
University of Alberta

Reduced-Complexity User and Data-Stream Scheduling for Multiuser MIMO
Downlink

by

Marcin Marek Misiewicz

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
in

Communications

Electrical and Computer Engineering

c©Marcin Marek Misiewicz
Fall 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is
converted to, or otherwise made available in digital form, the University of Alberta will advise potential

users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or
otherwise reproduced in any material form whatsoever without the author’s prior written permission.

Abstract

We consider the scheduling problem in multiuser multiple-input multiple-output

(MIMO) systems with successive zero-forcing precoding and coordinated transmit-

receive processing. Focusing specifically on the problem of user and data stream

scheduling, we allow variable number of data streams per user. Optimal scheduling

employing exhaustive search for a constant number of streams per user is already com-

binatorially complex, and is further compounded by allowing for a variable number

of streams per user. We consider a suboptimal metaheuristic scheduling algorithm

based on simulated annealing, an algorithm which has shown to provide quick and rel-

atively good solutions to combinatorial optimization problems. We introduce various

parameters and examine their impact on the performance of the algorithm. Simulated

annealing is shown to offer comparable results at a fraction of the computational cost of

the exhaustive search. Our contributions to this area are emphasized in the conclusion

and future areas of work are discussed.

Acknowledgements

I would like to thank my supervisor, Dr. Krzymień for his mentorship and financial sup-

port, without which I would not have had the opportunity to complete my studies.

This work was made possible by the generous financial support of Dr. Witold Krzymień,

TRTech (formerly known as Telecommunications Research Laboratories (TRLabs)), Telus

Communications, and MITACS. Invaluable technical support from Kamil Marcinkowski,

Masao Fujinaga, Walter Lysz, Roman Baranowski at Westgrid, and computing resources

provided by WestGrid, Compute/Calcul Canada, and lastly the help of the Research Sup-

port Group in Academic Information & Communications Technologies (AICT) at the Uni-

versity of Alberta are also highly appreciated.

I would also like to acknowledge the extraordinary backing from my parents Bogumila

and Mark Misiewicz, and grandparents Jadwiga Buko, and Leonard and Bożena Misiewicz,

who provided me with constant support, understanding, encouragement, and fostered my

inquisitive nature throughout my childhood. Without their unwavering support the com-

pletion of my schooling would not have been possible. The last part of the work for this

thesis would not have been completed without the help of Ola Żebrowska who provided me

with unmeasurable amounts of support.

Last but not least, I need to emphasize the invaluable support of Dr. Robert Elliott

and Dr. Kevin Jacobson. They generously offered precious technical advice throughout my

program and tirelessly entertained my never ending stream of questions during our long

winter afternoons and evenings at the lab.

Contents

1 Introduction 1

1.1 Introduction and Motivation . 1

1.2 MIMO Wireless Communications . 3

1.3 Multiuser MIMO Wireless . 3

1.4 Multiuser MIMO Scheduling . 5

1.5 Thesis Objectives and Summary of Contributions 6

1.6 Organization of Subsequent Chapters . 7

2 Background on Precoding, Receiver Processing, and Data Stream Schedul-

ing 9

2.1 MIMO in Wireless Transmission Systems . 9

2.1.1 Single User MIMO . 10

2.1.2 Multi-User MIMO . 13

2.1.3 Uplink Multiple Access Channel and Downlink Broadcast Channel

Capacities . 14

2.2 Suboptimal Linear Precoding and Interference Mitigation Techniques for MIMO 18

2.2.1 Linear Beamforming Techniques . 18

2.2.2 Block Diagonalization . 19

2.2.3 Successive Zero-Forcing (SZF) . 21

2.2.4 Improved Covariance Optimization Methods for SZF 23

2.2.5 Variable Data Stream Scheduling via Coordinated Transmit-Receive

Processing . 24

2.3 Related Work . 27

3 System Model and Simulation Environment 30

3.1 System and Channel Models used for simulation 30

3.2 Cluster Computing Simulation Environment 31

4 Optimization Techniques 33

4.1 Introduction to Optimization . 33

4.2 Metaheuristic Optimization Methods . 34

4.3 Overview of Simulated Annealing . 36

4.4 Functional Description of Simulated Annealing 38

4.4.1 Neighbourhood Function N() . 40

4.4.2 Temperature and Cooling Schedules Overview 41

4.4.3 Tuning Initial and Final Temperature Values 43

4.4.4 Inner and Outer Loop Stop Parameters 44

4.5 An Approach to Data Stream and User Scheduling with Simulated Annealing 44

4.5.1 Solution Definition and the Global Solution Space 45

4.5.2 Algorithm Description and Pseudo-code 46

4.5.3 Neighbourhood Search Function . 47

4.5.4 Delta-rate Distribution Estimates . 49

4.5.5 Cooling Schedule Parameter Selection 52

4.5.6 Candidate and Transmission User pools 53

5 Simulation Results 56

5.1 Performance of Maximal Eigenmode Allocation 57

5.2 SA Algorithm Parameters . 61

5.2.1 Repetition Limits, and Decay Rates 61

5.2.2 Delta-Rate and Temperatures . 62

5.3 Sum-Rate results . 66

5.4 Convergence of SA . 71

5.5 Complexity Analysis . 80

5.5.1 Complexity Analysis of Matrix operations 80

5.5.2 Complexity Analysis of Exhaustive search 80

5.5.3 Complexity Analysis of Simulated Annealing 82

5.5.4 Simulation Times for Simulated Annealing 82

6 Conclusion and Future Work 84

6.1 Summary of Work and Its Contributions . 84

6.2 Future Work . 86

Bibliography 88

Appendix A Validation of Simulation Model and Results 97

A.1 Validation of Simulation Model . 97

A.1.1 Channel Model Verification . 97

A.1.2 Pseudorandom Generator Seeding . 99

A.1.3 Monte Carlo Error . 101

A.1.4 Comparison of Results to Published Works 105

List of Tables

2.1 Valid data stream allocation for common antenna configurations 26

2.2 Solution space size for exhaustive maximal eigenmode and exhaustive user allo-

cation scheduling . 27

4.1 Proportion of execution time in super-cooled state for different α and Mu 54

5.1 Solution complexity for different repetition criteria 62

5.2 Parameter sweep ranges for SA simulations . 62

5.3 Neighbourhood transition probabilities . 62

5.4 Temperatures ranges for each nT and nR per each SNR, derived from delta-rates

distribution estimates to satisfy Pa,1 = 0.90 . 65

5.5 Outer repetition limits and their corresponding decay rates used in convergence

simulations . 73

5.6 Worst-case simulation times for (Nsamp = 1) Monte Carlo iterations for different

nT , nR . 83

A.1 Theoretical and generated (200,000 samples) mean and variance for Gaussian

and Rayleigh distributions . 98

A.2 Confidence interval probabilities and spreads . 102

List of Figures

1.1 Mobile data monthly traffic [1] . 2

2.1 Antenna configurations . 11

2.2 MU-MIMO transmission links . 14

2.3 Size of solution space for exhaustive maximal eigenmode data stream allocation

under SZF . 28

4.1 General SA algorithm flowchart for maximization 38

4.2 Example of monotonically decreasing and reheating cooling profiles 42

4.3 Various types of cooling schedules for SA . 43

4.4 Solution structure for data stream allocation . 46

4.5 Neighbourhood transition definitions . 48

4.6 Acceptance probability for various decay rates 53

5.1 Exhaustive and maximal eigenmode transmission with coordinated transmit-

receiver processing on average sum-rate performance for nT = 4, nR = 2 58

5.2 Proportion of occurrences of the best achievable rates under SZF with variable

data stream allocation for nT = 4, nR = 2,|S| = 30 at various SNR 59

5.3 Proportion of occurrences of the best achievable rates under SZF with variable

data stream allocation for nT = 4, nR = 4,|S| = 25 at various SNR 60

5.4 ∆R0.90 for various ctrans at nT = 4, nR = 2, |S| = 40, SNR=20 dB 63

5.5 Φ|∆R| distributions for nT = 4, nR = 2 showing ∆R0.90 for 0-20 dB 64

5.6 Φ|∆R| distributions for nT = 4, nR = 4 showing ∆R0.90 for 0-20 dB 64

5.7 Φ|∆R| distributions for nT = 8, nR = 2 showing ∆R0.90 for 0-20 dB 65

5.8 Comparison of the performance of maximum throughput scheduling vs. SNR for

nT = 4, nR = 2 |S| = 15 for DPC, SA, exhaustive search, random search, and

user allocation . 66

5.9 Effect of SA parameter variation on average throughput for the case of nT = 4

nR = 2 |S| = 40 and SNR=20 dB . 68

5.10 Average sum-rate with DPC, simulated annealing (SA), exhaustive user allo-

cation, and random search for nT = 4, nR = 4, |S| = 20, 40, SNR = 0 − 20

dB . 69

5.11 Average sum-rate with DPC, exhaustive user allocation, random search and sim-

ulated annealing (SA) for nT = 8, nR = 2, |S| = 10, SNR = 0− 20 dB 70

5.12 Achievable sum-rate performance of SA over various ccmplx for nT = 4, nR = 2,

|S| = 30, SNR = 0− 20 dB . 71

5.13 Achievable sum-rate performance of SA over various ccmplx for nT = 4, nR = 4,

|S| = 30, SNR = 0− 20 dB . 72

5.14 Legend denoting variables and their corresponding symbols used in fig (5.15 - 5.22 73

5.15 Convergence distribution for SA at (4,2,10) for cα = 1 showing good convergence 74

5.16 Convergence distribution for SA at (4,2,10) for cα = 4 showing poor convergence

trends . 74

5.17 Convergence distribution for SA at (4,2,40) for cα = 1 showing good convergence 75

5.18 Convergence distribution for SA at (4,2,40) for cα = 4 showing poor convergence

trends . 75

5.19 Convergence distribution for SA at (4,4,10) for cα = 1 showing good convergence 76

5.20 Convergence distribution for SA at (4,4,10) for cα = 4 showing poor convergence

trends . 76

5.21 Convergence distribution for SA at (4,4,40) for cα = 1 showing good convergence 77

5.22 Convergence distribution for SA at (4,4,40) for cα = 4 showing poor convergence

trends . 77

5.23 Convergence graph showing faster convergence rates as ctrans = 4→ 1 79

A.1 Theoretical Gaussian distribution (dashed lines) compared with Gaussian distri-

bution generated by MATLAB (coloured) with 200 000 samples 99

A.2 Theoretical Rayleigh (a)PDF and (b)CDF distribution (dashed lines) compared

with Rayleigh distribution generated by MATLAB (coloured) with 200 000 samples100

A.3 Average SA sum rate and 95% confidence intervals vs |S| for nT = 4, nR = 4,

SNR = 0dB . 104

A.4 Average SA sum rate and 95% confidence intervals vs |S| for nT = 4, nR = 4,

SNR = 20dB . 106

Chapter 1

Introduction

1.1 Introduction and Motivation

Ever since the development and deployment of the first cellular systems by NTT Docomo

in Japan in the late 70’s, and subsequently the Advanced Mobile Phone System (AMPS) in

North America in the early 80’s, the mobile phone has cemented itself as a ubiquitous part

of our lives. While the original analog systems were originally created to handle primarily

voice traffic, the shift to digital networks and the introduction of packet data in 2G and 2.5G

systems spurred the beginning of an increase in demand for wireless data transfer capabil-

ities. Specifically, the advent of 3G services and smartphones in the late 2000’s heralded

the shift from networks carrying primarily voice traffic, to networks carrying increasing

amounts of data. Usage of mobile phones shifted from just making phone calls and sending

short messages to checking emails, watching videos, sharing pictures, and using media-rich

social media platforms. The decline in popularity of feature-phones and the proliferation of

smartphones such as Android devices, Apple’s iPhone, and Research in Motion’s Blackberry

devices in the subsequent years helped data usage surge, and finally surpassed voice traffic

in late 2009 (Fig 1.1) .

Faced with the steadily increasing demand for bandwidth intensive mobile applications

on limited spectral resources of the existing cellular systems, new cellular standards are

designed for high data rates and greater spectral efficiencies. Specifically, due to downlink-

heavy load of mobile data traffic, in which the majority of the data is sent to the users from

a source on the forward, or downlink channel, much of the focus in research has been on

1

Figure 1.1: Mobile data monthly traffic [1]

increasing the spectral efficiencies and capacities on the downlink of cellular systems.

With the onset of voice-data convergence and to fulfill demands for increased throughput,

the evolution and development of modern beyond 3G, 4G, and beyond 4G cellular systems

has required a fundamental shift from first generation cellular designs: including a shift from

circuit switched networks in 1G, to hybrid circuit-packet switched designs in 2-3.5G, to pure

packet-switched networks in 4G, and the inclusion of multiple antennas at both transmit

and receive terminals in 4G.

Unlike legacy circuit-switched 1G, 2G, and 3G systems which allocated dedicated links

for voice traffic for the entire duration of a call, true packet-switched voice was introduced

in 4G and has subsequently become a fundamental feature of modern wireless telecommu-

nication systems. Packet-switching systems are characterized by the fact that they split

the data to be transmitted into packets which are sent over a shared network link with no

dedicated paths.

2

1.2 MIMO Wireless Communications

The concept of exploiting multiple antennas in wireless systems can be attributed to the

pioneering work done by researchers in the 80’s [2, 3] on multiple antenna systems that

set the stage for the development of MIMO systems. Later in the 90’s, research into the

capabilities of single-user MIMO channels [4, 5] showed that performance far outpacing

single antenna links is possible especially in highly dispersive channels with independent

fading. Further investigation by Telatar [6] showed that given a wireless system with nT

antennas at the transmitter, and nR antennas at the receiver, the maximum capacity possible

increases with nT and nR, and was proportional to min(nR, nT) given a rich, independent

scattering environment. In general, multi-antenna systems provide us with a capacity that

scales linearly with min(nT , nR) and with extra spatial degrees of freedom, which can be

leveraged to increase data rate by multiplexing or increase the reliability of the transmission

through diversity [5, 7].

In a MIMO spatial multiplexing scheme, several independently encoded data streams or

symbols are transmitted from each of the multiple transmit antennas, while in the diversity

exploiting scheme redundancy is introduced by transmitting several copies of the same

data. Though both diversity and multiplexing can be leveraged to better exploit wireless

transmission, [8] showed that a diversity multiplexing trade-off exists and dictates an upper

limit on how much improvement any scheme can realistically achieve.

Wireless transmission using multiple-input multiple-output (MIMO) techniques are ca-

pable of higher capacity and throughput without the need for additional power and bandwidth[9],

and therefore they are perfect candidates for the next generation of wireless transmission

standards. The latest 4G and future (beyond 4G) systems, are characterized by multiple

antennas at both the receiver and transmitter [10] that allow them to exploit the extra

spatial resources of MIMO configurations.

1.3 Multiuser MIMO Wireless

Consider a generalization of the single-user downlink MIMO vector channel, the downlink

multi-user MIMO (MU-MIMO) vector broadcast channel formed by considering K users

simultaneously. MU-MIMO is an extension of single user MIMO with the added restriction

3

that while coordination can occur amongst the individual antennas of a given user, there

is no cooperation in decoding between the respective users. Multiuser diversity is a form

selection diversity amongst users (and not specific to MIMO, or MU-MIMO) where the

base station schedules transmission to those users with favourable channel conditions at

transmission time to improve the overall system performance, and it is a resource that can

be exploited by MU-MIMO systems. On the multiuser broadcast channel on the downlink

between the base station and mobile users, different data streams are now simultaneously

transmitted to several users. This causes multiuser interference (MUI) and necessitates the

application of interference mitigation techniques via precoding at the base station if the

gains of the MU-MIMO are to be exploited.

In most cases precoding can be thought of as generalized beamforming (or taking ad-

vantage of interference by selective weighting of signals to change the directionality of the

array) to support multi-layer transmissions in MIMO systems. While precoding is not

strictly necessary in the single-user case (meaning the receiver can be tasked with interfer-

ence mitigation), adapting the transmitted signal at the transmitter via precoding with the

aforementioned CSIT is absolutely necessary for MU-MIMO in order to exploit multiuser

diversity and other MU-MIMO gains [11]. This is because the user terminals cannot co-

operate in the decoding of their received signals, thus the transmitter must precode each

users data streams as to enable each user to spatially separate their data from the aggregate

transmitted signal.

MU-MIMO provides many advantages, including multi-user diversity, user and stream

multiplexing, decorrelation of spatial signatures, and the ability to take advantage of low-

rank channels. However, these additional diversity and multiplexing gains come at a cost

of requiring channel state information at the transmitter (CSIT)[11] and the necessity of

employing interference mitigation or cancelation techniques. It is important to note that in

contrast to single-user point-to-point MIMO systems in which exploiting some MIMO gains

without CSIT is possible (albeit with reduced performance), the absence of accurate and

timely CSIT in the MU-MIMO case not allow the system to extract MU-MIMO diversity

and multiplexing gains [12, 13].

4

1.4 Multiuser MIMO Scheduling

As described in the previous section, spatial stream (or layer) separation via precoding is

necessary in order to secure MU-MIMO gains, however the implementation of precoding

(transmitter side) will usually place constraints on the maximum number of users that can

be served simultaneously. In modern cellular deployments it is also common to have data

queued for transmission at the transmitter to a large pool of users at any given instant,

as well as finite bandwidth and power available for transmission. This resource-limited

environment coupled with the dimensionality constraints imposed by the implementation

of precoding techniques gives rise to an upper bound to the number of users that can

be served simultaneously (usually related to the number of transmit antennas at the base

station and the transmit power). These constraints give rise to the need of some sort of

resource distribution algorithms, or scheduling, to effectively divide the limited resources

among the group of users requesting service to maximize the utility of the system based on

a relevant performance metric (such as maximizing sum-rate or minimizing delay times).

During this distribution of these limited resources, fairness of the scheduler can also be

taken into account. For example, if the system schedules the resources in such a way as

to maximize the total throughput of our system, we will achieve the best rates. However,

in this case users with chronically bad channel conditions (at the cell edge for instance)

face the possibility of being subject to long delays and low throughput or being denied

service outright. To prevent the starvation of these users and to maintain a minimum level

of service for all users, schedulers can be designed with Quality of Service (QoS) metrics

defining minimum rate or maximal delay times to ensure acceptable service is provided for

all users. In addition, the selection of users with spatially uncorrelated channels in the same

transmission interval can help to mitigate the necessity of wasting power on the suppression

of MUI.

The design of MU-MIMO systems and scheduling algorithms is inherently complex, as we

must consider many factors and are often forced to make compromises between complexity

and performance. These problems of user scheduling and many other difficulties must be

dealt with in the design of MU-MIMO systems, including: multiple, (as opposed to single),

per user or per antenna power constraints, and the limited or non-existent cooperation

between multiple users in the decoding process.

5

1.5 Thesis Objectives and Summary of Contributions

The principal objective of this thesis is design of new reduced-complexity scheduling algo-

rithms for MU-MIMO in systems employing successive zero-forcing precoding and inves-

tigation of their performance. While the problem of scheduling for cases in which a full

allocation of nR spatial data streams (implying that each user has nR receive antennas) per

user (and up to nT data streams for all users) has been examined in the past, relatively

little has been done in exploring the added diversity created by allowing also fewer than

nR data streams per user. The addition of an extra layer of flexibility in scheduling by

allowing variable number of data streams per user drastically increases the number of pos-

sible scheduling configurations to search through. The optimal solution would be to search

over all possible combinations of users, orders (as the precoding method in question is order

dependent), and data streams per user, but this proves intractable for larger antenna ar-

rays even for a moderate number of users. The complexity of a scheduling algorithm must

therefore be significantly lower than the exhaustive search, while still offering performance

relatively close to that of the exhaustive search. The resultant factorial time complexity

(see Section 2.2.5 for discussion of complexity) coupled with the high cost of sending nec-

essary user channel feedback to the transmitter, dictates that the short decision time for a

potential scheduler will be a limiting factor in performance. As a result, a scheduler that

wishes to optimize some metric, be it sum-rate, sum-rate incorporating fairness, or finite

delay times, should be able to extract the most throughput due to spatial stream scheduling

while keeping execution time low and bounding complexity to ensure that it will be practical

to implement.

The aims of this research are firstly the further investigation of the effects of variable

data stream allocation under low-complexity linear precoding algorithms and secondly, the

implementation and investigation of low-complexity data stream and user scheduling algo-

rithms.

The main contributions of this research are as follows:

• The impact of data stream allocation under successive zero-forcing precoding with co-

ordinated transmit-receive processing on achievable sum-rates is investigated in greater

detail. While existing work has focused primarily on users with 1-2 receive antennas

6

and 2-4 transmit antennas, our analysis is expanded to the case of 4 receive anten-

nas and up to 8 transmit antennas. The exhaustive search for the optimal stream

scheduling and the subsequent ordering and search over a large user pool is shown

to be intractable, thus simplifications are introduced in order to reduce the effective

search space. Finally, the negligible impact of these simplifications on the achievable

throughput performance in comparison to the exhaustive search are shown.

• This thesis proposes simulated annealing as a user and data stream scheduling algo-

rithm in a system employing linear transmitter precoding, and investigates the per-

formance of the algorithm under a sum-rate maximization metric. Specifically, the

use and performance of our scheduling algorithm under reduced complexity successive

zero-forcing precoding with coordinated transmit-receive processing is examined. Sim-

ulated annealing algorithms are metaheuristic approaches to solving non-deterministic

polynomial-time hard problems and tend to offer fast convergence and relatively good

solutions. Implementations of simulated annealing tend to be (for the most part)

problem invariant apart from a few parameter choices and tend to work with a wide

variety of utility functions.

• The application of data stream scheduling is shown to offer better performance than

that of user scheduling alone. Furthermore, the use of simulated annealing as a sub-

optimal data stream scheduling algorithm is shown to offer performance close to that

of the exhaustive search at greatly reduced computational complexity. Data stream

scheduling with simulated annealing in certain antenna configurations is also shown to

offer better performance than exhaustive search user scheduling at a lower complexity.

1.6 Organization of Subsequent Chapters

• Chapter 2 introduces some relevant background information on MIMO concepts in

wireless communications. We examine optimal dirty paper coding (DPC) and subop-

timal linear precoding and multiuser interference mitigation methods. We also present

the concept of stream allocation via coordinated transmit-receive processing and dis-

cuss in detail the scheduling problem created by stream allocation. It is shown that

the optimal exhaustive search is intractable by deriving an upper bound on its com-

7

plexity. Furthermore, we examine some simplifications that can be made to the search

space and demonstrate the negligible effect these simplifications have on finding the

near-optimal solution while decreasing complexity by several orders of magnitude.

• Chapter 3 presents the simulation environment and the assumptions we make con-

cerning the channel and user environment. We discuss in detail the system model we

use for simulations, and clarify our assumptions concerning the finer details of our

simulation environment. A brief overview of the simulation software and hardware

provided by Westgrid used to run our simulations is also provided.

• In Chapter 4 we present an overview of optimization problems, metaheuristic methods,

and general simulated annealing approaches. We then discuss in detail our use of

simulated annealing (SA) as a MU-MIMO data stream and user scheduling algorithm

used under successive zero-forcing, a linear precoding method. Design specifics of our

algorithm are given and justified.

• In Chapter 5 we present the results of our simulations and explain their relevance to

modern wireless communication system design. The effects of parameter selection on

the sum-rate maximization and convergence time performance of SA are also exam-

ined.

• Chapter 6 concludes our work with a few closing remarks and gives a summary of the

key points and contributions of this thesis. The remaining questions and potential

areas for future investigation are also discussed.

• Lastly, appendices are included with additional results and figures as well as more

detailed explanations of any relevant concepts not covered in depth in the earlier

chapters.

8

Chapter 2

Background on Precoding, Receiver

Processing, and Data Stream

Scheduling

We examine optimal dirty paper coding (DPC) [14, 15] and suboptimal linear precoding and

multiuser interference mitigation methods. We also review the concept of stream allocation

via coordinated transmit-receive processing and detail the scheduling problem created by

stream allocation. By deriving an upper bound on the exhaustive search complexity, it is

shown that this method, although optimal, presents an intractable problem. Furthermore,

we examine some simplifications that can be made to the search space and show the negligible

effects they have on finding the near-optimal solution while decreasing complexity by several

orders of magnitude.

2.1 MIMO in Wireless Transmission Systems

Wireless transmissions in modern communications systems are affected primarily by multi-

path fading, or the arrival of many copies of the signal at the receiver at varying angles,

delays, and frequencies due to the scattering of the electromagnetic signal. This random su-

perposition of the received signals creates large variations in the received signal level known

as small-scale fading, and presents a significant, performance-limiting problem for conven-

tional wireless systems by affecting the reliability and efficacy of older wireless approaches.

9

However, the presence of this small-scale fading is actually key to achieving the capacity

gains that can be provided by spatial multiplexing in MIMO system, to the degree that

the absence of multipath fading will prevent the realization of spatial multiplexing gains in

MIMO.

It is for this reason that MIMO techniques involving the use of multiple antennas at the

transmitter (in) and receiver (out) have attracted much attention in wireless communica-

tions by offering the possibility of increased data rates, and reliability without necessarily

increasing bandwidth or power. While providing a layer of diversity that can be exploited

using a Rake receiver, the introduction of these multipath components requires the use of

additional processing to exploit these gains and adds an additional layer of complexity. With

the extra spatial degrees of freedom, single and multi-user MIMO offer powerful potential

benefits (array, diversity, multiplexing, and interference reduction gains) to help address

the challenges posed in wireless transmission, but at the same time introducing unique new

challenges that must be faced in order to exploit these advantages.

2.1.1 Single User MIMO

Consider the single user MIMO channel created by a terminal with nR receive antennas and

a transmitter with nT transmit antennas (see fig 2.1).

We make the following assumptions:

• the time-variability of the channel characterized by the coherence time of the channel

(or the time interval over which channel gains are strongly correlated) is longer than

the symbol duration (in other words, the channel gain remains approximately constant

over the duration of the symbol)

• the frequency-variability of the channel characterized by the frequency response of the

channel is relatively flat, meaning that the coherence bandwidth (or the frequency

interval in which frequencies of a signal are likely to exhibit correlated amplitude

fading) is larger than the signal bandwidth.

Under these conditions we can model the system with a matrix channel frequency-flat block-

fading model where the channel is assumed to be stationary during the transmission period

10

Tx Rx

Tx Rx

Tx Rx

Tx Rx

����

����

����

����

Figure 2.1: Antenna configurations

for one symbol, and all of the frequency components of the transmitted signal are assumed

to experience similar fading characteristics across the frequency band.

While this model holds for most narrowband environments, modern communication

systems and next-generation wireless standards operate in wideband, or frequency selec-

tive fading channels, the gains of which vary significantly across the frequency band and

cause intersymbol interference. To cope with the severe channel conditions associated with

wideband communications, frequency-division multiplexing schemes such as orthogonal fre-

quency division multiplexing (OFDM) (encoding with several orthogonal subcarriers created

through the careful selection of subcarrier separation and symbol duration) can be used to

subdivide a wideband channel into several narrowband channels. These resulting narrow-

band channels can then be considered to experience frequency flat fading as opposed to

frequency selective fading. This enables the transmission of many parallel data streams,

11

and in concert with channel (or error control) coding, allows us to cope with the severe

channel conditions associated with wideband communications such as frequency selective

fading and narrowband interference. In systems where OFDM is considered, it is possible to

implement MIMO processing techniques on each individual subcarrier or sub-band in which

the fading characteristics can be considered narrowband.

We define H to denote the nR × nT channel matrix, with the constituent elements hij

(i = 1, 2, . . . , nR ; j = 1, 2, . . . , nT), denoting the complex channel gains between the j-th

transmit antenna and the i-th receive antenna during one transmission interval. In the

single user case all of the nR receive antennas in the system can cooperate in processing

the received data signal. The n-th column of H is often called the spatial signature of the

n-th transmit antenna on the receive array, and the relative distribution or orthogonality

of the nT spatial signatures determines our ability to distinguish signals projected from the

different transmit antennas onto the receiver. Assuming the transmitted signal vector is

x = [x1 x2 . . . xnT
]T ∈ CnT×1 the received complex signal vector y = [y1 y2 . . . ynR

]T can

be written as

y = Hx+ n (2.1)

with n indicating the nR × 1 additive white Gaussian noise (AWGN) vector. The elements

of n are independent identically distributed (i.i.d) circularly symmetric complex Gaussian

random variables with zero mean and a variance σ2
n per dimension, which implies that

E[nnH] = σ2
nInR

.

Given the power constraint Tr((E{xxH})) ≤ P (with Tr(·) denoting the matrix trace op-

eration Tr(A) ≡∑n
i=1 aii) and perfect channel state information at the transmitter (CSIT)

and receiver, the capacity of the channel can be given by[6]

C = log2

r
∏

i=1

(

1 +
piαi

σ2
n

)

(2.2)

where αi denote the squared singular values of H and r =rank(H) . The variable µ and

the individual power weights pi are determined by waterfilling[16] over the eigenmodes of

H such that pi = max{(µ− σ2/αi), 0} given the power constraint
∑r

i=1 pi = P .

As reported previously in [4, 6], the capacity of the MIMO channel will scale with

min(nT , nR) providing that the channel H is full rank. However, the degree of correlation

between the channel gains is usually dependent on the scattering environment and antenna

12

spacing at the receiver and transmitter. With adequate spacing at the receiver (i.e. a dis-

tance greater than half the wavelength of the signals received) and a rich, omni-directional,

isotropic scattering environment will help to result in a full rank channel with a high degree

of decorrelation [16, 17, 18].

A common simulation environment that achieves this is where the individual channel

gains are modeled as zero-mean circularly symmetric complex Gaussian random variables.

Thus the magnitudes of the gains |Hi,j | are Rayleigh distributed random variables with

corresponding exponentially distributed powers |Hi,n|2.

2.1.2 Multi-User MIMO

Unlike single user MIMO where all of the receiver antennas can cooperate in the decoding of

the received signal, in MU-MIMO it is usually assumed that no coordination exists between

antennas of different user terminals (though coordination between antennas co-located on

the same user terminal naturally exists). If full coordination existed between all of the

user terminals and their corresponding antennas, the system would reduce to an equivalent

single user MIMO case. Assuming K active mobile terminals and one base station, two

basic MU-MIMO transmission links exist:

1. the downlink (forward channel), or broadcast channel (BC) - the link from the base

station (network node) to multiple users (fig. 2.2a)

2. the uplink, or multiple-access channel (MAC) - the link from multiple user terminals

to the base station (fig. 2.2b).

In the context of cellular architectures, the MAC models the uplink between the K user

terminals and the base station, and the BC models the downlink from the base station to

the mobile users. In both cases due to the simultaneous nature of the data transmission,

the problem of cross-talk or multi-user interference (MUI) arises and can cause undesired

performance degradation unless interference mitigation techniques are employed to counter

the effects of the unwanted signals and separate the received data streams. Time, frequency,

or space division multiplexing, with suitable signal processing (precoding at the transmitter,

or processing at the receiver) can be implemented to help mitigate MUI, but will introduce

upper bounds as to the maximum number of users that can be simultaneously served. Thus,

13

(a) Downlink Channel (BC) (b) Uplink Channel (MAC)

Figure 2.2: MU-MIMO transmission links

the large number of users requesting service and a subsequent limit on the maximum number

of users that can be served simultaneously necessitates a scheduler to select which users to

give service to and will be further discussed in section Chapter 4, which also discusses

optimization (including optimization of user and data stream scheduling).

2.1.3 Uplink Multiple Access Channel and Downlink Broadcast

Channel Capacities

On the MAC, or uplink channel, all of the K users with nR antennas per terminal si-

multaneously transmit a signal to the base station. Let xk ∈ CnR×1 be the data vector

transmitted by user k, with HMAC
k ∈ CnT×nR denoting the uplink channel matrix of user

k, and n ∈ CnT×1 designating the complex additive white Gaussian noise vector with zero

mean and a variance 0.5 per dimension.

The received signal vector yMAC at the base station can be then written as

yMAC =
K
∑

k=1

HMAC
k xk + n (2.3)

where each user is subject to an individual power constraint of Pk ≥ Tr(Σk) with Σk

defining the transmit covariance matrix of each user Σk , E[xkx
H
k].

With per-user power constraints, the capacity region of the MAC can be defined as the

convex hull enclosing the set of user rates that can be achieved with an arbitrarily small

probability of error. The sum-capacity is the highest possible sum of these user rates. It

is known that we can achieve this capacity region if the base station employs successive

14

interference cancelation to decode the individual signals [6, 19]. Assuming the order vector

of the K users is given by vector π = [π(K)π(K − 1) . . . π(2)π(1)] where π(K) denotes the

first encoded user, the receiver first decodes the signal of user π(K) treating the signal from

user π(K − 1) (and each subsequently encoded user all the way to π(1)) as an extra source

of additive Gaussian noise. The receiver (or base station in the case of the MAC channel)

then re-encodes the decoded signal and subtracts it from the combined received signal. The

signals for the subsequent users are similarly and successively decoded, re-encoded, and

subtracted, until all users signals are decoded. Due to the successive nature of this process,

the order the users are decoded in will affect the

The individual rate achievable for user π(k) is given by

RMAC
π(k) = log2

∣

∣

∣

∣

I+
∑k

i=1 H
MAC
π(i) Pπ(i)

(

HMAC
π(i)

)H
∣

∣

∣

∣

∣

∣

∣

∣

I+
∑k−1

i=1 HMAC
π(i) Pπ(i)

(

HMAC
π(i)

)H
∣

∣

∣

∣

(2.4)

and subsequently the MAC sum rate becomes

RMAC =

K
∑

k=1

RMAC
π(k) = log2

∣

∣

∣

∣

∣

I+

K
∑

i=1

HMAC
π(i) Pπ(i)(H

MAC
π(i))H

∣

∣

∣

∣

∣

. (2.5)

Now, given the downlink channel matrix of the k-th user on the broadcast channel as

HBC
π(k) ∈ CnR×nT , the received signal yk ∈ Cnr×1 at each user k is given by

yk = HBC
π(k)

K
∑

i=1

xi + nk. (2.6)

The vector xk ∈ CnT×1 denotes the data vector transmitted by the base station designated

for user k, with nk ∈ CnR×1 representing the complex AWGN received by the user k in ques-

tion. As opposed to the single user MIMO case where all of the receive antennas (on the user

in question) are assumed to cooperate in the decoding of the received signal, no cooperation

is possible in the downlink channel between users in MU-MIMO, although cooperation oc-

curs for co-located antennas on the same user. It is therefore the task of the transmitter to

implement the interference mitigation or precoding algorithms, thereby enabling the sepa-

ration of the desired received signal vector at each desired terminal. Also in contrast to the

single user case, a base station transmitting to multiple co-channel users requires CSIT [11]

to extract multiuser gains. However due to estimation errors, quantization, and limited re-

sources for the feedback information, obtaining full CSIT for all users is usually not possible

15

in practice. Nevertheless, MU-MIMO will benefit even from statistical, limited, partially

incorrect, or outdated channel information[12, 20, 21]. This is because the transmitter can

use the CSIT to reduce the intra-cell interference produced by the desired user’s signal at

the other user terminals via beamforming, enabling high signal-to-interference-plus-noise

ratios (SINRs) at the receiver[18].

Given perfect channel knowledge and non-causal knowledge of the interference source

at the transmitter, it is possible to encode the transmitted signals for many users at the

transmitter in a way that will achieve capacity by using a technique known as Dirty Paper

Coding (DPC) [14, 22]. DPC precoding for MU-MIMO is based on the idea of idea that if

the transmitter has advanced, non-causal knowledge of the interference introduced by trans-

mission for each user, the signals for each user can be structured in a way that compensates

and effectively removes the effect of this interference.

In the case of the MU-MIMO BC, the signal intended for any user k is the interference

for any of the other users {1, 2, . . . k−1, k+1, . . .K}. Given that the base station inherently

knows all of the data destined for each user, it can successively encode the data using DPC

to effectively remove the interference on user k from any other previously encoded interfering

user j (for all j < k). Due to the successive nature of the encoding and similar to the MAC

case, the rates of each user will be affected by their encoding order [π(1) π(2) . . . π(K)]

(respectively denoting the first, second, and the K’th encoded users).

From [9] the achievable DPC sumrate on the BC for each encoded user can then be given

by

RBC
π(k) = log2

∣

∣

∣

∣

I+HBC
π(k)

(

∑

j≥k Σπ(j)

)(

HBC
π(k)

)H
∣

∣

∣

∣

∣

∣

∣

∣

I+HBC
π(k)

(

∑

j>k Σπ(j)

)(

HBC
π(k)

)H
∣

∣

∣

∣

(2.7)

with the covariance matrix of the k-th user’s data given by Σk = E{xkx
H
k } ∈ CnT×nT . The

DPC achievable rate region is then defined as the set of all achievable rate-tuples for all users

given all possible orders and respective covariance matrices Σk subject to the transmit sum-

power constraint
∑

∀k Tr(Σk) ≤ P . Research has shown [9, 14, 15, 23] that DPC can achieve

the capacity of the MU-MIMO BC and is an optimal encoding method, however obtaining

the optimal transmit covariance structure is a computationally complex non-convex problem.

In contrast, the problem of finding the MIMO MAC capacity region is shown [24] to be a

simpler, well-structured convex problem. Work [23, 15, 24] on characterizing the capacity

16

region of the BC has shown the existence of a MAC/BC duality stating that the capacity

rate region of the BC is equivalent to the case of the MAC. Specifically, given a BC with

a set of downlink channels Hk and sum-power constraint
∑

∀k Tr(Σk) ≤ P encoded with

order π = {π(K)π(K − 1) . . . π(1)}, the achievable rate region on the BC is equivalent

to the rate region achievable on the dual MAC channels HH
k with sum-power constraint

∑

∀k Tr(Pk) ≤ P and reversed (in comparison to the MAC) user ordering order π such that

π(1) is encoded first.

Although DPC can achieve the capacity of the BC, employing it requires a very com-

plex transmitter and receiver structure, nonlinear processing, and noncausal knowledge of

interferers. These factors preclude its adoption in real world applications, and as such much

work in research has been dedicated to finding practical, although suboptimal, non-linear

and linear precoding methods.

Various non-linear approaches allowing varying degrees of tradeoff between complexity

and performance have since been proposed including: Tomlinson-Harashima precoding [25],

vector perturbation [26, 27, 28], lattice encoding [29], Trellis encoding [30], and superpo-

sition coding. One approach is vector-perturbation precoding[26] in which the transmit

data is perturbed in such a way that the largest signal component is placed along the

smallest channel inverse and vice versa. This minimizes the required transmit power and

has been shown [31] to offer a reasonable performance-complexity tradeoff, and outper-

form Tomlinson-Harashima precoding[25, 32] (which is itself a more constrained version of

vector perturbation) when users are deployed with single-antenna receivers. An extension

of vector perturbation presented in [33] is multiple-user multi-stream vector perturbation

(MUMS-VP). This extended VP to multi-antenna users, and assumed coordination in de-

coding between co-located antennas on each user, and showed the benefits of multiple data

stream allocation and the relatively robust performance of a VP-based precoding method.

While these non-linear approaches provide us with slightly simpler alternatives to DPC

while offering quite good performance, the non-linear nature of these methods leaves room

for simpler yet adequately performing techniques.

Linear precoding techniques can fill this gap, as they are relatively simple yet tend to offer

reasonable performance. Although linear precoding methods tend to perform worse than

their non-linear counterparts, various linear techniques have been shown [34, 35, 36, 37, 38]

17

to asymptotically approach capacity at high SNR, at large numbers of users K, or when the

system is interference-limited. Therefore, we choose to focus our work on linear precoding

methods, and discuss the details of linear precoding methods in the section below.

2.2 Suboptimal Linear Precoding and Interference Mitigation

Techniques for MIMO

2.2.1 Linear Beamforming Techniques

As mentioned previously, the complexity of DPC and other nonlinear methods leaves a gap

to be filled in terms of simpler yet reasonably performing solutions. Linear beamforming

methods are of particular interest due to their relatively low complexity and relatively good

performance. The data vectors for each user sk ∈ CnR×1 are processed individually by

a beamforming matrix Wk ∈ CnT×nR , giving us the aggregate signal x =
∑

∀k Wksk.

The beamforming matrix Wk predistorts the phase and relative amplitude of each user’s

target signal at each transmitter in order to create a pattern of constructive and destructive

interference in the wavefront at each prospective receiver. These matrices can be designed

to remove some or all of the interference between the users on the transmitter side, and can

be weighted individually to yield different SINR’s for each user depending on any given rate

requirements.

In terms of the optimality of beamforming, as the number of users K increases and with

it the subsequent likelihood of finding users with near-orthogonal channels, the sum rate

achievable with certain beamforming techniques asymptotically approaches the capacity

achievable with DPC[36, 34]. Therefore when used in environments with little preexisting

interference (orthogonal user channels with little cross-talk or MUI), linear beamforming

has the capacity to achieve results similar to those achievable with DPC.

Let us consider a linear transmit precoding method called zero-forcing beamforming[39],

in which multiple single antenna users are placed in a system with a multi-antenna trans-

mitter that employs a beamforming matrix that completely cancels MUI by inverting the

channel gains. Zero-forcing beamforming[34, 39] is a case of channel inversion which creates a

set of orthogonal, non-interfering channels and completely countering the effects of the inter-

fering users. Assume a multi-user MISO system where there exists a set of K single antenna

18

users with corresponding channels Hk, where K ≤ nT . Defining the concatenated aggregate

channel matrix H =
[

HT
1 HT

2 . . . ,HT
K

]T
we can construct a Moore-Penrose pseudo-inverse

H† of the resulting H, defined as H† = HH(HHH)−1. The resulting transmitted signal can

then be given by x = H†s, where s ∈ CK×1 is the data vector of symbols sk for each user k.

Thus, the beamforming vector for each user is the k-th column of H†, which is structured to

cancel either all of the interference from other users. The use of channel inversion however

will not result in linear capacity increases with min(nT , nR) as would be expected with a

multi-user channel[14, 36, 34].

While it is possible to structure the beamforming matrices in a way to completely cancel

all of the interference for all of the single antenna users, this will not necessarily maxi-

mize the sum rate. This is highlighted in the case of zero-forcing for any users suffering

from deep fades or generally poorly conditioned channels. In addition to the large amount

of power required to counter the effects of the weak channels, channel inversion results in

noise-enhancement at the receiver terminal. While any linear precoding (as well as equaliza-

tion) results in noise enhancement, it is particularly severe for straight channel inversion for

MU-MIMO DL with multiple-antenna users. The performance of this method[21] (as well

as that of any form of precoding) is also dependent on accurate CSIT and suffers when CSI

is inaccurate or delayed as residual MUI remains uncanceled due to imperfect beamforming

vector construction. Furthermore, if complete MUI cancelation via zero-forcing beamform-

ing is extended defacto to the multi-antenna receiver case it requires the consideration of

each antenna as a separate user. This fails to consider that the antennas co-located on

a receiver can cooperate in the processing of the received signals, and results in sub-par

performance compared to DPC especially at higher SNR [36].

2.2.2 Block Diagonalization

An extension of zero-forcing to multiple antenna receivers in a MU-MIMO system, a tech-

nique called block diagonalization (BD) [37] completely nulls interference between users

while accommodating coordination between antennas at the receivers. Recall the aggregate

channel matrix H =
[

HT
1 HT

2 . . . HT
K

]T
, and define the aggregate precoding matrix of all

K users W = [W1 W2 . . . WK]. BD designs each Wk to eliminate multiuser interference

such that HkWj = 0, ∀k 6= j. This decomposes the multiuser channels into single user

19

channels, resulting in a block diagonal structure of the matrix product HW.

Consider the concatenated aggregate channel matrix

H̆k =
[

HT
1 ,H

T
2 , . . . ,H

T
k−1,H

T
k+1, . . . ,H

T
K

]T
(2.8)

containing the channels for all users except the kth. In BD the design of the precoding

matrices Wk is done such that they lie in the null space of H̆k for each k = 1 . . .K. This

requires a nullspace of H̆k with nonzero dimension, consequently imposing constraints on

the rank and therefore the total number of receive antennas that can be supported for a

given number of nT . To elaborate on this antenna dimensionality constraint, we denote the

singular value decomposition of H̆k as H̆k = ŬkΣ̆k(V̆
1
kV̆

0
k), where Ŭk are the left singular

vectors, Σ̆k is the nR × nR diagonal matrix containing the r̆k = rank(H̆k) nonzero singular

values of H̆k, V̆
1
k are the first r̆k right singular vectors, and V̆0

k are the nT − r̆k right singular

vectors. The zero multiuser interference condition can then be satisfied by constructing the

precoding matrix Wk for each of the users out of nR column vectors of V̆0
k. Assuming full

rank channel matrices Hk, sending nR data streams under BD for each of the K users is

possible if max(r̆1, r̆2, . . . , r̆K) < nT , and nT ≥
∑

nR if no coordinated transmit receiver

processing (which is discussed below in section 2.2.4) is employed.

Under BD the multiuser MIMO channel is then decoupled into K parallel non-interfering

single-user MIMO channels, and the achievable throughput of the system under a sum power

constraint is given by

RBD = max
Qk:Qk�0

K
∑

k=1

log2 det

(

I+
1

σ2
n

HkV̆
0
kQk(HkV̆

0
k)

H

)

(2.9)

where the transmit covariance matrices of each user Qk = E{sksHk } are structured such

that
∑

∀k Tr(Qk) ≤ P with the individual powers achieved via waterfilling. While BD per-

forms better than full zero-forcing channel-inversion directly extended to multiple antenna

users, its performance still leaves room for improvement to the rates achievable with DPC.

Motivated by the example of DPC, which only cancels interference successively, we can infer

that complete removal of MUI may not necessarily be optimal for maximizing sum rates at

the receivers. Furthermore, it can be shown that by relaxing the zero-interference condition

we can improve the performance of linear beamforming techniques.

20

2.2.3 Successive Zero-Forcing (SZF)

Motivated by the incomplete interference cancelation approach in DPC, and the sub-optimality

of BD, we look at an incomplete interference cancelation scheme called successive zero-

forcing (SZF) [38], which can be considered an extension of BD via the use of a relaxed

nullspace constraint. Unlike BD in which the precoding matrix for each user lies in the

nullspace of all encoded users, SZF restricts the precoding matrix for user i to lie in the

nullspace of only the previously i − 1 encoded users, implying that an encoding order

π must be specified. Consider a set of K users, with the encoding order is defined as

π = [π(1)π(2) . . . πK], πi denoting the index of the i-th encoded user. The i-th encoded

user is therefore only subject to interference from the i− 1 previously encoded users.

We define

Lm = [l1l2 · · · lK] : {li ≤ nR,
K
∑

i=1

li = nT } (2.10)

as the data stream vector with each element li corresponding to the number of data streams

sent respectively to each encoded user. Consider the set of users S simultaneously requesting

service, and the subset of users ST (where K = |ST |) with the particular order π created by

the projection of Lm onto a particular set of users. Defining the previously i − 1 encoded

user’s channels as H̄i−1 = [HT
π(1)H

T
π(2) . . .H

T
π(i−1)], we can define the SVD of H̄i−1 as

H̄i−1 = Ūi−1Σ̄i−1[V̄
1
i−1V̄

0
i−1]

H . The precoding matrix for user π(i), Wπ(i) is then only

constrained to lie in space composed by the basis formed by V̄0
i−1, the nT − rank(H̄i−1)

nullspace vectors of H̄i−1.

Given a set of K users with order π the received signal for each user k can be expressed

as

yπ(k) = Hπ(k)

(

Wπ(k)xπ(k) +
∑

i<k

Wπ(i)xπ(i) +
∑

i>k

Wπ(i)xπ(i)

)

+ nπ(k) (2.11)

with the third term
∑

i>k Wπ(i)xπ(i) cancelled, since by definition Hπ(k)Wπ(i) = 0, ∀i > k.

Following the forward interference constraint, the received signal vector for each user can

then be reduced to

yπ(k) = Hπ(k)

(

Wπ(k)xπ(k) +
∑

i<k

Wπ(k)xπ(k)

)

+ nπ(k). (2.12)

Assuming K users, precoding with SZF is possible if

rank(H̄K−1) < nT . (2.13)

21

Assuming no coordinated transmit-receive processing (which can selectively choose to trans-

mit on less than the maximal number of modes, and is described in detail in the subsequent

section) and full rank users each with nR antennas and independent channels, this condition

reduces to nR ×K < nT (assuming each user must receive nR data streams). The number

of users is then restricted by the dimensions of the nullspaces. Thus, the upper bound on

the number of full rank users that can be scheduled (as with BD) is Kmax = dnT /nRe, with

each users data stream allocation li = nR, i = {1, . . . , Kmax}.

The maximum achievable rate for user π(i) given an ordering π of a set of users ST in

the case of Gaussian-distributed transmit signal vectors x can then be written as [38]

Rπ(i) = log2

∣

∣

∣

∣

∣

I+Hπ(i)

(

i
∑

j=1

V̄0
j−1Qπ(j)(V̄

0
j−1)

H

)

HH
π(i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

I+Hπ(i)

(

i−1
∑

j=1

V̄0
j−1Qπ(j)(V̄

0
j−1)

H

)

HH
π(i)

∣

∣

∣

∣

∣

(2.14)

with the input covariance matrices Qπ(i) defined as follows:

Wπ(i)W
H
π(i) = V̄0

i−1Qπ(i)(V̄
0
i−1)

H . (2.15)

The maximum achievable sum-rate under SZF for that particular set of users ST with order

πc given a transmit power constraint P is then

Rπ = max
{Qj}j∈{1,2···K}:Qj�0,

∑

j

Tr(Qj)≤P

K
∑

j=1

Rπ(j). (2.16)

Maximizing (2.16) over |π̄| possible user orders gives us the best achievable sum-rate for the

user set ST ,

R = max
π∈π̄

Rπ. (2.17)

To obtain the maximum possible rate for the entire user set S, we must search over all

possible subsets ST of Ko users, and subsequent ordering possibilities π̄ of the users in these

subsets, for a total of |S|!
(|S|−Ko)!

possible permutations. Due to this combinatorial nature of

the complexity, exhaustive searches become prohibitively complex for large user populations

|S| >> Ko.

Determining the optimal covariance matrices and computing the solutions to Eqn. (2.14)-

(2.17) is a non-convex problem, and can be quite computationally expensive. In lieu of the

prohibitive optimal calculations, suboptimal numerical techniques were proposed in [38]

22

based on DPC covariance optimization to solve for the covariance matrices for a given

user ordering. The authors find the optimal covariance matrices for the MAC using sum-

power iterative waterfilling method in [24], and then obtain the covariance matrices for the

broadcast channel under DPC employing the MAC to BC transformation from [9] (using the

principle of the MAC-BC duality). Finally, the projection of these BC covariance matrices

onto the SZF nullspaces is used to obtain each Qπ(k). We use this method for determining

our covariance matrices in the rest of our work.

2.2.4 Improved Covariance Optimization Methods for SZF

Although the method mentioned in section 2.2.3 for numerically determining the transmit

covariance matrices (and thus the achievable rates) works reasonably well, the authors in

[38] acknowledged that it was suboptimal. Further investigation in [40] revealed that when

using this method in the case of larger transmit antenna arrays at higher SNR and with

increased number of users, the achievable throughput with SZF fell below that of BD. This

is counterintuitive, since by nature BD is a more constrained version of the optimization

problem of SZF. To briefly elaborate, any solution that satisfies the BD constraints of no

interference automatically satisfies the forward interference constraints for SZF. The perfor-

mance of SZF should then be theoretically lower bounded by the performance BD. It was

found that the problem lay with the covariance optimization (particularly the SZF nullspace

projection). Additional problems arise in cases where weighted sum-rate maximization is

used, as the original method assumed unweighted sum rate maximization for the generation

of the subsequent matrices.

Since our work assumes unweighted (or equivalently equally weighted) sum rates, it

does not suffer from that latter deficiency, however it still suffers from other problems in

the covariance optimization method that were mentioned in [40]. A better performing but

still suboptimal method was subsequently proposed by the authors in [40] at the cost of

additional complexity which remedied these shortcomings. However, to help reduce the

complexity of our problem, we use the simpler method proposed in [38] and acknowledge its

shortcomings.

23

2.2.5 Variable Data Stream Scheduling via Coordinated

Transmit-Receive Processing

As shown above, the dimensionality constraints of SZF given in 2.13 constrain the number of

users that can be supported at any given time. Furthermore, as noted in [41], even though it

was implicitly allocated the full nR modes, the waterfilling operation will sometimes result

in transmission on less than the nR possible modes per user thereby resulting in an overall

higher throughput. Spurred by previous research [35, 42, 43, 44, 45, 46, 47, 48] in variable

resource allocation intuitive benefits of additional degrees of freedom to leverage during

transmission, it lends credit to the idea that explicitly limiting the transmission to certain

modes of certain users can yield improved performance.

The explanations of BD and SZF given in the previous subsection assume that nT ≥ nR,

and assume full rank channels Hπ(i) thus giving us the maximum number of supported users

Ko = dnT /nRe. However, by coordinating the signal processing between the transmitter and

the receivers as proposed in [37] (which uses the results of the work on the power control

problem in [49]), the transmitter can transmit up to nT interference free data streams

regardless of the number of users.

Coordinated transmit-receiver processing requires joint design of transmit precoding

matrices and receiver coefficients, unlike cases above in which the transmit precoders and the

receive filters are designed independently. Assuming minimum mean square error (MMSE)

receivers, we know that since the transmitter has advanced knowledge of the channel and

the data vectors being sent it can predict what MMSE coefficients for each of the receivers

will be. Assuming one data stream is allocated per user (li = 1 ∀i) thus allowing up to

nT users, a better choice for the transmit vectors can be found by choosing an initial set

of receive vectors, and alternatively recomputing the corresponding transmit vectors in an

iterative fashion until they converge to the lowest power solution. However this method only

works for single data streams per user, is inherently complex with no bounded finite-time

performance, and has no guarantee on convergence as it depends on the choice of initial

transmit and receive vectors.

Due to the potentially unbounded nature of the iterative method and because no iterative

extension has been proposed for the case of more than one data stream per user, it has been

proposed to choose a reasonable receiver estimate and then apply BD or SZF, reducing the

24

complexity and allowing a blockwise optimization of the transmit vectors for multiple data

users. Assuming the receiver coefficients to be the first lk left singular values of the SVD of

the channel matrices Hk, the effective channels seen at the transmitter can be written as

Ĥk = UH
lk
Hk. (2.18)

Let us define the aggregate effective block channel matrix of the user set ST as

H̃ST
=



















Ĥ1

Ĥ2

. . .

ĤK



















=



















UH
1 H1

UH
2 H2

. . .

UH
KHK



















(2.19)

which we can now substitute for H̄k. Forcing
∑

li ≤ nT and li < nR to satisfy (2.13), we

can then apply either BD or SZF to the effective channels H̃ST
and serve up to nT users.

It is worthwhile to note that a more accurate yet computationally expensive approach

for the receiver structure would include the effect of the SZF precoding matrices Wk on the

effective channels Ĥk, and these matrices would be iteratively recomputed until a solution

with a resulting maximal sum-rate was found. However, again due to the iterative nature

of this approach with no bounds on the finite-time performance we choose to ignore the

effects of the precoding matrix allowing for a reasonably performing, computationally simple

solution.

Variable Data Stream Scheduling Complexity

Variable data stream allocation via coordinated transmit-receive processing presents an ad-

ditional degree of freedom, which we refer to as “multi-stream diversity” that can now be

exploited. While allowing greater flexibility in transmission and coding, it severely com-

pounds the scheduling problem as now the scheduler must choose which of the nR modes

provided by each user to transmit on, adding an additional layer of combinatorial complexity.

Recall from 2.10 where we defined Lm = [l1l2 · · · lK] as the m-th unique integer partition

of the maximum possible number of data streams nT , with lj denoting the number of data

streams allocated to user j. To simplify the problem of selecting modes for transmission,

we follow [38] where the authors choose to transmit only on the lj dominant modes of each

25

nT nR Valid stream allocations

4 2 [2,2] [2,1,1] [1 1 1 1]

4 4 [4] [3,1] [2,2] [2,1,1] [1,1,1,1]

8 2 [2,2,2,2] [2,2,2,1,1] [2,2,1,1,1,1] [2,1,1,1,1,1,1] [1,1,1,1,1,1,1,1]

Table 2.1: Valid data stream allocation for common antenna configurations

user’s channel, which does away with the additional
(nR

lj

)

possible combinations over all

possible transmission modes for each user with negligible loss in performance.

This idea of transmitting on the dominant eigenmodes follows the single user MIMO

approach for throughput maximization, in which the majority of the power is allocated to

the dominant modes of the channel. While this transmission mode limitation may result

in potential losses in cases where the dominant eigenmodes from a limited user pool are

correlated due to correlated channels, this effect has negligible impact on performance in

environments with large number of users and thus a greater chance of finding orthogonal

subchannels, in which we consider our scheduling problem.

To obtain the maximum possible rate for the entire user set S searching only over the

dominant modes of each user’s channel, the optimal solution can be obtained by searching

over all of the unique projections of the integer partitions of nT streams (satisfying
∑

lk =

nT , lk ≤ nR) (see Table 2.1 for examples of valid allocations), and all of the orders π of the

resultant user subsets ST .

The exhaustive search must therefore calculate the rate for each of the

bnT
∑

j=1

(|S|
|Lj |

)

(|Lj |!)2
∏

∀i φi!
(2.20)

unique solutions, where bnT
is the number of integer partitions of nT data streams satisfying

li ≤ nR, ∀i, and φj denotes the number of times the value of j appears in Lm. This is in

contrast to the case of user allocation, in which the scheduler allocates a full nR streams per

user scheduling a maximum of bnT

nR
c at a time. In this case the number of unique solutions

necessary to be searched is given by

|S|!
(|S| − nT

nR
)!

(2.21)

(for the case where nT is an integer multiple of nR). A plot of the number of unique solutions

vs. the number of users requesting service for maximal eigenmode scheduling in different

26

antenna environments is presented in fig. 2.3. Table 2.2 presents numerical complexity

comparisons for both exhaustive maximal eigenmode and user allocation search space sizes.

(nT , nR) |S| = 10 |S| = 20 |S| = 30 |S| = 40

Exhaustive Maximal Eigenmode Allocation Search Complexity (number of unique solutions)

(4,2) 7290 137 180 731 670 2 372 760

(4,4) 7470 137 941 733 411 2 375 882

(8,2) 8 623 440 8 251 345 080 314 397 394 920 3 800 788 002 960

(8,4) 10 446 570 8 468 871 140 617 410 045 710 3 819 410 342 280

Exhaustive User Allocation Complexity (number of unique solutions)

(4,2) 90 380 870 1560

(4,4) 10 20 30 40

(8,2) 5040 116 280 657 720 2 193 360

(8,4) 90 380 870 1560

Table 2.2: Solution space size for exhaustive maximal eigenmode and exhaustive user allo-
cation scheduling

Specifically for larger values of nT and |ST |, where many allocations of one or two data

streams per-user occur (Lm = [2 , 1 , 1 , 1 , 1 , 1 , 1] for example), the exhaustive search over

all possible orders causes a particular problem as up to nT ! (7! in this case) calculations of

(2.16) occur for a given ST and Lm. The computational complexity of the exhaustive search

in terms of FLOPS and operations required for all of the necessary SVD and waterfilling

operations is discussed in greater detail in section 5.5.3. This layered, combinatorially

explosive problem posed by the stream projection and the iterative nature of (2.16) in

environments with realistic |S|, nT , and nR creates an intractable exhaustive search and

necessitates the use of reduced-complexity search algorithms.

2.3 Related Work

In [44] the authors showed that in the single user MIMO case employing linear receivers,

multimode selection (allowing any number of substreams to be dynamically selected) dra-

matically increased diversity gain even in the presence of limited feedback. Similar research

of multiuser variable resource allocation in nonlinear precoding methods like vector pertur-

bation has shown similar results, particularly in [42] where the authors demonstrate that

27

10 15 20 25 30 35 40
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

Number of Users |S|

S
ea

rc
h

S
p
a
ce

S
iz

e
(

#
o
f
so

lu
ti

o
n
s)

nT = 4, nR = 2

nT = 4, nR = 4

nT = 8, nR = 2

nT = 8, nR = 4

Figure 2.3: Size of solution space for exhaustive maximal eigenmode data stream allocation
under SZF

the effective SNR can be increased (significantly increasing the throughput or decreasing

bit error rates) by allowing for asymmetrical resource allocation between users being ser-

viced. In research extending coordinated beamforming with BD by Chae et. al. [50], the

authors show that even in the presence of quantization error in the CSIT due to limited feed-

back, variable allocation of resources to users via coordinated processing or receive antenna

selection is able significantly outperform schemes not exploiting multi-stream diversity.

An optimal encoding scheme for MIMO OFDM channels was discussed in [43], where the

authors developed an optimal transmit covariance matrix computation method that decom-

poses the vector channels of all users into orthogonal scalar ones without loss of capacity.

Furthermore, they proposed a suboptimal iterative successive method of constructing the

transmit covariance matrices such that they were projected onto the nullspace dimension

with the largest singular value achieving near optimum sum-capacity performance.

Simplified heuristic and greedy scheduling algorithms for BD and SZF were investigated

in [51, 52, 41], however no coordinated transmitter-receiver processing was assumed and

only a fixed nR data streams per user were assumed to be transmitted. The authors noticed

that in circumstances with low transmit power, the waterfilling approach used to allocate

28

power would sometimes allocate power to a fraction of the possible modes for a given user,

leading them to conclude that in some cases the allocation of fewer than the maximum

possible data modes for each user can result in better sum rate performance.

In [35] the authors investigate variable data stream transmission using a technique termed

“multiuser eigenmode transmission” or MET under BD and show that selective transmission

of variable number of data streams to a user via coordinated processing not only outper-

forms transmitting on all possible eigenmodes for each user, but also selective transmission

via receive antenna selection. Similarly, in [45] a low complexity scheduling algorithm for

multiuser eigenmode transmission schemes for users precoded with BD was discussed, and

subsequent results showed performance scaling matching that of DPC. Of particular inter-

est related to our research was the result that showed little performance loss in scheduling

only on the dominant modes of the channel as opposed to searching over all possible modes

of each user. To the best of our knowledge however, no work on heuristic schedulers for

variable data stream allocation with coordinated transmitter receiver processing under SZF

has been published.

29

Chapter 3

System Model and Simulation

Environment

3.1 System and Channel Models used for simulation

In our research we are interested in the performance of the scheduling algorithm and not

system specific implementation such as channel coding or modulation. We therefore assume

the data rates for each user are upper bounded by the channel capacity and that each

user requesting service has data queued for transmission. This is a realistic assumption, as

channel coding with turbo codes or Low-density parity check (Gallager) codes are known to

approach within 0.5 dB of capacity.

For all of our following simulations we consider a single cell MIMO system consisting

of a transmitter with nT antennas and a set of users each with nR receive antennas re-

questing service S. We assume rich, high scattering environments that result in Rayleigh

fading with no line of sight signal component, resulting in channel gains on each transmit-

receive antenna pair that can be modelled as i.i.d. circularly-symmetric Gaussian random

processes with unit variance. The coherence times of the channels are assumed to be much

larger than the symbol duration, resulting in channel gains that are relatively constant over

one transmission interval, and allowing us to assume block-fading channel model. This is

a reasonable assumption as the current specifications for Long Term Evolution advanced

(LTE-A) and 3GPP Release 12 E-UTRA [53] support bitrates with transmission intervals

on the order of milliseconds It is also assumed that the channels fade independently between

30

each transmission interval. For simplicity, we do not assume any path-loss effects, or large

scale fading or shadowing, instead assuming a ring of users distributed at equal distance

from the transmitter in a high scattering Rayleigh fading environment with no direct line of

sight signal component. It is assumed that the base station has full and perfect knowledge

of all channels (full CSIT) for all users at each transmission interval. In time division du-

plex systems (TDD) this can be achieved by deriving the downlink channel based from the

users received signals on the uplink by using channel reciprocity, or in in frequency division

duplex (FDD) systems through the use of sounding or pilot tones broadcast from the base

station which are then sent to the base via a feedback channel. Instead of a per-antenna

power constraint which is motivated by transmission systems where arrays are powered by

separate amplifiers, for simplicity we consider only the typical sum-power constraint (SPC)

also used in other simulations of these types.

3.2 Cluster Computing Simulation Environment

The majority of the simulations were carried out using the cluster computing resources

provided by Westgrid and Compute/Calcul Canada. Simulations were run on the Checkers

cluster located at the University of Alberta. The Checkers cluster is an SGI Altix XE320-

based machine with 160 nodes featuring 2 x LE-5420 (2.50GHz) 4-core processors (1280

cores total) and 16 GB of memory, 240 nodes featuring Xeon X5675 2 x (3.06GHz) 6 core

processors (2880 cores total) nodes and 24 GB of memory, with all of the nods running the

Scientific Linux operating system. A Lustre parallel distributed file system is attached to

the Jasper nodes via the InfiniBand interconnect. It consists of an SGI IS16000 disk array

with 250 drives, and provides a single 356 TB filesystem which was used for the storage of

simulation data. The simulations were submitted using the portable batch system (PBS)

scheduling software. Compiled MATLAB binaries were run with the random seeds of each

simulation being generated based on current system time and unique identifiers associated

with each node. Additionally, these seeds were checked for duplicates against a database of

previously used seeds before runtime as to provide a unique pseudorandom (yet repeatable

if the need arose to verify results) user and channel generation scheme.

As an interesting footnote, due to the large number and time-consuming nature of the

simulations necessary for this thesis it is worth to mention that an adaptive job submission

31

script was developed for the PBS system. In this adaptive scheduling script, the Nsamp total

Monte Carlo iterations would be split on-the-fly to fit into currently available and upcoming

free nodes and time blocks. This system allowed us to make maximal use of the cluster and

avoid the 1-3 day waiting periods that the jobs would wait to run when submitted without

adapting the run times to the current cluster load, as the short simulations could be used

to fill gaps in the scheduler when the cluster load was high and therefore ran faster.

32

Chapter 4

Optimization Techniques

In this chapter we first examine the general optimization problem, and metaheuristic algo-

rithms and their applications for solving non-convex problems. We then review the general

simulated annealing algorithm, detailing the different components of this approach, as well

as several variations on the traditional techniques. Our simulated annealing algorithm for

user and data stream scheduling under SZF is then provided, and we detail the implemen-

tation and specifics of our approach.

4.1 Introduction to Optimization

Optimization in the practical sense can be described as finding the best available solution

to some objective function given a defined domain.

Optimization problems can then be described as the task of finding an optimal configu-

ration ωopt from a finite or infinite countable configuration space Ω given a quality metric

R(ω). The general discrete optimization problem can be presented by the following:

• given a function f : Ω→ R, mapping some discrete set Ω to the set of real numbers

• find an optimal solution ωopt such that

– f(ωopt) > f(ω)∀ω ∈ Ω for maximization problems

– f(ωopt) < f(ω)∀ω ∈ Ω for minimization problems.

where f is an objective function. In contrast to continuous optimization problems where

the constituent variables compromising each solution ω can take any valid real values, the

33

variables xi used in the case of discrete optimization problems, where ω , (x1, x2, , . . . , xn),

are discrete integer values each representing different subcomponents that compromise a

solution.

One of the most basic optimization techniques is hill-climbing, or local search. A random

starting solution ω0 is chosen, and adjacent solutions ω′ defined by a neighbourhood N(ω)

are searched for solutions that offer an improvement in the objective function R(ω). Only

improving solutions with greater utility (or lesser cost, depending on whether maximizing or

minimizing) are chosen, and the algorithm eventually hones into a locally optimal solution

where none of the neighbours defined by N(ω) offer an improvement in solution quality. It

should be clear that the topology, or statistical distribution of the utility function values, of

the solution space, the initial solution ω0, and the scope or number of solutions reachable

via the neighbourhood function N() in one jump, will determine the effectiveness of the al-

gorithm. While very simple to implement, the primary drawback of hill-climbing algorithms

is that they routinely suffer from getting trapped in locally optimal solutions. Increasing

the search scope of the neighbourhood function can be used to combat this, however this

increases the computational complexity and only guarantees convergence if a neighbour-

hood scope is equal to of the total search space, effectively transforming hill-climbing into

an exhaustive search.

It is noted for future reference that while in general the objective function can be a utility

function (for maximization problems) or a cost or energy function (for minimization), we will

be referring to optimization in the sense of maximizing a utility function for the remainder

of this thesis.

4.2 Metaheuristic Optimization Methods

Metaheuristics are methods for iteratively finding solutions to discrete, combinatorial, non-

deterministic polynomial-time (NP) hard problems, where the search space of candidate

solutions grows more than exponentially as the size of the problem increases. To avoid

the problem of getting stuck in local optima that is usually associated with hill-climbing

approaches, metaheuristic optimization methods can be viewed as modified hill-climbing

algorithms that offer a mechanism(or mechanisms) to escape local optima in the interme-

diate stages of their execution. Leveraging local improvement procedures and higher level

34

strategies, they have been designed to create processes that escape local optima and can

perform robust searches of the solution space. While not guaranteeing optimal performance,

they generally manage to achieve better results and faster convergence performance than

their classic optimization counterparts. The inspiration for many optimization methods

often comes from biological or physical systems, which tend to offer peculiar insight into

finding relatively good solutions to complex problems quite quickly with seemingly simple

structures. Some methods with roots in biological systems (Biologically inspired computing)

include: ant colony optimization, swarm intelligence, and genetic algorithms.

Ant colony optimization is a technique based on swarm intelligence where many simple

agents interact locally with each other and the environment. These agents have no cen-

tralized control strategy dictating their individual behaviour, but instead follow relatively

simple rules which lead to the emergence of intelligent global behaviour from the agents

seemingly random individual movements and interactions. It has been used with success in

various problems in other areas of optimization, as well as in communications in areas of

routing and scheduling in wireless systems [54].

Genetic algorithms (and their parent class of Evolutionary Algorithms) mimic natural

evolution by maintaining a pool of solutions and create new solutions by mutating and

recombining existing solutions from the gene (or candidate solution) pool. Through succes-

sive mutations and evolutions over several generations, the genetic algorithms tend to evolve

near optimal solutions relatively quickly. Genetic algorithms are fairly popular and have

been used extensively in communications to help solve optimizations problems in everything

from hardware and network design[55, 56], to user scheduling [52, 57, 58].

In general, metaheuristic approaches tend to perform well due to their stochastic nature

and robustness against the objective function being maximized. They work well for problems

with large solution spaces because few or no assumptions are made about the problem being

optimized, and the stochastic nature helps ensure that they are not trapped in local optima

and converge towards the optimal solutions. While not guaranteed to achieve the globally

optimal solution, with proper implementation most metaheuristic optimization algorithms

tend to converge quite quickly to solutions close to the global optima [59].

35

4.3 Overview of Simulated Annealing

In our research, we examine a particular metaheuristic algorithm that models itself after the

physical process of metallurgical annealing. Simulated annealing (SA)[60] can be classified

as a general probabilistic metaheuristic approach for the optimization of combinatorial (non-

deterministic polynomial-time NP hard) problems. The inspiration and name behind SA

comes from the metallurgical process of annealing, in which a substance is heated and then

cooled in a controlled manner, allowing the crystal structure of the material to reconfigure

into a lower, more stable energy state. Whereas metallurgical annealing tends to find the

lowest energy configuration of a material, SA can be easily applied to both minimization

and maximization problems. During the cooling process the atoms of the substance drift

through higher energy states and are given time to find a more optimal, lower energy state

than the initial one thereby reducing defects in the material. Furthermore, if the cooling

process is sufficiently slow the final configuration is one that has is in a minimum lattice

energy state and has superior structural integrity [61], and can converge asymptotically to

the globally optimal solution as the number of iterations is increased[61].

Similar to other metaheuristic approaches such as Tabu search [62](a method similar to

SA incorporating a blacklist of previously traversed solutions to avoid revisiting old solu-

tions) or genetic algorithms [59, 63] (in which populations of solutions are ‘bred’ for succes-

sive generations), SA relies on a stochastic approach to optimizing a problem by iteratively

improving candidate solutions with respect to a quality metric. Like other metaheuristic

algorithms, it implements a mechanism to escape locally optimal solutions. To this end,

SA employs a Metropolis criteria [64] which accepts suboptimal solutions with decreasing

probability as the algorithms execution progresses. Therefore, by decreasing the probability

of it becoming stuck in local optima, the acceptance of worse solutions during the course

of the execution can be considered the fundamental strength of SA (and metaheuristics in

general), and allows the algorithms to achieve a more extensive search over the solution

space.

The basic execution flow of SA can be summarized by the following points:

• At each iteration of the algorithm given a current solution, a candidate solutions based

on the current solution is generated via a neighbourhood function.

36

• The objective function values for the newly selected candidate are calculated and

compared to the current solutions objective function value.

• Improving solutions are always accepted, whereas a fraction of the non-improving so-

lutions are also accepted in the hopes of escaping local optima. For non-improving

solutions, the probability of accepting inferior solutions is dependant on the tempera-

ture parameter and the relative difference in solution quality between the current and

candidate solutions.

• The temperature is decreased in a controlled manner as the execution of the algo-

rithm progresses (mimicking the cooling in the metallurgical annealing process), until

eventually only improving solutions are accepted.

• Execution progresses until a predetermined number of iterations are reached, or a stop

criterion based on relative change in solution is reached.

While improving solutions are always accepted regardless of the temperature, as the

system cools and temperature decays, the probability of disregarding worse candidates in-

creases. The resulting behaviour of the algorithm is such that when the temperature is

high at the beginning of the annealing process, almost any solution regardless of relative

solution quality (improving or non-improving) will be accepted. This leads to the selection

of primarily improving solutions towards the end of the execution of the algorithm. The im-

plementation of this structure allows the wide exploration of the search space with a coarse

search at the start of the execution, transitioning towards exploitation of local solutions

(hill-climbing) with a finer search.

SA can be thought to bridge the thermodynamic behaviour of annealing with the discrete

optimization problem, providing a way to exploit the physical process of annealing for

algorithmic optimization. We note that in reference to optimization, the goal of minimizing

a cost metric is analogous to maximizing a utility metric. While we examine SA for the

purposes of maximization, it is very easily be extended to minimization.

37

Algorithm
Start

�������������	���
�����	��
	��� � ����������
���� �� ����	������������ ���
������ � ����
����� �� ���	
� ����������� ����������	 �����
		��� ���
��������
!����� �
		������
����"������������ � ���

!����� �
		������
���� "#�	���������
() (')

u

R R

te
ω ω−

�$
YES�������	��������� ������� � %&���	�
		��������	��
	� '()� � �

�$� � � * +
,����	��
	�������
 �����	���	��	�������
 � %-� Algorithm

Stop YES

.��	���������	��
	�"��� ������
�����
�� /�$
 �
 * +
Figure 4.1: General SA algorithm flowchart for maximization

4.4 Functional Description of Simulated Annealing

In SA, each possible solution ω in the set of all possible solutions Ω can be equated to

the state of a physical system, with the corresponding energy function R(ω) being the

metric we wish to optimize. The goal of the SA process is then to bring the system from

some arbitrary initial state ω0 and a hot temperature t0, to a final temperature tf and

the optimal configuration ωopt, where R(ωopt) > R(ω)∀ω ∈ Ω. This is achieved via the

interaction of several component parts of the algorithm including: an acceptance function

PA, a cooling schedule T (including initial and final temperatures, (t0 and tf respectively),

a neighbourhood function N() which controls the algorithms traversal through the search

space, and the definition of a global search space Ω which defines all possible valid solutions

ω.

The flowchart in Fig. 4.1 details the execution flow of the algorithm. At each outer step

or iteration u of the algorithm, from the current solution ω, a candidate solution ω′ = N(ω)

is generated using a neighbourhood function N(). This neighbourhood function generates

new solutions by manipulating the current solution in some predefined way. The energy

function for the candidate solution R(ω′) is then compared to the energy of the current

38

solution R(ω) and accepted with probability given by the function PA(). This acceptance

function, given by

PA(∆R(ω, ω′), tu) =



















e

∆R(ω, ω′)

tu ∆R(ω, ω′) < 0

1 ∆R(ω, ω′) ≥ 0

(4.1)

employs an adaptation of the Metropolis-Hastings algorithm acceptance criterion [64], and

is a function of the current temperature (tu) at outer iteration u and the difference in energy

∆R(ω, ω′) = R(ω′)−R(ω) (4.2)

between the candidate solution and the current solution. It should be noted that improving

solutions (∆R(ω, ω′) = R(ω′)−R(ω) ≥ 0) are always accepted, whereas the non-improving

candidates with ∆R < 0 are subject to an exponential acceptance rate. It can be easily seen

for non-improving solutions that because of the exponential nature of Eqn. 4.1, the higher

the relative difference in utility functions ∆R() and the lower the temperature, the lower

the resultant probability and the more unlikely the transition. Therefore as the temperature

decreases during the course of the execution of the algorithm, the likelihood of accepting

suboptimal candidate solutions (and jumping out of local optima) decreases, and transitions

the algorithm into a hill-climbing phase that tends to only accept improving solutions.

Thesem inner steps (m denoting the m’th inner repetition) of the algorithm are repeated

until an inner loop repetition criterion Mm is reached, upon which the outer loop parameter

u is incremented and the temperature value is updated according to the cooling schedule

defined by

T = [t0, t1, . . . , tu, tu+1, . . . , tf]. (4.3)

These inner loops are then repeated for each u until the outer loop stop criterion Mu is

reached, or a stop criteria is satisfied (such as the incremental change in utility function in

the last several iterations not increasing by a prespecified amount, or any other problem-

specific stop criteria [59]). The system is then said to be in a “cooled” state and the execution

is terminated.

While the acceptance function PA() is relatively robust and problem invariant, the choice

of the cooling schedule T and corresponding initial and final temperatures (t0 and tf),

the inner and outer loop repetition criteria Mm and Mu, and neighbourhood function N()

39

present many problem-specific issues which must be dealt with in the design of the algorithm.

Specifically, due to the sizeable influence of these parameters on performance and their

problem specific nature, improper selection can have a significant impact on the algorithms

performance in terms of both solution quality and convergence. While there exists no good

choice of above parameters that will perform well for all problems, there are some guidelines

which can be followed that can help facilitate better performance.

4.4.1 Neighbourhood Function N()

Given any arbitrary starting point ω0, the optimal solution ωopt should be reachable by any

number of subsequent manipulations, the sum of which correspond to a path through Ω.

While the performance of the algorithm no doubt depends also on the other components, the

neighbourhood function N() should be considered one of the integral parts as its primary

function of manipulating the current solutionω has a very large influence on the behaviour

of the algorithm during its exploration of the solution space Ω. Regardless of the problem-

specific details of any individual implementation, the general idea behind N() is that it

randomly generates candidate solutions via a probabilistic, structured manipulation of a

current solution.

We define the set of solutions

ΩN = {ωN |ωN ∈ N(ω)} (4.4)

to be the set of all neighbours of ω noting ω /∈ ΩN . The probability of generating a particular

solution ω′ from ω is then given by gk(ω, ω
′)/g(ω), where gk(ω, ω

′) is the weighting given

to the transition at iteration k and g(ω) is the normalization function such that

1

gk(ω)

∑

ω∈ΩN

g(ω, ω′) = 1. (4.5)

In many traditional implementations of SA, the probabilities of generating any particular

neighbouring solution are equal, given simply by gk(ω, ω
′) = 1

|ΩN | , | · | denoting the cardi-

nality of the encapsulated set. This approach works well, but there no doubt exist certain

problems in which benefits can be gained by biasing the values of gk() with advanced sta-

tistical knowledge of the solution topography, steering the algorithm towards solutions with

characteristics that are known to offer good performance [65, 66].

40

The neighbourhood function N() must also balance the need for exploring the global

search space and exploiting local solution areas to obtain the best solutions possible. If the

one-hop neighbourhood ΩN (or the number of solutions reachable in one neighbourhood

transition) is too large (|ΩN | on the order of |Ω|), the function N() essentially reverts to

a random search with the next state chosen uniformly over Ω. This case may require

impractical execution times and cause the algorithm to miss the opportunity to exploit the

local characteristics of the search space. Conversely, a neighbourhood that is too small will

not allow the algorithm to sufficiently explore the search space in a reasonable amount of

iterations, and will impact the convergence and overall performance. In practice it has been

shown in [59, 65] that in order to facilitate relatively consistent performance, N() should be

chosen in such a way that the distribution of the energy’s R(ω) in the neighbouring solutions

ΩN do not exhibit particularly large variances.

4.4.2 Temperature and Cooling Schedules Overview

Recall from Eqn. 4.3 where we define a cooling schedule T by a starting temperature (t0),

final temperature (tf), and a cooling profile that dictates the way the temperature decreases.

In SA, as with the physical process of annealing, it is assumed that the cooling rate is slow

enough as to allow the current state to settle into a thermodynamic equilibrium (exhibiting

relatively few state changes) at each temperature. This requires maintaining an adequate

relaxation time at each temperature, or the amount of time or inner repetitions m required

at each temperature tu for the system to reach a steady state (or relatively low energy level

transitions). The design of the cooling schedule should also be done in concert with the

other component parts of the algorithm. For example, if the cooling is done quickly and the

steps between subsequent temperatures are relatively large (tu+1 << tu), the neighbourhood

function N() should be structured in such a way as to offer a more variation in solution

‘distance’, to compensate.

Many different methods and schools of thought exist for choosing cooling schedules and

temperature profiles for SA[59]. One approach commonly used is where the initial and final

temperatures are obtained from pre-known statistical information of the solutions and then

cooled using a fixed, monotonically decreasing schedule. Simple, monotonically decreasing

cooling profiles that have worked in practice [63, 67] include linear (Fig. 4.3a), geometric

41

(Fig. 4.3b), and exponential (Fig. 4.3c).

More complex, adaptive methods [68] also exist in which the temperature profiles are

adjusted on-the-fly based on decision-time information gathered during the execution of

the algorithm. In contrast to the monotonically decreasing cooling schedules adapted from

the physical process of annealing, research into techniques [69, 70, 71] that do not follow

a simple decreasing temperature profile has shown promise. The logic behind a reheating

(a) Monotonically Decreasing Profile

outer iteration u

te
m

pe
ra

tu
re

(b) Reheating cooling profile

outer iteration u

te
m

pe
ra

tu
re

Figure 4.2: Example of monotonically decreasing and reheating cooling profiles

profile such as one shown in figure 4.2 is that the intermediate reheating of the temperature

can allow the algorithm more freedom to explore the search space and jump out of solution

areas in which it may have otherwise gotten stuck in, thereby allowing the selection of a

better solution in the long run. However, these methods are inherently more complex than

their monotonic cooling counterparts as reheating profiles must also be tuned in addition to

the ‘hot’ and ‘cold’ temperatures and cooling profiles.

While adaptive temperature control approaches like those used in [68, 72, 73] may offer

better performance in some cases at the cost of additional complexity and structure, many

simpler implementations [67, 74, 75] of SA employing simple, monotonically decreasing cool-

ing schedules yield similar results. Simple, reduced complexity cooling schedules based on

theoretical analysis, and requiring little or no tuning, were suggested in [67, 76], and showed

that choosing the correct t0, tf and a proper cooling ‘shape’ allows for faster convergence.

42

(a) Linear Schedule (b) Geometric schedule (c) Exponential schedule

Figure 4.3: Various types of cooling schedules for SA

4.4.3 Tuning Initial and Final Temperature Values

Regardless of the chosen temperature profile, it should be obvious from the structure of the

acceptance function PA() given in (4.1) that the value of the initial and final temperatures

(t0, and tf) will depend on the distribution of the rate differences ∆R, as well as the

neighbourhood function. The cooling schedule T will therefore be problem-specific, and

will also depend on the design choices made in the other parts of the algorithm.

Given a particular distribution of ∆R, t0 is usually chosen to allow the majority of all

(improving, and non-improving) transitions generated by the neighbourhood function N(ω).

It is generally accepted to t0 such that PA() will accept 80-90% of all possible transitions

at the start of the algorithm execution, although more theoretical approaches to setting the

initial acceptance criteria based on thermodynamic equilibrium of the system exist and are

discussed by White et. al in [77]. Adaptive methods that do not require any preset values

but guess and adjust the temperatures using data obtained throughout the execution have

also been examined in [68]. Barring the implementation of an adaptive temperature control

methods mentioned above, some advanced knowledge information on the topology of the

solution space must be known in order to choose an effective t0.

One approach [59] to determine the distributions is to take ‘walks’ using the neigh-

bourhood function and randomized starting points and record all of the resulting absolute

differences in utility function, ∆R. These empirically obtained values are used to form

distributions of the possible ∆R’s that occur from neighbourhood transitions generated by

N() in a solution space Ω. The distributions of these ∆R’s are then used to set the initial

temperature accordingly to accept a certain percentile of the possible transitions(a more

detailed description of the selection is offered in section 5.2.2). Similar yet simpler methods

43

for finding initial temperatures exist and are also used, offering good performance in some

cases; for example in [78] where the authors proposed an alternative to recording distribu-

tions in which only the single maximal absolute value of the difference is recorded, scaled,

and subsequently used for the initial temperature calculation.

The final temperature tf or the “cooled state” of the system is set to accept only im-

proving solutions and to force the algorithm to seek out the best local solution, shifting the

algorithm from an exploration phase to an exploitation or hill-climbing one. While choosing

tf = 0 would be a logical choice, the temperature at which the acceptance probability will,

for all practical purposes, stop accepting suboptimal solutions, be some nonzero value and a

function of the ∆R distributions. Therefore the choice of final temperature is usually done in

similar fashion as the method for finding the starting temperatures, where the distribution

of ∆R is gathered via random walks through the solution space and the final temperature

set by choosing a low acceptance probability (< 1%).

4.4.4 Inner and Outer Loop Stop Parameters

The repetition limits Mm at each temperature tu (or equivalently outer repetition u) are

usually selected to establish its steady state at each temperature. The outer loop repetition

limit on the other hand is usually set in concert with the cooling schedule as to adequately

allow the temperature to reach its final state. However, it is not unusual for it to be

subject to additional stop criteria. In order to help bound the finite-execution time of

the algorithm, a watchdog can placed on the solution to terminate the execution of the

algorithm if no improved solutions have been found over some number of iterations, or if

the level of improvement in the solutions has plateaued or not increased by a pre-specified

amount (usually over some last number of iterations).

4.5 An Approach to Data Stream and User Scheduling with

Simulated Annealing

For the purposes of our algorithm and simulations, we assume the following: a single cell

MIMO broadcast channel formed by a base station with nT antennas is serving a set of ST
(where K = |ST |) out of a total set of S users each with nR antennas. All of the users in S

44

are assumed to have data queued at the transmitter. It is assumed that the channel state

information Hk, of each user k, is known perfectly at the transmitter. SZF precoding along

with coordinated transmit-receive processing under a sum-power constraint is employed at

the transmitter, allowing a maximum of nT data streams to be transmitted at once, with

nR maximum possible data streams per user. Recalling L as the set of integer partitions

of nT , we denote Lm = [l1, l2, . . . , lK] as the m-th unique integer partition of the nT data

streams, with lk denoting the number of data streams for the k-th encoded user, satisfying

∑

lk = nt and lk < nR, ∀k. The sets of L for the antenna cases considered in our simulations

are listed in Table 2.1. π = [π1, π2, . . . , πK] is defined to denote the encoding order, with

π(i) = πi representing the i-th encoded user and π̄ representing the set of all K! possible

orderings π of a given K users and their corresponding data stream allocations Lm . We

define an additional user subset, the candidate pool SC as a subset of the global user pool

S with users that can be considered by the algorithm for transmission, ST , noting

ST ⊆ SC ⊆ S. (4.6)

We also define a candidate pool update function NC(), and detail its function, and that of

the candidate pool, in greater detail in section 4.5.6 below.

4.5.1 Solution Definition and the Global Solution Space

A solution ω is defined as a particular stream allocation Lm, user subset ST and order π.

Consider the case illustrated in Figure 4.4 where users 1,7, & 8 have been scheduled for

transmission with 2 data streams being allocated to user 7, followed by 1 data stream each

to users 8 and 1. This particular solution ω consists of the order vector π = [7 8 1], and the

stream allocation vector Lm = [2 1 1].

The complete solution space Ω is defined then as all unique combinations of bnT
possible

stream allocations L for that combination of nT and nR, projected on to all possible user

subsets ST of S and all possible subsequent orderings π̄.

We define the utility function R(ω) as the achievable sum-rate (Eqn. 2.16) with that

particular set of streams Lm, users ST , and order π, although simpler metrics could also be

used. Our use of the aggregate sum-rate can be described as the use of a weighted sum-rate

∑

∀k WkRk with all of the K users having an equal nonzero weighting Wk = 1
K , and can be

45

01 23 4567 84567 94567 : 4567 ;
< =>?> @?AB>CDEFG=B= HIJK =>?> @?AB>C@DEFG=B= <LM < =>?> @?AB>CDEFG=B= KNJ

4567 O4567 P 4567 Q0R 2 S
4567 TUV

UV 2 W X 3 Y Z [\U 2 W X S] 3 Y ^ Z [\Solution ω_ 2 ` Z [X abc2 ` S X X aU1 2 WXd Zd [\
Figure 4.4: Solution structure for data stream allocation

extended to include fairness by weighting the sum-rate by the appropriate factors.

4.5.2 Algorithm Description and Pseudo-code

The following pseudo-code algorithm describes our approach to user and data stream schedul-

ing with SA.

Initialize: random initial solution ω = ω0 ,SC ,ST ,T

temperature change count u = 0

define repetition limits Mu, Mm

ωbest = ω

while u ≤Mu

inner loop repetition counter m = 0

update SC = NC(SC , u)

while (m ≤Mm)

ω′ = N(ω)

ω ← ω′ updated with probability = PA(ω, ω
′)

46

update ωbest ← ω iff R(ω) > R(ωbest)

m = m+ 1

end

u = u+ 1

update tu

end

final (limited) ordering step on the solution ωbest for final user selection

The final limited ordering step performs a search of up to 50 possible permutations on the

best solution ωbest. In the case of nT = 4, because the maximum number of scheduled users is

|Lm| ≤ 4 , ∀m there exist a maximum of 4! = 24 possible ordering, resulting in an exhaustive

search over all possible orders of the users and their respective stream allocations in solution

ωbest. However, in the case of nt = 8 there can be up to 8 scheduled users in the allocation

Lm = [1, 1, 1, 1, 1, 1, 1, 1] (and subsequently up to 8! = 40320 possible orderings). In many

cases this ordering step would exceed the total number of algorithm steps (Mu×Mm) used

in our simulations. Therefore in allocations where |Lm| ≥ 5 (120 possible orderings or more)

only a random 50 of the total possible orderings are searched, with priority given to ordering

the users with the largest singular values of their respective effective channels first.

4.5.3 Neighbourhood Search Function

Recall in Eqn. 4.4 where we define the immediate (one-hop) neighbourhood of the solution

ω, ΩC , as all possible solutions which can be reached by one operation of the neighbourhood

function N(ω) on the solution ω. The neighbourhood function N() used in our algorithm

is comprised by the four following operations illustrated in figure 4.5, with each operation

detailed below. Each time the function is called, one of these four neighbourhood transitions

is randomly selected with probabilities pu, pa, po, chosen such that po + pu + pa = 1. The

guidelines for selection, and effect on performance of these parameters, is discussed further

in Section 5.2.2.

1. Order Swap po - randomly swapping the encoding order π(a) and π(b) of any two

scheduled users (a and b) with probability po

47

efghijfk ω
π = [πl.. πm.. πn .. πo]
Lp = [ll .. lm .. ln .. lo]
Sq = {sl .. sm .. sn .. so }

p

r
User Swap a↔x
Sq = {sl .. ss .. sn .. so }

Order Swap a↔b
π = [πl.. πn.. πm .. πo]
Lp = [ll .. ln .. lm .. lo]

, :a b a b∀ ≠

p

t
Allocation Swap
Lu↔Lv
π =[πl.. πm.. πn .. πow]
Lx = [ll .. lm .. ln .. low]
Sq ={sl .. sm .. sn .. sow }

p yTransition
Probabilities

Transition
Probabilities

, { \ }
C T

a xTs S s S S∀ ∈ ∀ ∈

Figure 4.5: Neighbourhood transition definitions

2. User Swap pu- randomly swapping a non-scheduled user from the candidate pool SC
with a currently scheduled user in ST with probability pu

3. Allocation Swap pa - randomly swapping the stream allocation from Lm to Ln with

probability pa, (choosing one of the |L| − 1 valid non-selected stream allocations with

probability 1
|L|−1).

To clarify the Allocation Swap operation, it swaps the stream allocation Lm to Ln

while retaining the encoding order based on the users with the maximal number of streams,

modifying the new allocation in a way that requires the least number of data streams to be

added or removed for each user. For example, in the case of nT = 4 and nR = 4, assume

Lm = [1, 2, 1] and ST = {6, 3, 4} and we wish to transition to an allocation Ln = [3, 1].

Since the current solution encodes 1 data stream to the first user(user index 6), 2 to the

48

second (user index 3), and 1 to the last one (user index 1), the new solution is modified

such that user with index 2 receives the largest number of data streams, and the resulting

stream allocation is Ln = [1 3] with ST = {6, 3}. This structure on the allocation swaps

limits the ’distance’ of each solution from the previous solution allowing us to search through

the solutions in a more methodical manner, hopefully mitigating the possibility of losing a

particularly well-performing group of users and stream allocations.

It should clear that given any two arbitrary solutions ω1, ω2 ∈ Ω , our neighbourhood

function N() allows the solution ω2 to be reached from ω1 in a finite number of transitions

defining a connected path from ω1 to ω2. This helps satisfy the suggested guidelines given in

[59, 79] on structuring neighbourhood functions as to help ensure asymptotical convergence

to the globally optimal solution in the limit as the inner (Mu) and outer (Mm) repetition

limits increase.

4.5.4 Delta-rate Distribution Estimates

As mentioned in Section 4.4.2, the selection of the majority of the parameters in SA is

related in some way to the distributions of the delta-rates (with Θ|∆R| (|∆R|) denoting the

probability density function, and Φ|∆R| (|∆R|) denoting the cumulative distribution func-

tion). We do not take an adaptive approach to temperature, decay, and repetition loop

parameter selection, rather employing a simpler technique with static temperature, decay,

and repetition criteria parameters that are changed only during the initialization of the

algorithm. However because of this, some advanced knowledge of the delta-rate distribu-

tions becomes a necessity. The behaviour of the algorithm in the sense of how it traverses

the solution space is controlled by the neighbourhood function N() (compromised of the

neighbourhood transition probabilities) and the acceptance function PA() (and therefore

the repetition schedules Mu and Mm, and the cooling schedule T). Theoretically, for a

given user environment nT , nR, |S|, the delta-rate distributions would also be a function of

N() and PA().

One possible approach to obtain distributions for a given set of SA parameters would be

to take an educated guess at an initial estimate of the delta-rates, derive the appropriate

parameters, run the algorithm, and then update the delta-rate guess based on the actual

delta-rates observed during the execution. This process would be repeated in an iterative

49

fashion, updating the guess of the delta-rates until they converged to the actual distributions.

While this would characterize the execution of the algorithm quite well, the problem with

this iterative approach is that we would not be able to guarantee the convergence or the

finite-time performance of this sort of method due to the already complex nature of our

problem. An analytical approach to check for performance and convergence of an iterative

approach would be impractical and is out of scope of this research. Barring an iterative

approach, ideally we would like to have an accurate representation of all of the possible

solution paths the algorithm could encounter to base the derivation of the other parameters

on, and this could conceivably be achieved by modeling each possible transition path from

all possible initial solutions and all subsequent solution branches. However, calculating all

of these possible transition paths would be more complex than the scheduling problem, or

the exhaustive search for that matter, as the utility function of each possible combination

of paths would have to be evaluated and stored, requiring a large amount of computational

power and enormous amounts of memory.)

To help simplify our algorithm and because a complete characterization of the solution

space would be infeasible, we instead chose a simplified method in which we choose to

generate many short paths and to record the value of the transitions, thereby forming an

estimate of the actual distribution. The approach used is to take many random walks

while accepting all transitions, and record the absolute value of all the resulting transitions

|∆R| = |R(ω′)−R(ω)| as opposed to the actual value ofR(ω)−R(ω′) (as one possible method

mentioned in section 4.4.3 did). To clarify, we start from a randomly generated solution and

generate neighbourhood transitions using N(), always accepting the transitions (analogous

to having a ’super-heated‘ very high temperature t0 and very low decay rate). For each

new candidate ω′ = N(ω) the |∆R| is recorded, and a path length of 300 − 500 traversals

are taken, forming an estimate of the ∆R distributions. This process is repeated until we

have an acceptable estimate of the distributions (4000 samples of paths on independently

generated random user channels were used in each case). The delta-rate distributions are

given by Θ|∆R|(|∆R|) and Φ|∆R|(|∆R|), denoting the probability density function (PDF)

and cumulative distribution function (CDF) respectively. We define

Pa,u = e(
∆R0.9

tu
) = e

(
∆R0.9

t0α(u−1)). (4.7)

as denoting the probability of accepting a suboptimal solution for a given ∆R0.9 and starting

50

temperature t0 after u repetitions. Through simulation, the factors that affected the distri-

butions of Φ∆R the most were found to be (in decreasing order): SNR, nT , nR, po, pu, ps,

and |S|. More analysis regarding the effects of the parameters on the delta-rate are given

in section 5.2.2.

Therefore, at each nT and nR, a group of users |S| = 25 with randomly i.i.d generated

channels is generated and the following method is followed to obtain the estimate of the

delta-rate distributions and obtain the appropriate SA parameters:

1. transition probabilities pa po pu are chosen

2. from a random initial solution ω0 a path created by ≈ 300 subsequent neighbourhood

transitions is taken. The candidates are generated via the neighbourhood function N()

with the transition probabilities pa po pu, and are carried out at an arbitrarily high

temperature and low decay rate (effectively accepting all solutions). These delta-rate

characteristics can be saved and do not need to be recomputed as long as the primary

characteristics (nT ,nR, and SNR of the simulation environment remain the same.

3. Φ∆R, the CDF of the distribution, is then used to obtain the upper bound ∆Rx which

contains x-th percentile of the |∆R| values. A working range of ∆Rx was determined

experimentally to be x = 0.85 to x = 0.90.

4. Given a target initial acceptance probability Pa,1 = 0.90 (set using guidelines from

[59, 65, 66, 79, 80]), we then find the initial temperature

t0 =
−∆R0.9

lnPa,1
(4.8)

5. Given a final acceptance probability threshold Pa,f ≈ 0.01 (on guidelines from [79])

The required number of outer iterations Mu min to sufficiently cool the system is then

Mu min =
ln(tf)

ln(αt0)
(4.9)

where

tf =
−∆R0.9

lnPa,f
. (4.10)

To briefly clarify step 3 above, assume an arbitrary path from solution ω1 → ω2 where

each solution ωi+1 is generated from the previous ωi, using ωi+1 = N(ωi) (with an arbitrarily

51

high initial temperature t0 and decay factor α = 1, thereby accepting all solutions). The

CDF distribution of ∆R(ω, ω′) for this path is Ψ∆R,1−2(∆R) (note: not |∆R|), is created

by all of the transitions of the solutions from ω1 to ω2, ∆R(ωi, ωi+1). As the path ω1 → ω2

was generated using the neighbourhood function N(), it is also possible to, by definition,

to generate the path ω2 → ω1 (with corresponding CDF Ψ∆R,2−1(∆R)) using the reverse

(also valid) transitions. The values of Ψ∆R,1−2 for ∆R > 0 which represent the improving

solutions observed on path 1 − 2, are now the non-improving solutions observed on path

2− 1. The resulting |∆R| CDF distribution for the path 1− 2 Φ|∆R|,1−2 is now also equal

to the CDF of the reversed path 2 − 1, Φ|∆R|,2−1. Therefore, the x-th percentile ∆Rx

of Φ|∆R|,1−2 = Φ|∆R|,2−1 now characterizes an estimate of the distribution of both non-

improving and improving solutions of both paths. Through experimentation, we found the

values of x for |∆Rx| values which performed well in our simulations to be in the range

x = 0.85 to x = 0.90.

By choosing Mu > Mu min for a given α and T0, we can allow the algorithm to run past

the minimum required temperature or outer loop iterations u and force it to run in a ‘super-

cooled’ state. Since in this super-cooled state the acceptance function PA() is accepting

only better solutions, SA is said to run as a hill-climbing algorithm in this state. In [79]

where the authors discuss application guidelines for simulated annealing, they argued that

in certain cases it may be beneficial to allow the algorithm to run in this super-cooled state

for some fraction of the total execution time (c×Mu where c < 1 outer repetitions executed

with Pa,cMu min
< Pa,f). We experiment with the effects of super-cooled temperatures and

detail our results in Chapter 5.

4.5.5 Cooling Schedule Parameter Selection

The cooling schedule T (see eq. 4.3) that we use is modelled after geometric schedules

discussed in [63, 67] and in Section 4.4.2. In these types of schedules, an initial tempera-

ture t0 is decayed by a constant α over the course of Mu iterations until reaching a final

temperature tf . The temperature at the u-th outer loop repetition can thus be given by

tu = tu−1α = t0α
u−1 (4.11)

52

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

outer iterations u

P
a

 0.99
0.985
 0.98
0.975
 0.97
0.965
 0.96
0.955
 0.95
0.945
 0.94
0.935
 0.93

Figure 4.6: Acceptance probability for various decay rates

The effects of different decay rates on the Pa,u are shown in figure 4.6, with the range of

interest in our simulations being 0.93 < α < 0.98. The decay rates were chosen in this

particular range because at these α’s, the number of outer loop repetitions Mu,min given by

(4.9) required to achieve Pa,u < 0.01 gave us the flexibility to vary the inner repetitions Mm

while still staying below a desired level of total complexity Mu ×Mm ≤ 10000 (see table

5.1).

Based on the above design considerations, the outer repetitions chosen were Mu =

100 200 300]. It can be seen that at Mu = 100, 200 , 300 for α < 0.95, and Mu = 200, 300

for α > 0.98, Pa,u falls below the aforementioned 1% acceptance threshold . This was

mentioned in the Section 4.5.4 as supercooling, and allows the algorithm to run as a hill-

climbing algorithm, accepting only improving solutions for a small duration of its runtime.

Table 4.1 shows the proportion of time spent in the super-cooled or hill-climbing state for

various decay rates and outer loop repetition limits used in our simulations.

4.5.6 Candidate and Transmission User pools

At the beginning of each outer loop u, the candidate user pool SC is updated using a

candidate pool update function NC(SC , u), via the following steps:

1. the users not currently scheduled are placed into the set Sn = SC\ST (where \ denotes

53

Proportion of execution in hill-climbing

α Mu,min for ∆R0.9 Mu = 100 Mu = 200 Mu = 300

93 60 0.40 0.70 0.80

94 68 0.32 0.66 0.773

95 80 0.20 0.60 0.733

96 100 0 0.50 0.667

97 132 0 0.34 0.56

98 192 0 0.04 0.36

99 384 0 0 0

Table 4.1: Proportion of execution time in super-cooled state for different α and Mu

the relative complement, or users belonging to SC and not ST)

2. ddu×Sne randomly selected users in Sn are replaced by users randomly selected from

S\Sn where the candidate pool update ratio du is defined by dupd = [d1 d2 · · · du · · · dMu
],

with du ≤ 1, ∀u

3. the number of users in the candidate pool SC , cu = |SC |, is updated according to a

schedule cupd = [c1 c2 · · · cu · · · cMu
], with ci ≥ ci+1. If the candidate pool is sched-

uled to be decreased at iteration u,(cu < cu−1), the appropriate number of users are

randomly removed from Sn to satisfy |{ST ∪ Sn}| = cu.

4. the new candidate pool for the current iteration u is updated, SC = {ST ∪ Sn}

The update ratio schedule dupd is constructed in a similar manner to the temperature sched-

ule T, monotonically decreasing as u→Mu and facilitates an increasingly thorough search

over solutions from a particular user subset as the algorithm progresses. This additional

structure is added in the hopes of constraining the neighbourhood size during the Mm inner

loops as to facilitate the adequate exploration of the local search space, yet at the same time

allowing for the coarse exploration of Ω by switching off users.

However, in the antenna environments simulated (nT , nR); (4, 2) (4, 4) (8, 2), it was

found that this additional structure was in fact detrimental to performance except for a few

select cases where (nT , nR) (4,2) (4,4), |S| ≤ 10 and the total SA complexity (Mu ×Mm

) was close to that of the exhaustive search (7000 iterations). Preliminary simulations

done in uncorrelated channel environments with candidate pools and candidate pool update

54

schedules for larger numbers of SA iterations and |S| > 20 yielded solutions with sum-rate

that were 5-10% below the sum-rates achievable when no candidate pool was used (SC =

S). This is most likely due to the gains from multi-user diversity that are achievable by

allowing the unfettered selection of users for transmission from the total user pool S outweigh

the advantages created by performing a more complete search over the possible stream

allocations and orders over a small pool of users. While we used uncorrelated channels in all

of our other simulations, in the case of spatially correlated user channels a candidate pool

with an update criteria that favours more orthogonal, uncorrelated users could conceivably

offer better performance, similar to the intermediate grouping acceptance threshold used in

the greedy algorithm in [52]. Since our research did not include the effects of correlated

channels, further work on this concept would be an interesting area for future work.

55

Chapter 5

Simulation Results

In this section we evaluate the performance of SA as a data stream scheduling algorithm

for maximum-throughput scheduling in a system employing SZF with coordinated transmit

receive processing, where we explicitly schedule up to nR data stream per user on each

users maximal channel modes. The first section briefly details the negligible performance

loss experienced when we choose to allocate data streams only to the maximal eigenmodes

of each user, and justifies the use of maximal eigenmode transmission. The second section

details the derivation of the SA parameters from the delta-rates distribution estimates,

and details the effect of parameter variation on the actual delta-rates distributions and the

convergence of the algorithm.

An evaluation of the performance of the SA algorithm in terms of sum-rate is given, and

performance of SA is compared to exhaustive search data stream scheduling, exhaustive

user allocation (no data stream scheduling), and the channel capacity given by DPC. The

exhaustive search data stream scheduling serves as the upper bound to the performance

achievable by SZF with coordinated transmit receiver processing, whereas the channel ca-

pacity given by DPC gives the maximum theoretically achievable ergodic limit. We note

that all nT data streams are assumed to be scheduled (
∑

li = nT) for all of the subsequent

SA simulations. Performance of the algorithm in terms of convergence is then discussed in

the subsequent section. Finally, the complexity of the algorithm and the exhaustive search

are examined in the last section.

56

5.1 Performance of Maximal Eigenmode Allocation

As described in section 2.2.5, in order to simplify our scheduling problem we chose to allocate

data streams only to the maximal eigenmodes of each user. This removes an additional layer

of combinatorial complexity that would otherwise exist by having to search over nR!
li!(nR−li)!

possible combinations of eigenmodes allocations for each user. Instead, the li data streams

allocated for each user i are sent along the li dominant eigenmodes of that users channel.

For small to medium amount of users and antennas (|S| ≤ 10, and nT = 4, nR = 2

for example), we expect to see a performance loss for the maximal eigenmode search in

comparison to searching over all possible eigenmodes. This is because the scheduler is more

likely to find orthogonal (less correlated) eigenmodes when searching over all possible modes

for each user when there are limited numbers of users to transmit to. However, as we are

dealing with designing a user scheduling algorithm to work in an environment in which large

number of users requesting service at a given instant, we show that the performance gap

associated with maximal eigenmode transmission can be considered negligible when |S| is

large, (the case of interest to us), and is an acceptable performance-complexity tradeoff.

This effect is visible in figure 5.1, where “exh eigenmode” denotes an exhaustive search

over all possible eigenmodes of all users channels, while “exh max eigenmode” is the case

of an exhaustive search over the maximal eigenmodes only. The “user allocation only” case

assumes that an exhaustive search using only user allocation is performed by allocating the

maximum number of streams (such that li = nR) per user. The complexity of the exhaustive

eigenmode search does not scale well past 6-10 users, for nT = 4 nT = 2, (with over 6 hours

for Nsamp = 1 Monte Carlo iterations required at nT = 4 nT = 2 and |S| = 10), and

is completely impractical for the nT = 4 nR = 4 |S| > 4, and nT = 8 nR = 2 |S| > 8

cases, where benchmarks for calculating the time for Nsamp = 1 Monte Carlo iterations ran

over the maximum execution time limits on the Jasper Cluster. Due to impracticality of

simulating even small numbers of Nsamp for the larger transmit and receive antenna array

cases, we present only results for nT = 4 and nR = 2 in Figure 5.1.

Figures 5.2 and 5.3 (for the nT = 4,nr = 2 and nT = 4,nR = 4 cases respectively) show

the sum-rate performance increase over user allocation achievable with variable data stream

allocation when using SZF precoding, and allow us to visualize the sum-rate distributions

possible for each of the various stream allocations. These results were generated by running

57

8 9 10 11 12 13 14
9

10

11

12

13

14

15

16

17

18

19

SNR [dB]

A
ve

ra
ge

 S
um

−
ra

te
 [b

its
/s

/H
z]

Average Sum−rate vs SNR

k=4 exh eigenmode
k=4 exh max. eigenmode
k=4 user allocation only
k=7 exh eigenmode
k=7exh max. eigenmode
k=7 user allocation only
k=10 exh eigenmode
k=10 exh max. eigenmode
k=10 user allocation only

Figure 5.1: Exhaustive and maximal eigenmode transmission with coordinated transmit-
receiver processing on average sum-rate performance for nT = 4, nR = 2

a random search at each Lm and finding the best achievable rates with random users and

order. The total number of random solutions generated for each Lm was 10 000. The legend

given for each allocation Lm denotes the results generated for any possible permutations of

the stream allocation vector in question. For example, the results obtained by allocating

Lm = [1, 2, 1], or 1 stream to the first user in ST , 2 to the second, and 1 to the third is

still denoted by [2,1,1]. In the nR=2 cases, choosing any stream allocation will on average

result in better performance than sending a full nR streams to each user. Transmitting

a single data stream to nT users allows on-par (low SNR ≈ 0dB) or better sum-rates (as

SNR increases) than those achievable with the [2,1,1] and [2,2] allocations. In general at all

SNR’s, stream allocation for nT = 4, nR = 2 allows higher achievable rates than just user

allocation.

The benefits of multi-stream diversity are more pronounced when nR and |S| are in-

58

4 4.5 5 5.5 6 6.5 7 7.5
0

0.1

0.2

0.3

1111

211

22

7 8 9 10 11 12 13
0

0.1

0.2

11 12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

17 18 19 20 21 22 23 24 25 26
0

0.1

0.2

24 25 26 27 28 29 30 31 32
0

0.1

0.2

0.3

Sum−rate [bits/s/Hz]P
ro

p
o

rt
io

n
 o

f
o

c
c
u

rr
e

n
c
e

s
SNR = 0 dB

SNR = 5 dB

SNR = 10 dB

SNR = 15 dB

SNR = 20 dB

Figure 5.2: Proportion of occurrences of the best achievable rates under SZF with variable
data stream allocation for nT = 4, nR = 2,|S| = 30 at various SNR

creased, and similar results to those obtained for the nR = 4 case are obtained when we

increase the number of antennas at each user’s terminal to nR = 4 and the number of

users |S|. In the nT = 4 nR = 4 case, it should first be noted that in the stream alloca-

tion Lm = [4], there is no SZF precoding and we only waterfill the power over the users

channel. This is because no other users to interfere with, thus making the projection onto

59

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.1

0.2

0.3

1,1,1,1

2,1,1

2,2

3,1

4

8 9 10 11 12 13 14 15
0

0.1

0.2

12 13 14 15 16 17 18 19 20 21
0

0.1

0.2

17 18 19 20 21 22 23 24 25 26 27
0

0.1

0.2

23 24 25 26 27 28 29 30 31 32 33
0

0.1

0.2

Sum−rate [bits/s/Hz]P
ro

p
o

rt
io

n
 o

f
o

c
c
u

rr
e

n
c
e

s
SNR =0 dB

SNR = 5 dB

SNR = 10 dB

SNR = 20 dB

SNR = 15 dB

Figure 5.3: Proportion of occurrences of the best achievable rates under SZF with variable
data stream allocation for nT = 4, nR = 4,|S| = 25 at various SNR

the nullspace of the non-existent previous users unnecessary. At low SNR, sending a single

data stream to nT users still affords the greatest average rate and outperforms the other

allocations. Any stream allocation other than Lm = 4 at low SNR offers markedly improved

performance over the single user case, with the effects becoming more pronounced at higher

SNR. Even scheduling just two users, with either Lm =[2,2] or [3,1] streams offers tangible

60

gains in achievable sum-rate sum-rate, but in general allocations with fewer data streams

per user offer the best performance.

Overall, it can be seen that by increasing the flexibility of the SZF algorithm by allowing

variable numbers of data streams per user (thus scheduling up to a maximum of Kmax = nT

users offers noticeable increases in achievable rates over scheduling a full nR data streams

per user (allowing only Kmax = bnT

nR
c users). In particular at higher SNR, because certain

types of data stream allocations afford better performance, priority could be given to using

these types of allocations in a scheduling algorithm for faster convergence or better overall

performance.

5.2 SA Algorithm Parameters

5.2.1 Repetition Limits, and Decay Rates

In order to compare the performance of the algorithm while varying the repetition limits Mu

and Mm, we chose a set of complexity targets (in terms of the number of unique sum-rate

calculations of R(ω)) listed in the first column of Table 5.1 and chose the repetition limits

to fit those targets. These outer repetition limits Mu are set based on practical decay rates

parameters and initial acceptance probabilities (see section 4.5.5) and were chosen to be

Mu = 100, 200, 300.

Given these outer repetition limits and the chosen complexity targets, the target com-

plexity was not achievable with an integer multiple of Mu in some cases. Therefore, in these

cases the lowest Mm (listed in Table 5.2) satisfying Mu×Mm ≥ (target complexity) was

chosen. Since the majority of our interest was in the performance of simulations in the

range of 2000-7500 sum-rate calculations, only overshoots of 101.3% and 102% and 105% of

the target complexities were observed, and their effects can be considered negligible. Table

5.1 lists the outer and inner repetition limits Mu and Mm,ccmplx
and decay rates used for

simulations (with ccmplx denoting the complexity index that will be used in the subsequent

evaluation sections).

61

index
ccmplx

Target (Mu=100)
×Mm,c

% Tar-
get

(Mu=200)
×Mm,c

% Tar-
get

(Mu=300)
×Mm,c

% Tar-
get

1 500 500 100 600 120 600 120

2 1000 1000 100 1000 100 1200 120

3 2000 2000 100 2000 100 2100 105

4 3000 3000 100 3000 100 3000 100

5 4000 4000 100 4000 100 4200 105

6 5000 5000 100 5000 100 5100 102

7 7500 75000 100 7600 101.3 7500 100

8 10000 10000 100 10000 100 10200 102

Table 5.1: Solution complexity for different repetition criteria

Mu limits Mm,c limits (ccmplx=1, ccmplx=2, . . . , ccmplx=8) α |S|
100 5, 10, 20, 30, 40, 50, 75,100 93, 94, 95, 96 10, 20, 30, 40

200 3, 5, 10, 15, 20, 25, 38, 50 94, 95, 96, 97 10, 20, 30, 40

300 2, 4, 7, 10, 14, 17, 25, 34 95, 96, 97, 98 10, 20, 30, 40

Table 5.2: Parameter sweep ranges for SA simulations

Simulated transition probabilities

transition index
ctrans

pa - Allocation swap pu - User swap po - Order swap

1 0.25 0.70 0.05

2 0.35 0.60 0.05

3 0.45 0.50 0.05

4 0.55 0.40 0.05

5 0.65 0.30 0.05

Table 5.3: Neighbourhood transition probabilities

5.2.2 Delta-Rate and Temperatures

To generate the approximations of |∆R| distributions, we used the method detailed in section

4.5.4. It was found through initial experimentation that the greatest effect on the Φ|∆R|

distributions was SNR. This was more or less expected, as in our simulations the transmit

power was varied from 0-20 dB, and the effect of power on the variance of the achievable

rates for a given user pool had a greater effect than the gains achieved by doubling the

number of transmit and receive antennas. Varying the number of users from |S| = 10 to

62

|S| = 40 had a negligible effect on the ∆R0.9, (∼ 2% variance) that increased slightly at

higher SNR’s to (3 − 4%).

For a given SNR, nT , and nR, it was originally thought that the neighbourhood transition

probabilities pa, po, pu change the characteristics of the neighbourhood function N() enough

to cause a statistically significant shift in Φ|∆R|, and consequently ∆R0.9. The initial Φ|∆R|

distributions were then made for each: SNR, nT , nR, |S|, and neighbourhood transition

probabilities listed in Table 5.3, with corresponding transition indexes ctrans which will be

used in the subsequent evaluation sections. Upon sweeping over ctrans = 1 to ctrans = 5,

it was found that these parameters also had a marginal effect on the ∆R0.9. Figure 5.4

shows the effect of the transition probabilities at high SNR at which the effects were the

most visible for nT = 4 nR = 2. ∆R0.9 values ranged from approximately 6.65 ∼ 6.85

corresponding to initial temperatures ranging from t0 = 63 ∼ 65, a 3% change. Similar

trends were observed for nT = 4, nR = 4 and nT = 8, nR = 2 (not shown) and therefore

we chose ctrans = 3 for our neighbourhood function transition parameters for the simulation

of Φ|∆R| estimates. Figure 5.5, 5.6, and 5.7 show the Φ|∆R| for (nT ,nR); (4,2),(4,4), and

6.6 6.7 6.8 6.9 7.0 7.1 7.2

0.885

0.89

0.895

0.9

0.905

0.91

|∆ R|

Φ
|∆

 R
|

c
trans

=1

c
trans

=2

c
trans

=3

c
trans

=4

c
trans

=5

Figure 5.4: ∆R0.90 for various ctrans at nT = 4, nR = 2, |S| = 40, SNR=20 dB

63

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X: 6.55
Y: 0.9

|∆R|

Φ
|∆

R
|

X: 5.02
Y: 0.9

X: 3.59
Y: 0.9

X: 2.35
Y: 0.9

X: 1.35
Y: 0.9

0db
5db
10db
15db
20db

Figure 5.5: Φ|∆R| distributions for nT = 4, nR = 2 showing ∆R0.90 for 0-20 dB

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

X: 5.64
Y: 0.9

|∆R|

Φ
|∆

R
|

X: 4.07
Y: 0.9

X: 2.623
Y: 0.9

X: 1.64
Y: 0.9

X: 7.285
Y: 0.9

0 dB
5 dB
10 dB
15 dB
20 dB

Figure 5.6: Φ|∆R| distributions for nT = 4, nR = 4 showing ∆R0.90 for 0-20 dB

(8,2), at SNR= 0−20dB with corresponding ∆R0.9 values for a particular user set |S| = 40,

averaged over 4000 iterations. After obtaining ∆R0.9 and setting Pa,o = 0.90, we used eq

4.8 to get the initial temperature values t0 for each SNR. The range over SNR= 0−20 dB of

initial temperatures t0 from their corresponding ∆R0.90 values are listed in table 5.4. It is

evident that as the nT (and hence the possible data streams) and increases, the variance of

achievable rates also increases, while similarly increasing nR and allowing greater numbers

of data streams per user also has a similar effect.

64

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

X: 9.136
Y: 0.9

|∆R|

X: 6.536
Y: 0.9

X: 4.622
Y: 0.9

X: 1.935
Y: 0.9

X: 2.853
Y: 0.9

Φ
|∆

R
| 0 dB

5 dB
10 dB
15 dB
20 dB

Figure 5.7: Φ|∆R| distributions for nT = 8, nR = 2 showing ∆R0.90 for 0-20 dB

nT nR SNR=0dB SNR=5dB SNR=10dB SNR=15dB SNR=20dB

4 2 12-14 21-23 34-36 46-48 62-64

4 4 15-17 24-27 37-40 53-56 70-73

8 2 13-15 25-28 38-41 57-60 85-89

Table 5.4: Temperatures ranges for each nT and nR per each SNR, derived from delta-rates
distribution estimates to satisfy Pa,1 = 0.90

65

5.3 Sum-Rate results

In all of the cases regardless of the number of antennas, users, and SNR’s, the achievable

rates with exhaustive variable data stream allocation over the maximal eigenmodes is able

to match or outperform the case of allocating all possible data streams per scheduled user,

(or just user allocation with no data stream scheduling). This is in part because the user

allocation case is a constrained version of variable data stream processing where only one

allocation (allocating a maximum number of data streams (nR) per user is possible. Therefor

for a given set of users with given channel realizations, the performance of exhaustive variable

data stream scheduling under SZF will never be less than that of only user allocation (no

data stream scheduling). In fig. 5.8 we compare the performance of our SA scheduler

0 5 10 15 20
5

10

15

20

25

30

A
ve

ra
ge

 s
um

−
ra

te
 (

bi
ts

\s
\H

z)

Transmit SNR (dB)

DPC

exh. max. eigenmode search

SA ccmplx = 7

user allocation only

random search 7500

Figure 5.8: Comparison of the performance of maximum throughput scheduling vs. SNR
for nT = 4, nR = 2 |S| = 15 for DPC, SA, exhaustive search, random search, and user
allocation

in terms of system throughput versus SNR to the exhaustive maximal eigenmode search,

DPC, user allocation only, and a random search at nT = 4, nR = 2, and |S| = 15. In

the graph, “exh. max. eigenmode” is the case of an exhaustive search over the maximal

66

eigenmodes only. The “user allocation only” case assumes that an exhaustive search using

only user allocation is performed, allocating the maximum number of streams (nR) per user.

Finally, DPC refers to the maximal theoretical possible capacity of the given users when

dirty paper precoding is implemented. Regarding the portions referring to DPC, it is not an

SA scheduler for DPC. Instead, DPC refers to the ergodic channel capacity results (eq.2.7),

Thus no scheduler is used nor strictly required when looking at the theoretical capacity. For

the case of throughput maximization, power is allocated using a waterfilling method to all

available users in DPC, and only those users with non-zero power are actually transmitted

to.

It can be seen that in this case SA provides 93% of the exhaustive maximal eigenmode

search in this case while being significantly less complex in terms of number of utility function

calculations. SA also outperforms (at all SNR) both the exhaustive user allocation search

case and a random search with the same number of utility function calculations. It can be

seen that both the SA and random search diverge from the exhaustive maximal eigenmode

search at higher SNR, but that SA suffers less divergence as SNR increases. In fig. 5.8 the

best overall average results for the SA parameters were used and were ctrans = 1, Mu = 300,

ccmplx = 8 α = 4. For clarity in some of the graphs, we omit the plotting of the average rate

results for different SA parameters at Mu = 200 and instead focus on showing the greatest

effect of varying Mu by showing the results for Mu = 100 to Mu = 300. We justify this by

mentioning that keeping all other parameters constant, Mu displays the same trends as the

ones observed going from Mu = 100, 300 . In all cases simulated, the performance of the

algorithm increased as ccmplx → 8, which allowed a greater exploration of the search space

by increasing the number of inner iterations Mm at each temperature.

For the effect of the ctrans SA parameter on achievable throughput, fig. 5.9 shows the

average throughput results of parameter sweeps for the case of nT = 4,nR = 2, and ccmplx =

7, at ∼SNR=20 dB where the effects of the parameter variation are most significant. It can

be seen from fig. 5.9 that the best average sum-rate is offered by ctrans = 1 in most of the

cases, and decreases as ctrans → 5. The significance of these results is that the algorithm

performs best at nT = 4 and nR = 2 when the neighbourhood function has the highest

probability of swapping users instead of checking other stream allocations. The better

performance is achieved by more heavily exploiting multiuser diversity instead of exploring

67

19.6 19.65 19.7 19.75 19.8 19.85 19.9 19.95 20

27

27.1

27.2

27.3

27.4

27.5

27.6

27.7

27.8

SNR [dB]

A
ve

ra
ge

 s
um

−
ra

te
 [b

its
/s

/H
z]

cα = 1, Mu = 100, ctrans = 1

cα = 4, Mu = 100, ctrans = 1

cα = 1, Mu = 100, ctrans = 3

cα = 4, Mu = 100, ctrans = 3

cα = 1, Mu = 100, ctrans = 5

cα = 4, Mu = 100, ctrans = 5

cα = 1, Mu = 300, ctrans = 1

cα = 4, Mu = 300, ctrans = 1

cα = 1, Mu = 300, ctrans = 3

cα = 4, Mu = 300, ctrans = 3

cα = 1, Mu = 300, ctrans = 5

cα = 4, Mu = 300, ctrans = 5

Figure 5.9: Effect of SA parameter variation on average throughput for the case of nT = 4
nR = 2 |S| = 40 and SNR=20 dB

a limited number of stream allocations available at nT = 4 nR = 2. As we can see, for the

same ctrans, choosing the higher outer loop parameter Mu = 300 will always yield the better

performance when the decay rate calpha = 4, whereas choosing Mu = 100 provides the best

performance when calpha = 1. In general however, choosing a faster decay rate (cα = 1)

and larger outer number of iterations (Mu = 300) tends to provide on average better on

achievable sum-rate performance. Similar results for the effects of the parameters on the

average throughput were obtained for nT = 4, nR = 4.

The average throughput results for SA for |S| = 20 and |S| = 40 are shown in fig.5.10,

68

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

SNR [dB]

A
ve

ra
ge

 s
um

−
ra

te
 [b

its
/s

/H
z]

DPC |S| = 20

SA ccmplx = 8, |S| = 20

random, 10000 iterations |S| = 20

user allocation only |S| = 20

DPC |S| = 40

SA ccmplx = 8, |S| = 40

random, 10000 iterations |S| = 40

user allocation only |S| = 40

Figure 5.10: Average sum-rate with DPC, simulated annealing (SA), exhaustive user allo-
cation, and random search for nT = 4, nR = 4, |S| = 20, 40, SNR = 0− 20 dB

and it can be seen that SA is able to outperform both the exhaustive user allocation search

and the random search in both cases. The gap between SA and the random search narrows

slightly as we go from |S| = 20 and |S| = 40, possibly due to the fact that the unstructured

nature of the random search is able to better able to explore the search space as opposed to

the comparatively structured nature of the SA.

For the case of nT = 8, nR = 2, it was found that regardless of the complexity ccmplx

and other parameters chosen, we could at best only match the performance of exhaustive

user allocation. In fig.5.11 we can see that only at the highest complexity level are we able

to match the performance of exhaustive user allocation. Recall from table 2.2 that the total

number of utility function calculations required for the exhaustive user allocation search for

nT = 8 nR = 2 and |S| = 10 is 5040. For this case, it is clear that stream allocation with

simulated annealing is impractical and should not be used, as it takes approximately twice

the number of iterations to simply match the performance of the exhaustive user allocation

search. A random search with the same complexity actually outperforms SA, most likely

due to the fact that the solution space (8.2× 106 solutions) is so large that that SA would

require many more iterations to actually exhibit some convergence like in the nT = 4 nR = 2

69

10 12 14 16 18 20

20

25

30

35

40

45

50

55

SNR [dB]

A
ve

ra
ge

 s
um

−
ra

te
 [b

its
/s

/H
z]

DPC
user allocation only
SA c

cmplx
=8

random search 10000 iterations

Figure 5.11: Average sum-rate with DPC, exhaustive user allocation, random search and
simulated annealing (SA) for nT = 8, nR = 2, |S| = 10, SNR = 0− 20 dB

and nT = 4 nR = 4 case. The behaviour SA in this case in terms of the total number of

iterations required to reach the best achievable utility function value was much like the first

graph of fig. 5.16, and therefore exhibited no fast convergence. Given the current structure

of the algorithm, for nT = 8 it is simpler and faster to use the exhaustive user allocation

search, although future work could include an extension of the algorithm to investigate the

effects of larger antenna arrays. Due to the relatively poor overall performance of the SA

algorithm for the structure and parameters for the case of nT = 8, we chose to exclude the

analysis for the delta-rate graphs and include only figure 5.11 as an example.

70

5.4 Convergence of SA

Due to the random nature of the SA algorithm in which the neighbourhood function ran-

domly chooses candidate solutions and then from those candidates suboptimal solutions are

randomly accepted, the convergence of the algorithm can arguably be said to be a stochastic

process. While the convergence of the algorithm in the limit for iterations is theoretically

possible if careful consideration is taken in the structuring of the algorithm, there exists a

distinct possibility that SA will not converge to the globally optimal value in a finite number

of iterations. However, while SA may not necessarily converge to the globally optimal value

it has been shown to find relatively good solutions quite quickly. If the solutions in the inter-

mediate stages of the execution are sufficiently good then further execution is not necessary

and the algorithm can terminate. This warrants the inclusion of the additional stop criteria

that can be placed at the end of each outer loop iteration u to halt the execution of the

algorithm when the solutions is “good enough”. Additionally, while the true SA approach

is memoryless and can potentially move away from the optimal solution by choosing a lo-

cally suboptimal solution and ‘forget’ the best solution found thus far, we employ a elitism

mechanism by which the best solution encountered is always saved. By employing elitism,

the utility function can now be considered strictly increasing as the execution progresses.

10 11 12 13 14 15 16 17 18 19 20

14

16

18

20

22

24

26

28

30

Achievable sum-rates for various ccmplx

A
ve

ra
ge

 S
um

−
ra

te
s

[B
its

/s
/H

z]

SNR [dB]

DPC

user allocation only

ccmplx = 1

ccmplx = 2

ccmplx = 3

ccmplx = 4

ccmplx = 5

ccmplx = 6

ccmplx = 7

ccmplx = 8

Figure 5.12: Achievable sum-rate performance of SA over various ccmplx for nT = 4, nR = 2,
|S| = 30, SNR = 0− 20 dB

71

10 11 12 13 14 15 16 17 18 19 20
16

18

20

22

24

26

28

30

32

Achievable sum-rates for various ccmplx
A

ve
ra

ge
 S

um
−

ra
te

s
[B

its
/s

/H
z]

SNR [dB]

DPC

ccmplx = 1

ccmplx = 2

ccmplx = 3

ccmplx = 4

ccmplx = 5

ccmplx = 6

ccmplx = 7

ccmplx = 8

Figure 5.13: Achievable sum-rate performance of SA over various ccmplx for nT = 4, nR = 4,
|S| = 30, SNR = 0− 20 dB

Figures 5.12 and 5.13 for the (4, 2, 30) and (4, 4, 30) cases respectively, highlight the

average best-achievable sum-rate performance of SA when ccmplx is varied from 1 to 8,

with the total number of total iterations increasing from 1000-10000. It can be seen that

after approximately 5000 iterations, increasing the complexity of the algorithm results in

diminishing marginal returns for both cases. This result also correlates our findings on the

convergence of the algorithm covered in the subsequent section, where the algorithm is shown

to converge close to the best achievable value after approximately 5000-6000 total iterations

(Mu×Mm). |S| = 30 was chosen to demonstrate the achievable sum-rate convergence as the

total number of unique solutions for the exhaustive eigenmode search are much greater than

the number of SA iterations which gives us a more realistic view on how well the algorithm

is able to extract multi-stream diversity from a very large solution space. The simulation

parameters resulting in these best achievable average rates tended to be Mu = 300 with

cα ≈ 1 or 2, with ctrans ≈ 1 or 2.

The next several figures show the probability that the algorithm has achieved the best

solution it will reach during execution by the given number of total iterations (max((u −

1)×Mm, 0) +m) for the (4,2,10), (4,2,40), (4,4,10),(4,4,40),(8,2,10) cases (respectively de-

noting (nT ,nR,|S|)). The decay rates for the various outer repetition limits used in these

simulations are listed in Table 5.4, and the transition probabilities in table 5.3. To clearly

show the impact of the decay rates on convergence, we choose to show the results of the two

extremes of possible decay rates cα = 1 and cα = 4, noting that the results for cα = 1 − 4

72

follow progression of general convergence trends as cα varies from 1 to 4. The graphs on

each page are for the same |S|, and show the results for cα = 1 on top, and cα = 4 on

bottom, with SA complexity Mu×Mm given by the discretized levels cα in increasing total

complexity of 2000, 4000, and 10 000 iterations from left to right (see Figure 5.1 for values

of Mm and Mu). Figure 5.14 shows the different symbols and line types used to denote the

various parameters used in the subsequent graphs in fig (5.15 - 5.22).

Decay indexes cα

Mu cα = 1 cα = 2 cα = 3 cα = 4

100 93 94 95 96

200 94 95 96 97

300 95 96 97 98

Table 5.5: Outer repetition limits and their corresponding decay rates used in convergence
simulations

LEGEND

SNR Power

0 dB

10 dB

20 dB

Outer Loop

Repetition

limits M

M =100

(solid line)

M =300

(dashed line)

Transition

Probability

indexes c

c =1

c =3

c =5

Figure 5.14: Legend denoting variables and their corresponding symbols used in fig (5.15 -
5.22

73

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

ccmplx= 3 , cα = 1, |S | = 10

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total iterations required to converge to optimal utility function value

ccmplx= 5 , cα = 1, |S | = 10

0 2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ccmplx= 8 , cα = 1, |S | = 10

Mu = 300
Mu = 300Mu = 300

Mu = 100

Mu = 100

Mu = 100

F
ig
u
re

5
.1
5
:
C
o
n
v
erg

en
ce

d
istrib

u
tio

n
fo
r
S
A

a
t
(4
,2
,1
0
)
fo
r
c
α
=

1
sh
ow

in
g
g
o
o
d
co
n
v
er-

g
en
ce

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

ccmplx= 3 , cα = 4, |S | = 10

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total iterations required to converge to optimal utility function value

ccmplx= 5 , cα = 4, |S | = 10

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ccmplx= 8 , cα = 4, |S | = 10

F
ig
u
re

5
.1
6
:
C
o
n
v
erg

en
ce

d
istrib

u
tio

n
fo
r
S
A

a
t
(4
,2
,1
0
)
fo
r
c
α

=
4
sh
ow

in
g
p
o
o
r
co
n
v
er-

g
en
ce

tren
d
s

7
4

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

ccmplx= 3 , cα = 1, |S | = 40

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total iterations required to converge to optimal utility function value

ccmplx= 5 , cα = 1, |S | = 40

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ccmplx= 8 , cα = 1, |S | = 40

F
ig
u
re

5
.1
7
:
C
o
n
v
erg

en
ce

d
istrib

u
tio

n
fo
r
S
A

a
t
(4
,2
,4
0
)
fo
r
c
α
=

1
sh
ow

in
g
g
o
o
d
co
n
v
er-

g
en
ce

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

ccmplx= 3 , cα = 4, |S | = 40

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total iterations required to converge to optimal utility function value

ccmplx= 5 , cα = 4, |S | = 40

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ccmplx= 8 , cα = 4, |S | = 40

F
ig
u
re

5
.1
8
:
C
o
n
v
erg

en
ce

d
istrib

u
tio

n
fo
r
S
A

a
t
(4
,2
,4
0
)
fo
r
c
α

=
4
sh
ow

in
g
p
o
o
r
co
n
v
er-

g
en
ce

tren
d
s

7
5

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

ccmplx= 3 , cα = 1, |S | = 10

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total iterations required to converge to optimal utility function value

ccmplx= 5 , cα = 1, |S | = 10

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ccmplx= 8 , cα = 1, |S | = 10

Mu = 300 Mu = 300

Mu = 300F
ig
u
re

5
.1
9
:
C
o
n
v
erg

en
ce

d
istrib

u
tio

n
fo
r
S
A

a
t
(4
,4
,1
0
)
fo
r
c
α
=

1
sh
ow

in
g
g
o
o
d
co
n
v
er-

g
en
ce

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

ccmplx= 3 , cα = 4, |S | = 10

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total iterations required to converge to optimal utility function value

ccmplx= 5 , cα = 4, |S | = 10

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ccmplx= 8 , cα = 4, |S | = 10

F
ig
u
re

5
.2
0
:
C
o
n
v
erg

en
ce

d
istrib

u
tio

n
fo
r
S
A

a
t
(4
,4
,1
0
)
fo
r
c
α

=
4
sh
ow

in
g
p
o
o
r
co
n
v
er-

g
en
ce

tren
d
s

7
6

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

ccmplx= 3 , cα = 1, |S | = 40

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total iterations required to converge to optimal utility function value

ccmplx= 5 , cα = 1, |S | = 40

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ccmplx= 8 , cα = 1, |S | = 40

Mu = 300

Mu = 300

Mu = 300F
ig
u
re

5
.2
1
:
C
o
n
v
erg

en
ce

d
istrib

u
tio

n
fo
r
S
A

a
t
(4
,4
,4
0
)
fo
r
c
α
=

1
sh
ow

in
g
g
o
o
d
co
n
v
er-

g
en
ce

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

ccmplx= 3 , cα = 4, |S | = 40

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

total iterations required to converge to optimal utility function value

ccmplx= 5 , cα = 4, |S | = 40

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ccmplx= 8 , cα = 4, |S | = 40

F
ig
u
re

5
.2
2
:
C
o
n
v
erg

en
ce

d
istrib

u
tio

n
fo
r
S
A

a
t
(4
,4
,4
0
)
fo
r
c
α

=
4
sh
ow

in
g
p
o
o
r
co
n
v
er-

g
en
ce

tren
d
s

7
7

Figures 5.16 and 5.18 of the (4,2,10) and (4,2,40) cases (cα = 4), as well as figures 5.20

and 5.22 for (4,4,10) and (4,4,40) both show extremely poor convergence, and while the data

points on the graphs may be crowded and hard to read, it is not the individual values but

the overall trend which is important and hence all the plots are included for comparison. It

can be easily seen that cα = 1 and Mu = 300 for cases of both (4,2,10) (4,2,40) offers the

best convergence performance regardless of decay rates cα chosen. For (4,2,10) in figure 5.17

at cα = 4, there is some initial convergence for approximately the first quarter of the total

iterations for each complexity, and we begin to see similar trends to the ones clearly visible

at cα = 1 (with the improved convergence of the dotted lines representing Mu = 300) but

any increase in convergence quickly drops off and it continues linearly until the end of the

execution. For (4,2,40), where the exhaustive search solution complexity is on the order of

106, only at the highest cα = 8 do we begin to see any convergence better than linear or

sub-linear seen at the lower ccmplx. However, particularly at higher |S| there the solution

space complexity is on the order of 106, regardless of the other parameter choices given

cα = 4, the algorithm fails show the aggressive convergence seen in the cα = 1 and lower |S|

cases. For nT = 4 nR = 4 and cα = 4 (poor convergence cases) Mu = 100 (solid line) gives

slightly better convergence than the Mu = 300 (dotted lines). However, the convergence of

the algorithm in these cases is very poor and was included for the sake of completeness to

show trends, and should not be used in practice.

The choice of outer loop parameter as Mu = 300 offers noticeably better performance in

all cases when it is paired with a low decay rate (cα = 1). This means is that for nT = 4

nR = 2 and nT = 4 nR = 4 SA tends to converge much faster with more aggressive decay

rates (lower α) and higher outer loop repetitions Mu (for the same total complexity), with

the effect even more prevalent at lower |S|. The general structure of this cooling profile

stemming from smaller α and larger Mu is one that features a sharper overall decay profile

but smaller discrete steps in temperatures between each subsequent outer iteration (tu and

tu+1). Referring back to Table 4.1 we see that the algorithm is (theoretically) running

approximately 73.3% of its execution time with Pa,u < 0.01. While the actual acceptance

probabilities are initially quite higher than 90% and the algorithm actually only runs less

than 40% of its total iterations with Pa,u < 0.10, the trends indicating the benefits of

running in a super-cooled state (at least for nT = 4 nR = 2) are evident nonetheless.

78

Regarding the effect of transition probabilities on convergence, it can be seen that the

best convergence is offered by ctrans = 1 (curves denoted with circles) in almost all (good

convergence) cases, and decreases as ctrans → 5 (curves denoted with triangles). The signif-

icance of these results is that for the (4,2) case at all SNR’s and other parameter choices

offers increasing performance as (see Figure 5.23). While this trend did not hold for the

case nT = 4 for both nR = 2 and nR = 4, |S| = 40 and low ccmplx, proper convergence does

not occur in these cases and those results are shown only for completeness.

The best performance case of ccmplx = 1 indicates corresponding transition probabilities

pa = 0.20, pu = 0.70, po = 0.05, meaning that for the nT = 4, nR = 2 case the algorithm

converges to the best solution the fastest when preference is given to swapping currently

non-scheduled users as opposed to trying different stream allocations. This makes sense, as

for nT = 4, nR = 2 only 3 valid stream allocations Lm exist, [2, 2], [2, 1, 1], [1, 1, 1, 1] (from

Table 2.1). In general, it seems that a more aggressive search to exploit multiuser diversity

rather than exploring particular stream allocations fairs better in all cases. This is because

while the stream swap operation inherently must schedule users off and on, it appears that

directly exploiting multiuser diversity by directly swapping scheduled for non-scheduled

users offers the best performance overall.

2600 2800 3000 3200

0.65

0.7

0.75

0.8

0.85

0.9

0.95

ccmplx= 5 , cα = 4, |S | = 10

total iterations required to converge to optimal utility function value

C
D

F

Figure 5.23: Convergence graph showing faster convergence rates as ctrans = 4→ 1

In all cases the simulations at higher SNR converge faster, and this is clearly evident

with the black representing SNR=20dB, converging the fastest, followed by red denoting

79

SNR=10dB, and lastly blue showing SNR = 0dB. It is interesting to note that in fig. 5.17

for nT = 4 nR = 2, ccmplx = 5, cα=1, Mu = 300 converges at approximately 2000 iterations,

which is about the same as the complexity of ccmplx = 2. Similarly, for ccmplx = 8, we

see convergence at approximately 6000 iterations. Similar results are seen in fig. 5.21 for

nT = 4 nR = 4 for ccmplx = 5 (3000 iterations), and for ccmplx = 8 (5000 iterations). Since

in general as ccmplx → 8 performs better, slightly better performance might be achieved if a

higher complexity level is chosen and the execution is terminated when the results converge.

5.5 Complexity Analysis

5.5.1 Complexity Analysis of Matrix operations

Given an m × n complex-valued matrix H ∈ Cm×n, the complexities of various matrix

operations are listed below:

• Multiplying an m× n matrix by an n× p matrix requires 8mnp flops [81].

• The inverse square root of a square n× n matrix will require 340
3 n3 flops [81]

• Waterfilling over j eigenmodes requires a maximum of 2j2 + 6j flops [82]

• The full SVD of a matrix H = UΣVH of an m×n matrix (m ≥ n) requires 16m2n+

32mn2 + 36n3 flops [81]

• An SVD requiring only the left singular values U and singular values Σ requires

4m2n− 8mn2 flops [81]

5.5.2 Complexity Analysis of Exhaustive search

In this section, we determine the complexity of the exhaustive search for user and data

stream scheduling under successive zero-forcing precoding with coordinated transmit-receiver

processing, allowing up to nR data streams per user and assuming that nT total data streams

are always scheduled. We assume nR ≤ nT and |Lm| > 1 so therefore lj < nT∀j. The work

done in this section was done with the extensive help of Dr. Robert Elliott and uses partial

results from his previously published work on successive zero-forcing [52].

Given a data stream allocation of Lm, a set of users ST , and an order π(j) (for simplicity

denoting π(j) = j) denoting the jth encoded user, we calculate the sum-rate according to

80

the following steps: (i) the effective channels (2.18) for each of the j users are calculated;

(ii) the covariance matrices Pj for the dual MAC are then calculated using the iterative

method in [24]; (iii) a MAC to BC conversion detailed in [9] is used to obtain the DPC

matrices Σj ; (iv) the DPC matrices are converted to the SZF matrices using the method

presented in [38]; (v) the rate calculation (2.14) is then calculated for each user j.

The complexity of the steps is illustrated below:

• For the first step (i), left singular vectors U are calculated for each of the |Lm| sched-

uled users, requiring 16nTn
2
R + 32n3

R flops. Note: this differs from the last bullet in

5.6.1 because we are calculating the V of HH , since m (i.e nr) is less than n (nT),

rather than calculating U of H. The effective channels for each user j are created

by multiplying each user’s channel by the first li left singular vectors for each user,

requiring
∑|Lm|

n=1 8lnnRnT flops. For the worst case complexity, it can be shown that

the allocation of |L|m| = nT users with a single data stream each (li = 1 ∀i) dominates

the complexity, and is O(nrn
2
T)

• Steps (ii) through (iv) were analyzed in [52] and the complexity of (ii) and (iii) was

shown to be dominated by the matrix inverse square root operation. Extending that

analysis, we can see that the complexity of the MAC covariance calculation and MAC

to BC conversion for each user, is O(n3
T) as it is dominated by the columns (and there-

fore nT) and not the rows (or lj) of the effective channel matrices. The biggest differ-

ence is the calculation of the SVDs in step (iv) to find the nullspace basis vectors, which

depends on the size of the effective channel matrices and is dictated by the stream

allocation Lm. For the worst general case of any Lm in any order, the dominant term

in the complexity of the SVD operations can then be given by
∑|Lm|−1

G=1 n2
T (
∑G−1

n=1 ln).

Therefore for step (iv) and the nullspace calculation and projection for each of the

|Lm| − 1 users encoded after the first user, knowing that
∑G−1

n−1 ln = nT −
∑|Lm|

n=G ln

and because by definition
∑|Lm|−1

r=1 lr < nT , we can simplify, showing that the dom-

inant term in the complexity is n2
T (nT −

∑nT

n=1 ln) for SVD’s. Further simplification

yields O(|Lm|n3
T). Thus, steps (ii) through (iv) each have complexity O(|Lm|n3

T).

• The rate calculation for step (v) is unchanged from the complexity given in [52], as the

dimensions of the aggregate effective channel matrices for the coordinated transmit

81

and receiver processing method (2.19) must be by definition equal in order to satisfy

the dimensionality constraints of SZF (Eq. 2.13). This step is of lower complexity

than (ii)-(iv).

• Therefore, for one particular Lm, ST , π, the complexity is O(|Lm|n3
T). For the ex-

haustive search, for a set of S users, all possible allocations Lm, and all possible

subsequent orders π must be attempted on all possible user selections, with the total

number of possible solutions given by (2.20). Since the number of possible permuta-

tions (|Lm|!) of an allocation Lm varies with the number of scheduled users, from the

exhaustive search in the worst case complexity for the exhaustive search occurs when

|Lm| = nT users are scheduled with lj = 1 streams each. Using this most dominant

term, the exhaustive search complexity can be extended from the analysis in [52] to

O(|Lm|!
(|S
|Lm|

)

|Lm|n3
T)
∼= O(|S|nT n4

T).

5.5.3 Complexity Analysis of Simulated Annealing

In this section,we determine the complexity of our Simulated Annealing algorithm. The

various operations performed by the SA algorithm such as the neighbourhood function

generation and cooling are simple integer arithmetic operations O(∞) operating on the

solutions ω and T and have negligible complexity. The computational complexity of SA

lies primarily in the Mu ×Mm total loop iterations and subsequent utility function or rate

calculations the SZF sum-rate in each iteration. We determined in the exhaustive search

complexity section that the complexity of one utility rate calculation to be O(|Lj |n3
T) flops.

Therefore the worst case complexity of the SA algorithm is from the Mu ×Mm times the

rate is calculated and thus can be given by O(MuMm|Lj |n3
T).

5.5.4 Simulation Times for Simulated Annealing

Average simulation times for the compiled MATLAB code (compiled using the mcc MAT-

LAB compiler with the –singlethread flag) running on a single core of a 2.50GHz processor

on the Checkers node as described in Section 3.2 for Nsamp = 1 at various transmit and

receive antenna cases (nR,nT) = (4, 2), (4, 4), and (8, 2) for each complexity index (from

Table 5.1) are presented in table 5.5.4. As we can see from the simulation times, the com-

82

plexity of the code scaled linearly with little or no overhead for practically all antenna cases

and complexity indexes.

Time per iteration (minutes)

complexity index c nT = 4, nr = 2 nT = 4, nr = 4 nT = 8, nr = 2

1 0.10 0.12 0.20

2 0.20 0.24 0.40

3 0.36 0.48 0.8

4 0.62 0.86 1.2

5 0.84 1.00 1.6

6 1.04 1.26 2.0

7 1.50 1.80 2.8

8 2.16 2.46 4.06

Table 5.6: Worst-case simulation times for (Nsamp = 1) Monte Carlo iterations for different
nT , nR

83

Chapter 6

Conclusion and Future Work

6.1 Summary of Work and Its Contributions

With MIMO techniques currently being employed in current 4G systems and being proposed

for the next generation beyond 4G systems, investigation of scheduling algorithms presents

a very active area for research.

In this thesis, we investigated the problem of data stream scheduling under SZF precod-

ing, while allowing a variable number of data streams per user by also employing coordinated

transmitter-receiver processing. Although it is shown that the extra degrees of freedom avail-

able by allowing for a variable number of data streams per user offer substantial gains in

achievable throughput, these potential improvements come at the cost of an additional layer

of complexity in choosing the allocation of data streams for each user. The optimal, ex-

haustive search of all possible data stream allocations per user and all possible eigenmodes

of each target user is shown to be intractable even for relatively small numbers of users. We

showed that transmitting on the maximal eigenmodes helps remove a combinatorial layer

of complexity from the problem, while still giving us practically matching performance to

that of the exhaustive eigenmodes search, particularly in environments where a large pool

of users requesting service is present (as is the case in the latter part of our simulations).

However, the exhaustive search for the maximal eigenmode variable data stream allo-

cation scheduling problem in systems employing SZF with coordinated transmitter-receiver

processing is still impractical, particularly due to the order sensitive nature of the precod-

ing method. To this end we have proposed and investigated the application of simulated

84

annealing (SA) as a simplified heuristic approach to the maximal eigenmode data stream

and user scheduling problem. In order to select parameters for simulated annealing which

would perform well, we first derived a simplified tuning mechanism that could be used to

derive parameters for any number of transmitter or receiver antennas and any number of

users.

We chose to investigate maximal throughput scheduling criteria using an unweighted

rate (or equivalently a weighted sum-rate with equal weight per user), although the flexible

structure of SA and the utility function allows for the maximization of any arbitrary utility

function. The complexity of SA increases linearly with the number of antennas and users,

and only depends on the complexity of the utility function calculation. We investigate the

algorithm for the optimization of maximizing sum-rate in a single cell MIMO system and

show that the proposed algorithm offers a radically simpler solution than the intractable

exhaustive search, while providing sum-performance of up to 93% that of the exhaustive

search in the case of nT = 4 nR = 2. Similar performance is demonstrated for the nT = 4

nR = 4 case. As the complexity of the exhaustive search scheduling increases as the number

of transmitter antennas is increased to nT = 8, for nR = 2 and low numbers of users, our SA

scheduling algorithm is able to perform the random search until a crossover at approximately

15 dB. At larger numbers of users however, the sheer complexity of the solution space causes

the SA to under-perform the random search at the same complexity.

In all cases, our reduced-complexity variable data stream scheduling approach has been

shown to offer superior sum-rate performance over that of exhaustive user scheduling ap-

proaches, where only user scheduling is performed (no data stream scheduling is used and

each user receives the maximal nR possible streams). The performance of SA was shown

to be less sensitive to parameter selection at lower SNR, but displayed greater sensitivity

to the effect of parameter selection on achievable throughput at high SNR. Since most of

the work done for scheduling algorithms under SZF precoding assumes nR data streams per

user, we are able to outperform existing schedulers operating with SZF precoding. While

the complexity of the exhaustive user scheduling search in most nT = 4, 8 and nR = 2

antenna cases for K > 10 is below that of our data stream scheduling algorithm, our SA

approach provides a reasonable performance-complexity tradeoff. It was also found that

SA did not provide the best solution in terms of complexity and performance for all of the

85

cases we simulated. It was found that for the case of nT = 8 nR = 2 and K = 10, SA at

the highest complexity we simulated (10,000 total iterations) barely managed to match the

performance of exhaustive user allocation (5020 total iterations required).

The convergence of SA was examined, and it was seen that the careful selection of

parameters could drastically shorten time necessary for SA to converge. We also investigated

the effects of different parameters on the convergence rates of the algorithm and developed

basic guidelines for the selection of parameters to help facilitate good performance. It was

shown that in some cases the best and fastest results could be obtained by choosing larger

initial complexity targets Mu ×Mm and prematurely terminating the execution.

A detailed analysis of the complexity of the exhaustive algorithm was carried out, with

that analysis then extended to find the complexity of the SA algorithm. Simulation times

for our SA algorithm were presented, and it was shown that our code scales linearly with the

number of Monte Carlo iterations required for each of the Mu×Mm utility rate calculations

required for each iteration. In summary, this work demonstrated that simulated annealing

algorithms can, when properly structured, be a viable method of scheduling of both data

streams and users for multiuser MIMO systems.

6.2 Future Work

One particular attribute of our SA algorithm is the need for an initial training phase, in

which the characteristics (delta-rates for our case of using a sum-rate metric) of the solution

space are gathered for use in the subsequent derivation of the operational parameters. While

these delta-distributions are saved and can be reused for similar simulation environments,

there undeniably is an appeal to an approach that could be applicable to a broader prob-

lem without requiring the initial tuning phase for each different problem environment. To

this end, future work may include investigation into adaptive selection techniques for the

simulated annealing parameter, which have shown [68] to offer promising performance in a

variety of settings.

Concerning the utility function and possible alternatives, the complexity of our SA ap-

proach is primarily in the evaluation of the sum-rate utility function that was chosen. An

avenue for further research could therefore lie in simpler utility function metrics, such as

orthogonality or channel gains in the null-space of the aggregate user channels, and could

86

be investigated for a performance complexity tradeoff. Since we do not look at fairness and

instead choose an unweighted sum-rate as the utility function for optimization, a weighted

sum-rate could also be chosen and the fairness of SA investigated using more advanced

channel models with path loss and shadowing components.

While SA does give good performance in cases with smaller number of transmit antennas,

the failure of the algorithm for nT = 8 and large number of users shows the potential for the

development and evaluation of a simpler greedy data stream scheduler that could possible

perform better. The extension of existing greedy algorithms for SZF (such as the greedy

algorithm proposed in [52]) designed for full data stream per user allocation to the variable

data stream allocation is an open problem that may be an interesting area of research.

The assumption of full CSIT in our research presents a potentially unrealistic feedback

problem for large numbers of users in practical systems. It is known that the effects of

imperfect or limited channel knowledge severely impact the ability of precoding methods to

support multiple users without severe losses on the achievable rate, and thus the investiga-

tion of limited channel information on our SA scheduler would be a good subject for future

work. The investigation of the effects of the imperfect channel knowledge on the coordinated

transmitter and receiver processing with SZF also have not been investigated and remains

an open problem of significant interest, particularly because it is the multi-stream diversity

that allows us to achieve performance above that of existing full allocation SZF algorithms.

A particularly interesting topic in wireless research is the idea of network coordination,

or coordinated multi-point (CoMP), which tackles the problem of inter-cell interference by

which the base stations in several cells can be thought of as a distributed MIMO array. In

network coordination schemes, the base stations for several cells mitigate inter-cell interfer-

ence by coordination of transmissions such that data sent to users in one cell does not cause

interference with the reception of data of other users in adjacent cells. Our SA approach

to data stream scheduling for a single-cell MIMO downlink can be expanded to the case of

multi-cell network MIMO downlink, and presents a promising direction for future work.

87

Bibliography

[1] “Ericsson mobility report,” Ericsson, Tech. Rep., Nov. 2012.

[2] J. Winters, “Optimum combining in digital mobile radio with cochannel interference,”

IEEE J. Sel. Areas Commun., vol. 2, no. 4, pp. 528 – 539, July 1984.

[3] J. Salz, “Digital transmission over cross-coupled linear channels,” AT&T Technical

Journal, vol. 64, no. 6, pp. 1147 – 1159, July 1985.

[4] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading

environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, no. 3,

pp. 311–335, Mar. 1998.

[5] G. J. Foschini, “Layered space-time architecture for wireless communication in a fading

environment when using multi-element antennas,” Bell Labs Technical Journal, vol. 1,

no. 2, pp. 41–59, Autumn 1996.

[6] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans.

Telecommun., vol. 10, no. 6, pp. 585–595, Nov.-Dec 1999.

[7] S. Alamouti, “A simple transmit diversity technique for wireless communications,”

IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451 – 1458, Oct. 1998.

[8] L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple-

antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073 – 1096, May

2003.

[9] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and sum-rate

capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Inf. Theory, vol. 49,

no. 10, pp. 2658–2668, Oct. 2003.

88

[10] Q. Li, G. Li, W. Lee, M. il Lee, D. Mazzarese, B. Clerckx, and Z. Li, “MIMO techniques

in WiMAX and LTE: a feature overview,” IEEE Commun. Mag., vol. 48, no. 5, pp.

86–92, May 2010.

[11] D. Gesbert, M. Kountouris, R. W. Heath, C. Chae, and T. S. Sälzer, “From single

user to multiuser communications: Shifting the MIMO paradigm,” in IEEE Sig. Proc.

Magazine, vol. 24, no. 5, Sept. 2007, pp. 36–46.

[12] D. Love, J. Heath, R.W., W. Santipach, and M. Honig, “What is the value of limited

feedback for MIMO channels?” IEEE Commun. Mag., vol. 42, no. 10, pp. 54 – 59, Oct.

2004.

[13] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channels with partial

side information,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 506 – 522, Feb. 2005.

[14] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian

broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691 – 1706, July

2003.

[15] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the Gaussian

multiple-input multiple-output broadcast channel,” IEEE Trans. Inf. Theory, vol. 52,

no. 9, pp. 3936–3964, Sept. 2006.

[16] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, ser. Wiley Series

in Telecommunications. Cambridge University Press, 2005.

[17] W. Yadum and N. Nakajima, “The correlation of diversity MIMO antenna for portable

terminals,” Wirel. Commun. Mob. Comput., vol. 7, no. 8, pp. 995–1002, Oct. 2007.

[18] E. Biglieri, MIMO Wireless Communications. Cambridge University Press, 2007.

[19] W. Yu, W. Rhee, S. Boyd, and J. Cioffi, “Iterative water-filling for gaussian vector

multiple-access channels,” IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 145–152, Jan.

2004.

[20] D. Love, R. Heath, V. Lau, D. Gesbert, B. Rao, and M. Andrews, “An overview of

limited feedback in wireless communication systems,” IEEE J. Sel. Areas Commun.,

vol. 26, no. 8, pp. 1341 – 1365, Oct. 2008.

89

[21] L. Li, W. Jing, and W. Xiaoyun, “ZF beamforming performance analysis for multiuser

spatial multiplexing with imperfect channel feedback,” in Proc. Int. Conf. on Wireless

Commun., Netw. and Mobile Computing, Sept. 2007.

[22] M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. 29, no. 3, pp. 439

– 441, May 1983.

[23] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of Gaussian multiple-

access and broadcast channels,” IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 768–783,

May 2004.

[24] N. Jindal, S. Vishwanath, S. Jafar, and A. Goldsmith, “Sum power iterative water-filling

for multi-antenna Gaussian broadcast channels,” IEEE Trans. Inf. Theory, vol. 51,

no. 4, pp. 1570–1580, Apr. 2005.

[25] M. Tomlinson, “New automatic equaliser employing modulo arithmetic,” Electronics

Letters, vol. 7, no. 5, pp. 138–139, Mar. 1971.

[26] C. Peel, B. Hochwald, and A. Swindlehurst, “A vector-perturbation technique for near-

capacity multiantenna multiuser communication-part i: channel inversion and regular-

ization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.

[27] M. Mazrouei-Sebdani and W. Krzymień, “Vector perturbation precoding for network

MIMO: Sum rate, fair user scheduling, and impact of backhaul delay,” IEEE Trans.

Veh. Tech., vol. 61, no. 9, pp. 3946–3957, Nov. 2012.

[28] ——, “On MMSE vector-perturbation precoding for MIMO broadcast channels with

per-antenna-group power constraints,” IEEE Trans. Signal Process., vol. 61, no. 15,

pp. 3745–3751, June 2013.

[29] C. Windpassinger, R. F. H. Fischer, and J. Huber, “Lattice-reduction-aided broadcast

precoding,” IEEE Trans. Commun., vol. 52, no. 12, pp. 2057–2060, Dec. 2004.

[30] W. Yu and J. Cioffi, “Trellis precoding for the broadcast channel,” in Proc. 2001 IEEE

Global Telecommun. Conf. (GLOBECOM ’01), vol. 2, Nov. 2001, pp. 1344–1348.

90

[31] D. Ryan, I. Collings, I. V. L. Clarkson, and R. Heath, “Performance of vector perturba-

tion multiuser mimo systems with limited feedback,” IEEE Trans. Commun., vol. 57,

no. 9, pp. 2633–2644, Sept. 2009.

[32] H. Harashima and H. Miyakawa, “Matched-transmission technique for channels with

intersymbol interference,” IEEE Trans. Commun., vol. 20, no. 4, pp. 774–780, Aug.

1972.

[33] R. Chen, J. Li, C. Li, and W. Liu, “Multi-user multi-stream vector perturbation pre-

coding,” Wireless Pers. Commun., vol. 69, no. 1, pp. 335–355, Mar. 2013.

[34] M. Joham, W. Utschick, and J. Nossek, “Linear transmit processing in MIMO commu-

nications systems,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2700–2712, Aug.

2005.

[35] F. Boccardi and H. Huang, “A near-optimum technique using linear precoding for the

MIMO broadcast channel,” in Proc. IEEE Acoust. Speech and Signal Process. (ICASSP

2007), vol. 3, Apr. 2007, pp. III–17–III–20.

[36] Q. Spencer, A. Swindlehurst, and M. Haardt, “Zero-forcing methods for downlink spa-

tial multiplexing in multiuser MIMO channels,” IEEE Trans. Sigal Proc., vol. 52, no. 2,

pp. 461–471, Feb.

[37] ——, “Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO

channels,” IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461 – 471, Feb. 2004.

[38] A. Dabbagh and D. Love, “Precoding for multiple antenna Gaussian broadcast channels

with successive zero-forcing,” IEEE Trans. Signal Process., vol. 55, no. 7, pp. 3837 –

3850, July 2007.

[39] A. Wiesel, Y. Eldar, and S. Shamai, “Zero-forcing precoding and generalized inverses,”

IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4409–4418, Sept. 2008.

[40] R. Elliott and W. Krzymien, “Improved and weighted sum rate maximization for suc-

cessive zero-forcing in multiuser MIMO systems,” EURASIP J. Wireless Commun. and

Netw., vol. 2011, no. 133, pp. 1–16, Oct. 2011.

91

[41] R. Elliott, S. Sigdel, W. A. Krzymień, M. Al-Shalash, and A. Soong, “Genetic and

greedy user scheduling for multiuser MIMO systems with successive zero-forcing,”

in Proc. 5th IEEE Broadband Wireless Access Workshop (co-located with the IEEE

GLOBECOM 2009), Nov-Dec. 2009, pp. 6 IEEE–format pages.

[42] B. Lee and B. Shim, “A vector perturbation with virtual users for multiuser MIMO

downlink,” in Proc. IEEE Acoust. Speech and Signal Process. (ICASSP 2010), Mar.

2010, pp. 3406–3409.

[43] P. Tejera, W. Utschick, G. Bauch, and J. Nossek, “Efficient implementation of succes-

sive encoding schemes for the MIMO OFDM broadcast channel,” in Proc. IEEE Int.

Conf. on Commun. (ICC ’06), vol. 12, June 2006, pp. 5354–5359.

[44] R. Heath and D. Love, “Multimode antenna selection for spatial multiplexing systems

with linear receivers,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3042–3056, Aug.

2005.

[45] Z. Shi, C. Zhao, and Z. Ding, “Low complexity eigenmode selection for MIMO broadcast

systems with block diagonalization,” in Proc. IEEE Int. Conf. on Commun., (ICC ’08),

May 2008, pp. 3976–3981.

[46] Z. Shi, W. Xu, S. Jin, C. Zhao, and Z. Ding, “On wireless downlink scheduling of

MIMO systems with homogeneous users,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp.

3369–3377, July 2010.

[47] M. Aydin, R. Kwan, J. Wu, and J. Zhang, “Multiuser scheduling on the LTE downlink

with simulated annealing,” in Proc. IEEE Veh. Technol. Conf. (VTC 2011-Spring),

May 2011, pp. 1–5.

[48] R. Kwan, M. Aydin, C. Leung, and J. Zhang, “Multiuser scheduling in HSDPA using

simulated annealing,” in Proc. Int. Wireless Commun. and Mobile Comput. Conf. 2008

(IWCMC’08), Aug. 2008, pp. 236–241.

[49] J. Chang, L. Tassiulas, and R.-F. F, “Joint transmitter receiver diversity for efficient

space division multiple access,” IEEE Trans. Wireless Commun., vol. 1, pp. 16–27,

Jan. 2002.

92

[50] C.-B. Chae, D. Mazzarese, T. Inoue, and R. Heath, “Coordinated beamforming for

the multiuser MIMO broadcast channel with limited feedforward,” IEEE Trans. Sign.

Process., vol. 56, no. 12, pp. 6044–6056, Dec. 2008.

[51] S. Sigdel and W. Krzymień, “Efficient user selection and ordering algorithms for suc-

cessive zero-forcing precoding for multiuser MIMO downlink,” in Proc. IEEE Veh.

Technol. Conf. (VTC 2009-Spring), April 2009, pp. 1–6.

[52] R. C. Elliott, S. Sigdel, and W. A. Krzymień, “Low complexity greedy, genetic and

hybrid user scheduling algorithms for multiuser MIMO systems with successive zero-

forcing,” Trans. Emerging Telecommun. Technol., vol. 23, no. 7, pp. 604–617, Nov.

2012.

[53] “High speed downlink packet access (HSDPA),” in 3rd Generation Partnership Project

(3GPP) Standard V12.x (2013-03), 2010, pp. 3406–3409.

[54] S. Dhurandher, S. Misra, H. Mittal, A. Agarwal, and I. Woungang, “Ant colony

optimization-based congestion control in ad-hoc wireless sensor networks,” in Proc.

International Conference on Computer Systems and Applications, (AICCSA 2009),

May 2009, pp. 492–497.

[55] T.-Y. Lin, K.-C. Hsieh, and H.-C. Huang, “Applying genetic algorithms for multiradio

wireless mesh network planning,” IEEE Trans. Veh. Tech., vol. 61, no. 5, pp. 2256–2270,

June 2012.

[56] C.-K. Ting, C.-N. Lee, H.-C. Chang, and J.-S. Wu, “Wireless heterogeneous transmitter

placement using multiobjective variable-length genetic algorithm,” IEEE Trans. Syst.

Man, Cybern. B, Cybernetics, vol. 39, no. 4, pp. 945–958, Aug. 2009.

[57] R. Elliott and W. Krzymien, “Downlink scheduling via genetic algorithms for multiuser

single-carrier and multicarrier MIMO systems with dirty paper coding,” IEEE Trans.

Veh. Tech., vol. 58, no. 7, pp. 3247–3262, Sept. 2009.

[58] ——, “On the convergence of genetic scheduling algorithms for downlink transmission

in multi-user mimo systems,” Wireless Pers. Commun., vol. 58, no. 3, pp. 469–481,

June 2011.

93

[59] M. Gendrea and J.-Y. Potvin, Handbook of Metaheuristics(2nd ed.). London, UK:

Springer-Verlag, 2010.

[60] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,”

Science, vol. 220, no. 4598, pp. 671 – 680, May 1983.

[61] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and finite-time

behavior of simulated annealing,” Advances in Applied Probability, vol. 18, no. 3, pp.

747–771, Sept. 1986.

[62] F. Glover, “Tabu search, part I,” ORSA Journal on Computing, vol. 1, no. 3, pp. 190

– 206, Summer 1989.

[63] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.).

London, UK: Springer-Verlag, 1996.

[64] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

“Equation of state calculations by fast computing machines,” J. Chemical Physics,

vol. 21, no. 6, pp. 1087–1092, June 1953.

[65] L. Goldstein and M. Waterman, “Neighborhood size in the simulated annealing algo-

rithm,” Am. J. Math. Manage. Sci., vol. 8, no. 3-4, pp. 409–423, Jan. 1988.

[66] K. M. Cheh, J. B. Goldberg, and R. G. Askin, “A note on the effect of neighborhood

structure in simulated annealing,” Computers & Operations Research, vol. 18, no. 6,

pp. 537 – 547, 1991.

[67] H. Sanvicente-Sánchez and J. Frausto-Soĺıs, “A method to establish the cooling scheme

in simulated annealing like algorithms,” in Proc. 2004 Int. Conf. Comput. Sci. and Its

Applicat. (ICCSA 2004), vol. 3045. Springer, May 2004, pp. 755–763.

[68] N. Azizi and S. Zolfaghari, “Adaptive temperature control for simulated annealing: a

comparative study,” Computers & Operations Research, vol. 31, no. 14, pp. 2439 –

2451, Dec. 2004.

[69] K. Boese and A. Kahng, “Simulated annealing of neural networks: the ”cooling” strat-

egy reconsidered,” in Proc. IEEE International Symposium on Circuits and Systems,

(ISCAS ’93), May 1993, pp. 2572–2575.

94

[70] A. Anagnostopoulos, L. Michel, P. V. Hentenryck, and Y. Vergados, “A simulated

annealing approach to the traveling tournament problem,” J. of Scheduling, vol. 9,

no. 2, pp. 177–193, Apr. 2006.

[71] I. Osman, “Metastrategy simulated annealing and tabu search algorithms for the vehicle

routing problem,” Annals of Operations Research, vol. 41, no. 4, pp. 421–451, 1993.

[72] D. Stefankovic, S. Vempala, and E. Vigoda, “Adaptive simulated annealing: A near-

optimal connection between sampling and counting,” in Proc. IEEE Symposium on

Foundations of Computer Science, (FOCS ’07), Oct. 2007, pp. 183–193.

[73] N. Prajapati, R. R. Agravat, and M. Hasan, “Comparative study of various cooling

schedules for location area planning in cellular networks using simulated annealing,” in

Proc. Int. Conf. on Networks and Communications, (NETCOM ’09), Dec. 2009, pp.

146–150.

[74] B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of Operations Re-

search, vol. 13, no. 2, pp. 311–329, May 1988.

[75] D. E. Jeffcoat and R. L. Bulfin, “Simulated annealing for resource-constrained schedul-

ing,” European Journal of Operational Research, vol. 70, no. 1, pp. 43 – 51, Oct. 1993.

[76] V. Rayward-Smith, Modern heuristic search methods. John Wiley & Sons, Inc., 1996.

[77] S. White, “Concepts of scale in simulated annealing,” in Proc. IEEE Int. Conf. on

Computer Design, 1984, pp. 646–651.

[78] J. Schneider and S. Kirkpatrick, Stochastic Optimization, ser. Scientific Computation.

Springer-Verlag Berlin / Heidelberg, 2006.

[79] Z. Michalewicz and D. Fogel, How to Solve It: Modern Heuristics. Springer, 2000.

[80] K. A. Dowsland, “Modern heuristic techniques for combinatorial problems,” C. R.

Reeves, Ed. New York, NY, USA: John Wiley & Sons, Inc., 1993, pp. 20–69.

[81] G. Golub and C. Van Loan, Matrix Computations, ser. Johns Hopkins Studies in the

Mathematical Sciences. Johns Hopkins University Press, 1996.

95

[82] Z. Shen, R. Chen, J. Andrews, R. Heath, and B. Evans, “Low complexity user selection

algorithms for multiuser mimo systems with block diagonalization,” IEEE Trans. Signal

Process., vol. 54, no. 9, pp. 3658–3663, Aug. 2006.

[83] J. Proakis and M. Salehi, Digital Communications, 5th ed. McGraw-Hill Higher Ed-

ucation, 2008.

96

Appendix A

Validation of Simulation Model and

Results

A.1 Validation of Simulation Model

In order to check the validity of our simulations, we examine the following aspects of work:

• As the transmission environment in this work assumed a Rayleigh fading channel

model, for the purposes of confirming the statistical validity of our simulations we

first examine the complex channel gains distribution to ensure the actual distribution

of the values used matches the assumed theoretical channel model.

• Secondly, due to the nature of the Monte Carlo simulations in which many indepen-

dent realizations are required, and due the distributed computing environment used

to simulate the results, we briefly go over methodology used to generate ensure ran-

dom and independent pseudorandom sequences for the thousands of simulated used

simultaneously.

• The errors in the Monte Carlo results are subsequently presented and examined.

• Finally, we offer a comparison to published results in literature.

A.1.1 Channel Model Verification

In all of the results provided in this thesis we assumed a Rayleigh fading channel model,

which represents a rich scattering transmission environment where the received signal has no

97

Gaussian random variable x Rayleigh random variable r

Theoretical MATLAB generated Theoretical MATLAB generated

µx = 0 µx,samp = −0.0014 µr = 0.8862 µr,samp = 0.8870

σx = 1 σx,samp = 0.9980 σr = 0.2146 σr,samp = 0.2143

Table A.1: Theoretical and generated (200,000 samples) mean and variance for Gaussian
and Rayleigh distributions

significant line-of-sight component. The resulting channel gains should therefore be Gaussian

distributed values with zero mean and unit variance [18, 83]. Then AWGN model assumed

for noise also assumes i.i.d circularly symmetric complex Gaussian random variables with 0

mean and σ2
n variance per dimension. The importance of random variables in our modeling

then highlights the necessity of obtaining accurate representations of the random variables.

The Gaussian random variables were generated in MATLAB using the randn(· · ·) func-

tion, which generates pseudorandom values (see appendix A.1.2 for details relating to the

random number generation and seeding) drawn from the standard normal distribution. A

Gaussian random variable x with mean µx and variance σ2
x has a PDF [18, 83]

px(x) =
1

σx

√
2π

e−(x−µx)
2/2σ2

x (A.1)

and cumulative distribution function (CDF) [18, 83]

Fx(x) =
1√
π

∫ x−µx

−∞

e−t2dt. (A.2)

Figure A.1.1 displays the approximation of the Gaussian distribution obtained using

MATLAB and 200,000 samples (coloured lines) and the theoretical Gaussian distribution

(dashed line). For this set of samples the resulting mean and variance were (see Table

A.1.1) µx,samp = −0.0014 and σx,samp = 0.9980 respectively, very close to the expected

value of µx = 0 and σx = 1. The PDF and CDF of the MATLAB generated distribution

also closely follow the theoretical Gaussian distribution. Although generating a Rayleigh

channel with fading envelope magnitudes that are Rayleigh distributed requires complex-

valued Gaussian random variables with µ = 0 and σ = 1, these can be generated from i.i.d.

real valued Gaussian random variables xR and xI (with µR = µI = 0 and σR = σI = 1) by

r =
1√
2
(xR + j xI). (A.3)

98

(a) PDF

 −4 −2 0 2 4
 0

0.1

0.2

0.3

0.4

x

p
x
(x

)

(b) CDF

 −4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1.0

x

F
x
(x

)

Figure A.1: Theoretical Gaussian distribution (dashed lines) compared with Gaussian dis-
tribution generated by MATLAB (coloured) with 200 000 samples

Similarly, a Rayleigh random variable r with a scale parameter σx the has a probability

distribution function (PDF) [18, 83]

pr(r) =
r

σ2
x

e−r2/2σ2
x (A.4)

and cumulative distribution function (CDF) [18, 83]

Fr(r) = 1− e−r2/2σ2
x (A.5)

where σ2
x = 1/2 denotes the variance of the Gaussian real and imaginary parts of the complex

random variables.

Likewise, Figure A.1.1 shows the theoretical Rayleigh distribution (dashed line) closely

tailed by the distribution generated by MATLAB (200,000 samples). The magnitude of

the generated Rayleigh random variables had a mean (see Table A.1.1) µr,samp = 0.2143

and variance σr,samp = 0.8870, very closely matching the theoretically expected mean and

variance of µr = σx

√

π/2 = 0.8862 and σ2
r = σ2

x(2 − π/2) = 0.2146. It can therefore be

seen from our closely matching means, variances, and overall distributions for our generated

random variables that our methodology for modeling the channels is accurate.

A.1.2 Pseudorandom Generator Seeding

All of the simulation results in this thesis were determined using the Monte Carlo method

using the MATLAB software package on the distributed computing resources provided by

99

(a) PDF

0 1 2 3
 0

0.2

0.4

0.6

0.8

r

p
r
(r

)

(b) CDF

0 1 2 3
0

0.2

0.4

0.6

0.8

1.0

r

F
r
(r

)

Figure A.2: Theoretical Rayleigh (a)PDF and (b)CDF distribution (dashed lines) compared
with Rayleigh distribution generated by MATLAB (coloured) with 200 000 samples

WestGrid/Compute Calcule Canada and a desktop machine provided by TRTech (formerly

Telecommunications Research Laboratories, TRLABS). Due to the excessive number of CPU

hours required to simulate all of the Nsamp Monte Carlo samples used to estimate the ergodic

capacity on one machine, we chose to distribute the Nsamp samples over the distributed

computing environment (described in section 3.2) provided by WestGrid. Dependent on the

availability of free computing nodes (nnodes), the total number of samples would be split

between the nfree nodes and run in parallel. However, an issue arose in that MATLAB by

default initializes the pseudorandom sequence generator used by all of the random functions

to a default seed value that was the same across all of the nodes. Due to the parallel

nature of our computations, a possible solution of initializing the pseudorandom generator

seed based on the system time also proved infeasible due to the fact that depending on the

cluster load simulations would sometimes start at the exact same time. When this occurred,

the simulations would share the same random seed, resulting in the same channels being

generated for the users and identical execution of the algorithm, and result in repeated data.

This would result in wasted computing resources and a smaller pool of useable data.

Our solution was to initialize the pseudorandom seed based on the unique job identifier

given by the Portable batch system (PBS) scheduler used by the cluster, $PBS JOB

ID multiplied by the current system time, and checked against a database of previously

used seeds. If by chance the seed was a duplicate of one already used for that batch of

100

simulations, another value was generated in the same manner until a unique value was found.

Additionally, the storage of the random seeds also allowed us to, if necessary, replicate the

channels and environment of our simulations to facilitate direct comparisons of parameters

under the same runtime conditions, as well as enabling us to re-run results.

A.1.3 Monte Carlo Error

Recall from sections 2.1.3 and 2.2.3, where for different encoding methods (DPC, SZF) the

achievable instantaneous rates for specific channel realizations are given. The aforemen-

tioned formulas give the instantaneous rates achievable in a particular channel realization

whereas the results presented in this thesis are typically an average, or an ergodic capacity,

which is the expected value obtained by averaging over a large number of channel realiza-

tions. While the true ergodic capacity could be calculated by averaging over the infinite

number of possible realizations, since it is impossible to simulate over all possible channel

realizations for all users (of which there would be an infinite amount of unique realizations),

it is accepted in practice to sample and average a large number of independent simulations

instead of attempting to obtain the true ergodic mean. Although this will result in an

inevitable intrinsic error between the reported sample mean and the true ergodic mean,

this error can be made arbitrarily small by simply choosing an appropriately large sample

size. This error in the sampled mean can then be visualized through the use of error bars

on the data which can indicate the uncertainty (one standard error, a specific confidence

(xx% interval), or one standard deviation of uncertainty) in the displayed data and can be

used to visually compare two quantities and determine whether differences are statistically

significant. For completeness, all simulation results should include error bars, however their

practiced omission in this thesis mirrors convention followed in other published works for

simulations of these types. Their omission is justified however, if the chosen sample size

is large enough that the resulting error and error bars would not be clearly visible in the

figures.

The standard error of the mean is the standard deviation of the sampling distribution

of the sample mean’s estimate of a population (σx̄) mean. It is usually estimated via the

sample’s estimate of the standard deviation of the population mean divided by the square

101

P x

0.800 1.28155 σx̄

0.900 1.64485 σx̄

0.950 1.95996 σx̄

0.990 2.57583 σx̄

0.995 2.80703 σx̄

0.999 3.29053 σx̄

Table A.2: Confidence interval probabilities and spreads

root of the sample size,

σx̄ =
σ√
n
. (A.6)

The confidence interval and the associated probability for the sample mean (the ergodic

throughput of our system), is defined as the interval in which the true mean measurement

falls with the respective probability, can then be found from the standard error of the

mean. If the sample size is sufficiently large, by the central limit theorem the distribution of

the sample means will approach a normal distribution. Therefor, for a normal (Gaussian)

distribution the probability that a measurement falls within n standard deviations (nσ) of

the population mean µ can be given by

P (µ− nσ < x < µ+ nσ) = erf(n/
√
2) (A.7)

where erf is the error function for the normal distribution. The sigma distance for several

confidence intervals are given in Table A.1.3.

The confidence interval (or standard deviation of the sampled mean, σx̄) can then be

narrowed simply by simply increasing the number of samples n, thereby affording a higher

probability over the same interval than a sample with lower n, or the same probability but

over a much narrower interval. In our simulations, we ran Monte Carlo simulations for the SA

algorithm simulations, for the exhaustive search, and for the random searches. Looking back

on our results, we illustrate the effects of varying sample sizes on the confidence intervals in

small to large user environments, and low to high SNR. Specifically, the cases of (4,4) (where

(nT , nR)) for |S| = 10 − 40, and SNR = 0, 20 dB are examined in greater detail in figures

A.3 and A.4 Since the majority of our simulations were done at 2000 iterations, the figures

denoting the nsamp = 2000 case with ±0.0507bits/s/Hz at 20 dB and ±0.0177bits/s/Hz

102

at 0dB are fairly representative of our work. Overall, the average 95% confidence interval

encountered in our work was about ±0.04bits/s/Hz.

103

10 20 30 40

6

6.5

7

nsamp=10

10 20 30 40

6

6.5

7

nsamp=25

10 20 30 40

6

6.5

7

nsamp=50

A
ve

ra
ge

 s
um

−
ra

te
 [b

its
/s

/H
z)

10 20 30 40

6

6.5

7

nsamp=100

10 20 30 40

6

6.5

7

nsamp=250

10 20 30 40

6

6.5

7

nsamp=500

10 20 30 40

6

6.5

7

nsamp=1000

Number of users |S|)
10 20 30 40

6

6.5

7

nsamp=2000

Number of users |S|)

Figure A.3: Average SA sum rate and 95% confidence intervals vs |S| for nT = 4, nR = 4,
SNR = 0dB

104

A.1.4 Comparison of Results to Published Works

After verifying the random variable generation, channel models, and statistical reliability of

our results using confidence intervals and error bars on the data, a comparison to results

previously published in literature can offer a final check of the validity of our data.

The results given in [52] for sum-rate maximization under SZF were compared against

our results for exhaustive user allocation. In Figure 3 in [52], the authors presented the

results of the exhaustive search for nT = 4 nR = 2, at 5 dB, 10 dB, and 15 dB, assuming

that a full nR data streams were sent to each user. Our results for exhaustive user allocation

at K =20, 30, and 40 mirrored the results presented in that figure. Similarly, in Figure 4 in

[52] results for exhaustive search under SZF for the case of and nT = 8 nR = 2 at 5 dB, 10

dB, and 15 dB were presented, again assuming that nR data streams were sent to each user.

Again, our results for exhaustive user allocation at K =20, 30, and 40 matched the results

presented in that figure. We also compared our results for DPC precoding (used to provide

an upper bound to the maximum achievable capacity) to the results provided in Figures 4

and 5 in the paper above, at K =20, 30, and 40 users, and found that they matched.

Figures 1 and 2 in [51] also provided results for nT = 4 nR = 2 at 5 dB and 10 dB

respectively, assuming nT /nR = 2 users were scheduled with nR data streams per user,

matching our results for exhaustive user allocation at K =10, 20, and 40 users.

As there is very little literature for SZF scheduling with coordinated transmit-receive

processing, this makes a more thorough comparison difficult. For verifying our results on

coordinated transmit-receive processing, we looked at the results provided in [37], Particu-

larly, Figure 8 provided probability densities of capacities for different channel geometries

and channel decomposition algorithms at 10 dB. Of interest to us were the {4, 4}× 4, 2SC

denoting nT = 4, nR = 4, K = 2 users and a fixed allocation of 2 subchannels per user.

Restricting our stream allocations to Lm = [2, 2] and simulating for K = 2 users (not shown)

yielded a distribution closely matching that provided in Figure 8.

105

10 20 30 40

28.5

29

29.5

30

nsamp=10

10 20 30 40

28.5

29

29.5

30

nsamp=25

10 20 30 40

28.5

29

29.5

30

nsamp=50

A
ve

ra
ge

 s
um

−
ra

te
 [b

its
/s

/H
z)

10 20 30 40

28.5

29

29.5

30

nsamp=100

10 20 30 40

28.5

29

29.5

30

nsamp=250

10 20 30 40

28.5

29

29.5

30

nsamp=500

10 20 30 40

28.5

29

29.5

30

nsamp=1000

Number of users |S|)
10 20 30 40

28.5

29

29.5

30

nsamp=2000

Number of users |S|)

Figure A.4: Average SA sum rate and 95% confidence intervals vs |S| for nT = 4, nR = 4,
SNR = 20dB

106

