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‘ | ‘\ABSTRACT. |
|’ ‘ '

The propagation of transient pressure perturbations through a

viscoelastic tube containing a viscous fluid is considered~ The

/\

.dispersion equation appropriate for a viscoelastic shell theory model

4
is derived and analysed in the low to intergediate frequency regime.

An asymptotic formula {s developed for the wave number 'k in terms of
1 :

the.circulan‘frequency u. This approximation isfhniformly valid

throughout the range of interest in w and"the coefficient'of fluid

viﬁcosity u, ekcept at. the point w‘-‘O, up = 0 where the‘dependence

of “k upon w and* p. 1s nonuniform. The app{;ximate solution of ?he

dispersion equation derived here 18 used to examine tne"trsnsient !
] '

response’of.the flﬁid—filled‘tube model in two—situations: a
8

aemi-infinite tube subjected to a disturbance at its end and two

dissimilar tubes connected at a junction that are subjected to a

r

'disturbance at . one end. These boundary—value problems are posed

£ 4
the absence‘df reflections and 'to describe the reflection and f)

— ¥

transmission of an impulse at a{gunction between two tubes. The

solutions to both problems are .constructed by means of Fourier

. integrals.‘ The propagation of the pulses is depicted graphically for

.various values of the parameters that characterize the tube and the

fluid. The role of fluid viscosity is compared with that of wall

U

viscoelasticity in both the propagation and reflection of these pulses.

: Particular emphasis is placed on parameter values pertinent to impulse

—~— ) » 0

experiments sttuing wave propagation in Iarge arteries and

water-filled latex tubes. 1

« \
i
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CHAPTER X

Int roduction
T
Dass dle wichtigsten Dinge durch Rohren in der Welt , ausgerichtet

werden. , »
P G.C. Lichtenberg

In his lecture to the Royal Soclety of London on the functlon of
the heart and arteries, the physlcTan and physlcist Thomas Young

explicitly acknowledged t&q importance of mechaanlcs in investigating

)

‘the relationship between the cftculation of the bTood and 'the muscular

L4

and. elagtic powers of the heart and arteries' (Young, 1809). JYoung
sought to understand the. physical events that t ake place under normalu
conditions in the mammalian cardiovascular system, and thereby make a

contribution to Ghysiology. The large body of literature discussing

o

the mechanics of the clrculation that has accumulated since Young's

pldneering work has kept fits focus on this central problem.; A
secondary feature-of this Ilteqature:hés,been fes contribut}xn to

med;cidédchréugh the analysis of particular abnormal - or diseased states

"
«

in the hppe of improving their diagnosis'or treatment. Any approach to

v \ & ) . “ - " .
the analysis of circulatory variadbles for dlagnostic or therapeutic

_'pdfposes,‘thenw %equfreh'an15ccuré:e model of the mechanics of both g

ﬁehlthy and a diseased cardiovascular é}stem,“

Itfié Qith‘dhé,aspect*df the meigfdicé of :the circulation, that

P

of wave propagation in large arteries, that this thesis {s concerned.
e _ , ) o ‘
The gmiogt common wave encountered in the circulation is the arterial

i é

[
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pressure pulse. This wave fs excited by the pressure'dlsturbance
created as blood 1s ejected {rom the heart into the edtfance to the

aorta. The following description of the transmission of the pulse is

‘taken. from Caro et al. (1978). As blood is pumped into the entrance to

the aorta, the pressure there rises and the vessel wall is stretched.

Whenktgg rate of cardlac ejection begins to decline, the pressure falls
. ]

and the distended wall returns to its equilibrium state. The inertia

of the fluid keeps 1t moving forward after the pressure difference

3 driving the flow disappears. This causes the first section of artery

~
wall to overshoot its equilibrium position and an oscillatory motion is

set up. At the same time the next section of wall becomes distended.

As this recoils, theé fiuid driven out distends a further section of the
. LY

wall which also recoils. Thus the disturbance {s propagated along the

arterial system in the form of a pressure wave. The wall motions

associated with the pressure wave are primarily radial. Similar waves

can be excited artificlally by generating a pressure disturbance at any

location in the circulation. | ‘ . f
Presaurs waves in the large arteries, and for that matter in any

fluid-filled distensible tdbe; ove their existence to 4 balance.between
a restoring force and inertia. The restoring‘force is supplied by the
eiastici&y of the, artery wall while the 1inertia ié suppliea principally
by the blood and, to a lesser degree, by the vessel wall. The pressure
wave in an artéry can propagate 1n either‘direction. The na;utal pulse
wave originates at the heart‘andltravels distally, aithough it 1s

modified by components reflected from the periphery. The presence of

viscous forces will cause the wave motion to be damped. In the

-—
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cardiovascular system, mechanisms for dissf{pation exist in the .blood

thr&ugh 1ts viscosity, and in the vessel wall through its viscoeldstic

properties. Thus the mechanical properties of large arreries are

directly réeponeible for the characteristics exhibited by the pressure

waves that pass alohg them.
Mathematical theories can contribute to understanding the physical

o ———

events that take place in the cardiovascular syétem when cheylare
'firmly linked to experiment, using, explainin;vand prediéting
experimental results' (Pealey, 1980). Young was the first to‘
successfully exploiS\fhe syqbiotic relationship between theory and
experiment bithin the context of tﬁe circulatory system. He derived a
formula for the velocity of propagatfion og\a pressure pukge thfpugh an
incompressible fluid.contained in an elastic tube (Yoqu,»1808), and
discussed the applicatibn of, his formula to blood flow‘(Young,‘1809).
Since then, a small army of researchers has burshed his ideas,

"

establishing mathematical models as indispensable tools in obtaining ;ﬁ
accurate descriptioA';f\the»pro;;gation proceés. Concurrently, many
experimentalists have been éxamining the passage. of pressure waves
through the arterial system. Detalled expositions of these research
developments are found 1in McDonald (1974) and Caro et al. (1978)7

+ Interestingly enough, the first mathematical paper on blood flow

was not by Thomas Young. That distinction belongs to the famous Swiss

mathematician Leonhard Euler; In 1775, he deyveloped equations
- : 1

————

governing the flow of blood in the arteries. This work was not
published,Ahowever. until 1862 (Euler, 1862).‘ In Euler's formulétion

of the problem, ghe-fiuig and vessel wall were treated as deformable

4

-
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" medla whose motloné are governed by the equations of continuum
mechanics. The equations he produced described ﬁhe one~dimens{onal
floy of an inviscid, incompressible fiuid in an eiaa:ic tubé: His
governing equations are a reasénably compiete representation of blood
flbw Ln.arteries. Euler, however, was unable to develop an;‘éolutlons
to his equations. | N

As is noteg¢g above, Young was che:lest to derive the velocity of
propagation of tﬁé pulse wave 16 biood flow. He detived his formula by
draw}ng an analogy with.the‘propagation of sound in a compressible
fluid; He pointed out that the pressure chan;e generated 1in a
compressed gas 1s equivalent to the pressure change' generated in an
inflated tube. Thus he Qas,able to obtalin the formula

ey = (Al’/p(AV/V)]”2

(1.1)
for the velocity of the pulse.wavé in blood flow by adapting Newton's
" formula for the velocity of sound in air. In eqn. 1.1, p 1is the fluld

density, AP 1is the change in fluid pressure, and/ﬂAV7V is the

gorresponding relative change in the volume occuplied by the.tubg.

Young studied other aspects of the mechanics of blood flow as Gell,
including the pressure drob‘along arterial segments due to viscods
losses. The latter regsearch was continued in more detail by

Poiseuflle.

> .

Duriné_the nideteenth century Young's formula for pulse wave

vechity'was rederived in various ways by a number .of investigators,

)
[y
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including the Weber brothers, Moens, Korteweg and Lamb. A summary of
their work 18 set down by. Skalak (1966). Ta Korteweg 1s attributed the

following version of the formuia for™ ¢ *

\

[Eh/ZpR]]“/z , P (1.2)

where h and E are the thickness and Young's_modulus cf'the tube
wall, and R {s the tube raeius. Equation 1.2 is known as the
Korteweg—Moens equation for the wave speed.

The analysis of preesure and'flow in the circulaclen.advanced
significantly at the turn of'the century with Otto Frank's lunped
éystem model. Frank and his coiieagues were able to derive fair
approximatione of‘the presaure'and flow wares‘ebserved in large
arteries, although they concluded chet-for accurate descriptien and

timing of waveforms, considerations of wave propagation must be taken

into account. ' Their model is incapable df accounting for spaeial

"variation, so it 1is unable to represent a wave propagation process.

The medern era of analysis of wave propegdtion‘in blood flow began
with the work of McDonald”and Womersley in the 1950'3. ‘They 1nitiated
the development of comprehensive theories of - wave propagation regarding
the circulatory system as a system of elastic tubes. An excellent
review pf the- history of the mechanics of the circuldtion has been
writte%uby McDonald (1974), while a brief summary of the sub ject is

“~
presented in Skalak et al, (1981)

4

»

During ‘the past twenty-five years, the theory of the propagation ’

B



of the arterial pressure pulse has been quLte‘thoroughly-werked'out )
(McDonald, 1974; Caro et al., 1978; Pedley, 1980). The_principal‘
features of the theory are outlined concisely by Pedley (1984) The

'resistance of the artery to circumferential s§§9tch is,primargly .

responsible for providing the restoring force needed for wawe :?

propagation. This force is balanced mostly by ghe axial. 1nertia of the -1

\Klooq. If the two factors named above are the only ones modélled in a

PR

linear theory, waves of constant form are predicted, with the waveform

of average velocity the same shape as that of.pressure.. That neither - " -,

Ta

of these predictions are observed is evident from, for example Fig.
12.26 of Caro et al. (1978). If blood viscosity is fncluded in the o
model, the shape of the velocity waveform can be accurately preddcted
from the preSSure measured at the saee site (MeDonald, 1974; Pedley,

1980). However, blood viecosity does not have a great -influence on the

'

shape of the pressure waveform, except to attenuate high frequehcy

e

cogponents. A_elight steepening of'the pressure and velocity wavee is
- ; A
predicted when sources of nonlinearity are representedxih the model,

but thisvis not‘thoeght to be 6f'1@portan6e ie‘nbrmai'eubjects. It is’’
believed that the change of .shape of thelpressure’pulseféen be )

‘ attributed for the most- part to the fact that arteries are not infinite
uniform tubes. Thelir cross-sectional area and elastic properties can

vary with distancc, and\there are many bifurcations, each-of.which

acts as a site of wave refiectibn. ‘A clear'éummar§eof the ltneAr“'

_ theory. of wave reflection and transmission in a network of branched L

LN

tubes is. coqtﬁined in Lightﬁi11-6t978)

i s 4 . s

Thqa, it is evident from the discussidn above that a reasonable
' . I ¢
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‘artemies as viscoelastic. In this event,-s}gnificant attenuation of

ethe decay with distance measured in pressure and velocity was’ much

'I
i

understanding of the normal pulse wave has been‘obtained from‘a linear.
theory.that incorporates‘the effects of the circumterential'stiffness '
of the artery wall, the axial inertia and viscosity‘of tne‘biood, and |
thenpresence of_arterial.junctions; ‘One facet of the propagation
process that is not exp£:ined by any of theseifactors; however, is the
attenuation observed in the pressure and velocity waveforms. = This
attenuation is con$éiderably larger than.csn'be‘predicted soleiy by
bloodfviscosity (Pedley, 1980). Therefore, otner sources of energy'
ioss must be foand. Dissipation in the arterial wall isysuspected to .
be a major contributor‘to the loss of energy in the pufse‘wave. |

Experiments indicate that viscous dissipation in,arteries 1s not

‘negligible. This dissipation can be included in the model of wave -

propagation considered<here by'representing the mechanical response of

the pulse is predicted (Caro et‘al. 1978). The damping expected 1is of
the same order of magnitude as that observed in experiments (McDonald,

1974)., For,this Teason any attenuation of-the pressure and velocity

waveforms that cannot be explained by blood viscosity is usually "

'attributed to ‘the viscoelasticity of the artery wall.

However, uncertainty about ‘the magnitude of the attenuation“

vproduced by wall viscoelasticity has resulted from experiments ‘more

'
o

viscoelasticity (Milnor and Bertram,_ 978) In another~experimenta1.

N

7 L . . e -

“ recent thsn»those cited in McDonald (1974): ‘In one set*of experiments, d

- greater than that predicted from knowledge of blood viscosity and wall .

v'study, the opposite occurred (Greenwald and NewLan, 1982) There the» B-
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pressure pulses were attenuated far less than would be expected from

COnventional estimates of wall viscoelasticity. The‘defects'in.the

present understanding of pulse wave attenuation stem from an o
,'inadequate specification of the mechanical properties of arter§ walls'

(Pedley, 1984)‘ L _« o = ~‘;:v7

"“Part of . the problem may lie with the viscoelastic models chosen té

C represent the arterial wall and.with the values of the parameters‘used

in theae models to predict wave attenuation. Viscoelasticlmeasurements

are difficult under any‘circumstances,'and the,variauility of the
’ BRI ‘ N N o o =
circulatory system introduces further complications. Thus, great care '

‘must be taken not only to. obtain adcurate measurements of the’

an
)

.;.5 : viscoelastic'respOnse of arteries, but to model this tesponse
accurhtely as‘well.l o

Another aspect of the theory described here that needs to be
considered more deeply is the use of a tube law to represant the
mechanical properties of an artery.. One of the drawbacks of a tube law

is that it can account for the resistance of the tube to

\

‘~circumferentia1 stretch only. While circumferential stretch may be the‘ :

W . ' a

gs SO most important factor Lgvolved in the tube ] mechanics, it is not

¢

, necessarily true that other features are then Jnsignificant./ In fact, ‘
q e - o
it 1s well known that the tube 1aw approach 18 valid only for waves y”-ﬂ‘f

that are very long that is, for waves whose length is much greater

- n.‘.A.

'%i“than the tube radius (Lighthill 1978) ff' f_, l o ff;‘+{_
l.;_xg,;f{“ o The natural arterial pulse safisfies the long wavelength
}”;;3L‘; y‘ﬁcondition.‘ For example, the fundamental’waye in the human~aorta is
:?% j_::j" jabout 4 m long, as its frequency is roughly 1 Hz.- This is enormous~'L'l‘

R TP




‘(1982)- These authors~use a simple bénding theory model of a

v

C ) . . 9
, SRR ‘ ‘

compsfed-to?thelradius’of the aorta which s less than 2 cm. Even-the

. shortest waves present are longer than 40 cm, as the natural pulse in

1

humans does not conEain'frequencies'much above (10 Hz (Caro et al.,

1978) However,'some disturbances generated artificiaily by ‘

‘ fresearchers studying wave propagation in the arterial system may

0

:contain waves of the same order.of magnitude as the radius of the

‘artery through which they are'traVelling For example,'Anliker et alr -

(1968) and Greenwald and Newman (L982) have produced disturbances

containing frequencies of up to 150 Hz. The shortest waves in these .

"

~

experiments are Just three to four'times greater than the radius‘of‘the
. . 4 " . Al
corresponding arteries. Under. these circumstances, the use of atube

law to represent the mechanic;l properties of the arteries cannot be

I

justified with any confidence., ansequently, it is necessary to

consider secondary factors noted“preyiously in any attempt at
constructing a theory -of pulse wave propagation ‘to accurately model

experiments such as the ones cited above. N
One theory containing a description ‘of tube mechanics more

complicated than that of a. tube 1sw has ‘been studied by Moodie et al.

atiffness. Hence, this model is stillfvalid ‘even when a disturbance |

"contains wayes whose length is of the same order of magnitude as the‘“

'
v

"radius of the tube. The theory‘wss tested against experiments “on




10
" water- filled latex tubes by comparing the’ predicted transmission
characteristics with those observed in a pressure'impulse generated at
y the entrance of a very iong tube (Moodie et al., 1984; Moodie et al
| A1986). The broadening and' attenuation ofkthe pulse measured in’ the
experiments agreed welllwith the theoretiCal predictions. o | ot
‘In*the series of papers’by Moodie and his coiieagues,‘the\
viscosity of‘the‘fiuid contained in the tube was negiected l They
argued that, compared with wall viscoelasticity, fluid viscosity has.
: 4litt1e influence on the shape of a pressure pulse., This view is |
_consistent with conclusipns drawn. from theories of wave propagation L
based on a tube law, and:with observations of the normal arterial ‘pulse
(Caro et ;al., 1978). .Nevertheiess, the foilowing question rehainS'
‘what 1s the role of fluid viscosity in pressure ‘pulses of the sort

generated by Greenwald and Newman (1982), where frequencies range

between 0 and 150 Hz, and how does this role compare with that of

wall viscoelasticity? This dissertation explores the answers to that :

question. : : e o P

,
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CHAPTER II

~Background: Wave Propagation in Large Arterles B

. , - ' -
A striking characteristic of the mammalian cardiovascular system

is its geometric and mecﬂhnical complexity. Blood>flows through a
system of asymmetrically branched tubes that bend and vary in b%Ee.

_The tubes geometry can change with body position and activity. The

’

"Valls of‘arterfes are both'inhomogeneous and antsotropic, as they are

\ , . ~ . ," . " . ‘ .
composed of several. layers of connective tissue, smooth muscle cells,

~ and other components. Their ‘elastic properties are timé-dependentwand

markedlyfnonlinear; Blood s not a Newtonian fluid but a suspension.of
particles with an apparent viscosity that ‘depends on Shear~rate, K

P

Despite this complenity, most of.the progress in uhderstanding the
mechanics of the.circulatory system has been based‘on investigations of -
‘simple models. As ah‘example, considerable insight‘intoithe mechanics'
of wsve propagation has been gained from theorenical ahd experimental

'models using systems of straight, uniform, latex rubber tubes filled
with'water. The success of these and other theories in explaining a.
'jvariety of mechanical phenomena that" occur in the cardiovascular system -

——

' indicates that the mechanics of this system are well approximated by

N

'simple models under msny circumstances."
This chapter provides a description of the mechanics of wave
propagation in the large srteries of the circulatory system as

“,background for the study being undertaken in this dissertation.'.The

. tf chapter is divided into three parts. In the first two parts, the '

<1Ageometric and mechanical properties of the system are discussed, as h‘

freve—
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well as‘the conditions of hlood pressure and flow associated with >
.propaéation'of the normal‘artErial‘pulse therein. In the third part, a
..survey‘ot mathematical modelsfconcerning the propagation of pressure"
\ disturbances‘in fluid;rilled distensihle tuhes is presented, Thev‘,
‘suryey-focyses o;"the‘relevance of;thebe modelslto'prohlems'of wavev

. “ 0
) propagation in the ‘circulation.

v

Many books and reviews have been published on the mechanics of the
circulation. Among the most important are the monographs by McDonald
. (1974), Caro et al (1978) and Pedley" (1980) The books by McDonald

. , , = : e
and‘Caro etfal. contain cpnsiderable detail on the structure and

properties of the whole‘cardiovascular system, together with much,[

discussion of the physics of the normal arterial pulse. These works»

"

form the basis for the material in the first two parts of this chapter.
. The book by Pedley concentrates on the mathematical analysis of

cardiovascular mechanics, and is the principal source for the material
A
in the third part of the chapter.

Geometric and Mechanical Propertfés ' 4 RO

In this Section we briefly describe the anatomy and structure of

' 5

the large arteries, and their geometric and mechanical propertfes. The %

- anatomy of the canine aorta and its major branches is illustrateduin
! ()

" ;“Fig. 2 lO of McDonald (1974), and many of the relevant dimensions are
’.listed in Table I of Caro et al.- (1978) The initial part of the

.‘aorta, the.descending aorta, is relatively straight. The aorta then

curves thquh 180 in a complicated three—dimensional way, giving off

&

-branches to the heart head, and upper Iimbs., It pursues a. fairly

e
' g

RPN i | “ﬂﬁ~. : S ;‘-“‘ RN
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‘straight course down through the diaphragm to the abdomen, where it‘

distributes branches to the abdominal organs. Low in the abdomen it

nterminates, forming two 1liac arteries and the sacral artery (absent 1n
" N

‘ man)y Similarly, all other lange arteries are curved and branched in a

“complicated way. There\are relatively few‘straight stretchesuof‘artery

without branches. The human arterial tree is similar in all these.

v

respects. - ‘ o, e A : -
: W Co ‘ L ‘ : ¢
The aorta, 1ike most. arteries, tapers along its length. The rate .

of taper appears to- vary from individual to individual and probably

from species to species. Despite the fact that individual arteries

taper, the total cross*sectional area of the arterial tree increases
: with dis"ance from the hegr? ‘At most branches the ratio of the sum’ of
the areas of“the daughter vessels‘to that of the parent is greater than

one.. The‘branches‘inithe chest have ratios close to one, while those

a4
iy

in the upper abdomen have slightly greater values.‘ However uat~the
xtermination of the abdominal aorta there may be a marked contraction,
;-Iwith ratios.as low as 0;75._ This. is more likely to' occur in humans
than‘in'dogs:‘ Beyond the -early branches, the . cross—sectional area of
hthe arterial tree expands dramatically. ) | ; ‘
) It is evident from Table I of Caro et al (1978) that the
‘s‘thickness of the artery wali varies considerably throughout the ' o m

7hcircu1ation. As one moves peripherally,vthe walls become thinner.

P

' NHowever, the internal tadius in the large central arteries decreases at

.g, P

‘Y“_the same rate a8, the wall thicknegs, so the ratio of h %ﬁ\{i:a:ns

¢

;}virtually constant at approximately 0 1. This ratio is independen £

'aspecies as well as site.“:' ;_&‘ ﬂrvﬁ;;)h:7- Vf"‘-;”
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The dimenaions of the larger arteriea depend not only on body slze
and position ln the circulation, but also on age. - Two well—known : ‘, Ty

P

changes accompany aging of the cardiovascular system*‘ dilation and

t

k)
0

.tﬁgegening. For example the~thoraci aorta dilates and ita wall
:becomes thicker. The wall thickneag/zncreaeesslightly more'than the

= radius;u‘The‘smaller‘arteriea branching from the aorta‘do notiéhange

!
' }

- appreciably in radiua but their walls thicken considerably. Thus old

;

vessels dilate' and thicken differently at different sites. The big
\ ' 1 . o - - o , i
vessels tend to dilate and thicken, while the smaller ones ahow'onlyv )

'wall thickening.~‘. o "‘ L . | . ;l‘ o o

The walls of all artteries haVe a aimilar structure and are

"

’composed of similar materials although,their proportiona vary in

‘djfferent parts of the circulation. The wall 1is divided into threew

zones: the tunicas intima; media, and adventitia.“ The innermost R
layer the intima; consists of the endothelium, a eingle.fayerfoi cells

that extends as a continuoua lining to all blood vessels and a

E T
\ " IR

vsubendothdlial layer containing collagen fibres- The endothelia&-cella I

do ‘not play a significant role in the mechanical propertieS:of blood : ‘

“,Vessels. The aubendothelial layer is anchored to . the inner boundary of

. h\the media.; The media s the thickeat part of the wall and dominatea

A

o Qits mechanical behavioux.» Ita structure in the large central artértes'

‘differa from that in the arteries farther from the heart, ‘Forwthia

K . \- 3] “a o

»sreason, aréeries are’ generally claaaified as. either elastic or: muscular

v -\".-

‘vessels. The tranait{ is’ ‘not abrupt aa one proceeds peripherally,. fmf 3

, IR ., » T (n,'

-y,although there may.be a sudden transition where a small muscular artery
”*.ariaea from‘an'elastic‘onev(Stehbens;n19Z9).- In elastic arteries the i Jz*
) [ :, ‘_‘.. ) c . ’ ” 7’ e L o L e ‘ s T

[ @
"
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l 2"’ffipros ”and\sparse smooth muscle cells. In muscular arteries the media
-’\ .

N R

. i almosn entirely composed of spirally wound smooth muscle cells

- arranged in lpyeré wtth small amounts of connectlve tissue, collagen,

"

and elastlc tiséue bétweeﬁ them. The outermost layer of the arterial

IS

wall, che advencltia, 18 often as thick as the media but is less

lmportant mechanically. It consists of collagen bundles sparsely ' .

{itecrupted by elastin fibres that merge with the surrounding
connective tiésge. ~Thia'reglon‘contalns the vasa vasorum, small
vessels tﬁan‘suppLy the walls- of large arterfes with blood.

. 'f The mechanical prop%rtléd of blood vessels are determined by the

relative amounts of the various wall coanstituents, their lndividuel

physical propert;ja, and the way in which they are architecturally

_ngd.” About 0% of the Qelght of the arteélal wall 1s water. This

hasﬁa negl?gkgle\effec: on the mechanical properties t{ fhe wall apart

from making it ld\bmpressible. Elastin, collagen, qﬁ?smooth muacle—

‘ i
4 - .

fibres tonstitute most of the rest of the wall matertal. The smooth

muscle content in large distributing arteries is approxlmately,ZS-BSZ.
Its proportion increases. in smaller‘arterles. 'Although the total
content of elaetin‘and collagen remains very nearly constant along the

5

aorta and 1its major‘Branches, the arteries in the proximal part of the
- arterial ttee, especially those in the thorax, possess more elastin
than collagén. "As one proceeds peripherally, there is a decrease in

‘ ‘"elgstin andl'-',an increase i‘nv collagen (Cox, 1979).

. C ;@gghlelestin.and collagen are long chains of protein molecules.
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- Elastin fibres are relatively extensibie and are eaéfly stretched by
small Forces. Collagen 18 much stiffer. - The difference in stiffness
betweén elastin and collagen has been used go explain the fact that

arteries are observed to increase in stiffness with stretch. It has

been suggested that at low strains the collagen fibres are slack and
‘ ~

the stress is born by elastin. As the strain increases the coliagen
fibres stralghten and support the stress. While this explgnatlon is
plausible, the nonlinear properties of eiaetin are likely‘alsp of some
‘1mp§rtance (Cox, 1979). As well as increasing in‘stiffness withv
Istrecch, arteries Become stiffer with diaténce from the heért. An
explanation for this phenomenon 1; ?Zib based on the difference in

mechanical properties between elastin and collagen. As 1is noted in the

- preceding paragraph, .the ratio of the elagtin to collagen content
changes with distance from the heart. The correlation between
mechanical properties and elastin-collagen ratio 1s reasonable for the

larger arteries, but it does not hold in general for peripheral

\

arteries (Cox, 1979). : —

@ .

Other factors must contrfbute‘as well to the determination of the
I

mechanical properties of blood vessels. One candidate is the

architectural arrangement of elastin'and collagen fibres within the
“a

arterial wall. Unfortunately,» 1ittle 1is known at thé present time

about the contribution of architecture to the mechanical pfoperties of

tﬁe arterlial wall.
e

While there 15 a fairly clear relationship between the physical
properties of elastin and collagen and ‘the elastic behaviour of the

whole artery wall, the'influence of smooth'musclg on the properties of

'y -

-
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la ﬁ arteries is a matter of some' controversy. A‘summary of smooth
mqeclé activity is presented in Caro et al. (1978), McDonald (1974),
and Cox (1979). Smooth mﬁscle is approximately as stiff as elastin,
but gfa level of stiffness depends on the degree of ph%?iologiéal
;ctivicyA Swmooth mﬁscle contributes little to the axial Fengion in ;hg
wall. Ratﬁz;:_iz—g;;a;ees active tenslon independent of  stress. The
viscous properties éxhibited by arteriea,“such as stress rela*ation,
creep, and hysteresis, are attributed primarily to the presence of

L
smooth muscle, although collagen demonstrates viscoelastic behaviour

too. .
As thé.a;fangemeﬁt of ‘the various fibres.ip the arterial u&{l 18.
very complicatéd and not homogeneous, it is impossible to deduce the
elastic pfopertiee‘gf the wall as a Qhole from thos; of its
constituents. Yet 1t 1s necessary to descriSe the reséﬁnse of the wall
to different applied stresses. This is done™ in the following way. The

arterial-wall i1s treated as cﬁough it were a homogeneous material, and

- modelled by a stress-strain law for a homogeneous elastic tube. Then

experiments are carried out, either in vitrp og in vivo, on intact
arteriai segments to measure the defotﬁakion of the wall as'a:whole as
.it fesponds to known applied stresses. Ffom thegé measuréméntg, the
. values of the elastic parametersfappeaflng in the theoretttal
stress-strain felatibns can.be cglculated; *Thus, the response of the
'aftery wall to mechanical stress is rebresented by effective

elastic pafaméters; whose values are ﬁhe ones that would occur if

—

arteries were indeed homogeneous. In this way, the different

.congtituent parts of the wall are lumped together, insofar as their
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mechanical propertlies are concerned. Most commonly, the theoretical

\

stress—strain relationq{haed to model arteries are linear équatibne for

an isotroplc, 1ncompre§sib1e; circular cylinder. | In this case only a

" single elastic -parameter appeArs, an effective Young's modulus. Other

stress—strain relations have been comsidered as well. They are

-~

discussed in detall by Patel and Vaishnav (1980). -
Varfious techniques that have been developed to study the élastfc
propertigs of the whole arterial wall are examined at length in Cox

(1979). A very popular method.for‘studying‘vasculaﬁ eiastlcitj.is to’

T

. , : .
directly measure changes in blood vessel dimension, such as external
radius or segment length, that occur with changes in transmural

pressure. It 1s always a distending pressure that is employed in these

<

experiments, since the pressure in arteries in vivo is-always greater

than the external pressure. The strains that develop in the artery
,-«._\ . .

' ) y)
wall as the result of a disfending pressure can be determined

1mmediate1y'f:om the measurements of dimension, while the corresponding

.

stresses can be calculated by means of appropriaig equations from the

o

theéry of elasticity. Once the stresses and strains in the artery wall
are known, it is a‘straightforwafd~mactef,ro cotipute the effective

- elasti¢ parameters used to describe the mechanical response of the wall

Y

concfsely. For example, 1n'a'c%in—w811§d tube where the raifg of wall

¢ \ .

thickness to tube radius is small, as in arteries, the circumferential

stress is approximated by the formula'

v )

Og = PR/h ,
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where P 18 the‘distending pressure. The circumferential strain under
any circumstdhces is just the relatiue change 1in vessel radiusl(or.
diameter), AR/RO . lwhere 'RO \is the unstretcwed”radius. Thus, if
"the wall behaviour is assumed~to\be linear>‘isoteric, and‘

incompréssible, the only elastic parameter; the effective Young's

e

modulus, is given by

w : PR ‘ ,

E = m . | .‘ ‘) (2-2)

It is seen from eqn. 2. 1 that the’ relatiOnship between the

\
circumferential stress and the distending pressure is very simple in a

thin-walled tube, Consequently, many reseerchers who use the technique

s
A

of inflating segments of blood vessels to study vascular elasticity

report the results of their experiments as graphs of’disténd}ng

——r
pressure versus vessel diameter, rathervthan'as”graphs of

—
el

circumferential stress versus circumferential strain. The two sets of

Pad

graphs will have the same shape except where the circumferential strain
) )

is large, since the difference between oe ‘and P arising frpm the

acaling~factor' R/h is much greater where the strain is large. than

[

—~

where the strain fsrsmall. o ’ _ ‘ . , .
< One of the difficulties encountered in the experiments discussed

“in the preceding paragraph is that. their results depend greatly on the .

-

presence and nature of constraints to inflation, particularly axial

/
.

constraints. For example, graphs of preasure versus diameter measured

13

in segments free to lengthen are significantly different from the‘
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. graphs obtalned when vessels are held at a fixed stretched length; or’

' maintained under a constant axial.force‘(Cox, 1979). Therefore, the

nature og the axial conStraint on a blood vessel in ﬁi#o i8 an

important experimental consideration.

-

It 1s well known that:grteries are tethered to sdrrounding tissue

. " , . " .
and are subjected to considerable. longitudinal stretch. When a segment’

of artery'is excised , its length decreases by 30-40%X. 'The tethering'
greatly.inhihits'longitudinal wall movement. For this reason, it 1is

common practice in in‘vitro studies of vascular elasticity to maintain

. .

the intact arterial segment at its in vivo length. However, small

Ay

changes in the length of segments ofvaﬁtaﬁies in vivo have been shown
to occur‘(Cox, 1979). Consequently, some researchers have chosen 'an
alternative approach to conducting in'vitro experiments. Rather than

keeping its length fixed, they maintain ‘a constant axial force on the

Py

vessell It turns out that the dﬂfferences in the results obtained from

. the two methods are not great, particularly with regard to "the

‘ s
pressure-diameter relationship (Cox, 1979). N

.

An important arterial property discovered by experiments on

vascular elasticityvis_that'the‘stress—strain law in the~vesse1 wall is

not linear., For example, the .graphs of circumferential stress versus

o . :

circumferential strain constructed from the results for inflation

‘pexperiments-are'not straight lines. In a typical graph ‘the slope of .
the curve remains constant until the strain reaches a critical value.
‘Subsequently, the slope increases with strain. This indicates that

”arteries respond to stretching by increasing their resistance to

< further stretch. g similar ‘result occurs in experiments in which the '

et

A



| pressure, the relationship befzeen circumferential stress and

'Y "'“ ' . |‘.

. vessel 1s kept at a- constant radius and stretched longitudinally.‘ The

., graphs of longitudinal stress versus longitudinal strain constructed

ﬁrom such experiments share the same qualities as the stress—strain :

curves of the inflation experiments (Caro et al.,rl978).

kN

Since the stress-strain law 1lh arteries is not linear, it is not

proper to define linear elastic‘constants such‘as‘a Yo‘hg‘s modqus,/'

. for\the'wall‘material. However, this difficulty can be overcome if

\ N N bn
only small deformstions about some equilibrium staté, not necessarily

an unstretched one, are being considered. Then the stress—strain L

' relations can be linearized about the'equilibrium state,.and linear

elastic parameters can be defined. They are called incremental .
. “ ‘ ' I‘ ‘. . ' ‘. . " v . "
moduli because in general they will differ. from one equilibrium state

to another. » : ‘ B
. . N ¢

’

“As has beén‘mentioned previously, all arteries in vivo are in a

state of radial distension, as well as peing stretched longitudinally.

~

The physiological range of transmural pressure is 50 to. 150 um Hg, with

an approximate mean of 100 wm Hg (1 3x10 N/m ). In this range of

» circumferential strain in the artery wall is nonlinear (Caro et al.

]
V

1978) | However, s we shaIl see later in® this chapter, the wall

deformations produced by normal variations in blood flow db not depart

: much from the distended equilibrium state in vivo.< Rence, these :fV
deformations may be - analysed by 1inearizing the stress-strain relations

‘yfor th blood vessel wall about the equilibrium state, and defining
incr@sl elasie moduli to represent the mechanical response of the ‘

"wall. The only stipulation is that the values used for the ineremental .
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" \
. L}

elastig\parameters should be those for the appropriate equilibrium

state. '’ . ) ‘
o CL ‘ Co ‘ .

. Experiments investikating vascular elasticity indicate that not

. only is the response'of'the'arterial wall to applied‘stress'nonlinear, |

At 1s also not isotrOpic, uniform,'or truly elastic- For example, the '

e
: incremental elastic modulus defined as the ratio of longitudinal*stress

‘to longitudin?l strain‘is usually not the same "in an‘artery as the
incremental elastic modulus calculated from the ratio of

) _circumferential stress to‘circumferential strain, This implies thst‘r

' -

the‘mechanical‘properties Pf blood vessels vary with;direction: that

is, they are'anisotropic. Further evidence to support this claim‘comes
@ | h - - o . R ; N ,
from observations that intact segments of arteries lengthen upon

inflation; However, these‘segmentshdo not“change volume during.this
‘manoeuvre, so they. must be incompressible (Cox, 1979) The two i f‘
‘ observations would be incompatible in a cylinder composed of an
, .
isotropic material -as, 1t should shorten under these circumstances._;
| They are consistent only if the mechanical properties of blood vessels

are anisotropic.

&

| | ' The anisotropic behaviour of the artery sall_is—dgf_in part to the o

.“u wall 8 nonlinear response.. ' If the vessel is subjected to unequal

1

l values of initial strain in different directions, it will appear to beh

=
‘ 9

o

this, suppose that an isogfopic cylinder is deforme& sb that the axial‘

-3 strain is not identidal to the tangential strain. Then st this
equilibrium state, the incremental axial modulus vould be calculated
' from a different position on’ the stress-strain curve than would the _

C

anisotropic even if it is composed of an isotropic material. To see‘ '



R asymmetric. When only normal stresses aEF applied to a ‘vessel segment,

. approach has been explored in detail by Patel snd Vaishnav (1980) The

P . S : - '
G N . - W
. X vt

incremental tangential modulus. :vathe stress-strain curve 1is

L

'nonlinear,wthe'values of the two moduli will not bebequal, 11 general .

‘however, even at équal values of wall strain, it has been demonstrated

that blood vessels'do not behave in 'an i%otropic manner (Cox;“1979).‘ o

“\

’The mechanical response of arteries, however, is not completely

e \

1t is observed that negligible shearing strains develop ‘Patel and -

“Vaishnav, 1980) This suggests that‘artery walls possess axes of

symmetry in the radial, tangential, and longitudinal directions, and

‘that therefore they may be modelled ‘as orthotrOpic materials.v This~

‘incremental elastic moduli for an orthotropic cylinder can be-

‘calculated solely fgss stresses applied circumferentially (by a

distending pressure) and longitudinslly (by a longitudinal stretch)

Under physiological conditions, these are- the two directions fn which

"

the stresses in a blood vessel are ‘the largest. The radial stress in ‘

- ) ' " N " o

‘Tarteries is much smaller than either the circumferential or the

a n‘

longitudinal stress since artery walls are thin. Despite the fact that .

’ arteries ought to be treated as orthotropic materials, the assumption

'of isotropy remains attractive because of the simplifications that ‘“.

‘accrue from it. el ,” u' hf-“j-; ;’ L

There is’ evidencé to. support the use of isotropy to model the

. response of the arterial wall under conditions that exist during normal
‘rblood flow (Caro et al., 1978 Cox, 1979) At the in vivo state of
7”.radia1 distension and longitudinal stretch, the longitudinal and

,(;circumferential moduli are approximately equal.a As weIl it is the
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“circumferential elastic modulus that is more important than. the
longitudinal under normal physiological conditions. The axial

constrsints exerted on blood vessels in vivo inhibit longitudinal wall

motions much more than radial ones, 80 the latter turn out to be

. dominant. The tangential elastic ‘modulus 1s relatively independent of

axial wall strain, and its values determined from isotropic and
anisotropic approaches are reasonably_similar in the physiological
pressure range. 'This suggests that an isotropic, incompressible model

is a’ reasonable approximation to the true state of vescular elasticity

W

' \ In general, the response of blood vessels to an applied.stress 1s

‘\‘
“

fiot - strictly elastic. Rather, it 1is viscoelastic, as the response

. depends upon the rate at which the stress is applied. Arteries diSplay '

Y

typical properties of " viscoelastic materials, namely stress’ relaxation,'
creep, and hysteresis. Viscoelastic properties of arteries have been
studied in two ways, either as transient responses ‘to abrupt changes in

length or force, or as steady—state sinusoidal responses to sinusoidal

4

: ”dtvariations in.these Quantitie83' Studies using the latter‘approach are
‘“simplerkﬂo perform and therefore more common. .Thefwariation”ih strain‘
‘ffinduced in an artery wall by a cyclical applied stress lags slightly

- r‘-" ‘ fbehind that stress, and is smaller in amplitude than it would be 1n a -

'purely elastic material. In addition, both the phase and the amplitude

“fratio between stress and. strain depend on the frequency at which the|lr

"

R;".rnstress is applied. The behaviour of the wall can still be- represented

by incremental mechanical parameters. However, they must be considered

'

“}ﬂf ' “‘”complex-valued and frequency-dependent. rather than real-valued and

.ff‘W_~_~independentgof‘frequency. For example; in an’ incompressible, isotropic

° - ' o - . ' . Lo heal

.



f'complex—valued viscoelastic modulus instead of a real~valued elastic

. Christensen, 1982). The simplest‘Of‘the phenomenologicalimodels

‘;fequivalent._w

W .‘Iﬁ '
’ \l' ¥
a

f viacoelastic response of the arterial wall using spring and dashpot
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model of the viscoelaatic response of 'arteries, there is a

FI

\

' {
one. The real‘part of this parameter is‘the dynamic elasuic modulus

" for the artery, while the imaginary part is the viscous modulus. As 1is

noted above, the phase lag between stress and strain is slight fn

' arteries making the visc0us modulus very small compared with the

lelasticymodulus.

‘Another way to represent the viscoelastic response of ‘arteries 1s -

to useﬁphenomenological models. General models of thislkind have been

developed through the linear theory ofpviscoelasticity tO‘approximate

. . . . Y f .
the stress-strain relation in any viscoelastic material (Pipkin, 1972;

-
1)

utilize mechanical analogues involving springs and dashpots to
represent the viscoelaqtic properties of a continuum. Tt is often the

case that a‘model containing but a fewfconstants is adequate ‘to cover

the response of a given viscoelastic”material. This 1s in sharp

contrast to the two empirical functions of frequencynthat are required

y
' -

j‘.to represent the viscoelasticity of the arcery wall when the approach ‘
v{described in the pxeceding paragraph is used. Thus, as long as the :

' viscoelastic response of blood vessels can be represented by a |

“'phenomenological model containing only a few parameters, it is |

o ‘preferable to use. such a model rather than the qne based on

-dffrequency-dependent mechanical pafhmeters, even though both methods are‘_

i .

A number of researchers ‘have . attempted to describe the

\ .



,standard linear solid, remain the most popular models

"approximate the viscoelastic properties of

26

models. Most commoaly, the two models considered have been the

Kelvin—Voigt and the standard linear 96114; They are the least .

\

complicated of the phenomenological models, containing just two and

. "

three constants respectively. The Kelvin—Voﬂgt model is able to

represent the - viscoelastic properties of arteries over small rsnges of

' frequency (Caro et al- 1978) - The standard lineer solid provides a

. !

'better approximation over a wider frequency range (Chow and Apter,

!

1968 Cox, 1972) Nevertheless there has,been some criticism’of the

! L4

ability of these two. models to adequately predict the viscoelastic

response of blood vessels (Qox, 1979) Other models possessing a
[
greater number of parameters‘have been suggested as‘more appropriate

W

' representatives of arterial viscoelasticity (Westerhof and

Noordergraaf 1970; Cox, 1972 Goodman and "{maeda, 1977) C )

ohiﬁ"'}

No cOnsensus hss been reached however, regarding the best

phenomenological model forﬂarteries. It is likgay.that a nodel
. ]
containing a distribution of constants is required to fully represent

. S

" the viscoelastic response of bIood vessels (Cox, 1979) However,

’

obtaining such a distribution from measurements of viscoelastic

, response is extremely difficult.3 It requires a 1eve1 of accurscy that ;'
".;has not. yet been achieved in experimental stusies. For this reason,

“vthe two simplest phenomenological models, the Kelvin—Voigt and The

' teries.'p
An interesting and important charscteristic of the mechsnical

A

properties “of arteries is their regional varistion. For example, the,fﬁ‘

‘t elastic modulus of arteries increases with distance from the heart as a

\' - ! - hve

- '



'

‘_hifurcation at the iliac junction‘there is a continuous rise in the

_ value of ‘the elastic wodulus. In addition, there may be a sharp

rule. As one moves from the ascend‘ing aorta distallly to 'its @

4

vy

.

‘increase in stiffnesa at those junctions where a muscular artery arises’

‘“heart.

-

| from an.elastic.one{ As 1s noted earlier in this chapter, this

)
)

‘variation in stiffness may be partly related to the fact that the

1"

relative proportion of elastin to collagen varies with position in the

vcirculation, The principal effect of the increase in elastic modulus‘ v

» LA

‘Qwith distance from the heart lies in its contribution to the ‘

‘smplification of the arterial pulse as it propagates away from the

— . -

"

The mechanical properties of the larger arteries 'vary not only
with position in the circulation, but also with age. In the thoracic

aorta at the mean physiological pressure (100 mm Hg), the incremen: al

Young S‘modulus increases steadily‘with age. ‘More peripherally,

¢ >

however, there 1s efther no change or a fall (Caro et al 1978)

,'Learoyd and Taylor (1966) have argued that these observations are
- consistent with the hypothesis that the arterial wall grows weaker with )
iage.' The thoracic aorta becomes dilated as it grows older, as is noted

‘previoualy. The appatent increase in stiffness, then, is a reflection

K

"of the nonlinearity in the stress-strain relation for this vessel, as.
Lthe equilibrium state for the old artery has shifted to the right along
‘(ita stress-strain curve where the elastic modulus is greater.* However

o :if the elastic moduli for the thoracic aorta are compared at different fnﬂ'

.

'hages for a fixed value of the vesael tadius, there is a significant

'3‘decrease with age. Thus, the weakening of this artery as it grows .‘::"

L



older‘is‘masked by the effects of Ats dilation.‘ In the peripheral

a
"~

arteries this dilation does not occur, so the decrease in elastic

P '
modulus is apparenc immediately ‘ ‘ : o . -

Ry
He: conclude this section on the geometrie and mechanical . o
‘properties of the large arteries with a very brief description of the ;
mechanical properties of blood.; Much_more detail can be found in Caro

et ‘al. (1978) and McDonald (l974) Blood 1s a suspension of formed

'elements in plasma. Thesé formed elements; namely red cells, white

cells, and platelets, occupy about 45% of the volume of -blood. 1In

i

vessels whose diameters exceed 0. 01 cm, blood can be regarded as
effectively homogeneous, because the scale of" the microsbructure is so
much smaller than that of the flow (Pedley, i980) The remaining

question to be answered is whether or ‘not blood in large gessels’f

behaves as a Newtonian fluid ‘that is, is the ratio of shear stress to

‘ . :
shear rate independent of shear rate? Itvis found ‘that the measured"
EE con :
. o
viscosity is independent of shear rate, provided the shear rate is k5‘

sufficiently large, about 100/9 (Pedley, 1980) Under ‘the flow

conditions that exist in large arteries,‘the shear rate usually exceeds
' this.critical vaiue, although'exceptions occur"near the centre‘of a .

\ ¥

, ‘;<straight vessel, and during that short part of the cardiac cycle when

‘ the flow is very near zero.' The importance of temporary non-NeWtonian

?

effects in blood on unsteady arterial fluid dynamics has not been

\

*investigated. Therefore, blood is generally assumed to act as a

. A
‘v L . . K

-Newtonian fluid (Pedley, 1980)
The density of blood does not vary appreciably under normal

'iconditions in the cardiovaseular system. Changes in preésure lead td
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wall deformation rather than to flufd compression. Thisfobservation
is explained bx the enormous difference in magnitude between the
resistance Ofibldod:CO compression and the resistance of the arterial
wall to distension. The resfstance of blood to compression, as
characterized by its bulk sodulus, 18 very nearly that of water, or
about 109 N/ﬁz. On thelother hand, the resistance of the arterial wall
to distension is appreximately Eh/2R, or about 105 N/m2 (McDosald,
1974). Therefore, the changes in the density of blood thstioccur with
variations is pressure in the circulatéry system are issignificant ‘
compared with the corresposAing changes in strain in the artery wall.
Cpnsequently,vblood can be treated as an incompressible fluid. |

In summary, we reiterateythat there 1s a great deal of'variabilitf
in the properties of the.csrdiovascular system. The dimensions asd
mechanical ressonse of arteries vary greatly with age and body‘size as
weli ag with the site in t circulation at which they are'measured.
This variability must be reated with caution wﬁen'quantitai:i.wgfD
analyses are undertaken. The broblem of measuring as simple a

parameter as the wall thickness of an artery illustrates the

difficulties encountered in obtaining quantitative information about’
. 0

'the cardiovasculsr system. The principal source of-inconsistency in

‘meaguring this paramater is the‘imprecision with which the limits of

the Huter wall can be defined in relation to the surrobiiding tissues.

This is compounded S§"the variation the wall thickness shows with

-

species, body size, age, site; blood pressure, and'’ smooth\hmscle

'activity. If we wish to calculate a derived parameter such as the (

Korteﬁeg-ﬂoens wave Speed defined in eqn. 1.2, other measurements are

f\

% .
[ .
o ' e
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required as well. To calculate Cy » we also need the radius and
. -

incremental Young's modullls of the artery wall, dﬂd the blood dénalty;

These measurements will be subject to a number of biblogical influences

4

too, and will therefore exhibit scatter. Consequently, a parameter
like ¢, may range widely even when 1t 1is calculated from accurate and

_compatible measurements. If it 18 calculated from poorly chosen data,
. L

the result ls nonsense.

"Bldod Pressure and Flow
J

L} It is the pressure generated by the heart, sometimes referred to

as excess pressure (Caro et al., 1978) and more commonly called,'Slood
_pressure', that 1s alone responsible for the motion of the blood. The
. . . J

pressure rises rapidly in_thé left ventricle at the beginniag of

J
- 1}

systole and soon exceeds the pressure in the aorta, causing the valve
to open. Blood is ejected, and aortic pressure rises. About half way
through ejection, aortic pressure climbs above the pressure {n the left

»

ventricle, so that an adverse pressure gradient is establishgg across
the aortic valve. This causes deceleration of the outflow, and this is
main;ained as both pres;ures fall. A kink in the aortic pressure -
curve, the dicrotic dbtch, marks thg:closure of the aottic.valvg.
Thereafter, th§ ventricular pressure félls very  rapidly as the'hearf
muscle-relaxes,thile aortic pressure falls more slowly as blood flows
out peripherally. Tﬁ; sequence of‘events is illustrated by the
pressure -records in Fig. 12;13 of Caro et gl. (1978). -
Measurements‘of pressure made instanténeoudly at a number of sites

~

along the aorta are shown in Fig. 12.14 of Caro et al. (1978). The
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pulse 18 seen to be delayed with distance down the vessel, indicating

that it is propagated along the aorta as a wave. The shape of the

preesure pulse changes dramatically as it propagates. The amplitude
. N L]

fncreases, the front becomes steeper, and the dicrotic notch is lost.

-

The mean pressure, that ls,ithe'pressure averaged over a cardiac cycle,
falls rerf gradualiy. These changes continue as the pulse wave passes
{into the other larée arteries. ’ / '

Measurements of the radial expansion and contraction of the
arterial wall accompaeying the paesage of the pressure wave have been’

recorded simultaneously with measurements of the pressure within the

N

vessel. It is observed that the motion of the wall is virtually in

' phase with the pressure. There 1s .little evidence of the hysteresis

that might be expected on account of’the wall's viscoelastic

properties. The change in radius 1is small. The relative change in

1

radius, that 1s, the circumferéhtfel strain, 1s about 7% (Caro et al.,
. B

1978). fhis‘observatidn justifies the‘use'of a linear Eheory to
describe the mechanical"behaviourkef the wall. The radial wa%l motions
assoclated with the pressure wave also cause some‘loqg;tudinel motions
of the veseel ya%l as 1t is etretehee or compressed, but these are

secondary and have negligible.infiﬁence—On the propagation of the wave

o

(Caro et-al.; 1978).

In order to complete this description of the normal physiblogical
f r

conditiona existing in large arteriesl_it is necessary to consider the
blood flow along the aorta and its branches.. In Fig. 12. 16 of - Caro et

al. (1978), the pressure and flow-rate are shown in the aecending aorta
close to the aortic valve. Forward motion of blood in the ascending_

m
&
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aorta begins when the aortic valve opens an%ﬁblood i1s ejected from the
. \ ‘ ‘

ventricle. Acceleration at the heginnlng of ejection is abrupt and
| " , , ) . " "
short‘lived. An analogy has been drawn,of a column of blood belng

\

struck by é;igmmer. It is not entirely inappropriate (Catro et al.,

\
1978). The velocity ri1ses rapidly to a peak aqd promptly, but more

x

slowly, falls again.. There is a brief period of backward flma)as the

- \
aortic valve! closes, and then the blood comes ‘almost to rest for the

- '

remainder of the eardiac cycle.

At any location in the cardlovascular system, the motion of blood
is drlven by‘the‘local pressure gradient, whieh in turn is determined
by %he propagatfon of the pressure pulse. In Flg. 12.19 of Caro et al.

(1978), records of the pressure and average velocity, that is, the

\
)

velocity averaged over the tube's cross-sectlon, are displayed at

polnts progressivef& farther from the heart. The amplitude of the
| ! ‘

‘velocity waveform debreaaes continuously, in contrast to the peaking

\
v

and steepenlng of the\pressure pulse. Initially, the pressure and
flow-rate rise-in phas with each other, but, thereafter they diverge

v

.conaiderably. The peak’of the flow wave precedes that of the pressure

Mow 3

wave. Moreover, the velc city drops more rapidly than’ the pressure._
The 'brief period of backji

ow remains throughout the length of the

aorta. It is thought thag\the arrlval of reflected components of the

pressure wave have a part in these differences. .As well, the gradual

al., 1978)

A
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of the wave speed, ¢ and the peak averaged blood velocity . Gmax at

: ‘ ) . :
various sites in the canine cardiovascular system. In the ascending

S

aorta the ratio vmax/c is as large as 0.25. Farther away from the .

heart, two factors combine to make' this ratio decrease to le::':::i/)
0.1. The wave speed iocreaees since vessels become stiffer the
pertphery. Concurrently, the blood velocityyfalla. There are

pathological conditions under which the values of vmax/c can be very

n -

Ncloae to 1.- Either the arterial wall 1is very floppy, ao'that c is
low; or the stroke volume is greatly increased. ' Under these
pathological conditions, the front of the.pulse wave becomes, very steep
and blood velocities well in eacess of the usual are recorded.?uzj‘ “\

The idportance of the ratio. of average blood velocity to pulse
wave velocity, G/c, arises from the question of whether the motiod of
blood can be approximated by linear equations. ‘Qt allythe terms in the
‘equations oE motion for an incompressible Newtonian fluid, the only
nonlihear ones are the convective accelerggion terms: Their magnitude3
relative to.that—of the local acceleration terms, 1is :)c. Hence, it
is reasonable to heglect the convective acceleration te;ms when vle
is very small.“ Thus, the assumption of linegrity in analysing pulse:
.wave propagation under normal conditions 1s appropriate, except ®
possibly in the ascending aorta. _

It is noted above that the word oaverage , when used as an
adjective to describe 'blood velocity , refers to the cross-sectional

average. The flow-rate is just the .average velocity multiplied by the

artery's cross-aectional ‘area. It is much easier to measure the
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flow-rate than the axial velocity at a particular point in the .

\«' N - . . B

cross-section of ‘a blood vessel. As a result, considerebly more data

L ) Lo . } ) . " . .

1s available on the\average velocity at various atations in the large
’ A K N ' ) A

ﬂ\ ’ ' L. : N B
arteries than on the local 'velocity. Nevertheless, recent
"technological advances have enabled experimentaliste to obtain accurate

‘neasurements of the local blood velocity more'easily.

. ‘
The most popular place to measure local velocity has been the
TR

centre of an artery. A sequence.of velocity waveforms, measured on the
- N . . ' N ' » ' l'

centre—}ines of the artertes in question, is displayédd together with"i
the correspbuding pressufe waveforms inf%ig. 12.26 of Caro et al.
\r(1978); The1r~general features are similar to those eeen-in Fig. '12.19
of Caro et al. (1978); except that they show more fluctuations. IThis
1ndicates chatdsoue‘of the hignkfrequency components in tbe waueforms

havedbeen averaged in time by the flow meters recording the averoée

velocrties. ‘ v

¢

The average velocity over the arrery's cross-section and the local

N

velocity 'at the centre of the vessel will be.approximetely‘the same 1f,

" .and only 1f, fhe veldcity profile is virtually flat over mogt of the
¢ , . )

l vessellcrOasrsection with very thin boundery laiers‘at.the wall. 1In
lthe largest arteries this‘is‘the caae. A‘fajriy-flat proffle, p
presumably surrounded by a thin boundary layer, 18 observed throughout
lthe cardiac}cycle in the aecending abrta, Marked skeus in the velocity
profile develop in the aortic arch: It is thought that they are"
produced as a congieuence Qof the curvature of the arch and the btanches'

issuing from it. rofiles in the descending aorta remain flat during

systole. Apparently, the large branches upstream exert 11ttle

[}
-
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influence in this‘regard- The profile tends to be rounder with

distance from the heart. ' In the’ abdominal aorta, the velocity profiles

reflect/the complexity of the local geometry with marked skews and

asymmetries. . gust downstream, the'mesenteric,.coeliag, and~renal .
" arteries branch offvthe aorta.- Cloaervtopthe'termination ot the aorta,

. ‘ , . ‘ - . -
‘}thé velocity‘prdfile during systole is‘ M-shaped. ﬂihe profile isd
\kounded'andapproximately symmetric’in_;heliliacartery. . :

-

]jThus, the‘presence of relatively flat velocity profiles:in most;“
P'large arteries means'that measurements.made by a probe_only roughly'
positioned in the centre of;the vessel are representative‘of the : .
centre-line veloc1ty_and, that.ghe centreeline velocity is close to the -
average velocity. ‘In regions of.complicated geometry,‘ofvcourse, such
" a correspondence does not exist.i, |
This concludes‘thelfirst two parts of the chapter: .aAdescription
:of the geometric and mechanical properties of large arteries, and a »
dgscription of the blood pressure and flow associated with the -:
vpropagation of the normal arterial pulse.» It is evident that the

‘ .cardiovascular system is very complicated both in its mechanical

properties'and in its geometry.‘ Nevertheless, 1t shares fundamentai

‘

‘eratures with less complicsted systems of tubes. Although the arterial

'wall is not homogeneous, and its response to applied stresses is, in

: ;zneral ‘not linear, isotropic, or. perfectly elastic; its response to
the stresses imposed undex normal phvsiological conditions is very
’nearly the linear one of a homogeneous, isotropic; elastic tube.. A

"‘more accurate model of the mechanical response of arteries can be

"obtained merely by making adjustments to this i&ealized version.:' ‘ k'.;l"

h . L .9

,«'-l,
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Similarly, blood is not homogeneous and its response to mechanical
stress is‘not‘that:of a Newtonian‘fluid; ﬁiwever,vit isﬂreasonable to
approximate blood”as a‘homogeneous‘ﬁeutonian fluid'under‘normal i
conditions of flow in the large arteriea; Finally,»the geometry of the
circulatory aysétm is certainly ot that of a straight circular
eylinder. Many of the features present inlthe tortuous course of the
:‘arteries, however, including the bends, bifurcations, taperings, and
stenoses, can be viewed as short geometric'transitions between straight"{
"segments. c ‘

‘In modellingiphysical,phenomena: it‘is,'almost,withput exception,
fruitful to‘consider simple models hefore introducing the many
modifying featurea present-in reality. In the-last part of.thia ‘
chapter, we describe a very simple model of. wave propagation fn- large
: arteries. lhen, we introduce various modifications that have been
incorporated into the basic theory to’accdunt for‘the observed,
characteristics of the arterial pulse not predicted'by the simple-‘
vtheory., Finally, we . stake a'claim to the direction undertaken in this’

dissertation, and outline the features of pulse propagation to be

: examined in depth.

Mathematical Models”of Wave.Propagation

. s

i “‘ o N
The simplest model of pressure wave propagation in large arteries

\is a linear long wavelength (LLW) theory., A detailed description of
‘this theory is found in Pedley (1980) This theory is appropriate to
-pressure wave propagation in straight, uniform, elastic tubes l‘.

'containing a hqmogeneous, inviscid fluid. As is noted in the previous,w'
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"section, the velocity profiles in large arteries are approximately

flat, suggesting that the effect of viscosity is confined to thin

Vel

hboundary layers on the waéls. Thus the neglect of viscosity in the .

.

. simple\model is reasonable. ConseQuéntly,;onlyllongitudinal variations\

in the excess pressure

\\ R wpe'p‘-po : o - . (2.3)

gré considered. Here, p 1s the fluid pressure and . p0 1tsA

.
' ' ' w

undistutbed velue. “," ﬁ, .

'

When the pressure pulse is sufficiently small, both the wall and

v

the fluid mechanics are approximately linear. If, as well the

wavelengths of all disturbances are large compared with the tube
radius, it can be shown that pe.esatisiies the classical wave .-

-

y

’equation . : R . o "- o
’a . , . ! X | . ' ' , ‘ ,\’, '\.‘
| ‘1@ ) ! 2 . ‘lﬂ' i
e , ap L 2 ] Pe L
, - Co 2 » " '\2.4)
N L ax, at 3 z t
- where the wave speed' cg. 18 defined by - .- 5
T S A
-2 =1 d(pA); : :
0 ’"ont_[ dpe”]p =0 B (2.5)

','(Pedley, 1980) 'ﬁere;'“p is the fluid density as stated earlier,

A

t*ithe axial coordinate, t the time_gnd A the tube 8 cross-sectional .

[
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area. - The subscript ' '0’ refers to quantities‘eyaIUated‘at p = 0.
: S : ‘ ‘ , e
Equation'ZuS can be rewritten;as o . L. T

I

L ldp L1 dA S PO .
= ~ P 428 - ‘ ‘
0. Poly dp, A dpere-O ‘xpo(x+?) S (215)

RS

l ‘where‘ K ‘is the compressibility of the fluid and D, the
distensibility of the tube.' The quantity K is the reciprocal ot the r d-’
resistance of the fluid e compression and the quantity D 1s the \‘ “ _—

‘ reciprocal ofhthe resistance of the tube,walltto distenaion; It is |
argued in the first part of this chapter that blood can be treated as :";

an incompressible fluid ‘as !&D " 10 : that is, K +»D‘~ D,{ Then

' o ’co';‘[po]—l/zr,i o "‘pni (2.7)

.
"

. where we' have put =p = constant.n Eduation 2.7 is the result

‘o
derived by Thomas Young. According to this theory, the speed at" which

o

: pressure waves propagate along blood vessels is governed by a balance
between the restoring force generated from the resistance of the

": arterial wall to’ circumferential stretch and the axial inertia of

l
J’

blood.‘ If the artery 1s modelled as a- thin-walled isotropic tube, as'
,‘-x , f)
iS‘usual,.fDTL‘= EhIZR. In this case, the»gave speed is .

[ .

. ‘j._‘.._v'ﬁ‘couff[zh/zpnfif?-, T 21 8
'dthexKortewengoens‘vave'speed;”ilf'it}is aasumed_that”the‘tubeyis‘;

&3

s;pr IAF’F"\XH;‘
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‘ prevented from*moving longitudinally by external constraints, that ﬁg/'

"”'tethered' E must be replaced in eqn.‘2 8 by E/(l—vE), where Ve is :

Poisson 8 ratio. Further, 1f'the tube 1s incompressible, vg -‘%~ andyy
. . ‘ .
E'= 3G , where G, is the shear modvlus. Eﬁen, eqn. 2. 8 is replaced

@’

Cp—

\.°.

| ch..'[zch/pm‘l/z‘.‘ L @y
e R N - I

‘*pn ‘of- eqn. 2 4 representing waves travelling in

‘to be determined by boundary or initial conditions. Thus, pressure

anes propagate through a single uniform tube without distortion dt the

L

constant velocity cb . The values of o predicted from eqnu 2,8‘are

‘given in Table I of Caro et al (1978) for comparison with values.of‘ I

i ! ',

‘measured in the canine,cardiovascular system. In the: large arteries

'

'the measured value of K differs from c0 by no more than 15%, well‘

'suggests that the simplifications introduced into the theory are not.ji

'V;f?is scaled by the factor 1/pc . In fsct it is evident from Figs.ff77‘

'cijand ve1ocity wave change shape as they propagate through the large"

within normal experimental error agd physiological variability. This

“"sources of great inaccuracy in the calculation of wave speed.‘

According to the LLW theory, not only does the pressure pulse

‘remain undistorted as it is transmitted but the velocity pulse is i,

4'identica1 to the pressure pulse with the exception that its amplitude,:'

' *-12 14 12 f§ and 12 26 of Caro et al (1978) that the pressure wave :p”..

;_iﬂktion is pé f(t-x/co) ) yhere f is a function

]
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‘arteries. As well,,the shape of the velocity pulse is not the same as

that of the pressure pulse and the amplltude,of the velbclty pulse

falls with distance from, the heart whereaa that of the pressure pulse

'

: inltlally rlses.
| . Ope‘factor cited‘ashe‘source of the clstortlon'lh the‘preesere’
éulse'and\the’veiccltypulse is weve'reflectlcn at junctions‘and cther
sltes;of geometric'or‘mechanlcel'treneitlon ln the artérlel tree.-

o Reflectione ln'a eystem.of‘uhlrorm‘tubes‘codtalqlng sites cfxabrupt‘
e‘géometrlc or hechanicel Chehge can be accounted for in the LLw‘thedry‘
by applylng appreprléte‘condltlene acrcss:these dlecontlhultieé. Thus,
the LLW theory predicts that waves are reflected at any locatlon‘where l

there is a change ln the local (characteristic) {mpedance ; \

'
\

Z = peg/A - T a0y

‘If two' tubes of iﬁpedance Z(}) and Z< ) are connected,h;he ratio of

the reflected to the incident preBSure_wave is ' - . ‘ L

t

o 8 ’ "“. ) , . {
r = - 22Dy M@ eay

'hrﬁhile_the ratlc‘pfrthettrensmitted to the incident pressure wave is*

T_ - 2/fi'+'zf;?}i§2%i S @y

f". S

. The ratio of the 1mpedance8 Z(l)/Z(iyv 18 called the diacontinuity ,'1‘
' A ‘ ‘ , . o

2

)4‘~
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o ; ' " \ -1 : . '
coefficient "Ac .

The rate of. energy transfer in the reflected wave' relative to that .

in the incident'wave is" RZ,; \Similarly, the rate of energy transfer

A

"{n the transmitted wave relative\to that in the incident wave 1s . o
L ' . "\“‘\\ ' o o

AéTi,.”»Thus,vRi 18 called the reflection coefficient and AcTil the

transmission coéfficient. It follows from‘eqns; 2.10 and 2.11 that

T R2 + :\i \ L (2a3)
S S \ ‘;‘ o

This deémonstrates that -uo energy 1s 1oat\<t a d18continuitytusigg this

Ve

N\

theoryi’ o - - o " \(‘\\ _ ?\(, o
It is predicted by the LLW theory that a\major sii: of reflection

N

et

encountered by the pulse wave as it travels dosn tﬁe human aorta is the
aortic bifurcation.‘ The reflection coefficient }s largest at_;his

: . .
junction. The total cross-sectional area of the two iliac ‘Wmrteries is

: ' \ Ty

less than that of the abdominal aorta by as much as 20%. As well, the

\ v

4

iliac arteries are stiffer than the abdominal aorta. ThHe wave\speed in

’

lthe former is at least 10% greater than in the latter, Thus, the vaiue i

!

of RCL at the sortic bifurcation is greater than zero,‘approximately \i

"0}16{~ Hence, a positive reflection occurs.‘ that is,’ the relested
o | | < S
'_‘,preseure wave takes the same sign as the incident pressure wave. ' | “-;f~

. po ,

-;~Meanwhile, the reflected velocity wave is opposite in sign to the fts~‘j‘fh“
. Q [ v K

'incident velocity wave. A positive reflection at the aortic ) f“ f;f* Q»?yw

f:bifurcation is conaistent with the observed &dcrease in amplitude of73'

T . oL

: 'the pressure pulse as it movesﬁéyay from the heart, and withbthe

'corresponding drop in the flow-rate pulse. Moreover, it is argued by

i - .
. oy
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Mills et al. (1970) that. a step seen in the descending‘partpof the

" velocity wave'(see‘Flgr 12.26 of Caro et al., 1978) s the ‘mark of a

.‘wave reflectedffrom the iliac bifurcation. On‘the-other‘hand, the

pressure wsveforms measured by Mills and his colleagues contain so many

fluctuations that it 1is difficult to interpret any one as a reflection
from the termination of the ‘aorta. o
;,Itﬁis evident, then, that ‘the LLW theory has som% merit as a model

-

of arterial;pulse propagation.. Its estimate for the velocity of the'
pulse‘is very good. Moreover, the changes in amplitude demonstrated by‘
the . pressure and flow pulses are! consistent with the explanation that

these pulses are reflected at yarious‘sites‘in‘the circulation, such as -

the aortic bifurcation. Nevertheless, wave reflection alone 1s unable

‘to predicg.accuragely the following features,obseryed‘in‘the pulses as,

they travél througﬁ‘the large‘artéries: amplificstion‘and‘steepening"

of the pressure\pulse, attenuation of the velocity pulse, phase

\

difference between the peaks of the pressure “and velocity pulses,

[ r

spreading of the pulse waves, and progressive smoothing of fluctuationa
“in the pulses. Thus other; factors must ‘be. involved that modify the
predictions of this simple/theory \ We discuss four of them below. )

",1, In the simple theory, it is assumed that the properties of the

S
»,

: fluid -and the tube wall are uniform.: Arteries‘are not uniform along
o their length. In particular, the aorta becomes narrower and stiffer as vﬂi"
. one moves away from the heart. This tapering is at least partly

: responsible for the peaking of the pressure pulse (Caro et al., 1978)

2. The simple model does not agcount for the dissipstion of

Ve

energy as ‘a result of viscous losses in the fluid and the tube wall.

Al o
N e

- T



s

L
.\ ‘ . g ' . 43
Dissfipative meéhanisms‘in.blood and in the. arterial wall are capable of

 makLng significant contributions to the attenuation observed in the
v . t

velocity pulse.

\

3. In the simple :heory, the only mechanical property of che tube

wall considered 19 1ts resistance to circumferential stre:gh. The'

{nertia of the vessel wall and other elastic features, such as the
wall's resistance to bending, are not-included. ‘When thesé properties
are‘incorporated’intd the simple model, a dispersive theory of wave

propagation is obtained. In a dispersive theory, the shape of a pulse

() '

18 modified as it evolves (Whitham, 1974) . ' |
4. Flnally, nonlinearities have not been accounted for in the LLW

theory. As {s discussed in the first two parts of this chapter, there

‘fl
are two ‘sources of nonlinear behaviour in the circulation. The first

.

{s.‘the convective acceleration of blodd along the axis of the vessel.
Y ’

‘The gsécond comes from the wall mechanics. Sipge the arterial wall

~

bepohea stiffer with strétch, its distensibility depends on the state
oé strain an& hence, on the blood pressure. anliﬁearities are not
expected-to?be of great 1nf1uense in the normal puise,lbut they could’
produce'some of the'changesgin the pulse's shape, such as the -
C .
NV

The.noniiﬁeaﬁ theories concentrate mainly‘on the mechanics of the

.

stéepening.

fluid.dnd neglécc; for example, the‘viscoelastic, bénding, and inertial
effects of the wall. The principal method for incorporating nonlinear
features is to reduce the governing equations for the fluid to
one-dimensional equations. Thus, as is also the chse in the LLW

theory, the velocity and pressute are tepresented by their averages

78]
——

s
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~of this discontinuity is predicted break down be

4

over the tube's cross-section. The fluid equations are augmented by‘an ‘

equation relating the qross-sectlional area of the tube to the

transmural press?re. This equation captures the nonlinear resistance

- ) ' N
to circumferential stretch demonstrated by arteries, but it neglects

all. other mechanical properties of the—arterial wall. This formulation
is pfeeisely the one prog;sed by Euler. This model can be solved by
the method of characteristics, unknown in Euler's time, as the set of
éovernlngAequations form a hyperbolT¢ system. Lambert (1958) was Lhe
first to solve this model of blood flow using the method of
charactérietics- Unfortunately, his cholce of numerical parameters was

unrealistic and consequently his results were also (Skalak et al.,
1981). | | .

The principal prédiction érising from this theory is that
nonlinearities cause the front of the wave to steepén. Such e;eepening

1s commonly observed in the aorta ‘and other large arteries, but lt'ié

not thought to be of great importance in normal subjects (Caro et al.,

.1978). In patients vwhose arteries are abnormally distensible or in

whom the amplitude of the pulse is very large,'the bégépéning Eén‘be‘
quite impprtant. eIn the model, the steepening ulti?aigly éenerate; a-
shock. However, the nondissipative equaéions~from whfch;tﬂe gxisténég
ﬁd&e fhe ;hock a¢tdéliy:'
occurs, as the neglgfted‘dissipativg terms become imﬁortant.« o |
The quel described aboyg'can be modifiéd to ihcorbofate

dissipation by in;erting an empificgi frictiohkgerm into‘the'eduation
of mdtion for the fluid (Streéter et al., 1563; Olsen and Shapiro,

1967). The friction term usﬁally used is either the one for
‘.: .9 . . \ .



friction 1n the wall has proven to be more difficult to incorporate
) A

45
-steady 'laminar flou or the'one for quasi;steady turbulent flow.
These cholces \may lead 65 inaccuracies as blood flow is unsteady.
Another eource of dissipation”is wall viScoelasticit}.‘ Internal—"
fato nonlinear models than fluid friction. For onenthing, the use‘of
even the simplest\linear nodel of viscoelasticity complicates the set
of characteristic equations aesooiated with.the governing equations to
such ‘an extent that they can no longer be integrated directly (Pedley,

n

1980).. More importantly, it is very difficulgt to develogp nonlinear
"—

T — » R W

constitutive relations for' viscoelastic. materials: Holenstein et al.

. (1980) have attempted to surmount these difficulties by introducing a

.semi-empirical creep funttion to represent*the viscoelastic progerties

of ﬁ/eﬁa rial wall.-IHowever, their’model is not truly nonlinear as

they asaumed nearity in the viacoelastic response of arteries./

vAlthough they claim better agreement with observation for their model

~

than had been obtained previously with elastl models, thetsuccess of

, their approach in predicting pulse attenuation accurately‘r>n61ns'0pen

W

tp debate (Pedley, 1986) R I

A . W . £
1 :

The nonlinear one—dimensional moded of Euler can,be refined to

N

'include not only dissipatiVe effects, put ‘also the nonuniformity and

)

,repeated‘branching of.the“arterial*tree. The latter two properties of

o

* the circulator} system are modelled~by'treating the arteries as tapered

Q
¥

pordus tubes.’ This idea was fhtroduced by Streéter et al. (1963), and

‘developed further oy“Skalak“and Stathis (1966) ’It was extended/hYJ

‘Anliker et al. (1971) in a thorough investigation of the canine

L} - . . . °
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3

systemic circulation. The same approach has been employed by Stettler

et'al- (1981) in a mooel‘of'the human arterial pathway extending from

the heart to the foof. The results of .computer simulations of models
" L ' ! !

a

. of this sort always show a broad qualitdtive agreemént with experiment

(Pedley, 19805. They clearly show peaking and steepening oi the
‘ .

‘ pressure pulse, and develpbment of considerable reverse flow in the

abdominal'aorta. A declinelin peak veloc with distance from the

" heart, however, is not seen except | he viscoelastic model of

LN

The shortcomings in the predictions'of these nonlinear models{

\
~

reflect inadequate treatment of not only the fluid viscosity, but mote
{mportantly,  the mechanical properties of the arterial wall Qn the

other hand, it is precisely.the wall mechanics that are of greatest

]

importance in linear theories of arterial pulse propagation. These

linear theories aeejcapable.oﬁ describing elastic,phenomena other than

-
B y

just the wall's resistance to circumferential stretch. Furthermore,

visooelasticity can be cdhsistently.incoroordted into the stress-strain”i..w -

I

relations for the wall with the use of linear phenomenological models.

w "

Even fluid viscosity can .be’ handled in the linear theory without

“resorting to empbrical'methods. This 1s acgomplisheﬂ by including the

o A ~

radial motiona of the fluid, as well as the axial in’ the governing

©

[
W

'equations.

The linear mo&els‘follow the approachfof Youné, as 18 illustrated ..

"in the earlier discussion of the LLW theory. Hence, it is assumed in

o

-these models that the tube wall degorms very slightly from some

equilibrium position. Moreover, the.conveCtLve,acceleratioﬂ of :the .

W
. g N IS
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fluid is ignored;. Thus, "linear equstiOns describing the fluid motion
'are combined with 1ineer elastic or viscoelastic ‘equations governing

the deformdtion of the wall.

In general, the linear theories are two-dimensional as they model
f \ ., . ' . . . ' .
axisymmetric fluid motion in a circular cylindrical tube. The only

component of fluid velocity considered to be insignificant 1s. the one

. 1ln the tangential direction. In some dddels, however, the velocity and ich

pressuré are represented by their averageg over'the tube's . .
B

\

crogs—section, as‘chey are in the nonlinear theories. These models,

then, are only one-dimensional. \ ,
An example“bf a one-dimensional linear model is thelsimple one of

‘the LLW theory, in which the tube is treated as a uniform, thin-walled

_isotropic, elastic membrane and the fluid as inviscid. Only the radial

=

motion’ of the' tube wall and the longitudinal motion of the flnid are .
rebresented'in this model; The LLW theory can be extended to two
dimensions by fncluding the longitudinal.motion-of tne tnbe wall and.
the.rsdial“notion of the fluid in‘the governing equations. _Tne

two~-dimensional model 1is anelysed‘mbst easily by seeking travelling

wave.solutions :d‘féé set of‘30verniﬁg equations. These travelling

v .

wave solutions are assumed to be- proportional to exp[i(kx-mt)], where

A

-k 1is- the wave number and @ is. the circular frequency of the giVen .
wave. /In order'fOt such travelling wave solutions to exist, k‘ and w
- must be related.\ The relstion between k and o is called the

.dtspcroion cqnation (Whitham, 1974) or, 1n the oldet literature, the

¢ ~

'frequency equation . With each solution of the dispersion equation

: there 18 associated a mode of vibretion of the fluid-fllled tube. o Vo

“a
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v

The principal result of: this two—di?ensional extension of the LLW
theory 1is that two modes of, vibration are predicted. The two modes are

A
distinguished by the . direction of the principal movement of the tube

wall.’ In one mode, the wall vibrates primarily in the radial direction

whereas the wall‘motion is mainlﬁnlongitudinai in the other model.

When the waves are very long, the mode that is prinarily radial
: - IR ‘ \

propagates with the veiocity c

\ 0 derived'by Young. For this reason,

it is usually called Young's mode. The other mode'travels at a greater'

» velocity. In honour of 'the person %ho first demonstrated the existence
of‘longitudinal,waves in a fluid-filled tube (Lamb, 1898) gthis mode 1is
called Lamb's mode. _This—mode is not observed in artertes in situ,

"however, on account of the longitudinal tethering of the surrounding
@ S : wo o

tissue mass (Caro et al., 1978). hence,.Lamb's mode is usually omitted

r

. < ) -
from linear theories applied to arterial wave ‘propagation.
The LLW theory can be modified-in another way by including

dissipative mechanisms in the model of wave propagation. Lineer

__,,m..\_._,— o . -

theories that incorporated wall viscoelasticity and/or fluid viscosity
' “ {3

‘during the first,half‘of:the twentieth ce ury. Brie
Cox (1969) Some

' models .were one—dimensional and others were two- imensionsl. ’Those

models that accounted for fluid viscosity vere: two-dimensionsl as ‘they

" " é

""required the radial motion of the fluid as well as the axial, to be '(

‘f‘present in the governing equations. The most general linear theories
‘to include dissipative effects in their models of wave propagation were

*;afproduced independently by Morgan and Kiely (1954) and Uomersley (1955)

eviews of°® this o

¢

%
o
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. o ‘ U '
As the latter article conaidered/she details of fluid motion as well as

'those‘of wave propagationfand described its‘results within the context

- o

of the dimensions of the arterial tree, the conclusions of thisg paper

rather than ‘those of the former provide the basis for the discussion of
. v . . ) e

wave propagation in large arteries presented below. ‘
. Ine Womersley 8 paper, as well as in- Morgan‘and Kiely's, it 18 the’

contributiqn of fluid viscosity to wave propagation in fluid- fleed

-

distensible tubes, not that of wall viscoelasticity, that receives

primary consideration. . In fact Womersley did not even represent wall
-viscoelasticity in his model of wave propagation while Morgan and Kiely

‘mention it only innpassing. Womersley found that the principal effects
. \ i
of £1luid viscosity are to reduce the ‘speed of propagation of ‘a given

wave and to attenuate ic. Further, fluid viscosity cautes a phase

)

difference between the peak of the pressure wave f%d the peak of the
) flow-rate‘wave. .The flow-rate,Wave‘leads. If the flow&rate is'

caléulated from the<observed pressure gradient: at a given site In the

circulation, it is found to match the observed flow-rate very well

t

'even when the wall is treated as a rigid tube (McDonald 1974) The

_.-——

A shape of the pressure waveform. of course, is a consequence of wall

‘/‘ o - ". B o

elasticity. B e v,“‘ .
“,l The predictions of Womersley 8 theory stem from the dispsrsion

equation for his model. The presence of fluid viscosity is noticed :
. ¢ I
T immediately in the dispersion equation. ‘ This relation, strictly real

'l

- in the absence of dissipation,
' <

T ,appears. Therefore its solution,;

,cOmes,complex when fluid viscosity

yielding, for example, k as &=

9 function of -m, is complex. Hence, a single wsve of frequency w. 1is o
2 N .‘. o . . '

\ : L e B T
B A . L L B
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‘ 'modulated by the - factor exp[ (Im k(m))x] as it prdpagateslalong‘the
| tubel As the imaginary part of k ‘remains‘positive.for all w, the
wave‘is‘always attenuated. The attenuation is‘evidently | |

frequency-dependent,-asdis‘the phase-velocit}l c -'w/Re ks

'
»

Womersley identified the parameter B

a = R(gﬁv)”/? . L (244)

[

8 \ o

where v 1is the kinematic viscosity of the fluid, as the single
' . ' . ' . . ' ' ’ : h" ‘ oy ‘e
parameter controlling the behaviour of the phase velocity and the

attenuation. For a-> 3, the phase velocity‘is'approxinately edualvto

, < b

‘the Korteweg;ﬁoens wave‘speed € s as is seen'in Figl,ll.3 othcDonald‘

[

(1974) For a < 3, however, the curye representing c as-a function
of d falls steeply.‘ Thus, the higher frequency components in a
disturbance will travel with greater speed than the lower frequency
\components. This phenomenon is called dispersion.» In large arteries,
; however, the condition a. > 3 holds for all of the components of the ’
arterial pulse (Caro et al., 1978) Hence, the sh?pe of the pulse is -
" not changed significantly as.a result of the dispersion caused by fluid;f\~
viscosity.‘.g‘-}‘[} E ,’.:\ “-3. R i.f ,5l;a"‘ “ |
| The impact of fluidkviscosity on wave - attenuation 1s’ of much

greater importance than itS‘impact on the velOcity,of wave

propagation.' The attenuation introduced by fluid viscosity is

[ ' .

i predicted to be measurable even in the largest arteries. As is evident‘:-"':

from the discussion above, waves decay by the factor exp[ (Im k)k]

they travel a distance equal to their wavelength l. Ihis}decayy; ‘j,‘,;‘
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t'decreases‘withkincreasing' a, that:is; with increasing;frequency,n‘The
attenuation per unit distance, however, increases as frequency ia

~‘increaaed.‘ For‘example;ﬂa wave of frequency 2 Hz is predicted to be .

attenuated by only 5% through the length of a dog | aorta. fbn the
f U v
other hand, for Waves in’ the frequency range 40- 100 Hz the attenuation

is predicted to be 24~33Z through the same Iength (Caro et al. 1978) -
CONe '
The decrease in wavelength with increasing frequency is responsible for

1

this apparent paradox.

. . “\""" .
It is intereating to compare the attenuation predicted by
) ' .
Womersley 8 theory with, the attenuation observed in arteries. la number
Joﬁ experiments have been conducted to‘measure attenuation |
‘ characteristics in arteries (Mchnald 1974)( host of these‘
experiments are performed over: the range of frequencies thdf exist in
.the natural pulse wave. - In the dog, this means a frequency range of ’ R
—20 Hz.‘ A few erperiments hawe been performed at much higher ‘
frequencyLs, that is, over the range 40—150 Ha\\ The results of the
atudies conducted over these widely separated frequency bahda are | ' (:i)v
compatible.. They demonstrate that a far greater‘degree of damping o ’
}"exists in the circulation than is predicted by WOmersley 8 theory.
| Attenuation derived from the effects of fluid viscosity can account for‘
only 1/4 to 1/3 of the damping observed (McDonald 1974) The p
additional attenuation is believed to be associated with dissipative‘ ;
-j@’ ‘mechaniema in the vessel wall. L o
s The introduction of viscoelastic, as opposed to purely elastic,

2

tube wall properties]can be accomplished in a straightforward manner in R ,:_Vfi

linear theories by exploiting the connection between the viseoelastic ,f; "‘if

.-
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- material parameters‘and‘their elastic counterparts; When this
‘ _cohnection'is'uSed to introduce viscoelasticity'into womersley's‘model;‘

L . . ' ‘ o .
it is only the Young 8 modulus‘ E' that is changed. This modulus is no

' . N )

- longer. a real*valued constant. Rather, it becomes .the

frequency-dependent complex-valued quantity ER + imEI where‘ ER _and

EI can be’ functiqns of frequency. Consequently, the result of wall ‘

"viscoelasticity 18 to increase the phase velocity slightly, by thei
factor 1+ %:szz/Ez, and to increase the imaginary part. of k by the

b

”Emount mwE_/E_. In measurements of arterial viscoelasticity performed

0 S S

over the frequency range of the natural pulse, mE /Ek lies between

gpulv and 0 2. This is the same order of magnitude that is predicted
for wE /E from the experiments measuFing attenuation characteristica
discussed in the preceding paragraph. For this reason wall‘
,viscoelaaticity'has been adopted as the most - important gource of"
"attenuation in ‘the cardiovascular system, with fluid viscosity playing

a secondary role.l

2 The description of\homersley 's theory given above has concentrated
;on predictions of‘thencharscteristics of wave propagation in a single
'~;uniform tube. ‘To be valuable as a model of wave propagation for the
”jarterial system,‘honever, Womersley s theory mustlbe able to handle ‘v‘i“,ﬂavﬂ

’

t‘wave reflection from sites of geometric and mechanical discontinuity. ‘

w“ ’

: It turns out that this theory can be adapted to deal with wave
k*reflection at sites of abrupt geometric and mechanical change in the =
."“same way that the LLW theory has been adapted (WOmersley, 1957b) Th93"

application and interpretation o£ WOmersley 8 linear theory to the

Q‘arterial system has been thoroughly developed»‘ The details are

s

L . Lo, o e e L Y
. 3 \
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'T“discussed in the books by McDonald (1974) and Caro et a1 (1978).~

Comparisons of predictions based on WOmersley 8 theory with

o observations from experiments have been very good.' This supplies A
- L \ "

strong support for the hypothesis that the relationship between

Yo
‘ ot

pressure and flow—rate in- the circulation‘is*a linear one."
M. G Taylor has used Womersley s theory as a f0undation for L
employing transmission line equations to model wave propagation in the

arterial system, and has discussed wave reflections from this point of

view. As the transmission line equations are’ one-dimensional this - .

V'

approach.is not unlikeathat,of the nonlinear theories mentioned

|
1

: earlier. In particular, it is possible to incorporate the aorta s

[
)

. tapering and increase in stiffness along its length into the governing

equations by using techniques analégous to those employed for treating

o \

nonuniform transmission lines. For further details concerning the work

of Taylor, the interested reader may consult McDonald (1974)

N ’

During the 1960'3, many extensions of WOmersley '8 original model

‘j were proposed. These linear theories were produced 1n an attempt to

account for the transmission characteristics of the normal arterial @
pulse more precisely. Efforts were concentrated on developing more

general models for theeresponse of the arEérial wall as it was

- ' v

understood that the mechanical properties of the wall dominate the

‘

o behaviour of the pulse- Womersley s model for the wall was - the same as

Lot

S that of the LLW theory.. a thin—walled isotropic elastic membrane. It

'

e is evident from the discussion in the first part of this chapter that

1;‘while such‘a model is a reasOnable first approximation for the response f




N

o ﬂw ud@iigible (Atabek 1968), with the following exception.‘ the

1o A . " o
complicated fashion.e For this‘reason, Womersley's thEory of wave

‘ propagation in arteries was modifiéd by a number of authors to include

£
'

. the effécts of a thick wall initial,stresses, anisotropic~wall

[
)

properties,-and‘viscoelasticity.

" A comprehenstve review‘of the literature appearing in the 1960's

is given in- the article by Cox((l969). Mostiéuthors characterized the

L

‘ propagation characteristics ‘of their model by means of two quantities,

i

the phase veloEity ‘c and the transmission coefficient’per wavelength’
exp[ (Im k)A] These quantities uere usually plotted as‘functions of‘
frequency to illustrate the’ results of the.analyses. ‘Coxncompared the~;'
various theories and found that they all shared the qualitative‘
behaviour of Womersley 8 model. | ‘

The results of Cox 8 study provide additional support for the use

of the thin—walled isotropic, elastic membrane model of the artery

' wall in the descriptionfof the normal arterial”pulse. .0f course, wall

viscoelasticity must be included in order to model. wave attenuation

accurately, as. is discussed above. The influence of wall thickness,

,‘ } .’

however is insignificant at the values of the ratio h/R pertinent to

I
'

largé arteries.” Furthermore, the effects of initial stresses a1d wall

Ty ‘ .
anisottopy on the propagation properties of the normal pulse are also
’f“f&“ ‘

Korteweg—Moens wave' speed c0 is dependent on the state of initial

‘ stress in the artery.l This dependence can be dealt with very easiky,

I

however, by choosing a value for the’ incremental Young 8 modulus based“

con the initial state of stress, as is discussed in the first seétion of(riﬂ

‘.\' o | s Y
i :

this chapter. We conclude, therefore, that the arterial pulse 1’1{

Lo



adequately modelled‘by-representing.the blood vessel wall as ;_ -~
. : [ ) : ' : ' ok '

'thin-walled, fsotropic, viscoelastic membrane.
... It 1s evident, then, that the‘unGErstanding'of the"normal‘arterial

- O

fpulse'veve is fairly complete. Consequently, it would seem that there
is little left to be done regarding the matter of wave propagation in
- large arteries. It is at this point that_the following question rears

R its ugly head ‘what ahout arterial wave oropagation\at frequencies

“ ' . ‘ \ 0
"toutside the band. represented in the normal pulse wave? The question is

‘not.merely an academic one. “As 1s noted in Chapter l , -the natural
pulse‘has‘a very short'frequency'range. It can be described very

accurately by 10 harmonic terms (Caro et al. 1978) This means that,

in huwmans, the frequency range of the arterial pulse is approximately

[} .

1- 10 Hz while in the dog it is roughly 2~ 20 Hz. On the other hand it
is pointed out in Chapter I that researchers studying wave propagation
in the arterial system have artificially generafbd disturbances‘

‘containing frequencies of up to 150 Hz. Moreover, some of the energy

’

'in the artificial pulse used in the experiments of- Greenwald dand Newman
‘ ,(1982) is concentrated near w - 0 that is, at frequencies lower than
L those existing in the normal pulse wave: Thus, it is also of

f'considerable prsctical interest to’ study arterial wave propagation at.‘y

‘ ‘frequencies below and above those encountered in the natural pulse.,“f

R

Unfortunately, the analyses of arterial wave propagation discussed );;

n

’fgyso far in this chapter are not able to tesolve the question raised -

wot
.»\

l”in the precedins paragraph-' Tt As. not the models chemselves that are

“b'funsatisfsctory. rather,gxheir validity is limited to the frequency

' ?]range of the normal pnlse ss a result of the simplifying assumptions;r
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infroduQeduin the course of obtaining solutions to the gqvepniﬁg
eqoeCLOns of . the mgaela; : ," . ,\*
. ‘ |

The problems with typlcal analyses of arterial ane‘propagetion

- 'stem from the,approximetions made in aolving the dispersion equation of

'
v

the particular model being examined. For one th1né; when a viscous

 fluid 1s 1nvoived, the‘dispersion eqnation is often-simpllfied’by

assuming that «? s much' greater ‘than |kR| , where a 15 the

womerslef“parameter defined in eqn. 2. 14. This is a reasonable

° ! ‘
However, when w is very

s

assumption as long as « 1s not too smal

nearrto 2ero the assumption may not be'war anted. Consequently, the’

I \

circnmstances; L R R T W A
. . ¢ ' - » . B : . ;;./jj ‘
Another assumption always made in analyses “0f arterial wave

Kl

solution to the dispersion equation may not\ be valid uifer theae
. . r v
|

propagetion'ts thet tne nondimensionel quantity‘ mR/e 1s very small.

mentioned 1n Chapter 1. As a typical value of the rat‘

This assumption 19 eqqivalent to the long wavelength condition- e

. \
@o. — N

4

'large arteries ia 5*10 s, 1t 13 evident that the long wavelength

jcondition is always satisfled in the normel pulse wave. However, at a

W

'frequency of 50 Hz mR/c -~ 0;15. This is a bit large to justify

iuconfidently the use of the 10ng wgvelength condition. At,frequencies\'

v " 3 R b

| greater than 50 Hz, confidence in ahe seitability of thia condition is‘

“l

’?undermined even further. The violation of the long wavelength

Y

o

"ey‘equation 1n the following way.' The dispersion equation 18 usnally

K

‘stolved by determining k as a funccion of w 1n terms of powers of

2

. . . ' .o . -
/\ ‘ ’ \
" i
. UL A
. e h A N
: . V -
" 1,

)

‘condition produces an error 1n the typical solution of the dispersion e

"o
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”R/cof Terms of up to order 0((wR/co)2) acre retained and higher
order terms droppéd- The phase velocity, tﬁeﬁ, consists of a term of
arder jQﬁl? and a term{pf order O(mR/co). 1f the‘quantity wR/cO is
‘not very small, hoyever, the higher order terms are not 1nsign1f1can£.
Somg of them mﬁy\have to be 1nc16dgd in the solution for. k- in or;er
‘to oStain results that are sufficiently accurate.

It 18 evident, then, that conventional -analyses oflarterial‘pulse
‘ o ‘ .

propagntlon'haye produced solutions that are inadequate outside the

s

frequency band contained'inqﬁh~;uormal pulse. 'These solutions are nof
justified at either very small-frequencles or very large ones. This

@ K
prob\em has been addressed in a pair of recent papers by Rubinow and
s " :

R

Keller (1971, 1978). Their description of linear wave propagation in |

fluid-filled distensible tubes is the most coumplete in -the lLterature-
- Their model 18 based on tlie linearized equations of motion for a
compressible, viscous fluid'augmented biﬁthe Iinear -viscoelastic

equations for an isotropic vessel wall of arbitrary thickness, suitably

specialized to an axially symmetric geometry. ‘It 18 presumed that an

N

arbitrary constraint.is exerted on.the outer surface of the tube wall.

Under the aasumptibn that the Eupe is thin-walled, andlfor appropriate

choice of the external constraint, the equationsﬁgoVerniﬁg the motion
of the wall reduce to those of a tetherea, isottopic,AvipédgiaStic
- M N , 1

‘ mémbraéé, Th%,geﬁeralithéory of Rubipow épd Keller 1; valid, however,
| ac all ftéquenciea.ﬂ

'Rupinoﬁ'gnd’gé;ler demonstracgﬂ that an infinite numbef of mers
" of w#vé prbpfgition cana?xigt in their fluid-fiiled“diﬁtensible tube
{>

o-— B
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model. Only two of" these are tube modes. The rest ;génacdﬁstiqai.
The acoustical modes depend on the'compressibility of the fluid for
their existence while the tube modeg depend on the distensibility of
the tube‘wall- At very long wavelengths, the pa£r of tube modes turn
“into Young's mode and Lamb'g‘mode reapectéyelyw Wheq the speed of
sound in the fluid is~1arge, that 1s, when the fluid's bulk modulus‘is
1arge,'thé acoustical modes have little influence:on the fube modes
and, 1in fact, exist at very high frequencies only. This confirms that
the usual assumption of fluid incompressibility is a ébd; one for b129d
or water. i |

The‘thruét of the two papers by Rubihow and Keller wa; aimed
toward establishing the nature of the dependenge of the rbots of the
dispefsion equation on the physical properties ;f the arte;ial system.‘

They were particularly interested in the following pair onQarameters:

the circular frequency w and the kinematic fluid viscosit Q. _Part

of their analysis was directed toward analysing the dispersidn relation

\

.

in the limiting cjﬁe w * O , v+ 0. 'They'discovefed that the
depéndenge of f on w ;nd' v ‘18 not-uniform at $ =0, v =0.
'This result haq not been acknowledgéd before in the literature. It
folloﬁs f;om their‘anal;sis that the solution of the dispersion
equation obtained under the aesumpciéh of-an inviscid fluid is not
;ofrect at w =0 , as every fluid poésesses some viscosity: that is,‘

C » ‘ ‘ ‘ o
in ‘the limiﬁing case .0 + 0 » v + 0, the proper root of the dispersion

equation is obtained by taking the limit as w + O first, then the
limit as v + 0. If the order of the limits 1s Ainverted, the
° . ' B

. o : ) . '
- correspaﬂ&ing‘root\is incorrect. Nevertheless, Rubinow_and'Keller»

;

M
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. demonstrated thét Young's Qeléciéy <o glves an accurate pred?dtioh of
the eéeed of the natural pulse, as}the phgsé‘veloeity,in a viscous

fluid is noé giich diféereﬁc from S at thebfrequencies contained in“

this pulse. Their conclusion confirms that of Womersley discussed

earlier in this section. Although Rubinow. and Keller accounted for the

'Yiscoelastic propertiesﬂgf the vessel Yélls in their model, they did
not 1nveatig§te the influence of viscoelaaticity on Qave propégation in
any detall. _ ‘; \
One of the st;engtﬁg of Rubinow and Keller's work 1s that they not
only'analfsed the réots of the dispersion equation for various limiting
cases of the parameters involved, but they also computed'che roots of
‘\ghis equgtion‘numerically over a broad range of frequency. 'Thus, tﬁeif
tésults are valid well beyond the‘ffequency range .of the normal pulé%ij
wave, . both above and below this limited frgquency bana. In particdzar,
their analysis ;s valid for the frequencies present 1nlthe disturbances;
cited above that are geh;rated artificially.
: ) . ‘
Rubthv.and Keller limited their an&lysis of wave’p;opégatién fn
fluid-filled disténsible fubea to considerations of.spéady-state' |
oscillations at a fixed frequency. jTﬁ;y charaé;erized‘the;r.résultslby‘
mmeana of two quantitfies, the phase velocity c = w/Re‘k and Im k.
The’latte£IVariable controls wave atfenuaciod. The~v§tiation of .c
and__Im k _with w, and the dependence of the two qﬁantities dn other
patamgtera importént in\theAarteriql'system, was"illust:éted“with a

variety of graphs. In.thia respect, Rubinow and Keller did not advance

beyond the approach employed by most-apth&rs'wric;ng in. the 1960's.
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It is true, of course, that general solutions can be constructed

. from the. ateady-atate ones given by Rubinow and Keller through the

\

technique,of Fourier supetposi:ion. However, this is more ‘easlily said

" than done. The behaviour of the Fourler intégral solutions uf wave

ar

" . *

transmission in their fluid-filled distensible tube model is not
obuious, as the,integrands are vefy complicated.k)Conaequently,1if oo
these generel snluiione‘are to be‘éiudied in detail, one mst resort to
ndme;ical integracion:

. Rubinow and Keiler's model‘ie so all-encowmpassing, however; that
1t Fdntains severai paraﬁetens that haye not been evaluated

experimentally. ,Thesegparémeters are involved with the nature of the

constraint exerted on the external wall of the vessel. é? the cost of

conducting a numerical study to determine the influence these

parameters have on wave propageton is nrohibifive, it seems wiser to
consider a speciai‘éase of Rubinou and Keller's model. A good choice
would be to model the vessel wall ae a-tethered,'ieotropic; »
viscoelaéeic membrane. It has been euggesfed previouely 1ﬂ.th1§
section Ehat this model giveg a reeeonebie abproximetibn‘to_the
tesponse of the arterial wall, at least for the'fnequencies presencnin

fhe normal pulse. It is still not suraiéh:forwend;.however, to use .

‘Rubinow and Keller's analysis to compute general solutions of wave

u

‘propagation in such a fluid-filled tube model. -

- The major stumbling block "lies in theit technique for: aolving the:

———

dispersion equation.. The dispergion equation ‘must be solved at each

value of w requited in the numerical integration of the Fourier
¥

integrals mentioned above. As a very large number of . points will be
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.o .
A
. . . "

needed in thia numerical integration, therolution of the dispersiaqn
equation must be obtained as efficiently as possible.. The optimal
‘ "approach 1s to solve the dispersion equation analytically. However,

Rubinow and Keller calculate analytical solutions only over very short:
W)
frequency ranges. The bulk of their solutions ‘are obtalined

numerically} As theidispersionlrelation is a conplex—valued ¥
_transcendental equation, the calculation of‘its solution numerically is
‘not a simple procedure.’ Consequently, the cost of-eValuating the
Fourier integrals that require'this solution wouldlbe astronomical:

. For this reason, we seek -to develop analytical solutions of the
~dispersion equation describing wave propagation through an
.incompressible, viscous ‘fluid contained in a tethered incompressible,
isotropic, viscoelastic .tube over a fairly‘wide range'pf frequencies in

.this dissertationai To be specific,‘the range of frequenciés of

\
u

interest are those.involved in, the experiments'of~Greenwa1d and Newman
(1982) citeq in Chapter .I. In fact, so as to err pn the. side of

caution, it will be assumed“that the nondimensional parameter wR/c

lies in the interval

0< wR/cg < 1.5 o L5 (2.15)
For the typical tube mentiongd.previously An which R/c ~-Sx10
this means fﬁat the frequency range ia 0-500 Hz.
The approach taken here to modelling wave propagation in

fluid-filled distensible tubea will not parallel the one displayed in

L1
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Rubinow and‘Kelieris‘napers QRubinow end Keiler, 197i;lRubinow ahd | f
' Keller,”1973), in wnieh"tﬁe disnersion equation piays.the dominent
| role. Rather,‘this thesis follows the path trevelled in a series of
| papers by Moodie and his colleagues, as illustrated cleerly fn Moodie
et al (1982) that is, it 1s the‘transient response of,tne
fluid filled tube that is emphasized. | 1
In the paper'cited‘above, Moodiefand hisﬂeofieagues nresented an
inneatigation ofjtne‘trensient reabonse of e'simple'oendiné theory
model of a viscoelastic tibe containing an inviscid fluid Thus;‘the§°
vr considered not only nembrane effects; but also the influence of higher
order terms 1nvolving.rotatory 1nertia and flexural rigidity'in the
‘mechanical response of the tube wall. In a related. paper (Moodie et

J

1., 1985), it was dedbnstrated that immediately after the onset of a

P

disturbance, those" higher order terms have a negligible impact on the

subsequent propagati n of thejpreeeure'pulse\dhen'the frequencies:

contained in the fulse satisfy the condjtion expressed in eqn. 2.15.

"This conclusi establishes support for the claim that a tethered,
. . -~
“isotropic, viscoelastic membrane is 'a reasonable model . for the arterial‘

‘-

wall not only over the frequency range of the normal pulse, but also

over the nuch broader range represented by eqn. 2. 15.

-

f.

" The practiq\i importance of investigating the‘transient response

‘of arteries to disturbances containing frequencies in the range

Ee

- 0-250 Hz 1s derived from impulse techniques that have been employed in
,.‘experimental studies of vave propagation in the cardiovaecular system.

Impulse methods were utilized by several researchers in the "1950's

«
c

' (McDonald 1974), but thereafter fell into disuse. It is only very

\



o _frequency in the reflection experiments described in the same paper.,

They increased by only IOZ over the f;:equency range analysed there.} y

;IIO n/s, the incident pulse and any reflected components may be

- ’ 63

: ) . !

recently that these techniques ‘have been reintroduced to investigate

’

‘arterial’ wave propagation» A summary of some typical experiments is

r

given below.

- In a series of recent papers (Greenwald and Newman, 1982 Newman

et‘al., 1983' Greenwald et al. 1985), propagation and reflection ,

, phenomena in water—filled latex tubes were analysed by means of impulse

N ¢

techniques.‘ The impulse generated is of very short duration, roughly

5 ms. As arterial propagation velocities typically lie betweenﬁ‘é and

Ve

.

adequately resolved evenqwhen the pressure’measurement ‘site is only a

few centimetres’ from the reflection gite" (dreenwald and Newman, 1982)

The evolution of a typical pulse is shown 1in Figr 1 of Newman et a1.

v

(19@3)(h‘The pulse undergOes-a pronounced change in'shape with

transmission. It broadens, is attenuated ‘and its oscillatory tail is

A 0 "

damped as the wave travels down the tube. The‘sameﬁgeneral pattern for’

this pulse wave has'been observed”in canine aortas (Newman et al.,

‘1981) These observations give strong evidence that wave propagation

¥

"is-a dispersive and dissipative phenomenon. ,

P

a

confirm the dispersive character of impulse propagatioh (Newman et al. .

’ 1983, Greenwald et al., 1985) For example, the phase velocity in the

»

latex tubes of Newman et al. (1983) was apparently independent of

frequency over the frequency range 5-100 Hz. Moreover, the ratio of

. . L2 B
L]

the amplitudes of the reflected and incident waves varied little witb.\
D

L »

¢

Nevextheless, Fourier analysis of these pressure pulses did not ;

'
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[
h

These results sound a wanning that the propagation properties of pulses”‘
cannot be ascertained adequately_frdh,graphs of phase velocities and

transmission coefficients‘plotted‘as functions of frequency. Sometimes
a small change in‘the,fﬁeque:cy dependencg. of these duantities'results

in a substantial change . aracter_in the pulse asva.whole,ias 1

‘ demonstrated in Moodie et al (1985) ’Unaer-other'circumstances, ;

‘ This theésis explores the roie of fluid viscosity in the propagation of -

‘larger changes in the frequency dependence have little qualitative

effect on the pulse. : ;

]

The tests carried out by Moodie. and his colleagues (Moodie et al

1984' Moodie et al. 1986) demonstrate the success of their theory in

G
a

predicting the transmission characteristics obserVed in a pressurev

impulse generated at the—eqtraﬂté‘of a very long water—filled latex

tube.' However, fluid viscosity is not accounted for in their. theory

el

pnessure pulses of the sort generated in the experiments of Greenwald

-

and Newman.(1982), and contrasts that-role*with'the one of wall

viscoelasticity. To accomplish this, the influence of viscosity and

i

“viscoelasticity is investigated not’ only with regard to the evolution

t"of a’ pressure pulse as it travels down a tube, but also with regard to ‘t'._

the reflection and transmission of the pulse at discontinuities in thel

Ve

tube. Then, the results o{\these analyses are compared with

' experimental observations of propagation and reflection phenomena.~ fla,”

'here more deeply.,

Kn‘Finally, further experiments are suggested to test the theory developed



.CHAPTER III "

Mathemstical Formulation of .the Problem

‘The. aim of this dissertation is put forward and discussed in

s N

detailfin the preceding two chapters. Here,‘we reiterste our

|A

fundamental query: what 18 the role of fluid’ viscosity in the

. '
[

propagstion of pressure pulses through fluid- filled distensible tubes?

k)

In order to .answer this question, .an appropriate model of the transient.

A

‘response of a fluid-filled_distensible tube,is‘required. .The‘
mathematical formulation of such a model forms the conteat of this
‘chapter.‘

o Co ‘ e : . B -’o ‘ .
The present analysis has its roots in the work of Moodie and hish

colleagues (Moodie et al. 1982 Moodie et al., 1985) wherein the ’ o

,mOtion of a viscoelastic tube containing an’ inviscid fluid is
. : ™~

investigated. The model of a fluid—filled distensible tube employed in

”

this thesis is the same one developed by Moodie and his colleagues, \‘nif-

[

fexcept that their model is extended here to include a viscous fluid.'wﬁf

" . oy

‘Consequently, the papers of Moodie Tet. al. have been relied on heavily

}in the ppeparation of the following derivation of this model.

' Basic Assumptions

-

: We start the derivation by delineating the basic physical
\sssumptions underlying the model.‘ The vessel containing the fluid is ”h

assumed to be a: tethered circular cylinder., The wall of this vessel is i
Tfassumed "to be composed of a. material that is incompressible, isotropic,'}'

ffj;*homogeneous, and viscoelastic.‘ This cylindrical wall is assumed to be e

s;}thin, in that the ratio of the wall thickness to the internal diameter




assumed todbehave as an incompressible Newtonian.fluid; Itfis evident
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[T ’ .

" of the cylinder 1s *émall. The fluld contained within the tube s

A

from the discussiOn in Chapter 11 that not only are these‘assumptions

{
appropriate for the 1atex rubber tubes used by Greenwald and Newman

. (1982) and nany other researchers, they are also reasonable in the case ..

of arteries.

i
|

-

. The viscoelastic response of the . tube is modelled as 'that of a
Kelvin—Voigt solid. This is the simplest model, where the responselto a
change in stress after a sufficiently long period of timg has elapsed
is elastic rather than viscous (Pipkin, 1972). Under conditions of

very rapid change in stress or strain, the Kelvin-Voigt‘solid is not an

~appropriate viscoelastic model as its response to an instantaneOusl

‘change.in stress 1s not elastic'(Pipkin, 1972). However, such
conditions‘are not of interest in this dissertation., Here, we”are‘
interested in studying disturbances whose frequency spectra are;

contained in the low to. medium frequency range defined by eqn. 2. lS.

I3

'The Kelvin—Voigt solid is adequate to model viscoelasticity in: a
L &

"‘material subjected to disturbances in. this frequency range. In fact '

v tas is demonstrated subsequently, at low frequencies any linear .~jb‘

viscoelastic olid tends to behave as a Kelvin-Voigt materisl. We e .
:

’3‘-

”vn emphasize, however, that our analysis ‘l not restricted,to a pa?iicular“ o

v

: @
rViSCOEl&StiC model in that more elaborate ones can be handled with

.minor alterations.

“’a

: @'} | ‘ ‘l

' The model of the trdﬁsient response of a fluid-filled distensible. N

"*j’tube formulated in this chapter is a linear one.‘ Thus, it is iif:t

L

» restricted in its validity to smal‘mplitude perturbstions about sn T
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‘ o ‘ ‘
equilibrium state. Furthermore, all perturbations are axisymmetric and

their frequency content is assumed to be in the low to medium frequency

"
[

range mentioned-invthelpreceding.paragraph. These assumptions about

4

the disturbances to be investigated here are applicable to most
experiments studying the mechanics of wave propagation in the
cardiovascular system, whether the experiments are carried out in latex
.tube models:or in the'arteré%s'themselves. In particular, the:
}conditions outlined above are satisfied by the pressure impulses used
.in the experiments of. Greenwald and Newman (1982) =
Before deriving the governing equations for‘our model of a

fluid filled distensible tube, it is necessary to describe this tube

w

.,_and the motions therein ‘more precisely. Consider a uniform thin—walled

o, L.

circular cylindrical tube containing a fluid, as illustrated in Fig.
3.1; The axis of the tube is taken to be horizontal and in the
xfdirectioa. The radius of the middle surface of the vessel wall 1s

denoted’byl R. The density and wall thickness of the tube are y and

h respectively. 'The wall material is assumed to behave as an

incompressible Kelvin-Voigt linear viscoelastic solid._ "The mechanical . -

model representing this Kelvin—Voigt solid is depicted in Fig. 3 2.‘ .

Thus, the viscoelastic properties of the wall are characterized by a S

' retardation time -r and an’ equilibrium shear modulus G e The fluiﬁ

is assumed to be incompressible and viscous with dynamic viscosity ¥

and density p."“ piki

-

The initial state of the fluid—filled tube;i% one in which the

fluid is at rest and the tube is undeformed. This state is chosen as

the equilibrium state ahout which the small-amplitude perturbations
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. .~ occur. The analysis can be readily adapted, however; for a‘different
choice ‘of equilibrium state. 'In Chapter II it is‘pointed\out that,xfor

© the most part, the'erfects‘of an equilibrium state involsing,initial

stresses csn;be accounted for by suftably altering the Korteweg~Moens‘

wave lspeed CO‘?’L . ‘

An axisymmetric perturbation of the initial state in which the

fluid is at rest and the tube undeformed results in a pressure v

‘perturbation ‘p(rix t) from the unperturbed uniform pressure in the
"tubea ‘Here:‘r' is the‘radial coordinate messured from the axis’ of the
tube and‘ t is the time. ‘Le"t‘ v (r X, t) and v (r x,t) respectively
‘be the axlal and radial components of the corregponding perturbstion in
- fluid velocity.‘ The radial displacement of the tube wall from its
tundeformed position 18 'denoted, by w(x t). As the tube isvassumed to

be 'tethgred', axial motion of the wall is ignored.‘p r

A typical disturbance in the fluid filled tube is depicted

,schematicslly in Fig.r3 3. The motion involves four dependent
' vsriables. p,‘v @ v£ s and w. These vsriables‘satisfy equations of -

motion describing the response of the tube to an axially symmetric

'_perturbation from the undeformed state. The equs ions of motion
\ \, ., .

vconsist of a set of equstions governing the dyns ”cs of the, vessel wall‘

-

. _‘and a set of equations governing the dynamics of the “1‘d.l The two 3

':fbetween the fluid and the solid.. “[.-'j":.' '

-

The formulation of a model representing the transient response of ”1

1]

‘?wila fluid—filled distensible tube is not complete without prescribing

yf»initisl and boundsty conditions to supplement the equations of motion.f

sets of equations sre linked by conditions that spply at ‘the interfsce" o
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These conditions describe Ehe specific disturbance that generates
. A « \

motion ih the tube 4s well as the effect that the ‘ends of the tube have
o) ' N - ’
on this disturbance. '

‘Thus, the problemito be solved in this dissertatfon is posed
n. { ‘ :

matﬁemqtically by the éqﬁhtiond of motion for the fluid-filled tube

{» . ~toge;her with the initial and bouﬁdary conditions. The remaining

»

f

sections in this chapter are spent deriving‘tﬁese equations and
. . ) " . ’

[

o " \ .
; R
.9 . . s

r
Wall Equatjions , '\ . - . : R &
R v \ ' N .- .

The fifdJ set of equifions we derive are those.govepnidg the

i

LY

dynamics of-tL¢qvésse1 wall. As a consequence of tke connection

~

between the respective counstitutive ‘equations for a viscoelastic

material and an elaétlc one,‘% formal similarity exists between the
. . ) \ .

¢ : B S

.equations of motion for a linear viscoelastigrsolid aad those for a

linear‘j}as}1C‘sdlid. The'material'coﬁstants appeartng i{n th& elastic
*

case are simply teplaced by 11neaerperators in the viscoelastic one

PN

(Christensen,:1982) Therefore, dé firat consider the governing
-equations for an, elastic wall ‘and then make use of the aforement*oned

formal,similari;y to obtain.;ht govgrning equations for‘a‘viscoela tie

.
.

. oo ot o
Thé‘full'set of eqpationsigoverhing the”ﬁgﬁion of the wall of an

. . - ) .

-

elascic tube is three-dimensional. JAs .the vessef'wall‘1é\assumedrto be_

chln, this ﬁet of equations can be reduced to two dimensions by making’

vpse of'shellAtheory. In shell,problems, 1t is advgntageous to employ_a

|- éoordinate system formed. by two axes in the middle surface of the shell

’

. - . < )
K ‘\ R . . S

A4
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and a chgrd.;:>g normal to Cthe middle surface. When the shell is thin,
it 1is reasohable to integrate the three-dimensional equations along the
third 4513 over the width of the shell to obtain an‘averaged get of
equations that 1s tdo—dimensional. | |
Many shell theories have been developed, corresponding to a
variety of approximations of tﬁ; integrals lnvolved- Hete, we have
chosen to use the shell equations derived by Moodie et al. (1982) for a
tethered tube. Their dehivatioh‘follows the approach introduced by
Herrmann and: Mirsky (1956) As the motion of the shell 1is aesu“d to
be axially symmetic, these equations are one-dimensional. t
, In the article by,Moodle ahd his colleagues, two sets of shﬁll
equations were produced. Onpe set, retains the effecﬁ of the she’r
deformatiﬁﬁ\Pf the wall while the other set omits this effect. ;q'
order to studyxthe 1nf1uence of shear deformacion on wave propAagation,
Meodie et al. (1982) solved'a sample in'itial-value prob}em.’ hey (ound
very.little‘differehce in the radial displacement of _the t ééﬂwall R
»whether or néé shear was taken into acqount. Jhey gave he following
B

explanationxfof‘this.result. When ghear defqrmation‘}égincluded in the

shell equatio s, two modes of wave propagation exiqf. In'the solutién

‘ . ) ‘ oy ‘
of the initialfza ue problem, the amplitude of one mode 1s conslderably

-greater than the amp}itude ef the other. Over the-range Of frequencies

. v -
. Y

K

- . , / ) : .
encountered :BQEhe/ﬁroblem,‘the phagse veldcity of the dominant mode 1is

nearly the/bame as that of the single mode arisfng when shear

-F

‘?

deformacfen is neglecCed. Consequently, shear has llttle influence on™
5

.

the wavesjprppagatingythgough the tube. Thetefore, Moodie and his

¢olleagues concluded that the neglect of shear deformation was S
P o g . . e
. . ] . e WV
C TR ."_“ , ! ) . ¢ ‘ . tr )
o T o e * | B
1 e, '
S e T e

i
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justified for disturbances contained in the frequency band present 1in
! o K
their initial~value problem. As the frequency band considered here

-~

covers but a small portion of the former band{‘it follows that we, too,
may neglect shear deformation in our problem.
Therefore, we introduce the f&flowing elastic shell equation, as

.glven by Moodie et al. (1982); to describe the motion of the  tethered
Q ' ‘
incompressible vessel wall:

3,4 52 3 L4
. h h™ 3 w Yh I w —
~'loG[—w+-————-]-P—Yh .- (3.1)
2 12, 4 32 *12 axzqtz ,

-
In eqn;'3;1, G 1s the elastic shear modulus while P, strictly
speaking, refers.to the net radialfstress ecroas;the-tube wall,
dicected outwardly. If the fldid.contained within the tube is assumed

to be 1nviscid, gowever,‘ P 1s just the transmural pressure as 1s

s * .

noted in CthterﬁIia - '

Equation 3.1 Tepresenbs a balance of the radial forces acting on

l -

the shell wall.‘ Start‘\g from the, left and omitting P, the terms

depict in turn the contributions of the wall 8 flexural rigidity,

) S

citdumferential atiffness; radial inertia, and rotatory inertia, . to this

balance.- The effects of certain of these terms on wave propagdtion are

not significant over the frequency range considered here. Greater ' ™. "(

- 4 N .
. N

detail regardtng this point will be provided later in this section.
The viscoelastic shell equation for the vessel wali is now
obtainedrtrom the elastic one by using the-formal similarity that :

- exists between the visooelastie and elaacic-equationA-to replace the
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elestic conseant' G in eqn. 3;i ﬁyith the appropriate viscoelastic
linear operator l&. To deter;ipedthe viscoelastic
operator ‘6 associatéd‘with the elestic‘constant G, we cqmpsre the
11near stress strain relation for thé elastic 'solid with that of the

visco&last}c solid. For an incompressible,'isotropic,‘elpstic sOlid;

the linear stress-strain law 1is . . "
i ' t
oij = ZGeij R | . (3.2)
where o1J are the deviatoric stress components and ‘eij the’/;//f
.

deviatoric strain components. The wmost general formulation’of the

corresponding constitutive relation for a viscoelastic solid is

N (c ) . ' " s
EEY vC(tt)—ig——-dt', @y

-—C0

4 .

*

where G(t) 1s the relaxation function for the Qiscoelastic.material
(Christensen, 1982).1. For convenience, we have omitted explicit :
reference to spatisl dependence 1in eqﬁ};3.3. A cbgpsrisbn of eqps. 3.2

and 3.3 .reveals that'.a is tbe_}ntegralvoperatOt‘defined>by

¥ T . R A o ‘~ {‘ -“~ ) ) 'y
’A '..‘ t ) f . . . : s ’
. Gy“"' I G(t‘t ) —Lg-t,— dt' o ' ) (3.4)
T em . .

iy
]
.

+ »

'Equation 3. 4, then, ‘is the most general tepresentation of G.

In order ‘ make use of the general fom for G G(t:) must be :

D . .




free here to make our own choice for G(t).

and’ Apter, 196&,\Moodie et al. '1982). As weIl we could‘have,hhosen ,

| o . 7 . 75
spetified. Unfortunately, it is not ‘an easy matter to determine the
relaxation function for ‘a given viscoelastic material. In particular, -

-~
no general rehaxation function has Been constructed for the artery \

wall, as 1s mentioned in Chapter II. For that matter, relaxation

functions‘for'latex rubber tubes of tnelsort used by'G:eeneald and
' ¢

A . .
Newman (1982) have not been constructed elther.' Consequently, we are

. \ . ) . . Y . Ty
Our choice for G(t) 1s the simplest one possible, namely the - .

-

-relaxation function for a Kelvin-Voigt solid: ‘that is,

i G(t) = G_[H(t) + T8(t)]m : . (3.5)
whete "H(t) represents ‘the Heaviside step function and G(t) the
Dirac delta function (Pipkin, 19725 The factors that motivated our_

1

selection of C(t) are outlined in the 1ntroduction to this chapter,

Other reasonable choices of G(t) could have been made, however. In ' -

ahtticular, the tglaxation function for the standard linear solid is

popular in studies of ‘wave propagation\through‘viscoelastic ‘tubes (Chow Y

. : ?
o . . }
. - .

relaxation functions for more complicated viscoelastic models that bave

—

been put forwatd as appropriate tepresentatives of arterial

visco lasticity (Westerhof and Noorde;graaf 1970' Cox, 1972- Goedhatd
R\

“ :and KnooP. 1973, Goodman and Imaeda, 1977) o :‘ - :' ,{”5. B

~
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Kelvin-Voigt‘solid. This statement is based ‘on a property of the
A\

Kelvin—Voigt solid mentioned earlier in this chapter without

+
\

justification: any linear viscoelastic solid tends to’ behave as ‘ X .
; . A ‘ F{ ' oo
Kelvin-Voigt solid at low frequencies. We demonstrate that the s

Kelvin-Voigt solid does indeed possess this feature by means of the

arguments marshalled below: Ve
, s
*

Consider the general constitutive law for a linear viscoelastic'

solid as given by eQn.;3.3: o ‘ .

[y . N i . ‘. ,\). “}' |
. e ¢ . R (’ P ’, . T ,'n" N Lo i
o P e(t L '
\ . o =2/ c(c t') —dE-,——dc' , (3.6)
. = k_\ . . . . "

where " 0. 18 one of the stress components and € one of the etrain

-

components} In preparing to analyse the general behaviour of a s

viscoelastic solid implied by eqq 3. 6 we . list several redtrictions, ; )
.imposed on G(t)- from considerations of its'role‘as anrelaxation
function for’ the.siseoelastic solid (Chris:ensen, 1982). |
| Since the asymptotic behaViour of the viscoelastic solid as t *léf‘ )
bf is assumed to be that of an elastic soLid : '.‘ R o | 1“ , N
Mo =6, 0. W (3}2\ i
o Lre ST A

. BRI
A S

5"
A

As well, ‘it is assumed that the stress depends more strongl} ou the
Lecent past than on the distant history of the strain. This is called

the hypothesis of fading ae-oty. This assumption is satisfied if
Ay ’/_\'—' ..“A B — : . :
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.6 | &) |
¢ 1c-t1'~‘ dt ome

o, for tp >, >0 (3.8)

r
.

‘Finally, inbthe situation consideredfhere, resting conditions are
) \ , . , ) N ) . ) * .

presumed to hold prior to t = 0. Hence,

N

G(t) =0, for t<O. . (3.9

‘ The same physical considerations that led to the restrfctions on

T

- G(t)‘contained in eqns. 3 7 - 3.9 require conditions to be imposed on

N

g, €, and their derivatiyes. *Firstly. it is assumed that'«o, €, and

their derivatives remain'finite{as"t 4’°\, since the'behaviour.of the
viscoelastic solid is.assumed to be elastic as t > w.; ‘§eeondly; it

is assumed that o, e, and their derivati@es vanish for :‘<‘0;~asethe '

i ' s

solid 1s assumed to be at rest until ¢ = O. ‘:*“ﬂ L jf' Lo

' The behaviour of a linear viscoelastic solid having the properties’

.t

a
outlined above is most easily analysed by using Fourier transforms, ‘and |

- \

making appropriate approximstions for low frequency. ‘$O‘this.end, we
§ SR S S S
defigg the transform pair f(t) and f(m) by A.“'T‘.‘ R S

v‘ Do . L.

B Y V. g L.

g;,”}ﬁ*ﬂﬁ*sgﬂu>-f q:n Wele o L @3a0)
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\ ' N ) ‘. ) “ ' , C o, . ‘l.‘ 4( ' ' . . ;
where A = Imw > 0 is choéen sufficiently large tha}-the path of
integration‘in the complex w-planebpasses.above all of the~

"y . . [ . . " .

singularitiee of f(w). ‘ ‘ pﬁ- x

If f(t) vanishes for t < 0 and‘remains'finite‘aa"t *'w‘, it”
can be‘shown that -f(w) exists‘for all A'> 0. douever, f(u)‘:doe:
not exist when A"= 0. unless f(e)l; 0 _sufficiently‘rapidly §p4 |
t“f © L Thus,'the functions ‘of interest to us, namely G o;‘e, and

‘their derivatives, do possess Fourier transforms when A > 0 but not L

necessarily when A = 0. This ‘technique of using Fourier transforms’
involving the complex variable w 1is equivalent to the more common ’

E practice of using Laplace transforms performed in the varia%%e

Y ..
’

.8 = ‘.—iwo b

., . We now apply the’ Fourier transform, defined by. eqn. 3 10, to the
L] .. (
stress-strhin relation for a linear viscoelastic solid given by eqn.

.

3;6.- In doing 80, we observe that eqn. 3 6 involves the convolution of-

'§G with 'gz Therefore, according to the convolution theorem, the."
:_'Fourier transform of eqn. 3 6 is L T ‘:x

/

e(O)‘”

N . )
As resting conditions applylprior to "t - 0 we assume that

o that is, there is no jump in straln at t - 0. In this case, eqn
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G(u) = —2es(@)B(w) - (3.13)‘

Tﬁus, in the transform domain, the lhfluenEe'of~the5relaxation‘fuhetlon'

'G(f)x is tiade mopepélear. E ‘
. o N R .
" "1f the motldh’being 1o§eatiga:ed contains solely'lowffrequeﬁey'v
compooents, lc is necesaary to know G(m) 'as a functiod of Q~ only
in the neighboq;hopd of w = Of It is possible to approxtmate G(w) '
for small l]ol' by expendlng it . ‘a8 a ttuncated series»in powers of w.

We accomplish thls by. following a. procedure described in Plpkin (1972)

.

' First, observe that ‘ '

.

cnv , m,‘ iwt, - . e '
A / G, e dt | W (3.141
‘ . {
Consequently,
o - Ge | B iwe ; , B
Gw) == o+ [ (G(t) =G e de,, .0 (3.15) .
.o I ' . T : Y - I\,,«ib S g a , . '
e R e e e .
as G(t) vanishes for c < 0. Next, take only ‘the zeroth order term
in Ehe expansion for | e19ﬁ‘ in powers of INE that 15, eiﬁ& 19
' “‘ﬂappfoximatedr . ;‘:'_3lﬂfﬁ;, f o “‘1 5 g;~‘g‘-';‘§~;_fjx‘ S
L e e o

{ut

e = [;7ﬂ<&>f»'”.l‘... N R DI

“Then, eqn. 3515 becomes .




Gy =-gs*n S G

‘Iwheref ! § '
| -[ (c(c) - ¢, )dt . o (3.18)

‘H‘M. R ‘ Co ' 'l'! ’ SRR . v ‘

It .is assumed that. G(t) *;Ge* sufficiently rapidly as t + = that  the
integral in eqn.‘3.18 Conve?ées. ‘The quantity n, 1is the coefficient‘ Sl

of viscosity for the viscoelastic solid.

‘n

In:thishysy, a two-term expansion for '—imé(m) »has'been obteined,

namely -

~1G(@) 7 6~ don. = 6 (1 = fwt) , - (3.19)
3 B i T

. "
1 j‘ . . .l
. .

o . X ,. . ; i -I‘ : L1 . v
where T = n /G is the retardatiod,;ime alluded to previously. Thus,
: &Q u‘.« {‘ e .‘

the stress strain in the transform domain, given by eqn. 3 13 is .

.‘C

s approximated at Iow frequencies as Lt

and r

thererare the same ones appearing ,‘



8L
R Gw) =~ o +6G 1 ﬁ“ 7 , | (3.21)

‘Therefore, with the substitution of eqn. 21 lnto eqn. 3. 13, the ;oy.

A

transformed stress-strainilaw for a Kelvin—Voigt solid is

M)
LN

o) = 26 (1 - fut)e(w) - | S (3.22).

"This reault is’ exactly eqn. 3 20. Thus, we conclude that at’ 1ow oL o

frequencies all linear viscoelastic solids beﬁave.as Kelvin—Vpigt

solidsu L T T
) S . . ; . . : " R . L ) . o
we ‘turn now to the problem of determinin ‘ Le viscoelastic o
\'L Lo ' ' '

‘ :‘ operatqr G associated with the Kelvin—Voigt solid. When G(t) from

A
B K

‘.eqn. 3. 5 is substituted into the equation providing the general

representation for G namely“Eqn. 3. 4 the result is

.
b

‘.f“ff;:l”}!:’ g ﬁﬂol" GY -G (Y +1 ‘l v T{" - (3!23);1

1"Thus, in the case of a Kelvin-'

differential operator



. M [
) . | N .
o L . oo ) o . 82
L T . . R
PR . \ : » ' Ve N
R T . ' o :

© ., the elastic constant G fin the limiting ,c‘ase‘ T =0, as ',Ge‘ and'the

" elastic'shear, modulus G

el : _— | ‘ oo ;
. | - h . e |

are one and the same.

AN

*. . Equatfon 3.264 es‘tablisheslthe perticular‘viscdel“hstic op'erator‘ C

rc ) N
‘TQV '\xse"this thes‘is'.‘ Consequently, we Are finally ready to return to

'

. ‘ v
" . the problem of obtaining the viscoelastic shell equation fpr the vessel
bl " &, <
' wall.

As is noted earlier, the viscoelastic shell equation is simply

i, the elastic shell equation with G teplaced by G. Hence, accoing.

»"to e_qn.v ‘3. 1 the viscoelastic shell equatkon is

vg‘“l’;‘“ ‘ \I;:-‘: K . N I ' H“ ) ' . “ ! ) .
R A TP S S LRV S Y
o o ‘ d .rh h I w a Yh™ 3w
. 4G (Lt T ﬁ)['R_Z vt 4] P - Yh -+ 32 S - {3.25)

09X

J ) S . ax ot R .
‘ . . . L ". } . B p . » ) ' ' .. v‘ \‘ :
/w ) | ‘. ! | | | | | |

"'We now take the opbortunit); to clarify 5" remark ,about the shell

T equation made earlier in this section. It was stat:ed previously that

. PR . v"
~

the effects of certain of the terms in the shell equation on wave o

v, f . -
'

‘ ; propagation are not . significant over the frequency tange considered in

.‘.‘

\
b -

",this 'disSertation. The terms alluded to age those representing the - ,‘

'j‘uwa'1.1',s-fllgmpal‘,rigidity‘and%'rqca‘tory" ir.ier<t'ia=." hrz ____a Zand

"'__-1985) Hence, they are not included in the subsequent analysis. L

'. Therefore, the viscoelastic shell equation”conerdered here is
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: ,. ) ZOGe(l‘ + 1T 5-?);2* w =P /-Yh 'a—t? - .‘ ' (3.26)

\

. The fact that bending moments are ultimateiy omitted from the shell

equation means that in_ the end, the vessel wall 1s treated as a

' . ' R o )
menmbrane. ] . S \

Fluid Equations

The“equations governing -the motion?of the incompressﬁ'ible‘ viscous -
fluid contained within the tube are the\Navier—St*okea equations
‘ L together with the continuity equation. Their.axiSMetric forms are
! . ‘ : . R
1(."' . ' . 2 ‘ . 2 ! At
Bv\\av v v dv. ‘v ¥ .
ey e Lop Ve 1 Ve Ve Ve
dc TVt Tk TToact Y+t 2t~ L (32D
A ‘ - -~ dr o ax
. a‘vx 3vx_ N dv 1 _3_2—‘- ‘ azvxl 1 avx ' Bzvx ’
Aty Vear Tk ttemtiltraw to I G2®
Coe : ' ! " \. ' * . . -
. ‘ - ‘ ‘ ‘ . | - \ .
3V.x v v ‘ .
' win —_ —_— - C L3
: 9x . T 3: + - 0 o (3 29)
where v = u/p is \the 'kinematic viscosity of the fluid.
The only nonlinear tetms in theseeequations are the convective ‘_
R a l-‘ ' URTH “‘ K | ) “‘ : . Dol L P "' ';H
v ‘av Byx, v

in eqn. 3 27 and vff{-‘f ‘T-vx’ax o

acceleration terms. v 'F +-.vx a

He' an estimate the magnitudes of these convecti\re

acceleration terms, relatitve to those of the corresponding local ;1;

in eqnu 3. 28.




AV dy b e - -

. - ' ' N L] . . L. 0 ’ ! .. “-‘ ‘ v

acceleration terms T X and *?5‘; by addpting the same approach as

S . ] ‘ at ‘ B et
\wOmefgléf'(1955).; In this method, cfial_sdiutiohé propbktioéﬁl to .

v exp[i(kx-wt)] are assumed for all}bfvche vag}gbleé appearing ‘in eqns.

[ . N
" ' 0 .

”b’»magnitudes of the spatial and temporal derivativea of. the" variables
‘ " o v i v ' V U”
x X :
1nvolved ./For example, ~ k 0(v ) ‘and AW O(v ) Further
ax at : A 4

7 3.27 - 3.29. \These crial SOIUCfOQ%\enESle us to detérmine thé-reiaﬁlVe '

" . v . o o D
we estimate‘;§;5~rto‘be‘ho lgfgér chah‘l§70(vk9.. Similar estimates’ =

- apply to tge other variables. In’éddi;ioﬂ,‘;£ fa aésuméd td'be‘no‘ . ,ési
Tee— < O ay B S Sy S
| larger than the lorder of * T oo PR e ﬂ&

. %; ! y . [ L \', "1‘:‘. :

) When chese escimates are applied to the concinuity equatiqg, eqn.’ //\\\

SR S | v . avr e
'372?, 1t is élgar'thac lzr kaR Q‘vx).;‘jhe;eforéf A raie kvx Q§Vf) \

v T , : o
, and vz~ kv O(v_). Consequently, the ratio of the convective
R -2 TR r’ e o e W .

3

axy

"

acceieration‘terms-tOethe'1oca1;é¢cé1eration térms 1n.eqn.\3.27 is

/m.' This ratio 13 of the. order of magnitude~of Voo /e, sidci”
e R T

ratio w/Re k is jusc the phase velocity c.‘ The same‘éstimé
. Y r -, .
,5; obtains 1n eqn. 3 28.v Thus, neglecting the;nonlinear terms 1n he . Ry
o # ) * N N '

ratio "_‘ L:fyj“‘ﬁx

Ty
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\
\

\ ~

disturbances {n the fluld-ﬁiJLFd tube must “be sufficiently small that a \

\ »

Ilﬁkﬁk‘theory 1s valid meana; then, that these motions must satisfy the
{nequality 3.30.

The maximum value of the local axial velocity is always larger*

than ;, the axial velocity averaged ovefthe tube's cross-section. -
. ‘ -
Consequently, 1f the phase velocity o 1s of the same order of

magnitude as the Korteweg-Moens wave gpeed c the condfction

0 >

v

C

<1 v (3.31)
0 v ‘ T

N
A . :
is approximately equivaleat to the condition 3.30. "It is condirfon

. . . <)
3.31 that 1is usually cited as the criterion for neglecting the

convective acceleration terms in the fluid equations. This {s
reasonable in the case of the normal arterial pulase or the ilmpulses
generated by Greenwald and Newman (1982), since S {s of the séme

order of magnitude as the measured phase velocity ¢ 1n these pulses

as“is discussed in Chapter II.

An estimate of the magnitude oflthe viscous terms in the fluid
equations can be obtained by using‘the same approach that yielded an
éstimate for the magnitude of the convective acceleratiohPCerms.. Note
that the viscous térms are the terms in brackets in eqns. 3.27 and
3.28. It turns out that the ratid of the viscous terms to the local
acceleration terms is: v/@RZ. Now the kinematic viscosity of whole

blood is v -}3.79x10_2 cmzls—(Patel and Vaishnav, 1980), about four

times that of water. Iﬂwa typical latex rubber tube, R = 0.4 c;i

-

~
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(Newman et al., 1983). Hence, over the frequency rdange 0-500 Hz,

N
y/uR2 yarles from very large to .yery small. R
. . N »

Thus, the visgous terms can be much larger than the loaal
acceleration terms, but over most of the frequency range considered

here they are much smaller. In fact, the viscous terms are smaller

than the convective accelération terms except at very low fregquencies.
For example, In the, experiments of 6reenwald and Newman (1982), the
viscous terms are estimated to be Ilargdr than the convective

acceleration terms only for frequencies well below 1 Hz. However, the
A}

~
energy contained 1in impulses of the sort generated by Greemwadd. and
Newman 1s not insignificant in the neighbourtidod of w = O. The

frequency component containing the most energy in these fmpulses is the

ore assoclated #ith w = 0. The coantribution of the viscous terms at

- -

very low frequencies, then, may have an impact on the propagation of. .

the pulse as a whole. _ .

Therefore, the viscous terms are retained in the fluid equations

-
-

even though the coavéctive acceleration terms are not. Consequently,

the equations §;§erning.the motion of the fluid are taken to be

N 2
—r._Llap, [a vr+1ar vr+avr] (3.32)
at padr 3¢l r ar 2,2 . :
) .
3vx 1 22. azvx 1 3vx Bzvx '
ﬁ‘"iax""’[arz t T Y2 J . (3:33)
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. fht}! <3vx ?)vr V. n S
A . - .
o §;—o+ 5;— + — o . . (3734)

I

I r
1

The neglect of the convective acceleration terms can also be 4lewed’as

N\ -
a ffrat order approximation to the full set of fluid equations (Atabek
, A ‘ ),
and Lew, 1966). ; . )

Auxiliary Conditions

As 1s noted earlier in this ohapter, the -fluld equations and the

shell equations .are coupled by copdittons that apply at the Lnterface

between the fluid and the solid‘ This interface 18 located at the
, ‘ "
inner surface of the tube wall. Therefore, its radius 18 r = R ~ h/2.

’ . [ L]
Hereafter, the distinction between the radius of the fnner and amiddle

i | : , ,
surface of the vessel wall 75 dropped. The 1inner radius of the tube, 5
then, 1s approximaté?vby R. This modification has a negligible effect »

on the results when k{R < 0. (Taft et al., 1981).
The conditions at the nCerface between the fluid and the solid

\

are based on the followingvphysical,principles: the tractions and the
velocities must be continuous across the interface. The continuity of

the radial and axial components of velocity at the fnner surface of the

tube wall yields the pair of conditions

v ®,x,r) = PEE) O (3.35)
vx(R,x,t) =0 . | (3.36)

’

1

. A

As the tube 1s tethered, only normal tractions must be matched at the

v

*
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interface. Hence, . . ';-‘ | A '
‘ N avr o ,
CR(xe) A (xp) = (P 2u g - s (3.37)
! . ,  r-R (T$

where pe 18 the external pressure load. 1In this dissertation we:

assume that pé 18 constant and equal to the undisturbed fluid

pressure‘within the tube: that' s, Po = 0. o

-

"In ordér to coﬁﬁleth the mathematicaliformulation of a model ‘
reptesénting éhé transient re;ppnse of a fluid-filled distenslble tpﬁe,
it 1s necessary to supply initiél-and‘bgundary éonditions. We.begig by °
\ , A . k
.considering the conditions épproprlate fo}‘a b?undary—value problem in
a eemi—inkinite tube. The pgoblem of brescribing the conditions at the
far endloﬁ;ﬁ tube of~£1nite length, or at the junction between two ~.
tubes, 1s éddrgssed in Chapter VI, wﬁere ﬁe deal with wave reflection.
Suppose’that the fluid ana tube wgll\are sét Iﬁ motion by a
disturbanceiht thekend' % ; 0. Quiescent conditions hold initially.
It {is éoqvepient.to préscribe»the\discufbanée in terms of Py » thé

— fluid bressﬁre averaéed over the tube's cross-section, defined

mathematically as ' | :

'
.

. | . .
' . Y 1 .
- A pm(:':.t) " HA P dA | (3.38)

* -

-~ .
’ t

Qconditiénl

peass

o

The disturbance created at x = 0, then, is represented.by the bdundaty;"'

"

g
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“'pm‘(O,ti = o(t) o | (5.39);

* ) \1
”~ ) . ' N 1
where ¢(t) 1s a function which rises steadily after ¢t = d from

zero to a maximum value of one and then decreases steadily back #o

' A Y . . .

‘ _ S
zero. As our invegtigation is limited to the low to\&nCermediate

.

. frequency regime, the Fourier transform of ¢(C) should be negligidble .

4

~

"outside this regime. Alternatively, che boundary condition could be

prescribed in terms of vm , the axial component of fluid velobity

averaged over the tube's cross- seccion, defined mathematically in a
Qt : N

similar faahion toupm as R ]

denote the‘average fluid velocity.

Before proceeding further, a,remark about 'the boundary‘conditions

o L

at x =0 1is in ordeﬁ. As the shell equation for the vessel wall

.The symbol vm“ réplaces the: symbol v used earlier in this thesis to~\

_eqn. 3 26 ~contains no spati&l derivatives, only one boundary condition

+

is required at x‘? 0. ‘This means.that‘as<sqon‘es. Py ©F ym"are

4 prescribed‘at -x 5 0, no other condifions can béfimposed..

Consequently, ic 1s not possible to fix the wall displacement, for

. example, independently at x = 0. This- ie unsatisfactory, in that che

rube“is clamped at' x =0 4in ‘most experimen:s.- In this 8ifﬁation, it‘
\ .
is desirable to prescribe the additional boundary condition

. ¢
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« . w0,e)=0. -~ T (3.41)

' ' | .
/\ ' v '
. N ’
.\.,\

”
Fortunately, it appears that the propagation of the pulses

considered here 1is independent of the wall displacement at x = 0,
excepﬁrin the immediate vicinity of this-boundary. This is
7’
v
demonstrated in the pair of papers by Moodie and his colleagues (Moodie

et al., 1985, Moodie et al., 1986). In the first article, these
authors studied the propagation of impulses Yhen the term involvin the

A ~ .
rotatory inertia of the wall is retalned in the shell equation.,»In

N

this case, a second boundary condition is required at x = 0. The

hd -

. condition they prescribed was precisely eqn. 3.41. The pulsgs
predicted under these circumstances, however, are only slightly

‘different'from those predicted in the second article, where rotatory '’
inertia is neélected and only a single boundary condition supplied. .

'There are.no qualitative differencea“BetVeen the two sets of pulses._,

»isg sl IR
Therefore, we are confident that the neglect of rotatory inertia in

eqn.,3326 leading to the inaﬁility to restrict the movement of the °
tube wall at x = 0 has very little effect on the\propagation of the
A :

_.gpulses considered in this dissertation.,‘
o . L :

The last auxiliary cdﬁaitions that need to be mentioned here

ar—

. involve the behaviour of the dependent variables at very large times or -

'

at very great distances along the tube.. In the first place, it is ‘

assumed that there are no disturbances emanating from the far erd- of
*ﬁ .

the infinitely long tube. Therefore p,‘ xi,'vt ’ w, and their

derivatives vanish as x+ ®» , as long as t 1is finite. Secondly, it

o [
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is asaumed‘thét the fluid-filled tube stays intact for all. time.
LN . ‘ ‘ _ .

Consequently, Pr vy br , w, and their derivatives remain finite as

t 4"::)‘. S
This completes the derivation of the equations of motion and- the
; auxiliary'éonditions for the model of a fluid-filled distensible tube

employed in thié,thesis. In the laét'éection of this chapter, we

express'these equat{ona and conditiona\in dimensionless form.

Nondimensioénal Governing Equations

2

The equﬁtions.of‘motion'for the flu@d‘f(lleq tube consist of'eqns.

3.26 and 3.32 - 3.34, coupled by eqns. 3.35 - 3.37. For the problem of
pulse propagatioh in a semi—infthCe,tuSe consiaerednhere, the
equations above are augmented by the boundary condition 3.39 tbgether

with quiescent initial .conditions and the conditions at 1nfinity noted

in the preceding,section. . - R ‘ N y
It is convenient in the s quel to expresé thé ﬁroblem in,
‘nondimensional'variables. To this‘end, we introduce the foildving t

dimedsioniess'quahtities: ' ,

(x,r,w) = (x‘r;wzfg, :'(E,?i,' (tQt)co/R.,‘

Ga¥ V) = (v v )/.»,0 .

(pyP_» ’;) (P’p ’ 99)/9‘:0 »

K=k , wa/c ,

s '- ./‘c R . T
Lyvh LS00
\\@P 8" 28 PEEST

-
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2

Here, c is the Korteweg—Moens wave speed for an incompressible,

0

viscoelastic material# that {is,

a ‘..CQ.

! o
. | S

. S ‘ '
" As well, Qf and ‘o . are the same quantities defined in Chapter II

‘viscosity of the fluid reSpectively. In fact, m is a Reynolds number‘

""ﬂh

namely the wave number and circular frequency for'a wave component.
3 i ¢ .

The dimensionless parameters n and m are associéted with the

combined radial inertia of the fluid and the tube wall and che’

\ wot

'for this problem. 'In' the absence of . a natural velocity scale arising

from the Elow,vthe ;ypical velocity used in m 1is the one assoclated
" ! " o) . \\ : \ . \ ‘ i
with the pressure dis;urbance, namely, co,. B

After substitution of the appropriate n dimensional quantities

¥

'vifrom eqn. 3.42 into the shell equation 3 26 and the fluid equations

‘- [ZGeh/pRlI/?‘.“ - I (jipj) E

"

¥
3 32 - 3 34, the following nondimensional equations of motion are
- obtained: ‘ i-; e . . .{“ L }
- - ; S . . . , } . ; : ‘ /
R o 2. ;? P '
‘ _— 20 + 1 57)w =P - 2(n = 3) ‘2 S (3.44)
@ L o S Lo
,‘.f .. ‘2 SR ' i L
Yo avf ‘ ap 1 [8 V.1 3Vf v 3 v¥'] S
S '—""";;w + = O 1l B s - - 1., | (3.45)’,
S Qt : 9r. m "3r2 vrr3r4 .rz . axz . TR
A EIRRIE ) 9. e azyx-}jl;ayx ,azvx S e
: .d" ‘yf” e s ";"QVx'i<éf;L-ivf :;: ;' ”~f-v5; Lo . V_; A
Tl 5';—'"51.— +';" =0 (3 A7)
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" The cildas have been dropped from the nondimeneional variables in eqns.

B}

3 144 - 3 47 for. convenience, and ‘will be dropped 1n r.he succeeding

equations- as well. The interface conditions 3.35 - 3.37 become
. - SR 1 -
L .2 y |
v (Lx,t) = 24t ) (3.48)

e -’

'

vxgl;i,c) -0, (3.49)

-
‘ 28V o
P=e g - (3:50)
. . r=} S " , .

‘while the boundary condition 3.39 retains the same abpearance, namely

2y
[

A P (0,8) = o(t) . C o (3.51)

N | S |
_ Finklly, kth'e, averaged iu‘esu;ure’p.ul and the averaged axial vi!_lidciti' v
" are in‘Fn by the ‘forilae .

. - T ' L

o R L 1

fy

0

o 1 L L
pm(xlt).f 2[10 r?(r.i;t)drgfh-v@Sf{t) =2 v (r,x,t)dr -3 (3.52)

ot
N . . . . .
n X . . Ve . -

iy

Thus, the equatlons of motion and the auxiliary conditions for the,

fluid-filled distensible tube are expressed 1n nondimens:lonal variabl.es o

i

Sz' f v
via eqne. 3 42 - 3 52. : The solution of the mathematical problem posed
by these equations forms the content of the following two chapters-. :
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.‘Wave‘Solu}ibns'

) The mathematical model of the transient response of a fluid- filled ‘
distensible tube formulated in the previous chapter is composed of two
‘ »\

vf**parts, The first*part‘consists of the equﬁtionsﬁgoverning the dynamics

of the vessel walljand'the dynamics. of the fluid together with the .
- ‘ ' b N ‘ . !
'conditions at the«solid-fluid interface. These equations‘and

conditions pertain to any pressure wave {n the fluid‘filled tube. The,

t .
second part involves the.specific initial and boundary conditions
( . '
needed to augment the equations ‘of motion when a boundary-value problem.

Lem S

is posed in a semi infinite tube. .These copditions are appropriate for
modelling the propagation of a pulse generated at one—end of a vessel

o sufficiently long that reflections are of no concern during the time
: . \ :

interval under consideration. : :
iy ' . ' . - 8 - .

In this chapter we construct solutions to ‘eduationa forminé
' the first part of the mathematital model that is, the equations of
- motion for the fluid-filled tube as represented in a dimensionless form
“”by eqns. 3 44 - 3 50. This is accomplished by means of wave solutions -

| proportional to exb[i(kxnnt)] From these fundamental solutions,

§

general solutious can be constructed via Fourier integrals. The

C

'adevelopment of particular solutions satisfying the initial and boundary’r

i conditions that form the Second part of the mathematical model is left

- . ey '“',' ,

w

for Chapter V.‘,fgfl”;"{-[zﬂ'ﬁ\l[ : "'i_ ‘ ‘”"‘_‘4 S

;sgpndamentaLLSOIutions ;foiffi“i?
'fVasjstatedfin”thepintroductiééltoﬂthis.chapterigwe utilizefirialh“"‘

e, Lt . ' - e
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‘ L ‘ / . ) ' ’
soiixtioné, proporciongl' to exp[Zxkx—wt)] in order to. solve the firet

.part of the ‘mathematical proble formulated in Chapt:er III. Hent:e, we

-/

. Beek wave solutions of the form : ‘ \

S o -/ | , ‘
. {ﬁ,vx’vﬁ7ﬁq:- fB;;x,;r,;)expli(kx-et)]4‘ o (4.1)
-/ . . ,‘ L
/ ' . v - -
S ‘ : .,-»// . o A
to eqns. 3.44 - 3.50./ , : T - -
) ‘fter the’ subs itution of these trial solutlons into eqns. | ,
‘. K

3, 44 - 3 50 the following equations involving p(r), v (r), v (r), and

\ s L yv~""

w are obtained 7 Co . » . S

. o N ._‘.vzav(l)
o C /0 2Q-ten)w = p(1) - =T

+ 2;2(q¥ )55; (4.2)

[
- '

B v - o
r:+'7!*fflfg(k2f-f7)v‘1 SN O )

- 2 1 ‘a\'x- .
-fwv_ = - {ikp +~—[ s 4
B S I

R )

LR
Rl
|
=
<

. ’aGr 3 ;r IR o ‘
RS T R -
) [ .-“ ‘ ‘ -
. ;vr_(l)':;", -1m; v L f ' (4:.6.3\" |
‘Vx(‘l')"f‘(‘) - S (4.7)
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a | ' ®
~ We remark'that eqn. 4 2. is a consequence’ of combining eqna. 3.44 and

3 50 priq\\to the application of the trial solutions.

‘BeeseireQuation'of ordéf'zefo:

It 1is convenient to begin with the solution for p. This solution
is' obtained most eaeily by observing that the fluid pressure p ,can.be '

decoupled from eqns. 3 45 and 3 46 with the use of eqn. 3 47. Thus, p

4

.satisfies Laplace s‘equation,

© o ABaeriRiip_, . T (a8
L B T S ax L

.
~

Now, the trial solution for” p given 1in eqn; 4.1 can be inserted into‘

eqn.'4.8'to obtain an eqdation for E(rﬁ, ‘Ihe‘resnlt ia the modified

3

~

- 0 ‘ Y ’ . . ' i \,
r‘:. 2 N s
’ 3% , lap _.,2- _ o . \ |
‘#‘5’**;;‘3-*«%-0- L (4.9)
' -3 < Co , oY
. —
Tne«solutionvofleqn; 4§9“regdlér‘at r'=0 ‘18
v‘_P(l‘l)‘T'.aIIo(kr)' e (4:10)

BY

b [
P

:where 81 is an, arbitréry constant and I0~ denotes the modified

‘ Besael fuuction of the first kind of order zero.‘ :

A A
'\

The solution for p leads in turn to the solutions for vx-‘and‘d

s ‘n.

. A They are obtained by subsrituting eqn. 4 10. for p into eqns.lﬂu
S ' '-‘ 2 Lot Vo : -..""l R s
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4.3 and/é 4. This produces modified Bessel equationa of 6rder zefo’aﬁd

'one (Eepectively for v (:) and v (:) : u“ ‘\:, ,

N - . | , ' - ! . »
' 225 v b . | .
x L x -,sz 1mka 1 (ke) , -~ W (41D \
r ar x 0 oo ) ' :
n l

=, (K2+ l—)v = mka I (kD) | (4.12)
ar SN roo. ‘ . '

o]
)=
"

~t

where I1 .denotes the modified Beséel‘fuﬂctiéd‘of the first kind of
. T . ' . i ¢ f 1 X | W
order one, and- k is giveﬁ By

) : . . ¢

e T R U TS E DO

It happens that?the dependenéé‘of the p}oblem on’ K 1is e?en, so it 1is .

//4;t necessary to specify a branch of K. The corresponding regular -

‘ solutions of eqns. 4 11 and 4 \Q are A s T f |
Co T )'; 1 (’ y+&a 1 ey, T '(4%§é% o
T Ve(F) = aplolkr) + aylolkn) 5o el

ko L
v (r)‘m a 1(xr) ™ SIFI(EF)‘:'; o .‘(4f15) 

The constants az"and a3‘ appéaring in eqns. 4. 14 and 4. 15 ate
‘ not~arbitrarya‘ Rather, they are related to each other via eqn. 4 5
. \
‘ v and to a1 by eqn.‘4 7. This can be seen by putting eqns. 4. 16 and 4. 15
‘?ﬁ ‘ f‘ .jﬁféi'3“ ; RER -?hm Lo
Y t mﬁ?ftﬁ\,f{“: v
\\ - . N Ny A
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into eqns. 4.5 and 4.7 in turn. THis ylelds ,
a -‘niﬁlé *”a --K —~—10(k-)‘a 4,16
3 x 2 ' 2 w IO(K) N . (4-16)

Consequently, the solutions for ;K(r) and ;r(r) can be expressed

as

i « Ty (6)
v (0) 5o [‘10<k\r>‘ WY Ly(sryla, o wan
kI (k)
. . 0
Ye(o) - - 1, (ke) - WG] 1 (x0)]a, (4.18)

L -

when eqn.'ﬁ.16 1s inserted Into eqns. 4.14. and 4.15.

Finally, the solution fof w is lmmedfhtely determined from that

for v, onm account of eqn. 4.6. The use of eqn. 4.18 in_eqn. 4.6

produces

c kLK)

- k : . ‘
12 o il 19

o

.This comple&!a the solution for B(r),AQx(r), ;r(r), and w. The?

D NN .
.cortesponding wave .golutions, then, can be’ obtained simply'by placing

leqns. lo.-i-Q; A.-IZ, 4.18, and 4.19 ir&urn 1nt<f> eqn. 4.1. Hence,

¢

L5
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’

p = 1y(kr)a, exp(L(kx-ut)] , | (4:20)

K Tolk) | ‘
N v= o [1g0ke) - ey Lo(xr)]a exp((kx-wt)] ,. (4.21)

ik klo(k)
ve - ~:—[Rl(kr) - ;Taz;j IL(Kr)]aléxp[l(kx~wt)] . (4.22)
¥
, ) k kI, (k) '

<= 0 - s @ lemstiee) - )

" For future reference, we give the wave solutions here for the averaged _
pressure Po and the averaged axial velocity v as well. These
» m
. N
solutions can be calculated by inserting eqns. 4.20 and 4.21 1into the

o)
formulae given in eqn. 3.52. After the requisite lntegrations are

. performed, the wave solutions for p -and v, emerge as
' m

’

21 (k) _
Pn " a exp{i(kx-wt)] , o (4.24)

A kI (k) |
v ',;‘[Il(k) - ;igzzj Il(r)]aléxp(i§kx-mt)] . (4.?5)

It is evident from eqns. 4.20 - 4.23 that the amplitude of each of
1} . .
the wave golutions haB been determined up to the arbitrary constant

a, . The phase relation between the spatial and temporal parts of the

1

wave, however, remains undetermined. Thelrelationship between these

LY
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two parts of the wave depends on the connectlion between the phase

parameters k and w. Our solution has not yet established a link

between the two.

-

It 18 not surprising that our wave solutions are incomplete, in

that one of the equations fin the problem remains to be satisfied. This

heretofore neglected equation is ¢he shell equation, as represented by

eqn. 4.2. The substitutfdbn {nto eqn. 4.2 of eqns. 4.10, 4.18, and ' 4.19
for ;, ;r , and w respectively reduces the shell equation to

kI (k)

2(1- 1mr)-(§1(k) o ( y 1 (<)]
kI (k) '

21k _ 0

. = {Ipk) - [1 (k) ~ ( y T ()] ey (4.26)
ho(k)

o 2(n- %)k[ll(k) - 215?:3‘11(‘)]81 A

. )

It is assumed that $ 0 as otherwise the solutiomns 4.20 - 4.23

vanigsh identically. Hence, eqn. 4.26 yields a relation between k and

w: namely,'the dispersion equation. .

kI, (k) .

k 2,1
;E‘(l-imr-w (n-(g))[ll(k) - ;fa?:7 II(K)]
; ¢
| U Y klo(k) d
- =3 Iyk) - [1 (k) - = (K) ——1 (K)] _ (4.27)
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!
]

Equation 4.27 can be viewed either as providing solutions for w f{n
terms of k, or for k 1in térms of w. The presence of the modified
and I1 makes this dispersion equation a

transcendental_equatidnq Cohsequently, it 18 not possible to find

Bessel functions IO

exact solutions for the roots of eqn. 4.27.
In the problem we are considering in this dissertation, however,
it is the low to intermediate frequency band, as represented in eqn.

2.15,'that {s of interest. Therefore, we are concerned here with the

situation 1A which the magnitudes of k and w are not.large. In
this case, it is possible to develop approximate solutions for the
roots of eqn. 4.27. .

Before prbceedlnglwith this analysig,\it 1{s worthwhile to revléw
‘the importance of the dispersion equation to the wave éolutions in
eqns. 4.20 - 4.23. The role of‘che dispersion equatign in the
behaviour of these solutions is a crucial one. From each‘root of the
_dispersion eduagion there &rises a set of wave solutions. Each set
repreéents a particular mode of oécillétion Lﬁ the-fluid—fiile@ tube.

The amplitude of the modg is detgrmined by the arbitary constant_ a
A The~mode's:velocity, ;nd icts raée of decay, depend upon the behaviour
of that root of the dispersioq equation'geherating the mode. Thus, it
is gvidgnt that' the relationship bétween. k and w impiied by edn.‘
.4.27 is solely responsiblé for the prépagation chara;teristiéé of the
'yaQes represented in‘eqﬁs. 4.20 - 4.23. ¥Now, we move on to a .

‘ désgrtbtioﬁ 6f t£e meﬁhbd for obtafning‘approximate solutions for thé

N~

roots of eqn.~%4.27. -
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Analysis of the Dispefbion Equation

It 18 convenient. here éo take the wview tﬁaﬁ the dispersion
equation pro;idee solutions for k #n terms of w, where w 1 real,
as we are‘ultigately‘intereeted in using the wéve sqiuﬁidﬁhbobcainéd in

“this chapter to study boundary-value problems. We begin the»analyéis
by codeiderlng the symmetry exhibited by fhe raéts of the dispéréion
equation. It follows from the properties of the modified Bessel
functiohe IO and I1 (Abfamowitz an& Stegun, 1972)'t£at eqn. 4.27 {is
even in k.i Hence, 1its sblhtions occur in péirs ':k for each w.
Further, 1t.follows’ffoh the'Properties of I, and Ii , and those of |
x  evident from eqn. 6.15, that when w 1is replaced by ;m A;na k 1is
.replaced by'its complex conjugéte k* 4in eqn. 4.27, the result is che
complex conjugate of the entire equation. Therefore, the cOmplei'
con jugate bk* of .any root of ﬂ of eqn. 4.27 1is also a root, but
corresponding to -w . in place of w. .

- -In view of the symmetry displa&ed by the roots ‘k‘Athﬁt 15
demopetréﬁed ébov;, ﬁe Festrict our investiga;ion of the dispersion
'~ equation to the ;egién w >0, Re k > 0. . In addition, 1;’13 convenient
in thé suBaequent ahalysis to pick thatvb ahch,of ® fdr whigﬁ-‘

e ) . . . ‘ ‘ Qs —
Re x > 0. It may be recalled that the pé%blemuis even In «k 8o the

e
P,
-

" results are independent of this choice. " ‘ n
. . . . . | ' . . , e B

& o
"Th% dispersion equation (4.27) can be expteﬁ)%d more conciSef§‘

o
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kL, (k) o
12‘ {[1-tut-v’(a- %)](1—F(k)/ﬁ(<))—m2[%%)- - ;T’(l-l-‘(k)'/‘l’(r))]} - 0.

. . i ‘
_‘ o ' o (‘0-‘28)

N

r
"

Here, F 18 defined in terms-of the modified §§28e1 fudctioosjgs
) X // . .

AT

: ‘ L o S
F(z) = 21o(2)/28, (2] - N B G N
lw/' , L !
From the‘etrUCturé‘of”eqn. 4.27, it is clear the dispersioa equation.
I -_ i , g » . .
' can possess a root at’ k =0 only if w = 0 slmultaneously. This 5 R ‘?;
possfbility is discussed 1ater. Otherwise, kxl(k)/mZ’f”ol'sb it.
follows from eqn. 4.28 that . . o - IR ’,@g
' ' ! . : . . ' - i
_ . )
201 . 1 1 2 1w 2 L a
k [F(k) F(K)][A(m) tge t] = o (4.30)
where ‘ . ‘ | »
. . I ';:2 ' > . ' ‘,
. ’ -
. : )
: Alternatively, eqn. 43 30 can be writCen as . B o ' f.": v ;ﬁ
' F(x)[k (h(w) + § u® + 1—?’5) - W) - K F(k)(l\(w) + 5 .,,2 + 1oy L -
(4. 32; S
'Equation 4, 32 is identical to the dispersion equation obtained by ”;

tRubinow and Keller (1978), if their equation is specialized to the case
of’gp iocompressible\flnid andga tethered, incompressible\tubegvall. ‘;"“~" ;f;

a
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.‘modelled as a Kelein-Voigt‘iineer viscoelastic solid-
. We now aneiyse'eqn.‘4.32 byvaseueiné thet' w _ahd‘ |k| remain
' small; ane obtain asymptotic formulae for the‘rOQts k iﬁ‘terme}of ‘W
FTe find solutions of eqn; 4.32‘for‘which ‘|k| ‘is small, we approximate
) F(Ei .by ite powef‘serieéxexpensibn: .This expansion is eompu;edeie
‘eqn, A.8 of the Apeendixf‘ Ehue, 5

| .

2 4

F(k)-l‘f"s—k "mk +...‘. | (4.33)

when .Ikli 1svsufficieqtly small. The sebstitutieﬁ of_the exéansion
4.33 1into eqn. 4;32, and the suesequent neglect of ghe.ierms on each
side‘of the equation of order d(kz) ‘:elative to thelleed}ng term on
that side, yields ghelequacion ' |
i * | |

3

F(x) (k2 (A (w)+ i—l‘})- w?] = k2 (M) 5 L2y Lo, 4 K L (6.36)

In order ;o‘broceed'further,. F(e)‘ mus;"be apptoxidated. \It is
‘eleaq'ftom eqn. 4.13 that tﬂe appiepriefe appfdximatiod wili depend
'iepon the ordef 6f meénitude of- me; Typically, m 1s very large in
large arteries or in the watet—filled tubes used in experimental
studiea (Caro et al., 1978 Greenwald and Newman, 1982 Newuan et al;

¢

"1983). For example. in Tube B oﬁ-Newman et al.l(1983),_ R= 0 4 em - and

- Oi. 833 cm/s. Thus, if the liquid in the tube ‘was: whole blood with

fkinematic viscosity v o= 3 79x10 2 _cm /s (Patel and Veishnav, 1980). _m

1wouid»be approximately 9000. eFe: wa;er,‘ v r‘lxloez:cm /s' so the
: " ’ B ' o CL . . ‘.7 . ' B " ;_i?

R

Lo

" .
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lvalue of m I1is even higher, roughly 33000., Thé;efore, it is assumed

As a consequence, the magnitude of w varies from, much smaller than

(k). . | o

) 105

1n the' sequel that - C ,'

a>»1l. Vo ha.asy

P

one to much greater than one, even though w remains small. Hence,

the‘size‘of w 18 critical to determining a.éuitableihpproximation for'

A\

)

, Firat of .all, consider frequenciee for which w 'is small but mm:

‘18 large: that is, EA<< w. Thén |«| 18 very large.ﬂ As |k| 1s |

assumed to be small, it 1is seen from.eqn. 4.13 that «x can belexpanded

asymptoticélly as

. SN
120, %, e
gt el B O 5%

e

k= (~imw) " [1+

- . : vt
3

Not. only is ' KT- large, but Re K ‘and -Im x are large as well.”

y
According to eqn. A 20 ‘of the Appendix, che aaymptotic expansion of

P

‘F(K) when Re x 1s largevis  - ‘v o A v7 ‘FV‘vi? :.ilz
‘ L c - . S IR
R T IRt T
‘ ' 'F'(@),@ 5—;‘.‘<(1,+‘-2?.:+ ~5 4. ...) T YA )

,._' . . " : . N

.; 'When the expansions 4.36 and 4. 37 are subscituted into eqn. k 34, after .

’first dividing the lattet equatidﬁ by E(n), and terms of order ‘o(k ) '

" B T FR TN



\ate neglected; the epproximate solution for k \found‘fromithe

reeulting,equetion is, with the'uee of,the7pover'setiee expension‘fot

AVzo : L | - -

1. .3

2 2

k = w[l+ 5 (n- —-rz)wz + l‘imT + (—immo (1+ 5 lwt)+(~ imm) ...]/.

4 I
(4/38)

.
! ’ )

The root 4. 38 is the viscous correction, for large mw, to the inviscid

root obtained by taking the limit in eqn. 4 38 as v +0, or m+ o,

]

‘namely

k=l *% (n~ % Do’ + % twr] + 0" 0 (4.39)

o

The inviscid reeult'reptesented in eqn. 4.39 ie‘equivalent to'the one
given by Moodie et al. (1985). C

Next, coneider‘fteQuencies so spall that’ mw {s small: that is,

f‘w <« l i Then |K|_ is small, 80 ‘F(x)‘ can be approximated‘by toe
a : e

ireplacing k with 'g tn;the power series expansion 4 33. When'this

;‘expanaion is substituted into eqn.‘b 34, eqn. 4. 13 used,’ and the terms

1 N .
“of ordet o(k ) neglected, the approximate solution for k' yielded by

Lthe tesulting equation is :" “~“ R i.‘f e

e

2

i'g:f-""2(%3;12[1: 1 otme+ ) ter + 1 B . (4.40)

A ¥4

._nponnenpioynent of the power series expansion for A “. The leading. . -

,‘ -
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o root cannot be valid near w = 0. The behaviour of the inviscid root

197
term in eqn. 4.40 is proportional to' /w/m . Rubinow‘and Keller (1978)

found the same behaviour neat w = 0. for the correaponding root in ‘an

uneonStrained tﬂbe. o I : ‘

. Q:) } ".‘ y"v‘l\nl“
Although the solution A.onis derived under the condition:

[N

w # 0, it can be shown that this solution satisfies the dispersion

: equation 4. 28 in the limit as w =+ 0. Therefore,‘this root‘is valid'

not only near w = O, but at =0 as well. On‘the‘other hend,‘the \
1esding term in the inviscid root 4.39 is proportional -to m,yso this
differs from that of its viscous counterpart 4.40 néar @ = 0 because

viscosity becomes important there.‘ Thus, the.dependénce of the .
K.‘ ' \

r

dispersion equation on w and v iSFnot uniform at' w=20, v=0. Asg

.‘

is noted in Chapter II, Rubinow and Keller (1978) were the first to

recognize this.
It is evident. from eqa. 4.40,;onLaéedunt of the assumption‘4.35,
that ‘when ' o ‘is‘so small as’to‘make o 'Small ‘”|k2|:)is*much smaller -

-

. ithan mm; For larger w, mw is no lqnger small but |k| is still

‘ assumed tq. be. \Hence, it remains true that ;|k2|‘ is much smaller then '

m..‘ThuS‘) ' " .“‘ - wLV

{r . N

O m e e,

through the entire range of values of W The inequality 4 41 implies
that eqn.‘4 36 represents a uniform asymptotic expansion for xi‘ that

is, the expansion



"7e€';ana1ysis presented in the Appendix that |F (K0)| 13 1nde

~ - 108
. v L E e, |
» <7 sl 1+ 3 7RO )] Lo - (ha2)
Ko ot . \ c
‘ . AT .
- where Co ‘ “ L L : : :
! \ o ! N 'l;“f'./f‘: e _ ‘ ‘ ’
e = (~tm) 2 - (2R S (4.43)
SR s -
[T f '
ot \

As a consequence, ‘an approximetion can be obtained for F(K)‘ that
' N {»L\‘\*‘,\

‘To,see this, expand

F(r) in a power aeries about ’KI- Ky @8

‘

v ‘ ' *\?‘"
Then, by. calcylating F'. from'eqn. 4.29 and making us&u

the expansion for F(g) ‘can be expreased as

‘ F(") - F(Ko) + F (ko)k + 0(k /"0) ),

v

| ﬁhefe o
R TRk Fleg) M .
L o ¥ (‘o) g 2 (1‘1/F(‘o)) g S (646)
TR R ‘ ' kg . | R I A

‘It follows from the definition 4 43 for KO . and the cond%ﬁibn
. rﬂ
=

v‘represented 1n 4 41, that the expansion 4. 45 13 uniformly M;lid

/

',‘Provided IFI(KO>I is bounded for all 0’.d it 1s evide%ﬁ?frOm che

v'xc .

1.
'

7‘f{for all ‘0 In fact, ﬁ( is seen from Fig. A.2 of the Aﬁpendix that f

Y el
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_the upper*bound for |F (nO)J is much less than oﬁe. Thergf;re, eqn. )
4. 45 does represent a uniform approximacion of F(x) ' oL ;' g | -
‘AThis expansion for F(r) enables us to find an arproxim;te
xsolution k to eqn. 4. 34, and hénce to the full disperaion equation “
4.28, that 18 uniformly vaiid.; To thia end we Lnsert eqn. 4.45 1nto
'reqnf 4,34 and‘neglect rerms ofﬂrrder o(k ) After the resulting
. equarion‘isrdiv;aed By F(xb);Pit cén‘be.egprgsseq conciselylas '
| Al(nojk§‘¥ s(m,<0>k2_-‘;2‘-‘q . L 'l‘(4;47)'
" where - ”" . :‘ i | | T
' ‘ , F‘(xb)— % o . ‘ .
AI(KO) = F—W— ,y . - (10.{08)

S B(u, .<0> ¥ (.<0>A<w> Fy(cglu” 49y

and
4
) A

. F(x,) - 1
F (x 0

e 0) Fxs

,o © b0y

3(K0) - N F(K “_ 2 ‘ . " e v' (4&51)' [
CoF Sk L o
oot ;0 :
o .. C N 'Un‘
Equatibn 4.47 has two solucioné fort kzgnﬁThey4are‘_
S . ‘ L N o - ;

EEA L l_a‘{-h % [B + 4A 2}1/2} S sy

. ~‘
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‘ root in eqn.'é 52 as

'7' Thue, condition 4 54 certainly holds when KO is not near zero.~1To”

/o : ) BT
9 ' ’ oo o
This pair of solutions can .be approximated by expanding the square

2 2 4 I

' 2A. 0 2A7 . w
[B + 4 2]1/2 - 3[1 + ; - - 2 + 0(A3m6/B6)] (4.53)
-~ o B ‘ B : . ‘ W
. The‘exeansionVA,SB 1s valid whenever . ‘: (¢
ap?/B?] << o (.se)

Y

A

It 1s cibar‘from Fig. 4;1; fn .¢hich 'fA']BZ|' ia‘plotted against ‘|x0|
N |
for the typicai parameter values . n = 0 173125, t = 0.15, and

Pr-—.

m = 8791, that IA /B . is bounded provided ]xol is bounded anay‘

~ from zero. The behaviour of |A1/3‘|“ depicted in Fig. 4.1 is

BN

oonfirmed'for large -|r0| by considering the asymptotie expansions=for ‘

F 3 ' and A1 derived in eqns.. A. 31 - A 33 of the Appendix. These’
expansions, when used in conjunction with eqn. 4 49 demonstrate that

STl g oIk

determine the behaviour of IA /B ] when Ixo[ ia small we wuse the

power aeriea expansions from Fz s 3 > and Al given by eqns. N
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L2717 _A.29.\‘ These power series, together with eqn. 4.49, yleld

a8 +0(1)

‘ 2.2
[3x A |

) ‘ ' ' ‘

Hence, it folllou‘ré from eqns. 4'.31, '4.43, and condition 4.41 that the
1nequqllr.y 4.54 1is satisfied when Kg 1s close to zero as well.
Therefore, eondltion 4.54 holda for all Ko ° This implies that the

. " . expansion 4.53 is;a\ uniform one. ‘
’ "

" This exﬁa{nsl‘o‘n can be inserted into eqn: 4.52 to obtain either

. . ‘ 2 :
' L "’ " f' ) . ) A W N
T o L K2a e (1 - L +Q(A2w4/84)] \ (4.55)
, ‘ B U 32
"Q“ ! ! |\
. or
) " 2
‘ Aw
. k.- B (r + A + O(Azw“/sl’)} (4.56) -
. ) . A B2

k3
’

';'g'ohsider. the conduct of this pair of epproxima;Wutions to the
i - a

dispersion equation in the limiting case of an ﬁ@;fscid fluid‘- As

tn .
m + @ , the 1nvisc1d "Toot 4.39 is recovered from‘the solution oy

represented in eqn. 6 55. whereas the solution represented in eqn. 4.56

H

tendg‘to infinity. .Consequently, the latter solution is discarded as

- extraneous and only the former solution retained. In this solution |k]

remaihs small‘for all Ko as is confirmed by Fig. 4.2, in which

13

w/|B|1/2 is plotted against Ix | for the pair of ‘parameter values

o= 8?91 and 33088 with n and 1t taking the same values as in Ffé.

A
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0051 " | '~ o '

-_—

4

Fig. 4.2, m/|3|1/2 versus |'<o| for n = 0,173125, 1 = 0.15.‘
re m = 8791 (-), 33088 (--). o

-
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' L]

d
\ The root k with positive real part corresponding to eqn. 4.55

is

: 2 ’ | 0 B
o A w
- . ‘ 4

. 2 1 .
" 2B
In eqn. 4.57 we have obtained an asymptotic expansion for the solutioans
.tk of the dispersion equation 4.27 that is valid when a 1is 1@;3& and

w and |k| are small. This approximation is uniformly valid unless
w+0 and m+» > . ‘ c

The root k 1in eqn. 4.57 can be approximated furtherNBy expanding

’ B(w,no). By e?P. 4.49, ¢
) ! '
F3“’2 2 4,22 '
B = F AL - 1 + 0(Fyw /FoA7)] - (4.58)

~

Ka

The expansion 4.58 is valid whenever
B ~

—_ . \

-

|F3w2/F2A| «K1.. | (4.59)
N . :
It can be demonstrated that condition 4.59 holds for all <0 by
arguments similar to those used in connection with condition 4.54,
From Fig. 4.1 it 1s seen that |F3/F2| 1s bounded whenever |xg5| is

~ bounded away from zero. In fact, for large Ixgl s
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1 2,
e | P3/Fal ~ oy * O/ Ixgl) << 1
. o AT37 2 AKO ag

L)
0

Thus, condition 4.59 s satisfied when l‘Ol does not lie near the

origin. On the other hand, when |<0| is small,

1 | .
[Fy/Fy| ='—5 + 0(1) . ‘
‘OI

It then follows from eqns. 4.31, 4.43, and 4.41 that coﬁdltﬁ%h 4.59 18

\
also true when <0 1s in the 'neighbourhood of zero. Hence, the

o) fs a uniform one.

asymptotic expansion 4.58 for B(w,x

This expansion can be inserted into eqn. 4.57 to obspin another
version of the.uniform appfox}mation‘of k, namely

L]

RN

' o F A
- -1/2 1, 3 1 |2 2 4,22
k = w(F M) (1+ E(F;K - ). + O(Fju /FZA”)] . (4.60)
A 2Nt .

Equation 4.60 is a more convenient représencgtion for k than eqn.
4.57. in that the dependence of k upon w and x, 1s separated in

the former equation. ‘ ]

1f the épproximationfprocess,}s continued, k ca@\be written as
an .expansion in powers of w, with coefficients that depend~on xo .
"This is accomplished by expanding ,,I\..1 in a power series, via eqn.

4.31. The result is

LN



<%

N ' ' _ o AL6

1/2 3 2.2 1 L, 2 |
k = wF [1+ (=7 T )’ +5tut 45 (Fy - A /Fu’ /R, + ...] o

)

‘ : (4.61).

i -
This asymptotic expansion for k 1is uniformly val}d/unless,.w +.0 and
m+ .‘ It is a viscous correction to the inviscid root 4.39, as is
eqn. 4. 38 buj unlike eqn. 4.38 the approximation 4. 61 is ‘valid for all i
mw. It can be checked that eqn. 4.61 reduces to eqn. 4.38 when mw 1s

large, and to eqn. 4.40 when mw- is small.

Throughout the derivatiOn of the ‘various asymptotic formulae

”

' oresented above for the root k of the dispersion equation, it is

stated often that those formulae are valid when w and 'lkl Aare

'small. Such statements invite the folloving question: just how small

must w be fo;‘tne formulae to be valid? In an attempt to answer this
question, we inserted the.exoansion 4.60 for 'k into the original
dispereipn equation‘as represented by eqn. 4;30, and computed the‘
difference.in magnitude the approximation for k created between the

3

two sides of this edhation.

The results.of these calculations are depicted in Figs. 4.3 and

4.4, It is evident from these grapha that the’ formula for k given in

eqn. 4.60 1s an excellent epproximation when 0 < w < 1. 0 as ‘the
relative error generated in the dispersion equation 1s less_ than 1;

throughout this' frequency raange. Surprisingly, ‘the relative error doee

not even exceed ‘5% for values of .uw. as great as 1. 5. It is only as m‘

'increaaes beybnd 1.5 that the error begins to grow dramatically. These‘
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0.1+
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Fig. 4.3 Magnitude of error in dispersion equation as . a function of

w for 'n = 0. 173125, T =0, 15 ‘m'= 33088 ( ) 8791 (-_)’ | AR

1666 (=+-).
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/}13.4.4

Magnitude of error in dispersion equation ‘as 'a function of »
‘w for n'= 0. 173125 m - 33088, T -¢0 ( ) O 15 (--),, -
- o 5 (-.-)
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BYCta answer - the question posed in the preceding paragraph. The

v
—

asym totic formula 4.60 is a reaaonable approximation to the exact root .

. .

“k of the dispersion\equation for 0 < w < 1.5/ 1In the 1nterval

0<w §~l‘0, the agreement between the asymptotic result and the exact

[

(one‘is very good.
?
Similar statements apply to the formulae in eqns. 4 57 and 4 61

The formula 4.%7 produces values of k that on a graph "are
indistinguishable from those produced by formula 4 60 over the - interval

0 <w(2.0. Thus, the former formula provides.an approximation for k

that is as accurate as the.latter. “The valuea'of R iproduced,by,eqn.;
4 61 begin to depart from those produced by eqn. 4. 60 as 'w ‘nears 1.0.

.4 : :
‘This 18 a consequence of ‘the expansion for A -1 in’ powers of 'w wused

~ 4

in eqn. 4.61. Hence,-the formula in eqn. 4.61 is not as accurate. as

’

“

the formula in eqn. 4.60 when w D 1.0.
It is clear,,then, that ' the asymptotic expanaion 4 60 1is better
' able to approximape k over ‘the . frequency band of interest to us,
namely 0 Cw<l. 5 than the expansion 4. 61. On the,other hand, no
_‘clear-cut diatinction exists between the resultstot.fOrmula 4;57»and ,
thhose ofa4 60 over this freduency range.j The-. only\gifference between '
g . .

the two formulae is that eqn. 4. 60 is a more convenient representation"

" for k than eqn. 4.57, as- noted earlier. For this reason, we choose~

to use eqn. 4 60 rather than eqn. 4 570 to approximate k in the re8t .;d

. ..‘

of this thesia. R
Now that we have developed an aaymptotic-solution for the root of
"‘k of the diapersion equation, the calculationa for the set of wave

.golutiona sought in eqn. 4 l are complete. Aa ia noted 1n the ; ;*}

[
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int:oduction to this cgzpter, these wave: solutions are the fundamental

B solutions to the equacions forming the first part of the mathematical

‘model considered in this dissertation. The problems~o£ constructing

~

'general solutions from the - fundamental ones, and developing particular
'solutions that satisfy those initial and boundary conditions forming

,w:‘the second part of the mathematicaD model, are addressed in Chapter v.

Before turning to‘theseIproblems, however, we'discuss various fea&tres
. . . » , " . ,‘l ) 'l "I‘ ' ' “ - ‘

of the‘propagation process that‘can_be ascertained from the‘behaviOur'
.mlJ

"'Phdse Velocity and Wave Attenuation

The first thing to be observéd about the propagation process is

that - only a aingle modeaof propagation exists for prepsure waves 1in the“

,

fluid—filled tube model considered here. This follows~from the

yanalysis of the preceding section. There, only the single pair of

A

roots tk as given by eqn. 4. 60 for example, was found for the

D ~ g b

",dispersion;equation«at each w. 'More0ver,mit'is evident from the ’

'vsymmetry of this pair of roots that the solution +k is associated

jwith waves travelling in the positive x—directiondwhereas the solution -
‘—k is associated with waves travelling in the negative x*direction.
. The waves travelling to the left, however, possess the same propagation
.-{characteristics as those travelling to the right.: Thus,‘this‘pair of

,‘waves represents just one mode of propagation.

The characteristics of this“mode can be identified by considering

'f‘the root vith pdsitive real patt +k(m) The qualities possessed by ¥- o

k that are important in wave propagation can be described by means of

tel W

TR P L A - o
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tyo‘quantities: ‘the phase velocity C.' ‘w/Re k, and the tranamission

' .per unit;diatance exp[ Im k] Here, the uait diatance rmployed is the

i
\

tube radius. These quantitiea,vcalculated from the pproximation 4.60
4
for k, are plotted in Figs. 4 5 - 4.10 as functions of w” for varioua ;

values of the viscosity parameter’ m and the viscoelasticity parameter
T.i Note that the selections m = 33088 and o= 8791 arehassociated“n
with water and whole blood respectively, while T = 0‘ represents the
. elastic case'and r - 0 15 a typical viscoelastic one (Moodie, 1985)

It is evident from Figs. 4.5 ~ 4 7 that the dependence of the. .
phase velocity upon‘ ™ is quite weak, except at vexy low frequenciea.
'With fluid viscosit¥ taken into account it can be aeen from Fig 4, 6
- for example, that c rises rapidly to a 'level’ slightly below that of

-the Korteweg-Moens wave speed o . Throughout the interval

0 015 < w < 0 30 ‘the ma;imum ‘variation of ¢ from co‘_is lesa“than
MSZ when = 33088.' On the other hand, at w . 1?5, c has'decreased
'to a. level roughly 202 lower than ;cb‘. ‘These~resulta-helphto explain'

w0

why Newman et‘al. (1983) were, unable to detect any variation with

frequency in their measurements of The range of frequencies

W_'monitored in their experiments was 5-100 Hz, corresponding to the g_"'”

,l'dimensionless interval 0 015 < w < 0 30. The predicted variation in

e’ ia too emall to detect in this interval. However, theae results do 'li"-

.‘r'predict the poasibility of detecting some variation in c with j:

"‘,,frequency in experiments producing pressure waves that contain "'. {g

'; frequencies in the range 300-500 Hz, corresponding to the‘dimensionless

1 PO ]

‘{h‘interval 0 9 < < 1 5. Over this interval,v c should decrease from

1oz to 2oz below the value of ey

L ‘,*f\ﬁ; o
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O

‘Fg. 4.5, Variation of nondimensional phase velocity - c . with
R nondimensional f,requ.e_ncy_ W for ' n ;*-'0.1731‘2‘5,‘111‘ > o
T "0(-), 0.15°(=~), 0.5 (=2-) PR
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The effect of wall Viscoelasticity on’ the phase speed is _

demonstrated in Fig..k 5. Evidently, chenges in the viscoelsstic
o

- parameggf T affect c marginally. As. . i is increased~ there‘is»a

L "

. small increase in' c. This confirms e statement about the effect of -

viscoelasticity on the phase speed made in Chapter II. The»magnitude

N

of the increasé in ¢ brought about by increasing T is‘sufficiently‘

_ small, however< that it is unlikely to be detected experimentally.
‘—F—w .

Surprisingly, the effect of viscoelasticity on the phase speed G?served

. here is opposite to the ‘effect produced when 1s conaidered to be a

function oﬁ the wave number k. In the latter case an increaé hin,‘r‘

brings about a slight decrease in ¢ (Moodie et al. l985) ‘ This

4

curious result is created by the higher order correction terms that

modify the first or&er linear relationship between k and

v
R

The influence of fluid viscosity on the phase speed is likewise

\\

_depicted in  Fig. 4 6. It is clear that in the case. of fluids suﬁg as

“.‘f. I
T

"water or whole blood viscosity has little impact on c when i

'speed. However, at very low frequencies, the impact of viscosity on c.

\w > O 01. An increase in viscosity leads to a slight decrease in- phase

e P . e g “ .

L _is-enormous. The entire qualitative behaviour of ¢ 18 altered near

‘,w‘e 0. When fluid viscosity is accounted for c.* 0 as w » 0. “In

-

contrast,‘ c* v as W 0 in the inviscid case. This 48 clearly
depicted in Fig. 4 7 where the curves in Fig. & 6/are reproduced on- an‘p

tenlarged scale for fm Thua, the dependence of d on ‘m and @ s

‘p«‘-

~

'“previous section in connection with the. solutions for k.‘ Figure 4 7

3

also illustrates that the rate at which c ‘rises fromyits ‘value atl» ‘

. o . PO
’ v BRI ! [ : . e’
' Lt . N ! ’ A ' ' ' . .

N

Vnot uniform in the limit as w > 0 ‘oo as is discussed An the 1,5” .
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w = O. is somewhat sensitive to the viscosity of che fluid.

The behaviour of the phase velocity as a functioé‘of w 1e
Lndlcatlve of the dispersion ilnhereant In the propagation process. It
‘18 seen from Flgs. 4.5 and 4.6 that ¢ is,faiply.flat over the
interval 0.01 < w < 0.5, 1mplyiang that very lltele dispersion ought ‘to
occur oyer,this interval. When w >‘O,5, 'c begins a gentle decrease
with w, mainly on account of the comblned radial lneftie of the fluid
and‘the'wakl, so some dlspersion 1s probable here. Naturally, as ¢
'varies quite rapidly with w 1nithe interval O < u <‘0.01,

congiderable dispersion of wave components 1is expected to arise near

w = 0.

'L\ The dieaipecionilnvolved in the propagation process, on the other

/e
hand, can be inferred from ‘the behaviour of the transmission per unft

distance, exp[-Im k], as a function of w. It is evident from #1}5.

4.8 - 4. IQh;ha: very low frequency components are hardly damped at all.

In fact, 1in the 11m1t as w * 0, these components remain undamped. The

attenuation increases as w 1ncreéses, slowly at first, %&t t@Fn at ' an

source of the dissipation.

\

increasing rate. The degree of atCeouafion, however, dépends on the

tn ,
The effect of wall viscoelaaticity on wave accenuetion is ¢

1llustrated in Fig. 4.8. It is observed that aCCenuation {ncreases

liiciceably with frequency at the relatively higher frequencies. For
) 9
’m ( 0. 3 however, damping is vittually negligible. There is a marked

increase in damping‘as T {is 1ncreaaed.. .

The influence of fluid viscosity on wave attenuation is depicted

-

in Figs. 4.9 and 4.10. It is evident from Rig. 4.9 that the degree of
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e A
1

damping {s quite inaensitive to m, and hence, to the viscosity In
fact it is .seen in Fig. 4 10 that viscosity produces very 11ttle

damping over the entire interval O {w < 1.5. The'figure demOnatrates

' that wall viscoelasticity rather than fluid viscosity is the chief
squrce of diasipation for pressure wav;s~in our fluid filled :

distensible tube model This point iJ in agreement with the opinion

>0 L

articulated by ‘Caro” et al.,(1978) S
\

N Some conclusions about the propagation of disturbances contained

-

in the frequency band considered here, namely the band associated with

.

the'dimenaionleas;interval 0<w <,l.5; can be drawn from the

]

. preceding analysis of . phase velocity and wave attenuation. It:- appearq

~that very little dispersion is generated in the frequency band
represented by the region 0.01 <w < 0.5. Relatively high frequency

' components contained in the finterval 0.5 < w < 1.5 do display some
. N C
dispersive qualities, and very low frequency waves in the narrow band

0<w < 0,01 will be dispersedvconsrably though the action of‘
fluid viscosity{ The effects of dissipation over the frequency band
under consideration are also preferential. Waves in the interval

O‘S:w‘< 9.3; should suffer very little attenuation. At,higher

frequencies, significant damping occurs by'virtue of wall A'

*

viscoelasticity. Thus, if. most of the energy in a given disturbance is ]

concentrated within the interval 0.01 < w < 0. 3 it is predicted that

‘ = \

the disturbance‘will‘manifest,few signs of dispersion‘or dissipation as
it propagates'aiong'the tube..‘ -

Whether the conglusions described above do, in: fact, accurately

' represent the propagation characteristics of a pulse composed of a
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continuous spectrum of frequency conponents awaits the’ resulta of an
1nvestigacion LnCO the transient reaponse of the fluid-filled _tube
model‘used here. This 1nvestige£10n 19 pursued ln the following
chapter, vnere'the bounpary—velue'problen posed 1in Chaprer I1I 1s
solued; If‘the observations in, the experiments of Newman et al (19835
are any gulide, the pressure pulses computed in Chapter vV will display
‘greater evidence of dispersion ‘and diss;pa;ion‘than the ane}ysis of
phese velocity and'wavelattenuetidn presented abpve predlets."



'CHAPTER V

‘Pulse Propagation

In the preceding'chapter,‘certsin conclusions were reached

regarding various aspects of the wave propagation process in the .A‘

——

'fluid-filled_tube model‘derived in Chapter III.. These conclusions“were
‘ R ARt - | |
based on an analysis of the behaviour of the phase velocity and,the"
'transmission per'unit distance as functions of frequenéy. In Chhpter

- ll,‘however, we had issued a warning‘about the dangers of relying too

v".heavily on graphs of phase velocities and transmission coefficlents to |

o™

,give a,complete description of the'featuresﬁoﬁ'pulse propagation. .
, . . N ‘ ‘

JWhile the pattern'of propagation for‘the pulse as a whole 1s
determined, in principle, solely from the propagation characteristics
of its frequency‘components, ic is' not an easy feat in practice to
‘predict exactly how the contribution of each component affects the
‘shape of the pulse. For example, some signs of dispersion or
‘dissipation manifested by the pulse in its travel down the tube”are not
“ apparent apriori in the plots of the frequency spectra. . \
Therefore, in this chapter, we examine the propagation of pulses
'deirectly by investigating the transient response of our fluid-filled
tube model. To do thie, we compute solutions for the boundary-value
.‘problem forming the second part of the mathematical model developed in’ 2
‘:'éhapter III,\and compare the‘behaviour of these solutions with the J,"
upredictions Bised on the roots of the dispersion equation given in'..

—

- Chapter . o
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' 'Fourier Integral Solntions

The first step in solving the boundary~value problem under :

L

consideration here is to construct general solutiona to the
fluid-filled tube model from the wave solutions calculated in Chapter

‘ IV. ‘As the boundary condition 3.51 is formulated in terms of the

A
‘

averaged‘flufd pressure’ pﬁ‘, 'we focus~particular attention on this

—

. variable,‘as well aa‘on‘the‘other‘averaged variable, the averaged’axial
N component‘of fluid'yelocity va Y and on the'radial‘wall‘diaplacement .

W : , : . co ‘ P
‘ oo L ‘ . : T
»

The averaged pressure Py associated With the set of wave

_solutions represented by eqns. 4. 20 - 4 23 is calculated in eqn. 4 24

For convenience, we repeat ‘the formula here:

)
o

- . ,
‘ ‘Pﬁ - r—E——— a exp[i(kx-mt)] S L (5.1)

l . N Lo e oo T
Siﬁllarly; the averaged axial velocity‘ vm associated with the wave

solutions in eqns. 4,20 = 4 .23 is represented 1n eqn. 4. 25. With the: f

l‘use of eqn. 4 29 the formula for !vm, can be-written as

-~

le(k) oo ‘

v — (l-F(k)/F(r))a exp[i(kx-mt)] R 1
. The wave' solution fjf the radial wall displacement ‘w is given by eqn.'7i,'fpfﬁi

p14-23-‘ It too can be expressed in terms of the function F defined in ‘ hﬁ .

‘{‘eQn. 4. 29" that is,,‘fi..‘T‘ }-f

' . o . : - . . ' T i e
/ . . . . . . C . ; . .
. . , d . Lo . e v ' D e




3
kI (k) | ‘

W -

(i F(k)/F(x))a exp[i(kx—wt)] o (sﬁ3jf“
w2 c -

Ceneral solutions for.‘pm ,‘vm', cand W ean be construdted

‘ directly from eqns. 5 1= 5 3 by means of Fourier 1ntegrals. As it is -

'found in Chapter IV that the diepersion equation possesses the pair of

roots tk as approximated by eqn..é 60 for example, the Fourier
Ny .
\ 1ntegrals will contain two terms correspondiug to the two roote. . Thus,,

<}'\ the‘geueral representation fortlpm is:

p;(x,t) - %;-I (2t wel ™ + P (we e, . (5.4)

"

N -

‘where k is selected to be that function of w _giVeu by eqn.‘4.60.

'Similarly, the formulae for bh and 'w are ‘\‘ SR : ‘ e o

v . ¢ Y

' o . L .
Y . Co o . o , .

) = .f'(l.(',‘»‘1"“*“.‘)/",("))[1”\0»)«2i - P (w)e ikx] “1‘*’% Yo

{

R I T S e e
'°‘f«wu¢)-—¢ z(bNMNWDP(Me‘+P(n ?kﬁ“@b
SR R 2 R : T e

f i o
; g . LA Ce ) , W
. W ot . (5 6) i o
| : N 4 ) .
u f . ) . .
o ! . . R Sty . X
S -y, . W L o .
H . N celie, . . B . . . a g ‘{“ W . R

f

. 1&n1 that 3eneral solutions to the fluid filled tube model have ’ IF.;',;ﬂfft

°; been developed, particular solutions can be extracted from them to

satisfy the given boundary-value problem. The general solution 5 4 for'f“i'”

/".. - Lo ,' ) -",. T e

/ . s L -

4 °
o . - ~.
S e @
R - s
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pﬁ‘ can be specialized to satisfy the boundary condition 3.51 by tsking ‘T‘V

the coefficients iP+v and P ‘to be ‘ . " | .f K “; o
o+ - T A
P () = 9(u) , B () =0, SR € 19 ) RO

where 5(;)“19 the'Fourier‘transform[of ¢(t),inanely'

. . . . . .
+ ' Cr . e . ! [
[ . : .. ' .

S L AR 0 N S

.The choices for P ' and 4& represented in eqns. 5. 7 and' S 8 ensure.‘}
o that the corresponding constructions for pm‘,"vm tj and w .aatisfy.
*the rest of the conditions posed in Chapter“III as well:‘ namely,dthe~r
'quiescent fnitial conditions and thé - regularity conditions imposed as

a ‘ .
'k » @ or t > m~., Hence, the given boundary—value problem is solved..‘v

t

. To recapitulate, we have obtained the transient response of the = " “";*

“fluid filled distensible tube model derived in Chapter I11 to a“.f

‘,“
yv

disturbance in averaged fluid pressure generated at one end of a-
a semi—infinite tube., The response is characterized by solutions giving

‘the averaged fluid pressure ‘p;‘, the aVeraged axial componene of fluid

' velocity vm'; and the radial wall diSplacement w. "These solutions

pbare, respectively, 4}45 'f L v;ﬁﬁfl,
P (mae) o= [ e(w)exp[i(kirut) Jdu T (5.9)
° 9 ” ’l‘vt..' -‘ ’ "
: - 1* y | .




Gl'* ‘ T _ ‘136-(
vl;l(x,t) - %;f | ‘—‘2(—591 (1~F(k)/F(x))exp[i(kx-wt)]dw , (5.10)
Al
N T8 ‘- |
w(x,t) =5 f —’%‘“—l (1-F (k)/F(x))gxp[1(kx-ut)}dw , (5-11)
_ | - LR | ‘ |
, ';‘ 3 C S R ’ o :
where‘ ? is given by eqn. 5.8, F by eqn.‘A 29 K by'eqn. 4.13; _gd ’ ’
by eqn. 4. 43 and k. by eqn. A 60. _‘ L ‘ ‘ : ,
- , . ‘ i,

| It is evident from the solutions represented in eqns. 5.9 - 5 11

plae =

\ “:generated .at the end of the tube is able to travel‘

;‘in only one ..E}f.ff ', namely the poeitive x—direction. This hardly S T

fcomes as. a great ehock.‘ However, aside from this superficial

-

; vobservation, very little can be inferred from the content of the‘

'Pourier integrals above., This is typical in wave propagation problems
,,(Hhitham, 1974)a Consequently, the behaviour'of the solutione ) . %‘.

conta&ned in eqns.-S 9 ~ 5 11 is analysed in detail by resorting to

B

numerical integration.

' [ b, .
L )

Lo
-

Numerical‘computation}vi‘ DR :jﬁr'* C "“l RS
- - ‘ R E S v‘.!. R .

The solutions given in the preceding section as a description of

4 the transient response of the fluid-filled tube uniformly appear in the Ly

'Lfollowing integral form.‘ "*"7‘;;_“uf o f{'_"'.}‘i el

¢

s e s@we™ . Gan.

L

S : ' R - ceal

¥75gﬁlntegrale"offﬁbiafaort_oansbe“evaluatednnumericallyxBYimeana"of:tbe:‘
' S R »‘-'.‘r'.‘ R - ‘\. K e . h- v‘ o .
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.rdiscrete Fourier transform; In this procednre, an approximation to

s(x,t) is calculated Eor a fixed value of x at the discrete-QSThes

of 't given by

!

v
|

\ :J-N'M 3 1= NeNELLLL N, | (5.13)
o . .
according to the’ formula’
N1 o
s'(x‘,tj)l =[] S(ndw,x)exp(-inn3i/N)]aw , (5.14)
. ‘n=-N . R : E .
* “'- ! ' . S ; l\.~‘

‘where ‘Am"is a snitably chosen increment of the circular\frequency,

.‘ml,. ’ | " .
‘Thiswdiscretization produces yalues of a“fnnction that is perlodic.

with period 2n/Aw and approninates 's(x't) at 2N+l eqnaliy-spaced,

'points in:tbe interval-'— ,< t-< %— N 'In the\problems considered
here we‘are only interested in the values of the approximants when |
t > 0. Hence, the function valueslcorresponding to t < 0 rcan be
o discarded aa extraneous. Care must be taken in the approximating
‘formula 5 14 to choose ,N and Aw. in such a way th&t S(m,x) is"5i<:i;¢3'iirﬁ
‘negligible when w > NAm and s(x,t) is. negligible when ‘t >'\/Am.  ”"1éi3M
‘The consequencesﬂof failing to obey this injunction are discusaed by | |
'iBrigham (1974) RN, ' R
. _ ‘ A

The discrete Fourier transform can be computed efficiently by
'using one of a number of variations of a basic algorithm known as the o

\
L
L !

Y

oyt
N

i

R .
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Fast Fourier Transform ({FT) The subroutine used to pefform the‘
1

calculations presented in this thesis implements the algorithm of

Cooley, Lewis, and Welch quoted by Dahlquist and Bjorck (1974) The

speed oﬁ the FFT algorgthm makes it ideal for use’ in a situation such

RS
as ours, where 1e. is necessary to evaluate the solutinns_iiﬂ ~_5 11 at

'

' various stations slong the tube, as well as for many comhinations of

-~ “ ' AN
»

the parameter pair T and m. \ . o O
The integrands in eqns. S 9 4\? ll depend on three dimensionless
parameters, namely n, r, and m. Ih is natural then,,to expect .that

the appropriate values of N ﬁﬁa Bw \to be used in the disd?ete !

W

transform will depend .on these parameters\ “For: the particular function

obtained by aetting N - 2 . and the product NAw - 16n/t , where

t.'o‘

. . . -y \
o(t) employed here to represent the pressu e input lt X = 0 however,

1

At was found by conducting numerical experiments that N and Aw ‘can,”

'\for -\the range of

be chosen independent of not only n, t, and
‘ ' A

.

values of these parameters under investigation, bur also of the axial

N N \

position x for 0 (‘x < 50. Therefore, N apd Am\ do not have to l

N ' . R

be changed each time n, T, @, or .X are changed. Good'reaults,were
. N

L
1 \

is the dimensionless time at which o(t) sttains a maximum.

—"

~ compute any one of the solutiOns S 9—- 5 11 the ssaociated integrand

has to be evaluated as a funcg}on of m .st ‘a very'large number oE

11 ;

points, N - 2 for example.w It would be an even greater number,

namely 2N points, but for the synmetry of the integrands., When*'”

is replaced by ﬂn the cgrresponding integrand takea the complex
\‘ ! " ht . P . R

BN
e L

It is evident from the preceding discussion that in ord%\ to f“hl” SRR
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B . b . " R . » B .
‘conjugate of Ats original value. This, at least, saves evaluation at
. half of the 2N pointa.“Thus, k must be calculated as a function of ‘

w for N values of w. It.is clear, then ‘why anlanalytic formula
L for ‘k(m) 18 so desirabie. The cost of solving the dispersion

' -

sequation, as given by eqn. 4.32 for example, at N}‘values of w 18

I

}astronomical since eqn.:4;32 is a transcendentah@équation. The.uee of

' an explicit foruula'to'evaluate k 18 considerably cheaper. fheifact:'
that we have, in eqn. 4. 60T-an approximation for k" that 1s unfformiy
valid in vuo is\anvadded convenience. This aIloWsyus‘to avoid' the use =
of separate expansions for k, where each’ expansion is valid in only a'

part of the domain for w, and the attendant problems involved in

‘ connecting these expansions. =
* A B s

- are those of tu e B in Newman et al. (1983) Thus . h = O 035 cm,
R = b.é;cm;‘and‘ c’ = 833 cm/s. As 'the tube is slightly more denae

-than the fluid it contains, we take Y/p - 1 1. The kinematic

S

3 viscosity is chosen to bg/ Vo= 1 007x10 2 cm /s,‘corresponding to that‘
‘of water at 20°C (Patel and Vaishnav, 1980) According to Moodie et

(1985), an appropriate choice for the viscoelastic parameter T

\

- associated with this latex rubber tube is T - 0 15 (7 2x10 s)

~

The.pressure input‘at 'X" Y shown in Fig. 5. 1 is ‘

L e = § (14 conlaeme)/E) I GH(IB(E2e)) ¢ (5.18)

B . A NS ' .
- \ < . . oy !

‘ -Ihepfunctionrmo(t)' is an‘ideaiiaation of‘the;pressure input.in‘the.

[ [
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Fig. 51 Input function ¢ ~specifying averaged pressure - p at x=0.
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Fig. 5.2. The absolute value of $/td "ag a function of wt

-

'S

0"



142

experimerits reported by Greenwald and Newman (1982) and Newman et al.
LVR . - " . .

-

(1983).. n those efjjeriments, the input pressure was at a maximum in

3 ms, which translates to 6.25 in our nondimenaional scheme. Hence, we

take t0 - 6 as the dimensionleas peak time. 'The Fourier transform of
1\ . ‘

v(t), is

P 0

P(w) =2 | (I-e Y- (5:16)

» ! "
The modulus of the traneform is depicted in Fig. 5.2. It is clear that

vhen t0 - 6 virtually all of the' energy contained in the pressure

input lies in the interval 0 <{uw ( 1.5. . ..

Theaaveraged fluid pressure corresponding to the input pressure

vgiVeﬁ/in‘e;;?\§>l ‘18 plotted in Fig. 5.3 at various stations. along the

8
W

tube. The cbrresponding kraphs of averaged axial velocity and radtal

v
3 a

wall displaeement were found to be indistinguishable\ia.shape from the

graph of averaged preasure, 80 they are not presented here. The .

o presaure Py in Fig. 5. 3 agrees well with. solutions to similar

)
w

boundary-vaIue problems obtained from an inviscid theory (Moodie et A

) -“al., 1984 Moodie et. al., 1985 Moodie et al:, 1986) The pulse

¥

)

obroadéns, ‘is attenuated, and its oscillatory tail is damped as the\wavei

travels down the “tube.’ As is noted in Chapter II the same general

Q “

°pattern of pulse propagation is observed in ‘the experimeats of Newman

et al. (1983). : ' e

[

~Im Fig. 5.4, the pres§nre p, 1s plotted for.tHe same ‘parameter
o . . L . e e B

g

9

.
. ' ‘ ) . ' “ N
B w . W
. L . R
> * 0 .
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values as in Fig. 5.3, except that in the former figure we take T -0
S o . Lo
to represent an elastic, rather than a viscoelastic, tube. It is

obvious that the pulse depicted in Fig. 5.4 does not share the same
~ 1 . 4 w . .

propegatlon.characterlstice‘withrtue pulse in Fig. S.j.j‘fhe pulse'ih
Fig. 5.4 1s‘damped»and 1teupeek 1s,attenueted; but‘the:wave‘traih' |
folldwing‘the main part of thevpulee grows in amplitude from one

M'stacion'eo‘the uexti fﬁls”feaeure is magnffied‘in Flg.‘j.S where pm

1s plotted fofg ty é'31 with‘the‘other‘parameters unchanged from Flg.

L

» ‘ 5.4. When the parameter‘vélue.rr =- O is-replaced Sy T = 0. 15 the O

0

.wave train following the pulse reverts to the state deg}cted in Fig.

5.3: that 18,,it 1s annihilated. Figure 5.6 demonetpates this reeult.“A

Although some of the energy in the presaure 1npuc falls in the region
©@ \'

w > 1.5 for the choice to - 3, the bulk/of the energy in the pulse

remains in the interval. 0 < w < 1.5, so the behaviour_of‘phe.pulse
when ty = 3 1is useful in‘confirming characteristics detected when®
“o - 6. . o l | v,

A likely exblanaéion forbthe presence of the wave,urain deecribeu,

as an agent of attenuation. As a consgquence of }

in the pulse fall behind the lower frequency‘components as the wave L

-travels down the tube. _This is evident from the variation 1n c wtth

Lo . . o’

T W depicted in Fig.-4 6 for example. ‘These components a:e not -

observed in Figs. 5.3 and 5. 6 vhere 't = 0.15, ae‘they*are?etteuuated‘
”far ‘more severely than the lower frequency components fot chis value of

[

'-the viscoelastic parameter.A Figure 4.8 supports this argumenc. quthej

.
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other hand; nhen: T é‘O,hthe higherffrequency‘components areQnot'damped
"any'more thanithe,lower frequency\ones, according to Fig;fbrld, Thus,

as the attenuation produced bv‘fluid viscosity is quite‘weahﬁﬁthe,wave"'
t

,train follouing{the pulse does;not*disappear.in Figs. 5.4 and 5.5. .

In fact, the. wave train grows, rather than decays, from one

i »_, '

'\pstation to the next. This is not a manifestation of an‘instability‘inbp -
the propagation process. It simply reflects the fact that . energy 1s

shifted from' lower frequency components in fhe main part of the pulse

'

to higher frequency components in the wave train, on account of the

N

_\aforementioned dispersive qualities of these waves, ‘at a faster rate

n

~than it can be dissipated by the effects of fluid viscosity.' The f

'production of wave trains behind the’ main par()of the pulse is far more‘
i

. dramatic in: fluid-filled tubes in which all dissipative effects have

‘been ignored as can be seen clearly in the papers by Moodie and. Haddow

(1978 1980).

In the impulses generated by Newman SE‘al. (1983), wave trains do

4

“not develop behind the’ main part of the. pulse. It is clear from the

",‘;preceding discussion, then, that fluid viscosity alone cannot account

#

hﬂfor the dissipative effects observed in these pulses. On the other [
‘ﬁhhand, the use of wall viscoelasticity in the fluid—filled tube model
K‘prod ces pulses that agree well‘;ith the ones generated in the’f:pfh
xl{gdexperiments cited above.f Thus, wall viscoelasticity must be the‘chief :‘_h
ﬁ‘hqqsource of dissipation in these fluid-filled tubes. This couclusion,li‘a':;

‘:based on considerations of the propagationlproperties of the entire ;Ip7"‘”

pulse, demonatrates that the view espoused in Caro et alt (1978), where

only the propagation characteristics of individuai frequency components

v - 9
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', were examined ‘is‘an accurate one. A more detailed comparison ‘of the
respective roles of wall viscoelasticity and fluid viscosity in the

‘ dissipation and dispersion of pressure pulses follows in the next

section.

' ‘The Role of Dissipative,Mechanisms

In Chapter IV ‘we compared the influence of wall viscoelasticity‘
Mwith that of. fluid viscosity on the prOpagation of individual frequency -
components ‘within a pulse by analysing the respective contributions of
‘the two dissipative mechanisms to the behaviour of the phase velocity
' ﬂé and - the transmission per unit distance ‘exp[-Im k] as functions of
we ‘Here we discuss the impact that wall viscoelasticity and fluid |
‘ viscosity have on the propagation of the pulse as .a whole. o
The quantitative effect of wall viscoelasticity on, the average
| .pressure is illustrated in Fig. 5. 7, where ‘pﬁ is- plotted at ‘X = 30'
u.hfor three different values of ’r. It is seen in this graph that the - :

d‘peak of the pulse occurs sligh'ly_eaflier in time as R is increased._
This implies that the velocity of . the main part of the pulse increases

as. the viscoelasticity of the wall increases.: The same conclusion was

,‘reached in Chaper IV on the basis of the frequency spectra plots. _J‘

v “aFigure 5 7 also shows that patt of the wave: train behind the pulse

':remains when T .= 0 05 but as r‘ is increased only a. single “li

. !

'.-ioscillation in this wsve train is retained. Finally, the attenuation ff"»

‘ ”vl.*‘in the peak of the pulse produced by wall viscoelasticity is very

| ?'fclearly indicated in Fig, S 7.. This attenuation is discussed in

e

3 J‘greater detail below in connection with the attenuation plots shown in

N [y
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Figs. 5.10 = "5"13‘.
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The effect of fluid viscosity on the pressure pulse is depicted in;

Fig.‘S 8 whére p is plotted at n -k30h'for the valueszof. m

associated with an inviscid fluid water, and;uhole‘blooda‘ It is. seen

in this graph that fluid viscosity affects the velocity of the pulse in n

Il

a way opposite to that of the wall viscoelasticity. The peak pressure R

occurs later in time as fluid viscosity is increased.. This; too,~is

consistent with the predictions in Chapter IV. As 1 = 0 15 for the

—

graphs plotted in Fig. 573,-only the first'oscillation in the wave
train behindfthe pulse‘is‘observed.'uFor:a,sufriciently large increase
in fluid viscosity, even‘this overshOot in pressure disappears. The |
attenuation in the peak of the pulse cauged by fluid viscosity is not
great, but 1 is much larger than is predicted from Fig 4. .9 in Chapter

IV. . We return to this point later when discussing Figs. 5 10 - 5. 13,,

o The contributions ‘of wall viscoelasticity and fluid viscosity to

.‘ the shape of the pressure pulse are compared in Fig. 5. 9.» There, Py

is plotted at x = 30 for the case of an elastic tuse containing whole

\

blood or a- fluid whose kinematic viscosity is twenty times that of

s o

water, and for the case of a viscoelastic tube containing an inviscid ,;‘

fl d. It is seen that a fluid much more viscous than blood is

. ‘;g,w ‘ -
S required to attenuate the pesk of the pulse to the,aame degree*as is

done by the particular viscoelastic tube represented in this graph, and

)
that even a fluid of such great viscosity cannot annihilate the train

O

of oscillationa trailing the main pulse.‘ These observations agree with

the predictions in Chapter IV based “on Figs. 4 9 and 4 10.- Thus, Pig.4~-mﬁ

5 9 provides further evidence that it is wall viscoelasticity, rather

P
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than fluid viscosity, that is the chief source of the damping observed
in préspure‘pulses in large arteries and in water-filled latex tubes.

The decay in peak pressure observed in the.pqlses considered in

" this chapter is subjected to closer scrutiny in Figs. 5.10 -~ 5.13. In

‘these figures, the maximum amplitude of P, is plotted at successive

stations along the tube for a variety of values of t and m. With

»

‘certain exceptions, these graphs display the same concave behaviour in

the vertical direction that 1s observed in the attenuation plots

depicted in Greenwald and Newman (1982). The exceptions to the general
.t . ) (]

pattern occur for cases where t:* p-1s little or no dissipation. Eggn

- TR . .
in these situations the peak pressgure eventually starts to decrease

from station to station,‘bu; this 1is caused more by the dispersion of

.\,Q

the_ﬁain part of the pulse than by any dissipation of the pulse.

-
»

Otherwise, the general pattern in the attenuation pioté does not

" change. The peak'amplit;de of the pulse decays rapidly at first, but

N , y

“the decrease in anplitude diminishes at .each successive-station-

These piots affirm what has been repeated regularly thfoughout

this dissertation: that the attenuation produced by wall

\

' viscoelasticity when t _lies between 0.1 and 0.15 .is much greaté}

than the attenuation proguced by "fluid viscosity when m takes the
vaius?»associated with water or whole blood. This is not toieay tﬁaq

the dampihg produced by fluid viééosi;y is insignifigant, howéVer.- Ie -

is much‘éreatbr than the graphs in Fig. 4.9 predict it ghould be. In

) fact,‘Figs.'S.lo -'5.13'demonSCtate that the attenuation of pressure

pulses is. far moré sensitive to ¢ or m than is indicated by the

ftgqugnc§ speétra in F@gsﬂ'4.9.and.6.10.

e
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Fig. 5.10. Peak nondimensional averaged pressure vefsué nondiménsional
distance along the tube. axis for
33088, 8791, 1666.

P, '
o

n=0,173125, 1 = 0, m » &,
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.'4

Fig. AS.ll.' Peak nondimensional averaged pressure versus nondimensional - G
' distance along the tube' axis for n =0, 173125 T = 0.15, ,
» m =+ o, 33088, 8791, 1666 ’

A
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¢

13

+ Fig. 5.12. Peak nondimensional averaged pressure versus nondimensional'
' distance along the tube axis for n = 0. 173125, m + =,
r=0 005 010 0125,,015 .0.50. e y
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T=0
-0.05 -
0.1
0.125
0.15 "
0.5

~ . .
Fig. ‘5‘.13. Peak nondimensional averaged pressure versus nondimensional
‘ dist:,ance along the tube axis for n = 0. 173125 m = 33088
-1-0,005 0.10, 0125 0.15, 0.50. . : o

-~
\l'



159

[N

Thia suggests that there is a better approach to asaeasing the :

. dissipation 1nherent in pressure wave propagation through fluid filled

distensible tubes than the common practice ‘'of measuring the loss . in
amplitude from peak to peak of_ateady—state sinuaoidal variationa in
presaure; Aa}is“evident-in Figs. 4.8 - 4.10, the damping of {ndividual
‘frequencyncomponenfs 1s not veryhsenait1Ve‘to thepatrength‘of the

. diasipatiue procesaes until one,reaches larger frequenciea. ln
contraat, the:attenuation-of the peak averaged pressurevfor the‘type of
pressure pulses analysed in this chapter is very aensitive to the *
degree of dissipation, according to Figs. 5 10 - 5 13. Thus, byR o
measuring the,maximum amplitude attained by pressure impulses og the
sort generated by Greenwald and Newman (1982) at successive stationa.
alongythe tube, it ought‘to be possihle to identify thedzalues of the
“parameters representing the,dissipative mechanisms involved.

It is clear, then, from the analysis preaented in this chapter,

““ thatithere are many features of preasure’pulae'propagationuin
'fluidefilledfdistenzible tubes that are not obvious uhen‘cOnaidering
solely.thevproperfiéa”of;the phase uelocity c and<the transmission .
per unit distance exp{-Im‘kj 'as‘functionS‘of frequency. The.analyaia
hin Chapter iv, based on the behaviour of ¢ and exp[-Im k], indicates
that a disturbance with most of ite energy concentrated 1n the interval
0.01 < m‘< 0.3 should manifest few aigns of dispersion or. dissipation i.
~as it propagates along the tube.’ However. the direct computation of |
pulse propagation performed in this chapter, with an initial impulae .
whose energy is coucentrated mainly in the interval 0 01 < w, < 0.3,

demonstrates that some signs of dispetaion and dissipation do appear aa

&
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the disturhance travels down the tube. The pulse broadens, its peak

' attenuates,»and a wave train is created behind the main part. of the

pulse."As,is noted in Chapter II, the same‘features are encountered in
K the-impulses éeneratedvin the experiments of Greenwald and Newman
(1982) and Newman et.al. (1983). 'There,;too, Fourier analysis of the

pressure pulses did not confirm,theseAcharacteriStics of dispersion and

“a

, dissipation.“

Certainly, some aspects of.the propagation process can be

anticipated from plots of the frequency'spectra.‘ It is evident from
Figs. 5.7 and 5.8 that the velocity of the main part of the pulse is

’Caffected very 1ittle by wall viscoelasticity or fluid viscosity.‘ )
Moreover, it is clear from Fig. 5.3 that the pulse velocity is
independent of either dispersive or.dissipatlve mechanisms, as the

speed of the peak of the pulse remaina virtually constant throughout

a e

the period of propagation degicted in this graph, These results\sre
- consistent-with the analysis in Chapter IV. Further, they demonstrate

that the prediction there regarding the influence of fluid viscosity on

'the pulse velocity is accurate, despite the fact that fluid velocity

o “has a grest effect on the phase speed at very low frequencies. ‘The‘“

o

m5~pu18e does not possess enough energy “at these frequencies for the

: variation in c to make any difference to the overall speed of the

‘fdisturbance. ‘ AR f"‘ L ',- iw“ , -.*‘f‘f' .

. -

depicted in Figs. 5. 3 -15 6 for exsmple, can also ‘be predicted from

plots of the frequency spectrs as is seen in the*discussion presented /
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explanation'should'not go‘unnoticed. The broadeningfenhibited by the
pulse, however,uis not OBvious from the frequency dependence‘of‘phase‘
velocity and wave attenuation described in Chapter IV, even though the ‘q

insensitivity of this broadening to cbanges in-‘ ‘ior. .m is. ~ More

@

importantly, the sensitivity of the attenuation in the peak pulse

_pressure to changes in cr‘ or m, as J%monstrsted in Figs. 5.10 - S. 13

P

is not in any way evident from the frequency plots of exp[—Im k].
The main difficulty in using plots of phase speed and wave

attenuation to predict the properties of a propagating pulse occurs -

with those aspects of dispersion and dissipation that manifest

themselves gradually as the pulse‘travels down the'fluid-filled°%hbe:f
‘,o*f
I’:'This is .not surprising when one considers that small differences in ¢ "

W ———\ :
and exp[-Im k] .are magnified in the evolution of an impulse

consisting of a range of frequency components. ‘For example, if the “ ' .

\Jphase speed of WO’ different frequencies differs by SZ, their

rd

, respective components become separated by a distance equal to 2 tube

t

radii in the time it takes the pulse to travel a distance of 40 tube‘,
radii.; This separation is not large, but it will lead to alterations

fin the shape of the pulse. Where the difference in velocity between‘,

' components is greater, the separstion distance will be increased and a

“wave train will develop behind the main part of the pulse.-:‘

The effects of small differences in the wave attenuation between “uﬂ:f:u

L e

components are even greater._ For example, if the differeqce in o

o attenuation between two components is just 12 their respective -

N m‘
e

”u,amplitudes will differ by 402 when the pulse has trsvelled 50 . tube ,?“

/. e

hfradii. This distinction in amplitude occurs after only 10 tube radii

)
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when the difference in attenuation is SZ and after merely 5 tube.

|

l radii or 2 cm with the dimensions used here, when the difference in"“

t

‘attenuafion is IOZ. This explains the great sensitivity of the peak in
‘ ”.the pressure pulse to changes 1n *r or m.
Thus, ‘it 1s clear that plots of frequency spectra can be used

successfully to explain qualitative features of the propagation of a i

n

pulse composed of a spectrum of frequency components. However, it is‘
‘not as easy to anticipate the properties of the pulse from the

‘behaviour of ¢ and exp[—lm k] The evidence of dispersion and '

L

‘vdissipation in the pulses computed in this chapter is certainly greater

e

than that’ predicted in Chapter IV. Further, it is not " possible to

“?predict the quantitative changes that variations in. the physical

p;parameters, particularly variations in the parameters/representing the

jtwo dissipative mechanisms considered here, engender in the pulse as a

.- H“

‘whole on the basis of the frequency plots. These quantitative changes jd

\.nv
i

‘ in the shape of the pulse can be determined only by computing the

”lsolutions for. the pulse directly ss is done in this . chapter.'

This completes the present analysis of pressure pulse propagation.

“:It is appropriate for wave propagation in a vessel sufficiently long

xirisin the absence of geometric or mechanicsl discontinuit@es, the dominante

-that reflections can be ignored ‘as it is based on computing solutions
Lo to the boundary~va1ue problem formulated in Chapter III for a’
h“ﬁ,semi-infinite tube. It is our conclusion from this investigation that,‘

ftxdissipative mechanism involved in the evolution of pressure pulses .

: ;hl]fthroughilarge arteries or water-filled latex tubes is that of wall

R pdviscoelasticity. The part played by fluid viscosity is secondary.,

avv
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remains to be seen 1n Chapter VI whether this 19 also the case for a
. system of fluid filled tubes containing junctions and other.ﬂf

discontinuities.i" o o
Lo S L - '



Wave‘Reflection

" '
v
fen

The analysis in the preceding three chapters provides -a complete

: description of pressure pulse propagation in fluid filled distensible

‘tubes that are straight, uniform, and very long. The latex rubber T v

‘tubes used in laboratorxbexperiments on pressure wave propagation,~

e'usually possess these properties., As is’ noted in ChapternII however,,
‘”the geometry of the circulatory system is not that of a straight,‘v

"uniform,‘circular,cylinder‘ There aré bends and bifurcations,

aneurysms andistenoses.:iNeyertheless,hthese %eatures can be viened as .
s short;éeometric sndvmechanical transitions betwé;nhstraight;Huniform
“.segments;‘ 1 U ,p f e W .
| Tﬁe analysis of pulse‘propagation presented in this dissertation,
then, can be applied to the cardiovaScular system as well provided the
theory 1is modified to account for reflections at sites of abruptl
: geometric and'mechanical change in the arterial tree.‘ The model o o

"fstudied here adapts well to the inclusion of wave reflection at sites

o,

:v geometric and mechanical discontinuity in a system of uniform tubes.v“

o The necessary modifications can be made in the same Way as those

"to the BLW theory and WOmersley 8 theor; mentioned in Chapter II. Theu o

i

‘.'y present chapter provides a description of the details_concerning.these';5u'3 i

. alterations and an analysis of the reflection phenomena predicted by

LY

un"the model. 4wﬁf 5fﬁfj‘_“i'u:ffu o

':COnditions at a Discontinuity

R

.'{4
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me = L.. When the pulse arrives at the junction, part

Kl
v

T 1es

occur in a system of uniform tubes obviously do not alter the equations

of motion for each tube.i These discontinuities merely require new

'boundary conditions to' be added to the set of equations governing ‘the

,system. Thus, the details concerning the nature of the boundary

conditions appropriate for the model’ presented in Chapter lll, and the

1 v ¢
¢

solution of the associated pulse propagation problem, can be

t

v fillustrated by the simple example of two dissimilar tubes joined

together. ‘The principles employed-in solving this canonical problemb

_ can be extended directly ,to cover more complicated systems'of‘tubes.

. . o ) . N 'S “
Consider, then, two diSsimilar vessels connected at x = L. The

tube occupying x <L. is labelled Tube 1 and the4tube occupying x > L‘

Tube 2. The gdometrie properties of the two tubes are denoted by h(i)

a

and: R( ), where 121 indicates Tube 1 and. i = 2 indicates Tube 2.

~Similar1y, the mechanical properties of the two tubes are denoted by

D) <1)

YF;?, G(i), and Consequently, the derived parameters are cg

(1) 1y’

n , and m . As the two tubes are filled with the same llquid the‘

~

i
¥

fluid density p is identical in both.

se computed in ..
3

Now, suppose t* t a pressure pulse similar to t

'\Chapter v is generated in Tube 1 and propagates tow rd the junction at

it is reflected )

-“back into Tube 1 and part is transmitted into Tube 2. The relationship :j‘

betwefn the incident, reflected and transmitted waves is determined byw‘.

ythe boundary conditions at the junction. These conditions are.

"‘prescribed later. First we obtain the general solutions for the o

“ﬁfpulses in the ‘two tubes. fJ“;,£1 fl ‘t*”‘ il“ﬁ.‘:b't :it”"

: . o T ' o
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The solutions for the‘lncident reflected, and transmitted pulses

Lo

. are nothing more than particular cases of the general solutions for ‘
ph ;‘Qm', and w 'given 1n eqns 5 4 ~ 5 6. To‘maintain consistency;‘

it 1s nec?ﬁéqry to make all theé variables noudimensional withﬂtespect

" to the pgfametera of one of the‘tubes:‘ arbitrarily,'the parameters e

'-used areftﬁoée of Tube 1. Then, the respective solutions of the ‘ .ﬁ
: | ‘ , ‘
,3nond1menaional dispersion equations for Tubes 1 and 2 are, according to
eqn. 4.60, - { A Che oo
. ; . ,‘ . .
» . /‘ L Fgli' BEN¢Y n
1) (1) : 1 ) o Ry 20 (1) o
ko= tu(Fy "AY ) + 5 |- - - w™ = 2N (w)
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e (6-1)
. L S
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o F2 0 |
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It follows from eqn. 5 4, then; that the solutions for p;‘, p; N
,.and p ; respectively the incident, reflected 'snd transmitted
: S S o
LY la?‘; M i 0 R ' !'..
pressure’ pulses take the form i ‘ '
L (T () VTR A G TS .
R I S T O P e R

Lo

. oo,

Py " %?1f ;f<”?expii[ k( )x - wt]}dw - - [ Gﬂl w)e dw, (6.9)

. . :-' '
. 7 X . . i
' @ ' ! v ' -
’ 1

' " ‘ o . w‘\\_‘ ) TN ) .,
ol = =) Awenp{t[k®x - 9{3}dw =30 Phenwe™%, 7 (6.10)

m 27 e ’
- . , , 5
: . . . v ' ' ,/\ ' [ Y
L A ) o
. . : j . . ‘ ”
.wherein ‘o(m) is determined by “the incident waveform and a (w), a (w) L

are’ determined from the hbundary conditions ‘at the jﬁnction-_ﬁ

Similarly, the solutions for the incident, reflected,‘and

RS I
{ .

transmitted velocity pulses are
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e Ly g [I—F(k(l))/F(K<l))]exp(1[k(l)?c—wt]}dm

) 1 N
. (6-11)
- ;—1? / ;1(x,w)e~1wtdw , 5
us A . B
‘,&,\7, 1\} “ (1> ! ‘ ' . ‘ )
v . . : — / , .
e ek R i R e ) e () Jexp (1 [k xwt ]) do
m 2n ) , .
d N\ l- . " t p
. (6-12)
4 - S ;}Z(x wye %0
[} ' P ‘ - | . | ‘. | \{\
S = @ . 2y 8@ ‘ 3 |
1 k* =t 2)(R : 2 2 - ,
v; - 57 /_m-—(tflf—‘fa (w)[1-F (k )[RTF)])/F(.:( ))]exp{,i[k( ))‘(-mt]}dwo
- ~ y . | (6-13)
- 1 = ; ~fwt - | |
- 2_1:}’ v (x, e dw ., \ .
v - | | ST
‘ ' ‘ . . { ‘ xS .
- respectivd®wy, vhere L T .t
‘~ . . ' i\. .'K(l) I- [(k(l))z-—“im(l)wlllz , ‘. ,» 1 I_:“‘. (6.110)
‘ . . ‘. ) i .~ o ‘ Do . R
; :
, : 1/2 ?
b ' e <1> /2. I
(2) (2) 2R (2) ' e yes
= {(k 1 v . (6.15 :
ll( ) . ( . ) [ (l)] t [ (1) (2)] i . 5 ( )
' L : . v ‘ ™~ ' e
J:. - It is conven!.ent 1n the subsequent analysis to use those branches of
co x (1) and K(z) Ywixh ‘positive real par_ts, but the rg\sults are ' ‘
,.‘ s R \,_ - . | .
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- independent of this cholce as 18 noted in Chapter 1V, 4

Finally, the solutions for the fncident, reflected, and
transmitted waveforms of radial wall displacement can also be
represented in the same fashlon as those above for averaged pressure

and averaged axial velocity. However, as the solutions for w are not

directly involved in the boundary canditions.at the junction, they are

* not given here.

Y

>y

The boundary conditions are based on two physical principles:
Both the averaged normal stress in the axial direction, and the volume
flow, must be continuous across the junction. As the averaged normal

dv_ .
5—2 , the continuity of this

BIN

stres; 1n the axial direccion 1s pm -

quantity across the junction yields the condition

~
v (L,t) , dv (L,t)
1 2 2
p_-(L,t) -* + p (L,t)
' m m(1) Ix (1) Ix ®
, , (6.16)
. t,.
. )‘-’ ‘ /ot 2 avm(L,t) . \’,,J
- [ “pm(Lvt) - Y) 3% . . - / .
. RN o AN AR
5, e
- L ' ' -

It is common practice for the normal stress in eqn. 6. 16kto be ’

l

apptoximated by the fluid presaure (WOmersley, 1957b; Cox, 1969) This

approximation is very accurate ‘for the waveforms-discussed in this

a

'thesis, as. 'the magnitude‘of the stress 1nduced~by the axial velocity

&

‘componenn‘is quite small for such disturhances. Neverthelese, for the

._q‘

-

- 'sake of complgteness, we express che continuity of ﬁprmal stress across‘g?

4

)
H
L ]
]
. -
"‘ )

L
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the junction in 1its exact form here. The continuity of volume flow

through the junction produces the condition .

n[R(U]z[v;(L,t) +vi(L,0)] = nr$)2, "(L t) , (6.17)

"

Al

. a8 the volume flow through any vessel 1s simply nszm‘.

e %ﬁe boundary cosditions prescribed in eqns. 6.16 and 6.17 enable
us to determine the solutions for averaged pressure and averaged
velocity in Tubes 1 and 2, as the incident waveform in ste 1 1s
asssmed to be known.' These detaiis form the contents of the hexs
segtioh.. The calculation of - P, and v in each'vesssl completes'the

solution to the problem. In a more complicated system of tubes, the

prodqdure outlined here must be repeated at each junction.

Reflection and Transmission Coefficients

The boundary-conditioﬁs given 16 eqns. 6.16 and'6.17 are satisfied

L -

in a straightfotward manner by the solutions provided in eqas.

6.8 - 6 13 that describe the incident, reflected, and transmitted

waveforms of pm' and Vo The latter‘eqdationsvcan be 1nserted into

N

the former to obtain - : o R,

v . . LN

- a 1 _ '
PiLe) - 3’%—1—,— L0 + pE,0) 2:‘(‘_1) VE(L,w) ~

&' »1; ) ,,#~¥“>«\\\~//;\’.2,\g‘_‘\’/, (6.18>'
21k(2) st ’

| - P (L "’)/ (1) (L w) ,
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n(R(l)] ta L(L,w )‘+i;;(‘L,ﬁ")] - n[R(Z?lzci(L,w) . (6.19)

It follows from eqns. 6.8 ~ 6.13 that the ratios of ;m to p

in the incident, reflected, and transmitted waveforms .are

!
-1 T * :
v (Ljw) -~ v (L,w) (1) :
g1 : m ._ m S era Wy Dy L cea20)
S R BT O S _— '
m o o
-t I ’ ‘ .
v (L,w) (2) ‘ (2) : .
8(2) - o - kw [1—F(k(2)[5&—)])/b‘(<(2))] . (6.21),
. P (L:“’) R '
o Al
respectiveiy. Consequently, it is possible to ex%fess the paif of

equations 6.18 and 6.19 .in terms of the two unknown ratios

where Rc is the ratio of the amplitude of the reflected ptessure wave" )

o Bn(L,e) PL(Lw) .
R, = , T = ——, (6.22)
'pm(L: ) " Pm(L)w) |

to that of the 1nc1dent ptessure.wave at X = L and T 1s the.

AN

corresponding ratio’ of the _amplitude of che‘transmitted to ‘the 1ncident

pressure wave.

'v [1

o

Thus,,eqns. 6.18 and. 6 19 become

KR

21k( )
(1)

() S
8‘1’]<1+R )= {1 - B 8@ v 623y
m* ) : '



- | ~ ,‘ 172

(2) .
R 2, (2)T

Wiy . | -
B AR = [~y . (6.24)
R o
’ . - .
The solntion’of'eqns.' 6.23 and 6.24 is
L
B ‘1-A :
R = —S (6+25)
IS T W
. ¢ y
20D (1)
[1- =5-8""]
ST = , _ (6.26)
© ‘21k(2) @), M. '
b= =y e
3 = ® m ss.
where i
; , -2y
. b (2) (2) 2D '
. o ¢ RV | 8\ 1- 2ik""7 .(2)
)y . S ‘ . (1)
" SR ' : S ) L5
. “‘ie(the discontinuity»coefficient; ‘The COefficients R and"T e

-
. depend on’ the change in geometric and mechanical properties at che

\ junction but are independent of "the junction 8 loqation." Therefore

they completely cheracterize the reflection and transmission of

~— pressure waves at. any site where thete is a geometric or mechanical
*iscontinuity- 7 -i," "n'f<:ft)' ;

TN ' BT

4*The race of energy trensfer in the reflected wave relative to that

! the incidenc wave is RZ while the ryte of energy transfer in the. :"qf‘j;;
v L0 . , B ‘..- i B
Lo
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transmitted wave compared with that in the incldent wave 1s. , |
Al i ' ~ \
.v 2 , . ‘
' 21k(2) @] ' ti>
1- ——— 18 : ‘ .
Ac (1) Te - A
- 2k 7 (1) ¢
RO L
. } . R
* [

Thus, the latter quamtity 1is called the transmission coefficiepc and
'(’ ‘ . N & . . [

Ri the reflectioh‘coeffieieht. It 'is observed from eqns. 6.25 and :Q; .
. A . . :.‘ . * .o A “"l‘--w
'6.26 that P : : |
‘ TN Fi) N L8
‘l,l Ve A
; ) _ |
" . 21k(2) NI I s :
o,
R™ + A - ST = 1 y (6-.28)
‘ S N 21k(1) s S
C e oo (1) B I A .4ﬁ§ .
. This confirms that no ener is losﬁ at a dlscon&iﬁdity under the ° o
' boundary conditieﬂ imposg here. T ' '
* The reflection nd tra_smissionkcoe££lcients derived 1n this . 3‘ T
chaptet gan be expresaed in terms of the characteristie impedance Z"
. N .
i the same way ‘as the coefficients in egns. 2 10 - 2 13 that are baaed o
on the LLW theory. For a- tube containing a viacous fluid .ZJ:;B ﬁ;

defined as the ratio o£ the ayeraged normal szress 1n the axial //a\,

‘

direction to the volume flow. tha; is;
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v . ‘ '
N s Lo e
'Z = —-—2——‘—— . o ’ (6-29) '
' mR%v_ . : ‘ '
7 . I:I)l
Therefore, it follows from eqns. 4.24 and 4.25.that .
,: 1 . ' . " g !
L k .
. | Pco 1- ——“ [1- F(k)/Fm]] L
L B(w) = . .. (6.30)
. ] . [(—F(k)/r‘m] -
£
.‘COnsequently, the‘discontinuity coefficient . Xc given_in edh.,6.27 is
~simp1y..
¢ e 3 S |
e o z /g e SR (6.31)
as . _ ‘ L e L
) 'pc(i')[l' oD ) B(1)] - bé(;)'[ 21k(2) 8(2)
(D) "0 . (1) (2) L > (1) ‘ DO
2 = - Z =- . b
S ra(l)2, (1 N 222 o ' ‘
"w."-‘[‘f’»(.‘)]‘“() ou. [<>]B<> ‘
. T U T v's S
, L “',.. Q , 1- . L v v' S l' s ' , ,_\ Lo .
c take?’exactly the ‘same form here as 1n the LLW theory,
his méans that the coefficient R.~ 1n eqn.f6 25 pbssesses the
. Tk N .
same structure as I?b counterpart in eqn. 2 11. This 13 not true for o fgﬂ
nnn . . ‘.‘ R

-the eoefficient T _, however '

There is a’ factor in eqn. 6. 26 that is T

saing in eqn.‘2 12.: Nevettheless, theae coefficients~wou1d Be |
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" the ratio of the transmitted pressure to the incident pressure. ‘hn&er'

o : L w )
i‘these’conditions, the factor [1- ’21§1) 8(1)]/[1 21t1) 8(2)]

wouiu

disappear from eqn. 6 26, making this equation identical to eqn. 2.12.

In this case,_the energy equation 6}28 reduces to the formvof~the

energy equation‘in the pr theory; eqn. 2.13, as weil. “‘< -~
:‘The reflection-and transmission coeffieients\tor aniinViscid“fiuid

can be recovered from those for a viscous fluid as represented in eqns.

6. 25 - 6.27 by letting a2l s e in these equations. Thus,

' U

c = I:x: R ic = Iii:‘i,' (6.?3)

.in this instance', where : : L : ,

_ b ) S (2)2k(2) NS
‘ , [ (1) k‘}) ) '(6734) : ‘fj

(1)

: .‘,‘ ,‘- u)[ (2)] A(Z‘)‘]“I/Z \\/(6 35) ::;y : ;

R eI )

O N s . . . " B .
L S T Gt : e v A w e ot

IR with A(l) and A(z) given in eqns. ';3 and 6 4 respectively. The :}i‘.

""coefficients in eqns.h6.33 - 6 35 reduce to the ones of che LLW theory o

in the limit as w > 0._

o S ,
"'ﬂ This is not the case, however, fqr the coefficients associsted
‘*{with ‘a viscoustfluid.?flt is evident from'eqn. 6 27 that as::wnt 0,




L

[

Y PYR

' R Cy .
(2) ot . ,
| R 3, S e
‘Acﬂ [ (1)] [ (2)] (636) y
?-The cdrresponding cOefficient in‘the‘LLW theory 1s . R .,
(1) -~
( ) o :
R .
[ (1,] (=5 (2)] (6:37)

L1}

‘Thus; the'limiting value of‘ l "atf‘d = 0 that 1s connected with the

: viscous theory does not agree with the corresponding value of A ' from

- the inviscid theory.' Disagreement ‘between the viscous and inviscid
theories as ‘W, * 0 is also a feature of the behaviour o£ the phase
velocity c, as is noted in Chapter IV. There, the discrepancy in the

respective limiting values of ‘¢ at w = 0 was blamed on the ,

i . . B o
. ] .

o nonuniform dependence of the dispersion equatign on w and v-‘at L

: w‘- 0, va= 0. This is the reason for ghe different limiting values of

\:Ag at w o= 0 as well. The nonuniform dependence of A ” -on’ w and

l v at o - 0 v ‘- 0 has not been acknowledged in the literature,

v

\

unlike that of c. The influence of Womersley s work where the range

17 of ' considered did not include the region associated with t'

frequencies lower that 1 Hz, bears much of the responsibili‘.hfor this.vjt .

e omission._

presented
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v In eqns. 6.25‘and 6.26.are funcrione'of frequency. This 1s due mainly
n ' . K . ‘ . \ - \‘
to the frequency dependence of, the diecontinuity coefficient Ac in

ol i o
. '

‘eqn. 6. 27.‘ The variation of A f with © can be deduced approximately R

from the variation of the functions k( )(w) and k(z)( w) 'in eqns. .

6.1 and 6.2, as the.other factore involved in A depend only weakly

- [ ,e *

on . w unless. e‘ is very cloae,to zero. Initially, as ' w increasea v‘
"‘from zero, Xc” moves: from its 1imiting value [R(z)/R(l)] {c (1)/ (2)]

‘at w = 0 toward“the corresponding limiting value for Ay in the
N ,._ . . . SRR
namely [R‘”/R‘”] [f,”/ ‘2’1. Thereafter, with = .

in w, the higher order terms in k(l)(w)

inviscid case,

"‘further increas

"H

, , Lo, @ ' ":‘;1"""‘ ”C"_
order .term. - - o ;w3

The degree to: which B and T

3

exactly by plottigg them as a functione of s The dependence of llkélh,w“"J

';f“ and arg R (‘Riﬂonnﬁu; is displaye“in Figs. 6 1 - 6 6.Q As the ‘”vjld thaf
;d;'frequency dependence of . I‘¢|f and arg T T respectively,is nearly
. “ . '5 . 0. i ‘_ S '

o ffguidentical tthhat of | }I

) 'mthare nonvdepicted here.‘ In order to make thevchoice of arameters for
» (1) - h(2)

_,'_. e

r6 6 as stmple as possible, we have taken h
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‘time is made dimensionless with respect to the parameters of Tube 2.

-

This means that the viécoelastic damping in each tube 18 the same. As‘

a consequence of these decisiohs regarding the physical properties of
. N ' '
the two tubes, the,geometric discontinuity at the junction is L . "

represented solely by the ratio R(Z)/R(l) and the mechanical

‘ discontinuity solely by the ratio céz)/cé}).‘ Therefore,,the
.dimensionless parameters n,'r, and m for Tube 2 are related to . \

their counterparts for. Tube 1 by the formulae

S SR . L gy, W oy
o n(2) —,8 (n (1) %) ___;<' | 2. T(1) 0 1 L
T B z" | j "t (6.38) °
LN @) (@) S .
O ¢ N ¢ 5} Ri‘ o S

T ‘ i The variation of ichl and« k' with- frequency near w = 0. 1is. ‘
‘ shown 1n'Figs. 6 1 and 6.2 for the case R(z)/R(l).:h (1)/ (2) .

RN vy

The nonuniform behaviour of | c‘IU"?at w0,V .0 is illustrated in»"

»uﬁﬁjfﬂﬁFig. 6. 1." As is discussed earlier ia this section, lR;1f moves Erom i o

increases.A Th' tr'nsiti"nvbecomes leSS‘jvfiv

0.

i{’-fhﬁf A(zoln(l)]?[ (1)/ (2)]pp.
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: ‘ on an" etrlarged scale
',-- 1 and n(l), =0.173125
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1 . . SR ST R e ,
differently in the viscous case than 1n the inviscid one when w’ is 'i?f

- N

near zero. For an- inviscid fluid 19 indiatlnguishable from zero

l 3

°§
dﬂ%r the frequency Lnterval depicted in‘gig, 6 2. When viscoeity 19

vR

o E§Ren 1nto account, on the other hand Py, starts at zero, reachea 5 co .

maximum of.roughly 0. 1 radians, and then descends asymptotically to

”]zero. These effects of viscosity on Rc would be extremely diff;cult ﬁ

. to detect in,experiments, ‘a8 they-occur over such a narrow’ frequency '

Vo

L .

‘, . '
i . . . . -~
- . ' .

~. . . i
o . s o PO Ch L £ 8
band . : : Co " A . o ., Lo

The defendence‘of ch” On.yw over a much broader frequency band

o u
(1) s A
) N L

”if{ﬁ”h ds 111ustrated 1n Figs. 6.3 ~ 6 gﬁ for thg’cases (2 )/R =1 7 D AP

"‘Rg s substantially different from 1ts limit at w‘- 0.‘ For che

Lt

Vin Figs. 6 3 - 6 6 when ‘ ( 3 Q 15.‘ On.the other handg\h\ w“

(1) - o 15

.o

- . »

\'“, (1)/c(2) kS —=, nd R(2)/R(l) =1, c(l)/c(z) = 2 At lo; - c “;f

frequencies, the dependence of - R on frequency is quite weak. For‘n ’ Rt

example, the vartation of IRc[ ‘and- I from their respective limits;
1, . T : S

S at w =0 ~1s less thah 22 throughout the interval 0.015 < w < 0 30 ‘ '

N

“’.,' 'y

~

c. n. e :

‘cé%)/,(?) 7|gé| is ZOZ greater at’.w 'fl 5 than at$:“-torhahdff{*F'

‘,vR' ea ‘lhom‘omﬁa;{iuiéhd. to 0 1 at w = 1.5 -when‘f."l._. : o

.di(¥);‘6%i5.f' t:;'ﬁéﬂgé:iﬁﬂhR is even more‘etrLK}ng 1n the case S ‘ﬁwib'
(1 - ‘|R |: doaéié; from w = 0 to \w - l 5 and ¢R ‘

increase§ £rom 3;n-hatl 0 = 0 tb roughly f-2‘35 at. 'm~

; This change inﬂphese is almost 45 .;~
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Fig. 6.3. Variation-With w of |R,| for R
(1)

« e(()p/c(()z) =1/2, and n'l) =0.173125, o
(1) 4i0_05 (=) , 0.15 (-=), 0.5 (==-).

= 33088,
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" Fig. 6.4. Variatio&’with w “of @g (in radians) for R
cél)7céZ) = 1/2, and n(l) = 0.173125* m(l)
(D 20,05 (4, 0.15 (), 0.5(=+-)"

= 33088,
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Fig. 6.5. Variation with w of ]Rcl for R(z)/R(l)‘ -1, cél)/céZ) -2,

and P 20173125 , 0D = 33088, + D = 0.05 (=) , 0:15 (=),

0.5 (=+=).
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generated at a mechsnical discontinuity. ihe‘range of frequenciesu
monitored in their reflection experiuents~is the same As thst of their
impulse prfpagation studies, namely 5-100 Hz: This corrgfponds to the
dimensionless 1interval dLOlS <w < 0,30i ihe predicted variation in
: - . , T e Ty ‘

R, lke that of the phase velocity c, is too gmall to detect In this
T 3N .

interval. However, these reeults do predict that sone‘variation.in' Rd
. \ n . . '
would be observed in’ experiments thst use pressure waves containing

A

) frequencies in the band 300—500 Hz, corresponding to the dimensionless
. [

! ' 1 \
interval 0.9 < w < 1 5. Over this intervaI Rc should!vary from its

'1imit at w.= 0 f{in the manner outlined i% the preceding paragraph.

It is evideént from Figs. 6.3 - 6.6 that* Rc 8. fairiy sensitive
r(l). As 1(1)

to changes in increases, the fncrease in IRéI with

Y

frequency diminishes, according, to‘Figs. 6.3 and 6.5.‘ Inffsct,'when

n\ 1‘ Y

1(1} = 0.5, IRCI 1s. virtually flat over the interval 0i<w < 1.5. '

In this case, the effects of wall viscoelasticity offset the frequency @

-~

dépendence in IRcl induced by the‘combined radiaL,inertia of the

fluid and the vessel wall. On the other hand. thevincrease-in ‘¢§

' (1)

with frequency is enhanced by increasing At , as is'clesrlfrom Figs.“.

6.A and 6.6. Ly

This sensitivity of _i_ toﬁchange in i’( )
€1 )

to the insensitivity of R . to change in LA Graphs of |R | and'

is in shsrp contrast'

as functions of w are altered very 1itt1e by varying m( ).'fWhen."'

PR
. . K
c(L)/c(z) = l-, in fact, changes in * m( )
0o /0 "7 be
plots of 'IRCI and op - For this reason, graphs depicting.theFwa

cannot be.ohserved,in the

i
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‘effects of fluid viscosity on Ré are not shown here.

The dependence of R on: T (1) and (1): that is described in

the preceding paragraph indicates ;hat\the influence ofiwall ,

‘.viscoelasticity'is much greater than the influence of,fluid viscosity
" ‘ . b\ f ' ! ! .
on the reflection *and transmission of pressure waves at a junction

~béﬁween two dissimilar tubes. Hence, wall. viscoelasticity predominates

N A /

over fluid viscosity not only in the propagation of pressure waves

»

through a tube, but also in the reflection of these waves at a site of

ngometric or mechanical discontinuity. “pp' o §‘

a0

Some conclusions‘aboutvthe‘reflection of an_entire pulse at a

Junction betqgen two tubes can be drawn from the analyeis of ‘the

frequency dependence of the reflection and transmission dbefficients
presented in this‘section. In the first place, the reflected and -

. transmitted pulses are not much different from predictions based on the

*

'

LLW theory. Hhen [(R(z) 2 (1)/(R(1))2/ (2)] l, a 'closed' Co

reflection occurs:. that is, the reflected pressure ‘pulse is- gositive
’ 4

1

‘and the transmitted pulse is greater in amplitude than the incﬁdent .

’ pulse\ Conversely, whe é[(R(z))2 (1)/(R(1))2/ (2)] > 1, a 'positive’

3

reflection occurs: the reflected pressure pulse is negative and the

_transwitted pulse is smaller in’ amplitude thaq ghe incident pulse.

t ol T, .
Secondary changes do occur in the shape of -the reflected and

s

v transmitted pulses as a result of the frequency dependence of the o

reflection and transmission coefficients.. That part‘of-the pulse
']represent;d by frequencies id\the interval 0. 01‘( w < 0. 30 “I’ : "9-»

| affected very little, ‘as R , and T depend weakly on w. throughOut
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. this interval. However, the higher frequency components contained .
in the interval 0'5 < < 1 5 are altered in magnitude and phase. In
. the case of a closed reflection the magnitude and phase of both the
. . N

L [}
reflected and transmitted waves are greater over this frequency range

. . L S

than their predicted,values besed on the LLw.theory. In the case of an
’ open reflection, the magnitude and phase of the reflected waves are_
greater than those of their LLW theory counterparts, whereas the

magnitude and phase of the transmitted waves.arersmaller. Similarly,

the‘very low frequency components in the interval 0 <w <0.01 sre,‘
modified in magnitude and in phase at the Jjunction in’ the manner

illustrated in Figs. 6.1 and 6.2.

'The‘impact of the aforementioned frequency dependenqg {n the -

'reflection and transmission coeffiéients'on the shape of reflected‘and_

transmitted pressure pulses at a s{te of'geometric or mechanical -

AR

- discontinuity. is likely to be quite s all however. Most of the?energy

in a typical disturbance is concentra ed in the.intervalf _

0.01 < w < 0.30, where the dependence of Rc‘ and'.'l‘c on w 1is weak.

1

Notlas'much energy is'available at other frequencies, where the

_variation‘of Rc and Tc is greatet;.ﬂThe‘frequency band‘associated
‘with the'interval' 0< w.k 0.01 is simply. tdo»narrow for the'energy

Y

there to be large relative to ‘the energy in the rest of the pulse.

¢ /

Throughout the interval 0.5 < w < 1 5, on the other hand, pressure

‘ waves are attenuadpd considerably as they ptopagate along a \f‘

_fluid-filled distensible tube. this 16 demonstrated in Chapter IV.

-

: Consequently, -even’ if some energy is, deposited in this frequency ‘band

/
initially, most of this‘energy is‘dissipated before.the pulsexcan N

# . e
m/"
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travel far. Therefore, under'most‘circumstances,'a“pressure.pulse,
propagating from the end of‘one tube contains relatively little energv
outside the range 0 01 <o < 0 30 by the time it meets another tube.»‘

¥ Moreover, the time scale involved in the reflection and

transmission process at a junction is not long. Reflection and

‘transmission continues only for as long as it takes the entire pulse to

arrive atythe ju@;tion. Therefore, small variations in the frequency '

- R e . . . . ) o

dependence,of"R‘ and T + cannot have an amplified effect .on the‘;'v -

{ "oy, -

. reflection and transmission of a pulse.« There. are no‘surprises, then,

1

} in the changes wrought in the shapes of the reflected and transmitted i

\ . .
)

rprulses by frequency dependence, ‘as there were in the case of a

propagating pulse., .
\

L3

v *Thejarguments-proguced‘above‘demonstrate that any changes in the".

'lshapesfof theirefleéted and transmittEd:pressure pulses from the shape

.’ v .
R

of the incident pulsL‘at a ‘junction between two dissimilarltuhes are
minor. These predictions are confirmed by the direct computations :
done, for an«inviscid fluid in’ the pair of papers by Moodie and

Barclay (1985 1986). - In these articles, there is little change from

i g @

'the shape of the incident pulse observed in the reflected and

transmitted pulses, beyond that predicted by the LLW theory.

. Nsturally, in a more complicated system of tubes, i; is not ‘as easy to ‘

determine the shapes of reflected and transmitted pulses from the

v.‘frequency dependence of the reflection and transmission coefficients. ;

‘|

) This is: particularly true when two sites of geometric and/or mechanical

'transition appear close together, as is the case in models of stenoses

. and aneurysms.‘ The direct calculatiod of pressure pulses reflected and
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' transmitted through sgch t‘ube“syste'nis'ca‘n be ‘ac‘compliéh’ed'with the
of the an‘élysig presen:‘éd in this chapter. R R .

-

- . ' ¢



CHAPTER 'VII |

1

Summary and ‘Conclusions ‘ .

ton

In this dissertation,‘the results of an investigation'of the
LY
mechanics of vave propagation in fluid- filled distensible tubes’ are

presented. The distensible tubes in question are modelled on the latex

- -

‘rubber tubes used by researchers studying wave pronbgation'in the

‘cardiovascular - system. The‘modelling performed here 1s also\applicable

to the large arteries themselves. It is.primarily,with the.propagation

1
-

of pressure pulBes containing frequenciesvin the range 0-500 Hz that

”éthis thesis is concerned. This'frequency band 1s much broader than

t
. i

. that considered in most previous research on theories of wave ‘ .
'-propagation in fluid—filled distensible tubes applied to the large

Marteries. In the past, attention has been focused mainly on the

natural arterial puise, where the frequency pontent'is,limited‘to‘the

range'l—IO HZ'in humans; and 2-20. Hz in dogs."Distunbances of .the sort

analysed here have been artificially generated in, experims studying
1 ) . 5
wave propagation in water-filled latex tuhes and large‘arteries,‘for'

¢

example by Greenwald ‘and Newman (1982)

The problem central to this dissertation is the following one:'

[SCEEIEN

~',what is the role of fluid viscosity in pressure pulses whose energy

‘.resides in the frequency band 0—500 Hz,‘and how does this role compare

Vhwith that of wall viscoelssticity? In order to answer this question,.—P

i

3the influence of viscosity and viscoelasticity is investigated not only
",bfwith regard to the evolution pf a pressure pulse as it travel “down a
R

tube, but also with regard to the reflection and transmission of the

T

e
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©, pulse at discontinuities‘in the tube. . - .- 4

.The role of~dissipative/mechanisms in the propagation of pressure /
pulses through fluid fiiz7d distensible tubes is explored by studying

'the transient response of an appropriate fluid- filled tube model. The

‘model employed in this/thesis is the same one developed by Moodie and

[

‘,his colleagues (Mood{e et al., 1982; Moodie.et al. 1985), except that

their model 1s exténded here to include a viscous fluid. Theutheory is
. O B ' ) . o L ) .

a linear one: thHe main'contributors to pulse‘propagation“are the

. A"

_pressure diffefence across the vessel wall, the circumferential

stiffness of/the vessei wall, and the combined radial inertia of the

Ay

fluid an:/;he‘apssel wall. Energy dissipation is provided by ‘the

viscoela ticity of the wall and the viscosity of the fluid.‘ The '

@

viscoelastic regsponse of the‘tube isnmodelled as a‘Kelvin—Voigt solid,f

as afdy linear viscoelastic¢ solid tends to behaue.as a Kelvin—Voigt

material at low frequencies. »Our analysis. 18 not restricted to a.

{ .
articular visc0elastic model however, in that more elaborate ‘ones can

/ be handled with minor alterations., : :
. A - ,
The transient response of this fluid—filled distensible tube model

is examined by considering two boundary-value problems.» One is posed

to describe the propagation of an- impulse along a- tube in the absence
‘of reflections, the other to describe the reflection and transmission '
of angimpulse at-a junction between two dissimilar tubes.v "The

v‘solutions to both problems are constructed by means of Fourier

.
/_ <

,integrals. In the course of the analysis an’ approximate.ﬂolution to :

,‘fthe dispersion equation is obtained yielding an asymptotic formula for

9,

‘h,the dimensionless wave number k in terms 6f the dimensionless B



‘efficiency.h

‘Tfﬁz“ - o. The nonuniformity in k produces a corresponding )
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eircular frequency w. This approximaf&on is uniformly valid '
. . , .

throughout the range of interest in ‘w  and the kinematic fluid
o

viscosit} v, exc&pt .at .the point, w - 0, v o= 0 where thie dependence
! wae e ‘
J

of k- upon 'm‘ and v 'is nonuniform. The approximatelsolution of the

! Al .
dispersion equation derived in this. dissertation is the first one to be
A} \

uniformly.valid over the entire frequency range considered here, namely

the range associated with the dimensionless interval 0 <'w < 1.5.

This formula ig” not only of intrinsic value. It is also of benefit in

the numerical calculations of the Fourier integral solutione to the two
2 ‘

‘ ;boundary-value problems, as it.leads to greater-computational

»

——— e e e e —

-~ Some conclusions‘about thevpropagation‘of.preSSure disturbances

contained in the frequency band investigated in this thesis can be .

inferred by examining the frequency deﬁhndence of four’ function34

. SN

related»to k(w):t that is, the phase‘velocity C" w/Re k,lthe a ‘ -

ztransmission per unit distance exp[—Im k], the reflection faetor R ',

o

"and the transmission factor T ' The first two quantities in the list

-

' ‘are connected with the pulse 8 evolution along a tube, the last two™

‘with its reflection and transmission at a junction. The dependence of

these functions on. w is illustrated here through frequency plots. ‘

In each case,,the dependence of the function on w is weak

L

fthroughout the interval 0 01 < w < 0 30. There is, however,'msrked

/ .

f W - 0 as a consequence of the nonuniformity in k(u) at m - 0

2

-_;.some of the functious vary rapidly with.frequency in the neigthurhood‘ f

"variation with frequency in the range o 5 < < 1 5. Furthermore, o



,the"hehsviour-of JRb and TC ’at' w =0, v'ejof,has‘noc been

.“JviScosity, sffects these plots signifiéantly only 1n the neighbourhood

. . B . . o [

nonuniformity in ¢, Im k,'RC‘,Msdd' Té .., This lack of ‘uniformity in .

\

[}
1

acknowledged previously

‘o

These results are consistent with the observstions reported in -

- the experiments ‘of Greenwald and Newmsn (1982) and Newman et al.

"r. .
"

(1983) In these experiments the frequency dependence of' c. and ’&C

measured over the range 5- IOO,Hz, or over the interval 0 015 { w T
i o e .

< 0.30 according to our nondimensional scheme, was very wesk.

’ B

'Nevertheless, our results do predict that it ‘is possible to detect

frequency dependence in ‘¢ and R‘: outside this frequency rsnge. L e

Although the interval An. the deighbourhood of w =0 msy ‘be ' too small '

to measure the frequency dependence therein, some vsriation in ‘¢ and.

Rc with frequency ought to be observed in experiments producing f

L b e— \ n

' pressure waves that contain frequencies in the rsnge 300 SOOHHz,

‘correspod%ing to the dimensionless interval 0 9 < w ( 1 S.

It is evident from the . frequency plots of c; exp[ Im k], ‘q;.snd‘

K
]

' Tc that these quantities ‘ pend more heavily on wsll visdoelasticity

o

'than on fluid viscosity./ The value ofu m, the perameter represen g .

Lo

- --g

e P

of ‘m = 0 where the nonuniformity 1n \k dominates events- Elsewhere,‘

‘ t@sole effect of m is s slightly vertical shifE’ 1n the grsphs. 'Qn‘f'@'.

a-

. :the other\hand the value of the viscoelastic parameter T has @ more . oy

',noticeable effect on the frequency plots.“ Its influenceuthroughOut the .

°"-' ‘-l : .,

| ;frequency band considered here is preferential.‘ At lower frequencies,
% '

. '.' -

L roughly up to w - 0 3 -the graphs are virtually independent of ‘T,' As

‘ O

.ﬁ w .1ncreases from this poinr the presence df T- 19 felt more Jj.‘f p -
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strongiy; "Therefore, ' these frequency spectra plots indicate that wall
. : ‘ A
wiscoelasticity rather thap fluid viécosity‘is the chief aource of

energy dissipation for ' pressure wavesﬂin fluid-filled distensible

tubes. This conclusion agrees with the one reached in Caro et al. ..

@ (1978).

It is apparent, then, that if most of the energy in a given

P

disturbance 1is concentrated within-the dinterval 0.01 < w < 0.30, the

B !

propagation and reflection cRaractéristics of the individual waves in
« 7 Cn hid

the disturbance imply that ‘the pulse as a whole will manifest few siéhs
of disperﬁion or“dissipation as it’propagates along a tube, or is
reflected at a junction.’ Whether this 1s, in fact, true for a pulse
‘composedéof a continuous spectrum of f;equency components can be tested
directly by"computing the Fourier inte;ral.solutions to the two
bouncaty;value problens posed in this diseertation. The computations
of pulse propagation depicted in the articles by Moodie and Bdrclay
(1985, 1986) demonstrate that in the case of an inviscid fluid the
shapes of the reflectéd and transmitted pulses at a junhtion are almost
- identical to the shape of the incident pulse, apart from the uniform .
changes i‘ amplitude predicted by the LLW theory. This must also be

X b}
ttue when the viscosity of the fluid is taken into account, as the

’|

dependence of R and T on fluid viscosity is very weak and the time

"
[ ae

scale involved in the reflectﬁon proce& at a junction is not long

enough for small changes in the values of R ) and 'l‘c. to .have much

B -

_f.i{;effect 'orf the shape of the reflected or transmitted pulses.
o L On the other hand, as a pulse travels along a tube its shape is

modified by the effectsuof dispersion and d ssipation. The pulse
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/@ broadens, is attenuate&, and its oscillatory tail is damp;d,as the wave
! " N
travels down the tube. This is dlear noﬁ only in the computations for
a viscous fluld presented in this thesis, but also in the caléulation;
for an Inviscid fluid in the articles by Moodie and his colleagues
(Moodig et al., 1984; Moodie et al., 1985; Moodie et al., 1986). The

’

‘el dence of dispersion and dissipation d}splayed in these pressure
pulses is greater than that indicated in the frequency plots of ¢ and
exp{-Im k). Our explanation for this appérent paradox is based on the
time scale involved in the passage of ; pﬁlse along a tube. For
example, the time required fos a pulse to travel 50 tube radit, in
contrast to the time'required for a pulae to refiect at a juﬁctlon, is
sufficlently long thaé smail variqtiogs in phase velocity and wave
attenuation with frequency accumulate to give an effect substantially
larger than antic%patgd from the frequency spectra plots. This is
p;rtichlarly true with regard to the attenuation of the pulse. The
recordings of p;essure impulses in the experiments of Greenwald and
Newman (1982) and NeWm;n et al. (1983) confirm the dispersive anJ
dissipative character gieplayed by pulses travelling along a tube, and
the lack of it in reflections at;a junction. .
7 The computations of pressure pulse proﬁagation performed in this
dissertationuare the first to take into account the influence of flutd
viscgsity. iﬁerefore, it 1s possible for the f;rac-ZXme to compare the
role o% fluid viscosity with that of wall viscoelasticity in the
pfopagatién of these pulsés. Bpth viscosity and viscoelasficit} have a

minor effect on the velocity of the' main part of the pulse; The

viscoelasticity of the wall hastens the arrival of the peak in the
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pressure pulse slightl{ whereas the viscosity of the fluid causes a
small delay. The principal importance of thesé‘dissipative me;haniams,
however, arises from their attenuation of the,peak in the pulse. While
fluid visco;}ty causeé a modest réduction {n the amplitude of the
pressure pulse, wall viscoelésticity attenuatés the pulse to a far
greater degree. The atﬁenuation_aroduced by both dissipative
processes; though, ' s v;ry sensitive t0‘chang§s in the disslpation'
parameters T and m. For the reasons mentioned above, this
sengitivity {8 not revealed in the freéuency gspectra plots. This
suggests that a‘'good experimental abproach to asseésing the dissipation
inherent in pressure wave propégafion through flhid—filled distensible
tubes 18 to méasdre the attenuation in pressure impulses of tﬁe.sort

‘

generated bx‘Greenwald and Newman (1982).

In c;;cluéion,.then, we have s;cceeded in ans;ering the query
poged in the introduction to this diséertat;on. ‘Th; domiﬁént "
dissipagive meghan@sm 1nvolved_£g the proéagation of the pfessure
pulses under consideration here through large arteries or water—filled
‘latex tubes 1is phat of wall viscoelasticity. The part played by fluid
visgosity, both 1n:the'bulse's paésage along a tube and in its

reflection at a junction, 1is secondary.
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St ~ APPENDIX

The Function ‘F(z) and Related Functions

ln‘our travelling'uave‘solutions of the variables important in the
l dynamics of a fluid filled distensible tube, as contained in eqns. |
4. 20 ~.4.23, there appears a function F(z) involving the ratio of the
modified Bessel functions‘ Herevwe:esamine the behaviour of this |
Hfunction of‘a single complex variable. /According to‘eqn. 4.29,‘F is

. defined as

- 21,(2)

F(Z) 2—1——('2—) o ‘z,e C , ;o ) »(A'.li)

x“where IO and Ii are the modified Bessel functions of - the firstlkind

‘of orders zero and one respectively. A'detailed description of the

modified Bessel | functions is available in the work by Abramowitz and

»

sStegun (1972) - We, rely on this reference for those properties of these

-

Bbssel functions required in what follows.' S

"‘,/'

Since Io(z) And I (z) are entire functions, F(z) is an
--a analytic ﬁunction of z ufor all z e'c except possibly the zeros of

‘ I (z) The zeros of F(z) ‘can occur‘at’ z -‘0 and at the zeros‘of

O(z);, The zeros of I (z) and I (z) are, simple and occur alongvthe‘
: imaginary axis in +/- pairs.‘ There are an iﬁiinite number of them.

Along the nonnegative imaginary axis the zeros ‘of Io(z) and 1 (z)

are interlaced, beginning with the zero. of Il(z) at z.= 0._

Consequently, F(z?— has an_infinite number of simple poles on the =

imaginary axis at the zeros ‘of I (z) There is, hovever, no pole at"‘

.&.

03 o
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z = 0 because the zeros of 1 (z) ‘are simplel Similarly. the zeros
'of F(z) lie on the imaginary axis, coincident with those ‘of Io(z),

and they too are all simple.

R F(z) possesses some symmetry that is. Sd%eworthf‘ First of 11;
3

F(~2) = F(2) . . (a2

This follows from the facts that Io(-2) = 1y(z) and I,(-2) = -1,(2).

Secondly,

B2 = Fl2) ' : o u;(A.B), '

-

where the bar denotes.the complex conjugate. This is a consequence of,
the facts that Io(z) - Io(z) and -Il(c?‘e il(z)'.,‘ S

In order to evaluate’ F(z) at é given value'of’ z, it is
neceasary to evaluate the two modified Bessel functions. This can be

<vdone by.usingreither-their power series or their asymptotic expansionsf“

-
PN

. We develop both techniques here, as the fotmer method is best when"|z|~”

is smaIl and the latter method 1s valid only when |z| is large; “

i
i
K i

; Consider the power serles approach first.‘ Since they are e entire :

o

functions both Io(z) and I (z) possess power series which converﬁe

for all ze€C ,‘ These_series_are-.
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DN X T Lo
I.(z) = §J (£27) /[k!]", - . ‘
0" k=0 » . .
o
- | ‘m‘ o ‘ -~ 8 : ‘
1 1 2.k g
I,.(z) =52z ) (+2°) /(k1(k+tl)!]
‘P \ Zde)# S > . .
A : )‘ .\

L R
. . v
; . . *E:
'

Therefore,‘the following repreeentation of F(z), obtained by

‘ substituting eqﬂin A 4 into’ eqn. A.1, is velid for all z ¢ C except

the polea of F(z)

—

i
'

F2) = { I GO ] g HY et L @y
L k=0 S V) o | |

* We define E(0) = 1, as it follows from eqn: A.5 thar 1im F(z) = 1.
oL ‘ ‘ \ ' ‘ z+Q

The formula inm eqan. A.5 {s of the form

F(z) = Z a, Z ‘skz?k , L (A.6)
T =) =0 KT S

| whete_theicoefficients"a'" and B, - afe‘in&ebendent of z. AlthOugh~“:

k
- ak“’hnd"B“ can be expressed explicitly for k - 0 1 2,... by picking
'foff the coefficients of '223 in both the numerator and denominator of

eqn. A S it is more efficient to compute them using their recurrence

. relations. These relations are.
Tﬂ‘fe‘ 5. '
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| I , 2 ’;‘} . ) 71 ,“ ‘ A >
a = akll‘(k*‘l«) I, “(1 -1, 1 ‘ o

| ) 0 ' L
. . . o @y
By T B /ACkHI(RA2) G, By =1, ) o
. for k =0,1,2,..3 0.
L 8 Y : ’ K :"w r'
' " . When |z| s very . small,© F(z) tan be expanded in a power series

' about ‘z;-va This series 1is obtained from eqn. A.5 througb/%ormal y
‘ L ‘ ‘ ) | L
. division of the,numerator by the denominator,_ The first few terms in

o

the series are

N NS U ZS URNE SR L avdy
F(z) l,+ g2 ‘197 2 + ... , (QTB)
The RHS of eqn. A.8 COnverges to F(z) for |z| < jill ,» a8 -z =13

is_the pole of F(z) hearest.the origin, 'The‘Value.of Jl 1 s . -

approximately 3.83. 1In the same way, the reciprocal of F(z) can be

‘ expanded in a power series about z = 0. ae “‘
B L l/F(z) -1 l- 2o Lo i Ay

8 48
, The RHS of eqn. A 9 converges to' l/F(z) for. |z| < jo 1 , as

<)

z, = ijo 1 is the zero oﬁ F(z) _uearest“thelorigint The value of - ‘,g--‘

h

n is approximetely 2 40.
70,1 ,

Although F(z) can be evaluated at each point in ite domain via
J're eqns. A. 6 and Al 7 these formulae are not practlcal to use when I Ib |

“becomes large. In this case F(z) can be computed readily by using the

: ‘e'\‘ ' . ' : ! . * . g ! . . . -
. . . . . . e R s . . L ‘. _,‘x. . .
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aeymptstic.expénsione of the @odifiéd Bessel‘functions. The asympCOEIC"
beha?iddrﬂof Io(z) and I. (z), in _turn, is:obtained from that of . the

Besséi*functions jo(z) and J (i) 1n view of the relatione S R S .

.)“

4“ IO(Z)‘- ql(iz) , Il(z)'- —1.‘I1(1.z)..*_T S (A-10)
Here JO - and fJi are ‘the Bessel fuﬁctiohs"of thg firsf‘kiﬁd‘of‘orders . .
. o e ‘. ‘ Coyl o ] e ( -
zero and oné Fespectively. -‘As. |z| » = , for |arg z| <, : ‘
1/2,. |
( ) / {P (z)cos[z— (2 4)“]

S, (z) |
‘;f:‘thg)sin[z- (§n¥ %)n]}\;f- ni- 0,17, o

B
< R . \

' : ‘. . \ ‘ . R ,’“
ggn 2.1 ) (4n? —9)'”'§§n 2_1)(4n> —9)g4n —15)(4n —49) o
R 1 : 2!(82)2 Cae T A!esz) U I

: Lo - oy "'ﬁ" D k kAvlz)

Q (z) . (4n8z1) (An -1)(4n —9)(an -25) ;;‘?‘ o L
S 3!(82) s T S SR

e
W

‘ 'L Consequently, 1t follows from eqns. AL 10" - A 12 that as’ |?[_+:w‘;-for SR

Iarg iz| < n,' ‘ff‘; 'lﬁ'T o : “‘_“ o “~:‘,;“} BT T P P,




(z) ~. (21:2) l/z{ez[Pf(iz)'? 10.(12)] = e‘_lzl[iiJP (1 1 "
¢ [Follz) = 1Qp(12)) = e "(1Ro(12).~ Qo( ‘)”
' A (A 13)
| am{‘ e o o ' IO
.‘ I (2) ~ <2nz> ‘ {e [P 2). - 1Q <1z>1 + e (1R <xz> .Q‘(lz)]},~
N lﬂ'\ | I 1
‘ | ! . L * (As 14) ;
Aécdr&ing to éq@. A‘12,‘f6r‘ ﬂ - 6:1,*2' .qu‘v ,’i ! ! '}
‘ e = X iﬁnz—l) (énz~l)(4n2;9) ) ‘ "
* P (1z)-1Q (12z) = 1- Bz +. 5~ ‘ ?»

21
(An —1)(4n -9)(4n —25)
e 3!(82) | PR

. X ,
;3 , " . \ \

1P (12)—Q (1z) =@ (‘m ‘1) (‘m —1)(4n —9) B
- 2!(8z) "
L ‘z L .
| > L e

o (4n —1)(4n —9)(4n -25)
Co e R 3'(8z>

[

When eqns. A 13 - A 15 are substituted into eqn. A 11, the following nfj*h

v“Q

representation for th)‘ is obtaLned, valid as f I 3 ‘» ‘fog.tyqﬁv

i tr “
. wot . u ' . . f . ' . oh '
Iarg izl < mEo L Ly e
' ' - hooar s . ' P K | T o . .
e T T ve et v . )
. ' § L g
' C g ' 4 [y o '
. . ' N a i
' b \ & . ) .
. . ' 2 . [ . . s
. " L Y, - ) . ¥ .
v " ) Ty M . T
) - , Y . 2 R P
I -~ 1. - !
o N \ " .
N L o : N
, B . Do
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a».,«, - .F‘m_ [lg g__z+ L) (—1)(—9)§~252 b ]

o ‘ 21 (82) o 3!(82)
Eré‘**‘ S '~. Lo 22 “;%1)- (- 1)( ;) N w)c 9>§ 25) , .
v Ve L21(Bz)” 31(82)° B

o ' (4- 1) (4 1)(4 9) ga #)(4 92g4 25) , |
"‘/{[ 8z "],
SR 2!(8z) ‘. 3!(8z) .

e

-2z [1+ (4-1) + (4-1)(4-9) , (4-1)(4-9)(4-23) )

'.jfi‘f\i‘e 82 21(82)2  31(82)
o | ' (A-16)
] \
Equation A 16 mueu hold for - % & arg z < %~, as this sgdtor is
Q' . contained in |arg 1z] < n. Thé asyﬁptotié behaviour of F(z) 1in the

other half of the complex plane <¢an be obtalned immediately from eqn.

_A () by :*kigg use of the symmetry of ‘F(z) as expressed in eqn. A.2.

" o v The formula in eqn. A.16"1s of the form .
R : ! 4 . '}
R - . . , _ : "
- @ . L ) .,"f,‘, _ _ -
F(z) ~ % { I (a-tece 22y, k}/{ ) ‘fn‘kﬂdke 2z, k} , (A.17)
% . k=0, k=0 : ‘ .
B V0 M Q\ . » R "

L]
il

where the coefficients a bg » Oy and dk i?efihdependent of z.

These quantities can be expressed explicitly for E -'6,1;2,... by
picking off the coefficlents of z 1n‘both~the.numerator and

denominator of eqn. A 17. .As is the case 1n the power series approach

*td representing F(z), however, it is more efficient to compute.these

¢

coqﬁficienta by using their recurrence relations. Thus,

e ¢ “
¥ .

\
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2 ‘
a o (2ktl) a = 1 | o
K+l B(k*l) % % ’ , .
, 2
o 1(2k+1l) -4 -
Pt 8(ktl) % %0 "1
(A.18)
2
C - - Szk‘—’i)_ , Q - 1 .
k+1 8(k+1) 0
. ) :
- - [(2kH) 4] - .
el 8(ktl) G . do =1
When Re z + = | the asymptotic formula for F(z) can be
simplified because e—_22 is négllgible- ‘Then, fbf example, eqn. A.l17
becomes )
F(z) ~ % z ) akz"k/ ) bkz'k , (A.19) -
k=0 k=0 , B

Y
and b, are those given in egqn. A.18.

where the coefficiedts qék K

Equation A.16 changes 4n a similar fashion. An asymptotic expansion in

-—

inverse powers of 2z can be obtalned from eqn. A.19 by dividing the

denominakor into the numerator. This yields ",

P

1 .1 .3
F(z) ~ 5 z(1+ Zt 3t ced)

(A.20)
8z - '
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as 4 = . Similarly, the asymptoclc’expansibn of the"reciprocal
of F(z) 1s

\

1/F(Z) "‘"‘2;: (1" E'z— - -f—-i-'f' aee ) o ) (A-21§

This completes our desciiption of the function F defined [

eqn. A.l. We conclude this appendix with e; brief examination of some
other fuanctfons related to F | tha_t arise during the analysis of the

" dispersion equation for waves 1in a fluid—.filled ,distensible' tube, e-qn.
4.27. The fu.nction's to be considered here are those def‘ined‘ in ecl;ns.

A

4.46, 4.50, 4.51,. and' 4.48. Recall that -these definitions were —~

Fl(ég - L@ - F(z)]/z? . ( e '
Fp(e) = 1= 1/FG) , w25 .
Py = (7)) * gire - Py ()/2% (a.26)
A (2) = [Fl(zs - %]/?(z) . . - (a-25)

" As dn eqn. A.l, z is a complex variable _in the equations';bovef
The functions -Fl, FZ’ F3 and A1 are analytic wherever F 1is
analytic, éith,the fdlldélng.exceptions. It 1s possible that F1 is

not analytic at z = 0. The function FZ '_is not analytic at the
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zeros of F, but is énaLytic at the poles. It is possible that F3 is
q : ' ‘ S -
‘not analytic at z = O ‘or at the zeros of F, while it may be analytic -

F. Similarly, it is possible that A is not

at the poles of )

analytic at the zeros of F and it may be andlycic at the poles. It
will be shown sibsequently that all of the above functions Are analytic
at z = 0. _

F

We are particularly interested 1n‘the behaviour of Fl' F2, 3

and A in the two extreme cases, firstly when 2z ~» 0 and secondly

1

when Re z » ® . When |[z| 1is small, these functions can be éxpanded'
. ’ ‘ \

in a power series about z = 0. The first few terms in these serles

can be obtained by substituting eqns. A.8 and A.9 1into eqns.

A.22 - A.25.. The result is

, =2
L1 12 _
Fl(z)ﬁig(l—l—z-z ) B RPN ) , (A.26.)
o’
» 1 2,. 1 2 : . a o .
?Z(z) =gz (1~ r ) + .., + (A.27)
. o . | _ )
1 1 .2 . . - P
F3(;)u= §-(1— g-z )vf Sera . (A.ZB);
. L .
' w12 H ,
: . AR = -2 * e - | 4.29) . .

. \
éguations A.2§b- A.29 dgmonstrgcénthai Fi» Fo Fs‘.and ‘Al ére‘iqdeed;
:analytic at z = 0. Tﬁe serigs’for: El(z) cqgvergés‘on the saqé
interval as the series for ng), namely . |z|‘<_j1;1 , while, the sertgsi‘
for “Fz(z), F3(§) ayd Ai(z)' converge on the‘s§§§ fntgt?al as the’

£
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‘ . | . ‘

series for 1/F(z), that is, |z| < Jp . - Yhen Re z {s very large,
o, _

the functions Fl’ F2,{F and A1 can befexpanded asymptotically in

inverse powers of "z. These expansions CQP be generated by inserting

. : \
eqns. A.20 and A.21 into eqns.. A.Z%'r A.25. This ytelds
F )~.1—+' .Y o © (A.30)
l(z ~ iz e - : | (A.30)
' ¢
2 01 ' ' -
Fo(z) ~ 1= 2+ 5+ oo, ‘ (A.31)
2z .
R F.(z) ~ 2=+ . o ' '(Asz‘
3¢ ot s , : A.32)
' v
A (2) ~ - L4 | (A.32)
- 1 - %z cee s ' A |
ey

‘This ends our orief examination ot the‘functione ;1, F:, F3‘\ead Al.
As a postscript‘to tnis aopendin, we remark’tnet 1t>1s mainly on

-the ray arg zﬁe - %-'that tne>functions neme;_e;ove, and F titself,

ere to be evaipat:d?\';n ?ige."A.l - A.S 'tﬁe real end 1naginary>oarts ‘

oﬁ these functious are depicted on the segmeut of the ray h
0< |z| < 15, It 18 evident;from these'graphs that there 13'355954
Nshort tf&nsition zone between the region 1n which the functions F,tFi.
anqﬂ~ are descrtbed well. by a‘few terms iﬁ’their power:series‘anoj.
the region in which they are described well by their asymptotic R

' expaneiono. However, this transition zone is somewhat 1arger for the‘-jﬁ

£onetiqpsv:F3. end' AT’



.
' .
. ’ , .
- W .
: ~
' ’ ‘ 214
A N
' \ o
4 o0 -
. ! B
"
' »
~
"
\ ‘ \
., . , y Lo
'
N
' b
' \ \ .
' “
N )
"\,
Al .
- \ ’
s
' —

\\
e
. .‘ /‘ » ! .
o S :
, ) = .
‘Fig. A’.l._»"l Re F (<) -and -Im F (-'-) versus |z| along the ray argz- -n/lo




215

0151

0.10F

15

————

I .Fig..@ . Ré"Fl "('-) éﬁd I"‘m"'Fl,- ==y, ‘versinus ' ]zl Slbﬁg bthé. ray
' arg z = -n/4. : ‘ CLove o



.

216

\ ; ‘ B\

© Fig.A.3. Re F, () and Im F,

arg z = -w/4.

) .

(--) versus .|z| along the'ray .
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