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ABSTRACT 

Resting metabolic rate (RMR) is the minimum energy expenditure necessary for survival. 

RMR varies widely both among and within species and a central question in evolutionary 

physiology concerns the functional basis for this variation. Juvenile North American red 

squirrels were used to investigate fitness consequences of variation in RMR by 

considering how expenditure relates to differences in food availability and to overwinter 

survival. Additionally, this thesis examines whether red squirrels exhibit phenotypic 

plasticity in RMR in response to varying levels of food availability. Results indicate that 

heavier juveniles with relatively low RMRs were more likely to survive overwinter. 

Moreover, these juveniles were capable of allocating more energy towards mechanical 

work and possessed larger food stores. Food supplemented yearlings exhibited higher 

RMRs than unsupplemented controls at the onset of the breeding season, while no 

difference in RMR was detected following termination of supplementation.  
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CHAPTER I: GENERAL INTRODUCTION AND THESIS OVERVIEW 

THE MYSTERY OF VARIATION IN METABOLIC TRAITS  
An animal’s physiology influences its food requirements, its activity budget and 

its capacity for sustained energy expenditure (Pough 1980). Consequently, understanding 

the selective forces responsible for the evolution of physiological traits is of interest to 

ecologists. Observed differences in metabolic performance among species are often 

considered adaptive, yet rarely has the selective significance of physiological traits been 

examined (Speakman et al. 2004). Basal metabolic rate (BMR) is the minimal rate of 

metabolism required to keep a non-growing, post-absorptive animal alive under 

thermoneutral conditions (Kleiber 1961). The concept of BMR originated in recognition 

of the need for a standardized measurement that would facilitate inter-specific 

comparisons of energy expenditure and provide an estimate of the basic cost of living 

(Harris and Benedict 1919, Kleiber 1961, McNab 1992, Speakman et al. 2004). However, 

early analyses highlighted great variability in BMR, even among species of comparable 

body mass and among individuals of the same species (e.g. Brody 1945, Kleiber 1961). 

This observation has since generated considerable debate (e.g. Ricklefs et al. 1996, 

Lovegrove 2000, Tieleman et al. 2003) concerning the functional basis of variation in 

BMR. 

BMR has been measured in over 600 mammals and 300 species of birds (McNab 

2002, White and Seymour 2004); making it the most widely measured metabolic 

parameter for endothermic vertebrates (McNab 1992). After accounting for variation due 

to body mass (allometric scaling) and higher-level taxanomic affiliation, there remains a 

6-fold range in BMR (Blaxter 1989). Correlative studies have linked residual variation to 



numerous abiotic and biotic factors such as temperature, latitude, altitude, population 

growth rate, density, food availability and life-history traits (McNab 1988, Hayes 1989, 

Hayes et al. 1992, Lovegrove 2000, 2003, Brown et al. 2004, White and Seymour 2004, 

Broggi et al. 2007). Mueller and Diamond (2001) proposed that a potential unifying 

thread derived from these correlates might be the net primary productivity of the 

environment where a species is found. A common garden experiment using five species 

of Peromyscus mice collected from differing environmental locations supports this 

hypothesis and suggests that inter-specific variation in BMR may indeed reflect genetic 

adaptation to environmental heterogeneity (Mueller and Diamond 2001). A similar study 

on stonechats (Saxicola torquata) found marked differences in resting metabolic rates 

(RMR; similar to BMR though animals are not post-absorptive when measured) when 

birds from different populations were kept under controlled laboratory conditions 

(Wikelski et al. 2003). A BMR that is adapted to local environmental characteristics 

likely reflects past selection on individual traits (Schluter et al. 1991). Because natural 

selection acts on differences among individuals, inter-specific studies can only speculate 

on proximate factors responsible for phenotypic differences in a trait (sensu Bennett 

1987, Bozinovic et al. 2007). However, despite an interest in the evolutionary 

significance of variation in BMR, studies on the selection of proximate factors underlying 

variation among individuals have only recently received attention.  

Variation in BMR at the individual level is considerable, even when measurement 

error and variation in body mass is considered (Speakman et al. 2004). Because the 

fitness costs of wasteful expenditure are likely severe, the persistence of variation in 

intra-specific BMR is somewhat surprising. Life history trade-offs are founded on the 

2 



basis that energy allocated to a particular activity such as reproduction, competes with 

other components of the energy budget such as growth, mechanical work, storage, and 

maintenance (Gadgil and Bossert 1970). Such trade-offs are thought to be driven by 

physiological constraints on an organism’s ability to acquire resources and export energy 

for work and reproduction (Weiner et al. 1992). An individual with a high BMR would 

need to forage for longer periods, potentially increasing risks related to predation and 

exposure, and may have less surplus energy available to allocate to other activities 

(Speakman et al. 2004). Hypotheses put forth to explain variation in BMR have thus 

focused on the fitness advantages that a high BMR may accrue.  

The dominant hypotheses for the evolution of endothermy propose that high rates 

of BMR reflect the high maintenance costs of the metabolic machinery required for 

supporting either greater maximum metabolic rates (MMR, aerobic capacity hypothesis, 

Bennett and Ruben 1979) and/or sustained metabolic rates (susMR, sustained-limit 

hypothesis, Drent and Daan 1980). Accordingly, a high BMR could allow for greater 

resource acquisition, growth rates, and ultimately increase reproductive performance 

and/or survival probability. Drent and Daan (1980) proposed that possession of a larger 

alimentary tract and other supportive organs (e.g. liver, heart, and kidneys) may allow 

individuals to maximize their investment in reproduction or self preservation. However, 

organs involved in the assimilation and management of energy have relatively high mass-

specific metabolic rates that contribute disproportionately to BMR (Drent and Daan 1980, 

Daan et al. 1990). Thus increasing susMR would require a more proficient alimentary 

system, resulting in a relationship between susMR and BMR (Chappell et al. 1999, 

Selman et al. 2001, Piersma 2002, Moe et al. 2004, 2005). A trade-off between a 
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conservative life-style which minimizes costs related to high expenditure and one that is 

relatively wasteful but enables high aerobic performance is therefore produced. Inter-

specifically, a high BMR has been linked with a high maximal and sustained metabolic 

rate (Peterson et al. 1990, Weiner 1992, Hammond and Diamond 1997). However, such 

correlations are not ubiquitous for all clades or species (Hayes and Garland 1995). Meta-

analyses considering phylogenetically independent contrasts report strong relationships 

within mammals but not within birds or marsupials (e.g. Koteja et al. 1991, Ricklefs et al. 

1996). Results from intra-specific studies are similarly equivocal; however individual 

variation in energy budget management may play a critical role in determining our ability 

to detect a relationship between BMR and susMR (Hayes 1989, Chappell and Bachman 

1995, Meerlo et al. 1997, Nilsson 2002, Speakman et al. 2003, Vezina et al. 2006). For 

example, reallocation of energy away from maintenance processes may allow greater 

investment in reproduction or survival (Nilsson 2002). 

The identification of seasonal or ontogenetic bottlenecks, when BMR and related 

physiological traits (e.g. body mass, organ size) become particularly important to future 

fitness, is central for intra-specific studies. Correlations between life-history parameters 

and BMR are more likely to be detected when physiological limits are approached. 

Physiological constraints on sustained energy expenditure can be grouped into two 

general, non-mutually exclusive categories. Limits on the rate at which resources can be 

acquired (foraging rate) and processed (digestion and absorption) are referred to as 

central limitations (Speakman and Krol 2005). Whereas limits on the rate at which energy 

is expended (mechanical muscle work, tissue growth, thermoregulation) are referred to as 

peripheral limitations (Speakman and Krol 2005, Speakman 2008). While there is no 

4 



consensus as to which type of limitation is primarily responsible for limits on expenditure 

(Speakman and Krol 2005), possession of a higher BMR may reflect an extension of 

either of these limits, allowing for greater productivity overall.  

Within mammals, one of the most energetically demanding periods occurs during 

lactation (Thompson and Nicoll 1986, Thompson 1992). There is evidence for an 

association between BMR and susMR in that the higher energy demands of lactating 

mice are positively correlated with a higher BMR (Hammond and Diamond 1992, 

Hammond et al. 1994, Konarzewski and Diamond 1995, Rogowitz and McClure 1995, 

Rogowitz 1998, Speakman 2008). However, lactating individuals with high BMRs do not 

necessarily have larger organs (Speakman and Johnson 2000, Krol et al. 2003, Johnson et 

al. 2007, but see Daan et al. 1990), nor is their reproductive success superior to 

individuals with lower BMRs (Derting and McClure 1989, Earle and Lavigne 1990, 

Hayes et al. 1992, Stephenson and Racey 1993, Johnson et al. 2001). Unlike results found 

at the inter-specific level (Drent and Daan 1980, Peterson et al. 1990, Weiner 1992, 

Hammond and Diamond 1997) intra-specific relationships between life-history traits and 

BMR generally disappear once shared variation due to body mass is taken into account. 

Aside from physiological constraints during reproduction, other bottlenecks that may 

improve the probability of detecting natural selection on metabolic rates could occur 

during juvenile stages or during periods of seasonal food limitation or cold ambient 

temperatures. However, these periods have seldom been examined, with the exception of 

a possible link between metabolic rate and non-shivering themogenesis in small 

mammals (Speakman 1996, Jackson et al. 2001).   
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The primary goal of this thesis was to investigate the selective importance of 

individual variation in body mass and resting metabolic rate during a period of strong 

selection pressure in juvenile North American red squirrels (Tamiasciurus hudsonicus). 

This objective was accomplished by first determining the repeatability of RMR in order 

to evaluate the propensity of natural selection to act on individual differences. Most 

vertebrate species boast a relatively high coefficient of variation in BMR, but depending 

on what proportion of this variation is attributed to differences between individuals rather 

than within individuals is important to consider. For example, populations that exhibit a 

low degree of consistent inter-individual variation may be poor candidates for studies of 

contemporary selection. Second, I considered how individual differences in overwinter 

food supply interact with particular energy requirements of individuals to potentially 

result in differential overwinter survival. An additional goal was to determine whether red 

squirrel yearlings exhibit phenotypic flexibility of RMR in response to variation in food 

availability. The identification of potential instigators of phenotypic flexibility in 

metabolic traits could permit a better understanding of the causes and consequences of 

intra-specific variation in metabolic traits. This objective was accomplished 

experimentally, by food supplementing a subset of individuals throughout winter and 

then comparing RMR measurements to those of unsupplemented individuals at the onset 

of the breeding season.  

STUDY SYSTEM 

Data for this thesis was obtained from a population of free-ranging North 

American red squirrels in conjunction with a long-term field study entitled the Kluane 

Red Squirrel Project, located near Kluane Lake in southwest Yukon, Canada (61° N, 138° 
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W) (KRSP; http://www.redsquirrel.msu.edu/). Founded in 1987, the KRSP is an 

interdisciplinary effort that combines the fields of behavioural ecology, evolutionary 

ecology, and physiological ecology to address questions often requiring close monitoring 

of individuals from birth until death (e.g. McAdam et al. 2007). Climate in the Kluane 

area is cold and continental, with snow remaining on the ground from early October until 

May of the following year (Boutin et al. 1995). The KRSP provides an ideal system for 

the investigation of contemporary selection on BMR (McAdam et al. 2007). Red squirrels 

are diurnal, tree-dwelling sciurids that are active in all seasons and rely on the seeds of 

conifer cones as their primary food source. Individuals occupy non-overlapping, year-

round territories. In autumn, conifer cones are cached in a central hoard (midden), which 

provides energy for overwinter survival and for reproduction in the following spring. 

Females generally give birth between March and June and wean juveniles around 70 days 

of age (McAdam et al. 2007). Newly independent juveniles must secure a territory in 

order to survive overwinter (Smith 1968, Larsen and Boutin 1994). Energy allocated to 

maintenance and growth likely competes with and/or constrains energy allocated to other 

activities that require mechanical work, such as hoarding cones, territory defense, and 

foraging. Juveniles are inexperienced in the majority of these activities and generally take 

longer to complete the same tasks performed by adults. High energy demands combined 

with a short growing season prior to winter likely contribute to the severe early mortality 

that characterizes juveniles from this population (McAdam et al. 2007). The sole conifer 

species in the Kluane area, the white spruce (Picea glauca), undergoes episodic and 

fulfilled synchronous production of large cone crops (masts) (LaMontagne and Boutin 

2007). At smaller scales, temporal and special heterogeneity in food availability may lead 
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to the persistence of a slow-fast continuum of BMR. The Biosciences Animal Policy and 

Welfare Committee at the University of Alberta approved all protocols for the capture 

and handling of red squirrels. 

THESIS CHAPTERS 

The research component of this thesis is comprised of two chapters: Chapter II is 

entitled “The influence of resting metabolic rate and body mass on overwinter survival in 

juvenile red squirrels” and is related to my primary objective as previously stated. The 

results in this chapter provides evidence that body mass and resting metabolic rate play a 

role in determining the overwinter survival of juvenile red squirrels and that individual 

differences in the amount of food hoarded in central caches may be linked to intrinsic 

constraints related to differences in basal energy expenditure. Chapter III is entitled 

“Effects of food supplementation on the resting metabolic rates of yearling red squirrels 

at the onset of the breeding season”. This chapter provides evidence that red squirrels 

display phenotypic plasticity in RMR in response to variation in food availability such 

that greater expenditure is associated with more food. Overall, this thesis provides 

preliminary evidence that despite the plastic nature of RMR, among-individual 

differences are consistent over considerable time periods and variation in RMR is 

important to overwinter survival.  
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CHAPTER II: THE INFLUENCE OF RESTING METABOLIC RATE ON 
OVERWINTER SURVIVAL IN JUVENILE RED SQUIRRELS 

INTRODUCTION 
Basal metabolic rate (BMR) sets the pace of life and continues to be of paramount 

importance for a number of evolutionary and ecological theories (Ricklefs et al. 1996, 

Koteja 2000, Lovegrove 2000, Brown et al. 2004, Hulbert and Else 2004, Speakman et al. 

2004a). Although BMR is a standardized trait that represents the minimal rate of energy 

expenditure necessary to maintain basic physiological processes in a thermoneutral 

animal, values vary widely among and within species (Kleiber 1961). After accounting 

for the large proportion of variation in BMR explained by body mass and higher-level 

taxonomic affiliation, comparative studies have linked residual variation to numerous 

abiotic and biotic factors including climate and environmental productivity; suggesting 

that variation in RMR is adaptive (Cruz Neto et al. 2004, McNab 2002, Mueller and 

Diamond 2001, Lovegrove 2000, Daan et al. 1990). At the intra-specific level, variation 

in BMR remains substantial, though comparatively fewer studies have investigated its 

biological significance (Speakman 2004a).  

For selection on a trait to occur, the trait must influence individual performance, 

must display sufficient variation among individuals, and must be heritable. Repeatability 

is a measure of the consistency of individual differences in a trait and is a useful tool for 

determining the potential of a trait to evolve under natural selection (Bennett and Harvey 

1987, Lynch and Walsh 1998, Bech et al. 1999). A trait’s repeatability can be considered 

an estimate of upper-limit heritability (Falconer and Mackay 1996; but see Dohm 2002 
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for additional considerations). As such, the repeatability of a trait should first be 

demonstrated prior to the investigation of its selective significance (Hayes and Jenkins 

1997, Bozinovic 2007). While laboratory studies generally indicate consistent among-

individual differences in metabolic traits over time (for review see Nespolo and Franco 

2007), the reduction of environmental variation may inflate repeatability estimates 

(Szafranska et al. 2007, Nespolo et al. 2003). Moreover, the highly plastic nature of BMR 

may decrease a value’s relative performance consistency over longer periods and limit its 

potential to respond to selection (Chappell and Bachman 1995, Tieleman et al. 2003, 

McKechnie et al. 2006). Finding low repeatability in field conditions would signify a 

limited capacity of BMR to respond to natural selection (Berteaux et al. 1996). Currently, 

four field studies exist on the repeatability of BMR, three of which report significant 

repeatability (Bech et al. 1999, Szafranska et al. 2007, Boratynski and Koteja 2008) and 

one that does not (Bozinovic 2007). The estimation of repeatability must therefore 

precede discussions concerning natural selection of metabolic traits (Boratynski and 

Koteja 2008).  

BMR comprises a large component of an individual’s daily energy budget, 

averaging 30-40% of total daily energy expenditure (Drent and Daan 1980, Nagy et al. 

1999, Speakman 2000). A lower BMR could provide a fitness advantage by reducing 

foraging requirements, which may simultaneously prolong the use of a limited food 

supply, reduce exposure to predators, and increase the time available for other fitness-

enhancing activities. On the other hand, a high BMR may facilitate a greater throughput 

of maximum sustainable metabolic rate (susMR) or burst energy expenditure (maximum 

metabolic rate; MMR), thus permitting greater rates of resource acquisition and 
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processing. The existence of such a relationship might increase reproductive output from 

the possibility that individuals with a high RMR could invest more energy into fitness 

enhancing activities. This hypothesis is a derivation of the “aerobic capacity model” for 

the evolution of endothermy (Bennett and Ruben 1979, Taigen 1983, Bozinovic 1992, 

Hayes and Garland 1995) and is similar to the “sustained maximal limit model” (Drent 

and Daan 1980), both of which offer explanations for inter-specific differences in RMR. 

At least inter-specifically, susMR appears to be linked to BMR (Taigen 1983, Peterson et 

al. 1990, Bozinovic 1992, Hammond and Diamond 1997, Rezende et al. 2002, White and 

Seymour 2004). However, intra-specifically, correlations are weaker or are not consistent 

(Hayes and Garland 1995, Ksiazek et al. 2004, Johnston et al. 2007). Attempts to link a 

high BMR to greater reproductive success have been unsuccessful (Derting and McClure 

1989, Earle and Lavigne 1990, Hayes et al. 1992, Stephenson and Racey 1993, Johnson 

et al. 2001). Critically, few studies have considered how individual differences in BMR 

affect survival and susMR during periods of limited resource availability and adverse 

environmental conditions (Jackson et al. 2001, Boratynski and Koteja 2008). Presumably, 

the ability to conserve energy during such times would provide a potential survival 

advantage.  

My objectives were two fold: First, I investigated the short and long-term 

repeatability of body mass and resting metabolic rate (RMR; an estimator of BMR, see 

Materials and Methods) in juvenile free-ranging North American red squirrels 

(Tamiasciurus hudsonicus). Because repeatability estimates reflect both environmental 

and genetic variation, it is possible that the attainment of significant repeatability 

estimates is driven mainly by consistent differences in extrinsic conditions over-time. 
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Considering the close link between energy expenditure and food availability at the 

interspecific level (Bozinovic et al. 2007, 2009), I explored whether differences in red 

squirrel food supply influenced repeatability estimates of RMR by investigating 

repeatability in animals experiencing naturally limited and experimentally supplemented 

food supply. I predicted that if differences in individual food supply were a primary 

driver maintaining repeatability, then eliminating differences by food-supplementation 

(equalizing resources) would either greatly reduce repeatability estimates and the 

coefficient of variation, or result in a non-significant repeatability estimate.  My second 

objective was to evaluate if the RMR of juveniles experiencing naturally limited food 

supply influenced overwinter survival.  

North American red squirrels are territorial, food-hoarding rodents that specialize 

on conifer seeds (Steele 1998). Red squirrels in Kluane, Yukon, Canada rely on seeds 

extracted from the cones of white spruce trees (Picea glauca) as a dominant food source 

(LaMontagne and Boutin 2007). In autumn, cones are larder-hoarded within a central 

area of a squirrel’s territory called a midden (Steele 1998, Boutin et al. 2006). Squirrels 

must clip cones off trees and hoard them before seeds are released for wind dispersal. 

Cached cones are used throughout winter and into the following breeding season (Boutin 

et al. 2006). The autumn hoarding period is characterized by high rates of daily energy 

expenditure (Fletcher and Humphries, unpublished data) which likely constrain hoarding 

rates as individuals approach proposed physiological limits (Hammond and Diamond 

1997). In winter, squirrels adopt an energy conservative lifestyle which prolongs the use 

of stored food (Humphries et al. 2005). Low survivorship during a red squirrel’s first year 

provides strong opportunity for selection on energetic traits (McAdam et al. 2007). 
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Juvenile experience higher overwinter mortality likely because they are smaller, less 

experienced, hold poorer-quality territories, and have the added energetic demands of 

growth (LaMontagne 2007, McAdam et al. 2007).  I predict that possessing a low RMR 

may enhance over winter survival by reducing energy demands during a period of limited 

energy supply. Alternatively high RMR may be linked to greater thermogenic capacity 

(Jackson et al. 2001) and thus individuals with high RMR may be more capable of 

surviving periods of extreme cold exposure.  However, these effects of RMR on over-

winter survival could be amplified or contradicted by influences of RMR on autumn 

hoard accumulation. From an allocation perspective, possessing a low RMR could 

increase the energy that can be allocated to non-resting activities (Deerenberg et al. 1998, 

Nilsson 2002, Vezina et al. 2006). In this case, a low RMR should be associated with 

larger hoard size, and the survival benefits of a low RMR should be amplified. From a 

performance perspective, possessing a high RMR could enhance sustained metabolic 

endurance (Drent and Daan 1980, Hammond and Diamond 1997). In this case, a high 

RMR should be associated with large hoard size, and the survival benefits of a low RMR 

may be subdued. Here, I test these hypotheses with data on RMR, DEE, and hoard 

accumulation, and over-winter survival. I also examine the independent and interactive 

effects of body mass, because of its potential influence on metabolism, behaviour, and 

survival. 

MATERIAL AND METHODS 

Juvenile red squirrels were studied in conjunction with the Kluane Red Squirrel 

Project located in southwestern Yukon, Canada (61°N, 138°W) from August 12, 2007 - 

March 30, 2008. I used five 40 ha study grids, two of which are food supplemented 
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annually from mid-October until May as part of long-term food-supplementation project. 

Red squirrels were marked and monitored for survival and reproduction using 

standardized methodology (McAdam et al. 2007). Trapping efforts were targeted towards 

juveniles that had settled a territory in autumn 2007 (August 10th – October 1st). 

Settlement was confirmed by observation of repeated territorial vocalizations and 

trapping of the same individual at the same midden location.   

Food supplementation 

 The territorial behaviour of red squirrels provides the opportunity to food 

supplement individuals. Following the hoarding season, a total of 32 juveniles from food-

supplemented grids were provided with additional food by suspending 5-litre buckets 

containing 1 kg of natural peanut butter above each squirrel’s midden (completed in 

conjunction with the KRSP’s long-term food-supplementation study). This unnatural 

food source was chosen because of its high caloric value and because it is not hoarded by 

squirrels. Buckets were refilled in December, February, April, and May to ensure 

squirrels had access to ad libitum peanut butter throughout winter and early spring.  

Flow-through Respirometry 

Resting metabolic rate was measured using a positive pressure, flow-through 

respirometry system contained in a mobile laboratory located close (< 5 km) to the study 

grids. RMR differs from BMR only in that animals are not post-absorptive prior to 

measurements. Denying access to food can result in periods of hyper-activity in small 

mammals which is not conducive for measuring resting state expenditure (Speakman 
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2004a). Juveniles were live trapped and immediately taken to the mobile laboratory 

where they were provided with ad libitum peanut butter and an apple slice for moisture. 

Prior to a trial, individuals were weighed using a ± 0.1 g balance (Mettler PG12001 SDR) 

and sexed. Because red squirrels are diurnal, metabolic trials were initiated two hours 

following sunset so that individuals were more likely to rest. Juveniles were returned to 

their territories prior to sunrise. 

  Juveniles were placed in two liter metabolic chambers and positioned in 

environmental incubators set to a constant temperature (27 ° C) within the thermoneutral 

zone of red squirrels (Paul 1981). Each metabolic chamber rested on a motion activity 

detector that provided an index of the animal’s activity throughout the trial. Fresh air that 

had been scrubbed of CO2 and water via Ascarite© and Drierite9© respectably, was 

pumped through each chamber at a constant rate of 700 ml/min. Ex-current air from each 

chamber was sub-sampled at 200 ml/min, scrubbed of CO2 and moisture, and sent to an 

oxygen analyzer (Sable Systems, Oxzilla-II, Henderson, Nevada, U.S.A.). A 

computerized data acquisition system (Sable Systems, RM8 Intelligent Multiplexer) was 

used to baseline the oxygen analyzer with fresh scrubbed air at the beginning and end of 

the trial and at 15 min intervals throughout the trial. Oxygen concentrations from the 

chambers were measured at pre-determined intervals and intermittently compared to the 

baseline. Digital signals from the oxygen analyzer were stored and analyzed using 

Expedata 1.0.18 data management software by Sable systems. Trial runs were corrected 

for equipment drift and subsequently RMR was calculated using the lowest level of 

oxygen consumption recorded for a minimum of 5 min during a 2-3 hr run. In autumn 
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2007, juveniles were measured for RMR prior to food supplementation and again during 

supplementation in spring 2008.  

Daily energy expenditure 

The daily energy expenditure (DEE) of a subset of individuals was determined 

using the doubly-labelled water method (Butler et al. 2004). This method has been widely 

validated in small mammals including small rodents (e.g. Speakman and Krol 2005) and 

provides an estimate across individuals with a mean accuracy of about 4% (validations 

reviewed in Speakman 1997). This involved capturing, weighing, and intraperitoneally 

injecting 0.5 ml of doubly labeled water (10% APE enriched 18O water [Enritech, 

Rehovot, Israel] and 99% APE enriched 2H water [MSD Isotopes, Pointe-Claire, Quebec, 

Canada] mixed in a ratio of 20:1). Following injection, juveniles were left in the trap for 

60 min to allow equilibration of isotopes (Krol and Speakman 1999) and then bled via a 

clipped toenail to obtain an initial blood sample for isotope analysis. Blood samples were 

obtained from unlabelled individuals to estimate the background isotope enrichments of 

2H and 18O (Speakman and Racey 1987 – method C). Juveniles were recaptured, 

weighed, and bled again 48-72 hrs following the initial blood sample.  Measurement 

intervals spanning multiples of 24h minimize the large day to day variation in DEE 

(Speakman et al. 1994; Berteaux et al. 1996). Recaptures were timed to minimize 

deviations from 24h intervals (Speakman and Racey, 1988). For analysis, the average 

mass of squirrels was obtained with a Pesola balance (Pesola AG, Switzerland) at the 

initial and final blood samples. Capillaries that contained the blood samples were then 

vacuum distilled (Nagy 1983), and water from the resulting distillate was used to produce 
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CO2 and H2 (methods in Speakman et al. 1990 for CO2 and Krol et al. 2007 for H2). The 

isotope ratios 18O: 16O and 2H: 1H were analysed using gas source isotope ratio mass 

spectrometry (Isoprime for hydrogen and Isochrom μG for oxygen, both machines by 

Micromass, Manchester, UK). Isotope enrichment were converted to values of daily 

energy expenditure using a single pool model as recommended for this size of animal by 

Speakman (1993). There are several alternative approaches for the treatment of 

evaporative water loss in the calculation (Visser and Schekkermann 1999). We chose the 

assumption of a fixed evaporation of 25% of the water flux (equation 7.17: Speakman 

1997) which has been established to minimize error in a range of conditions (Visser & 

Schekkerman 1999; van Trigt et al. 2002). We converted CO2 production to DEE 

(kJ/day) assuming RQ = 0.85.  

Estimating number of cones in middens 

The majority of cones remaining on trees were open by September 29th while the 

first major snow fall occurred on October 1st. A noticeable decline in red squirrel 

hoarding activity was noted during this time. I estimated the number of cones hoarded in 

middens by quadrat sampling using a 70 x 70 cm plot. Most juveniles had one midden in 

their territory. If more than one midden was present both were sampled and an average 

taken from the two final values. The sampling area on a midden was selected based on 

visual cues of repeated and recent use by the midden owner. Such cues included fresh 

diggings, new cones on the surface or within holes, fresh shed bracts from recently 

consumed cones, and well-used trails. Additionally, due to repeated behavioural 

observations of midden owners throughout the study, I was familiar with preferred 

hoarding areas. The approximate mid-point of the sampling area was marked by the 
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cross-section of two pieces of 1.8 m long rope placed across the longest width and length 

of the midden. This pattern formed four sampling quadrats. Within each quadrat I sub-

sampled four locations, generating 16 samples plots per territory. In each quadrat, the 

first plot was placed closest to the cross-section at 15.5 cm from each rope; the second 

plot was placed 30.5 cm away from the first plot, and 15.5 cm from the upper rope. The 

last two plots were similarly spaced beneath the upper two plots. It was noticed that red 

squirrels tended to hoard cones in clumps beneath woody debris or beneath the surface in 

holes. Less often, cones were buried singly beneath the surface. In each plot, I 

enumerated cones that were visible on the surface and buried within ~ 13 cm of the 

surface. Cones that were hoarded in holes were removed as much as possible without 

damaging structural integrity. I was confidently able to remove the majority of cones 

hoarded in holes ranging in depth from ~ 7 cm and ~ 35 cm. It is possible that cones 

hoarded beyond arms’ length were missed. Following enumeration, cones were replaced. 

The average number of cones per square meter on a midden was calculated by summing 

the number of cones for each plot and dividing by the area sampled to arrive at a single 

value (hereafter referred to as hoarded cone estimate (HCE)). 

STATISTICAL ANALYSIS 

Repeatability of Body Mass and RMR 

Repeatability of body mass and RMR was evaluated across three different 

intervals: during the autumn hoarding season (August 12th - October 1st, 2007), across 

seasons (August/September, 2007 – March, 2008), and during spring (March, 2008). The 

autumn and spring repeatability periods are referred to as short-term repeatability and the 
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across season period as long-term repeatability. In addition, long-term repeatability was 

measured before and after food-supplementing a subset of individuals. The average 

number of days between measurements was approximately 24 for short-term 

repeatability, while the average for long-term repeatability was approximetly192 (Table 

2-1). Two successive measurements of RMR were obtained on 26 individuals during the 

autumn hoarding period. Four individuals were excluded from analyses either due to 

restlessness (n = 2) or to equipment malfunction (n = 2). In spring, repeated 

measurements were successfully attained for 12 yearlings. Because of the possible 

confounding effects of pregnancy on the repeatability of RMR, pregnant females were 

not measured in March. Of the 32 food-supplemented and 53 control individuals 

measured for RMR in autumn, 25 and 29 respectively were alive in March. For 

repeatability measurements across season, successive measurements were obtained on 16 

food supplemented and 27 control individuals.  

All variables were tested for normality using Shapiro-Wilk tests. Juvenile body 

mass measurements were those taken from a digital scale prior to a metabolic trial. Since 

body mass typically accounts for a portion of the observed variation in metabolism, it is 

necessary to incorporate measures of body mass when calculating the repeatability of 

metabolic rates. The residuals of the simple regression of mass on RMR in each season 

and across seasons were used to calculate the repeatability of mass-residual RMR 

(hereafter known as residual RMR). Repeatability of mass and residual RMR was 

calculated using Pearson’s product-moment correlation coefficient (r), which assesses the 

consistency of a trait relative to mean of all measures (van Berkum et al. 1989, Speakman 

et al.1994, Hayes and Chappell 1990, Garland 1994, Chappell et al. 1995). Pearson’s 
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correlation coefficient is more appropriate than the intraclass correlation coefficient (ICC; 

Sokal and Rholf 1981, Lessells and Boag 1987) for calculating the repeatability of traits 

in growing organisms, as the ICC is sensitive to changes in the means of repeated 

measures (Hayes and Jenkins 1997). Due to the allometric relationship between RMR and 

mass, metabolic data were log-transformed prior to analyses (McNab 2002). A paired t-

test was used to verify whether juveniles gained mass between autumn and spring and a 

repeated measures ANCOVA with mass as a covariate, was used to test for changes in 

RMR between seasons. 

Overwinter survival 

Overwinter survival was assessed by a grid-wide population census performed in 

March 2008 (McAdam et al. 2007). Complete enumeration of the study population 

coupled with the limited dispersal distances of red squirrels provides a robust and reliable 

measure of survival (Larsen and Boutin 1994, McAdam et al. 2007). Population censuses 

were again performed in May and August of the same calendar year and all juveniles that 

were not trapped in March were also not trapped in May or August. Twenty-five 

juveniles survived the winter and maintained ownership of their original territory. Four 

additional survivors changed territories and so were excluded from analyses, as I was 

interested in RMR in relation to the number of cones originally hoarded. Univariate and 

multiple logistic regression was used to test the effect of RMR and DEE on overwinter 

survival. For presentation purposes, figures are presented as the relationship between the 

variable of interest and residual RMR. There were fewer individuals with measures of 

both DEE and RMR than for measures of RMR alone, and thus a separate model was 
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performed using solely RMR so as to maximize power of detecting an effect of RMR on 

survival. Additional explanatory variables included in the full models were: mass, sex, 

study grid, and corresponding interaction terms. Backwards stepwise model selection was 

used to select the final, most parsimonious model. A deviance Chi-square test provided 

an index of the goodness-of-fit between nested models (Zar 1999). Due to adverse winter 

weather conditions shortly after the end of the hoarding season, it was not possible to 

obtain an estimate of hoarded cones for every midden for which we also had metabolic 

measurements; resulting in a reduced sample size for models with the estimated number 

of comes hoarded as a predictor (18 estimates for survivors, 17 for non-survivors). 

Performance of a Shapiro-Wilk test indicated that HCE data significantly differed from a 

normal distribution (W = 0.6103, p < 0.001), but was normalized by a log transformation. 

All analyses were performed in R (R Development Core Team 2006).  

RESULTS 

Repeatability of body mass 

Juveniles that survived overwinter gained on average 30.6 g between autumn (203 

± 14.2 g) and spring (242.9g ± 18.737 g). Body mass was repeatable during the short-

term in autumn (r29 = 0.73, p < 0.001) and spring (r27 = 0.94, p < 0.001), as well as during 

the long-term across seasons (r25 = 0.73, p < 0.001) (Table 2-1).    

Repeatability of resting metabolic rate 

There was a significant positive relationship between RMR and body mass in 

autumn (control; r53 = 0.73, p < 0.001, food-supplemented; r30 = 0.59, p < 0.001) and a 
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weaker but significant relationship in spring (control; r27 = 0.39, p = 0.034, food-

supplemented; r21 = 0.48, p = 0.019) (Table 2-1). Repeatability of residual RMR was 

significant during autumn (r20 = 0.83, p < 0.001, Fig. 2-1a) and spring (r8 = 0.88, p < 

0.001, Fig. 2-1b), but not over the long-term across seasons (r25 = 0.098, p = 0.63) (Table 

2-1). However, when males and females were considered separately, residual RMR was 

repeatable over the long-term for females (r10 = 0.72, p = 0.008, Fig. 2-1c) but not for 

males (r13 = -0.02, p = 0.99) (Table 2-1). Similarly, in the food-supplemented group, 

residual RMR was not repeatable across seasons for both sexes combined, but female 

residual RMR was repeatable (r10 = 0.62, p = 0.031, Table 2-1).  

Values of whole-animal RMR were significantly higher in autumn (control; 

426.96 ± 52.89 ml O2  h-1, food-supplemented; 465.12 ± 40.20 ml O2  h-1) than in spring 

(control; 368.42 ± 39.43 ml O2  h-1, food-supplemented; 436.42 ± 52.77 ml O2  h-1) 

(control; t80 = -2.66, p = 0.01, food-supplemented; t22 = -2.70, p = 0.01). This was also the 

case once differences in body mass were taken into account (control; F2,78 = 25.62, p < 

0.001, food-supplemented F2,52= 714.16, p < 0.001). Moreover, food supplemented 

squirrels had significantly higher RMR and residual RMR in spring compared to 

unsupplemented squirrels (t50 = -5.24, p < 0.001, F2, 49 = 33.496, p < 0.001).  

Overwinter survival    

Resting metabolic rate  

The final selected multiple logistic regression model identified juvenile RMR (p = 

0.004) and body mass (p < 0.001) as significant predictors of overwinter survival (Fig. 2-

2, Table 2-2). The model yielded an AUC (area under ROC curve) of 0.84, signifying 
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good predictive ability for cases chosen a random within the bounds of the dataset 

(Hosmer and Lemeshow 2000).  Based on the odds ratio adjusted for body mass (Table 2-

2), a juvenile occupying the 25th percentile of RMR was 5.5 times more likely to survive 

overwinter than a juvenile occupying the 75th percentile. The odds ratio for body mass 

adjusted for RMR indicates that a juvenile occupying the 75th percentile for adjusted 

body mass was 13.5 times more likely to survive overwinter than a juvenile occupying 

the 25th percentile. Individuals that survived overwinter did not have significantly higher 

or lower whole-animal RMRs in the previous autumn (non-survivors; 413 ± 56.06 g, 

survivors; 417.60 ± 40.19 g, t47 = -.028, p = 0.77). Thus, larger, older squirrels were more 

likely to survive overwinter and for any given mass, possessing a lower RMR increased 

the probability of survival (Fig. 2-2a).  

Daily energy expenditure  

Daily energy expenditure was successfully measured in 37 individuals from two 

control grids. Two of the collected values were identified as influential outliers (Cook’s 

distance plots) and were thus excluded from analyses. Incorporating DEE into a multiple 

logistic regression model for overwinter survival with RMR, body mass, juvenile sex, and 

study grid as additional predictors, did not significantly improve the fit of the model 

(Deviance Chi-squared test, p = 0.76). Despite a smaller sample size, RMR (p = 0.008) 

and body mass (p = 0.004) were again retained as predictors in the final selected model.  

Cones hoarded 

I obtained HCEs for 39 individuals in autumn 2007. In a multiple logistic 

regression with RMR, body mass, sex and grid as additional predictors, HCE (p = 0.008) 

was identified as the sole variable in the final model (Table 2-2). An odds ratio of 2.48 
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for HCE indicated that a juvenile belonging to the 75th percentile was 10 times more 

likely to survive overwinter than an individual in the 25th percentile. Because the results 

of previous analyses had consistently identified RMR to be a significant predictor of 

overwinter survival, once differences in mass were accounted for, I suspected that 

multicollinearity may have been a factor in interpreting models including both mass-

corrected RMR and HCE. Indeed, further exploration revealed that once variation due to 

body mass was considered, RMR was negatively correlated with HCE (r33 = -0.45, p = 

0.013, CI:  -0.74 - -0.20, Fig. 2-4). No significant relationship was found between HCE 

and autumn body mass (r33 = 0.12, p = 0.09). 

Relationship between energy expenditure and cones hoarded 

            There was no significant relationship between HCE and DEE (r22 = 0.33, p = 

0.12) or between HCE and residual DEE (r22 = 0.18, p = 0.39). There was also no 

significant relationship between HCE and RMR (r33 = -0.18, p = 0.92). As previously 

noted, a significant inverse relationship was found between residual RMR and HCE. 

RMR and DEE were not significantly correlated (r30 = 0.24, p = 0.15), as was also the 

case when variation due to mass was considered (r30 = 0.013, p = 0.93).  

             DEE, represented as a multiple of RMR (factorial metabolic scope: DEE/RMR), 

averaged 1.7 ± 0.29. There was a significant negative relationship between factorial 

metabolic scope and RMR (r32 = -0.60, p < 0.001, CI: - 0.78 - 0.34) as well as with 

residual RMR (r32 = -0.46, p = 0.004, CI: - 0.68 - 0.16). Thus a low RMR/residual RMR 

consisted of a lower proportion of total DEE, possibly allowing for more energy to be 

invested into non-maintenance activities. Subtracting RMR from DEE provided a 
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measure of the energy available for work or thermoregulation (absolute metabolic scope). 

For unsupplemented juveniles in autumn, absolute metabolic scope averaged 129.44 ± 

46.65 kJ/day and was inversely related to residual RMR (r33 = -0.43, p = 0.013, CI: -0.67 

- -.09, Fig. 2-3). Mass-corrected absolute metabolic scope was also inversely related to 

residual RMR (r33 = -0.54, p < 0.001, CI: -0.74 - -0.26). Thus, juveniles with lower RMR 

for their body mass had more energy available to potentially allocate to mechanical work. 

Despite this, a significant relationship was not found between energy available for work 

and HCE (r26 = 0.15 p = 0.43, Fig. 2-5). 

DISCUSSION 

Repeatability of body mass and RMR in juvenile red squirrels 

Residual RMR and body mass are repeatable traits in juvenile red squirrels. 

Residual RMR remained repeatable in juveniles that had been food supplemented 

throughout winter. This suggests that differences in food availability minimally influence 

individual metabolic rankings and provides additional confidence that differences in 

metabolic values may have a genetic basis.  

The majority of studies on the repeatability of metabolic traits have focused on 

adult organisms (Nespolo and Franco 2007). However, in many species, juveniles 

experience important selection events that strongly influence future population dynamics 

(McAdam et al. 2007). I am aware of only one other study on the repeatability of residual 

RMR across ontogenetic stages. Lu et al. (2007) found that in Brandt’s voles (Microtus 

brandti) residual RMR was not repeatable between juvenile and adult stages. Similarly, 

studies on the repeatability of MMR in red jungle fowl (Gallus gallus) and Belding’s 

ground squirrels (Spermophilus beldingi) report significant repeatability in adults over 
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long periods but not between juvenile and adult stages (Chappell and Bachman 1995, 

Chappell et al. 1996, 1999). In this study, the finding of significant repeatability in non-

reproductive females, but not in reproductively active males suggests that the initiation of 

reproduction may be associated with a reordering of individual metabolic rankings. If this 

is the case, juvenile measurements of males cannot be used to predict the residual RMR 

of reproductive adults in red squirrels. Determining when RMR is repeatable and over 

what time period will allow for an improved definition of the trait itself. A better 

understanding of the effect of ontogeny on metabolic phenotypes is required to determine 

what processes are responsible for the lack of repeatability across these ontogenetic 

stages.  

The primary goal of this study was to assess the influence of autumn RMR on 

overwinter survival, thus long-term repeatability estimates are of direct interest. Although 

residual RMR in males was not repeatable across seasons, it is possible that it remained 

repeatable prior to male reproductive maturation. If so, selection during this period could 

have acted on predictable rankings of RMR values. However, consecutive measurements 

of RMR were not collected throughout winter and thus it is not certain at what point male 

RMR rankings could no longer be predicted from autumn measurements. Despite this, the 

significant influence of residual RMR on overwinter survival, regardless of sex, suggests 

that selection events occurred prior to the reduction of repeatability estimates. 

RMR and overwinter survival 

Juvenile red squirrels were more likely to survive overwinter if they possessed in 

autumn a higher than average body mass and a comparatively low RMR for their body 
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mass. This accounts for why whole-animal RMR did not differ between survivors and 

non-survivors, although survivors were heavier than non-survivors and there was a 

significant positive relationship between body mass and whole-animal RMR. I am aware 

of only two studies that have investigated the association between RMR and survival. 

Jackson et al. (2001) found that short-tailed field voles (Microtus agrestis) were more 

likely to survive overwinter if they possessed higher residual RMRs. However, 

interpretation of this result is compromised as emigration of animals from the study area 

was not considered. Recently, Boratynski and Koteja (2009) manufactured an island 

population of bank voles to assess the importance of BMR and MMR for survival over 

two years while nearly eliminating the confounding influence of emigration. Although no 

consistent associations were found within seasons, the presence of stabilizing selection on 

male MMR was detected over breeding seasons, suggesting that both extremes of the 

MMR continuum incurred fitness costs.  

Potential energetic explanations for why juvenile red squirrels with low RMRs for 

their body mass had higher survival than those with high RMRs for their mass must 

consider that survivors and non-survivors did not differ in whole-animal RMR. Although 

survivors and non-survivors would have thus had similar total energy requirements in a 

thermal neutral environment with constant access to resources, survivors tended to be 

larger than other individuals with similar metabolic rates and have lower metabolic rates 

than other individuals with a similar body mass. These combined size and metabolic 

differences may offer relative advantages in energy acquisition (e.g. larger gut surface 

area per unit resource requirement) and conservation (e.g. lower conductance and greater 

thermal inertia per unit resource requirement) in thermally challenging and resource 
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limited environments. Kluane red squirrels rarely hoard enough cones to support 

metabolic requirements much higher than RMR throughout winter (Fletcher and 

Humphries unpublished data), despite prevailing environmental conditions that are 

routinely 35oC below their lower critical body temperature (Humphries et al. 2005). 

Survival is possible only by spending most of the time in well-insulated nest and 

minimizing the duration and thermoregulatory costs of foraging bouts (Woods and 

Humphries unpublished data). Under these conditions, being larger than other individuals 

with a similar metabolic rate and having lower metabolic rates than individuals with a 

similar body mass may minimize total winter energy requirements as defined by required 

levels of activity and thermoregulation in addition to RMR.   

It was predicted that if possessing a high RMR enhances sustained energy 

expenditure, juveniles with a high RMRs in autumn may be enabled to invest more 

energy in hoarding activity; thus supporting the hypothesis that a high RMR enables 

greater performance capacity. However, neither whole-animal RMR and DEE or residual 

RMR and DEE were positively correlated in autumn. Moreover, the finding of a negative 

relationship between residual RMR and HCE provides support for the allocation 

hypothesis as opposed to the performance hypothesis, in that juveniles with lower 

expenditure tended to have more hoarded cones in their middens. However, although 

juveniles with lower residual RMRs also had more energy available to invest in 

mechanical work, HCE was not significantly related to energy available for work. While 

it is possible that small sample size may be partly responsible, it is suggested by figure 

(2-5) that perhaps the variable nature of measures of DEE (Berteaux et al. 2006) coupled 

with differences in individual energy budgets may also have been important. The number 
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of cones hoarded in a midden likely depends on an individual’s physiological capacity for 

work and how it invests available energy. Although two juveniles may have similar 

absolute metabolic scopes, their energy budgets may differ through disproportionate 

investment in hoarding activity or, if both invest equally, in returns for investment (i.e. 

some individuals may invest similarly in hoarding but obtain fewer cones based on 

differences in the spatial distribution of cones on a territory). In figure 2-5, four 

individuals appear to have relatively high absolute metabolic scope though relatively few 

cones hoarded. Indeed, exclusion of these points results in a significant positive 

relationship (r22 = 0.56, p = 0.004). Survivors overwinter had more cones hoarded in their 

middens and more energy available for work, suggesting that possessing a greater 

capacity for mechanical work may allow an advantage in hoarding more cones overall, 

despite differences in individual efficiency or accessibility. Thus, the survival benefits of 

a low RMR are potentially amplified through thermoregulatory advantages and through 

larger hoards, though at this time it is not possible to determine whether the relationship 

between residual RMR and HCE is causal or correlative. 

 Considering the potential fitness advantages associated with a low residual RMR, 

juveniles with high RMRs are presumably either incapable of reallocating energy from 

maintenance metabolism towards work or are unable do so without incurring fitness costs 

which nullify the benefits of reallocation. Growing mammals have high maintenance 

costs, even when variation due to thermoregulatory costs and body mass are removed 

(Wieser 1994). For red squirrel juveniles, increasing an already high RMR to 

accommodate the energy required to increase investment in hoarding activity may not be 

physiologically feasible or optimal if digestive organs are operating near or at maximum 
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assimilation capacity to optimize growth (Hammond and Diamond 1997). A remaining 

option would be to reallocate energy away from maintenance metabolism towards work, 

but this would require diverting energy away from growth processes. Subsequently, 

juveniles may be constrained in their ability to alter energy expenditure to optimize both 

growth and work demands, compared to adults. Indeed, RMR accounted for 60% of 

autumn DEE, which is a notable proportion compared to an average range of 30-40% of 

total energy demand (Drent and Daan 1980, Speakman 2000).  

Hammond and Diamond (1997) suggested that there is an upper sustained 

metabolic scope that animals can sustain over extended periods. Based on a report of 50 

vertebrate species with the highest metabolic scope, the average scope was 3 (Hammond 

and Diamond 1997). Previously collected measurements of DEE in hoarding adults in 

this population were 3.8 times RMR (Fletcher and Humphries unpublished data), 

signifying that individuals are working close to proposed physiological maximums. 

Surprisingly, juvenile scope in autumn is almost half that of adults (1.7). Similarly, 

Chappell and Bachman (1995) found that juvenile Belding’s ground squirrels had 

significantly smaller metabolic scopes than adults. This suggests either that juveniles are 

characterized by a lower average DEE or by a combination of a low DEE and high RMR. 

A small sample of RMR measurements from juvenile (n = 10) and adult (n = 11) Kluane 

red squirrels, collected following the 2006 hoarding season (mid-October), lends support 

to the latter hypothesis in that juveniles had significantly higher residual RMRs compared 

to adults (ANCOVA, F2,18 = 6.28, p = 0.02), though values of post-hoarding RMRs were 

lower compared to 2007 hoarding measurements. While small sample sizes prevent 
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confident conclusions as of yet, the continuation of this work will result in a better 

understanding as to how the expenditure profiles of juveniles may differ from adults. 

 The persistence of a high-low continuum of metabolic rates in endotherm 

populations suggests that a single best strategy does not apply. Though no benefits of a 

high RMR were identified, it is possible that these phenotypes are retained in years when 

resources are abundant and consequently survivorship is high (McAdam and Boutin 

2003). In this study system, the white spruce cone crop resource fluctuates in abundance 

over three orders of magnitude. High cone production occurs every three to four years, 

with limited cone production in intervening years (McAdam and Boutin 2003). Cone 

production was low in 2007 and thus supported an environment in which differences in 

individual energy expenditure might conceivably influence overwinter survival 

(Lamontagne 2007). By contrast, in high food years, the disadvantages of possessing a 

high residual RMR would be moderated, as resource levels would be sufficient to permit 

the persistence of individuals with higher metabolic rates. It is also important to consider 

that a high RMR in an adult squirrel may not pose the same costs to fitness as in a 

juvenile. Theoretically, such a situation could arise from a change in the direction of the 

relationship between RMR and absolute metabolic scope during ontogeny, due perhaps to 

the alleviation of growth related constraints on expenditure. Even so, studies attempting 

to link a high residual RMR to greater reproductive success have been unproductive, thus 

it is not clear how a high RMR may be favourably selected either in juveniles or adults 

(Johnston et al. 2007). Although, there is some evidence of a link between a high RMR 

and the reduced production of harmful free-radicals (Brand 2000, Echtay et al. 2002, 

Speakman et al. 2004b).  
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Concluding remarks 

Studies of individual variation in metabolic rates are necessary for determining 

the extent to which traits are under selection. Exploring how environmental factors and 

physiological mechanisms affect the consistency of individual differences will permit a 

better understanding of whether inter-specific variation in metabolic traits is primarily the 

result of genetic adaptation or of plastic responses to environmental heterogeneity 

(McKennie et al. 2006). The use of repeatability estimates provides relatively rapid way 

to determine a trait’s likelihood to respond to selection. However, without emphasis on 

the fitness consequences of individual variation it is difficult to discuss the biological 

significance of the trait in question. I have demonstrated that red squirrels express 

consistent inter-individual differences in residual RMR that are not especially affected by 

physiological acclimatization to seasonal changes or changes in food supply. These 

findings suggest a strong potential for heritability of juvenile RMR. This is one of first 

studies to find an association between RMR and survival, moreover during a period 

previously demonstrated as important to future population dynamics of the study species 

(McAdam et al. 2007).  
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Table 2-1. Repeatability estimates for body mass and residual RMR over short and long-

term time periods, including repeatability of residual RMR before and after food-

supplementation (Food). Repeatability is estimated as Pearson’s product moment 

correlation coefficient (r).  

 

 

   Variable         Term Sex  Period (days) n   r  t             P>|t|                 95% CI 

Body mass (g) 
 Short-term autumn  Both 25.01±9.2       31 0.73      5.719       < 0.001           0.49 – 0.86      
 Short-term spring Both 23.30±3.0       11 0.94      8.389       < 0.001           0.78 – 0.98 
 Long-term Both 192.20±9.5 27 0.73      5.373       < 0.001           0.48 – 0.87 
Residual RMR (ml O2  h-1) 
 Short-term autumn Both 25.01±9.2       22 0.77      5.380       < 0.001           0.51 – 0.90 
 Short-term spring Both 23.30±3.0       11 0.77 4.127    0.004           0.34 – 0.94 
 Long-term Both 192.20±9.5 27 0.09      0.494          0.626                   - 
 Long-term Male 195.34±9.8 15 -0.00    -0.010         0.916                   - 
 Long-term Female 192.10±9.6 12 0.72      3.273          0.008           0.24 – 0.91 
 Long-term (Food) Female 193.92±10.5 12 0.62 2.4991    0.032           0.07 – 0.88 

 
 
 
Table 2-2. Finalized* multiple logistic regression models, with overwinter survival as the 

dependent variable (n = 49). The second model contains hoarded cone estimate (HCE) as 

a predictor (n =35). 

* Initial models also included as predictor variables: study grid, sex, and corresponding 

interaction terms. These variables were removed during stepwise backwards elimination 

model selection with p > 0.05 using a deviance Chi-square test of fit. 

Variable Coeff.  SE          z P>|z| Odds Ratio 95% CI for odds ratio 

RMR - 0.03 0.01 -2.82   0.004 0.96 0.94-0.98 
Body mass   0.09 0.03  3.35 < 0.001 1.10 1.05 -1.17 
Constant       - 6.89 3.46 -1.99   0.046 - - 
Log (HCE) 0.911 0.34  2.64 0.008  2.48 1.32-6.24 
Constant -13.59 6.25 -2.18 0.029  - - 
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Figure 2-1. Repeatability of residual RMR estimated as Pearson’s product moment 

correlation calculated for (a) autumn 2007, (b) spring 2008 and, (c) from 

August/September 2007 – March 2008 (long-term) for females only. 
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Figure 2-2. (a) ANCOVA scatter-plot for the relationship between the log of RMR and 

the log of body mass for individuals that survived overwinter (filled diamonds) and those 

that did not (unfilled diamonds). Symbols along axes refer to mean values for survivors 

(filled) and non-survivors (unfilled). For any given mass, individuals that survived had on 

average lower RMRs than those that did not survive. Figures (b) and (c) represent the 

relationship between probability of survival of juvenile red squirrels in relation to autumn 

residual RMR (calculated from the regression of RMR on body mass and transformed by 

adding two to each residual in order to fit a logistic curve) and body mass respectively. 
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Figure 2-3. Relationship between absolute metabolic scope (kJ/day) and RMR (kJ/day) 

for juvenile red squirrels in autumn.  
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Figure 2-4.  Relationship between residual RMR and log of the average number of cones 

hoarded on an individual’s midden (cone estimate). 
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Figure 2-5.  Relationship between absolute metabolic scope and log of the average 

number of cones hoarded on an individual’s midden (cone estimate). 
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CHAPTER III: EFFECTS OF FOOD SUPPLEMENTATION ON RESTING 
METABOLIC RATE AND BODY MASS OF YEARLING RED SQUIRRELS AT 
THE ONSET OF THE BREEDING SEASON 

INTRODUCTION  
 

For ecological and physiological ecologists interested in the maintenance of 

metabolic variation among species, consideration of the phenotypic flexibility of 

metabolic traits is required, as traits are not fixed through time or within individuals 

(Speakman et al. 2004). Phenotypic flexibility refers to reversible changes in a trait due to 

changes in intrinsic or extrinsic conditions (Piersma and Drent 2003). As a physiological 

trait, resting metabolic rate (RMR) exhibits high phenotypic flexibility while also 

displaying consistent inter-individual variation (repeatability) (Chapter 1 of this thesis, 

Nespolo et al. 2008). Phenotypic flexibility in RMR has been documented in birds 

(Piersma et al. 1996, Broggi et al. 2004, McKennie et al.2006, 2007, McKennie 2008, 

Tieleman et al. 2003) and mammals (Lovegrove 2005, Naya et al. 2008) and is an 

important component of seasonal acclimatization and short-term acclimation to changes 

in ambient temperatures, resource levels and physiological status (McKennie 2008). One 

potential instigator of phenotypic change in RMR is food availability (Lalonde 1991, 

Moe et al. 2005). Small vertebrates are limited in the extent that their body reserves can 

supply energy demands for extended, energetically expensive activities (Kenagy et al. 

1989, Oftedal 2000, Speakman and Krol 2005). By increasing the size and proficiency of 

relevant digestive organs, it is possible for animals to increase the rate of food ingestion 

without compromising processing and assimilation rates (Speakman 2008). However, 

such organ remodeling often necessitates an increase in RMR, as larger organs are 

53 



energetically more expensive to maintain (McBride and Kelly 1990, Alexander 1999, 

Wang et al. 2001, Naya et al. 2008).  

The availability and quality of food resources within an environment as well as an 

animal’s current physiological state influences the magnitude and direction of energy 

expenditure and how animals balance investment in survival, growth, and reproduction 

(Veloso and Bozinovic 2000, Mueller and Diamond 2001, Speakman 2008, Tieleman et 

al. 2008). An increase in food ingestion or in the mobilization of body reserves is 

necessary during energetically demanding life-history events such as reproduction 

(Kenagy et al. 1989). Animals facing large energy deficits can experience physiological 

consequences that often compromise fitness (Lima and Dill 1990, Daan et al. 1996, Naya 

et al. 2008). Reallocation of energy away from maintenance metabolism towards other 

activities may reduce consumption needs, but can compromise somatic repair processes, 

and increase damage related to oxidative stress (Wiersma et al. 2004, Wiersma and 

Verhulst 2005, Alonso-Alvarez et al. 2006). Consequently, a life-history trade-off exists 

between the degree of energetic investment in an activity and the ability to of an 

organism to compensate for high energetic overheads associated with increases in 

expenditure. High food-availability could facilitate greater investment in fitness related 

activities, while compensating for associated higher maintenance costs.  In support of 

this, species of Peromyscus mice living in environments with high net primary 

productivity are characterized by both higher RMRs and daily energy expenditures (DEE) 

compared to those in poorer environments (Muellar and Diamond 2001).  Speakman et al. 

(2003) found that reproductive free-living field voles (Microtus agrestis) in high quality 
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habitats had higher RMRs and DEE than voles from poorer quality habitats during the 

reproductive season, whereas the opposite was true during the off-season in winter.  

Despite a hypothesized link between energy expenditure and food availability; 

few studies have investigated this relationship. Laboratory food restriction experiments 

generally report reductions in RMR, suggesting that animals down-regulate expenditure 

to reduce energy costs when conditions are not ideal (Moe et al. 2005, Wiersma et al. 

2005, Kristan and Hammond 2006). Field studies that address the effects of food 

availability on metabolic rate report equivocal findings. A study on free-ranging, black 

legged kittywakes (Rissa tridactyla) found that supplemented birds raising dependent 

young increase body mass and reproductive output, but decrease daily energy expenditure 

(DEE) (Jodice et al. 2002). In contrast, the same authors later found that kittiwakes 

increase DEE in response to naturally high food availability during the chick rearing 

period (Jodice et al. 2006). I am unaware of any study on the response of RMR to food 

variability in free-living mammals. Food-supplementation experiments on free-living 

organisms could provide a useful approach to explore how individuals respond 

metabolically to high-food conditions (Boutin 1990). 

I compared resting metabolic rate and body mass in food supplemented and 

natural populations of yearling North American red squirrels at the beginning of the 

reproductive season. Being smaller and less experienced than adults, yearlings are likely 

to benefit from an increase in food-availability (Clutton-Brock and Albon 1985, Duquette 

and Millar 1995). An increase in RMR in females may enable weight gain and improve 

the probability of entering estrous (Wauters and Dhondt 1989, Becker et al. 1998). In 

males, the pursuit of estrus females during spring mating chases requires sustained 
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physical effort which may be facilitated by increasing RMR and body reserves (Smith 

1968, Lair 1985). I predicted that RMR and body mass would be higher in pre-estrous 

yearling females and yearling males exposed to ad libitum food. Alternately, RMR may 

be lower in supplemented individuals if yearlings in low food conditions are forced to 

maintain higher expenditures (Speakman et al. 2003, Thomas et al. 2001). A reduction in 

RMR in supplemented yearlings may thus reflect the alleviation of forced workloads, 

allowing leftover energy to be allocated towards reproduction. With these hypotheses I 

investigate whether red squirrels respond to high food availability by increasing 

maintenance expenditure or whether low food conditions force higher expenditures, such 

that when conditions are favourable individuals reduce expenditure (alleviating effect). 

Finally, if RMR responds plastically to high food levels, I expect no apparent differences 

in RMR or body mass following the termination of supplementation.  

METERIALS AND METHODS 

Red squirrels were studied near Kluane National Park, in southwestern Yukon, 

Canada (61°N, 138°W) from March 2008 to July 2008 as part of the Kluane Red Squirrel 

Project. All squirrels were marked and monitored for survival and reproduction using 

standardized methodology (McAdam et al. 2007). Pre-estrous females and scrotal male 

yearlings were targeted for metabolic measurements on two control grids (~ 30 – 40 ha) 

and on one food supplemented grid (~ 40 ha). Pre-estrus females were chosen as to avoid 

variability in RMR potentially caused by differences in pregnancy stages. The 

reproductive activity of females was monitored from March - August 2008 according to a 

standardized protocol (McAdam 2007). In conjunction with a separate on-going study, all 

females on one control grid were fitted with VHF radio collars and located each morning 
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by telemetry to confirm whether or not they were in estrus. A female was considered to 

be in estrus if she was actively pursued by one or more courting males. Females from the 

second control grid and food supplemented grid were monitored for estrus and early 

pregnancy by frequent behavioural observations (mating chases for estrus females are 

loud, noticeable events and are easily detected) and by regular trapping to confirm 

pregnancy status through change in body mass and by palpation for the presence of 

embryos (McAdam et al. 2007).  

Two months following the termination of food supplementation (mid-June - July), 

yearlings were once again measured for RMR. Females that had produced a litter were 

captured approximately 5-10 days after having weaned offspring in order to ensure 

offspring viability during the mothers’ absence. Females that did not become pregnant 

during the breeding season were considered as “non-breeders”. As only a proportion of 

Kluane yearlings breed in their first year (Descamps et al. 2006), I additionally measured 

non-yearling males and females to increase power for detecting a difference in RMR 

between treatment grids and between breeding females and non-breeding females/males 

following the termination of food supplementation.  

Food supplementation  

 Since red squirrels defend year-round food based territories, it is possible to 

target particular individuals for food-supplementation. On the food supplemented grid, 

food addition was initiated in 2004. Since then, territory owners have annually been 

provided with ad libitum natural peanut butter by a bucket hung between two trees 

located on a territory. Supplemental food is provided each year from October until 

57 



approximately mid-May. No additional peanut butter is added after this period in an 

effort to deter attention from bears and other non-target animals living within the study 

area. Control grids consisted of two un-manipulated 30-40 ha plots. Natural food 

production on these grids was quantified by obtaining an index of the total number of 

cones (cone index) produced by select trees (LaMontagne et al. 2005). 

Flow-through respirometry 

Procedures to obtain measures of RMR in red squirrels are the same as those 

described in chapter II of this thesis.  

STATISTICAL ANALYSIS 

The 2007 cone index revealed that cone production on control grids was relatively 

low compared to visual cone indices calculated for medium cone crops and masting 

events (large scale production of high numbers of cones) in past years. Thus food levels 

on unsupplemented grids provided a good contrast to food availability on supplemented 

grids. All data were explored a priori for departure from normality using the Shapiro-

Wilk test for normality (Zar 1999). Diagnostic plots (regression of residuals, cook’s 

distance) were used to identify potential outliers in the dataset. Although, resting 

metabolic rate varies allometrically with body mass (Huxley 1932), log transforming data 

did not change statistical outcomes. Results are thus presented as untransformed values. 

Pearson’s product moment correlation coefficient was used to test the significance of the 

relationship between RMR and body mass. Analysis of variance (ANOVA) and student’s 

t-tests were used to examine differences in whole-animal RMR and body mass between 

control and supplemented grids, sexes (spring), and breeding versus non-breeding 
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females/males (summer). Analyses of covariance (ANCOVA) with mass as a covariate 

were used to test for differences in RMR once differences in mass have been corrected 

for (RMRmc). ANCOVAs were performed to test for differences between control and 

supplemented grids, sexes (spring), and between breeding females and non-breeding 

females/males (summer). Due to the reduced number of yearlings trapped in late summer, 

the same calculations were performed for a combination of yearlings and non-yearling 

squirrels to increase sample size. Significant interaction terms were tested for in each 

analysis. Post hoc tests were performed when necessary using Tukey Honestly 

Significant Differences (HSD) test. All statistical analyses were performed in R (R 

Development Core Team 2006).  

RESULTS 

Spring  

RMR - In March 2008, RMR and body mass measurements were obtained from 23 and 30 

yearlings from food supplemented grids respectively, and from 29 and 32 yearlings from 

unsupplemented grids. Body mass was positively correlated with RMR (r50 = 0.50, p < 

0.001). Data from the two control grids were pooled as there were no significant 

differences in RMR or in RMRmc (t27 = 1.49, p = 0.15, F2, 26 = 2.85, p = 0.11). 

Supplemented yearlings exhibited significantly higher RMR (F3,48 = 29.29, p < 0.001, 

Fig. 3-1, Table 3-1) and RMRmc (F3, 48 = 33.11, p < 0.001, Fig. 3-1, Table 3-1) than 

controls. There was no significant difference in RMR (F3, 48 = 1.58, p = 0.23) or RMRmc 

(F3, 48 = 1.69, p = 0.20) between sexes.  
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Body Mass - Body mass did not differ between control grids (spring: t27 = 1.44, p = 0.16), 

thus values were pooled. A two-factor ANOVA yielded a significant main effect of food 

availability (F3,58 = 9.96, p = 0.002) and sex (F3,58 = 11.25, p = 0.001). However, the 

corresponding interaction term approached significance at alpha = 0.05 (F3,58 = 3.55, p = 

0.064) and was thus explored further. Closer examination of the data (Fig. 3-2), suggested 

that the effect of food availability depended on sex, but overall, supplemented squirrels 

(252.74 ± 17.87 g) were larger than controls (239.43 ± 18.60 g), and males (252.51 ± 

18.50 g) tended to be larger than females (238.78 ± 17.88 g). A single factor ANOVA 

revealed significant differences in mean body mass for the four treatment-sex 

combinations (F3,58 = 5.23, p = 0.001) and a post-hoc test confirmed that average body 

mass was significantly greater for supplemented males (263.92 ± 14.21 g) compared to 

supplemented females (241.56 ± 16.89 g, adjusted p = 0.0023), control females (236.01 ± 

18.21 g, adjusted p < 0.001), and control males (242.45 ± 15.12 g, adjusted p = 0.003). 

Remaining categories did not differ significantly from one another (Fig. 3-2). Low 

sample size for each treatment-sex combination may have resulted in reduced ability to 

detect a statistically significant interaction term. 

Summer  

RMR - RMR measurements were obtained on 20 supplemented yearlings and 17 

unsupplemented yearlings. Body mass was positively correlated with RMR (r35 = 0.37, p 

< 0.023). Two months following the removal of supplemental food, RMR (t14 = 1.89, p = 

0.081) and RMRmc (F2,13 = 3.56, p = 0.09) did not differ significantly between control 

grids (Table 3-2). No difference in RMRmc was detected between food supplemented and 
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control grids, although the main effect of breeding type (breeding female, non-breeding 

female, male) was significant (F4,32 = 4.41, p = 0.02, Table 3-2). A post hoc test revealed 

that RMRmc differed significantly between breeding females and non-breeding females 

(adjusted p = 0.043), while no difference was detected between breeding females and 

males (adjusted p = 0.09) or between males and non-breeding females (adjusted p = 0.8). 

Use of an extended data set which included yearlings as well as non-yearlings detected a 

stronger effect of breeding type on RMRmc: Similarly, RMR (t41 = -0.27, p = 0.78) and 

RMRmc (F2,40 = 0.093, p = 0.76) did not differ significantly between control grids and no 

difference in RMRmc was found between supplemented and control grids (F4,80 = 0.11, p = 

0.74). However, breeding status significantly influenced RMRmc (F4,80 = 7.268, p < 0.001) 

and a post hoc test revealed that breeding females had significantly greater RMRmc than 

non-breeding females (adjusted p = 0.05) and males (adjusted p = 0.001). 

 

Body mass – There was no significant difference in body mass between the control grids 

(t14 = -1.41, p = 0.18). Mass did not differ significantly between supplemented and 

control yearlings (F4,32 = 2.33, p = 0.96), however the main effect of breeding status was 

significant (F2,32 = 0.026). A post hoc test revealed that males (251.23 ± 21.13 g, adjusted 

p = 0.021) were significantly larger than non-breeding females (232.4 ± 18.74 g). 

DISCUSSION 

It is well documented that increased energy demands correspond with increases in 

RMR, partly due to higher maintenance costs associated with the enlargement of 

metabolically expensive organs (Drent and Daan 1980, Speakman and McQueenie 1996, 

Hammond and Kristan 2000, Koteja 2000, Derting and Hornung 2003, Naya et al. 2008). 
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Food levels in the environment dictate the ability of an organism to attain, assimilate and 

export nutrients for investment in fitness related activities (Martin 1987, Rogowitz 1996, 

Koskela et al. 1998, Therrien et al. 2008). In this study, yearling red squirrels exposed to 

ad libitum food experienced an increase in both whole-animal RMR and RMRmc. 

Consideration of the ecology of red squirrels and the temporal availability of food within 

this system supports such a response to high food availability as opposed to an alleviation 

response, where individuals reduce costs associated with mechanical work and thereby 

reduce RMR. First, red squirrels rely on cones stored in the previous autumn to meet 

energy requirements necessary for reproduction (McAdam et al. 2007). Thus, available 

food reserves in spring are predictable and limited such that increases in foraging activity 

would provide little compensation for greater effort. Secondly, high annual variability in 

the size of autumn cone crops coupled with red squirrels being relatively long lived 

(Lamontagne and Boutin 2007, McAdam et al. 2007), suggests that expenditure should be 

maximized when adequate food reserves allow and that in low food conditions, 

individuals should mediate expenditure relative to current and future reproduction events 

(Daan et al. 1990, 1996, Deerenberg et al. 1997, Tieleman et al. 2008). In agreement with 

results of this study, Speakman et al. (2003), found that voles living in “good” quality 

habitats had higher RMRs compared to voles in “poor” habitats. However, because 

habitat quality was defined according to empirical differences in reproduction 

demographics, it is not possible to attribute these results directly to differences in food 

availability. Indeed, Speakman and colleagues recognized the need to identify extrinsic 

factors responsible for plastic changes in RMR; this study concludes that food availability 

is among them.  
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Overall, whole animal RMR was 16% greater in supplemented yearlings than in 

un-manipulated controls. Differences in RMR could have reflected an increase in the size 

of relevant organs involved in processing efficiency and/or could have resulted from 

supplemented yearlings being structurally larger than controls (i.e. greater muscle mass, 

fat deposits, larger bone structure). However, structural tissues typically contribute 

minimally to maintenance costs and thus do not provide a strong basis for the observed 

differences in metabolic rate (Rolfe and Brown 1997). Supplemented yearlings increased 

expenditure per gram of body mass by 12%, suggesting a modulation of metabolic 

intensity at a cellular level. Ronning et al. (2008), recently provided evidence that 

changes in maintenance metabolic rate during the breeding season in female black-legged 

kittiwakes were due not only to changes in organ size and body composition, but also in 

the metabolic intensity of particular organs at the cellular level. Specifically, thyroid 

hormone plasma T3 is a known determinant of individual variation in metabolic rates in 

both mammals and birds (Chastel et al. 2003). Thus, potential mechanisms underlying the 

observed increase and decrease in RMR in this study include both larger organ size and 

higher levels of molecular activity.  

It is important to note that during this study, supplemented grids were also 

characterized by higher densities of squirrels owing to higher annual juvenile recruitment 

during food supplementation (food supplemented mean density: 2.93 squirrels/ha, control 

mean density: 1.65 squirrels/ha). In this population an increase in density is coupled with 

a decrease in territory size (LaMontagne 2007). High density conditions could have 

increased the frequency of territorial behaviours and antagonistic interactions, resulting in 

higher energy expenditure (Barnett and Pankhurst 1996, Macdonald et al. 2004, Blanchet 
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et al. 2006). However, this phenomenon would have likely remained present following 

the termination of food supplementation as the number of squirrels did not decline. If an 

increase in territorial interactions was responsible for higher RMRs found in 

supplemented individuals during spring, the intensity of this factor would have been 

similar or magnified in late summer by a large number of dispersing juveniles (Berteaux 

and Boutin 2000). Thus, the positive metabolic responses of supplemented yearlings in 

spring were likely due to an increase in food-availability rather than a difference in 

density between the two treatment groups.  

Following the termination of supplemental food addition, squirrels no longer 

exhibited higher RMRs in comparison to controls, suggesting a down-regulation of RMR 

in response to a decrease in food availability. Females at this time had just weaned 

offspring and were no longer lactating, while the majority of males were no longer 

scrotal. It is possible that the lack of difference in RMR between treatment groups arose 

because of a considerable decrease in energy demands in concurrence with the end of the 

breeding season. However, results indicate that breeders maintained high RMRs 

compared to non-breeders, implying that high maintenance energy demands persisted at 

the time of measurement. Shortly after lactation, female mammals invest a large amount 

of energy in anabolic processes involved in rapid bone regeneration and in re-building 

body reserves lost during lactation (Millar et al. 2005, Speakman et al. 2008). A positive 

relationship exists between the rate of bone regeneration and RMR, suggesting that 

individuals would have benefited from a higher RMR if adequate food had been available 

to support the increase (Khomullo 1962). Moreover, superior food quality has been 

shown to increase BMR even in the non-reproductive season in degus (Octodon degus) 
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(Veloso and Bozinovic 1993). Therefore, red squirrels likely exhibit a flexible response 

to food-supplementation, characterized by an increase in RMR when food availability is 

high and a down-shift when availability decreases. 

I hypothesized that the mean body mass of supplemented yearlings would be 

greater than in controls. In spring, yearlings exhibit continued growth demands that may 

compete concurrently with reproduction (Boutin, unpublished data). In females, a small 

body mass constrains the probability of entering estrus (Becker et al. 1998), whereas in 

males, a small body mass could limit endurance capacity during mating chases and hinder 

recovery of body condition afterward. In general, food supplemented squirrels tended to 

be heavier than controls and males tended to be heavier than females. However, the body 

masses of control males, supplemented females and control females were not statistically 

different from each other, while supplemental males were significantly heavier than all 

other groups. A potential reason for this result must consider that energy demands for 

males were considerable at the time of measurement (Lane et al. 2009). Yearling males 

and older males expend more energy than mature males during the breeding season (Lane 

et al. submitted). Breeding males expand their home ranges by almost 10-fold as 

individuals search for females in or approaching estrus (Lane et al. 2009). Although male 

body mass does not covary with reproductive success in this population, increases in 

body mass could facilitate long-distance searching for estrus females by reducing the 

frequency at which an individual would have to stop to refuel, while additionally 

minimizing negative impacts on body condition over the course of the breeding season 

(Lane et al. 2009). Additionally, if the larger body mass of supplemented yearling males 

signifies reduced investment in growth, more energy may be available for investment in 
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reproduction. In this study, supplemented males were 8 % heavier than supplemented 

females, while control males were only 3 % heavier than female counterparts; suggesting 

that males on un-manipulated grids were restricted from growth by lower food 

availability. Indeed, red squirrels display slight but consistent sexual dimorphism (males 

are 5-10% heavier than females) (Boutin & Larsen 1993). One possible explanation for a 

lack of significant weight gain in supplemental females may be the presence of an 

abundant food supply. An increase in body reserves may not be necessary if food 

availability is predicted to be sufficient for the duration of the reproductive period. 

Moreover, carrying potentially heavy internal reserves may negatively affect agility and 

maneuverability (Sullivan 1990).  

There is little information about how RMR and other metabolic traits respond to 

changes in environmental temperatures, resource levels, seasonality and other potential 

inducers of change. Knowledge of how the magnitude and rapidity of a response is 

modified with respect to differences in physiological state or within different populations 

could increase our understanding of life-history trade-offs associated with constraints on 

energy allocation (McKechnie 2008). Factors such as the predictability of food, the 

degree of seasonality of an environment, whether an animal is a capital or income 

breeder, or whether an animal is a specialist or generalist will likely influence the shape 

of a species’ or populations’ reaction norm for metabolic traits. This study demonstrates 

that yearling red squirrels exhibit phenotypic flexibility in RMR in response to variation 

in food conditions and supports the hypothesis that high food availability is associated 

with greater levels of resting metabolism. 
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Table 3-1. Mean body mass and resting metabolic rate with associated sample sizes for 

supplemented and unsupplemented yearlings measured in March 2008. 

Group                                                 n          Mass (g)                  n           RMR (O2 ml-1hr-1) 

Supplemented (total) 30  252.7±19.3 23             436.42±52.77 

Female 15  241.6±16.9 12             417.85±41.53 

Male 15  263.9±13.9 11             456.65±58.01 

Unsupplemented (total) 32  239.9±17.6 29             368.42±39.93 

Female 15  236.0±18.9 12             370.57±39.48 

Male 17  242.4±18.3 17             366.91±41.38 

 
 
 
Table 3-2. Mean body mass and resting metabolic rate with associated sample sizes for 

supplemented and unsupplemented yearlings and for primiparous females and non-

breeding females (N-b) / males in summer 2008 post food supplementation. 

 

Group  n    Mass (g)   n  RMR (O2 ml-1hr-1) 

Supplemented 20  245.96±54.78  20     393.64±26.04 

Unsupplemented 17  255.59±25.80  17     402.81±54.81 

Breeding females 23  259.1±22.09  23     409.00±32.23 

N-b females/males 17  246.89±25.50  17     370.37±41.17 
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Figure 3-1. Relationship between body mass and resting metabolic rate (RMR) for food-

supplemented yearlings (unfilled diamonds) and unsupplemented yearlings (filled 

diamonds). For any given mass, supplemented individuals tended to have higher RMRs.  
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Figure 3-3. Box plot comparing body mass of supplemented males and females (Sup.) 

and control males and females (Con.). Body mass in supplemented males was 

significantly greater than in all other groups. Overall, body mass was larger in 

supplemented individuals and males. 
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GENERAL DISCUSSION AND CONCLUSIONS  

Resting metabolic rate (RMR) is the most widely measured physiological trait in 

endothermic vertebrates (McNab 2002, Cruz-Neto and Bozinovic 2004). RMR varies 

greatly at the inter-specific and intra-specific level, even when variation due to body mass 

and higher-level taxanomic affiliation is considered (Daan et al. 1990). Correlative 

studies have linked variation in RMR to a variety of biotic and abiotic factors which have 

provided insight into potential evolutionary processes responsible for the maintenance of 

variation (e.g. Mueller and Diamond 2001). However, the selective value of a trait can 

only be assessed at the individual level. As such, many questions concerning how 

organisms respond physiologically to environmental variation and the functional 

significance of individual variation in metabolic traits remain unanswered (Bozinovic 

2007). 

 The primary objective of this study was to investigate the fitness consequences of 

individual variation in RMR and body mass in juvenile North American red squirrels. 

This was accomplished by first documenting the repeatability of RMR so as to assess its 

likelihood of responding to natural selection over pre-defined short and long-term time 

intervals. I then examined whether individual differences in rates of energy expenditure 

influenced overwinter survival by considering how RMR interacted with inter-individual 

differences in overwintering food supply. A secondary objective was to examine how 

variation in food availability influenced RMR at the onset of the subsequent breeding 

season. Understanding how environmental variables affect energy expenditure provides 

an underlying basis for the study of life-history theory. Overall, this study investigates the 
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ecological and evolutionary importance of variation in RMR and provides insight into 

some underlying factors which influence intra-specific variation.  

SUMMARY OF RESULTS 

Chapter II: Both body mass and RMR were found to be repeatable traits in juvenile red 

squirrels, however long-term repeatability for RMR was dependent on an individual’s 

sex; RMR remained repeatable in pre-estrus females, but not in scrotal males. Indeed, the 

majority of physiological traits are not perfectly repeatable over longer time scales as 

they are affected by age and by environmental heterogeneity (Hayes and Jenkins 1997). It 

is possible that the lack of repeatability in males reflects a reordering of individual 

metabolic rankings associated with sexual maturation, suggesting that metabolic ranking 

may differ from juvenile to adult stages and that juvenile RMR cannot be used to predict 

adult values (Chappell and Bachman 1995, Chappell et al. 1996, 1999). 

Of the juvenile red squirrels measured in autumn, 54% survived until spring. The 

probability of a juvenile surviving overwinter was significantly related to a squirrel’s 

body mass and RMR, once differences in body mass were considered. However, despite 

being larger than non-survivors, juveniles that survived had similar whole-animal 

energetic requirements as those that did not survive. In winter, red squirrels face 

thermoregulatory trade-offs attributed to living in a severely cold environment with 

limited food availability. Although, a larger body size conveys a smaller surface-to-mass 

ratio and thus reduces heat loss (James 1970, McNab 1970), it is also associated with 

greater energy requirements both while resting and when active. Selection favouring a 

larger body size may be counterbalanced by costs associated with higher energy 

requirements. Surviving juveniles minimized total winter energy requirements as defined 
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by required levels of expenditure and thermoregulation by optimizing body mass and 

expenditure requirements. However, as I was not able to detect a benefit of possessing a 

higher RMR, it remains uncertain as to how variation in RMR is maintained within the 

Kluane population. Although it is possible that a high RMR may allow a greater 

allocation of energy towards reproduction or other fitness enhancing events, studies to 

date have failed to find a relationship between metabolic rate and correlates of 

reproductive success (e.g. Johnston et al. 2007).   

Juveniles with higher residual RMRs did not have significantly higher daily 

energy expenditure and tended to have fewer cones stored in their middens at the end of 

the hoarding season. Moreover, they had less energy available for investment in work 

related activities, such as clipping and hoarding cones. This suggests a complex interplay 

of several factors that when combined, may contribute to high juvenile mortality. Studies 

on the evolutionary importance of individual variation in physiological traits must 

consider that the advantages and disadvantages of possessing one extreme of a 

physiological trait may be heightened by a multitude of other variables that influence the 

current selective importance of that trait. For example, food availability, nest insulation 

properties, and ambient temperature are likely to influence how important an individual’s 

RMR is to overwinter survival. Red squirrel juveniles require longer food processing 

times (Larivée, unpublished data), have smaller body masses, higher residual RMR, and 

generally own smaller territories (LaMontagne 2007). During periods of low food 

abundance, it is possible that even small differences in energy savings could determine 

whether an individual survives until spring. The possibility of constraints on the 

flexibility of metabolic expenditure due to growth demands may also play a role in 
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selection acting against high rates of expenditure. For example, although RMR is 

characteristically flexible, juveniles may be constrained in their ability to either increase 

DEE or to reallocate energy away from maintenance processes without compromising 

growth.  

Chapter III: I detected an increase in both RMR and mass-corrected RMR at the onset of 

the 2008 breeding season in yearlings exposed to supplemental food throughout winter. 

This result supports the hypothesis that high food availability is associated with an 

increase in maintenance energy expenditure. Kluane red squirrels rely primarily on the 

seeds of white spruce cones which are hoarded in autumn when cone crops mature 

(McAdam et al. 2007). Because red squirrels are territorial and food is limited, increases 

in foraging effort are likely to be counterproductive. Moreover, increasing expenditure 

without sufficient compensatory resources may entail long-term fitness costs (e.g. 

Alonso-Alvarez et al. 2006). Supplemented yearlings also tended to have larger body 

masses than controls; however supplemented males were on average 8% heavier than 

control males, while the body masses of control males, supplemented females and control 

females did not differ significantly from one another. A greater body mass in males may 

facilitate searches for estrus females by improving physiological endurance and offsetting 

expenditure normally directed towards growth during the breeding season. 

FUTURE DIRECTIONS 

The popularity of intra-specific studies is increasing, mainly because this approach 

sheds light on the factors responsible for divergence in physiological traits and because 

reliable, repeatable measures of such traits can be acquired. However, a holistic approach 

should be taken in order to address questions concerning the evolution of metabolic traits. 
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Large-scale differentiation observed at the inter-specific level represents the end point of 

evolutionary processes. Although, contemporary studies at the individual level can be 

used to test hypotheses formed from higher level observations, traits may be under 

different selection processes then they were in the past. Nevertheless, valuable insight can 

be gathered by considering contemporary selection processes, including alterations to 

existing hypotheses and the formation of new ones that further the field of physiological 

ecology.   

The Kluane red squirrel project provides an ideal system with which to investigate 

inter-individual variation in physiological traits. Because it is possible to quantify spatial 

and temporal variation of the red squirrel’s primary food source, the ability to tease apart 

factors affecting the maintenance of variation in metabolic traits is greatly improved. 

Research questions considered by the KRSP will allow studies of free-living organisms to 

be compared to the more commonly performed laboratory studies. While laboratory 

studies are informative, there is a need for more field based studies which consider 

natural variation in extrinsic factors. The course of my research has led me to identify 

certain avenues of research that I believe deserve attention. 

• How does adult metabolic rate differ from that of juveniles? Does energy 

expended on growth constrain juvenile metabolic scope and the ability to 

reallocate energy away from maintenance metabolism? Under what circumstances 

will individuals compromise growth to increase short-term survival and what 

physiological costs are involved in doing so? 

• What processes are responsible for linking RMR to food stores in red squirrels? 

How does spatial variation in the distribution of food stores affect individual work 
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effort versus gain during hoarding, and does physical activity during hoarding 

reflect measures of daily energy expenditure? 

• What are the selective disadvantages and advantages of possessing a higher RMR 

versus a lower RMR?  Although this thesis provided evidence that variation in 

RMR influences survival during periods of low food availability, more research is 

required to identify alternative strategies by which selection operates to preserve 

metabolic variation within a population. Long-term studies, such as the KRSP, 

will contribute disproportionately to questions of this nature. Systems which 

experience a high degree of environmental variability within the lifetime of the 

target species should be targeted as they may be more likely to exhibit a higher 

degree of inter-individual variation rather than within individual variation.  

• What mechanism is responsible for the lack of repeatability between juvenile and 

sexually mature adult stages? 

• Is resting metabolic rate heritable in red squirrels? To what extent do maternal 

effects and developmental plasticity account for individual variation in RMR? 

• Do small mammals consistently respond to high levels of food by increasing 

metabolic rates during periods requiring high energy expenditure (e.g. 

reproduction, dispersal, food hoarding)? Do they do the same in periods of low 

activity (e.g. during winter)? 

Studies of inter-individual variation in metabolic traits offer the potential to link 

physiological ecology to other burgeoning fields such as behavioural ecology, 

evolutionary ecology and even conservation ecology. Often, researchers use energetic 

rationale to explain given behaviours or different phenomena occurring among 
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populations. However, metabolic traits are rarely measured. Explanations for the 

evolutionary importance of intra-specific variation in metabolic traits will most likely be 

generated by consideration of the population’s natural history and the formation of 

hypotheses based on life-history tradeoffs individuals may face.  
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