l * National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibbographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontarno
K1A ON4 K1A ON4

NOTICE

The quality of this microfcrm is
heavily dependent upon the
quality of the original thesis
submitted for  microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

Youw hie  Voire relevence

Owr e Notre relerence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a ¢onféré le grade.

La qualité dimpression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées & l'aide d'un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cetie microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



University of Alberta

Generalised Optimal Stopping and Financial Markets

by

Dennis Pak Shing Wong

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of
the requirements for the degree of Master of Science
in

Applied Mathematics

Department of Mathematical Sciences

Edmonton, Alberta
Fall 1995



e nationale

l*l National Library Biblio
of Canada du Cana
Acquisitions and Direction des acquisitions et
Bibliographic Services Branch  des services bibliographiques
395 Wellington Street 395, rue Welli
K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMIESSION.

ISBN 0-612-06559-6

Canadi

Your file Votre réiérence

Our fig  Notrs référence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.



University of Alberta

Library Release Form

Name of Auther: Dennis Pak Shing Wong
Title of Thesis: Generalised Optimal Stopping and Financial Markets
Degree: Master of Science

Year this Degree Granted: 1995

Permission is hereby granted to the University of Alberta Library to repro-
duce single copies of this thesis and to lend or sell such copies for private,

scholarly, or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as hereinbefore provided, neither the
thesis nor any substantial portion thercof may be printed or otherwise re-

produced in any material form whatever without the author’s prior written

T

9819-156 th Avenue,
Edmonton, Alberta,
Canada T5X 4G7

permission.

Date: July 20, 1995.



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Generalised
Optimal Stopping and Financial Markets submitted by Dennis Pak Shing
Wong in partial fulfillment of the requirements for the degree of Master of

Science in Applied Mathematics.

Dr. R.J. Elliott

. J.W. Macki

7

Dr. (/ Barone-Adesi

Date: July 20, 1995.



Abstract

The concept of optimal stopping is fundamental in financial markets. It mod-
els the best time to buy or sell assets, as well as the valuation of options. Due
to time constraints in markets, for example, off-hours and contracts, classical
optimal stopping theories are inadequate. A generalisation of the optimal
stopping problem is introduced here, in which stopping can take place only
in subsets of the time interval. Under certain conditions most results in the
classical theory are extended. This leads to the valuation of Bermudan option
which is exercisable only on certain specified days of its life. In particular,
European and American options are special cases of Bermudan option.

In addition, an economic agent may have constraints in his trading port-
folios. Cvitanié¢ and Karatzas [22] employed a stochastic control approach to
study the valuation of such options. We also include a brief summary of this

topic.



Preface

During the past decade there has been an accelerating interest in the devel-
opment of mathematical finance. Furthermore, the sophistication of the math-
ematics used to model financial phenomena has also increased dramatically.
It is surpising that, although there are many research papers in mathematical
finance, there are not many standard texts available in the English-speaking
world,

The aim of this book is, therefore, to provide an introduction to the math-
ematics used to describe financial markets. In addition it provides a unifying
approach to the valuation of different kinds of options. Also, this book is ar-
ranged so it presents a natural transition from the theory of optimal stopping
problems to the valuation of options.

There is much material in mathematical finance in journal papers which
awaits a clear, self-contained treatment that can be easily mastered by stu-
dents without considerable preparation, or extra reading. It is hoped this
research note serves this purpose and provides an accessible introduction to
the theory of option pricing.

Another purpose of this book is to introduce generali.sed optimal stopping
problems, in which stopping can take place only in subsets of the time inter-
val. Under certain conditions most results in the classical optimal stopping
problems, due to Fakeev, Bismut and Skalli, can be extended to this setting.
This generalisation is necessary for the valuation of options with constrained
exercise times. In financial markets these are often called Bermudan options.

The content of this book consists of six chapters. Chapter 1 provides a sur-



vey of definitions and results from probability theory and stochastic calculus.
By the end of Chapter 1 the reader will have seen all the probability theory
that is needed in the rest of the book. Chapter 2 discusses the generalised
optimal stopping problem. This chapter requires no prior knowledge of clas-
sical optimal stopping problem. Chapter 3 provides the mathematical settings
in financial markets and is based on the works of El Karoui, Karatzas and
Cvitani¢. Chapter 4 summarizes options into three categories: constrained
exercise time, constrained portfolios and path dependent options. Chapters 5
and 6 discuss options with constrained exercise times and portfolios in detail.

It is anticipated that this work will be useful to graduate students with
a reasonably strong mathematical background and to professionals who may

be interested in acquiring at least a working knowledge of option pricing.

Dennis Wong
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Chapter 1

Preliminary

In this chapter we present the definitions and concepts needed in later section.

Further details can be found in [13], [17], [22], [27] and [28].

1.1 Probability Space

A probability space is a triple (2, F, P), where Q is a set, F is a o-field of
subsets of £ and P is a non-negative measure with total mass 1. The system
of sets F¥ is called the completion of F if F¥ contains all those sets A C §)
for which there exist A;, A, € F such that A; C A C Az and P(4,—A,) = 0.
The system of sets F¥ is a o-algebra and the probability P can be uniquely
extended to sets from FF. The probability space (2, F, P) is said to be
complete if FP coincides with F.

An F-measurable function X : @ — R? is called a random variable if

d = 1 or a random vector if d > 2. For an arbitary index set J and arbitary



functions X, from 2 te R? or R = RU{%o00}, the o-algebra ¢ {X,,a € J} is
the smallest o-algebra on §2 such that each X, is measurable. This is called
the o-algebra generated by the collection {X,,a € J}. If G is a sub g-algebra
of F, the augmentation of G is the smallest o-algebra containing G and all

the P-null sets in F.

1.2 Stcechastic Processes and Filtration

Let (2, F, P) be a probability space and (F,£) be a measurable space. A
mapping X : T x Q2 — E, where T is a subset of the extended positive real
line TZ+, is called a stochastic process if for every t € T, X; is an E-valued
measurable function. (2, F, P) is called the base of the process X, (E,€) is
called the state space of X, and T is called the time index. For fixed w € )
the map ¢t — X,(w) is called a sample path of the process X.

If E is a topological space, then X is called a continuous process, if P-a.s.
all paths are continuous for the induced topology on T. Similarly we define
right continuous and left continuous processes, and the property that a pro-
cess has left hand or right hand limits respectively. In particular, a process
with RCLL paths means almost all paths of it are right continuous with left
limits.

A stochastic process X is called measurable if the map X is measurable
with respect to the o-algebra B ® F, where B is the Borel o-algebra on T and
B ® F is the product o-algebra of B and F.

Two processes X and Y are called indistinguishable if P-a.s. all paths

of X and Y coincide. Two processes X and Y are modifications if X, =

2



Y, P-as. foreacht e€T.

A stochastic process X, such that P-a.s. all paths are real functions, is
called a real process. A real stochastic process X will be called evanescent
if X is indistinguishable from the process which is identically equal to zero,
and a set A C T x § is evanescent if the process 1, is evanescent.

A stochastic process X is said to be separable if there exists a denumerable
set D in T such that for almost surely every w, given t € T, there exists a
sequence (¢,) C D converging to t and X, (w) = Xi(w)-

If X, is an R%valued process, it is possible to find an R?-valued modific-
ation of X; which is separable. In general, we shall work with the separable
modification of a process.

Kolmogorov’s continuity criterion [32] states that, if X; is a separable

process defined on a compact subset of Rt such that
Eng - Xsla < C|t - s|l+ﬁa C!,,B,C > 0,

then X is a continuous process.

A filtration with time index T is a family (F:,t € T) of sub o-algebras
of F such that F, € F; for all s <-t in T. We deﬁqe the sub o-algebras
Fiy and F,_ of F; by Fyy £ Ayt F, and F,_ £ V,<«t F,. The filtration
(Fi,t € T) is called right continuous if Fy = F; holds for every t € T
satisfying inf {s | s > t,s € T} = t. Left continuity of (F:,t € T) is defined
similarly. Finally, a filtration (F,,t € T') is complete if Fg contains all P-null
sets of F.



1.3 Adapted Processes and Stopping Times

A stochastic process (X;),cr is called Fi-adapted if for ew;ery t € T, the
mapping w — X¢(w) is F-measurable. It is said to be progressively measur-
able, if for every t € T the mapping (t,w) = X;(w), defined on [0,¢] x €2, is
measurable for the product B, ® ;. Here B, denotes the Borel o-algebra on
[0, 1].

It is easy to see that every progressively measurable process is adapted.
The converse is true provided that the process is right or left continuous.

A T-valued random variable 7 is a stopping time with repect to F, if for
every t € T the set {7 < t} belongs to F;. We denote the set of all sivpping
times as 7.

The motivation for this definition is that the process knows whether 7 has
happened by time ¢ from information available in F;. Suppose a student is
asked to hand in his examination paper one minute after the bell rings. At
any moment he knows whether he could continue writing, or not. This is a
stopping time. However, if he is asked to hand in his paper one minute before
the bell rings, and he does not know in advance when the bell will ring, then
he will not know when to stop; such a time is not a stopping time.

We define the o-algebra up to a stopping time 7, the o-algebra F, by
AeF, < An{r<t}leF, VteT.
The following properties of stopping times will be useful later:

(T1) Let o, T be two stopping times; then the random variables 7Ac,

T V 0, T + o are stopping times.

4



(T2)

(T3)

(T4)

(TS)

(T6)

(T7)

Let B be a Borel set in R%. Let X, be an R?-valued process which is right

continuous and adapted to F,. Farthermore, assume (F;,t € T) is complete.

Let T be a stopping time; then 7 is F, measurable.

Let 7 be a stopping time and o be a F,-measurable random

variable such that ¢ > 7 P-a.s. ; then o is a stopping time.

Let o, 7 be two stopping times and A € F,; then we have
An{oc <7} eF,.

Let o, T be two stopping times such that ¢ < 7 P-a.s. ; then
we have F, C F..

Let o, 7 be two stopping times; then the sets {o < 7}, {0 = 7}
and {o > 7} belong to both ¥, and F,.

Let 7,, be a sequence of stopping times such that 7, 1 7; then 7

is a stopping time.

Then the entry time of the process X into B,

7(B) 2 inf {t | X, € B},

is a stopping time.

If (X¢),er is a progressively measurable process and 7 is a stopping time,

then the mapping w — X (., 47) is F,-measurable.

A stochastic process (X¢),cr is said to be in class D if the set of random

variables {X, | 7 € T} is uniformly integrable. That is

C=$00 r€T

lim sup /|X ise | X7 (w)|dP(w) = 0.

5



1.4 Concepts Relating to Martingales

A real valued stochastic process (Xi),cr, is said to be a supermartingale,
(respectively a submartingale), on (2, F, P) with respect to the filtration
(F:,t € T) if each X, is integrable, F;-measurable and

EX, |F]<(=)X, P-as. for s<tinT

If the process X is both a supermartingale and a submartingale then it is
said to be a martingale. Note that X is a submartingale if and only if — X
is a supermartingale. Also a supermartingale or submartingale with constant
expectation is a martingale.

Suppose (X;):er is a right continuous supermartingale and J = [u,v] C

T. Then for any A > 0 we have

AP (stlelg X, > ,\) <E[X.)+E[x]].
Also, almost surely, X; has left-hand limits and almost évery path is bounded
on every compact interval.

Let (X;):er be an arbitrary supermartingale and Q be a separable subset
of T. Then the restriction to @ of the map s — X,(w) has a left and right limit
at every point ¢ € T, for almost every w € §2. Assume the filtration is right
continuous, then the supermartingale X has a right continuous modification
if and only if the function ¢t — E [X,] is right continuous on T'.

Suppose ¢ < T are two stopping times and X is a right continuous

supermartingale, then the random variables X, and X, are integrable and

X, 2 E[X, | ;). This result is called the optional stopping theorem.



If C is some family of processes, then Cj,. will denote the family of pro-
cesses which are locally in C. That is, (K)‘GT € Cioc if there is an increasing
sequence of stopping times (7:) such that lim, 7, = oo P-a.s. and each
stopped process (Yiar,);er € C. The sequence (7,) is called a localizing se-
quence for C. For example, suppose M denotes the set of uniformiy integrable
martingales on (2, F, P) with respect to the filtration (F,t € T'), then M,
will denote the set of processes which are locally in M, or the set of local
martingales.

Obviously, every martingale is a local martingale. The converse is true
provided that it is of class D. Similarly, one can show a positive local mar-

tingale M satisfying E [ Mp] < oo, is a supermartingale.

1.5 Lévy Processes

The Lévy processes, which include the Poisson process and Brownian motion
as special cases, are a special class of stochastic processes studied first by the
French mathematician Paul Lévy. In this section, we are assuming given a
probability space with a complete, right continuous filtration.

An adapted process (X:)o<i<co With Xo = 0 P-as. is a Lévy process if

i) X has independent increments: that is, X; — X, is independent of

Fo, 0<s <t < o0

il) X has stationary increments: that is, X; — X, has the same dis-

tribution as X;_,, 0 < s <t < oo;



iili) X is continuous in probability: that is, lim,,, X; = X, where the

limit is taken in probability.
If we take the Fourier transform of each X; we get a function
fit,u) = E[e%],

where f(0,u) = 1 and f(t + s,u) = f(t,u)f(s,u), and f(¢,u) # 0 for every
(t,u). Using the continuity in probability, there exists a continuous function
&(u), with ¢(0) = 0, such that f(t,u) = e~**"). In particular, there is a
one-to-one correspondence between the set of Lévy processes and the set of
infinitely divisible distributions. Also for each fixed u, the process M¥ =
‘7% is a complex-valued martingale with respect to (F;,t € T).

Every Lévy process has a unique modification which is right continuous
and has left limits. The a.ugmentétion of the filtration generated by an arbit-
rary Lévy process is right continuous

Let X be a Lévy process and 7 be a stopping time. On the set {7 < oo}
the process Y defined by Y, 2 Xr4t — X; is a Lévy process adapted to F, 4.
Furthermore, Y is independent of F, and has the same distribution as X.

Suppose X, has a Poisson distribution with parameter A¢, then the Lévy
process X is said to be a Poisson process. Almost surely, the paths of a
Poisson process are right continucus and constant except for upward jumps
of size one, of which there are finitely many in each bounded time inierval,
but infinitely many in [0, 00 ). |

Suppose X; has a Gaussian distribution with mean zero and variance

matrix ¢ - X, for a given non random matrix X. Then the Lévy process X is



said to be a Brownian motion starting at the origin. Moreover if ¥ = I, we
call it a standard Brownian Motion. By Keclmogorov’s continuity criterion,
instead of a right continuous version, we even have a continuous version of the
Brownian motion. However, almost all sample paths of a Brownian motion

are of unbounded variation and nowhere differentiable.

1.6 Elementary Stochastic Calculus

Suppose W; is a d-dimensional Brownian motion with respect to a complete,
right continuous filtration (F;,t € T') on the probability space (2, F, P). We

wish to define the It6 integral
To
/0 X*(s,w) dW(s,w), [0,To]C T,

for some d-dimensicnal process X which satisfies certain measurability and
integrability assumptions.

A first attempt at such definition might be a path-by-path Riemann-
Stieltjes Integral. That is, by fixing w € ! we try to define the integral
in the usual sense for each sample path. Unfortunately this approach does
not work because almost all paths of a Brownian motion are of unbounded
variation.

Let M2(0,Ty; R?) be the set of all measurable, adapted and R?-valued

stochastic processes X such that
X (tw)|[2dt dP
L[ 1xtw)iPdt dP(w) < oo.
Notice M2(0,Ty; R?) is a Hilbert subspace of L? ((0, To) x Q,dt @ dP; R’ )

9



Suppose ¢ is a piecewise constant function in M2(0, To; R?). That is,

there exists a partition of [0, T ]:
0=t0<t1<t2<"‘<t"=T0

such that

n-1

¢(taw) = z e(j9 w) lltn.!n-n )(t)'

=0
Here e(j,-) € L?(R, F,, P) for j = 0,---,n— 1. We denote the set of all such
piecewise constant functions in M2(0, Ty; R?) by ®2(0, Ty; R%).
Define a linear operator Z : 2(0, Tp; R?) — L*(Q, F, P) as follows:

n-—1

I(@)(w) = Y € (G,w) (W(tnsr,w) =~ W(tn,w);.

=0

One can show the linear operator Z is an isometry, that is

III(¢)IIL2 = ”(ﬁ”q;?"

Suppose X € M2(0,Ty; R%); for any positive integer j define

. (n+1)Tp
+ for’ X(s,w)ds 2l <t < B0 o, > ;
X;(t,w) 2 e (s,w)ds, %5 i
0, 0<t<®

The sequence (X;) C ®2(0, To; R%) and converges to X, in norm, so we have
@2 II'"(O,To;R“) = M2(0,Tp; R?). We thus can extend the linear map T to
MZ(0, To; RY).

Now for any X € M2(0,To; R?), we define the stochastic integral:

i " X*(s,w) AW (s, w) 2 T(X)(w).

The stochastic linear operator Z has the following properties: For any

X,Y € M2(0,T; R%),

10



i) E[Z(X)]=0.
i) E[Z(X)*] =X}
iii) E[Z(X)Z(Y)] = E [ X~(s)Y(s) dt].

We can also define the stochastic integral for any measurable, adapted

and R?-valued process X such that
T
[ X (s, 2 dW (s, ) < 00 Pas.
()

We denote this class of process by L2 (0, Tp; R?). Suppose X € L2 (0, Tp; R?);
for any positive integer j put,
id o r
X;(t,w) = X(t,w) ].fot 11X (s.)112 ds<j(t)'

Then X; € MZ2(0,Ty; R?). Also we see the sequence Z(X;) converges almost

surely and we define
T .
/(; X*(s,w)dW(s,w) = jl-l_’l'{.loI(Xj)(UJ).
Suppose X € L2 (0, Ty; R*). We can define for all t € [0, 75 ],
a [To
I(t,w) 2 /0 110.4)(8) X (s, w) dW (s, w).

Here I(-,w) is a martingale with respect to (F;,¢ € T) and we can find a

continuous modification of I.

Remark 1.1 Let o(t,w) be e matriz. Then [; o(s,w)dW (s,w) is the vector

with components
t
fo oi(s,w)dW (s,w),

where o; is the i-th row of o.

11



Let L!(0,To; R?) and L%(0,Tp; R?*?) be defined in a manner similar to
L2(0,To; R?). Let a € L.(0,Tp; R?) and B € LZ%(0,To; R**9). Consider
a family X(t) of adapted continuous processes with values in R?, which

depends on an Fp-measurable random variable z, and is defined by

(1.1) X(t,w) = o(w) + [ ‘s, w)ds + Ji * B(s,w) dW (s, w).

The stochastic integral equation (1.1) is called a solution of the following

stochastic differential equation:
(1.2 dX(t) = a(t) dt + B(t) dW(t),

with initial value X{0) = z.
Suppose X solves (1.2) and u(t, ) is a functional on [0, Tp ] x R%, belonging
to C12 ([O,To] X Rd). Then the It6’s Lemma [23] states that
u(t, X(1)) = u(0,X(0)+ [ ' (ut Futet %trace (ﬁﬂ‘um)) (s, X(s)) ds
(87 we) (5, X () dW(s), V1€ [0,To],

Let W, be a d-dimensional Brownian motion and F; be the augmentation
of the filtration generated by W. Suppose M is a local martingale with
M, = 0, which is right continuous and has left limits paths almost surely.

Then there exists a d-dimensional progressively measurable processes m such

that
To
/D llr(s)|ds < 00; 0 < To < oo,

and

t
M, = /(; w*(s)dW(s); 0<t < oo.

12



This result is known as the Martingale Representation Theorem.

Suppose 8 is a d-dimensional. measurable and adapted process satisfying
To
/ |16(s)|I?ds < co P-a.s.; 0< Tp < oo.
0

Set
a ‘g 1 2 ] <
Y; 2 exp [/0 6°(s) dW (s) 2f0 ()| ds]; o<t <.

Then the process Y satisfies the stochastic integro-differential equation
Yo=1+ [ Y, 6°(s)dW(s)
t = Y s) s).

If this continuous local martingale Y is a martingale we can define a family

of probability measures P, by:
P(A) £ E[1,Y:]; A€ F,0<t< T

The martingale property shows that the family of probability measures satis-

fies the consistency condition
Pr,(A)= P(A); A€F,0<5t<Th
Now define a process W by:
W, £ Wt—/otﬂ(s)ds; 0<t<L T,

Then the process W is a d-dimensional Brownian motion on (2, Fr,, Pr,).

This result is known as the Girsanov’s Theorem [22].
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1.7 Classical Optimal Stopping Problems

At what time do we decide to stop playing roulette? Optimal stopping tech-
niques are mathematical methods for discussing this type of problem, in which
the decision taken at each instant can be based only on past experiments.
Let (X»),5o be a sequence of successive fortunes of a gambler. These
random variables are defined on a probability space (2, F, P). At time n, the
events which the gambler knows, belong to a o-algebra F;,. We assume the
fortune process is F,-adapted. The gambler must choose a stopping time 7,
that is a random number of times that he plays before stopping. The problem

of optimal stopping is then the following:

i) Determine the optimal average gain V =sup, E[ X, ].

ii) Determine if possible, the optimal stopping time T such that V =

E[X,.].

In addition to the gambling situation above, there are many optimal stop-

ping problems in real life situations. We describe a few more examples.

Example. A participant in a contest is given a sequence of questions. Every
time he answers a question correctly, he gets a reward and the right to proceed,
or withdraw, from the contest. If he cannot answer a question correctly he
looses all the money he has received and he is out of the contest. Suppose
that he can answer the i-th question correctly with probability p;. What is
the best time for him to stop the game? What is the expected gain when

stopping at such an optimal time?

14



Example. (Marriage or Secretary Problem)

Assume we are going to investigate n objects in succession: they are of dif-
ferent quality and can be ranked accordingly. Suppose at time k, the object
zi passes by, in random order, for inspection. Each object can be evaluated
to be either inferior or superior to the objects examined so far. Every time
an object passes by we have to decide whether the object is accepted or not.
If we choose to accept the object, then the process stops. However, if an
object is rejected we can no longer choose it and the process proceeds. What
selection scheme should we use to maximize the probability of obtaining the

best object?

These two scenarios are some of the classical examples of optimal stopping

problems. In fact, we can extend these problems to the continuous-time

setting.

Example. Let X, be a progressively measurable process which denotes the
price of a stock at time . Suppose there is a fixed transaction cost a > 0
for the sale of such stock with a discount rate of » > 0. We would like to
decide when to sell the stock so that the expected, discounted net sale price is
maximized. In this case, the reward that one gets for selling the stock at time

t would be e~ (X; — a). Hence, we would like to seek the optimal stopping
time 7™ € 7 such that

Ele™ (X —a)] = sup B [e" (X, —a)]. O

Optimal stopping problems are ubiquitous in decision making situations.

However, sometimes the setting is too general for real life applications. For

15



instance, in the last example, we cannot sell the stock at any time, twenty
four hours a day, seven days a week. We wish to model the situation where
there are some restrictions on the time that we can stop, or take action. This
leads to a more general class of optimal stopping problems, where details are

discussed in the following chapters.
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Chapter 2

Optima! Stopping Problems

2.1 Introduction

Let (Q,F, P) be a probability space, and consider a filtration (F¢,t € T)
where the index set T is a subset of the set B+ of non-negative extended real
numbers. Also, for simplicity, we assume T contains a maximal element co.
Now consider a stochastic process X = (X;,t € T) adapted to (F,t € T).
Let 7 be the collection of all P-a.s. T-valued stopping times with respect to
(Fi,t € T), and let T(X) be the collection of those 7 € T for which X, isa
random variable and E [X,] is defined. |

An optimal stopping time for the process X is a stopping time 70 € 7 (X)
for which E[X,, ]| =sup,erx) E[X:]-

The results on optimal stopping were first developed for the case where
T = N, the set of extended positive integers. Fundamental results for op-
timal stopping in the discrete case were published by Snell 31} , and later by
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Dynkin [14], Chow and Robbins 8], Neveu [26] and Siegmund [30]. With the
foundations in the discrete parameter case, Fakeev [18], Bismut aud Skalli [4]
studied the case where T = R¥.

In the first section we are going to investigate the optimal stopping problem
for a collecticn of stopping times whose ranges are restricted to a particular
subset in T'. With this generalisation, we can study a wider class of optimiza-
tion problems and obtain a unified approach to the opt;ima.l stopping problem

in both the discrete and continuous - parameter cases.

2.2 Basic Properties and Definitions

Let (R, .F, P) be a complete probability space with a complete right continu-
ous filtration (F;,t € T') where T' = R+ or [0,T,] for some Tp € R*. In the
first case co = 00, in the latter case we have co = Tj.

Let (X;,t € T) be a real-valued stochastic process satisfying:
(2.1) X120 Pas. forallteT,

(2.2) X, has right continuous paths and is adapted to (F,t € T),

(2.3) E [supX,] < oo.
teT

Remark 2.1 Condition 2.1 can be removed if we strengthen condition 2.3

to E [sup,er|Xi]] < oo.

A measurable subset S of T is called a stopping region if co € S. A
stopping region S is called feasible if (s,) C S and s, }§ s implies s € S.
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Finally, a stopping region S is said to be right continuous if for each s €
S — {0}, there exists a (s,) C S such that s, || s, which means (s,) is
strictly decreasing and s, — s. The symbol S is used to denote the collection
of all P-a.s. S-valued stopping times with respect to (¥;,t € T'). Obviously,
S is non-empty and S C 7.

Example. T = R¥, S = N is a feasible stopping region. ]

Example. T = [0,7,], S = [So,To] is a feasible right continous stopping
region for Sp € T — {To}. D

Let v,0 € T and v < o, we denote

57 & {reS|Pr<T<o) =1},
S;, 2 {reS|P(y<T<Lo)=1}.

If 0 = o, then we shall omit the.upper index.

2.3 Essential Supremum

Let G be a sub-sigma field of F. For an arbitrary family # = {Y,,a € A} of
G-measurable extended real-valued functions defined on (2, F, P), let
Z = esssupY,
a€A
denote the G-measurable function that satisfies:

i) Z2Y, P-as.foralla€ i

ii) For any G-measurable function Z' > ¥, P-a.s. for all a € A, we
have Z' > Z P-as.
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The function Z is called the essential supremum of the system H. By defin-
ition, we assume the essential supremum of an empty family of measurable

functions to be the measurable function idential to zero P-a.s.

THEOREM 2.3.1 (Neveu) Suppose G is a sub-sigma field of F. For
every non-empty family H of G-measurable extended real-valued functions
defined on (2, F, P), the essential supremum Z of H always ezxists and is
unique P-a.s. Further, there ezists at least one sequence (Yo,,n € N) C H
such that Z = sup, ¢y Ya. If the family H is directed upwards, the sequence
(Yn,n € N) can be chosen to be increasing P-a.s. and then Y, 1 Z.

Proof:

Since only the order structure of R is involved in this theorem, we can
restrict ourselves to the case wh;are the functions in # take their values in
[0.1] by mapping R onto [0,1] by an increasing bijection.

Let J be the class of all countable sub-families of H. For every J € J,
introduce the measurable function Y; defined as the countable supremum
Y7 = supycsY. Next let us consider the supremum « = sups.7 E[Y7].
This supremum is attained because if () is a sequence in J such that
E[Y7,] = e, then J* = U, J. € J and E[Ys.] = a. Now denote Z’' =
Y., Z' is G-measurable, and we are going to show Z’ satisfies property i)
and ii) in the definition of essential supremum.

For every Y’ € H, we have Z' VY’ = supyegeyyy Y- We thus have
a = FE[Z'] < E[Z'VY'] € a which, since « is finite, is only possiblc if
Y’ < Z' P-ass. Property ii) is followed from the definition of Z’. Hence
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Z = Z'. Also, the uniqueness of the essential supremum follows directly from
property ii).

Arrange J* in a sequence (Y,); then Z = Z’ = sup,, Y,. Now if the family
7 is directed upward (that is, if for any pair Y;, Y2 of functions in H, there
exists a Y3 € H such that Y3 > Y; P-as. fori =1,2), set Y’; = Y; and take

Y’,.+1 to be a function in # which dominates Y’, and Y4,. Then (Y',) CH
and Y', 1 Z. o

2.4 ’Supremum’ Measure

Given a stochastic process (X,,t € T) satisfying (2.1), (2.2) and (2.3). Let
~,0 € T such that v < o P-a.s. and S be a stopping region in T. We define

set functions I'] and '], on F, by,

r7(A4) £ sup E[X;14],

TE Sg

>

I3, (A) sup E[X,;14] forany A€ F,.

TESS +
For consistency we define the supremum over an empty set to be zero. Note
that the above definitions are well defined since (X,,t € T') is adapted and

right continuous, we have (X;,t € T) progressively measurable and X, is

F.-measurable.

Remark 2.2 A similar set function of this kind was introduced by Fakeev
in [18], but was not widely used in the theory of optimal stopping problems.

Here, we are going to investigate these set functions in detail.
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THEOREM 2.4.1 Suppose 7,0 € T are such that v < o P-a.s. and S is

a stopping region in T. Then I'] and I';  are finite measures on F,.

Proof:

We only need to show I'] is a finite measure on F,. The proof for I']
follows similarly. Also we assume SJ # @, otherwise the result is trival.

Suppose A = U2, A;, AiNA; =0 for i # j and A; € F,. Obviously, we
have -2, I'(A;) = I'9(A) + € for some € > 0. We only need to show ¢ = 0.

Suppose not, then for every ¢ € N, there exists 77 € SJ such that I'J(A;) —
e/2t! < E [X.,.'_-IA‘.]. Take 7 = ¥2, 7714, + 7"14c for any v* € §7. It
is routine to check 7 € 83 and 2, I'}(A:) —€/2 < E[X,-14). Hence
I'?(A) + €/2 < E[X;-14]. This is a contradiction. We, therefore, have
e=0.

Finally, because of (2.3), we have I'] is a finite measure. (]

THEOREM 2.4.2 Suppose v,0 € T are such that v < o P-a.s. Then,

dre

2.4 L = ElX,|F],

(2.4) 7P efseigp [X: | 7]
dre

(2.5) + = esssupE[X,|F,].
dP TES.';+ .

Proof:
We shall only prove the case for (2.5). (2.4) can be proved similarly. Also,

we assume S5 # @, otherwise the result would be trivial.

. drg, . .
First of all, 5+ is F,-measurable. Also, given any 7 € SJ_, we have

[4I7, -
B| 25| =T5.(A) 2 BIE[X, | £ ]14] forall A€ %,
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Hence %—*— > E[X;|F]forall T€S],.

Now, let Y be any F.,-measurable function such that Y > E [ X, | F, ] for
all T € S5, . Then E[Y14] 2T (A) forall A€S5T, .

dre
Also, we have Y > —z+. Hence the result follows. O

Remark 2.3 Note that the collection {E[X, | F,],7 € S} of F, - meas-

urable functions is directed upwards.

THEOREM 2.4.3 Lety,\,0 € T be suchthaty < A < o P-a.s. IfBe F,

satisfies the condition,

(ANB)>T2(ANB) foral Ac F,,

then we have
Ir7(AN B)=TS(ANB) forall AcF,.

Proof:

Let A be an arbitary set in F,; since I';(A N B) > I'{(A N B), we only
need to show I'7(AN B) < I'{(AN B).

1. If S = @, then S{ = . Hence the result.
2. If S7 # 0 and S = 0, then SJ = S5. Hence the result.

3. S? # 0 and S =0, then ST = 8}, and I'Y(AN B) =T5(AN B) >
%(A N B) = T)(A N B). Hence the result. Note the last inequality

follows from the given hypothesis on B.
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4. If 82 # 0 and S # 0, then obviously S # 0. For any 7 € SJ, we can

write 7 = 1,<am1 + 17527, for some 1; € S and 7, € S{. Hence

E[X:1anB] E [X,, lAan{rg,\}] +E [XT, 1Aan(r>A}]
DRXANBNn{r <A} +T(ANBN{r>A})
ANBN{r<A}D+I(ANnBn{r> A}

7(AN B).

IA A

Therefore, (AN B) < T'{(AN B).
Hence, it follows that [';(A N B) = I'{(AN B). o

THEOREM 2.4.4 Lzt “sh 0 €T be such thaty < A < o P-a.s. If B € F,

satisfies the condition,
(AN B) < I‘f;(A NB) foral A€F,,
ther we have

F(ANB)=TJ(ANB) foral AcF,.

Proof:
Mimic the proof of Theorem 2.4.3. O

Corollary 2.4.5 Let y,\,0 € T be such that y < A < o P-a.s. If B€ F,

satisfies the conditions,

{(AnB) > TXAnB)
(ANBY) < TYANB°) forall A€ F,,

24



then we have
I’(A) =TH}(ANB°)+T3(ANB) forall A€ F,.

Proof:
Apply Theorem 2.4.3 and Theorem 2.4.4. o

THEOREM 2.4.6 Suppose that v,A € T, then we have
L (An{y=2})=T\(ANn{y=A}) forany A€ F,UF,.

Proof:

Note that S, and S, are non-empty sets. Now given A € F,UF,, without

loss of generality, we can assume
L (An{y=A})=T(AN{y=A})+ € forsome ¢ >0
Assume € > 0, then there exists 7/ € S, such that
T(AN{y=2}) < E|Xrlanp=n | +€/2.

Take 7* = 157 + 1pca X for any X' € S,. It is routine to check 7 € §,.

Then we have,

Cy(AN{y=2})

v

E [X‘r‘ Langy=2) ]

= E[Xplang=xnirza) |+E [Xx'lAn{v=x}n{r'<A} ]

E [X-r'lAn{—y=)\}n{'r'2’y}] + E [XA'IAn{7=A}n{T’<1}]
E [Xf'lAn{'y=z\} ]

T (AN {y=2})—¢e/2

L,(An{y=A})+¢/2.

v

This is a contradiction. Hence the result follows. a
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2.5 Generalised Envelopes

Given a stochastic process (X;,t € T') satisfying (2.1), (2.2) and (2.3), let S
be a stopping region and v,0 € T be such that v < o P-a.s. We define

Y°(S) £ esssup E[ X, | F,].
TESY

If o = %0 P-a.s. , then we shall omit the upper index. The collection of random
variables {Y,(S) | v € T} is called the Generalised Dirichlet Envelope (GDE)
of (X;,t € T) with stopping region S.

Similarly, for any ¢t < s € T, we define
ZNS) £ Y (S)=esssupE[ X, | F.].
TES]

Again, if s = co, then we shall omit the upper index. The adapted process
(Z:(S) | t € T) is called the Generalised Snell Envelope, or process, (GSE)
of (X;,t € T') with stopping region S.

Without loss of ambiguity, we shall omit the stopping region S in the

above notations.

When S = T, these Generalised envelopes coincide with the definitions in

the classical theory as in [4], [7] and [18].

Remark 2.4 Obviously, the GSE is a subset of the GDE. We would like to
tnvestigate under what conditions the Generalised Snell Envelope is sufficient.
That is, when does Z,(S) = Y,(S) for any v € T ? In that case one could
construct the GDFE from the GSE.
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THEOREM 2.5.1 Suppose v € T and G is a sub-sigma field of F.,. Then,
ElY, | G] = esssup E[X; | G].
TES,
In particular, suppose G is a sub-sigma field of ;. Then,
E[Z, |G = essisupE[XT | Gi.
TES,

Proof:
We prove only the first assertion; the other follows directly. First of all,
E[Y, | G] is a G-measurable function such that for any 7 € S,
E[E[Y,|G]14] = E[Y,14]
= [ (A) by (2.4)
> E[X,14]
= E[E[X,|G]la] forany A€G.
Hence E[Y, | G] > E[X; | G] for any T € S...

Next, let Y be any G measurable random variable such that ¥ > E[X, | G]
for all r € S,. Then

E[YIA] 2 sup E[X-,.IA]
TES,
= T,(4)
= E{EIY,|Gll4] forany A€G.
Hence Y > E[Y, | G], and we can conclude that

ElY, | G] = esssup E[X: | G). (]
TES,
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Corollary 2.5.2 Suppose vy € T, then we have
E[Y,] = sup E[X,].
TES,
In particular, we have

E{Z:)=sup E[X,;] foranyteT.
TES,

Proof:
Use the previous theorem and take G as the null sigma field, {0, Q}. (]

THEOREM 2.5.3 If y,A €T and ¥ < A P-a.s. , then we have
EIV\ | F1<Y,

In particular, the Generalised Snell process (Z,,t € T') of X is a supermartin-

gale with respect to (Fy,t € T).

Proof:

i

E[E[Y) | Fy]14] I'\(4)

< T (A)=E[Y,14] for all A€ F,

Hence the result follows. Again, the second assertion is a direct consequence

from the first assertion. O

LEMMA 2.5.4 Suppose X satisfies (2.1) - (2.8), then the Generalised Di-

richlet Envelope of X is uniformly integrable.
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Proof:

By (2.1), let M = sup,cs, E[X,] < oo; then by corollary 2.5.2 and
Theorem 2.5.3, we have E[Y,] £ M and hence P(Y, > ¢) < M/c. Then by
(24),

E[Ylyze] = sup E[X.1y5].

As P(Y, > c¢) < M/c is independent of v and X is uniformly integrable, the
right hand side tends to 0 as ¢ 1 0o, uniformly in v and 7. Hence the result
follows. O

Given a stopping time v € 7, one can always express v as a limit of a

decreasing sequence of stopping times which take on discrete values. Define

forn > 1;

~

o’s) if vy=00

- A{B;T"l if <

where [r] is the smallest integer greater than or equal to the real number
r. This is called the dyadic approximation of v from above. Obviously, each

[7]» belongs to 7 and takes on discrete values. Also we have [v], | 7 P-ass.

Now given a Generalised Dirichlet Envelope {Y, | v € T} of X satisfying
conditions (2.1), (2.2) and (2.3), we can define

Y, & Jim Yi1a forany y€T.

By Theorem 2.5.3, (Yr.,]n,fm,,) for n € N is a reversed supermartingale.
With lemma 2.5.4, we can establish the existence of the above limit. From the

next lemma, one would also determine the measurability of Y.+ given vy € 7.
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LEMMA 2.5.5 If+ is a stopping time in T, then Y, is F.,, -measurable.

Proof:
Refer to Section 1.3 of Chung [9]. ]

Given a Generalised Snell Envelope (Z;,t € T) of the process X satisfying
conditions (2.1), (2.2) and (2.3), one can define

a limsep Z, ift <oco
ZH- = slit
Z.z, if t =00

where D is a countable dense subset in T. Because the Snell Envelope is a
supermartingale, we have for P-a.s. w, Z¢ (w) exists for all t € T. Notice the
definition of Z,, is independent of the countable dense set D. One can see
this by considering the union of two different countable dense sets and taking
the limits of suitable subsequences.

Now for v € T, we can define
Zat () 2 Zoguy4 ()

THEOREM 2.5.6 (Bellman equation) Suppose 7,0 € T are such that

v < o P-a.s. , then we have

Y, = E[Y, | F]VY.
In particular, for t < s we have

Z:=E|Z,| F]V Z,.
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Proof:

We prove only the first assertion; the second assertion wnuld follow im-

mediately.
Let B= {E[Yo | Fo1= Y:;’} € F,. For any A € ¥, we have

Ir,(AnB) = E|[Y,lanB]
E[E|Y: | Fy]1ansB]
E[Y71408]
I°(AN B).

AV

Similarly, for any A € F,, we also have

T,(ANB) = E[Y,lans:]
E{E[Y, | 7y]lanp]
E [K:].Angc]

[°(AN B).

IA

Therefore, by corollary 2.4.5, we have

[ (A)=T,(ANB)+T3(ANB°) forany A€ F,

That is,

E[V,la}=E[(E[Y. | /]1VY¥{) 14] forany A€ F,.

Hence the result. (]
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Corollary 2.5.7 Suppose v is a stopping time in T, then we have

_{Yﬁ(S)vxq if 1€

\

Y,(S) ,
Yy4(S) if 1¢S5.

In particular, we also have

z,(5)={ Zu(S)VX, if teS
Zi1(S) if t¢ 5.

where S is the stopping region corresponding to the GDE and GSE.

Proof:
Again, we prove only first assertion. By the Bellman Equation, we can
write

Y5(S) = E [¥151.(5) | 7 | Vesssup E[ X, | F,].

T€ s_"’l n

Using uniform integrability of the GDE and right continuity of the filtration,

we have
Y (S) =Y (S)V eSSEigPE[Xr | Fol-
Because ’
esssupE[X, | F,] = { Ko A0 €§
T€S7 0 if v¢8.
Hence the result follows. o

2.6 Regularity of the Envelopes

In this section, we are going to look at the properties of the Envelopes when

the stopping region S is specified. Under some regular conditions on S, the
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Generalised Snell Envelope is right continuous, regular and characterized
P-a.s. uniquely by some of its properties. With S = T, these properties
coincide with those in the literature. Again, we adopt the same notations as

in the last section.

LEMMA 2.6.1 For any v € S, we have Y,(S) = X, P-a.s. In particular,
for anyt € S, we have Z,(S) > X; P-a.s.

Proof:
If v €S, then v € S,. Hence, we have

Y,(S) = ess sup E[X.|F]=2 X, P-as. o
LEMMA 2.6.2 Suppose v € T takes on discrete values, then
Z, =Y, P-as.
Proof:
Let v = 3%2,¢t1,=¢, P-a.s. For A € F,, we have

E[Z14] = )_E [Zt.lAﬂ{'v=‘-‘}]
=1

S°r., (An{y =t}

=1
I, (An{y=t}) by Theorem 2.4.6
i=1

= I, (A)
= E[Y,1la].

i

i

Hence Z, =Y,. o
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LEMMA 2.6.3 If v is a stopping time in T, then we have

KV"‘ = Z‘7+ P‘G-S.

Proof:
Suppose Qp C N is such that Z,, and Y, ; exist on I, and P(Q2\fp) = 0.
Then for w € $p,

Ve (@) = lim Ypjuw(®)

= lm Zpy,(w)(w)
= Zy(w). O

THEOREM 2.6.4 Suppose S is right continuous and v € 7. Then we
have

Y,(8) = Y;4(8).
In particular, the Generalised Snell Envelope (Z,(S) |t € T) is a right con-

tinuous supermartingale with respect to (F;,t € T).

Proof:

By corollary 2.5.7, one must show Y, ,.(S) = X, P-ass. fory € §S. In
fact, because of lemma 2.6.3, we only have to show Z.,(S) =2 X, P-a.s. for
v € S.

Without loss of generality, we assume 4 < co P-a.s. For P-a.s. w, 7(w) €
S and there exists a distinct sequence {sn(7.,)} C S such that s, || y(w).

Then we have,
Z,4(S) = lim Z..(S).
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> limsup X,, (w) by lemma 2.6.1

n—00

= Xyi(w)
= X,(w).

The last equality holds because of {2.2).

By Theorem 2.5.3, it follows that (Z,(S) |t € T') is a right continuous
supermartingale with respect to (¥, € T'). (]

THEOREM 2.6.5 IfS is a right continuous stopping region, then the Gen-
eralised Snell Envelope is sufficient. That is

Z,(S)=Y,(S) P-as. jforany v€T.

Proof:

By lemma 2.6.3, we have
Z,+(S) = Y,4(S) P-as.
Since S is right continuous, following from Theorem 2.6.4
Z,(S)=Y,(S) P-as. (m]

THEOREM 2.6.6 Suppose S is a discrete stopping region, then Z(S) is

the minimal supermartingale dominating X on S.

Proof:

By Theorem 2.5.3 and lemma 2.6.1, Z(S) is a supermartingale dominating

X on S. Suppose G is a supermartingale such that G, > X, P-a.s. for all
s€Ss.
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Let t € T; by considering the restriction of G to the time set SU {t}, and

the discrete optional stopping rule, we have for all 7 € S;

G, > E[G.|F] P-as.
2 E[X-r |ﬁ] P-a..s.

Hence, G; > Z,(S) P-as. forallteT. 0

THEOREM 2.6.7 Suppose S is a right continuous stopping region, then

Z(S) is the minimal right continuous supermartingale dominating X on S.

Proof:
Mimic the proof in Theorem 2.6.6 and use the continuous time optional

stopping rule. o

Remark 2.5 Suppose S is a right continuous stopping region and H is a
minimal right continuous supermartingale dominating X on S. By the min-
imality of H and Theorem 2.6.7, H is a modification of Z(S). Because H and
Z(S) are right continuous, then H and Z(S) are indistinguishable. Hence,
Theorem 2.6.7 is a characterization of the Generalised Snell Envelope with

respect to (Fe,t € T).

LEMMA 2.6.8 Let v be a stopping time in T and G be a supermartingale.
Suppose either v takes on discrete values, or G has right continuous paths,

then {Gyat |t € T} is a supermartingale.
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Proof:
We need to prove G,a, = E[Gar | F,]forr = s. Supposey > s P-as. .
Then using the discrete or continuous version of optional stopping rules, we

have
Ga 2 E[G‘yl\r Ij:s]-
NOW suppose 7y S S P—a.s. , WE ha.ve

Gy =E[G, | F.]=E[Gyr | F: ]

Putting these together, we have

G'y/\s = Gal'y>a + G'yl'yga
Z E’[G-yAr]-q)s I fa] + E[GqArl‘ySs I fa]

E[{Gyr|F]. DO

Given a stochastic process X satisfying conditions (2.1) - (2.3) and a
stopping region S C T, the process X in the optimal stopping problem with
respect to S is called the reward process. A stopping rule 7§ € S C 7 is
called an optimal stopping rule if

E[X;] =§ggE[X,].

The optimal stopping problem with respect to S for the reward process X is
the problem of determining whether or not an optimal stopping rule exists,
and of characterizing it if it does exist. If € > 0, a stopping rule 73 € S is

called an e-optimal stopping rule if
E{X,|> ElX,]—e.
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Generally, if we want to maximize our expected rcward after a random or
deterministic time v € 7~ , we can generalise the abave setting by considering
the optimal and e-optimal stopping rules 75,77 € § C T after time vy such
that

E [Xr;] = sup E[X'r]a
TES,

E[Xy] 2 sup E[X,]—e.

TES,

Notice that because sup,es E[X;] = [o(2) and sup,cs E[X:] =
I,(€), it is reasonable to believe the optimal stopping problem is closely

related to the 'Supremum’ measure as well as the Generalised Snell Envelope.

THEOREM 2.6.9 Let Z be the Generalised Snell Envelope of the reward
process X satisfying conditions (2.1) - (2.3) with respect to a discrete or right
continuous stopping region S. Suppose 73 € S C T. Then the following are

equivalent,

(1) 714 is an optimal stopping rule.
(2) E[Zo)=E|[Z;]|=E[Xg].
(3) Z;;=X,;3 P-as. and (Z.,.;M |t e T) is a martingale.

Proof:
(1) = (2) : Because S is a discrete or right continuous stopping region, then
either 75 takes on discrete values or Z is right continuous. By Theorem 2.5.3,

Z is a supermartingale dominating X on S, so similarly to the proofs of
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Theorem 2.6.6 and Theorem 2.6.7, we have
ElZ]|2E[Z;] 2 E[X4].
On the other hand, 7§ is optimal so we have

E[Z,] =To(Q) = E [ X]-
Therefore, E[2,] = E[Z,; | = E[ Xz ].
(2) = (3): Since 7y € S, we have Z,» > X,» P-as. If P (Z.,; > X,o-) >0,

then E[Z;;] > E[Xs]|. This is a contradiction. Therefore, Z,; = Xz
P-a.s.

Again, by a similar argument to that above, we have
E[Zy]Z E [ZT;At] > FE [Zf;] .

Since E[Zo] = E [ Zs; |, we see E[Zosn ]| = E[Z0]. Now (Zzn |t €T) is

a supermartingale with constant expectation, hence it is a martingale.
3)=(1): As (Z,O-M |t e T) is a martingale and Z,; = X+, we have
E[Xy|=E[Z;)|=E[Zyng| = E[Zyn] = E[Z].

Hence, 7 is an optimal stopping rule. O

Let S be a feasible stopping region and « € 7. Define
o (w) Sinf{te S|t> v(w), Z(w) = Xi(w)}-

Notice the infimum is always taken over a non-empty set as Zs = X
P-a.s. Also, as S is feasible, we have o € S,. Further, if S is discrete

or right continuous, we have Z,. = X,s P-as.
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LEMMA 2.6.10 Suppose S is a feasible and right continuous {discrete)
stopping region. Let v € T and T € S,,. Then the reward process X salisfies
the following inequality,

E[Xonoy | Foy | 2 E[X. | 7).

Proof:

‘XTAG." = 1726;A0:+1T<0;A1‘

1

11203’ Za; + 1,-<o;)x’.,- |
E [ 1720."Z1' l fa;] + 11<a;X-r
E[1;505 X, | Fos | + Locos X

v

v

Now for any A € F,,, we have

E[Xeno3la| 2 E[lisosXela] + E[1,cop Xo14]
= E[XT]'A]' O

THEOREM 2.6.11 Let S be a right continuous, or discrete, stopping re-

gion. Moreover, suppose S is feasible. If v € T either takes on discrete

values or S is right continuous, then we have
I ()= F,,’(Q).
That is,

E|Z,|=E|Z:s].
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Proof:

Assume the equality fails, so we have I () = T',.(§2) + ¢ for some € > 0.
Define

€2 {reST | E[X,] 2 T,,(R) +¢/2}.
We shall see £ is non-empty.

First of all, because of the ’supremum’ property of I' (f2), there exists

7' € S, such that

E[X,] = T (Q)—¢/2

= [,.(?)+ ef2.
Next, since 7' A o7 € Sfy':’ and by the previous lemma, we have
E[Xpnos | 2 E[Xn] 2 Tog(@) +e/2.
Hence, 7' A o} € €. |

Our next step is to show £ has a unique maximal element. Suppose L is

a linear order set in £ in which the order relation is > P-a.s. Define

=« O
T* = esssup T.
TEL

It is known that 7* is a stopping time and there exists a sequence (7,,) C L

such that 7,, T 7 P-a.s. Because of the unifcrm integrability of X, we have

E[X. ] = E[X:-]. Also, as E[X,,] > T,.(f2) + &/2, we then have
E{X;.]12 F,;(S'l) + €/2.

At the same time we have v < 7, < 0 P-a.s. implying 7* € S—:;. Therefore,
7* € £. Since £ has an upper bound in £, by Zorn’s Lemma, there exists an

unique maximal element A in &.
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Obviously o3 ¢ £, and we have A < o7, with strict inequality holding on

some non-null subset of §). By the definition of o’ one can deduce
F\(Q) = E[Z\] > E[X,].

Therefore, there exists A’ € S, such that E[ X ] > E[X,]. Similarly to the

above argument, we have A’ A o, € S:; and
E[Xxnry] 2 E[Xn]> E[X)] 2 T,.(2) + /2.

Therefore, A’ A o € £. Now X Ao} > X implies A’ A ¢, = A. This would
contradict the fact that £ [X ,\:A,;] > E[X,]). Hence, we have € = 0. ()

Corollary 2.6.12 Let S be a discrete or right continuous stopping region.
Moreover, suppose S is feasible. If v € T takes on discrete values, or S is
right continuous, then we have that o7, is an optimal stopping rule after time
v. In particular, og is an optimal stopping time and satisfies all equivalent

statements in Theorem 2.6.9.

Proof:

E[X,s|=E[Zs] = E[Zy]=sup E[X,]. O
TES,

So far, we have shown that if S is right continuous, the {eneralised Snell
Envelope Z(S) with respect to S is sufficient and it can be characterised as the

minimal supermartingale dominating the reward process X on the stopping
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region S. Moreover, Z(S) has P-a.s. right continuous paths if S is right
continuous. In addition to these regularity conditions on S, when we have
the feasibility condition, we can find an optimal stopping rule for the optimal
stopping problem.

A supermartingale G is called regularif for any monotone sequence {7, }

T converging P-a.s. to a stopping time v € 7', we have

nli)noloE[G%] = E[G,].

LEMMA 2.6.13 Suppose X satisfies (2.1) - (2.8). If S is right continuous
and feasible, then Z(S) is regular.

Proof:

We only need to prove v, 1 v implies E[Z, ]} E[Z,] as the monotone
decreasing case is trivial.

Notice o3 — 7' for some 9’ € S, and 7' > v. Then

E[Xy] = lim E[X,; |

n—co

= lim E[Z,, |

n—oo

= lim E[Z,.].

However, E[Z,1> E[Z,] 2 E[Xy]=lim,1 E[Z,,]. o

LEMMA 2.6.14 Suppose X satisfies (2.1) - (2.3). If S is right continuous,
then Z(S) is in class D.
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Proof:

Z is said to be of class D if the set of random variables {Z, |7 € T}
is uniformly integrable. However, if S is right continuous, then the GSE is
sufficient for the GDE. That is Z, = Y, P-a.s. Hence, the result follows

from lemma 2.5.4.

THEOREM 2.6.15 Suppose Z is the Generalised Snell Envelope of the
reward process X satisfying conditions (2.1) - (2.3) with respect to a feasible,
right continuous stopping region S. Then Z has a unique decomposition of
the form

Z,= M, — A,.

Here A is a continuous, non-decreasing predictable process such that Ag = 0

P-a.s. and M is a martingale.

Proof:

It follows from Theorem 2.6.7, lemma 2.6.13, lemma 2.6.14 and the Doob
Meyer Decomposition [13]. (m]

From Theorem 2.6.9, one can see g is the smallest optimal stopping rule.
One can also ask for the largest optimal stopping rule. The idea then is to
discover when Z),; ceases to be a martingale, where A € T is given. Suppose
S is a right continuous stopping region, so we can decompose Z = M — A
into a martingale M and a predictable non-decreasing process A with A9 = 0.

Since A is predictable,

Ay =sup{t € S| A =v},
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is a stopping rule. This exit time of A from 0 thus gives the last time when

E[Ax] =E[4]=0.

LEMMA 2.6.16 Suppose 75 € S is an optimal stopping rule. Then we

have

T < Ay P-a.s.

Proof:

Since E[Z,] = E [Z,;], by writing Z = M — A for the Doob Meyer
Decomposition of Z, we have E [A/I,o-] = E[M;]. So E {AT;] = E[Apl,
and hence A,: =0 P-as. This implies 7¢ < Ag. o

THEOREM 2.6.17 )] is the largest optimal stopping rule.

Proof:
Since E{Zs] = E [Z,\a], by Theorem 2.6.9 we have Aj is an optimal

stopping rule. Usiug the previous lemma, we see Ag is the largest optimal

stopping rule, 0

Corollary 2.6.18 A stopping rule 7 € S is an optimal stopping rule if and
only if X, = Z, P-a.s. and 7 < A}.

Proof:
This follows from Theorem 2.6.9 and the definition of Ag. o
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2.7 Lagrange Multipliers

In [12], Davis and Karatzas proposed a deterministic approach to the (ordin-

ary) optimal stopping problem. They proved that

f.g};)-E[XT] =F [s:telg(Xt + Mg, — NI:)] )
where M is the martingale compenent in the Doob Meyer Decomposition of
the ordinary Snell Envelope Z of X. Thus, the process a; = Mz, — M, is the
Lagrange multiplier corresponding to the "non-anticipativity constraint” that
7 be a stopping rule, (rather than a generai non-adapted random time). Davis
and Karatzas used many properties of the optimal and e-optimal stopping
rules to prove their proposition.

A npatural question is : Can we obtain the ”Lagrange multiplier” for the
generalised optimal stopping problem with respect to a stopping region S7?
Similarly to the properties of the GSE, this ”"Lagrange process” («a.) should
depend on the stopping region S. Putting S = T as a special case, one
would expect that we would require S to be right continuous and feasible.
At the same time, as Davis and Karatzas obtained their result by using the
properties of optimal and e-optimal rules, feasibility seems to be an essential
prerequisite. However, it turns out that feasibility is not required in the
proposition.

In this section, we are going to investigate the above problem. However,
we cannot imitate Davis and Karazatas’s approach. The problem is that S
may not be connected and piecewise estimations become tedious. Here, we

are going to prove the generalised version of the above proposition by using
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a completely different but elementary approach.

LEMMA 2.7.1 Let X be a reward process satisfying (2.1) - (2.3). Suppose
S is a right continuous stopping region. Then we have

[sup(A —M)If}]-—esssupE[X - M, | F].
8€ES: TES:

where M is the martingale part in the Doob Meyer Decomposition of Z(S)
and S; £ [t,0]NS.

Proof:

Notice we do not require feasibility of S for Z to have the Doob Meyer
Decomposition. The only loss is the continuity of the predictable part in the

Decomposition. For simplicity, we define

€S,

V.2 E [sup (X — M) | J-',] .

If r; < ry, then we have

E[V | Fu] = E[sup(«\ —M)Ifr,]

ae,-z

< E[sup(x —M)m.]

86 Le

= V.

Hence V is a supermartingale. Furthermore, using monotone convergenece
theorem and the right continuity of X — M, we can show E [V;] is right

continuous in ¢, and thus V is a right continuous supermartingale.
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Next, we are going to show V dominates X — M on 5. Given t € S, we
have

Xe—M, < sup(X,—-M,)
8€S:

E[sup(x,—M,) m]

S€ES:
= V.

X — M,

IA

Then, last but not least, we show V' is the minimal right continuous
supermartingale dominating X — M on S. The lemma then follows directly
from Theorem 2.6.7.

Suppose G is a right continuous supermartingale dominating X — M on
S. Hence we have

Gt'i-A’ItZXg fOl' tGS.

Hence G + M is a right contiruov: .upermartingale dominating X on S. By

Theorem 2.6.7, we have
G+ M, 2 Z,(S) 2 X, for t € S.
Subtracting M, from the above equation, we have
G,2—-A,2X,— M, for t € S.

Since A is the non-decreasing predictable process in the Doob Meyer Decom-

position, we have for t € S,

Gy >—-A, 22— inf A, > 3up(X, - M,)
8€Se 8€ES:
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Hence, for any t € S, we have

GgZE[SUp(X,—M,)'If;]=K o

3€Se

THEOREM 2.7.2 Suppose that X satisfies (2.1) - (2.3), S is right con-
tinuous and define o, = Mg, — M,. Then

Zd(S) = E | sup (X, + au) | z] .
€S,

Proof:
Z(S) = esssuPE[)"rL?:t]

TES,

= esssupE'[)t»r M. | F ]+ M,
TES:

= esssupE[X, - M, |F )|+ E[Ms | F:]
TES:

= Blap(X.— M) | 7|+ B[Ma | 7]
3€ES:

= [sup()& + a,) Ift] N =

€S

Corollary 2.7.8 Suppose that X salisfies (2.1) - (2.3) and S is right con-

tinuous. Then

sup E[X,]=E [sup()k +Ota)]
TES: SES,

Proof:

This is a direct consequence of Theorem 2.7.2 by taking expectations on
both sides. O
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Corollary 2.7.4 (Davis and Karatzas) Suppose that X satisfies (2.1) -
(2.3) and S is right continuous. Then

supE[X,;,]=E [sup (X + at)] .
TES teS

Proof:
This is a direct consequence of Corollary 2.7.3. o

Remark 2.6 By taking S = T in corollary 2.7.4, we have the original ver-

sion of Davis and Karatzas’s proposition.

Corollary 2.7.4 has a very interesting intrepretation. Because E[a,] =0
for any 7 € T, we have
sup E[X,4+a;]=F [sup(X, + a.)] .
TES tes

The left hand side of the equation represents the best a "gambler” can achieve
and the other side represents the best a ”prophet” can achieve. Hence, given
a process X, we can find a "penalty o” so that a prophet can only do as well

as a gambler in the game corresponding to X + a.

THEOREM 2.7.5 Suppose X satisfies (2.1} - (2.3) and S is a right con-

tinuous such that Z(S) is a non-increasing predictable process. Then

supE[X,]=FE [sup)t.’s.l .
TES teS J

Proof:

We have M; = 0 and hence the result. (m]
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2.8 Special Cases of the Stopping Region

In this section, we are going to summarize the chapter by looking at some

special cases of the stopping region.

In the case where S =T is a right continuous and feasible stopping re-
gion, we have most of the results from the previous sections. The Snell Envel-
ope Z of process X is the minimal regular, right continuous supermartingale

dominating X over T. For stopping times ¢ = v P-a.s. , we have

I

Z, = esssupE[X,|F,],
T2y

Z, = E[Z.,|F}VZ,

Z»y = Z—y+ A\ X‘y.

Also, the stopping time of = inf{t > 0| Z; = X,} is the optimal stopping

rule.

It is quite interesting to see how we pass from the continuous time results
to the discrete case in which the time index is N. Suppose (X,, |n € —IV) isa
discrete time stochastic process and A is the collection of all stopping times

taking values on N. We define
X2 Xy and F; £ Fiy foranyte R+

where |#] is the largest integer smaller than or equal to ¢ and [oo] = co. Then
X satisfies (2.1) and (2.2) with respect to the right continuous filtration F;j.
Denote R as the collection of all stopping times taking values on R¥. With
t;he discrete stopping region N C R¥, we can express the discrete optimal
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stopping problem in term of the generalised optimal stopping problem that

we have proposed, because for m € N we have,

ZnZesssupE[X, | Fn)=esssupE[X!|F. ] Z' (N).
TENM TENm

Again we can characterise Z, as the minimal supermartingale dominating

X, over all integers. For stopping times o > v P-a.s. in A/, we have

Z, = esssupFE[X,|F,],
27

Z, = E|Z,|F,}V Z3,

Zym = FElZpy | Fn]V X

Also, the stopping time o = inf{n > 0| Z, = X,.} is the optimal stopping

rule.
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Chapter 3

Financial Markets

3.1 Imtroduction

The aim of this chapter is to model a financial market in the context of
stochastic calculus. We shall deal with a financial market M in which d +1
assets (or securities) can be traded continuously. These assets include a risk
free asset, called a bond, and d risky assets called stocks. The prices of these
stocks are driven by the same number of independent Brownian motions,
which model the exogenous forces of uncertainty that inﬂuence the market.
The interest rate of the bond, the appreciation rates of the stocks, their di-
vidend paying rates, as well as their volatilities, constitute the coefficients of
the market model. We impose some reasonable constraints on these coffi-
cients so that the financial market behaves regularly. At the same time, we
are going to define wealth, investment strategies or portfolios and consump-

tion processes in terms of stochastic calculus. This language assists us in
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describing continuous time trading in terms of mathematics.

Instrumental in the approach that we adopt are two fundamental results
of stochastic calculus: the Girsanov’s change of probability measure and the
representation of Brownian martingales as stochastic integrals. The former
constructs processes that are independent Brownian motions under a new,
equivalent probability measure, which equates the rates of return of all stocks
and interest rate of the bond. The latter result provides the right investment
portfolio for an investor who wants to achieve a certain level of wealth at any
particular time. We assume that the reader is familiar with both these results.
They are discussed in several monographs and texts dealing with stochastic
calculus, such as [6] and [22].

This chapter is quite basic in its mathematical content. However, it serves
as an important prerequisite for the theory of option pricing. Most of the

results here are discussed in the the paper of Karatzas [21].

3.2 The Financial Market Model

Let M be a financial market with d + 1 assets which can be traded continu-
ously. One of them is a non-risky asset, called the bond, (also frequently

called a savings account), with a price Po(t) given by
(31) dPo(t) = Po(t)r(t)dt, Po(O) = 1.
and Py(t) determines the discount factor

(3.2) B(t) = (Po(t)™".
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The remaining d assets are risky; we shall refer to them as stocks, and assume
that the price P;(t) per share of the i-th stock, is governed by the linear

stochastic differential equation
d
(3.3) dPi(t) = Pi(t) [b.'(t)dt + Z%‘(t)dwj(t)] )
=1

Pi(0) = pi, 1=1,2,---,d.

In this model, W(t) = (W;(t),- - -, Wq(t))" is a standard Browniar motion
in R?, whose components represent the external, independent sources of un-
certainty in the market M; with this interpretation, the volatility coefficient
gi;(+) in (3.3) models the instantaneous intensity with which the j-th source
of uncertainty influences the price of the i-th stock.

As is standard in the literature, our market M is assumed to be an ideal
market. In other words, we have infinitely divisible assets, no constraints
on consumption, no transaction costs or taxes. However, we shall allow
for constraints on portfolio choice, such as limitations on borrowing from

a savings account, or on short-selling of stocks, and so on.

3.3 Probabilistic Setting

We fix, from now on, a finite time interval T = [0, T ] in which we shall treat
all of our problems.

The Brownian motion W in (3.3) will be defined on a complete probability
space (2, F, P), and we shall denote by (F;,t € T) the P-augmentation of
the natural filtraton F}V = o (W(s); 0 < s < t) for t € T. The coefficients of
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M, that is, the interest rate process r(t), the appreciation rate vector process
b(t) = (bi(t),---,b4(t))" of the stocks, and the volatility matrix-valued process
o(t) = {oij(t)}, <i e Will all assumed to be progressively measurable with
respect to (F;,t € T), and bounded unrformly in (t,w) € T x . We shall
also assume that the covariance matriz process a(t) = o(t)o(t)" is strongly

nondegenerate; that is there exists a number € > 0 such that
(3.4) £a(t)€ > ell¢ll?, Vée R, (t,w) €T x Q.

The assumption (3.4) amounts to what is called the completeness of the
market model in the finance literature, and will enable our analysis to go
through without serious technical difficulties. It is a straightforward con-
squence of the strong non-degeneracy condition that the matrices o(t),o*(t)
are invertible and that the norms of these inverses are bounded above and

helow bv § and 1/6 for some 6 > 1.

3.4 Portfolio, Const:iiption and Wealth

Let us consider now an economic agent, who invests in the various securities
and whose decisions cannot affect the prices in the market (a small investor).

At any time ¢t € T, he can decide,

i) how many shares of bond ¢y(t) and how many shares of stocks,

(h1(t),-- -, da(t)) to hold, and

ii) what amount of money C(t + h) — C(t) = 0 to withdraw for
consumption during the interval (t,t + k], h > 0.

56



Of course, all these decisions can only be based on the current information

F:, without anticipation of the future. More precisely, we have

Definition 3.4.1 A trading strategy in the market M is a progressively

measurable vector process (¢o(t),---,d4(t)) such that [ $2(t)dt < oo al-
most surely for 0 <: < d.

The processes ¢o and ¢; represent the number of shares of the bond and
the i-th stock respectively, which are held or shortened at any given time ¢.
A short position in the bond (respectively, the i-th stock), that is ¢o < O
(repectively, ¢; < G), should be thought of as a loan.

Definition 3.4.2 A consumption process is a progressively measurable pro-

cess C(t) with non-decreasing RCLL paths such that C(0) = 0, C(Tp) < oo,

almost surely.

A basic assumption in the market M, is that trading and consumption

strategies should satisfy the so-called self financing condition, thatisfort € T,

we have

d d d t

(35) L AP =2 aOPO) +Y [ #)dP1) - C).
i=0 =0 =0 :

The meaning of the equation is that, starting with an initial amount z =

@0(0) + T2, ¢:(0)p; of wealth, all changes in wealth are due to capital gains

(appreciation of stocks, and interest from bond), minus the amount consumed.

Definition 3.4.3 The wealth process X(t) is defined to be

(3.6) X(0) 2 S HOP(), teT.

=0
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The process can clearly take both positive and negative values, since the same

is true for ¢;(-), 1 =0,1,---,d.

Definition 3.4.4 The vector process ®# = (m,,---,w4)" defined by

(3.7) mi(t) 2

b}
otherwise

{ Si(t)Pi(t)/ X () if X(t) #0
0

for1 <i<d, t €T, is called the portfolio process. The portfolio process,
m;(t), simply represents the proportion of the wealth to invest in the i-th stock

at timet e T.

The adaptivity condition in the definition of consumption and portfolio
process means, of course, that the investor cannot anticipate the future market

prices; thus "insider trading” is excluded.

THEOREM 3.4.5 With the aboue interpretation and notation, the wealth

process X (t) satifies the following stochastic differential equation:

dX(t) = r(t)X(t)dt + = (t) (b(t) — r(1)T) X (t)dt
+ m(t)o () X (t)dW (t) — dC (1),

(3.8)

where 1 is the vector in R with all components 1.

Proof:

d
2_ i(t)dPi(t) — dC(2)

1=0

= Zd: #i(t) [b.-(t)P.-(t)dt + i %’de(t)]

=1 y=1

dX (1)

58



+ ¢o(t)r(t) Po(t)dt — dC(t)
d d
= Z Wj(t)X(t) [bj(t)dt + z: ajk(t)de(t)]
k=1

j=1

+ (1 - f: Trj(t)) r()X(t)dt — dC(t)

= r(t)X(t)dt + 7 t) (b(t) — r(t)T) X (2)dt
+ 7 (t)o() X ()dW{t) — dC(t). ©

Now (3.8) is a simple linear stochastic differential equation for X. One
can remove the drift term 7" (¢) (b(t) — r(t)f) by Girsanov’s theorem (1960).
With a2 newly constructed Brownian motion W under a different measure
P, all the appreciation rates b; are effectively equal to the interest rate r in
the stochastic differential equation. We will discuss this further in the next

section.

3.5 Auxiliary Probability Measure

Let us introduce the process

8(t) 2 (a(t)™" [b(t) — r(8)1],

and observe that from the boundedness condition (3.4) on the coefficients in

the market M, it follows that the exponential supermartingale

Y; 2 exp {-jo‘ 0"(5)dW (s) — %/o‘ 6(s)iPds}, teT

is actually a martingale with respect to (F;,t € T'). Denote by K an upper
bound on both {|6(t,w)]|| and B(t,w) for (t,w) € T x 2. For every finite a > 1
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we obviously have
To 1 rT
Y = exp (_ /0 af*(s)dW(s) - 5 fo ”a0(s)||2d8)
ala—1) T
-oxp (228 [ looiras)

and thus
(3.9) E[Yg] <exp (ﬂ%ll)-:rom) < oo.

We shall define a new probability measure by setting
P(A)éE[YTolA]7 VAej-To
on (R, Fr,). Then by the Girsanov’s theorem we have that:
i) P and P are mutually absolutely continuous on Fr,.
11) The process
-~ a t
W) 2 w(t) + /o 0(s)ds; teT,
is an R?-valued Brownian motion on (Q, Fr,, P).
In terms of this new process W, the equations (3.3), (3.8) can be written
d .
(3.10) dP;(t) = P;(t) [r(t)dt +> ajk(t)dW(t)] ,
k=1
(3.11) dX(t) = r(t)X(t)dt + X(t)nw*(t)o(t)dW (t) — dC(t).
Their solutions are given by
BP0 = P exp{ [ o36)dW(s) - 3 [ llos(s)lds}
i = F; P % 81— g J, Haitsiliasy,
t . t
BOX(®) = =+ [ Be)X(s)r(s)o(s)dW (s) — [ B(s)dC(s),
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where t € T = [0,To]. Here X(0) = x > 0 is the investor’s initial wealth and
o5(t) = (o5(t),- -, 5a(t))"

In particular, we conclude the discounted stock price processes B(t)P;(?)

are martingales under P and the process

M) 2 BOX(0) + [ Be)C(s) ==+ [ *B(s)X ()7 (s)a(s)dW (s),

which consists of discounted wealth at t, plus total discounted consumption

on [0,%], is a continuous local martingale under P.

3.6 Admissible Strategies

Definition 3.6.1 A portfolio/consumption process pair (7,C) is called ad-
missible for the initial capital x € R, and we write (w,C) € A(z), if

i) m(-)is a progressively measurable, R%-valued process that satisfies

To ||7(t)]|2dt < oo, almost surely.
ii) C(-) is a consumption process.

iii) The weath process corresponding to (w,C), that is, the solution

X=™C(t) = X(t) of equation (3.11) satisfies, almost surely:
x="C(t)>0, VteT.
The admissibility requirement is imposed in order to prevent pathologies

like doubling strategies (c.f. Harrison & Pliska [19]); these achieve arbitrarily

large levels of wealth at t = T, but require X(-) to be unbounded from below
on [ 0, To ].
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Remark 3.1 For z € R and (7,C) € A(x), let X(-) be the corresponding

wealth process, and define

A(t) = { X(D)mi(8)/ P(0), P=loed

X() (1~ Sk mi(®) [Po(t), i=0

Then ¢(-) = (do(-),- - -, b4(-))" constitutes a trading strategy corresponding to
(z,w,C).

Remark 3.2 For any z € R, (w,C) € A(z) and for any a # 0, we have
Xa:r,n,aC(.) — aXz:,w,C(.).

Remark 3.3 If (7,C) € A(z), the continuous P-local martingale M(t) is
bounded uniformly from below, and is thus a continuous P-supermartingale.

Consequently, for any 7 € T, we.have
(312) E[p(nx==°(n)+ [ Bwdc@)] <z, v(m0) € Aw)
THEOREM 3.6.2 Given x € R, and C a consumption process such that
E| ["Bwdcw | <
fBwdcw| <=,

there exists a portfolio process w such that (v,C) € A(zx).

Proof:
Denote D £ [T° 8(1)dC(t), and consider the non-negative process

X() 2 By (E [ [” Bls)ics) | ﬁ] +(z - E[DD) -
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Obviously X(0) = z and, with m(t) 2 E[D | 7] — E[D], we can write
BOX(t) == +m(t) — [ B(s)dC(s).

Now using the fundamental martingale representation theorem [22], it can
be shown that there exists an F;-progressively measurable process () with

values in R? and [J° ||4(s)||?ds < oo, for which the martingale m(t) takes

the form
t -~
m(t) = /0 ™ (s)dW (s).
It sufficies then to define

m(t) 2 (BHX ()0 (1))” B(t).

Thanks to the assumptions on the coefficients in M, we see that «(-) is a
portfolio process. Also, it is clear that X(t) = X=™C(t). Hence the result
follows. ]

THEOREM 3.6.3 Given =z € R, and a non-negative Fr, random variable

B which satisfies the condition

E[B(To)B] < =,

there ezists (r,C) € A(z) such that X=™°(T) = B.

Proof:
Define the non-negative process X by

BOX@ 2 BlQIAI+E-ElQD(1-7

= T+ m(t) - pt’
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where Q £ B(To)B, p 2 £ and m(t) 2 E[Q|F] - £[Q). The
desired consumption rate process is then C(t) = p [} (B(s))*ds. The rest of
the argument follows the proof of Theorem 3.6.2.

Remark 3.4 Theorem 3.6.3 still holds if T is replaced 6y an arbitary stop-
ping time T € T. One would have to replace the definition of X (-) by

pX(M 2 B[QI A+ - El@) (1-255),

T

and take C(t) = C(7), n(t) =0 for 7 <t < Ty. The rest of the argument

goes through without change.

THEOREM 3.6.4 Suppose B(t) is a process such that (B(¢)B(t) |t € T)
is a regular, right conlinuous supermartingale in the class D(T) under P.
Then there ezists (7,C) € A(B(0)) such that XBO@=C(¢) = B(t) P-almost

surely.

Proof:
By the Doob Meyer decomposition and the fundamental martingale rep-
resentation theorem, there exists a non-decreasing continuous predictable pro-

cess A(-) and a progressively measurable process 1(-) with values in R? and

JTo |[4(s)||?ds < oo such that
d(B(t)B(t)) = ¢"(t)dW () — dA(?).
Applying 1t6’s Lemma, we obtain
dB(t) = r(t) B(t)di + (B(2))™" ¢*(t)dW (t) — (B(t))™" dA(2).
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Set m(t) 2 [B(£)B(t)o"()]™ $(t) and C(®) 2 [ (A(s))™* dA(s). Using a
similar argument to that of Theorem 3.6.2, we have (7,C) € A(B(0)) and
see that B(t) is the solution of the wealth process with respect to (w,C).

Hence the result follows. a
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Chapter 4

Options - A General View

4.1 Introduction

The valuation of options is a central problem in the modern theory of finance.
Options on stocks were first traded on an organized exchange in 1973. Since
then there has been a dramatic growth in options markets. Options are now
traded on many different exchanges throughout the world. Huge volumes of
options are also traded over the counter by banks and other financial institu-
tions. The underlying assets include stocks, stocks indices, foreign currencies,
debt instruments, commodities and futures contracts.

There are two basic types of options. A call (put) option is a right but
not an obligation to buy (sell) a certain asset at a specified price until or at
a future date. The situation can be colorfully imagined as a game where the
reward is the payoff of the option and the option holder pays a fee (the option
price) for playing the game.
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In addition to these two basic types of options, there are many kind of
options which differ in their payoff methods. In an excellent series of articles
that appeared in RISK magazine in 1991 and 1992, Mark Rubinstein discusses
quite a number of exotic options. We are not going to study them one by one.

However, we are going to categorize these options briefly.

4.2 Options: Constrained Exercise Times

Suppose the investor is interested in the market M on the time horizon T' =
[0,T5] € R. Let S be a stopping region in T', and B(-) be a non-negative
progressively measurable process. An option with constrained exercise times

is a financial instrument (T, B, S) consisting of
i) A payoff method B(t) at time t.
ii) A selection of an exercise time 7 € S.

An investor who holds an option of this type can exercise his right only
at time in S within the time horizon T'. At the exercise time 7 € S, he
would receive an income B(7). In [20], Hull terms this category as Bermudan
options. The Bermudan options consist of the most usual types of option in

the market. We have the following examples.

4.2.1 European Options

An European option is an option which specifies that the holder can exercise

his right only at a specified future date. This is a special case when S = {Tp}.
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The pricing of European puts and calls on stocks has an interesting history,
beginning with Bachelier [1] in 1900. The theory only reached a satisfactory
level with the celebrated paper by Black and Scholes [5] using certain notions
of hedging and arbitrage free pricing. These ideas were formalized and ex-
tended in Harrison and Pliska [19] by applying the fundamental concepts of

stochastic integrals and the Girsanov’s theorem.

Example. With B(t) = %, (Pi(t) — c;)*, we have the classical European

call option with strike price ¢; on the i-th asset.

Example. With B(t) = Y%, (ci — Pi(t))*, we have the classical European
put option with strike price c¢; on the :-th asset.

Example. With d = 1 in market M and B(t) = (P,(t) — c¢j* V (c — P (2))",
we have the "As you like it” Furopean option with strike price c.

Example. With d = 2 in market M and B(t) = (c1 — Pi(t))* V(e — P2(2))*,

we have the Two rainbow European put option.

4.2.2 American Options

Another common option is one with exercise possible at any instant until a
given future time. These options are termed American. This is a special case
in which S =T = [0, Tp].

The earliest, and still one of the most penetrating analysis on the pricing
of the American option is that of McKean [25]. There, the problem of pricing
the American option is transformed into a Stefan problem. Although the

American option problem was treated as an optimal stopping problem by

68



McKean, a financial justification using hedging arguments was given only

later by Bensoussan [2] and Karatzas [21].

Example. Again with d = 1 in M and B(2) = (P1(t) — ¢)* or B(t) = (¢ —

P;(t))*, we have the classical America.. call and American put respectively.

4.3 Options: Constrained Portfolios in M

We can consider options with constrained portfolios in M. Suppose an in-
vestor agent is not allowed to short sell his stock, to borrow, and so on. Then

the set of admissible strategies is reduced.

Generally we shall fix a non-empty, closed, convex set A" C R?. Then the

set of admissible strategies with initial capital £ would be
Az, K) & {(r,C) € Alz) | 7 € K}

In particular, we can consider either the European or American type of
option with constrained portfolios in M such that the portfolio 7 is restricted

to lie in the non-empty, closed convex set K.

Example. Unconstrained case: K = R%.

Example. Prohibition of short selling: K = [0, 00 ).
Example. Constraints on short selling: K =|[—k,00)%, k> 0.

Example. Prohibition of borrowing: K = {7r ER|TL,m < 1}.

Example. Incomplete Market, only the first m stocks can be traded: K
{:1: € R?| x; =0,Vi=m+1,--',d}.
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4.4 Options: Path Dependent

The payoft methods for this category of options depend not only on P(t) at
time ¢, but may depend on all the history of P(-) before t.

Example. Lookback put option: With d =1 in the market M, the payoff
method at time ¢ is (Supogagt Pi(s) — Pl(t)).
Example. Lookback call option: =~ With d = 1 in the market M, the payoff

method at time £ is (Py(t) — infocs<: P1(S))-
Example. Asian put option: V_"/_'ith d = 1 in the market M, the payoff
method at time ¢ is (c — Iﬂ—f't—(ﬂé:) with strike price c.

Example. Asian call option: With d = 1 in the market M, the payoff

* Py (s)ds

+
method at time ¢ is (J'L’T—" — c_:) with strike price c.

In general, as in the previous section, we can consider European or Amer-

ican types of path dependent options.
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Chapter 5

Options - Constrained Exercise

Times

5.1 Basic Setting

Suppose S is a feasible, right continuous stopping region in T'= [0, Ty ] C R.
An option with constrained exercise times or Bermudan option, is a financial

instrument (T, B, S) consisting of
i) A payoff method B(t) at time t.
ii) A selection of an exercise time 7 € S.

Here {B(t) |t € T} is a continuous, non-negative progressively measurable

process which satisfies

I
E [sug B(t)] < oo, for some p > 1.
te
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We are interested in the following pricing problem for the option with
constrained exercise time : What is a fair price to pay at ¢ = 0 for this
instrument? How much is it worth at any later time t € T'?

Let us suppose for a moment that the selection of 7 € & has been made
and we have a discounted income of B(7)B(7) when we exercise the right of

the option; suppose we have an initial capital
z = E[B(r)B(r)].

Then from Remark 3.4, we can invest and consume in some way so that the

corresponding discounted wealth process is
BOXTHt) = E[B(T)B(7) | 7], for t€[0,7],

with X(")(7) = B(7). This suggests to us thut we pay at most a price =
for the option, or else we should work on our own to invest and consume. If
the price of the option is less than z, then we would be better off toc buy the

option.
In particular, we should expect the fair price at ¢ = 0 to be given by

sup E [B(7)B(r)],
TES

and the value of this option ai any time ¢ € T should be

esssup E | —exp (/:T r(s)ds) B(7) | f,] .

TES:
This is because an investor would select the optimal stopping time to exercise

the option, if he has the choice to do sc. The question is whether the above

72



process is the wealth corresponding to an admissible portfolio/consumption

process pair, that again duplicates the payoff from the option and does so

with the minimal initial capital.

5.2 Hedging Strategy and Fair Price

In this section, we are going to define the fair price for the option with con-
strained exercise times. It turns out that this price is arbitage free. In short,

arbitage free means nobody can obtain positive wealth from negative initial

capital by any admissable strategy.

Definition 5.2.1 Given a level of initial weaith x > 0, consider a pair
(m,C) € A(x). Let X**C(-) denote the c- rresponding wealth process. We say
that (,C) is a hedging strategy.against the financial instrument (T, B, S),
and write (7, C) € H(z), if the following requirements hold, P almost surely:

i) X=7C(t)> B(t); VieS,

ii) X=mC(T,) = B(To).

Suppose that an investor buys the financial instrument (T, B,S) at { =0
for the price ¢ > 0, and there exists a pair (7,C) € H(z). Then it makes
no sense for the investor to exercise the option at t if X=™C(t) > B(t),
because he could have done strictly better in terms of terminal wealth, and
at least as well in terms of consumption, by investing instead in the market

and consuming his wealth according to (w,C).
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Remark 5.1 In the case of European option, i.e. S = {Tp}, we have the

hedging criterions degenerate to
X="C(Tp) = B(To),
which coincides with the classical definition.

Definition 5.2.2 The fair price at t = 0 for financial instrument (T, B, S),
is the number

V&inf{z>0]3(r,C) € H(z)}.

It is not difficult to see the fair price defined as above is an arbitage free
[-ice. Suppose the price of (T, B, S) is greater than V; one could follow a
suitable admissible strategy with a smaller initial capital to achieve the same
terminal wealth. If the price of (T, B, S) is less than V, the investor would be
better off to hold an option instead. Roughly speaking, an investor with zero
initial capital would not be betier off borrowing money to buy the financial

instrument (7', B, S) with price V.
THEOREM 5.2.3 The fair price att = 0 for (T, B, S) is given by
V =20} 2 sup E[B(r)B(7)]. |
Moreover, there ezists a strategy (7*,C*) € A(u{0)) with wealth process,

XU (1) = esssup & [exp (= [ #(s)ds) B(r) | F:|  P-as.
TES: t

Proof:
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Let Q(-) = B(-)B(-) and Z be the Generalised Snell Envelope of @ with
respect to the feasible and right continuous stopping region S under P. We
obtain from the Holder inequality and (3.9), with p = \/u > 1 and %-}- ;— =1
that,

- .\ 5 L
t)| < |K*E B . YZ |)°® .
E[ng( )] < ( [S‘gg (t)] ) (E[YA])" <o
Thus we see that the process Q under P satisfies (2.1) - (2.3). We define the

process v(-) as
v(t) £ [ Z(2).
Suppose z > 0 and (7,C) € H(z) C A(z). From equation (3.12) in

conjunction with the definition of hedging strategy, we have, for every stopping
rule 7 € S,

E[Q(n)]

it

E[A(m)B(r)]
E | p(ryx==S(r)]

IA

IA

Then
v(0) = [B(0)]™" Z(0) = sup E[Q] < =.
Therefore, v(0) < V.
Next, B(¢)v(t) = Z(t) is a regular, right continuous supermartingale in
class D(T'). By theorem 3.6.4, there exist (7*,C*) € A(v(0)) such that
X="CN () = wo(t)
= BT Z()
= E [—exp (/j r(s)ds) B(t) | .7:,] .
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Since Z dominates @ on the stopping region S and Z(T,) = Q(To), we have v
dominates B on the stopping region S and v(Tp) = B(Tp). Thus, (7*,C*) €
H(v(0)) and we have v(0) > V. O

Remark 5.2 The process v(-) is called the valuation process of (T, B, S) and
the fair price of this option at time t is defined to be v(t).

In the first section of this chapter, we have seen that if the exercise time
T € S is selected by the economic agent in advance, then the corresponding
price for this option should be E [3(7)B(7)]. Suppose the economic agent
selects the optimal time

o5 Zinf{t € S| B(t)B(t) = Z(1)},
then the corresponding price for this option is the fair price V.

THEOREM 5.2.4 Consider a classical financial market M with constant
interest rate r(t) = r > 0 and volatility o(t) = o. Let us consider an option
(T, @(P(-)),S) where P(-) = (Py(-),-+-,P4(-))* and ¢ : R — [0,00) is @

bounded continuous function. Suppose

u(t,z) 2 sup E[e99(P(r)) | P(t) =z, V(t,z)€T x RS

and u belongs to the Sobolev space W**(T x R}). Then u satisifies the
following con' us:
cleu]t,z) < 0 V(i,z) €T x R®
(£ [e] (2, 2)) - (u(t,2) — o(2)) 0 V(t,z) € S x RS
u(Tp, ) p(x) Vz € Ri

u(t,z) = o(z) VieS
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in the sense of Schwartz distributions. Here

a 1 d d 62
£=6_+§;r$' +2§Jz—:lauz,a:,a 9z,

Proof:

By the Markov property, we have the discounted valuation process
e "u(t) = e "tu(t, P(1)).

This is a regular, right continuous supermartingale in class D(T) under p.
By the Doob Meyer decomposition and the fundamental martingale repres-
entation theorem, there exist a non-decrcasing continuous predictable process
A(+) and a progressively measurable process ¥(-), with values in R? and sat-

isfting fT° ||4(s)||?ds < oo, such that
d (e "u(t, P(1))) = ¢*()dW (t) — dA(2).
Or the other hand, applying the generalized 1té’s Lemma [23], we have
d(e7u(t, P(t)) = L [e "u] (¢, P(£))dt + e diag(P(£)) Vu(t, P(t)) - o*dW (t).

By comparing the coefficients, we have £[e "u](f,z) < 0.

We introduce the following two regions which partition S x R,

¢ £ {(t,x) €5 xRy |ult,z) > ()},
w = {(t,a:) € S x R} | u(t,z) = cp(:z:)} .

We shall call C the continuation region and W the stopping region.
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By Theorem 2.6.11, we have {e"'(””t‘)u(s ANog,P(s A a,‘))}t< <T is a
=% 4o

martingale, thus
Lle™u](t,z)=0, V(t,z)eC.
The rest of the proof follows easily. O

Example. (Merton) In [24], Merton states the result that: An American
call option with payoff B(t) = (Pi(t) — 1) and positive ezercise price ¢,
writtcn o a #f - ¢ in the classical market with d = 1, should not be exercised
buiwre e expiration date Ty. In fact, a similiar statement holds for the
fineniiet jetsament (T, B, S) with B(t) = (#1(t) — c1)t. In that case, the
process ((-) = B(-)B(-) is a submartingale undur P. Therefore, the optimal
stopping time would be Tj.

Example. (Zero exercise price problem)

Consider the same setting as the last example. If the process @ is a super-
martingale under P, then we have v(t) = B(f). Suppose we have a zero
exercise price for (T, B, S), that is B(t) = P;(t). Then @ is a supermartin-
gale. Hence, the fair price for (T, P;,S) is V= Py(0). In short, (T, P, S) is

equivalent to P;.

5.2.1 Pricing an European Option

We have already seen that European option is just a special case when the
stopping region S = {Tp}. Hence the pricing of European option is just an

easy consequence of the general case.
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THEOREM 5.2.5 (Karatzas {21]) The fair price for the Furopean option
(T, B,{To}) at time t =0 is given by

V = E[B(To)B(To)],
and its valualion process i~ given by

v(t) = Po(t)E [B(i5)B(To) | F+].

Proof:

This is a simple corollary of Theorem 5.2.3. O

Example. (Black and Scholes)

Consider the classical financial market model M with constant interest rate

r(t) = r > 0, volatility matrix o(t) = o, and the payoff method B(t}

Y

p(P(t)). Here, ¢ : R4 — [0,00) is a continuous function and P(t)
(Py(t),---, P«(t))". The solution of P is given by,

P(t) = D(t,cW(t)) - P(0)

where D : [0,00) x R? = Myyq is such that

elr—en)t+zr | 0
D(t, =) =

0 eeo elr—ada)t+za

From the previous Theorem 5.2.5, we have the valusiion process is given by ‘
o(t) = E[e" ™ 9(P(T,)) | 7]
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= e @95 [ (D (To,oWz) P(0)) | 7]
— e—r(To—t)E’ [(P (D (TO —t, o [WTD - m]) P(t)) I ]'-t]
— e—m(To—t) » e (D(To — t,02)P(t)) ¢(z,Tp — t)d=

where ¢(z,t) = (2nt)~¥2exp {—L%E} Vze RY, t>0.
Define

u(t, z) a e—r(To—1) Jra o (D(Tp — t,02)z) ¢(2,To — t)dz, (t,z) € [0,Tp) % Ri
| #(=), (t.z) € {To} x RY

With this uotation, we have
(5.1) v(t) =u(t,P(t)) ViteT.

Suppose p(z) = 3L, (z: — ¢i)*, we can deduce a special result in Colwell,

Elliott, Kopp [6]. In that case, we have

d
V=u(0,p) = e 3 (2:Ai(To, pi) — cilie(To, pi)) s p= P(0)

=1

where

ston 20 (oo (2) + (£ 5) o
A'i(s’y)—q)(\/iz:-? In o +({rk 5 ) s
and @(-) is the standard normal distribution. When d = 1 the above result

reduces to the well-known Black-Scholes fori.ula.

Remark 5.3 By Theorem 3.6 4, it is possible to compute the portfolio
through the martingale representation theorem. This is the essence of the
paper [6] by Colwell, Elliott and Kopp. However we can look at the problem

in another way. Indeed, under appropriate growth conditions on ¢ in the
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above Black and Scholes Example, the function u(t, z) of (3.12) is the unique
solution of the Cauchy problem

22+lzd:zd:a““"z"“_‘azu +Zd:ra:-—a—i-‘——ru—0 (t,z) € [0,To) x R3
at 2i=1 i=1 e Jaxiazj = '6:3‘- - 1 y£0 +1
ufo.r) = (=),  Vre kR,

by the Feynman-Kac theorem. Applying It6’s rule to the valuation process
v(+) in (5.1), we have

d d
du(t) = ro(t)dt + >_ > a,-,-P.-(t)-a—a;u(t, P(1))dW (2).
i=1 j=1 t
Also, since v(-) = X" C"| comparing the above with equation (3.11), we see

that
Pt) @
u(t, P(t)) Oxz;

is the portfolio process.

mi(t) =

u(t,P(t)), VteT,i=1,---,d

5.2.2 Pricing an American Option

We have also seen that the American option is another special case of (T, B, S).
Therefore the pricing of an American option (T, B,T) is just an easy con-

sequence of the general case. We have the following theorem.

THEOREM 5.2.6 (Karatzas [21]) The fair price for the American op-
tion (T, B,T) at time t = 0 is given by

V =sup E[B(r)B(7)],
T€T
and its valuation process is given by

v(t) = esssup E [exp (—— /tr r(s)ds) B(7) | .7",] .

T7€T:
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Proof:

This is a simple corollary of Theorem 5.2.3. O

Example. (American put)
Consider a classical financial market M with constant interest rate r(t) =
r 2 0 and volatility o(t) = o with d =1 and ¢(z) = (¢; — z)*.

Let H™ be the set of measurable, real functions f on R whose distribu-

tional derivatives of order up to and including m belong to L2(R, e *ldz)

for some positive A. This space is given the norm

iLfll = [Eflqla‘f(m)lze"‘"'dx] :

i<m

The space L? (T; H "")‘) is the set of measurable functions g : [0, T} -+ H™?
such that fi, 1. lg(t)||?dt < co.

Suppose a continuous function (¢,z) — w(t, ), defined on T x R,, such
that w(e®,t) € L? (T; Hz"\) and &¥ € L2 (t;HO"‘), satisfies the following

system on T x R,:

Llew(t,z)] < o,
(C [e"'w(l,:z:)]) (w(t, z) - (K — a:)"') = 0,
w(ta-t) = (I" - $)+a

w(To,z) = (K—ax)*.

in the sense of Schwartz distributions where

a 0 & d  1&Z o?
L= N + Z'l‘x,‘%—i + 5 Zzagjzgzj—-———amiaxj

=1 i=1 j=1
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Then w is unique and w(t, ) = u(¢, ).

The existence and uniqueness of the solution is proved in chapter 3 of
Bensoussan and Lions [3], but, of course, it is not known explicity. Despite
this, the system provides a useful characterization of the option value from
which one can derive many properties of the value function. Note that the

above conditions on w are exactly the same conditions for u in Theorem 5.2.4

when S=T.

5.3 Early Exercise Premium

The financial instrument (7T, B, S) is more flexible than (T, B, {T}) in terms
of its exercise date. Therefore, one would expect to pay more for (T, B, S).
Let v(t) be the valuation of (T, B,S) and p(t) be the valuation of (T, B, {Tp}).
We 17 - +he Farly Ezercise Premium e(t) as the extra amount one should

to pa. der to have such privilege. That is

e(t) £ v(¢) — p(t).

In the classical literature, the Early Exercise Premium is defined to be the
difference in prices between the American and European types of option.

That is the special case of the above definition when § = T.

THEOREM 5.3.1 Suppose (#,C) € H(v(0)) is a strategy such that its

wealth process coincides witis v(-). We have
. To N
e(t) = Po(t) - E [ [ B | ft] :
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Proof:
We adopt all the notations as in Theorem 5.2.3 and Theorem 3.6.4.

e(t) = Po(t)- (esfe?fp E[Q(T) | F]-E[QTo) | 7 J)
= Po(t)- (2(t) - £[2(To) | Fi)
= Po(t) . E~' [A(t) - -/"“(TU) I 'rl ] 3

where A is the non-decreasing predictaole part of the Doob Meyer decompos-

ition of Z. Since dC(t) = — Po(t)dA(t), we have

- To ~
e(t):Po(t)-E[/t ﬁ(,».;;edca)ua]. =

5.4 Gittens Index Processes

Consider a financial instrument (T, B, S) with B(t} = (¢ — B’{i}:* in which
B'(-) is a non-negative, adapted continuous yrocess. In this seciion we are
going to look at the valuation of (T, B, & as a family of ontimal stopping

problerus
v(t;c) = Po(t) - ess sup E [[J’('r)(c — Bi(7))* | .7-',]
TES:

parametrized by ¢ € [0, 00 ).
Similarly, we also look at the family of European valuation processes of

(T, B,{Ts})
p(t;c) £ Pu(t) - E [‘B(TO)(C — B'(To))" | :F‘]

parametrized by ¢ € [0,00 ).



With d = 1, B'(t) = Pi(t) and S = T, the valuation processes v(t;c) is
just a family of classical American put options with exercise price c. With
d =1, B'(t) = Fi(t) and S = {¥:-;. we have a fainily of European put options

p(t; c) with exercise price c.

We shall assume throughour that the process p(-; ¢) is strictly positive on

[0,T5). It is also obvious tiiat
v(t;c) = p{i o)V (e— B'(#))* (t,c) € S x R,
From Theorem 5.2.3, we know that, with fixed ¢ and
Qt;c)  Bt)K — B'(t)* teT,

the process

Z(t;c) 2 B(t)o(t;c) = esssup B[Q(rsc) | Fi]  teT,

TES:

is the generalised Snell Envelope of Q(-,c) with respect to the feasible right

continuous stopping region S.

Clearly, Z(To; ¢) = Q(To,c) and the stopping time

oi(c) = inf{s€ S| Z(s;c) = Q(s,c)}
= inf{s €S| v(si¢) = (e~ B'(s))*}

is the optimal stopping rule after time ¢, and hence

{Z(s A o (c); C)}tgngo

is a martingale with respect to the continuous augmented filtration (F;,t € T').
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Furthermore, since Z(-, c) is a regular, right continuous supermartingle of

class D(T), and hence quasi-left continuous, we have
Jhm Z(Ta,c) = Z(71,¢) VT, T€T, 1 T 7.

LEMMA 5.4.1 For each t € [0,Tg), the mapping v(t;-) is convez, increas-

ing, strictly positive except ¢ = 0.

Proof:

The convexity and monotonicity follow from the facts that the mapping
¢ — (¢ —z)* has these properties, and that we are taking supremum over the

class S, of stopping times. o

LEMMA 5.4.2 Foreacht € [0,Ty), the mapping c = c—v(t;c) is concave,

increasing, null at ¢ = 0. Furthermore, we have ¢ — v(t;c) < c A B'(t) for

teS—{T}.
Proof:

c—v(t;c) = c— Po(t)-ess sup E [ﬂ('r)(c - B'(7)* | }",]
TES:

c— Py(t) - esfsefs?p E[B(T)(c—cA B'(7)) | ]

eise‘jsn[E' [c(l - e_j;rr(a)da) + e—f:r(a)ds(c/\ BI(T)) l f"]
< cAB(t) if teS—{Ty}.

The two functions of ¢ inside the expectation are linear and concave, respect-

ively, and both are increasing. Since we are taking an infimum over S,, these

properties persist. 0
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LEMMA 5.4.3 For each t € [0,Ty), the mapping ¢ — o}(c) is decreasing

and right continuous.

Proof:

Using the previous lemma, we introduce the random field
Pl(t;¢) 2 v(t;¢) — (c— B'(D)* = (¢ A B'(2)) — (c — v(t; ¢))

which is continuous, decreasing in ¢ and non-negative for all t € § — {Tp}.
We can rewrite the optimal stopping time o7 (c) as inf {u € S, | p(u;c) = 0}.

If ¢; > ¢, then we have
0 < p(o7(c2); e1) < (o7 (e2);¢2) = 0.
Hence p(o7(c2);c1) = & and we have o7(c1) < o7(c2) by the property of the
infimum. Thus, o7(-) is decreasing.

Next, suppose ¢, || c. We need to show o7(c,) 1 o7(c). Since o}(-) is
decreasing, o] £ lim,_, 07 (c,) exists and o7 < o7(c). Since p(a3(c1); cm) =
0 for I > m, we use quasi-left continuity of the process ¢(-,cn) and take

[,m — o0, so that we have p(o7,c) = 0. Thus o7(c) < o7. D

THEOREM 5.4.4 For every t € [0,T,), the convexr mapping v(t;-) has a

right hand derivative given by

ﬂ(t)%v(t;c) = E[B(o7(No; (<t + B(To)l Bim)ze.opte=Ts | Ft]
= E|[B(0}(c)) - B(To)pto)ge.orer=10 | F ] -
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Praof:

Fix (t,c) € [0,Ty) x (0,00), and for any ¢ > 0, denote o = or(c+¢€)
and ¢° £ o7(c). Since o° < ¢°, we have Z(- A 6°; c) is a martingale and thus,
B(t) v(t;c) = E[B(c%)v(o%;¢) | Fi]. On the other hand, from the optimality
of o¢ at (t,c+¢), we have B(t) v(t;c+e) = E [B(a‘) (c+e— B'(oe)t | .7:}]

Thus, we have the following

B(t) (v(tic+e) — v(t;c)) = E[B(0°) ((c+ € — B'(0°))* —v(o%;0)) | ]

On the event {o° < Ty}, we have ¢ + € — B'(¢®) = v(o%;c + €) > 0 and
v(0°;¢) > ¢ — B'(c%), and thus (c + € — B'(0%))* — v(0%;¢) < €.

On the event {o° = Ty}, we have v(o®;c) = (¢ — B'(Tp))*, and thus
(c+&— B'(0°)* — v(0%¢) < elp(Ty)<ete-

These observations lead to the upper bound,

(1) v(t;c+ 62. —v(t;¢)

<E [ﬁ(aE)Lﬂ(To + B{To)loe=1, , B (To)<c+e | j:t] .

Now o° 1 ¢° as € | 0, so we have

v(t;c+¢€) — v(t;c)
€

B(t) limsup <E [5(00)1a0<n + B(To)1p0=1; , Br(To)<c | Fi |

To obtain a lower bound, recall the supermartingale.properties of Z(-;c+
€). These give B(t) v(t;c+€) > E[B(c°)v(0®;c+ €) | F:], and in conjunction
with 8(t) v(t;c) = E[B(c®)(K — B'(c®))* | Fi], we have

B (M(tsc+e) —v(tic)) > E[B(o°) (v(o%c+e) — (c~ B'(o°)*) | 7|
2 E[B(c°) ((c+e - B@)* - (e~ B'(°N*) | ).

On the event {0° < Tp}, we have ¢ — B'(0°) = v(0%c) > 0, and hence
(c+e— B'(6°)t — (c— B'(c%))* =e.
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On the event {0° = To}, we have (c + & — B'(d°))* — (c — B(¢°))* =
(c+e— B'(To))* — (c — B'(To))* = elprm)<e-

These observations lead to the upper bound,

v(t;c+€) — v(t;c)
€

B(t) > E [3(00)1a°<ro + B(To)loo=1,, B/(T0)<c | -7:*]

Thus we have,

v(t;e+€) — v(t;c)
€

A(8) limjinf > B[ 80" aocr, +B(To) oo, prmee | 7 |

Hence the result follows. o

For any t € T, we define the Gittens Index Process for the financial in-

strument (T, B, S) where B(t) = (c — B'(1))* as

M) 2 { inf{c>0|v(t;c) = (C—B'(t))'*'} 0<t<Ty
B(Ty) o,

For each t € [0,T5 ) and t’ > ¢, we define the lower envelope of M (-) on [¢,¢']

as

M(t,t) 2 inf | M)

Again, as in lemma 5.4.3, we can introduce the random field e(t;c) =
v(l;¢) — (¢ — B'(t))* which is continuous, decreasing in c and non-negative
for all t € S — {To}. We can rewrite the Gittens Index and optimal stopping

time after t as

M@ = {inf{c>0|(,p(t;c)=0} t< Ty

B'(To) t=Tp
o¢(c) = inf{u € S;|p(u;c)=0}.
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Then, for t' < Ty we have

Mt t)y>c & M@u)>c Vue[t,']NnS
(5.2) < p(u;e) >0 Vue[t,t']nS
& oi(e) >t

At the same time, we have

{oi(c) <To} = Uaso{oi(c) <To—a}
Ua>0 {M_(fv TO - C!) _<_. C}
= {M(1,To—) <c}.

(5.3)

THEOREM 5.4.5 In terms of the lower envelope M(t,-) of the Gittens
Index M(-), we have for everyt € [0,Tp ) the following representation of the
early ezercise premium for the financial instrument (T, B,S) with B(1) =

(c— B'(t))*:

- To
v(t;ie)—p(t;c) = Po(t)- E[ /t B(w)r(u) (c — M(t,u))* du
+B(To) (¢ A B'(To) — M(t, To—))* | Fe].

Proof:
It is not difficult to see 3(2) - %}p(t; c) = E [ﬂ(To)IB'(To)gc | f}] Then,

from Theorem 5.4.4 we have,
at ~
B() 5z lo(tie) — p(tie)] = E [Loygen (B(oi(€) — B(To)1omnrse) | Fi]

E[(B(e7(c)) — B(To)) | Fe)
+ E [ B(To)15/m)>e,0(0)<To | 7).
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Using (5.2), we have
To
Bloi(e)) — B(To) = / Blu)r(w) oz (o) <o du
= lTO ﬂ(u)r(u)ly_(t.u)Sc du.

From (5.3), we also have

lB(To)>e . o0(c)<To = 1M(t,To~)<c< B (To)-

Hence

at - T
ﬂ(t)gg[v(t;C)—P(t;C)] = E[ft ﬂ(u)r(U)IMu.u)Scd"lft]
+

E [ B(To)l page,7-1ge<B7(T0) | 7]

Now, integrate both sides over [0,c] and use v(t;c) = p(¢;0) = 0, we have

proved the theoremn from the conditional Fubini theorem. O

Remark 5.4 El Karoui and Karatzas had derived the above results in dis-

crete setting [15] and continuous setting [16] with S = T.
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Chapter 6

Options - Constrained Portfolios

in M

6.1 Introduction

In this chapter, we are going to evaluate the price of options with constrained
portfolios in the market M. For simplicity, we only consider the European
type of these options. We shall adopt the same setting as in chapter 4 and fix

a non-empty, closed, convex set K C R®. Denote by
§(z) = 8(z|K) = sup(—n"z) : R* = RU {+o0},
neK

the support function of the convex set —K. This is a closed, positively
homogeneous, proper convex function [29] on R?. It is finite on its effective

domain
K & {:1:6 R? | §(z|K) < oo}
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= {xeR"IBﬁeﬁs.t.—w‘zgﬁ,Vn’eK},

which is a convex cone (called the barrier cone of —K). It will be assumed
throughout the chapter that the support function & is continuous on A and
bounded below on R?. These two assumptions are satisfied if A" contains the
origin and locally simplicial [29].

From now on, we consider only portfolios that take valucs in this given
non-empty, closed, convex set X C R? Then we shall replace the set of

admissible strategies .A(x) with
A(z; K) £ {(7,C) € A(z) | 7(t,w) € K for @ P a.s.}.

Let us consider the class H of A-valued progressively measurable process

v(-) that satisfies

To '
E [ ROV a(u(t))dt] < oo,

and introduce for every v € H the analogues,

(6.1) 0.(t) 2 o7'(t) [b(t) ~ r()T +0(1)],

62) A 2 exp[- [ r(s) +5s)as],

63) %) 2 e[~ [ )W)~ 5 [ 0.s)IPds]
6.4)  W.(t) 2 W)+ /oto.,(s)ds,

(6.5) P(A) & E[Y.(To)la], A€ Fg,

of the settings in chapter 2. Finally, denote by D ihe subset consisting of the
processes v € H for which the exponential local martingale Y, (-) is actually a

martingale. Thus, for every v € D, the measure P, is a probability measure
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and the process W,(-) is a Brownian motion under B, by the Girsanov the-
orem. In terms of this new Brownian motion W, (-), the stock price equations

(3.3) can be rewritten as

d
(6.6) dPi(t) = Pi(t) [(r(t) — yi(t))dt + Za.;j(t)dw,fj)(t)] yi=1,--,d.

="

As we saw in Theorem 5.2.5, in the case A" = R?, the wutrher
ul? = Eq [Bo(To) B(To)] = E [B(To) B(To)]

is the unconstrained hedging price for the financial instrument (T, B, {Tp}).

In the framework of [10], the number
u 2 E, [6,(To) B(To)]

is the unconstrained hedging price for (T, B, {Ty}) in an auxiliary market
M,; this consists of a bond with interest rate r(*)(t) = r(¢t) + §(v(t)) and
d stocks, with the same volatility matrix o as before and appreciation rates
(1) = bi(t) + vi(t) + &w(t)), i = 1,---,d, for any given v € D. Thus, in
the market M, the price of the bond in M, is given as

dFy (t) = Fg'(t) [r(t) + 8(v ()] dt,

and the prices of the stocks are given as

i=1

d
diPY(t) = P(t) [{b,-(t) +ui(t) +6(v(e)}de + > o,-j(t)dWU)(t)] ,i=1,---,d.

We shall show that the price for hedging (T, B, {Ty}) with a constrained
portfolio in the market M is given by the supremum of the unconstrained

prices u, in these auxiliary markets M,, v € D.
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6.2 K-Constrained Portfolio Option

This section is a brief summary of the paper [11] by Cvitanié and Karatzas.
We shall again investigate the pricing problem. For details and examples we

refer the reader to [11].

Definition 6.2.1 A finencial instrument (T, B, {Tv}) is called K -hedgeable
if it satisfies

v(0) £ sup £, [B,(To) B(Tp)] = supu, < oco.
veD veD

This definition will be justified later. Actually, it can be shown that for any
h'-hedgeable financial instrument (T, B, {Tp}), there exists a trading strategy
(m,C) € A(v(0); i) such that X*O™C(Ty) = B(T,), and that v(0) is the

minimal initial wealth for which this can be achieved.

Definition 6.2.2 An FEuropean type of K -constrained portfolios option
(T, B,{To}, ) is a -hedgcable financial instrument (T, B, {T0)}) with ad-
missable trading stralegies lying in a non-emply, closed, conver set K C R®.

A fair pricc of (T, B,{To}, ) is defined by

VE&inf{z>0]3(x,C) € Ala; K) s.t. X™™C(Tp) > B(To) a.s.}.

For any stopping times y,0 € T such that v < o, denote by DS the
restriction of D to the stochastic interval |[v,o]]. For every 7 € T, consider

also the F,-measurable random variable
a = To
v(T) = esssup E, [ﬁ(To)B(To)exp {—/ J(V(s))ds} | .7-'7} .
veD T
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LEMMA 6.2.3 For any I\-hedgeable financial instrument (T, B, {Tv}), the

family of random variables {v(7)}, o satisfies the equation of Dynamic Pro-

gramming

v(7) = ess sup E, [v(o) exp {— /9 J(U(u))du} | .7-',] , Y0eT™h

veD?e
Proof:

See the appendix in Cvitani¢ and Karatzas [11]. 0O

THEOREM 6.2.4 The process v(-) can be considered in its RCLL modi-
fication and, for every v € D,

2 t
(6.7) Qu() £ o(t)exp {~fss(w(u)du}, teT |
is a RCLL P,-supermartingale with respect to (F;,t € T)

Furthermore, v(-) is the smallest adapted, RCLL process that satisfies (6.7)
together with the equality

(6.8) v(To) = Bo(To) B(To)-

Proof:

See the appendix in Cvitani¢ and Karatzas [11]. O

The following theorem can be regarded as the main result of this chapter;

it justifies Definition 6.2.1.

THEOREM 6.2.5 For a financiel instrument (T, B,{To}, K') such that K

is a non-empty, closed, convex subset in R®, we have V = v(0).
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Proof:
We first want to show V' < v(0). From (6.7), the martingale representation

theorem and the Doob-Meyer decomposition, we have for every v € D,
dQ.(t) = ¥}(t)dW, (2) — dA,(t),

where %,(-) is a progressively measurable process with values in R? and
T 1le(s)]]Pds < oo, and A,(-) is a non-decreasing, continuous and predict-
able process such that A,(0) = 0. Let us introduce a positive, adapted RCLL

process
é ‘U(t) — Qu(t)
,BO(t) :Bu(t)

with X (0) = v(0), X(To) = B(Tp). Now we need to find a trading strategy
(#,C) € A(v(0); K) such that X(-) = X¥O+C(.). This will prove V < v(0).

X(t) teT; VYveD

From (6.7), we have for any v, u € D, we have from (6.7) that,

Qu(t) = Qu(1) - exp [/U‘ (8(v(s)) — 8(u(s))} ds] .
Applying Itd’s rule, we obtain

dQu(t) = exp[fi{6(v(s)) — 8(u(s))} ds]
x [Qu(){8((1)) — 8(u(t))} dt — dA, (1) + 9 (2)dW, (1)]
(6.9) = exp 3 {8(v(s)) — 8(u(s))} ds]
x [X(0)B. () {8(v(2)) — 8(u(1))} dt ~ dA,(2)
+Y5()o ™ (2) (v(t) — p(t)) dt + 5 ()dW,(2).] .

Comparing this with the Doob-Meyer decomposition
(6.10) dQ,(t) = mi(t)dW,(t) — dA.(t),
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we conclude from the uniqueness of the decomposition

Yo (t) exp ([)t 6(u(s))ds) = 95 (1) exp (/Ot x‘i(,u(s))ds)

and hence this expression is independent of v € D. We can define a portfolio

process 7 via

(6.11) ¥=(t)exp ( /0 ‘ 6(u(s))ds) = R (0)Bo(t)7(t)o(t), t € T; v & D.

Similarly, by comparing (6.9) and {5.10), and substituting (6.11) into the

expression, we conclude that
exp ( /0 ' a(u(s))ds) dA(2) — Bo() X (£) [6(v(2)) + #*(8)v(2)] dt
= exp ([ Su(s))ds ) dAL(1) — Bo()X (1) [81(1)) + A (m(V] de,
and hence this expression is also independent of » € D. Now define
6.12) C() 2 [ o)A = [ X(s)[5((s)) + v (s)i(s)] ds,

for every t € T, v € D. Take v = 0 we obtain C(t) = [ 85 (s)dAo(s), and
hence é’() is a consumption process.

Finally, we need to show # takes values in . By the arguments of [10],

Theorem 9.1, we only need to show that
(6.13) d(v(t,w)) + v (t,w)a(t,w) >0, £® P a.s.

holds for every v € D. (These arguments need the continuity condition of

6(-{K') and the assumption that the set K is closed.) Notice from (6.11), we

obtain
A = [ Buls) [{5((5)) + v (s)ir(s)} X (s)ds + dC(s)

< k[ {8005)) + v ()()} K(s)ds + 6|, tet, veo,
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for some k£ > 0. Fix v € D and define the set
F = {w € Q| §(v(t,w)) + v*(t,w)i(t,w) <0}, tecT.

Let
2 v(t)1ge + nv(t)lp,
K T+ e

Then ¢ € D and by assuming (6.13) does not hold, we get

ne N.

To X(t)1re {8(v(2)) + v~ ()7 ()}
E[A(To)] < E[k/ T+ WO

[P X1k {8(v(t) + v ()7(1)}
& | T+ [l q

dt + ké(t)]

< 0.

This is a contradiction.

Now we have X(-) is the wealth process corresponding to (7, (:') since
d(Bo()X(1)) = dQo(t) = o(t)dWo(t) — dAo(?)
= Bo()X ()" (t)o(t)dWi(t) — B5' (1)dC(2), X(0) = v(0).
Therefore, (#,C) € A(v(0); K) and V < v(0) follows.

To complete the proof, we need to show v(0) < V. .Since V < oo, there
exists ¢ € R* such that X*™Y(T,) > B(T) for some (7,C) € A(z; K).
Using It6’s rule on 8, (t)X=™C(t) we have that

t
M) 2 BMX="C(t) + [ A(s)dC(s)
t
+ [ B.(s)X=7(3) [8(1(5)) + v*(s)m(s)] ds
t -
= o+ /0 B(5)X=™C (s)n*(s)cr(s)dW, ().
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Consequently, M, () is a non-negative P, local martingale and hence a su-
permartingale. Therefore,

> Eu [M,(To)] > E'v [BV(TO)B(TO)] )

for any given v € D. Therefore, > v(0) and thus V > v(0). O
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