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ABSTRACT

Structure in the conductance ¢ of no;mal metai—
insulator-metal junctions at very low bias is explained
through a nonequilibrium treatment of the tunneling
process. In particular, the related peak in the deri-
vative do/dV is quantitatively accounted for by the
blocking of otherwise-available electron tunneling
states due to the finite electron relaxation rates in
the metal electrodes. A transport model which includes
the effects of elastic and inelastic scattering of
electrons in the metal electrodes is used to obtain
expressions for ¢ and do/dV. The results are compared
with the temperature dependence of the peaks of do/dav
obtained from measurements on Al-Al and Pb-Au tunnel
junctions. The nonequilibrium theory is extended to
the case of tunneling in superconducting junctions and
results in a non-discontinuous rise in the tunneling

current at the gap edge.
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CHAPTER I

INTRODUCTION

1.1 General Background

A transport phenomenon which has been of particu-
lar interest over the past decade is the transport of
electrons through thin insulating films. One system
(commonly called a tunnel junction) that is used to
study such effects is made by depositing a metal film
onto a glass slide, letting it oxidize for a few
minutes and then depositing a second film crossing the
first. Such an oxide film on metals like aluminum, lead
or tin will ordinarily be continuous and may be of the
order of 20 & thick. The two metal films are therefore
not in electrical contact; yet if a voltage is applied
across the two, a current is found to flow and is in
fact proportional to the applied voltage. This is the
behavior expected if the current was conducted through
small metal bridges in the oxide. However, when the
metallic films are superconducting, it becomes clear
that the current is carried by a tunneling mechanism,
To understand the phenomenon of electron tunneling through
thin insulating films, we must understand the behavior
of an electron in the vicinity of a metal surface. We

shall return to tunneling in superconductors in Chap. V.



Theories of metal surfaces adjacent to a vacuum
or an insulator have, relatively speaking, lagged far
behind the bulk theories of metals which are now capa-
ble of giving quantitatively accurate descriptions of
wide classes of metals. This is primarily due to the
loss of translational invariance at the surface of the
metal and the rapid decrease of electron density there.
In contrast, the translational invariance of the lattice
in the bulk metal introduces important elements of sim-
plicity into the calculations of the bulk theorist.,

The earliest model calculations of the metal inter-
face were madé by Frenkel (1928). He replaced the
lattice of the metal by a constant positive "jellium"
density which ended as a step discontinuity at the metal
surface. He applied the Thomas-Fermi Method togeﬁher with
Poisson's Equation to calculate thé electron density
near the interface. Integrated charge neutrality as well
as the vanishing of electronic charge density at large
distances exterior to the metal were used as boundary
conditions in his calculations. Bardeen (1936) used the
same approach except that he used the many-electron
Schrodinger equation rather than the Thomas~-Fermi Appro-
ximation to relate the electron potential to its charge
density. Recently, a new formulation was developed in a
series of papers by Kohn and his collaborators (1964-1971).

Kohn uses the (presumed known) results for the ground



state energy of a uniform system to calculate the energy
of an inhomogeneous system by writing the latter as a
functional of the local electron density.

The picture of the metallic interface that has
emerged from these studies is very similar to what one
feels should happen intuitively. The potential an
electron sees inside a metai is periodic with the
period of the lattice, going through deep depressions
in the neighborhood of each atomic nucleus. It rises
sharply at the surface, forming a potential barrier
which keeps the electrons confined to the metal. This
transition zone at the surface is of £he order of an
electron Fermi wavelength wide. The potential energy
within a metal is lowered due to the actions of the
attractive restoring forces of the atomic nuclei and
the exchange forces between electrons of the same spin.
The translational invariance of the bulk lattice forces
the électrons in a solid to be grouped into energy bands
separated by gaps of forbidden energy. The lower energy
bands are filled with electrons, each energy level in a
band having its full quota of two electrons according to
the Pauli Exclusion Principle. In metals the highest
energy band is only partially filled and forms the con-
duction band, only electrons of this band participating

in conduction and transport processes.



If we consider a conduction band electron wave-
function in one of the metal strips of a tunnel junction,
it is clear that the wavefunction does not drop immed-
iately to zero at the interface with the oxide. Rather
it willvpenetrate and decay exponentially into the oxide.
The wavefunction may still have a very small but finite
value at the opposite edge of the oxide and therefore it
is possible for the electron to make a transition or to
"tunnel" into the second strip. This is the same behavior
that would Ee anticipated if the oxide were to be replaced

'by an equivalent thickness of vacuum. The conduction
electrons of interest would have energy below the vacuum
level, and therefore the wavefunction would have neéative
kinetic energy within the vacuum and again would decay
exponentially. This is precisely the situation described
as quantum-mechanical tunneling and treated in elementary
quantum-mechanics textbooks (e.g. see Schiff for instance).
Oxides are predominantly used as the barriers in tunnel
junctions because of their ease of fabrication. In order
to easily observe a tunneling current between two metals
separated by a vacuum, the metals should, in practice,
be spaced less than 50 R apart. The construction of such
a tunnel junction presents a very difficult task since
the smoothness of ordinary metal surfaces is certainly

not of this order, even when they are specially prepared.



The only difference with the oxide layer is that the
exponential decay of the electron.arises from the fact
that the energies of interest lie within the forbidden
energy band of the oxide rather than from negative |

kinetic energy as in vacuum.

1.2 Historical Resumé of Tunneling Investigations

The first application of the idea of quantum-
mechanical tunneling to describe emission from a bulk
metal was the calculation of Fowlér and Nordheim (1928)
that explained field emission from free.electron metals.
Frenkel (1930) soon extended this calculation to the
case of current flowing across a voltage biased metal-
vacuum-metal system. He accounted both for thg change
in character of the barrier potential (which he assumed
was trapezoidal in shape) and for the thermal occupation
probabilities of the electronic states in the metal
electrodes. An extension of Frenkel's calculation was
made by Sommerfeld and Bethe (1933) to the case in which
the barrier between the two metal électrodes is an
insulator rather than a vacuum. The band structure
and dielectric constant of the barrier region was taken
to be characteristic of a bulk insulator.

The quantum-mechanical tunnel current flowing

through a thin insulating layer between normal metal



electrodes was first experimentally investigated in
detail by Fisher and Giaever (1961). They measured the
current-voltage characteristics of junctions made with
evaporated electrodes of aluminum and a thermally grown
oxide layer. Detailed comparison with the theory of
Holm (1951) verified that tunneling was in fact taking
place. When their devices were subsequently cooled to
superconducting temperatures it was found that super-
conducting energy gaps and densities of quasi-particle
states characteristic of the bulk films could be obtained
from the now non-linear current voltage characteristics
(Giaever, 1960).

Giaever's work immediately stimulated a sequence
of measurements on both superconducting and normai metal-
insulator-metal junctions. The early experiments on
superconducting tunnel junctions provided additional
confirmation of the Bardeen-Cooper-Schrieffer Theory of
Superconductivity (1957, hereafter referred to as the
BCS theory) for weak coupling superconductors (e.g. Al,
In, Sn). Subsequent experiments also verified the theory
of strong coupling superconductors (e.g. Pb, Hg). The
history of developments of measurements on superconduct-
ing tunnel junctions has been reviewed in detail by

McMillan and Rowell (1969).



Giaever's experiments also provided the motivation
for a reexamination of the theory of tunneling in order
to incorporate into it a description of the many body
properties of the electrodes and thus provide an adequate
‘base for theoretical calculations. The models of tunnel-
ing (and their experimental manifestations) prior to
Giaever's pioneering measurements had the common feature
that they were based upon a one-electron description of
the tunneling process. Although the theory of bulk
superconductivity had already been developed by BCS,
the superconducting tunnel conductance, ¢ = dI/dV, seemed
to be a direct measure of the many body bulk density of
states in contrast to the predictions of a one electron
theory. |

The subsequent reexamination of tunneling theory
led to the transfer-Hamiltonian formulation of the tun-
neling current by Bardeen (1961) and Cohen, Falicov and
Phillips (1962). This reformulation of tunneling theory
led to the prediction by Josephson (1962) and subsequent
observation by Anderson and Rowell (1963) of phase
coherence between two superconductors separated by a
thin tunnel barrier (now commonly known as Josephson

tunneling).



1.3 bExperimental Procedures in Tunneling

Since experimental data is presented in this thesis
and compared with theory, a brief description of the
measurements and data is given to provide an orientation
for subsequent theoretical analysis. Unless otherwise
noted, the experimental data in this thesis is presented
with the kind permission of Dr, J.G. Adler.

The steps in the fabrication of a tunnel junction
are outlined in Fig. (1-1). A smoothly polished glass
slide with indium contacts (a) is placed ih a high
vacuum environment. A metallic strip about 1 mm wide
and 1000 to 3000 A thick is deposited across the indium
contacts (b). The metallic strip is then allowed to
oxidize to form an insulating layer some tens of Anstroms
thick (c). A second strip of metal is then evaporated in
vacuum across the first one (d)., The connections of
current and voltage leads are shown. The junction is

then taken out of the evaporator and placed into a liquid
He4 cryostat where measurements down to 1°K can be made.
A superconducting magnet surrounding the junction may be
used to subject the junction to magnetic fields as high
as 60 kilogauss. Normally several films are evaporated
across the oxidized base film to simultaneously provide
several junctions for measurement.

In a typical normal metal-insulator-metal (M~I-M)

junction measurement, a constant current I is passed



(a) (b)

(c)

(Fig. 1-1) Preparation of an M-I-M tunnel junction.
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through the junction together with a small modulation
current § cos wt where § is a small constant current
modulation amplitude, w is 27 times the modulating
frequency and t is the time. The current I = It §cos wt
will result in a voltage response V(I) across the junc-
tion. Since the junctions are weakly hon-linear, the

voltage response may be expanded in powers of small §:

2
vin = v + @B 6 cos ut + 3 e%cos’ut
Io dr° 1
o}
+ '.....
av 1,8%, 2
= V(I )+ (5=)_ 6 cos wt+3(=—5) 6°(1l+ cos 2uwt)
ol T @ 1" 2
o dai" 1
(o}
+ ® 58 8 0

V(IO) is the d.c. bias of the tunnel junction and it fol-
lows from the above equation that if § is small compared
to Io and constant, then the component of voltage across
the junction at angular frequency w is proportional to
(dV/dI)Io and the component at 2w is proportional to

(dZV/dIZ) Both these two components are measured by

I L]
o)
means of phase sensitive instrumentation. The quantities

of interest, the current I(V), the dynamic conductance
g(V) = dI(V)/dv, and derivative of conductance do(V)/dV =

%1 (v) /av?

are then reconstructed numerically from the
above measurements (see Adler et.al. 1971) and form the

final data for theoretical interpretation.



1.4 Aim and Scope of the Present Investigation

The objective of the present investigation was to
carry out an intensive interpretation and theoretical
analysis of the conductance minima centered about zero
bias (hereafter called zero-bias anomalies or.ZBA)
occurring in normal M-I-M junctions under experimental
investigation by Dr. J.G. Adler.

In Chapter II of this thesis we present a review
of conventional tunneling theory both from the one-
electron picture and the perturbation (transfer-
Hamiltonian) point of view. This review will provide
the concepts in tunneling required to explain thé phy~
sical origin of the zero-bias~anomalies. It will also
provide us with the means for isolating the zero-bias-
anomalies from the gross background features of electron
tunneling which tend to obscure these anomalies. This
will allow us to compare theory with experiment in an
effective manner.

The theory of the ZBA as an interference or "block-
ing" effect in the transport of electrons across the
junction is presented in Chapter III. We compare theory
to experiment in detail for two cases; an‘aluminum—
aluminum junction and a lead-gold junction. Partial
results of Chapter III have been published in Physical

Review Letters (P.N. Trofimenkoff, H.J. Kreuzer, W.J.

11
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Wattamaniuk and J.G. Adler, 1972).

Chapter IV is presented for completeness and
involves a discussion and phenomenological explanation
of the nonlinearities that occur in the tunneling process
due to the presence of the barrier oxides.

The theory of quasi-particle tunneling in super-
conducting tunnel junction is reviewed in Chapter V.

The extension of ideas put forward to explain the ZBA's
in normal metal junctions leads to a plausible explana-
tion of the nonideal behavior in the current-voltage
charaéteristics of a superconducting-superconducting
tunnel junction.

In the final Chapter (VI),'we give a general dis-
cussion of the geometry of the tunnel junctions based on
related experiments made by Dr. J.G; Adler. It is shown
that tunneling occurs at restricted areas of the tunnel

junctions of interest in this thesis.
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CHAPTER II
CONVENTIONAL TUNNELING THEORY

(NORMAL METALS)

2.1 The One-Electron Picture of Tunneling

In this section, we derive the tunneling current
across a M-I-M junction using essentially the arguments
of Sommerfeld and Bethe (1933) and Fan (1942). It is
assumed that the insulator may be replaced by an
effective one-electron potential barrier whose thickness
is equivalent to that of the oxide. Any distortion of
band structure in the metals due to mismatch of metal-
insulator work functions is neglected. Some justification
for these assumptions has been given in Section 1.1 of
the Introduction. The tunnel junction itself will be
envisioned geometrically as an insulator of even thick-
ness sandwiched between two parallel metals. The metals
are treated in the free electron approximation in which
the periodic potential of the crystal lattice is neglected.
In accordance with this model, only the electrons in the
partially filled conduction band may tunnel. A convention
that is adopted throuéhout the remainder of this thesis
is that quantities characteristic of the left and right
hand metals shall be identified by subscripts % and r

respectively.
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The energy-space diagram of two metals My and M.
separated by an insulator of thickness s and gap energy
Eg is represented schematically by Fig. (2.1). At 0°K
all electronic states in the metal are occupied up to a
_critical value of the kinetic energy u (the Fermi energy).
If metals M, and M, are different and are shorted out by
an external conducting wire they will reach (by electron
exchange) an equilibrium state in which the chemical po-
tentials in both metals are equal (i.e. the Fermi levels
coincide). In this state an intrinsic voltage VC (the
contact potential) arises so that eV = X, = Xy where e
is the electfon charge and x is the metal-insulator work
junction (i.e. the work required to displace an electron
at the Fermi level in the metal into the conduction band
of the insulator). We shall measure all energies from the
bottom of the conduction band in M.

when an external bias V is applied to the junction
so that M2 is the cathode and Mr the anode, the Fermi
level of Mr'will be lowered by an amount eV with respect

to that of M The change in electron potential energy

.
in a direction x normal to the junction is represented by
the trapezoidal barrier (curve (a) of Fig. (2.1)) if the
interaction of the tunneling electron with the metals is
neglected. However, the abrupt change in the potential

barrier is only an ideal model and is physically unreali-

zable since abrupt changes in potential imply infinite
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fields. In fact, we expect that the barrier potential
changes smoothly (curve(b), Fig.(2.1)) because the
transition region between the metal and insulator must
be of finite extent. The electron will also experience
an attractive image force in the barrier region due to
the metal surface (Simmons, 1969). The voltages of
interest in this thesis are of the order of millivolts
as contrasted to the Fermi energies and potential barrier
heights which are of the order of volts. In addition
the low temperatures of interest here ensure us that
the Permi surfaces are sharp. Thus electron transfer
across the barrier will occur entirely by tunneling at
Fermi energies.

The electron current density incident on the metal-

insulator interface from the left is- given by

J. = 2e

o
i =T L vf (EE n. - ev) (2.1)

| R~

where V is the volume and #ik is the momentum of an elec-

tron of energy

E, =y - Wy toevt —i%— ' ' (2.2)

=1 - =
YT F BT T (2.3)
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m is the free electron mass and £0 is the equilibrium

Fermi-Dirac distribution function defined by

P = —5FT (2.4)
B

1 +e

~ where kB is Boltzmann's constant and T is the temperature
in °K. The factor of 2 in front of the summation over
free electron states accounts for spin while v is the
positive x-directed component of electron velocity

(vx = ﬁkx/m).‘ With a large number of states and box

quantization

therefore

—;_2_9._ dk dk (13(_’5) £9 (B, - u.-eV)
i~ 3 )| x'm k™ Mr '
(2m) k. >0 =
X
(2.5)
where dEll= dkydkz.

Now let the wave vector k of an electron in the
left -hand metal change to k' as it tunnels into the
right hand metal. We shall assume that energy is con-

served (i.e. By = Ek') along with the parallel component

of momentum (i.e. £|l= EII)'
The latter simply corresponds to specular reflec-

tion at the metal-insulator interface. Now whether or
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not an clectron tunnels into the right hand metal
depends upon:
(i) the availability of an empty state of energy

E. in the right hand metal. This is speci-

k

fied by the distribution of holes there,

0
l-f(Ek-ur)u

(ii) the probability of the electron penetrating
through the barrier into the right hand side.
We specify the probability by a transmission
coefficient P(k) which will of course depend

upon the bias and explicit shape of the barrier

potential.

The transmitted current density from left to right is

thus given by
fk

_ _2e Xy eOym 0 -
J, = (2 )3deH dkx( m )£ (EE Hy ev)
m k >0
X
o)
x [1 - £ (Ekf ur)] P(kx,]_<_II ) (2.6)

where Ek is given by Eqn. (2.2).

similarly, there will be a transmitted current from

the right hand metal into the left hand metal which by

symmetry is
g o= - —2& lax! J dk'(ﬁ———k;{foE 1)
= el K B B iy
(zﬂ) k'>0 -

X

« [1 - 28 -umen)] Bl k) (2.7)
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where now E , = ﬁZE'Z/Zm (remember that we are measur-
ing energies from the bottom of the right hand band).
The above equation for the backcurrent must be modified
slightly since a glance at Fig. (2.1) shows that an
electron in the left hand metal cannot tunnel into a
right hand state that is below the bottom of the band
on the right hand side. in fact, it is easy to show
that in such a case, the energy and momentum conservation
relations that we have imposed lead to an imaginary x
component of the wave vector there, implying that the
wavefunction decays there. This is of course to be

expected and may be rectified by imposing the following

condition
P'(k', k. ) =0
x" =l
if
12 2m
kx < %5 (ur My + eV) .

If we now define

k"2 - k|2 _ 2_m_

X X ﬁ2 (ur LY *ev),

then Eqn. (2.7) for the backcurrent may be written as

__ _2e ' "__;_'(_ o - _ ¢0 o
I, = foc J @} () £ (B 7w, ) (1 - 2By o meV))

3
(2m) A
k>0

n2 . 2m _ '
x P'( kx + %5 (ur p£+eV) ' &H) ' (2.8)
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where

6
k' 2m

I|2 2

Eqn. (2,8) now is similar structurally to Egn. (2.6).
At zero bias (eV = 0) no current can flow, therefore

we must have

This implies that

o 2. 2 ' |
P(k k) =P (/kx+ﬁ_2'(”r'“2+eV)' k). (2.9)

If we now combine the forward current (Eqn. (2.6)) with
the backward current (Eq. (2.8)), the net current from

left to right is given by

fik
_ 2e Xy reOm - O
J-—-—3fdg” J dk, (=) [£° (B, ~n ~eV) = £° (B, ~u ) 1P (K) ,
(2m) k>0 - -
X (2.10)
ﬁzEZ
where Ek = U, - u2+ ev + S If the barrier is

translationally invariant in the parallel plane (i.e.

yz plane) then the transmission coefficient P(k) can |
only depend dn kx or the x directed kinetic energy

E, = ﬁzki/Zm available for tunneling. Let us in addition

define the parallel kinetic energy of the electron by
2,2
fi EII £2

= " Zm 2m

2 2
(ky + kz) .
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Thus

o]

ﬁkx 271m T
fdl_{_” J dkx(-—m-—) —-y—‘;;-[ dEx [ dE|| P
kx>0 0 0

and the tunneling current density now becomes

o] [¢]

_ Amem 0 oy O _
J = [ P(Ex)dEx [ dE”[f (Ex+EH “z) f (Ex+E|| u£+ev)].

(21f) 3 ) )

(2.11)

The integral over E|| may easily be evaluated using Eqn.
(2.4). The result is commonly called the "supply func-
tion" N(Ex), i.e.

o]

- o) oy _¢0 _

N(E,) = J G, [£7 (EgHE uy) - £ (E4E), ug tev)]

0

1+ exP(“k-Ex/kBT)

= kgT In [ . (2.12)
1+ exp(uz-Ex—eV/kBT)

Thus the current density now assumes the simple form

3

J = MJ P(E.)N(E.)AE. , (2.13)
h ! X X X

where h = 27h is Planck's constant. The supply function
N(Ex) simply represents the difference between the number
of electrons per unit time and area, incident on opposite
sides of the barrier, and having x~-directed kinetic energy

in the range E to Ex+dEx‘ It is entirely statistical in
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nature and restricts the tunneling process to those elec-
trons whose total kinetic energy is close to the Fermi
energy. The breakdown of the tunneling current into an
integral over the product of geometrical and statistical
factors is very convenient and provides the starting
point for any quantitative analyses of the current-
voltage characteristics in tunnel junctions. If we
define the total kinetic energy by E = E + Ell' then

Eqn. (2.11) may be cast into the form

o E
J= 4_“.§E J dE[fO(E-uz)- fo(E-u2+eV)] J P(E,)AE, .  (2.14)
0

n 0
This equation displays more clearly the fact that tunnel-
ing is restricted to energies close to the Fermi energy.

At zero temperature we have

£9(By) - £2(E-uyteV) =1 if -eV < B~y <0,

0 otherwise . (2.15)

Therefore Egn. (2.14) becomes
)
_ 4rem
J(V) g = T (eV) I P(E,)dE (2.16)
0

provided [ev| <<y, .

For small bias we expect that P(Ex) will be fairly in-
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sensitive to the voltage. The tunneling current expressed
by Eqn. (2.16) then shows that the tunnel junction is

ohmic for very small bias as confirmed by experiment.

2.2 Barrier Models and Transmission Coefficients

We now proceed to compute and discuss the probabi-
lity of an electron tunneling through the oxide layer.
The most natural approach is to construct incident and
reflected waves in the left hand metal, match them to
exponentially decaying waves of the same energy in the
oxide, and finally to match these to a transmitted wave
in the right hand metal.

We shall consider two different models of the
potential barrier, the first of which is illustrated in
Fig. (2.2a) and is characterized by sharp walls with a
smoothly varying potential inside. Since we have trans-
lational invariance parallel to the barrier, we need
only consider an electron incident on the barrier with
an x-component of kinetic energy Exz = ﬁzkiz/Zm and
which emerges on the other side with x-directed kinetic
energy Exr = ﬁzkir/Zm. The incident and reflected waves
will be of the form exp(iikxgx), while the transmitted
wave is given by exp(ierx). The potential inside the

barrier is left arbitrary and is denoted by ¢(x). Using

the WKB approximation (e.g. see Davidov (1965)), the



(b)

Fig. (2.2) Models of tunneling barrier.
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wave functions within the barrier are

Yk (X) X

X
L exp(t[ k(y)dy) , where KZ(X)==Z% (p(x)-E_ ) .
0 : 4 %

This approximation is justified provided that ¢ (x)
varies sufficiently smoothly within the barrier. The
conditions of smoothness on the potential may be ob-
tained by simply substituting the wave function into
the Schrodinger equation for the electron in the
barrier. These conditions are simply

K de
a§| << 1 and | ——7| << 1.

K k- dx

ml'—'
o
NII—'

If we proceed to match the wave functions and their
derivatives at the walls of the barrier, we find that
the transmission coefficient (the ratio of transmitted

to incident particle flux) is given by the formula

S
k_ k -2 | k(x)dx
X *r . {)
P(E, )= K(O;"(S) > (2.17)

3 K k2

) ko

(1 + ;-2-—) (1 + -K-z—)

(o) (s)

Consider the case where the barrier potential is constant
(i.e. ¢(x) = b = constant) and the bias is small. If
the metals' are similar so that Wy = Hpr Eqn. (2.17)

becomes
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2n
E E -25};7 (05-Ey)

=16 () (1- X
P(Ex) —l6(¢o)(l ¢0) e ' (2.18)

which is just the probability for a particle to tunnel
through a square barrier of height ¢o and width s
(Davidov, 1965). The transmission probability depends
exponentially on the width of the barrier as expected.

| A more physical model of the oxide barrier with
smooth walls is depicted in Fig. (2.2b). Unfortunately
it is difficult to deal with such a model rigorously
‘and therefore we again resort to the WKB approximation
under the assumption that the potential is smooth enough.
The WKB solutions are matched at the turning points Xy
and X The transmission coefficient for such a case

is given by Kemble (1937) and is discussed in detail by
Miller and Good (1953). The result is simply

-2 }j{r k () dx
)

P(Ex) =e - (2,19)
where X, and X, are the turning points (i.e. K(X2)=K(Xr)=
0) and k(x) was defined in the previous model (k(x) =
‘%E (¢(x)—Ex) ). Because of its simplicity and ease of
application, this approximation is frequently used in

quantitative calculations of the tunneling current.
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Although both models agree in their exponential
dependence of the tunneling probability on the thick-
ness and height of the oxide barrier, they differ
with respect to their preexponential factors. The
preexponential factors present in the model with sharp
walls contain, in principle, information about the band
structure and density of states of both metals.
Harrison (1961) has calculated the transmission co-
efficient for a square barrier taking into account the
structure of the metal lattice by also matching the
Bloch parts of the electron wavefunction at the inter-
face. He concludes that details of the lattice structure
are also contained in the preexponential factors. How-
ever, experiments to date have not managed to confirm
these details. The dependence of thé tunneling probability
on the details of the wavefunctions seems rather unrealis-
tic when the boundaries are not ideal as one suspects in

the case in tunneling junctions.

2.3 Magnitude and Anqular Dependence of the Transmission

Coefficient

In this section we shall estimate the magnitude of
the transmission coefficient as well as its dependence
upon the angle of incidence of the tunneling electron.

Since the experiments are done at very low temperatures,
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we shall make use of the current density given by Eqn.
(2.16) for small bias and 0°K to relate the transmission
coefficient to the resistance of the junction. We con-
sider a typical junction with aluminum electrodes and a
resistance of 50 ohms. From Eqn. (2.16) the tunneling

current I is given by

4ﬂe2mAPou
)

3 (2.20)

'h
where A is the effective tunneling area and Py is a
dimensionless quantity defined by

P =

U L
o J P(Ex)dEx . (2.21)

0

= |

If the resistance of the tunnel junction is R, then from
Eqn. (2.20), it follows that

P, = ———%3——-— . (2.22)

47e"mAuR :

| is the Fermi energy of aluminum and is approximately
11.6 electron volts. As mentioned previously the area
common to the two metal films that make up the junction
is approximately 1 mmz. However, as we shall show in
Chapter VI, tunneling occurs predominantly near the edges
of the junction so that the effective tunneling area is

probably of the order of 1% of the crossed strip area.



We take A = 10-2 mmz. Thus for a resistance of 50 ohms

we find that P = 1072,
For convenience we choose a square well model

with transmission probability given by Eqgn. (2.18)

i.e. P(E) = % (1-:—';5) exp (25 1%123 ($,-E,)) -
Here ¢o is the height of the barrier relative to the
bottom of the conduction band. The exponential factor
will dominate P(Ex) and we expect that tunneling will
occur predominantly for those values of Ex which mini-
mize the argumenf of the exponent. That is, tunneling
will occur only for those values of E, close to the

Fermi energy u. With this in mind we shall disregard

the preexponential factors which are of order unity and

§ -2s /%I; (9,7E,)

e dEx .
0

write

g
[k
=4

The integral is easily evaluated and gives the following

result

P, = 2(——) 5 , (2.23)
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If we take the barrier height to be one electron volt
above the Fermi level, we can solve Egqn. (2.23) for

Y. We obtain ™Y » 1077 and this is simply the trans-
mission coefficient for an electron at Fermi enerqgy
tunneling normal to the barrier.

Consider now an electron of wave vector k inci-
dent on the barrier such that § is the angle between
k and the normal barrier. Then the x-component of k
is given in terms of the Fermi wave number kf by kx =

kf cos 6. Thus

E = —— cos26 = cosZB

and we can write down the transmission coefficient in

terms of the angle of incidence

- - 2
-2s 3% (¢o- ucosze) _ ¢o ucos™
i.e. P(8) x e = a bo= M .

If we define 6% as the angle at which the transmission

coefficient P(0) reaches % its value at § = 0, then

2
¢°-ljcos )
N A ST *
o)
1
z exp (~y) )

This has the solution



31

sinze 2 2(¢°- ¥ Ln (%)
% U Y

and for ¢o-11= 1 eV, we obtain e11 s 5°, It follows then
that tunneling is confined predominantly to those elec-

trons which have velocity nearly normal to the barrier.

2.4 Nonlinear Characteristics of Tunnel Junctions Due

to Barrier Dependence

Although the tunneling current is generally found
to be very nearly ohmic for low bias, this is certainly
not the case for high bias. A typical example is given
in Fig. (2.3) where the I-V characteristic of an Al—A1203-
Al junction is displayed. At voltages comparable to the
barrier height, the transmission probability will become
a strong function of bias and thus contribute nonlinear
terms to the tunneling current. Unfortunately even at
the low voltages that shall concern us in the treatment
of the zero-bias-anomalies this gross nonlinear background
is still in evidence. Therefore, we briefly consider the
effects of the bias dependence of the barrier in order
that we may separate it from other processes occurring
in the junction.

We start with the basic expression given by Egn.
(2.13) for the current density. However, as we saw in

the last section, the current flow across the barrier is
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predominantly due to electrons whose velocity is almost
normal to the barrier., Therefore it is convenient to
use the variable € = y - Ex which is very small compared

to the Fermi energy. The current density is now given

by
7= ﬂgﬂ J P (e)N (e)de (2.24)
h _
|
where
e/k.T
_ l+e B
N(e) = kyT In =7l (2.25)
l+e

Following the work of Stratton (1962) we use the WKB

approximation for the transition probability given by

Egn. (2.19).
X
2 3
i.,e. Plg) = exp{-aJ [6(x,V) = p + €]”dx
X
‘where
2m, %
o = 2{(=)°*.
n2

We expand the argument of the exponent in P(g) in a
Taylor's series for small ¢ and retain only the terms

linear in €. Thus we have

P(e) = exp[-b(V)-c(V)e] (2.26)
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where the bias dependent constants b and c are defined

by
. X )
b(V) =0 J [¢(x,V) - ul*dx ,
X
1 (2.27)
X
a 2 %
cv) = 5 J (6(x,V) - ul*® ax .
X
Egn. (2.24) for the current density now becomes
4memk T o E/kBT
g=—u2>3 | p |11 . e P ge . (2.28)
h3 e-eV7kBT ‘ *
- l+e

It is possible to do the above integral in closed form
with the aid of the substitution
e/kBT

z=¢e

and the result is

KT
. Amem - -b -ceV
R gin(nckBT)] e {l-e ™} . (2.29)

At a given voltage the temperature dependence of the

current is then given by

kT
1v,m) _ "B il 5
T(V,T=0) = sin(nckgl) 1+ 2 (nckgT)™ . (2.30)

For 0°K and small bias we note that
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2 -b :
_ Are"mAe (2.31)

h3c

I

Thus from Egn. (2.20) we obtain

P = E:E (2.32)
o) uc
For a square barrier one can confirm from the definitions
of b and ¢ given by Eqn. (2.27) that Eqn. (2.32) for P,
is identical to that of Eqn. (2.23), where y = b. If we
use the estimates made of e ' and PO in the previous

section, we can estimate the magnitude of ¢ and hence

deduce the temperature dependence of the current

ie. c=o—= w0 100
P 1070 ¥
Hence
2
I(V,T) 14l (lOOﬂkBT)
T(v,T=0) ~ 6 U ’

Since kB + .086 meV/°K and U = 11.6 eV, the temperature
factor becomes appreciable only at room temperature and
can be disregarded at low temperatures. This crude
estimate is somewhat justified by the I-V curves in
Fig. (2.3).

Stratton (1962) has shown that Eqn. (2.29) may be

simplified further by expanding b(v) and c(V) in a power
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series in V. He obtains the power series expansion for

the current

) 2 3
I =0V + 0V + oV .

where 9 is the zero bias conductance and Opr Ogr eoe
are constants that depend upon the geometry of the
barrier at zero bias. He further shows that the even
terms in this expansion are zero if the barrier is
symmetric and one has then I(V) = -I(V). However, for
asymmetric barriers, he points out that this is no
longer the case and asymmetry in the conductance curves
is possible. One finds experimentally that this is the
rule rather than the exception. Both Rowell (1969) and
Hartman (1964) have discussed tunneling through asymme-
tric barriers.

We can summarize this section by'saying that the
ideal current through a junction should be very weakly
temperature dependent at low temperatures, and it should
be ohmic at small bias with a small amount of deviation

present from the non-linear terms.



37

2.5 Perturbation Formulation of Tunneling

Up to this point the phenomenon of tunneling in
simple normal metals has been described as the trans-
mission of electron waves through the oxide barrier.

In this regard the theory appears to explain the
experimental details. If was found necessary to take

a somewhat different approach to explain the observed
results in superconductive tunneling. This altérnative
approach, advanced by Bardeen (1961), is based on time-
dependent perturbation theory. The tunneling‘prbcess
is regarded as a transition of an electron across the
oxide with the barrier itself acting as the perturbing
potential. The electron (or quasi-particle in the case
of a superconductor) densities of states then enter the
problem explicitly and this is essential to explain the
experimental results in the case of superconductive
tunneling.

It is not difficult to see that this is a valid
description. We first imagine, as in Fig. (2.4a), an
unperturbed system of two metals separated by a suffi-
ciently thick oxide layer that no tunneling occurs.

The total Hamiltonian for the system then contains one
term, Hl' which describes the left hand metal, and a

term Hr’ which describes the right hand metal. Each of
these has a one-electron series of eigenstates. Let us

denote one of the eigenstates in the left hand metal as
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Fig. (2.4) Transfer Hamiltonian model.
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wz and one on the right as wr. These states are cons-
tructed to decay exponentially into the oxide. If we
now decrease the oxide thickness to the point where
tunneling is possible, (Fig. (2.4b)) then wr and wz
will overlap. We may now seek a modified solution to
the time dependent Schrddinger equation by'taking linear
combinations of wz and wr. The transifion matrix element
of the Hamiltonian between states Wg and wr can then be
evaluated using the usual methods of'time-dependént per-
turbation theory.

Bardeen (1961) showed, by following this prescrip-
tion, that the transition matrix element MZr between the

normalized states wl and wr is given by

M, = - %25 [ {w;(var(y -V, (g)Vw;(gg)}.dg . (2.33)
S

The integral is evaluated over a lamina S parallel to,

and within the barrier separating the two metals.

Knowing the matrix element for tunneling between the

two states, we can immediately write down (using the

Fermi "golden rule" of first order time-dependent per-

turbation theory) the transition rate T r for an

B3
electron in state wz to tunnel into the right hand metal

. _am 2 _
i.e. T2+r"T§|M£rI §(E, -E) . (2.34)
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Consider, for example, the case of a rectangular
system where the left hand metal is represented by a
potential well of width L, (the thickness of the metal
film) and the oxide barrier is of constant height ¢o
above the bottom of the band. The boundaries of the
metal are denoted by coordinates Xy~ Ll and X, as in
Fig. (2.4a). A simple calculation such as is given in
Schiff (1955) shows that the normalized eigenstates of

such a system are given by

P, (x) = (—3—);é ei}i“.Ell sin[k_ (x-x,)+B8], X,~L,<x<Xx
k, ¥ = ‘AL, A DAL M A
=[__2_____._]% K el}fﬂ'-’sll e"‘z(x’xz)  <x
2,.2 X ! L
ALz(Kz+k ) 2
)
(2.35)

where B is some constant phase, while the energy of the

state is given by

4% 2 2
5, T m (g, * Kp) (2.36)

relative to the bottom of the band. K, is defined by

2,2
Ak
C 2o m - L%
Ky = ﬁz [¢O ExQ] , where EXR = =5 . (2.37)

The factors in front of the wavefunction are determined
by the requirements of normalization and the continuity
of the wavefunction at the metal-oxide interface. For

ik ¥

the parallel part of the wavefunction, e , we have
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chosen to impose cyclic boundary conditions and nor-
malization over an area A parallel to the barrier.
The normalization of the x-part of the wavefunction
can be restricted to the well since the thickness of
the metal films is much greater than the penetration
depth of the wavefunction into the oxide. The wave-

function can then be characterized by the spectrum

y z -
ko= |2, —4&, Lo (2.38)

where n_ , n. and n_ take on integral values. In a
X Ay %

completely analogous fashion, we can write down the
wavefunction Y. which decays into the oxide from the
right hand metal.

The matrix element between states k, and k_, which

is just the overlap integral in Eqn. (2.33), is then

given by
4k k.«
" o :r.f_ 5 X X, . K(Xr-Xl)
kk. 2k, k) C T2 2. 2 %
9=r HQ, 1. {LQLr(K +Kﬁ3(K +erﬂ

(2.39)

The conservation of parallel momentum demonstrated in
the delta-function is due to the overlap integral in
Eqn. (2.33), and we have imposed conservation of energy

so that ko= Kp = Ke If the bottoms of the bands are
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separated by an energy Eo’ then

122

Xy

Ex = 2m
Y

=E +E_ . (2.40)
o X

L
Since X~ X, =8 (the oxide thickness), the square of
‘the matrix element may be expressed in terms of the
transmission coefficient as defined by Eqn. (2.17)
2 2 X, X

=& s, L PE)
am kK

L

|2
r

This may further be expressed in terms of the one dimen-
sional density of states normal to the barrier (i.e; the
number of kx2 states per unit energy range). According
to Eqn. (2.38) the density of states (which we denote

by pkg) is given by

m L (2.42)

Thus the square of the matrix element now becomes

) P(E, )
1 4

L e . (2.43)
K& £ Py P
e A S Ry

This result, although derived for the case of a square
barrier, holds in general for arbitrary barriers such

as the WKB type (Harrison (1961)).
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We may now proceed to calculate the transition
rate T2+r using Eqn. (2.34). First we must modify
this equation by inserting the statistical factor

fo (1~ fi ) into the summation to ensure that there

L9) Ky

is a state kk available to make a transition into a

state 5{ which is vacant. Thus

) 128 - fk)a(E - B ). (2.44)

=4 k ={~r —2 R -~

o

To this we must add the transition probability of the

reverse process (i.e. Ez may be filled by a state from

the right). Thus

27
L |2 0 (1-gp )88 - By ). (2.45)
kper k. M]ir‘ig T S T

The total transition rate is then

Sy g |2 -fg )BT B ) (2.46)
T, TH k, NS TR S T

The summation over gn is done using the momentum con-
r
serving delta function in the matrix element while the

sunmation over K is carried out by using the density
r

of states and the energy conserving delta function.

The result is

P(Ex )
T = 1o TR (fi - £2)

k 27h
ko ) -r

(2.47)
3} Px
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If we use Eqn. (2.42) for the density of states and

remember that the x-component of electron velocity is

v. = hk_ /m , then we see that
X X
) L
Ve P(Exg) . .
T. = e (£~ = £ ) . (2.48)
) 2Ly I

This result is exactly what we expect since the transi- .
tion probability per unit time for an electron on the
.left~to tunnel into the right is just the number of
times it strikes the barrier per unit time (ng/sz)
multiplied by the transmission probability on each

approach.

The current across the barrier is just given by

2eA
T=2e]r - ”dk JdE 0 T (2.49)
kK, 5 @) )RR,

We use Eqn. (2.47) for Tk and remember that Ek =

2 2 -4 -
B, + bo! k||/2m to write I in the form
L
o] 0
I= 4"‘*‘;‘2" J dE[fo(E—ul) -fo(E-u2+eV)] J P(E_)dE_ .
h . : X X

This is the same result for the tunneling current as we
obtained in the one-electron picture in section 2.1.

We note the conspicuous absence of the density of states



factors in the above result. This comes about simply
because the square of the matrix element is proportional
to the particle velocities [Egn. (2.41)] or ihversely
proportional to the densities of states [Eqn. (2.43)].
In the case of super-conductive tunneling it will be

necessary to take [Mzrlz as being constant.
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CHAPTER III

THE ZERO BIAS ANOMALY

3.1 Nonequilibrium Tunneling

We noted in the last chapter (Egn. (2.48)) that
the transition rate for tunneling was given by

v P(E.)
o X X
2L *

This can be interpreted as the inverse of the time, Tge
that it takes an electron to decide to make a transi-
tion through the oxide. Since tunneling occurs predo-
minantly at directions normal to the barrier we can use
as estimates for 2 the Fermi velocity Ve which is of

8

the order of 10° cm/sec in typical metals. We saw in

Section 2.3 that at the Fermi energy u, P(u) = 10-7.
Taking the width of the metal film as L = 2000 R, we

obtain the estimate

- 107% seconds . (3.1)

3=

s

In conventional treatments of the tunneling process
it is always assumed that the metal electrodes are in
their equilibrium state. This is accounted for by using
the equilibrium Fermi-Dirac distribution functions £,
However, it is obvious that this is not exactly the case.

When an electron tunnels into the opposite metal it does
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so by conserving energy and therefore finds itself at
some energy above the Fermi level in the metal it
has tunneled into. The electron is thus in an excited
non-equilibrium state and wili rapidly thermalize to
the Fermi level by a number of possible relaxation
processes present in the host metal. By using the
equilibrium distribution functions in tunneling calcu-
lations it is then implicitly assumed that the excited
state decays immediately or has a zero relaxation time.
_Nevertheless, for a short time, the electron is in an
excited non-equilibrium state, the short time being
characteristic of the relaxation times in the metal.
While it is in this excited state, it will prevent any
other electrons from tunneling into that same state by
virtue of the Pauli exclusion principle, thereby effec-
ﬁively "blocking" that state for a short time.

Consider the situation if the relaxation times in
the metal were of the order of the tunneling times,
that is, of the order of 10™% seconds. We would then
expect the electrons that occupy the excited states,
by virtue of their long life times, to strongly block
or impede any electrons that want to tunnel into the
same states. This situation would manifest itself by a
strong decrease in conductance of the tunnel junction.
In typical normal metals, relaxation times are of the

9 11

order of 10°° to 10~ seconds at liquid He4 temperatures.
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Therefore we would expect to see deviations in conduc-
tance due to such blocking effects to be of the order
of the ratio of the relaxation times to the tunneling

+5. Small

times, that is to one part in 10*3—— 10
changes in conductance such as these could easily be
seen experimentally by using the derivative measurement
techniques outlined in Section 1.3 which are capable of
resolving.changes in tunnel junction conductance to one
part in 10+5.

To illustrate this idea in more detail, we shall
briefly consider only the interaction of the electron
with the lattice. It is well known (Wilkins (1968))
that the relaxation time of an excited electron in an
electron-phonon gas decreases as the excitation energy
of the electron above the Fermi level increases. Con-
sider the situation at 0°K where the Fermi levels are
perfectly sharp. If our junction is biased by only a
small amount, the tunneling electrons that are injected
into the metal have low excitation eneréies above the
Fermi surface, therefore their life times are relatively
long and thus we expect to see the minimum conductance.
As we increase the bias we increase the energy of the
injected electrons above the Fermi level thus decreasing
the effective relaxation time. Since the tunneling times

remain essentially constant within the bias energy range

we would then expect to see an increase in conductance.
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Qualitatively then, an effect of this sort should
manifest itself as a small dip in conductance of the
order of one part in 10+3 to lO+5 and a few millivolts
wide (since this is typically the order of the Debye

" energy). Small conductance minima with this behavior
near zero bias have been seen experimentally in a number
of tunnel junctions by Chen and Adler (1970) and others
(see for example: Rowell, McMillan and Feldmann (1968)).
In what follows, we shall attempt to justify this effect
theoretically and compare it with experiment.

To treat the blocking effect quantitatively, we
take the point of view that the distribution functions
to be used in the tunneling current are steady state
rather than equilibrium, We use a transport model based
on the Boltzmann equation to find the steady state dis-
tribution functions and thus their deviations from
equilibrium. The model is illustrated in Fig. (3.1)
and to avoid cumbersome notation we simply refer to
quantities on the right with a prime,

The rate of change of occupation fk' of a state

k' on the right is due to the following processes:

(1) Electrons in states k on the left can tunnel into
k' on the right ((a) of Fig. (3.1)). This process
serves to increase fk' and the rate of change of fk'

is just the transition rate given by Eqn. (2.44).
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. o= _ 2'[]' 2 -
S T N D Mg |® £ (1= £ D8 - By
>y g &2 5=

(3.2)

(2) Electrons can leave the state k' by tunneling

into the left as in (b) of Fig. (3.1). Thus

ofy
- 2n 2 ' ;
| 7 F LM |T o RIS ES B
r+4 k = - - - =
(3.3)
(3) Electrons may be scattered out of k by various mecha-

nisms. For instance, inelastic scattering with emission
or absorption_of a lattice phonon as in (d) of Fig.(3.1)
will alter both the electron's energy and momentum.
Elastic scattering by impurities and lattice defects {c)
as well as non-specular boundary scattering (e) will
change the electrons momentum, We must remember that
we have normalized the electrons to a box of thickness

L so that specular scattering at the sides is implicitly
assumed. We shall account for these scattering processes
by introducing a relaxation time Tyr 1 which in general
will be energy, momentum, and temp;rature dependent.

Thus we shall assume that

—_— = - —_, (3.4)
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where Afk. is the departure of fk' from equilibrium.
That is;

o = fi, + Af (3.5)

kt !

where fi. is the equilibrium Fermi-Dirac distribution

function. Thus if we were to turn off the tunneling
process any out of equilibrium Afk. would decay to zero

according to

. -t/Tk, :
Afk.(t) = Af£.(0) e -

We shall discuss the relaxation times Ty and shall jus-
tify Eqn. (3.4) in the next section. B

At steady state, Boltzmann's’equation simply says
that the net rate of change of fk' is zero for any value

of k'. That is;

Bfk| afk' Bfk| Bfk'

at = 0 .

ot scatt.

ot ot ger

Lrr
(3.6)
If we substitute the relevant quantities into Eqn. (3.6)

we obtain the equation

bE, |
=22y R - D8 (E ) s (3)
Tk. % £ g| ].S ]il _k_ ]il ' .

which simply says that the rate at which electrons tunnel
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into state k' is equal to the rate at which k' relaxes.
A similar equation may be immediately written, by sym-

metry, for a state k in the left hand side. That isj
_=31;E< [Mger |2 (o £ 8 (B = Byo) (3.8)
which just expresses the particle-hole symmetry of the

problem. Eqns. (3.7) and (3.8) may be reduced by carry-

ing out the summations as in Eqn. (2.47). We obtain

Mo 2
- = & ' -
o ey MR )
(3.9)
Af
k
= _ 2 2
-T—}-(— =R p}inlMl (f-lsn f}i) '
where
P(E.)
mj? = A —= . (3.10)
4r® PxPk!

. N _ 0
Making the substitutlons fE = fk + Af]i and fk' fk,+Af&,,

we are able to solve Eqns. (3.9) algebraically to obtain
the difference of steady state distribution functions,

fk - fk' , which we shall use to determine the tunnel-

ing current. The result is given by

fE fk.

£ £ . (3.11)
+ Z£|M|2{p T, + ppiTy )
h k'k' k'K
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Consider the term

21 |12
F Moy

appearing in the denominator of Egn. (3.11). Using
the definition given by Eqn. (3.10) and expressing the
density of states in terms of the x-component of velo- '

city, we have

P(E ) VXP (EX)

2T IMIZ _ 1 X _
ES kT o, T T A
=El—. (3.12)
B

where Té is just the tunneling time for an electron in

the right hand metal. Eqn. (3.11) may now be rewritten

as

£ - £, = —m . (3.13)

Since the tunneling current is proportional to fk - fk"

we can see from Eqn. (3.13) that the deviation from the

ideal current will be of the order of Tk/T the ratio

B [
of relaxation times in the metal to tunneling times.
We now turn to a discussion of the relaxation times

and their behavior with temperature and energy.
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3.2 Relaxation Times

We shall describe the scattering due to lattice
defects, impurities or non-specular boundary scatter-
ing by a constant relaxation time T,. We suspect these
processes are elastic in nature and should therefore be
temperature and energy independent. Since we lack
detailed data about the structure or impurity composi-
tion of the evaporated metallic films that make up the
tunnel junctions, we make no a priori estimates of T,
except to say that it is probably comparable to the
electron-phonon relaxation time in order of magnitude.
We shall therefore freat T; as a constant to be extrac-
ted, if possible, from our model.

In contrast, we expect that the electron-phonon
relaxation times will be sensitive functions of both
excitation energy and temperature. The reasons are
statistical in nature. At 0°K, an increase in the
energy of an excited state means an increase in the
number of empty states that it may make a transition
into. Therefore the probability of a transition
increases while the relaxation time decreases. An
increase in temperature will smear the Fermi level and
increase the number of states. Theretore we also expect
the relaxation time to decrease with increasing tempera-

ture. The phonons, obeying bose statistics can be
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created in any number. A detailed calculation of the
electron-phonon relaxation time is therefore in order
since by changing the junction bias, we are effectively
changing the excitation energy of the tunneling elec-
trons that are injected intb the metal. The tempera-
ture dependence is also important because at a few
degrees Kelvin the thermal energy kBT becomes compara-
bie to the energy width of the zero bias anomalies.

We shall calculate the relaxation time of an
excited electron in the presence of a lattice (phonon
gas) by using Fermi's golden rule and considering only
first order scattering processes in the square of the
electron-phonon matrix element. In Fig. (3.2) we con-
sider the four processes that alter the occupancy of
the excited state p. EE is the energy of the excited

state with momentum hp while E, is the energy of the

k
final state with momentum hk. —fhe phonon has momentum
thq (where g = p-k) and energy #w(g,)) where A is the
polarization index. The processes in the first column
lead to a decrease in occupancy of p by absorption or
emission of a phonon while those in the second column
lead to a decrease. The rate of change of fp , the
occupancy of the state p , can be written do;n by ins-

pection of the diagrams and by noting that an initial

electron or phonon has the occupancy factors f and N,
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Fig. (3.2). Processes that lead to a decay of an excited
electron state.
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respectively, while the final state factors are (1-£)
and (1+N) respectively. N is the Bose statistical
factor for phonons. As an example the first process

in Fig. (3.2a) contributes the following term

of
P

o , _. . N
5T =- 3 1 le(g)] fg(l f_}s) (l+Ng)G(Ep E-k- fiw(q,A))

(a) kA

(3.14)

The electron-phonon matrix element, G(g,A), has the form

(see Bardeen (1937))

.
f ]q.aA v(q) (3.15)

Gla) = 'i["‘”‘zm(g,—x)mm

where MN is the mass density of the lattice and §, is
the phonon polarization vector. v(q) is the Fourier
transform of the ion pseudopotential. When all four

processes in Fig. (3.2) are taken into account we have

3f
P_ 2 2
e R szIG(g'm {G(EB- By= fu(g/d))

X [fE(l-fE)(l+Ng) - f_yq(l-fp)] + (3.16)

e

+ 6(Ep-EEfﬁw(g,A))[f Nﬂ(l-fk)_fk(l-fg)(1+Ng)l}'

The above expression is identically zero if f and N are

the equilibrium statistical functions. As in the
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previous section we let the departure of the state p

from equilibrium be Afp , where AfE = fg - fg. We shall

use the equilibrium distribution functions for fk and

Nq. Thus we are assuming that the electron that has

tunneled into an excited state p is scattered by the

lattice into the equilibrium distribution. With these

considerations Egn. (3.16) now becomes

£
o % |
=- = (3.17)
P

(o34

-9

where the relaxation time Tp is given by

|G(g,A) 124 (N§+l-f£) § (EB—EE-jﬁw (qr))

2T

ﬁl_gg)\
0,0 .

+ mffgamgmgmmgﬁ)n . (3.18)

This expression may be simplified by defining the exci-

tation energy €y = Ep -u above the Fermi level p. The

summation over k states becomes

o}

) =Ly [ an [ Ixl” alyl
2 (2'”) —0

—

ALY
J 03] J dek (3.19)

ﬁ(2ﬂ)3 -4

where ds(k) = |]_<_|2 df, is an element of k space area on
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the energy surface defined by E, = ﬁ2E2/2m, and v(k)

is the velocity defined by v(g)—= IVkEk|/ﬁ = fi|k|/m.

Since w(g,l) is of the order of the ;egfé frequency Wy
the dominant contribution in the g, integration comes
from g < ﬁwD << y. Hence we can ;gtend the lower limit
in Eqn? (3.19) to infinity and evaluate the surface in-
tegral on the Fermi surface. 1f we make these changes
and carfy out the €y integration over the‘energy conserv-

ing delta function, we obtain

. ds., (k) '
1 _ 2 v J O 2
—_—= -, : q,l)l X
T(eglp) h (zﬂ)3 ﬁvF(g) ; =

x {2N°(w(c_1_,)\))+l+f°(ep+‘ﬁw(g_,)\))-fo(eE-ﬁw(g,)\))}. |

(3.20)

We can separate out the phonon contribution in a con- -

venient manner by inserting a delta function in (3.20).

[¢ 4]

=

_ 27
TEE J d(‘l’lw)ag(ﬁw)FE(‘ﬁw) X

“pip 0

i.e.
T(

x [2N° (fw) + 1+ fo(ep+ﬁw) - fo(ep-ﬁw)] (3.21)

where by definition

2 () F_ () = — [dSF@ 716 (q,n) |26 tu-fiw (g,A))
o (Bw w) = Glq,r) |”8 Hw-fw(q,A)) .
BB (2m)® SAVpR) 1= 2

(3.22)
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We are tunneling into an evaporated film which is
probably polycrystalline and characteristic of an
isotropic material. Therefore, we do not expect to
see lattice anisotropy in the relaxation time and
consequently we average the inverse life time over the

Fermi surface. -Eqn. (3.21) becomes

;7%7 = %? J d(ﬁw)az(ﬁw)F(hw)[2N°(ﬁw)+l+f°(s¥hw)-f°(gaﬁw)]
0

(2.23)
where
ds., (p) (ds, (k)
p 'R/ (95p K )
2 IVF(E) JVF(ET_ (21) 3% ;lG(g,A)l § Bu~fiw (g,1))
o ' (ﬁw)F (ﬁw) = dSF (E)
IVF (p)

(2.24)

The quantity uzF is dimensionless and while difficult to
calculaté from first principles, can be extracted from
tunneling experiments in superconductors and is presently
known for Pb, Hg, Sn and In (see McMillan and Rowell
(1969)). The awkward notation az(hw)F(ﬁw) was invented
with the following intent: the phonon density of states

in a metal is given by

Flhu) = ] —V

3 f g 8t - Fulq,))) . (3.25)
% (2m) = =

Thus aZCﬁw) is taken to be a measure of the strength of

the electron-phonon coupling. For convenience we replace
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fw by w and refer to w as the phonon energy (typically
of the order of meV). We shall now proceed to discuss
the properties of the relaxation time t(e) given by

©

J dw aZF(w)[2N°(w)+1+f°(e+w)-f°(s—w)] (3.26)
) | |

1
T(e)

=y

where N°(u) = -E7E§T——;— and f°(e)=-———%7igf . (3.27)
e -1 lt+e '
We first note that the relaxation time'at any tempera-
ture is an even function of excitation energy e¢. This
follows directly from the above definitions. At T=0,
N°(w) = 0, and the statistical factor in the integrand

of Egn. (3.26) is just a step function

1+ £2etu) - Pe-n) = 1 £ < w<E
=0 otherwise.
Therefore at T = 0,
1 2 <l 2
= &1
T = R [ dw o"Flw) , (3.28)

0

where the absolute value on the upper limit ensures
that the relaxation time is both positive and even.
At finite temperatures the cut-off in the step function

is smeared by the thermal energy kBT but is still fairly
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sharp if kBT <<e. Physically this just means that an
electron of excitation energy € cannot decay to equili-
brium by emitting a phonon of energy w greater than €.
Since the excitation energies will be of the order of

or less than the bias energy we can therefore disregard
aZF(w) for w > eV oy The maximum voltage we deal with
in the zero-bias anomalies is ~ 5 mV, therefore we can
disregard'any information in‘azF(w) beyond w ~ 5 meV,

In order to facilitate calculations, we shall make use
of this fact by assuming that the metals we deal with may
be represented, up to w ~ 5 meV, by a power law behavior

of the form
2, _ n
e (W)F(w) = a  w . (3.29)

The relaxation time then becomes

1L __2ma’ [ nf__2 . 1 . 1 4
w/kgT etu/kyT e-w/kgT w.
0 e -1 1l+e l+e

(3.30)

Eqn. (3.30) may be simplified somewhat to yield

1 21ran n+l £ 3
T (kgT) {2F(n+1)€(n+l)+Fn(EET) * (- EET)}

(3.31)
? n
where F_(z) = J —xdx (3.32)
n X=-2
e + 1

0
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and I' and ¢ are the Gamma and Riemann Zeta functions
respectively. Rhodes (1950) has studied the functions
Fn(z) and has tabulated their properties and values
for integrai values of n. We shall consider only the
cases n = 1 and 2. For n =1, 1(e) can be evauated in
closed form to give

-T% - ;l [e? + (kyT)%] . | (3.33)
The relaxation time for the case n = 2 cannot be evalu-
ated in close form. However, Rhodes gives convenient
expansions for Fz(z) with which the life-time may be

approximately evaluated. For the case n = 2, we have

2ma .
ﬁ%)d —% (k1 2 (3.34)
B
where
4 6 8

Q(z)= 70(3) + (2Ln2)z° +20-5 Eov Lo -, (Jz[<l) (3.35)

. z|3 n2|z| s r+l e-rlz]

= 4{73) + ‘T + 13 +er (-1) T b

(|z]21) (3.36)

From the above expansions, we obtain the following

limits
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2ma
T T —FS - T50) (kD)

(3.37)
1 . 21ra2 EE
T(e) T+0 X K] *

The Debye frequency spectrum F(w) defined in Egn.
(3.25) Qaries quadratically with w at small frequencies.
Thé model with n = 2 then simply states that the elec-
tron-phonon coupling, az, is constant at low frequencies.
With this behavior, the relaxation time should, according
to'Eqns. (3.37),.vary inversely as the temperature and
energy cubed. Measurements of the relaxation frequency
in lead and indium by cyclotron resonance (see Goy and
Castaing (1972)) indicate that this cubic behavior is
observed. However, theoretical one-OPW calculations by
Allen and Cohen (1970) and Carbotte and Dynes (1968)
indicate the possibility that azF(w) behaves linearly
with w at low frequencies due to Umklapp processes. We
- shall not attempt to resolve this question here but shall

calculate the zero-bias anomaly with both models.

3.3 Calculation of the Current, Conductance and Deriva-

tive of Conductance Due to the Blocking Effect

In order to calculate the tunneling current, we

shall assume that the only relaxation processes of
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importance are the ones described in the previous sec-
tion. We characterize the relaxation times for elastic
scattering and inelastic electron-phonon collisions by
T (constant) and Tep (energy and temperature dependent)
respectively. Since the rates of change of occupation
of a state due to these two processes are additive, the

total or combined relaxation time 1 is given by

~A

o | (3.38)
i ep
for any state k.

The tunneling current is simply given by summing

over all transition rates from left to right (see Eqn.

(2.46))

e, I=2] %E o |26 E D8 B R (3.39)
TR S-S S

‘where fk and fk' are now the steady state distribution

functions on left and right sides respectively. Their

difference is given by Egn. (3.11)

ie. f-f .= - = (3.40)
1+ 27 2
Y IMI (kakl + pk'Tk)

where Ty and Ty are the total relaxation times on the

left and right hand sides respectively.. Since we expect
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the change from equilibrium to be small, we expand

Eqn. (3.40) to obtain

i = (£p-E00 ) {1 - %§|M|2(pkxk. tooamdle (3.41)

I=1I + 61 | ' (3.42)
where
_ 47e 2,.0_ ‘
T L e (e )6 (BEy ) (3.43)

is the conventional tunneling current calculated with
equilibrium distribution on both sides and discussed in
Sections 2.1 and 2.4. &I is the small negative correc-
tion to the tunneling current due to the blocking effect
and is given by

) .
| kkll (fk fkl) TIMI (p]iT}i| + p].{.'T]_{.)

1]
k k'

X G(E -E (3.44)

g -

The summation in Eqn. (3.44) may be done in the usual

way. That is;

L g 17 = = [ o fofy g 00
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where

1 P(Ex)

4n® PPk

2
M

We must also remember that the relaxation times depend
only upon the excitation energies, ive. T = T(Ek-u)
and 1

K= T(Ek,- u'). Since the Fermi levels are sepa-

rated by a bias eV (i.e. p-p'=eV), the expression for

the blocking current reduces to

© E
§I= 319%5 J dE[f°(E-u)-f°(E+eV-u)] J PZ(EX)
h B : .
. 0 0

. [T'(E+6V'P) p TE ) ogp (3.46)

2mhp (Ex) 2ﬂﬁp(Ex)

In contrast to the conventional current I the
blocking current 6I explicitly depends upon the densi-
ties of state in both left and right hand metals.
Clearly, if the relaxation times become very small,
the blocking current 8I vanishes as we expect. We may
note that the blocking current depends upon the square
of the transmission coefficient and should therefore be
a sensitive function of oxide barrier thickness. Eqn.
(3.46) may be simplified by making use of the fact that
tunneiing occurs predominantly with velocities normal to
the barrier. Therefore we replace the quantity P(Ex)/

2nﬁp(Ex) by its value at the Fernmi energy
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P(E.) P(u)v
. X F_ 1
i.e. Zﬂﬁp(Ex) —> 55— = ?g (3.47)

where VF is the Fermi velocity and 1q4 is the tunneling
time for an electron as defined in Section 3.1.

Therefore Eqn. (3.46) becomes

t'(E+€V1EL4_T(E-u)}
T

0 [o¢]
§1 = - 7§ J AE{ £° (E-p) -£° (E+eV-p) } . {
0 ‘B

(3.48]

where
_ . 2 M
_ drem .\
O = h3 J P(Ex)dh‘x
0

is the ideal zero-bias conductance defined in Egns.(2.20)
and (2.21). Egn. (3.48) may be written in a more com-
pact form by making use of the variable ¢ = E~-p to obtain

40
g
§I(V) = - 13 [ e [£°(e)-£° (e+eV) 1.

00

t'(efeV) ' T(e)] i
B: B:

We can simplify the above equation still more by noting
that the energy dependence of the effective life times
comes from their electron-phonon parts which are even

functions of their arguments. Using this fact and the

identity

£0 (¢)-£° (e4ev) = ~£° (-e-eV)-£° (-¢) (3.49)
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the blocking current may be written as

o o]
§I(V) = - 7; J de [£9(e) - f°(s+eV)](T ' (e) Tie)),
' =00 B B

(3.50)

The conductance of a junction, normalized to zero

bias is given by

o) 1 YW
T 0

0)

8o (V)
+ (3.51)
o o av 9y

where o (V) = é% (§I(V)) is the blocking conductance.

Using Eqn. (3.50) we find

0
saV) _ _ J de (- af© (e)) & (e+eV) L IlereV)y g o))
%0 g B

=00

This is the basic form that we use to compute the cha-
racteristics of the zero-bias anomaly. It may easily
be verified from Eqn. (3.52) that the blocking conduc-
tance 8o (V) is an even function of V and hence it is
symmetric about zero bias. In subsequent work we shall
simply use V in place of eV and define the bias in units

of energy (typically meV).

Zero Temperature

In order to observe the behavior of the blocking

conductance §0(V), we set T = 0 since in this case we
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Fig. (3.3). Conductance and derivative conductance
for n=l.



41, 4ma.T. 1/3
=2 d (60(V)). i

Fig. (3.4). Conductance and derivative conductance for n=2,
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can evaluate it in closed form. At zero temperature,
-df%(e)/de = 6(0), and Eqn. (3.52) becomes

sa(V) _ _ 21(V) (3.53)

% s

where for convenience we have assumed a symmetric
tunnel junction so that 1'(V) = t(V), and Té = Tge

The effective relaxation time t(V) is given by

TS L (3.54)
T(V) T, Tein,T=05 ' *

where Ty and Tep are the impurity and electron-phonon

relaxation times respectively. At T =0, Tep is given
by Eqn. (3.28),

2ra n+l
i.e. L n [Vl (3.55)

Tep (V,T=0) h n+l

where n corresponds to the power law behavior of

aZF(w) = anwn. For the case n=1 and n=2, we find

2/t

n=1: 0 B , (3.56)

g Ta

o] 1 +( 1) V2
T. H
i
2/t
. S0(V) _ _ B

n—2° 0_0 - zna . (3.57)

1 2 3
;E'i' + (T) |V|
The features of the conductance and its derivative are

plotted in Fig. (3.3) for n=1 and in Fig. (3.4) for n=2.
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3.4 Comparison of Theory with Experiment

In Fig. (3.5), we show the experimental conduc-
tance of an Al-Al junction at biases up to 5 meV for
several different temperatures. The dip in conductance
about zero voltage is what we commonly refer to as the
zero-bias anomaly. The sharpness of the anomaly broa-
dens considerably with increaseé in temperature.
However, we notice that the conductance over the
range of +5 meV is not symmetric about the region.

We assume that this asymmetry arises from the ideal
background conductivity discussed in Section 2.4.
Therefore we suppose that the experimental conductance
in Fig. (3.5) may be represented by an expression of the

form

0(V) = 0 + oV + 0,9 + 80(V,T) (3.58)
where the first three terms constitute the ideal back-
ground conductance (see Rowell, McMillan and Feldmann
{1968)) with gy and 0y being small constants. One possi-
ble way to test this conjecture is to use the fact that '
the ZBA conductance given by 60 (V,T) is an even function
of bias. Therefore if we take the odd part of Egn. (3.58)

we obtain simply

Godd(v) - g(V) - o(-V) -

00 0'o

4)
3-1- v (3.59)
0
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and so theoretically the odd conductance is'directly
proportional to bias. The experimental odd conductance
obtained by using the data in Fig. (3.5) is shown in
Fig. (3.6). We note that it is proportional to bias

up to 5 meV to about one part in 105

thus agreeing with
theory.

In principle then, we can effectively compare
theory to experiment by taking the even part of the

theoretical conductance

2

i.e. 'oe(x) =0, + 0,V + §o (V,T) (3.60)

and comparing it to the even part of the experimental
conductance. Unfortunately we do not have sufficient
data to isolate the background part 02V2. Certainly

it should be smaller than the linear term olV and we
shall therefore neglect it. However it may be trouble-
some in the sense that it masks the asymptotic behavior
of the ZBA conductance.

In practice, a more sensitive and accurate measure
of the ZBA conductance is given by its experimentally
determined derivative as outlined in Section 1.3.
Therefore in the rest of this chapter we prefer to test
the theory by comparing the theoretical derivative of
even conductance
d

dce(V)
—F T So(V,T) (3.61)

i.e.
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Fig. (3.6). Experimental odd conductance.



78

with its experimental counterpart. We assume at the
outset that the two electrodes making up the Al-Al
junction are similar in nature and have the same Ty

Tep and Tye Therefore the even derivative of conduc-

tivity is given by

+00
dg_ (V) 0 .
1 Ve d(ég(V)) - I de(- 3 le)y & letV), "

= = = = ) =l
co av av o€ dav g

.00

(3.62)

For finite temperatures the integral in the above expres-
sion must be done numerically. The reason is simply
that the half-width of the distribution -3f%(e)/3¢ is
about 3.53 kBT so that at 2°K, the thermal smearing is

of the order of half a meV., This is comparable to the
width of the ZBA conductance as may be seen in Fig. (3.5).
For numerical calculations it is convenient to cast

Egqn. (3.63) into the form

do_(v)
1 e [ dx (S (V-xk ) +8 (V+xk_T)} (3.63)
0, dv ) (L+e®) (1+e™¥) B B
where
- d .t(e)
S(E) = =2 -CE [TB—] .

The effective relaxation time is given by

1 1

:—’1‘--}-——.——_
T(€) T tep(s,T)
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where the electron-phonon relaxation time Tep(E,T) is
given by Eqn. (3.33) for the case where n= 1 and by
Eqn. (3.34) for the case whgre n=2,

Fig. (3.7) shows the experimental do,/dV vs V
curves for the same Al-Al junction measured at T= 3.0,
4.1, 5.0 and 6.0°K, The dashed line is the theoretical
curve given by Eqn. (3.63) for the case where n=1 (i.e.
azF(w) = alw). The theoretical curve was fitted to the

3°K experimental data and'yields‘the values

= 1.4 x107/ sec.

—
1

= 3.5 x10710 gec.

—
I

The electron-phonon coupling constant a, was chosen to
agree with the calculation of az(w)F(w) by Carbotte and
Dynes (1968) and was gi&en the value a;= .003/mev. The
overall shape of the theoretical curves is not extremely
sensitive to temperature. Accordingly, the theoretical
and experimental peak positions and heights are compared
in Fig. (3.8) for the same set of values Tir Ty and aj.
Excellent agreement is found for the peak positions as

a function of temperature. The theory predicts a stron-
ger temperature dependence for the peak heights than

- experimentally observed. The behavior of the theoretical

curves are found to be quite insensitive to the choice

of Ty Fig. (3.9) depicts the temperature dependence of
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Peak height and position vs temperature
(expt. 0 @ ; theory ——),

Fig. (3.8).
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Fig. (3.9). Dependence of peak position on Ty
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the peak amplitudes with different Ti's. We have fixed
the theoretical amplitude to agree with experiment at
3°K. Fig. (3.10) shows how the peak position behaves
with changing T;+ We note that there is relatively
little change in the characteristics when the impurity
time T is varied over an order of magnitude. We may
conclude that the zero-bias anomaly shape depends weakly
upon the nature of the elastic scattering mechanisms in
the film.

We have also calculated the behavior of the zero-
bias anomaly for the dase where n=2 (i,e, az(m)F(w) =
a, %). In Fig. (3.11) we show the second derivative of
current for n=2 at 3°K. For comparison we also show
the experimental data as well as the n=1 result that
was illustrated in Fig, (3.7). fThe n= 2 model curve was
fitted to the experimental data as shown and yielded the
values

3.5x1077 sec

Y

2.7 x107% sec

'B
where the electron-phonon coupling constant a,= .0003/
meV2 was again chosen to agree with the calculation of
Carbotte and Dynes (1968). The theoretical and experi-

mental peak heights and positions of the second deriva-

tive are compared in Fig. (3.12) and Fig. (3.13)
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respectively for different choices of T, The results
again show that the peak heights and positioné are
relatively insensitive to ;. In general it may be
noted that the overall behavior of the n=2 model is
very similar to that of the n=1 model, although the
agreement with experiment is poorer in the case of the
_ former.

An additional example of a tunnel junction that
displays the ZBA behavior is that of a Pb-Pb0-Au junc-
tion whose experimental derivative of even condﬁctance
is shown in Fig. (3.14). Although the ZBA structure is
clearly in evidence at low bias, it is masked to some
extent by a rising background. This is probably due to
inelastic tunneling of electrons at the lead-oxide in-
terface. In order to account for this in a theoretical
calculation, we have simply fitted a linear backgfound
to obtain'agreement with the experimental data at 1.13°K.
The theoretical curves at higher temperatures were then
generated with the same set of parameters. The calcula-
tion was done using an n=1 model. We find that although
the shapes of the curves agree at higher temperatures,
theory predicts a stronger temperature dependence of the
amplitude than is measured experimentally.

In conclusion, the observed structure near zero

bias in the conductance and its derivative do/dv for
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normal metal-insulator-metal tunneling junctions has
been accounted for by including the effects of finite
electron relaxation rates in the junction electrodes.
The non-zero life-times lead to an observable block-
ing of otherwise available electron tunneling states
at low bias. The fit to our data suggests that
az(w)F(w) behaves nearly linearly at low energies

rather than quadratically.
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CHAPTER IV

INELASTIC ELECTRON TUNNELING

4.1 The Inelastic Current

In our treatment of the zero-bias anomaly we
assumed the oxide barrier is without structure and
provides essentially a homogeneous forbidden region
to the electrons as would a vacuum. However tunneling
measurements have shown that a considerable amount of
non-ideal behavior is present in I-V characteristics
which may be directly attributed to the presence of
the barrier. A typical example is the Pb-Pb0-Pb junc-
tion whose experimental second derivative of current is
shown in Fig. (4.l) as a function of bias voltage. We
note the large amount of structure present in the second
derivative up to 60 meV. This behavior is due to the
fact that electrons may lose energy as they tunnel
through the barrier. The oxide is host to a number of
mechanisms that may cause the electron to tunnel inelas-
tically. The oxide may have bulk phonon structure as
well as ever present impurities that provide molecular
rotational and vibrational excited states. The metal-

oxide interface may also provide additional degrees of

freedom.
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Fig. (4.1). Second derivative of current vs voltage for a
Pb-Pb0-Pb junction.
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If a voltage V is applied to a junction, the
tunneling is elastic to a first approximation and the
I-V relationship is linear. However, suppose that at
T = 0 there is a system in its ground state that re-
quires an energy ﬁwo to be excited., If the bias energy
eV is less than ﬁwo, the electron cannot tunnel inelas-
tically by exciting this system because there are no
available states in the other metal. When eV = ﬁwo '
the electron may now tunnel inelastically. Thué an
electron in a definite energy state E has more than one
available energy state into which it may make a transi-
tion. The opening of this new threshold will result in
an additional current and therefore a small change of
slope in the I-V curve at eV = ﬁwo. Consequently there
will be a step in the conductance and a spike in the
derivative of conductance at this bias. In practice a
finite temperature will smear the Fermi surface of both'
metals and will thus smear the spike although it will
be centered about eV = ﬁwo. In general a continuous
excitation spectrum will be present in the oxide. The
second derivative of current will then mime the frequency
spectrum of the barrier. In principle the tunnel junc-
tion will thén act as a spectroscopic probe of the
barrier and any impurities within it. Lambe and
Jacklevic (1968) confirmed in a series of well prepared

experiments that this was true in practice. They showed
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that one could observe and identify molecular vibrations
in doped M-I-M junctions. They also showed how one
could estimate the effect of temperature on the line-
width of a spectral peak due to the smearing of the
Fermi surfaces in the metals. We.shall obtain their
result here in a slightly different fashion.

The mechanism whereby coupling occurs between the
tunneling electrons and internal states of the barrier
may be thought of as a perturbation of the barrier po-
tential. Consider the transmissionlcoefficient for the
WKB barrier given by Eqn. (2.19). If &8(x) is some small

perturbation to the barrier potential ¢(x) we have

X
r
e, =~ | 3 [0 (x)- 8(x)~E, 117 x|
X
%

If §(x) is small we can make an expansion to first order

in §(x) to obtain

Xy ¥y 2 L

_ _|[g2m _ b 1 2m,8° (x) ¢

P(E, )= exp[ J {ﬁ——2[¢(x) EJ} dx] ‘[l+2 J {ﬁ-—-2 e x)‘Ex)} dx
X X

The first term will give rise to the elastic current
while the second term will give the inelastic contribu-
tion. However,this is a very over-simplified view of
the inelastic process. The perturbation potential will

be the result of a superposition of potentials which



depend upon the positions of the oxide atoms; the impu-
rity molecules and perhaps the positions of fhe metallic
atoms diffused into the oxide. As these positions are

a function of time, they will contain factors like
exp(iwqt) Qhere Ug is the frequency of the normal modes
of wav; vector g ;f the system. Thus if one were to do
the problem in the context of'a time dependent pertur-

bation expansion one would obtain energy and momentum

conservation equations of the form

~e

Ek-Ekl = ﬁwq

Bk - fik' = fig

where E,_ and hk are the energy and momentum of the elec-

k
tron in—the left hand metal and Ek' and hk' are the
energy and momentum of the electrgh after it has tun-
neled through the barrier into the right hand metal.
With this in mind we can treat the process of inelastic
tunneling in exactly the same way as we determined the
electron-phonon relaxation time in Section 3.2. That-
is, we suppose there exists, a matrix element Mkk' that
connects the states k and k' on either side of ;;é
barrier inelastically. If we make use of Fig. (3.2)
and imagine that a barrier separates the initial and
final states k and k' respectively then we can write

the transition rate for the process whereby an electron

in state k on the left tunnels inelastically into the
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right hand metal. That is,
=207 ., 208 (B, <E, -t ) [£2(1-£2,) (1400)-£2, (1-£ )N |
k™A £ KK k7k' gt R K g k' kg

+ §(E M )[f°(1 fk.)N -£° ,(1 fk)(1+N )1}

K k!
(4.1)

where fk and fg. are the equilibrium distributions in

the left and right hand metals respectively. Ng is the
equilibrium distribution function for the internal degrees
of freedom in the barrier, and we assume that Nq depends

only on wg. We assume that the left hand side is at bias

energy eV above the right hand side. Therefore

1 fo - 1
k-u-eV/k T k' k,-u/k T
1 +e- l+e-=-

2

K (4.2)

We define Afk = fi-f; (V=0) and make use of the fact that

the transition rate is zero for zero bias. Therefore

Eqn. (4.1) becomes

_2n 2
T F My E |m E&'l {6 (B, ~Ey ,~fiug )[1+N fk.]
* G(Ek-Ek.+ﬁwg)[f +N°]} (4.3)
Now © dEk'
] - AL [ 2 J S (4.0)
k' (27 “h A
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according to our density of states and box normaliza-
tion scheme presented in Section 2.5. Carrying out

the summation in Eqn. (4.3) we find

0

ERE A J a ) . () y () (28 () 4145° (8 ¥
0
- fo (Ek—ﬁw-—u)] (4.5)

where we have defined
]
2 tha) F (ﬁ)-ﬂlﬂli]iulm 125 tutiv ) (4.6)
ah( w) k w) = 4ﬂ3 v KK w wg .

The inelastic tunneling current is simply given by

81 = 2¢ ] T,. Therefore

§1 = STemA J dE Afy J d (fiw) [28° (fiw) +1+£° (E+Ru-y)
0 0

h3
- £2(E-flu-p) ] G, (fw) (4.7)
where
2 2!
d“k (d%k
_ 4LAL' ‘“( gl 2
G(fw) = S — & (fiw-fiw ) M. |7 . (4.8)
m(21r)3 Yy d Vx g kk

If we use the variable ¢ = E-p-eV in Eqn. (4.7) we

obtain
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+ ©
§I=c J de [£° () ~£° (e+eV) ] J dw G(w) [28° (w) +£° (e+w)
-0 0
+£%(w-e)] (4.9)
where
- 4memd
3

We have expressed the current in terms of the dimen-
sionless function G(w) defined in Eqn. (4.8). We note
‘that G(w) is defined in a fashion analogous to the
‘function azF(w) as in Egn. (3.24). As such G(w) may
be thought of as the product of the spectral density
of states of the barrier multiplied by an effective
frequency dependent coupling constant. It is not our
intent here to attempt a calculation of G(w) from
Eqn. (4.8). However it will essentially be dependent
upon the transmission coefficient and the dynamics of
the coupling of electrons to internal degrees of freedom
of the barrier.

We shall now assume that N°(uw) is the equilibrium
Bose factor as defined in Egn. (3.27). Thus Eqn. (4.9)
would describe the inelastic tunneling current due to
the bulk oxide phonons in the barrier. We note that
because of the pfoperties of the statistical factors
in Eqn. (4.9) the inelastic tunneling current is an odd

function of bias voltage. Thus the conductance due to
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it will be an even function of bias. This has been
established experimentally in the case of Pb-Pb0-Pb
junctions by Rowell, McMillan and Feldmann (1969)
and is true in general for any junction where the
oxide phonons may be identified easily. We also
note that the T = 0 limit of the inelastic tunneling

current as given by Egn. (4.9) becomes

\' €
§I = ¢ [ de J dw G(w) . . (4.10)
0 0 '

Therefore the inelastic zero temperature conductivity

is given by

6o =c | duw G(w) (4.11)

oY <q

and thus

éiv (60) = ¢ G(V) . (4.12)

For finite temperatures, Eqn. (4.9) may be sim-
plified considerably by reversing the order of integra-
tion. The integration over the statistical factors

may then be carried out analytically and yields

§I=c [ dw G(w){(V-w)[NO(V—w)—N(-w)]-(V+w)[No(v+w)
0

-N(w)]} . (4.13)

Physically, the interesting quantity is the second de-

rivative of current and is given by
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2 [++]
d_ s1)=c J dv G(w) - ﬁ[x(‘}:‘—g) - R (4.14)
0 B B B

where the kernel function K(x) is defined by

ezx(ﬁ-Z)-+ex(x+2) (4.15)
(e*- 1)3

K(x) =

and is an even function of x. In Eqn. (4.14) the tefm
K((V-w)/kBT) represents inelastic current flow by
emission of a phonon of energy fiw whereas the term
K((V+w)/kBT) refers to inelastic current flow with
absorption of a phonon of energy fiw (anti-Stokes flow).
If we have an extremely narrow spectral line such that
it may be approximated by a delta function distribution
(i.e. Glw) ~ d(w—wo)), then thg second derivative of

current due to this resonance is given by

2 V=u V+u
d C 0
—s (§I) « K( ) - K(
dV2 kBT kBT kBT

9| . (4.16)

If the position of the resonance is much greater than
the thermal energy (i.e. ﬁwo >> kBT) the absorption or

anti-Stokes term is negligible and we are left with

2 V-uw
61« Sp R - (4.17)
av B B
Using Eqn. (4.15) we find that the response in the

second derivative takes the form of a distribution of
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height proportional to c/6kBT and linewidth 5.44 kT
centered at ev = ﬁwo. This is precisely the behavior
that Lambe and Jacklevic (1968) found experimentally
and justified theoretically. This analysis describes
the linewidth expected for a sharp resonance due to
the thermal smearing of the Fermi levels in both normal
metal electrodes., Although there may be other sources
of linewidth broadening in the actual phonon spectra of
the barrier or the molecular vibrational and rotational
levels of impurities, névertheless this treatment illus-
trates that there is a lower limit on the resolving
power of a tunneling spectrometer using normal metals.
'It is interesting to study the behavior of the
total area or intensity of the second derivative of

current vs voltage curves, Thus

[+] ®© 00

2 -
J [%-2- (§I)1dV =c J dv G(w) Jdv.ﬁ[K(H)-x(‘]f—%)].
V B B B
0 0
(4.18)

The second integral in Eqn. (4.18) can be done exactly
and we find

w/kBT
(1- u)/kBT) -1

w/kT 2 .
(e B . 1)

av?

ON—on—'8

d2 ? 2e
(& (s1)1av=c [ au G(w) [1+
0

(4.19)
If the spectra occur at frequencies w such that(u>>kBT,

the second term in the integrand above is very small
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compared to unity and we obtain

J Q—E (61)]av = ¢ [ dw G(w) = constant . (4.20)
0 W 0

Therefore for spectra located far above thermal ener-
gies the intensity or total area of the second deriva-
tive of current should be constant as a function of
temperature. This was also verified experimentally

by Lambe and Jacklevic in the same paper.

4,2 ‘Inversion for G(w) in Terms of the Second

Derivative of Inelastic Tunneling Current

Let us consider Eqn. (4.14) for the moment as an
integral'equation for G(w) in terms of the second deri-

vative of inelastic current which we shall denote by
a2

— (1) . (4.21)
av

Ill (V) -

Ql—

For a fixed temperature T we shall assume that I"(V) is
absolutely integrable, allowing us to define its Fourier

transform by

«©

I"(s) = - J (v) eV gy . (4.22)
y2r

Since the kernel function K(x) is even Egn. (4.14) may

be cast into the form



103

II'(S) - o 4i J G(w) sin(sm
- — )dw ] (4.23)
K skBT /o )
where
k(s) = J cos(sx)K(x) dx . (4.24)
0

Making use of the identity

[ +]

I sm(ax:{cos(bx)dx - % 6(a<b) , (4.25)
0 .
we obtain
G(w) = —%: [ —%;%E%T sin{ws)ds . (4.26)
/2n g K150

«(s) may be evaluated in close form to yield

1

- : (4.27)
TS _ o ns)2

c(s) =2 (ns)?
(e

Therefore the barrier function G(w) may be determined
from I"(V) by means of the formula

) 1 sin(su) sinh® (stkgT)
Glw) = pd I J I"(V) sin(sV)dv

3
o (skgT) 0 (4.28)

The zero temperature limit is easily obtained making

use of Eqn. (4.25) and we note that

Glu) g 1" (V)
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in accordance with Eqn. (4.12). Eqn. (4.28) represents
a valid inversion for the spectral quantity G(w) in
principle. In practice the experimental noise and
background inherent in measurements of I"(V) would
severely limit its applicability. However, given the
measured quantity I"(V,T') at some temperature T', it
allows us to deduce the corresponding I"(V,T) at some
higher temperature T >T'. If we substitute Eqn. (4.28)
into Eqn. (4.19) a long calculation yields the follow-

ing relationship

'
I"(V,1) = e f I"(V',T')[ g 2 g (L 21T gy,
B B
0
(4.29)

where the modified kernel function K(x;y) is defined by

K(x;y)= 2 ezx(x-xcosy-ysiny) + ex(x+ysiny-xcosy)
1 YI==x
Y2 (e2x - 2exc05y+-l)(ex- 1)
(4.30)

In the zero temperature limit this reduces to the fami-

liar form;
K(x;0) = K(x), (previously defined in Egn. (4.15)),

It may be noted that for certain values of the ratio
T'/T the kernel K(x;y) is quite simple. For example,

if T'/T = 1/2 then
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. X :
K(x,m) = 24"§x o (4.31)
1 (e" "~ 1)  7°sinh x

K(x,m) corresponds to a distribution of height 2/1r2 and
linewidth 4.4kBT. Eqn. (4.29) may be of use to workers
in low temperature tunneling Spectroscopy who wish to
isolate the natural linewidth broadening in sharp spec-
tra due to the thermal smearing of the Fermi levels in

the electrodes from other sources of broadening inherent

in the barrier.
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CHAPTER V

TUNNELING IN SUPERCONDUCTORS

5.1 The Semiconductor Picture

The subject of electron tunneling can be dis-
cussed in varying degrees of sophistication. The
simplest method is that used by Giaever (1960) to
explain his original experiments in superconductive
tunneling. In this method the superconductor is
treated in terms of single particle éxcitations only
(quasi-particles) since they are thé ones involved in
the tunneling process. The quasi-particle density of
states is drawn with an energy gap of 2A centered at
the Fermi energy as in Fig. (5.la). At T = 0°K all
sfates below the gap are filled and those above the
gap are empty. At finite temperatures particle-hole
pairs are created, the particles existing above the gap
while the holes lie below the gap. Tunneling into the
gap region is not allowed and this leads to structure
in the I-V curve which gives a measure of the energy
gap as well as of the quasi-particle density of states.
In this approach to superconductive tunneling the
superconductor is treated much like a semiéonductor

and consequently it is called the semiconductor model
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of a superconductor. Giaever was able to obtain a
good fit to ekperimental data by using this simple
model.

Following Giaever, we make the following assump-

tions ir deriving the tunneling current.

1) The quasi-particles of both superconductors are
independent particles satisfying Fermi-Dirac statistics

and have an occupation probability given by

o} | _ 1
£7(e) = ——57@ (5.1)

l+e

where ¢ is measured from the Fermi energy.

2) The difference in Fermi energies between the two

superconductors is given by the applied voltage V.

3) There exists a matrix element Mkk' connecting the
-states k and k' on opposite sides of the barrier. This
matrix element is considered constant when the energy

is varied in the region of interest.

4) The density of quasi-particle states is considered

to be constant when the metal is in its normal state
pk(e) = Py (5.2)

and is given by
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pE(E) = Py n(e) (5.3)

when the metal is superconducting. n(e) is the reduced

density of states and according to BCS is given by
n(e) = —LEL_ fe] >4 (5.4)

=0 le] < A ~ (5.5)

where A is the energy gap considered to be independent
of energy but not temperature.

With these assumptions we can write down the ex-
pression for the tunneling current in terms of tran-
sition probabilities in exactly the same way as we

obtained Eqn. (3.39).
2,.0 .0 . :

In section 2.5 the matrix element was evaiuated for the
case of normal electrodes and it was found to contain
density of states factors that cancelled the densities

of states in the summations over right and left hand
states. In superconductors it can be argued (Bardeen
(1961) and Harrison (1961)) that the density of states
factors in |Mkk,|2 are the same as in the normal metal.
In supercondu;;ive tunneling it is necessary to make this
assumption to obtain agreement with experiment. Thus

we simply take
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I MG (5.7)

kll kk
and Eqn. (5.6) becomes

tre
h

_ 0 90 _ 2

- E I 4By [£° (W) -£" (B W) 1 [M|° oy

=10 ' |
(5.8)

If we now make the replacements as in Eqn. (5.3) we

find
I=o, Jde (£°(e) - £2(e+V)In(e)n' (e+V) (5.9)
where

- 4me 2 |n) 2 o P " (5.10)

&

In the limit that both metals are normal n(e) = n'(e+V)=1
and

Inn = OOV .

Therefore O is just the conductivity of the junction
in the normal state. Using the definitions of the
densities of states given by Egn. (5.4) we obtain

4o
R e

= Y I (B

(5.11)

where (&,r) denotes (left, right). We shall not pursue
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the quantitative aspects of Eqn. (5.11) as these

are given in a number of excellent reviews (e.g.

see Douglass and Falicov (1964) or Solymar (1972)).
Rather, we simply present the results in diagramatical
fashion and discuss the results qualitatively.

Fig. (5.1a) shows a semiconductor type of ener-
gy diagram for the case of tunneling between a normal
metal and a superconductor. The density of states
functions, according to BCS, are alsb included. At
T = 0°K there are no excited quasi-particles in the
superconductor and no excited electrons in the normal
metal. Under these conditions it is easy to see that
there is no current until a voltage of V = #A(0) is
reached as in Fig, (5.1b). At V = #A(0) the current
rises rapidly due to.the sharp Fermi energf in the
normal metal and also the very high density of states
in the superconductor at the gap edge. As V is in-
creased further the current continues to rise and
approaches the curve for normal-normal (N-N) tunneling,
coinciding with it for V»>> A(0). This is due to the
fact that the superconducting density of states returns
to that of the normal metal for energies ¢>>A(0) (Eqn.
5.4).

For finite temperatures there are excited quasi-

particles above the gap as well as quasi-holes below
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v

Fig. (5.1). (a) Energy level diagram for tunneling

petween a superconductor and a normal metal. (b) I-V

curves expected on the basis of simple theory.
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the gap in the superconductor. In the normal metal

the Fermi level becomes smeared. Thus when V is

increased from zero, current immediately begins to

flow and continues to rise gradually unfil V = £A(T)

is reached. At that point the density of states in

the superconductor becomes large and the current

increases more rapidly and approaches I for V>>A(T).
The tunneling between two superconductors

(Ar # Az) is depicted in Fig. (5.2). At T = 0°K there

are no excited states and tunneling does not occur

until a voltage of V = t(A£(0)+Ar(0)) is reached.

At this point the current rises discontinuously because

the density of states on both sides of the barrier is

infinite at the gap edge. For V >> (A2(0)+Ar(0)) the

current approaches the n-n curve for tunneling as before.
At finite temperatures and for V <(Ar(T)-A2(T))

the current increases gradually because the number of

quasi-particles available for tunneling is increasing.

However in the range (Ar(T)-Az(T)< v <(Ar(T)+A£(T)), the

number of quasi-particles available for tunneling re-

mains constant while, at the same time, the density of

states in the right decreases. This leads to a decrea-

sing current and thus negative resistance as shown in

Fig. (5.2b). According to Egn. (5.11) at V=Ar(T)-A£(T)

there is a logarithmic singularity in the current. At
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Fig. (5.2). (a) Energy level diagram for tunneling
between two different superconductors. (b) I-V curves
expected on the basis of simple theory.
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V==A2(T)+Ar(T) we again have an infinite density of
states on both sides of the barrier and there is a
discontinuous rise in current eﬁen for finite tem-
peratures,

The special case of tunneling between identical
éuperconductors is shown in Fig. (5.3). At T =0°K
fhere is no current until V = 2A(0) 1is reached,
whereupon because of the infinite density of states
on both sides, there is a discontiﬁuous rise in current.
At fihite temperatures, as the bias is slowly increased
the current slowly increases until the point where there
can be no back current flow from the lower biased elec-
trode. At this point the current remains nearly cons-
tant. At low reduced temperatures (T/TC <<1) a slight
decrease in current is expected because the quasi-
particles from the left face a slowly decreasing density
of states on the right.

In real tunnél junctions the discontinuous current
jump at V = 2A(T) has never been observgd. There are
several possible reasons normally given why perfect
agfeement should not be expected. First, the prediction
is based on BCS theory and it is unlikely that an ideal
BCS superconductor really exists. Second, most of the
reported experiments have been done on thin films where

tunneling occurs into many randomly oriented crystallites,
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Fig.(5.3). (a) Energy level diagram for tunneling
between identical superconductors. (b) I-V curves

expected on the basis of simple theory.
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giving a gap that is probably averaged over many direc-
tions. For an anisotropic superconductor this would
result in a smeared current rise. Another likely cause
for this is the smearing of the gap due to a non-uniform
strain across the tunnel junction. In the next section
we show that this smearing may be partially explained

by life time effects.

5.2 Non-Equilibrium Tunneling in Superconductors

In Chapter III, we showed'that the zero bias
anomalies in conductance seen experimentally were the
result of blocking effects due to the finite relaxation
times of the electrons. It is then natural to ask what
effect finite relaxation times have on the tunneliﬁg
of quasi-particles in superconductors. To calculate
these effects, we use the semiconductor picture of a
superconductor and proceed according to the assumptions
in Section 5.1. However, we now write the expression

for the tunneling current in the form

4

=% 1] Mger | (B ) 2 BBy ) (5.12)
k X X X

]
where it is understood that the distribution functions
in the above equations are steady state rather than the

equilibrium ones. We may now proceed to define effec-
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tive relaxation times for the quasi-particles in both
superconductors and derive the deviations of the
steady state distribution functions from equilibrium
as in Section 3.1, However, in that séction the de-
viations from equilibriﬁm were derived for a system
of independent particles (electrons) satiéfying Fermi
statistics and having in general an unspecified density
of states. This is in accordance with our assumptions
about the behavior of quasi-particles and we can simply
‘take over the results of Eqn. (3.40)

fo-fx

i,e. f.-f ,= - —— (5.13)
k k' 2 2
= 1+ ?FIMI (P Ty * P Ty)

where Ty and 0, are the effective relaxation times and

densities of state respectively for the quasi-particles
in a superconductor. The summations in Eqn. (5.12) are
then done in the standard fashion

o] o} 2
e 2 o dE&[fK(EETu)-f (EEju+V)lo£pE.lMl
= 41¢ . (5.14)

- 21 2
1o | 1+ % |M| (pETE,+p&.T&)

We assume the superconducting quasi-particle relaxation
times Ty depend only upon their excitation energies

above the Fermi surfaces in the respective metals.

Furthermore the densities of state are as given in
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Eqn. (5.2). The integral in Eqn. (5.14) may then be
replaced by one over the range of excitation energies

¢ and we obtain

[ ]

Lo f de [£2(c) - £2(e+V) In(e) n'(eV)
° )1 +3% |M|2(pN n(e)r'(e+V)+p&n'(€+V)T(E))

-0

(5.15)

where the primes refer to different sides of the junc-
tion and |M|2 and py are the averaged matrix element

and normal density of statesvat the Fermi surface. We
note that if the relaxation times are zero then Eqn.
(5.15) reduces to the conﬁentional superconducting
tunnel current given by Eqn. (5.9). Likewise,if both
sides of the junction are normal, the reduced densities
of states are unity and we obtain the normal ZBA current
as in Eqn. (3.42). We shall now proceed to discuss the '
superconducting relaxation times to be used in Eqn.

(5.15).

5.3 Superconducting Relaxation Times

Bardeen, Richayzen and Tewordt (1959) in the
coufse of an investigation on the thermal conductivity
of superconductors calculated the life times of qguasi-
particles due to elastic scattering processes. They

found that the elastic scattering relaxation time of
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a quasi-particle of excitation energy € above the Fermi

surface in a superconductor is given by

(5.16)

where Tg is the relaxation time in‘the superconductor
while 1y is the relaxation time in the normal metal.
For € >> A the quasi-particles behave essentially like
normal electrons in the sense thét they'have the same
scattering times. However near the gap edge (¢ = A)
the life times are infinite. This is not as serious as
it sounds,for in the same paper, they showed that the
speed or group velocity of the excitations or quasi-
particles Vg is given by

v, = \'/

s = TTer— U - (5.17)

where Yy is the Fermi velocity of the normal electrons,
Thus the mean free paths of the quasi-particles due to

elastic scattering is given by
(5.18)

so that the mean free paths of the quasi-particles are
the same as those of the normal electrons. Nevertheless,

the fact that the life time is infinite is a measure of the
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correlation the quasi-particle feels due to the pre-
sence of the condensate although the elastic scatter-
ing processes do not allow it to lose energy and thus
recombine into the ground state.

In the case of a quasi-particle in the presence
of a lattice or phonon gas, Tewordt (1962) showed that
the relaxation time of a quasi-particle of excitation |

energy € above the Fermi energy is given by the lengthy

fofmula:
2 T e
1 Tre0 -1 o {w)F(w)dw
=[f (-e) I == )
tgle) AT [ D lemw) 2y
A2 o} o]
X (1-m)f (w-e) [1 + N%(w)]
+ ]o 0. ((D)F(w)dw « (e+) (1= 2 )f (=g~ )N {w)
2.% de+w) i

[(8+w)-A ]

® \

2 2
b (w)F(w) (w=€) (14 A ) £° (ume) (1+3° (1)
()%= 2% E(me)

etA
(5.19)

Physically, the first term corresponds to a quasi-
particle state scattering into another quasi-particle
state with emission of a phonon of energy w. The second
term is the same process except that a phonon of energy

w is absorped. The third term is the recombination
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term and corresponds to the destruction of a pair of
quasi-particle states of opposite momenta and spin

with the creation of a phonon of energy w. It may

be easily shown that in the limit of a normal metal

(A = 0) Eqn. (5.19) reduces to the expression for the
life time obtained for a normal electron in Eqn. (3.26).
The quasi-particle-phonon relaxation time given by

Eqn. (5.19) is not infinite at the gap edge as in the
case of elastic scattering because of the presence of

the recombination time,

5.4 The Nonequilibrium Tunneling Current

In order to calculate the nonequilibrium tunneling
current we take our effective quasi-particle relaxation
time t(e) to be given by

1 1 1
= + (5.20)
T(€) Tin(€5 Tep(E)

where T4 is the normal metal elastic scattering time
and the factor n(e) comes from the definition of its
superconducting counterpart in Eqn. (5.16). Tep(E) is
the quasi-particle-phonon relaxation time. If we
substitute Eqn. (5.20) into the expression for the
superconducting tunnel current given by Eq. (5.15) we

obtain
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de[£°(e) - £92(e4+V)l.n(e)n' (e+V)

-, |
o]

1
e T./1 T, ,T
L+n(e)n’ (e+V) J{!nl'a(eW)+ %fn?s)
Lty M
ep ep

(5.21)

where the primes refer to the opposite side of the

junction and 1, is defined by

B

1 27

“2 !
|I
TB h

oN

as in Eqn. (3.47). We may note that the tunneling
current given above is an odd function of bias since
Tep(e) is an even function of its argument. Eqn. (5.21)
may be written in a simpler way by assumihg that we have

identical superconductors on both sides of the barrier.

In this case

[e2]

) o}
1= o J dt £7(e) - £° (e+V)
0 T,
— 1 b1 1 g1
n{e)n{e+V) Ty Tin(e+ V) Tin(e)
1+ 1+
Tep(e+ V) Tep(e)

(5.22)

The above expression for the superconducting
tunneling current exhibits a new feature which is not

present in the conventional current given by Eqn. (5.9).
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That is, the tunneling current does not have a dis-
continuous jump at V = 2A(T). Rather, if the ratio
Ti/TB is small, it starts increasing at V = 2A(T) with
a large but finite slope. For V >> 2A(T), we know from
the behavior of the ZBA in normal tunneling that the
factor in the denominator above is very small and hence
the tunneling current reverts back to the conventional
BCS current. The reason we do not get a discontinuous
jump in the tunneling current at V = 2A(T) is due to the
fact that the life time factor in the denominator of
Eqn. (5.22) can never be zéro. Therefore the infinite
density of states at the gap edge which causes the jump
in current is not felt.

We shall now consider the case in which the elec-
tron-phonon interaction is weak (i.e. the recombination
time is large compared to the elastic scattering time).

Thus the term given by

1 1
Tl T T e 5.23)
L+ Tep(e+V5 L+ Tepze)

is of the order of unity and the tunneling current takes

the form
v ey - £
Pk Ids £%(e) - £2 (V) . (5.23)
— ﬁ +J52-A2 Jle+v) 2-4°
T |€l |€+VT

B
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The T = 0°K tunneling current is plotted in Fig. (5.4)
for various values of the ratio Ti/TB and compared to
the conventional BCS tunneling current. We may remark
that the fit for the value of Ti/TB » .001 corresponds
closely to the experiments in superconducting Al-Al
junctions by Giaever, Hart and Megerle (1962). Assum-
ing that the nominal resistance of their junctions is
of the order of 502 so that the tunneling time Ty can

=17

be taken as T, » 10 ' sec., we obtain the value

B

Ty * 10710 seconds . (5.24)

This life time agrees with our ZBA results in Chapter
III. It is interesting to note that in the same paper
Giaever et al attempted to.account for the finite slope
of the current rise by assuming that the energy gap was
smeared. They find that if they attribute the smear-
ing to a life time, they obtain a lower limit of 107
seconds.
The smearing of the current rise as given by

Eqn. (5.22) or Egn. (5.23) depends upon the magnitude
of the ratio Ti/TB. Since 3 is a measure of the re-
sistance of the junction we disregard it in the follow-
ing discussion. The elastic scattering time T should

depend strongly on the properties of the metallic films.

In practice we expect the amount of elastic scattering
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Fig. (5.4). Tunneling current due to life time effects.
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to increase significantly as we either decrease the
film thickness of the electrodes br else increase
the impurity concentration of the films. Thus Ti/TB
should decrease accordingly. The width of the current
rise should then decrease as the film thickness is
decreased and the impurity concentration is increased.
This is in agreement with the observations of Rowell
(1969) who found that the width of the current rise in
Pb junctions decreased as the film thickness was reduced
from 2000 to 1000 ﬂ, and the current rise became very
sharp when In was alloyed into the Pb. |
In the case of finite temperatures, the calcula-
tion of the tunneling current is numerically much more
complicated when we take into account the relaxation
timeldue to the lattice and the temperature dependent

gap. This work is still in progress at this time.
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CHAPTER VI

GEOMETRICAL EFFECTS IN TUNNEL JUNCTIONS

AND CONCLUSION

6.1 Structure of the Tunnel Junction and Splitting of

the ZBA

In previous chapters we treated the tunnel junc-
tion under the assumption that it was a homogeneous
sandwich of the two electrodes and the insulator. In
reality, tunneling occurs only at certain portions of
the cross strip area of the junction. This was conclu-
sively shown by Adler and Kreuzer (1972). They alter-
nately passed a large current in the top film (Iy) and
the bottom film of the junction (Ix) while simultan-
eously measuring the tunnel current (it) and its
derivatives (Fig. (6.2a)). Fig. (6.2) shows a typical
set of conductance curves that they obtained in an
Al-Al junction at 4.2°K. When the conductance was
measured in a conventional fashion without any addi-
tional currents flowing in either the top or bottom
film, the solid curve in Fig. (6.1) was obtained.

The ZBA dip in conductance is seen very clearly. When
a large current (Iy) was passed along the top film,
the ZBA split into two minima as shown in the dashed

curve. However, upon passing a large current (Ix) along



128

vV (mV)

Fig. (6.1). Conductance as a function of bias for an

Al-Al junction at 4.2°K: (~—3 no current through

either electrode); (—— = .5 A along the top film);

(==s = —, .5 A along the bottom film).
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the bottom film, it was found that the ZBA character-
istic smeared 6ut as shown by the dotted curve.

This experimental result may be easily explained
if one assumes that tunneling occurs only along the
edges of the bottom film. Thus when the current Iy
is passed along the top film, there is a potential
drop along the film and the two effective areas for
tunneling differ in potential. This causes the ZBA
characteristics to now have two minima whose centers
are separated by the potential drop along the top film.
On the other hand when a current Ix is passed along the
bottom film, there is a continuous potential drop along
the edges and the ZBA becomes smeared out. Adler and

Kreuzer summarized their results as follows:

1) Splitting of the ZBA is only observed with a
current Iy (this has been tested with currents in
excess of .5 A). Similar results have been obtained
using Ag, In, Sn, and Pb electrodes.

2) In all cases the current Iy splits the ZBA mini-
mum into exactly 2 minima.

3) The shift of the minima to either side is always
a linear function of IY. This ohmic behavior was found
to occur over the whole range of metal film thickness
used (200-4000 ). Such ohmic behavior was also tested

in several triple junctions having a common bottom
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film and oxide while the top films varied in thickness
by a ratio of 1:2:4.

The above results clearly suggest that the oxide
barrier has two thin regions along opposite sides of
the bottom film. The fact that no splitting arises
from the cufrent I in the bottom film then indicates
a rather uniform barrier parallel to the bottom film.
The junction may then be idealized by the geometry
shown in Fig. (6.2b). The presence of a current Iy
along the top film may then be represented by two thin
regions at y = tb being biased at two different'poten-
tials v as in Fig. (é.Zc). The magnitude of the
potential difference V is then determined by the
current Iy and the film resistance. When a current I,
is passed alon§ the bottom film, there would be a con-
tinuous potential drop along the constant thickness
tunneling region as indicated in Fig. (6.2d). Adler
and Kreuzer assumed that the tunneling conductance per

unit area of the thin regions was given by

gv) = 60 + 80 (V)

where 83 (V) is the negative contribution to the con-
ductance due to the blocking effect and is given by
Eqn. (3.52). For simplicity, they considered 83 (V)

to be given by the T = 0°K limit as in Egn. (3.56)
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and showed that both the smearing and splitting of
the ZBA characteristic could be accounted for by
using the idéalized geometry in Fig. (6.2).

It follows that tunneling occurs predominantly
near the edges of the junction and we are justified
in assuming that the effective area for tunneiing is
a small fraction of the cross strip area as indicated
in evaluating Eqn. (2.22). The method of introducing
potential drops across the metal films by external
currents may be used to probe the structure of the
oxide. In principle it should be possible to obtain
the conductance per unit area as a function of posi-

tion in the junction by carrying out an exhaustive
set of measurements with varying Ix and Iy' By using
superconductor in the bottom film the resolution of
such measurements with Iy may be impro&ed by using the

gap edge as a potential probe rather than the ZBA in

the normal metal.

6.2 Conclusion and Discussion

In normal metals, we have shown that the observed
structure near zero bias in the conductance ¢ and its
derivative do/dV can be accounted for by including the

effects of the finite electron relaxation rates in the
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junction electrodes. The non-zero life times then
lead to an observable blocking of otherwise available
electron tunneling states at low bias.

The dependence of the conductanée minima on the
properties of the junction may conveniently be sum~
mariged with reference to the T = 0°K diagrams in
Figs. (3.3) and (3.4) for the models n=1 and n=2 res-
pectively. We note that the amplitude of the conduc-
tance minimum is proportional to the ratio Ti/TB.

Hence by increésing the amount of elastic scattering

in the electrodes we would decrease this ratio.
Similarly, making the oxide thicker would increase the
tunneling time g and again make this ratio smaller.

A possible experiment to test the dependence of the
size of the conductance dip would be to construct a
multiple junction with the same base metal film and
oxide. The films deposited on top could then be alloyed
with a suitable metal in increasing concentration. If
our conjecture is correct, then the size of the conduc-
tance dip should decrease with increasing concentration
of the alloy material in the top film. To test the
dependence on oxide thickness would be more difficult.
However, by carefﬁlly examining the structure of the
oxide as described in Section 6.1 one should be able

to, in principle, also test this aspect of the theory.
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The width of the conductance dip as indicated in
Figs. (3.3) and (3.4) is proportional to the quanfity

(a T )-l/n+l where n=1 or 2 according to which model

ni
we choose for the electron-phonon coupling. Thus as
we increase the coupling strength of the electrodes
or else the elastic scattering time Ty the width of
the conductance dip should decrease adcordingly. A
much more difficult experiment to perform would be to
construct a tunnel junction with a crystal on one side.
In this case 1; should be very large compared to its
value in the evaporated film and one should be able to
observe a fairly deep and sharp conductance dip. Also
'by tunneling into single crystals one should be able to
probe, in principle, the anisotropy of the electron-
phonon relaxation times. These considerations can like-
wise be carried through for the derivative of conductance.
The agreement of theory with experiment seems to
indicate that the model az(w)F(w) « i is a more rea-
sonable choice to make. However a better test to dif-
ferentiate between the two models should be possible
at low temperatures. Fig. (3.4) indicates that for
az(w)F(w) « wz, there is a kink in the derivative of
conductance at zero bias and zero temperature. This
feature rapidly disappears at higher temperatures but

calculations indicate that it should become noticeable

below about .5°K. This may serve as a sensitive test
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for the two models although modulation problems may
become severe in this low bias regime. We have no
physical explanation for this kink except to say that
.it is a result of the fact that do/dV goes like V2 at
very low bias and at zero temperature. Although we
have not done so, a more complicated version of
az(w)F(w) may probably exist to fit éhe theory in a
more suitablé fashion. However, there seems to be
little precedent in present unrelated theoretical or
experimental wo;k to justify this.

In the work we have done on superconductive
tunneling, the nonequilibrium tunneling of quasi-
particles seems to indicate that the tunneling current
between two identical superconductors does not have a
discontinuous rise. This is in agreement with experi-
ment. However, we have used the semiconductor picture
of a superconductor both in the derivation of the
transport equations for nonequilibrium tunneling and
the tunneling current itself. A more rigorous treat-
ment using the microscopic many-body theory of super-
conductive tunneling in the presence of relaxation
processes would be in order. Nevertheless, it is en-
couraging that the same choice of life time parameters
used to explain the normal ZBA also serve to give quali-
tative agreement with experiment in the case of super-

conductors.
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