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Abstract

As people age, they adjust how they associate objects. We examine the interplay

between age and various aspects of object similarity. For this, we perform two exper-

iments: one between adults aged 25–35 and 50–60 and another between six-year-olds

and adults. Between 25–35- and 50–60-year-olds, we investigate discrepancies in pref-

erence for each of 49 object-comparison dimensions. Between six-year-olds and adults,

we investigate changes in the prioritization of the classes of object-comparison rela-

tions known as taxonomic and thematic relations. To facilitate these tasks, we use

a prior interpretable, machine-learned computational model; this model is trained to

perform an odd-one-out-among-three task with a vector embedding for each object

being compared.

For the first task, between 25–35-year-olds and 50–60-year-olds, we examine each of

the 49 object-comparison dimensions defined by the prior interpretable model. These

dimensions are human-interpretable, quantifying similarities such as “metallic” or

“food-related.” We modify the architecture of that model to learn the preferences

of each age group for each of those dimensions. We then compare those preferences

between each age group.

For the second task, between six-year-olds and adults, we examine the classes of

object-comparison relations described by taxonomic and thematic reasoning. We use

the interpretable model to assign taxonomic and thematic scores to object-comparison

questions, then select questions from amongst those to administer to six-year-olds.
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Finally, we contrast their responses with previous adult ones to elicit age-related

changes in the prioritization of taxonomic and thematic reasoning, both in absolute

terms and relative to one another.

In the context of prior literature, we provide measures of differences in object-similarity

judgment between younger and older adults for each of 49 fine-grained types of ob-

ject similarity and remark upon the resulting trends. We corroborate a thematic-to-

taxonomic trend in thinking from adolescence to adulthood. Finally, we expand the

knowledge-base of the common-resource THINGS initiative with our results.
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“Why is a raven like a writing-desk?” riddled the Hatter.

“I’m not sure. In what manner?” asked Alice.

“I haven’t the slightest idea.”

—Lewis Carroll*, Alice’s Adventures in Wonderland

(*with some creative liberty for brevity)
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Chapter 1

Introduction

In our interactions with our environments, we conceptualize extraordinarily diverse

surroundings, situating and reasoning with the objects within them irrespective of

our familiarity. One way we achieve this is by interpreting the objects in the context

of those we are more familiar with; that is, judging their similarity. Object similarity

informs how we act upon objects [1], assists in the recall of information, and shapes

how we interpret unfamiliar entities from a young age [2]. Despite consequent interest

in the topic, however, uncovering the specifics of how we judge the similarity between

objects is a many-layered task. This is likewise true for how this ability develops as

we age. In this thesis, our research goal is using new advances in modelling object

similarity to examine how people evolve their means of object comparison with age.

1.1 Overview

Human judgment of object similarity is not a static procedure. Not only do different

individuals diverge in performing object comparison, but a given individual’s per-

ception varies based on the presentation and reasons for comparison [3]. In spite of

these differences, people holistically exhibit enough consistency that population-level

trends emerge, such as with image similarity [4] and object styles [5]. The level at

which people diverge from one another can vary considerably with the group and axis
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of similarity in question; i.e., with various language features [6, Introduction] and

with expertise and animal categorization [7]. One area of particular interest in this

regard is the impact of age on object-similarity judgments.

The task of object comparison involves many factors, and accordingly, prior work

abstracts these factors into broader classes for evaluation. Some of these generaliza-

tions include objects being related due to shared observable features or functionality,

co-occurring in the real world, word co-occurrence (“cottage cheese”), hypernymy,

and combinations thereof [8]. For example, a relationship between objects along their

shared features, such as a dog and a bear both having paws and fur, is classified as

a taxonomic relation. Meanwhile, a relationship between two objects due to them

co-occurring, such as between a dog and a leash, is referred to as a thematic relation.

Broad classes of relations such as these have received extensive attention, particularly

concerning adolescent development, and prior work on taxonomic and thematic re-

lations specifically has found age-related differences in people’s prioritization thereof

[9], [10].

There are a number of ways to model these similarities, but two broad approaches

[11] are as follows. The first is representing them with a set of dimensions, then

using these dimensions to compute their similarity. The second is modelling them

as similar by virtue of them exhibiting shared sets of (binary) present-or-not-present

properties [12]. There is some overlap between these approaches, as a dimension can

continuously scale between binary property values. In this thesis, we use a recent

method from Hebart et al. [13] that combines traits of both of these approaches in

this manner into a single model. Their approach produces a computational model

with nonnegative dimensions identifiable as object-similarity properties. This model

is produced from responses to an object-comparison task on a set of objects [14] that

form the core of the THINGS initiative [15], an effort to link various research results

to the same shared objects.
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We use the Hebart et al. model and its properties to answer two questions about the

relationship between age and object similarity for the THINGS objects:

1. For our first task, we examine differences between younger (ages 25–35) and

older (ages 50–60) adults in judging object similarity on a set of narrow types

of object similarity. To do this, we consider the Hebart et al. similarity model,

whose dimensions have human-identifiable labels. We construe the usages of

the Hebart et al. model’s dimensions as signifying usages of latent individual

types of similarities described by these human labels. We modify the model to

learn preferences for these types of similarities for 25–35-year-olds and 50–60-

year-olds. We then compare the preferences between the two age groups.

2. For our second task, we examine differences between adults (age 18 and up) and

young children (age 6) in judging broad types of object similarity. To do this,

we construct approximations of taxonomic- and thematic-relation usage from

the model’s dimensions. Then, we select sets of three objects to administer to

children as part of an object-comparison task based on these approximations.

We record the children’s responses and compare them with prior adult responses

to determine differences between the age groups in usage.

1.2 Contributions and Thesis Layout

1.2.1 Contributions

Considerable work has been done on the relationship between age and object compar-

ison. Here, we address the motivation for each of our thesis questions independently.

We also summarize this thesis’s contributions to the literature.

Our first task examines differences between younger (ages 25–35) and older (ages 50–

60) adults when comparing objects using narrow types of object similarity. Evaluating

differences in how adults of different ages perform object comparisons has been the
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focus of past work; however, that research has typically concentrated on broad classes

of relations, such as taxonomic and thematic relations, rather than on more fine-

grained properties (such as “metallic”). Additionally, to our knowledge, no prior

work has shown these associations for similarity-task-derived features representative

of human-identifiable object-relational properties.

Our second task examines differences between children (age 6) and older (ages 18–

110) adults in comparing objects along broad taxonomic and thematic lines. Prior

research on this has looked at the usages of taxonomic and thematic relations relative

to each other, rather than independently.

Beyond all of these prior-body-of-work factors, knowing how age interacts with the

49 similarity dimensions computed for the THINGS collaborative-research initiative

contributes to that initiative.

In light of the above motivation, this thesis’s primary contributions are as follows:

1. We provide measures of the differences between 25–35-year-olds and 50–60-

year-olds in their preferences for specific types of comparison, namely those

described by the Hebart et al. model’s dimensions. We also determine for which

of these relatively fine-grained types of object similarity the age groups differ

significantly. We discuss the trend revealed by the largest of these differences.

2. We provide a framework for determining differences between six-year-olds and

adults in their usage of taxonomic and thematic relations, where these taxo-

nomic and thematic preferences are not relative to each other. We also weakly

corroborate prior work showing a taxonomic-to-thematic trend in adolescent

development.

3. With both groups of contributions, we expand the THINGS initiative’s common

pool of knowledge.
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1.2.2 Thesis Layout

This thesis addresses two major topics concerning object-similarity judgment and age:

one focused on younger and older adults, and another focused on young children and

adults of general age. To address this, the project for each topic is self-contained,

with the between-adult-ages topic being the target of Chapter 3 and the child-vs-

adult topic being the topic of Chapter 4. Information common to each can be found

in the background chapter, Chapter 2, although some background information specific

to each chapter in isolation is contained in that chapter’s own constituent introduc-

tion section. Each project chapter also contains its own methodology, results, and

discussion sections. Finally, Chapter 5 summarizes this thesis’s major findings.
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Chapter 2

Background

In this chapter, I give context to my thesis, specifically focusing on the following

areas:

• Object similarity and representation thereof

• Age and taxonomic/thematic similarity

• Neural networks

• The Hebart et al. model

2.1 Object Similarity and its Representation

People routinely perform comparisons to contextualize concepts and interpret their

place in the world. Dogs and bears are similar because they are mammals, sadness

and the state of being upset are similar in terms of being negative emotions, and

shampoo and showers are similar because they are associated with bathing (and, to

an English speaker, perhaps because the label for each concept begins with the same

sound). In this manner, concepts interact with each other in myriad ways (features,

co-occurrence, related concepts), and at different levels (being mammals vs being

animals, co-occurring at Lake Michigan vs. co-occurring at the Great Lakes).

Non-exhaustively, some prominent types of similarity include the following:
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• Function-based similarity, wherein objects perform similar functions (such as

brooms and vacuums both cleaning floors)

• Structural similarity [16], wherein objects share relationships between elements

(such as between an atom and the Solar System: electrons orbit the nucleus

within an atom and the planets orbit the Sun within the Solar System)

• Thematic similarity, wherein objects appear in similar contexts (such as dogs

and bones both appearing in a pet context)

• Lexical coöccurrence-based similarity, wherein objects’ associated words co-

occur (such as cottage and cheese both appearing in the phrase cottage cheese)

• Various lexical semantic similarities, such as hyponymy/hypernymy

(dog-mammal) and meronymy/holonymy (dog-paw)

• Category-based similarity, wherein two objects belong to some abstract cate-

gory (such as “is an Apple computer”). This is further broken down into “basic

categories,” or categories more fundamental for comparison [17], and “ad-hoc

categories,” or categories constructed for some arbitrary purpose [3]. The dis-

tinction between these is whether the category exists in memory outside of that

purpose.

These similarities have some overlap. For example, when defining a category-based

similarity of “has fur,” this correlates with two given objects having paws, which in

turn correlates with the two objects being mammals and sharing mammalian struc-

tural similarities. Defining a categorical or structural similarity of “objects with four

legs and a cushion” will correspond with many objects being functionally related by

virtue of being “able to be sat upon.”

Similarities can be encoded in a number of ways, including as relational graphs (i.e.,

a hypernymy structure imposed by WordNet [18]), objects as sets of binary features

(i.e., Tversky’s contrast model [12]), and objects as vectors of continuous features (i.e.,

7



word embeddings [19]). The choice of operation on these representations to produce

quantifications of similarity can also vary considerably; three such for continuous

features include dot products, cosine similarity, and distance metrics.

2.2 Age and Taxonomic/Thematic Similarity

Two prominent ways of comparing objects are known as taxonomic and thematic

relations [8]. Taxonomic relations are relations where objects are grouped by shared

features (dogs and bears have four legs, are furry, etc) whereas thematic relations

are those where objects are contextually related (dogs and bones, bears and trees).

Objects can be related by both taxonomic and thematic means (dogs and cats). A

visual depiction of these is given in Figure 2.1.

Figure 2.1: Thematic and taxonomic relation illustration.

In the literature, the usage of taxonomic can differ somewhat, but here we define it to

include category-based, function-based, and structure-based similarities. Beyond def-

initional differences, there are observable real-world differences between the two types

of relations, such as in terms of processing [20], situational usage, and development.

Importantly, the relative usages of both of these relations change with age.

From a young age, children have an awareness of how to apply both taxonomic and

thematic relations [21], [22]. Young children apply taxonomic relations when primed

to identify objects with a new, unknown lexical label, for example. A common task

to evaluate children’s usage of taxonomic and thematic relations is the triad task ,
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wherein a participant is given an initial object, then presented with two additional ob-

jects and asked to identify the most similar. In one study that used the triad task with

taxonomically similar and thematically similar objects, giving an unknown label to

the initial object prompted an elevated level of taxonomic-relationship prioritization

in children [2].

Another well-known study used the triad task to evaluate taxonomic and thematic

preferences of different age groups [9]. They found that respondents of different

ages exhibited different preferences for taxonomic and thematic relations, with an

initial preference for thematic relationships in first grade giving way to a taxonomic

preference by fifth grade, then reverting again to a thematic preference sometime

between the average college age and old age. These specifics are given in Figure 2.2.

Figure 2.2: Relative taxonomic and thematic relation preference with age. Results
from Smiley and Brown [9].

This earlier thematic-preference-to-taxonomic shift has been observed in children as

young as two to three years of age. One study [22] used a match-to-sample task1 with

positive reinforcement for the identification of two highly similar objects along taxo-

nomic or thematic grounds to test the relative taxonomic and thematic preferences of

young children (aged 2–3). Children aged 26 months identified 46.5% of thematic sim-

ilarities and between 52-83% of all but the most coarse-grained taxonomic similarities,

while children at 3 years of age identified a much higher 65.8% of thematic similarities

1A task wherein children are given some base object/concept and asked to identify a match from
a set of options
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and between 66-87% of all but the most coarse-grained taxonomic similarities.

2.3 Neural Networks

2.3.1 Overview

The term neural network (or, more precisely, artificial neural network) refers

to a class of computational models underpinned by elements called nodes or neu-

rons . These elements are inspired by neurons in the brain. Early neurons performed

addition and subtraction operations on binary signals, then thresholded the result

with a binary step function [23]. In a more modern context, a neuron performs some

linear or affine transformation on a set of n inputs x to produce a scalar, then thresh-

olds the result with an arbitrary activation function f to produce another scalar ŷ.

This is represented in Equation 2.1.

ŷ = neuron(x) = f(ℓ(x)), ℓ ∈ L(Rn,R) (2.1)

Artificial neural networks comprise sets of neurons whose inputs and outputs are

connected to one another. In a relatively simple kind of neural network known as a

feedforward neural network , this is realized by organizing sets of neurons into

layers and connecting the outputs from one layer to the next. Alternatively, this can

be viewed as layers of outputs/inputs; this is shown in Figure 2.3, which displays a

feedforward neural network with three layers of neurons. A neural network with a

small number of layers is known as a shallow neural network.

On this note, without the activation functions, the aggregate effect of combining

these transformations is also a linear or affine transformation. As such, activation

functions almost universally tend to be nonlinear to allow for more varied functionality

(and non-affine– we will consider relevant statements about linearity to also reflect

affineness from this point on).
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Figure 2.3: A feedforward neural network representing input/output layers. Each
layer of neurons connects the inputs/outputs. Every layer past the input layer has
an associated set of neurons that produces its contents. The model has three layers
of neurons.

Each artificial neural network neuron’s linear transformation is represented as a col-

lection of parameters win size, where in size is the number of signals/edges feeding

into the node. In a fully connected network, such as the feedforward network de-

picted in Figure 2.3, all nodes from one layer feed into the nodes of the next layer,

meaning that the total number of weights feeding into a given layer of size m from

the prior layer of size n is m ·n. Representing each layer as a vector then leads to the

natural representation of these weights as an m×n matrix, where matrix multiplica-

tion on the prior layer leads to the current one. The representation of this process for

the neural network in Figure 2.3 is demonstrated in Equation 2.2. Correspondingly,

feedforward neural networks are represented by a series of num layers matrices.

h(1) = f (M1x) ,M1 ∈ M2×3(R)

h(2) = f
(︁
M2h

(1)
)︁
,M2 ∈ M2×2(R)

ŷ = f
(︁
M3h

(2)
)︁
,M3 ∈ M1×2(R)

(2.2)

Another important property of activation functions is that they be continuously dif-

ferentiable. In the event that they are, all operations involved in the computation

of the network are differentiable. By using continuously differentiable functions on

11



the output of the neural network to produce a measure of fitness L for whatever

you want the neural network to achieve, you can construct a gradient for L with

respect to the weights of the matrix and update them to maximize or minimize

L(Neural Network(x)) (or, more technically in the case of certain loss functions,

L(x)). This procedure is known as backpropagation , and it allows neural networks

to be tuned for a wide variety of tasks. We say the model is trained on a set of

samples X = {x} when it learns weights from those samples via backpropagation.

2.3.2 Embedding

One can use these models to construct vector representations of arbitrary discrete

objects or sets of objects in the real world—types of tea, crackers, words, or anything

you can derive a loss function for. The simplest way of doing so for a set of n objects

is to construct a model that has a single neuronal layer of d · n neurons, where d is

the desired number of dimensions for each object. This imposes an underlying matrix

M ∈ M(n, d). Each row of M corresponds to one of the objects, and at training time

an object’s vector is retrieved as in Equation 2.3.

vobject2 =

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
object1 a11 a12 · · · a1,d

object2 a21 a22 · · · a2,d
...

...
...

. . .
...

objectn an,1 an,2 · · · an,d

⏞ ⏟⏟ ⏞
Object embedding M

·

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
object1 0

object2 1
...

...

objectn 0

⏞ ⏟⏟ ⏞
One-hot encoding vector

(2.3)

A loss function can then be set up on these vectors for some goal, and the model will

learn vectors with semantic information connecting the objects to that goal. Models

with sufficiently small vectors may encode information in a manner that is human-

understandable, resulting in an interpretable model , or models whose operations

are understandable in some way.
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2.4 Hebart et al. Model

We extensively use the prior work of Hebart et al. [13], who constructed a model

with a shallow neural network with one layer of neurons that have an identity acti-

vation function (f(x) = x). This model was trained to perform an object-similarity

judgment task and obtain a vector embedding for each of 1854 objects. The neural

network is interpretable, with vectors for each object and each dimension of each

vector corresponding to a human-understandable type of similarity. It was created as

part of the THINGS initiative, an initiative to tie research projects’ results through

a common set of imageable objects [15].

2.4.1 THINGS Object Dataset

The underpinning of the THINGS initiative is the THINGS object dataset [14], a col-

lection of 1854 objects with associated metadata, including English names, WordNet

[18] senses, and representative images.

2.4.2 Gathered Odd-One-Out Data

Hebart et al. constructed questions for a task known as the odd-one-out task, wherein

a respondent is presented with images of three objects and asked to identify the least

similar among them. The objects and associated representative object images of the

THINGS dataset were used for this.

They collected these responses from adults of various ages via Amazon’s crowd-

sourced response service Mechanical Turk. The resulting dataset consists of 4.7 mil-

lion (4 699 160) adult samples.

2.4.3 Model Architecture

The neural network’s architecture is that of a single-neuronal-layer embedding net-

work that uses the identity activation function; see Section 2.3.2. It was initially
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initialized with an 1854× 90 embedding matrix, but by using a loss function that en-

courages matrix sparseness (see Section 2.4.4), after training and removing columns

of zeros, it is an 1854 × 49 embedding matrix. The model’s rows correspond with

the 1854 objects of the THINGS dataset, while the columns correspond with human-

identifiable object-similarity feature labels, such as “long/thing” and “animal-related”.

An example vector retrieval for the THINGS object “abacus” that also illustrates the

layout of the model embedding is given in Equation 2.4.

vabacus =

metallic food-related . . . cylindrical⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
aardvark a11 a12 · · · a1,49

abacus a21 a22 · · · a2,49
...

...
. . .

...

zucchini a1854,1 a1854,2 · · · a1854,49

⏞ ⏟⏟ ⏞
Object-similarity embedding

·

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
aardvark 0

abacus 1
...

...

zucchini 0

⏞ ⏟⏟ ⏞
One-hot encoding vector

(2.4)

In order to compare the objects “pencil” and “baton,” the model calculates their

similarity by taking the dot product of the associated vectors yielded by the model

as in Equation 2.5, summing up the products of each of the dimensions.

sim(pencil, baton) = vpencil · vbaton (2.5)

= vpencil[1] · vbaton[1] + · · ·

+ vpencil[long/thin dim.] · vbaton[long/thin dim.]

+ vpencil[animal-related dim.] · vbaton[animal-related dim.]

+ · · ·+ vpencil[49] · vbaton[49]

Consider, without loss of generality, the three objects “abacus,” “calculator,” and

“dog.” The odd one out among these three objects is computed by first taking an

14



unnormalized score for each as being the calculated similarity between the other

two, as in Equation 2.6, then taking the softmax of these similarities to produce

probabilities, as in Equation 2.7. Finally, the predicted odd one out is the object

with the highest associated probability, as in Equation 2.8.

zabacus = sim(calculator, dog) = vcalculator · vdog

given the comparison set {abacus, calculator, dog}
(2.6)

P(abacus is the odd-one-out) = σ (z)abacus =
ezabacus

ezcalculator + ezdog + ezabacus
(2.7)

prediction({abacus, calculator, dog}) = argmax
i∈{abacus,calculator,dog}

σ (z)i (2.8)

2.4.4 Training and Loss

The model was trained using cross-entropy loss with a sum-of-vector-ℓ1-norm penalty

on the neural network embedding to encourage sparsity. The equation for cross-

entropy loss is given below:

H(q, p)object set is {i,j,k},
k is the odd-one-out

=
∑︂

c∈{i,j,k}

qc is the odd-one-out · ln(pc is the odd-one-out)

= − ln (p(codd-one-out))

= − ln (σ (z)c) = − ln
ezk

ezk + ezj + ezi

= − ln
ex⃗ix⃗j

ex⃗ix⃗j + ex⃗ix⃗k + ex⃗j x⃗k

(2.9)

where

• H is the cross-entropy loss function

• i, j, k denote the three objects of a triplet, where k is the true odd-one-out
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• zc where c ∈ {i, j, k} represents the similarity between the pair {i, j, k} ∖ {c}

(see Equation 2.6)

• z = {zi, zj, zk}

• σ is the softmax function (see Equation 2.7)

• q is the probability of an object being the odd one out (so 100% for the human-

labelled odd-one-out, 0% for any other object)

• p is the estimated probability the model gives that a given object is the odd-

one-out

• xc is the embedding vector for object c

In this manner, the full loss expression for a set of samples X and embedding matrix

M, where X is organized such that the third object is always the odd-one-out, is

given by Equation 2.10.

−
∑︂

{i,j,k}∈X

ln
ex⃗ix⃗j

ex⃗ix⃗j + ex⃗ix⃗k + ex⃗j x⃗k
+

∑︂
vi∈M

ℓ1(vi) (2.10)
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Chapter 3

Adult Age and Dimensional
Similarity Preferences

We examine and compare types of similarity preferences determined by the

dimensions of an interpretable embedding, referred to as dimensional likeness

preferences, exhibited by 25–35- and 50–60-year-olds when performing an

object-comparison task.

3.1 Overview

As people age, they adjust how they compare objects [9]. We employ an inter-

pretable, machine-learned model to examine differences in the preferences for these

associations displayed by two age groups: 25–35- and 50–60-year-olds. Given a model

with interpretable object-likeness features trained to perform object comparison, we

modify the model to allow for reweighting those features. We then search for optimal

feature-reweighting parameters for this modified model for the two age groups. The

new reweighting parameters are taken as indications of the groups’ preferences for

the model features. Finally, we display these quantified preferences and use them

to determine differences between each age group in their object-comparison likeness

preferences.
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3.2 Question Examined

How does age impact object-likeness preferences in comparing objects?

Question Do adults aged 25–35 and 50–60 prioritize object-comparison likenesses

differently when comparing objects?

Procedure We first obtain measures of object-likeness prioritization for 25–35-year-

olds and 50–60-year-olds. We do this by modifying an object-comparison-

performing model whose dimensions correspond with object-comparison

likenesses and have human-identifiable labels. Our modified model has a

layer of “preference weights” that rescale the prominence of the likenesses

in the original model when determining object similarities. We learn these

preference weights for each age group. Finally, we perform statistical

testing to see which preference weights significantly differ between groups.

3.3 Introduction

Do younger adults (25–35) and older adults (50–60) have different priorities when

determining two objects’ similarity?

Comparing objects is a multifaceted task. Correspondingly, when people judge the

degree of similarity of two objects, they consider multiple avenues of comparison.

Consider a fishing pole and a fishing spear, for example. One might judge them to

be similar based on their utility in catching animals for food, but one might also

judge them to be similar based on their shape. Ways of determining object similarity

are known as semantic relations. Individuals can vary in their perception of two

objects’ similarity, but broad trends emerge when looking across different objects and

at groups of people.

There are many kinds of semantic relations. Here, we introduce two broad kinds

of semantic relations in the literature for motivation: taxonomic and thematic rela-
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tions. Taxonomic relations are feature-focused, such as the “four-legged” likeness

between dogs and bears. Meanwhile, thematic relations describe those that are

context-focused, such as the “pet-related” likeness between dogs and bones. Prior

work on taxonomic and thematic relations has found age-related differences in peo-

ple’s prioritization of each when determining object similarity. Namely, older adults

(66–85) exhibit a relatively stronger preference for thematic (context-based) relations

over taxonomic (feature-based) relations as compared to younger adults (17–23) [9].

Considering the broadness of these two classes of relations, we might also expect

other, more specific kinds of similarity preferences, which we refer to as likenesses

to avoid confusion with other terms in the literature, to change with age as well.

What kinds of likenesses should we examine? Individual likenesses themselves can

be manifold, and many likenesses are partitionable into more specific ones. For

example, “lake-related” can be narrowed into “saltwater lake-related” or “freshwa-

ter lake-related.” These specific likenesses can also be combined to build broader

likenesses: “saltwater lake-related” and “ocean-related” compose “saltwater body of

water-related.” Note that despite “lake-related” and “saltwater body of water-related”

overlapping (as demonstrated by “saltwater lake-related”), they also relate distinct

objects (any two freshwater lakes and any two oceans, for example). With a plethora

of likenesses to choose from and significant overlap between many, selecting which

likenesses to examine and determining to what extent arbitrary objects are related

under each is complicated.

Fortunately, recent advances in modelling object-similarity preferences give us both

a way of choosing likenesses and of quantifying them. The authors Hebart et al.

collected millions of responses from people for an odd-one-out object-comparison task

(wherein images of three objects are presented and participants are asked to identify

the “odd one out”) (see Section 2.4). With the resulting large-scale dataset, they

then trained a sparse, single-layer computational model to perform the odd-one-out
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task on the objects used. This method of training leads to each object having scores

along a small number of dimensions. Importantly, these dimensions end up being

interpretable, with each corresponding with a type of human-identifiable likeness

(such as “long/thin” or “body part-related”). Thus, the model gives us a set of

specific types of similarity, or dimensional likenesses. It also gives us numeric

scores for objects vis-à-vis those likenesses encoded in the model’s dimensions; we

refer to those dimensions as likeness dimensions.

In this chapter, we use these dimensional likenesses to analyze the priorities of 25–35-

and 50–60-year-olds in judging similarity when performing the odd-one-out task. We

identify these priorities relative to the broader population, then compare these pri-

orities between age groups. We accomplish this by modifying the architecture of the

odd-one-out-predicting model to contain a layer comprising a vector w of likeness-

preference weights. Each element wi of the vector corresponds with one of the

dimensional likenesses used in odd-one-out prediction. These weights rescale the

vector embeddings learned from some original training dataset S1 to optimize perfor-

mance for some new dataset S2. Each weight wi then indicates the importance that

the corresponding dimensional likeness has for S2 relative to S1. We approximate

these likeness-preference weights for each age group. Finally, we perform statistical

testing on the differences in these likeness-preference weights across age groups to

determine age-related discrepancies in object comparison.

3.4 Methodology

3.4.1 Overview

This overview gives a mid-level look at our methodology, delineated explicitly in the

following sections starting with Section 3.4.2. In this chapter, we focus on identifying

connections between adult age and preference for object likenesses. In particular,

we concentrate on two age groups, 25–35- and 50–60-year-olds, and a prior set of 49
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quantified object likenesses. To determine differences between these age groups along

these likenesses, we quantify preferences for each age group regarding each of these

likenesses. We then compare those preferences to determine statistically significant

differences. Below, we describe the decisions underlying this in several parts:

1. Prior data

2. Choice of age groups

3. Choice of object likenesses and prior model

4. Preference-learning modified model architecture

5. Determining optimal preferences

6. Statistical testing

First, we discuss a prior object-comparison response dataset. The authors Hebart et

al. collected millions of responses to the odd-one-out task, where respondents are pre-

sented with three object images and asked to identify the least similar amongst them

[13]. The object images in question are from the THINGS object dataset, a collection

of 1854 objects with associated metadata [14]. We shall henceforth refer to these

collected responses as the THINGS odd-one-out dataset. Additional information on

this dataset is located in Section 2.4.1.

Second, we discuss our choice of age groups. The responses of the THINGS odd-one-

out dataset have respondent-age annotations. The distribution of the responses is

multimodal, with peaks at ages 30 and 56. We choose 25–35- and 50–60-year-olds in

order to take advantage of as many triplets as possible while maintaining two distinct

age groups. This distribution can be found in Section 3.4.3

Third, we discuss the prior model and the choice of object likenesses to examine

when comparing age groups. From Hebart et al., we have the model with 49 likeness-

encoding features—i.e., likeness dimensions—that quantify a set of abstract di-
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mensional likenesses with human labels. This model performs the odd-one-out

task after training on the THINGs odd-one-out dataset. The model’s architecture is

a shallow neural network. It embeds each of the THINGs objects into vector form,

then performs a dot-product operation between two of them to judge their similarity.

The authors train the model sparsely, and as mentioned each resulting embedding di-

mension corresponds with a human-identifiable likeness, such as “long/thin” or “body

part-related.” For our purposes, this gives us 49 dimensional likenesses with which to

work. The architecture of this model is explained in Section 3.4.5.

Fourth, we discuss how we learn a group’s preferences for these dimensional likenesses.

To do this, we modify Hebart et al.’s model to have a likeness-preference layer.

This layer contains a likeness-preference weight for each likeness dimension that

rescales that dimension’s values when the model performs the odd-one-out task. The

model may be initially trained while ignoring this layer and fixing it to a set of ones,

although we use Hebart et al.’s existing embedding rather than doing so. Then, we

fix the embedding and allow the likeness-preference layer to vary1. Training these

likeness-preference weights on a set of responses gives us a measure of how much

more effectively that relational dimension contributes to accurately modelling the

odd-one-out choices in those responses. We interpret these weights as a proxy for the

respondents’ object-likeness preferences. A more explicit description, as well as some

intuition, can be found in Section 3.4.6

Fifth, by training each likeness-preference weight of the likeness-preference layer on a

particular set of odd-one-out responses, we then learn preferences for each dimensional

likeness specific to those responses. Using responses from a given age group, we can

then observe that age group’s preferences for each dimensional likeness relative to the

overall population. Feeding the responses of each age group to the modified model, we

1While we do not elaborate on this here, we technically learn the weight for one dimension at a
time rather than all 49 likeness-preference weights at once due to the embedding matrix not being
linearly independent. See Section 3.4.7 for specific documentation of this.
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learn measures of their respective preferences for each of the 49 dimensional likenesses.

Further details on obtaining these weights are located in Section 3.4.7

Sixthly and lastly, we discuss our testable experiment. We load Hebart et al.’s

model embedding into our modified model architecture that additionally incorpo-

rates likeness-preference weights. Without loss of generality, we select a dimension

for which to learn an optimal likeness-preference weight. We learn the optimal pref-

erences for each age group on the full sets of each group’s response data and take the

difference. Finally, we combine the two groups of responses and learn random prefer-

ence differences, using that to perform a bootstrapped statistical test on whether the

difference between the age groups’ preferences exceeds chance. A formal delineation

of these tests is given in Section 3.4.8

Below, we go into further detail about each of these steps.

3.4.2 Prior Data and Cleaning

To start, we have a large number of existing responses to an object-comparison task

courtesy of Hebart et al. [13] They collected these responses for the object-comparison

task known as the “odd-one-out” task, where a respondent is presented with images of

three objects and asked to identify the least similar among them. They collected these

responses from adults of various ages via Amazon’s crowdsourced response service

Mechanical Turk.

The resulting dataset consists of 4.7 million (4 699 160) adult samples, of which 3.26

million (3 259 599) have age annotations. After filtering out the 7340 samples that

have a user-entered age of over 110 and the 240 that have an age under 18, we are

left with 3.25 million (3 252 020) adult responses to work with.
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3.4.3 Choice of Age Groups

In order to determine differences in object-similarity preferences by age, we need

results from different age groups to compare. The age-annotated responses from the

object-comparison dataset from participants of ages 18 and up form the multimodal

distribution displayed in Figure 3.1.

Figure 3.1: The distribution of response ages in the THINGS response dataset.

This distribution has peaks at ages 30, 37, and 56. Because we want age groups

sufficiently far apart, we ignore the peak at 37 and center our age groups around

the remaining peaks by taking the age ranges of 25–35 and 50–60 as our respondent

groups. For the age group 25–35, this gives us 1.02 million (1 015 960) responses,

while for the age group 50–60, we have 710 thousand (708 420) responses.

3.4.4 Choice of Object Likenesses

Concerning the choice of types of object similarity, or likenesses , on which to com-

pare the preferences between our two age groups, we use the likenesses encoded in

an existing model—namely, the model that Hebart et al. developed to perform the

odd-one-out object-comparison task [13]. The model contains a vector of 49 object-
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likeness scores for each of the 1854 objects of the THINGS dataset [14]. Each score

corresponds with a human-identifiable object likeness, such as “long/thin” or “body

part-related,” and indicates the degree to which the object is similar to others with

regard to that likeness. We henceforth refer to the object likenesses that the dimen-

sions encode as dimensional likenesses and the dimensions themselves as likeness

dimensions.

The likeness dimensions are encoded in the model as an 1854 × 49 matrix. Each

column corresponds with a human-labelled summary of the dimensional likeness, and

each row denotes a specific object’s scores along the associated likeness dimensions.

This is illustrated in Equation 3.1.

metallic food-related . . . cylindrical⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
aardvark a1,1 a1,2 · · · a1,49

abacus a2,1 a2,2 · · · a2,49
...

...
. . .

...

zucchini a1854,1 a1854,2 · · · a1854,49

⏞ ⏟⏟ ⏞
Learned object-similarity embeddings

(3.1)

As previously mentioned, these dimensional likenesses have human-identifiable labels,

such as “long/thin” or “body part-related.” When the model compares two objects,

it takes the dot product of their constituent vectors. More descriptively, it multiplies

their respective scores along each dimension and sums the products to form a single

object-similarity score, as illustrated in Equation 3.2.
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sim(pencil, baton) = vpencil · vbaton (3.2)

= vpencil[1] · vbaton[1] + · · ·

+ vpencil[long/thin dim.] · vbaton[long/thin dim.]

+ vpencil[animal-related dim.] · vbaton[animal-related dim.]

+ · · ·+ vpencil[49] · vbaton[49]

As such, the product of two objects’ scores for a dimension gives another score, one

that indicates the extent to which the corresponding likeness contributes to the two

objects’ overall similarity.

3.4.5 Original Model

The original Hebart et al. model, which we will be modifying for our purposes, per-

forms the odd-one-out-among-three object-comparison task through three main steps.

First, it converts each object into a vector representation by means of its learned

embedding matrix. The details of the training are found in Section 2.4.4. A sample

vector embedding for “abacus” is given in expression Equation 3.3.

vabacus =

metallic food-related . . . cylindrical⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
aardvark a11 a12 · · · a1,49

abacus a21 a22 · · · a2,49
...

...
. . .

...

zucchini a1854,1 a1854,2 · · · a1854,49

⏞ ⏟⏟ ⏞
Fixed object-similarity embeddings

·

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
aardvark 0

abacus 1
...

...

zucchini 0

⏞ ⏟⏟ ⏞
One-hot encoding vector

(3.3)

Second, the model computes a scalar similarity between each pair of objects by tak-

ing the dot product of the objects’ embedding vectors. This scalar similarity depends
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solely on the other two objects being considered. It can be interpreted as an unnormal-

ized score correlated with the chance of the out-of-pair object being the odd-one-out.

This is expressed in Equation 3.4.

zabacus = sim(calculator, dog) = vcalculator · vdog

given the comparison set {abacus, calculator, dog}
(3.4)

Finally, the model transforms the raw scores into probabilities by taking the softmax

of the raw scores. As a reminder, the softmax function transforms any number of

real-valued scalars into a probability distribution. This is illustrated in Equation 3.5.

The model takes the object granting the highest among these probabilities to be its

predicted odd-one-out, as demonstrated in Equation 3.6.

P(abacus is the odd-one-out) = σ (z)abacus =
ezabacus

ezcalculator + ezdog + ezabacus
(3.5)

prediction({abacus, calculator, dog}) = argmax
i∈{abacus,calculator,dog}

σ (z)i (3.6)

3.4.6 Modified Model

In order to compare object-similarity preferences between age groups, we need mea-

sures of those preferences. We accomplish this by modifying the original model ar-

chitecture to incorporate what we call likeness-preference weights. These create

an additional layer of the model that transforms any retrieved embedding vector via

element-wise rescaling.

Computationally, we accomplish this by introducing a 49-dimensional vector into the

model, where each entry is a likeness-preference weight. This vector is embedded

into the diagonal of a 49× 49 matrix, which rescales any object-similarity vector re-

trieved from the embedding matrix. In this manner, each of the 49 likeness-preference
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weights multiplies the associated likeness dimension of a given original embedding

vector. This is illustrated in Equation 3.7.

v′abacus =

aardvark abacus . . . zucchini[︂ ]︂
0 1 · · · 0

⏞ ⏟⏟ ⏞
One-hot object-choosing vector

·

metallic food-related . . . cylindrical⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
a1,1 a1,2 · · · a1,49

a2,1 a2,2 · · · a2,49
...

...
. . .

...

a1854,1 a1854,2 · · · a1854,49

⏞ ⏟⏟ ⏞
Fixed object-similarity embeddings

·

metallic food-related . . . cylindrical⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦
c1 0 · · · 0

0 c2 · · · 0
...

...
. . .

...

0 0 · · · c49

⏞ ⏟⏟ ⏞
Diagonally embedded
reweighting vector

of likeness-preference weights

(3.7)

The model then performs odd-one-out predictions by taking the object with the

maximum associated softmax probability as in Section 3.4.5. Due to the dual facts

that one: the likeness-preference weights transform the object-embedding vectors, and

two: the method of prediction is the same, our model is equivalent to the original,

unmodified Hebart et al. model when the 49 likeness-preference weights are set to one.

While the model embedding was trained on some set of odd-one-out responses S1, the

preference-reweighting layer is trained on some other set of odd-one-out responses S2.

We give intuition regarding this in Section 3.4.7.1.

3.4.7 Likeness-Preference Weight Optimization

3.4.7.1 Likeness-Preference Weight Intuition

Our modified model uses the object embedding of Hebart et al. trained on a set of

odd-one-out responses S1. The likeness-preference weights, meanwhile, are designed

to be trained on a separate set of responses. Were the likeness-preference weights to
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be trained on S1, the expected optimal values for them would be those producing the

original model; more specifically, they would all have a value of one. Any deviations

from this would be for one of two reasons: marginal effects resulting from suboptimal-

ity of training the original embedding, or likenesses between embedding dimensions

resulting in multiple optima in the original embedding.

As such, we instead train the likeness-preference weights on some alternative set

of responses S2. As likeness-preference weights reweight the columns of the original

model embedding trained on S1, any likeness-preference weights learned are relative to

the choice of those columns. For both scenarios below, assume uncorrelated columns:

• Consider S1 and S2 from populations with identical object-comparison prefer-

ences that are asked about the same objects. The expected likeness-preference

weights are within some small marginal difference from one.

• Consider S1 and S2 from populations with different object-comparison prefer-

ences that were asked to perform the odd-one-out task on the same sets of

three objects. The expected likeness-preference weights for S2 are beyond one

in accordance with the magnitude of those differences in preferences. In other

words, these preferences are relative to those of S1.

Note that the columns of the Hebart et al. object embedding are correlated. We

can bypass this issue by training the likeness-preference weights independently, as

described below.

3.4.7.2 Isolating Likeness-Preference Weights

Rather than optimizing all likeness-preference weights for the model simultaneously,

we optimize each likeness-preference weight individually, leaving the others fixed. We

isolate the process of training each likeness-preference training because the likeness di-

mensions of the model share information, and so an increase in one likeness-preference

weight can result in a decrease in another. While this limits the overall performance
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gain that we can achieve over the original mode, this is inconsequential: we are pri-

marily interested in learning optimal likeness-preference weights of each dimension in

isolation rather than optimizing their collective utility in model performance.

3.4.7.3 Loss Function

We learn likeness-preference weights by minimizing cross-entropy loss. Specifically,

the cross-entropy H(q, p) of the model prediction probability p relative to the theo-

retical actual prediction probability q is given by

H(q, p)object set is {i,j,k},
k is the odd-one-out

=
∑︂

c∈{i,j,k}

qc is the odd-one-out · ln(pc is the odd-one-out)

= − ln (p(codd-one-out))

= − ln (σ (z)c) = − ln
ezk

ezk + ezj + ezi

= − ln
ex⃗ix⃗j

ex⃗ix⃗j + ex⃗ix⃗k + ex⃗j x⃗k

(3.8)

where

• H is the cross-entropy loss function

• i, j, k denote the three objects of a triplet, where k is the true odd-one-out

• zc where c ∈ {i, j, k} represents the similarity between the pair {i, j, k} ∖ {c}

(see Equation 3.5)

• z = {zi, zj, zk}

• σ is the softmax function (see Equation 3.5)

• q is the probability of an object being the odd one out (so 100% for the human-

labelled odd-one-out, 0% for any other object)

• p is the estimated probability the model gives that a given object is the odd-

one-out
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• xc is the reweighted embedding vector for object c; i.e.[︂
x
(1)
c0 , x

(2)
c0 , ..., wdx

(d)
c0 , ..., x

(49)
c0

]︂
, where xc0 is the unreweighted embedding vec-

tor for object c and d is the unique dimension being reweighted (as per Sec-

tion 3.4.7.2)

The gradient of this with respect to the reweighting dimension value of the dimension

being considered can be found in Section 3.6.

Across a set of responses S, we take the average cross-entropy loss, 1
|S|

∑︁
s∈S H(q, p).

3.4.7.4 Convexity and Stochasticity

The cross-entropy loss (see Section 3.4.7.3) is highly stochastic, depending heavily

on the batch of samples used. This stochasticity holds even up to a vast number

of samples (on the order of one million). Nevertheless, it is consistently convex on

a per-batch level. Samples of the loss curve when varying the likeness-preference

weight of the first dimension of the model across five different fixed batches are given

in Figure 3.2.
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Figure 3.2: Five sample loss curves achieved by varying the likeness-preference weight
of Dimension 1 under a fixed batch of responses for each. The orange line represents
the mean of the curves. The x-axis gives the value of the likeness-preference weight
within the modified model, while the y-axis denotes the resulting loss of the modified
model on a fixed batch of responses.

Meanwhile, due to the stochasticity of the model’s loss when the batch is varied, the

resulting loss curve is not convex, and näıve cross-batch optimization methods result

in subpar results. We give an example loss curve calculated across different batches

in Figure 3.3.
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Figure 3.3: A noisy loss curve sampled across many batches for Dimension 1. The x-
axis is the value of the likeness-preference weight for Dimension 1 within the modified
model, while the y-axis is the loss incurred by the model. The blue line is the
curve taken by varying the likeness-preference weight and recording the model loss on
random batches. Notice the non-convexity of the loss curve, which stands in contrast
to the convex loss curves of Figure 3.2, where each curve was obtained on a single
batch.

3.4.7.5 Choice of Likeness-Preference-Weight Optimization Method

As described in the previous section, due to the stochastic nature of the loss of the

model with respect to different batches, näıve cross-batch learning methods have

convergence issues. However, we can still optimize the likeness-preference weight on

individual, fixed batches. As we 1) have the derivative 2) know the loss curve for

individual batches is continuous and convex, we use Alefield et al.’s Algorithm 748

[24] and find the zero of the derivative to identify the minimum loss for a batch of

responses.
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3.4.8 Testing and Sampling

3.4.8.1 Bootstrapped Statistical Test

Recall that we wish to learn preferences for each age group. We use the test procedure

outlined in [25, Section 4.4.1] for determining whether the difference in a statistic

between two age groups is significant. More specifically, the procedure is as follows

for a given dimension.

Consider a statistic f on a given sample of responses s, as well as large samples S1

and S2. For our experiment, f(s) is the optimal preference weight learned on s, while

S1 and S2 are the full sets of odd-one-out responses for 25–35-year-olds and 50–60-

year-olds. We will consider a new test statistic on two samples given by the difference

between their preference weights, t(s1, s2) = f(s2)− f(s1).

1. First, take toverall = t(S1,S2).

2. Next, create a dataset Sboth by merging S1 and S2.

3. Create n random subsamples with replacement, or bootstrapped samples,

(s∗1, ..., s
∗
n) of Sboth. We actually do this twice, and get (x∗

1, ...,x
∗
n) and (y∗

1, ...,y
∗
n).

In our case, S1 and S2 are of different sizes, so we make sure that each boot-

strapped sample has an equal number of responses from each age group. For

computational reasons, we take slightly less than the number of samples from

either age group set.2

4. For each pair of samples (x∗
i ,y

∗
i ), produce t∗i = t(x∗

i ,y
∗
i ).

5. Finally, compute our p-value by computing p =
∑︁n

i=1 t
∗
i≥toverall
n

, where ≥ is over-

ridden to return 1 or 0 rather than true or false.

This p-value is the probability of seeing our observed difference between the preference

2Our setup is slightly prone to Type-II errors, as the standard error of the estimates for our
smaller bootstrapped samples will be larger than if they matched the sizes of S1 or S2. We are less
concerned with missing results than with reporting erroneous novel results, however.
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weights of S1 and S2 under the null hypothesis that it is drawn from the mixed-group

distribution of taking differences of random pairs of groups formed from the union of

S1 and S2.

In practice, we only bootstrap the f(s∗i ) values directly (taking 2000), and subsample

these to get bootstrapped differences.

3.4.8.2 Bootstrapped Confidence Interval

In addition to our statistical test, we also create a confidence interval. This confi-

dence interval is not the same as the one implied by our statistical test, although the

value 0 appearing in this confidence interval is heavily correlated with low, insignifi-

cant p-values under that test. It is instead given by the distributions of subtracting

a bootstrapped difference between the preference weights of two samples from the

combined age groups (a t∗i , in the parlance of the procedure in Section 3.4.8.1) from

a bootstrapped difference between the separated age groups.

More formally, consider the optimal-preference-weight statistic f on a given set of

odd-one-out responses s, as well as set of all 25–35-year-old responses S1 and the set

of all 50–60-year-old responses S2. Consider the difference-based test statistic t that

computes the difference between two samples; i.e., t(s1, s2) = f(s2) − f(s1). For a

given dimension our confidence interval is taken by doing the following:

1. First, create a dataset Sboth by merging S1 and S2.

2. Next, create n random subsamples with replacement, or bootstrapped sam-

ples, (s∗1, ..., s
∗
n) of Sboth. We actually do this twice, and get (s∗1

mixed1 , ..., s∗n
mixed1)

and

1 (s∗1
mixed2 , ..., s∗n

mixed2). In our case, S1 and S2 are of different sizes, so we

make sure that each bootstrapped sample has an equal number of responses

from each age group. For computational reasons, we take slightly less than the

number of samples from either age group set.
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3. For each pair of samples (s∗i
mixed1 , s∗i

mixed2), produce t∗i
mixed = t(s∗i

mixed1 , s∗i
mixed2).

4. Create n random bootstraps of (s∗1
25–35, ..., s∗n

25–35) of S1.

5. Create n random bootstraps of (s∗1
50–60, ..., s∗n

50–60) of S2.

6. For each pair of samples (s∗i
25–35, s∗i

50–60), produce t∗i
age = t(s∗i

25–35, s∗i
50–60).

7. For each pair of bootstrapped statistics (t∗i
age, t∗i

mixed), take

the difference δ∗i=t∗i
age - t∗i

mixed.

The intuition for this is that each δ∗i represents the extent by which a bootstrapped

difference between each age group outstrips a bootstrapped mixed difference. There-

fore, if a confidence interval for δi contains 0, it suggests one of two things: either

there are inconsistencies in which age group’s preference weight is larger, or the dif-

ferences in the preference weights between each age group are sometimes less than

what would occur by chance.

In practice, we only bootstrap the f(s∗i ) values directly (taking 2000), and sample

differences among these to get bootstrapped differences.

3.4.8.3 Sampling

Without loss of generality, we wish to obtain the following pieces of information for

a dimension d:

1. A single optimal likeness-preference weight for each age group over all of that

age group’s recorded responses.

2. A collection of optimal likeness-preference weights for each age group over sub-

sets of that age group’s responses.

3. A collection of the differences between the optimal likeness-preference weights

of each age group.

4. A collection of optimal likeness-preference weights over subsets of the combined
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set of all 25–35 and 50–60 responses.

5. A collection of the differences between the optimal likeness-preference weights.

First, we start by computing the optimal likeness-preference weight for each age group

on the full set of odd-one-out responses, which numbers 1 015 960 for the 25–35-year-

olds and 708 420 for the 50–60-year-olds.

Secondly, we take 4000 bootstrapped samples of each age group’s responses. For

computational reasons (namely, memory limits for fast computing of the preference

weights) these bootstrapped samples each have 500 000 odd-one-out responses each.

We compute 4000 optimal likeness-preference weight sample estimates for each age

group from these.

For details about how to compute likeness-preference weights, see Section 3.4.7.

Third, we take 200 000 sample statistic differences (differences in the optimal pref-

erence weights) between each age group (50–60-year-old preference weights minus

25–35-year-old preference weights) using the 4000 bootstrapped optimal likeness-

preferences.

More formal sampling details for step three are given in the sample procurement steps

of Section 3.4.8.2.

Fourth, we combine the two age groups’ responses into a single dataset and take two

sets of 4000 bootstrapped samples from that dataset. Computing the optimal pref-

erence weights for these, this gives us two sets of 4000 mixed-group optimal likeness-

preference weight sample statistics.

Fifthly and finally, we take 200 000 sample statistic differences (differences in the opti-

mal preferences weights) between each of the two mixed-group sets of 4000 preference-

weight sample statistics.

More formal sampling details for steps four and five can be found in Section 3.4.8.2
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and Section 3.4.8.1.

We use the sets of sample statistics obtained in steps 1–5 above to compute the p-

value significance result of Section 3.4.8.1 and the confidence interval described in

Section 3.4.8.2. We do this for each of the 49 likeness dimensions and report the

results.

3.5 Results and Discussion

This section contains, for each likeness dimension, the differences between the likeness-

preference weights of each age group learned from their corresponding full set of odd-

one-out responses. It also details the significance of these differences as determined

by our bootstrapped statistical test (Section 3.4.8.1).

Table 3.1 orders these results by likeness dimension number, while Table 3.2 orders

the results by differences between the age groups’ likeness-preference weights.

For per-dimension graphs of the bootstrapped distributions of the age groups’ pref-

erence weights, the bootstrapped differences between each age group’s preference

weights, and the confidence intervals (both the one associated with the statistical test

of Section 3.4.8.1 and the alternative confidence interval detailed in Section 3.4.8.2),

see Appendix A.
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3.5.1 Differences in Likeness Preference

Dimension Human Description Significant (p<0.1) Age Diff.? Age 25-35 Preference Age 50-60 Preference Pref. Diff. (50-60 Min. 25-35) p-value

1 made of metal/artificial/hard TRUE 0.972 0.996 0.024 0.000

2 food-related/eating-related/kitchen-related TRUE 0.948 0.920 -0.028 0.000

3 animal-related/organic TRUE 0.898 0.911 0.013 0.011

4 clothing-related/fabric/covering FALSE 0.993 0.980 -0.012 0.103

5 furniture-related/household-related/artifact FALSE 0.971 0.976 0.005 0.592

6 plant-related/green FALSE 0.885 0.890 0.005 0.554

7 outdoors-related FALSE 0.905 0.903 -0.003 0.820

8 transportation/motorized/dynamic TRUE 0.948 0.967 0.019 0.051

9 wood-related/brownish FALSE 0.950 0.961 0.011 0.350

10 body part-related TRUE 0.984 0.947 -0.037 0.000

11 colorful TRUE 0.944 1.002 0.058 0.000

12 valuable/special occasion-related FALSE 0.952 0.945 -0.007 0.639

13 electronic/technology TRUE 0.948 0.973 0.024 0.044

14 sport-related/recreational activity-related TRUE 0.967 0.996 0.029 0.031

15 disc-shaped/round TRUE 0.896 1.035 0.139 0.000

16 tool-related TRUE 0.896 0.971 0.075 0.000

17 many small things/course pattern TRUE 0.901 0.970 0.069 0.000

18 paper-related/thin/flat/text-related FALSE 0.965 0.952 -0.013 0.359

19 fluid-related/drink-related TRUE 0.948 0.922 -0.026 0.085

20 long/thin TRUE 0.898 1.041 0.142 0.000

21 water-related/blue FALSE 0.917 0.907 -0.009 0.544

22 powdery/fine-scale pattern FALSE 0.858 0.874 0.016 0.505

23 red TRUE 0.949 1.028 0.079 0.000

24 feminine (stereotypically)/decorative FALSE 0.933 0.893 -0.040 0.109

25 bathroom-related/sanitary FALSE 0.943 0.908 -0.035 0.178

26 black/noble TRUE 0.967 0.902 -0.065 0.020

27 weapon/danger-related/violence FALSE 0.906 0.897 -0.009 0.712

28 musical instrument-related/noise-related FALSE 0.885 0.924 0.039 0.158

29 sky-related/flying-related/floating-related FALSE 0.870 0.901 0.031 0.269

30 spherical/ellipsoid/rounded/voluminous TRUE 0.812 0.889 0.076 0.012

31 repetitive TRUE 0.845 0.926 0.082 0.017

32 flat/patterned TRUE 0.776 0.871 0.096 0.005

33 white TRUE 0.950 1.025 0.075 0.014

34 thin/flat FALSE 0.830 0.843 0.013 0.712

35 disgusting/bugs FALSE 0.797 0.843 0.046 0.235

36 string-related TRUE 0.868 0.940 0.072 0.035

37 arms/legs/skin-related FALSE 0.879 0.924 0.045 0.187

38 shiny/transparent FALSE 0.907 0.916 0.009 0.799

39 construction-related/physical work-related FALSE 0.831 0.861 0.030 0.477

40 fire-related/heat-related FALSE 0.914 0.896 -0.017 0.611

41 head-related/face-related FALSE 0.908 0.910 0.002 0.953

42 beams-related TRUE 0.736 0.821 0.085 0.080

43 seating-related/put things on top FALSE 0.805 0.853 0.048 0.338

44 container-related/hollow FALSE 0.806 0.823 0.017 0.760

45 child-related/toy-related FALSE 0.905 0.925 0.020 0.664

46 medicine-related TRUE 0.862 0.756 -0.105 0.056

47 has grating TRUE 0.769 0.972 0.203 0.000

48 handicraft-related FALSE 0.603 0.583 -0.020 0.826

49 cylindrical/conical FALSE 0.638 0.748 0.110 0.248

Table 3.1: Optimal likeness-preference differences between age groups by dimension
number (sum-of-column-scores-in-embedding ordering). Significance indicates that
the observed, full-response-set difference is unlikely under the bootstrapped mixed-
age-group difference distribution (see Section 3.4.8.1).
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Pref. Diff. Order Dimension Human Description Significant (p<0.1) Age Diff.? Pref. Diff. (50-60 Min. 25-35) p-value

1 46 medicine-related TRUE -0.105 0.056

2 26 black/noble TRUE -0.065 0.020

3 24 feminine (stereotypically)/decorative FALSE -0.040 0.109

4 10 body part-related TRUE -0.037 0.000

5 25 bathroom-related/sanitary FALSE -0.035 0.178

6 2 food-related/eating-related/kitchen-related TRUE -0.028 0.000

7 19 fluid-related/drink-related TRUE -0.026 0.085

8 48 handicraft-related FALSE -0.020 0.826

9 40 fire-related/heat-related FALSE -0.017 0.611

10 18 paper-related/thin/flat/text-related FALSE -0.013 0.359

11 4 clothing-related/fabric/covering FALSE -0.012 0.103

12 21 water-related/blue FALSE -0.009 0.544

13 27 weapon/danger-related/violence FALSE -0.009 0.712

14 12 valuable/special occasion-related FALSE -0.007 0.639

15 7 outdoors-related FALSE -0.003 0.820

16 41 head-related/face-related FALSE 0.002 0.953

17 5 furniture-related/household-related/artifact FALSE 0.005 0.592

18 6 plant-related/green FALSE 0.005 0.554

19 38 shiny/transparent FALSE 0.009 0.799

20 9 wood-related/brownish FALSE 0.011 0.350

21 3 animal-related/organic TRUE 0.013 0.011

22 34 thin/flat FALSE 0.013 0.712

23 22 powdery/fine-scale pattern FALSE 0.016 0.505

24 44 container-related/hollow FALSE 0.017 0.760

25 8 transportation/motorized/dynamic TRUE 0.019 0.051

26 45 child-related/toy-related FALSE 0.020 0.664

27 13 electronic/technology TRUE 0.024 0.044

28 1 made of metal/artificial/hard TRUE 0.024 0.000

29 14 sport-related/recreational activity-related TRUE 0.029 0.031

30 39 construction-related/physical work-related FALSE 0.030 0.477

31 29 sky-related/flying-related/floating-related FALSE 0.031 0.269

32 28 musical instrument-related/noise-related FALSE 0.039 0.158

33 37 arms/legs/skin-related FALSE 0.045 0.187

34 35 disgusting/bugs FALSE 0.046 0.235

35 43 seating-related/put things on top FALSE 0.048 0.338

36 11 colorful TRUE 0.058 0.000

37 17 many small things/course pattern TRUE 0.069 0.000

38 36 string-related TRUE 0.072 0.035

39 33 white TRUE 0.075 0.014

40 16 tool-related TRUE 0.075 0.000

41 30 spherical/ellipsoid/rounded/voluminous TRUE 0.076 0.012

42 23 red TRUE 0.079 0.000

43 31 repetitive TRUE 0.082 0.017

44 42 beams-related TRUE 0.085 0.080

45 32 flat/patterned TRUE 0.096 0.005

46 49 cylindrical/conical FALSE 0.110 0.248

47 15 disc-shaped/round TRUE 0.139 0.000

48 20 long/thin TRUE 0.142 0.000

49 47 has grating TRUE 0.203 0.000

Table 3.2: Optimal likeness-preference differences between age groups ordered by observed differ-

ence in full-response-set preference. Significance indicates that the observed, full-response-set differ-

ence is unlikely under the bootstrapped mixed-age-group difference distribution (see Section 3.4.8.1).
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3.5.2 Discussion

As a recap: we have searched for optimal preferences for each of 49 object likenesses.

We have done this for two adult age groups, ages 25–35 and 50–60, in hopes of

determining population-level differences in the usages of these likenesses. The results

are displayed ordered by dimension in Table 3.1 and ordered by level of difference in

Table 3.2. We find statistically significant differences in the preferences for each age

group for 23/49 of the dimensions at p = 0.1.

It is important to clarify here that while the dimensions do correspond with human-

identifiable labels, they are a specific understanding of them learned on the original

embedding’s training population. Thus, for example, while a group having a lower

preference score for a given dimension indicates they use that dimension less, it may

be because they have a different understanding of the associated label that, were it

encoded some other way, they would prioritize more.

For example, consider figure Figure 3.4. The similarity dimensions are ordered by

strength of usage by the population at large. Recall that the Hebart et al. dimensions

are ordered by the sum of their scores for all objects; in other words, the dimensions

are ordered by how important they are for relating objects for the adult embedding-

training population as a whole.
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Figure 3.4: The absolute differences between the all-response optimal reweighting
preference weights for ages 25–35 and ages 50–60 (results for ages 50–60 minus results
for ages 25–35). The x-axis gives the likeness dimension, while the y-axis gives the
absolute value of the observed difference between age groups in preference for that
dimension. The preferences here were learned over all responses from each age group.

The increasing trend in absolute differences can thus be interpreted in two ways:

1. Firstly, this trend could be because adults, by and large, do compare objects

primarily along similar lines regardless of whether they are in their mid-20s-to-

early-30s or their fifties. Under this assumption, it would be unsurprising that

the most salient dimensions of the original embedding remained more consistent

in usage across age groups.

2. Secondly, this trend could be because both groups comprise large portions of

the original embedding’s training population. The dimensions reflect training-

population-wide similarity-judgment decisions, and so the dimensions most rel-

evant to holistic model performance could consequently be ones that describe

decisions well for both of our adult age groups.
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Under either interpretation, Dimensions 11, 15, and 20 offer particular interest, as

the differences in optimal preference weights are both furthest from the red trendline

and significant. Dimension 11 has the label “colorful,” Dimension 15 has the label

“disc-shaped/round,” and Dimension 20 is “long/thin.” All three dimensions ex-

plained older adults’ responses more so than younger adults’, and in all three cases,

the dimensions are heavily perceptual in nature, having little to do with functional-

ity, context, or make. Based on these results, older adults may rely more on these

perceptual features when judging object similarity than younger adults.

Figure 3.5 offers a more nuanced look at the trends for each age group.

Figure 3.5: The differences between the all-response optimal reweighting preference
weights for ages 25–35 and ages 50–60 (results for ages 50–60 minus results for ages
25–35). The x-axis gives the likeness dimension, while the y-axis gives the observed
difference between age groups in preference for that dimension; the preferences here
were learned over all responses from each age group.
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The other largest difference from the trendline that we observe is for Dimension 46,

“medicine-related,” with a disproportionate usage by younger adults over older adults.

It seems unlikely that the immediate explanation that younger adults focus more on

medicine than older adults is plausible. Instead, we suspect that older adults may

have a more nuanced, or at least differentiated, view of medicine-related features than

do younger adults. For instance, they may not consider medicine-related objects as

being as readily similar due to likely having had more interactions with them, whereas

younger adults presumably have had less experience with them.

The bootstrapped age-preference plots, preference-difference distributions, confidence

intervals, and test results for each age group are given in Appendix A. For illustrative

purposes, one such of each have been included below in Figure 3.6 and Figure 3.7.
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Figure 3.6: Plots of the bootstrap test and confidence interval (details in Section 3.4.8.1 and
Section 3.4.8.2) for Dimension 1, provided here for exemplary purposes. The upper graph tests
the probability of observing the full-age-group preference difference (blue line) under the hypothesis
that it was sampled from the distribution of randomized groups’ preference differences (pink/red
distribution). The x-axis gives the difference in preference weights between each age group. Thus,
the blue line lying right of zero indicates a greater preference by 50–60-year-olds for the Dimension
1 than by 25–35-year-olds. It being outside the pink distribution connotes significance. The lower
graph is a correlated (but different) confidence interval. All dimensions are found in Section A.1.
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Figure 3.7: Plots comparing the distributions of optimal likeness-preference weights
for each age group for Dimension 1, provided here for exemplary purposes. The
bootstrapped preferences for the 25–35-year-olds’ responses are on the left, while 50–
60-year-olds’ are on the right. The x-axis gives likeness-preference-weight value, and
both distributions are on the same horizontal scale. Results for all dimensions can
be found in Section A.2. A lack of overlap between the two age groups’ preference-
weight distributions is correlated with significant differences between each age group’s
preferences, but these distributions should not be directly used for statistical testing
due to some level of difference being explained by stochasticity. See Section A.1 for
distributions valid for statistical significance and Section 3.4.8.2 for an explanation of
those distributions.
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3.6 Chapter Appendix:

Cross-Entropy-Loss Gradient

The derivative of the cross-entropy loss with respect to the rescaling weight at dimen-

sion p, wp is given by

∂

∂wd

∑︂
(i,j,k)∈S

H(q, p)object set is {i,j,k},
k is the odd-one-out

=
∂

∂wd

∑︂
(i,j,k)∈S

− ln
ex⃗ix⃗j

ex⃗ix⃗j + ex⃗ix⃗k + ex⃗j x⃗k

=
∑︂

(i,j,k)∈S

−2wdx⃗
(d)
i0 x⃗

(d)
j0 −

ex⃗ix⃗j x⃗
(d)
i0 x⃗

(d)
j0 + ex⃗ix⃗k x⃗

(d)
i0 x⃗

(d)
k0 + ex⃗j x⃗k x⃗

(d)
j0 x⃗

(d)
k0

ex⃗ix⃗j + ex⃗ix⃗k + ex⃗j x⃗k

(3.9)

where

• H is the cross-entropy loss function

• i, j, k denote the three objects of a triplet, where k is the true odd-one-out

• zc where c ∈ {i, j, k} represents the similarity between the pair {i, j, k} ∖ {c}

(see Equation 3.5)

• z = {zi, zj, zk}

• σ is the softmax function (see Equation 3.5)

• q is the probability of an object being the odd one out (so 100% for the human-

labelled odd-one-out, 0% for any other object)

• p is the estimated probability the model gives that a given object is the odd-

one-out

• xc is the reweighted embedding vector for object c; i.e.[︂
x
(1)
c0 , x

(2)
c0 , ..., wdx

(d)
c0 , ..., x

(49)
c0

]︂
, where xc0 is the unreweighted embedding vec-

tor for object c, and d is the unique dimension being reweighted (as per Sec-

tion 3.4.7.2)
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Chapter 4

Differences in Taxonomic- and
Thematic-Relation Preferences
between Children and Adults

4.1 Overview

As people age, they adjust how they associate different objects. Here, we experi-

mentally examine differences between child and adult prioritization of taxonomic and

thematic features in performing an odd-one-out-among-three object comparison task.

We leverage a prior odd-one-out adult dataset and associated response-predicting

computational model, as well as an age-of-acquisition dataset. With these responses

and the model, we derive sets of three objects with known adult odd-one-out re-

sponses and scores indicating how much taxonomic/thematic features hampered those

responses. We administer these triplets as part of an odd-one-out study to children

of age 6, then compare the calculated taxonomic/thematic scores with whether the

children deviated from the original adult response. Corroborating previous work, we

examine the effect of age on taxonomic- and thematic-relation preference, where tax-

onomic and thematic preferences are measured relative to each other. Novelly, we

also show how to use the computed taxonomic and thematic scores to control for re-

lationship strength and measure taxonomic and thematic preferences independently

of one another.
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4.2 Questions Examined

Here, we seek to answer the question of how age impacts taxonomic and thematic

relation preference in comparing objects. To address this, we look at the following

questions and ways of answering them:

Question “Age vs. relative preference for taxonomic and thematic relations”: do

children (age 6) exhibit stronger taxonomic- or thematic-relation prefer-

ences than adults, where taxonomic- and thematic-relation preferences are

measured relative to each other?

Procedure Using pairs of object triplets annotated with taxonomic- and thematic-

relation scores and known adult odd-one-out responses for these triplets,

collect child responses for the same odd-one-out task. Then, perform

pairwise tests to determine if either type of relation explains any resulting

child–adult response discrepancies significantly more than the other.

Question “Age vs. absolute preference for taxonomic and thematic relations”: do

children (age 6) exhibit stronger taxonomic- or thematic-relation prefer-

ences than adults, where taxonomic- and thematic-relation preferences are

measured independently from each other?

Procedure Using object triplets with varying taxonomic and thematic scores and

known adult responses, collect child (age 6) responses. Then, perform

regression to determine if the strength of either relation is significantly

correlated with any resulting child–adult response discrepancies.
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4.3 Introduction

How do young children contrast with adults in the traits they use when evaluating

two objects’ similarity?

Comparing objects is a multifaceted task. Thus, when a person is asked to judge

how similar two objects are, they do so along many paradigms. For instance, “dogs”

and “bones” are similar in that we commonly encounter them with each other, but

they are not similar in appearance or function. On the other hand, we do not often

encounter “dogs” and “bears” in the same setting. Instead, we recognize them as

similar by virtue of shared features such as legs and fur.

Ways such as these of comparing objects are called semantic relations. The two broad

classes of semantic relations alluded to in the “dog–bone” and “dog–bear” examples

are called thematic relations and taxonomic relations. A thematic relation between

two objects is a semantic relation wherein those objects belong to a theme or co-occur

in some context. In this manner, a thematic relation between “dog” and “bone” is

“pet-related.” Meanwhile, a taxonomic relation between two objects is a semantic

relation wherein those objects share features or functions. For instance, many “dog–

bear” relations are taxonomic, such as “are-mammals” or “have-legs.”

Figure 4.1: Example thematic and taxonomic relations. “Dog” and “bear” are tax-
onomically related because of shared features, or traits that could be generated by
looking at each individually, such as “has-paws” or “has-fur.” “Dog” and “bone,”
meanwhile, are thematically related because they co-occur in contexts like a pet
store.
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Individuals vary on how much they prioritize different relations when determining

two objects’ similarity, but across larger groups, certain trends emerge. Consider the

connection between age and the preference for the taxonomic and thematic classes of

relations described earlier. Prior work [10] shows that, when compared with adults,

young children exhibit a stronger affinity for thematic (co-occurring) relations than

taxonomic (shared-feature) relations. For example, one study [9] found a thematic

preference for children younger than age six that becomes increasingly taxonomic by

age ten. This taxonomic preference continues through a person’s early twenties, then

reverts back to a thematic preference by a person’s mid-sixties. See Section 2.2 for

more details.

A common form of testing this is to select a base object (“dog”) and then present it

alongside a taxonomically related object (“bear”) and a thematically related object

(“bone”). A set of three objects such as this is known as a triplet. Selections of

three objects are presented like this to people of different ages, who are then asked

to indicate which object is most similar to the base object. Differences in responses

across different age groups indicate changes in taxonomic/thematic preferences.

These experiments are useful for determining shifts in preferences with age. However,

under most setups, the questions are agnostic to the varied strengths of taxonomic and

thematic relations. For example, the taxonomic relation “mammal-related” applies

to both “dog–bear” and “dog–dolphin” comparisons, but the strength between “dog”

and “bear” is stronger due to elements like both having hair. Experiments without

this consideration can only tell us about the strengths of taxonomic and thematic

relation preferences relative to one another, and they cannot easily tell us about

absolute trends and cannot tell us about changes in behavior as these strengths vary.

Unfortunately, accommodating for relations’ strengths is nontrivial. Doing so requires

numeric measures of the those strengths. To account for the strength of the broad

classes of taxonomic relations and thematic relations on the whole, one needs numeric
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measures that characterize those types of relations. Fortunately, recent advances in

modelling object comparison give us quantitative measures of more specific relations,

which we can use to derive these numeric taxonomic and thematic measures.

In this chapter, to address the question, “how do young children compare with adults

in the traits they use when evaluating two objects’ similarity?” we set up two exper-

iments:

1. We examine the effect of age on taxonomic- and thematic-relation preference,

where taxonomic and thematic preferences are measured relative to each other.

We do this for different levels of expected taxonomic and thematic strengths.

2. We examine the effect of age on taxonomic- and thematic-relation preferences

independently of each other. We do this for different levels of expected taxo-

nomic and thematic strengths.

We use prior adult responses to an object-similarity task and an associated compu-

tational model to select triplets of three objects for administration to children. We

present these object triplets to children and ask them, “which of these three objects

is the odd one out?” This questioning gives us a set of child responses for usage

alongside the existing adult responses. We use measures for the respective strengths

of taxonomic and thematic relations to derive pairs of triplets along taxonomic and

thematic lines. We also use these measures to ensure a variety of taxonomic relations,

thematic relations, and relation strengths of each are present. We administer these

triplets, paired along taxonomic and thematic lines as we set them up to be, to six-

year-old children. We interpret differences between the resulting children’s responses

and the original adult responses as changes in taxonomic or thematic preference.
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4.4 Methodology

4.4.1 Overview

Our overarching goal is to investigate the interaction between age and type-of-relation

preferences in comparing objects. In particular, we focus on two age groups: six-

year-olds and adults, and two types of object-comparison relations: taxonomic and

thematic. Our study differentiates itself from prior work in two ways. The first point

of differentiation is computationally deriving the object-comparison questions rather

than manually deriving them. The second point of differentiation is using numeric

scores to control for the strengths of each taxonomic and thematic similarity rather

than treating all taxonomic (or, separately, thematic) similarities as interchangeable

in this regard. This second point allows us to look at taxonomic and thematic pref-

erences individually and quantitatively, which prior studies were unable to do.

We perform two experiments:

1. We examine the effect of age on taxonomic- and thematic-relation preferences,

where taxonomic and thematic preferences are measured relative to each other.

We do this for different levels of expected taxonomic and thematic strengths.

2. We examine the effect of age on taxonomic- and thematic-relation preferences

independently of each other. We do this for different levels of expected taxo-

nomic and thematic strengths.

At a high level, our approach is as follows. At the outset, we have a set of adult

responses to an odd-one-out-among-three object-comparison task. Each response is to

a set of three objects, or object triplet, that defines the odd-one-out-question at hand.

We give these questions scores that indicate the extent that the deviation of someone’s

response from the original adult data would signal a preference for taxonomic or

thematic relations. We select a small subset of these questions based on these scores.

We then ask six-year-old children these questions, recording the situations where their
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responses deviate from the adults’. The correspondences between these deviations and

the taxonomic and thematic measures reveal differences by age in type-of-relation

prioritization. Below, we give an overview of the elements of our procedure in five

parts:

1. The prior dataset

2. How we generate questions appropriate for six-year-olds

3. How we generate scores for testing similarity preferences

4. How we use these scores to generate object triplets

5. How we use these triplets to form and test hypotheses

First, we discuss the prior dataset. We have an existing object-comparison answer

dataset to work with [13]. This dataset contains millions of adult responses to an

object-comparison task, the odd-one-out task. This task, which we use in our ex-

periment, involves presenting three object images at a time and asking respondents

to identify the least similar among the three. Object images are taken from the

THINGS initiative [14] [15], which provides a dataset of object images and associated

metadata, including English-word annotations.

Secondly, we discuss generating age-appropriate questions. As we have prior adult

data, we need only collect odd-one-out-task responses from six-year-olds. We take a

child’s response for a set of three object images, then compare that to existing adult

responses for those objects. To ensure children can reason with these object im-

ages, we must make certain that a given six-year-old child understands those objects

conceptually. Fortunately, all objects under consideration are part of the THINGS

initiative, so each object has an associated English label. We treat the age of learning

the word, otherwise known as the word’s age of acquisition, as a proxy for the age

of understanding of the underlying concept. Then, we use existing age-of-acquisition

measures [26] to assign ages at which the THINGS initiative’s objects would be un-
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derstood accordingly. Finally, under these new annotations, we filter the objects to

those understandable at or below age six.

Thirdly, we discuss generating numeric taxonomic and thematic scores. In order to

generate these scores for the triplets, we use the dimensions of the prior odd-one-out-

predicting model trained on the adult dataset. The model has 49 dimensions, entailing

49 values for each object. Notably, the meanings of these values are consistent and

human-identifiable: one value is the “metallicity” of the object in question, another

value is “body-part-relatedness,” and so on. These values refer to how much the

model uses that aspect of relatedness of the object for general comparison. In other

words, each value refers to the general strength of a specific type of relation, such

as “metallicity” when other objects are compared with the object. We give these

relations taxonomic and thematic scores by means of a survey.

Continuing this third goal, we then generate two scores for each triplet: one taxo-

nomic, one thematic. These scores depend only on the model’s dimensions (which

have been labelled as taxonomic or thematic, as described above) and the adult odd-

one-out response. Intuitively, each score denotes how significantly some taxonomic

or thematic factor influences the model away from the original adult response and

toward some alternative. For this reason, we will henceforth refer to such a taxonomic

or thematic score for a triplet equipped with an odd-one-out response as a triplet’s

taxonomic or thematic confusion. Without loss of generality with respect to

taxonomicity and thematicity, we will explain exactly what we mean by taxonomic

confusion. A dimension confusion score for a triplet is that dimension’s influence

on the computed similarity of the odd-one-out object with one of the non-odd-one-out

objects. The taxonomic confusion for a triplet is the maximum among these values

for the taxonomic dimensions. We treat the model as a proxy for adult thinking, so

higher taxonomic scores signify an increased likelihood of an adult adjusting their

response if they had higher prioritization of taxonomic relationships.
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For the fourth element of our procedure, we identify pairs of taxonomically and

thematically confusing object triplets. By this, we mean pairs of triplets where

one triplet’s associated taxonomic confusion score and another triplet’s associated the-

matic confusion score are close to each other. We do this for diverse taxonomic/the-

matic scores, producing many such pairs. We additionally control for a few other

factors (explained in further detail in Section 4.4.6) when forming these pairs.

Fifthly and finally, we discuss how these combine into testable experiments. For both

experiments, we administer the triplets to children aged 6 as part of the odd-one-out

task and record whether a child’s response matched the adult’s response in the prior

dataset; these are response discrepancies. Next:

• For the first experiment, we want to examine the effect of age on taxonomic-

and thematic-relation preferences, where taxonomic and thematic preferences

are measured relative to each other. To do this, we consider the pairs of taxo-

nomically and thematically confusing triplets. We perform a paired statistical

test on the response discrepancies to determine whether children’s responses de-

viated from adults more or less often for taxonomically confusing triplets than

thematically confusing triplets.

• For the second experiment, we want to examine the effect of age on taxonomic-

and thematic-relation preferences independently of each other. To do this, with-

out loss of generality, we consider the taxonomically confusing triplets at var-

ious amounts of taxonomic confusion. We perform regression analysis on the

response discrepancies to examine how children prioritize taxonomic thinking as

compared to adults. We then repeat these two steps for thematically confusing

triplets.

Below, we go into more detail about the various elements of our project setup.

56



4.4.2 Age and Animacy Filtering

When choosing triplets of three objects to administer to children, we first filter these

triplets based on two features inherent to the objects themselves: the age at which the

images are understandable and animacy. We perform age filtering to ensure that six-

year-olds can understand the images presented to them. As part of age filtering, we

also remove any triplets involving the objects “gun,” “shell” (shell1 in the dataset,

which is in the weaponry sense), “ashtray,” “helmet,” “sticker,” “uniform,” “spider,”

“spider web,” and “cross” (which includes the Iron Cross) as a precaution to avoid

potential fright, offence, or general inappropriateness.

We perform animacy filtering to ensure that a majority of the results are not explain-

able by two objects being humans/animals and the third object not falling into that

situation (or vice-versa).

4.4.3 Ages of Acquisition

Because we are using the objects of the THINGS dataset and the prior adult responses

of Hebart et al.’s study to survey six-year-olds, we need to restrict the triplets ad-

ministrable to the children to those that would be understandable by them. The

THINGS dataset has WordNet metadata, which we use to obtain estimates on the

ages of acquisition of the objects in the dataset and restrict our consideration to those

ostensibly understandable by most people six or over.

For every object in the THINGS dataset, we take its annotated label and that label’s

synonyms. For those entries with annotated labels in the age-of-acquisition dataset,

we simply take the given age of acquisition of that annotated label as a canonical

age of acquisition for the object. For those that did not, we assign them an infinite

score for this value.

In order to alleviate issues presented by homonyms (baseball “bat” vs animal “bat”),

we additionally take the ages of acquisition of all synonyms present in the age-of-
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acquisition dataset. We do not assign unknown words the value of infinity here— in

order to calculate an alternative age of acquisition for a THINGS object, we

take the maximum of the ages of acquisition of all of the synonyms. This is because

requiring objects to have only known synonyms would result in too much of a loss of

otherwise viable objects.

Finally, we filter the triplets dataset to only those triplets where all objects involved

had a canonical age of acquisition and an alternative age of acquisition below six

years. In using the maximum age between the canonical age of acquisition and the

alternative age of acquisition, we enforce a more conservative estimate on the age of

acquisition. This setup helps ensure that the actual initial age at which all of the

objects in the filtered triplets are understood in common is not higher than six.

4.4.4 Animacy Filtering

One particularly strong indicator of object-relatedness is animacy. Animacy, here,

is a measure of whether something is treated as a human/animal or treated as if they

were sentient. Generating questions without accounting for this resulted in a large

number of triplets where two were taxonomic and one was thematic, or where two

were thematic and one was taxonomic. The ostensible explanation for a resulting

response difference with these triplets would be that animacy was the driving factor.

To ensure we have either exclusively animate or exclusively inanimate sets of three

objects, we label all 1854 objects in the THINGS initiative as either animate or

inanimate1. This labelling is facilitated by the Google Translate Python API, which

we use to determine Russian equivalents of the canonical words given by the existing

THINGS annotations. We then leverage the declensions of those translations, which

in Russian differ depending on the animacy of the object being referred to. We choose

to use a measure of real-world linguistic animacy rather than merely labelling objects

1There are (unpublished at time of writing) animacy labels for the THINGS initiative [27] that
we were not aware of at the time of working on this portion of the project.
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based on human/animal features under the expectation that natural animacy would

appeal to early-age world conceptualization more (as an example of where Russian

differed from this simpler approach, “snowman” is considered animate). Our choice

of language is decided by the availability of quality labels; many Slavic languages

display animacy as a grammatical feature, but Russian has one of the most sizable

online corpora to draw from. In this case, we use the English [28] and Russian [29]

Wiktionary sites).

Words with ambiguous labels—that is, those where the declension for the sense of

the noun in question could be inanimate or inanimate, or those where the animacy

was rooted in linguistic history (like the word for kite being the word for serpent)—

are annotated with WordNet [18]. For these entries, if WordNet has an associated

“animal” or “human” tag, the object in question is considered animate; else, it is

considered inanimate.

After we determine these labels, we filter the dataset of adult odd-one-out questions

and responses down to those where the questions contain three animate or three

inanimate objects.

4.4.5 Triplet Numeric Scoring

4.4.5.1 Summary

Two goals for our project are computationally deriving the object-comparison ques-

tions, rather than manually deriving them, and controlling for the strengths of each

taxonomic and thematic similarity, rather than treating all taxonomic (or, separately,

thematic) similarities as interchangeable. To these ends, we obtain what we call

measures of taxonomic and thematic confusion. Given a set of three objects and

a response, taxonomic and thematic confusion signify the expected willingness of a

person to deviate from that response due to prioritizing taxonomic or thematic re-

lations more than the original respondent. We obtain these scores by manipulating
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the embeddings of an odd-one-out predicting model trained on a prior adult response

dataset.

4.4.5.2 Taxonomic and Thematic Dimension Determination

Eleven professors and graduate students in computing science and in psychology were

given explanations of taxonomic and thematic relationships and asked to identify each

of the model’s dimensions as “taxonomic,” “thematic,” or “unknown.” Survey results

can be found in Appendix C, while the survey itself can be found in Appendix B.

Dimensions where either taxonomic or thematic labels outnumbered the other by

more than four were considered to be indicative of that relationship type, resulting

in 13 taxonomic and 11 thematic dimensions. All 13 dimensions considered “taxo-

nomic” were incidentally considered “taxonomic” by a majority of respondents, and

all 11 dimensions considered “thematic” were incidentally also considered “thematic”

by a majority of respondents. Neither of these characterizations was a requirement

for producing the respective dimension labels; nor was a majority response a suffi-

cient condition for producing the respective dimension labels in practice (due to the

allowance of “unknown” responses).

4.4.5.3 Overall/Taxonomic/Thematic Confusion
and Taxonomic/Thematic Affirmation Scores

We wish to determine whether young children value taxonomic and thematic rela-

tionships relatively more so or less so in comparison with adults. To do this, we

want some measure by which to select triplets that, given a child’s difference in re-

sponse from the adult, would indicate that the child were or were not prioritizing

these relationships. We accomplish this using measures of taxonomic confusion

and thematic confusion. Given a set of three objects and a response, taxonomic

and thematic confusion signify the expected willingness of a person to deviate from

that response due to prioritizing taxonomic or thematic relations more than the orig-

inal respondent. We also consider overall confusion, a similar concept but instead
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accounting for all model dimensions, and taxonomic and thematic affirmation,

a measure of how much taxonomic or thematic relations contribute to the associated

adult decision.

4.4.5.4 Taxonomic/Thematic Confusion

The Hebart et al. model computes the similarity between two objects by taking the

internal 49-dimensional vector representations of those two objects, v1 and v2, multi-

plying the elements of each element-wise, then summing the resulting products (v1·v2).

Each of those products indicates the model’s usage of the originating dimension in

determining the similarity of the objects. By examining the taxonomic dimensions’

products (taxonomic products) and the thematic dimensions’ products (thematic

products), then, we learn how much the model prioritized taxonomic and thematic

features in its computation. By treating the model as a proxy for adult human

thinking, this gives us numerical estimates to explain how much the adult prioritized

taxonomic and thematic features in their decision-making.

We consider the taxonomic/thematic products and determine the size of the largest

taxonomic product of the similarities that did not yield the correct human odd-one-

out. This is the taxonomic confusion. Likewise, we determine the size of the

largest thematic product of the similarities that did not yield the correct odd-one-

out. This is the thematic confusion. The intuitive understanding of this is that

the higher these values are, the more a single taxonomic/thematic dimension steers

someone answering the odd-one-out task away from the answer under consideration.

It should be noted that these values depend on an initial existing human choice of

odd-one-out. We choose the highest among the confusion values rather than the

median or mean. We control for these values in Section 4.4.6.
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4.4.5.5 Overall Confusion

In a given triplet, the model has similarity judgments between each pair of objects.

It chooses the pair with the highest similarity s1, but were that value lower, it would

choose the pair with the next highest similarity s2. Suppose the model accurately

represents people’s object-similarity preferences, but that humans exhibit more vari-

ability. As the difference between s1 and s2 becomes smaller, the chances of a human

responding differently than the model increase. We thus call this difference overall

relative confusion (or overall confusion).

We want to reduce disparate impacts of overall relative confusion among our triplets.

Consequently, we control for this value in Section 4.4.6.

4.4.5.6 Taxonomic/Thematic Affirmation

The opposite of taxonomic and thematic confusion we describe as taxonomic and

thematic affirmation. These are the maximum taxonomic products of the non-

odd-one-out pair and the maximum thematic products of the non-odd-one-out pair.

Intuitively, these are measures of how much the taxonomic and thematic relations

facilitated decision-making. We control for these values in Section 4.4.6.

4.4.6 Triplet Selection and Pairing

4.4.6.1 Summary

We wish to select pairs of triplets where the following is true: first, one triplet has a

similar level of thematic confusion as the other has taxonomic confusion; and second,

these levels of taxonomic/thematic confusion are varied. Doing so lets us administer

these triplets to children, interpret adult-child response differences as taxonomic/the-

matic preference differences, and directly compare the rates of these differences across

each type of relation. We control for a few additional factors as well.
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4.4.6.2 Taxonomic/Thematic Candidate Dataset Splitting

We consider pairs of triplets such that a difference between the adult and child re-

sponses for one of the triplets indicates an increase in taxonomic thinking (a taxo-

nomically confusing triplet), while the same such difference results in an increase

in thematic thinking for the other (a thematically confusing triplet). To accom-

plish this, we regard the dataset twice: once for selecting thematically confusing

triplets and then again for selecting taxonomically confusing triplets. Thus, we du-

plicate the dataset into two copies—a set of 26 454 candidate taxonomically confusing

triplets and a set of 26 454 candidate thematically confusing triplets. Because we want

to pair them for certain properties, we draw from each copy simultaneously to account

for those properties.

4.4.6.3 Initial Filtering

For both sets of triplets, we calculate the 80th percentile of the thematic affirmation,

taxonomic affirmation, and (additive) inverse total relative confusion scores among all

triplets. We also calculate the 80th percentile of thematic confusion for the candidate

taxonomically confusing triplet set and the 80th percentile of taxonomic confusion

for the candidate thematically confusing triplet set. We cull any triplets with values

below these percentiles (or below that percentile for thematic and taxonomic confu-

sion, respectively, for the candidate taxonomically confusing triplets and candidate

thematically confusing triplets). This gives us a set of 11 351 candidate taxonomically

confusing triplets and a set of 10 431 candidate thematically confusing triplets.

4.4.6.4 Generating Pairs of Triplets with Different Values of Taxonomic
and Thematic Confusion

While we want pairs of triplets where one triplet has a similar taxonomic confusion

to the other’s thematic confusion—i.e., both values are within some distance from a

mean value—we want to make sure that we have a variety of triplets with different
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mean values. As such, we take pairs of triplets where the taxonomically confusing

triplet’s taxonomic confusion and thematically confusing triplet’s thematic confusion

are within a given range for different ranges. The specific ranges we consider are

[0, 0.1), [0.1, 0.2), . . . , [1.1, 1.2), and [1.2, inf). We select these ranges due to the dis-

tribution of the set of triplets we have to work with, as we need to ensure we have

sufficient numbers of triplets to work with when balancing for other important fac-

tors. These factors are explained in the next section. We split the candidate triplets

into 12 sets based on these ranges, then select from those sets. It is worth noting at

this point that the eleventh and twelfth sets ([1.1, 1.2), [1.2, inf)) have fewer triplets

than the rest due to the initial filtering in Section 4.4.6.3; this means that those sets

will end up with fewer triplets than the rest.

4.4.6.5 Generating Pairs of Triplets with Similar Taxonomic and The-
matic Confusion

We want to ensure taxonomically confusing triplets and thematically confusing triplets

have similar values of (respectively) taxonomic confusion and thematic confusion.

However, we simultaneously want to choose triplets that have the lowest possible

amounts of taxonomic affirmation and thematic affirmation. Were these values unac-

counted for, child–adult response discrepancies could instead be interpreted in terms

of these affirmation values. We also want to choose pairs of triplets where each mem-

ber of the pair has a similar overall relative confusion value, as we expect overall

relative confusion to be a strong measure of whether someone would have a different

response from the original adult across all reasons tracked by the model.

For this reason, we generate vectors from these values. Specifically, we generate two

vectors, one for each triplet, as given by Equation 4.1 and Equation 4.2.
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vtaxonomically confusing triplet =

(taxonomic confusion · 8, thematic confusion

taxonomic affirmation, thematic affirmation, overall relative confusion)

(4.1)

vthematically confusing triplet =

(thematic confusion · 8, taxonomic confusion,

thematic affirmation, taxonomic affirmation, overall relative confusion)

(4.2)

We multiply the taxonomic and thematic confusion by 8 because we consider control-

ling for them particularly important compared to the other influences. We addition-

ally avoid consideration of any pair of triplets where both triplets contain the same

objects.

For every pair of triplets in the dataset, we calculate the L2 distance between them

under these vectors. For each of the ranges of values discussed in Section 4.4.6.5, we

take the top 320 pairs (if possible, if there are fewer available we take that many) of

triplets, which we will filter down to 20 (or fewer, if there are not 20 to be had) in

the next section.

4.4.6.6 Diversifying Triplets

For any given taxonomic confusion score, thematic confusion score, taxonomic affir-

mation score, and thematic affirmation score, there is an associated dimension that

gives that score (recall that for all but overall confusion we take the maximum of the

relevant dimensional products, and so one of those dimensions yields a given score).

We want to make sure the resulting triplets cover a wide variety of these dimensions.

As such, we perform two filtering steps: one less computationally intense to bring the

number of triplet pairs down to 32, and then one more computationally intense to

bring that number down to 20.
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Weaker Triplet Diversification

Without loss of generality, consider one of our bins. We aim to bring our triplets from

320 (or fewer) down to 32 (or fewer).

• We start with a list of candidate pairs of triplets, pairscandidate.

• We keep a running list of pairs of triplets, pairsaccepted. This starts out empty

and builds up until we hit 32 triplets.

• We keep track of the (non-unique) taxonomically confusing and taxonomi-

cally affirming dimensions, dimstax. conf., and dimstax. aff., among the taxonomic

triplets within pairsaccepted. Here, the taxonomically confusing/affirming dimen-

sion means the dimension whose product yielded the taxonomic confusion/af-

firmation for the triplet.

• We keep track of the (non-unique) thematically confusing and thematically af-

firming dimensions, dimsthem. conf., and dimsthem. aff., among the thematic triplets

within pairsaccepted. Here, a given thematically confusing/affirming dimension

means the dimension whose product yielded the thematic confusion/affirmation

for the triplet.

• We keep track of the (non-unique) maximum dimensionally confusing and max-

imum dimensionally affirming dimensions, dimsmax. tax. dim. conf., and

dimsmax. tax. dim. aff., among the taxonomic triplets within pairsaccepted. We also

keep track of the (non-unique) maximum dimensionally confusing and maxi-

mum dimensionally affirming dimensions, dimsmax. them. dim. conf., and

dimsmax. them. dim. aff., among the thematic triplets within pairsaccepted. Here, a

given maximum dimensionally confusing/affirming dimension means the dimen-

sion with the highest dimensional confusion/affirmation for a triplet.

• We consider a list of dictionaries dictcounts that each, when provided a dimen-
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sion d, maps d to the number of instances of itself within each of dimstax. conf.,

dimstax. aff., dimsthem. conf., dimsthem. aff., dimsmax. tax. dim. conf.,

dimsmax. tax. dim. aff., dimsmax. them. dim. conf., and dimsmax. them. dim. aff..

We pick a proportion, p = 0.1. We perform the following steps 5 times:

1. Consider each pair of triplets triplet d = (ttaxonomic, tthematic) in pairscandidate.

2. If len(pairsaccepted) = 32 or d ∈ pairsaccepted, skip d.

3. Otherwise:

3.1. Consider the taxonomically confusing dimension, taxonomically affirming

dimension, maximum dimensional confusion dimension, and maximum di-

mensional affirmation dimension of ttaxonomic, and the thematically confus-

ing dimension, thematically affirming dimension, maximum dimensional

confusion dimension, and maximum dimensional affirmation dimension of

tthematic.

3.2. Take the count of each of these dimensions within the accepted triplets by

applying them to their respective dictionary in dictcounts.

3.3. Turn each of these counts into proportions by dividing

them by len(pairsaccepted).

3.4. If any of these proportions is greater than p, skip d. Otherwise, add d to

pairsaccepted.

Finally, we repeat steps 1 through 3 five times each for the proportions

p = 0.11, 0.12, 0.13, . . . , 0.40. We pass the resulting list of up to 32 pairs of triplets to

the filter in the next section.
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Stronger Triplet Diversification

Finally, for our last step of triplet selection, we perform another optimization. We do

this to give us a set of 20 triplet pairs where the likeness dimensions producing the

highest taxonomic confusion score, thematic confusion score, taxonomic affirmation

score, and thematic affirmation score are diverse. We skip this step if the prior step

returned less than 20 triplet pairs. In order to achieve this, we generate sets {si} of

20 pairs of triplets from the list given by the prior step of up to 32 pairs of triplets d⃗

and consider the following for each si:

• the number n1 of unique taxonomically confusing categories in si

• the number n2 of unique thematically confusing categories in si

• the number n3 of unique taxonomically affirming categories in si

• the number n4 of unique thematically affirming categories in si

• every ni together as the list n⃗

• the ratio r = n̄
20

• the scoring mechanism scoretriplet diversity(si) = min(n⃗) + r

We compute scoretriplet diversity(si) for all possible combinations {si} of 20 triplet pairs

from the starting list of pairs (up to 225 792 840 given a starting list of 32 pairs of

triplets) and choose the set si with the highest score.

This results in approximately 210 pairs of triplets across the 12 bins. There are not

240 pairs of triplets in total due to later bins having fewer than 20 triplets at the

start of this step (see the note in Section 4.4.6.4).
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4.5 Triplet Administration

We duplicate the set of 210 pairs of triplets three times for 630 pairs (1260 triplets)

total, then shuffle the pairs of triplets.

Triplets were administered to children via our colleagues at the Speech Develop-

ment Lab at the University of Calgary. Data were collected using the online server-

management tool JATOS [30].

The triplets were disseminated amongst 31 participants, all of age 6, under the su-

pervision of their guardian and the researcher at the Speech Development Lab. Each

child performed the odd-one-out task for 20 pairs of triplets, taking 15–30 minutes

to do so. They were presented with the canonical images present in the THINGS

dataset associated with the objects of each triplet.

4.6 Experiment 1:

Age and Relative Taxonomic and Thematic

Relation Preferences

4.6.1 Experiment Details

We examine the effect of age on taxonomic- and thematic-relation preferences,

where the taxonomic and thematic preferences are measured relative to each other.

We do this for various amounts of expected taxonomic and thematic strengths.

For the first experiment, we consider whether children think relatively more tax-

onomic or thematically than adults at different ranges of taxonomic and thematic

confusion. Given that we have bins [0.0, 0.1), [0.1, 0.2), . . . , [1.1, 1.2), [1.2, inf) of

pairs of taxonomically and thematically confusing triplets organized by level of tax-

onomic/thematic confusion, for each range of these bins, we aggregate the “do the

child and adult responses differ” responses into a contingency table, as in Table 4.1.

We assume there is no difference in the child–adult response discrepancy rate between
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the thematically confusing triplets and taxonomically confusing triplets. We assume

this for each range of taxonomic/thematic confusion. We perform statistical testing

on these tables to attempt to disprove this assumption—i.e., to show that either

taxonomic or thematic confusion is statistically correlated with children choosing

different odd-one-out responses than adults.

More specifically, we choose McNemar’s test to avoid issues pertaining to the under-

lying distributions of the responses. Our samples are random and presumably IID,

although there is a possibility that some prompts for a given participant affected their

line of thinking for other responses.

Table 4.1: An example contingency table result.

Thematic Response Difference

False True

Taxonomic Response Difference
False 39 7 46

True 1 1 2

40 8

70



4.6.2 Results

The significant results for Experiment 1 are given in Table 4.2.

Full results for Experiment 1 can be found in Appendix D.
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Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.0–0.1 0.077 3.125
F 39 7

T 1 1
2 8 TRUE F T

0.0–0.2 0.034 4.5
F 71 14

T 4 4
8 18 TRUE T T

0.0–0.3 0.091 2.857
F 101 23

T 12 7
19 30 TRUE F T

0.0–1.2 0.093 2.82
F 329 74

T 54 22
76 96 TRUE F T

0.7–0.9 0.072 3.226
F 57 21

T 10 4
14 25 TRUE F T

0.7–1.2 0.074 3.2
F 106 29

T 16 5
21 34 TRUE F T

0.7–10.0 0.093 2.824
F 116 32

T 19 5
24 37 TRUE F T

all 0.101 2.694
F 339 77

T 57 22
79 99 FALSE F F

Table 4.2: Significance testing for relative taxonomic and thematic preferences at various taxonomic and thematic confusion
strengths. Only significant and overall results are shown. For all results, see Appendix D.
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4.6.3 Discussion

As a recap, in this experiment, we tested for differences between adults (age 18-)

and children (age 6) in relative taxonomic and thematic preferences. We did this by

pairing triplets where response-switching would be indicative of taxonomic or the-

matic preferences, the degree to which we referred to as “taxonomic and thematic

confusion.” Rates of child–adult response-discrepancy for various ranges of taxo-

nomic/thematic confusion, as well as statistical testing to determine if the differences

between the rates for taxonomically confusing triplets and thematically confusing

triplets are significant, are displayed in Table 4.2. Between pairs, we controlled for

overall confusion, taxonomic confusion, thematic confusion, thematic affirmation, and

taxonomic affirmation; see Section 4.4.6 for information.

At p = 0.1, there are several ranges of values for which there is both enough data and

enough of a taxonomic or thematic preference to indicate a statistically significant

preference for one or the other, including the range of 0-1.2 that considers nearly all

of our full-set data (the ranges 1.1-1.2 and 1.2-inf have fewer triplet pairs than the

rest of the triplet sets; see Section 4.4.6.6). In all of these cases, a thematic shift was

observed. Given the number of ranges considered, however, even this relatively weak

statistical power should be considered with some reservation.

Somewhat confusingly, significant relative thematic preferences by children were ob-

served for lower ranges of taxonomic/thematic confusion (<0.3) and higher ranges

(<0.7). Were there to be differences in relative thematic preference displayed by chil-

dren over adults, we expected to see this for higher ranges or lower ranges exclusively,

not for both. We take this as further reason to treat our results cautiously.

While we had expected stronger results, these results do weakly support (and certainly

don’t oppose) our expectations based on earlier research by Smiley et al. [9] that

children exhibit a taxonomic shift between age 6 and the adulthood range that most
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of our responses came from.

Future attempts at clarifying this should consider either repeating Hebart et al.’s

model-creation-and-labelling processing for the responses from college-age students

or restricting the questions considered to those with college-age respondents, as it is

possible that an expected thematic preference from much-older-adults has contributed

to the insignificance of these results. We have not done so for two reasons. First,

it would have removed this chapter’s connection with the embedding Hebart et al.

produced, from which we used the associated validated human dimension labels to

generate our taxonomic/thematic labels (see Section 4.4.5.2 and Appendix C). Sec-

ond, we realized this after we had generated those taxonomic/thematic dimension

labels.

Here, we must also mention that we also have implicit assumptions that 1) taxonomic

and thematic scores correspond with changes in the object-similarity decision-making

thought process and that 2) they capture taxonomic/thematic reasoning at compa-

rable levels.

Addressing the first assumption, on an intuitive level, taxonomic and thematic scores

result from taking the maximum of scores correlated with the pre-normalized simi-

larity scores (see Equation 2.6), and as such varying them should impact the model’s

predictions. Empirically, as well, both scores trend with overall model confusion (see

Figure 4.6).

Our second assumption (that our taxonomic and thematic scores respectively capture

the full scopes of taxonomic and thematic reasoning at similar levels) is more difficult

to check, and we have not done so. A future project may wish to normalize these

scores using some external taxonomic or thematic score or proxy. This might include

existing scores in the case of taxonomic relations or lexical co-occurrence as a proxy

for thematic relations.
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4.7 Experiment 2:

Age and Absolute Taxonomic and Thematic

Relation-Preference Trends

We examine the effect of age on taxonomic- and thematic-relation preferences,

where the taxonomic and thematic preferences are measured independently of each

other. We do this for different levels of expected taxonomic and thematic strengths.

4.7.1 Experiment Details

For our second experiment, we consider whether children think more taxonomically

or thematically than adults, where the taxonomic and thematic preferences are in-

dependent of one another. This is in contrast to Experiment 1, which concerned

itself with whether children, as compared with adults, exhibited a relatively greater

or lesser taxonomic preference than thematic preference.

To capture this, we look at the rates of adult–child response discrepancy at different

amounts of taxonomic/thematic confusion. We take the response-difference rates for

different amounts of taxonomic and thematic confusion and perform logistic regression

to determine overall trends. We use Wald’s test to determine significance.

4.7.2 Results

Figure 4.2 and Figure 4.5 give logistic regression plots of the adult-child response-

switch rate vs. level of taxonomic or thematic confusion. For the sake of better

understanding results, logistic regressions of adult–child response-switch rates vs.

overall (total) relative confusion, the largest of factors needing to be controlled for (see

Section 4.4.5.5), are provided in Figure 4.3 and Figure 4.4. Regression coefficients and

the results of running Wald’s test for statistical significance are displayed in Table 4.3

and Table 4.4.
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Figure 4.2: A logistic regression of the taxonomic response-difference rate between
children and adults on the taxonomically confusing triplets for different levels of
taxonomic confusion.

Figure 4.3: A logistic regression of the response-difference rate between children and
adults on the taxonomically confusing triplets for different levels of overall relative
confusion.

Wald Test

Estimate StE z Wald Statistic p

Taxonomic Confusion −0.302 0.282 −1.070 1.145 0.285

Total Relative Confusion 0.856 0.158 5.411 29.279 < .001

Table 4.3: Taxonomic triplet results. Taxonomic confusion versus adult–child
response-difference rate logistic regression coefficients and significance test.
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Figure 4.4: A logistic regression of the response-difference rate between children and
adults on the thematically confusing triplets for different levels of thematic confusion.

Figure 4.5: A logistic regression of the response-difference rate between children and
adults on the thematically confusing triplets for different levels of overall relative
confusion.

Wald Test

Estimate StE z Wald Statistic p

Thematic Confusion 0.224 0.280 0.800 0.639 0.424

Total Relative Confusion 0.926 0.161 5.747 33.033 < .001

Table 4.4: Thematic triplet results. Thematic confusion versus adult–child response-
difference rate logistic regression coefficients and significance test.
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4.7.3 Discussion

As a recap, in this experiment, we tested for differences between adults (age 18 and

up) and children (age 6) in absolute taxonomic and thematic preferences. We did

this by choosing triplets where response-switching would be indicative of taxonomic

or thematic preferences, the degree to which we referred to as “taxonomic and the-

matic confusion.” Responses for various ranges of taxonomic/thematic confusion,

taxonomic/thematic responses-switching, and significant results taxonomic/thematic

preferences are displayed in Table 4.2. Across all triplets, we weakly controlled for

overall confusion, taxonomic confusion, thematic confusion, thematic affirmation, and

taxonomic affirmation; see Section 4.4.6.3.

For our question “how do child preferences change as compared with adults for varying

levels of thematic confusion,” Experiment 2 ostensibly demonstrates that an increase

in the level of thematic confusion results in a greater rate of adult-child response

discrepancy, as indicated in Figure 4.5. However, when accounting for overall con-

fusion, this significance disappeared, as seen in Figure 4.4 and Table 4.4. We note

here that when we did the controlling for overall confusion, we did so mostly with

the intent of controlling for its presence in the pairs for Experiment 1 rather than

its presence across different levels of taxonomic/thematic confusion. In any case, the

rate of response-switching is explained by the presence of overall confusion. As such,

no conclusions can be drawn other than that instances where the model is more likely

to disagree with adults are indicative that children might disagree with those same

adults.

Even were we to have found significant results, however, the results for the ques-

tion “how do child preferences change as compared with adults for varying levels of

taxonomic confusion” give us reason to pause. Again, here the results are entirely

explained by total relative confusion (see Figure 4.3 and Table 4.3), but the observed

adult-child response-discrepancy rate decreases with increasing taxonomic confusion
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(see Figure 4.2). This is unexpected regardless of how valid a measure of taxonomic

preference our taxonomic scores are, as any confusion scores should still correlate with

increasing response switches. While simple checks for correlation with the overall rel-

ative confusion (Figure 4.6) did not yield any insight, we ultimately still suspect this

is due to some form of correlation with the controls. Considering overall relative con-

fusion’s predictive power, future work should still make constraining it across triplets

of different taxonomic/thematic confusion a priority.

One other untouched-upon note is that we are making an implicit assumption that our

measures of taxonomic and thematic reasoning correlate with adjustments in object-

similarity determination and that both capture taxonomic and thematic reasoning at

similar levels. We have good evidence for the former, but not much for the latter; see

the discussion at the end of Section 4.6.3 for details and possible future directions.

Figure 4.6: A logistic regression of the response-switch rate between children and
adults for different levels of overall relative confusion. Each point is a triplet, and the
x-axis gives its overall confusion score, while the y-axis gives either its taxonomic or
thematic confusion. Notice the similar trendlines. Here, “taxonomic confusion” and
“thematic confusion” refer to our taxonomic and confusion scores. (Section 4.4.5.3
for taxonomic/thematic confusion and Section 4.4.5.5 for overall confusion details).
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Chapter 5

Conclusion

This chapter concludes the thesis. Here, we reiterate our driving questions and experi-

ment procedures, state our key findings, clarify their limitations, and offer suggestions

for future work. We end by summarizing and offering final thoughts about the work

presented in this thesis.

5.1 Thesis Questions

Our driving thesis questions are as follows:

1. When considering a set of human-interpretable, computationally-derived sim-

ilarity dimensions, do adults aged 25–35 and 50–60 prioritize those human-

interpretable similarity dimensions differently when comparing objects? In what

ways?

2. Do children (age 6) exhibit stronger taxonomic- or thematic-relation preferences

than adults, where one: the taxonomic and thematic preferences are measured

relative to each other, and two: the taxonomic and thematic preferences are

measured independently?
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5.2 Chapter 3

Adult Age and Type-of-Similarity Preference

5.2.1 Motivation

In Chapter 3, we examined our first question, which concerned adult ages and object-

similarity measure preferences. Our motivations for addressing this question were

threefold.

First, a scarcity of prior results: prior research has generally focused on the rela-

tionship between adult age and broad classes of object-similarity measures, rather

than on more specific ones, such as “metallic.” Second, novelty of technique: to our

knowledge, very little work, if any, has connected similarity-task-derived computa-

tional measures to differently aged adults’ preferences for those measures. Third,

expanding available resources: determining age-based preferences for these similarity

measures contributes to the THINGS initiative’s [15] shared body of knowledge.

5.2.2 Approach

We obtained measures of specific types of object-similarity prioritization, or like-

nesses, for 25–35-year-olds and 50–60-year-olds. We did this by modifying the

object-comparison-performing model of Hebart et al. [13], the dimensions of which

correspond with object-comparison relations and have human-identifiable labels. We

refer to these dimensions as likeness dimensions, with the associated type of rela-

tion being the dimensional likeness. Our modified model used a layer of likeness-

preference weights that rescaled the prominence of the relations in the original

model when determining object similarities. We learned these preference weights for

each age group. Finally, we performed hypothesis testing to see if the preference

weights differed between groups beyond random chance.
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5.2.3 Results

We found many statistically significant differences between younger and older adults

concerning their type-of-similarity (likeness) preferences in performing the odd-one-

out task. Specifically, we found significant differences in the likeness-preference

weights for 23 of the 49 likeness dimensions. These are presented in tabular form in

Table 3.1 and graphically in Appendix A. Most notably, we found indications that the

three largest results among those were where older adults exhibited a preference for

perceptual features over younger adults, namely for “colorful,” “disc-shaped/round,”

and “long/thin.”

The other largest age-group-discrepant result was a relatively greater preference for

“medicine-related” among 25–35-year-olds. We interpreted this as possibly indicating

that older individuals may have a more nuanced, or at least different, interpretation

of things being medicine-related than the population as a whole.

For a more careful treatment of these conclusions, as well as the complete set of

results, see Section 3.5.2.

5.2.4 Limitations and Future Work

The results of Chapter 3 are subject to one major limitation: while differences in

preference for an object-similarity (likeness) dimension do reflect a given dimension’s

lesser importance for that group, this can be due to one of two reasons. First, the

most useful reason: a lesser/greater usage of a likeness dimension could reflect that

group’s lesser/greater usage of the corresponding natural dimensional likeness. The

second interpretation, however, is more limited: a lesser/greater usage of a likeness

dimension could indicate that the group uses the corresponding dimensional likeness

in a different way than it was encoded, i.e., they may use some of the more fine-grained

aspects of similarities that comprise the likeness dimension, but not others.

Future psychology work should interrogate the result indicating that older adults ex-
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hibit preferences for the perceptual “colorful,” “disc-shaped/round,” and “long/thin”

object-similarity features. Future computing science work may use our setup to ex-

amine object-similarity preferences between other pairs of groups in the THINGS

response dataset with sufficient data, such as “male” and “female” groups.

5.3 Chapter 4

Children vs. Adults in Taxonomic and The-

matic Prioritization

5.3.1 Motivation

In Chapter 4, we examined our second question, which concerned discrepancies be-

tween children and adults on taxonomic- and thematic-relation preferences. Our

primary motivations for doing so were twofold.

First, we sought to corroborate existing results from studies where humans manually

selected questions for exploring this issue by instead using automatically-generated

questions from a computational model. Prior research [9] found that children exhibit a

shift from thematic preference to taxonomic preference between ages 6 and 10 and that

this change in preference remains into part of adulthood. Second, we sought to derive

measures of age-based changes in taxonomic and thematic preferences independent

of one another. Prior research has instead largely focused on the two relative to one

other [8].

5.3.2 Approaches

In Chapter 4, we took two approaches: one to corroborate existing results concerning

relative changes in taxonomic and thematic preferences, and a second to determine

absolute changes in taxonomic and thematic preferences.

Both approaches began as follows. To start, we had a set of adult responses to an

odd-one-out-among-three object-comparison task. Each response was taken on a set
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of three objects, or object triplet, that defined an odd-one-out question at hand.

We used a computational model to give these questions taxonomic and thematic

confusion scores. These scores indicate the extent that the deviation of someone’s

response from the original adult data would signal a preference for taxonomic or

thematic relations relative to those adult respondents.

For our first experiment, to corroborate existing results on the connection between

age and changes in relative taxonomic and thematic preferences, we generated pairs of

triplets such that one member of each pair had a level of taxonomic confusion similar

to the other member’s level of thematic confusion. At different levels of taxonomic

and thematic confusion, we then recorded whether children had different responses

than adults. A higher number of child–adult response discrepancies for taxonomically

confusing triplets than thematically confusing triplets indicated a relative taxonomic-

over-thematic preference (and vice versa).

For our second experiment, to determine changes in absolute terms (“absolute” be-

ing taxonomic and thematic preference changes independent of one another; both

were still relative to the adult respondents), we selected triplets with varying levels of

taxonomic and thematic confusion and performed regression analysis. To minimize

the number of participants needed, we combined this with the previous experiment’s

procedure to get samples for determining both relative and absolute trends simulta-

neously.

5.3.3 Results

Our first experiment aimed to corroborate existing results about relative changes in

taxonomic and thematic preferences with age. These results are presented in Table 4.2

and Appendix D.

Based on prior research, we expected a thematic-to-taxonomic relative preference

shift. We did find some support for this; however, the support was quite limited. Most
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concerningly, we found support for this for large and small levels of taxonomic/the-

matic confusion but not for medium levels, which we find to be counterintuitive. A

complete discussion of this can be found in Section 4.6.3.

For our second experiment, we strove to find absolute trends in taxonomic and the-

matic preferences, rather than trends relative to one another. The results are pre-

sented in Section 4.7.2.

We insufficiently controlled for a factor called overall confusion (Section 4.4.5.5),

which correlated with our results to the point that our work does not answer our

guiding research question. Instead, we showed that when overall confusion increased

for a triplet-adult response pair (that is, the model of Hebart et al. has increasing

reason to disagree with the adult response), a child was also more likely to disagree

with the adult response, which was to be expected. This situation is a consequence

of us combining our sampling for both questions; when doing so, we prioritized the

relative taxonomic/thematic preference setup in controlling for various factors for

our choice of questions to administer. A complete discussion of this is found in

Section 4.7.3.

5.3.4 Limitations and Future Work

Chapter 4 has heavily limited results.

For the relative-preference trends, we suspect the limited results to be due to two

factors. First, our choices of taxonomic and thematic confusion involved a number

of not-thoroughly-tested ad-hoc decisions. Verifying the validity of and improving

upon these choices to produce better numeric measures of taxonomic and thematic

similarities are potential future projects. Second, the inclusion of older adults may

have influenced the taxonomic and thematic trends, as significantly older adults may

exhibit more thematic thinking than younger adults. Those working on a future

project may wish to either determine a way to control for these or abandon the
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original Hebart et al. model and train a new one, although the latter decision would

make the project offer less utility with regards to the THINGS initiative.

The absolute preference results are subject to the same concerns regarding the (neces-

sary given the time-frame for this thesis) somewhat makeshift choices in determining

taxonomic and thematic scores. Additionally, however, these results suffered from

our decision to collect data for both the relative and absolute trends simultaneously,

resulting in weaker controlling for the factor called “overall confusion” in the pro-

cess. Future work should avoid combining the absolute-preference experiment with

the relative-preference-results experiment, controlling for overall confusion (and the

other control factors) in triplet selection for each in separate setups.

5.4 Closing Summary and Final Thoughts

5.4.1 Closing Summary

In this thesis, we used a computational object-similarity model to find differences

between age groups in object-similarity judgment. We specifically explored this in

two ways. First, we looked at the differences between adults aged 25–35 and adults

aged 50–60 in their usage of fine-grained aspects of similarity. Second, we examined

the differences between children (age 6) and adults in their preferences for taxonomic

and thematic relations, both with the relation strengths measured relative to each

other and individually.

Concerning the older and younger adults and fine-grained object-similarity features,

we found significant novel differences between each age group’s preferences for 23

object-similarity features. This adds to the body of literature on age-based differ-

ences in object-similarity judgment, and our observed trend of older adults having

much higher preference scores than younger adults in several perceptual dimensions

warrants future exploration.
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Concerning adults’ and children’s taxonomic and thematic preferences, we obtained

weakly corroborative results on existing connections between age and relative tax-

onomic/thematic preferences. We did this with novel computational-model-based

methods. We also described future steps in determining absolute taxonomic/the-

matic preferences and a procedure for obtaining them.

Finally, in both projects, we expanded on the THINGS initiative with new results.

In particular, we determined how differently each dimension of the THINGS object-

similarity model explains the object-similarity judgments of 25–35-year-olds and of

50–60-year-olds, with methodology adaptable to other groups in the future.

5.4.2 Final Thoughts

Interpretable model embeddings like Hebart et al.’s offer useful proxies for evaluat-

ing thought processes. Going forward, I am keen to see what comes of the observed

perceptual adult-age object-similarity-preference differences, particularly how they

might be elaborated on through results using other techniques. Although our second

project’s results were inconclusive, the relation-scoring portion deserves additional

focus, after which more concrete results may be obtainable. While it can be challeng-

ing to precisely determine the manners by which people compare objects, my hope is

that this thesis contributes to our understanding of them.
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Appendix A: Optimal
Relation-Preference Weight
Sampling and Statistics for the 49
Dimensional Likenesses

This appendix has the results for the experiments of Chapter 3. The procedures for

these are detailed in Section 3.4.8 and the results are discussed in Section 3.5.2.

Section A.1 contains a pair of graphs per likeness dimension. The upper graphs among

these contain the main statistical test results (Section 3.4.8.1) and confidence inter-

vals that contrast randomized preference differences with the age-group preference

difference observed on the full sets of both age groups’ odd-one-out responses. The

lower graphs contain confidence intervals (Section 3.4.8.2) that additionally incorpo-

rate bootstrapped differences between subsamples of the full sets of both age groups’

odd-one-out responses.

Section A.2 contains the distributions of bootstrapped likeness-preference weights for

each age group.

A.1 Age- and Random-Group Preference Differ-

ence Bootstrapping and Tests

The upper graphs contain Chapter 3’s major statistical significance findings. A given

upper graph tests the probability of observing the full-response-set age-group prefer-
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ence difference (blue line) under the hypothesis that it was sampled from the distribu-

tion of randomized groups’ preference differences (pink/red distribution). The x-axis

gives the difference in preference weights between each age group. Consequently, the

blue line lying right of zero indicates a relatively greater preference by 50–60-year-

olds for the given dimension than by 25–35-year-olds, while the blue line lying to

the left would denote the opposite. The blue line lying within the pink distribution

indicates that the observed all-response preference difference between age groups was

not significant. Further details of this are found in Section 3.4.8.1.

A given bottom graph contains bootstrapped differences between the preferences of

each age group (50–60 minus 25–35) minus random bootstrapped differences. As

such, this distribution lying right of zero indicates a relatively greater preference by

50–60-year-olds for the dimension not explained by chance, whereas this distribution

lying left of zero indicates a relatively greater preference by 25—35-year-olds. The

more this distribution overlaps zero, the more it indicates a lack of significant dif-

ference between the age groups. The confidence interval for this overlapping zero is

similar to, but not quite the same as, the difference between the two age groups’ full-

response-set preferences being insignificant under the upper graph’s statistical test;

see Section 3.4.8.2 for details.
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A.2 By-Age Preference-Weight Sampling Distri-

butions

The distributions of bootstrapped likeness-preference weights for each age group. The

bootstrapped preferences for the 25–35-year-olds’ responses are on the left, while 50–

60-year-olds’ are on the right. The x-axis gives found preference-weight values, and

both distributions are on the same horizontal scale.

Lack of overlap between the two age groups’ preference-weight distributions is cor-

related with significant differences between each age groups’ preferences, but these

distributions should not be directly used for statistical testing due to some level of

difference being explained by stochasticity. See Section A.1 for distributions valid for

statistical significance and Section 3.4.8.2 for an explanation of those distributions.
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Appendix B: Taxonomic/Thematic
Dimension Labels Survey

We administered the survey for classifying the Hebart et al. model dimensions as

being heavily taxonomic or thematic in nature (see Section 4.4.5.2) using Google

Forms. A printout of the survey is provided below, although note that all respondents

answered with the equivalent online version. The table of results for this form is given

in Appendix C.
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Appendix C: Survey Results and
Taxonomic/Thematic Dimension
Labels

After administering the survey in Appendix B, we used the results to assign tax-

onomic, thematic, or unknown labels to each dimension. Consider the margin of

responses achieved by subtracting the number of “taxonomic” votes for a dimension

from the number of “thematic” votes. Dimensions where this margin was 5 or more

(in other words, where there were at least 5 more respondents indicating it was more

thematic than taxonomic) were labelled as being thematic dimensions. Correspond-

ingly, dimensions where this value was -5 or more were labelled as being taxonomic.

See Section 4.4.5.2 for more details.
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Category Classification Taxo. Them. Unkn. Taxo-Thema Margin Classification (|n|>4?) % Taxo. % Them.

Animal-related/organic 5 4 1 -1 unknown 0.4545 0.4545

Arms/legs/skin-related 8 1 1 -7 taxonomic 0.7273 0.7273

Bathroom-related/sanitary 0 9 0 9 thematic 0 0

Beams-related 5 0 4 -5 taxonomic 0.4545 0.4545

Black/noble 2 3 4 1 unknown 0.1818 0.1818

Bodypart-related 6 3 1 -3 unknown 0.5455 0.5455

Child-related/toy-related 0 10 0 10 thematic 0 0

Clothing-related/fabric/covering 9 1 0 -8 taxonomic 0.8182 0.8182

Colorful 5 3 2 -2 unknown 0.4545 0.4545

Construction-related/physical work-related 2 8 0 6 thematic 0.1818 0.1818

Container-related/hollow 8 2 0 -6 taxonomic 0.7273 0.7273

Cylindrical/conical 8 2 0 -6 taxonomic 0.7273 0.7273

Disc-shaped/round 8 2 0 -6 taxonomic 0.7273 0.7273

Disgusting/bugs 2 7 1 5 thematic 0.1818 0.1818

Eating-related/put things on top 0 4 5 4 unknown 0 0

Electronic/technology 8 2 0 -6 taxonomic 0.7273 0.7273

Feminine (stereotypically)/decorative 2 7 1 5 thematic 0.1818 0.1818
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Table C.1 continued from previous page

Category Classification Taxo. Them. Unkn. Taxo-Thema Margin Classification (|n|>4?) % Taxo. % Them.

Fire-related/heat-related 7 3 0 -4 unknown 0.6364 0.6364

Flat/patterned 6 2 1 -4 unknown 0.5455 0.5455

Fluid-related/drink-related 6 3 0 -3 unknown 0.5455 0.5455

Food-related/eating-related/kitchen-related 1 9 0 8 thematic 0.0909 0.0909

Furniture-related/household-related/artifact 1 9 0 8 thematic 0.0909 0.0909

Handicraft-related 2 6 2 4 unknown 0.1818 0.1818

Has grating 5 1 4 -4 unknown 0.4545 0.4545

Head-related/face-related 5 5 0 0 unknown 0.4545 0.4545

Long/thin 7 3 0 -4 unknown 0.6364 0.6364

Made of metal/artificial/hard 7 3 0 -4 unknown 0.6364 0.6364

Many small things/coarse pattern 8 1 1 -7 taxonomic 0.7273 0.7273

Medicine-related 3 5 2 2 unknown 0.2727 0.2727

Musical instrument-related/noise-related 3 7 0 4 unknown 0.2727 0.2727

Outdoors-related 1 7 2 6 thematic 0.0909 0.0909

Paper-related/thin/flat/text-related 7 2 0 -5 taxonomic 0.6364 0.6364

Plant-related/green 6 4 0 -2 unknown 0.5455 0.5455
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Table C.1 continued from previous page

Category Classification Taxo. Them. Unkn. Taxo-Thema Margin Classification (|n|>4?) % Taxo. % Them.

Powdery/fine-scale pattern 6 2 2 -4 unknown 0.5455 0.5455

Red 6 2 2 -4 unknown 0.5455 0.5455

Repetitive 5 2 3 -3 unknown 0.4545 0.4545

Shiny/transparent 7 2 0 -5 taxonomic 0.6364 0.6364

Sky-related/flying-related/floating-related 3 7 0 4 unknown 0.2727 0.2727

Spherical/ellipsoid/rounded/voluminous 9 1 0 -8 taxonomic 0.8182 0.8182

Sport-related/recreation-related 1 9 0 8 thematic 0.0909 0.0909

String-related 7 1 2 -6 taxonomic 0.6364 0.6364

Thin/flat 8 2 0 -6 taxonomic 0.7273 0.7273

Tool-related 5 3 2 -2 unknown 0.4545 0.4545

Transportation/motorized/dynamic 6 4 0 -2 unknown 0.5455 0.5455

Valuable/special occasion-related 1 9 0 8 thematic 0.0909 0.0909

Water-related/blue 3 5 0 2 unknown 0.2727 0.2727

Weapon/danger-related/violence 1 7 0 6 thematic 0.0909 0.0909

White 6 2 2 -4 unknown 0.5455 0.5455

Wood-related/brown 5 5 0 0 unknown 0.4545 0.4545
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Appendix D: Adult/Child
Taxonomic/Thematic McNemar
Results

This appendix has the full results for Experiment 1 of Chapter 4—Section 4.6 only

gives significant results. Experiment 1 tested whether children were more likely to

have different responses than adults due to taxonomic factors, or due to thematic

factors. It more specifically tested this for different levels of strength of these factors.

Further discussion of these results can be found in Section 4.6.2.
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Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

all 0.101 2.694
F 339 77

T 57 22
79 99 FALSE F F

0.0–0.1 0.077 3.125
F 39 7

T 1 1
2 8 TRUE F T

0.0–0.2 0.034 4.5
F 71 14

T 4 4
8 18 TRUE T T

0.0–0.3 0.091 2.857
F 101 23

T 12 7
19 30 TRUE F T

0.0–0.4 0.243 1.362
F 130 28

T 19 11
30 39 FALSE F F

0.0–0.5 0.435 0.61
F 157 33

T 26 15
41 48 FALSE F F

0.0–0.6 0.483 0.493
F 190 40

T 33 15
48 55 FALSE F F

0.0–0.7 0.51 0.434
F 223 45

T 38 17
55 62 FALSE F F

0.0–0.8 0.223 1.485
F 253 55

T 42 18
60 73 FALSE F F

0.0–0.9 0.111 2.535
F 280 66

T 48 21
69 87 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.0–1.0 0.124 2.369
F 298 70

T 52 22
74 92 FALSE F F

0.0–1.1 0.127 2.331
F 312 71

T 53 22
75 93 FALSE F F

0.0–1.2 0.093 2.82
F 329 74

T 54 22
76 96 TRUE F T

0.0–10.0 0.101 2.694
F 339 77

T 57 22
79 99 FALSE F F

0.1–0.2 0.343 0.9
F 32 7

T 3 3
6 10 FALSE F F

0.1–0.3 0.441 0.593
F 62 16

T 11 6
17 22 FALSE F F

0.1–0.4 0.749 0.103
F 91 21

T 18 10
28 31 FALSE F F

0.1–0.5 1 0
F 118 26

T 25 14
39 40 FALSE F F

0.1–0.6 1 0
F 151 33

T 32 14
46 47 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.1–0.7 1 0
F 184 38

T 37 16
53 54 FALSE F F

0.1–0.8 0.525 0.404
F 214 48

T 41 17
58 65 FALSE F F

0.1–0.9 0.285 1.142
F 241 59

T 47 20
67 79 FALSE F F

0.1–1.0 0.303 1.061
F 259 63

T 51 21
72 84 FALSE F F

0.1–1.1 0.307 1.043
F 273 64

T 52 21
73 85 FALSE F F

0.1–1.2 0.235 1.408
F 290 67

T 53 21
74 88 FALSE F F

0.1–10.0 0.247 1.341
F 300 70

T 56 21
77 91 FALSE F F

0.2–0.3 1 0
F 30 9

T 8 3
11 12 FALSE F F

0.2–0.4 1 0
F 59 14

T 15 7
22 21 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.2–0.5 0.755 0.098
F 86 19

T 22 11
33 30 FALSE F F

0.2–0.6 0.787 0.073
F 119 26

T 29 11
40 37 FALSE F F

0.2–0.7 0.804 0.062
F 152 31

T 34 13
47 44 FALSE F F

0.2–0.8 0.822 0.051
F 182 41

T 38 14
52 55 FALSE F F

0.2–0.9 0.475 0.51
F 209 52

T 44 17
61 69 FALSE F F

0.2–1.0 0.492 0.471
F 227 56

T 48 18
66 74 FALSE F F

0.2–1.1 0.497 0.462
F 241 57

T 49 18
67 75 FALSE F F

0.2–1.2 0.391 0.736
F 258 60

T 50 18
68 78 FALSE F F

0.2–10.0 0.403 0.698
F 268 63

T 53 18
71 81 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.3–0.4 0.773 0.083
F 29 5

T 7 4
11 9 FALSE F F

0.3–0.5 0.54 0.375
F 56 10

T 14 8
22 18 FALSE F F

0.3–0.6 0.626 0.237
F 89 17

T 21 8
29 25 FALSE F F

0.3–0.7 0.665 0.188
F 122 22

T 26 10
36 32 FALSE F F

0.3–0.8 0.899 0.016
F 152 32

T 30 11
41 43 FALSE F F

0.3–0.9 0.5 0.456
F 179 43

T 36 14
50 57 FALSE F F

0.3–1.0 0.52 0.414
F 197 47

T 40 15
55 62 FALSE F F

0.3–1.1 0.525 0.404
F 211 48

T 41 15
56 63 FALSE F F

0.3–1.2 0.407 0.688
F 228 51

T 42 15
57 66 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.3–10.0 0.421 0.646
F 238 54

T 45 15
60 69 FALSE F F

0.4–0.5 0.773 0.083
F 27 5

T 7 4
11 9 FALSE F F

0.4–0.6 0.845 0.038
F 60 12

T 14 4
18 16 FALSE F F

0.4–0.7 0.868 0.028
F 93 17

T 19 6
25 23 FALSE F F

0.4–0.8 0.671 0.18
F 123 27

T 23 7
30 34 FALSE F F

0.4–0.9 0.328 0.955
F 150 38

T 29 10
39 48 FALSE F F

0.4–1.0 0.356 0.853
F 168 42

T 33 11
44 53 FALSE F F

0.4–1.1 0.362 0.831
F 182 43

T 34 11
45 54 FALSE F F

0.4–1.2 0.267 1.235
F 199 46

T 35 11
46 57 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.4–10.0 0.284 1.149
F 209 49

T 38 11
49 60 FALSE F F

0.5–0.6 0.789 0.071
F 33 7

T 7 0
7 7 FALSE F F

0.5–0.7 0.838 0.042
F 66 12

T 12 2
14 14 FALSE F F

0.5–0.8 0.417 0.658
F 96 22

T 16 3
19 25 FALSE F F

0.5–0.9 0.178 1.818
F 123 33

T 22 6
28 39 FALSE F F

0.5–1.0 0.208 1.587
F 141 37

T 26 7
33 44 FALSE F F

0.5–1.1 0.215 1.538
F 155 38

T 27 7
34 45 FALSE F F

0.5–1.2 0.149 2.087
F 172 41

T 28 7
35 48 FALSE F F

0.5–10.0 0.166 1.92
F 182 44

T 31 7
38 51 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.6–0.7 0.752 0.1
F 33 5

T 5 2
7 7 FALSE F F

0.6–0.8 0.307 1.042
F 63 15

T 9 3
12 18 FALSE F F

0.6–0.9 0.118 2.439
F 90 26

T 15 6
21 32 FALSE F F

0.6–1.0 0.153 2.041
F 108 30

T 19 7
26 37 FALSE F F

0.6–1.1 0.161 1.961
F 122 31

T 20 7
27 38 FALSE F F

0.6–1.2 0.106 2.618
F 139 34

T 21 7
28 41 FALSE F F

0.6–10.0 0.124 2.361
F 149 37

T 24 7
31 44 FALSE F F

0.7–0.8 0.181 1.786
F 30 10

T 4 1
5 11 FALSE F F

0.7–0.9 0.072 3.226
F 57 21

T 10 4
14 25 TRUE F T
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.7–1.0 0.109 2.564
F 75 25

T 14 5
19 30 FALSE F F

0.7–1.1 0.118 2.439
F 89 26

T 15 5
20 31 FALSE F F

0.7–1.2 0.074 3.2
F 106 29

T 16 5
21 34 TRUE F T

0.7–10.0 0.093 2.824
F 116 32

T 19 5
24 37 TRUE F T

0.8–0.9 0.332 0.941
F 27 11

T 6 3
9 14 FALSE F F

0.8–1.0 0.424 0.64
F 45 15

T 10 4
14 19 FALSE F F

0.8–1.1 0.441 0.593
F 59 16

T 11 4
15 20 FALSE F F

0.8–1.2 0.281 1.161
F 76 19

T 12 4
16 23 FALSE F F

0.8–10.0 0.324 0.973
F 86 22

T 15 4
19 26 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

0.9–1.0 0.724 0.125
F 18 4

T 4 1
5 5 FALSE F F

0.9–1.1 0.752 0.1
F 32 5

T 5 1
6 6 FALSE F F

0.9–1.2 0.789 0.071
F 49 8

T 6 1
7 9 FALSE F F

0.9–10.0 0.823 0.05
F 59 11

T 9 1
10 12 FALSE F F

1.0–1.1 0.48 0.5
F 14 1

T 1 0
1 1 FALSE F F

1.0–1.2 0.683 0.167
F 31 4

T 2 0
2 4 FALSE F F

1.0–10.0 0.773 0.083
F 41 7

T 5 0
5 7 FALSE F F

1.1–1.2 0.617 0.25
F 17 3

T 1 0
1 3 FALSE F F

1.1–10.0 0.752 0.1
F 27 6

T 4 0
4 6 FALSE F F
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Table D.1 continued from previous page

Confusion Range p-value Statistic Contingency Table
Th. Sw. F T
Ta. Sw. F

T

Taxonomic Swaps Thematic Swaps Significant Thematic Priority? p < 0.05 p < 0.1

1.2–10.0 0.683 0.167
F 10 3

T 3 0
3 3 FALSE F F
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Appendix E: Code Repositories

Code for both projects of this thesis can be found on GitHub.

The code for Chapter 3, which examines adult age and object-similarity preferences,

is located at https://github.com/fyshelab/adult-likeness-preference-weights-project.

The code for Chapter 4, which focuses on six-year-olds’ taxonomic and thematic rea-

soning, is located at https://github.com/fyshelab/child-adult-taxonomic-thematic-

project.
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