
A Study of Software Multithreading in
Distributed Systems �

T�A� Marsland and Yaoqing Gao Francis C�M� Lau

Computing Science Department Computer Science Department

University of Alberta University of Hong Kong

Edmonton� Canada T�G �H� Hong Kong

�tony� gaoyq��cs�ualberta�ca fmclau�cs�hku�hk

Technical Report TR �����

November ��� ����

Abstract

Multiple threads can be used not only as a mechanism for tolerating un�

predictable communication latency but also for facilitating dynamic scheduling

and load balancing� Multithreaded systems are well suited to highly irregular

and dynamic applications� such as tree search problems� and provide a nat�

ural way to achieve performance improvement through such new concepts as

active messages and remote memory copy� Although already popular in single�

processor and shared�memory processor systems� multithreading on distributed

systems encounters more di�culties and needs to address new issues such as

communication� scheduling and migration between threads located in separate

addressing spaces� This paper addresses the key issues of multithreaded systems

and investigates existing approaches for distributed concurrent computations�

Keywords� Multithreaded computation� thread� virtual processor� thread safety�

active message� data�driven�

�This research was supported by Natural Sciences and Engineering Research Council of Canada�

�



� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

� Introduction

Distributed computing on interconnected high performance workstations has been

increasingly prevalent over the past few years� and provides a cost�e	ective alterna�

tive to the use of supercomputers and massively parallel machines� Much e	ort has

been put into developing distributed programming systems such as PVM 
���� P� 

�

MPI 
��� and Express
��� Most existing distributed software systems support only a

process�based message�passing paradigm� i�e�� processes with local memory that com�

municate with each other by sending and receiving messages� This paradigm �ts well

on separate processors connected by a communication network� where a process has

only a single thread of execution� i�e�� it is doing only one thing at a time� However�

the process based paradigm su	ers performance penalty through communication la�

tency and high context switch overhead� especially in the case where computing work

is frequently created and destroyed� To overcome these problems� lightweight pro�

cesses or threads �subprocesses in a sheltered environment and having a lower context

switch cost� have received much attention as a mechanism for �a� providing a �ner

granularity of concurrency� �b� facilitating dynamic load balancing� �c� making virtual

processors independent of the physical processors� and �d� overlapping computation

and communication to tolerate communication latency� In addition� multithreading

provides a natural way to implement nonblocking communication operations� active

messages and remote memory copy�

Multithreading can be supported by software or even hardware �e�g�� MTA 
���

Alewife 
��� EARTH 
���� START 
����� Although it has been popular in single�

processor and shared�memory processor systems� multithreading on distributed sys�

tems encounters more di�culties mainly because of the high latency and low band�

width communication links underlying distributed�memory computers�

In this paper� we �rst address some major issues about designing and imple�

menting multithreading in distributed systems� Then we investigate typical existing

multithreaded systems for exploiting the potential of multicomputers and workstation

networks� and compare their capabilities� To provide a framework we use a uniform

terminology of thread� process and processor� but provide at the end a table show�

ing the varied terminology used by the originating researchers� From this study we

identify three areas where further work is necessary to advance the performance of



A Study of Software Multithreading in Distributed Systems �

multithreaded distributed systems�

� Major issues

A runtime system de�nes the compiler�s or user�s view of a machine� It can be used

either as a compiler target or for programmer use� It is responsible for management of

computational resources� communication� and synchronization among parallel tasks

in a program� Designing and implementing multiple threads in distributed systems

involves the following major issues� ��� how to implement threads� ��� How to pro�

vide communication and scheduling mechanisms for threads in separate addressing

space� ��� What kinds of programming paradigms are supported for ease of concur�

rent programming� ��� How to make the system thread�safe�

��� Threads

A process may be de�ned loosely as an address space together with a current state

consisting of a program counter� register values� and a subroutine call stack� A

process has only one program counter and does one thing at a time �single thread��

As we know� one of the obvious obstacles to the performance of workstation networks

is the relatively slow network interconnection hardware� One of the motivations to

introduce the notion of threads is to provide greater concurrency within a single

process� This is possible through more rapid switching of control of the CPU from

one thread to another� because memory management is simpli�ed� When one thread

is waiting for data from another processor� other threads can continue executing� This

improves performance if the overhead associated with the use of multiple threads is

less than the communication latency masked by computation� From the view point

of programmers� it is desirable for reasons of clarity and simplicity that programs are

coded using a known number of virtual processors irrespective of the availability of

the physical processors� Threads support a scenario where each process is a virtual

processor and multiple threads are running in the context of a process� The feature

of low overhead for thread context switch is especially suitable for highly dynamic

irregular problems where threads are frequently created and destroyed�

Threads can be supported



� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

� at the system�level� where all functionality is part of the operating system kernel�

� by user�level library code� where all functionality is part of the user program

and can be linked in� and

� by a mixture of the above�

User�level library implementations such as Cthread 
���� PCR 
���� FastThreads


����and pthread 
���� multiplex a potentially large number of user�de�ned threads on

top of a single kernel�implemented process� This approach can be more e�cient than

relying on operating system kernel support� since the overhead of entering and leav�

ing the kernel at each call� and the context switch overhead of kernel threads is high�

User�level threads are on the other hand not only �exible but can also be customized

to the needs of the language or user without kernel modi�cation� However user�level

library implementation complicates signal handling and some thread operations such

as synchronization and scheduling� Two di	erent scheduling mechanisms are needed�

one for kernel�level processes and the other for user�level threads� User�level threads

built on top of traditional processes may exhibit poor performance and even incor�

rect behavior in some cases� when the operating system activities such as I�O and

page faults distort the mapping from virtual processes to physical processors� The

kernel thread support such as Mach 
��� Topaz 
�� and V 
��� simpli�es control over

thread operations and signal handling� but� like traditional processes� these kernel

threads carry too much overhead� A mixture of the above can combine the function�

ality of kernel threads with the performance and �exibility of user�level threads� The

key issue is to provide a two�way communication mechanism between the kernel and

user threads so that they can exchange information such as scheduling hints� The

Psyche system 
��� provides such a mechanism by the following approaches� shared

data structures for asynchronoous communication between the kernel and the user�

software interrupts to notify the user level of some kernel events� and a scheduler in�

terface for interactions in the user space between dissimilar thread packages� Another

example is Scheduler Activations 
��� through which the kernel can notify the thread

scheduler of every event a	ecting the user� and the user can also notify of the subset

of user�level events a	ecting processor allocation decisions� In addition� Scheduler

Activations address some problems not handled by the Psyche system such as page

faults and upward�compatible simulation of traditional kernel threads�



A Study of Software Multithreading in Distributed Systems �

��� Thread safety

A software system is said to be thread�safe if multiple threads in the system can

execute successfully without data corruption and without interfering with each other�

If a system is not thread safe� then each thread must have mutually exclusive access

to the system� forcing serialization of other threads� To support multithreaded pro�

gramming e�ciently� a system needs to be carefully engineered in the following way to

make it thread�safe� ��� use as few global state information as possible� ��� explicitly

manage any global state that cannot be removed� ��� use reentrant functions that

may be safely invoked by multiple threads concurrently without yielding erroneous

results� race conditions or deadlocks� and ��� provide atomic access to non�reentrant

functions�

��� Thread scheduling

Scheduling plays an important role in distributed multithreaded systems� There are

two kinds of thread scheduling� scheduling within a process and among processes�

The former are similar to the priority�based preemptive or round robin strategies in

traditional single�processor systems� Here we will focus on more complicated thread

scheduling among processes� especially for a dynamically growing multithreaded com�

putation� Although some compilers can cope with the scheduling issues statically
�
��

their scope is often limited due to the complexity of the analysis and the lack of

runtime information� For e�cient multithreaded computations of dynamic irregular

problems� runtime�supported dynamic scheduling algorithms can meet the following

requirements� ��� provide enough active threads available to prevent a processor from

sitting idle� ��� limit resource consumption� i�e�� the total number of active threads

is kept within the space constraint� ��� provide computation locality� try to keep

related threads on the same processor to minimize the communication overhead�

There are typically two classes of dynamic scheduling strategies� work sharing

�sender�initiated� and work stealing �receiver�initiated�� In the work sharing strat�

egy� whenever a processor generates new threads� the scheduler decides whether to

migrate some of them to other processors on the basis of the current system state�

Control over the maintenance of the information may be centralized in a single pro�

cessor� or distributed among the processors� In the work stealing strategy� whenever



� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

processors become idle or under utilized� they attempt to steal threads from more

busy processors� Many work sharing and work stealing strategies have been pro�

posed� For example� Chowdhury�s greed load sharing algorithm 
���� Eager et al��s

adaptive load sharing algorithm 
���� and Karp et al��s work stealing algorithm 
����

These algorithms vary in the amount of system information they use in making a task

migration decision� Usually the work stealing strategy outperforms the work sharing

strategy� since if all processors have plenty of work to do� there is no thread migration

in the work stealing strategy� while threads are always migrated in the work sharing

strategy� Eager et al� 
��� have shown that the work sharing strategy outperforms the

work�stealing at light to moderate system loads� but the latter is preferable at high

system loads when the costs of task transfer under the two strategies are comparable�

��� Multithreaded programming paradigms

A programming paradigm provides a method for structuring programs to reduce

the programming complexity� Multithreaded systems can be classi�ed into shared�

memory� explicit message�passing� active message�passing� and implicit data�driven

programming paradigms� Multiple threads of control are popular in uniprocessors�

shared�memory multiprocessors and tightly�coupled distributed memory multicom�

puters with the support of distributed shared memory systems� where a process has

multiple threads and each thread has its own register set and stack� All the threads

within a process share the same address space� Shared variables are used as a means

of communication among threads� These systems support the shared�memory parallel

programming paradigm� an application consists of a set of threads which cooperate

with each other through shared global variables� as Figure ��a� shows�

Most loosely�coupled multicomputers and networks of workstations are process

based� Their software supports only message passing as the means of communication

between processors� because there are no shared global variables� When threads are

introduced to these systems� they are able to draw on the performance and concur�

rency bene�ts from multithreaded computing� but usually a shared address space is

precluded �see Figure ��b���

Multithreads increase the convenience and e�ciency of the implementation of

active messages 
���� An active message contains not only the data but also the ad�



A Study of Software Multithreading in Distributed Systems �

dress of a user�level handler �code segment� which is executed on message arrival� It

provides a mechanism to reduce the communication latency and an extended mes�

sage passing paradigm as well� as illustrated in Figure ��c�� There are fundamental

di	erences between remote procedure calls and active messages� The latter has no

acknowledgment or return value from the call� Active messages are also used to facil�

itate remote memory copying� which can be thought of as part of the active message

paradigm� typi�ed by put and get operations on such parallel machines as CM���

nCUBE�� 
���� Cray T�D and Meiko CS�� 
����

Figure �� Multithreaded programming paradigms

In addition to the traditional shared�memory� message passing and active mes�

sage parallel programming paradigms� there could be a data�driven non�traditional

paradigm� see Figure ��d�� which is somewhat related to data�ow computing� There




 T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

an application consists of a collection of threads� but with data dependencies among

the threads� A thread can be activated only when all its data are available� This

paradigm simpli�es the development of distributed concurrent programs by providing

implicit synchronization and communication�

� Multithreaded runtime systems

Since the varied and con�icting terminology is confusingly used in the literature�

below we will compare di	erent system using uniform terminology for continuity�

��� Cilk

Cilk 
�� is a C�based runtime system for multithreaded parallel programming and

provides mechanisms for thread communication� synchronization� scheduling as well

as primitives callable within Cilk programs� It is developed by a group of researchers

at MIT Laboratory for Computer Science�

Figure �� Threads� closures and continuations in Cilk

The Cilk language provides both procedure abstraction in implicit continuation�

passing style and thread abstraction in explicit continuation�passing style� A contin�

uation describes what to do when the currently executing computation terminates�



A Study of Software Multithreading in Distributed Systems �

The programming paradigm provided by Cilk is a data�ow�like procedure�call tree�

where each procedure consists of a collection of threads� The entire computation can

be represented by a directed acyclic graph of threads� A thread is a piece of code�

implemented as a nonblocking C function� When a thread is spawned� the runtime

system allocates a closure �thread control table entry� for it� A closure is a data

structure that consists of a pointer to the thread�s code� all argument slots needed

to enable the thread� and a join count indicating the number of missing arguments

that the thread depends on� The Cilk preprocessor translates the thread into a C

function of one argument �a pointer to a closure� and void return type� Each thread

is activated only after all its arguments are available� i�e�� its corresponding closure

is changed from the waiting state to the full state� It runs to completion without

waiting or suspending once it has been activated� A thread generates parallelism at

runtime by spawning a child thread � so that the calling thread may execute concur�

rently with its child threads� For example� see Figure �� The creation relationships

between threads form a spawn tree� Threads may wait for some arguments to arrive

in the future� Explicit continuation�passing is used as a communication mechanism

among threads� A continuation is a global reference to an empty argument slot that

a thread is waiting for�

Cilk�s scheduler employs a work stealing strategy
�� for load balancing� Each

processor maintains a local ready queue to hold full closures �threads whose data are

available�� Each thread has a level which is a re�nement of the distance to the root

of the spawn tree� A processor always selects a thread with the deepest level to run

from its local ready queue� When a processor runs out of work� it selects a remote

processor randomly and steals the shallowest ready thread from the remote processor

based on the heuristic that a shallower thread is likely to have more heavy work than

a deep one� Computations in Cilk are fully strict� i�e�� a procedure only sends values

to its parent� This re�ects the ordinary procedure call�return semantics and has good

time and space e�ciency� Cilk also allows the programmer to have control over the

runtime system�

Preliminary versions of the Cilk system has been implemented on massively par�

allel machines �CM� MPP� the Intel Paragon MPP and the Silicon Graphics Power

Challenge SMP� and networks of workstations �the MIT Phish�� It has demonstrated

good performance for dynamic� asynchronous� tree�like� MIMD computations� but not



�� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

yet for more traditional data�parallel applications� The explicit continuation�passing

style results in a simple implementation but it needs more frequent copying of argu�

ments and puts some burden on the programmer� Although the procedure abstraction

with implicit continuation�passing is provided to simplify parallel programming� it is

less good at controlling the runtime system�

��� Multithreaded Parallel Virtual Machine

PVM 
��� has emerged as one of the most popular message�passing systems for work�

stations mainly because of its inter�operability across networks and the portability

of its TCP� and XDR�based implementation� PVM only supports the process�based

message�passing paradigm� where processes are both the unit of parallelism and of

scheduling� TPVM and LPVM are two PVM�based runtime systems� They aim at

enhancing PVM by introducing threads to reduce task initiation and scheduling costs�

to overlap computation and communication� and to obtain �ner load balance�

����� Threads�oriented PVM

The TPVM �Threads�oriented PVM� system 
��� is developed by Ferrari and Sun�

deram in University of Virginia and Emory University� It is an extension of the PVM

system that models threads�based distributed concurrent computation� an applica�

tion�s components form a collection of instances �threads� that cooperate through

message passing� These instances�threads are the basic units of parallelism and

scheduling in PVM�

TPVM supports not only user�level threads� and provides both the traditional

process�based explicit message passing� but also a data�driven paradigm� In the

traditional interacting sequential process paradigm� threads execute in the context

of disjoint address spaces� and message passing is the only means of communication

between threads� This paradigm typically forces the programmer to explicitlymanage

all thread creation and synchronization in a program� To implement this paradigm�

PVM processes are �rst spawned and registered with the PVM system� Then the

PVM processes export entry points describing threads� as Figure � shows� Threads

can be activated in appropriate locations by a thread startup mechanism� i�e�� the

tpvm spawn primitive�



A Study of Software Multithreading in Distributed Systems ��

Figure �� TPVM message�passing paradigm

The data�driven paradigm provides automatic synchronization and communica�

tion based on data dependencies� Threads should be declared with named data

dependencies� They are initially created at appropriate locations� but are actually

activated when a set of speci�ed messages�data are available� as shown in Figure ��

As soon as a thread is activated� it can perform non�blocking receives to obtain its

required inputs�

TPVM is implemented as three separate modules� ��� the library �the user inter�

faces with the TPVM system via library calls�� the export functions �tpvm export�

tpvm unexport�� the message passing functions �tpvm send� tpvm recv �� and the

scheduling functions �tpvm spawn� tpvm invoke�� ��� the portable thread interface

module� thread creation� exiting the running thread� yielding the running thread�

obtaining mutual exclusion� releasing mutual exclusion� and determining a unique

identi�er associated with the running thread� ��� the thread server module� A cen�

tralized thread server task�process provides support for the thread export database�

scheduling� and data�driven thread creation� The scheduling of threads is done in a

round robin fashion on the appropriate processes�



�� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

Figure �� TPVM data�driven paradigm

Preliminary experiments 
��� on a small network of Sparc� computers show that

some applications can bene�t from TPVM�s �ner load balance� whereas many SPMD

�Single�Program�Multiple�Data� style applications with very regular communication

patterns do not�

TPVM is built on top of PVM and is portable� But the lack of thread�safety is

still not addressed� As a result� the entire PVM library is treated as a critical region�

Semaphores are used to ensure that only one active thread accesses the library at a

time� Such an exclusive access requirement on the library is restrictive� e�g�� the use

of blocking PVM calls is precluded� The current version of TPVM manages threads

through a centralized server and this may become a bottleneck as the number of

processors increases�

����� Lightweight process PVM

LPVM �Lightweight process PVM� is developed by Zhou and Geist 
��� at Oak Ridge

National Laboratory� It is a modi�ed version of the PVM system and is implemented

on shared�memory multiprocessors�

In PVM� INET�domain UDP sockets are used to communicate among tasks� When

one task sends a message to another� there are three copying operations involved� from



A Study of Software Multithreading in Distributed Systems ��

the sender�s user space to the system�s send bu	er� to the system�s receive bu	er� and

to the receiver�s user space� With the availability of physical shared memory� the

communication latency and bandwidth could be greatly improved� To retain the

traditional PVM user interface� the whole user program in LPVM is one process with

multiple tasks� Each task is a thread in LPVM instead of being a process in PVM�

However it only supports the process�based message�passing paradigm�

To make LPVM thread safe� PVM was modi�ed extensively to removemany global

states 
���� ��� all the memory and bu	er management code in version ��� of PVM

was modi�ed� and ��� �pvm spawn � was changed so that the PVM library spawns

new tasks� instead of the PVM daemon� The user interface is changed accordingly�

e�g�� most LPVM calls need to have the caller Task ID parameter and use it as a

key to locate resources related to the task� �pvm pack� routines explicitly require the

send bu	er id returned by �pvm initsend� so that they can pack messages into the

bu	er safely�

LPVM is an experimental system and its current version runs on IBM SMP and

SUN SMP systems with a single host� Threads are supported at the system level and

thread scheduling within a process is fully taken care of by the underlying operating

system� Thread scheduling among di	erent hosts has not yet beed addressed in the

current version� because it does not support the TPVM�s �export� of the thread entry

points to another host 
����

��� Nexus

The Nexus runtime system is developed at Argonne National Laboratory and Cali�

fornia Institute of Technology 
�
�� It is designed primarily for a good compilation

target to support task�parallel and mixed data� and task�parallel computation in

heterogeneous environments�

Nexus supports the active message�passing paradigm� It provides �ve core ab�

stractions� the processor� process� thread� global pointer� and remote service request�

A processor is a physical processing resource� A process is an address space plus

an executable program� which corresponds to a virtual processor� A computation

consists of a set of threads� All threads in the same process communicate with each

other through shared variables� One or more processes can be mapped onto a single



�� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

node� They are created and destroyed dynamically� Once created� a process cannot

be migrated between nodes� A thread can be created in the same process as� or in

a di	erent process from� the currently executing thread� Nexus provides the opera�

tions of thread creation� termination� and yielding� To support a global name space

for the compiler� a global pointer is introduced� which consists of three components�

processor� process and address� Threads are created in a remote process �pointed to

by a global pointer� by issuing a remote service request �RSR�� Since Nexus does not

require a uniform address space on all processors� RSR speci�es the name rather that

the address of the handler function� It is similar to an active message� but less re�

strictive� In a remote service request� data can be passed as an argument to a remote

RSR handler by means of a bu	er �see Figure ���

Figure �� Threads� processes and processors in Nexus

The Nexus implementation encapsulates thread and communication functions in

threads and protocol modules to support heterogeneity� Threads are implemented by

a user�level library� It is the user�s and compiler�s responsibility to map computation

to physical processors� which involves both the mapping of threads to processes and

the mapping of processes to processors� Therefore Nexus is more suitable to a compiler

target than to programmer use� Nexus is operational on TCP�IP networks of Unix

workstations� the IBM SP�� and the Intel Paragon using NX� It has been used to

implement two task�parallel programming languages� CC � � 
��� and Fortran M


���� Experiments 
�
� showed that Nexus is competitive with PVM despite its lack



A Study of Software Multithreading in Distributed Systems ��

of optimization�

��� Threaded Abstract Machine

TAM 
��� is a Threaded Abstract Machine for �ne�grain parallelism developed at

University of California� Berkeley� It serves as a framework for implementing a gen�

eral purpose parallel programming language� TAM provides e�cient support for the

dynamic creation of multiple threads of control� locality of reference through the

utilization of the storage hierarchy and scheduling mechanisms� and e�cient synchro�

nization through data��ow variables� TAM supports a novel data�driven paradigm�

Figure �� TAM structure



�� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

A TAM program is a collection of code�blocks and each code�block consists of

several non�blocking and non�branching instruction sequences and inlets �message

handlers�� When a caller invokes its child code�block� it does not suspend itself

while an activation frame �roughly comparable to a thread� is allocated for the child

code�block� The activation frame provides storage for the local variables and the

resources required for synchronization and scheduling of instruction sequences� The

dynamic call structure forms a thread tree� A TAM instruction sequence runs in the

context of an activation frame without any suspension and branching� Argument and

result passing is represented in terms of inter�thread communication� the caller sends

arguments to prede�ned inlets of the callee� who in turn sends results back to inlets

the caller speci�es� An inlet is a compiler�generated message handler which processes

the receipt of a message for a target thread �see Figure ���

Threads are the basic unit of parallelism between processors� A thread is ready to

run if it has some enabled instruction sequences waiting to be executed� A thread has

a continuation vector for the addresses of all its enabled instruction sequences� Each

processor maintains a scheduling queue consisting of ready threads� Finer parallelism

within a thread is represented by instruction sequences that are used to reduce com�

munication latency� Furthermore parallelism within an instruction sequence can be

used to improve processor pipeline latency�

TAM provides mechanisms to control the location of threads and the compiler

may determine this mapping statically� For highly irregular parallel programs� the

runtime system needs to provide dynamic load balancing techniques�

To validate the e	ectiveness of the TAM execution model� a threaded machine

language called �TL� for TAM� is implemented on the CM�� multiprocessor� The

�ne grain parallelism achieved makes TAM especially suitable for tight�coupled mul�

ticomputers�

��� Multithreaded Message Passing Interface

MPI �Message Passing Interface� 
��� tries to collect the best features of many exist�

ing message�passing systems and improve and standardize them� MPI is a library

which encompasses point�to�point and collective message passing� communication

scoping� virtual topologies� datatypes� pro�ling� and environment inquiry� It sup�



A Study of Software Multithreading in Distributed Systems ��

ports a process�based message�passing paradigm� Processes in MPI belong to groups�

Contexts are used to restrict the scope of message passing� A group of processes

plus the safe communication context form a communicator� which guarantees that

one communication is isolated from another� There are two types of communica�

tors� intra�communicators for operations within a single group of processes� and

inter�communicators for point�to�point communication between two non�overlapping

groups of processes�

Haines et al� at NASA Langley Research Center 
��� developed a runtime system

called Chant� which is layered on top of MPI and POSIX pthreads� In Chant� threads

are supported at the user�level and pthreads are extend to support two global threads�

chanter and rope �a collection of chanters�� A global thread identi�er is composed

of a process identi�er� a process rank within the group and a thread rank within

the process� Communication operations resemble the MPI operations� Communi�

cation between threads within the same process can use shared memory primitives

while communication between threads in di	erent processes utilizes point�to�point

primitives� In point�to�point communication� Chant employs user�level polling for

outstanding messages� Like Nexus� Chant supports remote service requests for a re�

mote fetch� remote state update and remote procedure calls� The existing pthreads

primitives are extended to provide a coherent interface for global threads� Chant

supports the message�passing and active message�passing paradigms� But it has not

addressed the issue of thread scheduling in a di	erent addressing space�

Chant is currently running on both a network of workstations and on the Intel

Paragon multicomputer� It is being used to support Opus 
���� a superset of High

Performance Fortran �HPF�� with extensions that support parallel tasks and shared

data abstractions�

� Conclusion

Threads are an emerging model for exploiting multiple levels of concurrency and com�

putational e�ciency in both parallel machines and networks of workstations� This

paper investigates typical existing multithreaded distributed systems� using a uni�

form terminology for clarity� Table � summarizes the varied terminology of di	erent

research teams� and provides the association between the terms thread� process and



�
 T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

processor which we use� Compared to the single�processor and shared memory mul�

tiprocessor cases� multithreading on distributed systems encounters more di�culties

due to underlying physical distributed memories� and the need to address new issues

such as thread scheduling� migration and communication in a separate addressing

space�

Table �� Threads� processes and processors

Terms Cilk TPVM LPVM Nexus TAM Chant

Instruction instruction instruction instruction instruction thread instruction

sequence sequence sequence sequence sequence sequence

Thread thread� thread thread thread activation chanter�

closure frame rope

Process � task task context � process

Processor processor processor host node processor processor

The systems we discuss here are either built on top of such existing systems

as PVM and MPI� through the integration of a user�level threads package� or are

self�contained� Because of the nature of the underlying systems� usually there is no

shared address space among threads� even if these threads belong to the same process�

The multithreaded programming environments supported by these systems include

explicit message passing� active message passing and implicit data�driven paradigms�

Thread scheduling can be taken care of by the software systems themselves� or by the

underlying operating system� or simply left to users and compilers�

TPVM supports both message passing and data�driven paradigms� Threads have

no shared data even if they belong to the same PVM process� This makes it easier to

activate a thread at any appropriate location� But it is obvious that communication

between threads within the same process by message passing instead of shared mem�

ory is not natural and may result in extra overhead� In TPVM� the lack of thread

and signal safety has not yet been addressed� and its centralized server may become a

bottleneck for large applications� Modi�cations in LPVM make it thread and signal

safe� and thread scheduling is completely taken care of by the operating system� To

retain the user interface� LPVM supports only the message passing paradigm� i�e��

threads cannot share data even though the underlying machines have physical shared



A Study of Software Multithreading in Distributed Systems ��

memories� The merit of LPVM�s approach to combining PVM with multithreading

on shared�memory multiprocessors remains unclear� LPVM reduces the communica�

tion latency by taking advantage of shared memory in a multiprocessor� but seems

not to have yet addressed multithreading on multiple hosts�

Although most user thread packages� such as pthread� support only communica�

tion between threads located in separate address space� Chant extends the POSIX

pthread by adding a new global thread �chanter� and provides point�to�point and

remote service request communication operations by utilizing the underlying MPI

system� Threads within the same process can share data� Furthermore Chant sup�

ports collective operations among thread groups using a scoping mechanism called

ropes� Chant supports the message passing paradigm� In contrast� Nexus is a mul�

tithreaded system mainly used for a compiler target� It supports dynamic processor

acquisition� dynamic address creation� a global memory model and remote request

service� Nexus supports the active message passing paradigm� The burden of mapping

threads to processes and processes to physical processors is left to users or compil�

ers� Finally� Cilk is a C�based multithreaded system suitable for dynamical tree�like

computations� It supports the data�driven paradigm and thread scheduling is auto�

matically taken care of by the runtime system� Cilk has not yet shown its e�ciency

in data�parallel applications and its continuation�passing style results in extra copy�

ing overhead� but bene�ts from its work�stealing strategy� TAM also supports the

data�driven paradigm� Compared with Cilk� it exploits even �ner grain parallelism�

Therefore it is more suitable for tightly coupled distributed memory multicomputers�

Table � summarizes the important features of the systems discussed here�

For further advances to multithreading on distributed systems the following three

topics should be addressed�

� Integration of multiple programming paradigms to support both data�parallel

and task�parallel applications� Multithreading has demonstrated its suitability

for task�parallel computations� but most existing multithreaded systems have

not yet obtained good e�ciency for data�parallel problems�

� Coordination between thread and process scheduling� In multithreading sys�

tems� both thread and process scheduling are supported� Little attention has

been paid so far to coordinate these two activities for system�wide global load



�� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

balancing� Thread scheduling can be viewed a mechanism for short�term load

balancing within a single user� while process scheduling helps long�term load

balancing� One must therefore recognize when a workstation is disconnected or

is newly available� and migrate processes�

� Fast communication mechanisms� The protocols of existing communication net�

works are heavyweight and the software overhead of communication dominates

the hardware routing cost� Improvements in communication performance can

dramatically increase the applicability of multithreading�

In our view� advances in each of these areas will have dramatic e	ect on the utility

and performance of thread�based distributed computing systems�



A Study of Software Multithreading in Distributed Systems ��

�

Table �� Capability Comparison of Multithreading Systems

Capabilities Cilk PVM based Nexus TAM MPI based
TPVM LPVM Chant

Parallel data�driven message� message� active data� active and
programming passing� passing message� driven message�
paradigms data�driven passing passing

Languages Cilk� C language C language Mainly used TL�� an Opus�
supported C�based as a compiler abstract Fortran

language target for machine �based
pC��� HPF� Id�� language
FortranD

Thread user�level user�level system�level user�level user�level user�level
implementation

Underlying no special PVM without PVM with POSIX� no special MPI�
software software any modi�� minimal DCE� C� software pthreads
systems system cation� modi�� and Solaris system with
required required GNU�REX cation for threads� required extensions

thread thread safety� Various
library OS�supported protocols�

threads TCP�Intel NX

Thread work dynamic Scheduling taken care compiler taken care
scheduling stealing� scheduling taken care of by users controlled of by users
strategies select one at thread of by OS or compilers and runtime or compilers

processor creation or supported
at random at the frame and

request of thread
users scheduling

Underlying multi� hetero� Shared heterogeneous tightly multi�
architectures processors� geneous memory distributed coupled computers�
required multi� distributed multi� environments multi� a network of

computers� environ� processors computers workstations
a cluster of ment
workstations

Strength e	cient supports two take global extended asynchronous
tree�like paradigms� advantage name space� data�driven remote service

computations� portable of shared support mixed paradigm� requests�
dynamic on any memory� parallel compiler�
scheduling PVM system modify PVM computations� controlled
strategy� for thread remote service scheduling

safety request
Weakness frequent use only no support no support only users take

argument subset of of thread of automatic suitable care of
copying library due migration scheduling for tightly thread
overhead� to thread from one strategy� coupled scheduling
not suitable safety� a host to not suitable machines
for data bottleneck another for due to �ne
parallel caused by programming parallelism
problems the server



�� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau

References


�� The Express way to distributed processing� Supercomputing Review� pages ������

May �����


�� Anant Agarwal� Ricardo Bianchini� David Chaiken and six others� The MIT

alewife machine� Architecture and performance� In Proceedings of ISCA����

�����


�� Robert Alverson� David Callahan� Daniel Cummings� and three others� The tera

computer system� In Proceedings of International Conference on Supercomputing�

pages ���� June �����


�� Thomas E� Anderson� Brian N� Bershad� Edward D� Lazowska� and Henry M�

Levy� Scheduler activations� E	ective kernel support for the user�level man�

agement of parallelism� ACM Transactions on Computer Systems� ������������

February �����


�� David L� Black� Scheduling support for concurrency and parallelism in the Mach

operating system� IEEE Computer� ������������ May �����


�� Robert D� Blumofe� Christopher F� Joerg� Bradley C� Kuszmaul� Charles E�

Leiserson� Keith H� Randall� and Yuli Zhou� Cilk� An e�cient multithreaded

runtime system� In Proc� �th ACM SIGPLAN Symp� on Principles and Practice

of Parallel Programming� pages �������� July �����


�� Robert D� Blumofe and Charles E� Leiserson� Scheduling multithreaded com�

putations by work stealing�� In Proceedings of the ��th Annual Symposium on

Foundations of Computer Science �FOCS ���	� pages ������
� Santa Fe� NM�

USA� November �����



� Ralph Butler and Ewing Lusk� User�s guide to the P� parallel programming

system� Technical Report ANL������� Argonne National Laboratory� October

����� Version ����


�� Thacker C�� Stewart L�� and Satterthwaite Jr� E� Fire�y� A multiprocessor

workstation� IEEE Trans� on Computers� ���
���������� August ��

�



A Study of Software Multithreading in Distributed Systems ��


��� K� Mani Chandy and Carl Kesselman� CC��� A declarative concurrent object�

oriented programming notation� In Gul Agha� Peter Wegner� and Aki Yonezawa�

editors� Research Directions in Concurrent Object Oriented Programming� MIT

Press� Cambridge� MA ������ �����


��� S� Chowdhury� The greedy load sharing algorithm� Journal of Parallel and

Distributed Computing� ����������� May �����


��� E� Cooper and R� Draves� C threads� Technical Report CMU�CS�

����� De�

partment of Computer Science� Carnegie Mellon University� �����


��� David E� Culler� Seth Copen Goldstein� Klaus Erik Schauser� and Thorsten von

Eicken� TAM� A Compiler Controlled Threaded Abstract Machine� In Journal

of Parallel and Distributed Computing� Special Issue on Data
ow� June �����


��� Cheriton D� The V distributed system� Communications of ACM� ��������������

March ��

�


��� D�L� Eager� E�D� Lazowska� and J� Zahorjan� Adaptive load sharing in ho�

mogeneous distributed systems� IEEE Transactions on Software Engineering�

�������������� May ��
��


��� D�L� Eager� E�D� Lazowska� and J� Zahorjan� A comparison of receiver�initiated

and sender�initiated adaptive load sharing� Performance Evaluation� ������
�

��
��


��� Adam Ferrari and V� S� Sunderam� TPVM� Distributed concurrent computing

with lightweight processes� In IEEE High Performance Distributed Computing

�� August ����� pp� ������



�
� Ian Foster� Carl Kesselman� and Steven Tuecke� Nexus� Runtime support for

task�parallel programming languages� Mathematics and Computer Science Divi�

sion� Argonne National Laboratory� Argonne� IL� August �����


��� Ian T� Foster and K� Mani Chandy� Fortran M� A language for modular parallel

programming� Mathematics and Computer Science Division� Argonne National

Laboratory� Argonne� IL� June �����



�� T�A� Marsland�Yaoqing Gao and Francis C�M� Lau


��� Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Robert Manchek� and

Vaidyalingam S� Sunderam� PVM� Parallel Virtual Machine A Users� Guide and

Tutorial for Network Parallel Computing� Scienti�c and Engineering Computa�

tion Series� MIT Press� Cambridge� MA� �����


��� Matthew Haines� David Cronk� and Piyush Mehrotra� On the design of chant� A

talking threads package� In Proceedings of Supercomputing ���� pages ��������

����� Also as Tech report NASA CR������� ICASE Report No� ������ Institute

for Computer Applications in Science and Engineering� NASA Langley Research�


��� M� Homewood and M� McLaren� Meiko CS�� interconnect elan � elite design� In

Proceedings of Hot Interconnects���� pages �������� August �����


��� Herbert H�J� Hum� Olivier Maquelin� Kevin B� Theobald and fourteen others� A

design study of the EARTH multiprocessor� In Proceedings of the International

Conference on Parallel Architecture and Compilation Techniques� pages ����
�

June �����


��� Micheal J� Beckerle� Overview of the START ��T� Multithreaded Computer� In

Proceedings of the IEEE COMPCON� February �����


��� Richard M� Karp and Yanjun Zhang� Randomized parallel algorithms for

backtrack search and branch�and�bound computation� Journal of the ACM�

�����������
�� July �����


��� Weiser M�� Demers A�� and Hauser C� The portable common runtime approach

to interoperability� In Proceedings of the �
th ACM Symposium on Operating

Systems Principles� pages �������� Litch�eld Park� Ariz�� ��
��


��� Brian D� Marsh� Michael L� Scott� Thomas J� LeBlanc� and Evangelos P�

Markatos� First�class user�level threads� In Proceedings of the ACM Symposium

on Operating System Principles �SOSP	� pages �������� October �����


�
� D� E� Maydan� J� L� Hennessy� and M� S� Lam� E�cient and exact data de�

pendence analysis� In Proceedings of SIGPLAN��� Conference on Programming

Language Design and Implementation� pages ����� June �����



A Study of Software Multithreading in Distributed Systems ��


��� Piyush Mehrotra and Matthew Haines� An overview of the opus language and

runtime system� Technical Report NASA CR������� ICASE Report No� ������

Institute for Computer Applications in Science and Engineering� NASA Langley

Research Center� May ����� �� pages�


��� Frank Mueller� A library implementation of POSIX threads under UNIX� In

Proceedings of the USENIX Conference� pages ������ �����


��� Anthony Skjellum� Nathan E� Doss� Kishore Viswanathan� Aswini Chowdappa�

and Purushotham V� Bangalore� Extending the message passing interface �MPI��

In Anthony Skjellum and Donna S� Reese� editors� Proceedings of the Scalable

Parallel Libraries Conference II� IEEE Computer Society Press� October �����


��� Anderson T�� Lazowska E�� and Levy H� The performance implications of thread

management alternatives for shared memory multiprocessors� IEEE Trans� on

Computers� �
��������������� December ��
��


��� Thorsten von Eicken� David E� Culler� Seth Copen Goldstein� and Klaus Erik

Schauser� Active Messages� a Mechanism for Integrated Communication and

Computation� In Proc� of the ��th Int�l Symposium on Computer Architecture�

Gold Coast� Australia� May �����


��� Honbo Zhou and Al Geist� LPVM� lightweight process �thread� based PVM for

SMP systems� Technical report� Oak Ridge National Laboratory� �����


