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Abstract  

      Elastic modeling is essential for mechanical behavior of biopolymer spherical shells [such as 

ultrasound contrast agents (UCAs), spherical viruses and enzymes] characterized by high structural 

heterogeneity and geometric imperfection. The effects of structural heterogeneity and geometric 

imperfection on pressured buckling and free vibration of biopolymer spherical shells are studied in 

detail in three chapters of this thesis. 

1) An axisymmetric geometric imperfection sensitivity analysis is conducted based on a refined 

shell model recently developed for pressured buckling of biopolymer spherical shells of high structural 

heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of 

radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and 

the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is 

examined for pressured buckling. The actual maximum sustainable external pressures for typical 

imperfect spherical biopolymer shells (viral capsids and ultrasound contrast agents) are predicted based 

on physically realistic parameters. 

2) Initial post-buckling and geometric imperfection sensitivity of a pressured biopolymer 

spherical shell based on non-axisymmetric buckling modes and associated mode interaction are studied. 

The comparison with the results obtained based on the axisymmetric imperfection sensitivity analysis 

identified the cases in which a more accurate non-axisymmetric analysis with the mode interaction is 

required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. The 

implications of the non-axisymmetric analysis to two specific types of biopolymer spherical shells 

(viral capsids and ultrasound contrast agents) are discussed. 

3) A refined shell model is employed to study the effect of high structural heterogeneity on natural 

frequencies and vibration modes of biopolymer spherical shells. With this model, the structural 

heterogeneity of a biopolymer spherical shell is characterized by an effective bending thickness and 
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the transverse shear modulus. With physically realistic parameters for spherical viruses and enzymes, 

the natural frequencies and vibration modes predicted by the present refined shell model are in better 

agreement with some known simulation results, which suggest that the refined shell model could offer 

a relatively simple model to simulate free vibration of biopolymer spherical shells of high structural 

heterogeneity. 

           The theoretical models and numerical results achieved in this thesis help clarify to what degree 

the structural heterogeneity and geometric imperfection in biopolymer spherical shells affect their 

global mechanical response such as pressured buckling and free vibration. Using physically realistic 

parameters for some typical biopolymer spherical shells, the predictions of actual maximum 

sustainable pressure and natural frequencies and associated vibration modes provide plausible 

comparisons with known simulations and experiments of specific biopolymer spherical shells. 
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Chapter 1: Introduction  

 

1.1 Research background 

Spherical shell-like geometrical structures are common in various biological objectives. One example 

is the micro-scaled shell-like ultrasound contrasts agents (UCAs), which are manufactured by 

encapsulating an insert gas into a thin biocompatible shell and can be used as carriers for target drug 

and gene delivery (Liu et al., 2006; Sboros, 2008). The other example is nano-sized spherical virus 

coated by a protein shell (known as capsid) (Mateu, 2013). Enzymes, generally spherical (ñglobularò) 

proteins, is another example of the biopolymer spherical shells.  

The pressured buckling and free vibration of bio-related spherical shells are critical to fulfill their 

functions through the life cycle. For the buckling behavior of biopolymer spherical shells, the study on 

pressured buckling and rupture of the spherical virus shells (capsid) is of particular interest as they 

determine the resistance to osmotic shocks and the maximum ejection pressure of DNA in the host cell 

(Bealle et al., 2011), which is relevant in understanding their biological functions such as protecting 

genetic materials, maturation, and infection of cells (Hernando et al., 2014; Mateu, 2013; Roos et al., 

2007). Emerging biomedical applications (e.g. perfusion imaging, drug delivery (Guo et al., 2016; Liu 

et al., 2006; Qin et al., 2009; Sboros, 2008) involving ultrasound contrasts agents (UCAs) rely on an 

understanding of pressured buckling and rupture of UCAs at or above a predetermined incident 

acoustic pressure (Chitnis et al., 2010, 2013).  

For the vibration behavior of biopolymer spherical shells, a viral capsid protects viral genome from 

hostile environment of the host cell, and excitation of capsid vibration could find application in either 

diagnosis or treatment of viral diseases (Babincová, 2000; Dykeman and Sankey, 2008; Ford, 2003; 

Talati and Jha, 2006; Yang et al., 2015). And it has been experimentally observed that the large-scale 
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conformational changes in a viral capsid can be described by low-frequency modes and are relevant to 

the fulfillment of virusesô specific functions (Dykeman and Sankey, 2009, 2010a, 2010b; Kononova 

et al., 2016; Peeters and Taormina, 2008; Tama and Brooks, 2005). Also, a detailed picture of the 

enzymesô vibrational modes and frequencies are useful for understanding their cooperative motion and 

changes in conformation, which can potentially lead to correlated active site opening and/or closure, a 

phenomenon important for substrate binding and product release (Dykeman and Sankey, 2010a; 

Mahajan and Sanejouand, 2015; Marques and Sanejouand, 1995; Pentikainen et al., 2008; Wells et al., 

2015). Therefore, research on the elastic modeling (such as pressured buckling and free vibration) of 

biorelated spherical shells is of great importance to understand their biological functions through the 

life cycle and for their biomedical applications. 

 

1.2 Research motivation 

Compared with classical homogeneous thin shells, a common key feature of biopolymer spherical 

shells is their high structural heterogeneity and geometric imperfection, such as structural 

inhomogeneity and geometrical imperfection of UCAs confirmed by scanning electron microscopy 

(Chlon, 2009) (see Fig. 1.1), as well as structural inhomogeneity and high geometric nonuniformity of 

spherical virus shells revealed by x-ray crystallography (Verdaguer et al., 2013) and cryotransmission 

electron microscope tomography (Baker et al., 1999; Caston, 2013) (see Fig. 1.2). For many 

biopolymer structures such as microtubules that have similar structural heterogeneity and geometric 

imperfection, it is known that some important physical phenomena related to buckling and vibration 

behaviors are greatly influenced by transverse shear resistance, bending modulus and imperfect 

boundaries (intensively studied in many research work, see e.g. (Arani et al., 2017; Baninajjaryan and 

Beni, 2015; Beni et al., 2017; Civalek and Demir, 2010; Daneshmand and Amabili, 2012; Fu and 

Zhang, 2010; Gu et al., 2009; Heireche et al., 2010; Kis et al., 2002; Kuļera et al., 2016; Liew et al., 
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2015; Mehrbod and Mofrad, 2011; Pampaloni et al., 2006; Shi et al., 2008; Shen, 2010; Tounsi et al., 

2010; Xiang and Liew, 2012; Zhang and Wang, 2015)). These phenomena cannot be explained by the 

simple homogeneous elastic shell model without transverse shear. As stated by Gibbons and Klug 

(Gibbons and Klug, 2008), ñalthough homogenized continuum models provide an explanation of 

biopolymer spherical shell indentation mechanics consistent with experiments, the degree for which 

heterogeneity in these protein assemblies affects their global mechanical response is still unclear.ò 

Therefore, the present thesis aims to develop more accurate shell models for biopolymer spherical 

shells which can account for some high-order effects associated with their structural heterogeneity such 

as transverse shear, effective bending thickness and geometric imperfection. 

 

Fig. 1.1 Electronmicrographs of UCAs (Kooiman et al., 2009). Copyright 2009. Reproduced with 

permission from Elsevier. 

 

Fig. 1.2 Representations of the CCMV viral capsids (Gibbons and Klug, 2007a). Copyright 2007. 

Reproduced with permission from Springer Nature. 
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1.3 Literature review 

1.3.1 Elastic modeling of classical homogeneous spherical shells 

1.3.1.1 The pressured buckling modeling of classical homogeneous spherical shells 

The calculations of the linearized buckling pressure of spherical shells were first made by Zoelly 

(Zoelly, 1915) and Schwerin (Schwerin, 1922), who considered that the buckling displacement is 

axisymmetric. Their solutions were based on the assumption of infinitesimal displacements from the 

linear pre-buckling solution, ( ) ( )2(1 )2 ,h R q hq E RR ws m-è ø= = ê ú  and were obtained in terms 

of Legendre functions. The critical pressure for linearized buckling is given by 

 
2

2
2

3(1 )
,cr

E

R
q

h

m

å õ
æ ö
ç ÷-

=                                                (1.1) 

where R is the radius of the spherical, h its thickness, q  the external pressure,s the membrane stress,  

w  the radial displacement, and E and mare Youngôs modulus and Poissonôs ratio of the shell materials, 

respectively.  

 

Fig. 1.3 A classical homogeneous spherical shell subject to external pressure 
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The first complete general analysis of the problem based on the linear theory of elastic stability is due 

to Van der Neut (Van der Neut, 1932). He found that the linear buckling pressure (1.1) corresponds to 

(2n+1) linearly independent buckling modes, only one of which is axisymmetric while all others are 

non-axisymmetric. The integer n  can be determined as the nearest natural number by 

 ( )22 3(1 ) 1 .R h nnm º- +                                                (1.2) 

This classical shell model was developed based on the assumptions that the spherical shell is thin and 

therefore the transverse shear strains are neglected, the shell thickness is uniform, and the spherical 

shell is perfect. We call a spherical shell "perfect", if it is homogenous with uniform thickness and all 

points on the outer/inner surface have same distance from the centre (see Fig. 1.3). Otherwise, the 

spherical shell is imperfect. As we can see from Figs. 1.1 and 1.2, there exists imperfect boundaries, 

uneven surfaces and pores in the shells. 

For decades, this theoretical prediction was found to be in disagreement with the experimental results 

(Carlson et al., 1967; Homewood et al., 1961; Kaplan and Fung, 1954; Krenzke et al., 1967; Seaman, 

1962; Tsien, 1942). Early efforts to come to terms with this discrepancy between experiments and shell 

theory focused on the post-buckling behavior of imperfect shells (Karman and Tsien, 1939; Tsien, 

1942) and their extreme sensitivity to initial imperfections (Hutchinson, 1967; Koiter, 1945, 1963, 

1969; Thompson, 1962, 1964). Thompson (Thompson, 1962) made a simplified analysis of a spherical 

shell with initial imperfections but used only two terms to represent the deformation with a constant 

dimple angle. Thompson (Thompson, 1964) then performed a theoretical buckling stability analysis 

using Koiterôs (Koiter, 1945, 1963) initial post-buckling theory for axisymmetric imperfection. 

Koiterôs (Koiter, 1945, 1963) major contribution is to develop a general theory of elastic stability which 

connected imperfection sensitivity to the initial post-buckling behavior of the perfect structure. 

Hutchinson (Hutchinson, 1967) extended Thompsonôs (Thompson, 1962, 1964) use of Koiterôs (Koiter, 
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1945, 1963) initial post-buckling theory to include non-axisymmetric modes. His simplified analysis 

by using shallow shell theory is limited to thin shells, for which classic buckling wavelengths are small 

compared to the cap dimensions. Koiter (Koiter, 1969) performed an extensive investigation of the 

post-buckling behavior of the complete spherical shell. This included some modifications of 

Hutchinsonôs non-axisymmetric analysis (Hutchinson, 1967) and a considerable amplification of 

Thompsonôs axisymmetric analysis (Thompson, 1962, 1964). He added the fourth-order terms in the 

axisymmetric analysis and the obtained results which are close to Hutchinsonôs (Hutchinson, 1967). 

Based on the seminal works done by (Hutchinson, 1967; Koiter, 1969; Thompson, 1962, 1964) and 

other extensive research work (Murray and Wright, 1961; Kalnins and Biricikoglu, 1970; Koga and 

Hoff, 1969; Sabir, 1964; Walker, 1968), it became well established that the primary cause for this 

discrepancy is the presence of geometric imperfections. 

The intense study of the nonlinear buckling behavior of complete spherical shells largely ended almost 

five decades ago with the publication of Koiterôs (Koiter, 1969) monumental paper on the post-

buckling behavior and imperfection sensitivity of complete spherical shells subject to external pressure 

(Hutchinson, 2016). Until very recently, the post-buckling behavior and imperfection sensitivity of 

shells have been extensively studied numerically and experimentally (Evkina and Lykhachova, 2017; 

Hutchinson, 2016; Hutchinson and Thompson, 2016; Jimenez et al., 2017; Lee et al., 2016; Yu et al., 

2017). Lee et al. (Lee et al., 2016) study the effect of a precisely fabricated dimplelike geometric 

imperfection on the critical buckling load of spherical elastic shells under pressure loading. For the 

first time, experimental results of imperfect spherical shells have been accurately predicted, through 

both finite element modeling and shell theory solutions. In particular, they found that the buckling 

pressure becomes independent of the amplitude of the dimplelike defect beyond a critical value. This 

phenomenon is also observed by Hutchinson (Hutchinson, 2016) (who considers several types of 

geometric imperfections including dimple-shaped undulations and sinusoidal-shaped equatorial 



7 
 

undulations and use the shell theory), and Jimenez et al. (Jimenez et al., 2017) (who consider precisely 

defined geometric imperfections and use finite-element analysis). This observation proves that the 

direct application of Koiter-type theory to complete spherical shells under external pressure, first 

presented by (Thompson, 1962, 1964) and somewhat later by (Hutchinson, 1967) and (Koiter, 1969), 

turns out to be valid for only small imperfections. 

1.3.1.2 The free vibration modeling of classical homogeneous spherical shells 

Vibration of elastic closed spherical shell was first examined by Lamb (Lamb, 1882), by means of the 

membrane theory, and then by Federhofer (Federhofer, 1937) who employed the classical bending 

theory of shells. More detailed treatments of axisymmetric vibration of a closed spherical shell were 

given by (Baker, 1961) and (Kalnins, 1964) who used membrane and classical bending theories, 

respectively. Wilkinson (Wilkinson, 1965) subsequently investigated the axisymmetric modes of a 

complete spherical shell including the effects of transverse shear and rotary inertia. Two frequency 

equations for the axisymmetric vibration of a closed spherical shell are derived in (Wilkinson, 1965). 

The first frequency equation for spheroidal vibration modes is written as a cubic equation in 
2W  as 

follows (Wilkinson, 1965) 
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and the second frequency equation for torsional vibration modes is written as a quadratic equation in 

2W  as follows (Wilkinson, 1965) 
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where R is the radius of the spherical shell, h is its average thickness, m is Poissonôs ratio of shell 

material, 
sk  is the shear coefficient, the tracers are given by 
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2rc =  (Kraus, 1967; Wilkinson and Kalnins, 1965), and ( )1r n n= + , where n 

denotes the mode number. W  denotes the dimensionless natural frequency defined by 

2 2
2

2(1 )R

E

r w m-
W = , where E is Youngôs modulus, t  is time, and r denotes the mass density of the 

shell, wis the angular frequency. 

It is known that this classical shell model for studying free vibration of spherical shells is developed 

based on the assumptions that the transverse shear modulus equals to in-plane shear modulus, the 

thickness of spherical shell is uniform, and the spherical shell is perfect. 

Theoretical investigations regarding the non-axisymmetric modes have been reported as well 

(Niordson, 1984, 1988; Silbiger, 1962; Wilkinson and Kalnins, 1965). Silbiger (Silbiger, 1962) 

presents the first discussion of the presence of non-axisymmetric modes of spherical shells and claims 

that non-axisymmetric modes for a complete spherical shell do exist and that they are degenerate, 

meaning that the non-axisymmetric frequencies are identical to corresponding axisymmetric modes. 

Silbiger (Silbiger, 1962) attributes this to the spherical symmetry of the shell and goes on to state that, 

corresponding to each natural frequency, there exists 2n+1 linearly independent modes at each mode 

number n. All other modes (at a given frequency) are linear combinations of these modes.  
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Attempts at correlating the theoretical results with either experimental or simulated results (both for 

axisymmetric and non-axisymmetric modes of vibration) are almost completely lacking (Duffey et al., 

2007). Recently, Duffey et al. (Duffey et al., 2007) presented a comparison of natural frequencies and 

vibration modes obtained from axisymmetric and non-axisymmetric theories of vibration of complete 

spherical shells (Wilkinson, 1965) with finite element simulations and experimental results. 

Comparisons of the axisymmetric frequencies are good (see Table 1 and 2 in (Duffey et al., 2007)). 

Also, finite element calculations and experimental results support the existence of 2n+1 independent 

vibration mode (see figures 4 and 5 in (Duffey et al., 2007)), in agreement with (Silbiger, 1962). 

 

1.3.2 Pressured buckling of biopolymer spherical shells 

Recently, the shell material properties of polymer-shelled UCAs have been explored based on 

mechanical deformation through an atomic-force microscope (AFM) (Sboros, 2007), and buckling and 

rupture (Chitnis et al., 2010, 2011a, 2011b, 2013; Marmottant et al., 2011) of polymer-shelled UCAs 

are studied in detail. In terms of spherical viruses, the complex mechanical properties have been studied 

extensively, using the method of AFM nanoindentation (Mateu, 2012; Michel, 2006), continuum 

elasticity by Nelson and Widom (Lidmar et al., 2003; Widom et al., 2007) and Bruisnma and Gelbart 

(Nguyen et al., 2005, 2006), and molecular dynamics simulation by May and Brooks (May, 2011; May 

and Brooks, 2011, 2012). In particular, the mechanical stability and rupture of viral capsid under 

different external and internal mechanical loadings (Nguyen et al., 2005; Siber, 2006; Siber and 

Podgornik, 2009; Zandi and Reguera, 2005) have been investigated by many researchers.  

Based on the feature of biopolymer spherical shells, the effect of structural heterogeneity and geometric 

imperfection on the pressured buckling of biopolymer spherical shells has received considerable 

attention. For examples, a refined elastic spherical shell model has been developed in (Ru, 2009) to 
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explore the effect of structural heterogeneity and thickness nonuniformity on pressured buckling of 

biopolymer spherical shells; this model was recently employed by Chitnis et al. to study the rupture of 

ultrasound contrast agents (UCAs) (Chitnis et al., 2010, 2011a, 2011b, 2013). Wan et al. (Wan et al., 

2015) showed that structural defects in spherical crystalline shells affect the shellsô ability to sustain 

external hydrostatic pressure. Gibbons and Klug (Gibbons and Klug, 2006, 2007, 2008, 2015) 

demonstrated by finite element simulations that nonuniform geometry and geometric defects have 

meaningful effects on the mechanical failure of viral capsid. May et al. (May et al., 2011) and May and 

Brooks (May and Brooks, 2011, 2012) revealed nonuniform elastic properties of spherical viruses due 

to the heterogeneity of the structure and the anisotropy of the biomolecular interactions through 

molecular dynamics simulation based on a buckling transition predicted by Lidmar et al. (Lidmar et 

al., 2003) and Widom et al. (Widom et al., 2007). Chitnis et al. (Chitnis et al., 2010, 2011a, 2011b, 

2013) emphasized that the shell imperfection influences the rupture load of polymer-shelled UCAs. 

Also, Nguyen-Thanh et al.  (Nguyen-Thanh et al., 2015) developed an extended isogeometric element 

formulation (XIGA) based on Kirchhoff-Love shell theory for through-the-thickness cracks in thin 

shell structures, which is also significant for the future study on imperfect biopolymer shells.  

It should also be noted that in more realistic biopolymer spherical shells, both the geometric 

imperfection and the buckling pattern can be non-axisymmetric. For examples, the structural model of 

spherical virusesô shell (capsid) obtained by X-ray crystallography shows the non-axisymmetric 

geometric imperfection (e.g. fig. 1 in (Michel et al., 2006)). Bealle et al. (Bealle et al., 2011) 

demonstrated that deformation patterns of osmotically induced buckling of capsid-like icosahedral 

vesicles are non-axisymmetric (see their fig. 3). Also, Chitnis et al. (Chitnis et al., 2010) showed 

different buckling modes and the asymmetric rupture of UCAs in their static pressure experiments (see 

their fig. 3), and Yin et al. (Yin et al., 2005) found various post-bifurcation modes with shape 

transitions in biomembrane cells.  
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Therefore, it is of great significance to study the effect of geometrical imperfection (both axisymmetric 

and non-axisymmetric) on pressured buckling of biorelated spherical shells (such as UCAs and 

spherical viruses) and the influence on their biological functioning. In particular, when a non-

axisymmetric imperfection is involved, the effect of the non-axisymmetric modes and the mode 

interaction on the imperfection sensitivity of pressured biopolymer spherical shells is worthwhile to be 

investigated. 

 

1.3.3 Vibrational properties of biopolymer spherical shells 

The study on vibrational properties of biopolymer spherical shells is an area of growing interest 

recently due to its close relation with their biological functions. A number of approaches have been 

developed to investigate vibration behaviors of biopolymer spherical shells, such as experiments 

(Tama and Brooks, 2005; Tsen et al., 2006, 2007), continuum elastic models (Balandin and Fonoberov, 

2005; Ford, 2003; Ghavanloo and Fazelzadeh, 2015; Kahn et al., 2001; Tsen et al., 2006, 2007; Widom 

et al., 2007; Yang et al., 2009), elastic network modeling (Bergman and Lezon, 2017; May et al., 2011; 

May and Brooks, 2011, 2012; May, 2014; Peeters and Taormina, 2008, 2009), and atomistic 

simulations (Dykeman and Sankey, 2008; 2009, 2010; Wells et al., 2015). To mention a few, 

Babincová et al. (Babincová et al., 2000) suggested that viruses can be inactivated by ultrasound 

resonance in the GHz region. Motivated by this hypothesis, several groups investigated vibrational 

modes of viruses (Balandin and Fonoberov, 2005; Dykeman and Sankey, 2008, 2010a, 2010b; Tsen et 

al., 2006). Ford (Ford, 2003) has reported theoretical estimates of vibrational frequencies of spherical 

virus particles using the liquid drop model and an elastic sphere model. Talati and Jha (Talati and Jha, 

2006) used an elastic continuum model to calculate low-frequency vibrational modes of spherical 

viruses immersed in a medium. Widom et al. (Widom et al., 2007) identified and classified vibration 
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modes of a virus capsid based on a simple mass-and-spring model. Dykeman and Sankey (Dykeman 

and Sankey, 2008; 2009, 2010a, 2010b) calculated low-frequency vibration modes and frequencies of 

large protein assemblies (such as enzymes and viral capsids), where the vibration modes are modeled 

with full atomic detail. Yang et al. (Yang et al., 2009) predicted vibrational modes of several 

icosahedral viruses and an icosahedral enzyme using continuum models, and they estimated the 

macroscopic material properties such as the Youngôs modulus or Poissonôs ratio by fitting the 

predictions to an anisotropic network model. May and Brooks (May et al., 2011; May and Brooks, 

2011, 2012; May, 2014) applied two-dimensional elasticity theory to viral capsids and developed a 

framework for calculating elastic properties of viruses.  

However, bio-related spherical shells are characterized by high structural heterogeneity and thickness 

non-uniformity. Such a key feature of bio-related spherical shells has not been well addressed in the 

previous related studies on free vibration behavior. In particular, almost all previous continuum models 

are based on the classical homogeneous shell model and are often limited to axisymmetric vibration. 

Therefore, it is of great interest to investigate the role of high structural heterogeneity and thickness 

nonuniformity on axisymmetric and non-axisymmetric free vibration of biopolymer spherical shells. 

 

1.4 Research objectives 

In view of the fact that biopolymer spherical shells are characterized by high structural heterogeneity 

and thickness non-uniformity, a refined elastic spherical shell model was developed in (Ru, 2009) 

based on axisymmetric assumption, which was recently used to study the rupture of ultrasound 

contrasts agents (UCAs) by Chitnis et al. (Chitnis et al., 2011a, 2011b, 2013). The effect of structural 

heterogeneity and thickness non-uniformity on the linear critical pressure crq  for small-deflection 

linearized axisymmetric buckling of a perfect biopolymer spherical shell given by the refined model is 
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where E  is Youngôs modulus, m is Poissonôs ratio of the biopolymer spherical shell, 
sk  is the shear 

coefficient, R is the average radius, h  is the average thickness, G  is the in-plane shear modulus, 
*G  

is the transverse shear modulus, and 
0h  is the effective bending thickness. Clearly, the critical value 

(1.5) given by the refined model reduces to the classical formula (1.1) when transverse shear strains 

are neglected ( *G G=¤) and 
0h h= , as shown in (Ru, 2009). Here, the deviation of trasverse shear 

modulus 
*G  and effective bending thickness 

0h from the in-plane shear modulus G and the average 

thickness h indicate the structural heterogeneity and the thickness nonuniformity, respectively. The 

deviation of 
*G  from G indicates the anisotropy, which is due to the underlying heterogenous 

microstructures. It should be noted that the terminology "heterogeniety" in this thesis is referring to the 

inhomogeneous microscopic structures of which the characteristic length is far smaller than the radius 

of spherical shells. The separation of scales permits the homogenization of microstructures. Therefore, 

in the model of this thesis, the material is assumed to be homogenous and possesses effective material 

properties. 

Owing to the axisymmetric assumption made in (Ru, 2009), only one axisymmetric buckling mode 

exists. The linearized axisymmetric buckling mode is given by the n -degree Legendre functions 

(cos )nP j  (Koiter, 1969; Zhang and Ru, 2016), where the integer n  can be determined as the nearest 

natural number by the following formula (Ru, 2009; Zhang and Ru, 2016) 
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Also, it is seen that the formula (1.6) reduces to (1.2) when transverse shear strains are neglected 

( *G G=¤) and 
0h h= . 

It is known that for some typical biopolymer shells (such as microtubules), transverse shear modulus 

can be much lower than in-plane shear modulus (Kis et al., 2002; Pampaloni et al., 2006; Shi et al., 

2008), and therefore transverse shear could become significant for shorter-wavelength deformation. 

For biopolymer spherical shells, because wavelengths are always shorter as compared to the diameter, 

it is expected that transverse shear could be relevant for biopolymer spherical shells. In particular, in 

view of similar thickness non-uniformity and structural heterogeneity of microtubules and biopolymer 

spherical shells, it is assumed here that the transverse shear modulus *G  could be much lower than the 

in-plane shear modulus G  and the effective bending thickness 
0h  can be different from the average 

shell thickness h  (Ru, 2009). 

Based on this refined model, we carry out the study on the following topics:  

(1) Investigate the effect of axisymmetric geometric imperfection on pressured buckling of a 

biopolymer spherical shell. 

(2) Non-axisymmetric geometrical imperfections and mode-interaction on the imperfection 

sensitivity of pressured biopolymer spherical shells. 

(3) Investigate the effect of structural heterogeneity and thickness non-uniformity on natural 

frequencies and vibration modes of biopolymer spherical shells. 

 

1.5 Thesis layout 

The present thesis is organized as follows: 
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Chapter 1 provides a general research background and motivation of the involved research topics, the 

lit erature review and the objectives of my research. 

Chapter 2 investigates the post-buckling behavior and imperfection sensitivity of pressured buckling 

of a biopolymer spherical shell based on axisymmetric assumption and the above-mentioned refined 

shell model. Detailed research on the influence of related parameters (including the ratio of radius to 

average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio 

of effective bending thickness to average shell thickness) on imperfection sensitivity is conducted. In 

addition, with physically relevant data in the literature for viral capsids and ultrasound contrast agents, 

the actual maximum external pressure an imperfect biopolymer spherical shell can sustain is predicted. 

Chapter 3 extends the axisymmetric imperfection sensitivity analysis proposed in chapter 2 to a non-

axisymmetric analysis with the mode interaction. The cases that need the more accurate non-

axisymmetric analysis with the mode interaction are discussed in detail. The actual maximum external 

pressures predicted in chapter 2 for two types of biopolymer spherical shells are modified based on the 

non-axisymmetric analysis. 

Chapter 4 proposes a refined shell model to study the effect of high structural heterogeneity on natural 

frequencies and vibration modes of biopolymer spherical shells. With physically realistic parameters 

of spherical viruses and enzymes, the results predicted by the refined shell model are compared with 

known simulation results and the results obtained by the classical homogeneous shell model. 

Chapter 5 summarizes the major conclusions of this research and suggests a few research topics for 

future studies.  
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Chapter 2: Axisymmetric imperfection sensitivity on pressured buckling 

of a biopolymer spherical shell 

 

2.1 Introduction  

          This chapter aims to examine axisymmetric imperfection sensitivity of biopolymer spherical 

shells of high structural heterogeneity using the refined shell model (Eqs. (1.5) and (1.6)) developed in 

(Ru, 2009). The methods for axisymmetric post-buckling of classical homogeneous spherical shells 

developed in previous seminal works, e.g. by Thompson (Thompson, 1962, 1964), Hutchinson 

(Hutchinson, 1967), Koiter (Koiter, 1945,1963,1969) and Budiansky and Hutchinson (Budiansky and 

Hutchinson, 1964), will be employed to study the imperfection sensitivity of structurally heterogeneous 

biopolymer spherical shells based on the refined shell model (Ru, 2009). In section 2.2, the 

axisymmetric post-buckling modes of a pressured perfect biopolymer spherical shell are derived. 

Furthermore, the axisymmetric imperfection sensitivity is studied in section 2.3 with an emphasis on 

the influence of key parameters on the axisymmetric imperfection sensitivity for two specific types of 

biopolymer spherical shells (ultrasound contrasts agents UCAs and spherical viruses). Finally, main 

conclusions are summarized in section 2.4. 

 

2.2 Axisymmetric post-buckling modes of a pressured perfect biopolymer 

spherical shell 

            In this section, post-buckling modes of a prefect biopolymer spherical shell defined by the 

refined model (Ru, 2009) are studied. The present chapter focuses on buckling under static pressure, 

and viscous effect can be ignored reasonably although such viscoelastic effect may play a significant 
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role in high frequency vibration of some biopolymer shells. The procedures and formulations given in 

this section were developed in Budiansky and Hutchinsonôs work (Budiansky and Hutchinson, 1964) 

on post-buckling of elastic structures, based on Koiterôs general nonlinear theory of elastic stability 

(Koiter, 1945,1963). Since geometric imperfection of the biopolymer shells can be assumed to be 

axisymmetric, we shall confine ourselves to axisymmetric postbuckling. 

Spherical coordinates j ( 0 j p¢ ¢), q (0 2q p¢ ¢ ) and z  ( 2 2h z h- ¢ ¢ ) are used to describe a 

biopolymer spherical shell of middle surface radius R and average shell thickness h , where the radial 

coordinate z , whose sign is taken positive outward, indicates the distance of a point in the shell to the 

middle surface. The linear mid-face strains (including 2 transverse shear strains 
zej , 

zeq  and the 

change in curvatures kj, kq and kjq) of a spherical shell are given in terms of the displacements of 

the middle surface , ,u v w and the rotations ,a b of the normal of the middle surface in j, q 

directions by (Ru, 2009) (the detailed derivation is given in Appendix A) 
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   (2.1) 

For axisymmetric post-buckling of an elastic spherical shell (with 0v b= = and () 0qµ µ =, see 

e.g. (Ru, 2009)), based on the simplifications (Kraus, 1967; Ru, 2009) that the contribution of two in-

plane displacements u  and v  to the transverse shear strains 
zeq , 

zej  is negligible, and using the 

simple nonlinear term of Sanderôs nonlinear kinematic relations (Sanders, 1961) and the shear 

deformation theory of Reddy and Liu (Reddy and Liu,1985), Eq. (2.1) is replaced by 



18 
 

 

2

1 1
, cot ,

2

1
0, 0, ,

1
, cot , 0

z z

u w w u w
e e

R R R R R

w
e e e

R

k k k
R R

j q

jq q j

j q jq

j
j j

a
j

a a
j

j

å õµ µ
= + + = +æ ö
µ µç ÷

µ
= = = +

µ

µ
= = =
µ

                            (2.2) 

Here, transverse shear deformation is included as a potentially significant factor for thick biopolymer 

spherical shells (Gibbons and Klug, 2007). 

Based on Hooke's law, the relationship between the stresses and strains ( , , , ,z zj q jq j qe e g g g, see 

definitions in Appendix A) on the biopolymer spherical surface are given by 

 
( ) ( )2 2

* *

,
1 1

, , .z z z z

E E

G G G

j j q q q j

jq jq j j q q

s e me s e me
m m

s g s g s g

= + = +
- -

= = =

  (2.3) 

where E  is Youngôs modulus, m is Poissonôs ratio of the biopolymer shell, 
*G  is the transverse shear 

modulus, and G  is the common in-plane shear modulus determined by  (E , m).  

Furthermore, based on the isotropic linear plane-stress stress-strain relation, the in-plane resultant 

membrane forces, bending moments and transverse shear forces are given by (Ru, 2009) 
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where sk  is the shear coefficient, which is a dimensionless quantity and depends on the shape of the 

cross section (defined by ( ) ( )
2 26 1 7 12 4sk m m m= + + +  for the circular section and 

( )( )5 1 6 5sk m m= + +  for the rectangle section) (Stephen, 1980). It is introduced to account for the 
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fact that the shear stress and shear strain are not uniformly distributed over the cross section (Stephen, 

1980). The bending stiffnesses of a biopolymer spherical shell are assumed to be determined by an 

effective bending thickness 
0h  as 

 
( )

3 3

0 0
122

,
1212 1

Eh Gh
D D

m
= =

-
                                       (2.5) 

For biopolymer spherical shells, as stated above, it is assumed here that the transverse shear modulus 

*G  could be much lower than the in-plane shear modulus G  and the effective bending thickness 
0h  

can be different from the average shell thickness h  (Ru, 2009). It is the two new parameters (
*G ,

0h ) 

of the refined model (Ru, 2009) which distinguish biopolymer spherical shells of high structural 

heterogeneity and thickness non-uniformity from classical elastic shells defined by (E , m, h ). 

For a spherical shell, when the uniform external pressure q  reaches to the critical value of buckling 

pressure (bifurcation point), the spherical shell suffers deviation from its spherical geometrical shape. 

The displacement of the spherical shell in initial post-buckled state can be written in the asymptotic 

expansions (Budiansky and Hutchinson, 1964; Danielson, 1974) 

 

2 3

0 0 1 0 2 0

2 3

0 0 1 0 2 0

2 3

0 0 1 0 2 0

( ),

( ),

( )

u u u u

w w w w

x x x

x x x

a a xa x a x

= + + +O

= + + +O

= + + +O

                                        (2.6) 

where the displacement (0 0 0, ,u w a ) are pre-buckling deformations prior to buckling, (1 1 1, ,u w a ) are 

linearized buckling modes, the auxiliary displacements (2 2 2, ,u w a ), which will be used to analyze the 

instability of post-buckling behavior in Appendix B, are all taken to be orthogonal to the buckling 
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mode (
1 1 1, ,u w a ) (defined by 
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=ñ ñ ), and 
0x is a nondimensional 

amplitude factor. 

Substituting the displacements (2.6) into the midface strains (2.2) and then into Eq. (2.4), and 

considering that the spherical shell under uniform external pressure q  prior to buckling is in a uniform 

membrane state of stress (
0 0 2N N qRj q= =- ) with a pre-buckling inward radial displacement 

0w  

( ( ) ( )2

0 0 00, 0, 1 2u w qR Eha m= = =- - ) (Hutchinson, 1967), the in-plane resultant membrane 

forces, bending moments and transverse shear forces have the asymptotic expansions (Budiansky and 

Hutchinson, 1964; Danielson, 1974) 
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where 
iNj  and iNq  ( )0,1,2i=  represent membrane forces with linear strains. 

The equilibrium equations of a spherical shell can be derived from the variational principle (Budiansky 

and Hutchinson, 1964; Danielson, 1974) 
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The integral on the left-hand side of Eq. (2.8) is the internal virtual work, while the right-hand side of 

Eq. (2.8) is the external virtual work represented by the work of pre-buckling state membrane forces, 

and 
1 u w

R Rj

å µ
+

µ

õ
æ ö
ç ÷

 is the linear part of ejsince the pre-buckling state is described by linear membrane 

theory. 

The midface strains (2.2), the displacement w  given in (2.6) and the expansions (2.7) are then 

substituted into Eq. (2.8), which gives, on using the integration by parts and collecting the coefficients 

of ud , wd  and da separately (Budiansky and Hutchinson, 1964; Reddy, 2002) 
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where 
0 0N Nj= , nj is the unit normal vector at the edge of the spherical shell. In the case of a 

spherical shell section clamped along its boundary, the boundary condition is 0u w a= = = and the 

boundary expressions vanish, whereas in the case of a closed spherical shell, the boundary expressions 

also vanish owing to the continuity of all displacements. 

Since ud , wd  and da are arbitrary and independent, the linear 
0x-term leads to the (first-order) 

Euler equations for (
1 1 1, ,u w a) (Budiansky and Hutchinson, 1964; Reddy, 2002) 
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Following the procedure given in (Ru, 2009) which define 1u  and 
1Qj  in terms of two new functions 

1( )f j  and 
1( )g j  as 
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                                              (2.11) 

and substituting Eq. (2.11) into Eq. (2.10) gives 3 equations for (1 1 1, ,f w g ) 
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Finally, eliminating
1( )f j  and 

1( )g j  in (2.12) leads to a decoupled equation for 
1w , the linearized 

critical value of the external pressure, as given by (1.5) in the form of 0

cr

N

Eh

å õ
æ ö
ç ÷

(considering 

0 2N qR=- ), is determined by the minimum value of 
0N  for a non-zero 

1w  as 
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Clearly, the critical value (2.13) given by the refined model reduces to the classical formula (1.1) when 

transverse shear strains are neglected (
*G G=¤) and 

0h h= , as shown in (Ru, 2009). 

The linearized axisymmetric normalized buckling mode is given by (Koiter, 1969) 

 
1 (cos )nw hP j=-                                                     (2.14) 

where 
nP  is the n -degree Legrende function and the integer n  can be determined as the nearest natural 

number by the following formula (Ru, 2009) 
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Actually the buckling mode 1w  is the n th eigenfunction of the following eigenvalue problem (Ru, 

2009) 
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where the integer n  is determined by (2.15). Also, it is proved in (Ru, 2009) that the inequality 

condition ( ( 1) 1n n+ >>) listed in (2.15) is met as long as the following condition is satisfied 
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In particular, all physically realistic parameters of biopolymer shells used in this chapter well satisfy 

the condition (2.18). 

To derive formulas of 
1u  and

1a , it follows from the first and third equations of (2.12) that the 

expressions of 
1f and

1g  have similar form as Eq. (2.14). Therefore, combined with Eq. (2.17), the first 

Laplacian of 
1f  and 

1g  gives 
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Subsequently, we can get specific expressions of 
1f  and 

1g by introducing Eqs. (2.14), (2.17) and 

(2.19) into the first and third equations of (2.12). Then substituting 
1f  and 1g  into Eq. (2.11), the 

buckling mode 1 1,u a are determined as 
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Therefore, (2.14) and (2.20) are the linearized buckling modes given by the refined model developed 

for biopolymer spherical shells with the integer n  determined by (2.15). 

Next, to determine the auxiliary displacements (
2 2 2, ,u w a ), setting ud , wd  and da orthogonal to 

(
1 1 1, ,u w a) in Eq. (2.9), dividing by 2

0x  and then letting 
0x vanish, the rearranged equations give the 

second-order Euler equations for (
2 2 2, ,u w a ) (Budiansky and Hutchinson, 1964; Reddy, 2002) 
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Likewise, define 
2u  and 

2Qj  in terms of two new functions 
2( )f j  and 

2( )g j  
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                                                 (2.22) 

Inserting Eq. (2.22) into Eq. (2.21) leads to 3 equations for (
2 2 2, ,f w g ) 
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By introducing the buckling mode 1w  (Eq. (2.14)) into the third term on left hand side of the first 

equation of (2.23), it can be proved through Mathematica that the formula gives 
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where 
2kP  are Legrende functions of degree 2k , and 

2kH  can be obtained easily through Mathematica.  

Then, it follows from Eq. (2.23) that the formulas of 
2w , 

2f  and 
2g  are 
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Where 
2kC , 

2kD  and 
2kG  are some undetermined coefficients. Accordingly, with the use of Eqs. (2.17) 

and (2.19), the first Laplacian of 
2w , 

2f  and 
2g  gives 
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Introduction of Eq. (2.24), (2.25) and (2.26) into the first and third equations of (2.23) gives the 

expressions of 
2kD  and 

2kG  in terms of the unknown2kC . Then substituting the resulting expressions 

2kD  and 2kG  into (2.25) and combining with (2.22), the auxiliary displacements ( 2 2,u a ) in terms of 

the unknown 2kC  are given by 
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Now we consider the orthogonality condition, expressed by the equation (Koiter, 1969; Reddy, 2002) 
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The orthogonality condition requests that the expansion of 
2w  in a series of Legrende functions does 

not contain any term of degree n . In the case of an odd integer n  of the buckling mode, it follows 

immediately from the expression of 
2w  in (2.25) that the orthogonality condition (2.28) is satisfied. 

On the other hand, for an even integer n , this orthogonality condition requires 
2 0kC =  for 2k n=  or 

0nC = . Therefore, a unified form of these two cases is given by, instead of (2.25) and (2.27) 
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where the star on the summation sign denotes that the terms 2k n=  is omitted if n  happens to be 

even. The expression of 2w  derived here is the same as the expression developed by Koiter (Koiter, 

1969). In conclusion, Eq. (2.29) represents the auxiliary displacements ( 2 2 2, ,u w a ) with unknown 2kC  

to be determined by minimizing the energy increment for any fixed value of 0x. The determinant of 

2kC  is illustrated in Appendix B. 
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2.3 Axisymmetric imperfection sensitivity of an imperfect biopolymer spherical 

shell 

Before analyzing the imperfection sensitivity of a pressured imperfect biopolymer spherical shell, 

it is relevant to examine post-buckling behavior of a pressured perfect biopolymer spherical shell 

defined by the refined model (Ru, 2009). Based on Koiterôs general nonlinear theory of elastic stability 

(Koiter, 1945,1963) and the procedure developed in his work on post-buckling behavior of a complete 

spherical shell (Koiter, 1969), with the use of Eq. (2.7) and (2.8), the potential energy for a spherical 

shell is given by 
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We denote the potential energy of a spherical shell in the pre-buckling equilibrium state I  whose 

stability is to be investigated by 
IP . The energy criterion requires a comparison of 

IP  with the potential 

energy IIP  of an arbitrary state II  in the neighborhood of the pre-buckling equilibrium state I . The 

increment in the potential energy of the spherical shell due to the transmission from state I  to state II , 

[]Ĕ II IP u P P= - , is a potential energy functional of the displacement field Ĕu  from the state I  to state 

II . According to the displacements (2.6), the displacement field Ĕu  is 0 0 0,( , )u u w w a a- - - . 

Therefore, the increment in potential energy is obtained as (Danielson, 1974) 
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Equations (2.2), (2.6) and (2.7) are then substituted into Eq. (2.31) to give 
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where the first order terms are absent because the pre-buckling state I  is an equilibrium configuration; 

see Appendix C. 

Therefore, post-buckling behavior of a pressured perfect biopolymer spherical shell defined by 

the refined model (Ru, 2009) can be described by the potential energy functional (2.32). The analysis 

of stability of post-buckling behavior and calculation of the potential energy functional (2.32) can be 

carried out by following the procedure developed in Koiterôs work (Koiter, 1969) on post-buckling 

behavior of a complete spherical shell. In doing so (the detailed derivation and analysis are provided 

in Appendix B), two conclusions, similar to that given in Koiterôs work (Koiter, 1969), can be 

summarized as: (i) the post-buckling behavior of a pressured prefect spherical shell described by (2.32) 

is actually unstable, therefore the linearized critical value 0

cr

N

Eh

å õ
æ ö
ç ÷

 given by Eq. (2.13) is actually the 

maximum loading a prefect spherical shell can sustain; and (ii) the third order term of (2.32) is 

negligible over the initial post-buckling range, which indicates that the potential energy functional 

(2.32), which describes the post-buckling behavior of a pressured perfect biopolymer spherical shell 

defined by the refined model (Ru, 2009), can be finally simplified as  
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where the expressions of 0
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 and 0
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 are showed in Appendix B. 
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2.3.1 Imperfection sensitivity and a verification of the refined model 

Based on the above two conclusions for post-buckling behavior of a pressured perfect biopolymer 

spherical shell defined by the refined model (Ru, 2009), now let us study the imperfection sensitivity 

of an imperfect biopolymer spherical shell.  We shall restrict our investigation to the effect of initial 

geometric imperfection in the shape of the linear buckling mode. Any types of imperfections can be 

projected to a function space spanned by the buckling modes, which form an orthogonal basis. The 

compressed component is negligible in practice (Koiter, 1969). Due to the orthogonality, each 

component of the imperfection only affects the critical load of the corresponding mode. So the 

component of the buckling mode, which gives the lowest critical load of perfect spherical shell, lead 

to the lowest critical load of imperfect spherical load (Hutchinson, 1967). Therefore, we consider a 

small stress-free initial imperfection described by 
0 1w wx=  (see Fig. 2.1), where w1 is the linear 

buckling mode defined by 
1 (cos )nw hP j=-  (see Eq. (2.14)) and 

0x  is the nondimensional 

imperfection parameter normalized by the average thickness h (Koiter, 1969). Here, the spherical shell 

with imperfections is assumed to be initially stress free when no deformation occurs on the original 

shape. Then the term 1
0

ww

R Rj j
x

µµ

µ µ
 is added to ej and other strain-displacement relations in (2.2) keep 

unchanged (Budiansky and Hutchinson, 1964) 
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The expression (2.7) for membrane forces (Nj, Nq) are augmented by terms involving the order 
0 0x x 

and higher; similarly, the term 

2

3 0
0

1
0

0
s n2 i

wN
Eh d

hEh

p

j
j

p xx j
å õ
æ ö
ç ÷

µ

µñ  together with others of higher 

orders than 
0 0x x are added to Eq. (2.33). Following Koiter (Koiter, 1945, 1963, 1969), we now limit 

ourselves to the lowest-order approximation by neglecting all terms of higher orders than 
0 0x x 
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where 
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µ
=

µñ                                   (2.36) 

where 
10A  can be obtained by introducing the buckling mode (2.14) and using Mathematica. 

 

Fig. 2.1 The initial geometric imperfection in the shape of the linear buckling mode (Sato, 2015). 

Copyright 2015. Reproduced with permission from Cambridge University Press. 

Therefore, the equilibrium state of the imperfect biopolymer spherical shell in the neighborhood of the 

critical bifurcation point is characterized by the stationary value of Eq. (2.35) with respect to the 

amplitude factor 0x, which gives 
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Since stable equilibrium state of the imperfect shell is defined by a positive second variation of the 

energy expression (2.35), to determine the maximum value of 0
N

Eh
 an imperfect spherical shell can 

sustain, we consider the zero of the second variation of the energy expression (2.35) 
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Eliminating the amplitude factor0x  from Eqs. (2.37) and (2.38), we obtain an equation for the 

maximum load 

*

0

cr

N

Eh

å õ
æ ö
ç ÷

 an imperfect spherical shell can sustain, as a function of the imperfection 

parameter 
0x 
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                 (2.39) 

The diagrammatic sketch of the equilibrium state for perfect and imperfect spherical shells is illustrated 

in Fig. 2.2. Stable branch is indicated by a solid curve, while unstable branch by a dotted curve. 

Therefore, for specific given parameters *

0, , , ,sk R h G G h hm , we can get the value of the maximum 

load 

*

0

cr

N

Eh

å õ
æ ö
ç ÷

of an imperfect biopolymer spherical shell determined by the nondimensional 

imperfection parameter 0x  by Eq. (2.39), and then calculate the so-called ñknockdown factorò l 

defined by 
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where 0

cr

N

Eh

å õ
æ ö
ç ÷

 given by Eq. (2.13) is the actual maximum load a prefect shell can sustain. Therefore, 

the dependence of the knockdown factor l on the imperfection parameter 
0x can be obtained based 

on Eqs. (2.13), (2.39) and (2.40). 

 

Fig. 2.2 The configuration of equilibrium path for perfect and imperfect spherical shells 

To validate the present model and formulation, for example, with 0.3m= , 5 6sk = , let us examine 

the classical case which is given by the present refined model with 0h h=  and *G G=¤. For the 

classical case, Koiterôs result of imperfection sensitivity for axisymmetric buckling mode is given with 

the notation used in the present chapter (see Eq. (10.9) in (Koiter, 1969)) 
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where the integer n  is determined by 

 22 3(1 ) ( 1) 1
R

n n
h

m- º + >>                                             (2.42) 

It is readily seen that our condition (2.15) reduces to (2.42) if 
0h h=  and *G G=¤. 

 

Fig. 2.3 The comparison between Koiterôs results and our results with 
0 1h h= , 

*G G=¤ for 

different R h for (a) buckling modes of odd degree and (b) buckling modes of even degree 

The comparison of the present results with Koiterôs data for the classical case (with 0h h=  and 

*G G=¤) is shown in Fig. 2.3 for buckling modes of an even or odd degree n. It is seen from Fig. 

2.3 that the results given by the present model are very close to Koiterôs ones (Koiter, 1969) and both 

become even closer when n  increase. We can also conclude that our results are more accurate 
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according to comments in (Koiter, 1969) that there is a relative error of order 
1n-  when calculating the 

quartic terms 0
4

N
A

Eh

å õ
æ ö
ç ÷

. This offers a verification of the present formulations and methods. 

 

2.3.2 The influence of key parameters on imperfection sensitivity  

      The major goal of this chapter is to examine how the high structural heterogeneity, defined by the 

key parameters *

0, ,R h G G h h in the present refined shell model, affects the imperfection 

sensitivity of pressured biopolymer spherical shells. Therefore, let us investigate how the above-

mentioned three key parameters influence the imperfection sensitivity with physically realistic 

imperfections.  

 

Fig. 2.4 Numerical results with fixed 
*G G=¤ and 

0 1h h= . (a) The influence of R h   on the 

imperfection sensitivity and (b) The influence of realistic imperfection on the knockdown factor 

       We firstly investigate how the parameter R h influences the imperfection sensitivity and compare 

the predicted imperfection sensitivity of biopolymer spherical shells with classical elastic thin shells 
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of much larger R h. We fix the values 5 6sk =  and 0.3m= , and the classical case is defined by 

0 1h h= , *G G=¤ with varying value of R h. The dependence of the knockdown factor l given 

by (2.40) on the imperfection parameter 
0x (normalized by average thickness) is shown in Fig. 2.4(a) 

for a range of R h between 10 and 250, which well agrees with Koiterôs results (see Fig. 10.1 in 

(Koiter, 1969)). The physically realistic normalized imperfection parameter 
0x for spherical viruses 

(see table 2.2) is very low (typically not bigger than 0.23) as compared to the normalized imperfection 

parameter 
0x of classical elastic thin shells (typically not lower than 1.2-1.5, see e.g. (Koiter, 1969) 

and Hutchinson, 1960)). For majority of viral capsids having radius between 10 and 50 nm with a 

thickness of a few nanometers (typically 2-3nm, corresponding to a single protein layer), we find that 

the parameter R h has little effect on the imperfection sensitivity. More specifically, let us compare a 

biopolymer spherical shell of 10R h=  with a classical elastic thin shell of 250R h= , as shown in 

Fig. 2.4(b). Since realistic imperfection amplitude depends on both radius and thickness, it is 

reasonable to assume that physically realistic imperfection amplitude scales with 
0 R hx . Thus, the 

dependence of the knockdown factor lon 
0 R hx  is shown in Fig. 2.4(b) where the horizontal axis 

is denoted by 
0 R hx . It is seen from Fig. 2.4(b) that, over the range [0, 0.1] of 

0 R hx  (which 

means that the range of the normalized imperfection parameter 
0x is [0,  0.3] for biopolymer shells and 

[0, 1.5] for the classical elastic thin shells), the biopolymer spherical shell of smaller R h is actually 

less-sensitive to physically realistic imperfection as compared to the classical elastic thin shells of 

much larger R h, because the realistic normalized imperfection parameter 0x of biopolymer spherical 

shells are much smaller than the normalized imperfection parameter 0x of classical elastic thin shells. 
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          Let us examine the effect of *G G on the imperfection sensitivity. Then, we choose 
0 1h h=  

and 15R h= , the influence of different *G G (within the range (0.07, Ð)  defined by the condition 

(2.18)) on the imperfection sensitivity is illustrated in Fig. 2.5. It is seen from Fig. 2.5 that the 

knockdown factor l given by (2.40) remains almost unchanged from *G G=¤ to 
* 0.07G G= . 

Therefore, it is concluded that the effect of *G G on the imperfection sensitivity is negligible when 

*G G varies within a physically realistic range for biopolymer spherical shells. 

 

Fig. 2.5 The influence of 
*G G on the imperfection sensitivity with fixed 15R h=  and 

0 1h h=  

Lastly, let us examine the effect of 
0h h on the imperfection sensitivity. For this end, let us choose 

15R h=  and *G G=¤, we investigate the imperfection sensitivity for different0h h.  As shown in 

Fig. 2.6, with 0h h decrease from 1.45 to 0.4, the knockdown factor l decreases substantially, which 

indicates that the parameter 0h h has a greater impact on the imperfection sensitivity. Therefore, it is 

concluded that effective bending thickness has a greater effect on the imperfection sensitivity and 

therefore the thickness non-uniformity of biopolymer spherical shells could be mainly responsible for 

the imperfection sensitivity. 



38 
 

From Figs. 2.4, 2.5 and 2.6, we can see the slopes of all curves tend to infinite when the imperfection 

amplitudes 
0x  go to zero, which means that the pressued buckling load is extremely sensitive to 

vanishingly small imperfections. Here it should be stated that our results shown in Figs. 2.4, 2.5 and 

2.6 (the knockdown factor monotonically decreases with increasing amplitude of imperfection) are 

qualitatively consistent with those of (Lee et al., 2016) (e.g. see their figures 4 and 6), (Hutchinson, 

2016) (e.g. see his figure 7) and (Jimenez et al., 2017) (e.g. see their figure 2) for small-amplitude 

imperfections. Since the present weakly nonlinear initial post-buckling analysis with small-amplitude 

imperfection/deflection cannot be applied to arbitrarily large imperfections, our results shown in Figs. 

2.4, 2.5 and 2.6 cannot be compared to those of Lee et al. (Lee et al., 2016), Hutchinson (Hutchinson, 

2016)  and Jimenez et al. (Jimenez et al., 2017) for sufficiently large amplitude of imperfections (where 

it is found that the knockdown factor approaches a constant limit value for sufficiently large amplitude 

of imperfections). 

 

Fig. 2.6 The influence of 
0h h on the imperfection sensitivity with fixed 15R h=  and 

*G G=¤ 



39 
 

2.3.3 Imperfection sensitivity of specific biopolymer spherical shells 

         In this section, the combined effect of the three key parameters ( *

0, ,R h G G h h) on the 

imperfection sensitivity is studied based on physically realistic parameters of two typical biopolymer 

spherical shells: UCAs and spherical viruses, with reasonable imperfection amplitude parameter 
0x. 

The actual maximum pressure an imperfect biopolymer spherical shell can sustain will be predicted 

and compared to the critical pressure of a prefect spherical biopolymer shell. 

 

Fig. 2.7 The imperfection sensitivity of polymer-shelled UCAs with the relevant parameters in table 

2.1 

First, let us examine polymer-shelled UCAs, with the relevant parameters (shown in table 2.1) 

suggested by Chitnis et al. (Chitnis et al., 2013) for the present refined shell model. Two varieties of 

polymer-shelled UCAs, named by two manufacturers (Point and Philips), are employed in their study. 

The effective bending thickness used by Chitnis et al. (Chitnis et al., 2013), obtained by fitting 

experimental rupture data to the refined model with the shell parameters (1.35E GPa= , 
* 0.4G G= , 

5 6sk = , 0.4m= ) is employed. Figure 2.7 shows the imperfection sensitivity for these two varieties 
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of UCAs by using these parameters. From Fig. 2.7, it is seen that the actual maximum external pressure 

keeps not lower than 60% of that of a prefect spherical Point UCAs shell with the reasonable 

nondimensional amplitude 
00 (2 )h h hx= -  (see the marker in Fig. 2.7). However, for the Philips 

type, which has much lower value of 
0h h than the Point type, the value of actual maximum load an 

imperfect shell can sustain can drop to as low as only 5%-20% (see the markers in Fig. 2.7) of the 

critical loading for a prefect spherical UCAs shell, which suggests that the thickness non-uniformity 

has the greatest effect on the imperfection sensitivity, and high non-uniformity of shell thickness can 

make the actual maximum buckling load more sensitive to even minor imperfection and lead to a 

maximum pressure much lower than that of a prefect spherical shell. 

Table 2.1 Relevant parameters for two varieties of polymer-shelled UCAs 

UCA type R(nm) h(nm) h0(nm) R/h h0/h G*/G 
0 0 (2 )h h hx= -  

Point 1900 14.5 9.4 130 0.65 0.4 0.18 

Philips 1 1000 31.6 4.8 30 0.15 0.4 0.42 

Philips 2 1100 40.2 4.7 25 0.12 0.4 0.44 

Philips 3 1300 82.2 6.4 15 0.08 0.4 0.46 

Philips 4 1200 121.5 6.6 10 0.05 0.4 0.47 

 

Next, we examine the imperfection sensitivity with relevant parameters for some typical spherical 

viruses. Table 2.2 shows the relevant parameters obtained from (May and Brooks, 2012) for some 

typical imperfect spherical virus shells which are divided into four groups based on the parameters 

( *

0, ,R h G G h h) and the nondimensional imperfection amplitude 
00 (2 )h h hx= - . In (May and 

Brooks, 2012), the Foppl-von Kanman number g, which is a ratio of the two-dimensional Youngôs 

modulus Y  and the common bending modulus k, is obtained by calculating Y and k with a 

multiscale method developed by (May and Brooks, 2011). Therefore, the effective bending thickness 

is calculated through Foppl-von Kanman number from the relationship (Landau and Lifshitz,1986) 
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The results shown in Fig. 2.8 are obtained based on the data in table 2.2. From Fig. 2.8, it is concluded 

that with the relevant parameters for some typical spherical virus shells, the maximum pressure of an 

imperfect spherical virus shell could reduce to 55-65% (see the markers in Fig. 2.8) of the maximum 

pressure for a perfect spherical virus shell with the ratio R h ranging from 3 to 6, 
0h h  ranging from 1.15 

to 1.45, and the nondimensional imperfection amplitude 
0x ranging from 0.07 to 0.23. As stated above, the 

ratio *G G , whose range is limited by the condition (2.18), has negligible effect on the imperfection 

sensitivity when it varies within a physically realistic range. 

 

 

Fig. 2.8 The imperfection sensitivity of spherical virus shells with the relevant parameters in table 2.2 

 

 










































































































































































































