google Playstore.

We carried out energy measurements through the GreenMiner infrastructure on a single device

to ensure consistent results, as our concern was measuring the relative effect between the transfor-

mations. However, our approach is fully-capable of tackling the problem of inconsistent energy

results from multiple devices as it selects median energy measurement as the fitness score of the

variant out of 10 runs.

Finally, in our evaluation, our approach consumed up to 40.9 hours in the worst case. This

worst case can not be generalized over the other 2.59 million Android applications on Google

31

PlayStore 1. Even though our evaluation is simple, it provides evidence that developers should be

careful while applying a specific byte-code transformation since a transformation can negatively

affect an app’s energy consumption. Our approach helps developers ensure that they do not apply

such byte-code transformations, which can increase the energy consumption of their applications.

Our evaluation is limited to 4 applications because we used a hardware power profiling tool to

measure energy (calculate variants’ fitness). The scope of the experiment can be widely broadened

if a software power profiling tool is used, as it will tremendously bring down the cost (total analysis

time), and many more transformation combinations can be investigated.

3.8 Conclusion

To eliminate the need for developers to perform code-level modifications, we propose using byte-

code transformations to optimize energy consumption of smartphone apps. However, due to the

high cost of executing test cases, such as 8.9 hours for ChromeShell and 40.9 hours for Agram, we

were unable to conduct the genetic search multiple times. This limitation highlights the importance

of considering the potential impact on the reliability and generalizability of our findings.

Additionally, due to the time consumption of test case execution, it is impractical for the de-

velopers to integrate our approach in an IDE or CI/CD pipeline where results are required within a

few milliseconds. This work highlights a significant limitation of the current energy optimization,

measurement, and estimation approaches that require test case execution, and this thesis addresses

this limitation in the following chapters.

As a solution, this thesis proposes API-level guidelines for energy optimization that developers

can implement in their code to reduce energy consumption without executing the code (Chapter 5).

Furthermore, the thesis presents an energy estimation model (Chapter 6) that eliminates the need

for test case execution, providing instant insights into energy consumption based on static-analysis.

Exploring static-analysis techniques in order to reason about energy consumption is a step worth-

while as it would significantly reduce the genetic search’s exploration cost.

Regardless, this chapter demonstrate the effectiveness of a search-based technique in identify-

ing the optimal combination of byte-code transformations, eliminating the need for manual code

modifications. This contribution reduces the development effort and mitigates potential risks as-
1https://www.statista.com/

32

sociated with code changes, such as decreased code maintainability and the potential disruption of

design aesthetics or preferred design patterns.

33

Chapter 4

iGreenMiner: An iOS Energy Measurement
Framework

The contributions of this thesis, starting from this chapter, are evaluated on iOS apps [24]. Due to

the unique hardware architectural requirements of iOS apps, an energy measurement infrastructure

based on iOS is necessary. As a solution and the second contribution of this thesis, this chapter

presents iGreenMiner, an open-source iOS energy measurement framework.

4.1 Introduction

As per current worldwide market share, almost all smartphones either use iOS (14.9%) or Android

(85.1%) operating system [134]. While in the United States, iOS smartphones have a market share

of 49%, leaving others like Android, Windows Phone, SymbianOS, and Blackberry OS with the

rest of 51% [134]. Additionally, developers usually prefer the iOS platform for app development

because it generates more revenue than Android [73], [145]. Furthermore, a recent survey of iOS

app store reviews found that energy is a major concern for iOS users [102], [103]. iOS provides its

users with an estimate to monitor the energy consumption of their apps, meaning energy-hogging

apps are on the verge of getting uninstalled at any time. Moreover, iOS suspends apps that over-

consume power in the background for an extended period. Because of this suspension ability,

developers must ensure that their apps do not engage in unnecessary computation.

As a remedy, Apple already offers various solutions to iOS app developers. Firstly, it lets devel-

opers prioritize their tasks through a service class API that helps iOS determine the non-essential

background processes of an app. Secondly, XCode [22], an iOS app development environment,

34

provides a plugin called instruments that helps developers determine the improper usage of loca-

tion services, networking services, and CPU. Additionally, iOS defers network and system calls to

execute them as a bundle later when the user engages with the phone, a technique proven to help

reduce the energy consumption of Android apps [55].

These tools are limited in their ability because they do not provide absolute energy measure-

ments, and there is no open-source hardware-based iOS energy framework available that develop-

ers or researchers can use to measure the absolute energy consumption of their iOS apps. Due to

the absence of such a framework, no public dataset with the energy measurements of iOS apps is

available. Consequently, no energy estimation or prediction model is available for iOS apps.

The current hardware-based energy measurement tools [87], [89], [111], or software-based pre-

diction and estimation models [53], [67], [106] are Android specific and do not always generalize

to iOS apps. For instance, Agolli et al. [1] identified certain UI elements that affect the energy

consumption of Android apps. However, these elements are irrelevant to iOS because it offers

developers different UI-elements structural guidelines compared to Android [73]. Moreover, iOS

runs on a different hardware configuration than Android phones, and its development framework

follows a different architecture than Android. While some programming language-level contribu-

tions that suggest which programming language is energy efficient generally help developers [105],

the iOS framework-specific energy consumption problems still require attention.

This chapter introduces an open-source automated energy measurement framework for iOS

apps called iGreenMiner. The iGreenMiner framework allows developers to execute test cases of

their app and measure their app’s energy consumption. Researchers may also use the iGreenMiner

framework to collect iOS apps’ energy datasets. Such datasets will help build estimation and

prediction models and identify iOS-related energy greedy patterns.

4.2 Related Work

Hindle et al. [87] proposed GreenMiner, a hardware-based tool that developers use through an

open-source web service to measure the energy consumption of Android apps. Cruz et al. [61]

highlighted the issue of energy measurement error in the current energy prediction models and

proposed an automated framework based on the Monsoon meter. The framework proposes to

measure energy when the prediction model is inaccurate; however, to this date, it has not been

35

Figure 4.1: The iGreenMiner framework for measuring the energy consumption of an iOS device.

implemented. Matalonga et al. [122] collected a real-world large energy dataset to further the

energy consumption and optimization research.

Unfortunately, all of these measurement frameworks are limited to the Android platform.

Hence these measurement techniques can not benefit iOS developers.

4.3 How iGreenMiner works

To develop iGreenMiner, we use a physical device for energy measurement because hardware-

based energy measurements are more accurate than the software-based prediction models [87].

The iGreenMiner framework extends GreenMiner [87], an Android-based energy measurement

framework. Figure 4.1 presents an overview of our energy measurement infrastructure. This figure

represents four major components: an iOS device, an energy measurement device, a controller,

and a web service. To measure an app’s energy consumption, a user uploads their app’s code and

test cases to a web service. This web service informs the controller that deploys the app’s code

and executes its test cases on an iOS device. During the test case execution, the controller collects

the energy measurement of the iOS device through the measurement device. After completing the

test case executions, the controller provides the energy measurement results to the web service,

making these results available for users to download.

4.3.1 iOS Device

The iOS device we use for iGreenMiner is the iPhone 11 [8], running iOS version 13.4.1 [10].

This device has a non-removable 11.91 Wh (3,110 mAh) battery. Smartphone batteries degrade

36

with use over time, and such degradation reduces their ability to hold a full charge, causing the

smartphone to operate slowly. This aging factor can also affect energy measurements. To avoid

such a problem, we replaced the hard-fixed battery of the iOS device with a constant direct supply

of 4.2 Volts. Replacing the battery with a direct current supply required disassembling the iPhone

11, which voided its warranty. This step makes it difficult for developers to replicate this process

with expensive phones.

To perform the teardown, we used a hot patch to heat the lower edge of the iPhone and soften

the adhesive, making it easier to open. We then unscrewed 1.1 mm-long screws to detach the bat-

tery cover from the phone and removed the logic board cover that protected the battery connection

point. We also removed the components attached to the top of the battery configuration, such as the

speaker and the Taptic Engine, which supports haptic sensory and vibrations. Finally, we removed

the battery itself.

After removing the battery, we performed a teardown of the battery to access its connector,

which is attached to the phone’s logic board, and the terminals needed to provide direct voltage.

In the next step, we explain how we soldered the connector’s positive and negative terminals joints

with direct voltage-supplying wires.

It is important to note that the iPhone does not allow direct voltage supply and has a hardware

mechanism to prevent such activity. We can overcome this constraint by connecting an earth wire

to the iPhone’s steel body every time once before the phone starts. To avoid noise during energy

measurements, we switched off all the additional software-based services that iPhone 11 provides.

4.3.2 Measurement Device

For energy measurement, we use the Monsoon power monitor as a power draw measurement in-

strument [155]. We configure Monsoon to provide a direct voltage of 4.2 Volts to the iOS device

by connecting wires to its positive and negative terminals and attaching them to their correspond-

ing terminals on the battery connector. The Monsoon measures the current draw of the device

in milliAmps (mA) at a rate of 5,000 samples per second and reports the current value with a

timestamp back to the controller. The Monsoon was chosen for energy measurement because it

is a reliable and accurate tool widely used in the research community for energy measurement of

mobile devices [56], [87], [131] and hardware components [101].

37

4.3.3 Controller

We used a macOS computer as a controller to deploy apps and their test cases on the iPhone 11

and collect power measurements from the Monsoon power monitor. The controller collects power

measurements, converts them to energy as Joules (J) by execution time, and uploads them to a web

service.

If we connect the phone to the controller via USB, the USB provides extra voltage to the iOS

device and automatically turns on the charging state, even if the phone is on direct current supply.

The problem with the charging state is that the phone starts consuming resources at its full capacity,

which is not the usual state for a user who is using a smartphone. Therefore, we connected the iOS

device to the controller through WiFi to prevent the phone from going into the charging state.

In our case, the phone remains connected to the controller while the test cases run. Although

this is an overhead, we could not overcome it because the controller needs a continuous connection

with the phone during the test case execution to collect debug information, such as when the

app started running and when it stopped. We need the start and stopping times of the app to

filter out the raw power measurements that the Monsoon monitor provides. The Monsoon meter

reports measurements per millisecond, whereas the iOS reports the test run start and end time via

timestamps. We wrote a script that crops Monsoon’s provided measurements to sync it with the

actual test case executions. After time synchronization, our script integrates power and converts

it into energy, and finally, uploads the results over the GreenMiner web service (explained in the

next section).

We would like to mention a few more challenges that we faced because of the iOS platform

and how we overcame them during the energy measurement process.

1. The iOS platform imposes several constraints regarding app development for security pur-

poses. One of those constraints is app signing and certification. Each app deployment on the

iOS device must be correctly signed and certified; otherwise, the iOS framework does not al-

low the app to install. Another constraint is that the app’s provisioning profile expires every

10 days. We assign a unique bundle ID to each app instance to overcome this hurdle. Both

of these constraints limit the automation capability of our approach, and we had to manually

configure the testing apps continuously to overcome them during the energy measurements.

38

2. The Monsoon meter offers a serial port to connect with the controller. This serial port faces

concurrency issues when the controller tries to collect measurements from multiple iOS apps.

As a solution, we include a hardware piece (Apple’s official USB-C to USB Adapter) and

toggle this adapter through an open-source external library [129]. After every test run, the

toggle resets the connection between Monsoon and the controller.

3. We needed CLI-based implementation for automation. However, the iOS framework, unlike

Android, has several limitations when executing and testing applications via CLI. We employ

Apple Scripts to navigate via XCode for the smooth operation of specialized test scripts, such

as the ones that require user location simulation during execution. Simple scripts that do not

require specialized components, such as a Camera or GPS, can be run through CLI.

4.3.4 Webservice

For iGreenMiner, we have extended the GreenMiner’s web service, a free utility that runs 24x7 [86].

Developers and researchers can utilize this service to measure the energy consumption of their

apps.

The iOS app’s source code and test cases written using the XCTest test library [26], iOS’s

official testing framework, are required as input to use this web service. The web service then

provides the controller with the app and its test cases. The controller then executes the test cases

on the iPhone and simultaneously collects the power traces from Monsoon. It then aggregates the

measurements into an energy consumption report and sends it to the web service.

Once the web service receives the energy reports, the reports become available for users to

download.

4.4 Reliability and Reproducibility of iGreenMiner

The reliability of iGreenMiner depends on its power sampling rate, which is 5 kHz due to the

underlying measurement device, the Monsoon power monitor.

While Saborido et al. [148] found that 125 kHz is an ideal sampling rate for energy measure-

ment in Android apps, they also noted that the sampling rate requirement for determining an app’s

energy consumption is different from that for its methods. A 5 kHz sampling rate for apps is ac-

39

ceptable as it produces a median error of 13.27%. However, a 5 kHz sampling rate is insufficient

for methods, as the error can increase to 53.15% with a median of 0.54%. To ensure reliable results,

we recommend that users of iGreenMiner instrument their app to execute one method at a time in

isolation, execute each method multiple times, and consider the median energy consumption of

each method.

Several previous studies have also used the Monsoon power monitor to investigate energy

consumption in smartphone apps. Vásquez et al.[114] mined energy-greedy API usage patterns

in Android apps, while Li et al.[109] investigated best energy-saving programming practices.

Nguyen et al.[131] evaluated the impact of storage configurations on smartphone energy efficiency,

and Chen et al.[52] studied factors affecting power consumption in multimedia apps.

Replicating iGreenMiner is important for the research community as it contributes to the ex-

pansion of energy datasets and opens up opportunities for further research that will directly benefit

the development community of iOS applications. It should be noted that successfully replicating

iGreenMiner requires expertise in areas such as iOS app development, power measurements, and

smartphone hardware. For clarification and guidance during the replication process, it is recom-

mended to reach out to the author of this thesis.

To replicate iGreenMiner in your own lab, the following steps should be undertaken:

• Familiarize yourself with the principles and objectives of iGreenMiner, which is an energy-

aware mining framework designed specifically for iOS applications.

• Thoroughly analyze the scripts utilized by the iGreenMiner framework to collect power mea-

surements from the Monsoon monitor (runSingleBenchmark.sh), aggregate the results

(aggregateResults.py), and the main script for executing both measurement and aggre-

gation (runAllBenchmarks.sh).

• Obtain an iPhone model, a macOS machine to serve as the controller, and a Monsoon HVMP

power monitor to serve as a power measurement device.

• Carefully disassemble the iPhone and establish a direct connection between its power termi-

nals and the Monsoon power monitor.

40

• Utilize the iGreenMiner scripts to establish communication with the hardware setup and

carry out the necessary power measurements.

It is worth noting that during the replication process of iGreenMiner, one should be fully aware

of the underlying challenges that may arise at the iOS level, as discussed in Section 4.3 of the

thesis.

4.5 Potential research direction

In this section, we outline some research problems related to iOS energy-efficient app development

that researchers may address by using the iGreenMiner framework.

1. The iOS platform offers different structural guidelines for developers compared to An-

droid [73]. Developers may be unsure how to design energy-efficient apps while follow-

ing iOS regulations. By using iGreenMiner, we can develop energy-efficient guidelines on

how to layout UI elements in an energy-optimal manner. Previous studies have shown a

significant impact of developers’ UI choices on the energy consumption of Android applica-

tions [1].

2. Apple’s energy reporting tool, Instruments [92], reports energy ratings by measuring com-

ponent usage instead of actual energy consumption. By using iGreenMiner, we can improve

Instruments to predict actual energy measurement values for developers. A previous study

shows that components’ usage information can be used to build an energy-consumption pre-

diction model [54].

3. Unlike Android, where various energy prediction models are available [54], iOS developers

have to deploy iOS applications on a physical smartphone device to measure their energy

consumption. XCode, the iOS development IDE, offers an emulator for simulating iOS ap-

plications. By using iGreenMiner, we can collect execution logs and energy measurements,

relate simulation with system logs or code structure, and build a static energy prediction

model. Using this runtime information-based model, developers can estimate their app’s

energy consumption without running it on a physical smartphone.

41

4. Developers often want to develop cross-platform apps [42] using frameworks like Flutter,

PhoneGap, and ReactNative. Developers need to know how cross-platform iOS apps dif-

fer from native iOS apps in terms of energy consumption. By using iGreenMiner, we can

empirically evaluate the difference between native iOS apps and cross-platform built apps.

42

Chapter 5

Energy-aware configuration guidelines for
API parameters: A case-study of iOS Core
Location Framework

This chapter makes a third contribution to this thesis by proposing energy-efficient configuration

guidelines for API parameters aimed at reducing an app’s energy consumption. This chapter fo-

cuses on the iOS Core Location framework, for which we extract the energy-aware guidelines.

These guidelines help developers make informed design choices for accessing user-location in

their apps. Additionally, researchers may use the approach presented in this chapter to develop

energy-aware guidelines for other utility APIs, such as Core Graphics, Core Animation, and Core

Bluetooth. This chapter was published at ICSME 2021 [37].

5.1 Introduction

Despite energy consumption being a major concern for iOS users [103], and that app developers

prefer iOS over other development platforms [73], [145], the iOS platform, in general, suffers from

a lack of energy-efficient guidelines for energy-aware developers. Apple advises developers to

reduce the energy consumption of processing, networking, location, and graphics [9]. This advice

is particularly important for location services, given the pervasive use of location information in

various apps such as turn-by-turn map navigation, social networking, food and grocery ordering,

carpooling, and vehicle hire. Improper access to the user-location may prevent the device from

going into sleep mode, which keeps the location hardware powered on.

To access user location, Apple provides iOS developers with the Core Location framework

43

with multiple location services: Standard Location Service, Significant Location Service, Visits

Location Service, and Regional Monitoring Service. Each service is configurable to access user

location with a particular frequency and accuracy. This frequency and accuracy come at the cost

of battery life through energy consumption. Battery life with accuracy is an engineering tradeoff

decision a software developer needs to make while developing an app. Unfortunately, the current

Apple developer’s guide does not provide any information about such tradeoff [12]. It suggests

choosing the most energy-efficient service, but it does not provide details about which services are

most energy-efficient, as it says:

“Always choose the most power-efficient service that serves the needs of your app.” –Ap-

pleInc [20] (Core Location Documentation)

To address the limitation of these guidelines, we have extracted energy profiles of the loca-

tion services using iGreenMiner (Chapter 4). To profile the location services, we created 28 mi-

crobenchmarks, each representing a different location service configuration. We then use iGreen-

Miner to collect the energy measurements of each micro-benchmark (i.e. configuration) and an-

alyze these profiles to extract energy-efficient guidelines for the developers. Our analysis shows

that, overall, Visits Location Service is the most energy-efficient service, while Standard Location

Service is the least energy-efficient service. However, we find that Standard Location Service may

be configured with particular parameter values to consume the least energy among all other con-

figurations. Using the energy profiles of the location services, we created a graph that describes

the tradeoff between location access rate and energy consumption. Developers may use this graph

as a guide to prefer one location service over another. Finally, we have evaluated the effective-

ness of these guidelines on three real-world apps and a benchmark app that Apple provides to its

developers to fetch user location. On real-world apps, we reduced a median of 10.59% energy

consumption; on the benchmark app, we reduced 11.37% energy consumption.

Our results have the potential to guide developers in making informed, energy-efficient design

choices for accessing user-location in their app before execution. The underlying contributions of

this chapter are as follows: (1) Location framework benchmarks. Microbenchmarks with multiple

configurations of the iOS Core Location framework. Researchers and developers may use these

microbenchmarks to investigate the effects of location services on app qualities other than en-

ergy consumption, such as runtime performance and user experience. (2) Recommendation guide.

44

Guidelines that help developers may use to make energy-efficient design choices while using the

iOS Core Location framework.

5.2 Related Work

Recent studies have shown that developers are unaware of which parts of their code consume

energy and how their code changes may affect energy consumption [119], [140], [143], [169],

[177]. Several researchers have helped developers through recommendation guides and energy

optimization techniques.

5.2.1 Recommendation Guidelines

There have been several empirical studies to help developers be aware of the development practices

that affect energy consumption. Manotas et al. [120] introduce a decision-support framework for

developers to make energy-efficient choices using Java Collections API. Similarly, Hasan et al. [83]

identify the effect of various Java collection classes on energy consumption and provide guidelines

to the developers to reduce energy. Chowdhury et al. [55] introduced an architectural design pattern

developers may follow to reduce energy consumption. In a recent study, Oliveira et al. [135] have

shown that different development approaches impact the energy consumption of Android apps.

5.2.2 Optimization Techniques

Pinto el al. [144] investigated refactoring techniques that developers can adopt to reduce energy

consumption. Pambola et al. [139] have conducted an empirical study to find out how code smells

affect smartphone apps energy consumption and which code smells are the most energy-hungry.

Mazuera et al. [123] have extensively studied code commits of Android and iOS apps to extract

performance bugs. The author then proposes a taxonomy that developers may follow to build

tools for detecting and optimizing energy bugs. Couto et al. [59] statically analyzed Android apps

to detect energy-greedy patterns and propose an automated refactoring technique to eradicate the

detected patterns.

This chapter is closest to the investigation done by Schuler et al. [151] in terms of provid-

ing an energy recommendation guide for developers. Schuler et al. [151] evaluate the impact of

45

third-party framework calls on energy consumption. Contrary to this chapter’s technique, their

study considers all calls to frameworks collectively instead of an in-depth investigation of a single

framework. Their study also does not provide any recommendation guidelines to developers.

5.3 iOS Core Location Framework

This section provides a brief overview of the five location services that the iOS Core Location

framework provides:

• Standard and Significant Location Services: tracks changes in user location with config-

urable accuracy,

• Regional Monitoring Service: tracks user entry and exit from specific regions,

• Beacon Ranging Service: tracks presence near a beacon,

• Visits Location Service: tracks the location where a user has spent a significant amount of

time, and

• Compass Headings Service: tracks user direction.

Some of these services are configurable with additional parameters. Developers may use these

parameters to change the location-accuracy and location-access-frequency. In this chapter, we

investigate how these parameter configurations affect energy consumption. We exclude the Beacon

Ranging Service and Compass Headings Service from our investigation because they do not report

user location. Beacon Ranging Service detects a user’s presence near a beacon, and Compass

Headings Service detects a user’s movement direction.

Standard Location Service This configurable service provides real-time user location. Accord-

ing to the iOS documentation [16], it is the most power-hungry service because it provides the most

immediate location with the highest accuracy. The documentation recommends using this service

only when an app requires real-time location, such as for navigation instructions or recording a

user’s hiking path.

46

Developers may configure this service through two parameters: desiredAccuracy and distance-

Filter. The former may be set to Best, HundredMeters, Kilometer, Navigation, Three-

Kilometers, or NearestTenMeters. The latter pauses the location service from fetching fur-

ther locations unless the user movement exceeds the specified distance (in meters). By default,

desiredAccuracy is set to Best and distanceFilter is set to None (i.e., the service updates

the location for any user movement).

Given the lack of documentation about how these values affect energy consumption or location

accuracy, developers may find it difficult to decide which value best suits their needs. In particular,

Apple’s documentation [16] provides a few guidelines for setting the value of desiredAccuracy.

First, the developer should avoid setting the accuracy level to Best or NearestTenMeters unless

the app requires location updates every few meters. Second, in practice, the framework provides

more accurate data than requested. For instance, accuracy ThreeKilometers provides an accu-

racy closer to one-hundred meters, this guideline from Apple is vague. This brief documentation of

the configuration parameters does not help developers determine how these parameters may affect

the energy consumption of their apps.

Significant Location Service According to Apple’s documentation [15], developers should use

this service to get the current location and be notified only when the user has covered a significant

distance. This service does not offer any configuration parameters, and its distance accuracy value

is not specified in the documentation. The documentation states that Significant Location Service

is the most energy-conservative service but provides the least location accuracy [15].

Visits Location Service This service detects only noteworthy movements of a user [17]. The

service is not intended for real-time location data but rather to identify patterns in user location.

The service has a parameter: activityType, which pauses location updates according to its

type: other, automotiveNavigation, fitness, otherNavigation, and airborne. The

automotiveNavigation option pauses the service location updates if it detects the user not

traveling in an automotive. Similarly, fitness works for pedestrian activities where indoor po-

sitioning is disabled. The otherNavigation option works for the navigation of boats, trains, or

planes. There is no information available regarding other or airborne in the documentation,

47

1 // Initializing Standard Location service
2 locationManager.desiredAccuracy = kCLLocationAccuracyBest;
3 locationManager.distanceFilter = 4096;
4 locationManager.startUpdatingLocation();
5
6 // Initializing Significant Location service
7 locationManager.startMonitoringSignfcntLocationChanges();
8
9 // Initializing Regional Monitoring service

10 let maxDistance = locationManager.maximumRegionMonitoringDistance;
11 let region = CLCircularRegion(center: center, radius: maxDistance,

identifier: identifier);
12 region.notifyOnEntry = true;
13 region.notifyOnExit = false;
14 locationManager.startMonitoring(for: region);
15
16 // Initializing Visit Monitoring service
17 locationManager.startMonitoringVisits();
18 locationManager.activityType = CLActivityType.fitness;

Figure 5.1: An example illustrating how to configure various services offered by the iOS Core
Location framework.

however, the default activityType is other.

Regional Monitoring Service This service is a low-energy alternative for a scenario where the

app needs to identify the user presence within a certain geographical region [14]. A geographical

region is a circle with a radius and a center point on the Earth’s surface. To begin monitoring a re-

gion, the developer has to define a geographical region in their code. The service starts monitoring

the user presence in the defined region immediately after the app starts.

Figure 5.1 provides a code example that shows how developers may initialize each location

service to access user location. Line 2–Line 4 represent the usage of Standard Location Service,

initializing desiredAccuracy to Best and distanceFilter to 212 meters. Line 7 represents

the usage of the Significant Location Service. Lines Line 10–Line 14 represent the usage of Re-

gional Monitoring Service. Line 10 defines the maximumDistance of the region, while Line 11

defines a region using a radius and a center. The center contains a latitude and a longitude.

Line 14 initiates the user location monitoring for the specified radius. Line 17–Line 18 represent

the usage of the Visits Location Service, initializing its parameter activityType with fitness.

48

Table 5.1: The microbenchmark configurations that we have created for evaluation. Each configu-
ration implements a different location service with different parameter values. S1–S20 represent
configurations for Standard Location Service. V1–V6 represent configurations for Visits Loca-
tion Service. SG and RM (not part of this table) represent the Significant Location Service and
Regional Monitoring Service, respectively.

distanceFilter desiredAccuracy

Best Hundred Meters Kilometer Navigation

24 S1 S6 S11 S16

28 S2 S7 S12 S17

212 S3 S8 S13 S18

216 S4 S9 S14 S19

None S5 S10 S15 S20

activityType

airborne automotiveNavigation default fitness other otherNavigation

Configuration V1 V2 V3 V4 V5 V6

5.4 Energy Profiling of the Location Services

To help developers determine how various location services and their parameters affect energy

consumption, we have created microbenchmark configurations of the location services. We use

iGreenMiner to profile their energy consumption. This section presents the location services mi-

crobenchmark configurations and the test scenarios for evaluating these configurations.

5.4.1 Microbenchmark Creation

To extract the location services energy profile, we have created a basic iOS app structure that

accesses user location. Based on this structure, we have created multiple microbenchmark config-

urations. Each configuration implements a different location service with various parameter values.

For Significant Location Service and Regional Monitoring Service, we have created only one con-

figuration because they do not have any parameters to configure. For Visits Location Service, we

have created 6 configurations, each having a different value for the parameter activityType. For

Standard Location Service, we have created 20 configurations; each has a different value for the

parameters desiredAccuracy and distanceFilter. For each value for desiredAccuracy,

49

we have selected 5 different values for distanceFilter: 24 meters, 28 meters, 212 meters, 216

meters, and None (i.e., zero meters). Table 5.1 outlines all 28 configurations.

We do not consider the values of desiredAccuracywith ThreeKilometers and Nearest-

TenMeters, because their functionality may be achieved with a combination of desiredAccuracy

values set to Kilometer and Bestwith a distanceFilter set to 3000 meters and 10 meters,

respectively. To accurately generate the energy profiles of the configurations, we run multiple test

scenarios 5 times on each configuration and compute the median energy measurement value as

the representative of a configuration. We ideally wanted to profile 10 energy measurements for

each configuration but that would require 46.6 hours of manually-monitored execution of one test

case on 28 benchmarks. To avoid this infeasible time of execution, we had to decrease the number

of test case executions to 5 for each configuration. To assess the impact of reducing the number

of measurements to 5 for each configuration, we calculated the relative standard deviation of the

energy measurements. This measure provides an indication of the variability within the data set.

In our analysis, we found that the relative standard deviation, resulting from 5 measurements, was

7.37%. This indicates a moderate level of variability in the energy consumption values obtained

from the test scenarios. While a larger number of measurements would have reduced the relative

standard deviation and potentially increased the precision of the analysis, the decision to conduct

5 measurements strikes a balance between resource constraints and obtaining meaningful insights

into the energy profiles of the configurations. However, to mitigate the risk of outliers, we used

median energy from the measured samples from the iGreenMiner.

5.4.2 Energy Measurement through iGreenMiner

To precisely measure the location service usage while the whole app is running, we first need to

know how a location service works. Per its parameter configurations, a location service initializes

a handler that constantly tracks a user’s movement using an accelerometer sensor. It fetches the

location using GPS, cellular network, iOS beacon, or WiFi after each several meters. Since our

goal is to evaluate the energy consumption of a location service usage and not its initialization, we

exclude the handler initialization part from the energy measurements. To achieve that, we crop the

energy measurement of the initialization of the handler through a time synchronization script and

measure the energy consumption of movement tracking and location fetching only. To evaluate the

50

Figure 5.2: A path for a user traveling from Northgate Centre to Kingsway Mall.

configurations, we run two test scenarios on each configuration.

1. The first test scenario: measures the energy consumption of location fetching only and keeps

the location stationary.

2. The second test scenario: measures the energy consumption of location fetching with user

movement, simulating a user travelling from one point to another. Figure 5.2 shows the path,

using Google Maps, where the user covers approximately 5.2 kilometers in 600 seconds from

Northgate Centre to Kingsway Mall in Edmonton, AB, Canada. Using Xcode 11.3 [22], an

iOS app development platform, we simulate the user location.

To avoid erroneous energy measurements, we keep the screen brightness constant throughout

the execution of a test case [69]. To log the number of locations accessed by a configuration

(i.e., location access rate) during each test case execution, we instrument each configuration and

re-execute the test cases on it separately. As a result, for analysis and comparison, we collected

140 non-instrumented and 140 instrumented energy measurements.

51

5.4.3 Accurate Energy Measurement

To ensure accuracy throughout our empirical evaluation, we took 3 main measures. First, the de-

vice could not be locked during a test case execution. This is a constraint of Xcode [22] that for a

locked device, it loses connection with the device under test. As an alternative, to mimic the test en-

vironment of a real user, when the app is run in the background, we decrease the display brightness

to the lowest point such that the screen becomes unreadable and consumes the least energy [69].

Second, installing the app and initializing the location service handler is an overhead to our energy

measurements. To avoid this overhead, we start measuring energy after the initialization of the app

and the handler. Finally, installing the same configurations and accessing the same location infor-

mation multiple times may introduce performance differences due to cached app data. To avoid

location data caching, we completely wipe out the app’s data and install altering configurations

each time before each test run.

5.5 Which Location Service Should You Use?

To help developers understand the effect of using a particular location service on energy consump-

tion, we have profiled the energy consumption of all the configurations from Table 5.1. We then

evaluate those configurations by answering the following research questions:

RQ1: Does using a particular location service affect the energy consumption of an app?

RQ2: Which location service configuration may help developers reduce the energy consump-

tion of their app?

RQ3: Do the default location service configurations yield energy-efficient code?

RQ4: Does the energy consumption of a location service change if it runs in a background

service instead of a foreground service?

RQ5: Which location service configurations perform best in accessing most locations while

consuming the least energy?

52

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

393 449389387374 377 386385 458 463415398 463454419398 460390378 384 387 391369 379374 384371 385300

325

350

375

400

425

450

475

500

V1 V5 S12 V3 S13 S7 V2 S8 V4 V6 S15 S14 S11 S9 S10 S6 SG RM S19 S4 S18 S3 S1 S20 S16 S5 S17 S2

Configurations

A
ve

ra
ge

 E
ne

rg
y

(J
ou

le
s)

Figure 5.3: The energy profile of each microbenchmark configuration from Table 5.1. Values
above the microbenchmark name along the x-axis represent the median energy consumption in
Joules. Y-axis represents the average energy consumption in Joules.

5.5.1 Effect of Using A Particular Location Service (RQ1)

To evaluate the energy profiles of the configurations in Table 5.1, we ran the second test scenario

described in Section 5.4.2 on the configurations. Figure 5.3 represents the energy profiles of each

configuration. To investigate the difference in the energy consumption across the services and

across configurations, we ran the Kruskal-Wallis rank sum test, and found a p-value p < 0.05 for

both of them. This p-value indicates that both services and configurations are statistically signifi-

cant factors in relation to energy consumption. It implies that different services and configurations

can exhibit statistically significant differences in energy consumption. Across all configurations,

the minimum energy consumed by a configuration is 373 joules, and for the same purpose (loca-

tion access), the maximum energy consumed by another configuration is 463 joules. This result

shows that if developers choose a particular service with certain parameter values, such as S2,

it may increase the energy consumption of their app up to 23.97% while performing the same

functionality.

To determine the effect of each service parameter value on energy consumption, we evaluated

the configurations of Standard Location Service and Visits Location Service by applying pairwise

Wilcoxon rank-sum test [84] on the energy measurements of these configurations. We keep α

(significance level) as 0.05 and apply the Bonferroni adjustment method to address the risk of

type-I error [168]. Table 5.3 and Table 5.2 shows the results of our test. For Standard Location

53

Table 5.2: Energy consumption difference (p-values for Wilcoxon rank sum test) among the con-
figurations of Visits Location Service for the activityType parameter.

activityType Airborne AutoNav Default Fitness Other

AutoNav 1.000 - - - -
Default 1.000 1.000 - - -
Fitness 1.000 1.000 1.000 - -
Other 1.000 1.000 1.000 1.000 -
OtherNav 1.000 1.000 1.000 1.000 1.000

Table 5.3: Energy consumption difference (p-values for Wilcoxon rank sum test) among the con-
figurations of Standard Location Service for the desiredAccuracy parameter.

desiredAccuracy Best HundredMeters Kilometer

HundredMeters 0.048 - -
Kilometer 0.048 1.000 -
Navigation 1.000 0.048 0.048

Service, there is a statistically significant difference among the configurations of different values

of the parameter desiredAccuracy. The bold values indicate p < 0.05. For Visits Location

Service, varying values of the activityType parameter do not cause any significant difference.

The p-values < 0.05 indicate that developers should carefully configure the parameters while

using the Standard Location Service. However, in the case of the Visits Location Service, the

choice of a configuration does not matter because there is no difference among the energy con-

sumption of its configurations.

Guideline 1 (G1): Developers should be conscious about choosing a location service

configuration because choosing an energy-hungry configuration may increase the

energy consumption by up to 23.97%.

5.5.2 Effect of Configuring Location Services (RQ2)

To answer RQ2, we ranked all configurations based on the energy profiles we collected for RQ1.

Across all configurations, Visits Location Service consumes the least energy, followed by Regional

Monitoring Service, Significant Location Service, and Standard Location Service. In particular,

54

●
●

●

●

●
●

●

●

●

●

desiredAccuracy:Best desiredAccuracy:Hundred desiredAccuracy:Kilometer desiredAccuracy:Navigation

Non
e

2^
4

2^
8

2^
12

2^
16

Non
e

2^
4

2^
8

2^
12

2^
16

Non
e

2^
4

2^
8

2^
12

2^
16

Non
e

2^
4

2^
8

2^
12

2^
16

300

350

400

450

500

distanceFilter

A
ve

ra
ge

 E
ne

rg
y

(J
ou

le
s)

Figure 5.4: The energy profile for each configuration of Standard Location Service. The default
values of desiredAccuracy and distanceFilter are Best and None (i.e., zero meters).

V1 and V5 from Visits Location Service and S12 from Standard Location Service perform better

than all other configurations while providing the same functionality.

Guideline 2 (G2):Across all configurations, Visits Location Service is the most en-

ergy efficient choice for developers while Standard Location Service is the worst

choice.

To identify the most energy-efficient configurations within Standard Location Service and Vis-

its Location Service, we compare the energy profiles of the configurations of these services. Fig-

ure 5.4 shows the energy profile for each Standard Location Service configuration. Each box

plot represents the five energy measurement values collected for each configuration, and the x-

axis represents the values of the parameter distanceFilter. Each boxed section represents the

parameter desiredAccuracy. Considering the median energy profiles, the best configuration

of Standard Location Service is when the value of desiredAccuracy is Kilometer and the

distanceFilter value is 28 meters. On the other hand, this service performs the worst when the

desiredAccuracy value is Best and the value of distanceFilter is 28 meters.

Similarly, Figure 5.5 shows the energy profiles of each Visits Location Service configuration.

For this service, developers may use any configuration because it has no configuration that stands

out in terms of energy efficiency.

55

●

●

350

400

Airborne AutoNav Default Fitness Other OtherNav

activityType

A
ve

ra
ge

 E
ne

rg
y

(J
ou

le
s)

Figure 5.5: The energy profile for each configuration of Visits Location Service. The default value
of parameter activityType is other.

Guideline 3 (G3): The most energy-efficient configuration for Standard Location

Service is to set desiredAccuracy to Kilometer and distanceFilter to 28

meters (configuration S12).

5.5.3 Effect of Default Configuration Parameters (RQ3)

If the default parameter values in the Standard Location Service and Visits Location Service are

energy-efficient, developers will not have to worry about the parameter values of these location ser-

vices. To evaluate the default configurations, we have executed the second test scenario described

in Section 5.4.2 on the default configurations and microbenchmark configurations and compared

their energy profiles.

For Standard Location Service, the default values of desiredAccuracy and distance-

Filter are Best and None (i.e., zero meters), respectively. These values represent the S5 config-

uration in our microbenchmarks. Observing the energy measurements of Standard Location Ser-

vice, Figure 5.4 shows that the default parameter values are not the most energy optimal choice. In

fact, the default setting (S5) performs the third worst within the 20 configurations of Standard Lo-

cation Service. Also, regarding location access rate per second, the default configuration performs

second to another configuration.

56

For Visits Location Service, the default value of its parameter activityType is other,

see Figure 5.5. As previously discussed, there is no difference across the energy consumption

of Visits Location Service configurations. Therefore, the default configuration for Visits Location

Service is a safe option for developers to use in terms of energy consumption.

Guideline 4 (G4): Developers should not use the default configuration of Standard

Location Service, because it is not energy efficient. On the other hand, the default

configuration for Visits Location Service is equally energy efficient to other location

service configurations.

5.5.4 Background vs Foreground Service (RQ4)

Depending on its requirements, an app may access location information while running in the back-

ground of the UI thread; for instance, a fitness app that continuously accesses locations while the

phone is locked and inside the user’s pocket. Contrarily, an app might access location while run-

ning in the foreground of the UI thread; for instance, a map-navigation-app continuously accessing

location while the phone is docked at a car’s dashboard. The scope of our study is limited to apps

that access locations in the background of the UI thread. However, for a brief comparison of the

effects of accessing location in the background vs foreground, on energy, we re-execute the second

scenario from Section 5.4.2 on our configurations in the foreground of the UI thread.

To compare the energy profiles of location access in the background of the UI thread against

that in the foreground of the UI thread, we ran a paired Wilcoxon signed rank test between the

two observations with Bonferroni adjustment applied to address the risk of type-I error [168]. As

a result, we get p = 7.4e − 9 for the difference in energy consumption and p = 0.1185 for the

difference in location access rate. This result implies that for α kept 0.05, there is a statistically

significant difference among the observations for energy consumption. At the same time, there is

no statistically significant difference among the observations for location access rate.

The average energy consumption for background and foreground services is 402.07 joules and

1,255.20 joules, respectively. This overhead energy difference is due to several factors. The iOS

operating system generally provides more resources to foreground tasks because they directly inter-

act with the user [18]. Additionally, the screen consumes more energy for foreground services [69]

57

because the screen is dark for background services, whereas, for the foreground execution, the

screen is well-lit with a white background. However, a detailed investigation is required to reason

about the difference between the two observations, which is out of the scope of this study.

Guideline 5 (G5): The energy consumption of accessing location information in the

foreground of the UI thread is 3× higher than accessing it in the background of the

UI thread.

5.5.5 Dominating Configurations (RQ5)

We have previously shown that among all configurations, Visits Location Service is the best,

whereas Standard Location Service is the worst in terms of energy consumption. However, what if

the developer is interested in the frequency of location access, and Visits Location Service provides

the least number of locations, whereas Standard Location Service provides the most? Suppose an

app requires frequent location updates (e.g., for map navigation). In that case, the app developer

typically aims to use a service that accesses locations most often while using the least energy.

To find out the location service that has the most number of location accesses with the least

amount of energy consumption, we execute the second test scenario described in Section 5.4.2 on

the microbenchmark configurations twice: (1) in the background of the user interface (UI) thread

and (2) in the foreground of the UI thread.

We use a better-than-graph: a directed graph where a source node represents a better config-

uration than the target node to present the Pareto-optimal solutions. This graph helps developers

know which location service configurations dominate others in terms of less energy consumption

and high location access rate. Figure 5.6 depicts this better-than-graph. For accessing locations at

the foreground of the UI thread, S6, S10, S12, S14, and S15 from Standard Location Service, as

well as V1 from Visits Location Service are the most dominating solutions. While for accessing

locations at the background of the UI thread S10, S12, and S15 from Standard Location Service,

as well as V1 from Visits Location Service are the most dominating solutions.

Guideline 6 (G6): Our graph guides developers to choose a location service based

on a trade-off between location access rate and energy consumption.

58

v1 s12 s10

v5

v3

s13 s7

s2

s6

s20

s14

s11 s5

s8

v2 SG

RM

s9 s1

s16 s17v4

s19

v6

s4

s18s3

Optimality
Level: 1

Optimality
Level: 2

Optimality
Level: 3

Optimality
Level: 4

Optimality
Level: 5

s15

(a) Benchmarks ran at Foreground

v1 s12 s15 s10

v5 v3 s13 s7 s2 s6 s20

s14 s11 s5

s8v2
SG RM s9 s1 s16 s17

v4 s19

v6 s4

s18

s3

Optimality
Level: 1

Optimality
Level: 2

Optimality
Level: 3

Optimality
Level: 4

Optimality
Level: 5

Optimality
Level: 6

Optimality
Level: 7

(b) Benchmarks ran in Background

Figure 5.6: The graph represents microbenchmarks which are better than the others when run at
the background or foreground of a device. For example, an edge (line) from S12 to S13 means that
S12 is better, it has lower energy cost and higher location access rate than S13. Optimality Level
represents configurations that collectively dominate other configurations, e.g., Level 1 to Level 7
means most optimal to least optimal.

59

5.6 Discussion

5.6.1 Comparing Our Guidelines with the Apple iOS Energy Guidelines

We compare the results of our study with the official energy guidelines provided by Apple [11]–

[13]. Although there is a lack of documentation for the location services, Apple provides some

general energy guidelines. We provide a summary of the Apple guidelines (AG) and compare

them to our own set of guidelines.

• AG1: Visits Location Service is the most energy-efficient choice when the app needs a user

movement pattern instead of real-time locations. AG1 is recommended for a scenario when

an app needs the location only if the user has spent a significant amount of time at that

location.

• AG2: Significant Location Service is the most power-efficient way when the app needs

continuous live locations. AG2 is recommended when real-time location updates are less

frequently required.

Our results complement AG1, as we have previously shown that Visits Location Service is the

most energy-efficient choice compared to the other location services (G2). However, contrary to

AG2, we recommend that developers may prefer some specific configurations of Standard Location

Service and Visits Location Service over Significant Location Service. Such as S6, S10, S12, S14,

and S15 of Standard Location Service, and V1 of Visits Location Service, while running in the

foreground of the app because these configurations always perform better than Significant Location

Service in terms of both location access rate and energy consumption (G6).

• AG3: Standard Location Service uses significantly more power than other location services,

but it delivers the most accurate and immediate location information.

Our results partially complement AG3. We discovered that Standard Location Service delivers

the most frequent updates and is collectively the most energy-intensive service (G4). However, we

have shown that if Standard Location Service is configured with particular parameter values (S10,

S12, S15), it is more energy efficient and has a higher location access rate than Visits Location

Service and Significant Location Service (G3).
60

• AG4: Developers should stop location services when the location is not needed anymore.

AG4 is not covered in our test scenarios because our goal is to evaluate the energy consumption

of the service itself when it is running. However, it is reasonable to believe that stopping service

will reduce energy consumption.

• AG5: Setting Standard Location Services’ desiredAccuracy to Best is the most energy-

hungry decision for developers, but it provides the most number of locations at the same

time.

Unlike AG5, our experiments have shown that the suggested setting performs second best (0.83 lo-

cations per second for background, 0.84 locations per second for foreground) to another setting

where the desiredAccuracy is set to Hundred meters (0.905 locations per second for back-

ground, 0.89 locations per second for foreground). This alternate setting also consumes less energy

than the proposed setting in AG5. A further in-depth investigation is required to determine why

Best, with a lower location access rate, consumes more energy than Hundred meters.

• AG6: Defer location updates from the services. Queue the locations and process them all at

once some time.

AG6 is an interesting guideline. Similar to prior work [55], queuing up processes has reduced

energy consumption due to fewer context switches. However, evaluating AG6 is out of the scope

of our study.

5.6.2 Why Are There Energy Differences Among the Location Service Con-
figurations?

The total energy consumption cost of a location service configuration comes from three properties:

movement tracking sensors, service handler callbacks, and location fetching.

1. Movement tracking sensors: The desiredAccuracy and distanceFilter parame-

ters of the API track physical activity and distance covered through the accelerometer sensor

to report location after a desired interval. The computation from the accelerometer sensor

requires energy consumption.
61

2. Service handler callbacks: The service handler sets up necessary components to manage the

location service. One would expect that higher frequencies of callbacks correlate with more

energy consumption.

3. Location fetching: This involves retrieving location information from various sources such

as mobile data, Wi-Fi, and GPS. The process of obtaining location data requires communi-

cation with these hardware components and can consume varying levels of energy.

Considering these three properties provides insights into the energy consumption associated

with a location service configuration. By optimizing these aspects, developers can effectively

manage and reduce the energy cost of location-based functionality in their applications.

We want to investigate which property out of the three properties changes due to parameter

values and eventually affects energy consumption. Movement tracking sensors include the ac-

celerometer sensor, which stays constantly active when the phone is in motion. Service handler

computation involves the handler initialization and call frequency. The frequency of handler calls

is configured by the distanceFilter parameter. Location fetching involves utilizing hardware

components by accessing locations through a combination of nearby iOS beacons, network routers,

cellular towers, and GPS.

Among these functionalities, we are interested in the location fetching part of our study, since

the primary purpose of a location service is to fetch user location. To investigate the cost of

location fetching alone, we execute the first test scenario from Section 5.4.2 on all configurations

in the foreground of the UI thread. We investigate the location fetch energy cost by keeping the

phone location stationary. A stationary location limits the usage of movement sensors and reduces

the service handler cost, including movement tracking.

We performed an unpaired Wilcoxon rank-sum test on the energy measurements to measure the

difference among the benchmarks for this test scenario. The results show that for α = 0.05, and the

Bonferroni adjustment method applied, all resultant p-values are > 0.05, implying no statistically

significant difference among the configurations regarding energy consumption. This result shows

that the energy difference observed among the configurations is mainly due to two reasons: (1)

frequency of the location fetching handler calls and (2) sensor usage for movement tracking.

62

5.6.3 Do Our Guidelines Help Improve the Energy Consumption of Real-
World Apps?

To evaluate the usefulness of our guidelines, we have evaluated them on real-world apps. We re-

place real-world apps’ current location service implementation with an energy-optimal alternative

according to the better-than-graph from Figure 5.6. To profile the energy consumption, we execute

the second test scenario from Section 5.4.2 on the original app and its modified (energy-optimal

alternative) version. To automatically detect the usage of a location service and its parameter val-

ues, we have extended SWAN [163], an iOS static analysis framework. Our extension searches for

method calls and configuration parameters of any location service usage.

Selecting Real-World Apps

To find real-world apps that use the Core Location framework, we have explored the occurrence

of code snippets on Github [93] using the search string “locationManager.start” 1. This

string represents the usage of location service in iOS apps. As a result, we found 155 apps that use

multiple programming languages. Since Apple recommends Swift for development on iOS [19],

and iGreenMiner supports Swift, we exclude the apps that do not use Swift as a programming

language. This step leaves us with 40 apps that are academic assignments, course projects, and

professional apps for Apple’s app store.

Across these 40 apps, we applied the following exclusion criteria: Swift version older than 5,

build failure, login credentials not provided, and the app crashes. This filtration leaves us with

three app categories: property search, weather, and location utility. We then picked one app from

each category for this evaluation. In addition to real-world apps, we consider Apple’s provided

sample code implementation of the location service [6]. This sample code demonstrates the usage

of location services for developers.

Results

Property Search App [98] this app helps users find real estate properties near their location.

The app uses Standard Location Service with desiredAccuracy set to NearestTenMeters,

and distanceFilter set to None. This setup is equivalent to setting desiredAccuracy to

1https://github.com/search?q=locationManager.start&type=code

63

Best and distanceFilter to 10. The closest representative setup for this configuration in our

study is S1.

To optimize this app, we replaced the current app S1 implementation with S12 because Fig-

ure 5.6a suggests that S12 accesses more locations than S1 with less energy usage. As a result,

with an energy-efficient alternative, we reduced the energy consumption by 0.42%. The impact is

negligible since the app only accesses the user location once during the test scenario.

Weather App [137] this app reports the weather of the current user location. The app con-

tinuously monitors the user’s location and updates the weather at every location access. The app

uses Standard Location Service with desiredAccuracy set to HundredMeters and distance-

Filter set to None. This configuration represents S10 in our study.

To optimize this app, we replaced the current app S10 implementation with S12 because Fig-

ure 5.3 shows that it is the most energy-efficient configuration for Standard Location Service. As

a result, by replacing the app’s actual location service implementation with an energy-efficient

alternative, we reduced the energy consumption by 10.59%.

Location Utility App [159] this sample utility app provides a user interface that continuously

reports user location changes with address, speed of movement, direction and altitude. It also

performs geocoding, i.e., converting latitude/longitude coordinates to a user-friendly description.

The app uses Standard Location Service with desiredAccuracy set to Best and distance-

Filter set to None. This configuration represents S5 in our study.

To optimize this app, we replaced the current app S5 implementation with S12 because ac-

cording to Figure 5.6a, S12 accesses more locations than S5 with less energy usage. As a result,

by replacing the app’s actual location service implementation with an energy-efficient alternative,

we reduced the energy consumption by 26.91%.

Apple’s Benchmark App [6] this is a demo app that Apple provides iOS developers to track

user location changes and draw a trail over the map as the user moves. The app uses Standard

Location Service with desiredAccuracy set to Best and distanceFilter set to None. This

configuration represents S5 in our study.

64

Similar to the location utility app, we replaced the current app S5 implementation with S12.

As a result, we reduced energy consumption by 11.37%.

5.7 Threats to Validity

We ran all our experiments on a single smartphone device with a single operating system. This

setup restricts the generalizability of our results to a single device/operating system configuration.

Due to the expensive hardware costs that entail iOS measurement, we evaluate our benchmarks

on one of the latest devices running iOS 13.4.1. Although our absolute energy measurements

depend on a single device configuration, the relative energy difference between the location service

configurations should stay the same. This hypothesis requires further investigation, which is out

of the scope of this chapter. Another threat is that our results can not be generalized on iPhone

versions other than 11 or iOS versions other than iOS 13.4.1. However, our methodology for

evaluating the core location framework will stay relevant.

Applying our configuration guidelines to apps may impact the user experience. For example,

if a developer chooses to implement Visits Location Service to save energy, it might not meet

the needs of users who require real-time location updates. Users may express dissatisfaction for

various reasons. Some may find the app’s infrequent updates cause them to miss real-time updates

or important information. Others may perceive the app’s data as inaccurate, leading to unreliable

or misleading results. Additionally, configurations that provide accurate data but consume more

energy may raise user concerns about the negative impact on their phone’s battery life. Hence,

developers must consider these trade-offs, balancing energy optimization and user needs to ensure

a satisfactory user experience of their apps.

Instead of physically moving the smartphone, we simulate the user’s location. This limitation

is because moving for 10 minutes around the city five times for each benchmark, while having

28 benchmarks, requires 23 hours of traveling along with the iGreenMiner hardware, which is a

prohibitively expensive process. However, physical movement in such an experiment is essential

because users use their phones in a heterogeneous network environment that causes several discon-

nections between WiFi and GPS. Moreover, cellular tower distance, surface elevation and signal

range variation may affect energy consumption. For example, in an urban city, a user experiences

frequent context switches compared to rural areas because urban cities often have more cellular

65

towers than rural ones. Unfortunately, our mobility was restricted while conducting the experi-

ments due to the Covid-19 pandemic. However, our experimental setup retains the relative energy

difference among the location service configurations.

5.8 Conclusion

As a software development manager, the decision of whether to adhere to Apple’s official recom-

mendations for configuring the iOS Core Location framework or implementing custom configura-

tions depends on various factors. These factors include the specific requirements and constraints

of their app, the importance of energy efficiency in their target market, and the resources available

to their development team.

It is worth considering that the Apple recommendations serve as a starting point and are de-

signed to provide general guidelines for developers in order to use an API. However, they may

not fully address the unique needs and considerations of an app or its target audience. Therefore,

following the recommendations, as it is, may not always result in the most energy efficient solu-

tion for a specific scenario. On the other hand, using custom configurations of an API that are not

documented in Apple’s guide requires a deep understanding of the energy consumption of each

configuration. Our approach is beneficial for software development teams that lack the expertise

and resources to conduct extensive testing of all possible API configurations. It enables developers

to make fine-grained decisions regarding API usage, so that developers can fulfill their users’ needs

efficiently.

Some of the guidelines derived in this study are intuitive; however, prior to our study, there

was no empirical evidence available in the literature to support this intuition. To overcome these

limitations, we have provided guidelines to developers for energy-efficiently configuring the usage

of the Core Location framework in their code. Our guidelines demonstrate that for frequent loca-

tion updates, three Standard Location Service configurations (S10, S12, S15) are the most energy

efficient, while for less frequent location updates, Regional Monitoring Service is the most energy-

efficient. After applying our guidelines to three real-world apps, each representing a different

category, we observed energy consumption reductions of 0.42%, 10.59%, and 26.91%.

Apple Inc. can utilize our methodology to offer valuable insights and recommendations on

energy-efficient configuration and utilization of their various frameworks’ APIs. These guide-

66

lines will serve as a valuable resource for iOS app developers and developers within the Apple

ecosystem, promoting and teaching the best practices for energy-efficient app development in the

developer community.

When configuring specific API parameters, app developers may consider various factors, such

as the app’s unique characteristics, understanding the app’s target audience, and assessing avail-

able resources. By following our guidelines and considering these factors, app developers can

balance energy efficiency, user experience, and the specific goals of their app to deliver a better

user experience.

In future, developers can utilize our iOS Core location API specific guidelines to create energy

auto-tuning tools. At the same time, researchers can follow our general approach to establish

guidelines for utility frameworks other than the location service API, such as for the Core Graphics,

Core ML, Core Animation, and Core Bluetooth API.

67

Chapter 6

A Static-Analysis Based Energy Estimation
Approach

Once a developer has reduced the energy consumption of their app using a recommendation guide,

they need to measure its energy consumption to get an idea of how much energy their app may con-

sume at runtime. As mentioned in the introduction of this thesis, the current energy measurement

approaches are cumbersome as they require the developers to either have hardware-level expertise

or to generate and execute test cases. As a solution, this chapter makes a fourth and final con-

tribution to this thesis by proposing a static-analysis-based energy estimation model. The idea of

this estimation model is to relieve the developers from expensive, sophisticated hardware and save

their expenditure cost on energy testing. Additionally, the idea is to save developers’ time so that

they do not have to maintain or execute any test cases for the energy estimation of their app. The

energy-consumption values that the estimation model represents are called the E-factor of an app.

E-factor values can be calculated within milliseconds because it does not require test case execu-

tion, as opposed to the state-of-the-art approaches that take a long time to measure and estimate

energy consumption (Chapter 3). Due to its quick estimation capability, E-factor can be easily

integrated into an IDE so developers can get energy-related insights after each code modification.

This chapter was published at MSR 2023 [34].

6.1 Introduction

To ensure that an app is energy efficient, energy-aware app developers have several energy profil-

ing techniques to choose from, such as hardware-based measurement tools [87], [89], [111] and

68

software-based estimation models [67]. To get accurate energy measurements using hardware-

based tools, developers must run many test cases, which takes significant time and effort. Addi-

tionally, setting up the necessary measurement infrastructure requires developers to have special-

ized knowledge of smartphones and energy measurement devices, which they see as an unwanted

task [142]. Furthermore, acquiring the necessary hardware may be costly, adding a financial bur-

den. Alternatively, developers may use software-based techniques that rely on estimation [67],

[81] and prediction [53], [106] models. While these techniques may not be as precise as their

hardware-based counterparts, developers still widely prefer them because they do not require ex-

pensive equipment or specialized expertise to set them up. However, developers still need access

to a smartphone, and they need to generate and execute test cases that measure the energy con-

sumption of their apps.

While hardware-based techniques execute test cases to measure energy consumption, software-

based techniques execute test cases to gather runtime information for energy estimation. Some

runtime information, such as the execution time of a task or the response time of a component,

may be obtained without test-case execution using static-analysis techniques, such as worst-case

execution-time (WCET) [80] and worst-case response-time (WCRT) [133]. However, this in-

formation alone is insufficient to understand the energy consumption of a task [167], because

software-based techniques still require additional information such as operating system logs, type

of components used, and type of operations performed during execution. Moreover, creating ef-

fective test cases is a complex and costly process because it requires a thorough understanding of

the app and its requirements and the ability to anticipate and design for potential edge cases [174].

Running these test cases also requires significant resources such as computing time, power, and

storage, adding to the overall testing expense [46]. As the software evolves, developers also need

additional or updated test cases [124], [126], and such test cases might not be available all the time.

To address the limitations of existing energy measurement techniques, this chapter introduces

a static-analysis-based approach that estimates the energy consumption, E-factor, of an API in a

given app. This chapter focuses on API usage because API events consume 85% of the energy in an

app compared to developer-written instructions (e.g., branch or arithmetic instructions) and system

events (e.g., garbage collection or process switching) [110]. Instead of depending on app runtime

information, the static-analysis-based approach uses API energy profiles. An API energy profile

69

is the base energy cost (in joules) of the tasks that the API can perform. Obtaining a single API

energy profile is a one time process and therefore it is more cost-effective than obtaining runtime

information for each app because one API energy profile is relevant to all apps that use that API. To

implement this approach in this chapter, my co-authors and I have developed an E-factor calculator

(EC) that generates the call graph of a given app and scans that app for API uses. Based on the

API uses and energy profile, EC then calculates E-factor without executing the app.

This chapter studies 56 real-world apps that use the SQLite API to evaluate its approach. It

focuses on SQLite in this study because SQLite uses a smartphone’s CPU, memory, and storage

components, which are known to be one of the most power-heavy smartphone components [7].

To obtain the energy profile of SQLite, we created a set of 24 micro-benchmarks representing the

insert, update, and select operations. These micro-benchmarks are available [32] as a useful

resource for future researchers who wish to measure the impact of SQLite operations on other

performance aspects, such as heap size, execution time, and storage size. Among the real-world

apps, this chapter compares the E-factor of 16 versions and 11 methods to their hardware-based

energy measurements. The findings of this chapter show that E-factor is a reliable estimate to

compare the energy consumption between versions of an app and between methods of an app.

6.2 Motivating Example

Figure 6.1 shows a development scenario that illustrates the limitations of current approaches

for measuring and estimating energy consumption. This section then presents the solution to ad-

dress such limitations.

In the example, assume that a developer produces three versions of their app, each using SQ-

Lite differently. Figure 6.1d shows DB, a helper class that implements the SQLite API, which

is commonly used by all versions. In this class, DB.read(..) executes the "SELECT ..."

query, DB.insert(..) executes the "INSERT ..." query, and DB.update(..) executes the

"UPDATE ..." query on a database. Figure 6.1a shows that DB.insert(..) and DB.read(..)

are called in Version-1 in a UI event for tapping the screen (Line 21). Figure 6.1b shows that the

event handler in Version-2 calls DB.update(..) (Line 28) instead of DB.read(..). Figure 6.1c

shows that Version-3 calls both DB.update(..) (Line 33) and DB.read(..) (Line 34).

Depending on the task that an API performs, an API may consume different amounts of en-

70

19 class ViewController:
UIViewController {

20 override func onTap() {
21 DB.insert(id: i, name: "

Cat")
22 DB.read(id: i)
23 }
24 }

(a) Version-1 of the app.

25 class ViewController:
UIViewController {

26 override func onTap() {
27 DB.insert(id: i, name: "Cat"

)
28 DB.update(id: i, name: "SCat

")
29 }
30 }

(b) Version-2 of the app.

31 class ViewController:
UIViewController {

32 override func onTap() {
33 DB.update(id: i, name: "

SCat2")
34 DB.read(id: i)
35 }
36 }

(c) Version-3 of the app.

37 // SQLite API usage
38 import SQLite3
39 class DB {
40 // Updates username by id in

database
41 func update(id:Int, name:

String) { ... }
42 // Inserts username by id
43 func insert(id:Int, name:

String) { ... }
44 // Returns all users from

database
45 func read(id:Int) -> [User] {

... }
46 }

(d) A common class across all versions.

Figure 6.1: Three versions of a sample Swift iOS app, each using DB to perform various SQLite
operations.

71

ergy [110]. In our example, the SQLite API may perform create, read, update, or delete (CRUD)

operations on a locally stored SQLite database. Each CRUD operation has a different workload

and requires a different time duration to complete its task. Therefore, each version in Figure 6.1

consumes different energy. To inform developers how their code modifications in each version

would affect the energy consumption of their app, this section demonstrates the usage of current

energy measurement approaches, then demonstrates the usage and benefits of the proposed static-

analysis-based estimation approach.

Using A Traditional Approach

Following the traditional approach, we must first generate and execute test cases to collect energy

measurements of the app. For each version, we have written 5 test cases. In each test case, the

method onTap() is executed 100–105 times. Following standard practice [87], we have executed

each version 10 times on iGreenMiner, a state-of-the-art hardware-based energy measurement

framework for iOS [37]. The results show that for 100–105 executions of onTap(), the aver-

age energy consumption of Version-1 is 25.12 joules, Version-2 is 46.45 joules, and Version-3 is

25.45 joules. The average time for executing the test cases per version is 121.33 seconds.

Using the proposed approach to calculate E-factor

This approach does not need to execute any test cases. It instead uses an energy profile of an

API that represents the base energy cost of its tasks. The energy profile of an API is obtained by

measuring the energy consumption of the API’s tasks on a hardware-based energy measurement

setup. This energy profile is portable and can be used across multiple apps. Using the energy

profile, we calculate E-factor for each version. The results show that executing onTap() for 100–

105 reports an average E-factor value of 50.25 joules for Version-1, 92.91 joules for Version-2,

and 50.89 joules for Version-3.

The traditional approach typically reports a lower energy measurement compared to the E-

-factor estimate because an app during its execution goes through several architectural-level per-

formance optimizations during its runtime. These optimizations result in a significant absolute

difference in the energy measurement of the traditional approach and the energy estimates of E-

factor. Nonetheless, since we find a strong positive correlation between energy measurements and

72

E-factor later in this work, we can identify the energy-intensive (hungry) version in our example

using E-factor. In this example, both E-factor and the traditional approach identify Version-2 as the

most energy-intensive version and Version-1 as the least energy-intensive. The average time for

calculating E-factor per version is 12 milliseconds, which is 106 times faster than the traditional

approach.

In a real-world scenario, it is impractical to follow the traditional approach and execute all

test cases at every code modification [174], especially in an IDE where a developer is continuously

making changes to their code. E-factor is more suitable for this scenario because it provides energy

estimates that identify if a code change consumes more/less energy at app and method levels in

milliseconds.

6.3 Related Work

In this section, we briefly discuss prior work that is closely related to this chapter in terms of

methodology and results.

Lyu et al. [118] empirically investigated the effect of SQL anti-patterns on the energy consump-

tion of smartphone apps and discovered that SQL operations performed in a loop may increase an

app’s energy consumption considerably and suggest that developers should use join SQL queries

instead of loops when possible. Their work, however, is a recommendation model for SQL usage,

unlike the proposed approach in this chapter that estimates the energy consumption of any API’s

usage. Hao et al. [81] used static analysis to provide accurate energy measurements at line-level

granularity. However, their presented approach requires an app’s runtime information and the tar-

get smartphone components’ energy profile from its manufacturers. It is impractical to acquire

a manufacturer’s built energy profile as it may not be possible when the owner holds proprietary

rights over their components, such as Apple Inc. On the other hand, the approach in this chapter

does not require any runtime information or test case execution, it rather needs an energy profile

and acquiring such a profile is straightforward because anyone owning a smartphone and an energy

measurement instrument can obtain their selected API’s energy profile.

Georgiou et al. [75] developed an Energy Consumption Static Analysis (ECSA) technique for

embedded systems at both the system-architecture and LLVM-IR levels. However, this approach

requires profiling system architecture-level instructions and user-provided source code annotations

73

for loop bounds and identifying infeasible paths. Similarly, Jayaseelan et al. [99] proposed a static-

analysis technique to estimate the worst-case energy consumption of software on embedded system

architectures. This approach involves profiling energy consumption of assembly code and identi-

fying code sequences that consume the most energy by determining worst-case execution time. As

opposed to the technique proposed in this chapter that works on app-code-level, both of these tech-

niques require the developers to have a deeper understanding of the underlying architecture they

are testing their software in, because both of the techniques work on architecture instruction-level

and assembly instruction-level.

Li et al. [110] empirically investigated 405 real-world Android apps and found some interesting

facts about API usage’s energy consumption in smartphone apps. They discovered that API events

consume 85% of the energy in an app compared to developer-written instructions (e.g., branch

or arithmetic instructions). They also discovered that SQLite queries are the third most energy-

consuming factor in apps, following Network and Camera related operations. This finding signifies

the importance of API usage’s energy estimation in general and SQLite usage in specific. Finally,

they discovered that operations in a loop represent 41.1% (average) of an app’s energy consumption

when in a non-idle state. Moreover, loops that use an API may consume 6–41% more energy than

loops that do not use an API. This finding further signifies the importance of estimating the energy

consumption of API usages in loops and UI events.

Similar to the proposed approach, Jabbarvand et al. [38] focus on measuring the relative energy

consumption of the apps to rank different apps by energy cost. However, their approach involves

dynamic analysis, so it executes test cases, whereas ours does not require any runtime information;

thus, it relieves app developers from the burden of test case execution.

Hasan et al. [83], Oliveira et al. [136], and Pereira et al. [60], [141] use static analysis and

profile the energy consumption of the Java Collections API to help developers implement the most

energy-efficient collection in their code. However, we use static analysis and energy profiles dif-

ferently. Instead of optimizing a developer’s code, we aim to provide developers with a perspective

on how expensive, in terms of energy consumption, the methods or a version of their app could

become during runtime.

74

Table 6.1: The energy profile of SQLite (in joules). Baseexec is the cost of an operation executed
once.

of Executions

Operation Baseexec 101 102 103 104 105 106 107

insert 0.00249 1.13 1.12 2.49 22.25 248.72 2,462.33 23,313.01
update 0.00251 1.20 1.23 2.66 25.13 249.33 2,494.38 23,677.88
select 0.00023 1.61 1.73 1.78 2.28 15.53 184.99 1,877.99

6.4 How Do We Compute Energy Profile of an API?

In this section, we show how we obtain the energy profile of an API, which is necessary for

computing E-factor.

To collect the energy profile of an API, we first have to create a set of micro-benchmarks, where

each benchmark executes a separate API task. This structure enables us to measure the energy

consumption of each task in isolation. We then generate the API energy profile by executing these

micro-benchmarks and measuring their energy consumption on a hardware-based infrastructure.

We only need to perform this process once and reuse its results in future calculations. We now

demonstrate the process by calculating the energy profile of the SQLite API.

Micro-Benchmarks Creation

We first create a simple iOS app that connects to an SQLite database stored on a smartphone. We

then instrument this iOS app to create 8 micro-benchmarks for each SQLite operation (i.e., insert,

update, and read), where each micro-benchmark performs an SQLite operation 100–107 times. We

limit the iterations to 107, because executing more iterations becomes impractical as the execution

thread on the smartphone tends to time out and detach from the energy measurement infrastructure.

Energy Measurement

To measure the energy consumption of the generated micro-benchmarks, we use iGreenMiner (Chap-

ter 4), which supports iOS apps that can run on iPhone 11 – iOS 13.4.1. iGreenMiner could only

execute Apple-script-based test cases, which creates an overhead for our energy measurements.

To overcome this hurdle, we extended iGreenMiner to support executing command-line-based test

75

cases using Xcode command-line tools [22]. We have also optimized the iGreenMiner framework

to decrease energy readings overhead during measurement and increase its automation capability.

Since iGreenMiner required the user to manually input the test case execution time, to overcome

this limitation, we have written a parser for Xcode’s build log files where we store the start and tear-

down times of a micro-benchmark execution. This information helps us synchronize the iGreen-

Miner’s reported energy values with test execution time to get the exact energy measurement of

an SQLite operation. In Section 6.6, we use this setup to measure the energy consumption of the

real-world apps’ versions and methods.

To calculate the energy consumption of the micro-benchmarks, we execute them 10 times each

in random order on iGreenMiner. Excluding the app setup and initialization time, this step takes

an average of 1.1 ± 0.13 seconds to 2.26 ± 1.52 hours depending on the number of times that

an SQLite operation executes in a benchmark. This long execution time makes it infeasible to

pre-populate a database with a random number of records before each test case execution. There-

fore, we keep the initial database empty for the insert micro-benchmarks. For the select and

update micro-benchmarks, we pre-populate the database with 107 records to read and update

from.

Table 6.1 presents the energy cost of each SQLite operation (in joules) when it executes once

(Baseexec) and when it executes 101–107 times in a loop. The data shows that, after 102 iterations,

select always consumes the least energy, while insert and update consume more, but simi-

lar, amounts of energy. This result shows that one API operation, in comparison to another API

operation, consumes different amounts of energy even for the same number of iterations. There-

fore, profiling API operations separately is important because knowing the operation execution

frequency without knowing the type of operation is insufficient to reason about its energy con-

sumption.

6.4.1 Computing Energy Profile for a new API

The energy profile of an API is utilized to estimate the energy consumption associated with its

usage. While numerous apps may not use the SQLite API, our creation of an energy profile for the

SQLite API allows us to offer a generic guideline for the researchers to obtain energy profiles of

other APIs.

76

To create an energy profile for a new API, certain aspects of the steps that we took to create

the energy profile for the SQLite API i Section 6.4 would need to be adjusted. First, the identifi-

cation stage needs adjustment to recognize the specific API and its relevant usage scenarios. This

involves understanding the API’s tasks and their behavior. Next, the instrumentation and energy

measurement process must be tailored to capture the energy consumption of the new API. The

test case design phase needs to be updated to include scenarios that cover different input values,

usage patterns, and execution paths specific to the new API. During the execution of test cases,

energy measurements need to be collected. The data analysis and profile generation stage should

be adapted to analyze the collected energy measurements and extract energy consumption data

specific to the new API tasks. By modifying these aspects, researchers and developers can gen-

erate a tailored energy profile for the new API, providing valuable insights into its tasks’ energy

consumption.

6.5 How Do We Calculate E-factor?

In this section, we first present our generalized approach to calculate the E-factor of the uses of

an API. Later, we instantiate our approach to calculate E-factor of an example code that uses the

SQLite API.

6.5.1 General Approach For Calculating E-factor

There are five steps that a researcher or developer should follow to determine the E-factor of an

API. To automate these steps, we have developed an E-factor calculator (EC) that works as follows:

1. Platform selection: select a smartphone app development platform such as Android or iOS.

2. API selection: based on the selected platform, select an API to measure the energy consump-

tion of its uses.

3. Call-graph (CG) generation: extract the app call-graph.

4. API call methods identification: using CG information, identify methods that use the selected

API; produce Method-to-API mappings by tagging these method calls with source-level in-

formation.
77

5. E-factor calculation: use the Method-to-API mappings and the API energy profile to calcu-

late E-factor.

6.5.2 Specific Instantiation for SQLite

To calculate the E-factor for the SQLite API, we discuss how we instantiate each step in our

methodology:

Platform Selection

From the top three smartphone platforms (i.e., Android, iOS, and Windows), we chose iOS because

developers prefer it for generating more revenue [73], [145].

API Selection

We focus on the SQLite API [88] that enables a developer to use a self-contained transactional

database for persistent storage, a feature that most apps need [132].

SQLite supports several smartphone operating systems [158]. Both Apple and Google use it

for their native apps [5], [50], [157]. Social-networking apps (e.g., Facebook), browser apps (e.g.,

Firefox), communication apps (e.g., Skype), and cloud storage apps (e.g., Dropbox) also use SQ-

Lite for data storage [157]. Therefore, our focus on studying the energy consumption of SQLite

will affect millions of users and developers worldwide. Knowing how the SQLite API consumes

energy, developers can identify energy-intensive operations for better-targeted optimization. These

optimizations will ultimately lead to longer battery life for the device and a better user experience.

Call-graph (CG) generation

To detect the uses of the SQLite API in an iOS app, EC generates its CG using the Class-Hierarchy

Analysis (CHA) [66] in SWAN [163]. Using CHA for a sound CG construction suits our work be-

cause our approach provides developers with energy estimation for the largest number of potential

execution paths that may execute at runtime.

API Call Methods Identification

EC traverses the CG to identify method calls in the code that perform SQLite operations. For

each method that performs an SQLite operation, EC stores a method-to-API mapping for it, which
78

48 class A {
49 func foo() {
50 DB.insert(...)
51 }
52
53 func qux() {
54 DB.insert(...)
55 DB.insert(...)
56 }
57 ...
58 }

(a) Class A

59 class B {
60 func bar() {
61 for k in 1 ... n:
62 DB.update(...)
63 }
64 ...
65 }

(b) Class B

66 class C {
67 func baz() {
68 B.bar()
69 A.foo()
70 }
71
72 override func tap(){
73 DB.read()
74 }
75 ...
76 }

(c) Class C

Figure 6.2: Three Swift classes: A, B, and C in a sample iOS app that use DB to perform SQLite
API operations.

consists of: the method name, the SQLite operation that it performs, the source line at which the

API is invoked, and the operation frequency. Figure 6.2 shows a sample iOS app that we will use

to illustrate what method-to-API mappings are and how EC uses them to calculate E-factor. In this

app, the primary methods that perform SQLite operations are DB.update(..), DB.insert(..),

and DB.read(..).

To create method-to-API mappings, EC first identifies the methods that call these primary

methods. In class A, EC detects that A.foo() invokes DB.insert() (Line 50). Therefore,

EC creates a method-to-API mapping of A.foo() -> Insert @ Line 50. EC also detects

that A.qux() invokes DB.insert() twice (Line 54 and Line 55). Therefore, EC creates two

method-to-API mappings of A.qux() -> Insert @ Line 54 and A.qux() -> Insert @

79

Table 6.2: Energy consumption (in joules) of the method-to-API mappings for the sample app
in Figure 6.2. The value “−” means “not applicable”, and we use it for operations that are not in a
loop.

of Executions

Method-to-api mappings Operation Baseexec 101 102 103 104 105 106 107

A.foo()-> Insert@Line 50 Insert 0.0024 − − − − − − −
A.qux()-> Insert@Line 54 Insert 0.0024 − − − − − − −
A.qux()-> Insert@Line 55 Insert 0.0024 − − − − − − −
B.bar()-> Update*@Line 62 Update* 0.0025 1.20 1.23 2.66 25.14 249.33 2,494.38 23,677.88
C.baz()->B.bar()-> Update*@Line 68 Update* 0.0025 1.20 1.23 2.66 25.13 249.33 2,494.38 23,677.88
C.baz()->A.foo()-> Insert@Line 69 Insert 0.0024 − − − − − − −
C.tap()-> Read*@ Line 73 Read* 0.0002 1.61 1.73 1.78 2.28 15.53 184.99 1,877.99

Table 6.3: E-factor values (in joules) of the aggregated methods from Table 6.2. The value “−”
means “not applicable”, and we use it for operations that are not in a loop.

of Executions

Method Baseexec 101 102 103 104 105 106 107

A.foo() 0.0024 − − − − − − −
A.qux() 0.0048 − − − − − − −
B.bar() 0.0025 1.20 1.23 2.66 25.14 249.33 2,494.38 23,677.88
C.baz() 0.0049 1.20 1.23 2.66 25.14 249.33 2,494.38 23,677.88
C.tap() 0.0002 1.61 1.73 1.78 2.28 15.53 184.99 1,877.99

Total for App 0.0148 4.01 4.19 7.10 52.55 513.99 5,173.75 49,233.75

80

Line 55. In class B, EC detects that B.bar() invokes DB.update() in a loop (Line 62). There-

fore, EC creates a method-to-API mapping B.bar() -> Update* @ Line 62 where * repre-

sents an operation in a loop. EC identifies such operations by checking if an operation is enclosed

in a for loop, while loop, or enclosed in a UI event, such as tapping/swiping a screen or touching

a UI button. While a UI event is not considered a loop in the traditional sense, it may be triggered

multiple times by the user. Therefore, we consider a UI event as code that may execute in a loop

for energy estimation. This assumption is essential for measuring the energy consumption of an

app because the more frequently an event is triggered, the more energy it consumes. In class C,

EC detects that C.baz() invokes B.bar() (Line 68), which then invokes DB.update() in a

loop. Because of this call chain, EC creates a method-to-API mapping C.baz() -> B.bar()

-> Update* @ Line 68. EC also detects that C.baz() invokes A.foo() (Line 69), which

then invokes DB.insert(). Given this call chain, EC creates a method-to-API mapping C.baz()

-> A.foo() -> Insert @ Line 69. Class C has an additional function tap() that is a user

input event, and it invokes DB.read(). Therefore, EC creates a method-to-API mapping C.tap()

-> Read* @ Line 73.

E-factor Calculation

Algorithm 1 presents the algorithm of EC. Using the SQLite energy profile from Table 6.1, EC

identifies the energy consumption of each method-to-API mapping. The energy consumption of

mappings containing a * is represented by the energy profile’s range of energy consumption values

for several iterations. For example, if a mapping has a Read* operation, its energy consumption

is 1.61 for 101 iterations, 1.73 for 102 iterations, etc. The energy consumption of a mapping not

in a loop is the Baseexec cost in the energy profile. Table 6.2 shows the energy consumption of

each method-to-API mapping in the sample app from Figure 6.2. The table shows the method

that performs an SQLite operation, its Baseexec cost, and the energy consumption of executing

that operation in a loop 101–107 times. We consider the operations in a loop to execute 101–107

times because our approach does not rely on runtime information, and we still want to provide

the developers with an estimate of how expensive an operation in a loop can be during runtime.

Choosing a specific number of iterations is ultimately up to the developer’s estimation since they

have the necessary expertise and understanding of the runtime behavior of their app.

81

Algorithm 1: Calculating App and Method level E-Factor for an API.
Input:

appSourceCode;
energyProfile ; // base energy cost of an API-operations.

Output:
methodsEfactor
appEfactor

Initialization:
cg = constructCallGraph(appSourceCode)
executions = [101,102,103,104,105,106,107]
methodToApiMappings = [] ; // the specified value can include a

list of enum(METHOD CALL HIERARCHY, OPERATION TYPE, IN LOOP)

mappingsEfactor = [] // the specified value can include a list of

enum(METHOD TO API MAPPING, EFACTOR)

Method-to-API Mappings: Traverse through cg to identify method call hierarchies that
involve methods performing an API operation. methodToApiMappings keeps a list of
enum, where each enum has METHOD CALL HIERARCHY ,
OPERATION TY PE (API operation occurred in call hierarchy), and IN LOOP
(whether operation is in a loop or not).

E-Factor Calculation:
for mapping in methodToApiMappings do

for execution in executions do
baseCost = energyProfile[mapping.OPERATION TY PE];
if mapping.IN LOOP then

EFactor = execution*baseCost;
else

EFactor = baseCost;
end
mappingsEfactor += (mapping,execution,EFactor);

end
end
methodsEfactor = sumByEntryPoint(mappingsEfactor) // Calculates the sum

of the E-Factors grouped by first methodName in the

METHOD CALL HIERARCHY and number of execution.

totalEfactor = sumByExecution(methodsEfactor) // Calculates the sum of the

E-Factors grouped by number of execution.

82

To calculate the E-factor value for each method, we aggregate and add up the energy con-

sumption values from Table 6.2 by method name. Table 6.3 shows the final aggregated values.

To calculate the E-factor of the complete API usage, we take the sum of the E-factor values of all

methods. Table 6.3 shows that, our sample app may consume 0.0148 (100 iterations) to 49, 233.75

(107 iterations) joules depending on its SQLite usage.

Using EC, developers can calculate E-factor after each instance of code modification, which

may be presented to them as a table similar to Table 6.3. This table displays the energy cost of

a specific API usage for a method and the entire app. EC is open-source and is freely available

online [32].

6.6 Evaluation

We evaluate E-factor through the following research questions:

RQ1: Can E-factor be used to compare the energy consumption difference between the ver-

sions of an app in the context of an API’s usage?

RQ2: Can E-factor’s fine-grained method-level energy estimates be used to compare the en-

ergy consumption of the methods of an app?

RQ3: Does our automated program (EC) accurately estimates the E-factor of real-world apps?

6.6.1 Dataset Preparation

To answer our research questions, we first select real-world apps and calculate their E-factor.

App Selection

To select apps for evaluation, we search GitHub [76], applying the following inclusion and exclu-

sion criteria on all available iOS apps:

• Include all iOS projects written in Swift because it is the currently supported language for

CG generation in our underlying tool SWAN.

• Include projects that implement the SQLite API by searching for “import sqlite3” within

the codebase.
83

●

●

●

100

200

300

Entertainment Healthcare Uncategorized Utility
App Categories

N
o.

 o
f C

om
m

its

●

●

●

●

●

●
9

10

11

12

13

Entertainment Healthcare Uncategorized Utility
App Categories

Lo
g(

N
o.

 o
f S

IL
 L

in
es

)

Figure 6.3: Information about the main app categories for the real-world apps in our dataset.

• Exclude projects that are libraries, APIs, or incomplete. We selected projects with a user-

interface code structure to ensure this criterion. We recognize that structure by searching for

a UI storyboard or an AppDelegate.

• Exclude projects that have less than two commits in their repository. This exclusion is be-

cause the main use case for E-factor is to compare the energy consumption between app

versions.

• Exclude projects that do not contain .xcodeproj or .xcworkspace file extension. This

exclusion makes sure that the projects are executable.

• Exclude projects built for iOS platform < 9 because our underlying energy measurement

infrastructure (iGreenMiner) supports apps built for iOS >= 9.

After applying our selection criteria, we ended up with 59 real-world apps. We group these apps

into three categories (entertainment, healthcare, and utility), while some apps remain uncategorized

because either their documentation is missing or their commit messages are not clear enough to

infer their category. Figure 6.3 shows the number of commits and the number of SIL lines in each

app in our dataset. The number of commits shows how active the project development is, while

SIL lines represent the project size.

E-factor Calculation

To detect methods that contain a usage of SQLite, EC searches our dataset using case-insensitive

regular expressions: .*SELECT.* for read operations, .*UPDATE.* for update operations, and

84

●

●

● ● ●

●●

●●

●

●●

●

●●

●

0.007

1

148.413

22026.466

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7
Number of iterations.

E
fa

ct
or

 (
Jo

ul
es

)
App Categories Entertainment Healthcare Uncategorized Utility

Figure 6.4: The E-factor values of each app category. The range 100–107 is the number of times
that each app may execute its SQLite operations during runtime.

.*INSERT.* for insert operations. EC then traverses the CG that SWAN generates for an app

to identify those methods that invoke these SQLite methods. Using the identified method-to-

API mappings, EC calculates the E-factor values of apps and their methods as explained in Sec-

tion 6.5.2. Figure 6.4 shows the E-factor value for each app category for 100–107 executions. The

figure also shows that the rank of app categories by E-factor changes across the different number

of iterations. Out of the 59 apps, there were 8 apps with zero E-factor value because the SQLite

operations in these apps are never invoked by a method. We could not estimate the E-factor of 3

additional apps, because they either contained incomplete code or had a third-party API depen-

dency that we could not resolve to build the app. It took an average time of 12.44 milliseconds to

calculate the E-factor for each of the 56 real-world apps, where the majority of this time was spent

in the call-graph traversal.

85

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

● ● ●

● ●

Planner

Inventario−seguro

CarTrack−Tech

ec
3f

e4
8

5b
48

f3
0

bc
1a

80
1

63
19

59
9

5e
97

69
0

ed
78

82
0

52
9c

4b
b

97
d0

05
7

39
71

4d
2

dd
70

60
9

f6
76

8c
1

9e
55

43
d

a8
a6

51
7

9f
f3

8e
c

ac
fe

14
9

ca
83

fe
a

35
da

f2
4

b0
26

64
b

fd
94

f5
5

27
29

43
2

96
0c

1a
c

77
be

df
1

a2
e8

b1
0

d4
9d

2e
7

2c
df

3f
b

76
e6

4b
0

77
72

e0
6

f8
d3

6e
8

ca
f3

09
d

3e
15

94
2

92
eb

46
4

3b
b6

29
5

e3
e9

35
6

af
66

ba
1

45
a8

39
c

00
a6

83
9

65
3d

5c
0

72
b1

33
c

e7
b8

30
3

2c
30

29
0

61
3e

c6
9

3e
91

79
1

ff4
eb

f8
bc

f4
f9

1
36

9b
e6

2
27

ab
a3

0
73

9f
d4

7
9e

9b
91

0
23

0f
d2

8
a2

1a
b1

b
fe

5e
51

5
1e

71
8a

9
2a

f0
c1

d
98

dc
70

d
64

ffd
f2

fc
20

33
5

92
d0

67
b

2a
86

08
5

ab
b2

a6
e

ae
a9

6e
2

24
01

e3
b

98
f4

ed
c

9f
46

41
7

3b
d9

c7
c

62
00

59
3

f6
f2

c7
5

5f
44

c3
b

b6
60

4b
0

0c
46

d5
a

46
b9

0f
a

9d
2d

33
c

e6
08

48
f

56
af

7e
2

bc
75

22
c

73
7c

8d
a

08
a0

fa
3

5b
36

85
4

5a
6a

f9
e

fa
74

d7
a

80
34

2d
b

be
81

7e
7

6d
6d

48
4

f2
08

0e
6

d3
5f

be
f

9f
4b

2e
3

ee
7d

53
b

a0
d4

06
b

34
79

de
e

6a
48

c8
9

9c
cd

41
4

da
50

d1
2

d5
a4

e6
c

c1
33

f0
a

d2
1f

e8
c

f8
56

06
d

af
e3

c1
b

6d
6c

71
7

27
38

90
a

66
e2

35
8

75
fb

b1
0

ed
c3

6b
a

e3
1e

8b
b

62
b9

da
7

56
28

cd
b

01
e3

aa
1

60
aa

b8
f

99
2f

f1
6

5d
4e

4b
8

62
2d

81
2

60
30

35
5

5b
be

c6
2

eb
19

30
c

0a
34

41
0

fe
06

c2
b

a0
77

27
7

66
88

10
d

b5
bc

bf
e

8c
2f

30
9

22
22

25
5

b7
7d

9b
2

fc
50

d1
0

cc
48

51
d

01
fc

ef
8

66
95

e4
9

90
01

21
b

fa
5a

04
1

94
de

d4
a

6a
a1

73
f

ef
68

78
a

81
f3

94
f

6f
44

35
4

c8
8c

1f
a

35
5f

5a
f

eb
12

a8
0

90
ba

b8
d

cf
ba

5c
8

0.007

1

148.413

22026.466

0.007

1

148.413

22026.466

0.007

1

148.413

22026.466

Apps commits

E
−

Fa
ct

or

Figure 6.5: E-factor for commits from CarTrack, Inventario, and Planner. The commits are ordered
left-to-right in sequence over time (i.e., oldest to latest commit). Commits whose E-factor change
over time are highlighted in a red box. The number of iterations assumed for the SQLite usages
that are in a loop is 104.

86

6.6.2 E-factor for Comparing Versions (RQ1)
Setup

In RQ1, we investigate if developers can use E-factor to compare the energy consumption of an

API’s usage between the various versions of an app.

Commit Selection: To consider an app from our dataset for RQ1, it has to be supported by our

energy measurement setup (iGreenMiner) by fulfilling the following criteria: (1) should have a

test-suite with UI tests, (2) should not depend on a third party web API to execute (e.g., Firestore),

(3) should not require login credentials from a web service that we do not have access to, (4) should

not run into runtime errors, (5) and should have an API use inside a loop or a UI event. Applying

these criteria, we have 3 apps to investigate:

• CarTrack [58]: This app registers people with their profiles for record keeping. We identified

10 insert and 7 select operations in this app.

• Inventario [121]: This app keeps an inventory list. We identified 8 insert and 5 select

operations in this app.

• Planner [57]: This is a doodle note-taking app that users may use to save a note on each

calendar day. We identified 2 insert, 3 select, and 1 update operations in this app.

We then extracted 34 commits from CarTrack, 83 commits from Inventario, and 35 commits

from Planner to calculate their E-factor. We could not build 16/152 commits because their code

was insufficient to build the app. Eventually, we calculated E-factor for 136 commits in total.

Figure 6.5 shows the app-level E-factor of each commit when an SQLite use would execute 107

times. The figure presents how E-factor evolves over time based on the SQLite usage in an app.

Calculating E-factor for all commits was relatively straightforward because it does not require any

test case execution. However, gathering hardware-based energy measurements (i.e., ground truth)

for all commits was unrealistic. This is because, for each commit, we would need to instrument it,

then generate and execute its test cases. Following the methodology of Romansky et al. [147] for

effectively mining commits to measure energy consumption, we selected commits whose SQLite

usage changed over time. Therefore, we chose 16 commits for hardware-based energy measure-

ment (highlighted in red boxes along the x-axis in Figure 6.5). The SHAs for these commits are:
87

• CarTrack: 2222255 and b77d9b2.

• Inventario: e60848f, 56af7e2, 5b36854, 5a6af9e, 3479dee, 6a48c89, 6d6c717, and

273890a.

• Planner: bc1a801, 6319599, 5e97690, ed78820, 97d0057, and 39714d2.

Commit Instrumentation: To execute each commit on iGreenMiner, we had to manually config-

ure the dependencies of each commit, especially older commits that rely on obsolete dependencies.

This instrumentation required instrumenting the UI navigations and authentications in the apps to

override business rules and methods such that all SQLite operation methods would execute within

a single test-case execution. For instrumentation, we chose 104 iterations for the loops and UI

events having SQLite operations because this is where E-factor starts to noticeably increase (Fig-

ure 6.4). It was also unrealistic to measure for more than 104 iterations because, at that point, the

highest energy-consuming app, Inventario, takes ≈ 57 hours to execute.

Hardware Energy Measurement: To accurately measure the energy consumption of each com-

mit, we ran the 16 instrumented versions on iGreenMiner multiple times. We execute the versions

that took less than an hour 10 times, and those that took an hour or more 5 times. We compare

these versions’ energy measurements with their E-factor.

Results

To compare E-factor to hardware-based energy measurements of the commits, we use the Spear-

man’s Rank Correlation with the Bonferroni correction method [175]. The Spearman’s Rank Cor-

relation reports ρ = 0.60 with a p-value < 0.05, indicating a significant correlation between

E-factor and hardware-based energy measurements of the commits. Using Hopkin’s scale [91],

ρ = 0.60 indicates that if a commit has a lower E-factor than another, then it is more energy-

efficient due to the large positive correlation between E-factor and energy measurements. Given

this significant positive correlation, E-factor is a reliable indicator for developers to determine if

their latest code change related to the SQLite API usage would result in an increase or decrease in

energy consumption compared to a previous version of their app.

88

Table 6.4: Comparing E-factor to hardware-based energy measurements for methods from real-
world apps. The number of iterations assumed for the SQLite usages that are in a loop is 104.

App Method Operation Ground Truth (joules) E-factor (joules)

CarTrack CountryRepo.-
createCountry-
Data()

insert* 62.27 22.2504

CarTrack CountryRepo.-
init(...)

1 select 36.93 0.0002

Inventario VC.dummys() 1 insert + 1 select 4.03 0.0027
Inventario DBUsuarioHelper-

.insert(..)
1 select 2.85 0.0002

Inventario LoginVC.create-
DummyUsers()

5 insert + 1 select 3.25 0.0124

Inventario LoginVC.do-
Login(..)

1 select 3.37 0.0002

Inventario mostrarVC.Insert-
Registros(..)

insert* + 1 select 8446.95 22.2504

Inventario mostrarVC.Insert-
Rollos()

insert* + 1 select 3899.09 22.2504

Planner CanvasVC.create-
NewCanvas()

1 insert 1.63 0.0025

Planner CanvasVC.load-
Canvas()

1 select 1.74 0.0002

Planner CanvasVC.drawing-
DidChange(...)

update* + select* 11.30 27.4114

6.6.3 E-factor for Fine-grained Energy Review (RQ2)

For a given API usage in an app, if a developer discovers that their app consumes too much energy,

they may use E-factor to compare the energy consumption of different methods within the app that

use that API. In this research question, we investigate whether E-factor provides this information

to developers to help them focus their optimization efforts on specific methods.

Setup

For this investigation, we consider methods of the same apps that we used in RQ1: CarTrack,

Inventario, and Planner. We have already calculated the E-factor of these apps and their methods.

However, to collect the hardware-based energy measurements (i.e., ground truth) of these methods,

we must first instrument the apps so that each method executes in isolation.

Method Selection: CarTrack has 8 methods that perform SQLite operations. For evaluation,

we consider CountryRepo.createCountryData() that performs an insert in a loop. From

89

the remaining methods that perform a single select, we could only instrument CountryRepo.-

init(...) to execute in isolation. Inventario has 6 methods that perform SQLite operations.

LoginVC.createDummyUsers() performs 5 insert operations and 1 select. mostrar-

VC.InsertRollos() and mostrarVC.InsertRegistros(..) perform insert in a loop

and 1 select. VC.dummys() performs 1 insert and 1 select, while DBUsuarioHelper-

.insert(..) and LoginVC.doLogin(..) perform 1 select. We consider all these methods

in our evaluation. Planner has 5 methods that perform SQLite operations. Out of the four meth-

ods that perform insert and select once, we consider CanvasVC.createNewCanvas() and

CanvasVC.loadCanvas(). Finally, we consider CanvasVC.drawingDidChange(...) that

performs a select and an update in a loop.

App Instrumentation: We created 2 instrumented versions for CarTrack, 6 instrumented ver-

sions for Inventario, and 3 instrumented versions for Planner. Similar to RQ1, each instrumented

version executes a method 104 times if it would occur in a loop or a UI-event and once otherwise.

Hardware Energy Measurement: To collect the ground truth, we executed each instrumented

version 10 times on iGreenMiner and collected their energy consumption measurements. Since

each instrumented version represents a method, to compare a method’s energy consumption with

its E-factor, we compare the instrumented versions’ energy measurements with their representative

method’s E-factor value.

Results

Table 6.4 compares E-factor to the ground truth of each method. The table shows that E-factor

reports the highest values for the most energy-consuming methods in an app: CountryRepo.-

createCountryData() in CarTrack, mostrarVC.InsertRegistros(..) and DBUsuarioHelper-

.insert(..) in Inventario, and CanvasVC.drawingDidChange(...) in Planner.

To determine the relationship between E-factor and hardware-based energy measurements, we

used the Spearman’s Rank Correlation with the Bonferroni correction method. The Spearman’s

Rank Correlation reports ρ = 0.59 with a p-value < 0.05, indicating a significant correlation be-

tween E-factor and hardware-based energy measurements of the evaluated methods. Using Hop-

kin’s scale [91], ρ = 0.59 indicates that if a method has a lower E-factor than another, it is more

energy-efficient due to the large positive-correlation between E-factor and energy measurements.

90

Given this significant positive correlation, developers may reliably use E-factor to compare the

energy consumption of API usage within methods in their code without executing them.

6.6.4 E-factor’s Automation Capability (RQ3)

In RQ3, we want to verify if EC calculates E-factor accurately. To verify the accuracy, we compare

EC with the manual computation of E-factor.

Setup

For this evaluation, we used 12 apps (3 from each category) with the minimum, average, and

maximum automatically calculated E-factor values:

• Entertainment: InstagramProjectIos, Instant, and Priyo Movies

• Healthcare: HealthKitTest, iOS-App-Project, and Careapp

• Utility: Dulce, Storage, and Planner

• Uncategorized: TOURUS, THISAPPTEAM, and Hybrid-App

To manually compute E-factor (i.e., ground truth), we first traversed through the code files of each

app. We then identified method-to-API mappings that are reachable to execute during runtime.

Results

To compare the automatically calculated EC E-factor values with the manually calculated E-factor,

we compute the mean absolute percentage error (MAPE) [65] between both. MAPE indicates

that the E-factor values calculated by EC have an average absolute error of 16.84% compared

to the actual values. In comparison, the state-of-the-art approach, as presented in the work of

Chowdhury et al. [53], has an error margin of 10% for its energy prediction model. Although E-

factor has a 6.84% higher error rate compared to the state-of-the-art approach, it is still considered

acceptable because, unlike the state-of-the-art, it does not require the generation of test cases or the

use of specific hardware for execution and energy measurement. This quality of E-factor makes it

a convenient alternative that estimates reasonably accurate energy consumption without additional

resources.

91

While Saborido et al. [148] found that 125 kHz is an ideal sampling rate for energy measure-

ment in Android apps, they also noted that the sampling rate requirement for determining an app’s

energy consumption is different from that for its methods. A 5 kHz sampling rate for apps is ac-

ceptable as it produces a median error of 13.27%. However, a 5 kHz sampling rate is insufficient

for methods, as the error can increase to 53.15% with a median of 0.54%. To ensure reliable results,

we recommend that users of iGreenMiner instrument their app to execute one method at a time in

isolation, execute each method multiple times, and consider the median energy consumption of

each method.

To investigate the reason behind the error, we compare the manually detected method-to-API

mappings with EC detected mappings. Upon this investigation, we found that EC identified the

mappings with a precision of 0.91 and a recall of 0.84 with an F1 score of 0.87. These measure-

ments show that EC is less likely to provide false positives but may miss some true positives.

Upon further investigation, we have also identified the following reasons for the occurrence of

false positives (i.e., reporting a mapping that does not exist) and false negatives (i.e., not reporting

a mapping that exists):

• EC could not identify UI actions in input apps if the responsible action implements a method

other than tapGesture or onClick from the Swift UI framework.

• Some identified execution paths from the CG are infeasible because they do not execute at

runtime.

• The underlying framework that generates the CG (SWAN) does not support recursion or

Swift structs.

6.7 Threats to Validity

In this section, we discuss the threats to the validity of our results and how we addressed them.

6.7.1 Construct Validity

To find call sites that use SQLite queries, we construct a CG using CHA [66]. Many other CG

construction algorithms, such as RTA [28] and XTA [164], are more precise than CHA, and each

92

of these algorithms may yield different results for E-factor. However, we have chosen CHA to

quickly estimate the energy consumption estimates for the developers.

6.7.2 Internal Validity

To measure the energy profile of the SQLite API, we pre-populated the DB records. However,

our DB records may not represent real-world scenarios because we keep the initial database empty

each time before executing the insert benchmarks and pre-populate 107 records before executing

the select and update benchmarks. Having a different number of records affects the runtime

performance of SQLite differently [49], and realistically, users perform SQLite operations on a

variable number of records. For better SQLite energy profiling, future work may adopt paralleliza-

tion to run multiple instances of a DB on various phones, where each DB will have a random

number of records, columns, and indexes. Regardless, we believe that the relative difference be-

tween insert, select, and update may stay consistent when a DB has the same structure and

number of records to start with. However, this claim requires an empirical evaluation that is out of

the scope of this chapter.

We have designed our approach to consider only two usage contexts for SQLite operations:

those that occur inside a loop and those that occur outside of it. However, SQLite operations may

occur in many other contexts, such as inside a branch condition or an asynchronous thread. In

this study, we assume that all branches execute and do not consider the other possible contexts.

Therefore, we are unable to provide a best-case or even an average-case energy estimate. Instead,

we provide worst-case estimates only. Similarly, an operation within a loop can be executed a

varying number of times based on the user’s requirements. In order to give developers an indication

of the potential energy consumption of a particular API usage during runtime, without requiring

actual runtime information, we present them with energy consumption projections for a range of

executions, from 101 to 107. It is important to note that when providing estimates for all the loops

in an app, we assume that all operations within a loop would execute an equal number of times.

The SIL files that we analyze represent the developer’s code only, and therefore our E-factor

values are confined to the developer’s code. We do not calculate the E-factor of third-party libraries

on which an app or an API call may depend. However, this can be done by generating and analyzing

the SIL files for the external libraries. Nonetheless, this is out of the scope of this chapter, and we

93

leave it for future work.

In Table 6.4, the E-factor value of CanvasVC.drawingDidChange(...), in which two dif-

ferent SQLite operations in a loop run in combination, is larger than the ground-truth value. This

inaccuracy might occur because we had separately profiled the energy consumption of update and

select, and we never profiled their combinatorial effect. Operations, when executed in combi-

nation, may follow several architecture-level optimizations. Therefore, for more accurate E-factor

values, different operations combinations should also be profiled.

6.7.3 External Validity

For hardware-based energy measurements, we utilized iGreenMiner, which supports iPhone 11

running iOS 13.4.1. As a result, the energy profile and results of our SQLite API can be gener-

alized to all iOS apps designed for iOS 13.4.1 and running on iPhone 11. The generalizability of

our obtained SQLite API’s energy profile may be influenced by various factors in newer or older

phones, including processor speed, power management architecture, battery capacity, operating

system version, and underlying hardware features. However, conducting such an evaluation is be-

yond the scope of our contribution. It is important to note that while certain factors may impact the

generalizability of E-factor’s calculation, several other factors remain relatively consistent across

different device models. These factors include the energy measurement mechanism for energy

profile collection, the code analysis technique using call graphs, and the energy model of E-factor

based on software rather than hardware characteristics.

A different smartphone device and operating system may yield a different energy profile for

the SQLite API. Therefore, our energy profile and results may not generalize over all smartphone

platforms and devices that run them. To claim the generalization of our results over all iOS apps,

the energy profile has to be obtained using other iOS versions. In future, researchers can train a

prediction model based on the characteristics of APIs to auto-generate API energy profiles, this

will increase the coverage of E-factor.

Our study primarily focuses on the Swift SQLite API, which leverages the processing subsys-

tem of a smartphone. While we do not directly investigate other energy-intensive APIs such as

networking, location, and graphics in this chapter, the insights and methodology derived from our

research serve as a valuable foundation for estimating energy consumption in API usage.

94

The SQLite API shares similarities with other database-related APIs, including MySQL, Post-

greSQL, Oracle Database, and Microsoft SQL Server, as it provides a structured way to interact

with a relational database management system (RDBMS). Developers can use the SQLite API for

common database operations like table creation, data manipulation, and executing SQL queries,

similar to these other APIs. However, SQLite differs in its serverless nature, operating directly

on the local file system without needing a separate server process. Additionally, it employs a

unique storage model where the entire database is stored as a single file, enabling self-contained

databases. Consequently, it becomes essential for the researchers to develop energy profiles for

other RDBMSs beyond SQLite.

E-factor provides the API usage energy estimates while assuming that the API use will ex-

ecute for a range of iterations. Future work may better estimate the runtime iterations of loops

through static analysis techniques that use abstract interpretation [117] or path dependency au-

tomation [171].

6.8 Conclusion

The current hardware and software-based measurement and estimation techniques are cumbersome

because they require developers to own a smartphone and generate and execute test cases. As

a solution, this chapter proposes a static-analysis-based approach that can estimate the energy

consumption (E-factor) of API usage in an app without the need to generate and execute test cases.

We evaluate the approach on real-world apps that use the SQLite API and find out that E-factor is

a reliable estimator to compare the relative energy consumption of API use between the versions

of an app and within the methods of an app.

The proposed approach offers the advantage of providing energy estimates at compile time,

which alleviates the burden on developers of executing test cases after each code modification or

before releasing a new version. However, it should be noted that the success of this approach

relies on having energy profiles for the APIs. The collection of energy profiles requires having and

executing test cases while measuring energy consumption with hardware or a profiler. We posit

that energy profile collection is a one-time process. Once generated, the profile can be utilized for

all iOS applications that utilize a specific API, iOS version, and iPhone version. This allows for

reusability and efficiency in estimating the energy consumption of various applications.

95

Additionally, this approach provides an opportunity for integration with existing Integrated

Development Environments (IDE)s or Continuous Integration/Continuous Deployment (CI/CD)

pipelines, providing automated energy testing as a part of the development process. Such integra-

tion would reduce the costs associated with energy testing and improve the overall development

process by identifying and fixing energy-inefficient code early on in the development cycle. In

future, E-factor’s estimation can be improved by adding more APIs’ energy profiles to its compu-

tation.

96

Chapter 7

Conclusion

To provide a variety of functionalities, smartphone apps use hardware components, such as mem-

ory and CPUs for computation, GPS for navigation, Bluetooth for connectivity, and a camera for

taking pictures. Therefore, an inefficient app with energy bottlenecks in its code can make the

hardware components over-consume energy, leading to rapid drainage of a phone’s battery. Such

inefficient apps get negative user reviews and often get removed from the phone. As a result, de-

velopers are continuously looking for ways to optimize and measure the energy consumption of

their apps.

Current techniques for optimizing energy efficiency in software development include design

patterns [55], UI guidelines [116], refactoring techniques [30], API choice guidelines [83], and

search-based algorithms [120]. However, these optimization techniques focus on developer-written

instructions and system events rather than API-level usage [110], while API-usage accounts for

85% of an app’s energy consumption. Some existing techniques that focus on API-level usage [83],

[120] are time-consuming because they require test-case execution and they do not provide guid-

ance on how specific API parameter configurations affect energy consumption. Since API-usage

accounts for a large portion of an app’s energy consumption, API-parameter-level information is

crucial for developers to optimize their code for energy-efficient API usage. On the other hand,

current energy measurement techniques include hardware-based tools, such as Greenminer [87],

and software-based energy prediction and estimation models, such as Greenscaler [53], Android

Profiler [79], XCode’s Log Instrument Profiler [92], and JProfiler [70]. Hardware-based techniques

require specialized knowledge and expensive equipment, while software-based techniques rely on

test-case generation and execution, which can be time-consuming and resource-intensive. Addi-

97

tionally, generating and executing test cases requires a smartphone and a script to collect runtime

information, which may take an average of several minutes, making real-time updates impractical

for energy-aware developers.

To address the current limitations of energy optimization and measurement techniques, this the-

sis demonstrates that static analysis can optimally configure an app’s API parameters, significantly

reducing its energy consumption. Moreover, this thesis presents a static analysis technique that can

effectively estimate the relative energy consumption of an app’s API usage without requiring the

execution of test cases. In particular, this thesis makes four contributions.

The first contribution in Chapter 3 evaluates the practicality of current state-of-the-art tech-

niques, such as search-based energy optimization and test-case execution-based energy measure-

ment. This evaluation demonstrates that the idea of test-case execution to provide app-developers

with real-time energy insights for their code modifications is impractical because of long execution

times.

The second contribution in Chapter 4 is the development of an open-source iOS energy mea-

surement framework called iGreenMiner. iGreenMiner is the first hardware-based energy mea-

surement framework available for iOS, allowing developers to measure the absolute energy con-

sumption of their iOS apps. The framework also enables researchers to collect energy datasets

for iOS apps. Researchers may use it to build energy estimation and prediction models and iden-

tify energy greedy patterns specific to iOS. This contribution addresses a gap in the existing tools

and solutions for iOS app development, which do not provide absolute energy measurements and

are limited in their ability to identify energy consumption problems specific to the iOS platform.

Researchers can address several problems related to energy-efficient iOS app development using

the iGreenMiner framework. These include designing energy-efficient user interfaces, improv-

ing energy reporting tools, empirically evaluating Apple’s energy-aware development guidelines,

building a static energy prediction model, and evaluating the energy consumption of cross-platform

iOS apps.

The third contribution in Chapter 5 proposes energy-efficient configuration guidelines for the

iOS Core Location framework to reduce an app’s energy consumption. The guidelines help devel-

opers make informed design choices for accessing user-location in their apps. This contribution

provides location framework benchmarks and their energy profiles and analyzes them to extract

98

energy-efficient guidelines for the developers. The analysis shows that, overall, energy-wise, the

most efficient service is Visits Location Service, while Standard Location Service is the most ex-

pensive in energy consumption. The contribution also evaluates the effectiveness of these guide-

lines on three real-world apps and a benchmark app that Apple provides to its developers. The

results show that these guidelines can reduce energy consumption by up to 26.91% on real-world

apps and 11.37% on the benchmark app. Future work in this area could include applying the pro-

posed techniques to explore energy-efficient development guidelines for other APIs, such as the

Bluetooth API or the Camera API.

The fourth contribution in Chapter 6 proposes an energy estimation model based on static

analysis to analyze an app’s code and estimate the energy consumption of its API usage; the energy

estimates are called E-factor. E-factor values can be calculated within milliseconds using static

analysis, which is faster than the traditional approach. The benefit of this approach is that it relieves

the developers from expensive, sophisticated hardware and saves their expenditure cost on energy

testing. Furthermore, it saves developers time so that they do not have to maintain or execute any

test cases for the energy estimation of their app. The E-factor is a reliable estimate to compare the

relative energy consumption between versions of an app and between methods of an app.

7.1 Future Work

This thesis demonstrates the benefits of using an energy profile to estimate energy consumption.

However, the capabilities of the energy profile defined in this thesis are limited in terms of context

(task inside a loop or out-of-loop), platform (iOS), API (SQLite API), and device (iPhone 11). As

a solution, this thesis takes an opportunity to make an open call to the community of Software

Engineering to collect and submit their energy profiles on a GitHub repository [32]. The more

energy profiles for different APIs we have, and the more contexts they are evaluated in, the more

precise the energy estimates (E-factor) will be. In the future, with many energy profiles, we can

achieve absolute energy estimates instead of relative energy estimates.

Once we have multiple energy profiles, we can use the base energy cost of their tasks and

develop a weight-based estimation model. This model would assign weights to each API task

based on its base cost. These weights can later be used to rank and suggest, in comparison to each

other, how energy-efficient or inefficient certain apps are on an Appstore, certain versions are in a

99

repository, and certain methods are in an app.

To understand further, let us assume two apps whose energy consumption has to be compared

without execution, and both of these apps use SQLite for storage persistence, iOS Foundation

API [25] for network-related requests, and iOS AVFoundation API [23] to execute media files.

First of all, we will have to collect an energy profile for each of these APIs. For SQLite, we can use

the energy profile from Chapter 6 that represents the base energy consumption of its operations,

such as select, update, insert. To profile Foundation API, we can profile the base energy

consumption for making a basic GET request and a basic POST request. To profile AVFoundation

API, we can profile the energy consumption for executing basic video and audio files. Once we

have the energy profiles for all of the APIs, we can assign each API task a weight, based on how

expensive it is as compared to the other tasks in other APIs. Let us assume that AVFoundation’s

video execution was assigned a weight of 1.0 for being the most energy-consuming task among all

API tasks, Foundation’s POST request was assigned a weight of 0.8, Foundation’s GET request

was assigned a weight of 0.6, and SQLite’s select was assigned a weight of 0.4 for being the least

energy consuming task. Using these weights, the developer can compare the energy consumption

of different apps and app versions and choose the most energy-efficient version. This weight-based

approach can further be improved by considering the context in which each API-task was profiled.

7.2 Summary

In conclusion, this thesis provides a stepping stone toward a new direction in energy-efficient

app development by proposing static-analysis techniques to estimate energy consumption. The

contributions of this work include the development of an open-source iOS energy measurement

framework, energy-efficient configuration guidelines for the iOS Core Location framework, and a

static analysis-based energy estimation model called E-factor. While this work has shown promis-

ing results, much is still to be done in this area. We advocate that researchers invest their energies

in improving the models by contributing energy profiles and exploring energy-efficient develop-

ment guidelines for other APIs. Collaboration and ongoing research are crucial to improving

energy-efficient app development practices and reducing energy consumption in mobile devices,

which will save time in execution, effort in dealing with sophisticated hardware and generating

test-cases, and money in terms of affording expensive hardware.

100

References

[1] T. Agolli, L. Pollock, and J. Clause, “Investigating Decreasing Energy Usage in Mobile
Apps via Indistinguishable Color Changes,” in 2017 IEEE/ACM 4th International Confer-
ence on Mobile Software Engineering and Systems (MOBILESoft), IEEE, 2017, pp. 30–
34.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools (2nd Edition). USA: Addison-Wesley Longman Publishing Co., Inc., 2006.

[3] L. Almagor, K. D. Cooper, A. G. T. J. Harvey, S. R. D. Subramanian, L. Torczon, and T.
Waterman, “Compilation order matters: Exploring the structure of the space of compilation
sequences using randomized search algorithms,” Technical report, Los Alamos Computer
Science Institute, Tech. Rep., 2003.

[4] Android, Android APK-Analyzer, 2021. [Online]. Available: https://developer.
android.com/studio/debug/apk-analyzer.

[5] AndroidDoc, Save data in a local database using Room, 2022. [Online]. Available: https:
//developer.android.com/training/data-storage/room.

[6] AppleInc, Breadcrumb: Using CoreLocation to track user movement, 2018. [Online]. Avail-
able: https://developer.apple.com/library/archive/samplecode/
Breadcrumb.

[7] AppleInc, What’s New in Energy Debugging, 2018. [Online]. Available: https : / /
developer.apple.com/videos/play/wwdc2018/228/?time=265.

[8] AppleInc, About iPhone 11, [Specifications], 2019. [Online]. Available: https://www.
apple.com/by/iphone-11/specs/.

[9] AppleInc, Improving Battery Life and Performance, [WWDC], 2019. [Online]. Available:
https://developer.apple.com/videos/play/wwdc2019/417/?time=
405.

[10] AppleInc, About iOS 13 Updates, [ios13.4.1], 2020. [Online]. Available: https://
support.apple.com/en-ca/HT210393.

[11] AppleInc, Energy Guide iOS, 2020. [Online]. Available: https://developer.apple.
com/library/archive/documentation/Performance/Conceptual/
EnergyGuide-iOS/.

101

[12] AppleInc, Getting Users Location, [Online; accessed 17-Feb-2021], 2020. [Online]. Avail-
able: https://developer.apple.com/documentation/corelocation/
getting_the_user_s_location.

[13] AppleInc, Location and Maps Programming Guide, [Online; accessed 17-Feb-2021], 2020.
[Online]. Available: https://developer.apple.com/library/archive/
documentation/UserExperience/Conceptual/LocationAwarenessPG/
CoreLocation/CoreLocation.html.

[14] AppleInc, Region Monitoring Service, [Online; accessed 17-Feb-2021], 2020. [Online].
Available: https://developer.apple.com/documentation/corelocation/
monitoring_the_user_s_proximity_to_geographic_regions.

[15] AppleInc, Significant Location Service, [Online; accessed 17-Feb-2021], 2020. [Online].
Available: https://developer.apple.com/documentation/corelocation/
getting_the_current_location_of_a_device.

[16] AppleInc, Standard Location Service, [Online; accessed 17-Feb-2021], 2020. [Online].
Available: https://developer.apple.com/documentation/corelocation/
getting_the_current_location_of_a_device.

[17] AppleInc, Visit Location Service, [Online; accessed 17-Feb-2021], 2020. [Online]. Avail-
able: https://developer.apple.com/documentation/corelocation/
getting_the_current_location_of_a_device.

[18] AppleInc, Avoid Extraneous Graphics and Animations, [Graphics Guide], 2021. [Online].
Available: https://developer.apple.com/library/archive/documentation/
Performance/Conceptual/EnergyGuide-iOS/AvoidExtraneousGraphicsAndAnimations.
html.

[19] AppleInc, iOS 14 features reimagined, 2021. [Online]. Available: https : / / www .
apple.com/ca/ios/ios-14/.

[20] AppleInc, Core Location Framework, [Online; accessed 25-Oct-2022], 2022. [Online].
Available: https://developer.apple.com/documentation/corelocation.

[21] AppleInc, Apple App Store, 2023. [Online]. Available: https://www.apple.com/
app-store/.

[22] AppleInc, Apple’s integrated development environment (IDE), 2023. [Online]. Available:
https://developer.apple.com/xcode/.

[23] AppleInc, AVFoundation Framework, 2023. [Online]. Available: https://developer.
apple.com/documentation/avfoundation.

[24] AppleInc, Create powerful experiences, [Offcial], 2023. [Online]. Available: https://
developer.apple.com/ios/.

[25] AppleInc, Foundation Framework, 2023. [Online]. Available: https://developer.
apple.com/documentation/foundation.

[26] AppleInc, iOS Official Testing Framework, 2023. [Online]. Available: https://developer.
apple.com/documentation/xctest.

102

[27] AppleInc, Swift Intermediate Language (SIL), [Swift-IR], 2023. [Online]. Available: https:
//github.com/apple/swift/blob/main/docs/SIL.rst.

[28] D. F. Bacon and P. F. Sweeney, “Fast static analysis of C++ virtual function calls,” in Pro-
ceedings of the 11th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, 1996, pp. 324–341.

[29] S. Baluja and R. Caruana, “Removing the Genetics from the Standard Genetic Algorithm,”
in Machine Learning Proceedings 1995, Elsevier, 1995, pp. 38–46.

[30] A. Banerjee and A. Roychoudhury, “Automated Re-factoring of Android Apps to Enhance
Energy-Efficiency,” in Proceedings of the International Conference on Mobile Software
Engineering and Systems, 2016, pp. 139–150.

[31] T. Banerjee and S. Ranka, “A genetic algorithm based autotuning approach for perfor-
mance and energy optimization,” in 2015 Sixth International Green and Sustainable Com-
puting Conference (IGSC), IEEE, 2015, pp. 1–8.

[32] Bangash, E-Factor Calculation Program, Jan. 2023. [Online]. Available: https : / /
zenodo.org/record/7262615.

[33] A. A. Bangash, K. Ali, and A. Hindle, “A Black Box Technique to Reduce Energy Con-
sumption of Android Apps,” in Proceedings of the ACM/IEEE 44th International Con-
ference on Software Engineering: New Ideas and Emerging Results, ser. ICSE-NIER ’22,
Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 1–5.

[34] A. A. Bangash, K. Eng, Q. Jamal, K. Ali, and A. Hindle, “Energy Consumption Estimation
of API-usage in Smartphone Apps via Static Analysis,” in 2023 IEEE/ACM 20th Interna-
tional Conference on Mining Software Repositories, 2023.

[35] A. A. Bangash, H. Sahar, S. Chowdhury, A. W. Wong, A. Hindle, and K. Ali, “What do
developers know about machine learning: A study of ml discussions on stackoverflow,” in
2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR),
2019, pp. 260–264.

[36] A. A. Bangash, H. Sahar, A. Hindle, and K. Ali, “On the time-based conclusion stability of
cross-project defect prediction models,” Empirical Softw. Engg., vol. 25, no. 6, pp. 5047–
5083, Nov. 2020, ISSN: 1382-3256.

[37] A. A. Bangash, D. Tiganov, K. Ali, and A. Hindle, “Energy Efficient Guidelines for iOS
Core Location Framework,” in Proceedings of the 2021 International Conference on Soft-
ware Maintenance and Evolution (ICSME), Luxembourg City, Luxembourg, Jun. 15, 2021,
pp. 1–12.

[38] R. J. Behrouz, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann, “Ecodroid: An approach
for energy-based ranking of android apps,” in 2015 IEEE/ACM 4th International Workshop
on Green and Sustainable Software, IEEE, 2015, pp. 8–14.

[39] P. Berube, A. Preuss, and J. N. Amaral, “Combined Profiling: Practical Collection of Feed-
back Information for Code Optimization,” in Proceedings of the 2nd ACM/SPEC Interna-
tional Conference on Performance engineering, 2011, pp. 493–498.

103

[40] C.-P. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R. Heinrich, P. Jamshidi, W. Shang,
A. van Hoorn, M. Villavicencio, J. Walter, and F. Willnecker, “How is Performance Ad-
dressed in DevOps?” In Proceedings of the 2019 ACM/SPEC International Conference
on Performance Engineering, ser. ICPE ’19, Mumbai, India: Association for Computing
Machinery, 2019, pp. 45–50, ISBN: 9781450362399.

[41] K. H. Bindu, R. Morusupalli, N. Dey, and C. R. Rao, Coefficient of Variation and Machine
Learning Applications. CRC Press, 2019.

[42] A. Biørn-Hansen, T.-M. Grønli, and G. Ghinea, “A Survey and Taxonomy of Core Con-
cepts and Research Challenges in Cross-Platform Mobile Development,” ACM Computing
Surveys (CSUR), vol. 51, no. 5, pp. 1–34, 2018.

[43] T. Blickle, “Tournament selection,” Evolutionary computation, vol. 1, pp. 181–186, 2000.

[44] J. Bloch, “How to Design a Good API and Why It Matters,” ser. OOPSLA ’06, Portland,
Oregon, USA: Association for Computing Machinery, 2006, pp. 506–507.

[45] M. Brenna, F. Foiadelli, and M. Longo, “Application of Genetic Algorithms for Driver-
less Subway Train Energy Optimization,” International Journal of Vehicular Technology,
vol. 2016, 2016.

[46] L. C. Briand, “A Critical Analysis of Empirical Research in Software Testing,” in First
International Symposium on Empirical Software Engineering and Measurement (ESEM
2007), IEEE, 2007, pp. 1–8.

[47] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption using genetic im-
provement,” in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, 2015, pp. 1327–1334.

[48] N. Burles, E. Bowles, A. E. Brownlee, Z. A. Kocsis, J. Swan, and N. Veerapen, “Object-
oriented genetic improvement for improved energy consumption in Google Guava,” in
International Symposium on Search Based Software Engineering, Springer, 2015, pp. 255–
261.

[49] M. J. Carey and D. Kossmann, “On Saying “Enough Already!” In SQL,” SIGMOD Rec.,
vol. 26, no. 2, pp. 219–230, Jun. 1997, ISSN: 0163-5808.

[50] S. Celis, SQLite Swift Wrapper, 2022. [Online]. Available: https://github.com/
stephencelis/SQLite.swift.

[51] J. Chen and W. Shang, “An Exploratory Study of Performance Regression Introducing
Code Changes,” in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2017, pp. 341–352. DOI: 10.1109/ICSME.2017.13.

[52] X. Chen, Y. Chen, Z. Ma, and F. C. A. Fernandes, “How is Energy Consumed in Smart-
phone Display Applications?” In Proceedings of the 14th Workshop on Mobile Comput-
ing Systems and Applications, ser. HotMobile ’13, Jekyll Island, Georgia: Association for
Computing Machinery, 2013.

[53] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “GreenScaler: Training Software
Energy Models with Automatic Test Generation,” Empirical Software Engineering, vol. 24,
no. 4, pp. 1649–1692, 2019.

104

[54] S. A. Chowdhury and A. Hindle, “Greenoracle: Estimating software energy consumption
with energy measurement corpora,” in 2016 IEEE/ACM 13th Working Conference on Min-
ing Software Repositories (MSR), IEEE, 2016, pp. 49–60.

[55] S. A. Chowdhury, A. Hindle, R. Kazman, T. Shuto, K. Matsui, and Y. Kamei, “GreenBun-
dle: An Empirical Study on the Energy Impact of Bundled Processing,” in Proceedings of
the 41st International Conference on Software Engineering, IEEE Press, 2019, pp. 1107–
1118.

[56] J. Chung, H. Jung, J. Koo, Y. Kim, and U.-M. Kim, “A Development of Power Consump-
tion Measurement System for Android Smartphones,” ser. IMCOM ’17, Beppu, Japan:
Association for Computing Machinery, 2017.

[57] A. Clare, Planner App, 2021. [Online]. Available: https://github.com/clare228/
Planner.

[58] R. Correia, Car Track Tech Challenge App, 2021. [Online]. Available: https://github.
com/ricardo-correia/CartrackTechChallenge.

[59] M. Couto, J. Saraiva, and J. P. Fernandes, “Energy Refactorings for Android in the Large
and in the Wild,” in 2020 IEEE 27th International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), IEEE, 2020, pp. 217–228.

[60] L. Cruz and R. Abreu, “Performance-Based Guidelines for Energy Efficient Mobile Appli-
cations,” in 2017 IEEE/ACM 4th International Conference on Mobile Software Engineer-
ing and Systems (MOBILESoft), IEEE, 2017, pp. 46–57.

[61] L. Cruz and R. Abreu, “EMaaS: Energy Measurements as a Service for Mobile Applica-
tions,” in 2019 IEEE/ACM 41st International Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER), 2019, pp. 101–104.

[62] L. Cruz, R. Abreu, and J.-N. Rouvignac, “Leafactor: Improving Energy Efficiency of An-
droid Apps via Automatic Refactoring,” in 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), 2017, pp. 205–206.

[63] A. Danciu, J. Kroß, A. Brunnert, F. Willnecker, C. Vögele, A. Kapadia, and H. Krcmar,
“Landscaping Performance Research at the ICPE and its Predecessors: A Systematic Lit-
erature Review,” in Proceedings of the 6th ACM/SPEC International Conference on Per-
formance Engineering, 2015, pp. 91–96.

[64] J. P. De Carvalho, B. Kuzma, I. Korostelev, J. N. Amaral, C. Barton, J. Moreira, and
G. Araujo, “KernelFaRer: Replacing Native-Code Idioms with High-Performance Library
Calls,” ACM Transactions On Architecture And Code Optimization (TACO), vol. 18, no. 3,
pp. 1–22, 2021.

[65] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean Absolute Percentage
Error for regression models,” Neurocomputing, vol. 192, pp. 38–48, 2016.

[66] J. Dean, D. Grove, and C. Chambers, “Optimization of object-oriented programs using
static class hierarchy analysis,” in European Conference on Object-Oriented Programming,
Springer, 1995, pp. 77–101.

105

[67] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. De Lucia, “Software-
based energy profiling of android apps: Simple, efficient and reliable?” In 2017 IEEE
24th international conference on software analysis, evolution and reengineering (SANER),
IEEE, 2017, pp. 103–114.

[68] M. Dmitriev, “Profiling Java Applications Using Code Hotswapping and Dynamic Call
Graph Revelation,” in Proceedings of the 4th International Workshop on Software and
Performance, 2004, pp. 139–150.

[69] M. Dong, Y.-S. K. Choi, and L. Zhong, “Power Modeling of Graphical User Interfaces on
OLED Displays,” in 2009 46th ACM/IEEE Design Automation Conference, IEEE, 2009,
pp. 652–657.

[70] ejTechnologies, Java Profiler - JProfiler, 2023. [Online]. Available: https://www.ej-
technologies.com/products/jprofiler/overview.html.

[71] Facebook, Redex - An Android Bytecode Optimizer, 2021. [Online]. Available: https:
//fbredex.com/.

[72] E. Falkenauer, “The worth of the uniform [uniform crossover],” in Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), IEEE, vol. 1, 1999,
pp. 776–782.

[73] M. Fitzgerald, Android vs. iOS App Development: Which Is the Better Choice for Your
Business in 2019? Oct. 2019. [Online]. Available: https://bit.ly/3nbOCkS.

[74] K. Georgiou, C. Blackmore, S. Xavier-de-Souza, and K. Eder, “Less is More: Exploiting
the Standard Compiler Optimization Levels for Better Performance and Energy Consump-
tion,” in Proceedings of the 21st International Workshop on Software and Compilers for
Embedded Systems, ser. SCOPES ’18, Sankt Goar, Germany: Association for Computing
Machinery, 2018, pp. 35–42.

[75] K. Georgiou, S. Kerrison, and K. Eder, “On the Value and Limits of Multi-level Energy
Consumption Static Analysis for Deeply Embedded Single and Multi-threaded Programs,”
arXiv, 2015.

[76] GitHubInc., A Code Hosting Platform for Version Control and Collaboration. 2022. [On-
line]. Available: https://github.com/.

[77] GoogleInc., Androids’s integrated development environment (IDE), 2023. [Online]. Avail-
able: https://developer.android.com/studio.

[78] GoogleInc., Google Play Store, 2023. [Online]. Available: https://play.google.
com.

[79] GoogleInc., The Android Profiler — Android Studio, 2023. [Online]. Available: https:
//developer.android.com/studio/profile/android-profiler.

[80] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen WCET benchmarks:
Past, present and future,” in 10th International Workshop on Worst-Case Execution Time
Analysis (WCET 2010), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

106

[81] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile application energy
consumption using program analysis,” in 2013 35th international conference on software
engineering (ICSE), IEEE, 2013, pp. 92–101.

[82] M. Harman and B. F. Jones, “Search Based Software Engineering,” Information and soft-
ware Technology, vol. 43, no. 14, pp. 833–839, 2001.

[83] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle, “Energy Profiles of
Java Collections Classes,” in Proceedings of the 38th International Conference on Software
Engineering, ACM, 2016, pp. 225–236.

[84] W. Haynes, “Wilcoxon Rank Sum Test,” in Encyclopedia of Systems Biology, New York,
NY: Springer New York, 2013, pp. 2354–2355.

[85] A. Hindle, “Green Software Engineering: The Curse of Methodology,” in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
IEEE, vol. 5, 2016, pp. 46–55.

[86] A. Hindle, Pizza Greenminer Service, Jan. 2022. [Online]. Available: https://pizza.
cs.ualberta.ca/gm/.

[87] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and S. Romansky,
“GreenMiner: A Hardware Based Mining Software Repositories Software Energy Con-
sumption Framework,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, ACM, 2014, pp. 12–21.

[88] D. R. Hipp, SQLite Docs, 2000. [Online]. Available: https://www.sqlite.org/
about.html.

[89] J. M. Hirst, J. R. Miller, B. A. Kaplan, and D. D. Reed, Watts up? pro ac power meter for
automated energy recording, 2013.

[90] T.-P. Hong and H.-S. Wang, “A Dynamic Mutation Genetic Algorithm,” in 1996 IEEE
International Conference on Systems, Man and Cybernetics. Information Intelligence and
Systems (Cat. No. 96CH35929), IEEE, vol. 3, 1996, pp. 2000–2005.

[91] W. G. Hopkins, “A New View of Statistics,” 2002.

[92] A. Inc, Xcode IDE - Instruments, 2023. [Online]. Available: https://developer.
apple.com/xcode/features/.

[93] G. Inc., Internet hosting service for software development and version control using Git.
[Github], 2023. [Online]. Available: https://github.com.

[94] A. Islam, N. Hewage, A. A. Bangash, and A. Hindle, “Evolution of the Practice of Software
Testing in Java Projects,” in 2023 IEEE/ACM 20th International Conference on Mining
Software Repositories (MSR), 2023.

[95] R. Jabbarvand, J.-W. Lin, and S. Malek, “Search-Based Energy Testing of Android,” in
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE,
2019, pp. 1119–1130.

107

[96] R. Jabbarvand, F. Mehralian, and S. Malek, “Automated Construction of Energy Test Or-
acles for Android,” in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
2020, pp. 927–938.

[97] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware test-suite minimiza-
tion for android apps,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, 2016, pp. 425–436.

[98] N. Jaswal, Property Search App, 2018. [Online]. Available: https://github.com/
nitinjaswal96/CapstoneProjectPS.

[99] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the Worst-Case Energy Consumption of
Embedded Software,” in 12th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS’06), 2006, pp. 81–90.

[100] S. K. Jha and E. M. Eyong, “An energy optimization in wireless sensor networks by using
genetic algorithm,” Telecommunication Systems, vol. 67, no. 1, pp. 113–121, 2018.

[101] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “DevScope: A Nonintrusive and On-
line Power Analysis Tool for Smartphone Hardware Components,” in Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, ser. CODES+ISSS ’12, Tampere, Finland: Association for Computing
Machinery, 2012, pp. 353–362.

[102] H. Khalid, “On Identifying User Complaints of iOS Apps,” in 2013 35th international
conference on software engineering (ICSE), IEEE, 2013, pp. 1474–1476.

[103] H. Khalid, E. Shihab, and A. E. Hassan, “What Do Mobile App Users Complain About?”
IEEE software, vol. 32, no. 3, pp. 70–77, 2014.

[104] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What Do Mobile App Users
Complain About?” IEEE Software, vol. 32, no. 3, pp. 70–77, 2015.

[105] Z. Kholmatova, “Impact of Programming Languages on Energy Consumption for Mobile
Devices,” in Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering, ser. ES-
EC/FSE 2020, Virtual Event, USA: Association for Computing Machinery, 2020, pp. 1693–
1695.

[106] M. B. Kjærgaard and H. Blunck, “Unsupervised Power Profiling for Mobile Devices,” in
International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and
Services, Springer, 2011, pp. 138–149.

[107] J. Kołodziej, S. U. Khan, L. Wang, A. Byrski, N. Min-Allah, and S. A. Madani, “Hierarchi-
cal genetic-based grid scheduling with energy optimization,” Cluster Computing, vol. 16,
no. 3, pp. 591–609, 2013.

[108] P. Kurzweil, “Lithium Battery Energy Storage: State of the Art Including Lithium–Air and
Lithium–Sulfur Systems,” in Electrochemical energy storage for renewable sources and
grid balancing, Elsevier, 2015, pp. 269–307.

108

[109] D. Li and W. G. Halfond, “An Investigation into Energy-Saving Programming Practices for
Android Smartphone App Development,” in Proceedings of the 3rd International Work-
shop on Green and Sustainable Software, 2014, pp. 46–53.

[110] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An Empirical Study of the Energy Consump-
tion of Android Applications,” in 2014 IEEE International Conference on Software Main-
tenance and Evolution, IEEE, 2014, pp. 121–130.

[111] X. Li, X. Zhang, K. Chen, and S. Feng, “Measurement and analysis of energy consump-
tion on Android smartphones,” in 2014 4th IEEE International conference on information
science and technology, IEEE, 2014, pp. 242–245.

[112] L. Liao, H. Li, W. Shang, and L. Ma, “An Empirical Study of the Impact of Hyperparameter
Tuning and Model Optimization on the Performance Properties of Deep Neural Networks,”
ACM Trans. Softw. Eng. Methodol., vol. 31, no. 3, Apr. 2022.

[113] L. Lin and M. Gen, “Auto-Tuning Strategy for Evolutionary Algorithms: Balancing be-
tween Exploration and Exploitation,” Soft Computing, vol. 13, no. 2, pp. 157–168, 2009.

[114] M. Linares-Vásquez, G. Bavota, C. Bernal, R. Oliveto, M. Di Penta, and D. Poshyvanyk,
“Mining Energy-Greedy API Usage Patterns in Android Apps: An Empirical Study,” in
Proceedings of the 11th Working Conference on Mining Software Repositories, ser. MSR
2014, Hyderabad, India: Association for Computing Machinery, 2014, pp. 2–11.

[115] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta, R. Oliveto, and D.
Poshyvanyk, “Multi-Objective Optimization of Energy Consumption of GUIs in Android
Apps,” ACM Trans. Softw. Eng. Methodol., vol. 27, no. 3, Sep. 2018, ISSN: 1049-331X.

[116] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto, M. Di Penta, and D. Poshy-
vanyk, “Optimizing energy consumption of guis in android apps: A multi-objective ap-
proach,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software En-
gineering, ser. ESEC/FSE 2015, Bergamo, Italy: Association for Computing Machinery,
2015, pp. 143–154.

[117] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel, “A Fast and Precise Static Loop
Analysis Based on Abstract Interpretation, Program Slicing and Polytope Models,” in 2009
International Symposium on Code Generation and Optimization, IEEE, 2009, pp. 136–
146.

[118] Y. Lyu, A. Alotaibi, and W. G. Halfond, “Quantifying the Performance Impact of SQL
Antipatterns on Mobile Applications,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, 2019, pp. 53–64.

[119] H. Malik, P. Zhao, and M. Godfrey, “Going Green: An Exploratory Analysis of Energy-
Related Questions,” in 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, IEEE, 2015, pp. 418–421.

[120] I. Manotas, L. Pollock, and J. Clause, “SEEDS: A Software Engineer’s Energy-Optimization
Decision Support Framework,” in Proceedings of the 36th International Conference on
Software Engineering, ACM, 2014, pp. 503–514.

109

[121] J. Margarita, Inventario Seguro App, 2021. [Online]. Available: https://github.
com/ProyectoIntegrador2018/inventario_seguro.

[122] H. Matalonga, B. Cabral, F. Castor, M. Couto, R. Pereira, S. M. de Sousa, and J. P.
Fernandes, “GreenHub Farmer: Real-World Data for Android Energy Mining,” in 2019
IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), IEEE,
2019, pp. 171–175.

[123] A. Mazuera-Rozo, C. Trubiani, M. Linares-Vásquez, and G. Bavota, “Investigating Types
and Survivability of Performance Bugs in Mobile Apps,” Empirical Software Engineering,
pp. 1–43, 2020.

[124] S. McMaster and A. M. Memon, “An Extensible Heuristic-Based Framework for GUI Test
Case Maintenance,” in 2009 International Conference on Software Testing, Verification,
and Validation Workshops, IEEE, 2009, pp. 251–254.

[125] Mikejo5000, Measure performance in Visual Studio - Visual Studio (Windows), 2022. [On-
line]. Available: https://learn.microsoft.com/en-us/visualstudio/
profiling/?view=vs-2022.

[126] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Automatically repairing test cases for evolving
method declarations,” in 2010 IEEE International Conference on Software Maintenance,
IEEE, 2010, pp. 1–5.

[127] S. Monk, Electronics Cookbook: Practical Electronic Recipes with Arduino and Raspberry
Pi. O’Reilly Media, 2017.

[128] L. Mukhanov, P. Petoumenos, Z. Wang, N. Parasyris, D. S. Nikolopoulos, B. R. De Supin-
ski, and H. Leather, “ALEA: A fine-grained energy profiling tool,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 14, no. 1, pp. 1–25, 2017.

[129] Mvp, USB hub per-port power control, Jan. 2023. [Online]. Available: https://github.
com/mvp/uhubctl.

[130] M. Nachtigall, L. N. Q. Do, and E. Bodden, “Explaining Static Analysis - A Perspective,”
in 2019 34th IEEE/ACM International Conference on Automated Software Engineering
Workshop (ASEW), IEEE, 2019, pp. 29–32.

[131] D. T. Nguyen, “Evaluating Impact of Storage on Smartphone Energy Efficiency,” in Pro-
ceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct
Publication, ser. UbiComp ’13 Adjunct, Zurich, Switzerland: Association for Computing
Machinery, 2013, pp. 319–324.

[132] E. Noei, F. Zhang, and Y. Zou, “Too Many User-Reviews! What Should App Developers
Look at First?” IEEE Transactions on Software Engineering, vol. 47, no. 2, pp. 367–378,
2019.

[133] T. Nolte, H. Hansson, and C. Norstrom, “Probabilistic worst-case response-time analysis
for the controller area network,” in The 9th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2003. Proceedings., IEEE, 2003, pp. 200–207.

[134] O’Dea, Global smartphone operating system market share 2014-2023, Feb. 2020. [Online].
Available: https://www.statista.com/statistics/277048/.

110

[135] W. Oliveira, R. Oliveira, and F. Castor, “A Study on the Energy Consumption of Android
App Development Approaches,” in 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR), IEEE, 2017, pp. 42–52.

[136] W. Oliveira, R. Oliveira, F. Castor, G. Pinto, and J. P. Fernandes, “Improving energy-
efficiency by recommending Java collections,” Empirical Software Engineering, vol. 26,
no. 3, pp. 1–45, 2021.

[137] Oluwakemi, Weather Access App, 2021. [Online]. Available: https://github.com/
kemi-mabel/MyWeatherApp.

[138] J. Pallister, S. J. Hollis, and J. Bennett, “Identifying Compiler Options to Minimize Energy
Consumption for Embedded Platforms,” The Computer Journal, vol. 58, no. 1, pp. 95–109,
2015.

[139] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia, “On the Impact
of Code Smells on the Energy Consumption of Mobile Applications,” Information and
Software Technology, vol. 105, pp. 43–55, 2019.

[140] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What Do Programmers Know about
Software Energy Consumption?” IEEE Software, vol. 33, no. 3, pp. 83–89, 2015.

[141] R. Pereira, P. Simão, J. Cunha, and J. Saraiva, “JStanley: Placing a Green Thumb on Java
Collections,” in Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, ser. ASE ’18, Montpellier, France: Association for Comput-
ing Machinery, 2018, pp. 856–859.

[142] G. Pinto and F. Castor, “Energy Efficiency: A New Concern for Application Software
Developers,” Communications of the ACM, vol. 60, no. 12, pp. 68–75, 2017.

[143] G. Pinto, F. Castor, and Y. D. Liu, “Mining Questions about Software Energy Consump-
tion,” in Proceedings of the 11th Working Conference on Mining Software Repositories,
2014, pp. 22–31.

[144] G. Pinto, F. Soares-Neto, and F. Castor, “Refactoring for Energy Efficiency: A Reflection
on the State of the Art,” in 2015 IEEE/ACM 4th International Workshop on Green and
Sustainable Software, IEEE, 2015, pp. 29–35.

[145] A. Puvvala, A. Dutta, R. Roy, and P. Seetharaman, “Mobile Application Developers’ Plat-
form Choice Model,” in 2016 49th Hawaii International Conference on System Sciences
(HICSS), IEEE, 2016, pp. 5721–5730.

[146] X. Rival and K. Yi, Introduction to Static Analysis: An Abstract Interpretation Perspective.
Mit Press, 2020.

[147] S. Romansky and A. Hindle, “On Improving Green Mining For Energy-Aware Software
Analysis,” in Proceedings of 24th Annual International Conference on Computer Science
and Software Engineering, 2014, pp. 234–245.

[148] R. Saborido, V. V. Arnaoudova, G. Beltrame, F. Khomh, and G. Antoniol, “On the Impact
of Sampling Frequency on Software Energy Measurements,” in PeerJ PrePrints, 2015.

111

[149] H. Sahar, A. A. Bangash, and M. O. Beg, “Towards Energy Aware Object-Oriented De-
velopment of Android Applications,” Sustainable Computing: Informatics and Systems,
vol. 21, pp. 28–46, 2019.

[150] J. Sawin and A. Rountev, “Assumption Hierarchy for a CHA Call Graph Construction Al-
gorithm,” in 2011 IEEE 11th International Working Conference on Source Code Analysis
and Manipulation, IEEE, 2011, pp. 35–44.

[151] A. Schuler and G. Anderst-Kotsis, “Characterizing Energy Consumption of Third-Party
API Libraries using API Utilization Profiles,” in Proceedings of the 14th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement (ESEM), 2020,
pp. 1–11.

[152] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, “Post-Compiler Software Op-
timization for Reducing Energy,” ACM SIGARCH Computer Architecture News, vol. 42,
no. 1, pp. 639–652, 2014.

[153] J. M. Smith, “Optimization Theory in Evolution,” Annual review of ecology and systemat-
ics, vol. 9, no. 1, pp. 31–56, 1978.

[154] M. D. Smith, “Overcoming the Challenges to Feedback-directed Optimization (keynote
talk),” in Proceedings of the ACM SIGPLAN workshop on Dynamic and adaptive compi-
lation and optimization, 2000, pp. 1–11.

[155] M. Solutions, High Voltage Power Monitor, 2021. [Online]. Available: https://www.
msoon.com/.

[156] D. Spinellis, “Tool writing: a forgotten art? (software tools),” IEEE Software, vol. 22, no. 4,
pp. 9–11, Jul. 2005, ISSN: 1937-4194.

[157] SQLite, Well-Known Users of SQLite, 2022. [Online]. Available: https://www.sqlite.
org/famous.html.

[158] SQLite1, Features of SQLite, 2023. [Online]. Available: https://www.sqlite.
org/features.html.

[159] Sumandeep, Location Utility App, 2020. [Online]. Available: https://github.com/
Sumandeep2111/FinalProject-ios.

[160] W. Sun, S. Iwuchukwu, A. A. Bangash, and A. Hindle, “An Empirical Study to Investigate
Collaboration Among Developers in Open Source Software (OSS),” in 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR), 2023.

[161] Y. Sun, L. Kong, H. A. Khan, and M. G. Pecht, “Li-ion Battery Reliability – A Case Study
of the Apple iPhone,” IEEE Access, vol. 7, pp. 71 131–71 141, 2019.

[162] S. Tarkoma, M. Siekkinen, E. Lagerspetz, and Y. Xiao, Smartphone Energy Consumption:
Modeling and Optimization, ser. Smartphone Energy Consumption: Modeling and Opti-
mization. Cambridge University Press, 2014.

112

[163] D. Tiganov, J. Cho, K. Ali, and J. Dolby, “SWAN: A Static Analysis Framework for Swift,”
in Proceedings of the 28th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 1640–1644.

[164] F. Tip and J. Palsberg, “Scalable Propagation-Based Call Graph Construction Algorithms,”
in Proceedings of the 15th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, 2000, pp. 281–293.

[165] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot - a Java
Bytecode Optimization Framework,” in CASCON First Decade High Impact Papers, 2010,
pp. 214–224.

[166] M. Wan, Y. Jin, D. Li, J. Gui, S. Mahajan, and W. G. Halfond, “Detecting Display Energy
Hotspots in Android Apps,” Software Testing, Verification and Reliability, vol. 27, no. 6,
e1635, 2017.

[167] M. Weber, K. Christian, S. Florian, S. Apel, and N. Siegmund, “Twins or False Friends? A
Study on Energy Consumption and Performance of Configurable Software,” in IEEE/ACM
International Conference on Software Engineering, 2023.

[168] E. W. Weisstein, “Bonferroni correction,” https://mathworld. wolfram. com/, 2004.

[169] C. Wilke, S. Richly, S. Götz, C. Piechnick, and U. Aßmann, “Energy Consumption and
Efficiency in Mobile Applications: A User Feedback Study,” in 2013 IEEE International
Conference on Green Computing and Communications and IEEE Internet of Things and
IEEE Cyber, Physical and Social Computing, IEEE, 2013, pp. 134–141.

[170] T. Wortmann, C. Waibel, G. Nannicini, R. Evins, T. Schroepfer, and J. Carmeliet, “Are
Genetic Algorithms Really the Best Choice for Building Energy Optimization?” In Pro-
ceedings of the Symposium on Simulation for Architecture and Urban Design, 2017, pp. 1–
8.

[171] X. Xiaofei, “Static Loop Analysis and Its Applications,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2016,
pp. 1130–1132.

[172] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman, “Identifying Diverse
Usage Behaviors of Smartphone Apps,” in Proceedings of the 2011 ACM SIGCOMM Con-
ference on Internet Measurement Conference, ser. IMC ’11, Berlin, Germany: Association
for Computing Machinery, 2011, pp. 329–344.

[173] D. Yan, G. Xu, and A. Rountev, “Uncovering performance problems in Java applications
with reference propagation profiling,” in 2012 34th International Conference on Software
Engineering (ICSE), IEEE, 2012, pp. 134–144.

[174] S. Yoo and M. Harman, “Regression Testing Minimization, Selection and Prioritization: A
Survey,” Software testing, verification and reliability, vol. 22, no. 2, pp. 67–120, 2012.

[175] J. H. Zar, “Spearman rank correlation,” Encyclopedia of biostatistics, vol. 7, 2005.

113

[176] C. Zhang and A. Hindle, “A Green Miner’s Dataset: Mining the Impact of Software Change
on Energy Consumption,” in Proceedings of the 11th International Conference on Mining
Software Repositories, 2014, pp. 400–403.

[177] C. Zhang, A. Hindle, and D. M. German, “The Impact of User Choice on Energy Con-
sumption,” IEEE software, vol. 31, no. 3, pp. 69–75, 2014.

114

	Introduction
	Structure of the Thesis and Underlying Contributions
	Publication Details

	Background
	Smartphone Apps and API Usage
	Energy Consumption of an App
	Energy Consumption of API Usage
	Energy Regression Testing of Apps
	Energy Consumption in the Context of IDEs and CI/CD
	Static Analysis of Smartphone Apps
	Performance Testing and Energy Consumption
	Background Related Contributions

	Feasibility of current energy measurement approaches
	Introduction
	Related Work
	Do byte-code transformations affect energy consumption?
	Using Genetic Search to Optimize Energy Consumption
	Results
	Genetic search reduced the energy consumption of all apps.
	Cost-effectiveness of the proposed technique

	Discussion
	Threats to Validity
	Conclusion

	iGreenMiner: An iOS Energy Measurement Framework
	Introduction
	Related Work
	How iGreenMiner works
	iOS Device
	Measurement Device
	Controller
	Webservice

	Reliability and Reproducibility of iGreenMiner
	Potential research direction

	Energy-aware configuration guidelines for API parameters: A case-study of iOS Core Location Framework
	Introduction
	Related Work
	Recommendation Guidelines
	Optimization Techniques

	iOS Core Location Framework
	Energy Profiling of the Location Services
	Microbenchmark Creation
	Energy Measurement through iGreenMiner
	Accurate Energy Measurement

	Which Location Service Should You Use?
	Effect of Using A Particular Location Service (RQ1)
	Effect of Configuring Location Services (RQ2)
	Effect of Default Configuration Parameters (RQ3)
	Background vs Foreground Service (RQ4)
	Dominating Configurations (RQ5)

	Discussion
	Comparing Our Guidelines with the Apple iOS Energy Guidelines
	Why Are There Energy Differences Among the Location Service Configurations?
	Do Our Guidelines Help Improve the Energy Consumption of Real-World Apps?

	Threats to Validity
	Conclusion

	A Static-Analysis Based Energy Estimation Approach
	Introduction
	Motivating Example
	Related Work
	How Do We Compute Energy Profile of an API?
	Computing Energy Profile for a new API

	How Do We Calculate E-factor?
	General Approach For Calculating E-factor
	Specific Instantiation for SQLite

	Evaluation
	Dataset Preparation
	E-factor for Comparing Versions (RQ1)
	E-factor for Fine-grained Energy Review (RQ2)
	E-factor's Automation Capability (RQ3)

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion

	Conclusion
	Future Work
	Summary

	References

