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Abstract

Onc of the key determinants of a game playing program’s strength is the depth of the game
ree search. Therefore, rescarchers have turned to parallelism to search deeper trees in the same
amount of real time. Tree decomposition algorithms extract parallelism by creating split
nodes, where the subtrees rooted at the node are searched concurrently. If the game trces are
narrow, then the degree of parallelism offered by the low branching factor may be insufficient
to keep all the parallel processors busy, resulting in starvation and poor speedups.

Chinook is a checkers (8 x 8 draughts) playing program developed at the University of Alberta.
For the August 1992, Man Versus Machine World Draughts Championship match between
Chinook and Dr. Marion Tinsley, a parallel Chinook, or ParaChin:ok, was developed. This

thesis describes the parallelization of Chinook’s Alpha-Beta search.

The initial implementation of ParaChinook was based on the Principal Variation Splitting
(PVSplit) algorithm, developed by computer chess researchers. However, chess game trees
have an average branching factor of 35 to 40, whereas checkers game trees have an average
branching factor of 2.84, which is over an order of magnitude smaller. PVSplit exhibits high
levels of starvation on the narrow checkers game trees, therefore Principal Variation Frontier
Splitting (PVFSplit) is developed. PVFSplit attempts to create more paral'el work by allowing
multipie split nodes in a variation splitting framework. Although, PVFESplit improves the
speedup by 52% (with 16 searchers) compared to PVSplit, the parallel performance is still low

in absolute tcrms.

The parallel performance of both PV Split and PVFSplit is evaluated using a test suite of 20
positions and running on a BBN TC2000 shared memory multiprocessor. The issues of
starvation and straggler processe. are discussed, quantified and addressed. The addition of
load balancing code to deal with stragglers further improves the speedup. However, it is
concluded that any PVSplit-based algorithm will suffer from poor speedups on the narrow
checkers game trecs. In light of this, some ideas for a future version of ParaChinook are

discussed.
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Chapter 1

Introduction

Efficiently parallclizing the Alpha-Beta scarch algorithm is ditticult in general [Sch&9al, but it
is made more difficult by narrow game trees, which have a low branching factor. This thesis
examines the problem of parallelizing the game tree scarch of the Chinook checkers! (8% 8
draughts) playing program [SCT92,STL93). Two recurring themes are how the low
branching factor of checkers game trees makes it difficult to create sutficient amounts of
parallel work and how the branch-and-bound nature of Alpha-Beta scarch makes it difticult to
complete the work efficiently in parallcl.

Although pioncering work in artificial intelligence (AI) and machine learning by Arthur
Samuel used the game of checkers as the application domain [Sam59,5ama67], rescarchers
have largely ignored computers checkers for the past 34 years. One notable exception is the
Duke checkers program [Tru78). Of course, there have been commercially available checkers
programs, but the technical lessons from those projects have not been widely published. In
truth, much of the published work in computer game playing in the past three decades has been

in computer chess.

Whereas chess game trees are wide and have the potential for a relatively high degree of
parallelism [SuG91], checkers game trees are narrow and have less work available for parallel
processing at each node. Chess game trees have a relatively high average branching factor of
35 to 40 [Gil78). This thesis reports that checkers game trees in the proposed test suite have an
average branching factor of 2.84, which is over an order of magnitude less than in chess. As
parallel processors are added to the game tree search strategy, they quickly exceed the degree of
parallelism available at a node in a narrow game tree.

The situation is further complicated by the fact that the Alpha-Beta tree scarch algorithm is a
special case of the branch-and-bound family of algorithms. As with other branch-and bound

1 For a brief summary of the rules of checkers, scc Appendix A.



algorithms, Alpha-Beta has the ability to logically eliminate portions of the search tree based on
the resulis obtained by scarching other subtrecs. Therefore, searching subtrees in non-optimal
order, through poor work scheduling or because searches are done in parallel without the

benefit of information from an carlier scarch, may result in unnecessary computation.

1.1 A Brief History of Chinook

Chinook is a checkers program developed at the University of Alberta. The project began in
June 1989 with Joe Culberson, Jonathan Schaeffer and Duane Szafron and over the years, a
varicty of individuals have become involved in the effort. The project has the short-term goal
of developing an interactive program capabie of defeating the human world checkers champion

and the long-terin goal of solving the game of checkers.
) g g &

Towards the short-term goal, the program has had some significant successes. In August
1990, Chinook won the Mississippi State Open (human) checkers tournament and placed
second in the U.S. National Open behind World Champion Dr. Marion Tinsley. In both
tournaments, Chinook defeated human checkers grandmasters. More importantly, by placing
second in the U.S. National Open, behind the World Champion, Chinook earned the right to
play for the World Championship in a 40-game match. Chinook is the first computer program

to carn the right 1o contest for such a title.

Chineok is aot invincible and has also had some setbacks. Since August 1990, Chinook has
lost one competitive game to another computer program, and it has narrowly lost exhibition
matches against human grandmasters. In August 1992, Dr. Tinsley and Chinook played the
40-game match for the Man Versus Machine World Draughts Championship in London,
England, sponsored by Silicon Graphics International. Dr. Tinsley defeated Chinook with 4
wins, 2 losses and 33 draws.2 To Chinook’s credit, its two wins represent only the 8th and 9th

losses by Dr. Tinsley in over 40 years of competitive play.

For the August 1992 match, a parallel version of Chinook, PuraChinook, was implemented
for the Silicon Graphics SGI 4D/480, 8-processor, shared memory multiprocessor. Each
processor had a clock speed of 33 MHz ana the common random access memory was 256
megabytes. However, the results presented in this thesis were actually obtained on a BBN
TC2000 shared memory multiprocessor. The TC2000 version of ParaChinook is the August

2 The 40th game was not played because with a 2 game lead, Dr. Tinsley had alrcady won the match.



1992 program, ported to the new computer to take advantage of the larger number of
processors and with minor improven cnts added as a result of the on-going rescarch.

The long-term goal of the Chinook project is to prove the game theoretic value of the game of
checkers. From the initial board position, either one player can force a win or neither player
can force a win. Proving the game would determine if it is a win for Black, a win for White or
is a draw. There is strong empirical evidence that the game is a draw. The state space contains
5 x 1020 nodes [SCT92] and proving the game of checkers would set a milestone is one of the
largest combinatorial search spaces to be solved.

An important component of the both the short and long term goals is the endgame databases
computed through retrograde analysis [Tho86,LSL93]. Currently, Chinook has a Jatabase of
all of the endgames with 7 pieces or less or the board, the so-called 7-piece databases, and the
game theoretic value of each position. By looking up a position in the database, it is possible to
determine the position’s value with perfect accuracy. In late-July 1993, all of the materially
balanced (i.e. equal number of pieces of each colour), and thus the most uscful, 8-picce
databases were completed. Because the endgame databases represent perfect information, they
will play a crucial role in solving the game. The endgame databases have alrcady played a
major role in Chinook’s success in tournament play and in the August 1992 match with Dr.

Tinsley.

The short-term goal remains unfulfilled, but may be close at hand as a re-match with

Dr. Tinsley is possible in late 1993 or carly 1994. The addition of the entire materially
balanced 8-piece databases, of which only 40% were availablc in August 1992, will
significantly improve Chinook’s playing strength. The long-term goal, which once scemed
very distant, is also made more attainable by the completion of the key 8-picce databascs.

1.2 Overview of the Thesis

This thesis describes the parallelization of Chinook’s Alpha-Beta search. The depth-first
Principal Variation Splitting (PVSplit) algorithm [MaC82], popular with computer chess
researchers, formed the basis of the first ParaChinook. However, the poor performance of
PVSplit led to the development of the Principal Variation Frontier Splitting (PVESplit)
algorithm, which is a variation of PVSplit. The parallel performance of both PVSplit and
PVESplit is evaluated on a BBN TC2000 shared memory multiprocessor, using a test suite of
20 positions. The issues of starvation and stragglers are discussed, quantificd and addressed.
It is concluded that any PVSplit-based algorithm will suffer from poor spcedups on the narrow



checkers game trees. However, a hybrid approach using both a non-depth-first search
algorithm and PVFSplit may be promising for a future version of ParaChinook.

The thesis begins by reviewing the concepts of sequential Alpha-Beta game tree search. Itisa
non-exhaustive survey of the large body of research in Alpha-Beta search and game playing
programs. It then surveys the rescarch on parallel Alpha-Beta search and discusses the
ParaChinook implementation of Principal Variation Splitting and the experiments used to
evaluate parallel performance. It discusses Principal Variation Frontier Splitting, which is
based on PVSplit, but improves on its parallel performance. It also addresses the issue of
stragglers and their impact on performance. Finally, the thesis concludes with a discussion of

the experimental results and possibilities for future work.



Chapter 2

Game Tree Search

Computer programs play games, such as checkers and chess, by considering different
combinations of possible moves for itself and possible replies by the opponent. Euch legal
combination of move and counter-move is a possible linc of play. Ultimately, the most
desirable line of play, often called the principal variation (PV), is decided upon. The
systematic searching of different combinations is a well-known problem solving strategy and,
in effect, the program is trying to look ahead at the possible continuations of the game.
Intuitively, as the search is deepened, the amount of analysis increases and the chance of
overlooking a strong move or a blunder decreases. Therefore, the depth of search is an
important determinant of the quality of the program’s play.

2.1 Game Trees and Minimax Search

To support the systematic analysis of differcnt lines of play, the program builds a game tree.
The root of the tree is the current position on the game board, a node in the tree is a legal board
position and a branch is a legal move. The side which has the choice of move at the root
position will be referred to as the player and the other side as the opponent.

The notion of ply describes the distance between nodes and is similar to the general notion of
the depth of a tree. The immediate children of the root are said to be at ply 1, or are onc ply
away from the root. Although the ideal is to search lines of play until the end of the game,
practical limitations on time and computing resources may limit the depth of search. Ledf
nodes exist where the lines of play are not searched further and represent the program’s look-
ahead horizon. Terminal nodes are leaf nodes where the program is able to analyze to the end
of the game, possibly with the aid of a database of positions of known values, such as an
endgame database [SCTI2].

In two player zero-sum games, such as checkers, an advantage for the player implics an equal
and opposite disadvantage for the opponent. Minimax search models the give-and-take nature
of these games. A heuristic evaluation function is used to assign a value to a leaf node that is



not a terminal node. Positive numbers represent positions advantageous for the player, and
negative numbers represent disadvantageous positions. From the point of view of the
opponent, these node values are negated because the opponent is the adversary.

The interior nodes are assigned values through a minimizing-maximizing procedure that backs
up the leaf values towards the root of the tree. It is assumed that the player always plays
towards a leaf node with a high value, so an interior node of the player is assigned the
arithmetic maximum value of its immediate child nodes. Similarly, the interior nodes of the
opponent arc assigned the minimum of its child nodes. Because the two sides alternate turns at
moving, the interior nodes at even plics are always maximums and nodes at odd plies are
always minimums. Note that the minimax value of the tree is a function of the leaf nodes and
not of the root position itsclf. In fact, the principal variation leads to the leaf node that gives the
root position its value. If different leaf nodes can have the same value, then there may be
multiple principal variations, eacl. backir 3 up the same value to the root position.

The naive method of determining the minimax value of the root of the game tree is to visit all
of the leaf nodes and apply the recursive backup procedure at all interior nodes. Clearly, this is
a computationally expensive task as the depth d of the tree increases. In fact, the number of
nodes increases exponentially with respect to the branching factor, the average number of
branches from a node. Adapting the notation and terminology of previous authors (for
example, [KnM75, MaC82}), the Number of Bottom Positions (NBP) [SID69] or leaf nodes

in the full minimax tree of uniform width w is:

Mypp(W,d) = w

Formula 2.1 — Leaf Nodes in Full Minimax Tree
(M is for minimax, w is uniform width, d is fixed depth)

The total number of leaf and interior nodes in the full minimax tree is called the Node Count
(NC) (terminology from [Sch86]) and is given by:

d . Wd-H__l
M, (wd)=)w=—
xel ) ; w—1

Formula 2.2 — Node Count in Full Minimax Tree
(M is for minimax, w is uniform width, d is fixed depth)



Analytically, it is more convenient to consider only the leat nodes as given by the NBP
measure since the equations are simpler and the number of leaf nodes provides a lower bound
on the number of nodes in the tree. Empirically, the NC measure is also useful.

Figure 2.1 shows an example of a full minimax tree of uniform width 2 and fixed depth 3.
Note that, in practice, game trees are rarcly of fixed depth and uniform width. However,
Formulas 2.1 and 2.2 still provide uscful measures of the size of the full minimax game tree.

Root Node

MAXimum

MINimum

MAXimum

Lcaf Nodcs

Figurc 2.1 — Full Minimax Trce
(w=12,d=3. Arrows show path of valucs backed up rom the lcafl nodes.)

It is theoretically possible to determine the minimax value of a given game tree without visiting
all of the nodes that naive minimax search visits. In fact, there are several algorithms designed
to search a minimax tree without building a full minimax tree. Of them, the well-known
Alpha-Beta algorithm remains the most popular. The number of leaf nodes in the smallest
possible Alpha-Beta game tree or minimal tree is given by Formula 2.3 [SIDG9,KnMT75].

d d
MT g (W,d) = wlﬂ + leJ -1

Formula 2.3 — Leaf Nodes in Minimal Tree
(MT is for minimal tree, w is uniform width, d is fixcd depth)

Of course, Formula 2.3 is still exponential with respect to depth, but it is a significant
improvement over the full minimax tree.



2.2 Sequential Alpha-Beta Search

Alpha-Beta is a depth-first search algorithm for minimax trees that computes the correct value
of the root position without necessarily visiting all of the tree nodes. Subtrees that are provably
irrelevant to the value of the root position may be ignored or cut off for a savings in the search
effort. In fact, Alpha-Beta is a special casc of the more general class of branch-and-bound
algorithms |[KnM75]. In the terminology of [MaP85]),! nodes where all of the subtrees are
searched are called ALL nodes and nodes where some of the subtrees can be ignored are called
CUT nodes. A cutoffis said to occur at CUT nodes. To detect cutoffs, Alpha-Beta maintains
and updates a search window, (a,8). Node values strictly within the window, that is greater
than o and less than B, are still relevant to the search. Node values outside the window are
pruncd. Alpha-Beta pruning is not a heuristic because it logically eliminates parts of the game
tree and still computes the correct minimax value of the root position.

As an example of Alpha-Beta pruning, consider Figure 2.2. The minimax game tree is

identical to the tree in Figure 2.1.

Root Node
20 (o)

MAXimum
Sub-optimal/"bad" move
s-1(B)
Cutoff (pruned) MINimum

Refutation

MAXimum

Lcal Nodcs

Figurc 2.2 — Example of Alpha-Beta Pruning

Assuming a left-to-right order in the depth-first search, the left subtree of the root node returns
a value of 0, which is used as the o value, or lower bound, for the search of the right subtree of
the root node. When the -1 value is backed up to the MINimum ply, it becomes the B value,

1 Although this paper uscs the terminology in the context of parallel scarch, they apply equally well to
scquential scarch.



or upper bound, for the search. However, since a2 [3, the scarch window is empty and the
indicated subtree can be cut off or pruned. In game tree terminology, the move scarched just
before the cutoff is called the refutation, and the move that led to the cutoff node is sub-
optimal, or informally, a “bad” move which has been refuted.

A variety of search algorithms are presented in this thesis in a Pascal-like pscudo-code to
improve the clarity of the discussion. The pseudo-code is based on the presentation by
Schaeffer [Sch87] and others (for example, [MaC82]). The program header in Figure 2.3
should be logically added to all of the pseudo-code to follow. Although the use of global
variables is generally discouraged, their advantages will become apparent in later chapters.

PROGRAM
GamaTreaeSearch;
VAR ({ Global Variables )
TreeDepth : integer; { Depth of search tree to build }
Width : array( 1..MAX DEPTH ) of integer; { Branching factor)
Moves : array{ 1..MAX DEPTH ] of
array[ 1..MAX WIDTH ) of moveType; { Moves leading to children |}
Index : array[ 1..MAX DEPTH ] of integer; ( Index of next move )
Alpha : array[ 1..MAX DEPTH ] of integer; { Alpha bound }
Beta : array[ 1..MAX DEPTH ] of integer; { Beta bound }
Score : array[ 1l..MAX DEPTH ] of integer; { Best score so far }
Best : array[ 1..MAX_DEPTH ] of integer; { Index of best move }

BEGIN ({ Program}

Figure 2.3 — Game Tree Scarch Program Header
(Global Variables Pscudo-Codc)

The pseudo-code for the Alpha-Beta algorithm is shown in Figure 2.4. Thc details of some of
the functions, Evaluate (), legalMoves () and orderMoves (), have been omitted. Also, if p
is a position and if move is a legal move, then the notation p.move refers Lo the position rcached

by playing move in p.

The pseudo-code includes the common negamax and fail-soft enhancements to the basic
Alpha-Beta algorithm. The negamax framework swaps and negates the bounds of the scarch
window and also negates the returned value. It is equivalent to the minimizing-maximizing
formulation of the original Alpha-Beta algorithm, but is more convenient because it always
computes the arithmetic maximum instcad of alternating with the arithmetic minimum. The
pseudo-code also contains the fail-soft enhancement introduced by Fishburn [Fis81]. By
initializing the value of Score[ ply ] to—eo, the value returned by fail-soft Alpha-Beta is the
maximum score of the subtrees visited, even if that value is less than the alpha bound itself. If



no cutoff oceurs, Score{ ply ) contains the value of the best subtree. As we will see later,
this bounds information can be useful in certain search strategics. Although technically a
misnomer, the fail-soft version of Alpha-Beta is often what is intended when referring to the

Alpha-Beta algorithm, including in this thesis.

FUNCTION
AlphaBeta( p : position; alpha, beta, ply : integer ) : integer:;

VAR
index, value : integer; { Index and value of current move }

move : moveType; { Current move being searched )
BEGIN { AlphaBeta }

{ Check if at leaf node )

if ( ply = TreeDepth ) then { Atleal node? }
return( Evaluate( p ) ); { Yes. Suatically evaluate }
{ Generate legal moves and order them )

Width[ ply ) := legalMoves( p, Moves[ ply ] }: { Store moves in Mover[] )
if ( Width( ply ] = 0 ) then { Any legal moves in this position? }
return( Evaluate( p ) }; { No. In checkers, this is a loss }

orderMoves ( Moves[ ply ] ); { Yes. Do move ordering }

{ Set up global variables )
Index[ ply ] := 1; { Start with best ordered subtree )
Alpha[ ply ] := alpha;
Beta[ ply ] := beta;
Score[ ply ] := —oo; { Initialize as per fail-soft }
Best[ ply ] := UNKNOWN;

{ Scarch cach subtree )
while ( Index{ ply ) £ Width[ ply ] ) do
begin { Recurse } { Scarch cach subtree }
index := Index{ ply ]: { An unique move lcads to the subtrce }
move := Moves[ ply ][ index ];
Index[ ply ] := Index[ ply ] + 1; { Advance index )

value := { Negamax the valuc and parameters }
-AlphaBeta( p.move, -Beta[ ply 1, -Alpha[ ply }, ply + 1 );

if ( value > Score[ ply ] ) then { If subtree is better, remember it }
begin { Update Best }
Score[ ply } := value;
Best[ ply ] := index;
end; { UpdateBest)

if ( Score[ ply ) 2 Beta[ ply ] ) then ( Cutoff? }
Index{ ply ] := oo; { Yes. Force exit from loop }
Alpha[ ply ] := MAX( Alpha[ ply ], Score[ ply ] ); { Improve window? ]
end; { Recurse )

return( Score{ ply ] ); { Done. Return best score }
END; { AlphaBeta }

Figure 2.4 — Negamax Version of Fail-Soft Alpha-Beta Algorithm
(Boldfacc shows points of recursion or where the recursion ends.)
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2.3 Move Ordering

Achieving quick cutoffs at CUT nodes through move ordering is one key to the efficieney of
the algorithm. For example, in Figure 2.2, if the subtree that was pruned had been scarched
before its sibling (to the left), then there would not have been a cutoff. Ideally, a move that
causes the cutoff should be searched first.

In a best ordered (or perfectly ordered) game tree, the best move is searched first and a cutoff
occurs immediately after it, if it is a CUT node. At an ALL node, the best move gives the node
its value. Assuming uniform width and fixed depth, if a game tree is best ordered at ALL
nodes and at CUT nodes, Alpha-Beta builds the minimal tree. In a worst ordered tree, the
subtrees are ordered from worst to best, thus the best subtree is scarched last. The cutoft
occurs only after all of the subtrees have been scarched at the CUT node giving no savings in
search effort. Alpha-Beta builds the full minimax tree if the moves are worst ordered.
Randomly ordered game trees, where the best subtree is equally likely to be in any order, have
also been studied. However, they do not represent what is observed in practice [Hsu90]).

A game tree is strongly ordered if the first subtree scarched is best 70 pereent of the time and
if the best subtree is in the first quarter of the branches 90 percent of the time [MaC82|.
Although the classifications are non-analytical, it is generally agreed that the trees of cfficient
search implementations are strongly ordered. We can summurize the rclationship between
games trees built with different move orderings by [MaC82]:

Minimal Tree < Strongly Ordered Tree < Randomly Ordered Tree « Full Minimax Tree

Figure 2.5 — Relative Sizes of Game Trees with Different Move Orderings
(Minimal trees are best ordered. Worst ordered trees arc full minimax trees.
Uniform width and fixed depth is assumed.)

Several heuristics are commonly used to build strongly ordered game trees in practice. As
with most rules of thumb, there are cases in which the heuristics fail. Furthermore, here is
often no analytical characterization of the probability that the heuristic is correct in a given
situation.

One heuristic combines iterative deepening with transposition tables. lterative deepening is a
technique that builds successively deeper game trees. The move ordering information gathered
by building the game tree of depth » is used to help order the moves for the game tree of depth
(n + 5), where s is the step between iterations. The best move for a node can be stored in a
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transposition table, which is hashed according to the board position represented by the node.
During the next scarch iteration, the transposition table is queried and the suggested best move
from the previous itcration is searched first. The heuristic is that the best move of the
shallower search is likely to be the best move of the deeper search. More generally, iterative
decpering is also used to regulate the time taken to decide on the best move for the root
position and the transposition table also allows identical subtrees, created by transposing lines

of play, to be cached and searched only once.

The history heuristic |Sch86,Sch89b] orders all of the moves at a node and not just the best
move. It uses tables to accumulate a history of how often a move is shown to be best. The
history score of a move is increased each time it is empirically shown to be best. Therefore,
moves can be sorted according to their history scores. The heuristic is that the best moves at
nodes in other parts of the tree have a history of being best and are likely to be best at the
current node as well. If the transposition table cannot suggest a possible best move because the
table entry is non-existent or has been overwritten, the history heuristic can suggest a best

move.

Of course, there is no guarantee that the suggested best move of either the transposition table or
history heuristic is actually best. In those cases, the ordering of the sibling moves by the
history heuristic is in decreasing empirical probability of being the actual best move. In
practice, the suggested best move of the transposition table is usually searched first and then
the remaining moves are searched in the order suggested by the history heuristic. Itis
important to order all of the moves at a node. In the context of Figure 2.4, the function
orderMoves () is considered to implement a move ordering mechanism, such as transposition

tables supplemented with the history heuristic.

The popular killer heuristic [SIA77] is a special case of the history heuristic. There are several
other move ordering mechanisms also in use [Sch89b,Mar92].

2.4 Aspiration Windows

The window (at,B) with which the search of a node is initiated is referred to as the full window.
A search window of (—ee,+ee) declares that all node values are relevant to the search since all
possible node values fall inside the infinite window. However, it is possible to initiate a search
with an artificially narrowed aspiration window. With window-based minimax algorithms,
there is a well-known relationship between the size of the search window and the size of the
search tree generated [Sch86]. Generally, the smaller the window, the smaller the tree thatis
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searched. Intuitively, if the window represents the parts of the search space that are of interest,
then a smaller search window will build a smaller tree because parts of the search space have
already been declared a priori to be of no interest. Within certain limitations, aspiration
windows can be used to search trees more efficiently.

With Alpha-Beta, the returned minimax value is correct only if it falls within the initial search
window. If the minimax value is not inside the initial window, then the scarch is considered
incomplete. The aspiration search generated an improper cutoff and did not scarch the part of
the tree that determines its minimax value. Therefore, although there may be strong heuristic
reasons to eliminate some node values from consideration a priori, therc are no algorithmic
justifications for using anything less than a full window. An aspiration window is a heuristic
gamble that the final minimax value lies within the smaller search window, and can therefore
be found with a smaller search tree.

One example of using an aspiration window is at the root of the game irce. 1f the previous
iteration of iterative deepening returned a value of v for the root position, the next scarch can be
initiated with a finite aspiration window covering a range centered on v. The size of the
window is implementation dependent. If the score of the root position is stable between
iterations, then it is likely that the next iteration will return the a value within the aspiration

window.

Taking the concept of aspiration windows and fail-soft Alpha-Beta to the extreme results in the
notion of minimal windows [Pea80,Fis81], and minimal window searching. Assuming a
strongly ordered game tree, it is likely that the first subtree scarched either determines the value
of the node or causes a cutoff. We necd to search the first branch of each node with a full
window because we want to know the exact minimax value, say v, of the subtree. However,
we do not need to know the minimax value of the other subtrees. We can settle for merely
proving that the other branches are no better than the first branch. T herefore, we scarch all
subtrees other than the first one with the minimal window (v,v + 1) which has zero width. The
window is different but the fail-soft Alpha-Beta search algorithm does not change. Minimal
window search is not used to determine the actual value of a subtree, but to determine bounds

on its relative value.

Recall that with fail-soft Alpha-Beta, the value returned from a search, even if the exact
minimax value lies outside of the initial window, provides bounding information. Suppose the
full window of the node is (c,B) and the minimal window used is (v,v + 1). If the scarch
returns a value z, and z < v, the search is said to fail low and while the exact value of the subtree
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is not known, it is known to be no better than v. We determined this as cheaply as possible
since a minimal window was used. If z2 B, then a normal Alpha-Beta cutoff has occurred
and the node docs not need to be expanded any further. Otherwise, if v < z < 3, the search is
said to fail high. 1t nceds to be re-searched with a full window to find its true minimax value.
A narrower window of (z, B) can also be used because the fail-soft Alpha-Beta returned z,
which is a lower bound on the actual minimax value of the subtree.

The main disadvantage of minimal window searching is the danger of having to re-search a fail
high subtree. The main advantage of minimal window searching is its ability to determine the
value of a node with potentially less effort. Only the best move subtree is searched with a full
window and the sibling subtrees are proven inferior with a relatively inexpensive minimal
window search. Overall, the search savings due to minimal window searches of strongly
ordered game trees outweigh the costs of re-searches [Mar83].

2.5 Structure of the Minimal Alpha-Beta Tree

The minimal game tree searched by the fail-soft Alpha-Beta algorithm has a predictable and
important structurc. Cutoffs can only occur at certain nodes and can never occur at other
nodes. In terms of Knuth and Moore’s classification [KnM75], Type 1 and Type 3 nodes are
ALL nodes. The Type 2 nodes are CUT nodes. The pseudo-state diagram in Figure 2.6 below
shows the relationship between the different node types.

is-best-child-of

[
( Type1(aLL) )

is-not-best-child-of

is-a-child-of

( Type2(CUT) ) ( Type3(ALL) )

is-a-child-of

Figurc 2.6 — State Diagram For Node Types

Cutoffs can occur at CUT nodes, but in worst case move ordering, all subtrees may actually be
searched. With strongly ordered game trees, the worst case scenario is infrequent. Figure 2.7
shows the ALL/CUT node structure of the minimal Alpha-Beta game tree.
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Rool Position

ALL Ply 0

cuT cur Ply 1

Ply 2

cuT CUT| ply3

1 Typel(ALL) ] T1ype2(cur) Type 3 (ALL)

Figurc 2.7 — ALL/CUT Node Structure of the Minimal Alpha-Beta Game Tree
(The principal variation (PV) moves arc the best subtrees at Type 1 ALL nodes.)

The structure of the game tree in Figure 2.7 is true in the absence of aspiration window
searches, which is the case for the fail-soft Alpha-Beta algorithm. When using minimal
window searches,? there is one important change to the structure: at Type 3 (ALL) nodes, it
may be possible to achieve a cutoff before all of the subtrees are searched. That is to say, Type
3 (ALL) nodes may in fact behave like CUT nodes if minimal windows are used. Intuitively,
if the search window is of zero width, then any variation in the valuc of a subtree is enough to
cause a cutoff. In fact, it is the possibility of generating a cutoff at a Type 3 (ALL) node that
makes minimal window search more efficient than a full window search.

2 Which should not be confused with the notion of the minimal Alpha-Beta uce.
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2.6 Principal Variation Scarch

Recognizing the uscfulness of minimal window search with the strongly ordered game trees
seen in practice, a new variation of Alpha-Beta search, Principal Variation Search (PVS), was
introduced [Fis80,Fis81,MaC82]. The principal variation determines the minimux value of a
given node, therefore PVS searches the first subtree, as determined by the move ordering, with
a full window. If a fail high situation occurs during a subsequent minimal window search, the
original choice for the best move was in fact not best and the fail high move needs to be re-
searched. In effect, PVS heuristically narrows the windows of the non-principal variation

moves to minimal windows.

Figure 2.8 gives the pseudo-code for Principal Variation Search. The main difference between
the pseudo-code for Alpha-Beta and for PVS is the special treatment of the first ordered move.
In effect, PVS unrolls the while-loop and searches the principal variation with a full window.
The other subtrees are searched with a minimal window based on the value of the principal
variation. The shading in the pseudo-code highlights the key differences between Alpha-Beta
and PVS. Also note that PVS recursively calls itself and never calls Alpha-Beta, which was a
technique introduced to minimal window searching by Marsland [Mar83] and, independently,

Reinefeld in his Negascour algorithm [Rei83].
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FUNCTION
PVS{ p : position; alpha, beta, ply : integer ) : integer;

VAR
index, value : integer; { Index and va'ue of current move }
move : moveType; { Current mo» ¢ being scarched )

BEGIN {PVS}

{ Check if at leaf node j

if ( ply = TreeDepth ) then { Atlcalnode? )
return( Evaluate( p ) ); ( Yes. Statically evaluaie }
{ Generate legal moves and order them }

Width[ ply ] := legalMoves( p, Moves{ ply ] ): [Slorc moves in Moves|[) }
if ( Width{[ ply ] = 0 ) then { Any legal moves in this position? }
return ( Evaluate( p ) ): { No. In checkers, this is a loss }

ordexMoves{ Moves[ ply ] }: { Yes. Do move ordering }

{ Sct up global variables }

o Index[ ply:l = 2; ©{ Continue with other subtrees, later )
Alpha([ ply ] := alpha;
Beta( ply | := beta;

( Scarch [irst ordered move wnth full window. Unroll the loop by one }
: Score[ ply I

L-PVS( p. Move[ ply 101 le -Beta[ ply 1, -Alphal[ ply 1, ply + 1 )
Best.[ ply = 1, .

1f»( Score[ ply ] 2 Beta[ ply ] ) then [Culoffaflcr pv?}
w7 Index [ p;y ] : { Yes. Will never enter loop )
Alpha[ ply ] 1= MAX( Alpha[ ply 1, Score{ ply 1 ); { Iinprove wmdow?l

{ Scarch cach sibling subtrec with minimal window }
while ( Index[ ply ] € Width[ ply ] ) do
begin { Recurse } { Scarch each subtree }
index := Index[ ply ): { An unique move leads to the subtree )
move := Moves[ ply ][ index ];
Index[ ply ] := Index{ ply ] + 1; { Advance index )

_value = - { Negamax value and minimal window )
: -PVS( P move,‘-Alpha[ ply ] -1, -Alphaf ply }, ply + 1 );

f ( value > Score[ ply 1 ) then . { Score improved, but did it fail high? }
begin { Updalc Best )
1€ (Tvalue > Alpha[ ply ] and value < Betal ply 1 ) then
‘Scorel ply } = { Yes. Re-scarch with full window }
- -PVS( p.move, -Beta[ ply ], ~value, ply + 1 );
. else’ ’ :
iScore[ ply ] := value; . . {No}
Best['ply ] := index;
end; { Update Best )

if ( Score[ ply ] 2 Beta[ ply ] ) then { Cutoff? }
Index[ ply ] := oo; { Yes. Force exit from loop }
Alpha[ ply ] := MAX( Alpha{ ply ], Score[ ply } ):; [ lmprove window? |
end; [ Recurse }

return( Score( ply ] ); { Done. Return best score
END; {PVS)

Figure 2.8 — Principal Variation Scarch (PVS)
(Shading indicalcs key changes from AlphaBeta ())
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The efficicncy of PVS depends on move ordering. With best ordered trees, the first subtree
scarched is always on the principal variation, therefore there are never any fail high situations.
Scarching the best move first also provides the actual value of the node, say v, so that the
remaining moves can be scarched with a minimal window (v,v + 1) centered on the correct
value. Those minimal window searches will never fail high. However, when the move
ordering deviates from best ordered, the best move is not expanded first and so an erroneous
minimal window of (v’,v* + 1) where v’ < v is used. The minimal window search of the actual
best move will fail high and the resulting re-search will return the value v. It is important that
the newly determined value v be used for the minimal windows of the remaining subtrees.
There may be other moves with the same value v as the best move. If those maximal subtrees
are searched with (v',v”+ 1) they will also fail high and be needlessly re-searched. Fortunately,
with the strongly ordered game trees encountered in practice, the first move is often best.

2.7 Alpha-Beta as a Proof Procedure

An interesting way to think of the Alpha-Beta algorithm is to view it as a guess-and-check
proof procedure. Intuitively, the algorithm *“guesses” at the best move at each node in the
game tree. Then, it searches that line of play further to “check” if the move is indeed best or it
finds a counter-example or refutation to the optimality of the chosen move. In practice, the
guess of the best move and the guess of the best refutation are both determined by the various

move ordering mechanisms in use.

Proving that a move is best requires searching all other possible moves and showing that they
are inferior to the best, or principal variation, move. No move on the principal variation can be
eliminated from consideration. That is why the principal variation consists only of Type 1
(ALL) nodes.

Proving that a move is inferior only requires showing that there is at least one response by the
other side for which all of the counter-responses lead to inferior positions. For example, if the
player chooses a move that allows the opponent to win a checker and all of the player’s
responses cannot win back the checker, then the inferiority of the player’s original move is
established. Although there may be other refutations available to the opponent, only one is
needed and the remaining subtrees are cut off. This is the intuition behind Alpha-Beta pruning.
A Type 2 (CUT) node is reached by an inferior move from the parent node and all of the
moves at the following Type 3 (ALL) node cannot overcome that previous inferior move
because they lead to inferior positions themselves, as in the above example. This explains the
strict alternating pattern between Type 2 and Type 3 nodes indicated by Figures 2.6 and 2.7. It
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also explains why the alternation between Type 2 and Type 3 nodes begins at the point of
deviation from the principal variation,

If a non-principal variation move is actually superior, as in a fail-high situation, then the
behaviour of the Type 2 and Type 3 nodes are reversed. Because the original hypothesis that
the non-principal variation is inferior is false, the scarch cannot actually prove the inferiority of
the move. Instead of the other side having at least one refutation, it has no refutation and all
subtrees of the Type 2 node must be searched to discover this, contrary to its predicted
behaviour as a CUT node. And for each move from the Type 2 node, there is at least one
response that improves the position for the other side. Once that move is discovered, a cutoff
may occur at the Type 3 node, which is contrary to its predicted behaviour as an ALL node.
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Chapter 3

Parallel Alpha-Beta Game Tree Search

There is a substantial body of literature on the parallel search of game trees. This is partly
because decper searches yield potentially better play, at least in chess [Tho82], and partly
because the basic Alpha-Beta algorithm is an important technique that is a challenge to
parallelize efficiently. This chapter discusses the fundamental concepts and techniques of
parallel game tree search based on Alpha-Beta pruning. Selected previous research in the area
is surveyed. Also, the differences between chess and checkers as the application domain are
highlighted. The ideas introduced in this chapter form the foundation of the subsequent
chapters describing Chinook’s parallel search.

3.1 Parallel Performance

To search a deeper game tree in the same amount of time, researchers have turned to
parallelism. Searching one ply deeper in constant time requires a four to eight-fold increase in
search power when chess is the application domain [Gil78]. In checkers, an extra one ply
requires speeding up the search by a fuctor of two [SCT92].

A popular measure of parallel performance in game tree search, and parallel computing in
general, is the speedup. Intuitively, speedup is the measure of how much faster a problem is
solved using n processors instead of just one processor. If using n processors results in a n-
fold speedup, then it is a linear speedup. However, true linear speedup is rare and highly
dependent on the nature of the problem. Speedup is defined as:

“best” solution time on one processor
solution time on n processors

speedup =

Formula 3.1 — Decfinition of Spcedup
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The notion of “best” solution time on one processor is both important and contentious.
Typically, the best sequential solution time used is derived from the best implementation
available to the authors instead of from an analytical definition of what is best. Although this is
a practical approach to the quantity of the speedup, the parallel version of a poor sequential
algorithm may be misleading as to the quality of the speedup. For the exact same algorithm,
using an unoptimized sequential implementation and slower processors can actually improve
the speedup values {SuG91]. Despite its drawbacks, there is little consensus on an alternative
measure of overall parallel performance and therefore, this thesis will also usc the speedup
metric.

Closely related to speedup is the notion of speedup efficiency. 1t represents the amount of
speedup potential that is actually achicved. Itis defined as:

. . speedup on n processors
speedup efficiency = P P P

n

Formula 3.2 — Definition of Speedup Efficicncy

Figure 3.1 shows a typical speedup graph with lines and curves representing linear speedup,
linear speedup with a smaller slope and diminishing returns for additional processors. There is
an additional curve representing parallel slowdown, where adding processors beyond a certain
threshold decreases performance, and can even make the parallel implementation slower than
the sequential implementation. Speedup and speedup graphs will be recurring themes
throughout this thesis.
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Figurc 3.1 — Example Spcedup Graph

An important concept related to parallel performance is the notion of work granularity . A
sequential algorithm does not have to incur the costs associated with coordinating,
communicating with or managing the work given to parallel processors. Each point of
interaction between parallel processes is a drain on performance. Granularity captures the
notion of how much actual work is completed by the algorithm between points of interaction.
Fine-grained parallelism and low granularity work both imply short intervals of useful
computation between points of interaction. Therefore, coarse-grained parallelism or high
granularity work, where there is a large amount of computation between interaction points, is

preferable.

Another important concept is load balancing. At a given point in the computation, the amount
of parallel work available, called the degree of parallelism, may be less than the number of
available processors. Therefore, some processors receive no work and the result is szarvation.
Work can also be unevenly distributed, particularly if it is impossible to predict the amount of
computation required for a piece of work. A processor that is given a disproportionately large
piece of work may become a straggler, forcing the other processors to wait at a
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synchronization point. If the number of synchronizing processors, the synchronization fan-in,
is large then the performance losses due to stragglers is also large.

There are two broad strategies for dealing with load balancing problems. First, instcad of
allowing processors to be idle, a picce of work already assigned to a processor can be
preempted, further subdivided and redistributed. This technique can also be used to avoid
starvation and to deal with stragglers. Second, if it is possible, the parallel algorithm can try to
create many pieces of work a priori. If the parallel processors are overloaded with many units
of work, then idle processors are simply given additional work. The danger is that subdividing
existing pieces of work, or creating more units of work by making them smaller, also reduces
the granularity of the work.

3.2 Sources of Parallelism

To date, there have been four broad strategies used to extract parallelism from game playing
programs. A combination of these strategies can be used in practice.

With component parallelism, the computationally expensive parts of the program arc
parallelized. Ar.iong the hardware assisted chess machines Belle {CoT82}, Hitech [ BcES9]
and Deep Thought [HAC90], parallelizing the move generation and evaluation function has
been a popular and successful strategy at the circuit level. Among the software-only programs,
the low granularity of component parallelism has made it a less attractive approach, with Cray
Blitz [HGN90] being a notable exception.

Another approach is system parallelism. In the distributed chess program ParaPhoenix
[Sch89a], one team of parallel searchers applies the relatively expensive chess knowledge of
Phoenix in its Alpha-Beta search. A second team of parallel searchers, Minix, uses a limited
set of knowledge and heuristics to do a speculative, special purpose Alpha-Beta search for
tactical advantages. In effect, ParaPhoenix consists of two systems, cach contributing to the
program’s play, but each building different game trees. Minix is reported to improve the play
of ParaPhoenix and, given the diminishing returns for additional Phoenix searchers, it is an
alternate way to utilize additional processors. However, aside from ParaPhoenix, system
parallelism in computer game playing has not gained the attention of rescarchers.

For speeding up the underlying game tree search, parallel aspiration search was one of the
first strategies to be tried [Bau78]. In parallel aspiration search, the Alpha-Beta scarch window
is partitioned into disjoint ranges and given to different searchers. Each scarcher is given a
smaller window, therefore the searches are finished more quickly. However, each searcher
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must still build a minimal tree, regardless of the window size, thus limiting the potential

speedup to an upper bound of 5 to 6 [Bau78].

Tree decomposition is another broad strategy that has attracted attention and, arguably,
garnered the most success. It is the focus of this thesis. A split node exists where the different
subtrees rooted at the node can be searched concurrently by parallel searchers in a process
known as tree-splitting [Fis81]. Each searcher can be a different parallel processor. Alpha-
Beta pruning and other search enhancements can be used to order and combine the parallel
search results. A spectrum of algorithms have been proposed, differing prominently in how
many split nodes are allowed to exist concurrently and in how the split r “des are chosen. Four
representative algorithms are considered in detail. Principal Variation Splitting (PVSplit)
[MaC82] allows exactly one split node at any given time. Dynamic PVSplit (DPVSplit)
[Sch89a], the Zugzwang approach [FMM89] and the Delayed Branching Tree Expansion
(DBTE) algorithms [Hsu90] allow multiple split nodes. The main difference among the
multiple split node approaches is in how the split nodes are selected. PVSplit and DPVSplii
are depth-first search algorithms. The Zugzwang approach and the DBTE algorithms are not
as limited in the way they traverse the game tree.

3.3 Parallel Overheads

Although tree decomposition offers the potential for speedups, it also introduces certain
overheads that do not occur in sequential Alpha-Beta search and which detract from linear

speedup.

Search overhead (SO) is the ratio between the number of nodes in the tree built by the parallel
and sequential algorithms to return the minimax value of the tree. Formally, search overhead

is [MOS85]:

nodes searched on n processors 1
nodes searched on one processor

SO =

Formula 3.3 — Dcfinition of Scarch Overhead

There are two main sources of search overhead, both related to information deficiency. First,
there could be a lack of information regarding cutoffs. A parallel algorithm that performs
subtree searches concurrently at a CUT node does not know a priori which subtree will cause
a cutoff and make the other searches irrelevant. Second, there could be a lack of information
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regarding optimal search windows. Particularly with minimal window techniques, the values
of previously searched subtrees can be used to improve the windows of subsequent searches.
Without the benefit of previous search results, the windows of parallel searches may be wider
than needed or even incorrect, resulting in larger subtrees or the overhead of re-searching
subtrees. The lack of timely information about cutoffs and windows results in scarch
overhead. Itis ironic, given all the effort invested in parallel algorithms, that Alpha-Beta is an
inherently sequential algorithm due to this information dependency.

Interestingly, it is possible to observe negative search overhead. Even the best sequential
search implementations do not always achieve perfect move ordering at cutoff nodes. 1f a
parallel algorithm can exploit this flaw and achieve a cutoff more quickly, it might result in a
negative search overhead.

Synchronization overhead (SY) is incurred when an algorithm forces a searcher to wait for
another searcher to finish. To combat information deficiency, some parallel algorithms use
synchronization to gather all of the information regarding a node so that it can be used in
subsequent searches. As well, search extensions, pruning shortcuts and other scarch
enharcements may cause the work given to one searcher to be substantially more than another
searcher. This leads to a load balancing problem when a straggler searcher forces other
searchers to wait at a synchronization point.

Of course, there are strategies to reduce both the search and synchronization overheads. Itisa
difficult problem because there is a close relationship between the two overheads and trade-offs
must be made carefully.

Communication overhead (CO) is caused by parallel searchers exchanging data, using locks
and semaphores to coordinate access to shared resources and to communicate events. Of
course, the sequential algorithm does not need to communicate data with parallel processors.
For convenience, whatever is not attributable to search or synchronization overhcad is defined
to be communication overhead.

3.4 Respecting the Structure of the Alpha-Beta Tree

The Alpha-Beta cutoff has the potential to create parallel search overhead. Under perfect move
ordering at a CUT node, the subtree that causes the cutoff is searched first and all of the other
subtrees can be pruned. However, if a CUT node is used as a split node, and several subtrecs
are searched in parallel, there is likely to be waste of search effort because complete pruning is
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no longer possible. Consequently, it has been observed that one way to reduce search
overhead is to search the subtrees of a CUT node in sequential order rather than in parallel.

Therefore, a heavy-handed rule is that ALL nodes should always be split and CUT nodes
should never be split. Later on, we will consider exceptions to this rule, but the basic wisdom
remains a key component of any paralicl search algorithm based on tree decomposition.
Therefore, if an algorithm decides to split or not to split a node with consideration given to the
tree’s node structure, it is informally said to respect the ALLICUT node structure of the game
tree. In fact, all of the algorithms discussed below incorporate this concept in some form.

3.5 Principal Variation Splitting

Principal Variation Splitting (PVSplit) [MaC82] is a depth-first, tree-splitting algorithm that
grew, in part, out of the sequential Principal Variation Search (PVS) algorithm discussed in
Chapter 2. It creates parallel work by splitting nodes along the principal variation. As seen in
Figure 2.7, each of the nodes on the principal variation is an ALL node, therefore PVSplit
respects the ALL/CUT node structure of the game tree. Recursing down the principal variation
concentrates the parallel effort where it is potentially most useful, and backing up the principal
variation carries important window information for the search of the sibling subtrees.

PVSplit forms the foundation of Chinook’s parallel search and will be discussed in detail in
Chapter 4. However, it is important to emphasize two aspects of PVSplit for the current
discussion. First, PVSplit only splits Type 1 (ALL) nodes and it splits the nodes in a depth-
first, in-order fashion as values are backed up along the principal variation. PVSplit uses the
backed up value to improve the search windows of the sibling subtrees. Second, PVSplit only
allows a single split node at a time. All of the searchers must synchronize at the current split
node before the algorithm can back up one ply and create the next split node. Consequently,
PV Split is particularly susceptible to synchronization overheads.

3.6 Dynamic Principal Variation Splitting

The Dynamic Principal Variation Splitting (DPVSplit) algorithm [Sch89a] extends basic
PVSplit in a way to deal with the synchronization overhead caused by stragglers. In essence,
searchers that are otherwise idle at the synchronization point can be dynamically reassigned (o
help with busy searchers. As searchers are reassigned to help other searchers, a processor tree
hierarchy is formed with the straggler processor at the root of the processor tree. The searchers



are able to share their work because they apply the PVSplit algorithm to their assigned subtrees
instead of regular PVS.

Two disadvantages with DPVSplit include the potential for unbalanced processor trees and the
reduction in the granularity of parallel work. As idle searchers are assigned and reassigned to
busy searchers, it is possible to form an inefficient pipeline of processors instcad of a balanced
tree, in the worst case. A deeper hierarchy of processors implies more synchronization points
and more synchronization losses. Furthermore, splitting up the work of one searcher for a
reassigned searcher implies that the work created by the “dynamic” aspect of DPVSplit is
smaller than the work created by the basic PVSplit. In effect, DPVSplit allows multiple split
nodes to be introduced when necessary to deal with stragglers. However, the additional split
nodes are all lower in the game tree than the original split node on the principal variation.
Consequently, the subtrees at the new split nodes are smaller and potentially suffer the
drawbacks of fine-grained work. In practice, DPVSplit does improve the performince of
PVSplit. However, it appears that it does not change the overall asymptotic shape of the
speedup curve.

Both PVSplit and DPV Split are depth-first strategies that largely depend on a single controller.
DPVSplit introduces a limited amount of distributed search control when idle scarchers are
reassigned to help busy searchers. In that case, the straggler process becomes both a manager
of searchers and a searcher. However, with both algorithms, the search control remains largely
centered on the principal variation.

The advantage of centralized control is that all of the information on cutoffs and scarch
windows can be concentrated and applied at the split node, reducing search overhead. The
disadvantage is that the single control point can be come a bottlcneck, increasing
synchronization overhead. The addition of more searchers increases the synchronization fan-in
and if the branching factor of the split node is low, there may be insufficient parallel work for
the searchers. Intuitively and empirically, PVSplit-based algorithms perform best with small
numbers of processors and trees with high branching factors. The ratio between the number of
searchers and the branching factor, called the parallelism overload factor, is an important
measure of how likely there is to be starvation and how high the synchronization fan-in will be.

Another advantage of PVSplit-based algorithms is that, since they are depth-first scarches, the
amount of storage required for the search control is linearly proportional with respect to the
depth of the search and the number of searchers. The low storage overhead for depth-first
search algorithms is a key strength in actual implementations.
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3.7 Other PVSplit-Based Algorithms

Some of the other cfforts in PVSplit-based parallel algorithms include the Cray Blitz [1ISN89]
and Waycool |FeO88) chess programs. The Waycool program is interesting for its reported
101-fold speedup on a 256 node hypercube multicomputer. However, as pointed out by
several rescarchers, including Hsu [Hsu90], that speedup value does not take into consideration
the beneficial growth in transposition table size as processors are added.

Although both projects introduced interesting load balancing techniques that are effective for
their individual programs, it is difficult to compare their relative merits. In fact, the inability to
meaningfully and quantitatively compare different search ideas, except when implemented
within a single chess program, is a fundamental limitation of research in this area.
Nonetheless, qualitative comparisons of parallel search ideas, particularly between PVSplit-
based algorithms and other parallel search paradigms, can be instructive.

3.8 The Zugzwang Approach

One of the key design decisions made for the Zugzwang distributed chess program [FMM89]
is to completely distribute the parallel search control. Each searcher executes the same search
and control code and are virtually identical in functionality. Each searcher is responsible for
requesting work from other searchers. Each searcher is able to receive work and search it
locally or redistribute subproblems to other searchers. The lack of a central controller implies
that the potential bottleneck noted for PVSplit and DPVSplit may be avoided.

Upon receiving a problem, namely a node to be searched, a searcher breuks up the node into
subproblems which it can divide further and search locally, or if asked, can be passed on to
another searcher. The creator of the split node, as in PVSplit, is its master and is ultimately
responsible for its completion. Given a choice of subproblems to redistribute, the subtree
closest to the root of the original problem is preferred. Alpha-Beta pruning and other search
enhancements are also used. There can be multiple split nodes within a single searcher and
multiple split nodes among the parallel searchers. It should be noted that each searcher under
DPVSplit performs a similar procedure. The differences arise in how work is shared between

searchers.

To supplement the cyclic process of receiving work, dividing the work and, possibly,
reassigning some of the work are two principles described as Young Brothers Wait and

Helpful Master.
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Viewing the different subtrees rooted at a node as siblings, Young Brothers Wait states that,
although the work has been divided, the moves ordered after the first, or eldest, subtree are not
available for redistribution until the first subtree has been completed. Consequently, if the split
node is a CUT node and the cutoff occurs after the first subtree, no search overhead is incurred
through the premature reassignment of work. Furthermore, information from the first subtree
that may improve the search windows of the siblings can be applied before the work is given
out. The Young Brothers Wait concept is a restatement of PVSplit’s criteria for creating a new
split node: the first ordered subtree must be searched first.

Interestingly, the behaviour of Young Brothers Wait is the same at both CUT and ALL nodes.
Both types of nodes are completely splittable after the first scarch result is returned. There is
no reported mechanism for preventing the splitting of CUT nodes, although it would be simple
to implement. Even if the elder subtree does not cause a cutofT, the likelihood of cach
subsequent subtree causing the cutoff is high in a strongly ordered tree, assuming that the node
is behaving as a CUT node. Young Brothers Wait avoids search overhead only in the case of
best move ordering, which is not always the case in practice.

With the Helpful Master concept, the master of a split node that is waiting for scarch results to
be returned can decide to assign itself 10 help a searcher finish a subtree for which the master is
waiting. Thus, the Helpful Master is a load balancing strategy that also has a completely
distributed control structure. Unlike DPVSplit, each searcher is empowered to decide for itself
if it will help another searcher. The distributed search initiation and the Helpful Master results
in a dynamic and effective form of load balancing,

In general, Zugzwang’s search begins with a single searcher being given the root position of
the game tree. As it divides the node, it follows the Young Brothers Wait concept and
ultimately creates work than can be redistributed to other searchers. They, in turn, create morce
work which can be used to load balance the search. The Helpful Mastes concept also aids in
load balancing the search, particularly in the case of a straggler process.

The strongest and most unique feature of the Zugzwang approach is the complete distribution
of search control among peers. It is a natural approach for the distributed hardware used to
implement the chess playing program. On the one hand, the strategy reduces the
synchronization fan-in at split nodes and avoids the bottleneck of single split node al gorithms.
On the other hand, the strategy creates more synchronization points and the frequent
interactions between searchers to receive work and communicate information may result in
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low-granularity parallelism. From the reported speedups and the success of the Zugzwang

program in tournament play, the ideas seem promising,

3.9 Delayed Branching Tree Expansion Algorithms

Hsu introduced a family of multiple split node, non-depth-first, parallel Alpha-Beta search
algorithms [Hsu90]. His design goal was to allow the use of several hundred, and even
thousands, of parallel searchers in a new generation chess machine.! The family of Delayed
Branching Tree Expansion (DBTE) algorithms avoid the concurrent expansion of sibling
subtrees of a CUT node, but the individual algorithms differ in the strategy used to select the
next split node. The details of the Leftmost-First (LF), Best-First (BF) and First-Come-First-
Served (FCFS) stratcgies can be found in [Hsu90]. Of the three strategies, only the Leftmost-
First DBTE (LF-DBTE) is considered in depth.

The DBTE algorithms are influenced by the hardware model chosen for the new chess
machine: a host machine builds the upper plies of the game tree in memory and decides on the
split nodes to be given to the next available searcher from a pool of processors. Therefore, a
given DBTE algorithm is the scheduling or priority queue strategy for split nodes. The host
can be a workstation or a collection of workstations. The parallel searchers are chess scarch
engines using custom chips for the move generator and the static evaluation function.
Therefore, the new chess machine exploits both fine-grained compcnent parallelism and

coarse-grained scarch parallelism through tree decomposition.

At the heart of the DBTE algorithms is the notion of the critical tree, which is related to the
minimal tree. The critical tree is the actual proof tree and represents nodes that must be
searched in order to determine the minimax value of the root position. Hsu distinguishes
between the notion of “critical work” that is implied by the critical tree and “mandatory work”
that is the basis of work by Akl, Barnard and Doran [ABD82] and Finkel and Fishburn
[FiF83]. In fact, Hsu points out that the notion of mandatory work described by Finkel and
Fishburn is “not even mandatory for the full window [Alpha-Beta] search which uses a
starting window of (—ee, +-e0)”” [Hsu90]. However, he also notes that even the critical nodes
are not necessarily scarched if an aspiration window is used. Still, “the set of the critical nodes
does have the merit of being worth evaluating when there is rothing better to do” [Hsu90, pg.
73). In essence, the critical nodes are the preferred choices for the multiple split nodes.

1 Dr. Hsu and his colleagues created the ChipTest, Deep Thought and Decp Blue chess machincs
{HACYH0}.
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As with the PVSplit-based algorithms, the DBTE algorithms explicitly respect the ALL/CUT
node structure of the Alpha-Beta game tree. However, the DBTE algorithms allow for
multiple split nodes, which is not the case for the basic PVSplit. The use of multiple split
nodes is a fundamental way of growing the search tree in both Zugzwang and the DBTE
algorithms. Unlike the Zugzwang approach, the DBTE algorithms have a centralized scheme
for search control. The searchers of the chess machine are not gencral purpose processors. A
piece of work given to a DBTE searcher is indivisible. The host machine controls the scarch
and performs the splitting of nodes.

The DBTE algorithms have been analytically shown to possess two important propertics.
First, the Leftmost-First DBTE algorithm is proven to provide speedup that is asymptotically
close to linear for a fixed number of processors, as the depth of the best-first ordered scarch
tree is increased. Therefore, regardless of the number of searchers, the speedup of the search
improves as the size of the search tree grows. In Hsu’s view, this is a nccessary but not
sufficient condition for a good parallel Alpha-Beta algorithm. Second, Hsu proves that the
Leftmost-First DBTE algorithm theoretically never searches a node that the weak Alpha-Beta
algorithm does not search. The weak Alpha-Beta algorithm docs not enjoy cutoffs duc to
bounds information from ancestor nodes more than two plies away, the so-called deep cutoffs.
Therefore, the normal Alpha-Beta algorithm, with deep cutoffs, never scarches more (and
usually fewer) nodes than weak Alpha-Beta. Leftmost-First DBTE scarches no more nodes
than the weak Alpha-Beta as well. Therefore, given the asymptotic optimality of the speedup
and the upper bound on nodes searched provided by the weak Alpha-Beta algorithm, Hsu
concludes that the Leftmost-First DBTE algorithm has a non-trivial lower bound on its parallel
Alpha-Beta speedup.

Hsu’s important analytical results do not preclude the fact that other parallel algorithms may
also possess the same theoretical speedup properties. However, the reporting of such
analytical properties of a parallel Alpha-Beta algorithm is sufficiently rare that the Leftmost-
First DBTE theoretical results are noteworthy. Certainly, no such analytical results of the
PVSplit-based algorithms and the Zugzwang approach have been reported. Although results
based on an actual irplementation of DBTE have not been reported, Hsu did perform
simulations of the algorithm to support his theoretical results.

The DBTE algorithms remain a promising alternative to other algorithms. Its main
disadvantages are that it gives up the deep cutoffs and that it potentially requires a lot of storage
for the nodes of the expanding tree, since it is not a depth-first strategy. However, the need for
multiple split nodes is clear as the number of parallel searchers increases. Furthermore, the
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desirable theoretical propertics of the algorithm distinguish it from other algorithms proposed

to date.

3.10 Application Domains: Chess and Checkers Game Trees

PVSplit, DPVSplit, the Zugzwang approach and the DBTE algorithms have primarily been
applicd to or proposed for chess game trees. However, heckers game trees have two
distinguishing features from chess game trees. First, the average branching factor in checkers
is much less than chess. In chess, a typical position has a branching factor ranging from 35 to
40 [Gil78]. In the commonly used Bratko-Kopec chess test suite [KoB82], the branching
factor is about 35. The checkers game trees of the test suite used for this thesis have an
average branching of 2.84.2 That is to say, the branching factor in chess game trees is over an
order of magnitude higher than in checkers game trees. This has clear implications for tree
decomposition strategies such as PVSplit. Second, the distribution of branching factor values
in checkers trees is bimodal. There is a significant difference in branching factor depending on
whether the node represente a capture or non-capture position. In checkers, if a capture is
possible, it must be taken. Consequently, the average branching factor for capture nodes in the
test suite is 1.28 and for non-captures nodes it is 7.93. Because there are more capture nodes
than non-capture nodes, the weighted average is 2.84. The bimodal distribution of branching
factor values has implications if a chosen split node is also a capture position.

2 The Tinsley-Chinook 1992 test suitc will be discussed later and in Appendix B. All reported
branching factors for checkers game trees arc measured quantities.
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Figure 3.2 graphically shows the difference in branching factor between chess and checkers

game trees.

Chess (bf = 35)

Checkers (bf = 1.28, capture) Checkers (bf = 7.93, non-caplurc)

Checkers (bf = 2.84, weighted average)

Figure 3.2 — Chess and Checkers Game Trees

Because PVSplit and other tree decomposition strategies create parallel work by splitting
nodes, a high branching factor means that there is a large quantity of parallel work at each split
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node. Starvation is not a serious problem with wide chess game trees and relatively low
numbers of scarchers. Similarly, if the degree of parallelism offered by the branching factor is
higher than the number of searchers, the load balancing problem can be ameliorated by giving

a new piece of work o a searcher who finishes early.

In checkers, if the split node is a capture position, it is likely that all but one of the searchers
will be starved since the average branching factor is less than 2 at a capture node. Furthermore,
since PVSplit recurses down one of the branches before splitting the node, the effective degree
of parallelism at a split node which is a capture position is less than one. If the number of
searchers is greater than 8, it is possible that some searchers will never receive work. When
scarchers can starve due to an insufficient branching factor at a split node, the game tree is said
to be branch narrow, or simply narrow. It is purposely a relative term that depends on the

parallelism overload factor concept discussed earlier.

Clearly, the low branching factor of checkers game trees means PVSplit may not be able to
effectively utilize even a moderate number of parallel searchers. Nonetheless, it was decided
that a PVSplit-based version of Chinook needed to be implemented as a first step to
understanding how the narrow checkers game trees would affect parallel game tree search

performance.



Chapter 4

Parallel Chinook

Early on in the creation of a parallel Chinook, or ParaChinook, it was decided that the Principal
Variation Splitting (PVSplit) algorithm would be the basis of the first implementation.
PVSplit’s popularity and success with chess researchers inspired some confidence. Also, the
centralized search control and its similarities with the algorithm used in sequential Chinook
meant that debugging may be easier. Furthermore, the first intended use of ParaChinook was
for the Man Versus Machine World Draughts Championship in August 1992, and the parallel
computer available for that match supported only eight parallel processors. We hoped that the
relatively low parallelism of the hardware would not overwhelm the low degree of parallelism
of narrow game trees. For a variety of reasons, PVSplit was the pragmatic choice for an initial
ParaChinook.

4.1 ParaChinook’s Principal Variation Splitting

As discussed in Chapter 3, Principal Variation Splitting (PVSplit) [MaC82] is a depth-first,
tree-splitting technique that concentratcs the parallel searchers along the principal variation.
Only Type 1 (ALL) nodes are on the principal variation and only one split node can cxist at a

time.

Figure 4.1 contains the pseudo-code for an enhanced version of PVSplit, similar to Parallel
Minimal Window Search (PMWS) [MaP85], that uses minimal windows for non-principal
variation subtrees. The shaded regions highlight the key differences between the parallel
PVSplit algorithm and the sequential Principal Variation Search (PVS) algorithm previously
described. Of course, there are strong similarities between the two algorithms.

Only one process, the controller, executes the PVSplit code. Work is assigned to parallel
searchers who themselves use the sequential PVS algorithm. The controller does a minimal
amount of computation and searcher management, thus it does not require a dedicated physical
processor. It can share a processor with a searcher without having a significant impact on
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performance. Having separate controller and a searcher processes is just a convenient
abstraction and programming technique.

vaRr [ New Global Variables } L LA e e
WorkOut @ array{ 1..MAX DEPTH | of integer;  .[Results outstanding }.
Value : arvayl 1..MAX_WIDTH | of integer; . :{ Resultsof each sublree:

FUNCTION
PVSplit( p : position; alpha, beta, ply : integer ) : integer;
VAR

index, value : integer; { Index and value of current move }
move : moveTlype; { Current move being searched }

BEGIN { PVSplit )

( Cheek if at threshold for minimum granularity.. Do not recurse to Jeaves, '}« i .
if ( ply = { TreeDepth -~ MinGranularity ) ) them il .wi. - o .
return{ PVS{ p, alpha, beta, ply. ). 3; . ['Yes..Doscquentially..}. . '

{ Gencrate legal moves and order them }

Width{ ply | := legalMoves( p, Moves| ply ] ); { Store moves in Moves [] }
If ( Width! ply } = 0 ) then { Any legal moves in this position? }
return( Evaluate( p ) ); { No. In checkers, this is a loss }

orderMoves{ Moves{ ply ) ) { Yes. Do move ordering }

{ Sct up global variables }
Index| ply ] := 2; { Continue with other subtrecs, later }
Alpha| ply ] := alpha;
Betal ply ) = beta; ) ) ]
WorkOut | ply ) -t=:0; oo a7 if Séarch results still ‘outstanding )

{ Scarch first ordered move with full window. Unroll the loop by one )
Score| ply } :=
-PVSplit( p.Move| ply J{ 1 ],
-Beta[ ply ), -Alphal ply ), ply + 1 )3
Value| 1 ] := Scorel ply 1; Lo M S S
Best (| ply 1 = 1;

if ( score[ ply } 2 Betal ply | ) then { Cutoff after pv? }
Index| ply ] := oo { Yes. Will never enter loop }
Alphal ply ] := MAX( Alphal ply |, Score{ ply ] ); { Improve window? }
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{ Search each sibling subtrce with minimal window }
{ Split node incomplete if there are local subtrees unscarched or if there are searchers still to retum |

i‘:jﬁhi;e,(‘(alndex[_ply ] S Width{ ply ] ) . OR ( WorkOut{ ply | > 0 ) )} do
begin { while }
if ( “3idle searcher” AND Index[ ply ) < Width{ ply } ) then

begin { Local work out } { Scarch cach local subtree |
index := Index| ply I; { An unique move leads to the subtree )
move := Moves| ply ][ index };

Index| ply ] := Index| ply 1 + 1; { Advanceindex }

Value| index | := { Negamax value and minimal window |
-FarmWork( p.move,
-Alphal ply ] - 1, -Alphal ply I, ply ¢+ 1 )7

U WorkOut{ply ©17 s> WorkOut{ ply 11 + 1; . { Keep track of work given )
end; { Local work out }

else if ( index := ReturnedResult() ) then
begin { Local results in }
value := Value[ index ];
L WorkOutls ply ) o= Workout( ply. 1. - 1 | Work received )

if ( value > Score| ply ) ) then { Scoreimproved, but did it fail high? )
begin { Update Best }
if ( value > Alpha[ ply ] and value < Betal ply |1 ) then
begin
Value{ index ] := { Yes. Re-scarch )

-FarmWork( p.move, -Betal ply }, -value, ply + 1)
WorkOut [ ply J := WorkOut{ ply } + 1; [ Still not finished }
end;
else
Score| ply | := value; { No}
Best| ply ] := index;
end; { Update Best )

if ( Score{ ply ] 2 Beta{ ply | ) then {Cutoff?]}

begin
Index{ ply ] := oo; { Yes. Force exit from loop }
. <nriinterruptSearchers () . . { Tell searchers to stop and return )
end;

Alpha( ply | := MAX( Alphal ply ], Scorel ply | );
{ Improve window? }

end; { Local results in }
end; { while}
return{ Score( ply ] ); { Done. Return best score }
END; [ PVSplit}

Figure 4.1 - ParaChinook’s Principal Variation Splitting (PVSplit)
(Shading indicates key changes from pvs (). Boxes group key functionality.)

In Figure 4.1, notice that some new global variables have been defined. The workout [} array
keeps track of how many searchers are still busy with work rooted at the current split node.
PVSplit forces all of the searchers working on the current split node to synchronize before it
can back up to the parent node. The new value[] array keeps track of the individual subtree
search results. Although the subtrees are farmed out to the searchers in the order determined
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by orderMoves (), they are likely to be of unequal size, and the results will be returned in a
different order. Therefore, it is important to keep track of the individual subtree values.

As discussed in Chapter 3, the notion of granularity is important in parallel processing,
therefore PV Split does not recurse to the leaf nodes. Instead, at some threshold number of
plics above the leaf nodes, it completes the subtree search with sequential PVS. That way, the
work farmed out to searchers when the node is split is at least that minimum granularity in

depth.

The heart of PVSplit is the final while-loop. The guard condition of the loop is whether there
are any locally rooted subtrees still to be searched or whether there are searchers who have not
synchronized at the split node by returning their search results. Within the loop are two main
blocks of code, highlighted in Figure 4.1 by the use of boxes. The first block of code
distributes subtrees to the parallel searchers using FarmWwork (). Farming work out to a
searcher under PVSplit involves finding an idle searcher, packaging the work into a data
structure and then signaling the searcher that it has new work. Notice that each of the searches
have minimal windows centered on the current best value in Alpha[ ply ]. Also, the
algorithm can farm out as many concurrent pieces of work as the degree of parallelism allows.
If there are more searchers than subtrees at the split node, some of the searchers will starve.
The second block of code receives the results returned by searchers using ReturnedResult ().
It is a non-blocking function call that checks if a search result has been returned by a searcher.
If there is no result, control returns to the top of the while-loop. If a result is returned, the
function returns the index of the work and the body of the i£-statement is entered. If thereis a
fail-high situation, that same subtree must be re-searched with a full window, thus the second
call to Farmwork (). If a cutoff occurs, the searchers are interrupted using
interruptSearchers () to force a quick synchronization and the loop is immediately exited.
Without a cutoff, when all of subtrees have been searched and all searchers have synchronized,

PVSplit returns the value of the best subtree.

The implementation of ParaChinook’s PVSplit contains two enhancements omitted from the
pseudo-code to improve the clarity of the presentation. First, if a search has been farmed out
with sub-optimal minimal windows, then that search can be interrupted and re-started with
better minimal windows. Specifically, if the value of Alpha( ply ] is increased by a search
result, then any other search initiated with a lower value of Alpha[ ply 1 is interrupted and
re-started. Re-starting a minimal window search is different from re-searching with a full
window due to a fail-high situation. This action is designed to reduce the search overhead that
results from sub-optimal window choice. Second, the root node of the game tree is not a split
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node as it is with basic PVSplit. Instead, each of the non-principal variation subtrees are
searched in sequence with a parallel PVSplit. This is a result of the way sequential Chinook is
implemented. It is also a pragmatic change to normal PVSplit since a fail-high situation at the
root node needs to be detected as quickly as possible, and that is best done by scarching each
subtree with a parallel PVSplit. Of course, forcing the searchers to synchronize at the root
position results in higher idle time due to greater synchronization overhead.

4.2 Experimental Design

To evaluate the strengths and weaknesses of the implementation, a serics of experiments were
performed. As discussed earlier, the purpose of implementing a parallel algorithm is to search
game trees faster, therefore speedup (Formula 3.1) is the primary metric. However, to
properly evaluate the overall performance, measurements such as total nodes searched in
parallel and time spent at synchronization points were also recorded. The reported total nodes
searched include interior and leaf nodes, corresponding to the node count (NC) metric referred
to in Formula 2.2. The time spent at synchronization points was measured in real time and
converted into the percent of the total search time. The reported percent idle time is the average
of all the searchers. It includes the impact of both starvation and stragglers.

The hardware used for the experiments was a BBN TC2000 shared memory multiprocessor
[BBN89]. The TC2000 uses a non-uniform memory access (NUMA) architecture via a multi-
stage interconnection network (MIN) to implement shared memory. However, ParaChinook
is not specific to the BBN and could easily be adapted to any shared memory architecture. In
fact, ParaChinook was originally devcloped on bus-based shared memory multiprocessors
from Silicon Graphics and, through the use of conditional compilation, can be compiled for
either machine. All timings were done using the system’s real time clock and on a dedicated
machine in benchmark mode, with no contention for the processors or for the interconnection

network.

The software used for the experiments is the version of ParaChinock that competed against
Dr. Tinsley in London, August 1992, with some minor changes. The sequential search code is
virtually identical to the August 1992 version. One major difference in the software is that the
endgame databases, which played such an important role in London, were not used in the
parailel search experiments. The databases are stored on disk and the impact of input-output
should be factored out from the parallel search performance. Also, because the local software
environment of the TC2000 did not allow multiple user processes on the same processor, the
controller was placed on a dedicated physical processor. Nonetheless, the speedup graphs are
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presented as a function of the number of searchers and do not include the additional processor

for the controller .

A single transposition table of 8,388,608 (=223) entries, requiring 128 megabytes of physical
memory, was used in all of the sequential and parallel searches. Adding processors to the
searcher pool did not increase the size of the transposition table, as is the case with some of the
previous research projects (for example, [FeO88] and [FMM91]). None of the sequential
searches, and only a few of the parallel searches, exceeded 8 million total nodes, therefore the
effect of transposition table ccllisions was minimized. A larger transposition table was not
used because of the limitations of the hardware and because clearing such a large data structure
before each test position would have required too much valuable benchmark time. The
transposition table was located in shared memory and access to it was coordinated through the
use of spin-wait locks. The parallel searchers also shared a single history table. Access to the
history table was not protected by locks because the overhead of forcing mutual exclusion was
believed to be greater than the disadvantages of losing an update to the history scores.

The test suite used for the experiments consisted of twenty board positions that occurred in the
August 1992 match. Appendix B provides the details of the Tinsley-Chinook 1992 test suite.
All of the speedups, search overheads and idle times reported in this chapters are the average of
the individual positions in the test suite. Since there are no standard test suites in computer
checkers, such as the Bratko-Kopec suite in computer chess [KoB82], the main goal of the
selection process was to fairly represent ParaChinook’s speedup performance in a variety of

board positions.

In designing a fair test suite of positions, a loose methodology was followed. First, the
candidate positions came from actual games played in the August 1992 match. Therefore,
none of the positions are synthetic or unlikely to occur in practice. Second, the initial candidate
positions were from the 10th move, for both sides, of each of the 39 games of the match. By
the 10th move, the differences in opening play have resulted in substantially different board
positions. Third, since the game of checkers is predicted to be a draw [SCT92], positions in
which one side has an advantage greater than that of a king were rejected, even if the game
eventually finished in a draw. Sequential Chinook was used to determine the value of the
position. This criteria eliminated a large number of positions because it is rare for the board
position to be equal throughout an entire game. Fourth, the depth of the search for a position
was adjusted until the real time of the sequential search was within the range likely to be seen at
tournament time controls. The parallel search was conducted to the same nominal depth. At
20 moves in 60 minutes, the average time spent deciding on a move is 3 minutes, but the
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actual amount spent per move varies considerably. This fact is reflected in the variety of
sequential times in the test suite searches. Fifth, the sequential search to a fixed depth had to
choose the same move as actually played in the match game. Considering the high caliber of
play in the match, particularly on the part of Dr. Tinsley, the move played in the match is likely
to be the best move in the position. Sixth, positions in which the parallel search selected the
same move with the same value as the sequential search were preferred over other candidates.
Different move choices and substantially different move values imply that the parallel and
sequential searches are building different game trees. To keep the speedup metric as
meaningful as possible, the game trees cannot be overly different.

Many candidate positions were considered and rejected according to the above criteria. Rarely
did the sequential and parallel searches choose the same move with the same value, and for
every configuration of searchers. Different search extensions are invoked depending on the
search window, so the parallel and sequential searches may have different extensions for
different lines of play. Also, the parallel search may examine a subtree, that the sequential
search would have cut off, and discover it is better. Therefore, search cxtensions and exploring
different parts of the game tree account for the differences in values and move choices.
However, if all of these anomalous positions were rejected, there would be fewer than 20
positions in the test suite. In fact, the 10th move of each game did not yicld cnough test
positions, therefore several of the final test suite selections are from different points in the
game. Still, since the purpose of the experiment is not to design an ideal test suite, twenty
“reasonable” positions were ultimately chosen. The twenty positions in the final test suite
represent a compromise between the goals stated above and what was practical given the focus
of the thesis.
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4.3 Experimental Results: Principal Variation Splitting

Table 4.1 shows the average speedups achieved by PVSplit on the test suite, for 2, 4, 8 and 16
searchers. Appendix C contains the speedups for each test suite position. The best average
speedup is 1.92 when using 16 scarchers, for a speedup efficiency of 12.0%. Given the
diminishing returns for more searchers, larger numbers of searchers were not tested. Since an
extra ply of search in checkers requires a two-foid speedup, the increase in the depth of search

due to parallelism is less than a single ply.

Speedup % Scarch Overhcad % Time Idle
Scarchers Standard Standard Standard
Average Deviation Avcrage Deviation Average Deviation
2 1.38 0.260 10.1 20.1 17.9 5.25
4 1.79 0.591 16.7 36.0 45.5 6.36
8 1.88 0.548 159 354 70.1 4.20
16 1.92 0.574 153 4.1 84.8 218

Table 4.1 — Principal Variation Splitting (PVSplit) Parallcl Performance
(spcedup, scarch overhead and idle time)
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Figure 4.2 shows the corresponding speedup graph. The vertical bars indicate one standard
deviation in the average speedup for the 20 test suite positions. The speedup curve quickly
levels off after 4 searchers and appears to be nearly flat between 8 and 16 searchers.
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Figurc 4.2 — Principal Variation Splitting (PVSplit) Speedups
(vertical bar indicates onc standard deviation)

Given that the speedup curves for PVSplit in computer chess (for example, [Sch89a]) are
better than in Figure 4.2, why are ParaChinook’s speedups not higher? Towards that,
consider the average search overhead and percent idle times which are also in Table 4.1
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Figure 4.3 is the corresponding graph of search overhead expressed as a percentage over the
sequential game tree and with respect to the number of processors used. The vertical bar
indicates one standard deviation. As expected, by not splitting a node until the first subtree has
been searched, the search overhead due to information deficiency is minimized. Some search
overhead is to be expected because, although the game tree is believed to be strongly ordered, it
is not perfectly ordered. Recall that PVSplit will initiate as many concurrent searches as
possible when the split node is created. When the first subtree is not best, searches will have to
be interrupted as a result of the fail-high situation and the subsequent re-search. Each
interrupted scarch represents search overhead. However, PVSplit does an excellent job of
limiting search overhead on the test suite to less than 17% on average.
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Figurc 4.3 — Principal Variation Splitting (PVSplit) Scarch Overhcad
(vertical bar indicates onc standard deviation)

Clearly, scarch overhead cannot account for the poor speedups. In fact, the real reason is
revealed in the amount of idle time. The graph of the percent idle time is Figure 4.4.
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As predicted, the low branching factor of narrow checkers game trees results in scarcher
starvation. As the number of searchers increases, the amount of idle time duc to starvation
increases dramatically. In the case of 16 searchers, each searcher is idle for an average of
84.8% of the time. Since the average branching factor is 2.84, then with 16 scarchers, over 13
of them (i.e. over 82%) are predicted to be starved for work at a split node, on average. In
fact, with 16 searchers, the parallelism overload factor is greater than 5. In other words,
keeping 16 searchers occupied with work requires at least 5 concurrent split nodes. Otherwi oz,
with such a low degree of parallelism available at each split node, the algorithm is unable to
take advantage of more parallel searchers.

Also contributing to idle time is the straggler effect, which increases as the number of
searchers and the synchronization fan-in increases. ldle time due to starvation, and to a lesser

effect stragglers, is the primary cause of poor speedups for PVSplit.

Figure 4.5 is a different way of looking at the relationship between speedup, idle time and the
various parallel overheads. It graphs the percent of real time cach searcher contributes to the
speedup, the search and concurrency overhead associated with parallelism and the time spent
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idle due to starvation and stragglers. In effect, Figure 4.5 represents the utilization, or lack of
utilization, of the computational capacity of a searcher, normalized by the real time of the

search computation.

Speedup Efficiency

% Real Time B Other Overheads

Idle Time

2 4 6 8 10 12 14 16

Scarchers

Figurc 4.5 — Principal Variation Splitting (PVSplit) Normalized Utilization Profile

The region of Figure 4.5 representing speedup efficiency is computed using Formula 3.2. The
region representing idle time is a measured quantity and is the same value as presented in Table
4.1. The region representing other overheads is defined as whatever remains after speedup
efficiency and idle time have been accounted for. Both search overhead and communication

overhead are included under other overheads.

What Figure 4.5 illustrates is how idle time quickly dominates the utilization profile as
searchers are added. PVSplit is conservative in the sense that it allows only one split node at a
time and it does not create a split node until the first subtree has been searched. As discussed
already, the main rationale for that split node policy is to reduce the amount of information
deficiency and consequently reduce the amount of search overhead. However, the figure
shows that the trade-off between search overhead and idle time is perhaps too much in favour
of reducing search overhead. Although it is important to limit the wasted computation
associated with search overhead, the amount of starvation resulting from the single split node
policy with a narrow search tree is a greater problem. The experimental data suggests that
search overhead should be traded-off for reduced starvation and thus reduced idle time.
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Chapter 5

Improving Parallel Chinook

The experimentzi results show that Principal Variation Splitting’s (PVSplit) poor speedups are
mainly due to processor starvation. However, the impact of uneven load balancing, duc to
stragglers, is also a factor in causing the poor speedups. In this chapter, we consider
techniques to deal with both the starvation and the load balancing problem. Experimental data
is gathered using the Tinsley-Chinook 1992 test suite to show the benefits of the new
strategies.

5.1 Reducing Starvation: Principal Variation Frontier Splitting

Since the low branching factor of checkers game trees leads to searcher starvation, the issuc of
how to create sufficient parallel work needs to be addressed. One obvious possibility is to
allow multiple split nodes, which increases the degree of parallelism. The Zugzwang approach
and the DBTE algorithms depend fundamentally on multiple split nodes, but adopting one of
those algorithms would require a substantial reworking of ParaChinook. If the variation
splitting framework of PVSplit is to be maintained, how the extra split nodes are chosen raiscs
some interesting design decisions.

First, since most of the search effort is along the principal variation, the candidate split nodes
should probably be on the principal variation as well. More generally, if the algorithm

recursively calls itself for non-principal variation lines of play, then the current variation from
root to leaf node should contain the candidate split nodes. Dynamic PVSplit (DPVSplit) also

recognizes this observation.

Second, the subtrees rooted at the upper nodes of the principal variation represent the coarsest-
grained units of work because the subtrees are deeper. In other words, split nodes located
closer to the root of the tree contain higher granularity work than split nodes located closer to
the leaves. Therefore, if there is no work to be given out at the current split node, then the new
split node should be above the ply of the current split node instead of below it. DPVSplit also
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allows multiple split nodes, but those split nodes are closer to the leaves of the tree and

potentially suffer from low granularity.

Third, and lastly, there should be a preference for splitting ALL nodes before CUT nodes. Ina
strongly ordered game tree, it is likely that the first subtree will generate the cutoff at a CUT
node. Therefore, concurrently searching multiple subtrees of a CUT node in an attempt to
create more parallel work may simply be creating unnecessary work. However, if given a
choice of either splitting a CUT node or allowing searchers to starve, the CUT node could be

split.

Based on these observations, a new variation of PVSplit is introduced. Principal Variation
Frontier Splitting (PVFSplit) supports multiple split nodes along the current variation. The
frontier splitting technique is analogous to the general notion of the frontier nodes of a tree,
where the search is being expanded. The algorithm is a depth-first strategy that addresses the
practical issues of work granularity and the ALL/CUT node structure of the Alpha-Beta game
tree. Consequently, a newly created split node is located on the current variation, it is closer to
the root of the game tree than the current split node and splitting ALL nodes is preferred to
splitting CUT nodes.

The impact of frontier splitting is t o-fold. First, searchers do not need to starve if the parallel
work at a split node is exhausted. A new split node with more work may be created. Second,
as a positive side effect, frontier splitting reduces the effective synchronization fan-in at split
nodes. By the time the last search result of a split node is returned, the other searchers are,
ideally, already working at a different split node instead of waiting to synchronize. However,
strictly speaking, frontier splitting does not completely eliminate synchronization fan-in.
Because the split nodes can only exist on the current variation, the processors must still
synchronize at the root node. Rather than synchronizing at each split node, as is the case of
PVSplit, the root node is the only synchronization point under PVFSplit. Of course, even this
synchronization requirement can be eliminated if one wishes to allow multiple variations from
the root position to be searched in parallel. The current version of ParaChinook does not allow

multiple variation splitting.

The biggest drawback of PVFSplit is that the searches rooted at the new split node may have to
be initiated without the benefit of the bounds information returned by the first subtree.
PVFSplit trades off the potential of more search overhead for the potential benefits of reduced
starvation through multiple split nodes. Without bounds information, we are faced with either
allowing a full window search of the subtrees or we can use heuristics to create an artificial
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minimal window. In the current implet  tation of PVESplit, a minimal window is
heuristically created for all split nodes greater than 7 plics from the leaf nodes. The best score
at the deepest split node is the basis of the minimal window. If no such score is available, then
the value of the current subtree from the last iteration of iterative deepening is used.

Figure 5.1 contains the pseudo-code for the Principal Variation Fronticr Splitting algorithm.
The shading highlights the main differences between PVSplit and PVESplit.

The value(] array is now two-dimensional since each node of the current variation could
potentially be a split node under PVEFSplit. Some new local variables (newply, heuralpha,
heurBeta and pNew) are also defined.

The call to i sAnALLNode () before assigning work from the current split node makes explicit
what was implicit in the pseudo-code and discussion of PVSplit: if the current variation is not
the principal variation, it may contain CUT nodes. Therefore, if the current split node isan
ALL node, then the subtrees are farmed out to parallel searchers. If the current split node is a
CUT node, then each subtree is searched in sequence with a recursive call to PVEFSplit.

A new body of pseudo-code deals with choosing and assigning work from a new split node
before PVESplit can recurse out of the current split node. This is the key to allowing multiple
split nodes on the current variation. The function GetothersplitNode () selects the split node
from among the candidate nodes along the current variation. If the current split node is at ply
n, then the nodes at plies # - 1, n- 2, n - 3, etc. back to the root are in decrcasing order of
preference. Another consideration is whether the node is an ALL node or a CUT node. Lvery
ALL node on the current variation must already be split and exhausted of work before a CUT
node is selected. But if the alternative is starvation, a CUT node is selected to be a split node.
Once the new split node is selected, SynthMinwindow () is used to decide on the search
window to use for the search. As discussed earlier, full window scarches are only allowed
within 7 plies of the leaf nodes. Otherwise, a heuristic minimal window is synthesized.

One important aspect of ParaChinook's implementation of PVFSplit not included in the
pseudo-code, to improve its clarity, deals with cutoffs. It is possible for a cutoff to occur at a
split node that is closer to the root node than the current split node. Such a condition is detected
and PVFESplit immediately backs up to the split node where the cutoff occurred. This
phenomenon is an important advantage of PVFSplit over PVSplit because that cutoff would
not have been detected until the algorithm, after much more searching, systematically backed

up to that higher node.
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VAR { Changed Global Variable } :
Value : arrayl 1..MAX DEPTH -] of - { Results of each subl.ree at each ply }

array{ 1..MAX_WIDTH } of integer;
FUNCTION
PVFSplit( p : position; alpha, beta, ply 3 integer ) : integer;

VAR
index, value : integer; { Index and value of current move }
move : movelype; { Current move being scarched }
newPly @ integer; . { Ply of new spht node with' work ]
haurAlpha, heurBeta : integer; { Window for'new splitnode’} :
plew : position; - Position of new splitnode } ' . ...

BEGIN ( PVFSplit )
{ Check if at threshold for minimum granularity. Do not recurse to leaves. }
il ( ply = ( Treebepth - MinGranularity )} ) then
return( PVS( p, alpha, beta, ply ) ); { Yes. Do sequentially.

{ Generate legal moves and order them }

Width|[ ply | := legalMoves( p, Moves| ply } ); { Store moves in Moves [] }
if ( Width[ ply | = 0 ) then { Any legal moves in this position? }

return{ Evaluate( p ) ); { No. In checkers, this is a loss }
orderMoves( Moves| ply ) ); { Yes. Do move ordering }

{ Set up global variables }
Index| ply | = 2; { Continue with other subtrees, later )
Alphal ply | := alpha;

Beta( ply } := beta;
WorkOut | ply | := 0; { Scarch results still outstanding }

{ Scarch first ordered move with full window. Unroll the loop by one }
Score| ply ] =
-PVFSplit( p.Move| ply 1{ 1},
-Beta| ply 1, =-Alphal ply |, ply + 1 };

Value| ply J[ 1 ) := Score{ ply ];
Best. [ ply ] = 1;
1€ ( Score| ply ] 2 Betal ply } ) then ({ Cutoff afterpv?}
Index| ply } := oo { Yes. Will never enter loop }
Alphal ply ] := MAX( Alphal ply ], Score[ ply ) ); { Improve window? }

{ Scarch cach sibling subtree with minimal window }
{ Split node incomplete if there are local subtrees unsearched or if there are searchers slill to return )
while ( ( Index| ply } € Width( ply ] ) OR ( WorkOut[ ply )} > 0 ) ) do
begin { while }
it ( *3idle scarcher” AND Index[ ply ] € Width( ply ] ) then

begin { Local work out ) { Scarch each local subtree )
index := Index| ply 1; { An unique move leads to the subtree }
move := Moves| ply ][ index );

Index| ply ) := Index| ply ) + 1; { Advanceindex }

if ( isAoALLNode( p-).
begin {Local ALLnode

Value{ ply ]| ‘index
-PVFSplit(.p.move
- =Alphaf ply
end; { Local work out }
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{ while-loop continuation }

~else if ( “3idle searcher”’ ) then '[lfno more local work )

‘begin { Non-local work out '} . ¢ S5 give work from other split node )
“newPly 1= GetotherSplitNode( pNew Yy [ Magical function }

7 Andex- 1= - Tndex (- newPly ]; . { An unique move leads to the subtree
. -move’ 1= Moves([ newPly }[ index );

Index[ nchly }.am Index[ newi’ly ]+ 1; (Advancc index }

. A"_SynthMinmndow( pNew, heu:Alpha, ‘heurBeta. });: (Mq,hluscmmwindow)
Value[ .newBly.] [ :index"]. t» - [Negamnx value. and minimal window }
~FarmWork( pNew.move, ... [ pNew is'the split node )
L ,-heurBata, -heux:l\lpha, newPly +.1);
: 1 1= WOrkOut[ newPly 1+ (Kcep track of work given }
end, { Non-local work out) . .

else if ( index := ReturnedRasult() ) then
begin ( Local results in }

value := Value( ply ][ index 1:
WorkOut| ply ] := WorkOut| ply 1 = 1; { Workreceived )
if ( value > Scorel ply ] ) then { Scoureimproved, but did it fail high? }
begin { Updatc Best )
if ( value > Alphal ply | and value < Betal| ply ]} ) then
begin
value| ply J[ index ] := { Yes. Re-scarch }
-FarmWork( p.move, -Beta{ ply }, -value, ply + 1 });
Workout [ ply | := WorkOut|[ ply ] + 1; { Still not finished }
end;
else
Score{ ply | := value; {No}
Best| ply | := index;
end; { Update Best }
if ( score| ply ) 2 Betal ply ) ) then [ Cutoff?)
begin
Index| ply | :i= oo} { Yes. Force exit from loop }
interruptSearchers(); { Tell searchers o stop and retumn }
end;
Alphal ply ) := MAX( Alphal ply j, Scorel ply | );

{ Improve window? }

end; { Local results in }

{ while }
return( Scorel ply | ); { Done. Return best score
END; { PVFSplit)

Figure 5.1 - ParaChinook’s Principal Variation Fronticr Splitting (PVFSplit)
(Shading indicates key changes from pyvsplit (). Boxes group key functionality.)
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5.2 Experimental Results: Principal Variation Frontier Splitting

Table 5.1 shows the average speedups achieved by PVFSplit on the test suite for 2, 4, 8 and 16
searchers. Appendix C contains the detailed experimental data. The best average speedup is
2.91, achieved with 16 searchers for a speedup efficiency of 18%. Although this is a 52%
improvement in speedup over PVSplit, it is still low in absolute term:s as reflected by the low
speedup efficiency. However, a speedup of 2.91 does translate into more than one additional

ply of search in the same amount of time [SCT92].

Speedup % Scarch Ovcrhead % Time Idle
Scarchers Standard Standard Standard
Average | Deviation | Average | Deviation | Average | Deviation
2 148 0.325 8.76 174 128 4.90
4 2.03 0.546 243 263 308 8.17
8 2.7 0.803 464 46.3 48.8 7.74
16 2.91 1.07 83.5 63.5 67.1 7.00

Table 5.1 — Principal Variation Fronticr Splitting (PVFSplit) Parallel Performance
(specdup, scarch overhead and idle timc)
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Figure 5.2 is the speedup graph for PVFSplit, with a vertical bar represeating one standard
deviation. As a basis for comparison, the speedup curve for PVSplit is reproduced. Although
PVESplit increases the absolute speedup numbers, it does not change the basic shape of the
curve. As searchers are added, the speedup curve flattens to reflect the diminishing returns.
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Figurc 5.2 — Principal Variation Frontier Splitting (PVFSplit) Speedups
(vertical bar indicates one standard deviation)

With PVSplit, there is a trade-off between having low search overhead and high idle time. An
algorithm such: as PVFSplit makes the reverse trade-off and increases search overhead in order

to reduce idle time.
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Inherent in a multiple split node algorithm such as PVFSplit is the risk of higher search
overheads due to information deficiency regarding cutoffs and window bounds. In Figure 5.3,
we can see that PVFSplit, by being more aggressive than PVSplit in splitting nodes, also
suffers from significantly higher search overhead. Of course, the bottom line is that despite the
higher search overhead, PVFSplit’s speedup is higher.
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Interestingly, the search overhead of PVFSplit is dramatically higher than PVSplit, the idle
time of PVFESplit is modestly lower, as seen in Figure 5.4, but tae speedup is still greater for
PVFSplit. This suggests that the trade-off of higher search overhead for reduced idle time is

better overall since speedup increases.
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Despite the success in trading off search overhead for reduced idle time in PVESplit, the
amount of idle time still remains high. Referring to Figures 4.5 and 5.5, the idle time region of
the utilization profile has decreased in size while both the speedup efficiency and other

overheads regions have grown.
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Idle Time
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Figure 5.5 — Principal Variation Fronticr Splitting (PVFSplit) Normalized Utilization Profile

Reduced starvation through multiple split nodes and reduced synchronization fan-in still leaves
alot of idle time. Although the split node and synchronization policies of PVFSplit can be
further enhanced, the fact that search overhead grows as the synchronicity decreases implies
that the overall speedup and searcher utilization properties cannot be changed. Even if the need
to synchronize at the root position is eliminated, the corresponding growth in search overhead
will ensure diminishing returns for additional searchers. Furthermore, the programming and
software engineering effort required to debug and maintain a parallel search with so much

asynchronous behaviour would be prohibitive.

Despite the reduction in idle time with PVFSplit, it is still rather high at 67.1% with 16
searchers. What is causing the high idle time? First, although frontier splitting allows
PVFSplit to avoid synchronizing at each split node, there is still a need to synchronize at the
root of the game tree before the next variation an be searched. This synchronization occurs for
each subtree at the root position, and for each iteration in the iterative deepening process. One
can easily envision a different PVESplit in which the need to synchronize at the root node is
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removed, but that enhancement is not implemented yet in ParaChinook. Sccond, the number
of candidate split nodes only grows linearly with respect to the depth of the tree and, therefore,
there may insufficient nodes on the current variation to keep all of the searchers busy. Recall
that with a parallelism overload factor of 5, which is the case with 16 scarchers, there needs to
be 5 concurrent split nodes at all times in order to prevent starvation. Third, the impact of
stragglers has not been addressed yet. When searchers have to wait for a straggler, the result is
also idle time.

5.3 Improving Load Balancing: Straggler Preemption

As discussed earlier, the amount of search effort associated with each unit of work varics.
Consequently, there exists a load balancing problem when some searchers are given more
work than others. Searchers that force other searchers to wait at synchronization points, often
because they have been given a larger piece of work, are referred to as stragglers. Stragglers
cause synchronization overhead that appears as higher idle time.

Clearly, if there is a load balancing problem, the search effort should be re-balanced. The
approach taken with Dynamic PVSplit (DPVSplit) [Sch89a] is to assign idle searchers to help
the busy searchers. A simpler but more inefficient solution would be to interrupt the straggler
and then apply PVFSplit to the subtree that was previously assigned to the slow scarcher.
PVFSplit would use the idle searchers, which now includes the straggler, to search the subtree
in parallel. In essence, the subtree that caused the straggler is preempted and subdivided so that
it can be searched in parallel. This is similar to the “shoot-down” procedure of the Waycool
chess program [FeO88].

The main disadvantage of the interrupt-based approach is that the effort already invested into
searching the subtree is largely lost. An interrupted search is incomplete and the returned result
is useless. With DPVSplit, the straggler is not interrupted, so the parts of the subtree that have
already been searched are not lost. Still, with the help of a transposition table, the entire
computation of the straggler is not lost when it is interrupted. The parts of the subtree that have
been completed can be found in the transposition table. Still, the interrupt-based scheme is
clearly less efficient and less elegant than DPVSplit. Its main strength is that of simplicity of
implementation.

Simplicity was also the goal in designing the definition of what constitutes a straggler. Clearly,
it would be inefficient to wait until all of the searchers except for one, the obvious straggler, are
idle. Therefore, when a quorum of searchers is idle for longer than a threshold length of time,
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the remaining scarchers who are still computing become candidate stragglers. One of them is
selected, interrupted and its subtree is searched in parallel. Currently, when ni:ore than a quarter
of the scarchers are idle for longer than 5 seconds, then the searcher who has been searching its
assigned subtree for the longest time is selected for preemption. The quorum definition, time
threshold and straggler choice have been derived from informal experiments. It has been
observed that a small quorum and short time thresholds result in aggressive load balancing,
which can be counter-productive if the overhead of interrupting the straggler is not outweighed

by the potential benefits.

Although the straggler preemption technique described above is simple, it does appear to be
effective in improving the parallel performance of both PVSplit and PVFSplit. More
sophisticated load balancing techniques may be able to further improve the speedups, but as the
technique grows in sophistication, so docs the overhead of executing it. Still, there is room for

furtiier exploraticn of load balancing strategies in the future.

5.4 Experimental Results: Straggler I - comptior

Table 5.2 presents the speedup performance of PVSplit with the simple load balancing strategy
for stragglers. ‘To distinguish it, PVSplit with the load balancing procedure is referred to as

PVSplit-LB.

Speedup % Scarch Overhead % Time Idlc
Scarchers Standard Standard Standard
Average Deviation Average Deviation Average Deviation
2 1.44 0.346 11.3 230 13.0 2.86
4 1.89 0.567 23 35.7 374 3.69
8 2.06 0.539 213 346 63.6 3.23
16 2.00 | 0.530 242 34.1 814 1.66

Table 5.2 — Principal Variation Spliiting with Load Balancing (PVSplit-LB) Parallel Performance
(speedup, scarch overhead and idle time)

For each configuration of searchers, PVSplit-LB achieves marginally higher speedups than
PVSplit by reducing the idle time due to synchronization overhead. Given the number of idle
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searchers with PVSplit, the load balancing scheme is likely to be active in precmpting the
searchers who have work to reduce starvation. Load balancing and starvation prevention are
closely related concepts. However, frontier splitting tries to reduce starvation by acting d
priori, before idle time accumulates, and straggler preemption trics to balance the work a
posteriori, after already incurring idle time. Consequently, the performance improvement due
to frontier splitting is greater than the improvement due to straggler precmption.

Interestingly, the speedup declines (marginally) between 8 and 16 searchers. It is possib! “hat
starvation is forcing the load balancing mechanism to frequently interrupt scarchers, incurring
the overheads already discussed and decreasing overall performance.

Having both starvation prevention and load balancing is better than either strategy by itsclf.
Table 5.3 shows the improved speedup values for Principal Variation Frontier Splitting with
load balancing (PVFSplit-LB). PVFSplit-LB achieves the highest performance obscrved so
far, with an average speedup of 3.32 wiw.: 16 searchers.

Speedup % Scarch Overhcad % Time ldle
Scarchers Standard Standard Standard
Avcrage Deviation Average Deviation Average Deviation
2 1.53 0.402 11.8 230 841 2.57
4 2.18 0.491 27.0 24.5 238 5.61
8 2.80 0.779 59.8 450 40.8 6.58
16 332 1.01 70.9 414 62.5 5.07

Table 5.3 — Principal Variation Fronticr Splitting with Load Balancing (PVFSplit-LB)
Parallel Performance
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The speedup curves for PVSplit-LB and PVFSplit-LB are in Figure 5.6. Note that the average
speedup for PVESplit-LB is always higher than the average speedup for PVSplit-LB.
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Figure 5.6 — PVSplit and PVFSplit with Load Balancing Spcedups
(vertical bar indicatcs onc standard deviation)



As the best performing algorithm of these exncriments, PVESplit-LB’s utilization profile,
given in Figure 5.7, is worth examining. Although the idle time portion still remains a
significant part of the profile, it is substantially smaller than in the case of PVSplit without load
balancing (Figure 4.5).

E_,_:] Speedup Efficiency

Other Overheads

% Real Time

72  1dle Time

Searchers

Figure 5.7 — Principal Variation Fronticr Splitting (PVESplit-LB) with Load Balancing
Normalized Utilization Profilc

Frontier splitting and straggler preemption have been effective in increasing the speedup
efficiency of the parallel search by trading off idle time for more speedup and getting higher
search overhead as a negative side effect. Since neither search overhead nor idle time can be
eliminated completely, PVSplit-based algorithms will always suffer from diminishing returns.
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5.5 Summary of Experimental Results: All Algorithms

A total of four related algorithms have been evaluated. Principal Variation Splitting (PVSplit)
is the basis of all of the algorithms. Because PVSplit suffers from starvation due to narrow
game trees with low branching factors, Principal Variation Frontier Splitting (PVFSplit) was
introduced to incrcase the average degree of parallelism. Because both PVSplit and PVFSplit
suffer from load imbalances due to stragglers, a simple but useful straggler preemption

strategy was implemented and evaluated.

In Figure 5.8, we can see the speedup curves for all four algorithms. Although frontier
splitting and load balancing give PVFSplit-LB the best speedup curve, it remains in the same

diminishing returns shape as PVSplit.
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Figure 5.9 shows the same speedup information as Figure 5.8, but with unequal axes ranges,
in order to show a close-up of the speedup curves.
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Figure 5.9 — All Algorithms (Closc-Up) Spcedups
(higher curves are better)
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For completeness, Figures 5.10 and 5.11 show the search overhead and idle time graphs of all

four algorithms.

The only anomaly occurs when the search overhead curves of PVFSplit and PVFSplit-LB
cross over in Figure 5.10. Since interrupting a straggler results in the loss of partial search
results, it is not surprising that for certain configurations of searchers, PVFSplit-LB has more
search overhead than PVFSplit. However, it is speculated, interrupting a straggler and
preempting its subtree typically means that the subtree is searched more quickly and the search
result may be used to improve the parameters (i.e. windows) of other searches in progress
sooner, thus reducing search overhead through reduced information deficiency.
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5.6 Concluding Remarks

From these experimental results, we can conclude that frontier splitting is an useful technique
to reduce the starvation of searchers. Furthermore, the need for a load balancing stratcgy to

deal with stragglers is also clear.

(lower curves arc better)

In retrospect, arguing that PVESplit, both with and without load balancing, is better than

PVSplit is somewhat unfair. Principal Variation Splitting was originally intended to form the
basis of parallel search algorithms and does not address application-depcndent issues such as
game tree branching factor and stragglers. Nonetheless, the poor performance of PVSplit on
narrow checkers game trees emphasizes the close relationship between branching factor and
the potential speedup. Also, the experimental results point out that some of the successes of

computer chess research cannot be directly adopted in other, closely related domains,
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Chapter 6

Conclusions

The first implementation of a parallel Chinook demonstrated how closely the game tree
branching factor is linked with the speedups that can be obtained with tree decomposition
algorithms, such as Principal Variation Splitting (PVSplit). The narrow checkers game trees
have a branching factor that is over an order of magnitude smaller than in chess game trees.
With a branching factor of 2.84, the degree of parallelism offered by checkers game trees is
quickly overloaded by even a moderate number of parallel searchers. For 16 searchers, there
are over 5 times as many searchers as there are units of parallel work available at a split node.
Consequently, PVSplit suffers from starvation.

To reduce the amount of starvation, Principal Variation Frontier Splitting (PVFSplit) was
developed. PVFSplit attempts to create more parallel work by allowing each node on the
current variation to be a split node. Experiments with PVSplit and PVFSplit on a test suite of
positions, using a4 BBN TC2000 shared memory parallel computer, show that PVFSplit
achieves 52% better speedups than PVSplit (with 16 searchers) by lowering the idle time
associated with starvation. Additional support for load balancing through straggler preemption
further improves the speedup to a high of 3.32 with 16 searchers. In absolute terms, the

speedups achieved with PVESplit are low.

The experience of developing ParaChinook has resulted in three main observations. First, a
relatively high branching factor in the application domain cannot be taken for granted. One can
choose the application, but one usually cannot choose the properties of that domain. Any
discussion of parallel performance must be put in the context of the natural degree of
parallelism of the application domain. To present speedups without mentioning the branching
factor is to present a partial picture. Second, it is important to note how many of the subtrees
rooted at a node require a substantial amount of effort to search. Some of the branches may
represent poor move choices that lead to quick refutations. These subtrees are considerably
smaller than the other more viable subtrees, and thus contain less work. It is speculated that
for checkers, there are about 2 viable moves per node on average, even if the actual branching



factor is, say, 8. A high branching factor does not guarantee large amounts of parallel work.
Third, any PVSplit-based will suffer from the same trade-off between starvation and scarch
overhead due to the branch-and-bound nature of Alpha-Beta search. Furthermore, there are a
limited number of split nodes available in a single variation, therefore a future version of
ParaChinook may have to use a non-depth first search strategy to find enough split nodes to
get acceptable speedups.

6.1 A Future ParaChinook: Ideas and a Paper Design

Experimental results show that the current version of ParaChinook cannot profitably use more
than about 8 searchers before the speedup curve begins to level off. Given the trend towards
more processors in parallel computers, ParaChinook has to be updated too. Even with
PVFSplit, the main reason for poor speedups is searcher starvation.

However, PVESplit should not be abandoned altogether. On the one hand, the depth first
search nature of PVFSplit is appealing. Its single controller is easier to debug than a fully
distributed control structure and the low control-related storage requirement! is an important
advantage when the total node count of the game trees is in the millions. On the other hand, a
single variation splitting framework cannot provide enough split nodes to climinate starvation
when the trees are narrow. A compromise on pure depth first search may be sufficient to
achieve acceptable performance.

The storage overhead of best first search and other non-depth first search strategies can be
reduced if only the top few plies of the search tree are expanded in this manner. Recall that
with the DBTE algorithms, the nodes of top plies of the game tree are queued in memory and
are given to a pool of parallel searchers. A similar processor model can be adopted within
ParaChinook.

The individual searchers can be clustered into groups of 4 or 8 with a single controller per
cluster. The main ParaChinook program builds the upper plies of the search tree in memory
in a non-depth first manner so that many split nodes vi<: 7~nerated. A subtree is given 1o a
cluster of searchers who search it to the nominal depth using PVFSplit. Because the subtrees
given to the clusters of searchers are near the root of the tree, they are coarse-grained units of
work, which will result in better parallel performance. Because the clusters of searchers build

1 Of course, data structures such as transposition tables do require large amounts of storage. However,
they are supporting data structurcs and arc not cssential to the control aspects of the tree scarch.
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the last several plies of the tree depth-first, the low control-storage requirements of the current

ParaChinook is largely maintained. Furthermore, clustering the searchers reduces the number
of entities contending for a concurrent data structure. such as a work queuc. In effect, a cluster
of scarchers exccuting PVFESplit becomes a parallel static evaluation function from the point of

view of the main ParaChinook.

The hybrid design may not be the best choice for a new ParaChinook, but it is clear that small
changes to the basic PVSplit algorithm, in the same vein as PVFSplit, will be insufficient to
improve the speedups on narrow game trees. However, PVESplit with a small number of
searchers can be an uscful building block for other parallel search algorithms.

6.2 Final Comment: Quality Versus Quantity

The method of quantifying performance in this thesis has been the parallel speedup. As
already touched upon, speedup has both advantages and disadvantages as a performance
metric. It is simple to understand, but its simplicity does not capture other important aspects of

performance.

For example, although a speedup of 3.32 with 16 searchers is low in absolute terms, it does
translate to over 1.5 extra plies of search depth in the same amount of time. Furthermore,
since the branching factor is 2.8+, the <peedup value is greater than the theoretical ideal speedup
with PVSplit: speedup equal to the branching factor.

The ideal performance metric would be the improvement in the quality of move choice that
comes with parallelism. Since the goal is to improve the gamu playing program’s strength, the
decision quality should be the bottom line. Towards that, the potential of solving the game of
checkers and creating a perfect checkers oracle is intriguing. Using the endgame databases, a
future version of Chinook may be able to judge the quality improvement that results from
parallelism. However, that remains a future research project.
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Appendix A

Rules of Checkers In Brief:

Standard checkers notation assigns each square with a number, as in Figure A.1. Moves are
given as from-square/to-square pairs. Black initially occupies squares 1 to 12 inclusive and
White occupies squares 21 to 32 inclusive. If an opponent’s checker is on an adjacent square,
and there is an empty square behind it on the same diagonal, it can be captured (i.e. jumped)
and removed from the board. In checkers, captures must be taken. Multiple captures are
allowed and if more than one capture is possible, the player can choose. Checkers can only
move and capture forwards. When a checker reaches the opponent’s back rank (i.c. a White
checker reaches one of 1 to 4, a Black checker reaches one of 29 to 32), it is promoted 10 a
king. Kings can move and capture boih forwards and backwards. A player wins if’ the
opponent has no more pieces on the board, or if the epponent fias no more legal moves. Black

moves first.
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Figurc A.1 — Checkers Board Notation

1 Adapted from [STL93]



Appendix B

Tinsley-Chinook 1992 Test Saite!

Game 1
% 7 7 :// J V}; 4 Black: Chinook
s % % 7 7/ ’//, White: Tinsley
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See [SchY2] and [STLS3] for further details on the match,
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Black: Tinsley
White: Chinook

White to move
Move: 28-24

Piece count: 20
Legal moves atroot: 10

Black: Chinook
White: Tinsley

Black to move
Move: 12-16

Piece count: 20
Legal moves at root: 9

Black: Chinook
White: Tinsley

Black to move
Move: 16-20

Piecc count: 20
Legal moves at root: 6
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Black: Chinook
White: Tinsley

Black to move
Move: 1-6

Piece count: 14
Legal moves at root: 8

Black: Tinsley
White: Chinook

White to move
Move: 21-17

Piece count: 14
Legal moves at root: 7

Black: Tinsley
White: Chinook

Biack to move
Move: 5-9

Piece count: 18
Legal moves at root: 7
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Black: Tinsley
White: Chinook

Black to move
Move: 1-5

Piece count: 20
Legal moves at root: 9

Black: Tinsley
White: Chinook

White to move
Move: 21-17

Piece count: 16
Legal moves at root: 8

Black: Chinook
White: Tinsley

Black to move
Move: 5-9

Piece count: 18
Legal moves atroot: 10
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Appendix C

Experimental Data In Detail

Sequential Chinook

}

Game | Move | Depth | Scorc Nodes Time N/S Black Tum | Picces | Root BF

1 11-15 17 -14 4,147,002 594 6,981 Chinook B 18 7

) 6-10 17 -16 1,721,679 231 7,453 Tinsley B 20 8

7 28-24 15 1 1,697,552 249 6,817 Tinsley W 20 10

8 12-16 17 13 2,990,826 4117 7,172 Chinook B 20 9

9 16-20 19 6 1,358,169 188 7,224 Chinook B 20 6
13 14-17 15 -4 3,056,458 431 7,092 Chinook B 18 11
14 22-18 iS 7 3,224,856 462 6,980 Tinsley W 18 11
15 9-13 17 -9 2,768,981 379 7,306 Tinsley B 18 9
17 1-6 17 -5 3,635,672 487 7,465 Chinook B 14 8
19 21-17 15 10 1,771,596 250 7,086 Tinsley W 14 7
22 5-9 19 13 1,776,809 246 7,223 Tinsley B 18 7
23 1-5 17 3 2,148,151 300 7,161 Tinsley B 20 9
27 21-17 15 8 1,440,079 204 7,059 Tinsley W 16 8
29 5-9 17 2 3,567,708 508 7,023 Chinook B 18 , : x. ‘‘‘‘‘ ‘
30 22-18 17 -9 3,276,323 441 7,330 Tinsley W 1 | l —l-«w
31 3-7 17 -12 3,610,286 489 7,383 ) —"‘;;3]?;)'_ N B H 16 12
33 11-15 15 -2 1,807,880 253 7 146 Chinook B 18 11
36 10-14 19 8 3,331,558 511 T 720 Chinook B 18 9
37 7-11 17 -8 1,689,039 231 ; f. ’.*"'..'. Chinook B 18 8
38 23-19 17 4 5,010,806 Y ' +d9 Tinsley W 24 8

Table C.1 — Tiasley-Chinook 1992 Test Suite, Scquential Scarch Dala
(time in scconds)
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Referring to Table C.1, in the position from Game 5, the move played by Black (Dr. Tinsley)
was 6-10. Sequential Chinook searched that position to a nominal depth of 17 plies and
selected 6-10 as the best move with a score of -16 points, where a piece (i.e. checker) is worth
100 points and a king is worth an additional 30 points. Sequential Chinook searched 1,721,679
total nodes in 231 seconds (7,453 nodes/second). In that position, there were a total of 20
picces remaining on the board, and there were 8 legal moves in the root position.

Principal Variation Splitting

% Scarch % Idle
Game | Score Nodes Time Speedup Overhead Time Notes
1 -14 4,128,252 388 1.53 -0.450 13.6
5 ~-17* 1,657,770 156 1.48 -3.71 16.0
7 1 1,932,830 183 1.36 13.9 15.5
8 13 4,107,391 382 1.09 37.3 16.1
9 6 1,046,004 100 1.88 -23.0 22.2
13 -4 3,839,579 403 1.07 25.6 18.5
14 7 3,310,092 331 1.40 2.64 21.7
15 -9 3,042,091 327 1.16 9.86 29.9
17 -5 4,184,049 369 1.32 15.1 10,
19 10 1,872,404 187 1.34 5.69 ~:'3.'f
22 8* 2,118,712 208 1.18 19.3 24.5
23 4 2,636,876 227 1.32 22.8 10.5
27 8 1,629,378 146 1.40 13.2 11.2
29 2 3,772,099 345 1.47 5.73 15.6
30 -11% 5,369,202 479 0.933 63.9 14.0 Plays 31-;':'
31 -12 3,518,025 285 1.72 -2.56 8.92
33 -6* 1,964,771 213 1.19 8.68 18.0
36 3* 4,129,920 449 1.14 24.0 23.3
37 -10%* 1,498,570 138 1.67 -11.3 18.9
38 7% 3,795,110 387 1.85 -24.3 24.1
Average:
Std. Deviation:

Table C.2 — Principal Varision Splitting (PVSplit), 2 Searchers Results
(* = scorc is different irum scquential scarch, time in scconds)
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% Scarch %o ldie
Game | Score Nodcs Time Specdup Overhead Time Notes

1 -14 4,863,334 383 1.55 17.3 4q7.2
5 -13* 1,389,027 84 2.75 -19.3 39.5
7 1 2,022,535 143 1.74 19.1 42.9
8 13 3,724,304 267 1.56 24.5 44.8
9 6 1,037,548 68 2.76 -23.6 42.9
13 -4 3,635,724 288 1.50 19.0 42.1
14 7 3,171,213 21 1.67 -1.66 54.9
15 -9 3,006,452 267 1.42 8.58 57.3
17 -5 3,883,726 263 1.85 6.82 44.5
19 10 2,008,442 175 1.43 13.4 49.9
22 21%* 4,076,931 385 0.639 129 56.0
23 4* 3,071,762 200 1.50 43.0 40.7
27 8 1,758,767 114 1.79 22.1 37.4
29 2 3,717,482 271 1.87 4.20 46.7

30 -1i% 5,795,981 381 1.17 76.9 40.0 Plays 31-27
31 -12 3,522,265 213 2.30 -2.44 38.5
33 -2 2,322,067 190 1.33 28.4 43.7
36 8 3,823,024 341 1.50 14.8 54.1
37 -10* 1,477,428 85 2.72 -12.5 36.4
38 11 3,295,441 254 2.82 -34.2 49.7
Average: 45:5

std. Deviation: 1 :‘:.'..6'.36 '

Table C.3 — Principal variation Splitting (PVSplit), 4 Scarchers Results
(* = score is different from scquential scarch, time in scconds)
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(* = scorc is diffcrent from sequential search, time in seconds)

84

% Scarch % Idle
Game | Score Nodes Time Specdup Overhead Time Notes
1 -14 5,069,863 369 1.61 22.3 70.8
5 -13% 1,388,912 88 2.63 -19.3 71.1
7 1 1,905,201 132 1.89 12.2 70.1
8 13 4,182,553 284 1.47 1.9 70.4
9 6 1,035,137 67 2.81 B 71.0
13 -4 3,974,516 285 1.51 J"i; 64.7
14 7 3,138,124 262 1.76 3.%¢ 76.0
15 ~6* 2,843,340 222 1.71 2,69 75.0
17 -5 3,981,729 253 1.92 9.52 69.7
19 10 2,081,931 165 1.52 17.5 70.8
22 21* 4,277,504 406 0.606 141 77.4
23 4% 2,941,137 173 1.73 36.9 67.0
27 8 1,618,998 96 2.13 12.4 64.3
29 2 3,741,091 263 1.93 4.86 71.9
30 -9 4,262,943 279 1.60 30.1 66.4
-12 3,502,958 198 2.47 -1.31 66.0
- 2,357,636 167 1.52 30.4 62.3
" 3,735,377 | 329 1.55 12.1 76.3
37 -9% 1,627,193 l K 2,41 -3.66 67.9
38 11* 3,373,991 i .45 2.93 -32.7 73.2
Average:
Std. Deviation:
Table .4 — Principal Variation Splitting (PVSplit), 8 Scarchers Results




%Scm';h % 1dle
Game | Score Nodes Time Speedup Overhcad Time Notes
1 -14 5,107,005 367 1.62 23.2 85.1
] ~13* 1,390,055 88 2.63 -19.3 85.0
7 1 1,913,578 131 1.90 12.7 84.9
8 13 4,181, 648 283 1.47 39.8 85.1
9 6 1,035,950 67 2.81 -23.7 85.3
13 -4 3,279,630 214 2.01 7.30 83.3
14 7 3,223,037 268 1.72 -0.0564 87.9
15 -6% 2,873,485 224 1.69 3.77 87.7
17 -5 4,322,582 250 1.95 18.9 83.5
19 10 2,128,884 169 1.48 20.2 85.3
22 21* 4,078,999 371 0.663 130 88.0
23 4% 2,939,777 174 1.72 36.9 83.3
27 8 1,641,243 98 2.08 14.0 81.
29 2; ) 3,745,228 264 1.92 4,98 85.7
30 -9 4,250,16" 278 1.61 29.7 82.8
31 -12 3,502,222 196 2.49 -2.99 83.3
33 -2 2,617,044 187 1.35 44.8 80.4
36 8 3,730,132 3217 1.56 12.0 88.1
37 -10* 1,458,777 81 2.85 -13.6 83.4
38 11* 3,379,468 245 86.7
Average: o 84.8
Std. Deviation: 1 2.8

Table C.5 — Principal Variation Splitting (PVSplit), 16 Scarchers Results

(* = score is different from sequential scarch, time in scconds)
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Principal Variation Fronticr Splitting

% Search % ldle - ~
Game | Score Nodes Time Speedup Overhead Time Notes
1 -14 4,759,074 423 1.40 14.8 7.85
5 -16 1,494,056 120 1.93 -13.2 9.15 - h
7 1 1,889,738 170 1.46 11.3 11.44 »
8 13 3,667,551 325 1.28 22.6 10.8 N
9 6 946,151 82 2.29 -30.3 15.2
13 -4 3,468,300 345 1.25 13.5 12.8
14 7 3,291,823 316 1.46 2.08 19.2
15 -9 3,916,876 381 0.995 41.5 20.7 _
17 -5 3,937,807 311 1.57 8.31 7 |
19 10 1,923,675 180 1.39 8.58 12.9 N
22 13 2,013,199 174 1.41 13.3 14.1
23 q* 2,657,557 216 1.39 23.7 5.23 T
27 8 1,330,856 106 1.92 ~-7.58 4.74 -
29 2 4,055, 25¢C 357 1.42 13.7 12.1
30 -9 3,850,291 401 1.11 17.5 11.3
31 -13* 4,361,494 365 1.34 20.8 12.3
33 —-6* 1,952,806 188 1.35 8.02 11.4
36 8 4,426,706 483 1.06 32.9 23.6 B
37 -9 1,590,280 138 1.67 -5.85 15.1 B
38 6% 3,995,994 373 1.92 -20.3 18.2
Average: 1.48 8.76 12.8
Std. Deviation: 0.325 17.4 4.90

Table C.6 — Principal Variation Fronticr Splitting (PVESplit), 2 Scarchers Results
(* = score is diffcrent from scquential scarch, time in scconds)
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% Scarch % ldle
Game | Score Nades Time Speedup Overhead Time Notes

1 -14 6,859,264 346 1.72 65.4 18.6
"”"b ‘t13‘ 1,365,501 7 3.25 -20.7 29.9
7 1 2,143,513 122 2.04 2”13 30.2
8 13 4,379,309 233 1.79 46.4 26.1
3 6 1,095,126 65 2.89 -19.4 38,2
13 -4 3,808,314 260 1.66 24.6 33.6
14 7 3,850,317 255 1.81 19.4 40.6
15 -9 3,754,925 256 1.48 35.6 43.0
17 -7 4,360,652 197 2.47 19.9 18.5
19 10 2,476,755 142 1.76 39.8 28.8
22 g 2,654,269 181 1.36 49.4 36.7
23 4 3,676,823 175 1.71 71.2 15.7
21 A 2,018,256 127 1.61 40.2 32.6
29 2 4,365,675 238 2.13 22.4 26.2

30 -10* 4,269,145 259 1.73 30.3 30.9 Plays 31-27
31 -12 3,554,156 184 2.66 -1.55 26.3
33 -3 2,248,628 147 1.72 24.4 26.2
36 6+ 4,451,511 345 1.48 33.6 45.7
37 -9* 1,309,180 81 2.85 -22.5 39.8
38 q 5,061,730 288 2.49 1.02 29.1
Average: 2.03 | 24.3 | 308"
Std. Deviation: 0.546 | 26.3 '8.17

Table C.7 — Principal Variation Fronticr Splitting (PVFSplit), 4 Scarchers Results
(* = scorc is diffcrent from scquential scarch, time in seconds)
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%o Search % Idle
Game | Score Nodes Time Speedup Overhead Time Notes
1 -13* 11,003,085 397 1.50 165 41.9 Plays 10-14
5 ~13* 1,603,113 55 4.20 -6.89 46.2 S
7 1 2,322,187 94 2.65 36.8 50.9 -
8 q* 4,575,062 205 2.03 53.0 56.6 i o
9 6 1,246,268 50 3.76 -8.24 53.5
13 -4 4,587,382 223 1.93 50.1 51.6
14 7 1,771,712 173 2.67 48.0 46.9
15 =5* 4,271,397 175 2.17 54.3 53.6
17 -5 4,769,071 160 3.04 31.2 44.4 S
19 10 3,250,465 113 2.21 83.5 40.6 a
22 21% 3,109, 622 130 1.89 75.0 54.4
23 4% 5,069,033 143 2.10 136 31.1
27 8 2,222,705 67 3.04 54.4 36.5
29 2 5,600,403 199 2.55 57.0 45.9 -
30 -10* 4,639,208 189 2.37 4.6 51.9 Plays Ji~:27
31 =12 3,909,546 147 3.33 8.29 51.6 h
33 =3* 2,243,591 78 3.24 24.1 43.5
36 S* 5,212,331 246 2.08 56.5 58.3
37 ~10* 1,558,696 81 2.85 -7.72 63.4
38 11+ 3,830,082 158 4.54 -23.6 53.4 o
Average: 2.N 46.4 48.8
Std. Deviation: ¢.803 46.3 7.74

Table C.8 — Principal Variation Fronticr Splitting (PVFSplit), 8 Scarchers Results
(* = scorc is diffcrent from scquential search, time in scconds)
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% Scarch % Idle
Game | Score Nodes Time Speedup Qverhead Time Notes

1 -13¢ 10,297,066 273 2.18 148 61.9
5 -16 2,298,921 4 3.12 33.5 70.3
i 1 2,432,525 92 2,711 43.3 74.1
8 13 6,781,585 245 1.77 127 72.1
9 6 1,667,907 41 4.59 22.8 62.7
13 -4 3,597,422 122 3.53 17.7 71.0
14 7 $,132,661 164 2.82 59.2 69.5

15 -8* 6,087,879 259 1.46 120 78.1 Plays 11-15
17 -12¢ 6,824,302 173 2.82 87.7 62.5
19 10 3,289,290 100 2.50 85.7 68.3
22 18* 5,082,558 127 1.94 186 62.0
23 4* 5,691,739 122 2.46 165 55.3
27 e 2,409, 200 56 3.64 67.3 59.5
29 3+ 6,113,307 141 3.60 71.4 58.5
30 ~13+ 6,471,126 202 2.21 97.5 69.7
31 -12 5,136,121 128 3.82 42.3 62.5
33 ~3* 2,964,894 82 3.09 64.0 63.2
36 3* 11,006,484 648 0.789 230 82.7
37 -8 1,242,234 45 5.13 -26.5 74.0
38 5% 6,434,754 174 4.12 28.4 64.6
Average: 2.91 83.5 67.1°

Std. Deviation: 1.07 63.5 | 7.00

Tablc C.9 — Principal Variation Frontier Splitting (PVFSplit), 16 Scarchers Results
(* = scorc is diffcrent from scquential search, time in scconds)
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Principal Variation Splitting with Load Balancing

% Scarch %o ldle -
Game | Score Nodes Time Specdup Overhead Time Notes
1 -14 4,153,624 382 1.56 0.160 11.3
L) =17+ 1,560, 965 143 1.62 -9.33 14.3—‘— o
7 1 2,000,956 180 1.38 17.9 11.3 o
8 13 4,167,069 378 1.10 39.3 13.3 T
9 6 967,379 84 2.24 -28.8 15.3
13 -4 3,946,809 412 1.05 29.1 15.7
14 7 3,515,729 318 1.45 9.02 11.3 o
15 -9 3,103,781 286 1.33 12.1 16.6 h
17 -5 4,057,776 332 1.47 11.6 9.98 -
19 7* 1,976,706 209 1.20 11.6 17.9 -
22 8* 2,127,427 195 1.26 19.7 16.5
23 4 2,637,240 226 1.33 22.8 9.90 ) )
27 8 1,637,130 146 1.40 13.7 11.5 -
29 2 3,785,136 344 1.48 6.09 11.3
30 -11% 5,716,446 523 0.855 74.5 12.9 Plays 31-27
31 -12 3,546,584 287 1.70 -1.76 8.36 -
33 —6* 1,965,308 212 1.19 8.71 17.7
36 3* 4,313,101 406 1.26 29.5 10.9
37 -9* 1,291,749 105 2.20 -23.5 9.53
38 6% 4,191,066 403 1.78 -16.4 14.0
Average: 1.44 11.3 13.0
std. Deviation: 0.346 23.0 2.86

Table C.10 — Principal Variation Splitting with Load Balancing (PVSplit-LB), 2 Scarchers Results
(* = scorc is different from scquential scarch, time in scconds)



o — - % Scarch % ldle
Game | Score Nodes Time Speedup Overhead Time Notes
1 -14 4,897,059 323 1.84 18.1 35.8
5 -13¢ 1,410,455 82 2.82 -18.1 37.4
7 1 2,117,522 145 1.72 24.7 39.4
A 13 3,946,858 289 1.44 32.0 39.6
9 6 1,068,764 63 2.98 -21.3 37.7
13 ~4 3,846,023 298 1.45 25.8 38.6
14 7 3,539,065 242 1.91 9.74 39.3
15 -6* 2,799,241 184 2.06 1.09 41.5
17 -5 3,998,435 245 1.99 9.98 38.1
19 10 2,008,948 160 1.56 13.4 44.6
22 21* 3,883,701 276 0.891 119 39.8
23 qa* 2,764,950 159 1.89 28.7 32.4
27 8 1,760,144 111 1.84 22.2 36.4
29 2 3,875,373 256 1.98 8.62 36.0
30 -13* 6,251,358 388 1.15 90.8 33.3 Plays 31-27
31 -12 3,733,258 203 2.41 3.41 30.5
33 -2 2,408, 405 196 1.29 33.2 40.6
36 8 5,576,072 348 1.47 67.4 32.1
37 —9* 1,838,554 110 2.10 8.85 33.3
38 11* 3,435,448 245 2.93 -31.4 42.0
Average: 1.89 | ¢ 22,3 | 37.4 -
Std. Deviation: | -0.567 | 38.7. | 3.69

Table C.11 - ~ Principal Variation Splitting with Load Balancing (PVSplit-LB), 4 Scarchers Results
(* = score is different from scquential scarch, time in seconds)
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% Scarch % ldle B » o
Game | Scorc Nodes . Time Speedup Overhead Time Notes
1 -14 4,784,723 299 1.99 15.4 64.0
5 -13% 1,413,156 85 2.72 -17.6 66.2 N
7 1 2,106,787 133 1.87 29.4 64.3
8 13 | 4,529,564 | 262 1.59 51.5 59.6 -
9 6 1,072,509 62 3.03 -21.0 69.0 S
13 -4 3,545,173 222 1.94 16.0 63.4
14 1 3,639,907 235 1.97 12.9 65.7
15 -6* 2,881,579 167 2.27 4.07 66.5
17 -5 4,573,658 238 2.05 25.8 59.1 o
19 10 2,174,969 159 1.57 22.8 67.7 B -
22 Z1* 4,255,805 275 0.895 140 65.0
23 q* 2,971,705 161 1.86 38.3 63.4
27 8 1,629,990 95 2.15 13.2 63.3 o
29 2 4,033,818 239 2.13 13.1 62.3
30 -9 4,305,663 268 1.67 31.4 64.5
31 -12 3,721,975 171 2.86 3.09 55.7
33 -2 2,653,464 185 1.37 46.8 60.2
36 8 4,086,296 252 2.03 22.17 66.0
37 ~-9* 1,775,127 105 2.20 5.10 60.2 _
38 11* 3,698,824 239 3.00 -26.2 €4.9
Average: 2.06 21.3 63.6
std. Deviation: | ~0.539 | ' 34.6 3.23

Table C.12 — Principal Variation Splitting with Load Balancing (PVSplit-LB), 8 Scarchicrs Results
(* = score is differcnt from scquential scarch, time in seconds)
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% Scarch % Idle
Game | Score Nodes Time Speedup Overhead Time Notes

1 -14 5,190,807 310 1..92 25.2 80.9
5 -13+ 1,441,710 87 2.66 -16.3 82.3

7 1 2,167,872 136 1.83 27.7 82.3 _
—mB 13 4,578,935 265 1,57 53.1 79.3
9 6 1,079,224 63 2.98 -20.5 85.2
13 -4 4,434,180 305 1.41 45.1 79.7
14 7 3,532,129 218 2.12 9.53 82.0
15 -9 3,397,632 188 2.02 22.7 81.3
17 -5 4,149,836 236 2.06 14.1 81.9
19 10 2,117,321 158 1.58 22.9 83.3
22 21+ 4,231,845 276 0.891 138 82.3
23 4* 2,824,026 151 1.99 31.5 81.8
27 8 1,660, 368 96 2.13 15.3 81.3
29 2 4,039,350 250 2.03 13.2 81.8
30 -9 4,313,981 268 1.67 31.7 82.1
31 -12 3,922,302 186 2.63 8.64 78.5
33 -2 2,721,917 190 1.33 50.9 79.1
36 8 40,95, 680 251 2.04 22.9 82.8
37 ~9* 1,914,082 106 2.18 13.3 78.7
38 11+ 3,733,014 241 2.98 -25.5 8l.8
Average: o 2.000 242 i ﬁ:"‘:I;B:Igé»

Std. Deviation: 0.530 .| 34,1 | 1:66% "

Table C.13 — Principal Variation Splitting with Load Balancing (PVSplit-LB), 16 Searchers Results
(* = score is differcnt from scquential scarch, time in scconds)

93



Principal Variation Frontier Splitting with Load Balancing

% Scarch 9% ldle )
Game | Score Nodes Time Speedup Overhead Time Notes

1 -14 4,734,395 418 1.42 14.2 7.27
5 -16 1,493,974 119 1.94 -13.2 9.09
7 b 1,909,130 176 1.41 12.5 11.9
8 13 3,789,751 338 1.23 26.7 10.0
9 6 954,879 8l 2.32 -29.7 13.3
13 -4 3,692,904 355 1.21 20.8 9.54
14 7 3,365,953 296 1.56 4.38 9.56
15 -9 3,962,077 332 1.14 43.1 8.07
17 -5 3,974,399 305 1.60 9.32 4.95
19 10 1,897,205 176 1.42 7.09 11.3
22 13 1,950,335 162 1.52 9.77 8.24
23 q* 2,668,012 215 1.40 24.2 4.63

27 8 1,371,745 108 1.89 -4.75 4.15 o
29 2 4,159,271 355 1.43 16.6 6.79
30 -9 3,858,545 398 1.12 17.8 10.8
31 -13* 4,352,534 341 1.43 20.6 6.47
33 —-6* 2,823,238 275 0.920 56.2 11.4

36 8 4,883,847 433 1.18 46.6 sa |
37 ~9* 1,425,349 112 2.06 -15.6 7.18
38 11* 3,466,980 297 2.41 -30.8 7.85
Average: 1.53 - 11.8 8.41
Std. Deviation: | ©0.402.°| 23.0 |- 2.57

Table C.14 — Principal Variation Fronticr Splitting with Load Balancing (PVFSplit-LB),
2 Scarchers Results

(* = score is diffcrent from scquential scarch, time in scconds)




) “ % Scarch % ldle
Game | Score Nodes Time Specdup Ovcrhead Time Notes
1 -14 6,959,056 335 1.7 67.8 14.9
5 -13* 1,366,231 71 3.25 -20.7 29.2
7 1 2,147,259 118 2.11 26.5 25.8
8 13 3,745, 386 222 1.88 25.2 30.7
9 6 1,133,069 62 3.03 -16.6 32.4
13 -4 4,181,356 273 1.58 36.8 29.5
14 7 3,943,371 209 2.21 22.3 23.7
15 -9 4,010, 342 204 1.86 44.8 22.5
17 A 4,453,223 197 2.47 22.5 16.9
19 10 2,615,897 142 1.76 47.17 23.2
22 13 2,530,979 146 1.68 42.5 31.5
23 4* 3,694,767 167 1.80 72.0 15.0
27 8 2,111,255 113 1.81 46.6 21.8
29 2 4,460,449 220 2.31 25.0 17.3
30 -10* 4,211,776 240 1.86 28.6 28.5 Plays 31-27
31 -12 3,684,349 173 2.83 2.05 19.3
33 -3+ 2,259,988 140 1.81 25.0 25.7
36 6* 4,538,537 240 2.13 36.2 22.2
37 btk 1,620,708 89 2.60
38 4 5,466,451 260 2.76
Average: - 2.18 S
Std. Deviation: | .0.491

Table C.15 — Principal Variation Fronticr Splitting with Load Balancing (PVFSplit-LB),
4 Scarchers Results
(* = score is diffcrent from scquential search, time in scconds)

95



% Scarch % ldle S
Game | Score Nodes Time Speedup Overhead Time Notes
1 -14 8,584,005 249 2.39 107 28.5
5 -13* 1,449,089 52 4.44 -15.8 50.1 o
7 1 2,347,731 90 2.M 38.3 45.9 o
8 14* 6,264,522 224 1.86 109 38.1 ’ o
9 6 1,262,043 48 3.92 -7.08 51.6 o
13 -4 6,406,134 250 1.72 110 42.0
14 7 5,020,221 162 2.85 55.7 38.9
15 -5* 4,146,170 134 2.83 49.7 41.1
17 -5 5,911,433 188 2.59 62.6 36.3
19 10 3,046,270 110 2.27 72.0 43.0
22 13 2,831,192 112 2.20 59.3 51.9
23 4% 4,985,740 133 2.26 132 28.2
27 T* 2,315,199 69 2.96 60.8 36.1
29 2 6,489,585 207 2.45 81.9 36.7 o .
30 -10* 4,500,069 169 2.65 37.4 47.7 Plays 31-27
31 -12 4,548,592 147 3.33 26.0 37.6
33 -3* 2,289,609 76 3.33 26.7 41.0
36 8 8,177,389 270 1.89 145 37.6 i
37 -9* 2,560,705 84 2.75 51.6 39.2
38 11* 4,637,311 160 4.48 -7.45 44.6
Average: 2.80 -59.8 40.8
Std. Deviation: 0.779 45.0 6.58

Table C.16 — Principal Variation Fronticr Splitting with Load Balancing (PVFSplit-LB),
8 Scarchers Results
(* = scorc is different from scquential scarch, time in scconds)
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9o Scarch % Idle
Gane | Score Nodes Time Speedup Overhead Time Notes
1 ~-14 9,080, 241 196 3.03 119 53.4
5 -16 é,_3—80,504 77 3.00 38.3 69.1
7 1 2,888,112 98 2.94 70.1 70.7
8 14+ 5,816,061 152 2.74 94.5 62.0
9 6 1,384,075 36 5.22 1.91 64.3
13 -4 3,852,231 121 3.56 26.0 68.3
14 7 5,821,955 144 3.21 80.5 59.2
15 -9 5,794,131 152 2.49 109 63.1
17 -5 6,103,567 138 3.53 67.9 59.9
19 10 3,070,579 95 2.63 73.3 67.7
22 21* 4,483, 369 106 2.32 152 59.5
23 q* 4,540,195 90 3.33 111 51.6
27 8 2,170,753 53 3.85 50.7 61.7
29 2 6,633,872 154 3.30 85.9 57.5
40 -10* 4,846,438 153 2.92 47.9 69.9 Plays 31-27
31 -12 6,005, 205 135 3.62 66.3 58.4
33 -3* 3,346,207 119 2.13 85.1 €5.6
36 3% 7,377,430 175 2.92 121 58.8
37 -8 1,995,842 64 3.61 18.2 70.7
38 12+ 4,900, 511 110 6.52
Average: o332
Std. Deviation: 1;61*2:1‘1

Table C.17 — Principal Variation Fronticr Splitting with Load Balancing (PVFSplit-LB),
16 Scarchers Results
(* = scorc is diffcrent from scquential search, time in scconds)
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