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Abstract

Elastic modeling is essential for mechanical behavior of biopolymer spherical shells [such as
ultrasound contrast agents (UCAS), spherical viruseseargme¥ characterized by high structural
heterogeneity and geometric imperfection. The é$fexf structural heterogeneity and geometric
imperfection on pressured buckling and free vibration of biopolymer spherical shedisidied in

detail in three chapters of this thesis.

1) An axisymmetric geometric imperfection sensitivity analysis is cortlbased on a refined
shell model recently developed for pressured bucklingagolymerspherical shells of high structural
heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of
radius to average shell thiness, the ratio of transverse shear moduluspdaine shear modulus, and
the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is
examined for pressured buckling. The actual maximum sustainable externakgwréssuypical
imperfect spherical biopolymer shells (viral capsids and ultrasound contrast agents) are predicted based
on physically realistic parameters.

2) Initial postbuckling and geometric imperfection sensitivity of a pressured biopolymer
spherical skll based on noaxisymmetric buckling modes and associated mode interaction are studied.
The comparison with the results obtained based on the axisymmetric imperfection sensitivity analysis
identified the cases in which a more accurate-asxagymmetric aalysis with the mode interaction is
required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. The
implications of the nofxisymmetric analysis to two specific types of biopolymer spherical shells
(viral capsids and ultrasind contrast agents) are discussed.

3) Arefined shell model is employed to study the effect of high structural heterogeneity on natural
frequencies and vibration modes of biopolymer spherical shells. With this model, the structural

heterogeneity of a biopgiher spherical shell is characterized by an effective bending thickness and



the transverse shear modulus. With physically realistic parameters for spherical virusagyanels
the natural frequencies and vibration modes predicted by the present reffiedael are in better
agreement with some known simulation results, which suggest that the refined shell model could offer
a relatively simple model to simulate free vibration of biopolymer spherical shells of high structural
heterogeneity.

The theoretical models and numerical results achieved in this thesiddréipto what degree
the structural heterogeneity and geometric imperfection in biopolymer spherical shells affect their
global mechanical response such as pressured bucklingeendilbration. Usingphysically realistic
parameters for some typical biopolymer spherical shells, the predictions of actual maximum
sustainable pressure and natural frequencies and associated vibration modes provide plausible

comparisons with known simulahs and experimentsf specific biopolymer spherical shells.
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Chapter 1: Introduction

1.1 Research background

Spherical shellike geometrical structres are common in various biological objectives. One example

is the micrescaled shellike ultrasound contrasts agents (UCAs), which are manufactured by
encapsulating an insert gas into a thin biocompatible shell and can be used as carriers fougarget dr

and gene delivery (Liu et al., 2006; Sboros, 2008). The other example isimadcspherical virus
coated by a protein shell (known as capsid) ( Ma

proteins, is another example of the biopolymer sphéshells.

The pressured buckling and free vibration of-tetated spherical shells are critical to fulfill their
functions through the life cycle. For the buckling behavior of biopolymer spherical shells, the study on
pressured buckling and rupture tbie spherical virus shells (capsid) is of particular interest as they
determine the resistance to osmotic shocks and the maximum ejection pressure of DNA in the host cell
(Bealle et al., 2011), which is relevant in understanding their biological functiaisas protecting
genetic materials, maturation, and infection of cells (Hernando et al., 2014; Mateu, 2013; Roos et al.,
2007). Emerging biomedical applications (e.g. perfusion imaging, drug delivery (Guo et al., 2016; Liu
et al., 2006; Qin et al., 200%boros, 2008) involving ultrasound contrasts agents (UCAS) rely on an
understanding of pressured buckling and rupture of UCAs at or above a predetermined incident

acoustic pressure (Chitnis et al., 2010, 2013).

For the vibration behavior of biopolymeprserical shells, a viral capsid protects viral genome from
hostile environment of the host cell, and excitation of capsid vibration could find application in either
diagnosis or treatment of viral diseasBaljincova, 2000; Dykeman and Sankey, 2008; F2003;

Talati and Jha, 2006; Yang et al., 2D1&nd it has been experimentally observed thatdhge-scale



conformational changes in a viral capsid can be described biydoprency modes and are relevant to

the fulfill ment of (Dykemano and Sabkeys 20@9¢20%0a, 2010b;WKanortovao n s
et al.,, 2016;Peeters andaormina, 2008; Tama and Brooks, 2)0Also, a detailed picture of the
enzymes6 vibrational modes and frequencies are
changs in conformation, which can potentially lead to correlated active site opening and/or closure, a
phenomenon important for substrate binding and product rel&gdesrtan and Sankey, 2010a;
Mahajan and Sanejouand, 2015; Marques and Sanejouand, 1995;iRentdtal., 2008; Wells et al.,

2015. Therefore, research on the elastic modeling (such as pressured buckling and free vibration) of
biorelated spherical shells is of great importance to understand their biological functions through the

life cycle and fo their biomedical applications.

1.2 Research motivation

Compared with classical homogeneous thin shells, a common key feature of biopolymer spherical
shells is their high structural heterogeneity and geometric imperfection, such as structural
inhomogenay and geometrical imperfection of UCAs confirmed by scanning electron microscopy
(Chlon, 2009)see Fig. 1.1)as well as structural inhomogeneity and high geometric nonuniformity of
spherical virus shells revealed byay crystallography (Verdaguer dt,2013) and cryotransmission
electron microscope tomography (Baker et al.,, 1999; Caston, 48&8) Fig. 1.2) For many
biopolymer structures such as microtubules that have similar structural heterogeneity and geometric
imperfection, it is known that s@mmportant physical phenomena related to buckling and vibration
behaviors are greatly influenced by transverse shear resistance, bending modulus and imperfect
boundaries (intensively studied in many research work, see e.g. (Arani et al., 2017; Baamajjaty

Beni, 2015; Beni et al., 2017; Civalek and Demir, 2010; Daneshmand and Amabili, 2012; Fu and

Zhang, 2010; Gu et al., 2009; Heireche et al., 2010; Kisetalk 200 Ku| er a et al ., 20



2015; Mehrbod and Mofrad, 2011; Pampaloni et al., 2006; Shi et al., 2008; Shen, 2010; Tounsi et al.,
2010; Xiang and Liew, 2012; Zhang and Wang, 2015)). These phenomena cannot be explained by the
simple homogeneous etasshell model without transverse shear. As stated by Gibbons and Klug
(Gibbons and Kl ug, 2008) , Afalthough homogeni ze
biopolymer spherical shell indentation mechanics consistent with experiments, the degvhietor
heterogeneity in these protein assemblies affec
Therefore, the present thesis aims to develop more accurate shell models for biopolymer spherical
shells which can account for some hmtier effe¢s associated with their structural heterogeneity such

as transverse shear, effective bending thickness and geometric imperfection.

Fig. 1.1 Electronmicrographs of UCAs (Kooiman et al., 2009). Copyright 2009. Reproduced with

permission from Elsevier.

Fig. 1.2 Representations of the CCMV viral caps{@bbons and Klug, 2007alCopyright 2007.

Reproduced with permission fro8pringerNature.
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1.3 Literature review

1.3.1 Elastic modeling of classical homogeneous spherical shells
1.3.1.1 The pressured buclkhg modeling of classical homogeneous spherical shells

The calculations of the linearized buckling pressure of spherical shells were first made by Zoelly
(Zoelly, 1915) and Schwerin (Schwerin, 1922), who considered that the buckling displacement is

axisymnetric. Their solutions were based on the assumption of infinitesimal displacements from the

linear prebuckling solution,s =qgR/(2h), w R =0/g1 ME @R/ h and were obtained in terms

of Legendre functions. The critical pressure for linearized buckling is given by

N

R

2E  &h

Ocr ,—3(1_ ,ﬁ)gﬁ

whereR is the radis of the sphericah its thicknessg the external pressurg, the membrane stress,

©:0

(1.1)

w the radial displacement, aBcandziar e Youn g 6 s mo sratib af the sheli MateHatsi, s s o n -

respectively.

A
p N
1

Fig. 13 A classicahomogeneous spherical shell subject to external pressure



The first complete general analysis of the problem based on the linear theory of elastic stability is due
to Van der Neut (Van deNeut, 1932). He found th#te linear buckling pressufé.1) corresponds to
(2n+1) linearly independent buckling modesily one of which is axisymmetrichile all others are

nonaxisymmetric.The integern can be determined as the nearest natural number by

2,/3(1- 7 )R/he n(n +) . (1.2)

This classical shell model was developed based on the assumptions that the spherical shell is thin and
therefore the transverse shear strains agieoed, the shell thickness is unifgrandthe spherical

shell is perfectWe call a spherical shell "perfect”, if it is homogenous with uniform thickness and all
points on the outer/inner surface have same distance from the centre (see Fig. 1.3)séttiegw
spherical shell is imperfect. As we can see from Figsafid1.2, there exists imperfect boundaries,

uneven surfaces and pores in the shells.

For decades, this theoretical prediction was found to be in disagreement with the experimental results
(Carlson et al., 1967; Homewood et al., 1961; Kaplan and Fung, 1954; Krenzke et al., 1967; Seaman,
1962; Tsien, 1942). Early efforts to come to terms with this discrepancy between experiments and shell
theory focused on the petickling behavior of impeefct shells (Karman and Tsien, 1939; Tsien,

1942) and their extreme sensitivity to initial imperfections (Hutchinson, 1967; Koiter, 1945, 1963,

1969; Thompson, 1962, 1964). Thompson (Thompson, 1962) made a simplified analysis of a spherical
shell with initial imperfections but used only two terms to represent the deformation with a constant
dimple angle. Thompson (Thompson, 1964) then performed a theoretical buckling stability analysis
using Koiterods ( Koi t-buckling th€od Sor axignmét8c) imperfectian.i a | p C
Koiterdéds (Koiter, 1945, 1963) major contributiol
connected imperfection sensitivity to the initial pbsickling behavior of the perfect structure.

Hutchinson (Hutchinson,196) ext ended Thompsonés (Thompson, 109



1945, 1963) initial posbuckling theory to include neaxisymmetric modes. His simplified analysis

by using shallow shell theory is limited to thin shells, for which classic bucklavglengths are small

compared to the cap dimensions. Koiter (Koiter, 1969) performed an extensive investigation of the
postbuckling behavior of the complete spherical shell. This included some modifications of

Hut c hi n saxisy@meetrio analysis (Hut@ison, 1967) and a considerable amplification of
Thompsonds axisymmetric anal ysi s (ofdéroems s the , 196
axisymmetric analysis and the obtained results
Based on theseminal works done by (Hutchinson, 1967; Koiter, 1969; Thompson, 1962, 1964) and
other extensive research work (Murray and Wright, 1961; Kalnins and Biricikoglu, 1970; Koga and

Hoff, 1969; Sabir, 1964; Walker, 1968), it became well established that itharprcause for this

discrepancys the presence of geometric imperfections.

The intense study of the nonlinear buckling behavior of complete spherical shells largely ended almost
five decades ago with the publ i c paperomthepbst Koi t e
buckling behavior and imperfection sensitivity of complete spherical shells subject to external pressure
(Hutchinson, 2016). Until very recently, the posickling behavior and imperfection sensitivity of
shells have been extensively sadinumerically and experimentally (Evkina and Lykhachova, 2017,
Hutchinson, 2016; Hutchinson and Thompson, 2016; Jimenez et al., 2017; Lee et al., 2016; Yu et al.,
2017). Lee et al. (Lee et al., 2016) study the effect of a precisely fabricated dimpkebkeetric
imperfection on the critical buckling load of spherical elastic shells under pressure loading. For the
first time, experimental results of imperfect spherical shells have been accurately predicted, through
both finite element modeling and shéiebry solutions. In particular, they found that the buckling
pressure becomes independent of the amplitude of the dimplelike defect beyond a critical v&lue. Th
phenomenon is also observed by Hutchinson (Hutchinson, Z0i®) considersseveral types of

geometric imperfections including dimp#haped undulations and sinusoidhbped equatorial



undulationsand use the shell thegrand Jimenez et al. (Jimenez et al., 2qWHo considelprecisely

defined geometric imperfectiorand use finite-element angkis). This observation proves that the
direct application of Koitetype theory to complete spherical shells under external pressure, first
presented by (Thompson, 1962, 1964) and somewhat later by (Hutchinson, 1967) and (Koiter, 1969),

turns out to be v for only small imperfections.
1.3.1.2 The free vibration modeling of classical homogeneous spherical shells

Vibration of elastic closed spherical shell was first examined by Lamb (Lamb, 1882), by means of the
membrane theory, and then by Federhofedéfeofer, 1937) who employed the classical bending
theory of shells. More detailed treatments of axisymmetric vibration of a closed spherical shell were
given by (Baker, 1961) and (Kalnins, 1964) who used membrane and classical bending theories,
respectivy. Wilkinson (Wilkinson, 1965) subsequently investigated the axisymmetric modes of a
complete spherical shell including the effects of transverse shear and rotary inertia. Two frequency
equations for the axisymmetric vibration of a closed spherical asteetlerived in (Wilkinson, 1965).

The first frequency equation for spheroidal vibration modewigen as a cubic equation M/ as

follows (Wilkinson, 1965)

Wk (kk -ke)/(k(1- m) g- Wik ko gaE+H(KL )y g
HG2(RN (K +k) Ge 1) 2Ak KAL) I/ kg

s W m(2 O(12ARM K @) kBl(r 3 -p-A1ep(r Ak -1g o+ @9
o r(r a1 ) e 1aRM) (18 )fagRN- 2K) {2 - )g}/

(r D& 2 2@+ 1 - +(1- AF)12(RN) 4) 2,

and the seconddquency equation for torsional vibration modewigten as aquadraticequation in

W as follows (Wilkinson, 1965)



W gA(kk -ke)/(k(1-m) g2 MARY (k B (& R+ k+B( #3/ K
+1L-m(r Y 2k, (w@(R/)° )L =

(14)

whereR is the radius of the spherical shdilis its averagethickness,misPoi ssonb6s rati o

. . N . 15h % 1ah %
material, k. is the shear coefficient, the tracers are given 1+ 5k ==
: AR T AT
. 3ah % o .
k =1 +— 6 C =2 (Kraus, 1967Wilkinson and Kalnins, 1965pndr =n(n ), wheren
208R 2

denotes the mode numbekVv denotes the dimensionless natural frequency defined by

W

,WhereEisYoun g 6 s muoidtiumk,arsd/ denotes the mass density of the

_rR? W(1- nt)
E

shell, wis the angular frequency.

It is known that this classical shell model for studying free vibration of sphehiedls is developed
based on the assumptions that the transverse shear moduals ® inplane shear modulushe

thicknes of spherical shell is uniformand the spherical shell is perfect.

Theoretical investigations regarding the retsymmetric mods have been reported as well
(Niordson, 1984, 1988; Silbiger, 1962; Wilkinson and Kalnins, 1965). Silbiger (Silbiger, 1962)
presents the first discussion of the presence ofaxisymmetric modes of spherical shells and claims
that nonaxisymmetric mode$or a complete spherical shell do exist and that they are degenerate,
meaning that the neaxisymmetric frequencies are identical to corresponding axisymmetric modes.
Silbiger (Silbiger, 1962) attributes this to the spherical symmetry of the shell andrgtestate that,
corresponding to each natural frequency, there existé Bnearly independent modes at each mode

numbem. All other modes (at a given frequency) are linear combinations of these modes.



Attempts at correlating the theoretical resulith either experimental or simulated results (both for
axisymmetric and neaxisymmetric modes of vibration) are almost completely lacking (Duffey et al.,
2007). Recently, Duffey et al. (Duffey et al., 2007) presented a comparison of natural frequashcies a
vibration modes obtained from axisymmetric and-asgisymmetric theories of vibration of complete
spherical shells (Wilkinson, 1965) with finite element simulations and experimental results.
Comparisons of the axisymmetric frequencies are good (see Tadnd 2 in (Duffey et al., 2007)).
Also, finite element calculations and experimental results support the existeneelah@ependent

vibration mode (see figures 4 and 5 in (Duffey et al., 2007)), in agreement with (Silbiger, 1962).

1.3.2 Pressured bakling of biopolymer spherical shells

Recently, the shell material properties of polyssbelled UCAs have been explored based on
mechanical deformation through an atotficce microscope (AFM) (Sboros, 2007), and buckling and
rupture (Chitnis et al., 201@011a, 2011b, 2013; Marmottant et al., 2011) of polyshetled UCAs

are studied in detail. In terms of spherical viruses, the complex mechanical properties have been studied
extensively, using the method of AFM nanoindentation (Mateu, 2012; Michel,),2606tinuum
elasticity by Nelson and Widom (Lidmar et al., 2003; Widom et al., 2007) and Bruisnma and Gelbart
(Nguyen et al., 2005, 2006), and molecular dynamics simulation by May and Bkek2011; May

and Brooks, 2011, 2012). In particular, the naeubal stability and rupture of viral capsid under
different external and internal mechanical loadings (Nguyen et al., 2005; Siber, 2006; Siber and

Podgornik, 2009; Zandi and Reguera, 2005) have been investigated by many researchers.

Based on the featud# biopolymer spherical shells, the effect of structural heterogeneity and geometric
imperfection on the pressured buckling of biopolymer spherical shells has received considerable

attention. For examples, a refined elastic spherical shell model has éesdaped in (Ru, 2009) to



explore the effect of structural heterogeneity and thickness nonuniformity on pressured buckling of
biopolymer spherical shells; this model was recently employed by Chitnis et al. to study the rupture of
ultrasound contrast ager(tdCAs) (Chitnis et al., 2010, 2011a, 2011b, 2013). Wan et al. (Wan et al.,
2015) showed that structural defects in spheric
external hydrostatic pressure. Gibbons and Klug (Gibbons and Klug, 2008, 2008, 2015)
demonstrated by finite element simulations that nonuniform geometry and geometric defects have
meaningful effects on the mechanical failure of viral capdaly et al. (May et al., 2011) and May and
Brooks (May and Brooks, 2011, 2012) ealed nonuniform elastic properties of spherical viruses due

to the heterogeneity of the structure and the anisotropy of the biomolecular interactions through
molecular dynamics simulation based on a buckling transition predicted by Lidmar et al. (Lidmar e
al., 2003) and Widom et al. (Widom et al., 200Chitnis et al. (Chitnis et al., 2010, 2011a, 2011b,
2013) emphasized that the shell imperfection influences the rupture load of pslyafied UCAs.

Also, NguyenThanh et al. (Nguyeiihanh et al., 2015Jeveloped an extended isogeometric element
formulation (XIGA) based on Kirchhotfove shell theory for througthe-thickness cracks in thin

shell structures, which is also significant for the future study on imperfect biopolymer shells.

It should also benoted that in more realistic biopolymer spherical shells, both the geometric
imperfection and the buckling pattern can be-agisymmetric. For examples, the structural model of
spherical Viruseso s-laedrystallographayp showd Yheoreakisynametmoe d by
geometric imperfection (e.g. fig. 1 in (Michel et al., 2006)). Bealle et al. (Bealle et al., 2011)
demonstrated that deformation patterns of osmotically induced buckling of -dé&psidosahedral

vesicles are noaxisymmetric (see thefiig. 3). Also, Chitnis et al. (Chitnis et al., 2010) showed
different buckling modes and the asymmetric rupture of UCAs in their static pressure experiments (see
their fig. 3), and Yin et al. (Yin et al., 2005) found various gu&ircation modes with sipe

transitions in biomembrane cells.
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Therefore, it is of great significance to study the effect of geometrical imperfection (both axisymmetric
and noraxisymmetric) on pressured buckling of biorelated spherical shells (such as UCAs and
spherical virusespand the influence on their biological functioninig particular, when a nen
axisymmetric imperfection is involved, the effect of the +aoisymmetric modes and the mode
interaction on the imperfection sensitivity of pressured biopolymer spherical shetssthwhile to be

investigated.

1.3.3 Vibrational properties of biopolymer spherical shells

The study on vibrational properties of biopolymer spherical shells is an area of growing interest
recently due to its close relation with their biological funasioA number of approaches have been
developed to investigate vibration behaviors of biopolymer spherical shells, such as experiments
(Tama and Brooks, 2005; Tsen et al., 2006, 206htinuum elastic modelBélandin and Fonoberov,

2005; Ford, 2003; Ghawloo and Fazelzadeh, 2015; Kahn et al., 2001; Tsen et al., 2006, 2007; Widom
et al., 2007; Yang et al., 200®lastic network modelindgdergman and Lezon, 2017; May et al., 2011;

May and Brooks, 2011, 2012; May, 2014; Peeters and Taormina, 2008), 2809 atomistic
simulations Dykeman and Sankey, 2008; 2009, 2010; Wells et al., )200& mention a few,
Babincova et al. (Babincova et al., 2000) suggested that viruses can be inactivated by ultrasound
resonance in the GHz region. Motivated by this hypashesgveral groups investigated vibrational
modes of viruseBalandin and Fonoberov, 2005; Dykeman and Sankey, 2008, 2010a, 2010b; Tsen et
al., 2006. Ford Ford, 2003 has reported theoretical estimates of vibrational frequencies of spherical
virus partcles using the liquid drop model and an elastic sphere model. Talati and Jha (Talati and Jha,
2006) used an elastic continuum model to calculatefteguency vibrational modes of spherical

viruses immersed in a medium. Widom et al. (Widom et al., 20@nYifiied and classified vibration

11



modes of a virus capsid based on a simple faagspring model. Dykeman and Sankd&ykeman

and Sankey, 2008; 2009, 2010a, 201€4dculated lowfrequency vibration modes and frequencies of

large protein assemblies (suak enzymes and viral capsids), where the vibration modes are modeled

with full atomic detail. Yang et al. (Yang et al., 2009) predicted vibrational modes of several
icosahedral viruses and an icosahedral enzyme using continuum models, and they estegnated th
macroscopic material properties such as the Yc
predictions to an anisotropic network model. May and Brobkasy(et al., 2011; May and Brooks,

2011, 2012; May, 20)4applied twedimensional elasticity theoryo viral capsids and developed a

framework for calculating elastic properties of viruses.

However, bierelated spherical shells are characterized by high structural heterogeneity and thickness
nortuniformity. Such a key feature of brelated spherical gftis has not been well addressed in the
previous related studies free vibratiorbehavior In particular, almost all previous continuum models

are based on the classical homogeneous shell model and are often limited to axisymmetric vibration.
Therefore,it is of great interest to investigate the role of high structural heterogeneity and thickness

nonuniformity on axisymmetric and naxisymmetric free vibration of biopolymer spherical shells.

1.4 Research objectives

In view of the fact that biopolymer Bprical shells are characterized by hsgfucturalheterogeneity
and thickness neaoniformity, a refined elastic spherical shell model was developed in (Ru, 2009)
based on axisymmetric assumption, which was recently used to study the rupture of ultrasound

contrasts agents (UCAs) IBhitnis et al(Chitnis et al., 2011a, 2011b, 2013). The effect of structural

heterogeneity and thickness roniformity on the linear critical pressuig, for smaltdeflection

linearizedaxisymmetricbudkling of aperfectbiopolymer spherical shell given by the refined model is

12
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&, @h % B & (L5)
3(1- m7) &h ¥R Bl mk IE B B

whereEi s Youngodmi snoBoil ssonds ratio of ktishheshear opol vy

coefficient, R is the averageadius, h is the average thicknesS, is the inplane shear modulu§’

is the transverse shear modulus, dpds the effective bending thicknesSlearly, the critical value

(1.5) given by the refined model reduces to the classical foriula when transverse shear strains

are neglected@’/G = «c) andh, =h, as shown in (Ru, 200%ere, thedeviation oftrasverse shear

modulusG”™ and effective bendinthicknessh, from the inplane shear modulus andthe average
thicknessh indicatethe structural heterogeneity and the thickness nonuniformagpectively The

deviation of G' from G indicates the anisotpy, which is due to the underlying heterogenous
microstructures. It should be noted that the terminology "heterogeniety" in this thesis is referring to the
inhomogeneous microscopic structures of which the characteristic length is far smaller thaughe radi

of spherical shells. The separation of scales permits the homogenization of microstructures. Therefore,
in the model of this thesis, the material is assumed to be homogenous and possesses effective material

properties.

Owing tothe axisymmetric assumpti made in (Ru, 2009), only one axisymmetric buckling mode

exists. The linearized axisymmetric buckling mode is given by the&legree Legendre functions
P,(cog ) (Koiter, 1969; Zhang and Ru, 2016), where the iategcan be determined as the nearest

natural number by the following formula (Ru, 20@hang and Ru, 20)6

61 mk, S (Y
B ° n(n+1). (1.6)
k/31- 77) G R h)g L
1+m G h'h
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Also, it is seen that the formuld.6) reduces tq1.2) when transverse shear strains are neglected

(G'/G= »andh,=h.

It is known that for some typical biopolymer shells (sashmicrotubules), transverse shear modulus

can be much lower than-plane shear moduluis et al., 2002; Pampaloni et al., 20(#i et al.,

2008) and therefore transverse shear could become significant for sivatelength deformation.

For biopolyner spherical shells, because wavelengths are always shorter as compared to the diameter,
it is expected that transverse shear could be relevant for biopolymer spherical shells. In particular, in
view of similar thickness neaniformity and structural hetegeneity of microtubules and biopolymer

spherical shells, it is assumed here that the transverse shear n@duolusd be much lower than the

in-plane shear modulu& and the effective bending thicknebs can be different from the average
shell thicknessh (Ru, 2009).
Based on this refined model, we carry out the study on the following topics:

(1) Investigate the effect of axisymmetric geometric imperfectiorpassured buckling of a
biopolymer spherical shell.
(2) Non-axisymmetric geometrical imperfections and maueraction on the imperfection

sensitivity of pressurkbiopolymer spherical shells.

(3) Investigate the effect of struchlrheterogeneity and thicknes®rruniformity on natural

frequen@sand vibration modes of biopolymer spherical shells.

1.5 Thesis layout

The present thesis is organized as follows:
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Chapter 1 provides a general research background and motivation of the involved research topics, the

literature review and the objectives of my research.

Chapter 2 investigates the pdmickling behavior and imperfection sensitivity of pressured buckling

of a biopolymer spherical shell based on axisymmetric assumption and therabotiened refined

shell malel. Detailed research on the influence of related parameters (including the ratio of radius to
average shell thickness, the ratio of transverse shear modulupleméshear modulus, and the ratio

of effective bending thickness to average shell thickhes imperfection sensitivity is conducted. In
addition, with physically relevant data in the literature for viral capsids and ultrasound contrast agents,

the actual maximum external pressure an imperfect biopolymer spherical shell canspstaictel.

Chapter 3 extends the axisymmetric imperfection sensitivity analysis proposed in chapter 2-to a non
axisymmetric analysis with the mode interaction. The cases that need the more accwate non
axisymmetric analysis with the mode interaction are discussgetail. The actual maximum external

pressurspredicted in chapter 2 for two types of biopolymer spherical shells are modified based on the

nonaxisymmetric analysis.

Chapter 4 proposes a refined shell model to study the effect of high structuragéesdtsoon natural
frequencies and vibration modes of biopolymer spherical sheith. Mysically realistic parameters
of spherical viruses anehzymes, lie results predicted by the refined shell model are compared with

known simulation results and thesudts obtained by the classical homogeneous shell model.

Chapter 5 summarizes the major conclusions of this research and suggests a few research topics for

future studies.
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Chapter 2: Axisymmetric imperfection sensitivity on pressured buckling

of a biopolymer spherical shell

2.1 Introduction

This chapter aims to examine axisymmetric imperfection sensitivity of biopolgpierical
shells of highstructual heterogeneity using the refined shell modeis.(1.5) and(1.6)) developed in
(Ru, 2009). The methods for axisymmetric plogtkling of classical homogeneous spherical shells
developed in previous seminal works, e.g. by Thompson (Thompson, 1962, 1964), Hutchinson
(Hutchinson,1967), Koiter (Koiter, 1945,1963,1969) and Budiansky and Hutchinson (Budiansky and
Hutchinson, 1964), will be employed to study the imperfection sensitivgirdturaly heterogeneous
biopolymer spherical shells based on the refined shell model (R®).200 section 2.2, the
axisymmetric posbuckling modes of a pressured perfect biopolymer spherical shell are derived.
Furthermore, the axisymmetric imperfection sensitivity is studied in section 2.3 with an emphasis on
the influence of key parameters e axisymmetric imperfection sensitivity for two specific types of
biopolymer spherical shells (ultrasound contrasts agents UCAs and spherical viruses). Finally, main

conclusions are summarized in section 2.4.

2.2 Axisymmetric post-buckling modes of a pessured perfect biopolymer

spherical shell

In this section, pogbuckling modes of a prefect biopolymer spherical shell defined by the
refined model (Ru, 2009) are studied. The present chapter focuses on buckling under static pressure,

and visous effect can be ignored reasonably although such viscoelastic effect may play a significant
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role in high frequency vibration of some biopolymer shells. The procedures and formulations given in
this section were devel op eldBudianski and Huichnsdnyl96d)nd Hu
onpostbuckl ing of elastic structures, based on Kol
(Koiter, 1945,1963). Since geometric imperfection of the biopolymer shells can be assumed to be

axisymmetric, we shhtonfine ourselves to axisymmetric postbuckling.

Spherical coordinates (0¢; ¢z), g (0¢g @ pandz (-h/2 ¢z K2) are used tdescribe a

biopolymer spherical shell of middle surface radiRsind average shell thicknebs where the radial
coordinatez, whose sign is taken positive outward, indicates i$tailce of a point in the shell to the

middle surface. The linear mfdce strains (including 2 transverse shear straipse,, and the
change in curvaturek, , k, andk ) of a spherical shell are given in terms of the displacements of

the middle surfaceu,v, w and the rotations, & of the normal of the middle surface jn, g

directions by (Ru, 2009}he detailed derivation is given in Appendix A)

_lp w u . 1 N oW 1 w1l vpv
§ =—— +, ¢ =cofy —+—— —% e, —=—— ——+"—Coty,
7 R R R Rin/ ng R 79 Rin ju gR u /R
1 uw v 1 w u
e = — — b e, = —- + 21
7 Rsinf ug R “ Ruj R N @1
ki, = 1”— k, =—acotj +—1 —“b kK, , -1 ual o?/
Ry R Rsinj pg Rsin /j p qR u/R

For axisymmetric posbuckling of an elastic spherical shell (with=6 9 andu( )/ g G, see

e.g. (Ru, 2009)), based on the simplifications (Kraus, 1967; Ru, 2009) that the ciomtrdfutvo in

plane displacements andv to the transverse shear straigs, e, is negligible, and using the

simple nonlinear t e r mmate frelat®ras (Sheders, 4961) am Ithie rsheear r K i

deformation theory of Reddy and Liu (Reddy and Liu,1985),(Ed) is replaced by
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o 2,

lpw w la w O u w
€ =—— +— Fp— g €, —<oy —
" Ry R 2Ry = 7 R R

1w
e/q:O, eﬂ =0, eZ/- EJ a+ (22)
1pa _a_ ..
/_EE’ kq—ﬁcot/, k,, 8

Here, transverse shear deformation is included as a potentialiffcsighfactor for thick biopolymer

sphericakhells (Gibbons and Klug, 2007).

Based on Hooke's law, the relationship between the stressl strais (¢, ¢ g, ,,9 .,

definitions in Appendix Aon the biopolymer spherical surface are gilagn

E
, + s—— e
; ,,;(g e x5 o) 9
g ‘?/:G zg Z‘Z@* Z'Lg
whereE i s YoungO/srl snoaoil sIsSQgnds rat i @ isdhetrandveaseshean po | y r

modulus, ands is the common irplane shear modulus determined b (/7).

Furthermore, based on tl@otropic linear planestressstressstrain relation, the kplane resultant

membrane forces, bending moments and transverse shear forces are given by (Ru, 2009)

eN, @ Eh & m e
é / g /ﬁé 1 u/e, Ghe
éNq l:ll- em Lﬁ(é a
eM, g & mop o
é J D¢ 1 U &, M, , Dk, (2.4)
M, ¢ éml kg
Q/- =|<SG* helz, Qq=|gG hezq

where K, is the shear coefficientvhich isa dimensionless quantignddepend on the shape of the

cross section defined by k5=6(1 417)2/(7 ¥2m 4Ir2/): for the circular section and

k,=5(1 #7)/(6 5 7y for therectangle sectigr(Stephen, 1980)t is introduced to account for the
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fact that the sheatress and shear straire anot uniformly distributed over tleoss sectioiStephen,
1980) The bending stiffnesses of a biopolymer spherical shell are assumed to be determined by an

effective bending thickness, as

p=_Eh S (2.5)

_12(1-/7?)’ Do =1

For biopolymer spherical shells, as stated above, it is assumethiaéthe transverse shear modulus
G" could be much lower than the-fane shear moduluS and the effective bending thicknelgs
can be different from the average shell thickneg®Ru, 2009). It is the two new paramete@s*(ho)

of the refined model (Ru, 2009) which distinguish biopolyrsghericalshells of high structural

heterogeneity and thickness roniformity from classical elastic shells defined by ( /73, h).

For a spherical shell, when the uniform external presqureaches to the critical value of tdiag

pressure (bifurcation point), the spherical shell suffers deviation from its spherical geometrical shape.
The displacement of the spherical shell in initial gmstkled state can be written in the asymptotic

expansions (Budiansky and Hutchinson,4;98anielson, 1974)

u=u, U #Wu &
w=w oW Hw €8 (26)
a=g +tx,at, x at §

where he displacementuy,, w,,a,) are prebuckling deformations prior to bucklingy(, w,a,) are

linearized buckling modes, the auxiliary displacemenis\{,,a,), which will be used to analyze the

instability of postbuckling behavior in AppendiB, are all taken to be orthogonal to the buckling
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20 0 A a . ..
mode (u, w,a,) (defined byﬁp 0‘% o R*gn/ d/ d ¢=0), andx, is a nondimensional
('!‘ = g =
amplitude factor.
Substituting the disptements(2.6) into the midface straing2.2) and then intoEq. (2.4), and

considering that the spherical shell under uniform external pre§suier to buckling is in a uniform

membrane statof stress N, , = N, = gR/2) with a prebuckling inward radial displacement,

o
(U=0a, Ow, =t 74gR/(2EH) (Hutchinson, 198), the inplane resultant membrane

forces, bending moments and transverse shear forces hagythptotic expansions (Budiansky and

Hutchinson, 1964; Danielson, 1974)

gN L1 Eh dpw 0 ’3
o oeN, o N oSV oL iRy O
€% ueéVe U & Ug 1 Eh w0
éM L& Uy ME, e TS 7R Swo( Y
€/ ue 00 ¢ -%é 21t cRY a0 (2.7)
eM, u o éM, u av 0
e U U & bg) N
Q e o B oM, 0
Q> §
N,=0. M ,70 Q=0

whereN,; andN,; (i =0,1,2) represent membrane forces with linear strains.

The equilibrium equations of a spherical shell can be derived from the variational principle (Budiansky

andHutchinson, 1964; Danielson, 1974)

1. 228

o) N+ Ny@ #N g M kg M kgM, k,gQyg @9

L s 3 (2.8)
1y 2/£ alpw w O g, . . .
R?sinjd/ d ¢ = N, =+ SN e sh/d d

)/ d/ qcz'?o%“’gp/RQ‘p%B/ / q
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The integral on the lefhandside of Eq(2.8) is the internal virtual work, while the rigitand side of

Eqg. (2.8) is the external virtual work represented by the worgrefbuckling stateanembrane forces,

wo
and E is the linear part o0&, since the préduckling state is described by linear menntera

L,
W

vO;@% Qo

theory.

The midface straing2.2), the displacementv given in (2.6) and the expansion@.7) are then
substituted into E(2.8), which gives, on using the integration by parts and collecting the coefficients

of du, dw and d ¢ separately (Budiansky and Hutchinson, 1964; Red@92)

0=x,] —(N,,Rsin ) N, Rcoy s/
OTrJ O%W a 9
+ge Wi(N sin/ M) N;,Rdn j N Rsin —M(Q Rsin )/Owa’
¢
gei(M ,Rsinj) M Rcos;/ @R sin /0 (;(tai dg
¢ W -
e

=’ LR u L
i O%W 271 h(RW)RSIn/) UgszRsm)/

1 Eh 0
21 /ﬁ”(R )Rc03/+Nq2R005édu

a p T A H . ow, 1 Eh, w, . .
+5 —(Ngsiny —=) —(N,; sinj—) +——(—=) " Rsin
@y (NosV ) =y Nasin/m) Sl g o

+N, ,Rsin/ +N_,Rsin j —(Q Rsin )'0

+ (M, ,Rsinj) M ,Rcs / @ ,R sin /'8 3@5 dg
* 4

H
W

08 Qo

(2.9)

+ﬁgﬁI/2RS|n/ +l (—) Rsin/)n o
s & 21- nf
+(N, sin/ i} +N,,sinj— +Q/2R sin j, wd M ;Rsin )y ud$l§:z
v i y
+O(x,")
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where N, = N, ,, n, is the unit normal vector at the edge of the spherical shell. In the case of a

spherical shell section clamped along its boundary, the boundary conditich¢ =8 & and the
boundary expressions vanish, whereas in the case dedcdpherical shell, the boundary expressions
also vanish owing to the continuity of all displacements.

Since du, dw and d ¢ are arbitrary and independent, the linegsterm leads to the (firstrder)

Euler equations fory, w;,a,) (Budiansky and Hutchinson, 1964; Reddy, 2002)

uN; cos
/24 (N,, -Na)sinsfj &
MG, coy 2
+0. (N, N R 0 2.10
UM cos/
RQ, = / M. M, )——
Oy M MY

Following the procedure given in (Ru, 2009) which defip@nd Q,; in terms of two new functions

f.(/) andg,(/) as
- Q, =% 2.11
u:l. - /1 w ( )

and substituting Eq2.11) into Eq.(2.10) gives 3 equations forf(,w,, g,)

BRPDZ H1-m) @ 1y O=

Eh & 2 0

RD’G - o DL %L 5N ‘WP O = (212
- /77(; R -

2 +1' /77 E

uo%mo

Gh § 40 kS Aw o
R D - C R =
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Finally, eliminatingf,(/) and g,(/) in (2.12) leads to a decoupled equation far, the linearized

He)

critical value of the external pressure, as given (by) in the form of%lzl—h 9(con5|der|ng
N, = -gR/2), is determined by the minimum value b, for a nonzerow, as

AN, 5. & 1 Onacals g8 1 O, ‘aha's 6

Fn & Bw ) O W %@ o On-FEOG L OO

Clearly, the critical valu€2.13) given by the refined model reduces to the classical for(iuawhen

transverse shear strains are neglecfé*dG = ©)andh, = h, as shown in (Ru, 2009).

The linearized axisymmetric normadid buckling mode is given by (Koiter, 1969)

w = hR(coy ) (2.14)

where P, is the n-degree Legrende function and the integecan be determined as the nearest natural

number by the following formula (Ru, 2009)

2.2

2 G ¢ h
5 ksG* h 6(1- /77)ks E (%i
D = < ‘nn B % (2.15)

2 3
R kGh-1 k3@ n)G R&h B L
EhD 1+ m G hg 9-

1 oo

"‘%?%‘5’6

Actually the buckling modew, is the nth eigenfunction of the following eigenvalue problem (Ru,

2009)

paw =0 B, (2.16)

and therefore is determined by
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_-n(n {L)\M

Pw, =

(2.17)

where the integen is determined by(2.15). Also, it is proved in (Ru, 2009) that the inequality

condition (n(n+1) > %) listed in(2.15) is met as long as the following condition isisééd

x o 32
G, @+m ahoh (2.18)
G k.3 nf)ch R

In particular, 8 physically realistic parameters of biopolymer shells usedigdtmapterwell satisfy
the condition(2.18).

To derive formulas ofl, anda, , it follows from the first and third equations (.12) that the
expressions off, andg, have similar form as E{2.14). Therefore, combined with E(.17), the first

Laplacian off, and g, gives

szl :an-&)fr Egl _H(£2 1)+91 (2.19

Subsequently, we can get specific expression§ ahd g, by introducing Eqs(2.14), (2.17) and
(2.19) into the first and third equations (2.12). Then substituting, and g, into Eq. (2.11), the

buckling modeu,,a, are determined as

=h _(l m —H?](C

Y n(n+l) -@ A)

G &R @h Q
6(1- mk, *aeﬁ (Beﬁ ) (2.20)
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Therefore(2.14) and(2.20) are the linearized buckling mosigiven by the refined model developed

for biopolymer spherical shells with the integerdetermined by2.15).

Next, to determine the auxiliary displacements, v,,a,), settingadu, dw and d ¢ orthogonal to
(u,w,a,) in Eq.(2.9), dividing by x,> and then letting(, vanish, the rearranged equatigige the

seconeorder Euler equations foug, w,,a,) (Budiansky and Hutchinson, 1964; Reddy, 2002)

pN/.2+(N ] )cosj Eh cosja uw Eh w Cw 0 =
i /2 sin / 2(1 + Jsin %w 1 -2 Ry R/jf

. o 2,
92 ,,%99 (N,+N,) R By iﬂ—_ M NRZg o AW 0 (221
W 77sing R W 21 - R /2

M,

Jo: ol

co
(M, - zz)smsj RQ, 0=

Likewise, defineu, andQ,, in terms of two new functions,(/ ) and g,(/ )
u2=&, Q,-fiz. (2.22)
2]
Inserting Eq(2.22) into Eq.(2.21) leads to 3 equations forf{,w,, g,)

GRD2 1L M) & (s m—+—”m Ew 12R

RD?g, -%gebfz % 8N3-RD w +“N/l M, N RBy —n 2 W O

app? 7 1Rm Rkeh%2 @mﬂkeh “ By, =0
¢

R 2

By introducing the buckling mod®y;, (Eqg. (2.14)) into the third term on left hand side of the first

equation 0f2.23), it can be proved througMathematicahat the formula gives

25



e 9 2 n

S fw 1 m. & W eZ

Fes— L Teotj 5% Sdr =hd H,, P, (cos/) (2.24)
LRy 2 2R F 4 Qy e

where P,, areLegrende functions of degre?x, andH,, can be obtained easily throultathematica

Then, it follows from Eq(2.23) that the formulas ofv,, f, andg, are

w, = +ha G, R (coy ), * haDzk (cos/ ), & #a@ (cos/ (229
k=0

WhereC,,, D,, andG,, are someindetermined coefficients. Accordingly, with the 0$&qs.(2.17)

and(2.19), the first Laplacian ofv,, f, andg, gives

2k(2k #
prw, = kY XK B p (coy ),
o R
szz haMDszzk(COS' ) (2.26)
o R
-2k(2k 4
b’g, _ha (R )sz P (coy )
k=0

Introduction of Eq.(2.24), (2.25) and (2.26) into the first and third equations ¢2.23) gives the

expressions oD,, andG,, in terms of the unknow@,, . Then substituting the resulting expressions
D,, and G,, into (2.25) and combining witl(2.22), the auxiliary displacemés (u,,a,) in terms of

the unknownC,, are given by

- (@ MG, My

ie
Y = Ly Ska 2k(2k 4) @ m a(coy )
e & &
é @ o (2.27)
2 :gigéae 2k(2k 4) @ m) cf; oy )
2 R ek:()$2k(2k 4) @ m gaR ("ﬁh 06(1 ks o "
g & ot T ¢ :
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Now we consider the orthogonality condition, expressed by the equation (Koiter, 1969; Reddy, 2002)

& ZIBL[VV]_ O WZ R2

0oy o

%jn/ d/dg0 (2.28)

The orthogonality condition requests that the expansiom, of a series of Legrende functions does

not contain any term of degree In the case of an odd integerof the buckling mode, it follows

immediately from the expression @, in (2.25) that the orthogonality conditio(2.28) is satisfied.
On the other hand, for an even integethis ortfogonality condition require€,, =0 for k =ry2 or

C,, =0. Therefore, a unified form of these two cases is given by, instg@d26f and(2.27)

w, = g " Cy B (coy ),
k=0

h M e. .-1mC, H, .\ @
—_— B, (co > 2.29
u, = W gf:} k(2k 4) @ m %« (Cos ) H (229
& & 5
e @ 0
LT S 2k(2k 4) @ m) 8., (c0s/)
" RW g $2k(2k 4 @ m CAR @h O6(1 mk. O
S, = E— O Pre
g & G&h & 2 0

where the star on the summation sign denotes that the kernmg2 is omitted ifn happens to be
even. The expression af, derived here is the same as the expression developed by Koiter (Koiter,
1969). In conclusion, E@2.29) represents the auxiliary displacents {,, W,,a ,) with unknownC,,

to be determined bgninimizing the energy increment for any fixed valuexgf The determinant of

C,, is illustrated in AppendiB.
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2.3 Axisymmetric imperfection sensitivity of an imperfect biopolymer spherical

shell

Before analyzing the imperfection sensitivity of a pressured imperfect biopolymer spherical shell,
it is relevant to examine pebuckling behavior of a pressured perfeagalymer spherical shell
defined by the refined model (Ru, 2009). Based
(Koiter, 1945,1963) and the procedure developed in his work orbpokting behavior of a complete
spherical shell (Koiter,969), with the use of Eq2.7) and(2.8), the potential errgy for a spherical
shell is given by

P:%ﬁ c,z%l'\'/e/ WNe, Mk Mk, Q)R'sin/ d g

. o N (2.30
1y 2K, alpu w O g, . . ..
-= N. —+— 5N e sin/ d/j d
20 o [@ozzyy Rgcpqgf yd/dg

We denote the potential ergy of a spherical shell in the poeickling equilibrium state whose
stability is to be investigated by, . The energy criterion requires a comparisofrofvith the potential
enegy P, of an arbitrary state in the neighborhood of the ptrickling equilibrium state . The
increment in the potential energy of the spherical shell due to the transmissiondtemte statell ,
P[ﬁ =R -P, is a potential energy functional of the displacement fieldlom the state to state
Il . According to the displacemen(2.6), the displacement fieldt is u-u,w-w,a J).

Therefore, the increment in potex energy is obtained as (Danielson, 1974)

1, > o
P[ﬁziﬁ opﬁN/’(ef &) NGe, ), Mk Mk, Qefgsin /d ¢

1p 2£, alp(u 4) (w w)
_EQ 0%N/O§Z_{ W * R

Equationq2.2), (2.6) and(2.7) are then substituted into E@.31) to give

(2.31)

0 g, . .
N, (e, e) Bsin/ ddg
= u
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é X s N, &l Q
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i uy y

where the first order terms are absent because tHaupkding statel is an equilibrium configuratign

see Appendic.

Therefore, posbuckling behavior of a pressured perfect biopolymer spherical shell defined by
the refined model (Ru, 2009) can be described by the potential energy fun@id@alThe analysis
of stability of postbuckling behavior and calculation of the potential energy functi¢hd®) canbe
carried out by following the procedur-lmcklthg vel ope
behavior of a complete spherical shell. In doing so (the detailed derivation and analysis are provided
in Appendix B), two conclusions, similar to that gwvn i n Koiterds work (Koi

summarized as: (i) the pestickling behavior of a pressured prefect spherical shell descriq@BRBy

is actualy unstable, therefore the linearized critical vai‘%ﬁ ggiven by Eq.(2.13) is actually the

G a
maximum loading a prefect spherical shancsustain; and (ii) the third order term (@32) is
negligible over the initial podbuckling range, which indicates that the potential energy functional
(2.32), which describes the pebtickling behavior of a pressured perfect biopolymer spherical shell

defined by the refined model (Ru, 2009), can be finaitypdified as

e aN, ¢ 3
P[llﬂ=2pEing02%€eE—; §X04’et % (2.33)
- aN aN .
where the expre&ms of A, o> and A, ;z—2 are showed in AppendR.
&En &En
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2.3.1Imperfection sensitivity and a verification of the refined model

Based on the above two conclusions for fgmstkling behavior of a pressured perfect biopudy
spherical shell defined by the refined model (Ru, 2009), now let us study the imperfection sensitivity
of an imperfect biopolymer spherical sheWe shall restrict our investigation to the effect of initial
geometric imperfection in the shape of timear buckling modeAny types of imperfections can be
projected to a function space spanned by the buckling modes, which riaorthagonal basis. The
compressed component is negligible in practice (Koiter, 1969). Due to the orthogonality, each
componentof the imperfection only affects the critical load of the corresponding mSdehe
component of the buckling mode, which gives the lowest critical load of perfect spherical shell, lead

to the lowest critical load of imperfect spherical load (Hutchind®6,7). Therefore, we consider a

small stresdree initial imperfection described by = x,w, (see Fig. 2.1)wherew: is the linear

buckling mode defined by w, = hP(cog ) (see Eg.(2.14)) and x, is the nondimensional

imperfection parameter normalized by the average thickihéssiter, 1969) Here the spherical shell

with imperfectons is assumed to be initially stress free when no deformation occurs on the original

shapeThen the term>70 %Rﬂ:y is added tee, and other straklisplacement relations {2.2) keep

unchanged (Budiansky and Hutchinson, 1964)

o _lp w W ié’lu(w -kTv) 65‘W%1é _ 2§
"Ry R 2F Ry 22rR2FPRyC
H ¢ zw ¢cr e (2.39)
1w ow 138 w 0 - wpw
== e Fgp— § X—
Rw R ZQRH/Q "RjuR
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The expressio(2.7) for membrane forces\ , N, ) are augmented by terms involving the oraery
2 2,
. - -2 Nyapw, 0. . . .
and higher; similarly, the tern2pEh’® s sin/ d together with others of higher
9 y nZpEn oﬁj EnShy ald 9 9

orders thanxo_g are added to Eq2.33). Following Koiter (Koiter, 1945, 1963, 1969), we now limit

ourselves to the lowestrder approximation by neglecting all terms of higher orders #jag

Ql

0, 4

P& =20ER S S+ o X + Tand @ 2.3
(& =20 géz%aeE—OOAA% o &A @hg (2.35)
where
&N, § 2 N,Apw ©. _
Atgf 12 fr=m hyy @n/ d = Alo (2.36)

where A, can be obtained by introducing the buckling m@@i&4) and usingMathematica

g

Fig. 2.1 The initial geometric imperfection in the shape of the linear buckling mode (Sato, 2015).

Copyright 2015. Reproducemdth permission from Cambridge University Press.
Therefore, the equilibrium state of the imperfect biopolymer spherical shell in the neighborhood of the

critical bifurcation point is characterized by the stationary value of(£85) with respect to the

amplitude factorx,, which gives
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Pl _ 0 O
i ZXAzaeE— 0*46§A4 %

B, N a,
oA —2 20 (2.37)
= Eh C

Since stable equilibrium state of the imperfect shell is defined by a positive second variation of the

energy expressio(R.35), to determine the maximum value %ﬁ an imperfect spherical shell can

sustain, we consider the zero of the second variation of the energy exp(28%)

wrlE __, &N, 6., ., N4
e _.2AZﬁ 526" A B g (2.39)

Eliminating the amplitude factof from Egs. (2.37) and (2.38), we obtain an equation for the

an, o
maximum Ioadaeﬁ gan imperfect spherical shell can sustain, as a function of the imperfection
¢ &
parameten,
é 9o % & o % ~ 9 2‘0
aaN, 6 07 27_ A 0 Njaa 9§
A @ § A —X,° 6 €A N LE) (2.39)
A Eh = s 8 ~ hd ? b -
e C cr o B - Y

The diagrammatic sketaf the equilibrium state for perfect and imperfect spherical shells is illustrated

in Fig. 22. Stable branch is indicated by a solid curve, while unstable branch by a dotted curve.
Therefore, for specific given parametkrsn R/ h, G/ G, I h, we ca get the value of the maximum

aNG

load aeﬁ oof an imperfect biopolymer spherical shell determined by the nondimensional
¢

imperfection parametex, by Eq.(2.39), and then calculate the-soal | ed fknodkdown

defined by
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(2.40)

[}

~
Il
O Qo
bk
oo
O Do
2z
= o
Slo:on

Qo
Z
(@]

o zgiven by Eq(2.13) is the actual maximum load a prefect shell can sustain. Therefore,

where

Kgﬂ
>
(@]

9

the dependence of the knockdown fadtoon the imperfection parametgf can be obtained based

on Eqgs(2.13), (2.39) and(2.40).

Eh

{ A J Perfect, -;;EO =0

Eh). /

-— E = - -
’J \-\
. o N
.’ Ny \
Eh )

Imperfect, Eo =0

Fig. 22 The configuration of equilibrium path for perfect and imperfect spherical shells
To validate the present model and formulation, for example, wih0.3, k, =5/6, let us &amine
the classical case which is given by the present refined modelhyitth andG'/G= . For the

classical case, Koiterds result of imperfection

the notaibn used in the present chapter (see Eqg. (10.9) in (Koiter, 1969))
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] é (2.41)
1+ ma27 , 01 a 4 -/ /
+t——g— (1 +) g—=a@Ictan——— arctar——

p* €8 q1- /% ¢ N1-7 NEER

where the integen is determined by

2,/3@- E onn H 1 (2.42)

It is readily seen that our conditi¢®.15) reduces t¢2.42) if hy=h andG'/G= =.

(a) 1.0 T AN S N B B R | T LA — T [ T T T (b) 1.0 L LI B B T
E —=— Present Results | I —=— Present Results |
0.8 -4 --a-- Kpiter's Results 1 0.8 --a-- Kpiter's Results
0.6 0.6 . -
- - e
\* =l
< < by ‘l-:::
- r A
0.4 - 0.4 =g A,
I I R/h=250
0.2 0.2 n=28 -
0_0 _I L PR IR I TR S R | L PR Y PR TR I SO T | 00 -I L PR I T S T | L | PR SR T R TN L
0.0 0.2 0.4 G 0.6 0.8 1.0 0.0 0.2 04 06 0.8 1.0
S &

Figg23The comparison between Koithgh=asG/Gesiol ts an

different R/ h for (a) buckling modes of odd degree and (b) buckling modes of even degree
The comparison of the present resulht=hami t h Ko

G'/G= ¢)is stown in Fig. 23 for buckling modes of an even or odd degneét is seen from Fig.

23t hat the results given by the present model ar

become even closer whenincrease.We canalso conclude that our results are more accurate
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according to comments {iKoiter, 1969)that therds a relative error of ordem* when calculating the

quartic termsAngelﬁ] . This offers a verification of the psent formulations and methods.
¢

2.3.2The influence of key parameters on imperfection sensitivity

The major goal of this chapter is to examine how the stigicturaheterogeneity, defined by the

key parametersR/h, G/ G, i/ I in the preent refined shell model, affects the imperfection

sensitivity of pressured biopolymer spherical shells. Therefore, let us investigate how the above

mentioned three key parameters influence the imperfection sensitivity with physically realistic

imperfectins.
(a) 10 b T TTT T L L P L T 7 LI ] (b) 1-0 _I’ T T T T T M} T ]
R/h=250 | -¥\ R/h=250 classical thin shell -
L i L : i
0.8 —e—R/h=80 ] 0.8 * —e—R/h=10 biopolymer shell |
: —+—R/h=30 A - e, 1
] I ‘. ]
[ —e—R/h= 10 o ]
0.6 0.6 |- ‘\\\‘\;
< <
0.4 0.4 - e
0.2 - 0.2} .
00 -I PR SR T [N TN SRR SR ISR TR SN SR [N SR TR TR T SR S | 0_0 _I " 1 L | | | N I !
0.0 0.2 0.4 0.6 0.8 1.0 000 002 004 006 008 0.10

g—ﬂ g[]/\lR“/’h
Fig. 24 Numerical results with fixedS*/G= cand h,/h=1. (a) The influence oRR/h on the

imperfection sensitivity and (b) The influence of realistic imperfection on the knockdown factor
We firstly investigate how the paramet@f h influences the imperfection sensitivity and compare

the predicted imperfection sensitivity of biopolymer spherical shells with classical elastic thin shells
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of much largerR/ h. We fix the valuek, =5/6 andm7=0.3, and the classical case is defined by
h,/h=1, G'/G= =with varying value ofR/h. The dependence ttie knockdown factof given

by (2.40) on the imperfection parametey (normalized by average thicknesspi®wn in Fig. 24(a)

for arange oR’/hbet ween 10 and 250, which well agrees
(Koiter, 1969)). The physically realistic normalized imperfection parametéor sphericaviruses

(see table 2.2) is very low (typically not bigger than 0.23) as compared to the normalized imperfection
parameter, of classical elastic thin shells (typically not lower than-1.2, see e.g. (Koiter, 1969)

and Hutchinso, 1960)). For majority of viral capsids having radius between 10 and 50 nm with a
thickness of a few nanometers (typicali32m, corresponding to a single protein layer), we find that

the parameteR/ h has little effect on the impfection sensitivity. More specifically, let us compare a
biopolymerspherical shell ofR/ h=10 with a classical elastic thin shell &/ h=250, as shown in

Fig. 24(b). Since realistic imperfection amplitude dependsboth radius and thickness, it is

reasonable to assume that physically realistic imperfection amplitude scale% ’MW h. Thus, the
dependence of the knockdown factoon )?O/Q/FV h is shown inFig. 24(b) where the horizontalxis
is denoted by)?O/Q/FV h. It is seen from Fig. &(b) that, over the range [0, 0.1] Eg/JWh (which

means that the range of the normalized imperfection parameitef0, 0.3] for biopolymer shells and

[0, 1.5] for the classical elastic thin shells), the biopolymer spherical shell of srRdleis actually
lesssensitive to physically realistic imperfection as compared to the dasdastic thin shells of

much largerR/ h, because the realistic normalized imperfection paramgtef biopolymer spherical

shells are much smaller than the normalized imperfection paramjedéclassical elastic thin shells.
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Let us examine the effect &' /G on the imperfection sensitivity. Then, we choog¢h=1

and R/ h=15, the influence of differenG'/G( wi t hin the range (0.07,
(2.18)) on the imperfection sensitivity is illustrated in Fig5.2lt is seen from Fig. 8.that the
knockdown factor/ given by (2.40) remains almost unchanged froBi/G= cto G'/G=0.07.
Thereforejt is concluded that the effect & /G on the imperfection sensitivity is negligible when

G’ /G varies within a physically realistic range for biopolymer spherical shells.

b s T AT e
0.0 0.2 0.4 0.6 0.8 1.0

<o

Fig. 2.5 The influence ofG"/G on the imperfection sensitivity with fixe®/ h=15 and h,/h=1

Lastly, let us examine the effect nf/h on the imperfection sensitivity. For this end, let us choose
R/h=15and G'/G= ¢, we investigate the imperfection sensitivity for differgyfih. As shown in
Fig. 26, with h,/h decrease from 1.45 to 0.4, the knockdown faétafecreases substantially, which

indicates that the paramethy/h has a greater impact on the imperfection sensitivity. Therefore, it is

concluded that effective bending thickness has a greater effect on the imperfection seasttivity
therefore the thickness namiformity of biopolymer spherical shells could be mainly responsible for

the imperfection sensitivity.
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From Figs. 24, 25 and 26, we can see thaopes of alturvestend to infinite when the imperfection

amplitudes x, go to zero, whichmeans that the pressued buckling lasdextremely sensitive to

vanishingly small imperfectiongiere it should be stated that our results shown in Figs2% and

2.6 (the knockdown factomonotonically decreasewith increasing amplitude of imperfection) are
gualitatively consistent with those of (Lee et al., 2016) (e.g. see their figures 4 and 6), (Hutchinson,
2016) (e.g. see his figure 7) and (Jimenez et al., 2017) (e.g. see their figure 2) fearsphidlide
imperfections. Since the present weakly nonlinear initial-paskling analysis with smaddmplitude
imperfection/deflection cannot be applied to arbitrarily large imperfections, our results shown in Figs.
24, 25 and 26 cannot be compared to thoselLek et al. (Lee et al., 2016), Hutchinson (Hutchinson,
2016) and Jimenez et al. (Jimenez et al., 2017) for sufficiently large amplitude of imperfections (where
it is found that the knockdown factor approaches a constant limit value for sufficienthatapigude

of imperfections).

1.0 —— T — T T T T T T
— hy/h=145
0.8 —— b /h=10
[ —a— ko /h=06
. —e— N, /h=04
0.6
oot
04
02|
0_0 1 L L L 1 n L I 1 1 I L 1 L L L 1 n L I
0.0 0.2 0.4 0.6 0.8 1.0

So

Fig. 2.6 The influence of,/h on the imperfection sensitivity with fixe®/ h=15 and G*/G= c
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2.3.3Imperfection sensitivity of specific biopolymer spherical shells

In this section, the combined effect of the three key parame®fts, G/ G, i/ I) on the
imperfection sensitivity is studied based on physically realistic parameters of two typical biopolymer
spherical shells: UCAs and spherical virsisith reasonable imperfection amplitude parameter

The actual maximum pressure an imperfect biopolymer spherical shell can sustain will be predicted

and compared to the critical pressure of a prefect spherical biopolymer shell.

1.0 T ! ! :
g Point
% — — Philips 1
08 2 ---- Philips 2 ]|
) Philips 3
I %“ .......... Philips 4
0.6 |\
AN
LAY
< E it 1
FESIRN
0.4F 0N NN |
| Y . ~ i
“
i e
\“.. -~ &
02 :-‘ 2=
E L e '@"“7
.................................... o ]
i s e e L TS @....
00—t e L
= 5 02 0.3 0.4 0.5

Fig. 2.7 The imperfection sensitivity of polymehelled UCAs with the relevant parameters in table
2.1

First, let us examine polymahelled UCAs, with the relevant parameters (shown in table 2.1)
suggested by Chitnis et al. (Chitnis et al., 2013)lier present refined shell model. Two varieties of
polymershelled UCAs, named by two manufacturers (Point and Philips), are employed in their study.

The effective bending thickness used Ghitnis et al.(Chitnis et al., 2013), obtained by fitting
experimatal rupture data to the refined model with the shell paramekersl(35GPa, G =0.4G,

k. =5/6, m=0.4) is employed. Figure 2shows the imperfection sensitivity for these two g

39



of UCAs by using these parameters. From Fig. Ris seen that the actual maximum external pressure

keeps not lower than 60% of that of a prefect spherical Point UCAs shell with the reasonable

nondimensional amplitudg, =|h -hy|/(2h) (see the marker irFig. 27). However, for the Philips

type, which has much lower value lgf/ h than the Point type, the value of actual maximum load an

imperfect shell can sustain can drop to as low as onk26% (see the markers kg. 27) of the
critical loading for a prefect spherical UCAs shell, which suggests that the thicknessifaymity

has the greatest effect on the imperfection sensitivity, and higlumiéormity of shell thickness can
make the actual maximum bucklingalb more sensitive to even minor imperfection and lead to a

maximum pressure much lower than that of a prefect spherical shell.

Table 2.1Relevant parameters for two varieties of polyssieelled UCAs

UCAtype  R(nm) h(nm) he(nm) R/ hth  GYG  x =|h -h|/(2h)

Point 1900 145 9.4 130 0.65 0.4 0.18
Philips 1 1000 31.6 4.8 30 0.15 0.4 0.42
Philips 2 1100 40.2 4.7 25 0.12 0.4 0.44
Philips 3 1300 82.2 6.4 15 0.08 0.4 0.46
Philips 4 1200 1215 6.6 10 0.05 0.4 0.47

Next, we examine the imperfecti@ensitivity with relevant parameters for some typical spherical
viruses. Table 2.2 shows the relevant parameters obtained from (May and Brooks, 2012) for some

typical imperfect spherical virus shells which are divided into four groups based on the pesamete
(R/h,G/G, g/ b and the nondimensional imperfection amplitude=|h -hy|/(2h). In (May and
Brooks, 2012), the Fopplon Kanman numbeg, which is a ratio of thetwd i me nsi on al You

modulus Y and the common bending modulés, is obtained by calculatiny and & with a
multiscale method developed by (May and Brooks, 2011). Therefore, the effective beruings
is calculated through Foppbn Kanman number from the relationship (Landau and Lifshitz,1986)
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The results shown in Fig.2are obtained based on the data in table 2.2. From Bjgt & concluded

that with the relevant parameters for some typical spherical virus shells, the maximwmepoé s

imperfectspherical virus shell could reduce to-65% (see the markers iRig. 28) of the maximum

pressure for a perfect spherical virus shell with the ifit ranging from 3 to 6h, /h ranging fran 1.15
to 1.45, and the nondimensional imperfection amplitﬁrpeanging from 0.07 to 0.23. As stated above, the

ratio G'/G, whose range is limited by the conditi¢a18), has negligible effect on the imperfection

sensitivity when it varies within a physically realistic range.

Fig. 2.8 The imperfection sensitivity of spherical virus shells with the relevantneéeas in table 2.2
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