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Abstract

From the mechanical processes that produce the convolutions in the human

brain needed for complex thought, to the precise and controlled movements

derived by intuitive calculations of body position in figure skating, mechanics

plays a role in everything we do. In this thesis, we apply and examine the role

of mechanics in models of glioma spread and figure skating.

In Chapter 1, we introduce the topic of glioma modelling and present our

glioma spread model in 3D–a continuum model for the density of tumor cells

coupled to a general momentum balance equation for the mechanical proper-

ties of the glioma and brain tissue. Glioma cells are highly invasive, with the

tumors often having diffuse and irregular boundaries. It has been well estab-

lished that tissue heterogeneity significantly affects glioma spread and tumor

cell behavior. Recent work exploring the effects of mechanical properties has

strengthened the idea that mechanics plays a large role in determining glioma

spread patterns and invasiveness. We focus on modelling two aspects that af-

fect glioma spread: Structural effects on tumor cell migration and the impact

of mechanical interactions on tumor spread. The model includes the glioma

population as a cell density that can proliferate, spread via fully anisotropic

diffusion, and that is advected by the velocity generated by the growing tumor

mass. The momentum balance equation determines the deformation caused by

the growing tumor mass, with this deformation causing an advection velocity.

Not only is this advection velocity coupled to the tumor cells, but it is also

applied to material properties, which can include diffusion tensors and elastic-
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ity parameters (i.e. shear modulus, bulk modulus). With the exact nature of

brain tissue mechanics still being an open question, the form of the momentum

balance equation is not specified for the 3D glioma model in Chapter 1, but

rather is left in a general form allowing the 3D model to be used a framework

for modelling glioma spread which can be used for any description of brain

tissue mechanics.

In Chapter 2, we analyze a 1D version of the glioma model to identify,

characterize, and simulate travelling waves. Within the 1D model, we consider

three biological scenarios representing different stages of glioma development,

with each biological scenario characterized by which material properties (elas-

ticity parameters and or diffusion), vary over space and time. In addition to

the biological scenarios, we also consider multiple mechanical models, includ-

ing linear elasticity and the nonlinear one-term Ogden elasticity model, as well

as viscoelastic versions of both. For each biological scenario, we compare how

these mechanical models affect glioma spread, as well as the resulting deforma-

tion and stress. For every mechanical model, we found that travelling waves

existed with the same minimal wave speed. However, the deformation and

stress associated with each mechanical model differs significantly. The Ogden

model results in deformation and stresses two and three orders of magnitude

less than the linear model, respectively. We also present wave speed analy-

sis for a generalized elasticity model, finding that the analytically determined

wave speed is indeed conserved among such elasticity models.

In Chapter 3, we present a 2D version of the 3D glioma spread model with

linear elasticity. We develop and implement a numerical framework for sim-

ulating the 2D model, which integrates imaging data for both the simulation
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domain and diffusion tensors. We employ ExploreDTI to access and extract

imaging data, including diffusion tensors and medical images. Diffusion tensor

data is translated to cancer cell diffusion tensors and used to initialize the dif-

fusion tensor in the glioma model simulations. Medical images are processed

and used to define the simulation domain. Finally, the model is simulated

using a finite element method. Through simulations, we are able to produce

simulations with realistic rates of glioma spread and deformation levels. We

also explore the effects of the model parameters using simulations. We show

that the parameter scaling the body forces significantly affects the rate and

shape of glioma spread, making it a desirable target for parameter fitting and

further exploration.

Finally, in Chapter 4, we discuss the application of the Chaplygin sleigh

as a model for a figure skate. A classical element in the sport of figure skating

is reproducing specific patterns on the ice through very detailed, precise con-

trol of the skater’s movements. We formalize this process using the Chaplygin

sleigh as a model of the figure skate, with an added mass representing the

skater’s moving center of mass and acting as a control parameter for the sys-

tem. Using a previous result on approximating piecewise curves with arcs, we

present a modified form of the Chaplygin sleigh which is limited to producing

circular arcs. Finally, we present a control algorithm based on minimization of

the energy of control mass which successfully reproduces a prescribed pattern.
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Chapter 1

Glioma modelling background

1.1 Introduction

In this work, we explore the effects of mechanics on the spread of glioma. We

begin by developing a 3-dimensional model of glioma spread which incorpo-

rates a data-driven model of cell movement coupled to the influence of the

mechanical properties of tissue. Next, in Chapter 2 we limit ourselves to a

corresponding 1-dimensional glioma model in order to study existence of trav-

elling wave solutions and examine how the wave speed is affected by model

parameters and choice of mechanical model. Building on our understanding

of how mechanics affects glioma spread, in Chapter 3 we then present a 2-

dimensional model of glioma spread which incorporates patient-specific data

for both the simulation domain definition and diffusion tensor initialization.

1.2 Biological components of glioma spread

Before discussing details of mathematical models of glioma spread, we first

introduce the core biological components of glioma spread. This discussion is

of course limited, with a focus on the factors we will later incorporate into

glioma model presented in Section 1.6.
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Figure 1.1: MRI and MRE images of glioma. Left to right: T2-weighted and;
T1-weighted MRI highlighting the tumor and associated edema; MRE wave image;
MRE elastogram showing stiffness. Adapted from [53].

Glioma. Gliomas are not homogeneous structures. Typically, a glioma will

consist of a solid tumor with tumor cells extending in projections away from

the main tumor [43]. The main solid tumor, known as the gross tumor volume

(GTV) is also associated with a surrounding region of fluid known as edema

[23]. Once the glioma has been well-established, the main tumor develops a

necrotic core of cells as nutrients become limited in the center of the growing

mass. Surrounding this necrotic core is a layer of proliferating, but largely sta-

tionary, cells. Finally, invasive cells are those tumor cells that are more prone

to extend from and leave the tumor into the edema and surrounding tissue

[127, 114, 43]. The different types of glioma cells can be visualized by employ-

ing different imaging techniques, such as T1, T2, and FLAIR (Fluid Attenu-

ated Inversion Recovery), which are used to contrast the different properties

(proliferating or dead cells, fluid, etc.) of these tumor regions [114, 91, 53].

Figure 1.1 shows how variations of MRI can enhance different tumor elements.

The main concern with respect to treatment is the diffuse extensions of

glioma cells away from the GTV. Due to the low density of the extensions,

current imaging techniques are unable to capture them. Uniform 2cm margins,

known as the clinical target volume (CTV), around the visible tumor mass are

used in treatment planning [23]. A typical example of the GTV and CTV

are shown in Figure 1.2. However due to the irregular and diffuse nature of

the extensions, the CTV is typically insufficient to capture all of the tumor

cells with the remaining tumor cells often leading to further tumors as the

leftover cells grow [43]. A further concern with this treatment approach is that
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Figure 1.2: Gross tumor volume and associated clinical target volume for a glioma.
Adapted from [23].

this CTV unnecessarily treats healthy tissue, worsening the patient outcomes.

With a better understanding of the glioma tumor location, even at low tumor

cell densities, it may be possible to improve treatment accuracy and hence

treatment outcomes.

Brain structure. The brain can be broken down into different regions,

structures, and tissue types. We will focus on a few key features that are

important in the spread of glioma and the visualization of this spread. There

are two main types of tissue that affect the spread of glioma, known as white

matter and gray matter [2, 43, 119]. Generally, gray matter is a structurally

homogeneous, isotropic material that forms the majority of the brain tissue.

White matter fibers are directed tracts of tissue that spread throughout the

gray matter. The difference in directionality between white and gray matter

lead to differences in how molecules move throughout the brain, with these dif-

ferences also being reflected in cell movement [43, 95, 91, 18]. The implications

of this differential movement between gray and white matter are discussed in

Section 1.3.

On a larger scale, the brain can be divided into regions or structures. These

regions have varying properties, including different proportions of white and

gray matter, as well as different mechanical properties [20, 18]. These differ-
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ences in properties between brain structures makes them factors to consider

when modelling glioma spread. The largest part of the brain is the cerebrum

[2]. The gliomas we will discuss are located within the cerebrum, which is

composed of gray matter with white matter tracts spread throughout. The

cerebrum is divided into the left and right hemispheres which are connected

by the corpus callosum, a relatively rigid, fibrous structure with a high density

of white matter [2, 18]. Deep in the brain there are also fluid-filled structures

known as the lateral ventricles [2]. Because the lateral ventricles are fluid-

filled they are easily deformable, making them useful landmarks to visualize

deformation caused by tumor growth. Figure 1.3 shows how the ventricle

deformation can be clearly visualized using MRI.

Mass effect. The mechanical interplay of elements within the tumor mi-

croenvironment is becoming increasingly recognized as a major factor in de-

termining the patterns of glioma spread [82, 89, 98]. The mechanical effects

(pressure, deformation, etc.) of the brain tumor on healthy tissue are known

as mass effect [91, 28, 114]. Because the skull provides a (mostly) rigid bound-

ary for the brain, restricting movement and growth, the increase in the tumor

mass and movement of cells causes pressure, resulting in the healthy tissue to

be pushed and compressed. There are extreme cases where brain tumors cause

deformation of the skull, but we will limit ourselves to the assumption that the

skull remains undeformed. If the mass effect is substantial, it can significantly

alter the brain structure and damage healthy tissue. MRIs showing the mass

effect are shown in Figure 1.3, with the severity of the mass effect increasing

from left to right.

As mass effect is driven by the mechanical forces of pressure and deforma-

tion of healthy tissue caused by a growing tumor, including the correct de-

scriptions of mechanics in models of tumor growth is clearly important. The

factors that affect how the tumor pushes on healthy tissue and the resulting

changes are primarily determined by the mechanical properties of the healthy

tissue (brain tissue, skull, etc), and the tumor. In a model of general tumor

growth, [73] found that difference in stiffness between healthy tissue and the

tumor can affect how the tumor spreads. If the growing tumor encounters
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Figure 1.3: MRIs of mass effect caused by glioma. Moving from left to right, the
images show an increasing level of deformation caused by mass effect. The effects
are most clearly seen by examining the fluid-filled ventricles (in the center of the
brain) as they are highly deformable. Adapted from [114].

stiff regions of the brain, it is less likely to be able to expand into that region

compared to a softer region. With the relative mechanical properties playing

a role in tissue dynamics, a result is that the location of the tumor will impact

how and where it spreads which is seen in patients as well. For example, if a

tumor originates near the skull, the tumor is not likely to invade or deform the

stiff skull boundary but is able to spread in the other direction into the softer

brain tissue [91]. Thus, the shape of spread is directed by the mechanical

properties of the tumor and environment.

Another mechanical consideration is that as glioma develops, the tumor

tissue may change. Reports as to how the tumor tissue evolves is under debate

and may be affected by the specific type of tumor [53]. Some studies suggest

glioma tissue stiffens with time, while others have found the tumor tissue

to soften [53, 113]. Not only has magnetic resonance elastography indicated

that necrotic and viable tumor cells vary in level of stiffness [110], but tumor

stiffness has also been correlated to grading of glioma [89]. Thus, there is

an evolution of the properties of the tumor tissue which likely affects how

it interacts with the healthy tissue, and which may also be able to be used

in determining disease progression. With these clear mechanical components

involved in glioma spread and growth, the addition of mechanical models of

the glioma more realistically reflects the reality of mass effects and tissue

dynamics. A full discussion of the determination of mechanical properties of
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the brain is given in Section 2.1.2.

1.3 Data and model validation

With the brain being a highly sensitive, critical organ, data collection related

to the brain and glioma is a difficult process. With direct analysis, such as

biopsies, etc, ruled out by being highly invasive, imaging is the main tool

used during glioma diagnosis and treatment. MRI can be used to identify the

central tumor, edema, and many structures in the brain [53, 28, 15, 91, 116].

Variations on MRI can be used to highlight certain structures, with particular

versions highlighting fluid, proliferating cells, among others [15, 91].

A relatively recent advance in medical imaging is an MRI-based technique

known as Magnetic Resonance Elastography (MRE) is able to test the mechan-

ical properties of brain tissue and glioma in vivo [53]. MRE involves generating

shear waves in the brain, either through external movement or by applying a

focused-ultrasound-based (FUS-based) radiation force [53, 75]. MR images of

the propagation of the shear waves are recorded and the images processed to

produce images of tissue stiffness, as shown in Figure 1.1.

Using this technique, the mechanical parameters of in vivo tissue can be

estimated. As this method does not require the removal of brain tissue, many

of the downfalls associated with ex vivo testing are avoided with MRE. A

further notable benefit with MRE being an in vivo imaging technique is that it

has the possibility of providing patient-specific data. Theoretically, MRE could

be used for each patient, their mechanical parameters estimated, and these

parameters used to parameterize a patient-specific mechanical glioma model.

Although MRE data is not used directly in this work, we do utilize particular

insights into the mechanical properties of brain tissue and developing gliomas

determined by MRE. We suggest that MRE is a largely unused source of data

for future glioma models, which should be taken advantage of in future glioma

modelling efforts.

Glioma imaging data. Both the sensitive location and the aggressiveness

of glioma mean that data collection is restricted. The fast pace of glioma
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progression is a hindrance as the short timespan from diagnosis to death limits

the number of times data can be collected. Typically, each patient will only

be imaged one or two times. Also limiting the number of temporal data points

are the usual considerations of accessibility. Each scan not only requires the

patient to be available, but also the resources required to carry out the test,

both factors contributing to limited data being acquired. Thus, the number

of time points is very limited in the available data.

Perhaps the biggest limitation in collecting glioma data is the anatomical

location of interest. Because the brain cannot be easily and freely probed,

the data collected on glioma is mainly limited to imaging techniques. Given

its non-invasive nature, these imaging techniques are typically based on MRI.

The basic forms of MRI can be used in various ways in glioma modelling.

First, an MRI can be used to specify a domain for the glioma model

[116, 15, 28]. Most glioma models use a spatial domain meant to represent a

human brain with the boundary being the skull. This involves specifying a

brain domain that includes major structures of the brain, such as the corpus

callosum, ventricles, etc. Typically this domain is based on an MRI of the

brain which is then segmented, either manually or automatically, into regions

for each of the major structures [116, 28, 54, 114]. The structures are then as-

signed mechanical properties and boundary conditions. For example, the skull

is typically assumed to be static with tissue unable to deform or pass through

the skull, while the fluid-filled ventricles are taken to be easily deformable

[54, 114, 28, 15]. Following the specification of an initial brain domain and

glioma density, a glioma model can then be solved on this domain in order to

determine the evolution of both the tumor and its impact on the brain.

Second, a sequence of MRIs of a tumor can be used to give estimates

of parameters such as growth rate and motility [119, 28]. By tracking the

volume change of the tumor, certain models use this to derive an estimate for

the proliferation rate of a tumor.

Third, the initial tumor density can be estimated form MRI data [116,

114, 28]. Either through manual or automatic tumor segmentation, the initial

(visible) tumor region can be identified on an MRI image and used as the

initial condition of the tumor cell density.
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Figure 1.4: Visual representations of DTI data. Left : DTI showing white matter
tracts. Right : Diffusion MRI tensors represented as ellipsoids. Color indicates
principal direction of movement. Shape indicates level of anisotropy. Images from
exploredti.com.

Finally, MR images are often used to compare model simulations to reality.

The size and shape of the tumor can be compared, qualitatively or quantita-

tively, between simulated and real images [116, 28, 15]. When comparing

model results to real patients quantitatively, a previously employed method is

to calculate a Jaccard score which measures the amount of overlap between

the modeled tumor and patient data [116, 83].

DTI data. Diffusion tensor imaging is a variation of MRI that tracks the

diffusion of water molecules. Details of the physical basis of DTI are given in

[67, 69, 3] and will not be discussed in depth here. In brief, water molecule

dipoles are polarized and the water diffuses with this diffusion tracked using

imaging. DTI is used to locate white matter fibers using the idea that there is

higher diffusion in the directions parallel to white matter fibers. That is, areas

with higher diffusivity indicate the presence of white matter. Figure 1.4 is a DT

image clearly showing white matter fibers. DTI yields measurements for both

rate and direction of movement for a certain spatial region (or voxel). These

rates and directions of movement are then used to specify diffusion tensors.

An illustration of tensors resulting from DTI is shown in figure 1.4. Thus, DTI

data yields a “diffusion tensor map”, with each 3D voxel in the domain having

an associated diffusion tensor. The tensors can be visualized as ellipsoids where

it has been observed that glioma cells also tend to travel along white matter

fibers [43, 91]. Exploiting this observation, DTI data has been used in previous

glioma models and has been shown to increase the accuracy of these models in
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predicting tumor volume in systems with significant anisotropy [116, 55, 28].

However, it should be noted that the diffusion tensors obtained from DTI

are based on water diffusion, not tumor cell diffusion. This means that a

transformation of the DTI data from water diffusion to tumor cells diffusion

should be applied before using the data in mathematical models. Methods

for translating the DTI data to a cancer diffusion tensor vary in complexity,

from a simple constant scaling of the data as in [28, 15, 63], to highly detailed

methods based on cellular behavior [87, 116].

Although there is currently no consensus on how this data transformation

should be carried out, the most common method is to employ a measure of

anisotropy known as a diffusion anisotropy index (DAI). A DAI reflects the

amount of anisotropy for a given tensor. The amount of anisotropy can be

viewed as how spherical a diffusion ellipsoid is, with less spherical meaning a

higher level of anisotropy. There are multiple forms of DAI which are detailed

in [60], but we will limit our discussion to fractional anisotropy (FA) which we

will use in Chapter 3.

FA can be determined from the eigenvalues of the diffusion tensor using

the formula

FA =

√︄
3[(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2]

2(λ2
1 + λ2

2 + λ2
3)

, (1.1)

where λ1, λ2, λ3 are the principal values of the tensor, and λ̄ = (λ1+λ2+λ3)/3

is the mean of the eigenvalues. The values of FA range from zero, representing

isotropic diffusion, to 1, representing fully anisotropic diffusion. As FA only

gives a measure of the amount of anisotropy, it is only a part of determining

the diffusion tensor used in the model. The directionality and relative measure

of tumor cell diffusion vs. water diffusion must also be considered. Mosayebi

et al. [83] employed a scaling of FA, introducing a scaling factor to account

for the difference in diffusion rates between tumor cells and water, and using

the original DTI data to include the directionality of diffusion:

D(x) = αFA(x)DT(x) (1.2)
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where α is the scaling factor and DT is the tensor taken directly from the DTI

data. This method gives the greatest diffusion along the main eigenvector of

DT (i.e., in the direction of white matter fibers), accelerates diffusion along

fibers, and maintains tensor shape.

Another method of translating DTI data into tumor cell diffusion rates was

introduced in [87], and later used in [116]. In this method, the second moment

of a turning distribution is used for the tumor cell diffusion tensor. In 3D, the

turning distribution is taken to be a Fisher distribution with the distribution

properties derived from the DTI data. The Fisher distribution takes the form

q(n) =
k

8π sinh(k)
(ekn·γ + e−kn·γ), (1.3)

where γ is the dominant unit eigenvector taken from the DTI tensor. The pres-

ence of exponential terms with both positive and negative exponents results

from the assumptions that travel in either direction of the main eigenvector,

ie. up or down a white matter fiber, is equally likely. Thus, terms with both

the γ and −γ direction must be included.

For each voxel’s diffusion tensor, the peaks of the Fisher distribution are

aligned to the principal eigenvector of the tensor. The height of the peaks of the

Fisher Distribution which represent the level of anisotropy are determined by

a concentration parameter, k, that is proportional to the fractional anisotropy

of the tensor data. Thus, the concentration parameter is given by

k(x) = κFA(x), (1.4)

where κ is an anisotropy parameter. This concentration parameter k(x) deter-

mines the width of the distribution, with higher values giving a sharper peak.

By making k(x) proportional to FA, areas with higher anisotropy are asso-

ciated with Fisher distributions with sharper peaks. Thus, this relationship

between k and FA preserves the levels of anisotropy during the translation

between DTI data to tumor cells diffusion tensors.

The final translation from DTI data to tumor cell diffusion tensor is then
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given by

Dc(x) =
1

µ

∫︂
V

vvTq(x,v, k) dv, (1.5)

where µ is a turning rate, v is the velocity, and q is the turning distribution.

The benefit to this diffusion tensor translation method is that it introduces

the parameters µ and κ which can be fit to an individual patient (see [116]).

A 2D version of this translation is used in Chapter 3.

Data sources and processing. There are two commonly used sources for

defining both the initial spatial domain and DTI maps of the brain. The first

is a brain atlas [32, 28, 15]. An atlas represents a typical or average brain

and is essentially a composite of many individual brains. Thus, an atlas is

a reasonably realistic brain domain and DTI map, but does not represent

a particular real brain and is not patient-specific [32, 28, 15]. The second

commonly used data source is based on a particular patient’s brain images.

In this case, the initial brain domain and DTI map are taken directly from a

single patient [116, 83]. The patient-specific data allows for direct comparison

and validation of model results to the real patient [116, 83]. A useful table

detailing the data sources used in previous glioma model studies is given in

[116].

It should be noted that MRI and DTI data is pre-processed before being

used in modelling. Pre-processing, including image registration, segmentation,

filtering, etc., will not be explored further here. For information on and exam-

ples of the processing, usage, and integration of medical imaging into models

of glioma, [44, 28, 111] are suggested references.

1.4 Mechanics

A large part of this thesis is devoted to mechanics. In particular, in Chapters

2 and 3 we explore how mechanics affects the dynamics of a model of glioma

spread. Thus, we will now present a brief discussion of the key elements of

mechanics that will be used later.
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Reference frames. When using continuum mechanics, it is critical to keep

track of which spatial frame of reference the equations are set in. The first

consideration is the choice between spatial (Eulerian) coordinates or body

(Lagrangian, material) coordinates. Each coordinate frame comes with an

associated set of measures, derivatives, etc. The spatial coordinates are how

an external observer would view the deformations and dynamics, while the

body coordinates are how the body moves if viewed from/on the body. The

context and components of the continuum problem determine the appropriate

frame, with certain calculations arising more naturally in a particular coordi-

nate system depending on the problem. A translation between the two frames

is available so that the mathematics can be carried out in the preferred frame,

with the results then translated to the other frame if necessary.

A simple illustration of the difference between spatial and body frames is a

person walking in a bus. If we want to determine the change in location of this

person, the spatial and body frames must account for different components of

this movement. Consider a moving bus and walking along this bus, with the

bus and its contents being the “body”. Consider the problem of determining

how far the person walks on the bus. The spatial frame would need to account

for both the movement of the bus and also the movement of the person walking

inside. The body frame would only consider the movement of the person since

the movement is occurring on/in the body, making this problem simpler in

body coordinates.

As glioma is a problem occurring in spatial coordinates where the data

(MRI, DTI) comes from spatial coordinates, at the very least, the results of

a glioma model should be in the spatial frame. However, it may be easier

or more useful to model the tumor in the body frame as this often simplifies

the mathematics, and then translate this back to the spatial frame. However,

many models opt to work in the spatial frame throughout, avoiding the conver-

sion from body to spatial coordinates. Following the lead of previous glioma

modelling work, we will work purely in the spatial frame.

Deformation and displacement. The deformation/displacement defines

how the tumor cell density and surrounding brain tissue deforms, making it a
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very important factor when modelling the mechanics involved in tumor spread.

Among the models discussed here, there are differences in both the form of

the deformation gradient as well as the method of deriving the deformation

gradient.

In models where mechanics is included by coupling a momentum conser-

vation equation to a reaction-diffusion equation (for example [54, 114]), the

deformation is derived by solving a momentum balance equation for the dis-

placement. The momentum balance equation is derived by choosing a suitable

equation for the stress tensor, which defines the type of elasticity of the tissue,

as well as an equation for the external body forces which governs the impact

of tumor cell presence.

In the other main class of models where the tumor volume only evolves

according to some prescribed growth and the mechanical properties of the

tissue, the deformation is often decomposed [4, 6, 5, 124, 112]. The defor-

mation is represented by the deformation gradient, which is decomposed into

an active component–representing the volume increase resulting from tumor

proliferation–and a passive component–representing the elastic response that

pushes back on the tumor after the growth phase. In this case, the growth

component is typically prescribed to expand following a certain shape–typically

isotropic/spherical–at a given rate which may or may not be fit to data. The

elastic component of the deformation gradient is then derived by solving the

momentum conservation equation. As this method relies on prescribing the

effect of growth on deformation, this may be more useful if this aspect of tu-

mor growth is well known and the main question is the mechanical response

to, or affect on, this growth.

Constitutive models. The elasticity and mechanical properties of biolog-

ical tissues are typically modeled using constitutive models. Different con-

stitutive models encompass a variety of mechanical properties. The desired

constitutive models are chosen to reflect the particular mechanical nature of

the material, such as linearity of the elastic response, shear modulus, bulk

modulus, and type of elasticity (viscoelastic, hyperelastic, etc.). Matching

appropriate constitutive models to materials is typically carried out by sub-
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jecting the material in question to mechanical testing, fitting candidate consti-

tutive models, and determining the optimal model based on fit accuracy (see

[80, 79, 20, 21, 18]).

A discussion of the constitutive models examined in the context of brain

tissue is given in Section 2.1.2. Currently, there is no standard constitutive

model used to model brain tissue and brain tumors. A summary of the con-

stitutive models used in previous literature is shown in Table 1.1.

In Chapter 2 we consider the commonly used linear elasticity as well as

the experimentally determined one-term Ogden elasticity. We also explore

viscoelastic versions of these models. In Chapter 3, we employ linear elasticity.

Coupling mechanical and cell density models. Although this discussion

focuses on mechanical modelling of glioma, it should be noted that the majority

of glioma models couple the mechanical component with a reaction-diffusion

model. Some of the first mathematical models of glioma were purely reaction-

diffusion models [121, 22, 126, 29]. The diffusion represents the infiltration

of the cancer cells, while the reaction term represents the proliferation of the

tumor cells.

A mechanical model can be coupled to a reaction-diffusion equation, thus

modelling the cellular dynamics and mechanical dynamics, and the connections

between them. This connection typically introduces an advection term as the

pressure from the mechanical system pushes the tissue. Growth of the tumor

results in deformation, with this deformation likely affecting the subsequent

spread and growth of the tumor.

Simpler early models had only one sided coupling between the mechanics

and the diffusion equation [28]. In [28], the tumor proliferation causes a mass

effect, but the mass effects did not feed back into the cell density evolution.

Later models fully coupled the mechanical and diffusion equations so that the

pressure created by the tumor proliferation affects pushes on the tissue and

feeds back into the diffusion equation [54, 114].

Pressure terms. The mathematical representation of the pressures result-

ing from tumor growth are generally based on either Darcy’s Law or a phe-
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Table 1.1: Mathematical models of brain tissue used in rheological studies and
glioma models.

Reference Constitutive model(s) used

Rheological studies

Mihai [80] Neo-Hookean, Mooney-Rivlin, Fung, Gent, Ogden

Mihai [79] Ogden (multiple forms)

Budday [18] Neo-Hookean, Mooney-Rivlin, Demiray, Gent,

One-term Ogden

Budday [20] Ogden (multiple forms)

Budday [21] Viscoelastic Ogden

Brain (tumor) models

Kyriacou [66] Neo-Hookean

Clatz [28] Linear (no bulk modulus term)

Bondiau [15] Linear (no bulk modulus term)

Hogea [54] Linear

Angeli [6] Neo-Hokean

Abler [1] Linear

Subramanian [114] Linear

Rhodes Linear, Linear Viscoelastic, Incompressible Linear,

One-term Ogden, Viscoelastic One-term Ogden
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nomenological description. The method of incorporating the pressure terms

is not chosen in isolation, but rather is influenced by the choice of either a

mixture model vs. a continuum model. In mixture models where cells are

represented as an incompressible fluid in a porous media, Darcy’s law is used

to model the physical interactions of the cells. When viewing cells as an in-

compressible fluid in a porous media, the choice of Darcy’s law is a reasonable

one as this is the classic model used for porous media. Examples of the use

of Darcy’s law to incorporate pressure into glioma and/or tumor models are

[73, 6, 124].

In continuum models, the phases are not represented explicitly but rather

the cells are seen as part of a tissue, where the elastic properties can be seen as

implicitly representing the interplay between the solid and liquid phases. As

the body forces are phenomenological, the specific forms vary among models.

One example can be found in [54] where the pressure-like forces take the form

of an exponential term dependent on the tumor cell density, scaled by the

gradient of the tumor cell density. In later work building on the Hogea model,

Subramanian et al. used a pressure term that replaced the exponential term

with a hyperbolic tangent function of the cell density [114]. The specific forms

of the body force function used in [54] and [114] are given in Section 2.2 and

Section 3.2. Of note is that both models have similar characteristics. First, in

the absence of tumor cells, there is no force. Secondly, the first component of

the force (the exponential or hyperbolic tangent element) is maximized at the

carrying capacity of the tumor (i.e., when c(x, t) = 1). Third, by including a

scaling by the gradient of cancer cells, the force is proportional to differences

in cancer density. Lastly, both models also have a parameter scaling the total

body force. The larger this scaling is, the more significantly the presence of

tumor cells deforms the surrounding tissue. As discussed in Chapter 3, the

choice of this parameter is unclear.

We employ the exponential force model from [54] for the travelling wave

analysis (see Chapter 2). However, a benefit of the hyperbolic tangent form

from [114] is that it is defined at zero cell density, where the exponential model

used by [54] is undefined and the limit value must be used. In Chapter 2, this

causes minimal issues. However, when simulating the 2D model numerically
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(see Chapter 3), the pressure term value at zero cell density became problem-

atic, requiring the hyperbolic tangent form to be used.

1.5 Previous glioma models

For an overview of the previous work in glioma spread modelling, see Section

2.1.1. In addition to that overview, we discuss three of the models mentioned

in Section 2.1.1 that are the most significant to the current work in further

detail.

Swanson et al. 2000. Initial mathematical models of glioma considered the

tumor as a cell density, where the tumor density could spread and proliferate

[121, 126]. The core description of tumor cell proliferation and movement took

the form of reaction-diffusion equations given by

ct(x, t) = D∇2c(x, t) + ρc(x, t) , (1.6)

where x is space, t is time, c is the tumor cell density, D is the diffusion

coefficient, ρ is the proliferation rate. Other additions to this core model such

as mutation and treatment effects were also included by [121, 126]. The spread

of glioma cells were modelled by a Laplacian diffusion term with spatially

dependent diffusion, while proliferation and treatment effects were included via

exponential reaction terms. Examples of these models are [22, 29, 121, 126].

The boundary conditions were taken to be no flux, modelling the natural

barrier of the skull. Variations on this core model were explored by considering

different treatment models and cell types.

In 2000, a landmark paper from Swanson et al. [119] modified these initial

models by considering a spatially heterogeneous diffusion coefficient. This

model is termed the Proliferation-Infiltration (PI) model, referencing the two

terms of the model, with the reaction and diffusion terms being representing

the proliferation and migration of tumor cells, respectively. Here, the diffusion

coefficient is allowed to vary in space, representing the differential diffusion

17



rates of cells in white vs. gray matter. The cell density is modelled in [119] as

ct(x, t) = ∇ · (D(x)∇c(x, t)) + ρc(x, t) , (1.7)

with the diffusion coefficient given by

D(x) =

{︄
Dg x ∈ gray matter,

Dw x ∈ white matter,
(1.8)

where Dw = 5Dg. The choice of a five-fold difference in diffusion rates was

calculated in [119] from experimentally observed velocities from serial CT scans

(as previously discussed in [121]) and assuming Fisher’s approximation, which

gives that D ≈ v2/4ρ.

In [119], they used this model to simulate tumors in three different locations

with the underlying domain and locations of gray and white matter taken from

an on-line database. They also considered the intrinsic properties of a growing

glioma, varying the values of ρ and D to represent different grades of glioma.

With a focus on detection, [119] found that the ratio ρ/D determined how

accurately the boundaries of a tumor could be detected by medical imaging,

with larger values corresponding to more accurate detection.

Swan et al. 2018. Building on the PI model, Swan et al. [116] modified

the structure of both the diffusion and proliferation terms. Swan et al. also

incorporated patient-specific data for both the simulation domain and diffusion

coefficient. The model from [116] is as follows:

ct(x, t) = ∇∇ : (D(x)c(x, t)) + ρc(x, t)(1− c(x, t)) . (1.9)

The fully anisotropic diffusion term models tumor cell migration more realis-

tically as it is derived from a mesoscopic description of cell movement along

fibers [87], rather than assuming random movement as in Fickian diffusion.

Furthermore, [87] showed that the derivation of the anisotropic diffusion model

includes a method for the scaling of water diffusion tensors to cell diffusion ten-

sors and introduces patient-specific parameters to match this scaling to each
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patient’s medical imaging data. Unlike Fickian diffusion, fully anisotropic dif-

fusion applies two spatial derivatives to both the diffusion constant and the

density. The notation ∇∇ : is not to be confused with ∆ or ∇2 as it implies

a double contraction with two derivatives:

ct = ∇∇ : (Dc) =
∑︂
i,j

∂

∂i

∂

∂j
(Dijc) . (1.10)

The diffusion tensor in [116] incorporates patient-specific DTI data. Unlike

the discrete delineation of white and gray matter diffusion coefficients used

in [119], the diffusion tensor in [116] is taken directly from the DTI data and

translated using the scaling parameters mentioned above, resulting in a more

continuous (although still technically discrete, as necessitated by the data)

version of the diffusion coefficient/tensor.

The inclusion of a logistic growth term more accurately models the growth

of a glioma than the exponential model. In contrast to the logistic model,

the exponential growth model assumes there are no limiting resources for the

growing tumor. In reality, gliomas typically experience blood flow and oxygen

depletion limiting the growth of the tumor, making the logistic growth model

a more appropriate choice in this context.

Crucially, [116] applied this anisotropic model to real patient data for 10

patients and compared the results to parallel simulations using the PI model.

In [116], it was found that for tumors with high levels of anisotropy, the

anisotropic diffusion term was better able to capture the irregular shapes of

gliomas than the isotropic diffusion term in the PI model.

Hogea et al. 2008. The final glioma modelling work with a direct impact

on the work in this thesis is that from Hogea et al. [54]. The most significant

contribution from [54], in regards to the current work, is the connection of

the cell density equation to an equation representing the mass effect. Hogea

et al. included the mass effect by coupling a momentum balance equation to

the mass balance equation for glioma cells through an advection velocity. The

equations coupling cell evolution and tissue mechanics provides a framework

to study the interplay between brain tissue mechanics and glioma spread, as
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is explored in later sections. Unlike Swan et al. [116], Hogea maintain the

Fickian diffusion term, as well as the discrete diffusion coefficient used by

Swanson et al. [119], although they did include logistic growth. The model

used in Hogea et al. is as follows. Space is denoted by x, time by t, spatial

domain by Ω, and the time domain by (0, T ). The model variables include

cell density, c, deformation, u, velocity, v, as well as the vector m = (D,λ, µ),

which includes the elastic material properties and diffusion coefficient. For

x ∈ Ω and t ∈ (0, T )

ct(x, t)−∇ · (D(x, t)∇c(x, t)) +∇ · (c(x, t)v(x, t))− ρc(x, t)(1− c(x, t)) = 0

(1.11)

∇ · ((λ∇ · u(x, t)) + µ(∇u(x, t) +∇u(x, t)T ))− f(c(x, t),p)∇c(x, t) = 0

(1.12)

v(x, t) = ut(x, t) (1.13)

mt(x, t) +∇m(x, t)v(x, t) = 0 , (1.14)

where ρ is the tumor cell proliferation rate. The function f is a phenomeno-

logical expression that represents the forces created by the presence of tumor

cells and is given by

f(c) = p1e
−p2/c(x,t)se−p2/(2−c(x,t))s , (1.15)

where p = (p1, p2, s) is a parameter vector determining the strength and range

of influence of the tumor cells. A more detailed explanation of this function is

given in Section 2.2.

The momentum balance equation uses linearly elasticity to represent the

mechanics of brain tissue. Linear elasticity is a commonly used constitutive

model to represent brain tissue as it is tractable, but studies have suggested

that it is too simplistic to accurately capture some of the more unique prop-

erties of biological tissues.
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The boundary conditions are given by

∂c(x, t)

∂n
= 0 on ∂Ω× (0, T ) , (1.16)

u(x, t) = 0 on ∂Ω× (0, T ) , (1.17)

which implies that

v(x, t) = 0 on ∂Ω× (0, T ) . (1.18)

The initial conditions are

c(x, t = 0) = c0(x) prescribed on Ω , (1.19)

u(x, t = 0) = 0,v(x, t = 0) = 0 on Ω , (1.20)

m = (D,λ, µ)(x, t = 0) =

⎧⎪⎨⎪⎩
(Dw, λw, µw) , x in white matter,

(Dg, λg, µg) , x in grey matter,

(Dv, λv, µv) , x in ventricles.

(1.21)

The boundary conditions are from the assumption of no-flux of tumor cells

and no displacement of the skull. The initial condition for m is determined

by a segmented MRI. The material properties are taken to be heterogeneous,

but still isotropic within each region.

With this model, [54] successfully produced simulations and determined

a method to estimate parameters from patient data. In [114], Subramanian

et al. expanded on [54] by including multiple species (including proliferating

cells, invasive cells, necrotic cells) as well as nutrients. As discussed in Section

1.5, [114] also altered the body force function which we use in Chapter 3

as it provided more numerical stability than the previous version from [54].

Subramanian et al. [114] also presented simulations of glioma spread which

were able to reproduce the characteristic projections of glioma and deformation

of the ventricles.

Brief discussion of advection velocites. The modelling of the mechanics

during glioma spread may or may not include the formation of an advection
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velocity. As the tumor volume increases, a deformation of the tissue is formed

which then leads to a displacement-associated velocity. We will refer to this

velocity as an advection velocity. In simpler models, the tissue properties are

kept static [28, 15, 55]. That is, the material is constant in time and not

affected by the growing tumor or resulting advection velocity. In this case, the

tumor grows and creates a deformation, but this deformation only affects the

growth of the tumor, while the healthy tissue brain properties are unaffected.

In such examples, the elastic nature of the brain was implemented through a

momentum balance equation, but no advection velocity was included [28, 15].

In more complex models, the properties of the healthy brain tissue, such as

diffusion and mechanical properties, are advected with the advection velocity

derived from the deformation caused by the growing tumor [54, 114]. This pro-

cess models how the material properties move with the underlying tissue that

is being deformed by the growing tumor. As glioma is known to deform the

surrounding healthy tissue, including this material property advection would

seem to be a more realistic concept than holding the material properties con-

stant. Hogea et al. [54] were one of the first groups to include the effects of

deformation and advection on the brain properties and glioma cell movement.

This is included by first calculating the displacement caused by the presence

of tumor cells (via a momentum conservation equation), determining the ad-

vection velocity (by taking the time derivative of the displacement), with this

velocity then applied to the diffusion coefficient map and the mechanical pa-

rameters of the brain by solving an advection equation for these properties

(see equation 1.14 in the Section 1.5).

It should be noted that the form of advection used by [54] is a non-

conservative, or scalar, advection. In later work extending [54], Subramanian

et al. [114] changed the definition of the “material parameters”, instead defin-

ing them based on tissue composition (tumor, white matter, gray matter). As

in [54], these properties were advected. However, the advection operator used

in [114] was a conservative form given by

mt(x, t) +∇ · (m(x, t)v(x, t)) = 0 . (1.22)
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As implied by the name, conservative advection conserves the advected quan-

tity as a density. Thus, as the quantity is advected, it can become more or less

concentrated. On the other hand, with the scalar advection given by equa-

tion (1.14), the quantity remains the same density, only being displaced by

the advection. This is an important difference with respect to modelling the

evolution of diffusion and elasticity properties. If one considers the physical

nature of the elastic properties of structures in the brain, it is unlikely that

they would move in a conservative fashion. The elastic properties modelled in

[54] and [114] are associated with physical structures in the brain, such as the

ventricles. The ventricles are much less stiff than the surrounding brain tissue

and are often deformed in glioma cases. But, it is unlikely that the stiffness and

viscosity of the ventricles is concentrated during this deformation. Thus, for

the elasticity properties involved, it would seem that the non-conservative ad-

vection of (1.14) is likely the more realistic choice. However, when we consider

advection of the diffusion tensors, conservative advection (see equation 1.22)

may be more plausible. As mentioned previously, diffusion follows structures

in the brain such as white matter fibers [91]. It could be reasoned that white

matter fibers could be deformed and pushed together, increasing the density of

white matter. With this increasing density of white matter, there could be an

associated increase in diffusivity, which would be represented in the diffusion

tensor. Therefore, it is not unreasonable to consider a conservative advection

for the diffusion tensor.

Applications to current work. The model(s) developed and used in this

work are based on the model from [54] with modifications made to certain

elements.

� Growth: We keep the logistic growth reaction term used by [54] rather

than the exponential form used in earlier work [119].

� Diffusion operator : With the promising results of [116], we include fully

anisotropic diffusion in place of the Fickian form.

� Advection operator : In the majority of the work presented here, we follow

[54] and assume non-conservative advection of both diffusion and elas-
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ticity properties. However, in Chapter 2, we also consider conservative

advection in some of the analysis.

� Diffusion initial condition: The form of the initial diffusion tensor varies

between sections. In Chapter 2, we use an initial condition similar to that

used by Hogea et al., that is, we define regions of high and low diffusion

representing white and gray matter regions. In Chapter 3, the initial

diffusion is defined from brain atlas data following a scheme similar to

that of [116].

� Body force function: In Chapter 2, we employ the body force function

described in [54]. In Chapter 3, the body force function is taken from

[114] as it was better suited to the numerical scheme.

� Elasticity/Stress tensor : In Chapter 2, we compare a variety of stress

tensors, primarily comparing the linear elastic model used by [54] and

[114], and the one-term Ogden model which was determined experimen-

tally by [18] (see Section 2.1.2). In Chapter 3, we employ the linear

elasticity model as the one-term Ogden model cannot be implemented

in the software used (as discussed in Section 3.5). We also develop and

implement viscoelastic version of the linear and one-term Ogden models

in Chapter 2.

1.6 The 3D glioma model

With an understanding of the important biological components, previous math-

ematical models, and data types available, we present our 3D glioma model.

Let the spatial domain be Ω3D ⊂ R3, and take time to be t ∈ [0,∞).

Then the domain is U3D = Ω3D × [0,∞). The tumor cell density (normalized)

is denoted by c. The vector m denotes parameters associated with material

properties of the tumor and healthy brain tissue, including diffusion D(x, t),

shear modulus µ(x, t), and bulk modulus λ(x, t). The displacement and the

velocity resulting from this displacement, are denoted by u(x, t) and v(x, t),
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respectively. The system on U3D is then

ct(x, t) = ∇∇ : (D(x, t)c(x, t))−∇ · (c(x, t)v(x, t)) + ρc(x, t)(1− c(x, t))

(1.23)

∇ ·T (x, t,∇u) = b(c(x, t)) (1.24)

v(x, t) = ut(x, t) (1.25)

mt(x, t) + v(x, t)∇m(x, t) = 0 , (1.26)

with initial conditions for x ∈ Ω3D

c(x, 0) = c0(x), m(x, 0) = m0(x), u(x, 0) = u0(x) . (1.27)

The cell density has no-flux boundary conditions for t ∈ [0,∞) given by

[︁
∇ · (D(x, t)c(x, t))− c(x, t)v(x, t)

]︁
∂Ω3D

= 0 . (1.28)

For static boundaries of the spatial domain ∂Ωst (eg. skull), we have the

boundary condition

u(x, t)|∂Ωst = 0 . (1.29)

On ∂Ωst, it follows from equation (1.29) that

v(x, t)|∂Ωst = 0 . (1.30)

On the deformable boundaries ∂Ωdef (eg. ventricles), we allow u(x, t) to be

nonzero. Hence, v(x, t) can also be nonzero on such boundaries.

The key to closing the system is the expression of the stress tensor T as a

function of the deformation gradient, ∇u, in (1.24). In this work, we explore

different options for T, such as linear elasticity or one-term Ogden elasticity,

and leave the specification of T to later sections.

The body forces produced by the growing tumor are denoted by b. As

noted in Section 1.4, we use two forms for b which are detailed when introduced

(see Sections 2.2 and 3.2).
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Although we derive the full glioma model in 3D, we only analyze and

simulate the 1D and 2D versions in Chapters 2 and 3, respectively. In Chapter

2, we reduce the model to 1D so that it is analytically tractable and we can

compute invasion speeds. In Chapter 3, we simulate the 2D model as a stepping

stone for a full 3D model (as discussed in Section 3.5).
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Chapter 2

Comparing the effects of linear

and one-term Ogden elasticity

in a model of glioblastoma

invasion

This chapter has been published as

[102] Meghan E. Rhodes, Thomas Hillen, Vakhtang Putkaradze, Comparing

the effects of linear and one-term Ogden elasticity in a model of glioblastoma

invasion. Brain Multiphysics, 2022, 100050, ISSN 2666-5220,

https://doi.org/10.1016/j.brain.2022.100050.

Important background material relating to mechanical modelling of glioma

and more details on the relevant literature were presented in Sections 1.2, 1.3,

1.4, and 1.5 in the Introduction chapter. Additional details of the numerics

given in Sections 2.9.1, 2.9.2, and 2.9.3, as well as the methods to compute

wave speed for more generalized elasticity models presented in Section 2.10,

are new and not part of our paper.
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Abstract

Our modelling of brain mechanics is based on observations of Budday and col-

leagues [18], who analyzed the elastic properties of human brain tissue samples

under multiple loading modes. Using these data, Budday et al. determined a

realistic constitutive model for brain tissue mechanics. In these studies, they

found that compression and shear responses were best modelled by a non-linear

one-term Ogden elasticity model, although other elasticity models are possible

as well. Here we analyze the role of the elasticity model of brain tissue on the

invasion speed of glioma and the resulting tissue deformation (mass effect).

We present a one dimensional continuum model that couples cell dynamics

to tissue mechanics. Since the mechanics of glioma-compromised brain tissue

is not clear, for comprehensive studies, we incorporate both elastic and vis-

coelastic versions of two brain tissue elasticity models–the commonly employed

linear model and the experimentally determined one-term Ogden model. For

each elasticity model we identify travelling wave solutions in one dimension

and calculate the corresponding invasion speeds. We find that the invasion

speed is, in fact, independent of the chosen elasticity model. However, the

deformations of the brain tissue, and resulting stress, between the linear and

one-term Ogden models are drastically different: the Ogden model shows two

orders of magnitude less deformation and three orders of magnitude less stress

as compared to the linear model. Such a discrepancy might be relevant when

looking at glioma-induced health complications.

2.1 Introduction

Cancers arising from glial cells, known as gliomas, form in the spine and the

brain. Due to the complexity and critical functions of the brain, treatment

of brain gliomas is an important and difficult task. Glioblastoma (GBM) is

an aggressive form of glioma, with patients having an average life expectancy

of 14 months using current treatment methods [116]. The spread of glioma is

affected by many components, not only the tumor cells, but also normal cells,

anatomical structures, blood circulation, and the immune response. Here we
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focus on the role of tissue mechanics in this invasion process. Growing evidence

shows that the structure and mechanical properties of brain tissue significantly

affect the invasiveness of the glioma cells [122, 82]. Previous models of the

tumor mass effect have employed a linear elasticity model. Based on brain

mechanics measurements [90, 80, 18] we compare this linear model with a

nonlinear one-term Ogden model. Our model focuses on the mechanics of the

glioma and does not include many of the relevant clinical processes that are at

play, such as immune response, angiogenesis, edema, blood flow, inflammation

etc. Hence we are not attempting to develop a full glioma model, we rather

like to understand the effect of cancer growth on the tissue deformation and

invasion. We find that the type of elasticity model does not affect the invasion

speed. This is expected in our model, since invasion is driven at the outskirts

of the tumor, where the tumor density is very small, and mechanical effects are

negligible. We also find that a viscous-component does not alter the response,

since the glioma growth is so slow. However, we find that in the Ogden model,

deformation and stress are much smaller than in the linear elasticity model.

This gives an indication that mechanical stress can contribute to headaches or

brain malfunctions, which are typically attributed to brain deformations and

increased intracranial pressure, present only late in the disease.

2.1.1 Previous glioma models

The first and most influential diffusive model of glioma was developed by Swan-

son et al. [119], termed the Proliferation-Invasion (PI) model. In this model,

tumor cells proliferate and invade the surrounding tissue by Fickian diffusion.

The scalar diffusion coefficient varies between gray matter and white mat-

ter, where diffusion in white matter is faster. Even with this simple diffusion

model, Swanson et al. [117, 118, 105] were able to compare model outputs

to patient data with promising results. Jbabdi et al. [55] extended the PI

model by replacing the scalar diffusion coefficient with an anisotropic diffusion

tensor. Clatz et al. [28] built on the anisotropic PI model by including mass

effect from a momentum balance equation. Bondiau et al. [15] expanded on

Clatz et al. by including patient-specific mechanical parameters. The models
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of Clatz, Bondiau and others [28, 15] divided the tumor cell population into a

gross tumor volume 1 (GTV1) and a gross tumor volume 2 (GTV2). While the

GTV2 has low density and is responsible for the diffusive invasion, the GTV1

is dense and the cause of deformations. These models use a linear elasticity

model.

Ambrosi et al. [4] developed a full deformation theory for growing tissue.

Their model was further developed by Preziosi et al. [24, 94] in a multi-

phase description of tissue growth and deformation. M. Resendiz [99] used the

model with linear elasticity to analyze tumor invasion in one dimension, while

Grenier [17] and Angeli et al. [6] considered viscoelastic multiphase models

for a growing tumor.

A different approach to model tissue dynamics was taken by Lowengrub

and collaborators [128, 73, 71] where deformations and cell adhesions were

modelled through a suitable energy functional.

Painter and Hillen [52, 86, 87] focussed on the derivation of diffusion-type

glioma models from a microscopic description of alignment of individual glioma

cells with the environment. Through their framework, a fully anisotropic diffu-

sion arose, where the diffusion tensor appears inside the two derivatives, much

like in a Fokker-Planck formulation [104]. We denote such a model as fully

anisotropic advection diffusion (FAAD) equation. This method works well

to translate diffusion tensor imaging data (DTI) into a mathematical spread

model for glioma [32, 116].

The glioma evolution models most relevant for our work are the models

from G. Biros’ group [54, 114]. Hogea et al. [54] built on the PI model by

adding an advection term to the cell density evolution, which is then coupled

to an equation modelling the mechanical properties of the tissue. The material

properties included in this model include the diffusion tensor map and material

elasticity parameters. Representing the heterogeneous diffusion, which exists

biologically due to the presence of white matter, etc. in the brain, the diffusion

tensor is spatially heterogeneous. Similarly, the elasticity parameters are taken

to be spatially heterogeneous in order to account for the different mechanical

properties of structures within the brain. The advection velocity applied to the

cell density arises from a momentum balance equation which accounts for mass
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effects. In [54], the brain tissue is modeled as a linearly elastic material, with

forces produced by the growing tumor according to a phenomenological model

dependent on both tumor cell density and gradient of the tumor cell density.

Through the momentum balance equation, the forces generated by the tumor

result in displacement of the tissue with an associated advection velocity. Not

only is this advection velocity applied to the tumor cells, but also to the

underlying tissue properties including the diffusion tensor map and elasticity

parameters. In this way, Hogea et al. were able to capture and reproduce how

glioma tumors impact brain tissue and also how this deformation can then

alter the path of tumor spread. In 2019, Subramanian et al. [114] expanded

on [54] by including multiple species (including proliferating cells, invasive

cells, necrotic cells) as well as nutrients.

In our work, we modify the model from Hogea et al. [54] by altering both

the diffusion and mechanical models. First, we employ FAAD rather than

Fickian diffusion. Secondly, we not only consider linear elasticity, but also

one-term Ogden elasticity, as well as viscoelastic versions of these models. We

present the novel equations resulting from these assumptions, and compute

the speed of propagation of a wave front modelling glioma invasion into an

initially healthy tissue. We analyze how the introduction of these new factors

into modelling affects both the speed and the mechanics of glioma invasion.

Therefore, the new phenomena we introduce can play an important role in the

prediction of glioma invasion, and, potentially, in the resulting treatment of

patients.

2.1.2 Measurement of brain mechanics

The measurement of human brain mechanics is difficult. With the obvious

restrictions on availability of human brain samples, most research on brain

mechanics is actually done on animal tissue, including porcine, bovine, and

rat brains [18, 81, 74, 123, 27, 80, 79, 90]. Studying animal brain tissue has

helped to gain insights into brain tissue properties and behavior, but it is

well known that the mechanical properties of human brain tissue differ signif-

icantly from other species [18, 93, 27, 19]. While comparing the mechanics of
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human glioma and healthy mouse brain tissue, Pogoda et al. [90] observed an

unusual characteristic known as strain stiffening, which describes the process

where brain tissue becomes stiffer under strain. Strain stiffening in brain tissue

has been attributed to the biphasic nature of brain tissue [19], although the

mechanism is not fully understood. In an effort to determine a model of brain

tissue mechanics that captured this strain stiffening property, Mihai et al. [80]

considered the brain to be a homogeneous, isotropic, incompressible, hyper-

elastic material, and compared five different constitutive models with these

properties. Of the five models considered, Mihai et al. found that the Ogden

class of models was best able to fit experimental data and captured the strain

stiffening behavior [80]. Furthermore, in 2017 Mihai et al. used experimental

data from [18] to develop a family of isotropic, hyperelastic models based on

the Ogden elasticity model capable of capturing brain tissue behavior under

combined shear and compression/tension [79].

The study of Budday et al. [18] stands out as they have been able to work

with human brain tissue from recently deceased individuals, tested the tissue

under combined shear and compression/tension, and fit constitutive models

to these experiments. Although each of these components had been explored

previously, Budday et al. [18] were the first to combine all of these elements

into one study. Budday et al. performed in vitro testing of human brain tis-

sue samples from 10 cadavers within 48 hours of death, reducing the amount

of tissue deterioration postmortem. Tissue samples from four regions of the

brain (corpus callosum, corona radiata, basal ganglia, cortex) were collected

and tested under various loading procedures. Not only did Budday et al. [18]

consider different regions of the brain, they also explored if brain tissue me-

chanics were directionally dependent within brain regions due to the presence

of white matter fibers. The experimental results were compared to five com-

mon constitutive models: neo-Hookean, Mooney-Rivlin, Demiray, Gent, and

one-term Ogden. The results showed that the mechanical properties of human

brain tissue are regionally dependent, but not directionally dependent, with

the isotropic modified one-term Ogden model being the only constitutive model

that was able to capture the hyperelastic behavior of the mechanical testing

data across multiple loading modes. Following these results from Budday et
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al. [18], we utilize the isotropic one-term Ogden model for the mechanical

behavior of brain tissue into our model of glioma spread.

2.1.3 Travelling wave analysis

In this work we focus on one-dimensional invasion waves. An explicit calcula-

tion of the wave speed gives us vital information about the invasion process,

and its dependence on the model parameters and the mechanical models. The

method of using travelling wave speeds to determine invasiveness of popula-

tions is common in ecological literature [68, 125] and epidemiological modelling

[125], but has also been applied to GBM models [40, 41, 49, 63, 118]. Swanson

et al. [118] found that in their model the wave front was characterized by

migration (diffusion) and proliferation (reaction) of tumor cells. Konukoglu

et al. [63] also used the characteristics of a travelling wave of a reaction-

diffusion model to define tumor invasion, but used additional patient-specific

data taken from images, such as tissue heterogeneity and fiber structure. Ger-

lee and Nelander [40, 41] developed a reaction-diffusion glioma model that

included switching between proliferative and motile phenotypes (go-or-grow

hypothesis). They numerically and analytically determined the wave speed

under suitable assumptions on the time scales of proliferation and migration,

finding that the phenotypic switching rate altered the wave speed. Rather than

exploring the effects of parameters on wave speed for a single model, Harko et

al. [49] determined wave solutions for generalized versions of common glioma

models. It should be noted that these models are all reaction-diffusion models

that do not include advection or mechanical effects. Here, we include both

advection and mechanics in our model and examine how these components

alter the invasion speed.

2.1.4 Outline of the paper

We first derive our glioma mechanics model as an extension of Hogea’s model

[54] in Section 2.2.2. We model the glioma by a general framework where

a reaction-advection-diffusion equation is coupled to a momentum balance

equation which models the mechanics of the glioma and brain tissue. Driven by
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the growing glioma, the momentum balance equation generates a displacement

of the tissue. This displacement then results in an advection velocity which

acts on both the tumor and the underlying tissue. We will introduce three

biological scenarios called Bio-cases 1,2,3, which correspond to different stages

of tumor development. Next we introduce the four main mechanical models,

which we will refer to as Mech-cases 1, 2, 3, 4, as well as viscoelastic versions

for Mech-cases 1 and 3. The elasticity models we consider are linear elasticity,

linear incompressible elasticity and two cases of the one-term Ogden elasticity.

In our travelling wave analysis in Section 2.4, it turns out that we can use

arguments that were similar to those used to determine minimal wave speed

for the classical Fisher-KPP equation [57, 30]. With explicit expressions for

the minimal wave speed, we then simulate the model to compare the analyti-

cal and simulated wave speeds, as well as to visualize the waves. We perform

travelling wave analysis under each biological scenario for linear, linear incom-

pressible, and one-term Ogden elasticity, and analyze the viscoelastic versions

numerically to determine if adding viscosity to the mechanics significantly af-

fects the results. We compare the different mechanical models and examine

how each model affects glioma spread, as well as differences in tissue and me-

chanical dynamics between each mechanical model. Finally, we conclude by

discussing how the biological and mechanical components of the model affect

the existence of travelling waves, invasion wave speed, tissue dynamics, and

the implications on our understanding of glioma growth.

2.2 Glioma model in 1D

Let the spatial domain be the line of length L, x ∈ [0, L] = Ω ⊂ R, and take

time to be t ∈ [0,∞). Then the domain is U = Ω × [0,∞). The tumor cell

density (normalized) is denoted by c. Generally, the vector m denotes parame-

ters associated with material properties of the tumor and healthy brain tissue,

including diffusion D(x, t), shear modulus µ(x, t), and bulk modulus λ(x, t).

Versions of the vectorm specific to linear and one-term Ogden (visco)elasticity

are given by mLin = (D,λ, µ) and mOgd = (D,µ), respectively. The body

forces acting on the media are denoted by b(x, t), and the viscosity coefficient
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by η(x, t). Although being a parameter associated with material properties, η

is not included in the vector m as it is only involved in the viscoelastic versions

of Mech-cases 1 and 3.

The displacement and the velocity resulting from this displacement, are

denoted by u(x, t) and v(x, t), respectively. The system on U is then

∂

∂t
c(x, t) =

∂2

∂x2
(D(x, t)c(x, t))− ∂

∂x
(c(x, t)v(x, t)) + ρc(x, t)(1− c(x, t))

(2.1)

∂

∂x
T (ux(x, t), uxt(x, t)) = −b(c(x, t)) (2.2)

v(x, t) =
∂

∂t
u(x, t) (2.3)

∂

∂t
m(x, t) + v(x, t)

∂

∂x
m(x, t) = 0 (2.4)

∂

∂t
η(x, t) + v(x, t)

∂

∂x
η(x, t) = 0 , (2.5)

with initial conditions for x ∈ Ω

c(x, 0) = c0(x), m(x, 0) = m0(x), η(x, 0) = η0(x), u(x, 0) = u0(x) ,

(2.6)

and boundary conditions for t ∈ [0,∞)

∂

∂x
c(0, t) = 0 ,

∂

∂x
c(L, t) = 0 ,

∂

∂x
u(0, t) = 0 ,

∂

∂x
u(L, t) = 0 . (2.7)

It follows from equation (2.7) that

v(0, t) = 0 , v(L, t) = 0 . (2.8)

The key to closing the system is the expression of the stress tensor T as a

function of the deformation gradient, ux, and, for viscoelastic models, of uxt,

in (2.2). We consider different stress tensors: linear (Mech-case 1), linear

incompressible (Mech-case 2), and one-term Ogden elastic model (Mech-cases
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3,4) given by the following expressions:

Case 1: TLin (ux(x, t)) =λ(x, t)ux(x, t) + 2µ(x, t)ux(x, t) (2.9)

=(λ(x, t) + 2µ(x, t))ux(x, t) , (2.10)

corresponding to all deformations being strictly one-dimensional along the

x-axis, in other words, the deformation gradient tensor F having only one

non-zero component, F11, with other components of the deformation gradient

tensor vanishing. An alternative model is obtained by assuming that the defor-

mations are three-dimensional, but the stress is applied only in one direction.

As we show below in (2.31), the stress T11 = T relates to ux as

Case 1a: TLin1D (ux(x, t)) = µ(x, t)
3λ(x, t) + 2µ(x, t)

λ(x, t) + µ(x, t)
ux(x, t) . (2.11)

The next case is obtained by assuming the linear incompressible material, in

which case, as we demonstrate below in (2.29), the stress T11 = T relates to

strain ux as

Case 2: TLinInc (ux(x, t)) = 3µ(x, t)ux(x, t) . (2.12)

The incompressible material with uniaxial compression/tension described by

the Ogden’s model is derived below in (2.24), and relates the stress T to ux

as:

Case 3: TOgd(ux(x, t)) =
2µ(x, t)

α

(︁
(1−ux(x, t))

−α−(1−ux(x, t))
1
2
α
)︁
, (2.13)

The value α that appears both as an exponent and scaling factor in the one-

term Ogden model is a parameter. Although α has no specific physical mean-

ing, it can be fit for a specific material and loading conditions (as discussed in

Section 2.2.2). Finally, we consider viscoelastic versions of Mech-cases 1 and

3 above:

Case 4: TLinV (ux(x, t), uxt(x, t)) = (λ(x, t)+2µ(x, t))ux(x, t)+η(x, t)uxt(x, t) ,

(2.14)
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Case 5: TOgdV (ux(x, t), uxt(x, t)) =

2µ(x, t)

α

(︁
(1− ux(x, t))

−α − (1− ux(x, t))
1
2
α
)︁
+ η(x, t)uxt(x, t) ,

(2.15)

We note that for the one-term Ogden viscoelasticity, we developed an alterna-

tive viscosity form that is similar to that of Kelvin-Voigt, but has the advantage

of enhanced energy dissipation for high stresses, as derived in Appendix 2.8.

The results of the glioma model with TOgdV2 from that Appendix were nearly

identical to that of the results with (2.15) and thus are not included in the

main text. For the derivation and select results of the model with TOgdV2, see

Appendix 2.8.

The functional form for the body forces through the growing tumor b is

taken from [54] as

b (c,p, cx) = −f(c,p)cx = p1 exp
(︂
−p2
cs

)︂
exp

(︃
− p2
(2− c)s

)︃
cx , (2.16)

where p = (p1, p2, s), and p1, p2, and s are all positive constants. The vec-

tor p is a vector of parameters determining the size of area deformed by the

tumor cells (p2, s) and the strength of this deformation (p1). This is a phe-

nomenological model for the forces created by a growing tumor. There are

key characteristics of this model that capture the likely reality of a growing

tumor. First, in the absence of tumor cells, there is no force. Secondly, the

first component of the force (the exponential part) is maximized at the car-

rying capacity of the tumor (i.e., when c(x, t) = 1). Lastly, the dependence

on the gradient means that a larger force is generated in the presence of large

differences in cancer density. The parameter p1 is scaled by the initial value of

the coefficient on the stress tensor which represents the elasticity of gray and

white matter. This ensures that the relative scales of the material properties

and forcing function are similar and result in a reasonable level of mass effect.

That is, p1 = λ+ 2µ for the linear elastic case, p1 = 3µ for the incompressible

linear elastic case, and for the Ogden model, p1 =
⃓⃓
2µ
α

⃓⃓
, where we take the

absolute value in the Ogden case because α is negative. Hogea et al. [54] also

employed this method of scaling p1 by the value of the material’s elasticity
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Figure 2.1: The forcing function, f , with a parameter set used in Hogea et al. [54]
(p = (p1, p2, s) = (1.2, 0.1, 1)) (black curves) and changes in the forcing function
depending on varying the parameters p1 (left), p2 (middle), and s (right).

parameter. However, Hogea et al. [54] used artificial values for the elasticity

parameters in order to explore their model. Here, we will incorporate exper-

imental data for λ, µ, and η, and therefore the scaling of p1 will follow the

data for those parameters. Furthermore, Hogea et al. [54] assigned different

values of elasticity parameters for gray and white matter. Following recent ev-

idence suggesting the mechanical properties of brain tissue are homogeneous

between white and gray matter [18], we assign the same elasticity parameters

for both gray and white matter. Finally, following values used in [54], we take

p2 = 0.1 and s = 1 throughout the simulations presented in the following

sections. The form of f with p = (1.2, 0.1, 1) (values used in Hogea et al. [54])

is shown as the black curves in Figure 2.1. Notice that the diffusion term in

equation (2.1) is of Fokker-Planck form (Dc)xx, which arises naturally from a

random walk description of cell movement [52]. Since we consider a spatially

one-dimensional model, there are no anisotropies, but if D(x, t) depends on

space and time, for example through deformation of the tissue, then we use

the above term.

Following the method of Hogea et al. [54], the material parameters (D,λ, µ)

are dependent on space and time, and are convected by the velocity produced

by the growing tumor. We note that this is only one option for the choice of

modelling material property evolution and that other factors could be included

in the material property evolution, such as including dependency on tumor cell

and/or tissue density. For this work, we limit ourselves to the case where the

material properties are independent of cell density.
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Table 2.1: Summary of model notation.

Notation Description

x Space

t Time

c(x, t) Tumor cell density

ρ Tumor cell growth rate

u(x, t) Displacement

v(x, t) Advection velocity

D(x, t) Diffusion coefficient

λ(x, t) Bulk modulus

µ(x, t) Shear modulus

η(x, t) Viscosity coefficient

m(x, t) Vector of material properties

T Stress tensor

b(c,p, cx) Body force function

p = (p1, p2, s) Vector of body force function parameters

It is of note that Budday et al. [18] found a constant value for µ. In the

following sections, we explore how changing µ affects the dynamics. Budday

et al. determined this value of µ for healthy tissue, and we expect µ to change

for glioma tissue. There is significant evidence showing that glioma is mechan-

ically heterogeneous and affects the nature of healthy brain tissue, including

altering the mechanical properties [48, 109, 82, 88, 90]. That is, it is plausible

to assume that glioma introduces time- and space-dependent elasticity param-

eters. Thus, allowing for variation of the elasticity parameters µ and λ is not

a biologically unrealistic choice.

Finally, the tumor cell density proliferates following the commonly used

logistic growth model [31]. A summary of the model notation is given in Table

2.1.
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2.2.1 Biological scenarios

We perform this analysis for three cases representing different biological sce-

narios.

Bio-case 1: Early cerebral glioma in physically homogeneous brain

tissue. Here, the material variables (diffusion, elasticity, viscosity) are held

constant. This represents a tumor that is growing in a homogeneous envi-

ronment (a single brain structure with homogeneous physical properties) such

that the tumor has the same properties as the environment, corresponding to

an early stage of tumor development. This represents, for example, an early

tumor growing only within gray matter [91, 116, 119, 89].

Bio-case 2: Early cerebral glioma in the presence of white matter.

In this case, the mechanical properties of the tissue are constant, while the

diffusion coefficient D is allowed to vary. This represents the case where a

tumor is growing in mechanically homogeneous tissue, but with the presence

of structures that alter the migration rates of the tumor cells, such as white

matter. Regions with higher diffusion model the regions with white matter as

tumor cells diffusion is faster along white matter fibers [43, 91, 116, 119]. The

regions with lower diffusion represent the gray matter. Deformation caused by

the tumor cell density deforms the tissue and as a result also transports the

diffusion value accordingly. Hence in this case D(x, t) will depend on space

and time. As before in Bio-case 1, the elasticity parameters, λ and µ being

constant represents that the elasticity of the brain tissue is uniform throughout

[18].

Bio-case 3: Advanced glioma: mechanically heterogeneous glioma in

a heterogeneous environment. This is the most general case where the

mechanical properties of the tissue are fully variable, as well as the diffusion

coefficient. This represents a tumor that can have different mechanical prop-

erties compared to the healthy tissue (advanced tumor), as well as the invaded

tissue includes structures with different mechanical properties (cerebrum, ven-

tricles, corpus callosum, etc.) [28, 54, 114]. The ventricles are a fluid filled
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cavity in the center of the brain, while the corpus callosum is a dense, fibrous

structure separating the two hemispheres. As the brain matter structure is

pushed (advected) by the tumor, the elastic properties associated with differ-

ent brain structures are pushed as well, hence the parameters mLin = (D,λ, µ)

and mOgd = (D,µ), as well as η, follow the advection equation (2.4).

2.2.2 Mechanical models

Inspired by the work of Budday et al. [18] who performed mechanical testing of

brain tissue as described above, we explore four main mechanical models: the

linear elasticity model, linear incompressible elasticity model, one-term Ogden

models with α = −7.3 and α = −20, as well as the corresponding viscoelastic

models for the linear and one-term Ogden (with α = −20) models.

Mech-case 1: Linear elasticity. For this case, we use equation (2.10) as

the stress tensor. The linear elasticity model is included since it is by far the

most commonly used in mathematical models of glioma [54, 114, 28, 15, 99].

As indicated by Budday et al. [18], this model is likely an oversimplified view

of the mechanical behavior of brain tissue, but allows for a tractable inclusion

of tissue elasticity in continuum models. We are also interested in comparing

our results with previous work, and thus including analysis with the linear

elasticity model allows for such direct comparison. Of note is that this model

is compressible, which is in contrast to the one-term Ogden model which is

incompressible. As the parameter values determined depend on the elasticity

model tested, in order to use elasticity parameters determined with the linear

elasticity model, we take values from [54] for λ and µ in this case.

Mech-case 2: Incompressible linear elasticity. Here, we use equation

(2.12) as the stress tensor. We include an incompressible version of linear

elasticity in order to have a direct comparison of linear and one-term Ogden

models where the incompressibility property is included in both models. The

value of µ used in this case will be the same as used in Mech-case 3 and 4 in

order to directly compare results with those cases.
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Mech-case 3: One-term Ogden elasticity with combined loading (α =

−20). The model that most closely represents the behavior of brain tissue

is the one-term Ogden model [18]. Based on the results in Budday [18], the

parameter value for the exponent α depends on the mechanical loading, with

the value α = −20 giving a good fit for combined loading such as shear and

compression. For this Mech-case, the stress tensor is given by equation (2.13)

where α = −20. Note that the form of one-term Ogden model used in both

Mech-cases 3 and 4 assumes incompressibility. The value of µ used in both

Mech-case 3 and 4 is taken from [18] as these are the values found when

calibrating the one-term Ogden model.

Mech-case 4: One-term Ogden elasticity with single loading (α =

−7.3). The final case we consider again uses one-term Ogden elasticity (equa-

tion (2.13)), but now with α = −7.3. According to Budday [18], this value of

α represents brain tissue mechanics under single loading.

We note that the values of α for the one-term Ogden models were de-

termined under specific testing methods and it is possible that they are not

applicable outside of these conditions. As noted in [19], the large absolute

value of α can lead to “unrealistically high stresses for larger strains”. How-

ever, given the long time scales of glioma growth, we believe it is reasonable

to assume that a growing glioma falls under a small strain rate regime. Under

this assumption, the larger absolute value α, i.e. α = −20, is an appropriate

choice. Furthermore, in the results presented in later sections, the stress val-

ues of the model with one-term Ogden elasticity with α = −20 yield smaller

stress values than both the linear model and the one-term Ogden model with

α = −7.3, indicating that the stress values are not unreasonably large. To

our knowledge, this is the first time glioma invasion has been analyzed for a

mathematical model including the one-term Ogden model for tissue mechanics.

To include viscoelastic effects in the elasticity models, we use the Kelvin-

Voigt model [70] which adds the viscosity term ηuxt(x, t) to each of the original

Cauchy stress tensors given by (2.10) and (2.13), giving (2.14) and (2.15) as

the respective viscoelastic counterparts. As mentioned before, we introduce
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an alternative version of a viscoelastic Ogden model in Appendix 2.8.

Derivation of 1D one-term Ogden stress tensor. The different me-

chanical models are included via the Cauchy stress tensor T (ux, uxt) (in the

deformed configuration) which appears in the momentum balance equation

(2.2). The Cauchy stress tensor for the commonly used linear model (TLin)

is given by (2.10). As the one-term Ogden model is less commonly used, for

clarity we derive the 1D form of the Cauchy stress tensor (TOgd). The strain

energy for the one-term Ogden Model in 3D is

W =
2µ

α2
(λ̂

α

1 + λ̂
α

2 + λ̂
α

3 − 3) , (2.17)

[18, 84] where λ̂i are the principal stretches (note that the hat distinguishes

the principal stretch from the elasticity parameter λ), µ = µOgd is the shear

modulus, and α is a parameter [18].

Note that we have chosen the definition of energy in (2.17) to have an

additional factor 1/α as compared with the original paper by Ogden [84].

We have chosen that notation in order for the linearized relationship between

stress and strain for Ogden model at null strain (2.25) and incompressible

linear model (2.29) coincide when the parameters µ in both models are equal:

µOgd = µLinInc. The Cauchy stress tensor components are then

Ti =− p+ λ̂i
∂W

∂λ̂i

= −p+
∑︂
i

2µ

α
λ̂
α

i , (2.18)

which gives the individual stress tensor components as

T1 =− p+
2µ

α
λ̂
α

1 , T2 = −p+
2µ

α
λ̂
α

2 , T3 = −p+
2µ

α
λ̂
α

3 , (2.19)

where p is the pressure. Because we are only considering a single spatial dimen-

sion in this work, we can reduce the stresses to uniaxial compression/tension.

Therefore, the general stress tensor reduces to T1. Thus, we will denote
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T := T1. Under uniaxial compression/tension, T2 = T3 = 0, giving

T2 =− p+
2µ

α
λ̂
α

2 = 0 , T3 = −p+
2µ

α
λ̂
α

3 = 0 =⇒ λ̂2 = λ̂3 . (2.20)

The condition for an isotropic and incompressible material is λ̂1λ̂2λ̂3 = 1 [84].

Denoting λ̂1 := λ̂ we get λ̂2 = λ̂3 =
√︁
λ̂ −1. With this pressure p, the equation

for T2 gives the pressure as

p =
2µ

α
λ̂
α

2 =
2µ

α

(︄
1√︁
λ̂

)︄α

. (2.21)

Plugging this form of p into the equation for T1, we get the 1D form of the

one-term Ogden stress tensor as

TOgd := T1 =
2µ

α

(︄
λ̂
α
−

(︄
1√︁
λ̂

)︄α)︄
=

2µ

α
(λ̂

α
− λ̂

− 1
2
α
) . (2.22)

We now connect this expression for the Cauchy stress to the variables in our

model. That is, we determine the relationship between the principal stretch, λ̂,

and displacement, u. Consider a deformation in spatial coordinates, where X

is the Lagrangian label, which can be taken to be the initial coordinate of the

material particle, and x is the final (Eulerian) position of the material particle.

In 1D, we can write the deformation gradient as F11 = λ̂. The principal stretch

is given by the square roots of the eigenvalues of the left Cauchy-Green tensor

defined by b = FF T , mapped in the Eulerian coordinates x (note that here b

indicates the left Cauchy-Green tensor, rather than the force in the momentum

balance equation (2.2)). For the one-dimensional dynamics, F11 = X−1
x , we

then get b11 = X−2
x = λ̂

2
. We use this relation between the principal stretch

and deformation gradient to connect the principal stretch to displacement

u = x−X(x, t):

λ̂ =
1

1− ux(x, t)
(2.23)
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To connect this to displacement, we replace λ̂ in equation (2.23), giving

TOgd =
2µ(x, t)

α

(︁
(1− ux(x, t))

−α − (1− ux(x, t))
1
2
α
)︁
. (2.24)

The linearization of the Ogden’s stress given by (2.24) at equilibrium ux = 0

is then

TOgd ≃ 3µux . (2.25)

The coefficient 3µ in (2.25) is sometimes called the tangent modulus at null

deformation.

In what follows, we use the 1D model corresponding to free stress, as

it is more physical in the description of propagation of glioblastoma we are

interested in. The most dangerous and rapid spread of the tumor occurs

along a particular direction in the brain, while the stress from the invasion is

dissipated in the nearby brain tissue. Thus, the 1D free stress Ogden model is

advantageous to the plane model above. The plane model could also be useful

for particular applications of the dynamics strictly constrained in a narrow

domain for some physiological reason, which we shall not pursue here.

Note that (2.24), in spite of being called the one-term Ogden model, has

two terms incorporating ux. The name “one-term model” actually refers to

the fact that there is only one power α in the expression for the Ogden model

(2.17). The second term in that expression, proportional to ((1−u)x)
1
2
α, comes

from the pressure term in (2.18) computed incompressibility criteria for the

material, governed by the first term proportional to ((1 − u)x)
−α. We hope

that no confusion in the nomenclature should arise here.

Incompressible linear models. In order to compare with the incompress-

ible Ogden model, it is desirable to develop an interpretation of incompressible

linear models. In general, the stress and strain in linear elastic models are

written as

T 0
Lin = 2µϵ+ λtrϵI , ϵ =

1

2

(︁
∇u+∇uT

)︁
. (2.26)

Here, λ and µ are Lamé parameters. One has to be careful here, as the bulk

modulus K and Lamé parameter λ are connected to the elastic modulus E

45



and Poisson’s ratio ν through the expressions

K =
E

3(1− 2ν)
, λ =

νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
. (2.27)

For the three dimensional incompressible materials the Poisson ratio ν →
0.5 so the expression for λ given by (2.27), technically speaking, diverges.

More precisely, there is an indeterminate coefficient λtrϵ in the stress-strain

relationship since in the limit of incompressibility, λ → ∞ and trϵ → 0. To

resolve that uncertainty, one should use an additional pressure term p in the

expression for stress T as follows:

TLinInc = 2µϵ− pI , trϵ = 0 . (2.28)

For uniaxial compression/tension of a uniform material along the x direc-

tion (first coordinate), let us denote ϵ11 = ux. Because of symmetry and

incompressibility, ϵ22 = ϵ33 = −ux/2. Since no stress is applied to the sides,

T22 = T33 = 0 which gives p = −µux. Thus, T11 = 3µux, and the effective

value of the elastic modulus for one-dimensional dynamics in the x dimension

is 3µ, where µ = µLinInc is the Lamé parameter denoting the shear modulus:

TLinInc = 3µux , (2.29)

In order to match the linear elasticity with the tangent modulus for the Ogden

model at ux = 0, we take the shear modulus Lamé parameter µLinInc = µOgd,

where µOgd is the coefficient from (2.25). Figure 2.2 shows stress as a function

of the displacement derivative for all four mechanical models, with the far right

panel showing that the incompressible linear model (i.e. where T = 3µOgdux)

is indeed tangent to the stress exhibited by the Ogden models at null strain.

Physical interpretation of compressible linear models. Similarly to

the derivation above, we can consider a linear model (2.26) with the stress

applied only along the x direction, so T11 = T , T22 = T33 = 0. We still have

ϵ22 = ϵ33, and thus trϵ = ϵ11 + 2ϵ22. The stress conditions in (22) and (33)
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directions yield

ϵ22 = ϵ33 = − λ

2(λ+ µ)
ϵ11 ⇒ trϵ =

µ

λ+ µ
ϵ11 (2.30)

and therefore

T = T11 = µ
3λ+ 2µ

λ+ µ
ϵ11 = µ

3λ+ 2µ

λ+ µ
ux (2.31)

Note that as λ → ∞ when the material tends to the incompressibility ν → 0.5

according to (2.27), the value of the coefficient of proportionality between

stress T11 and strain ux tends to 3µ, in accordance with the previous calculation

on incompressibile one-dimensional stress-strain relationship.

The physics of the models considered here is quite different from the pure

1D model. In the expressions (2.29) and (2.31), we assumed that the stress is

applied in one direction, but material particles are free to move in all avail-

able directions. Another way to interpret the one-dimensionality of models is

enforce the motion of the particles in one dimension only. In that case, we

obtain the stress-strain relationship given by (2.10).

Thus, we present two sets of results related to the linear model. One is the

incompressible linear model derived here, corresponding in the linear regime to

the Ogden’s model. Another linear model presented in the paper is obtained

with the values of λ and µ obtained from the literature [54], which is Case 1

described by (2.10) above.

Remark 1 (On the equations with non-constant elasticity parameters). One

can notice that the derivation of incompressible stress-strain relationships

above (2.24), (2.29) and (2.31) remain valid for non-constant values of elasticity

parameters as long as the appropriate symmetry conditions for the displace-

ment and stress are satisfied. We shall always assume that it is true everywhere

in the paper.

Analysis of elastic models. Before considering the entire glioma system,

we consider the behavior of each of the elastic models. Beginning with the

stress, we can consider the stress as a function of ux under a given set of

material parameters, m = (D,λ, µ). Figure 2.2 shows stress as a function of
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Figure 2.2: Plots of stress as a function of the spatial derivative of displacement,
ux, for each mechanical model. Left : For the linear elasticity (Mech-case 1), λ = λ̄
and µ = µ̄Lin. For the linear incompressible (Mech-case 2) and Ogden elasticity
models (Mech-case 3, 4), µ = µ̄Ogd. Right : A zoom in around ux = 0 showing that
the stress for each model is zero when ux = 0 as expected (confirmed numerically).
See Tables 2.4 and 2.5 for parameter notation.

ux for linear elasticity, as well as Ogden elasticity with α = −7.3 and α = −20.

It can be seen in Figure 2.2 that the stress functions differ significantly away

from ux = 0 and would give vastly different results for displacement and stress.

For example, the left panel of Figure 2.2 shows that near ux = 0, there

is a region where the linear model would result in larger stresses then the

Ogden model with α = −20, with this relationship inverting at larger values

of ux. Additionally, if ux = −0.2, the Ogden stress with α = −20 would have

much larger scales compared to the linear stress or Ogden with α = −7.3

(see Figure 2.2). For ux near zero the functions take similar values. However,

the larger magnitude exponent in the α = −20 case leads to a much steeper

curve as |ux| increases, with the magnitude of the stress becoming considerably

different between the α = −7.3 and α = −20 cases. Thus, in cases where

the displacement derivative remains near zero, the resulting stress will be

similar between the two cases of α. Thus, there is a possibility that the

stress produced in the full model system may be similar between all elasticity

models under the condition that the value of ux remains near zero. However,

if ux deviates from zero, the models would give considerably different stress

dynamics, with differences in stress likely leading to different dynamics in other

model components.
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2.3 Travelling waves

Considering the four Mech-cases, as well as the two viscoelastic counterparts

to Mech-case 1 and 3, and three biological scenarios, we have 18 cases to

examine. In each case we explore the invasion speed, as well as how the

invasion speed depends on the model parameters and the mechanical models

used. We also compare the levels of deformation and stress that arise from the

various formulations. We begin the travelling wave analysis with purely elastic

linear, linear incompressible, and one-term Ogden mechanical models for the

most general biological case (Bio-case 3); the other cases are similar. The

corresponding viscoelastic models cannot be treated analytically on the same

level, and we reside to numerical simulations. We show numerically that the

invasion speeds are unchanged between elastic and viscoelastic formulations

for the values of parameters we investigated.

2.3.1 Linear, linear incompressible, and one-term Og-

den elasticity

To determine the wave speed, we transform our model (2.1) - (2.4) to a corre-

sponding autonomous system by changing the argument of our functions from

(x, t) to the travelling wave coordinates z = x − σt, where σ > 0 is the wave

speed (if it exists). With this change in coordinates, we also change the do-

main given in Section 2.2. Rather than a bounded spatial domain, we consider

the entire real line R with conditions at ±∞. In the following, we present the

details of the travelling wave analysis for linear elasticity and Bio-case 3.

For clarity, we introduce variable notation for the variables in travelling

wave coordinates as follows:

� c0 = c(x− σt) , c1 = c′(x− σt)

� D0 = D(x− σt) , D1 = D′(x− σt)

� u0 = u(x− σt) , u1 = u′(x− σt)

� λ = λ(x− σt)
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� µ = µ(x− σt) .

The autonomous system in the wave variable z = x− σt corresponding to the

system (2.1)-(2.4) with variable mLin = (D,λ, µ) and stress tensor given by

(2.10) is

c′0 =c1

c′1 =
1

D0

(−σc1 −D′
1c− 2D1c1 + c0(−σu′

1) + c1(−σu1)− ρc(1− c))

u′
0 =u1

u′
1 =

1

λ+ 2µ
(f(c0)c1 − (λ+ 2µ)′u1)

(2.32)

along with the equation for the material properties

−σm′(1 + u1) =0 , (2.33)

where

f(c0) =p1e
−p2

(︃
1
cs0

+ 1
(2−c0)

s

)︃
. (2.34)

For the boundary conditions, we have

c0(−∞) = 1, c0(∞) = 0 ,

c1(±∞) = 0 ,

u0(±∞) = 0 ,

u1(±∞) = 0 ,

D0(−∞) = D−∞
0 , D0(∞) = D∞

0 , D±∞
0 > 0 ,

D1(±∞) = 0 ,

λ(−∞) = λ−∞
0 , λ(∞) = λ∞

0 , λ±∞
0 > 0 ,

µ(−∞) = µ−∞
0 , µ(∞) = µ∞

0 , µ±∞
0 > 0 .

(2.35)

where D±∞
0 , λ±∞

0 , µ±∞
0 is used to indicate that any (finite) value can be taken.

The boundary conditions for c0 represent a tumor cell density at carrying ca-
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pacity for x → −∞, with no tumor cells present for x → ∞. Thus, a travelling

wave moving to the right represents the invasion of tumor cells into this pre-

viously healthy region. With the given conditions on tumor cell densities as

x → ±∞, there is no change in tumor cell density as x → ±∞. Thus, the

boundary conditions as x → ±∞ for c1 are both taken to be zero. As displace-

ment of the tissue due to tumor cell presence is dependent on changing cell

densities, no displacement or change in displacement is expected where c1 is

zero. Thus, the boundary conditions for both u0 and u1 are zero for x → ±∞.

As for the diffusion coefficient boundary conditions, D0(±∞), the PDE

system allows for the boundary condition to be prescribed as any finite, real,

positive value. Within the context of glioma, it should be noted that there

would be limits on the magnitude of the diffusion coefficient dictated by the

biological context.

The boundary conditions for the shear and bulk moduli, µ0(±∞) and

λ0(±∞) are taken to be positive values for the simulations presented here.

Lemma 1. Consider the glioma model in travelling wave coordinates (2.32)-

(2.35) with linear elasticity (that is, with stress tensor (2.10)). A necessary

condition for the existence of a travelling wave is σ ≥ σ∗ = 2
√︁

D∞
0 ρ. We call

σ∗ the minimum (theoretical) wave speed.

Proof. A travelling wave of system (2.32)-(2.35) arises as a heterogeneous con-

nection between a cancer free steady state at the wave front, with a coexis-

tence equilibrium at the back of the wave. We denote the equilibrium points,

(c0, c1, D0, D1, u0, u1, λ, µ), for the system by X0 and X1, where

X0 =(0, 0, D∗0, 0, u∗0, 0, λ∗0, µ∗0) , (2.36)

X1 =(1, 0, D∗1, 0, u∗1, 0, λ∗1, µ∗1) , (2.37)

where the values D∗0, u∗0, λ∗0, µ∗0 and D∗1, u∗1, λ∗1, µ∗1 can be any positive

finite value. Given that we are assuming travelling wave solutions, the equi-
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librium values necessarily take on the boundary values. Thus,

(D∗0, u∗0, λ∗0, µ∗0) = (D∞
0 , u∞

0 , λ∞
0 , µ∞

0 ) , (2.38)

(D∗1, u∗1, λ∗1, µ∗1) = (D−∞
0 , u−∞

0 , λ−∞
0 , µ−∞

0 ) . (2.39)

With the material properties satisfying equation (2.33), as we do not wish to

restrict the value of u1, this leads to the condition that m′ = 0 at equilibrium.

That is, all of the material properties are constant at equilibrium. Holding

m constant at equilibrium allows us to reduce the analysis to the remaining

variables of c0, c1, u0, and u1. With m′ = 0, (2.32) reduces to

c′0 =c1

c′1 =
1

D

(︃
−σc1 −

−σc0f(c0)c1
λ+ 2µ

− σc1u1 − ρc0(1− c0)

)︃
u′
0 =u1

u′
1 =

f(c0)c1
λ+ 2µ

.

(2.40)

Evaluating the Jacobian at the equilibrium points X0 and X1 gives

J(X0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

− ρ
D∗0 − σ

D∗0 0 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.41)
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and

J(X1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

ρ
D∗1 − σ

D∗1

(︂
1 + 1

λ∗1+2µ∗1

)︂
0 0

0 0 0 1

0 1
λ∗1+2µ∗1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.42)

Given the structure of J(X0), two of the eigenvalues are zero, with the remain-

ing two eigenvalues determined by the upper left 2x2 matrix

MX0 =

⎡⎢⎢⎢⎢⎣
0 1

−ρ
D∗0

−σ
D∗0

⎤⎥⎥⎥⎥⎦ , with detMX0 =
ρ

D∗0 , trMX0 = − σ

D∗0 . (2.43)

Because σ,D∗0, ρ > 0 the determinant is positive and the trace is negative.

Thus, X0 is either a stable spiral or stable node. We assume, as in the classical

Fisher case, that the minimal wave speed occurs where this fixed point switches

between a stable spiral or stable node. To find this point, we solve for σ when

the discriminant is zero:

(trMX0)
2 =4detMX0 =⇒ σ2

(D∗0)2
= 4

ρ

D∗0 =⇒ σ = 2
√︁

D∗0ρ . (2.44)

For σ > 2
√︁
D∗0ρ, X0 is a stable node and for σ < 2

√︁
D∗0ρ, a stable spiral.

Thus, for σ > 2
√︁
D∗0ρ, the existence of a travelling wave is possible, whereas

σ < 2
√︁

D∗0ρ does not permit the existence of a travelling wave.

Similarly, for the matrix J(X1), we determine that there are two zero
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eigenvalues. The remaining two eigenvalues are given by

Λ1,2 = − σ

D∗1

(︃
1 +

1

λ∗1 + 2µ∗1

)︃
±

√︄(︃
σ

D∗1

(︃
1 +

1

λ∗1 + 2µ∗1

)︃)︃2

+ 4
ρ

D∗1 ,

(2.45)

giving one positive and one negative eigenvalue. Hence, X1 is always a saddle

point.

Thus, we get that X0 is a stable node for σ ≥ σ∗ = 2
√︁
D∗0ρ and X1

is a saddle. Therefore, assuming the linear conjecture holds and noting that

D∗0 = D∞
0 from (2.38), the system exhibits travelling wave solutions with a

minimal wave speed of σ∗ = 2
√︁
D∞

0 ρ.

The analysis for the other cases follows the procedure as used in the proof

of Lemma 1. The zero fixed point X0 was stable under the condition σ > σ∗ =

2
√︁

D∗0ρ = 2
√︁

D∞
0 ρ in all cases. Although we do not present the full analysis

of each case here, we summarize the details for all the cases in Table 2.2 and

Table 2.3. Of note is that this wave speed form is very similar to the Fisher

equation wave speed, σ = 2
√
Dρ [38]. In the case of the Fisher wave speed,

D is always constant. This is true for Bio-case 1, however for Bio-cases 2 and

3, the constant D is replaced with D∞
0 . The implication of this difference is

discussed in Section 2.5.1.

2.4 Numerical results

In the following, we present numerical simulations of the glioma model for

each biological scenario, where we vary ρ and D. The majority of the results

shown will be limited to Mech-case 1 and 3 as we consider these to be the most

relevant, representing the base-line mechanical model used previously (linear

elasticity) and the mechanical model most closely representing brain tissue in

vivo (one-term Ogden elasticity with α = −20). Furthermore, the results for

the remaining Mech-cases closely follow those of Mech-case 1 and 3, and thus

presenting full results for each Mech-case would be redundant. Comparisons

of results between the mechanical cases are discussed in Section 2.5. The
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Table 2.2: Summary of variables and constants in standard coordinates, (x, t), and
travelling wave coordinates, x − σt, for the different biological cases of the model
with linear and Ogden elasticity. The variables indicate terms that are space and
time dependent (i.e. have argument (x, t)), while the constants indicate that those
values do not change in either space nor time. For the travelling wave coordinate
variable, the subscripts correspond to the variables after reduction of order, with
c0(z) := c(z) and c1(z) := c′(z), where this notation holds for the other variables as
well.

Mech-case 1 2, 3, 4

Coords. Bio-case Variable Constant Variable Constant

(x, t) 1 c, u D, λ, µ c, u D, µ

2 c, u,D λ, µ c, u,D µ

3 c, u,D, λ, µ c, u,D, µ

x− σt 1 c0, c1, u0, u1 D,λ, µ c0, c1, u0, u1 D,µ

2
c0, c1, u0, u1,
D0, D1

λ, µ
c0, c1, u0, u1,
D0, D1

µ

3
c0, c1, u0, u1,
D0, D1, λ, µ

c0, c1, u0, u1,
D0, D1, µ
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Table 2.3: Summary of fixed points and minimum wave speeds for the different
biological cases of the model with linear and Ogden elasticity. The notationX∗i, X ∈
{D,µ, λ} and i ∈ {0, 1} indicate that any value in the domain may be taken. †
indicates the fixed points are the same for the linear and Ogden cases.

Bio-case Mech-case Variable vector

1† 1-4 (c0, c1, u0, u1)

2† 1-4 (c0, c1, D0, D1, u0, u1)

3 1 (c0, c1, D0, D1, u0, u1, λ, µ)

3 2-4 (c0, c1, D0, D1, u0, u1, µ)

Bio-case Mech-case Equilibria Minimum

wave speed

1† 1-4 X0 = (0, 0, u∗0, 0) 2
√
Dρ

X1 = (1, 0, u∗1, 0)

2† 1-4 X0 = (0, 0, D∗0, 0, u∗0, 0) 2
√︁

D∗0ρ

X1 = (1, 0, D∗1, 0, u∗1, 0)

3 1 X0 = (0, 0, D∗0, 0, u∗0, 0, λ∗0, µ∗0) 2
√︁

D∗0ρ

X1 = (1, 0, D∗1, 0, u∗1, 0, λ∗1, µ∗1)

3 2-4 X0 = (0, 0, D∗0, 0, u∗0, 0, µ∗0) 2
√︁

D∗0ρ

X1 = (1, 0, D∗1, 0, u∗1, 0, µ∗1)
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model system is simulated in MATLAB R2020b. The spatial and temporal

domains are discretized homogeneously with space and time steps dx and dt,

respectively. For spatial derivatives, finite difference schemes are employed.

The time derivatives are estimated using backward time differences. Further

details regarding numerical methods are given in the Appendix 2.9.

In the numerical simulations, we set specific units in order to use data for

parameters. Space is taken to be in centimeters, cm, while time is in days, d.

Therefore, ρ has units 1
d
, D has units cm2

d
, λ and µ have units kg

cm d2
, and η has

units kg
cm d

. The cell density is normalized and is therefore unitless.

2.4.1 Parameter values and initial conditions

In all simulations, the initial cell density is taken to be a steep, smooth step

function as shown in Figure 2.3.

To simulate the model in Bio-case 1 (with constant material properties), the

material properties given by mLin = (D,λ, µ) (for Mech-case 1) and mOgd =

(D,µ) (for Mech-case 2-4) are held constant in both space and time. For the

cases when viscosity is included, η is also held constant.

For Bio-case 2, diffusion, D(x, t), is allowed to vary over space and time,

while the material parameters, λ, µ, and η, have a constant initial condition

and are held constant. The initial diffusion is taken to be a normally dis-

tributed band with a peak at x = 5, with a base diffusion value outside of this

band. The band of higher diffusion values represents a white matter region,

while the region with the base value represents gray matter. The form of this

distribution is given by

D(x, 0) = Dbase +
Dbase

10

1√︁
2π(δ)2

e
−(x−M)2

2(δ)2 , (2.46)

where Dbase is the base diffusion value, δ = 1 is the standard deviation, and

M = L
2
is the mean (where L is the length of the domain). The scaling factor

of Dbase

10
is used to give a peak diffusion value that is five-fold higher than

the base diffusion value, representing the five-fold increase in diffusion rates

in white matter over gray matter [119]. The initial diffusion distributions for
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Figure 2.3: Initial condition cell density for all cases (left), initial diffusion distri-
butions for Bio-case 2 and Bio-case 3 with base values Dbase = 0.0001, 0.0005, 0.0010
(middle), and initial elasticity parameter distributions for Bio-case 3 (right).

each value of Dbase used in the numerical simulations are shown in Figure 2.3.

As the elasticity is constant, the simulations represent tumor growth within a

mechanically homogeneous region.

Finally, to simulate Bio-case 3, both the diffusion and elasticity are variable

over space and time. The initial diffusion is the same as for Bio-case 2. The

initial distribution of the elasticity parameters, λ and µ, is taken to be non-

constant in space with the values taking on the standard values (as given in

Tables 2.4 and 2.5) from x = 0 to x = 3, then doubling the base value past

x = 3. The initial distributions of the elasticity parameters is shown in Figure

2.3. In addition to non-constant initial conditions, the material properties,

D,λ and µ, advect and vary in space and time. When viscosity is included,

the viscosity coefficient, η, has a constant initial condition, but is also allowed

to advect and vary in space and time.

The set of ρ values used were common between the simulations including the

linear and one-term Ogden elasticity models. The proliferation rate values

were taken to be ρ ∈ {0.05, 0.10, 0.15 /d} and were chosen in order to explore

the model behavior. The base diffusion value of D = 0.0001 is referenced

from [54] with the five-fold increase at the peak referencing [119]. Larger base

diffusion values were also chosen in order to explore model dynamics within

a reasonable range of diffusion. The values of the elasticity parameters for

linear elasticity, λ and µ, were taken from [54]. The value of µ in the case

of one-term Ogden elasticity was taken from [21]. In [21], measurements for

the value of µ and η are given for different regions of the brain. From these

measurements, we have taken the average to arrive at a biologically realistic
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Case Parameter Value(s) Ref.

Bio-case 1 Dbase {0.0001, 0.0005, 0.0010 cm2

d
} (constant) [54]

λ λ̄ = 6.5 · κ1
kg

cm d2
(constant) [54]

µ µ̄Lin = 0.7 · κ1
kg

cm d2
(constant) [54]

η η̄ = 141.66 · κ2
kg

cm d
(constant) [21]

Bio-case 2 Dbase {0.0001, 0.0005, 0.0010 cm2

d
} (initial) [54]

λ λ̄ = 6.5 · κ1
kg

cm d2
(constant) [54]

µ µ̄Lin = 0.7 · κ1
kg

cm d2
(constant) [54]

η η̄ = 141.66 · κ2
kg

cm d
(constant) [21]

Bio-case 3 Dbase {0.0001, 0.0005, 0.0010 cm2

d
} (initial) [54]

λ as in Figure 2.3 (initial) [54]

µ as in Figure 2.3 (initial) [54]

η η̄ = 141.66 · κ2
kg

cm d
(initial) [21]

Table 2.4: Material parameter values and initial conditions for Mech-case 1 and
each Bio-case. Note that κ1 = 74, 649.6 kg

cm d2
and κ2 = 74, 649.6 · 1

24·60·60
kg

cm d are
conversion factors (see Appendix 2.7).

value. A summary of the material parameters and initial conditions for the

linear and one-term Ogden elasticity versions of the glioma model are given in

Tables 2.4 and 2.5, respectively.

Note that for the Lamé parameters λ̄Lin and µ̄Lin given by (2.4), the

three-dimensional version of the linear dynamics given by (2.31) gives T11 =

2.90µLinux, which is very close to the incompressible case T11 = 3µLinux. We

thus present only the results of the 1D deformation case, i.e., Case 1 given by

(2.10), as well as the incompressible case, as the results given by the effective

1D stress of the compressible case (2.31) are practically indistinguishable from

those of the incompressible case given by (2.29).

For conciseness of notation, we will denote the initial parameter values

as λ̄ = 6.5 · κ1
kg

cm d2
, µ̄Lin = 0.7 · κ1

kg
cm d2

, µ̄Ogd = 0.3125 · κ1
kg

cm d2
and

η̄ = 141.66 · κ1
kg

cm d
. Using (2.27) we conclude that these values of µ and λ

for the linear case correspond to the value of Poisson ratio ν ∼ 0.451. Since
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Case Parameter Value(s) Ref.

Bio-case 1 Dbase {0.0001, 0.0005, 0.0010 cm2

d
} (constant) [54]

µ µ̄Ogd = 0.3125 · κ1
kg

cm d2
(constant) [21]

η η̄ = 141.66 · κ2
kg

cm d
(constant) [21]

Bio-case 2 Dbase {0.0001, 0.0005, 0.0010 cm2

d
} (initial) [54]

µ µ̄Ogd = 0.3125 · κ1
kg

cm d2
(constant) [21]

η η̄ = 141.66 · κ2
kg

cm d
(constant) [21]

Bio-case 3 Dbase {0.0001, 0.0005, 0.0010 cm2

d
} (initial) [54]

µ as in Figure 2.3 (initial) [21]

η η̄ = 141.66 · κ2
kg

cm d
(initial) [21]

Table 2.5: Material parameter values and initial conditions for Mech-case 2-4 and
each Bio-case.

ν = 0.5 in the incompressible case, the values of Lamé parameters taken in

our simulation correspond closely to the almost incompressible case, similar

to the materials such as saturated clay [107].

As our main interest are the wave profiles of the cell density, we present the

cell density plots for each set of simulations, omitting the plots of other com-

ponents of the model. However, representative plots for the other components

are also given for clarity of initial conditions and general dynamics.

2.4.2 Bio-case 1

Mech-case 1 and Bio-case 1. The representative dynamics and cell density

plots for Mech-case 1 (linear elastic model) with constant material properties

are given in Figures 2.4 and 2.5. Note that the bulk modulus is omitted from

the representative dynamics figures throughout the numerical results as the

behavior is the same as the shear modulus.

Because the initial cell density is a fairly steep step profile, it takes a bit of

time for the wave profile to be established. After that time, a stable travelling

wave is formed. As is expected from the analytical results, increasing either

60



(a) Cell Density (b) Displacement

(c) Velocity (d) Stress

Figure 2.4: Representative dynamics of model components of the model for Bio-
case 1 with Mech-case 1. For this simulation, ρ = 0.15 and mLin = (0.0005, λ̄, µ̄Lin).
The plots for D, λ, and µ are omitted as they are constant.

Dbase Dbase

ρ 0.0001 0.0005 0.0010 0.0001 0.0005 0.0010

0.05

0.10

0.15

Figure 2.5: Wave profile (left) and cell density (right) plots of the model for Bio-
case 1 with Mech-case 1 where λ = λ̄ and µ = µ̄Lin. For each panel of the wave
profile plots, space (x) is on the x-axis and cell density (c) is on the y-axis. For
each panel of the cell density plots, time (t) is on the x-axis and space (x) is on the
y-axis. Values of ρ and D used in simulations are indicated on the axes.
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(a) Cell Density (b) Displacement

(c) Velocity (d) Stress

Figure 2.6: Representative dynamics of model components for the model for Bio-
case 1 with Mech-case 3. For this simulation, ρ = 0.15 and mOgd = (0.0005, µ̄Ogd).
The plots for D and µ are omitted as they are constant.

ρ and/or D increases the wave speed. In Table 2.6, we list the theoretical

wave speed 2
√
ρD and the simulated wave speed, where we used the last 25

time steps to estimate the wave speed. There is a fair agreement between

the analytical and simulated wave speeds for the linear elasticity case, with

the discrepancy caused by the time it takes for the cell density to settle into

the wave form. The delay in wave establishment is not unexpected as this is

a standard property of travelling waves. As the values of ρ and D increase,

the cell density reaches the wave form faster, resulting in the simulated wave

speeds being closer to the analytical wave speed for larger ρ and D values.

Mech-case 3 and Bio-case 1. The representative dynamics and cell density

plots for Mech-case 3 (one-term Ogden elastic model with α = −20) with

constant material properties are given in Figures 2.6 and 2.7.

The numerical simulation results do not differ greatly when compared to

the respective simulations with the linear elasticity model. Comparisons of the

effects of each mechanical model on the full glioma model are discussed in later
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Dbase

ρ 0.0001 0.0005 0.0010

0.05

0.10

0.15

Figure 2.7: Cell density plots for the model for Bio-case 1 with Mech-case 3 where
µ = µ̄Ogd. Each panel has time (t) on the x-axis and space (x) on the y-axis. Values
of ρ and D used in simulations are indicated on the axes.

sections (see Section 2.5). Analysis showed that a travelling wave is expected

in our model. This result is supported by the simulations with travelling waves

occurring across multiple parameter combinations. As with linear elasticity,

we again see that some time is required for the wave to establish from the steep

initial cell density profile with the wave front initially spreading before taking

a stable form. The analysis also resulted in a wave speed of σ∗ = 2
√
Dρ which

is closely matched in all the simulations presented as noted in Table 2.6. Also

reflected in the simulations is that increasing either ρ and/or D results in a

faster wave speed, as was indicated by the derived wave speed.

Viscoelastic models and Bio-case 1. In Figure 2.8, the cell density and

displacement for the Mech-case 1 and Mech-case 3 with constant material

properties is compared with the corresponding viscoelastic versions of each

model. It is clear from the figures that the addition of the viscosity term did

not significantly affect either the shape or speed of the tumor cell density wave,

nor the resulting displacement. With no significant differences observed with

the addition of a viscoelastic term for Mech-case 1 and 3, we did not simulate

viscoelastic versions for Mech-case 2 or 4.
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Mech-case 1
Mech-case 1

Visco.
Mech-case 3

Mech-case 3
Visco.

c(x, t)

u(x, t)

Figure 2.8: Comparison of cell density and displacement for the model for Bio-
case 1 with Mech-case 1/Mech-case 3 and Mech-case 1/Mech-case 3 viscoelastic
models where ρ = 0.15, mLin = (D,λ, µ) = (0.0005, λ̄, µ̄Lin), mOgd = (D,µ) =
(0.0005, µ̄Ogd), and η = η̄.

We explored if the lack of change with added viscosity was purely due to

the size of the viscosity coefficient used by considering much smaller and much

larger, biologically unrealistic, values of η. Multiplying η by the factors 0.01,

0.1, 10, and 100 resulted in a slight difference at the beginning of simulations,

with more notable changes occurring in the linear viscoelasticity case than in

the Ogden case. However, for both viscoelastic models the effects of the ex-

treme viscosity values were transient and did not affect the dynamics later in

the simulation, with the wave profile and speed reverting to the non-viscous

case following this transient period. Thus, there can be a minimal and tran-

sient difference by adding viscosity, but it can only occur at unreasonably large

values of η and does not affect the longer term dynamics.

Wave speeds for Bio-case 1. For the glioma model in Bio-case 1, Table 2.6

presents the numerical wave speeds for each of the four mechanical models.

There is good agreement between the analytical and numerically calculated

wave speeds in all cases. The wave speed results are discussed in Section 2.5.1.
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Table 2.6: Wave speeds with each mechanical model in Bio-case 1. ↓/↑ indicates
that the simulated value was lower/higher than the analytically calculated value.
For all calculations, the wave speed was calculated starting at t = 175 until the end
of simulation time. For the Ogden cases, α = −20, and for the viscoelastic cases,
η = η̄. Note that the values Mech-case 1 and Mech-case 1 Visco. are the same.
The values for the Mech-case 3 viscoelastic cases are the same for both TOgdV and
TOgdV2 except for those marked with ∗, which are 0.001 smaller in TOgdV2 case.

ρ D Analytical Mech-case 3

1 2 3 4 3, Visco.

0.05 0.0001 0.004 0.008↑ 0.006↑ 0.005↑ 0.005↑ 0.004

0.0005 0.010 0.015↑ 0.011↑ 0.010 0.009↓ 0.009↓

0.001 0.014 0.019↑ 0.015↑ 0.013↓ 0.013↓ 0.013↓

0.10 0.0001 0.006 0.012↑ 0.010↑ 0.008↑ 0.008↑ 0.007↑

0.0005 0.014 0.020↑ 0.016↑ 0.014 0.014 0.014∗

0.0010 0.020 0.024↑ 0.021↑ 0.020 0.019↓ 0.019↓

0.15 0.0001 0.008 0.014↑ 0.013↑ 0.011↑ 0.011↑ 0.008

0.0005 0.017 0.022↑ 0.019↑ 0.018↑ 0.017 0.017

0.0010 0.024 0.027↑ 0.026↑ 0.024 0.023↓ 0.024∗
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(a) Cell Density (b) Diffusion (c) Displacement

(d) Velocity (e) Stress

Figure 2.9: Representative dynamics of model components for the model for Bio-
case 2 with Mech-case 1. For this simulation, ρ = 0.15, Dbase = 0.0005, λ = λ̄, and
µ = µ̄Lin. The plots for λ and µ are omitted as they are constant.

2.4.3 Bio-case 2

Mech-case 1 and Bio-case 2. The representative dynamics and cell density

plots for the linear elastic model with variable diffusion and constant elastic

properties are given in Figures 2.9 and 2.10.

In agreement with the travelling wave analysis, we consistently see attenu-

ated waves in the simulations. As the cell density “wave” front passes through

the region with higher diffusion, the front is dispersed by the higher speed. Af-

ter the front reaches the other side of the increased diffusion, the width of the

front compresses and the slower wave is reestablished as the diffusion returns

to a constant value. This can be interpreted as the edge of a tumor mass, pre-

viously positioned entirely within gray matter (low diffusion), encountering a

white matter region (high diffusion). The tumor cells at the front boundary of

the tumor migrate faster across the white matter than the cells still within the

gray matter. This difference in migration causes a decreased density of tumor

cells at the front of the tumor, as shown by the decreased cell density in the
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Dbase

ρ 0.0001 0.0005 0.0010

0.05

0.10

0.15

Figure 2.10: Cell density plots for the model for Bio-case 2 with Mech-case 1
where λ = λ̄ and µ = µ̄Lin. Each panel has time (t) on the x-axis and space (x) on
the y-axis. Values of ρ and Dbase used in simulations are indicated on the axes.

wave profile figures. Once the front reaches the other side of the white matter

region and enters the gray matter, the cells at the front slow their migration,

causing the cell front to become more dense.

Mech-case 3 and Bio-case 2. The representative dynamics and cell density

plots for the one-term Ogden elastic model (with α = −20) with variable

diffusion and constant elastic properties are given in Figures 2.11 and 2.12.

The cell density behavior agrees with the wave speed analysis and is sim-

ilar to that with linear elasticity, with the cell density forming a wave which

increases speed as ρ or Dbase increases, or as the cells pass through a region of

increased diffusion. However, as can be clearly seen in the diffusion panel, the

deformation is much smaller with Ogden elasticity compared to linear elastic-

ity, with the diffusion changing imperceptibly over time (it was numerically

confirmed that the diffusion did change in time).

Viscoelastic models and Bio-case 2. We also compare the corresponding

viscoelastic models for Bio-case 2. Again, we see essentially no difference

between the elastic and the viscoelastic versions (simulations not shown).
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(a) Cell Density (b) Diffusion (c) Displacement

(d) Velocity (e) Stress

Figure 2.11: Representative dynamics of model components for the model for
Bio-case 2 with Mech-case 3 where µ = µ̄Ogd. For this simulation, ρ = 0.15 and
Dbase = 0.0005. The plot for µ is omitted as it is constant.

Dbase

ρ 0.0001 0.0005 0.0010

0.05

0.10

0.15

Figure 2.12: Cell density plots for the model for Bio-case 2 with Mech-case 3
where µ = µ̄Ogd. Each panel has time (t) on the x-axis and space (x) on the y-axis.
Values of ρ and Dbase used in simulations are indicated on the axes.
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(a) Cell Density (b) Diffusion (c) Shear Modulus

(d) Displacement (e) Velocity (f) Stress

Figure 2.13: Representative dynamics of model components for the model for Bio-
case 3 with Mech-case 1. For this simulation, ρ = 0.15, Dbase = 0.0005, with the
initial distributions of λ and µ as shown in Figure 2.3.

2.4.4 Bio-case 3

Mech-case 1 and Bio-case 3. The representative dynamics and cell density

plots for the linear elastic model with variable material properties are given in

Figures 2.13 and 2.14.

Once again, the cell density moves as a wave, increasing the spread speed

with increased ρ,Dbase, and over the region with increased diffusion. In agree-

ment with the analysis, the introduction of variable material parameters does

not eliminate the existence of a cell density wave and does not change the

wave speed. With the introduction of a spatially varying initial condition for

the shear modulus, µ, (as well as λ, not shown), there is clear deformation of

µ (and λ) over time.

Mech-case 3 and Bio-case 3. The representative dynamics and cell density

plots for the one-term Ogden elastic model (with α = −20) with variable

material properties are given in Figures 2.15 and 2.16.
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Dbase

ρ 0.0001 0.0005 0.0010

0.05

0.10

0.15

Figure 2.14: Cell density plots for the model for Bio-case 3 with Mech-case 1 with
the initial distributions of λ and µ as shown in Figure 2.3. Each panel has time (t)
on the x-axis and space (x) on the y-axis. Values of ρ and Dbase used in simulations
are indicated on the axes.

(a) Cell Density (b) Diffusion (c) Shear Modulus

(d) Displacement (e) Velocity (f) Stress

Figure 2.15: Representative dynamics of model components for the model for Bio-
case 3 with Mech-case 3. For this simulation, ρ = 0.15, Dbase = 0.0005, with the
initial distribution of µ as shown in Figure 2.3.
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Dbase

ρ 0.0001 0.0005 0.0010

0.05

0.10

0.15

Figure 2.16: Cell density plots for the model for Bio-case 3 with Mech-case 3, with
the initial distribution of µ as shown in Figure 2.3. Each panel has time (t) on the
x-axis and space (x) on the y-axis. Values of ρ and Dbase used in simulations are
indicated on the axes.

As in the previous Bio-cases, the behavior of the cell density of the glioma

model with Ogden elasticity is similar to that with linear elasticity. Also,

similar to Bio-case 2, the deformation of the material properties (i.e. D, µ) is

smaller in the Ogden case.

Viscoelastic models and Bio-case 3. As with the results in the constant

material case, the addition of a viscosity term seems to have little to no affect

on the model (simulations not shown).

2.5 Model comparison

2.5.1 Comparison of mechanical models

Wave speed and wave front. The analysis shows that the three main elas-

ticity models (Mech-case 1 (2.10), Mech-case 2 (2.12), Mech-cases 3,4 (2.13))

included here result in the same analytically derived wave speed of σ∗ = 2
√
Dρ.

At first this may be a surprising result as one may think that the mechanical
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dynamics of a substrate through which a wave is travelling will certainly affect

the speed of that wave. However, the wave is a pulled wave and the speed

only depends on the dynamics at the immediate front of the wave. At the

leading edge of the wave, the cell density is very low, the deformation is min-

imal, and the wave front does not experience significant deformation at the

front. However, simulations show that the shape of the wave front is steeper

with Mech-case 3 than with Mech-case 1, while the Mech-case 2 results in

an intermediate wave front that is shallower than that for Mech-case 3 but

sharper than Mech-case 1. It can be seen in Figure 2.17 that the wave front

in Mech-case 1 is more diffuse, that is, there is a larger region of intermediate

density at wave front, than Mech-case 3. This can also be seen in Figure 2.18

where the wave fronts for Mech-case 3 (dashed lines) have a steeper step than

Mech-case 2 (dotted lines), which are then steeper than for Mech-case 1 (solid

lines). We also note that the wave profile plots for Mech-case 4 are nearly

identical to Mech-case 3 and are thus not included in Figures 2.17 and 2.18.

Although we did not analytically determine the shapes of the wave fronts, it

is clear that the linear cases have generally more diffuse, shallow wave fronts.

The linear model gives higher values of displacements, allowing the cells at the

front of the wave to spread further than in either the linear incompressible or

Ogden case.

In Bio-cases 2 and 3 the diffusion coefficient changes. Hence the wave

speed also changes over space and time. Still, it roughly follows the speed

2
√︁

D(x, t)ρ, which can be understood as instantaneous speed at a given loca-

tion. Once the area of higher diffusion is passed, the wave relaxes back to a

constant wave speed that corresponds to the base diffusion value.

Mechanical comparisons. It is also worth exploring how the mechanical

factors such as deformation and stress that underlie the difference in cell dy-

namics compare. We begin by considering displacement, u, as shown in Figure

2.19. We note that there is two orders of magnitude difference in the displace-

ment between Mech-case 1 and Mech-case 3. With the parameters used here,

the displacement is on the order of 100, 10−1, 10−2, and 10−1 in the linear,

linear incompressible, Ogden with α = −20, and Ogden with α = −7.3 cases,
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Mech-
case

Dbase = 0.0001 Dbase = 0.0010 Dbase = 0.0001 Dbase = 0.0010

ρ = 0.05 ρ = 0.05 ρ = 0.15 ρ = 0.15

1

2

3

Figure 2.17: Cell density plots for Mech-case 1 (where λ = λ̄, µ = µ̄Lin), Mech-
case 2 (where µ = µ̄Ogd), and Mech-case 3 (where µ = µ̄Ogd) in Bio-case 1. Each
panel has time (t) on the x-axis and space (x) on the y-axis. Values of ρ and Dbase

are as indicated.

Figure 2.18: Wave profile plots at t = 0, 50, 100, 150, 200 for Mech-case 1 (solid),
Mech-case 2 (dot), and Mech-case 3 (dash) with ρ = 0.15 and D = 0.0005 (or
Dbase = 0.0005, when applicable) for Bio-case 1 (left), Bio-case 2 (middle), and
Bio-case 3 (right).
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Table 2.7: Ranges of u(x, t) and stress for each Mech-case and Bio-case where
D = 0.0005 (or Dbase = 0.0005, when applicable) and ρ = 0.15. For Bio-case 1 and
Bio-case 2, λ = λ̄ and µ = µ̄Lin for Mech-case 1 and µ = µ̄Ogd for the remaining
Mech-cases. In Bio-case 3, the initial distributions of λ and µ are as shown in Figure
2.3.

Bio-case Mech-case 1 2

1 u(x, t) [0, 1.58] [0, 0.529]

Stress [−2.74, 3.11]× 105 [−7.95× 104, 1.08× 105]

2 u(x, t) [0, 1.52] [0, 0.515]

Stress [−3.23, 3.11]× 105 [−1.02, 1.08]× 105

3 u(x, t) [0, 1.06] [0, 0.351]

Stress [−3.21, 2.69]× 105 [−1.09× 105, 9.51× 104]

Bio-case Mech-case 3 4

1 u(x, t) [0, 0.053] [0, 0.145]

Stress [−8.35× 102, 1.19× 103] [−2.34, 3.26]× 103

2 u(x, t) [0, 0.052] [0, 0.142]

Stress [−1.11, 1.19]× 103 [−3.06, 3.27]× 103

3 u(x, t) [0, 0.035] [0, 0.096]

Stress [−1.20, 1.02]× 103 [3.28, 2.81]× 103

respectively. Although we show only one combination of ρ and D/Dbase, the

difference in scale of displacement between elasticity models is conserved for

the other combinations of parameters used previously. This disparity in scale

carries through in the stress, with the stress being on the order of 105 for linear

elasticity, 104 for linear incompressible elasticity, 102 for Ogden elasticity with

α = −20, and 103 for Ogden elasticity with α = −7.3, as shown in Figure 2.20

and Table 2.7. As illustrated in Figure 2.2, significant differences in stress can

be expected between the elasticity models if the gradient of the displacement

shows large differences. Figure 2.21 shows ux as a function of x for a given set

of parameters for each elastic model in Bio-case 1.
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Bio-case 1 Bio-case 2 Bio-case 3

Mech-case 1

Mech-case 2

Mech-case 3

Mech-case 4

Figure 2.19: Displacement plots for each Mech-case and Bio-case where D =
0.0005 (or Dbase = 0.0005, when applicable) and ρ = 0.15. For Bio-case 1 and
Bio-case 2, λ = λ̄ and µ = µ̄Lin for Mech-case 1 and µ = µ̄Ogd for the remaining
Mech-cases. In Bio-case 3, the initial distributions of λ and µ are as shown in Figure
2.3.
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Bio-case 1 Bio-case 2 Bio-case 3

Mech-case 1

Mech-case 2

Mech-case 3

Mech-case 4

Figure 2.20: Stress plots for each Mech-case and Bio-case where D = 0.0005 (or
Dbase = 0.0005, when applicable) and ρ = 0.15. For Bio-case 1 and Bio-case 2,
λ = λ̄ and µ = µ̄Lin for Mech-case 1 and µ = µ̄Ogd for the remaining Mech-cases. In
Bio-case 3, the initial distributions of λ and µ are as shown in Figure 2.3.

Figure 2.21: Plots of the spatial derivative of displacement, ux, at time t = 100
for Bio-case 1 (where ρ = 0.15) with each Mech-case. Left to right: Mech-case 1
(mLin = (D,λ, µ) = (0.0005, λ̄, µ̄Lin)), Mech-case 2 (m = (D,µ) = (0.0005, µ̄Ogd)),
Mech-case 3 and 4 (mOgd = (D,µ) = (0.0005, µ̄Ogd)).
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Displacement Velocity Stress

Mech-case 3

Mech-case 4

Figure 2.22: Comparison of displacement, velocity, and stress in Bio-case 2 with
Mech-case 3 and 4, where ρ = 0.15, µ = µ̄Ogd, and D = 0.0005 (or Dbase = 0.0005,
when applicable).

Comparison of Mech-case 3 and 4. As noted in Section 2.2.2, Budday et

al. [18] determined two values for the exponent in the one-term Ogden model,

noting that the value determined under combined loading modes (α = −20)

is more likely to realistically represent the situation of a glioma growing in

the brain. Although α = −20 is likely more realistic for our purposes, for

completeness we explore the differences that result between the Ogden models

with α = −20 (Mech-case 3) and α = −7.3 (Mech-case 4).

Figure 2.22 compares the displacement, velocity, and stress between Mech-

case 3 and 4 for each biological scenario. The scales for each metric are held

constant in order to emphasize the differences between cases. The qualitative

behavior (i.e. surface shape) is similar between the cases in each metric. For

every metric, Mech-case 4 has larger relative differences (as indicated by the

larger color variation). The quantitative differences for displacement and stress

between Mech-case 3 and 4 with this parameter set are also presented in Table

2.7. Because all of the Bio-cases show similar behavior, we only present a

comparison for Bio-case 2.

2.6 Conclusion
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2.6.1 Travelling waves

We have shown that the 1D glioma model permits travelling wave solutions

with the linear, linear incompressible, or one-term Ogden models of elasticity.

To our knowledge, this is the first time wave speed analysis has been applied to

a glioma model comprised of a reaction-advection-diffusion equation coupled

to a momentum balance equation to include mass effect. In cases where the

diffusion coefficient varies in space and time, the wave speed 2
√
Dρ needs

to be understood as an instantaneous wave speed, which the system tries to

achieve and we see “attenuated travelling waves”. We have also shown that

allowing the elasticity parameters to vary does not affect the wave speed. This

is due to low cell density at the leading edge of the wave causing insignificant

deformation.

The wave speed does not change between the linear and one-term Ogden

models of elasticity, nor does the addition of viscosity. Simulations do show

differences in the wave profiles between the elasticity models, with a steeper

wave profile in the case of the one-term Ogden model. This steeper profile is

caused by the smaller magnitude of deformation in the one-term Ogden model.

We also found that there is an order of magnitude difference in the displace-

ment between the linear and Ogden models. This is a significant difference

that results from the linear vs. exponential forms taken by the Cauchy stress

functions of the linear and Ogden models (2.10) and (2.13), respectively.

We have considered only the propagation of one-dimensional invasion fronts

of glioma. We are currently in the process of implementing two-dimensional

version of these simulations [101]. A more complex three-dimensional model

can eventually be implemented as well. If one were to assume isotropic dif-

fusion tensor and isotropic uniform mechanical material, a reduced model of

evolution, for example cylindrically or radially symmetric, can be considered

as well. We did not consider such models here as we are interested in the

glioma invasions along one dimension, as the first step in understanding the

speed of invasion which can be computed (almost) analytically and studied

thoroughly between different mechanical models presented.
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2.6.2 Implications of mechanical comparisons on model

choice

Our initial motivation to use the linear and one-term Ogden models of elasticity

was based on the fact that previous work commonly used the linear model,

and that the experimental results from Budday et al. suggested the Ogden

model as a more realistic representation of healthy brain tissue [18]. We have

previously noted that the α = −20 case is likely a more realistic representation

of the mode of elasticity present in a real brain with glioma as multiple loading

forces would be experienced simultaneously. In fact, the above analysis can

be used to further explore the validity of this assertion. By examining the

differential effects of each elasticity model (linear, linear incompressible, Ogden

with α = −20, and Ogden with α = −7.3) on our model of GBM spread and

comparing to both experimental and clinical observations of GBM, we may be

able to point to the most accurate model among these four options.

A newly developed method to measure tissue mechanics is magnetic res-

onance elastography (MRE) [53, 110, 113], where MRI imaging is combined

with low-frequency vibrations. It has been shown to be useful to identify tissue

stiffness differences as in fibrosis or tissue scarring [53, 110, 113]. Although we

do not directly use parameters from any MRE studies, they do provide valu-

able information for general brain mechanics, as well as changes in mechanics

that result from pathologies such as glioma.

2.6.3 Clinical relevance

Before discussing the application of this work to clinical disease, we would like

to make it clear that we have not fit our models to clinical data. We have

made our best efforts to produce realistic results by parameterizing with ex-

perimental data, but clinical data is not included. Keeping this in mind, we

believe there are still meaningful conclusions be drawn from the distinctions

between the mechanical models as shown here. One such consequence is the

mechanical effect of a growing tumor on the brain tissue. Some symptoms of

GBM can be directly related to mechanics, such as headaches that are induced

by high intracranial pressure, and local destruction of brain tissue through tear
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and shear [48]. Although headaches are a common symptom of brain tumors,

headaches are not as commonly associated with GBM compared to other brain

tumors [92]. As headaches are typically caused by increased intracranial pres-

sure and deformation, our model may suggest that GBM causes comparatively

lower levels of pressure and deformation compared to other types of brain tu-

mors, which is consistent with the Ogden model. Secondly, GBM (a stage

4 cancer) is the most frequently diagnosed astrocytoma, accounting for more

than 60% of brain tumors in adults [92], and more than 50% of GBM patients

have a short history of symptoms (3-6 months) [48]. A possible explanation

for the trend of few symptoms and a late stage of diagnosis in GBM is that

the tumor grows and spreads slowly enough such that the surrounding brain

tissue is able to adapt to the displacement caused by the tumor [109]. It ap-

pears that the tumor is able to develop without causing significant amounts

of deformation and stress because of the mechanical properties of brain tis-

sue. We note, however, that mechanical deformations is only one contribution

to medical symptoms, as many other mechanisms are at play, such as edema

formation, angiogenesis, fibrosis, inflammation, and other systemic reactions.

None of these are included in our model.
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2.7 Unit conversion

It is of note that the measurements for the elasticity parameters λ and µ

are typically reported with units kPa, which in turn has units kPa = kg
m s2

.

Similarly, the units for the viscosity coefficient, η, is usually reported with

units kPa · s = kg
m s2

s = kg
m s

. As we are working in space and time units of cm

and d, we must convert kPa = kg
m s2

to kg
cm d2

for λ and µ, as well as convert

kPa · s = kg
m s

to kg
cm d

for η. To do this, we multiply by conversion factors. For

λ and µ, the factor is denoted by κ1, while for η, the factor is denoted κ2. The

value of κ1 is calculated by

1 Pa =1
kg

m s2
= 1

kg

100 cm
(︁

d
24·60·60

)︁2 = 74, 649, 600
kg

cm d2
(2.47)

=⇒ 1 kPa =74, 649.6
kg

cm d2
=⇒ κ1 = 74, 649.6

kg

cm d2
. (2.48)

Similarly, the value of κ2 is calculated as

1 kPa · s =74, 649.6 · 1

24 · 60 · 60
kg

cm d
(2.49)

=⇒ κ2 =74, 649.6 · 1

24 · 60 · 60
kg

cm d
. (2.50)

2.8 Alternative Ogden viscoelasticity

For the one-term Ogden viscoelasticity, we have developed an alternative vis-

cosity form that is similar to that of Kelvin-Voigt, but instead of the time
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derivative being applied only to ux, we apply the time derivatives to the non-

linear function of ux that appears in the one-term Ogden model:

TOgdV2 (ux(x, t), uxt(x, t)) =
2µ(x, t)

α

(︁
(1− ux(x, t))

−α − (1− ux(x, t))
1
2
α
)︁

+η(x, t)
∂

∂t

(︄
|α|
α

(︁
(1− ux(x, t))

−α − (1− ux(x, t))
1
2
α
)︁)︄

.

(2.51)

Note that this viscoelastic Ogden model is chosen in such a way that the energy

is always dissipated for both α > 0 and α < 0 as given by (2.57) below.

Equation (2.51) is a generalization of the classical Kelvin-Voigt model for

hyperelastic materials. To show this relation we consider a material with the

elastic part of the stress in the spatial representation given by T el, and the

viscoelastic part of the stress by T vi, with the total stress being T = T el+T vi.

In the absence of external heat energy sources, with external forces being f ,

the equation of motion for spatial velocity v in three dimensions is given by

the three dimensional generalization of (2.2)

ρ

(︃
∂

∂t
v + v · ∇v

)︃
= div

(︁
T el + T vi

)︁
+ f , (2.52)

see [76] for a more general formulation of balance laws of momenta and energy

in various representations of material science, including the inertial terms.

It is assumed that T el is derived from the stored energy function W in such

a way that the total energy E is conserved in the absence of viscoelastic terms

T vi = 0, with no external forces. We are only interested in one-dimensional

motion, although the results below will also be valid for three dimensional

motion with appropriate generalizations. Then, the dissipation of total me-

chanical energy in 1D, where f = (f, 0, 0), is given by the action of viscous

term T vi and the external force f

E =

∫︂
Ω

1

2
ρ|v|2 +Wdx ⇒ dE

dt
= −

∫︂
Ω

T vivxdx+

∫︂
fvdx (2.53)

It is natural to put v(x, t) = ut(x, t) as we have indeed done in (2.3). We are

only going to be interested in the first term of energy balance equation (2.53),
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describing the energy dissipation due to the viscous terms.

Equation (2.51) can be viewed as a particular case of the viscoelastic part

of the stress tensor to be

T vi =η
∂

∂t

∂Q

∂ux

, with

Q :=
|α|
α

(︃
1

1− α
(1− ux(x, t))

1−α − 1

α/2 + 1
(1− ux(x, t))

1
2
α+1

)︃
∂Q

∂ux

=
|α|
α

(︂
(1− ux(x, t))

−α − (1− ux(x, t))
1
2
α
)︂

∂2Q

∂u2
x

=|α|
(︃
(1− ux(x, t))

−α−1 +
1

2
(1− ux(x, t))

1
2
α−1

)︃
≥ 0 ,

(2.54)

with the equation of motion still given by (2.52). In general, Q(ux) is a di-

mensionless “dissipative” function of the deformation gradient satisfying the

convexity condition ∂ux∂uxQ ≥ 0. We have chosen Q in such a way that ∂uxQ

is proportional to the non-dimensionalized Ogden’s stress (2.24), in order to

have higher dissipation values at higher stresses, although other expressions

for the function Q(ux) are possible as well. For an arbitrary Q(ux), the vis-

coelastic part of (2.54) can also be derived from the dissipation function [78]

as follows. In one dimension, if the domain occupied by the material is Ω, the

dissipation function is given by R =
∫︁
Ω
ζdx, with the dissipative integrand

ζ(∂xu, ∂tux, t) given by

ζ =
η

2

∂2Q

∂ux∂ux

u2
xt . (2.55)

Then, the viscoelastic part T vi computed from the derivatives of dissipation

function with respect to uxt:

T vi =
∂ζ

∂uxt

= η
∂2Q

∂ux∂ux

uxt = η
∂

∂t

∂Q

∂ux

. (2.56)

A multi-dimensional generalization of that dissipative function can also be

readily derived, with additional requirements on the symmetry of the depen-

dence of Q on its components (frame indifference) as described by [78]. With
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this dissipation function, the total energy evolves according to

dE

dt
= −

∫︂
Ω

η
∂2Q

∂ux∂ux

u2
xtdx = −2

∫︂
Ω

ζdx (2.57)

The standard extension of the Kelvin-Voigt theory is a particular case of (2.54)

with Q = 1
2
u2
x:

T vi = η∂tux (2.58)

giving the energy dissipation

dE

dt
= −

∫︂
Ω

ηu2
xtdx , ζ =

η

2
u2
xt . (2.59)

As shown in Figure 2.23, for the application of slowly evolving brain mechanics

we are interested in here, there is no discernible difference between the results

of the augmented viscoelastic problem (2.51) and the classical choice Q = 1
2
u2
x.

We also found no significant differences in the wave speed between the two

versions of viscoelastic Ogden models (see Table 2.6).

2.9 Numerical methods

The model system is simulated in MATLAB R2020b. The spatial and temporal

domains are discretized homogeneously with space and time steps ∆x and ∆t,

respectively. For spatial derivatives, finite difference schemes are employed.

The time derivatives are estimated using backward time differences.

The system is simulated by sequentially solving the equations over all spa-

tial points for each time step. A broad outline is as follows:

1. Initialize simulation parameters

� Set simulation parameters (domain size, step sizes, simulation time,

etc.)

� Set function parameters ρ, p1, p2, s

� Specify initial conditions c0, m0, u0
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TOgd TOgdV TOgdV2

c(x, t)

u(x, t)

Stress

Figure 2.23: Comparison of cell density and displacement for the Mech-case 3 and
Mech-case 3 viscoelastic models, TOgdV and TOgdV 2, (α = −20) for Bio-case 1 where
ρ = 0.15, mOgd = (D,µ) = (0.0005, µ̄Ogd), and η = η̄.
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2. Sequentially solve the system equations over all spatial points in a time

loop

� Material advection (equation (2.4))

– Apply advection operator to D(:, t), λ(:, t), µ(:, t), η(:, t) (up-

wind) to get D(:, t+∆t), λ(:, t+∆t), µ(:, t+∆t), η(:, t+∆t)

� Advection-diffusion-reaction of tumor cell density (equation (2.1)).

Note that operator splitting is used to apply each process (diffusion,

advection, proliferation) in the equation.

– Apply diffusion operator (conservative centered difference) to

get c∗

– Apply advection operator (conservative upwind) to get c∗∗

– Apply reaction operator (forward difference) to get c(:, t+∆t)

� Elasticity/viscoelasticity equation for displacement (equation (2.2)).

– For linear elasticity/viscoelasticity and linear incompressible

elasticity: For linear and linear incompressible elasticity, use

implicit solver (mldivide, centered difference) to get u(:, t+∆t).

For linear viscoelasticity, the same method is used, but a finite

difference is used to incorporate the necessary time derivatives.

– For one-term Ogden elasticity: In order to solve for the de-

formation with Ogden elasticity, a nested pair of root solvers

(fzero) is used. The outer root finder solves for T (0, t) with the

objective function involving a second instance of fzero which

solves for u(x, t) with T (0, t) as parameter.

First, the momentum balance equation is integrated with re-

spect to x, giving

TOgd(ux(x, t)) =
2µ(x, t)

α
((1− ux(x, t))

−α − (1− ux(x, t))
α/2)

=

∫︂ x

0

b(c(x, t)) dx+ T (0, t) . (2.60)

where T (0, t) is unknown. In order to solve for ux, a substitu-

tion is made where z(x, t) := (1 − ux(x, t))
−α, resulting in the
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equation

TOgd(z(x, t)) =
2µ(x, t)

α
(z(x, t) − z(x, t)−1/2)

=

∫︂ x

0

b(c(x, t)) dx+ T (0, t) , (2.61)

This equation is then solved for z(x, t) (using fzero) while leav-

ing T (0, t) as an unknown parameter. The resulting value of

u(x, t) is then determined from z(x, t) via numerical integration

(trapz ) with respect to x. The final step is to determine the

appropriate value of T (0, t). This is achieved in the outer loop

of fzero with T (0, t) as the variable. For Ogden viscoelastic-

ity, the same method is used, but a finite difference is used to

incorporate the necessary time derivatives.

� Update velocity (equation (2.3))

– Use u(:, t+∆t) to get v(:, t+ 1) (backward difference)

3. Go back to step 2 for the next time step until final time is reached.

The numerical wave speeds were computed by taking backward differences

from the midpoint of the wave profiles at regular time intervals (every time

step) and then averaging over these differences. As the discretization would

not permit a true midpoint in most cases, the wave profiles were smoothed

using interpolation (via the interp1 function in MATLAB) before taking the

backward differences. The starting point for these differences was taken as

t = 175 to allow for the establishment of the wave front.

2.9.1 Numerics equations

For the function arguments (x, t), x represents the space step and t the time

step.

� Centered difference, first derivatives with respect to time and space,
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respectively.

ut(x, t) =
u(x, t+∆t)− u(x, t−∆t)

2∆t
(2.62)

ux(x, t) =
u(x+∆x, t)− u(x−∆x, t)

2∆x
(2.63)

� Centered difference, second derivative with respect to time and space,

respectively.

utt(x, t) =
u(x, t+∆t)− 2u(x, t) + u(x, t−∆t)

∆t2
(2.64)

uxx(x, t) =
u(x+∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
(2.65)

� Forward difference, first derivative with respect to time

ut(x, t) =
u(x, t+∆t)− u(x, t)

∆t
(2.66)

2.9.2 Elasticity solver check

The elasticity equation is given by

((λ+ 2µ)ux)x = b .

This is a non-homogeneous Sturm-Liouville problem with the associated eigen-

value problem

((λ+ 2µ)ux)x + λu = b .

Taking (λ+ 2µ) = (1− x2), this is the Legendre equation which has the form

((1− x2)ux)x + n(n+ 1)u = b .

We use this relation between the elasticity equation and Legendre equation to

confirm the elasticity solver by setting λ + 2µ = (1 − x2) and comparing the

simulated results to the analytic solution obtained using Legendre polynomial

expansions. Both the homogeneous (b = 0) and nonhomogeneous (b ̸= 0) Leg-
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Figure 2.24: Homogenous Legendre Equation Solutions

endre equations are considered. The simulated solutions for the homogeneous

case (of degrees n = 0...6) are shown in figure 2.24, successfully reproducing

the classical Legendre polynomials.

For the nonhomogeneous case, we set the left hand side to be sin(πx)

and consider the third order expansion solutions. As the nth order term of

the Legendre expansion solution goes to 0, we take n = 4 in the Legendre

equation, giving a third order approximation on the left hand side. We then

set the right hand side to be the third order Legendre polynomial expansion

of sin(πx). That is, we take the left hand side to be

b = sin(πx) ≈
(︃
3

π
− 3

(︃
7(π2 − 15)

2π3

)︃)︃
x+ 5

(︃
7(π2 − 15)

2π3

)︃
x3 .

Figure 2.25 shows both the analytic and numerical solutions of the nonhomoge-

nous Legendre equation, with good agreement between them. This supports

the accuracy of the numerical elasticity solver.
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Figure 2.25: Nonhomogeneous Legendre Equation Solution Comparison
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Figure 2.26: Reaction Equation Solution Comparison

2.9.3 Reaction solver check

The reaction function uses a simple backwards time difference to approximate

the solution to logistic equation

ct = ρc(1− c) .

Figure 2.26 shows that the solver agrees with the analytic solution to the

logistic growth equation.
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2.10 Generalization of wave speed analysis

With the results from Sections 2.3 and 2.4 that travelling waves exist with the

same minimal wave speed for both the linear and one-term Ogden elasticity

models, we considered whether the wave speed results could be generalized.

As well as the elasticity model, we also investigate if the wave speed results

hold for the conservative advection of material parameters as mentioned in

Section 1.5. In this section, we present results exploring these extensions to

the analysis in Section 2.3.

2.10.1 Wave speed analysis of the glioma model with

generalized elasticity

With the wave speed analysis result of Lemma 1 holding for both the linear

elasticity and one-term Ogden elasticity models, we considered whether this

result holds for a larger class of elasticity models. Here, we define a more

“generalized elasticity” model which follows some assumptions and show that

Lemma 1 still hold for this larger class of elasticity models.

First, we define a “generalized elasticity” model.

Definition 1. Definition of generalized elasticity model. Consider the mo-

mentum balance equation of the form Tx = (P (x, t)E(ux))x = f(c)cx, where

P (x, t) includes the elasticity parameters and E(ux) defines the type of elastic-

ity. We define Tx = (P (x, t)E(ux))x = f(c)cx as a generalized elasticity model

under the assumptions

� there is no force in the absence of tumor cells, that is f(0) = 0,

� the stress tensor T must explicitly include ux, i.e.
∂

∂ux
E ̸= 0,

� the stress tensor T must explicitly include λ or µ, i.e. P (x, t) ̸= 0 .

We carried out the wave speed analysis the 1D glioma model with non-

conservative advection of the material properties, as well as the 1D glioma

model with conservative advection of the diffusion and non-conservative advec-

tion of the elasticity parameters. The case where both the diffusion and elas-

ticity parameters advect conservatively was not included as it was intractable
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and because, as argued in Section 1.5, this case is likely not physically real-

istic. We present the results for the 1D glioma model with non-conservative

advection of the material properties as the other calculations follow similarly.

With the generalized elasticity model, the 1D glioma model becomes

ct =(Dc)xx − (cv)x + ρc(1− c) (2.67)

Tx =(P (x, t)E(ux))x = f(c)cx (2.68)

v =ut (2.69)

mt + vmx =0 (2.70)

We can compare this form to linear and Ogden elasticity to see the components

clearly.

� For linear elasticity, the stress tensor is

T = (λ+ 2µ)ux , (2.71)

corresponding to P = λ+ 2µ and E = ux.

� For Ogden elasticity, the stress tensor is

T =
2µ

α

(︁
(1− ux)

−α − (1− ux)
α/2
)︁
, (2.72)

corresponding to P = 2µ
α

and E = (1− ux)
−α − (1− ux)

α/2.

Then the momentum balance equation Tx = b = f(c)cx with a general elastic

model is

Tx =
∂

∂x
(P (x, t))E(ux) + P (x, t)

d

dx
(E(ux)) (2.73)

=
∂

∂x
(P (x, t))E(ux) + P (x, t)

∂

∂ux

(E(ux))uxx (2.74)

=⇒ f(c)cx =
∂

∂x
P (x, t)E(ux) + P (x, t)

∂

∂ux

(E(ux))uxx . (2.75)
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Solving this for uxx, we have

uxx =
f(c)cx − ∂

∂x
(P (x, t))E(ux)

P ∂
∂ux

(E(ux))
. (2.76)

We can do a sanity check with the elasticity models used earlier.

Example 1 – Linear elasticity. With the linear elasticity stress tensor

(2.71) giving that P = λ + 2µ =⇒ ∂
∂x
P = λx + 2µx and E = ux =⇒

∂
∂ux

(E(ux)) = 1.

So we expect to get

uxx =
f(c)cx − (λx + 2µx)ux

λ+ 2µ
. (2.77)

With the linear stress tensor, we calculate the momentum balance equation as

Tx =(λ+ 2µ)xux + (λ+ 2µ)(ux)x (2.78)

=(λx + 2µx)ux + (λ+ 2µ)(uxx) (2.79)

=f(c)cx (2.80)

=⇒ uxx =
f(c)cx − (λx + 2µx)ux

λ+ 2µ
(2.81)

exactly as expected.

Example 2 – Ogden elasticity. With the one-term Ogden stress tensor

(2.72) giving that P = 2µ
α

=⇒ ∂
∂x
P = 2µx

α
and E = (1− ux)

−α − (1− ux)
α/2

=⇒ ∂
∂ux

(E(ux)) = α
(︁
(1− ux)

−α−1 + 1
2
(1− ux)

α/2−1
)︁
.

So we expect to get

uxx =
f(c)cx − 2µx

α

(︁
(1− ux)

−α − (1− ux)
α/2
)︁

2µ
α
α
(︁
(1− ux)−α−1 + 1

2
(1− ux)α/2−1

)︁ . (2.82)
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With the Ogden stress tensor, we calculate the momentum balance equation

as

Tx =

(︃
2µ

α

(︁
(1− ux)

−α − (1− ux)
α/2
)︁)︃

x

(2.83)

=

(︃
2µx

α

)︃(︁
(1− ux)

−α − (1− ux)
α/2
)︁

+

(︃
2µ

α

)︃
(αuxx)

(︃
(1− ux)

−α−1 +
1

2
(1− ux)

α/2−1

)︃
(2.84)

=f(c)cx (2.85)

=⇒ uxx =
f(c)cx −

(︁
2µx

α

)︁ (︁
(1− ux)

−α − (1− ux)
α/2
)︁

2µ
α
α
(︁
(1− ux)−α−1 + 1

2
(1− ux)α/2−1

)︁ (2.86)

exactly as expected.

Equilibria and stability. The full system in travelling wave coordinates is

then

c′0 =c1 (2.87)

c′1 =
−1

D0

(−σc1 − σc0u
′
1 − σc1u1 − 2D1c1 −D′

1c0 − ρc0(1− c0)) (2.88)

u′
0 =u1 (2.89)

u′
1 =

f(c0)c1 − ∂
∂x
(P )E(u1)

P ∂
∂u1

(E(u1))
. (2.90)

From (2.70), we get that

mt + vmx =0 (2.91)

=⇒ −σm′ − σu′m′ =0 (2.92)

=⇒ −σm′(1 + u′) =0 (2.93)

=⇒ m′ = (D1, λ1, µ1) =0 (2.94)

=⇒ m = (D0, λ0, µ0) = cnst (2.95)

=⇒ ∂

∂x
P = 0 and P = cnst (2.96)
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As this condition does not depend on any of the other variables, we can assume

this in the glioma model which then simplifies to

c′0 =c1 (2.97)

c′1 =
1

D0

(−σc1 − σc0u
′
1 − σc1u1 − ρc0(1− c0)) (2.98)

u′
0 =u1 (2.99)

u′
1 =

f(c0)c1
PEu1

. (2.100)

where Eu1 :=
∂

∂u1
(E(u1)).

At equilibrium, we get that c1 = 0 and u1 = 0. With c1 = 0 the u′
1

equation is automatically zero. Finally, with these equilibrium values, from

the c′1 equation we get that c∗0 = 0 or c∗1 = 1. Thus, we have the equilibria

X0 = (0, 0, u∗0, 0) and X1 = (1, 0, u∗1, 0), where u∗0, u∗1 can be any positive

finite values.

The Jacobians are given by

J(X0) =

⎡⎢⎢⎢⎣
0 1 0 0
−ρ
D

−σ
D

0 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎦ and J(X1) =

⎡⎢⎢⎢⎢⎣
0 1 0 0
−ρ
D

−σ
D

(︂
1 + f(1)

PEu1 (0)

)︂
0 0

0 0 0 1

0 f(1)
PEu1 (0)

0 0

⎤⎥⎥⎥⎥⎦ .

(2.101)

For J(X0), we get the same conditions for a stable node as usual, ie. σ > 2
√
Dρ
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with Eigenvalues Λ = (−,−, 0, 0). For J(X1), we need to get the Eigenvalues.

det(J(X1)− ΛI) =det

⎡⎢⎢⎢⎢⎣
−Λ 1 0 0
−ρ
D

−σ
D

(︂
1 + f(1)

PEu1 (0)

)︂
− Λ 0 0

0 0 −Λ 1

0 f(1)
PEu1 (0)

0 −Λ

⎤⎥⎥⎥⎥⎦ (2.102)

=− Λdet

⎡⎢⎢⎣
−σ
D

(︂
1 + f(1)

PEu1 (0)

)︂
− Λ 0 0

0 −Λ 1
f(1)

PEu1 (0)
0 −Λ

⎤⎥⎥⎦ (2.103)

− det

⎡⎢⎣ −ρ
D

0 0

0 −Λ 1

0 0 −Λ

⎤⎥⎦ (2.104)

=− Λ

[︃
Λ2

(︃
−σ

D

(︃
1 +

f(1)

PEu1(0)

)︃
− Λ
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−Λ

(︃
−σ

D

(︃
1 +

f(1)

PEu1(0)

)︃
− Λ

)︃
− ρ

D

]︃
(2.106)

=0 (2.107)

which gives Λ1,Λ2 = 0. For Λ3,4, we solve

−Λ

(︃
−σ

D

(︃
1 +

f(1)

PEu1(0)

)︃
− Λ

)︃
− ρ

D
= 0 (2.108)

=⇒ Λ2 + Λ
(︂ σ
D

)︂(︃
1 +

f(1)

PEu1(0)

)︃
− ρ

D
= 0 (2.109)

=⇒ Λ3,4 =

⎡⎣−(︂ σ
D

)︂(︃
1 +

f(1)

PEu1(0)

)︃
±

√︄(︂ σ
D

)︂2(︃
1 +

f(1)

PEu1(0)

)︃2

+ 4
ρ

D

⎤⎦ /2

(2.110)

For X1 to be a saddle, we need the expression under the root to be positive.

This is guaranteed as both ρ and D are positive.

Thus, for σ ≥ σ∗ = 2
√︁

D∗0ρ, we get that X0 is a stable node and X1 is a

saddle, allowing for the existence of travelling waves. This is the same result

as in Lemma 1.
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2.10.2 Wave speed analysis with conservative material

property advection

As discussed in Section 1.5, the form of the advection operator for the ma-

terial property advection has been modeled as both conservative and non-

conservative. With this in mind, we carried out the same wave speed analysis

for the 1D model as in Section 2.3.1 (with both linear elasticity and one-term

Ogden model) with conservative advection for

� diffusion only

� both diffusion and material properties, λ and/or µ .

In all cases, we came to the same conclusion as Lemma 1. Numerical simula-

tions were carried out for these cases (not shown), confirming the results.
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Chapter 3

Glioma spread model in 2D

3.1 Introduction

In this chapter, we turn to simulating and examining our mechanical model of

glioma spread in higher spatial dimensions. Although there may be some in-

sight to be gained using the tractability and analysis of a glioma spread model

in one spatial dimension, real brain tumors are obviously three dimensional.

As a step closer to modelling the 3D spread of glioma, we next consider a

model with two spatial dimensions. Unlike the previous chapter, we only con-

sider the linear elasticity model in this chapter. This is a limitation imposed

by the numerics, which we discuss in Section 3.5.

We begin the chapter by presenting the full 2D model. Next, we discuss the

numerical software used to simulate the model, including a brief overview of the

software structure and description of the simulation work flow. Furthermore,

we describe in detail the methods for acquiring, translating, and incorporating

data for the simulation domain and initial condition for diffusion tensors. With

the simulation preliminaries in hand, we present and compare simulations of

the 2D model for a range of parameters.
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3.2 The 2D model

Let the spatial domain be Ω ⊂ R2, and take time to be t ∈ [0,∞). Then the

domain is U = Ω × [0,∞). The spatial domain is determined by MRI data

which is then translated into a single domain representing the brain tissue.

The total boundary of the domain, denoted ∂Ω, is composed of three distinct

boundaries: the left and right ventricles, denoted ∂Ωvent, and the outer brain

tissue boundary, denoted ∂Ωout. The ventricle boundaries are taken to be

deformable, while the outer brain tissue boundary is assumed to be static.

The tumor cell density (normalized) is denoted by c. The vector m denotes

parameters associated with material properties of the tumor and healthy brain

tissue, including diffusion D(x, t), shear modulus µ(x, t), and bulk modulus

λ(x, t). The displacement and the velocity resulting from this displacement,

are denoted by u(x, t) and v(x, t), respectively. The system on U is then

ct(x, t) = ∇∇ : (D(x, t)c(x, t))−∇ · (c(x, t)v(x, t)) + ρc(x, t)(1− c(x, t))

(3.1)

∇ ·T (x, t,∇u) = b(c(x, t)) (3.2)

v(x, t) = ut(x, t) (3.3)

mt(x, t) + v(x, t)∇m(x, t) = 0 , (3.4)

with initial conditions for x ∈ Ω

c(x, 0) = c0(x), m(x, 0) = m0(x), u(x, 0) = u0(x) . (3.5)

The cell density has no-flux boundary conditions for t ∈ [0,∞) given by

∇ · (D(x, t)c(x, t))− c(x, t)v(x, t)|∂Ω = 0 . (3.6)

For static boundaries of the spatial domain, ∂Ωout, we have the boundary

condition

u(x, t)|∂Ωout = 0 . (3.7)
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On ∂Ωout, it follows from equation (3.7) that

v(x, t)|∂Ωout = 0 . (3.8)

On the deformable boundaries, ∂Ωvent, we allow u(x, t) to be nonzero. Hence,

v(x, t) can also be nonzero on such boundaries. The key to closing the system is

the expression of the stress tensor T as a function of the deformation gradient,

∇u, in (3.2). The linear stress tensor is given by

TLin2D(x, t,∇u) =λ(x, t)∇ · u(x, t) + µ(x, t)(∇u(x, t) +∇u(x, t)T ) . (3.9)

The associated (general plane) von Mises stress is then

Tvm =
√︂
T 2
11 − T11T22 + T 2

22 + 3T 2
12 . (3.10)

The body forces produced by the growing tumor are denoted by b. The form

of b is taken from [114] as

b (c, p,∇c) = p tanh(c)∇c . (3.11)

As described in Section 1.4, this is a phenomenological model for the forces

created by a growing tumor borrowed from [114]. There are key characteristics

of this model that capture the likely reality of a growing tumor. First, in the

absence of tumor cells, there is no force. Secondly, the force is maximized at

the carrying capacity of the tumor (i.e., when c(x, t) = 1). Lastly, the depen-

dence on the gradient means that a larger force is generated in the presence of

large differences in cancer density. Notably, the parameter p is unknown. As

discussed later, it may be possible to fit p to patient data. For this work, we

use a range of p values to explore how p affects the dynamics of glioma spread.

The choices of diffusion and reaction terms are the same as discussed in

Section 2.2.
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3.3 Methods for simulating glioma in 2D

From obtaining the simulation domain to producing figures, there are many

steps required to simulate the 2D glioma model. The main steps are

� Domain definition from MRI/DTI;

� Initialization of variables and parameters, including initialization of the

diffusion tensor from DTI data;

� Running the model simulation;

� Saving and visualizing the data .

These main points include many steps which are discussed in the following

sections.

3.3.1 Numerical software and problem formulation

To simulate the 2D model, we turn to the finite element software FreeFEM [51].

FreeFEM automatically generates finite elements for a prescribed geometry,

making it very user-friendly. The automatic generation, and adaptation, of

the finite element mesh is a powerful tool that allows the implementation

of complex physics models without the need of using cumbersome manual

mesh generation. Within a given finite element space, you can then define

finite element functions which are automatically interpolated across the mesh.

Each operator or equation is defined as a “Problem” in FreeFEM, with the

simulation occurring when the problem is called.

The PDE “Problems” in FreeFEM must be defined using the weak form of

the PDE. To derive the weak form of the PDEs involved, for each equation, we

multiply the equation by a test function, q, and integrate over space. Finally,

we apply the Divergence Theorem to arrive at the weak form equations. We

will show the derivation of the weak forms for the glioma spread model given

by (3.1)-(3.8).
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Weak formulation of FAAD. The FAAD equation which models the tu-

mor cell evolution is given by (3.1). For the weak formulation of FAAD, we

leave out the reaction term, applying that after solving the rest of the equation.

This leaves us with the modified FAAD equation:

ct(x, t) = ∇∇ : (D(x, t)c(x, t))−∇ · (c(x, t)v(x, t)) . (3.12)

For the time derivative, we use a simple finite difference approximation:

ct(x, t) =
c(x, t)− c(x, t−∆t)

∆t
, (3.13)

where t denotes the current time step. With this approximation, the modified

FAAD equation becomes

c(x, t)− c(x, t−∆t)

∆t
= ∇∇ : (D(x, t)c(x, t))−∇ · (c(x, t)v(x, t))

(3.14)

=⇒ c(x, t)− c(x, t−∆t)

∆t
−∇∇ : (D(x, t)c(x, t)) +∇ · (c(x, t)v(x, t)) = 0 .

(3.15)

Multiplying by a test function, q(x, t), and integrating over space, we have∫︂
Ω

(︃
c(x, t)− c(x, t−∆t)

∆t

)︃
q(x, t) dΩ−

∫︂
Ω

(∇∇ : (D(x, t)c(x, t))) q(x, t) dΩ

+

∫︂
Ω

(∇ · (c(x, t)v(x, t))) q(x, t) dΩ = 0 . (3.16)
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Applying the Divergence Theorem, we have∫︂
Ω

(︃
c(x, t)− c(x, t−∆t)

∆t

)︃
q(x, t) dΩ

+

∫︂
Ω

(∇ · (D(x, t)c(x, t))) · ∇q(x, t) dΩ

−
∫︂
∂Ω

n · (∇ · (D(x, t)c(x, t)))q(x, t) d∂Ω

−
∫︂
Ω

(c(x, t)v(x, t)) · ∇q(x, t) dΩ

+

∫︂
∂Ω

n · (c(x, t)v(x, t))q(x, t) d∂Ω = 0 (3.17)

=⇒
∫︂
Ω

(︃
c(x, t)− c(x, t−∆t)

∆t

)︃
q(x, t) dΩ

+

∫︂
Ω

(∇ · (D(x, t)c(x, t))) · ∇q(x, t)− (c(x, t)v(x, t)) · ∇q(x, t) dΩ

−
∫︂
∂Ω

n ·
(︁
(∇ · (D(x, t)c(x, t)))− (c(x, t)v(x, t))

)︁
q(x, t) d∂Ω = 0 .

(3.18)

With no flux boundary conditions, we have

n ·
(︁
(∇ · (D(x, t)c(x, t)))− (c(x, t)v(x, t))

)︁
= 0

on ∂Ω. Thus, the above simplifies to∫︂
Ω

(︃
c(x, t)− c(x, t−∆t)

∆t

)︃
q(x, t) dΩ

+

∫︂
Ω

(∇ · (D(x, t)c(x, t))) · ∇q(x, t) dΩ

−
∫︂
Ω

(c(x, t)v(x, t)) · ∇q(x, t) dΩ = 0 (3.19)

=⇒
∫︂
Ω

(c(x, t)− c(x, t−∆t)) q(x, t) dΩ

+∆t

∫︂
Ω

(∇ · (D(x, t)c(x, t))) · ∇q(x, t) dΩ

−∆t

∫︂
Ω

(c(x, t)v(x, t)) · ∇q(x, t) dΩ = 0 . (3.20)
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This is the final form of the weak formulation that is then translated into the

FreeFEM code with the reaction term added as well. The boundary condi-

tions are also applied by including “+on(G0, c=0), +on(G1, c=0), +on(G2,

c=0),” inside the FAAD problem.

Weak formulation of momentum balance equation. The momentum

balance equation is given by (3.2).

∇ ·T(u) = b , (3.21)

where T(u) = 2µϵ(u) + λ tr(ϵ(u))I and ϵ(u) = 1
2
(∇u+∇uT ). Multiplying by

a test function, q, and integrating over space, we have∫︂
Ω

∇ ·T(u) · q dΩ =

∫︂
Ω

b · q dΩ . (3.22)

Applying the Divergence Theorem, we get that∫︂
Ω

−T(u) : ∇q dΩ +

∫︂
∂Ω

T(u)n · q d∂Ω =

∫︂
Ω

b · q dΩ . (3.23)

By symmetry of T, we can write ∇q = 1
2
(∇q+∇qT ) = ϵ(q). Thus,∫︂

Ω

−T(u) : ϵ(q) dΩ +

∫︂
∂Ω

T(u)n · q d∂Ω =

∫︂
Ω

b · q dΩ . (3.24)

With the boundary condition that T(u)n = 0 on ∂Ω, the final weak formula-

tion is

−
∫︂
Ω

T(u) : ϵ(q) dΩ =

∫︂
Ω

b · q dΩ . (3.25)

In FreeFEM, the boundary conditions for u = (ux, uy) (where ux and uy indi-

cate the x and y components of the u, not partial derivatives) are incorporated

by including “+on(G0, ux=0, uy=0)” inside the momentum balance problem.

Material convection. For the material convection, we apply a discontinuous-

Galerkin method found in the FreeFEM manual [51]. The discontinuous-
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Galerkin method is both faster and more stable than a typical finite difference

(in time) convection operator. The details of the derivation are complex and

can be found in [33]. The implementation details can be found in the FreeFEM

manual [51].

3.3.2 Domain definition from MRI data

With spatial structure clearly having a significant role in cellular movement

and mechanical dynamics, a realistic simulation domain is a crucial component

in both 2D and 3D glioma models. We have implemented code to take in

medical images, which are then processed and used in FreeFEM to define

the simulation domain. In the specific simulations in this thesis, the image

data is taken from example data provided by the software ExploreDTI [69].

ExploreDTI is a software that takes in DTI data files, allowing the user to

explore the data visually as well as output various forms of the data. The

sample data set provided by ExploreDTI has the same format as typical patient

data, and thus the current numerical work flow would also be able to take in

patient specific data.

Below, we outline the process of turning DTI data to a 2D simulation

domain.

Export image from ExploreDTI. For our purposes of defining a sim-

ulation domain in 2D, we only need the general structure of the brain. In

particular interest for our needs, the outer boundary of the brain tissue and

the ventricles is sufficient for this work.

A First, in ExploreDTI, we load the DTI data file.

B Next, we select “Image map” → “MD” (mean diffusion) for visualization.

Here, we use MD as it shows enough structure to specify the domain.

Any image that has (or could be processed to have) significant contrast

between the brain structures would be sufficient in this step. With the

data provided, MD was the best option.
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C Finally, the MD image is exported in an RGB format as a .mat file via

“Data”→ “Export current volume as RGB (*.mat)”

Select layer from volume and convert to black and white image.

The MD data exported from ExploreDTI is really a stack of 2D images that

makes a “3D” image. As we are only interested in a 2D simulation domain at

this point, we need to select one of these 2D “slices” from the MD data. The

exported MD data is stored as matrix arrays. Thus, we can isolate a slice by

selecting an element from this array. The choice of slice would be dependent

on the desired purpose and possibly location of the tumor. Because we are

using data assuming a healthy brain free of tumors, we don’t need to consider

the location of the tumor. The slice chosen for the current work was taken

based on the clarity of the ventricles and maximizing the connectedness of

each brain structure (i.e. no holes in ventricles or brain tissue).

With a suitable 2D slice isolated, there is a further step to process the

data/image to maximize it’s function in FreeFEM. The final destination of the

domain image data is FreeFEM, which will use a package to identify isolines

(lines that separate regions of different brightnesses). For this to function

properly, a sufficient level of contrast is needed for the isolines delineating the

brain structures to be identified. Therefore, a processing step that converts a

low contrast image to a black and white version is used.

To achieve this output, the following steps are taken.

A In MATLAB load the MD data file. Isolate the desired slice (z-level)

and set as a new variable (slice 36 for the data set used in this work).

An example of the isolated slice is shown in Figure 3.1, panel 1.

B Alter this variable to make the values 0 or 1 depending on a threshold

level where this threshold value is representing the brightness level. The

choice of threshold value used is dependent on the input data with the

goal being to capture the structures sufficiently. A threshold of 0.6 was

used here. This outputs a black and white image which may still have

some small unwanted artifacts, such as holes. We choose black and white

specifically, as opposed to two other contrasting colors, as FreeFEM reads
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Figure 3.1: Steps of domain definition. Left to right : MD figure in ExploreDTI,
black and white formatted figure (Inkscape output), isolines identified in FreeFEM,
meshed domain in FreeFEM.

.pgm (portable gray map) files. With the data converted to 0’s and 1’s,

we plot the altered data to get a black and white image and save this

figure as a .png file.

C In Inkscape (or other image editing software), we open this .png to clean

up any undesired spots within the brain domain as there may still be

some spots left even with the thresholding. Furthermore, we change the

size of the image to match the data. For the example data used here,

the size should be 230x230 pixels. Finally, we export the brain figure to

a .png file (See Figure 3.1, panel 2) and convert to a .pgm file.

Import image into FreeFEM and define numerical domain.

In FreeFEM the .pgm file is loaded and read. FreeFEM uses “isoline”

to determine a specified number of closed curves (denoted by Gi, i=0, 1,

2...). It should be noted that FreeFEM requires a specific orientation of

the line which is governed by the sign of the argument of Gi. Once the

lines are specified, we build a function combining the lines to give the to-

tal domain (see Figure 3.1, panel 3). Finally we build a mesh in the domain

(See 3.1, panel 4). To initialize the domain, run the FreeFEM code with

“bool BUILDMESHandVARIABLES =true;” and “bool RUNMODEL = false;”.

By running this section of code, FreeFEM builds the mesh and also outputs

the (x, y) spatial locations for each node in the mesh to a .txt file. This is

needed to interpolate the DTI data in the Python code. The initial simulation

domain and meshing are shown in detail in Figure 3.2.
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Figure 3.2: Initial simulation domain and mesh.
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3.3.3 Diffusion tensor input from DTI data

Diffusion tensor translations and interpolation from DTI data. For

the initial diffusion tensor elements, we import DTI data from the sample

data file provided from ExploreDTI. First, following Swan et al. [116], the

DTI data must be translated to cancer cell diffusion tensors. Next, the cancer

cell diffusion tensors must be formatted to be applied to the FreeFEM mesh.

Similarly to the exported MD data, the DTI data file stores data as matrix

arrays. Hence, we can extract the data we need by isolating those data points.

However, the DTI data is stored in matrices that correspond to the imaging

voxels. Obviously these cubic voxels do not coincide with the finite element

mesh generated in FreeFEM. Thus, we must interpolate the matrix DTI data in

order to use it in FreeFem. Note that the mesh generated by FreeFEM is taken

to be much finer than the DTI data grid. Therefore, there is no precision loss

in the DTI interpolation step. This is achieved with the following procedure.

A In MATLAB load the DTI data and extract elements of diffusion tensor,

Dxx, Dxy, Dyy.

B Translate the water diffusion tensor data to cancer diffusion tensors, Dc,

using the result from [115]:

Dc =
1

µturn

∫︂
Ω

vvT q(x,v) dv (3.26)

=
1

µturn

V ar[q] (3.27)

=
1

µturn

(︃
1

2

(︃
1− I0(k)

I2(k)

)︃
I+

(︃
I0(k)

I2(k)

)︃
γγT

)︃
(3.28)

� µturn = turning rate (assigned)

� v = velocity

� q = turning distribution (bimodal Von Mises)

� k(x) = κ FA where FA is the Fractional Anisotropy

Note: κ is assigned, FA is taken directly from the DTI data file.
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� Iν(k) = modified Bessel functions of the first kind of order ν (Matlab

has a function “besseli” for this)

� γ = unit vector (determined from DTI data)

An example of the tensor translation results is shown in Figure 3.3. The

initial condition diffusion map elements for the two values of κ used in

the following simulations, κ = 10 and κ = 50, are shown in Figure 3.4.

C Write these transformed Dc variables to a .mat file

D In Python import the Dxx, Dxy, Dyy variables. The (x, y) values of the

nodes from the .txt file made by FreeFEM are also loaded. On the

grid from the DTI data (defined by voxel size and matrix dimensions of

diffusion tensor elements), interpolate the DTI data. For our case voxel

size is 1.7969 mm and the matrix size is 128×128 => x, y = [0, 230] mm

(where pixels are equivalent to mm). For each FreeFEM mesh node point

(x, y), specify the Dxx, Dxy, Dyy values using this interpolated data. This

gives a vector of scalar values for each node (for each of Dxx, Dxy, Dyy).

Save the Dxx, Dxy, Dyy values at each node to a .txt file (one file for

each variable). This .txt file is then loaded in the FreeFEM code.

Initialization of diffusion tensor elements from interpolated DTI

data. To initialize the variables and run the simulation, we compile the

FreeFEM code with “bool BUILDMESHandVARIABLES =true;” and

“bool RUNMODEL = true;”. FreeFEM reads the .txt file containing the Dxx,

Dxy, Dyy values at each node and defines the initial values of Dxx, Dxy, Dyy

(D0, D1, D2 in FreeFEM) from this file. We now have a domain and diffu-

sion tensor defined in FreeFEM using the DTI data. The other initial values

(c0, u0, v0, λ0, µ0) and simulation parameters are also specified at this point.

Note that the FreeFEM code will write the initial conditions and simulation

parameters to a .txt file (which are located in a folder created by the FreeFEM

code if “bool SaveData = true;”). The model is then ready to be simulated

on the domain with the remaining initial conditions as specified.
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Figure 3.3: Diffusion tensor components determined from DTI data. Left to right:
Dxx, Dxy, Dyy. Top: Raw DTI data. Bottom: Translated cancer diffusion tensors,
Dc, with κ = 10 and µ = 2.

(a) Dxx (b) Dxy (c) Dyy

Figure 3.4: Translated diffusion tensor components used as initial conditions. Top:
κ = 10. Bottom: κ = 50.
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3.3.4 Model simulation outline

Definition of finite element spaces and functions. Any variable must

be defined, along with it’s associated test function. The test functions for each

variable X (ie. X = c,D0, λ, ...) are denoted by qX. Each component of the

deformation (ux, uy), velocity (vx, vy), and diffusion tensor (Dxx, Dxy, Dyy), are

defined as their own variable as this simplified some of the calculations and

made the variables easier to track. That is, for the diffusion tensor

D =

⎛⎜⎜⎜⎜⎝
D0 D1

D1 D2

⎞⎟⎟⎟⎟⎠ , (3.29)

D0, D1, D2(= Dxx, Dxy, Dyy) are their own variables that get convected. The

variables c,D0, D1, D2, ux, uy, vx, vy, f , lambda and mu are defined as P1 ele-

ments, where “[P1] piecewise linear continuous finite element (2d, 3d, surface

3d), the degrees of freedom are the vertices values.” [51].

Define the “problems”. As noted previously, with coupled systems

FreeFEM requires each equation to be defined as a problem. The order of

problem definitions does not matter. The “problems” for the glioma model

are

� The FAAD equation without reaction term. The reaction term is in-

cluded explicitly in the time loop.

� The momentum balance (or elasticity) equation.

� Material property (λ, µ,Dxx, Dxy, Dyy) convection.

Solve the system in a time loop. Finally, with the domain, initial con-

ditions, etc. defined, the model is simulated by solving the system in a time

loop. At each time step, the order is

1. Convect material properties (D0, D1, D2, lambda, mu)
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2. Solve FAAD

3. Solve reaction term (ie. proliferation)

4. Solve Elasticity

5. Apply resulting deformation to mesh (via movemesh)

6. Adapt mesh with respect to cell density (optional step which may or

may not be beneficial, depending on the specific simulation)

7. Restart time loop

Saving and visualizing the results. The results of the simulation can be

saved at specified time intervals. The mesh, FE space, as well as each variable

is saved in it’s own file for each time point. These can be used to create plots in

MATLAB. As this is time evolution data, gifs are a useful visualization tool and

can be made from the .png figures produced by MATLAB using Python code.

FreeFEM can also save .eps figure files for plots at specified time intervals,

which can then be made into a .gif using Python code. However, these .eps

files cannot be customized as nicely as the MATLAB produced .png files.

3.4 Results and discussion

In this section we present simulations of the glioma spread model in 2D. To

explore the model dynamics, simulations with different initial conditions and

parameter values are presented.

The data incorporated (domain and initial diffusion tensors) in the current

simulations were taken from an example of a healthy brain and thus had no

tumor present. To simulate a tumor, we define a normally distributed tumor

cell density with small variance to indicate a small initial tumor size. Because

the brain structure is spatially heterogeneous, we pick two different locations

for the initial tumor to explore how the tumor development can be affected

by location in the brain. We will call these locations “upper left” and “center

right” (see top left panels of Figures 3.6 and 3.7). The locations were chosen
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Table 3.1: Numerical simulation parameter values. Note that µturn = 10 is only
used in the simulations for Figure 3.12. All other simulations shown use µturn = 2.

Parameter Value(s) Reference

Turning rate, µturn 2 /s [115]

10 /s [115]

Anisotropy parameter, κ 10 (low) [115]

(unitless) 50 (high) [115]

Proliferation rate, ρ 0.0006 /d (low) [42]

0.1 /d (high) [54]

Bulk modulus, λ 6.5 kPa [54]

Shear modulus, µ 0.7 kPa [54]

Body force parameter, p 0.1 kPa (low)

1 kPa (high)

as they have very different positions with respect to the ventricles; the upper

left will grow into the tip of a ventricle, while the center right will grow into

the side of a ventricle. These locations were also chosen to be positioned far

enough away from the ventricles and outer brain boundary to allow for some

development before encountering these structures. Of course, realistically, a

tumor could start at any location in the brain. These simulations could be

easily adapted to initialize a tumor based on patient data as was accomplished

in Swan et al. [116].

The model parameters for the numerical simulations are given in Table 3.1.

Note that λ, µ, and p are given in kPa which has units kg
mm·s2 . Thus, λ, µ, and

p are multiplied by (60 · 60 · 24)2 to convert the time units to days.

The diffusion tensor elements are taken in from the DTI data which has

units mm2/s. We convert the diffusion data units to days by multiplying by

60 · 60 · 24. The raw DTI values are translated using the bimodal von Mises

distribution, where we borrow µturn and κ values from [115]. Note that the

value of µturn given in Table 3.1 is in units /s, and thus we multiply by 60·60·24
to convert to /d.

In the following sections, we will show select simulation elements in order
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to focus in on particular results of the model. Note that the simulations ter-

minated once ventricle closure occurred (i.e. when two points on the ventricle

boundary came in contact with each other). We refer to the time this occurs

as the simulation “outcome”. Figure 3.2 shows the initial simulation domain

with mesh, while Figure 3.4 shows the initial diffusion tensor components. For

a full understanding of the model and simulation outputs Figure 3.5 shows

plots of a variety of the model components at time t = 50.

Figure 3.5a shows the cell density which seems to be causing deformation

a large distance from the tumor boundary. What is not clearly visible in the

figures, but can be seen while the simulations are running, is that there is

a “halo” of tumor cells surrounding the visible tumor region. This “halo”

is a ring of very low density of tumor cells which are not easily seen. The

next panel, Figure 3.5b is used to enhance the visibility of this low density

tumor region by setting a threshold of c = 0.001 and plotting using a black

and white color scheme. That is, this “cell boundary” plot shows the regions

where c > 0.001 in white. From the cell boundary plot, it is clear that the

tumor front is much further than can be seen in Figure 3.5a, showing that the

tumor is effectively much closer to the ventricles than seen in Figure 3.5a.

Panels 3.5d-3.5f show the elements (Dxx, Dxy, Dyy) of the diffusion tensor

D. Panels 3.5g-3.5i show the displacement in the x and y directions, as well as

a plot of the vector u, while panels 3.5j-3.5l show the corresponding elements

for the velocity.

Figures 3.6 and 3.7 show a time evolution for tumors initiated in the upper

left and right center locations, respectively. Although not shown for most

simulations, the elements of the diffusion tensor, Dxx, Dxy, Dyy, evolve with

the tissue deformation in all simulations. Figure 3.8 shows an example of the

evolution of these diffusion tensor elements.

Next, we study the effect of our model parameters.

Effect of proliferation rate, ρ. Figures 3.9 and 3.10 show the effects of

changing the value of ρ for the upper left and center right initial tumor location,

respectively. Not unsurprisingly, increasing the value of ρ increases the rate

of growth of the tumor, with the time to ventricle closure being much shorter

115



(a) Cells (b) Cell boundary (c) von Mises Stress

(d) Dxx (e) Dxy (f) Dyy

(g) ux (h) uy (i) u

(j) vx (k) vy (l) v

Figure 3.5: Examples of plot types at time 50 where κ = 50, ρ = 0.1, λ = 6.5, µ =
0.7, p = 1.
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Time 0 Time 50 Time 100

Figure 3.6: Simulations for upper left initial tumor location with ρ = 0.1, λ =
6.5, µ = 0.7, p = 1, κ = 50. Top to bottom: Cell density, boundary for low cell
density (0.001) tumor front, ux, uy, von Mises stress.
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Time 0 Time 50 Time 100

Figure 3.7: Simulations for center right initial tumor location with ρ = 0.1, λ =
6.5, µ = 0.7, p = λ+ 2µ, κ = 50. Top to bottom: Cell density, boundary for low cell
density (0.001) tumor front, ux, uy, von Mises stress.
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Time 0 Time 50 Time 100

Figure 3.8: Evolution of diffusion tensor elements over time with upper left initial
tumor and ρ = 0.1, λ = 6.5, µ = 0.7, p = 1, κ = 50. Top: Dxx. Middle: Dxy.
Bottom: Dyy.
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for the high ρ case. Furthermore, the size of the tumor is also larger at the

time of ventricle closure, with a larger region of tumor cells in the high ρ case.

The relative difference between the final sizes of tumor in the high and low ρ

simulations appears to depend on the initial location of the tumor. Comparing

the upper left and center right initial locations, there is a larger discrepancy

between the low and high ρ final tumor sizes in the upper left case. This

can especially be seen in the black and white tumor boundary figures. The

maximum tumor density is also increased in the high ρ case, with the smaller

ρ simulation having a maximum density significantly below 1, while the high

ρ tumor retains a region with maximum density.

In addition to the variations in cell density between high and low ρ simula-

tions, there are also notable differences in the mechanical elements of deforma-

tion and stress. The higher ρ value results in larger magnitude deformations,

as well as an increased magnitude and region of stress, compared to the low ρ

simulations.

Effect of the anisotropy parameter, κ, and turning rate, µturn. Within

the parameter regimes used in this work, the results for the κ = 10 and κ = 50,

and µturn = 2 and µturn = 10, simulations are indistinguishable in terms of cell

density, deformation, and stress. This may be due to the non-vanishing part

of the diffusion tensor in equation (3.28).

Effect of body force scaling parameter, p. One component of the model

that appears to greatly alter tumor spread dynamics is the body force func-

tion parameter p. As described in Section 3.2, p scales the magnitude of the

body forces. This parameter could be tuned to each patient, but without any

particular data, there is no way of knowing exactly what this value should be.

In [54] (where p1 from Chapter 2 is equivalent to p) and [114], a value for the

scaling factor of the forcing function was chosen without justification. Thus,

examining the impacts of changing the value of p is a worthwhile pursuit. A

larger value of p means the tumor cells cause a larger force. Thus, with a

larger value of p the tumor can more easily deform the surrounding tissue. In

this section, we discuss the effects of changing p on the size of tumor, spread
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Time 0 Time 1000 Time 100

Figure 3.9: Comparison of model outcomes with the upper left tumor location
where λ = 6.5, µ = 0.7, p = 1, κ = 50. Left to right : Initial condition, time 1000
with low ρ (ρ = 0.0006), time 100 with high ρ (ρ = 0.1). Top to bottom: Cell
density, boundary for low cell density (c > 0.001) tumor front, ux, uy, von Mises
stress.
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Time 0 Time 1000 Time 100

Figure 3.10: Comparison of model outcomes with the center right tumor location
where λ = 6.5, µ = 0.7, p = 1, κ = 50. Left to right : Initial condition, time 1000 with
low ρ (ρ = 0.0006), time 100 with high ρ (ρ = 0.1). Top to bottom: Cell density,
boundary for low cell density (c > 0.001) tumor front, ux, uy, von Mises stress.
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Time 0 Time 100 Time 100

Figure 3.11: Comparison of simulations with different κ values for upper left and
center right initial tumor locations where ρ = 0.1, λ = 6.5, µ = 0.7, p = 1. Left to
right : Initial condition, κ = 10, κ = 50.
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Time 0 Time 100 Time 100

Figure 3.12: Comparison of simulations with different µturn values for upper left
and center right initial tumor locations where ρ = 0.1, λ = 6.5, µ = 0.7, p = 1, κ =
50. Left to right : Initial condition, µturn = 2, µturn = 10.
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speed, as well as mechanical effects such as deformation and stress.

Figures 3.13 and 3.15 show the effect of changing the value of p on cell

density and stress for the upper left and center right initial tumor locations,

while Figures 3.14 and 3.16 show the differences in deformation for the same

simulations.

As is clear in the cell density panels of Figures 3.13 and 3.15, the final

tumor size at the time of ventricle closure is much larger in the low p case.

Furthermore, the time to ventricle closure is much longer with low p. We

can also see that the shape of the tumor is much more irregular in the low

p case, with the high p case leading to a nearly spherical tumor shape. An

approximately spherical tumor shape was also seen in earlier simulations which

have approximately the same of even higher p.

Due to the spherical shape of the initial tumor, without any external in-

fluences, the tumor will naturally grow spherically. However, in this system

there are also the effects of diffusion that can cause more asymmetrical growth,

but the diffusion values used here seem to be taken over by the proliferation

rate. With respect to p, an explanation for an increasing regularity in the

shape of the tumor with increasing p value is that the tumor cells cause more

deformation for higher values of p, resulting in less resistance to tumor spread.

Without a significant resistance to deformation (i.e. high p value), the tumor

is able to push the healthy tissue and grow (mostly) spherically. With an

increase in resistance (i.e. low p value), the tumor cannot easily deform the

surrounding tissue and spread is more affected by the other structures in the

brain, such as the ventricles.

We can also see that the stress from tumor cell growth is similarly altered

between high and low p. The simulations with high p reach stresses an order

of magnitude higher than the low p simulations. However, corresponding to

the larger tumor, the size of area experiencing significant stress is much larger

with the low p value. This trend of higher magnitude but smaller region of

effects with high p carries through to the deformation u = (ux, uy) (see Figures

3.14 and 3.16).
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Cell Density

Stress

Time 0 Time 150 Time 300

Cell Density

Stress

Time 0 Time 50 Time 100

Figure 3.13: Comparison of cell density and stress for upper left initial tumor
location with p = 0.1 (top) and p = 1 (bottom). For both simulations, λ = 6.5,
µ = 0.7, ρ = 0.1, κ = 50. Notice the different time and stress scales between the
high and low p plots. The final time shown is the time of ventricle closure (t = 300
for low p, t = 100 for high p). The middle column shows an intermediate time step.
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Figure 3.14: Comparison of deformation for upper left initial tumor location with
p = 0.1 (top) and p = 1 (bottom). For both simulations, λ = 6.5, µ = 0.7, ρ = 0.1,
κ = 50. Notice the different time and stress scales between the high and low p plots.
The final time shown is the time of ventricle closure (t = 300 for low p, t = 100 for
high p). The middle column shows an intermediate time step.
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Figure 3.15: Comparison of cell density and stress for center right initial tumor
location with p = 0.1 (top) and p = 1 (bottom). For both simulations, λ = 6.5,
µ = 0.7, ρ = 0.1, κ = 50. Notice the different time and stress scales between the
high and low p plots. The final time shown is the time of ventricle closure (t = 300
for low p, t = 100 for high p). The middle column shows an intermediate time step.
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Figure 3.16: Comparison of deformation for center right initial tumor location
with p = 0.1 (top) and p = 1 (bottom). For both simulations, λ = 6.5, µ = 0.7,
ρ = 0.1, κ = 50. Notice the different time and stress scales between the high and
low p plots. The final time shown is the time of ventricle closure (t = 300 for low p,
t = 100 for high p). The middle column shows an intermediate time step.
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3.5 Conclusion

In this chapter we developed a fully anisotropic glioma spread model in 2D

with brain mechanics modeled by linear elasticity. Using this model as a

foundation, we can build in more realistic elasticity models, such as the Ogden

model, in the future.

We have also developed a data pipeline capable of taking in medical imaging

data, which is then registered, discretized, and interpolated, including the

structures such as the ventricles and skull. Along with sample imaging data,

we have included the most realistic parameters available from the literature.

In proof-of-concept simulations, we are able to show the model predicts

reasonable outcomes, such as tumor growth and deformation, over reasonable

time scales. Through these test-simulations, we have analyzed the dependence

of the model on parameters. The variation of the growth rate, ρ, had the

expected effect, with increasing ρ increasing the spread rate and size of the

tumor. Varying either the anisotropy parameter, κ, or the turning rate, µturn,

seemed to have a negligible impact on glioma spread, although this may be

dependent on the full parameter set. It may be that the effects the diffusion

are overtaken by the effects of the mechanics. The final parameter considered

is the body force parameter, p. This parameter plays a significant role in the

range, shape, and mechanical impacts of a growing glioma. With p heavily

affecting the model outcomes, it is important to accurately determine what

this value is in reality. More biological data is needed to estimate the size of

the forces generated by a growing tumor.

As noted throughout, the imaging data used in this work was limited to a

data set from ExploreDTI. A next step would be to fit this model to patient

data when it becomes available. Our model is a further step to more complete,

realistic glioma modelling. We will conclude our discussion of the 2D glioma

model by outlining possible avenues of future work that would be beneficial to

making a more accurate glioma model.

Add fluid physics to ventricles. One aspect that we had hoped to in-

clude was the addition of a physical model for the interior of the ventricles.
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Currently, the dynamics of the 2D model are limited to the brain tissue. This

extension should be possible by coupling the dynamics of the brain tissue with

a fluid model inside the ventricles.

Extend to 3D. Another clear next step is to extend this work to 3D. Within

the FreeFEM framework, this should not be too difficult. The most significant

changes to the code would be altering particular macro operators used in the

“Problems”. Running the solvers themselves is actually quite trivial to alter

to 3D. The other factor that would need to be considered when jumping to

3D is the data input. For the DTI data, it is likely there would just be

another layer of interpolation needed in the added dimensions. The largest

issue would likely come from the domain definition. The method used in this

work identifies closed curves in a 2D image. At this point, it is not clear is there

is a way of extending this to surfaces in a 3D domain. Another option could

be to simply stack 2D simulations to give a quasi-3D simulation, although

the dynamics would be somewhat unrealistic as the interactions in the 3rd

dimensions would not be included.

Consider other elastic models. In the 2D glioma model section, we lim-

ited our results to the linear elasticity model. This was in large part due to

the limitations of the finite element software. With the requirement that the

momentum balance equation be formulated in the weak form, we could not

find a way to employ the one-term Ogden model. It may be that FreeFEM

is not the best tool for this model and other numerical methods or software,

such as COMSOL, are required. The numerical schemes used in [54] include

Strang operator splitting and fictitious domain methods. Similarly, [114] em-

ployed Strang operator splitting and pseudo-spectral methods on a fictitious

domain. Of course, there is also the possibility of exploring other elasticity

models, however, this would be ignoring the best data we have showing that

the one-term Ogden model is the most appropriate model of brain tissue.

Include real patient data and quantify accuracy. As detailed in Section

3.3, we have developed a numerical work flow capable of incorporating patient-
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specific data to define the simulation domain and diffusions tensors. However,

at the point of simulating we did not have access to real patient data. As was

carried out by [116], it would be a worthwhile step to simulate patient data

and quantify the model accuracy through measures such as the Jaccard score.

A further aspect that could be taken from patient-specific data is the initial

tumor density. In this work we only specified initial tumor densities, but this

could be fit to a patient. This has been carried out in previous works by [116].

Fit p. As discussed earlier, there is currently no reason to use a particular

value of p–it is just chosen to give a reasonable level of deformation. With how

significantly this parameter alters the pattern of tumor spread in this model,

determining a way to fit this parameter to patient data would be a highly

useful extension.
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Chapter 4

Trajectory tracing in figure

skating

This chapter has been published as

[103] Meghan Rhodes, Vakhtang Putkaradze, Trajectory tracing in figure

skating. Nonlinear Dynamics, 2022,

https://doi.org/10.1007/s11071-022-07806-8.

Abstract

In this work, we model the movement of a figure skater gliding on ice by the

Chaplygin sleigh, a classic pedagogical example of a nonholonomic mechanical

system. The Chaplygin sleigh is controlled by a movable added mass, modeling

the movable center of mass of the figure skater. The position and velocity of

the added mass act as controls that can be used to steer the skater in order to

produce prescribed patterns. For any piecewise smooth prescribed curve, this

model can be used to determine the controls needed to reproduce that curve

by approximating the curve with circular arcs. Tracing of the circular arcs is

exact in our control procedure, so the accuracy of the method depends solely on

the accuracy of approximation of a trajectory by circular arcs. To reproduce

the individual elements of a pattern, we employ a control mechanism based

on minimization of the energy of control mass. We conclude by reproducing
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a classical “double flower” figure skating pattern and compute the resulting

controls.

4.1 Introduction

Figure skating is a popular sport worldwide with competitions taking prime

time television spots on major networks, with the combination of athleticism

and artistic performance making the sport appealing to a broad audience. Un-

derlying the entertaining performances are technical and complex principles

from mathematics and physics. Originating in the 19th century, skating

derives its name from the patterns, or “figures”, carved into the ice while

skating. Ice skating hobbyists would design intricate patterns and attempt to

recreate them on the ice as precisely as possible. An example of such as a

design is shown in Figure 4.1 1. As the hobby grew into a sport and ice skate

technology advanced, spins and jumps were included in the broadened term

of figure skating. The sport of figure skating developed, with categories being

made for different forms of figure skating. The name “compulsory figures”

was given to the process of tracing specific patterns on the ice. During testing

and competitions, compulsory figures are judged on precision, accuracy, and

edge quality (smooth sliding and no grinding), among other metrics. Until

1991, compulsory figures were a required component in competition [47]. Al-

though compulsory figures may be less visually spectacular and less athletically

challenging compared to the Olympic-style events, performing a precise and

complex pattern on the ice requires significant control and technical skill. The

compulsory skating was eventually excluded from the standard figure skating

competitions and broke off into its own category. Competitions in compul-

sory figures are held independently and the athletes have their own rankings,

independent of the mainstream figure skaters.

Previous mathematical models and descriptions of figure skating have fol-

lowed this trend in the popularity free style skating, mainly focusing on mod-

eling jumping [50, 58, 59, 61, 108]. Considering ice skating more generally,

1https://qph.fs.quoracdn.net/main-qimg-b0f3b3d2115f1e1fa1720b7c3733e0bc
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Figure 4.1: Figure skating pattern on ice.
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much attention has been dedicated to the modeling of a skate’s blade glid-

ing on ice with a focus on the friction resulting from ice melting under the

blade [106, 72, 7]. In this paper, we take an idealized approach to the skating

and consider an ideal blade that glides in a frictionless fashion on ice, with

the gliding motion happening only along the blade’s direction. Such assump-

tions lead to mechanical models lying in the realm of nonholonomic mechanics

[11], utilizing mechanical models of the skater with affine (in our case, linear)

constraints on velocities.

Several models of skaters have been developed in the context of nonholo-

nomic mechanics. A large portion of the literature has been dedicated to the

development of a dynamic model of a skater without control. This direction of

work started with the classic development by Chaplygin [25], where a model of

the Chaplygin’s sleigh, or skate, was suggested. Chaplygin’s sleigh represents

a flat solid body having a certain inertia and center of mass, which is capable

of the two-dimensional motion of rotating and sliding on the horizontal ice.

The direction of velocity of Chaplygin’s sleigh at every point in time must be

parallel to a direction specified by a blade attached to the body. In the clas-

sical non-controlled Chaplygin’s sleigh, the blade’s position and orientation

with respect to the body is fixed. Notably, the problem of the classical Chap-

lygin’s sleigh is integrable, representing one of the very few known examples

of integrability in nonholonomic mechanics [64]. While this model is certainly

interesting from the mathematical point of view [11, 8], it is much too simple

for a realistic description of the skater’s motion, which is controlled by the

complex movement of the body. For a more realistic description, there have

been many generalizations of the classical Chaplygin’s sleigh problem in the

literature. While we try to keep the literature review relatively compact here,

of particular interest to us are the extensions including a movable mass posi-

tioned on the sleigh. For the extension of the sleigh’s motion without active

control, we note [129, 13] which considered a movable mass on a spring con-

nected to a given point. As it turns out, that system happens to be integrable,

although without the explicit expressions of the integrals of motion allowable

by the classical Chaplygin’s sleigh. Another extension that has received much

interest in literature consists of a sleigh with a mass that is being forced to
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move in a periodic fashion [10]. Such motion leads to Fermi-like acceleration

of the sleigh with unbounded energy for certain initial conditions and values of

parameters. This work has been further extended in [9] with incorporation of

viscous friction in the sleigh’s motion, and numerical analysis of the zones of

parametric resonance. Finally [45] modeled a static three dimensional figure

skater with a model that includes a lean with respect to the vertical direction,

but no control or relative change of mechanical properties of the skater. It

was shown that for the case when the projection of the center of mass onto

the skate’s direction coincides with the contact point, the system is integrable,

whereas for other configurations the motion is chaotic. An interesting three

dimensional extension of controlled motion of Chaplygin sleigh, not related to

skating, was suggested in [37], in the context of the description of hydrody-

namic motion.

The question of the controls the skater utilizes to obtain desired trajectories

on ice is more complicated, especially regarding the mathematical principles

behind tracing a desired trajectory on ice. Of course, the detailed mathemat-

ical model of the control leading to the actual compulsory figures is currently

(and, most likely, will forever be) out of reach for analytical models that are

the point of this article. In practice, the skater controls their center of mass by

moving the positions of arms, legs, and torso, resulting in trajectory changes.

The control is produced in the body frame, while the resulting traces are in

the coordinate frame fixed in space (spatial frame). The mechanisms figure

skaters use to map the body frame to the spatial frame are very complex,

not very well understood, and take years of practice for skaters to learn pre-

cise and accurate control. This lack of current theoretical understanding is

even shown in the methods used to teach figure skating. For example, there

are many different techniques for each figure skating element, with different

body positions considered “optimal” in each technique. Often times, when

learning a new element, the skater experiments with technique and tries to

simply remember the physical feeling of a successful attempt in order to recre-

ate the success of the trajectory on ice. The level to which a skater analyzes

their movements and the resulting impact on the physical properties obviously

varies skater to skater, but it is not a common practice to significantly examine
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this relationship.

In this work, we focus on the controls involved in the field of compulsory

figures, based on the simple example of the Chaplygin’s sleigh with a moving

mass. The mass is moved in such a way that the trajectory of the blade on

ice is as close as possible to the desired trajectory. It seems to us that if we

consider this system as a model of a human skater, one should consider the

position of the center of moving mass as the controls, as opposed to the forces

exerted on the mass being the controls. Indeed, in everyday life, we can move

our hands and legs to the desired position relative to the torso, whereas the

forces needed for this position to be obtained are calculated implicitly by the

brain to achieve the desired position.

Compared to the extensive literature dedicated to the dynamics of the

sleigh, there have been substantially less work in the literature on the control.

In applications relevant to skating, we point out the control of the motion

of Chaplygin’s sleigh using impulsed force [120], modeling the push off ice.

There is also the work on the control of a two-link Chaplygin sleigh similar

to the control of two trajectories by changing the relative angle between the

skates [34], and the work on the trajectories of the Chaplygin’s sleigh forced

by the periodic motion of the internal rotor [35]. The trajectory tracking

using periodic application of a controlled torque for a dissipative was further

developed in [36]. Interestingly, in that paper, one of the trajectories followed

approximately (on average) by the controlled sleigh was a circle. We will

show in this paper that the circular arcs are unique trajectories and one can

design a control mechanism for following a circle exactly. The actual motion

of the skater using trajectory tracing is done gliding on just one skate, with

very few additional pushes allowed during the process. This is achieved by

changing the position of center of mass and moments of inertia using carefully

executed motion of the body. Thus, the most relevant previous work for our

control procedure on trajectory tracing is [85], where Chaplygin’s sleigh was

steered based on the prescribed motion of a movable mass. In our work, we

show how to develop an optimal control procedure that is capable of tracing a

large variety of curves on the ice, possibly including cusps. A short one-page

pedagogical review of this work has appeared in SIAM News [100].
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Figure 4.2: An illustration of the classical Chaplygin sleigh (top-down view). The
triangular region represents the sleigh platform which is supported by two freely
sliding, frictionless points which act to keep the blade upright. The solid blue line
shows the blade forming the direction of the motion at each point. The point A
indicates the contact point of the blade, where C is the position of the center of
mass of the sleigh, and ℓ is the distance between A and C. The spatial coordinates
are (x, y), while the body frame coordinates are given by (e1, e2).

In the following sections, we will present a mathematical description of the

dynamics of a blade moving across the ice and describe how controls can be

determined to produce a prescribed pattern. As an example, we present a

control of the sleigh leading to tracing of a compulsory figure skating pattern

illustrated in Figure 4.1.

4.2 Mathematical background:

Chaplygin’s sleigh

The classical Chaplygin sleigh, a model created and analyzed by Chaplygin in

1911 [26], describes a platform of mass M , with center of mass at position C,

which has a knife edge with a single contact point (at A) and is supported by

two frictionless points that slide freely. A schematic of this mechanical model

is depicted in Figure 4.2. The frame attached to the sleigh (the body frame) is

defined by the vectors (e1, e2). The coordinates in the spatial frame are (x, y).

The angle between the blade and the x-axis of the spatial frame is denoted

by θ. The configuration manifold of the Chaplygin sleigh is thus the group of
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Figure 4.3: Chaplygin sleigh with added mass m positioned at the point (a, b) in
the sleigh’s coordinate system.

two dimensional rotations and translations SE(2). In the local coordinates,

that group can be described by the variables (x, y, θ). In Figure 4.2, we have

chosen the coordinate system e1 to align with the blade in order for equations

to conform with the previous literature on the subject. The Chaplygin sleigh

includes a constraint that the direction of movement must be along the axis

of the blade, that is, in the direction of e1 as seen from the spatial frame.

Mathematically, this constraint is given by

−ẋ sin θ + ẏ cos θ =0 . (4.1)

The constraint on the velocity cannot be written exclusively in terms of co-

ordinates on the configuration manifold (x, y, θ), making the Chaplygin sleigh

a nonholonomic system. The Chaplygin’s sleigh has a mass M and moment

of inertia with respect to the contact point I–we use that notation for the

moment of inertia in order to conform to [85]. On the same figure, we present

control mass m with a black dot, that has position ae1 + be2 in the sleigh’s

coordinate system.

There have been many extensions to, and applications of, the Chaplygin

sleigh of which we provide a few examples (see [16, 120, 34, 35, 65, 10, 56, 37,

13, 9]). We will employ the Chaplygin sleigh with added moving mass as the

simplest model of a figure skater on the ice. The position and velocity of the
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mass are the controls of the system. The specifications of the Chaplygin sleigh,

along with the extension of applying an added mass, make the Chaplygin sleigh

a good choice for modeling figure skating, and compulsory figures in particular.

First, the controlled Chaplygin sleigh is applicable to figure skating because

of the unique profile of the figure skate. Unlike hockey skate and speed skate

blades, figure skate blades are curved from front to back. This curve along the

length of the blade means that only a small portion of the blade contacts the ice

at any given time, corresponding to the single contact point in the Chaplygin

sleigh model. Of course, in the full 3D motion, the contact point will move

back and forth along the blade. A good skater will minimize this contact

point movement by controlling the position of the center of mass during the

careful motion associated with the trajectory tracing exercise considered here.

While interesting, this control of the position of the contact point is beyond

the scope of this paper. In contrast, hockey and speed skate blades have large

flat portions on the blade, and consequently more of the blade contacts the

ice at all times. Second, the nonholonomic constraint on velocity is equivalent

to the requirement of smooth gliding in compulsory figures, except for a finite

set of predefined points where the skater is expected to turn. The velocity

constraint clearly would not hold during other figure skating moves such as

jumps where the skate leaves the ice. Finally, the mass added to the classical

Chaplygin sleigh can be viewed as moving the skater’s center of mass.

4.3 Control of a skater’s trajectory using an

added mass

4.3.1 General considerations

One of the most basic ways to control a skater’s motion is to introduce an

added massm that can move in a prescribed manner with respect to the skater.

In reality, a skater will use the complex motion of limbs that change both the

position of the center of mass, the moment of inertia and, in addition, introduce

additional forces and torques from the motion of the limbs. The controlled
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motion of a single mass can be thought of as a single, two-dimensional version

of a multi-limb control.

Control of nonholonomics systems using the motion of added masses has

been considered before, see, for example, [96, 97] for applications to rolling

ball robots. Several works address the dynamical evolution of the Chaplygin’s

sleigh with an added mass. In particular, we will point out a surprising result

[13] that the problem of a sleigh with added mass m on a spring is integrable.

The work [10] studied the motion of the Chaplygin sleigh with a prescribed,

periodic motion of the added mass. The interesting part about this prob-

lem is the existence of trajectories with unlimited growth of energy, and thus

unbounded acceleration, which was described as “an analog to Fermi acceler-

ation”. However, it is important to point out that not all trajectories lead to

indefinite increase of energies, so the periodic motion of the added mass is not

a guarantee of indefinite energy growth.

The problem of making predefined curves on ice, also known as trajectory

tracking, using a movable mass has received much less attention in the liter-

ature. In [85] it was shown that it is possible to go from one straight line to

another using a predefined motion of the moving mass. We are however not

aware of works solving the trajectory tracing of complex trajectories as shown

on Figure 4.1. This is precisely the point of this article. We shall present an

algorithm that can be used to trace a large class of trajectories using suitable

approximations of the curves.

4.3.2 Equations of motion

Let the angular momentum, measured relative to the contact point in the

sleigh’s frame, and the linear momentum, measured along the direction of

the blade, also in the sleigh’s frame, be denoted p1 and p2, respectively. The

spatial coordinates of the blade contact point are given by (x, y), while θ is

the angular orientation of the blade. The configuration space for this system

is SE(2). The position of the moving mass is (a, b) in the coordinate system

of the sleigh. The Lagrangian of the system is simply the kinetic energy. It

is easiest to derive the equations of motion using the framework suggested by
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Hamel in 1904 [46], which is particularly useful for nonholonomic systems [14].

If the configuration manifold of the system is Q, with the local coordinates qi,

i = 1, . . . n, then the phase space in the Lagrangian approach consists of the

coordinates qi and velocities q̇i, i = 1, . . . n.

The idea of Hamel’s method is to derive the equations of motion in the

coordinates qi and quasivelocities vi, which are connected to the velocities q̇

by the linear transformation u, i.e. q̇i = ui
jv

j. Changing the Lagrangian to the

coordinates (q, v), and using an appropriately modified variational principle,

an alternative to Lagrangian mechanics can be derived. The resulting equa-

tions are called Hamel’s mechanics. They reduce to familial Euler-Lagrange

equations of mechanics if q̇i = vi. In the case of nonholonomic systems with m

constraints, the last m of quasivelocities vn−m+1, vn−m+2 . . . , vn, can be chosen

in such a way that they coincide exactly with the nonholonomic constraints.

Thus, only the first n−m of Hamel’s equations should be considered, whereas

the lastm equations vanish identically. Because of this reason, Hamel’s method

is advantageous to the standard Lagrange-d’Alembert’s method for nonholo-

nomic systems, as it does not involve Lagrange multipliers and all equations

for nonholonomic systems are computed explicitly.

In terms of the controlled Chaplygin’s sleigh, the nonholonomic constraint

(4.1) advises the following choice of quasivelocities:

v1 = θ̇, v2 = ẋ cos θ + ẏ sin θ , v3 = −ẋ sin θ + ẏ cos θ , (4.2)

where dot notation indicates a time derivative. Note that the last equation of

(4.2) coincides with the nonholonomic constraint (4.1). With the Lagrangian

being just the kinetic energy, Hamel’s equations for the uncontrolled sleigh

with a moving mass were derived in [12, 11], and for sleigh with controlled
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and moving mass in [85, 14]. These equations are written as

p1̇ =−mηξ2 , (4.3)

p2̇ =mηξ1 , (4.4)

θ̇ =ξ1 , (4.5)

ẋ =ξ2 cos θ , (4.6)

ẏ =ξ2 sin θ , (4.7)

where

ξ1 =
1

γ

(︂
(M +m)(p1 −maḃ) +mb(p2 +Mȧ)

)︂
, (4.8)

ξ2 =
1

γ

(︂
m[b(p1 −maḃ)− (I +ma2)ȧ] + [I +m(a2 + b2)]p2

)︂
, (4.9)

η =
1

γ

(︂
[Mmb2 + I(M +m)]ḃ+ a[(M +m)p1 +mb(p2 +Mȧ)]

)︂
, (4.10)

γ =(M +m)(I +ma2) +Mmb2 . (4.11)

For further details of the derivation of the above system, we refer the reader

to [85]. Here, p1,2 have the physical meaning of (nonholonomic) angular and

linear momenta, respectively; ξ1 and ξ2 are the angular and linear velocities of

the sleigh, θ is the angle of the blade with respect to a fixed coordinate frame.

Note that the dynamic equations seemingly do not involve the accelerations

of control masses, as they are formulated in terms of time derivatives of the

momenta. The control variables are the position (a(t), b(t)) and the velocities

(ȧ, ḃ) of the added mass m. Our goal will be to compute the motion of control

masses which we will accomplish below by approximation of trajectories by

circular arcs.

Suppose a trajectory on ice is given. We shall define the trajectory as a

piecewise smooth curve (X(s), Y (s)) where s is the arc length. The curve

tracing problem we are interested in does not care about the speed with which

the curve is traced. We thus formulate the following general problem.

Problem 1 (General statement of control procedure). Suppose a given piece-

wise plane curve x = X(s), y = Y (s) forms a graph G on (x, y) plane. Find
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the initial conditions and controls (a, b, ȧ, ḃ) such that the graph Gs of the solu-

tion curve given by (4.3-4.7) minimizes the deviation from the curve in some

norm.

While Problem 1 is the closest to actual task of a figure skater performing

trajectory tracing on ice, the problem as formulated above is too difficult to

implement. That difficulty arises as the mapping from initial conditions and

controls to the ice trajectories is highly nontrivial. Instead of solving Problem 1

directly, we separate the control procedure in two parts. First, we approximate

any piecewise smooth curve using circular arcs. Second, we develop a control

procedure for following the circular arcs on ice.

Circular arcs play a special role in the dynamics of the uncontrolled sleigh

since they represent some of the exact solutions of the dynamics. Surprisingly,

circular trajectories also play a special role in the controlled problem. More

precisely, circles yield algebraic equations for control variables, which greatly

simplifies designing the control procedure. This can be seen as follows.

Lemma 2 (On tracing of circular trajectories). A controlled solution trajectory

is a circular arc of radius r if and only if the controls satisfy

ξ2 = rξ1 , (4.12)

where ξ1 and ξ2 are given by (4.8) and (4.9), respectively. In the particular case

of straight lines, the controls satisfy ξ1 = 0. Moreover, there is an additional

constant of motion P defined as

arcs: rp2 + p1 = P = const,

straight lines (r = ∞): p2 = const , ξ1 = 0.
(4.13)

Proof. From (4.6) and (4.7) we obtain ds = ξ2dt. Additionally, from (4.5),

we obtain
dθ

ds
=

ξ1

ξ2
. (4.14)

A curve is a circle of radius r if and only if θ′(s) = 1/r, giving exactly (4.12).

In the particular case of a straight line, the limiting procedure gives ξ1 = 0.
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When (4.12) is valid, p1 and p2 are coupled as well from (4.3) and (4.4),

allowing us to notice that

p1̇ = −mηξ2 = −mη(rξ1) =⇒ p1̇ = −rp2̇ (4.15)

and (4.13) follows.

Note that the condition for the sleigh to follow a straight line with constant

velocity

(M +m)p1 +mbp2 = 0 . (4.16)

found in [85] follows exactly from ξ1 = 0 with ȧ = 0 and ḃ = 0.

As the next step in the control procedure, we note the result by Meek

and Walton [77] which presented an algorithm for finding arbitrarily close arc

spline approximation of a smooth curve:

Lemma 3 (On approximating smooth curves by circular arcs). If the bounding

circular arcs enclose a given spiral segment of positive curvature Q(s), s0 ≤
s ≤ s1, and a biarc that matches the same data as the bounding circular arcs is

found, then the maximum distance between the biarc and the spiral is O(h3),

where h = s1 − s0.

Thus, we approximate any smooth part of the trajectory by circular arcs

as in [77], and use the result of Lemma 2 to design the control procedure,

outlined below. To complete the control of the trajectory in a realistic case, as

illustrated on Figure 4.1, we notice that the cusps make the trajectories non-

smooth. The cusps are executed by an experienced ice skater by performing a

quick turn exactly at the moment when the speed of the skate with respect to

the ice vanishes. At the point of the turn, the blade digs into the ice and the

nonholonomic constraint no longer holds. It is only at these points the finite

turn is possible. We shall note that there are also cusps which can be executed

without the finite turn, when two arcs touch tangentially [45], but we do not

focus on such cases here. Thus, we allow that at the points when the velocity

vanishes, a finite turn can be executed, and a new arc can be started with zero

velocity. The control algorithm is thus described as follows.
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1. Separate the desired trajectory into smooth parts.

2. Approximate every smooth part by circular arcs.

3. Find a trajectory with control satisfying (4.12) following exactly the

chosen circular arc. At all the cusp points, the velocity of the skate with

respect to the ice must be zero.

4. Join circular arcs by allowing a finite turn at the cusp point.

Notice that the advantage of this procedure is that the difficulty of finding

the controls for an arbitrary trajectory is now substituted by approximating

the curve with circular arcs as in [77]. Once the approximation is found, we

only need to find the controls enforcing vanishing velocity at the end points,

as with the right initial conditions the solution is guaranteed to follow the

arc. Moreover, there is an additional bonus of simplified solution due to (4.13)

when using circular arcs or straight lines.

4.3.3 Chaplgyin sleigh model reduced to circular tra-

jectories

Under the conditions that trajectories are circular arcs, the Chaplygin sleigh

figure skate model is

p1̇(t) =−mηξ2 ,

θ̇(t) =ξ1 ,

ẋ(t) =ξ2 cos θ ,

ẏ(t) =ξ2 sin θ .

(4.17)

with initial conditions

p1(0) =p̄1 , (4.18)

θ(0) =θ̄ , (4.19)

x(0) =x̄ , (4.20)

y(0) =ȳ , (4.21)
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with constraints (4.12) and p2 given from the integral of motion

p2 =
P − p1

r
. (4.22)

We are now ready to compute the equation for control masses. The condition

ξ2 = rξ1 gives an affine equation connecting ȧ and ḃ:

Aȧ+Bḃ = C , where

A := mMrb+m(I +ma2) ,

B := m2ab− (M +m)mar ,

C := p1 [mb− r(M +m)] + p2 [I +m(a2 + b2)−mbr] .

(4.23)

A user can choose an arbitrary second condition for a(t) and/or b(t) to specify

the control functions. The simplest case is to specify, for example, a(t) and

compute b(t) from (4.23), or vice versa. Unfortunately, this selection often lead

to singularities. For example, if a(t) is specified, then ḃ(t) diverges whenever

a(t) = 0, which is unphysical. That is, no practical controller can provide

infinite energy to the control masses. However, there is a way to specify

the equations for (ȧ, ḃ) without having any singularities. Namely, we choose

(ȧ = va, ḃ = vb) according to the minimum energy of the controller:

(va, vb) = arg min
1

2
(v2a + v2b ) s.t. Ava +Bvb = C (4.24)

with the solution

ȧ = va =
AC

A2 +B2
, ḃ = vb =

BC

A2 +B2
. (4.25)

Note that technically speaking, the quantity 1
2
(v2a + v2b ) minimized by (4.24)-

(4.25) is not the actual kinetic energy of the control mass, since the kinetic

energy must include the absolute velocities of the mass, not the relative veloc-
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ities. One could in principle make the control procedure minimizing the true

kinetic energy of the control mass, which is given by the formula (4.29) below.

Since the kinetic energy of the control mass would still be a quadratic func-

tion of va and vb, this problem would also lead to solutions similar to (4.25),

although algebraically quite a bit more complex. We will use the formulation

(4.24)-(4.25) in this paper since this formulation is algebraically simple, yields

well-behaved equations for optimization, and can be used robustly in simula-

tions. We will also refer to the quantity 1
2
(v2a + v2b ) somewhat loosely as the

relative kinetic energy, hoping that there will be no confusion with the actual

value of the kinetic energy of the controller. As described in Section 4.3.1,

zero speed is required at cusp points. The speed with respect to the ice v(t)

is given by

v(t) =
√︁
(ẋ)2 + (ẏ)2 = ξ2 . (4.26)

Therefore, the requirement that the speed be zero at cusp points is equivalent

to ξ2 = 0 at such points.

4.3.4 Target curve parsing

As a first step in reproducing a given curve, we must define the target tra-

jectory. This means parsing and dividing the trajectory into components of

straight lines and circular arcs. In this work, this was accomplished manually

with the target curves being divided into approximate curves (eg. semicircle,

3/4 circle, etc.). This process could surely be automated using techniques such

as machine learning, but this is beyond of the scope of this work. We note

that in the examples we present here, all the pieces of the curves are circular

arcs. We thus address only the part of tracing the arcs, assuming that the

pattern approximation by circular arcs has already been completed.

To reproduce a given curve component with the Chaplygin figure skate

model, we use (4.25), minimizing the energy of the control mass. Given the

radius of the arc, the length of the arc is matched using a root-finding proce-

dure enforcing the arc lengths to be the same. Since two circular arcs of the

same length and radius, starting at the same point and tangent to each other,
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are going to be exactly identical, we achieve an exact tracing of trajectories

down to desired precision.

We shall also note that when a trajectory is presented by several arcs joined

smoothly, the parameters of the arcs such as radius may change abruptly

between neighboring arcs. In that case, (ȧ, ḃ) may change discontinuously

from arc to arc. It is possible that the trajectories of the control masses

can be made smooth by introducing additional constraints on the variables

(p1, p2, a, b) from arc to arc, dictated by (4.25). We have not explored such

constraints in this paper, although it is interesting to consider them in future

works on the subject.

4.4 Numerical methods

The simulations of the Chaplygin sleigh were carried out using the Python

programming language, version 3.7.6 (Python Software Foundation,

https://www.python.org/). For defined sleigh dynamic parameters M,m, I,

and a given radius of the arc r, we find the trajectory following that arc as

follows:

1. The system is defined according to (4.17) with the added equation for the

length L̇ = ξ2 for convenience of computations. The control functions

(ȧ, ḃ) are defined according to (4.25). We have also chosen to bring back

the equation ṗ2 = mηξ2, to use the integral p1 + rp2, which should be a

constant, as an additional measure of accuracy of calculations and the

accuracy of the circle constraint (4.12). The initial conditions for the

simulations are

p1(0) = p01, p2(0) = p02, θ(0) = 0,

x(0) = 0, L(0) = 0, a(0) = a0, b(0) = b0
(4.27)

2. Find zero-crossing events for ξ2 = 0 in simulations, t0, t1, . . .

3. As it turns out, the solution quickly converges to a periodic motion for

the essential variables p1, a, b.
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4. (Single-length matching) For the single curve matching (parts of the

“leaves” for the inner pattern in the next section), we need only match

one circle to the given length L∗. This is accomplished by specifying

(p02, a
0, b0) and finding p0 such that L(ti+1)− L(ti) = L∗ for some i.

5. (Multi-length matching) Similarly, we can also find a pattern made by

several arcs (the outer three-arc part of the pattern in the next Section).

We find three neighboring events (ti, ti+1, ti+2) and two desired lengths

L1
∗ and L2

∗ such that L(ti+1) − L(ti) = L1
∗, L(ti+2) − L(ti+1) = L2

∗ for

some i.

6. The inner and outer solutions are then concatenated to give the full inner

and outer pattern.

4.5 Simulations

As a proof of concept, we reproduce the compulsory figure shown in Figure

4.1. In order to recreate this pattern, the base components must be identified.

In this case, there are two separate curves, each with repeating patterns.

Between the inner and outer patterns, the inner pattern is simpler, con-

sisting of a single continuous arc with one direction of travel. To match the

compulsory figure, this arc is taken to be slightly more than a semi-circle,

which is then repeated eight times. The outermost curve can be decomposed

into two different arcs: a short arc, and a longer arc that is slightly less than

a semi-circle. The full outer curve can then be represented by sequentially

connected triplets consisting of a long arc, followed by a short arc, completed

by another long arc, and then repeating this triplet, or “leaf”, eight times.

The total outer pattern includes changes in the direction of travel at the cusp

points where the component arcs meet. The simulation parameters for each

arc are given in Table 4.1. The simulated inner and outer arcs, as well as the

control functions and ξ2 profiles, are shown in Figures 4.4 and 4.5, respectively.

As the inner arc component will be joined by finite arcs with an execution

of a finite turn, there is a physical requirement that the speed, ξ2, be zero at

either end of the arc. The top right panel shows that the speed is indeed zero
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Table 4.1: Values used in simulations to create inner and outer arcs. In all cases
m = 1, M = 2, and I = 3.

Arc Radius Length(s), Li
∗ (p01, p

0
2, a

0, b0)

Inner 1 3.7 (50, 60, 1.5,−0.1)

Outer 1 3, 0.4 (100, 30, 0.8,−0.1)

Figure 4.4: Inner pattern trajectory (top left), ξ2 profile (top right), and optimized
control functions, a(t) (bottom left) and b(t) (bottom right).

Figure 4.5: Outer pattern trajectory (top left), ξ2 profile (top right), and optimized
control functions, a(t) (bottom left) and b(t) (bottom right).
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at either end of the arc. The optimized control functions, a(t) and b(t), are

shown in the bottom two panels.

As noted previously, each leaf of outer pattern includes cusps. At the two

cusp points where the long and short arcs meet, the speed, ξ2, is zero, with

the direction of travel changing at each cusp point. All three arcs in each

leaf of the outer pattern are produced from one continuous simulation of the

system, augmented by the finite turn at two points connecting smaller and

larger arcs. Thus, each leaf of the outer pattern was obtained by a smooth

motion of the control mass. The plot of ξ2 in the top right panel of Figure 4.5

shows that the outer arc satisfies the requirement that ξ2 be zero at each cusp

and that the sign of velocity changes at each cusp. As with the inner arc, the

outer arc also satisfies the physical requirement that ξ2 is zero at either end

of the arc as the endpoints are connected in the full outer pattern.

Because the blade digs into the ice at the point of the turn, the approx-

imation of the nonholonomic constraint for the skate no longer holds, as the

blade remains momentarily pinned to the surface. This fact allows for sudden

shifts in a skater’s center of mass which are compensated by the reaction force

from the ice.

In order to better understand the optimized control functions, Figure 4.6

shows the trajectory of the position of the added mass m (in body frame) next

to the blade trajectory (in spatial frame) for each arc, as well as the skate and

mass trajectories together in the spatial frame.

It is also useful to compute the energy of the system and confirm that the

total energy remains bounded. Thus, we derive the total energy for both the

skate and control mass, and compute the total energy for each arc. The total

energy of the skate is given by

KEskate =
1

2
M(ξ1)2 +

1

2
I(ξ2)2 , (4.28)

The total energy of the control mass can be computed in a straightforward

way to give:

KEm =
1

2
m|v|2 = m

2

[︃(︁
ξ2 − ξ1b+ ȧ

)︁2
+
(︂
ξ1a+ ḃ

)︂2]︃
(4.29)
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Figure 4.6: Control mass trajectories (top) and overlay of skate (black) and control
mass (blue) trajectories in spatial frame (bottom) for the inner trajectories (left) and
outer trajectories (right).

with (ȧ, ḃ) given by (4.25). As shown in Figure 4.7, the energy profiles for

the optimized control mass and skate for each arc remain bounded (but non-

monotonic in time) as desired. To show the accuracy and correctness of the

simulations, in Figure 4.8 we present a plot of rp2 + p1 which should be an in-

tegral of motion for the circular trajectories. Indeed, this integral is conserved

to within high accuracy for both inner and outer solutions.

Finally, the full pattern is produced by transforming (via rotation and

translation) and repeating the optimized arcs is shown in Figure 4.9. Notice

the clear resemblance of the pattern reproduced by our method to the target

“double flower” pattern of Figure 4.1. In principle, we could reproduce a large

class of piecewise smooth curves, where the smooth parts of the curves are

approximated by circular arcs. The limitation on control is then at the points

of sharp turns, where the velocity of the skate needs to vanish. Thus, a control

to successfully trace trajectories is possible whenever it is possible to create the

motion using the control mass while enforcing vanishing velocity at two ends

for every smooth part of the curve. We believe that this control mechanism

spans a large number of possible trajectories and is substantially simpler than

the “brute force” trajectory tracing without specifying particular constraints

on the motion of the control masses.
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Figure 4.7: Kinetic energy of control mass (top), skate (middle), and total kinetic
energy (bottom) for inner pattern arc (left) and outer pattern arc (right).

Figure 4.8: Plots of rp2 + p1 showing that the integral of motion (4.22) following
from the circle constraint condition ξ2 = rξ1 is satisfied for inner (left) and outer
(right) arcs.
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Figure 4.9: Full pattern reconstruction using the control procedure. Compare to
the target Figure 4.1.
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4.6 Conclusion

We have applied the control of the moving mass on a Chaplygin sleigh to

model the dynamics of a figure skater tracing a prescribed pattern on the ice.

With the added mass representing the controllable center of mass of the figure

skater, we determined the controls needed to reproduce an example pattern,

which is approximated by circular arcs. The approximation of circular arcs

was chosen for the simplicity of algorithms, as in that case the equations for

the control simplify considerably: the question of trajectory tracing, which is

very complex, simplifies to the matching the beginning and the end of the arc,

with the curvature being matched automatically. It would also be interesting

to see whether the ideas developed in this paper apply to the dissipative sleigh

as considered in [36] .

For a more complex trajectory tracing, a machine learning algorithm could

be used. For example, deep reinforcement learning algorithms have been used

with success for drone control in 3D [62]. A more realistic model of a human

skater compared to Chaplygin sleigh will involve substantially more degrees

of freedom than a drone, in addition to the constraints on the skate’s motion.

The expansion of techniques of constrained reinforcement learning [39] can

prove useful here. We hope that the researchers in the field of reinforcement

learning will become interested in tackling this challenging problem.
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Chapter 5

Conclusion

The topics of glioma spread and tracing patterns in figure skating are quite

distinct from one another. The through line connecting them is mechanics.

Although there are many factors involved in glioma, from cellular genetics, to

the immune response and beyond, mechanics is becoming increasingly recog-

nized as a component that cannot be ignored. We hope that we have taken a

further step in the ever progressing field of mathematical models of glioma.

We began the work in this thesis by analyzing and simulating a simpli-

fied 1D glioma model. We showed the existence and determined the invasion

speed of travelling waves in the 1D glioma spread model for multiple versions

of elasticity models. We found that travelling wave existence and speeds are

maintained between elasticity models, with minimal wave speed being given

by σ = 2
√
Dρ. Although the wave speed is consistent across elasticity mod-

els, the deformation and stress can differ significantly from model to model.

Interestingly, the addition of viscosity did not prove to lead to any substantial

differences in model dynamics. The deformation and stress results may be an

important consideration when it comes to symptoms as they are largely caused

by increased deformation and stress caused by the growing glioma.

Increasing the complexity of the glioma model from Chapter 2, we suc-

cessfully developed and implemented a 2D glioma model with linear elasticity

using finite element methods. We also developed a numeral pipeline for im-

porting medical imaging data for the initialization of the simulation domain

and diffusion tensors, allowing for the incorporation of patient specific data.
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Furthermore, in the translation of DTI data to the model diffusion tensor, we

utilize a previously developed method which allows for additional fitting of

the anisotropy and turning rate parameters to patient data. We also show

that there is another parameter that could be fit to patient data–the body

force parameter. Although fitting this parameter was beyond the scope of this

work, this is a critical parameter in the pattern of glioma spread and would

be worth while investigating further. As mentioned, there are many avenues

to continue with the 2D model and we hope to explore at least some of these

in ongoing work.

The dependence of figure skating is perhaps more intuitively mechanical

compared to glioma. In the last portion of this thesis, we explored a mechan-

ical model of a figure skater using the Chaplygin sleigh with an added mass.

There have been previous works examining the mechanics of some of the more

“exciting” elements such as jumping and the extreme forces involved, but few,

if any, have studied the controls associated with gliding on ice. Employing

previous results for the approximation of curves and some simplifications of

movement, we developed a control algorithm capable of reproducing any tar-

get curve. By developing a control algorithm that can be used to reproduce

any curve, we hope that we have shed some light on the physical basis behind

the sport of figure skating.
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[37] Y.N. Fedorov and L.C. Garćıa-Naranjo. The hydrodynamic Chap-
lygin sleigh. Journal of Physics A: Mathematical and Theoretical,
43(43):434013, 2010.

[38] Ronald Aylmer Fisher. The wave of advance of advantageous genes.
Annals of Eugenics, 7(4):355–369, 1937.

[39] Peter Geibel and Fritz Wysotzki. Risk-sensitive reinforcement learning
applied to control under constraints. Journal of Artificial Intelligence
Research, 24:81–108, 2005.

[40] Philip Gerlee and Sven Nelander. The impact of phenotypic switching on
glioblastoma growth and invasion. PLoS Computational Biology, 8(6),
2012.

[41] Philip Gerlee and Sven Nelander. Travelling wave analysis of a math-
ematical model of glioblastoma growth. Mathematical Biosciences,
276:75–81, 2016.

[42] Amir Gholami, Andreas Mang, and George Biros. An inverse problem
formulation for parameter estimation of a reaction–diffusion model of low
grade gliomas. Journal of Mathematical Biology, 72(1):409–433, 2016.

164



[43] A Giese, R Bjerkvig, ME Berens, and M Westphal. Cost of migration:
invasion of malignant gliomas and implications for treatment. Journal
of Clinical Oncology, 21(8):1624–1636, 2003.

[44] Ali Gooya, Kilian M Pohl, Michel Bilello, Luigi Cirillo, George Biros,
Elias R Melhem, and Christos Davatzikos. GLISTR: glioma image seg-
mentation and registration. IEEE Transactions on Medical Imaging,
31(10):1941–1954, 2012.

[45] V. Gzenda and V. Putkaradze. Integrability and chaos in figure skating.
Journal of Nonlinear Science, pages 1–20, 2019.

[46] G. Hamel. Die Lagrange–Eulersche Gleichungen der Mechanik. Z. Math.
Phys., pages 1–57, 1904.

[47] S. Hamilton. Figure skating. Encyclopædia Britannica, May
2019. https://www.britannica.com/sports/figure-skating, Ac-
cessed: 2021-03-04.

[48] Farina Hanif, Kanza Muzaffar, Kahkashan Perveen, Saima M Malhi, and
Shabana U Simjee. Glioblastoma multiforme: a review of its epidemiol-
ogy and pathogenesis through clinical presentation and treatment. Asian
Pacific Journal of Cancer Prevention: APJCP, 18(1):3, 2017.

[49] Tiberiu Harko and Man Kwong Mak. Travelling wave solutions of the
reaction-diffusion mathematical model of glioblastoma growth: An Abel
equation based approach. arXiv preprint arXiv:1409.0605, 2014.
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in adults. Acta Neurologica Scandinavica, 131(2):88–93, 2015.

[93] Michael T Prange and Susan S Margulies. Regional, directional, and age-
dependent properties of the brain undergoing large deformation. Journal
of Biomechanical Engineering, 124(2):244–252, 2002.

169



[94] Luigi Preziosi and Andrea Tosin. Multiphase modelling of tumour
growth and extracellular matrix interaction: mathematical tools and
applications. Journal of Mathematical Biology, 58:625–656, 2009.

[95] SJ Price, NG Burnet, Tim Donovan, HAL Green, Alonso Pena, NM An-
toun, John D Pickard, T Adrian Carpenter, and JH Gillard. Diffusion
tensor imaging of brain tumours at 3 T: a potential tool for assessing
white matter tract invasion? Clinical Radiology, 58(6):455–462, 2003.

[96] Vakhtang Putkaradze and Stuart Rogers. On the dynamics of a rolling
ball actuated by internal point masses. Meccanica, 53(15):3839–3868,
2018.

[97] Vakhtang Putkaradze and Stuart Rogers. On the optimal control of a
rolling ball robot actuated by internal point masses. Journal of Dynamic
Systems, Measurement, and Control, 142(5):051002, 2020.

[98] Daniela F Quail and Johanna A Joyce. The microenvironmental land-
scape of brain tumors. Cancer Cell, 31(3):326–341, 2017.
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