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| ABSTRACT - -
In this thesrs the Karhunen-Loeve transform (KLT), also
known as Pr1nC1pal Components Analysrs (PCA), has been used in
pattern representation and classification of temporal sequences ot
spatlal EEG maps. The KLT allows: the underlymg structure of a set of
~data to be exammed by transformmg the input data into a sét of or-
thogonal basis functions and a set of orthogonal coeffncrents ‘which
w‘e1ght the basis functtons The KLT was applted to two classes of EEG
data, the eyes- open restmg (EP) and eyes closed restmg (EC) state:
Represeﬁlonal accuracy was. measured in ‘terms . of the amount of

power (variance) accounted for by the bas1s 1mages and assocrated

- coefficients, and how well tlle reconstructed images correlated with

the or1g1nal 1mages

“

It was found that. the. first 5 basrs images’ typlcally accounted R
for over 90% of the variance in EEG segments rangrng in. length trom R
0.5 to 40 seconds and that the’ reconstructed 1mages correlated hlgh-
ly on average with the orlgmal 1mages It was also found that basrs ,
1mages computed from one cognmve state better represented EEG =
from the same state than frOm another State, even for mter subJect :
data o vt . ‘ -~ V. -. :
~ The. second set of analyses used a transformatlon based on. the
KLT and developed by Fukunaga and Koontz (1970) to\generate pa-
rameters and features amenable for classification. The features were,

~then used in conJunctron wrth a mlmmum d1stance classrf:er to dif-
X

e ferentrate between EC and EP data. Accurate supervrsed classrfrcatron

was possrble for EEG data when training vectors from the SUbjCCI to -

i

be classified were avallable regardless of whose data Was used in’

.computmg the cla551f1cat1on parameters

Hiy
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Chapter 1 T
The Electroemsephalogram

1.0 . Introduction o

Q% . Electric fields on the human .;,‘scalp were first discovered by the
German psychc;‘lpgist Hans Berger (1928). ‘Since the‘n’ much fffort_ has
been dedicated to understanding the physiological sources of these
fields and cortelating them to br_airi function. ‘Measured using elec-
t'rodes- placéd on the- scalp, the electroencephalogfam (EEG)' provides T~
4 non-invasive view of the functtomng brain w1th millisecond reso-
lution. Tt 1s for these t sons\\hat Hanfgrger thought the EEG was .‘
thc wmdow on the mind". . ( ' ]

This. section presents theé typés of t?,rain signals typiCalldy ana-
lyzed-and discusses the spatial .a_hd temporal  properties ‘of the EEG.F.
The techmquc used in this the51s to investigate the EEG the
Karhunen Loeve transform, is also briefly reviewed.

| -The two main types ~of EEG r'ecords'typi'cally analyzed are back-
ground potential and evoked (often calied event related) potential
data. Background EEG is taken from subjects asked to assume a par-
ticular cognitive s\ate, and usually consists of minutes of recorded-
data. For exampl;: subjects .'may be relaxed, and_alert with their eyes
closed/’(‘;r may be asked to perform spatlal mathematical or language
: SpClelC tasks : ' - N

/’E%ked potential data, on the other hand consists of the aver-,

age of many short (less than 1- second) EEG segments synchronized

with a specific stimulus or. response These * !uv-e flashing checker-

'board' patterns, or audltory tones and cllck .y averaging many tri-
MV N

als the background EEG is ellmmated anc the effects of the stimulus

~ :

~



can directly be measured. In this thesis only background EEG data is
used, andb therefore the term EEG will refer specifically to back-
ground EEG, unless otherwise stated.

Becahse the recording electrodes measure electric. potentiztl,
both background and event related EEG_‘:e:]uire a voltage reference.

Often angglectrode on one or both ears is used to provide the refer-

, ence although netther is electrtcally neutral\ Since the chonce of ref-

erence effects the potentlal recordings, much effort has been directed ~

to using reference 1ndependent measurements (Nunez, 1981).

\ Trad ttonally the recordmgs from each electrode on the soalp
are viewcd collectively on a strip chart. .This method of nrese'ntation
stresses the temporal nature of the signal. Consequently, most analy-
sis favours de omposmon of the EEG signals into sinusoidal compo-
nehts via the iourier transform Several - frequency bands are typi-
cally used: delta (less than 4 Hz), theta (4- 7 Haz), alpha (8-13 Hz), beta
(14-30 Hz) and gamma (above 30 Hz). ' -

srrelates between }the power of the above frequency bands

and subject state have been found. For example, the power in the al-

pha band is gsually higher i~ a _subject who is'%ak,e yet. relaxed and

has" her/his eyes closed, as opposed to when her/his eyes are open.
Drugs also affect the- EEG. For instance, the anaesthetic halothane in-
duces near—perfect sin' soidal osm&atlon at several frequenc1es These

frequencies - depend L0k blood concentration of the halothane -

“(Nunez, 1981). In a. lition, epileptic patients undergomg a seizure

demoristrate erratic EEG activity which manifests itself in the upper

frecuency bandsk
' Series of images representing ‘the changing topology of poten-

‘tial over the scalp may be created by accounting for the potentials

5
¢ -

~l\)8.



measured at the electrodej sites and the’ spatial location of the elec-
trodes. Two diménsional techniques such as bilinear and bicubic (
spline interpolation are typical‘_.ly used to reconstruct the spatial volt-
age distributidns‘.\S‘treséing the s'patial properties of: the EEG i§' be-
coming inpgeasihgly popular and has several advantages over con-
ventional strip cha.rt techniques. Two main advantéges. of this ap- |
prodch_ are the synthesizing of information from each ch/annel into a'
"holist‘ip" picture, and the p-ossibility of more a_ccﬁraté ar}atorﬁical
mapping. ' | _ ‘
Furtherrhore,_it is often possible in the spatial domain to. re-
move the effects 1 an active reference ~electrod'e."F0f example, use of
the. spatial Laplacian oberatof not only>remove‘s\ dependence on a
reference electrode but also provides information about current.
source generators thought to be responsible for much EEG activity
%N,unez, 1981). The spatial maps are often transformed into two di-
| mensional power spectrum images by applying the 2D Fourier
trans‘fornﬁ or other non-linear power spectrum e&stimation tech-
niques. These methods. isolate the effects of an active recording ref-.
é‘rence to the (0,0) spatial wave. '
‘Two disadvantages arise from the use of topographic maps.
First, adequate spatial sampling, required t(o- create both accurate and
preci%,e images (Koles and Paranjape, 1987), is often expensive and
computationally intensive. "Second, the temporal properties of the, ™
Signal are neglected. o | ‘ | |
In this thesis a ;tétistical fecfmique' known as the Karhunen-
Loeve transfofm (KLT) is used to bridge the gap between tl;e spatial
and temporal properties of the EEG. When applied to temporal se- _
quénces of'spatial EEG maps the KLT yields two products. The firs§ a



s
—_—

set of'orthonormal basis Amages, reAtes to the spatial nature of - the
EEG. These basrs rmages represent the underlymg and persrstent

spatial patterns 1n the temporal” sequence of ongmal 1mages and are

-ordered in terms of their. srgmfrcance That is, the ftrst basrs 1mage

accounts for, the largest power possible in the original data. in a Tea'stf'“

L . . y . . @
squares sense; the second basis image the next largest amount of

powEr etc...

The second product of KLT analysrs a set of orthogonal coeffl-

cient sequences 1nd1cates the - amount of each basrs image present in

-the original data images, and therefore provrdes the measure, of srg-

n1f1cance used above. Each coeffrc/pent sequence can be thought of as .
extractmg the temporal components common to all of the electrode
recordmgs and thus relates to the temporal nature of the EEG.

The mathematrcal development of  the Karhunen-Loeve trans--

form is presented in Chapter 2 along with an overview of pattern

recognition. In Ch'apter 3 the KLT is used as a pattern representation

technique ‘to determine the underlymg spatial properties of the-EEG,
whllezhapter 4 uses the 'KLT al/ong with another transform
(Fukuna_ga and Koontz, 1970) as a pattern classrfxcatlon technique to
differentiate between eyes closed and eyes: opén EEG. The conclusions
of \this research and suggestions for further investigation are pre-
sented in Chapter 5.. The remainder of this chapter provides an

overview of the physiological sources of the EEG.

1.1 Origin of Scalp Voltage Potentials

=

This section overviews the origins of the EEG. The overview is
cursory since this thesis emphasizes pattern representation and

classification .of the EEG signals "and not their physiological basis.



The bram is largely composed ¢! nerve cells. Each nerve cell is
calle}l a. neuron and con’sxsts of a cell body, dendrites and an ‘axon.
The dendrites are tyvacally'.exten,smns of the cell body which fa-
cilitate ,receptlon of slgnals from other’ rieuronS'at intercellular june-
tions called synapsec. S.y’naptic inputs from other neurons rrléy either
be excitatory ~or inhibitory. Witk sufficient stimulation th:e neuron
“fires”, seriding an _action poten.tial"(electrical charg ) alorg its axon,
w,hich. mayb again either stimulate or inhibit other n~urons from fir-
in‘g. . ‘
\ -The potentia. “stribution around a neuron may be approxi-

- mated by a dipole, that is, current flow between two poles of oppo-"
site electncal charge (Nunez, 1981). The dlstnbutlon around a- group
, of parallel and synchronized neurons may also be approximated by a
dipole. In both cases the potential  decreases with the inverse square
of the distance fr'om"'t’he dipole .‘ source, and is also a function of the
homogeneity of the surrounding medium.

The human brain is composed of many anatomically identifi-
able structures, primary amondg which are the brainstem, cerebellum
and/erebru-m (Nunez, 1981).: Our focus is on the cerebrum, which
condposes th"e‘ upper portioh of theAbrai,fx and is ‘dﬁ?'rded intotwo‘
hemispheres. The outer several ‘millimeters of> thei cereBrUm, re-
ferred to as the cerebral cortex, contalns many vllighly cOnnected .neu-
rons. B'ecause of the prominence of cell bodies in the cortex it ap-

- pears grey in cross section and is appropnately called grey matter.
Beneath the cortex is the white matter composed of axons which
connect various regions of the cortex.

Neurons in the cerebral cortex are typically pyramidal in' shape

and are arranged in a lan..nar and columnar fashion (Katznelson,



1981). The electrical activity in those cortical eolu‘mns of diameter
20-50 pm is highly‘\correlated, and it is postulated that these columns
(named "minicolumns") form the basic functional units of the cortex. ’
Because the cor_t/ex.‘is the anatomical structure -closest to the sc'alp and
contains synchronized neural activity‘eapable of generating observed
-scalp vpgtentials, it is thought responsible for most of the EEG.

The goai of studying the EEG is determination of the underlying
physiological sources of the signal and. their relation. to cognition and
brain function. The EEG is a measure of the electric potenual on the
scalp, and is therefore a measure of the total elecmcal act1v1ty
around the recordmg 51te (not a single neuron's actlon potentlal)
Nunez (1981), states that the &otentlals measured on the scalp may
originate from three sources: a single dipole, a dlpole sheet, and the 8 -
field from an _action potential. L

Many problems must be overcome to locate these dipole L
sources. Scalp and skull conduct1v1ty and the non- sphencal nature of
the skull are two effects which must be accounted for..The physio- |
.loglcal basis of dipole current generators and the valldlty of assum-
ing them as the_source of the EEG also require mvestlgatlon The fun-
-damental question, then, requires uncovering the relatl_onshlp be-
tween cognitive process.i'ng and the synchronized activity of the
b','many neurons which generate observed scalp potentials
| A]though much has ‘been accompllshed in understandmg the
EEG many questlons stlll remain. Thus, it remains a corroboratlve
clinical tool rather than one for primary dlagnosm. As Gevins (1984) -
states, "the :most important limiting factor is the lack of basic knowl-
edge about the origin and significance of BEMS [brain electromagnetic

signals]” (p. 834). The research in this thesis, while not purporting to

(ON
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explain the origins of the EEG, provides an.addjtional tool to aid in

decoding the significance of the EEG and its relation to the cognitive
N . " \ . -

state of the subject.

\
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Chafptér 2
'The Karhunen-Loeve Transform’
2--0 Introduction

The Karhunen Loeve transform (KLT), also known as prtncrpal

components analysrs (PCA) is the main tool for 1nvest1gaung the spu-

tial EEG used ‘in this thesis. The KLT has many desirable properues

and 18 successful_ly used in multivariate statistical analysis and sta:
tistical pattern ‘recognition. Before reviewing the mathematical de-
tails of the KLT and dlscussmg 1ts properties, an overview of data

transformation - and pattern recognmon is given. Chapter 3 deals with

issues specrflc to using the KLT on the spatial EEG.

o~

‘21 Data Transformatlon

- The transformatron of a set of .data from one, measurement
space to another such space 1s a common and useful procedure in

data analysis, including stattstrcal' pattern recognition. Transforma-

‘tion procedures usually consist of projecting an acquired data set, -

taken in -One measurement space, into another measurement space;

- in pattern recognmon the latter space is typlcally referred to as the

feature space

In mathematical terms the transformation is written as

¥ X =Y ey

“where : ¥ is the transformation function, X is the original data set,

and Y the transformed data.
The motivati:on behind such a projection is to il_luminate infor- -
mation inherent in the original data, but which is not ebviouswhen -

7



“viewing X in its raw form. The trahsfeunéd,dﬂ‘am/ayprovide c

as to the underlying structure of the process being measured, or pro-

vide features useful in classifying or representing the process. When

Y is used to classify data it typically is of a lower dimension than the

original data set with as much discriminatory information compres-
scid in‘to it as possible. L \
s  Another reason for using transformations is that mathemati\éal
operations toogcomplex’ or computationally intensive io; perform in
the original measurement 'space may have a simple counterpart in
the new space. Th@s,_ if an inverse (¥-1) to ¥ exists, the original data
may be transformed into the new space, using ¥, the equivalent op-

eration performed, and ¥-! applied to transform the processed data

bac’k to the ori‘ginal-space A common example involving the Fourier'

transform is the equ1valence between multiplication in the frequency

domam and convolutlon in the t1me domain.

Data transformat10n§, or as they are sometix;nes eaIled, map-
"pings, are either linear or non--llinear. In a linear mapping the trans-
formed data set consists of linear combinations of the input data,
with the transformatlon followmg ‘the superposmon pr1nc1p1e Non-
‘lmear - mappings are in general more dlfflcult to express mathe—
matically and also teqd to be heunstlc in nature (G. Biswas et. al,~
1981_).' The Karhunen-Loeve transform is a linear mapping and thus

the rest of the’chaﬁg‘ter will cgncentrdte on linear transformations.

2.1.1 Basic Notation (:)f'Linear .Tra;lsformations i
Since the analysie of data using a digital computer invariably .

invo,l“ves'w'orking with sampled signals the following discussion. is

based on discrete data, represented hsing matrix thation. The fol-

(/
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10
lo{ving conventions. apply: vectors are underlined, bold and in small
letters; matrices are underlined, bold, and in capital letters.

Let Xi = (xi,1,%{2, .. xj.N)! , where superscript t (!) represents
the transpose operator, denote the ith set of measurements, alsc re-
ferred to as a pattern vector, made on some random process. If there
are T sets of these N-dimcnsional measuremerits acquired, a matrix
X can be formed, where each column of X contains a different pat-
“tern vector. Each row of X contains a set of numbers relating to one
particular feature of the random process. Often, the T measurements
represent temporal sarnplcs of some process, with the ,safr@ing"f:\l<s
meeting the Nyquist criterion. . A

In a discrete linear mapping the set of pattern vectors X is
. represented by ‘the linear combination of basis functions and an dS-

sociated set of weighting_coefficients. In matrix notatlon,

4 (2 111y
where X is the NxT dlmensmnal set of measurements, B_ 1S an NxM
dimensional set of ba{)sm functlons and K is a set oi"M xT wclghtmg
coefficients assocmted with the basis functions. o
Each basis functlon is contained in a column of B_ whlle its

. welghtmg coeff1c1ents are represented in each row of K. In other.
words the jth pattem vector of X, that is, the gt column is rcpre-
sented by a wclghtcd combination of each column af B_ whcrc the ~
weight for ‘the 1th basis funcnon is the value at the 1‘h row of the ‘jth
column of K. Flgure 2.1.1.1 presents a graphxcal representatlon of this
process. ‘ , ‘

. Note, that the interpretation of X, B and K is arbitrary. For ex- .
ample, the "temporal” direction in X can easily _be thcught cf as _run-

ning - vertically, as opposed to horizontally, and similarly the basis
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. .

functions may be represented as row vectors. As well, which matrix
to say contains the basis functions and which the c¢oefficients is a
matter of convenience and the prbpertics desireC ior each matrix.
The development prqsénted here is aligned with the version of the

KLT most useful for analyzing the spatial EEG. The notation used is

“typical, but by no means universal.

K

! =< BJ Coefficients
N S R
L M| &:

k=
%

X

Coefficients

Pattern Vector Xi
|
"""Basis Function Bj
*

: Figure 2.1.1.1
Linear Matrix Transformation - A Graphical View

, In matrix rotation the th column of X is written as

M , o
x=2bk o . T (21.12)

v . i=1 o L

while, individual elements of X are caléuljated ‘from the full exp'ansion»

of the matrix multiplicatio'n . o
R | : ' K] o .-
ot =Z bn,aka,; P : Q211

In general the determmauon of B specmes the type of hnear
mappmg Some tran{;formatlons have their basis functlons deter-

mined a pmorz, that is, ‘they are data independent, .while others, in-

~ cluding the Karhunen-Loeve transform, have process dependent ba-

sis functions. Regardless, a desirable, property of the basis functions
- i - . . ! B s N . . . .

11
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is that they represent the most information about the data set in the
'fewest possible elements. This property arises when the informatvion
tepresented by one basis function is not found in any of other basis
function, that is the basis functions form an orthogonal, or orthonor-
mal set. For an orthogonal set the dot product between each pair of
Jbasis functlons is 0, while an orthonormal set has the additional con-

¢
{

stralnt that the norm of each basis function is 1. Formally,

=Zbikbkj=0. 4 | C o 201.4)
k . . .

Mep=Db=1 @19
.k ’

where Db; represents the ith basis. function, ?hat is, colurnn‘of B.

One property of the linear expansion of‘vKuation 2.1.1.1 is that
if the basis functlons form ‘an orthonomlal set the average power of
~the matrix X can computed from the coeff101ents only The average -

'power is defined as

P

1 V.2 | S . |
P:I\I_szy_m_‘z21[,_‘1 | | @i

If Equation-2.1.1.2 is substltuted in, and the transpose . per-

formed then

=NTZZ‘%!¥ Sk AR W)
. [=1 l=1 . J:J . . ) '

. . » . i ) .“ o
But since the_ basis- functions are orthénormal and thus satisfy
. Equations 2.1.1.4 and 2.1.1.5, Equation 2.1.1.7 can be rewritten as
| & ,
= -k S ! 2.1.1.8
P NT L kn} | . _ (2.1.1.8)

Thus the average power in the data set mamx is calculated di-.
rectly from the set of coefficients 51mply by squaring and averagmg '

them over the size of the data set

Y



/(

~1

~of th: input data is M, the value of which is determined by the basis

functions used and the data itself. If a value m, where m<M 1s used

instead an error, €2, in the reconstructed data Set, X' occurs. If the

error in representation is small it may sometimes be desirable to use

m. For example, if a ‘tolérable error results for m<<M then X' can be
stored using much less space than 'the 'original data. As well, if the -
data set conrﬁains noise it rnay not be desirable to store those basis

functions and coefficients repr_e'senting little variance of t.hero_riginal

data, as they are most likely related.to noise and not signal. This- lat-

ter idea is-important for the KLT and will be elaborated upon later.

One criterion- for measuring the -error in the reconstructed data

set is by measuring the mean squared error (MSE), €2, given by
' - T , \
P 3 T

A ~common example of a linear mapprng where the basrs func-

~ tians have been chosen a priori, and which is used in e1ther discrete

or continuous space, is the Fourier transform. In one .dllmensr'on, the
Fourier transform maps a signal on to a set of orthonormal basis

functions con51st1ng of sme -and coslne waves at various frequencres.

~These functlons are chosen because of their desirable propertres in

hnear systems. Often, 'the Fourier coefficients afe taken and viewed

~as a spectrum of the 1npUt signal. The spectrum i1s often used to clas-

sify the signal, for example by the power contarned in certain fre-
quency"bands, or the spectrum may be ultered by .retaining those

coefficients, and hence basis functions, representing a’ significant
N . ) L .

k/_k? :

portion of power contained in the input signal.

The number . of coeffici.ents required for.an exact representation

T



2.2 Pattern Recognitio'n
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Pattem recOgmtlon is a broad freld of study’ whose general goal

o isto develop methods to- classrfy data accordmg to whrch category,. or

class, a glven sample belongs Typically measurements are made on a

sample or somé process

features extracted or selected ftom those .

measurements, and a clasSif_ication ‘al_gori_thm applied to the features

to classify the data. Figuf?ﬁ' 2.2.1 illustrates the main steps performed

in pattern recognition.

s

t

. Main

Steps in Pattern- Recognition

-

‘Sample Feature - N Pattern oD
Measurements Extraction | *| Classification ec'rsxolni
Figure 2.2.1

Feature extraction can be thought of as dimensionality feduc-

tion (Kittler, 1986) since the extracted 'featu.res generally number

.
-

less than the measurements made on the sample. The extracted fea-

tures should also have the prOperty that they contain enough infor- v

mation to c1a351fy the sample accordmg to the- category of the 1nput

data. Feature extraction methods are generally broken down into two

main areas: decmon theoretic and structural (Hanakata

decision ‘theoretic approach

‘

1977);

the one pursued in this thesis,

features

-Ab'asrcally consist of measurement vectors taken from the data set.

Features may consist of selecung those mea\surements deemed ‘im

~ portant for. classmcatlon or of combining ‘measuremems lmearly, as,

A
*1in the case of the Karhunen Loeve transform,. or non- lrnearly to /Jro-;

duce new features used in discrimination.

I/

s
.
i

n
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In the structural approach, on the ‘oth~ hand, not only are
measurements considered important, but a. the 'relationships be-
tween those measurements. The features extracted tend to be high
- Level descnptions of the obJect to be classified. For example when
‘extractm% features from an nma/ge patterns such as a line, corner, +
angle, or jagged edge mzy t. found and AE sp71al relationships
between those basic features used to categorlze the sample for ex-
ample as a wrench as opposed to a screwdriver. When such dCSCI'lp-
tions- are 1mportant orgamzation of the features may proceed in a
syntactic fashion, where rules of syntax are used to combine, ma-.
nipulate and classify objects. : _ - .

Since feature extraction in this thesis is decision theoretic, the
following discussion deals with classification as it relates to decision
theoretic features. It 1s the classifier's role to take the features ex-
trzicted from the mensurements and respond with the category of the
data. The first basic step in .classification is a "learning" phase, where
samples of known class are used to "train" the clzissifi_er. In more

specific terms, the parameters uded by the classification method are

15

calculated. After acqui:.ing these parameters data of unknown class is

presented to the classifier and used to measure the classification ac-
curacy. Three basic types of classifiers exist, each "differing in how
much a priori knowledge of the feature space they assume.

When nQ a'(briori knowledge of the statistical distributions of
the feature ‘vectors is’ known deterministic techniques . are used.
These methods partition the feature space ' by various ,mean’s,} and as-
sume that each feature is determiinis'tic. A popular deterministic clas-
sification scheme is cluster‘analysis, where clusters of sample mea-

surements in feature space.are used to define each class. New sam-

4



“ples are classified according various techniques, a common one being

the nearest neighbour method, where an unknown sample is labeled
with the same category as the training sample closest to it (using
some distance’/measure, usually Euclidean). Linear discriminant
functions’ are also popular, Whéré n-dimeng_iguil hyperplanes are ,
“used to partition the (n—dim@nsi.onal)' feature space into feature sub-
spaces. Unknown samples are classified according to which subspuce.
.thé);.reside in. ‘ - r" o
The next major group of classifiers assume that the feature
vectofs are As'tatisti‘cal in nature, fhat is, they are representati\{e of
underlying statistical processes. A major goal in this type of classifi-
cation is/ to determine the probabilit;57 density function '(pdf). of ejach'
classes'vmeasurﬁements. or extracted features. By lvcnow‘ing the proba-
bility of occurrence of each class along with its pdf, the classifier is

designed to minimize misclassification. If these parameters are

known optimum classification occurs using Bayesian estimation

16

(Fukunaga, 1986). The obvious difficulty with this approach is that

knowledge of the underlying statiStical propert\ies of each sample
process is difficult to obtain. Although this is the case, estimation of
the pdf's of the sample processes are usually cbmpu)t‘e)d' in order to
give bounds to‘the minimu_rn misclassification error. (Baycsian error).
If this estirnation is unacceptably high new features or measure-
ments should be taken. .

" The last group of classification algorithms are the trainable
pattern classifiers, where the classifier "learns” the information it re-
quires. Thesé classifiers may work by either using statistical or de-

. -"
terministic techniques, or a combination of both. Trainable classifiers

may be further categorized into supervised or unsupervised classi-
. J:\- . :
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fiers. In the former class information about each training sample i
known and can be used to aid in "learning”, while in the latter cTziss
information is not known. In unsupervised training as‘stxmptions
about the feature s~t distribution, for example that features cluster

tpgether (Shimura, 1973) are used to train the cla551f1er

e

S

2.3 Karhuﬂne.n-Loev‘e Transform (heory

The Karhunen-Loeve transform is a linear expansion, and when
applled to an NxT matrlx X yields a set of orthonormal basis func-
tions, and in which the error in approximating the -original datzi sett
by using only the first m tasis functions is a minimum in a least
squares sense. Because of the latter property the basis functions are
data dependent, and hence cannot be determined a priori, as in the
_ Fourier transform, for exatmple. This property is useful,” though, since
the basis functxons may 1solate components underlying the statlstlcal
proce}s being mvest1gated As well, information about the orlgmal
data set is compressed onto as few basis Vectors in the transformed
.pace as possible (in a least squares sense). Thus if only a few basis
functions and associated coefﬁcients “ar‘e required to represent a sig-
nificant portion of the original data, that is, the mean sqvuared error
15 small, then data compression may be performed by storing only’
the required basis functions and coefficients. ,

- A drawback of this transform is that becahse the basis func-
tions are data dependent t,hey w1ll most llkely vary oetween differ-
ent data sets. Thus, in comparmg and cla551fymg two or more sets of
measurements not only must  the coeff1c1ents be compared as with |

the Fourier transform spectra, for example but also the basrs func-

tions. This problem is addressed in Chapter 3.
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2.3.1 Review of Eigen Analysis

Eigenvalues and eigenvectors ‘play important roles in much of
sc nce and en'gineéring. A brief review of their properties is given
- here, although the discussion is necessarily cursory.

A matrix A is said to be a linear transformation from a vector
space U to a vector Space Y if the transformation follows the proper-
ties Qf superppsition, and if the tra;lsformed vector (y = A U ) is un-
v;'i'/mbiguously defined. The special claés of vectors wh.ich after trans-
formation by a square matrix A remain in the vector space U, and
which change o’nly by a scalar multiple A, hre called the eigenvectors
of A. The scalar multiple associated with each eigenvector is called
“its corresponding eigenvalue. In mathematical terms

Au=uir ‘ - (2.3.1.1)

Often the eigenvalues are called the characteristic values, or

O :
"proper” values of A. _

It can easily be showh that if A is real and symmetric the
eigenvalues of A are real, and its eigenvectors form an orthonormal
set. Alsé, if A is of size NxN then it can also be shown that there will
be at most N distinct eigenvectors. Thus, if the matrix U is created,

- where each column contains a different eigenvector, and a diagonal
matrix A formed where ith diagonal element corresponds to the ith
eigenvector (i.e. vcolumn) of U, Equation 2.3.1.1 can be rewritten as

AU=UL (2.3.1.2)
or, by using the orthonormality of the eigenvectors for a real and
symmetric matrix, that is, -1 = U, y -

A=ULU! -~ (2.3.1.3)

: \
This last form is important in the development of the KLT.



2.3.2 Autocorrelation Functions

Autocorrelation functions also play a key role in the develop-
ment of the KLT and will be given a brief review lhere. An autocor-
relation function is measure of the\"self-similarity of a stochastic pro-
cess. If X represents a continuous stochastic prdéess,- the similarity
o(ti,tj) between Xﬁ and k[j (the ith and j'b time instants of X) is mea-

sured by the expected value of the process at X and X,

v
+oot-0o

E { X, th } = JJ Xy X p(x,; th) dx . dxlj (2.‘3.2.1)

where p(x,;,Xy;) is the joint probability density function of the pro-
cess and E{} the expectation operator.

Thus the autocorrelation function of a one dimensional process
is a two dimeﬁsional function ¢(ti,tj). If the process X is stationary,
that is its statistics do not change over time, then ¢(£i,tj) is a funct{on
of oi 'y he difference between ti and tj, T, not their\absolute values.
The autocorrelation? function can therefore he written as ¢(t). €

Fdr the discrete case the process can be represénted by a’ma-
trix. X, where each row represents a different measur(ement of the
process, and each column ( X, ) a different realization of the process
at various values of t. The autocorrelation function in such a case is

written  as
. el 1 4 v 1 t |
R_l::{x,xx} _1&‘1?;2;1;} -lim XX (2.3.2.2)

This -assumes that the process being measured is stationary

through time (that is, the statistics of each measurement [row] of X
does not vary with t), and that the a priori probability of occurrence
of each pattern vector is equal.

If all of the process measurements (rows) have the same statis-

tics then R is Toeplitz, that is, its diagonals contain constant va_l)i{es.

19
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I§ this case, as with the contir us process, the funcno»n may be re-
duced to 3 one dlmenswnal matrix, since each row of R is just a
shifted version of a vector, dR. - S B

: It can be shown that the average power in X 'may be computed

from the sum of squares of the main dlagonal elements (i.e. the

trace) of R. In other words,

. N T N .
. 1.1 2 1 2
P—l;{l:@ T I—\I" ZZXU =ﬁ Zrii ) (2323)

2.)3.3:’ Mathematical Development of the Karhunéen-Loeve
Transform ' :

Recall Equation 2.1.1.1 Jhich states that a NxT matrix X may
be represented in terms of a set of basis functions (or vectors), B.
and an associated set of coefficients, K. For the KLT the expected
mean squared error, €2, in X' is a minimum. Recall that X' is the
reconstructed version of X using m basis functioné, where m is less
than the number required, M, for exact reconstruction.
a The followmg developrviem assumes that the process being in-
vestigated is ergodic and therefore that in the limit T approaches
infinity, or that it is sufficiently large so that X_ fully captures the

processes’ second order statistics.

The tth reconstructed column of X' is written as

=Yk b - (2.3.3.1)
i=1 . |
The error in reconstruction' of x, is thus
X-X'= Z k. b - (23.3.2)
1-m+l ’ '

L

~s

. | o .S
The mean squared error, €2, of the approximation for the entire;”
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reconstructed data set is
el = E{ 5 -%) (X -X) > (2:3.3.3)
t ’ . ' {
.. which can be rewritten using Equation 2.3.3.2 as _ ‘
52=E<(2k,t!;) (Zkﬂ!p} ' (2.3.3.4)
ot i=m+1 j=m+1 ‘ '
Since the basis functions are orthonormal they are constrained
as follows _ | |
b+b =3, o (2.3.3.5)

where 8jj is the Kronecker delta function
;

I, igj-
5. = o ’ : (2.3.3.6)
Y 0, iz

Thus, Equation 2.3.3.4 can be written

& =E { ﬁ ki} (2337
t \i=m+l % .

» - The mean squared error in using m basis functions is therefore
the expected value of the square of the coefficients of the unused ba-
~ sis functions. But, it is desired to express the mean sduared error in

terms of the data set vectors X, If both 31des of Equation 2.1.1.2 are

multlplled by bjt then

b;zs!‘.=hj‘-2hﬁkil ' o (233.8)
and- agam usmg the orthonormality constraint’ of Equatlon 2335

Bx =k, 8 L | (2339)

-

4

> Substltutmg this result into Equauon 2.3.3. 7 gives the mean

,squared error in terms of the orlgmal measurement set

i=m+1

o <memw} o s
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{_Zlb‘xtx*h\} - o (2.3.3.100)

Since the basis functions are 1ndependent of t1me (t) the ex-

pectation can be brought inside and €2 written as S :
5 —Zg E{:gzg}h, - 331D
i=m+1 .
Now note that the expectation operator when taken over t de-
fines the autocorrelatxon function R, of X (Equatxon 2 3 2.2). There-
fore the mean squared error in reconstruction is related to ‘the auto-
correlation function of X in the followmg way

‘Zb,Rb, 4 233.12) |

i=m+1 ’ ‘ &
It is desired to minimize €2 while maintaining the orthonormai-
ity constraint of the basis functions. To solve for the bi's the method
of Lagrange multipliers 1S used.
First the constraint is rewritten as ' )
bib-1=0 L @233.13)
. Multiplying both sides of the above equation by a scalar con-
stant A; does not change the equality and thus
A (bb-1)=0 (2.3.3.14)
or, it can equally be stated that |

Zx Bb;- =0 . (2.3.3.15)

i=m+1

The next step is to create a function g(h;) consisting of the
function in which the extremum is to be .found and its constraints

M M
g)= Y BRb - X A ®b-D) 23316

i=m+1 i=m+l

To find the extremum of g(bh;), and hence the values which
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‘minimize ¢, g(b;) is difrerentiated with respect to b’ and the result |
set to zero. In ‘order that the mean squared error be zero m is sef to .
M, and thus there are M basiS functions (b;' s) and hence dCer&thCS ‘
to compute. Since each b; is an independent varlable Equation

2.3.3.16 may be §imS]Tfied for each basis function to

4

g)=b.Rb -A (&b -1 ‘ © (2.3.3.17)
-Performing the differentiation with respect to b; yields '
b;R-A. b =0 ’ ' (2.3.3.18)

Rewriting for all M basis functions and corresponding eigen-
values, as was done in Section 2.3.1, and recalling the orthonormality
of the basis functions (B Bt=BtB = L') y1elds

BR=AB : - 0 (233.19)

R=BAB L . (2.3.3.20)
By comparing Equation 2.3.3.20 and 2.3.1.3 it is obvious that

each basis function is an eigenvector ‘of the autocorrelation function
R. However, ‘this result does not show which eigenvalues andr"eigen-
vectors of R are needed to represent X with the minimum mean
squared error, only that they form the set Wthh does so.
If Equation 2.3.3.20 is rewritten for each basis fuis?bn “
" Rb,=ADb ‘ \ (2.3.3.21)
and substituted into Equaticin 2.3.3.12, € can‘be written as

M
é2=2b:lib,- ' o | (233.22)

i=m+1

Since Ajis a constant and the b;'s are orthonormal the mean
squared error in reconstruction is

M
&= | (23323

i=m+1

-~ Thus the mean squared error in not using eigenvector b; is its



corresponding eigenvalue. If the eigenvalues, and hence eigenvectors

are ordered such that
M2hz o2y, | . ‘(2.3.3.2‘4)'
?electirig th® first m eigerivettors» results in the smallest error.
In order to calculate the coefficients for the l”l%" expansion
the orthonormal property of the basis ?uncnons 1s used to yield
K=B'X-=B'X . (2.3.3.25)
-To compute the coefficients therefbre amounts to proj;:cting the
data set onto the set of axes defined by B. Viewed in this way the
Karhunen-Loeve transform is a method to project a data set onto an
optimized toordinate system, where as much information (power) of
the data set is represented on as few axes as possible. |
The relationship between the coefficients and eigenvalues is
found by expanding the expectation operator in Equation 2._3.._3.7
(assuming that all coefficients occur with equal a priori probability of
‘occurrence) and summing over all basis functions
T M
€=lim — Y - (2.3.3.26)
T'>°°F ol » .
Comparing thig with Equation 2.3.3.23 it is easy to see the

eigenvalues are related to the coefficients by
.- 1 T : . .
A =lim — > & (23.3.27)
1 T->°°'T = 1t N
In other words, the ith eigenvalue of R 1s the mean squared
value of the coefficient sequence for the ith basis function. Moreover,
since the basis functions each have unit power A; represents the
power contributed by the ith basis function's ceefficient sequence.

A further 1mportant result is found by summing over all eigen-

values and averaging over N,
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. sProjecting the original v,}data- set .into ‘the space defined by ‘those ei'gen-

-

—il

- 1' M
E §;1=
</

This result is identical to the average power in a mamx X_ for
an orthonormal linear expansron (Equation 2.1. 18) agaln assummg
that X is infinite length or of sufficient length to capture the second
order statistics. of the process bemg measured These last tWo prop-
erties of the KL{T are 1mportant and used extensrvely in pattern
recognmon and\representanon of the EEG in Chapter 3.

" To, summarize the sectlon 1n -brief then e
* the Karhunen-Loeve basrs functlons are the ergenvectors of .

the autocorrelatrorgwfunctlon B_,.‘ofX_

- the coefficients for those basis functio_ns'are cornputed by

vectors,

- the mean squared error in using only‘the first _in_, basis func-

¥

tions is found by summing the eigenvalues of the unused basis func-’

tions (assuming proper ordering of the: eigenvectors),
s '« the ith eigenvector of R gives the power represented by the
ith basis function, while summing all eigenvalues gives the total

power in X. .

With these basic properties in ‘mind the next section deals with

some practical considerations in computing the basis functlons and
coefflcrents and gives further properties ' of the expan51on
'2.3-.4_ Additional Properties and Remarks

The previous section described the Karhunen-Loeve transform
assuming that the exact autocorrelatron mamx, R, of the »process
could be measured. When dealmg with f1n1te data lengths, or pro-

cesses which are not stationary over all time, the KLT may still be

Zz o T (23328)
i=1 =1 . - o ,
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apptied. In this case though the matrix R will represent the autocor-
relatlon matnx of the data matrrx X.. and only an estimate of true au-
tocorrelation matrix of the process being’ investigated. The prodUcts
of the KLT wrll therefore be data dependent rather than process de-
pendent ln other words, the ba51s functions will span the sample
data, and mnot necessarlly the process with the minimum least

i

"squared error. A |
For a finit’e‘ data-set the autocorrelation matrix may be ‘written L
in one rof two ways, either by conelatiné through time (R) or process
measurement (Z). Each of these matrices contam the same informa- -
tion, although it is distributed . d1fferently in each. Assummg equal a
priori probabllmes of occurrence for each pattern vector x;, R and Z
may be- computed from either of the followmg forms
R——XX | / g ’.f (2.3.4.1)

cz\-ﬁxx ' | | (2.3.4.2)

Of p‘ﬁme importance is the det‘ermination‘-of' M, the number of
‘ba51s functions requ1recP to exactly represent the data set X. This de-
pends upon the correlatlons ‘inherent within X, more specrflcally
" upon the rank of the matrix. The rank of a matrix is a measure of the
-number of dimensions, that is linearly indepefident rows or columns(
contained in the matrix. To represent a_matrix using a set of basls
functrons (vectors) requrres no more basis functions than .the rank of
the matrix. For an AxB matrix the rank of the matrix 1s at most the
smaller of A or B., | | .

Thus, X, of size NxT, requires no more than the smaller of N or
| T basis functions. To compute. the elgenvectors of X 1t .was shown in

Sectron 2.3.3 required eigen analysrs of R, Wthh is of srze NxN. If the

-rank of X is T, then (N T) of the ergenvalues and elgenvectors of R A
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will be zero and computational inefficiencies will result; and may be

severe if N is much lajget than T. -

‘To avoid this problem recall bthat the autocorrelation function‘
may also be expressed as Z_, of s'ize TxT, and contains the samé 1infor-
mation about X as R. By performing eigenanalysis on Z it should also -
be possible to compute the same basis functions as fromi R. .Tyov .se.e_
how this is possiblc the rel_ati'onships between the basis functions,
coefficientsl and autocorrelation ~matrices is explored.

To get R in terms of the basis functxons and coeff1c1ents the lin-
ear expansion of X from Equatlon 2.1.1.1 is substltuted mto the defi-

nition of R from Equatlhn 2.3.2.2 giving
R--(BK)(BK) =3BKK'B" = (343

Comparing this 'with Equation 2.3.3.20 note that if the coef-

ficient matrices .are. grouped along with the scalar constant then |
N =1TKK‘ ‘ (23.4.4).
which .is jhst\the matrix yform of Equation 2.3.3.27.
" Recall that A 1s a diagonal matrlx and thus the coefficient ma-
_tr1x of the KLT is' an orthogonal set and can be made -orthonorm ° -y
_approp_rlate normalization. In effect then, the role of B and K. can be
intért:hanged by ‘normalizing 'K'an‘d shifting _ the On'or.malizihg.ifactor._ B
into B. . ‘Depending upon the interpretation of the. sighal space X de- -
. sired, this view,‘ or the ohe (.i'erivedl,'ﬁarli_er;‘ can be uséd. This is a
powerful propgrt_y. of the KLT, and -will be discussed in relation to the
spatial and temporal EEG in Chapter 3. | v. S
.Now, to see’how B and K‘ relate to Z, Et;uation‘ 2.1.1‘.,1' is substi-
-~ tuted into the definition of Z to give | -

l . . . . ) ! L
Z-(BK)(BK)= KBBK 2345
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Using the orthogonality constramt on B Equatlon 2.3.4. 5 can be

51mp11f1ed to

=iKK=(f§Kﬂj;K) | ‘. dafm?
Performmg eigenanalysis on Z yields (usmg dlfferent varubles

to differentiate the elgenvalues and eigenvectors from those of R_)
- z-ugu S - L (2.3.4.7)
‘,Siﬁc.e Z. is real and symmétﬁc the eigenvectors | are orthonor—.

mal and 211 is a diagonal matrix. Thus a new matrix Fcan becr‘e-
ated in Wthh the ith diagonal element is the squa* root of 1”‘ diag-

onal element of A,. It is therefore p0351ble to write

deF—JFTp f. - (2.3.4.8)

‘Usmg this relation in Equatlon 23 4.7 gives

2ol (V) b)) s

:Comparlng each bracketed term above. ‘with Equatxon 2.3.4.

—

and solving for K_ ylelds ' o . - :
K= J—JLZH | | L@

Thus the coefflclent sequence can be computed from thc auto-

4.10)

c‘bﬁelatlon function Z, as well as R. In the latter case the delS func-
tions can be solved by rewrxtmg Equa’uon 2.3.1.1 giving B = Xlg‘ To-
mlmmlze computatlonal costs, though,».lt is de31rable to avoid this
matrlx ‘inversion. o - |
Using relatlonshlp 2344 and post multlplymg both 51des of
Equatlon 2.1.1.1 by K! relates _& to A and Kl in the followmg manner
= BL=—XK I @340

“Since A 1S’a diagonal iuatrix A-1 is a diagonal matrix. with the ‘ith



diagonal element equal to 1/A; (which involves no matrix inversion).

If A-' is denoted as 1/A then Equation 2.3.4.11 can be rewritten as

29

»B=%XKQ- L (23.4.12)

The last remaining step in therefore to show the relationship

between A, and A. Substituting Equation 2.3.4.10 into 23 4.4 gives

at( o) (e i)

=%JE&£QJE; . B (234.13)

Recalling ihe ~orthonormality of the eigenvectors of a real and

symmemc matrix (Whlch of course, Z is) and using Equatlon 2.3.4.8

- the followmg 51mple relatlonshlp emerges

L——L - S (3414

‘v_’bombiningf"2.3.4.12 and 2.3.4.14 g’ives the desired equation:

In surrifnary then, u.s'invg Equations 2.3.4.10 and 2.374.15 after.
performing cigen ;1na1ysis on Z ‘gives the. same basis wfunctions and
coéfficients as using & The advaritage is that Z provides a more com-
putationally CfflClCﬂt means for computing B and K when T (the size
of Z) is smaller than N (the size of R). '

The other important point is. that the coefficient matrix derlved

.using the Karhunen Loeve transform is orthogonal, and thus by ap-

propnate normallzatxon either B_ or K may take the role cof the basis

functlon matrix or coeff1c1ent matrix.

;.B=%XKL-  - (2.3.4.15)



Chapter T

Tll.e Karhunen Loeve Transform Applled to Pattern Repre-
sentation of The Spatial EEG

]

3.0 I‘ntroductionA‘

In ’thi’s thesis the KarhunenfLoéye transform (kLT). also known
as Principal Components Analysis (PCA), is applied tovti]e problem of
analyzing temporal sequences of the spatial EEG. In statistical pailern
récognition (Fukunaga, 1972) the KLT is ‘used to extract features to
~ both represent and classify data. This chapter concentrates on using
the KLT to represent temporal sequences of spatial EEG maps (pat-
tern representatlon) while Chapter 4 uses the KLT to extract features
for classmcatlon of the maps (pattern clasmflcatlon) v |

Unlike other studies which concentrate on applying the tech-
nique to evoked potential data (Skrandies and Lehmann, 1982:
Kavanagh‘et al. 1976; Donchin and Heffley 1978), or to maps corre-
spondiﬁg to various temporal frequencies (Nunez 1981), the KLT is
applied here to unfiltered background spatial EEG recorded under
various cognitive states. waards this énd, three main quesiions have

been addressed, each building upon the previous, namely:

1) Can the Karhunen Loeve transform be used to represent the
‘ spatlal EEG in a lower dlmenswnal space than the measurement
space (i.e. does the. spatial EEG have an intrinsic spdtlal dimensional-
ity)? The rcéults of th‘is yield basis imagcs_ and coefficients which

represent the temporal image sequences.

2) Are the modes of the spatial EEG (manifested in 'the basis
functions and coefficients, found above) common or different among

various individuals and between cognitive states?

“30



3) Can the basis functions and/or coefficients be used to dis-

criminate between various cognitive states?

1

The first of these three questions asks in how n'tany. basis
functionsﬁ—(images) is the spntialvEEG, adequately represented. These
basis images rnay represent underlying physiological sources of the
EEgr; such as:current generators, however it is not the purpose.of this
research to inves'?gate'this area. The second question extends the
first by asking if the basis functions computed above are shared by

~cognitive states and i\ndividuals. Recall from Chapter 2 that the 'basi_s

functions  are unique to every data set analyzed. Therefore a problem

‘results in comparing -images and coefficient sequences. This issue is
discussed in detail in Section 3.4.

The third, and most difficult question to answer, asks if the ba-
sis functions" and coefficients can be used to cla551fy the data ac-
cording to cogmtrve state The method used is based upon the theory
presented by Fukunaga and Koontz (1970). -

In this chapter the results of using the KLT for pattern repre-
sentation of the spatial EEG is presented, with the results of using the
KLT for pattern classification presented in Chapter 4. Before giving

the, results and discussion of - thls research the problem of applying

the KLT to image sequences is covered as well as a description of the

data acquisition process, and notes about the programs used to ana-
lyze "the data. The notation used is the same as that in Chapter 2, ex-

cept where noted. ’ _ N

3.1 Data Acquisition and Experg;nental Set Up

The data used to 1nvest1gate the questlons posed in 3.0 was

31,



obtained at the UniQersity of Alberta Hospilz{l's EEG laboratory. EEG
data were recorded from healthy fq/fnale volunteers using 31 lelec-
trodes (excluding a siﬁgle ear reference) placed in the non-corner

points of a 5x7 rectangular grid over the scalp. Figure 3.0.1 provides

a graphicall view of this sampling montage.

Figure 3.0.1
Scalp Electrode ) Placement

- The data was_sampled at 120 cps, digitized to 12 bits and
transferred to a V;X/11-750 computcf.for analysis. Onlv artifact
free portions of the recorded data were used in the subs.quent anal-
ysis. Temporal filtefing to various frequency bands,'é'.g. alpha, beta,
e.t.c, was not performed before analysis, although high pass filtering
was used to make ‘each channe‘l recording zero mean. Aftesr high pass
filtering each sampled set of data corresponding to the above mon-
tage defined what is heretofore termed a "raw" image.

4 Data from each subject was obtained in 4 cognitive states, with-
appro*imately 2 minutes of EEG recorded per state. In the first state, -
denoted EC, the subjeétsﬁ:yes were closed, and they were asked to

adopt a relaxed, resting mental state, though they were to remain

~alert. The second state, EP, was the same as EC except that the sub- |

.



jects eyes were open and they were told to yisually fixate on a single
spot. In the third state, LG, the subjects were asked to perform lan-
guage comprehension tasks, while in the fourth state, GE, subjects
were asked to perform spatial rotation problems.

Data from the latter two cogniti{'e states are not used in this
thesis for two main reasons. First, much of the LG and GE data
contains artifacts and would have to be carefully screened before
analysis, with the chances that lengthy, that is 5 seconds'or more,
stretches of continuous data wéuld be difficult to find. The second
reason that classification and analysis is performed on the EC and EP
states is because these the two states are generally easily classifiable
by clinicians. Thus the performanée of the methods used here can be
compared to that of trained clinicians. |

/

/

!

3.2 Analyzing Image Sequences with the KLT. ' >
Recall from Chapter 2 that the KLT can be used to analyze a set
of N measurements made on a process, where each measurement is

considered a temporally sampled. signal (Where there are, say, T

“sanﬁples‘made) The difficulty in using this approach (for T images) is

that’ there are no longer N signals where order is unimportant, but
rather a nxm set of srgnals (i.e. pixels) in Wthh spatial relations
between pixels is ¥mportant. In other words, the problem amounts to
performing a 3 dimensional transform (two dimensions for each im-
age, plus. one temporal hlmenswn for the set of images).

~In order to use the -relations discussed in Chapter 2, where the
data set was " two dlmensronal, the three dimensional problem in an-

alyzing 'image sequences must be reduced into a two dmensional

- ‘f'éne.;“Th'e method used here is dr"awn from Rosenfeld and Kak (1982).

~

,.“‘;. &
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Recall from .Chapte'r 2 that each basis function is a column of -
matrix B, where each column is of size N Thus, any relations be-
.btween the rows of X, the data matrix, are preserved, though trans-
formed, in the rows of B. It is easy to see then if each column of X is
a "linearized" image, that is, an image which is one dimensional, but
where the two dimensional, relatio‘ns between elements are known,
then the columh_s of B v,v_illfalso contain the same relations, again
‘transfo‘rme.d._ |

A "lineariied",image is actually a familiar concept, as a com-
puter stores an image lihearly, but uses a gfedetermined addressing
scheme to access the image in“a two dimensional fashion. Two exam-
ples of this are row major order, where each row of the image is
stored‘sequentia'lly, or column major order, where each column is
stored sequentially. Regardless of the method used, each row of the
matrix- X when created dsing linearized images, represenis the tem-
- poral evolution of an image pixel. -

- To therefore analyze imagé sequences the images are first‘ lin-
earized, then the KLT applied. The basis images are extracted from
.the basis vectors by "undoing” the linearizing transfb¥mation.

| Note also, that since'the KLT is a linear transform any linear
operation performed upon, the data set before analysis may be per-
formed afterwards on the bésis images and coefficients. This is par-
ticularly useful for techniques like'inte'rpolation. For example, intér-
polating from the 31 'measurement electrodes to 64x64 images can
~ be performed only on the basis images, which in this case. will
amount to no more than 31, rather than interpolating all images an-
alyzed, which may amount to several hundred. Other transfor‘mations

such as Laplacian filtering for detection of current gcnerators,\ and
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power spectrum estimation may also be performed after KLT analy-
sis with a similar savings in computation. g | o

“In Chapter 2 it was stated that by approi)riate‘normalization
the interpretation of B and K could be reversed. If such a process
were performed each row of K could be thought of as a basis func-
tion, where the first bésis function représents the best least squares'
fit to the temperal evolution of all pixels. Each basis function thus
corresponds to a time series signal (of length 'I;) while each column of
B. contains the appropriate weighting factor for each basis signal. In
the case of analyzing a set of electrode recordings this is generally
the interpretation given (Glaser ahd Ruéhkin, 1976), while for images

the former interpretation is used.

3.3 Program Notes

The programs to ahalyzé the spatial EEG are written in VAX
FORTRAN, on the Department of Applied Sciences in. Medicine
VAX/11-750 computer. Most mathematical computations 'are per-
fcirmed using EISPACK routines or are calculated with an FPS
A;’/120B array, proées.sor, using a 28 bit mantissa and a 10 bit expo-
nent, attached to the VAX. ) o R

Eigenanalysis using both EISPACK or the FPS array pro(§éssor
consists first of tridiagonalizin ¢ data matrix using the House-
holder method. The eigenvaluesdand vectors of the data matrix are
then found by applying the QL algorithm to the products of tridiago- |,
nalization. A description of these algorithms can be found in Smith et
al. (1976); a detailed outline is 'not provided here as it would be be-

yond the scope of this thesis.

While the programs written for analyzi'ng the spatial-EEG se-



quences are straighiforward, and will not be discussed in detail, sev-
eral key points .sho'uld‘ be mentigned. After data collection the 31
ch;mhel EEG .data (raw images) 'are converted into 64);64 spat‘ial EEG
maps by linearly interpolating the 4 corner electfode va.lues. com-
pleting a 5x7 grid, and then to 64x64 pixels by either linear or bicu-
bic spline interpolation. As was stated earlier, these techniques may
~be applied after KLT analysis to the basis functioﬁs rather than to the
entire image set in order to save computation_ time. ?

The programs allogv for selection of raw (31 éhannel data), or
image (64x64) sequence data as input. After KLT analysis when raw
images are used as input, the output basis._ images may be raw as
well, or image size (64x64), created using either linear or bicubic’
spline interpolation, and for the latter, fur:ther processed by gradient
or Laplacian filtering. Before analysis the user may prenormalize the
inpl;t data using one of 5 modes: each image may be made zero
" mean; each pixel sequence (electrode sequence when raw images are‘
used) may be made zero mean; each image may bé ‘normalized to

have unit power (i.e. sum of squares is 1.0) after removal of the

temporal mean” of each pixel; the autocoirelation function of the im- _

age sequence may be mdltiplied by a prenormalizing paitefn classifi-

cation matrix (discussed in Chapter 4); and finally no hormalization
may be vp'erforme,d. -

As was stated in Chapter 2 the basi§ functions are computed
from either auto‘cofrelation matrix, R (NxN) or Z (TxT). The number
of non-:zero basis functions is the smaller of the number of iinages_
used (T) or the image size (N) .used. Since T rarely exceeds 1200 (10
seconds of data) it is morg economical to, perform eigen analysis on R

when the image size is small (i.e. when raw data is used), or on Z

36
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when the number of images to analyze is small (i.e. when interpo-
lated images are used). To_save computation time the program, auto-

matically selects whether to perform eigen amalysis on R or Z, de-
: o .

\

pending upon -the size of N and T.

! Several other features included in the analysis programs in-
clude the colour display of the basis images, and the option to save
the basis ﬁnages.and the associated coefficient se'quencés for further
investigation. The ability to reconstruct images usingla varying num-
ber of basis images and coefficients and visually compare them, as
well as compute their correlation, is also available.

The data for the wireframe and 2D grey scale images displayed
in this thesis were transferred to a Madcintosh™ computer, where the
images were generated. The programs to create these images were
written by the auihor in the C prégramming language, using a Mac-

intosh™ computer.
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3.4 Pattern Representation of the EEG Usmg -the Karhunen-
Loeve Transform Within Subject Records

The first, and simplest, application of the KLT to image se-
quence ahalysis is to determine if, within an individual, certain
topologies of electrical activity are characteristic of the spatial EEG.
That is, can certain images be added together linearly to represent
the spatial EEG? Since there are 31 electrodes (independent :nea- A VB
surements) the rﬁaximum number of basis images required when ‘
analyzing the "raw" maps, is at most 31. If the spatial EEG is 1 totally
random process then all 31 basis images are required, each account-
ing for about the same power, but if the process has spatial cor-
relation then féwer basis functions are required to represent the
data set.

Recall that the measure of the total power which a certain basis
function represents is given by its corresponding eigenvalue, of by
~the mean squared value of its coefficient sequence (row of matrix K).
The percentage of power that each basis function represents is thus
its corresponding eig?pvalue divided by the sum of all eigenvalues.
If instead of u‘sing -tl;e eigenvalues this relationship is expressed in
terms of the coefficients and data elements (via equatlon 2.3.1.8) the

following equatlon emerges (after cancellation of the I/T terms)

% Average Power Contributed =1 * 100% (3.4.1)
__ =1 A 4.

From the i[h Basis Image i ZT“ 2
X..

images between various subjects, /and even within the same _subject,
* . .
- since it removes the effects of the signal power from the computa-

tions. Note also that in the form written above the eigenvalues are



"not required to compute the ratio, not all basis function coefficients
are required, and the. number of images used to compute these per-
centages can be varilable. In effect then, Equation 3.4.1 measures the
tiormalized projection of’ data onto a basis function. It is from this
latter point that the usefulness of the above measure resides: the

effectiveness of basis images in representing data not used in com-
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puting those basis images can be measured after computing only the .

~ appropriate coefficients.

Using this property of Equation 3.4.1 leads naturally to asking
if basis images computed from one section of EEG can be used repre-
sent other data segments, possibly even from different cognitive
states? Since the'dimeﬁsidnality of the .signal ‘space does not change
through time the basis functions found from one segment may be
used in another segment, though they may not fit optimally in the
least squares sense. That is, the d*ata may be exactly represented by
using the original basis images, but the the basis image accounting

for the largest percentage power from the original segment may not

account for the largest percentage in other segment. Moreover, there ,

~is the problem of how to compute the coefficients in ordér to deter-

mine the percentage of average power the pasis function represents.

The first of these two problems arises from the fact basis func-

“tions computed from a data set are optimal only for that data set. Re-
call that optimal ‘means that the first basis image and coéfficient se-
quence account for the larggst percentage of power of the original

““data set with thé rest of the basis images each accounting for a suc-

cessively smaller percentage. When fit to new data, this will most
likely not be the case; in other words, the order may not strictly be

descending. This may not be so bad, th ugh, if; in general the de-
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scending pattern is maintained and if the ‘first several basis 1mages |
still account for the largest portion of the power If on' the other
hand, the distribution becomes qurte random or the percentage
weights shift considerably to other basis images there wrll be little
spatial cohesiveness in the spatial 'EEG. The point at wbrch such a
shift occurs, if at all, may be used as’ a useful measure of_the spaual

[

To be able to answer such questrons demands that the coeffi-

stationarity” of the EEG.
cient sequence corresponding to each basis function be computed. For -
the original data set when the “basis 1mages are known the coeffi-
tient matrix can be computed usmg Equatron 2.3.3.25. This operation
-1s simply a projection of the data set-onto the basis image space,
where, for the original images, it is known that the basis- space will
optimally span the data. The question thus arises, ean the same ma-
trix operation be used when the brisis space is not known to opti-
mally span'the ’da'ta (but known to be of the same dimensionality)?
To answer txhisv,‘.a least squares fit between the basis images and the

o

new data set is used. _
To simplify.the'mathematics, and wirhout loss of generality, as-
~sume that the data images and basis images are "linearized", ;15 was
discussed earlier. It is desired to minimize the mean squared error-
between the ith basis image and the jth data image by adjusting the
basis images coeff1c1en?\The value ‘'may be found by mlmmlzmg
Squared error in usmg i basis i image

= (Fs'ki.jha) . (3.4.2)

fitting toj data irnage
= where. E; is the jth data image, k;; is the coefficient of b;, the ith basis
image. “

" Equation 3.4.2 is only valid if the basis images form an 6rthog0\-_
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ages are -orthonormal.

e

nal set, otherwxse the E would have to represent the re51dua1 error
1mage between the original 1mage "and the prev1ous 1- I basrs 1m-
ages (for i=1 E; would be the ongmal image). E; may represent the
data image because subtractmg only orthogonal components from the
original 1mage does not change the projection onto d1fferent or-
thonormal basis 1mages The followmg derivation w111 refer to E_ as
the orxgmal image smce,» in this case, it is known that the basis im-

Performing the partlal drfferentlatlon of equatlon 342 y1e1ds :

o (EE;-k,Eb, -k, uﬁk bib,) -

1,j ) - .
QE (W E) +2li1@1 o (3.4.3).
Notmg that the last bracketed term is a scalar (and thus- the

transpose operation has no effect) the f1rst two terms may be

grouped together Settlng this result to zer6 and solv1ng for ki ; glves
h:E . ) - T \.
b b,

Since the basis images form an orthonormal sét the denomina-

k..
1

(3.}4.4)

tor is unity and thus' the coefficients are given by ]
ky =k C S 64y
Therefore the .coefficients are computed by pro;ectmg the new

images onto the basis functions, with the assurance that the mean

squared error in using each ba31s image will be mlmmum This” ‘does

not @uarantee, though that theﬁmean squared error for the f1rst basrs

image is "the mmlmum.possmle, or even minimum over all ba_51s‘1m—

ages. For the data set from which the basis images were extracted’

41
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the mean squared error for each basis image is a minimum, but this o

is not necessarily so for any other data set. P

R

..~'_p,,
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Once the'hasis images and coefficients have been computed it is

desirable “to h'ave dlfferent measure other than mean. squared er-

- ror, ~which relates how . srmllar the’ reconstructed images and’ orrgmal.

“_1mages *are. The correlatron between the two 1mages is'.such’ a yurd-

', stlck since it measures 51mrlar1ty in 1mage shape, mdependent of

their. magmtudes The followmg grves the normaltzed correlauon be-

o

tween two lmearrzed 1mages ‘ie. vectors
g N

i=1

correlation =

1

For computatronal effrcrency the followmg equwalent form is

’used here for computlng the corr"elatlon

where c; is the ith eleme_nt of the reconstructed image. Ebi is the ith el-
ement of the orrgmal 1mage O and T are the mean values of each 1m- |
age, and N 1s the number of elements in each image. ‘ _
Values of correlation range 2 -1 to 1, the larger the absclute
.value the more similar the images. A cor: elatlon coefficient of 1 indi-
cates that the ‘images are the same, a vaiue of -1' means that the im-
Vages are the same within.a negative scalar "A correlation coefficient .

of_zero indicates that the images are drssrmllar. It must be noted that

. two orthogonal images, that is, their pixel by pixel sum is zero, are

-
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not necessarily uncorrelated. In order to be uncorrelated one or both
of the images must also be zero mean, a fact clearly shown in Equa-
tion 3.4.6.

Once a correlation has been-computed it is reasonable to ask
how closely the value rep\resentsi the true correlation, p between
each ofdthe processes If only a single cosrelation is computed that is,
between an origlnal 31 point measurement image and 1ts recon-
structed version, Fischer's (1921) approximation is used to determine
the confidence bounds. When correlations arelaveraged over several
images, a value known here as the average reconstruction correlation
(ARC), the Student t distribution is used (Cooper, 1069).

Based upon averaging 1200 images, the number used through-

out this thesis, and a- 99% confidence interval the variation around

each measured average correlation value is- +/-0.074 o, where o is

.the standard deviation of- the 1200 correlatgm values It is easy to

’ see that even for a large o the ARC is very acc urate. Usmg a g of 0.1

(larger. than any measured on the data in this thesis) the average
. r :

correlation values' are significant within approximately 0.01. There-

fore, any change of the ARC of more than 0.01 is significant u§ing

99% contidence bounds. Unless otherwise stated, this value applies to

o L

- all ARC vajues . listed thrdugl}out this thesiz. -

As well as correlation, /‘gower values are averaged over 1200 -
images, and thus the 99% con 1dence interval is- also +/0074 c.
Again a p. of 0.1, larger than any measured on the data used herein,
grves a confidence .\1nterval of‘+/-0.01, or /-1%. This va.ue applies to
all power values cqmputéd using 1200 ima- listed throughout this,
thesis. - ' | |

Another question which arises is how .significant are the corre-
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lation values?; Gibre (1973) provides a method for‘estimating their /
significance, zigain using the Student t distributien. Based on 31}
measurement points (electrodes),'-that is 29 degrees of freedom, and
a 99% confidence interval, any correlation value over 0.456 is eignifi-
cant. In other words, the null hypothesis (p = 0) can be rejected with
99% cert_ainty. |

At this point it J'is possible to investigate temporal sequences of
spatial EEG maps by applying the KLT to generate basis ima’ges ;md
coefficients. It is alsQ possible to see how well the basis images com-
puted from one segment of irﬁages "fits" another by applying Equa-
tion 3.4.5 to compute the coefficients, and Equation 3.4.1 to measure
the effectlveness of each bas;s_,x,(nage | |

In the followmg secjl/on the results from the analysis of one in-
dividual’_w111 be given in detail, followed by the results from applying
the techhiqﬁe to several subjects. The data used iﬁ the following in-

vestigation has been acquired as described in Section 3.1.

k4

_3.4.1 Detailed Study - Methods & Results -

In this section the KLT is applied to an individual's spatial EEG
to determine how well the computed basis images represent the
original spatial maps. To fullv answer this, three sub-questions are ‘
asked, namely: how many basis .images are required to adequately
: reconstruct the original images (from Wthh the basis images were’
_computed) ‘how many data irnages are needed to compute these ba-
sis' images in. order to get a reasonable estimate of the basis images,’

and can basis images from one section of data.be used to Trepresent

data images from other segments of the recording session? In this _.

section, these questions are answered ‘and discussed in detail using ?
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" as amplifier drift and noise.

the data frontl one subject.
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_ The following results were taken from two minute artlfact free

f‘records of EEG obtained from an individual whose alpha activity in

} \" 4

-the EC staté was very strong, ar)d whose EP data had strong activity
. as well. The analysis concentrated on wsing EC data, although EP data

. was also used. Data from this subject is denoted by Squect 1 EC, or

Subject 1 EP,'depending upon the record used.

~ Table 3.4.1.1 shows the ,percentage of average power (via
Equation 3.4.1) represented by each basis image after appfying the
KLT to the first 1200 (=10 seconds of) raw images (i.e: 31 point elec-
trode values o'nly') ofc tne eyes closed record. Before w”‘this analysis the

temporal average per; electrode over the first 10 second pCl’lOd was'"

removed from each electrode value to avoid unwanted effects such

Basis | %Power Represented| Cumulative Power :
Image by Basis Image _ v ’ )

e 24 244

2 o219 ~ 80.23
* 3 S 812 88.35

4 - 452 -92.87

5 222 . 95.09

6 1.57 | . *796.66

7 0.75 - 97.41

8 0.65 1o 98.06

9 0.36 A 98.42

10 030 - 98.72

1
Table 3 4 1 1

Dlstrlbutlon of Basis Functton Power For The First 10 Basic
Images Computed From A “10 Second of Image Sequence -

< ) , $umect 1 EC

Since the mean vé;lue was removed' from each electrode it is

k4

p0551ble to create a “mean image"; that is, one in which each pixel

represents the value subtracted from the data 1mage (or electrode in
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this case) before KLT analysis. Flgure 3.4. 1 1 displays a 64x64 blCUblC
spline mterpolated representatlon of the mean .elexctrode values;
giving a "mean image”. It is important to note that begiluse subtrac-
tion of these mean values was done prior to analy51s “when recon- B
<ructing the images the mean 1mage must be summed together with’
th nrocict of the basis Amages and coeff1c1ents ,

The first three\basm funcnong«are shown in Flgures 3.4.1.2*
“through 3.4.1.4%, respect,wely The 1magea shown are 64x64 pixels, -
interpolated usmg ‘the bicubic spline from the 31 measurement val-
ues, with the labelmg showmg the orientation of the head. Note that

the basis 1mages are dlmenswnless
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The coefficient sequence of the first two (out of 10) sec nds for

the first basis irﬁage is shown iﬁlgure 3.4.1.5. Since eagh%;annel

rccordmg ‘'was made 2€ro mean for éxe analysm d the

y v
D,

a«"‘\

Usmg the first five basis images, out of the p0531ble 31 the@

correlation® between the original and reconstructed images was' mea-

ot

sured and averaged over the same 1200 1magaé used to compute the
basig '}‘1mages. This measure, called the average reconstruction corre- |
lation (ARC), was 0.93. Figure 3.4.1.6 shows‘_ the actual ?orrelation
Qalue\s for first 2 secohds of the 10 ‘second segment, as well as the~
amount of power'the 5 reconstructed imagés' fepresented. Recall that
ARC values are significant to within %/-0.0l, and that iﬁdividual cor-
relation vﬁlues are significant if -over 0.456, both using 99% confi-

[
dence bounds.

* All reconstruction correlation values used in this thesis are based. on
correlating between the 31 point measurement values. not _on the  64x64 inter-

polated 1 , * the i

2004
o
> b H
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E :
O 100 )
=
E o
— 50" I
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8 o1 ML
" 0.0 0.5 1.0 " Ys 2.0
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Figure 3.4.1.5

Coefﬂcnent Sequence of Basis Image 1 during flrst 2
Seconds of Analysis, - Subject 1 EC
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Figure 3.4.1.6
Reconstruction Parameters Using First 5 Basis Images For
First 2 Seconds of Subject 1 EC Data Record (a) Correlation
(b) Power

Figure 3.4.1.7 shows a typical data image from the first 10 sec-
onds of the EC record, and a reconstructed Version of that image

based on the first five basis images. As before, each image is a 64x64

‘bicubic spline interpolated version of the 31 measurement set. The

correlation between these two images is 0.98, with 99% confidence

limits of 0.97 and 0.99. The power represented by the reconstructed

image .is 96.6%, with 99% confidence limits of 95.6% and 97.7%. For
comparison purposes both of the” wireframe reprc‘se_ntations are

showg in the same orientation.

"
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The choice of -using 10 seconds of data‘ to compute the basis 1m
""‘:"ages, at present, seems quite arbitrary. Why: should such a value be
. used, why not 120 images to save computation time, or 12000 im-
ges to-ensure that the second order statistics of the EEG have been
ally captured’ in the autocorrelation matrix? J
In order to answer this Flgure 3.4.1-8 dlsplays the normallzed
power represented by each basis image when the amount of data
was varied (all data sets started from the first image in the data
record) Figure (a) shows the results when the optlmal basis 1mages
were used, that is, ones computed from the actual data, whlle Flgure
(b) shows the results when basis images computed from the first 10
seconds of the record were useq. )
Usmg the ba51s images computed from the first 10 seconds of
BN the eyes closed record 1t is also possible to compute coefficients, via
Equation 3.4.5, that ﬁlt them to other segments of the record. This can
 also be é‘;newe'd as prOJectmg the data onto the space defined by the
“basis 1mages With the ﬁoefilcrents the effectlveness of each basis im-

AT
age can again be ‘meastired with Equation 3.4.1.

F;gure 3.81.1.9b gives the - power representedlbly the first five
Ua’srs 1mages from the f1rst 10 second section of data, for other 10
second data sets, startmg at various points throughout the record. For
comparlson the power r'epresented by the optlmal basis set for each
such period was also computed and is shown in Figure 3.4.1.9a. The
‘.,«-r’fumbers above each group of bars give the total power represented

,@s ‘by the 5 basis images. Table 3.4.1.2 prov1des the ARC for both of

Ki

these analyses. "

As always, each electrode sequence was made zero mean for

the period of analysis. -
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. . -Average Redwnstruction Correlation
Starting Time : ‘ _ ;
¥ q i *
(sec:r{d: ';?iif-”r:m i ‘ Using Basis Images From
, Optimal . First 10 Seconds®
0 093 - - 0.93 :
10 ‘ 0.93 ;. 0.93
20 ’ - 0.93 v 0.93 - . '
30 R 092 . . 0.92 |
40 0.92 - .092 - e
. S50 0.91 : 0,90
60 ) 0.91 ] . 0.90
70 0.92 0.92 -~
30 - 0.92 092 -
90 . 0.92 : 0.91 N
Table 3.4.1.2 i

Average Reconstruction Correlation For 10 Second Segments
‘ of Data Record - SubJect 1 EC

Eyes open (EP) data, Wthh does not typlcally contam’ as strong .
“an alpha rhythm component as, EC data,. was also. analyzed Rather
than repeat the entire analyses performed above,‘ only »a~subset was~
" done. The power represented by the -first 51 optirnal b{ias_is. images for
varying lengths of data is shown 'in‘Figure 3.4.1.10. The _ability of a

- set of basis images computec} from one section of data (here again,
the first 10 second segment) to represen’t images from other sections

of the data record- 1s shown in Frgure 3. 41 11, w1th the ARC values

~obtained- from that analy51s listed in Table 3.4.1. 3
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-Starting Time Average Reconstruction
of Analysis Correlation .,
|(seconds after T=0) L
el 0 0.89 -
e 10 . 0.88 o
20 0.88 ;
30 : 0.99
40 - L 0.89
50 . : 0.88
Table 3.4.1.3

"Average Reconstruction Correlation Correspondmg to'Figur‘:e

34.1.11 - s(ubject 1_EP -

3.4.2 Detailed Study - Discussion ‘
Table 3.4.1.1 shows that the first five basis images account for
over 90% of the average power of the original data set. Since the sig-

nals have been made zero mean this figure also represents the

amount of variance repressnted by the basis functions. These results,

along with the high recenstruction correlation measured, indicate

.‘that ‘the scalp electrical actlvrty of this subject 1s represented by dis-

tincts spatral patterns whrch combine lmearly to form the observed

data. Whether or not these basis 1mages are physiologically mean-

ingful is not mvestrgated here, as it is beyond the scope of this thesis.

Another point is that with the KLT data compression may be

.perf-ormed on the EEG. For example, if the first five basis images and

.associated coefficients are stored instead of the original data,/%nly

about 17% of the original, storége memory is required. For sequences
of images using megabytes of storage this anjounts to considerable
savmgs w1th lrttle associated error both in signal power, measured
using th@ mean squared error, and shape, measured using correla-
tion.

The mean image, shown in Figure 3‘.4.1.1,” indicates that the d.c.

’.\
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level of threg electrodes in the back-center 'of the ‘ecalp 1s hrgher
than the other electrodes. Since- these nverage ‘values should be zero,
because of the a.c. couplingbf the elg%t?rﬁdes.to the recording equip-
ment, they are unrelated to the ac%jal EEG and are thus not mean-
ingful. By subtracting the’mean values more valuable shape infor-
mation is therefore captu/red'by the KLT. It is for this reason that all
analysis performed in this theéis removes the temporal averages
from each electrode value before any further processing takes place.

The basis  images shown in Figure's 34.1.2 through 3.4.1.4 ex-
hibit interesting propertties. Basis images 1 and 2 indicate that much
of the/scalp electrical activity is represented by a simple front/back
pattern. The third basis image contains side to side activity, but only
represents about 8% of the power in the original images. ‘,

It is important not to disconnt the value of the higher”nurnbe'r\
basis functions, even though they do not represent much of the f\-'_
power in the ongln 1 images. This is .because they represent the: fmc

details of shape, rather than the gross features of ‘the data.” In’ fact

60
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some pattern -classification methods - tt:ier numbered basxs func- o

tions are used as.dxscrlmlnatory.feamr since in dlfferenuatrng
between vaﬁous pattern classes detail, rather than the ‘coarse struc--
ture is more important (Tou. and Heydorn, 1967) 4
Retummg to the data at hand, a portron of Lhe coe,ffrcrent se-
quence for the first basis image is shown In Flgure’ 3 4. I. 5 and ex-
hibits srgmflcant periodicity. As well as showmg p\,rrodlcrty it is
worth noting that the coefficient sequence is zero mean over. the
analysis period, since the data itself was. made zero mean. It is im-

portant to recall that the coefficient sequences corresponding to the

basis images are orthogonal as are the basis images themselves, and
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thus through appropriate normalization can be considered basis |
functions. In such a case the basis functions do not represent spatial
basis images but rather basis functions which ‘account for the tempo-
ral activity at each measurement electrode Hence the periodic ac-
tivity seen in the coefficient sequence relates to the temporal
characteristics (predominantly alpha band activity) seen at the elec-

trodes. : R 5

There is a dtsadvantag'e s.m viewing the KL T products in such a

way smce these temporat basls functions (whlle numbering .o more
than 31 in this 'case) have varying lenéths depending upon the
amount of data analyzed, and are tﬁus difficult to compare. One way .
to avoid this problem is to use the Fourier Transform of the>co- E
efficient sequence to characterize temporal basis functions, although
‘this avenue is not pursued here. |

Figure 3.4.1.6a shows the correlation between the original im- |
ages and reconstructed versions of those images, created using the
first five basis images, for the f1rst two seconds of the 10 second
analysis perlod thure 3.4, i 6b . srmllar except that power mstead
“of correlatlon 1s measured. Generally the correlation and power are
high, although there are times when they are b®th significantly lower:
than average (0.93 for correlation, 95.1% for power). These moments
may indicete when the spatial EEG is going thro,ugh transitory phases,‘
or when it cannot be represented linearly. This may coincide, for ex-
ample, with the rise and fall of alpha activity. In gene.ral, though, the
figure shows that usi‘ng the .first five basis images provides™reason-
able shape and bower reconstruction for all data images.

To demonstrate how well images are reconstructed Figure'

3.4.1'.7>shows an original and reconstructed image. The reconstructed .

% 7

<
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image shown.is created ‘from the first five basis images_and the mean
image from the analysis period, and correlates Q.9~3 with the original
image. Before comparing the two images it is interesting to note the

three "bumps" located* along the mid-line, in approximately the same
| locations as lthose_ shown in the mean ‘image in "Ft'\gyre 3.4.1.1. This
again reinforces the idea that removing the mean image before KLT
analysis is useful for the basis imageé ‘to capture shape information
independent of electrode d.c. bias.' This also shows that the mean
values are relatively small in telation to the sigrtal itself, and thus
any driftx i?v-an amplifier's d.c. bias is not significant.

In g«éné;al, the shape and details of the original image are well
preserved in tﬁe reconstructed image. These include the front/back
pattern and even /thc "bumps" associated with the d.c. electrode‘ bias.
Some differences do exist. For exatnple, the reconstructed image has
a higher maximum (by approx. 2%) and higher mfnimum (by. approk.
3. 4%) value than that of the original image. Overall, the reconstruc-
t1on is surprisingly good considering tl}at only 5 out of a possible 31
_wbasrs images are used in the reconsffuction. N
ﬂ Figure 3.4.1.8 shows the normalized average image power
represented by the first five basis images for varyirtg lengths of
analyses, for both the optimal basis images (computed :‘from'the data
itself), and for those computed from the first 10 seconds of the
record. Both results are very similar, the only mgmfncant thfference
being ‘that in the optimal case at shortﬂdata lengths the power in ba-
sis image 1 is higher, and that of basis image 2 lower, than the values
using the precomputed basisAir‘nages. For longet analysis lengths,
starting at around 8 secondﬁb\oth results are extremely close. The

similarity between these two ré&sults demonstrate that basis images
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computed using the first 10 seconds of the record are representative
of varying lengths of data as short as 0.5 seconds, and as long as 40
seconds. This also indicates that the basis 1mages themselves do not" .
significantly . change within these limits. ‘

It is interesting to note that when 8 secorids or more of data
are used in the analysis the power represented by the basis 1mages
remains relatively constant. Therefore the second order StatlStICS of
the EEG, captured in the autocorrelation matnx, are: not changmg s1g-
mﬁcantly for these lengths, whrle for shorter lengths the figure il-
lustrates large variations in power representatron (for basis image 1

and 2 as much as 20%), and that for very short intervals the power: qs

concentrated in bagi®.amage 1. This latter pomt indicates that over

these short interval®: idss spatial vdriation is present than over longer

intervals,‘i.e. fewer spatial patterns exist in short data segments.

| Using ‘the results discussed above the reason for using basis
images computed from 10 seconds of data should now be clear: they-
are representative of all lengths of data, involve fewer computations, -
than using- the entire record, and are not subject to fluctuations in
the statistics of EEG as those from shortér lengths. For these reasons
most data analyzed throughout this thesis is based on using 10 sec-
ond segments of ’da_ta. B -

Figure 3.4.1.9 shows the power represented by the first five
basis functions computed from various 10 second segments of the EC
record. The figure also shows the power represented by the first five
basrs images computed from the first 10 second record when the
same 10 second segments as above are projected on to them. For the

latter it is worth notlng that the order of 1mportance of each basis

1mage is preserved, that rs ‘the first basis image always accounts for
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.the largest amount of power (minimum least squared error), and

( likewise for the other four basis images. Moreover, the results using

64'

the nOn-optimalJbasis images are very similar to the ones for- the op-:

timal images (computed from each data segment), even for data
separnt:ed by over 60.seconds. Table 3.4.1.2 confirms this assertion
A. by showing that the average reconstruction correlation for each pro-
jection is consrstently hlgh and near optlmum regardless of the -
segment of the record used These results demonstrate again, that
the ba51s,1mages computed from the first 10 second ‘record, are rep-
resentative}_of_ the -entire record in general, in both shape and impor-
tance. ‘ | ; |

~ The two - main ideas investigated above, that of analyzing
vérying lengths 'of data to determine the characteristic basis images
of the spatial EEG and that of. seemg how well one set of basis 1mages
images can be used to reconstruct 1mages from other sections of the
data set are also tested on eyes‘ open data. Figure 3.4.1.10 shows the
f1rst of these tests, and when compared to the results obtained on the
- eyes closed_ data, shown mé,Flgu're 3_.4.’1.8, are similar. Again, for anal-
ysis lengths less t'hzin” 10 .seconds the power represented by the first
and second basis images -vary cohsiderébly indicating’ less spatial
variation in shorter‘ irttervals and for lengths greater thalw10 sec-
onds the values are quite stable. In applymg the basis 1mages com-
puted from the first 10 seconds of the record .to other 10 second seg-
.ments shown in Flgure 341 11,/shows that .ythe order of 1mportance
of the basrs 1mages is mamtarned Table 3. 41 3 demonstrates that
the average reconstructlon correlatlons are hlgh albeit lower than

‘with the EC data

The results from thrs section shed light on three basic questions



regarding the spatial EEG. The first is that its intrinsic’ spatial dimen-

sionality is lower than the measurement space, indicating that basic -

& o - . _
spatial patterns can be used to linearly reconstruct the spatial maps.

The number of basis ima'gesbrequired to..adequately reconstruct the

original background EEG data numbers no more than 5, with the un-

derlying patterns discovered for: the subje_ét studi’ed exhibiting ba.ck-‘

front, front-back and side-side activity. The seéond‘point is that -
these basis.images capture _spatvial. patterns common thrdughout the
record, as basis images from one segment can’ be hseq tofepresenf;,
in a nearly optimal manner, images from other. sections bf the record
separated as far apart. as “one minute. Furthermore, .using 10 seconds
of data to compute these basis images captures the - underlying pat- -
terns and provides n;éar optimal power representation for lengths of
data ranging from 0.5 seconds to 40 seconds. Finally, théfe appears
to be less spatial variation present in shorter inter“vals‘ of the back-
'y

ground EEG than in longer intervals, since power is mg;{ highly

concentrated in fewer basis images for short data lengths.
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3.4.3 Multlple Subjecth-’Sfudy - Methods & Results |
In order to verify th@}%\s’ne claims regarding the spatial EEG
made in Sections 3.4.1 and ‘34" ‘are universal, similar analyses are
required on other SUb_]CC[S F “,‘___-?,b!revuy the detail used previously
was not repeated, but rather[ analyses pertinent to the ‘three ques-
tions asked in Section 3.4.1 were performed on several new sufggects.

The data from these subjects were acquired as described in Section
3.1.

-

For each of the sul;jects used in this seetioh, denoted by Subject
2 EC, Subject 3 EC, etc., two sets of analysis were performed. (For
brevity only EC data.is used here). Figure 3.4.3.1 shdws 64x64 pixel
bic'ubic‘spline interpolated tépographic representations of the first
threg basis images comp;uted from the first 10 vsec'oné%;of the data
srecord. Figure 3.4.3.2 shows the effects.v on the power fepresented in
~each basis image for analysis lengths ranging from 0.5 to 40 seconds
(s’ifriilar to Figure 3.4.1.8a). Finally, Figure 3.4.3.3 gives the power
represented by basis -images 1-5 taken from the first 10 second seg-
ment of the record for other 10 seconds segments from the -same .
record (51m11ar to Figure 3.4.1. 9) again for each subject.

For each of the ten projections ‘taken per subject in Figere
3.4.3.3 the ARC was measured, with the average, maximum, and
minimum of\ these values summarized in Table 3.4.3.1. (Recall that
ARC values are based oﬁ the 31 point raw images only, not on the -
64x64 interpolated images). , | A

For all of the above analyses each electrode value from the

original data was made zero mean for the analysis perxod
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~ Average Reconstruction Correlation
Maximum Minimum Average
Subject 2 095 0.92 0.93
Subject 3 0.92 0:90 0.90
Subject4 | 0.93 090 | 092
SubjectS fe 0.94 089 | ¢ o
Table.3.4.31
Summary of Average, Maximum,:

\and Minimum ARC Values
Corres,pondmg_ g

3.4.4 Multiple 'Sub':i‘ect Sfudy cussion
While there is a large amount of data dlsplayed in Section 3.4.3
& ‘several patterns can be identified. One of the most consistent and
important results, shown in Figure 3.4.3.2, is that for.each subject,
over 90% of the' average power in the originaljinrages 1s represented, |
in the first 5 basis imnges (regardless of the length off analysis). This:
indicates that for healthy individuals in the EC state the spatial EEG.
has an intrinsic dlmensmnallty of around 5, reinforcing the idea that
data co pressmn can effectively and universally be perforamed
Another key result is that when 8 or more seconds of dd[d are
used in computmg the basxs images the power represented by each
basis image- remains relatwely stable. This indicates that using 10
“seconds of data in the KLT analysis adequately captures the second
order statistics”idf the. spatial EEG, and that these statistics do not
change significantly over time within the same cognitive - state. ‘As
with Subject 1, the high concentration of 1mage powcr repreaented ’

by éasm image 1 for short analysis intervals, (1e zless than % second)

reinforces the idea that less spatial variation is present in- short seg-

4
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ments of the eyes closed EEG.

» .. . { .
!Moreover, basis images computed using 10 second segmients of

data taken from an individual within one cognitive state can be used -

to represent other segments of data -from ihe same state, separated

as far apart ‘as one minute, as shown in Figure 3.4.3.3. Reconstructed
1mages usrng these:bas1s images are 51m11ar to the original 1mages in
terms of sboth power, and correlaiion as 1nd1cated in Table 3.4.3.1.-

This is useful for lowerrng the fAumber of computauons required - for

data compressron ‘since “an entire data record is 1ot needed po es-

: yes N
timate the. basis images, but rather only.a small section’

‘The basis images, shown in ‘Figure 3:4.3.1,. while exhibiting

similarities, are unique to every subject. The most commonly occur-

‘Ting pattern indicated ‘is front/back actiVity, ‘which shows up for all

]

1nd1v1duals typically as the f”rst er second basis image. Another such

pattern is a side/side act1v1ty, which agaln all subjects demonstrate

"in one of the three images shown typrcally in the third basis 1mage

Several complex spatral patternstspec1f1c to 1nd1v1duals are ex-
hrblted though Basis 1mage 1 of SUb_]CCT 3 shows an area of hrgh ac-
t1v1ty i the shape of an ups1de-down "u" extendmg from the center-
rear to the center of the scalp. "The third basrs imagg from the same
sublect agam has a complex pattem with- a valley located in the

7

rrght center. of the scalp, and hlgh activity shown on -the left-center

'b of the scalp. The second bas1s image” of Subject 4 exhxblts a “diagonal

topology Basrs 1mage 1 of Subject 5 1s wave- -like.’ pattern with low
actrvrty in the rear of the ‘head followed by hlgher activity in the
form of a longrtudmal peak located _]LlSt in from the front of the head.

In general, whrle common topologles of act1V1ty do exist, the
\

details of these maps are' unique to every.individual. Furthermore

»

<
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the relative amounts of each basis image present in the datavvaﬁes
amongst the sub]ects For example in Subject 2, as shown in Figure N
3.4.3.3, the relatrve proportion of basis image 1 and 2 is quite close.
In fact, the power represented by basis image 2 exceeds that of im-
age 1 during 10 second epochs at 30, 50, 80 and 90 seconds into” the
record. For Subjects 3-5 basis image 1 represents a significantly £
larger amount of power than the other bagis images, usually by over
a factor of 2. Thus, while" basis images computed from one sectron of
data may be used to represent data from another sectunhithe‘%ehp
tive amounts of basis images vary considerably. among subjects As a
‘result of these variations, ‘using the proportion of power represented
by each basis image as a method to classify the subject's cognitive
state is rtot fea51ble . |

The results from this section indicate that the results obt.uned
from the detarled study performed in Section 3.4.1 “are, in general,’
valid. Specrftcally the intrinsic d1mensrona11ty of% spatlal EEG for
subjects in the EC state is lower than the measurement space, and is -
around 5; data compresswn usmg the KLT can significantly reduce
- the amount of storage requ1red to represent the spa-t»t/l EEG with the
'reconstructed images matchmg the or1g1na‘ 1mages 1n terms of both .
power and correlatl,on pasrs images computed from. one section of; ,&
data record frcln the EC state can represent other segments of the
sarrie record separated by as far as 90 seconds: less spatial vanatron
‘_1s present in short segn1ents of data than in engthrer segrnents and
""flnal‘ly, approxrmately 10 seconds of data adequately captures the |
Spatlal propert1es of the EEG for lengths rangmg from . 05 to 40 §ec-

onds.
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3.5 Pattern Representatlon of the EEG Using the Karhunen-
~ Loeve Transform on Subject Groups :

. Section 3.4 showed that the intrinsic dimensionality of the spa-
tial EEG within an individual in a-particular cogrsitive state is lower

than the measurement space;’ that is, raw EEG data can effec_tively be

. ‘represented by ‘the linear combination of basis images. Using these

| \

\skull thickness, scalp conduct1v1ty and ~other such factors are neg-

4 a

basis. images results n good reconstruction accuracy in two senses:
most of the power (varlance) in the original 1mages can be captured
in several basis images, and the reconstructed images correlate, on |
average, highly with the original images. '

In this. section the second of the three questions posed in Sec-
tion 3.0 is investigated, more specrflcally, are the basis 1mages and
coeffrc1ents similar between different cognitivé states in the .same

individual, and from one subject to those of other subjects? The an-
) ¢ '

swer to the latter question is useful 1in speculating whether the basis

images are physiologically meaningful, since it is ekpected they be

‘similar for subjects in the. same cognitive state. This of course as-

sumes that the same ba51c phy51ology is respon51ble for Similar men-

tal pt‘ocesses amongst 1nd1v1duals and that- md1v1dua1 variations of

llglble "?Therwxse the KLT may be extractmg information hlghly de-
pendent upon the 1nd1v1dual 11m1t1ng the usefulness of the KLT as.a

‘tool to. understand the EEG (since there would be no. common fraﬁ

-

- work . in which to compare and - cla551fy individual data)

To answer these questlons three routes of mvestlgatlon are | _
taken. The fxrst tests whether. the basrs 1mages from a subJect in one
cognitive state adequately represent spatxal maps from the same’
individual in another cogmtlve state. Several p0551b111t1es exist from

this analysxs if the above test is true and the power dlstrlbutron per

b
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basis image is similar then the KLT is suggesting that no significant
difference in the sec'ond' order statistics of the spatial EEG from each
cogmtlve state exists. If the above test is true and the power distri-
bution is different, then each cognitive state may be thought of as
 different mixture of the same underlying spatial distributions, and
“thus the coefficients may be used to classify'the cognitive state
within .an individual. If the above test proves false then the cognitive
states tested ‘have uvnique spatial voltage patterns associated with
them and pattern representation must be performed using data from‘
within a'cognitiyel state only. . |

The second route of investigation checks if basis images from
one individual can represent spatial images from another individual

in the same cognitiy¥

basis ,images fro
 such a test is true then, 1ndeed there exist common patterns of spa-

tial activity amongst the individuals tested, and therefore perhaps in

4

the population in general.

4 a .

-The final\test checks wtfether a set of basis rmages computed

- X
from a concatenatron of the f1ve subjects data can represent the

or1g1na1 data from th se 1nd1v1duals " This is really a refmement upon
the- previous’ analy51s except that the basis 1mages should provide a

more universal basjs set since they alre taken from the common’

4

~ -

characterlstlcs of all subjects ‘ T '._ - ¢ '

L
. -

- As before Equatron 3. 41 is used to compare the. normahzed -
percentage -of power represented by each basis 1mage Smce power in .
CLBQ "EEG varies con51derably between 1nd1v1duals the usefulness of |

usmg such a normalized value should now be clear as only repre-:

sentatron .a‘bthty, independent of signal power, is measured. For

+
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L ,
bfe%ity, when the term “"power" is referred to in ‘the following sec-
ti‘ons‘ the normalized measure of average i'mage power is intended.
The 'analyis'es performed in the following sections was necessar-
ily limlted, as there were many possible combinations of tests even

for the five subjects studied in Section 3.4. Although the investiga-
‘ Y
tion was not extensive, the results do indicate areas for further re-

>

3.5.1. Pattern Representatlon Acrosg Cognitive States Within

“and Ind}wdual - Methods and Reﬁxlts

~In this section basis images computed from the EC state were

used to see how well they represent data obtained from the same in-

S . ‘ Y . . :
dividual during the same recording session, in the EP state. As in

Section 3.4 basis images computed from 10 seconds of images were ,
used, as ’the‘v adequately capture the. properties of the spatial EEG
ovet lengthier perrods As before, each electrode sequence of the

data being studied was made zero mean for the analyS1s perrod to’ re-

"'move the, effects of amplrfre.r drift, e.t.c.

In this section data from each of the. f1ve subjects 1nvest1gated

in Section 3.4 was used “The bar graphs in Figure 3.5.1.1 show the

B d1str1but1on of basis functron power when 10 -second segments of EP

data were prOJected on’ to basis images 15 computed from the first

‘10 secc{nds 0t the subjects EC record (refer to the approprlate f1gures.

_'m Secttons 3. Zfl ‘and. 3. 43 for a topographrc representatlon of the@)a- ‘

_s1s 1mages) The numbers above each group g1ve the " total power

- Table 3.5.1.1 summanzes the average maxrmum and mmrmum

ARC values over each the .6 pro;ectlons in Flgure 3 5.1. 1 for each sub-

ject.'
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Average Reconstruction Correlation
v Maximum  Minimum Average
Subject1| '0.87 083 | 085
Subject2| 093 | 092 0.93
') Subject3| 092 | 0.1 0.91

" Subject4|  0.89 |l 0.87 0.88 K

Subjects| 092 |-091 | 092 |
Table 3.5.1.1 ,

Average, Maximum, and Minimum ARC Values For Figure
3.5.1.1

3.5.2 "Pattern Representatlon Across Cognitive States: Within
an Individual - Discussion '

Table 3.5:1.1. and Flgure 3 5.1.1 show that both ‘power and re-
constructlon accuracy are generally high when basis images from one
state are used to represent images from another state within - the
same individual. However the results are not as good as when EC
data is projected on to EC ' ba51s functlons The above bar graphs com-
pared to the correspondlng ones - for EC data (Flgure 3.4.1.9 for Sub-
jCCt 1 and Figure 3.4.3 3 for Sub]ects 2- 5) exhibit that the percentage
of power represented by each basis 1mage varies between cognitive
“states LT o

For example 1n SUbjCCI 1 when EC data and b351s 1magé’§j are
used. the normahzed average power represented by the f1rst five: ba-
. sis| 11’nages is a,lways over 9Q% with the ARC values shown in Table -
3.4.1.2, typlcally over 090 (average of 0.92).. Figure 3. 5 1. 1a shows

that those same basis images represent less ‘than 90% (average of

¢

87.42%) _of‘the_ powen,the' EPVdata examined, and the corresponding

77



ARC values average only 0.85. Recall that ARC values are srg,mhetmt
to within +/-0.01, and that power values are sngmflcant to +/- l%
both usmg a 99% confldence 1nterval 4
| The next question is how do the EC basis images compare to
those computed from the EP stdte, in terms of representlng EP dara?
'F1gure 3.4. 1.11 and Table 3.4.1.3 show EP computed basis images
fitted to the ‘same EP data as above. Here the first five basis mmz,es
represent over 90% of the power in the segments analyzed, with the
- ARC values averagmg O 89 For this subject therefore EC basls im-
ages do not represent EP data as well as EP basrs images.

The: results for SubJect 2 indicate for this SUb_]CC[ that EP data IS

represented by EC basis functions with high accuracy. When the five

| EC basis images are fitted to EC data they correlate on average 0.93,
~as shown in Table 343 l and when fit tq{ﬁEP f8ata correlate, as shown
in Table 3. 451 on average 0.93, with over 90% of the . power typi-
cally represented. Although results for the optimal case have not
been eomputed -for this' subject, thelbasis‘ images and therefore data
in the two cogn1t1ve states must be srmrlar bdsed upon the high ac—
.curacy ‘found above. -The power represented by the basls 1mages‘ ' ~
varies between each state, though, as shown by companng the ap X
propnate bar graphs in Figures 3.4.3.3 and 3. 5 1.1. In the EC state the
amount of ba31s image - and 2 requrred 1s similar, . whi'le for 'the EP N
state basis lmage 1 increases and 2 decreases in relation to the EC re-
sults ' ” | ‘ R

The results from Subject 3 indicate good representational, abil-
.l,ity: for power averaging 93.4%, and ARC on aVerage 0.91, compared
with 0.92 forv the EC data. The distrihution of bas’is,function power in

the' EP state shows_ an opposite trend to that of Subject 2. More speci-

P
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fically, t-he proportion of basis image 1 drops, and of basis image 2
.mcreases in relation to the EC data ‘These results again 1ndlcate that
the underlymg patterns in the EP state are similar-to those of the EC
state, with the amount of the each ‘basis pattern present varying be-
tWeen “states. - ‘ | 3

The reconstrucuon ability using EC basis" 1miaées on EP data for
" Subject 4 is ‘poorer than that for EC data with the same EC basis im-
| ages. The power represerteii by the first 5 basis 1mages drops to less
than 90% for each segment examined, and the ARC is 0. 88, compared
to 0.92 for the EC data. The proportion of power between basxsf im-

ages 1 and 2 changes dramatically " between the EC and EP sta' s-,,

with basis 1mage 1 representing significantly more power (’

over 25%) than that of basis image 2 for the EC state, and b

senting approximately the same power for the EP state.
- The represén.ta;ional‘a‘bili_ty of‘. the five EC computed basis im-
ages for Subject 5 EP data is: hi;gh;tboth in terms of power, well-over
90%, an‘d‘.-shape, ‘correlating on average' 0.92. Here the power Tepre--
sented by basis image 1 increases, and for basis image 2 decreases,
in the EP state. o
In general, EC computed basis images from one ‘subject can be
used to represent EP data from the same Sub_]eCt although the recon-

struction. ability is suboptlmal both 1n term§ of the percentage of av-

erage power represented, and reconstruction correlathn. ‘T‘herefore,

Vfo; dat‘a."eempressi()n it is adb/i"sable that basis images computed‘ from
one cognitive state be used to represerit data ohly from within that
same state. _ | - | :

In differentiating between the two states by comparing the

distribution  of power represented by the ‘basis images « there appears



to be no single trend amongst the 1nd1v1duals studned This may indi-
cate one of three things: that tighter experlmental conu‘ols are re-
quired to ensure that, in fact, all subjects are in the." same cognitive
state; that a finer diﬂ\(isiOn of subjects accordiné to sex, age, e.t.c is re-
quired to elicit any trends; or that the d';ffference between these two
cognitive states is dependent upon the individual‘. It is worth noting
that while there_is no single trend between EC and EP data, there are
detectable differences in the distribution of »power represen,1€d by
the basis images. Using the KLT directly, it _therefore may,,'not be pos-
sible to determine the actual cogni'tive state the subject is in, but it

may be possible to detect a change of state within an individual,

S

3.5.3 Pattern Representation Across‘lndividuals in the
Same State - Methods and Results

In this section basis im_ages computed from,an individual in
one cognitive state were used to rtepresent data from another
individual in the .,"same" cognitive state. This, in essence, measures
how similar basis images from one subject are to those of another. As
- there are many possible combinations of investigation for the five
subjects only a subset' was performed Lo ‘ _

Figure 3531 shows the drstnbutlon of _power G,/hen 10 second
segments of data from the EC records of Subjects 2 through S are
prOJected on to the frrst five basrs 1mages computed from the first
10 seconds of Subject 1's EC record. Table 3.5.3.1 shows the average,
max1mum and minimum ARC values for each of these projections.

The basis images used are those drsplayed in Section 3.4.1.
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Average Reconstruction Correlation |

Maximum Minimum Average
Subject2 |  0.92 0.88 0.91
Subject 3 0.85 0.81 0.82
Subject4 | 0.90 0.87 0.89
SubjegtS 0.92 0.85 . 0.90

st Table 3.5.3.1 |
Average, Maxnmumw and Minimum ARC Values For Figure
S 3.5.3.1

. 3.5.4 Pattern Representatlon Across Individuals in the
_Same State - Discussion- - s '

Th‘e results indicate that, for the eases investigated, busis m-
ages from one subject‘ can be used to repreéen_t data from other sub-
jects in the ‘same cognitive state. The representafion 1S not as good
though, as using basis images computed from the same state and in-
dividual.

One major trend appears in the results, confirming an obvnous

suspicion, and that' is when the basis images between the two sub-

jects are simiiar in appearance the reconstruction accuracy is hlgh

while, if the ba51s xmages are dissimilar the accuracy is low. For ex-
ample, the ba51s images between Subject 1-and 2, shown in Figures
3.4.1.1 and 3.4.3.1 respectively, are similar. Both the reconstruction
correlation, 0.91, displayed in Table 3.5.3.1, and average power rep-
resented by the basis images, shown in Figure 3.5.3..1, are similar to

those values obtained using Subject 2's basis images, shown in Table

3431 (0.93) and Figure 3.4.3.3 respectlvely The resulls for SUbj&CIS,.

4 and 5 are similar to those for ‘Subject 2.

On the other hand, Subject 3's basis images, shown in Figure

g
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ent cognitive states.

3434 dlffer significantly in appearance to.those of SubJect I. The -
average reconstruction correlatlon using SUb_]CCt 1's basis images is
0.83, compared to 0.90 using SU}?_]CCI 3's own basis images. The dis-
tribution of power is also differékm, with basis i,mag\e 2 increasing in
percentage, basis ‘image 1 decreasing, and the total using the first
five dropping to an average of 86.1% from 93.2%.

These results indicate that representing'a subject's EEG with
basis images computed from' another individual is not generally as
effective as using the SUb]CCtS own data, and is related to the simi-
larity of the basis 1mages themselves.” It is interesting to- note that

wtherer exists morg” 51m11ar1ty iny the basis 1mages amongst 1nd1v1duals
in the same cogmtlve state, than from within an individual in differ-

-

Again, no specific trends are seen in the results. These trends

- may, for example, indicate ‘that a subject's basis images are useful for

representing data only from individuals in the same age group, sex,

handedness, e.t.c. To detect such correlatlons more subjects and cate-

gorization of them along the above lines is required.

3.5.5 Pattern Representatlon Using Collective Data - Meth-
ods and Results

In this section basis images are generalized by combining the
data of several individuals before KLT analysis. This is performed in
order to capture the common spatial patterns amongst the individu-
als studied. If such patterns do. exist then the patterns detected may/
also be indicative of the populatlon in general.

One problem in ‘using ‘dat'a‘f\rom various subjects is that some

individuals have more power in their EEG than others. Since fitting to
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these subjects data would ‘minimize the mean squared error tirst,
their data would easily dominate the KLT analysis, and the computed
‘basis images tvould'highly resemble ‘their own. In order to avoid this
problem the“data was prenormahzed before applying the. KLT to
.capture shap(e vnot magnitude, mformatton The method - employed
normalized each image such that the sum of squares of all pixel “val-
ues, (electrode samples for "raw" data, as used here) is unity. Before
applying this\normalizatiom;- each measurement value inthin each

subjects data segment was, of course, made zero mean. This ensured

the recordmg session and individual data only, not from
. et .of "data.

e ;sed .in this section was a' 50 second re‘cord creatéd
:’:en second segments of each 'of, the five subJects previ-

As stated above, each measurement value w1th1n each

. 'measurement values) was normalized to have a sum of squares equal

to unity.

-~

Fig‘ure 3.5.5.1 shows topographic representations of the first °
five bas1s 1mages computed from the 50 second record, whilé’ Table

3.5.5.1 shows the normalized. power represented by the first ten ba-

sis 1mages thure 3.5.5.2 dlsplays the rlgrmallzed power represented .

by each of,these basis images when 10 second segments of data,
taken from each of the five subjects are projected on to the collec-
tive basis 1mages Fmally, Table 3.5.5.2 shows the average, max@um,

;and minimum ARC values of the 10 projections pefformed on each

subject's data.

. mean values subtracted from the electrode recordings corre-
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- Basis Images 1 - 5 For Collective Data Set
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Normahzed Power For the First 10 Basis Images Computed

Basis

Normalized Cumulative
Image | Power (%) Power (%)
1 . 3998 39.98
2 26.48 66.46
3 10.14 76.60
4 7.21 8§3.81°
5 -3.76 81.57
6 . 2.89 90.46
7 - 249 92.95
8 1.42 94.37
9 1.03 95.40
10 0.77 . 96.17
Table 3.5.5.1

‘from ‘the 50 Second Collectlve Data Segment

Averaé'e Reconstruction Correlation
: - Maximum Minimum = Average
i [ subject 1 0.89 087 | 088
B Subject 2 0.93 0.89 - 0.91
Subject 3 0.88 085 0.87
Subject 4 091 |- 0.89 0.90
, Subject 5 0.91 090 . | - 0.90 o~
. Table 3.5.5.2 : "
Average, Maximum and Minimum ARC Values For Figure
3.5.5.2

,87 :

356 Pattern Representatlon Usmg Collective Data - Discus-

4 sion

. The above results demonstrate that the 1ntr1n51c spatlal

o {f".‘dlmen51ona11ty of . the collecuve data set is, asl would be" expected

vlngher than md1v1dual data Although this is the case “ the reco&%
L 4

R
R

struction ablllty of the collect1ve basw Jmages for data from the ‘same -

subject to represent data from other subjects.

cogmtlve state is good, and is better than usmg data from a 51ngle



" Table 3:5.5/.1 shows that'm'ore bas_is ima‘gfs .are &qurred to

represent the same power for th.e»colleetive da

the subjects individually. This indicates that more s~pat1al variation is
- . . . T H

present in the EC state amongst .individuals than within ‘a subject. -
The basis ima(ges shown ’in Frgl'ire. 3.5.5.1, exhibit-"s.imil.ar fea-
tures to those of the 1nd1v1duals used to create the collectlve datagset
dtsplayed in Sectlons 3. 41 and 3.4.3. The ftrst and second basis im-
age demonsrate, front/back act1v1ty, ‘although the f1rst has a more,

complex pattern, with what appears to be a "hot" spot located over

one of the central electrodes. Basis image 3 is similar to the thrrd ba- -

- sis images from Subjects 1 2, 4 and 5 (if the polarlty for Subject 5-is |

changed), containing an area of hlgh actlvrty in the front right, ‘and
low activity in the front left of the scalp. Basis 1mages 4 and 5 not

shown for the individuals, ,have unique spatlal patterns: vlmage 4 has

high activity along the mid line of the scalp with two ’peaks:of-a,ctiv- .

~ity, centered on electrode locattons image 5.1is wave- -like with high

activity in ‘the front and rear of the scalp and low. actrvrty in the mld-'

~ dle. . o . |

‘ The bar graphs in Figure 3. 552 show the distribution of power
represented by the colleetlve basis images for Subjects 1-5, with .
LTable 3.5.5.2 giving the average maxrmum “and m1n1mum ARC val-

ues for each of the 10 prOJectlons performed per sub_]ect For. the

'~7~janalyses performed m the prev1ous sectlons the best yesults for such

projections have been obtalned usmg basrs 1mages computed from

the data itself (optimal case), followed by using datfa~ from one seg-

.. ‘ment to represent other v‘sectiqr)f.« The third best results were ob-

tained using ‘basis images’ ¢ompated from another individual in the

- same cognitive 'state; with. the ‘p_o‘o'r'est"all‘_ around"'per'f.Ormance‘ ob-

I RPN

set, than for each . off

§8
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_ tained using basis images computed from the same indiv,idua'l. in an-
Cother cognitive state. | B " | _

The above ;esults compared with the those obtained using the
‘-.subjects own data do not provrde as good an overall representatlon
For example, ' for Subject 1, the power répresented by the first five
-basis 1mages closely matches that using Subject 1's own basis images,
shown in Figure 3.4.1. 9(b) w1th over 90% of the ~average image
power represented in the first five basis images in both cases. The
average, over the 10 projections, of the ARC values, is 0.92 using the
subject'.s own basis images, and 0.88 using the collective basis im-
ages. Thus, average image power for the former case is represented

- as well as for the latter, while tﬁe shape is not.

89 .-‘

For Subject 2, the power represented by the first” five collective -

basis images aga‘in‘closely matches that using the subject's own basis
images, displayed i‘n Figure 3.4.3.3. The average ARC using the col-
lective basis"images 0.91; 'is lower than using the subject's own basis
. images, 0.93, -and the same as using Subject 1's basis images, 0.91.
The power represented by the collective basis images for Sub-
ject \3 is less -than that obtained by using the subject's own " basis 1m
ages, but is better than using those' from Subject \. This, again, is
prObably‘due to the . significante difference in appearance'between the

bas1s images from Subject 3 and those from the collective data. This

dlfference is\ also reflected in an average reconstructron correlauon of

090 usmg Su Ject 3's data, and 0.87 from the collective data This -

latter value # an 1mprovement though, ovér using Subject 1's basis

1mages (0. 83)

For SUb_]CCt 4 the power represented using the first five collec-

tive basis 1mages is typically over,‘QO_%», although  the distribution )
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amongst the bar51s 1mages is dlfferent from that of using the subject's
.own basis functions (basrs 1mage 1. has decreased and 2 increased in
power). The average ARC is slightly lower than using the subject's
basis images, 0.90 comparéd with 0.9‘2, and the same as the value
obtained using Subject 1's bésis images.
‘ The results from Subject 5 show- similar trends to those of
Subjects 1 and 2,. that is, the.distribution of power is almost the same
ysing the colle“cti\;e basis images, with the corresponding reconstruc-
tion correlation lower than using the subjec(s basis images (0.89
compared with 0.92). The only difference is\tl?Q\\the average ARC )
..v:ilue‘usirtg Subject 1's basis images, 0.90, was slightly higher than
from the'coilective data. « k) | ' -
In general,-the above results indi¢ate that using basis images
computed from collective data rather than from an isolated in-
dividual is useful in representmg each of the subjects contrlbutmg to
the collectrve data. The results also 1nd1cate that these basis images
‘prov1de better representational accuracy ‘than using a- smgle indi-"
vrduals data The collective basis 1mages exhibit properties present
in .all of the subjects’ basis images, again front/baclg activity and side
to side activity appear to be the most vp}'om.i,rteht .spatihl 'fpétte'rns;
These images can therefore be re:garded-"fz;ts ‘spatial ’feat-Ures commof
to all mdwrduals in the Cngtrve state mvesttgated Further study is .

“Tequired to deterrﬁ_

f such patterns are a\ommon throughout the
.ehtire pcpulation' what, if any, physmlogrc*ﬂ basis such patterns

have and if the basrs 1mages and coefficients can be used to classify

between cognmve states and 1nd1v1duals
‘ :

A

90
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3.6 Discussion and Conclusions .
| .In this chapter t'he"Karhunen-Loeve transform has been used
as a tool for pattern representation of the spatial EEG. Several general
conclusions can be reached, while many ‘avenues have yet to be pur-
sued in order to determine the exact effects that co&,nmve sttttc, age,
handedness (Gevins, 1987), e.t.c have upon the products of KLT anal-
ysrs The results from this chapter confirm observations seen by
other groups which have applled the KLT to EEG andlyms T

The main result found is that the intrinsic dlmensmnahty of the

Al

spatial EEG is less than themmeasurement space used for the observa-
tions. -More specrﬂcally, usually over 90% of the average power tn\\‘
spatial @ges is represented by typically using the. tlrst 5 basis. im-
ages ‘(avnd certainly no more than 10), mdependent of the: cognitive
states investigated: Images reconstructed using these basis’ images ©
~and the appropriate coefficients also correlate 'on"ave‘rage, high_ly.
(typrcally 0.90) with the orrgmal data images. - K : R
The spatial dim=nsion of temporal sequences of background‘d .
EEG being lower - than the measurément space 1mp11es that. data com-
pression can be performed on raw EEG data with s1gmf|cant savmgs .
in on-line’ storage For example, stormg the first 20 ‘basis mmgbcs : o
~(more than necessary for adequate reconstructlon) computed ‘from
mmutes of recorded data requlres appr(/);tmately 20/31 or about
65% of the orlglnal storage requlrements If the spattal basxs patterns
- are physiologically meanmgful then thrs mtrrnsnc drmehsmnahty
\should ‘be independent of the measurement space and thus g,rcater
savings w111 be p0351ble for larger” numbers of electrodes, with the

“W added benefit that the basis 1mages will have better resolutlon be- -

\__’x‘)

~cause of  the 1ncreased spatral samplmg

Anvrmp_ortant result, useful in data compression, and significant.
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to the EEG, is that basis 1mages computed from one sectlon of an in-
d1v1duals record taken from one cognitive state can be used to rep-
.Tesent, .in ‘a nearly optimal manner, data from other segments of the
same record. “Thus the basic spatial patterns generating the* maps are
not changing - significantly over time w1th1n one cognitive state, indi-
catmg that an underlying process may be generating the spatlal
topologies seen. Ana‘lysrs of varying length data demonstrates that
for short segments (<1 second) little.spatial -variation ‘exists, while for -
lengths greafer thanlabout 8 seconds the »spatial.variation is larger,
and mdependent of length ,_ |
| A pomt related to the above, is ‘that the first several basrs im-
ages computed- from one s_tate can be used to adequately represent
data from another state, although the proportion of the coefficients
varies between states. This variation‘ for the subjects investigated,

’wht:le bemg detectable shows no ev1dence of a un1for‘)m trend. Agam
breakdown of data along finer subject groups would help 1lluminate
any trends. .
It was, also shown that basis images between individuals are-
similar,: in a\"*pattern representation sense. While this is not clear evi-
»Jdence of a O\Jﬂ}mon process generating cognitive states in individuals
it does provrde a mechamsm for 1nvest1gat1ng these processes. As
above, fmer d1v1sron of sub_;ect groups is requ1red to “identify trends
useful for classrfymg the data by cognmve state. '
- In general, although no clear classification rules ‘are apparent

the us'ﬁulness .of the farhuneniLo—

mfrom the results obtained here;:
P

eve transform as a method to extract common -featu_res of the /spatial

EEG, both within and across subjects has. _been demonstrated. The

_ability of the KLT to generate features useful in classifying data is

o -
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examined in th,e followmg chapter — > -, :
Although these results are for the background EEG>taken under

the eyes closed (EC), and eyes open (EP) states, they € in geneml

agreement w1th similar StUdlCS performed on spatial/ maps from )

p——

evoked potentlal studies, where drmensronallty reddctlon has re-
peatedly been shown possible (Skrandres and Lehmann 1982;
Chapman et al. 1979; Kavanagh et al. 1976; Donchin and Heffley .
1978), and from other . studies where both spatial and temporal
properties of fhe EEG were used (Nvunez 1981).

Skrandies and Lehmann '(1982) fourrd that the spatiﬁl KLT
yielded three spatial comp_orrents, accbunﬁng for over 93% of the
variance in data obtained by retinal stimulation. The basis compo-
nents were computed from images from six subjects at 100 and 140
msec latencies, . where it had been estimated maximal global field.
power occurred. The first component basis exhibited back/front ac-’
tivity, the. second lateral (side/sidej activity, and the third a concen-
tric distribution with highb activity- in the center-rear of the scalp.

Skrandies and Lehmann demonstrate these component 1mages are

~ physiologically meaningful and in agreement with analyses per-

- formed on the evoked wave shapes. It must be rememk!ered that

their stu'dy 'did not analyze the temporal evolution -of the Scalp dis-

- tributions, but rather performed the analysis across subjects.

“An mterestmg pomt m their paper is that the second basis im-

o age computed at the 100 and -140 msec latencxes were "mirror” im-

ages, and ‘they vsug_gested that’ this mlght reﬂect ‘the comple‘teﬂ éct'i_v-’
ity of one fu'nlc‘tion'al" population of generators” (p. 666). The same.. .
trend -is seen in the -fir”siff_tfwo basis images of most of ;’he subjécts .

studied in this chapter. and méﬁz\ reflect the operation of a similar
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process. Further investigation’ 1s requrred although these results in-, o
dicate that the KLT applied to the background EEG 1s extractmg rele- -
vant physrologlcal 1nformat10n .Another point worth’ mentlomng (1s
that the spatial drmensmnallty found by Skrandres and’ Lehmann 1s X"
lower, around 3, compared to that for background EEG found here, 1
about 5. Thls difference may be a reﬂectlon of the spec1f1crty of the ‘

he subjects in thelr study were performmg or be a prodﬁct of

nporal character of - analy51s performed here. .
j Another study reported is by Nunez (1981), where he’ usesb V )
"empirical orthogonal’ functlons in the spat1al domain”.- In his analysis’
the spatial functions. do” not correspond directly to the. background ,
EEG, but rather to discrete temporal frequencies of the EEG that is, to
components of the Fourter spectrum The. .basis functions are there-.
fore complex and pres(erve phase 1\1format10n Thxs method has the
advantage that spatial mformatlon is captured for each temporal fre-
'quency of 1nterest for example alpha band act1v1ty The obv1ous dis-
advantage is that/ there are several sets of basis 1mages to cons1der |
one set per temporal frequency of 1nterest L - ‘
The results reported by Nunez are s1m11ar to those presented in -
this Chapter. For a patlent ‘with peak alpha,acnv,lty at 9.5 cps Nunez .
'gives the first three basis imagesv ('b"oth_.the’real and.imaginary,,parts)
- corresponding to to 9.0, 9.5, and 1‘0.0 cps.'for'.‘one minute of EEG ‘.(3,0;?‘}
tvyo ;second ep‘och.s).'At the peak' ,flrequencyl ‘the- first basls image ac-
counted for 92% of the pow'er in the original data' with the first basls T
1mage for the off center frequencies representlng 63% and 79%. of -the
average ‘power. Again front/back and 31de/51de activity - were)present
in all real basrs iinages at each frequency, wrth the front/back topol-

¢
ogy predomrnatmg
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| Nunez's results show ‘that, Ih‘e‘,shape of the basis images are”
frequeincy depEndent and that thev h'ighest data gompression occurs

at the peak temporal frequencres Nunez also shows that the coetfi-

cient of thy, first basxs image reflects the amouynt of alpha activity

present temporally and-can thus be used tojrlfferentmte Dbetween

eyes open and eyes closed, although he does not provide a quanuta-

tive means for .doing so.

While the research reported by Numéz is not exactly the same
# v

. as what is performed here, the results he presents confirm those.

'obtamed here. Whether it is better to break down ‘the sputml mAps’

accordmg to temporal frequencres Oor not is an open question. The

.

——
relationship 'between temporal variation of the scalp potentials and

the, underlymg physmloglcal bases for the EEG is required betore
such an quéstlon can’ be answered ;. _
In general then thls- chapter has demonstrated the usefulness
of the KLT as an eff1c1ent pattern representatlon and hence data
j'compressmn techmque for “the background EEG While no specific .
relatlonshlps between the basis 1mages of different individuals has
been found the Tesults suggest ‘that similarities in inter- sub_;ect basis
.images ‘taken from the same cognitive state may exist. The tech-
'niques and:_l“results. from this chapter therefore provide the .ground-
work for ‘further i-nvestigation' using the KLT into the connection
-between the _EEG‘and cogn_itive state.

4 ) .

»
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Chapter 4 . : L
\
Pattérn Class:f:catlon of the EEG Using the Karhunen Loeve
: Transform ;
g : . ‘ v

.4:0 ﬁlntroductlon \

@The last, and 'most difficult, appllcatton of the KLT to the ﬁEG
,pursued here is to determine if the basis functions and/or coeffi- -
cient~ .can be used to discririnate between “arious cognitive states.

In this 'sense the KLT is viewed as a technioue which extracts fea-
’tures from a set of measurements made "on a realization of a- statist.i- ‘
cal process. These features can later be used to ‘classify‘ the'data Re- |
call that feature extraction corresponds to the first basic - step pet-
formed in statlstlcal pattern recognition dlscussed in Chapter 2; 1n
_this context the KLT 1s popular and has been extensively ’used (Klttler
1977; Kittler 1974; Ktttler 1986; Per1yalwar et al. 1987; Van hamme»‘
et al. 1987; Shimura and Imal 1973; Kittler and Young 1973; Fuku-
‘naga 1972; Skrandles and Lehmann 1982 Kennett 1983 Fukunaga
and Koontz 1970; Glaser and Ruchkm 1976 Schmetdl et al. 1987)

A Many variations based “upon the KLT are avatlable for pattern .
- classification, Kittler (1977) mentlons elevem of thé most popular
techniques. Each of these methods rtakés advantage of dszerent &
strengths in the KLT w1th most - applymg a transformat1on to the data

elther before .or after anaIy81s These transformatlons attempt to

maximize the drfferences m pattern VECtors. by some preselected

criterion since, in many cases the fundamental componW'

related pattern classes may be srmllar
The transformatlon method applted 1n this the51s is the one.

proposed by Fukunaga and Koontz (1970), }r the two class problem
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of classification. They do not derive "optinal” features for classitica-

\ . .
tion, but rather transform the measurement coordinate system  be-

fore applying the KLT resulting in “good" features for classification.

The results of this. transformation yield basis 'functlons which are the
same for both pattern classes, - but whose eigenvalues are rcvcrscly
ordered Fhat is, the basis function whose eigenvalue i largest fory
one. class w1ll have the smallest ergenvalue for ‘the othcr clags. Clay “_1
f1cat10n of the ‘data can then proceed by applymg the transtormanon
“function to new data, performmg KLT analysrs and noting the order

of 1mportance of the eigenvectors, or hasis functions.

Another popular trar@ormanon wh1ch has been applied to im-

age sequence analysrs (Van hamme et al 1987), and which for

‘ completeness should be mentioned here is the method of Kittler and

~ Young (1973) In therr method emphasns is placed on using class

.mean’ 1nformat19h for opt1mal clas;,d’ﬁcatxon Opnmal fcatures are ex-

~tracted when the class mean values are useful for categ,onzanon for

example, when plxel sequences. representmg a tumour, etc., have a
d1fferent mean mtensrty than other tissues. In seqUences of raw l:LG
spatral maps all clagses (plxel sequence’s) of data are zero mean, and

{
for this’ reason therr transformauon cannot be used lhere If, on the

other- ‘hand, current den51ty nraps or power spectrum 1mdges were

analyzed the method of Kittler and’ Young might prove useful for im-

age class1f1catxon recognmon of tumour sites or lesions.- v
In the next section a review of the Fukunaga-Koontz transfor-

mation (FKT) is given, followed by the results obtained by using their

method on spatial maps of the EEG Sectlon 4.2 demonstrates the

. classification” ablllty of’ the FKT between md1v1dual subjects EC and

EP data. Sectlon 4.4 shows the classrflcatxon abxhty when a smgle

—

x : .. N . e
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subjects’ FK.T features are used on other subjects’ data. Finally, a col-

lective set of FKT features is used for classificatioh in Section 4.6.

\ﬁ:»

4.1 The. Fukunaga Koontz Trénsformation
§g The notauon used here . is consistent with. Chapter 2, with any
extensions following that of Fukunaga and Koontz. The development
used here is based on the theory presented in their paper. |
The Fukunaga-Koontz - transformation (FKT), when applied to
two known“pattern classes, yields-a set of common basis functions
whose corresponding eigenvalues are reversely ordered. The method
‘is based upon. a class cc?bféd\ autocorrelation matrix defined as '
| Ry=p@)R, +/p@)R, . BN CA R .

where p(w;) is the a priori probability of occurrence of class 1, R is:

the autocorrelation matrix of class 1- data, and similarly for p(w;) and

\

\ R?_' v | . .
Since. both R and R, are real and symmetric matrices Ry is as

well. “Thus a (similarity) transformation. matrix
Ry, such that |
PR,P =1 T o C @1.2)

P may be applied to

-

wherevl\is/ the ident'ityv matrix, and. superscript t () 1s the transpose

operator, as before. | h

g ~ By substituting R_1 and R, into Equatron 4.1 2 the autocorre-

,lation matrices are transforrped to '
-’si=1>_p<m)&2‘- | .13)

for i=1,2 respectively.

'\. - Using the defrmtron of R from Equatron 2.?\’:>the corre-
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sponding transformation to the the data matrices X and Xois o

1 t gt
S.;=Bp(mi)—1:2£i2gl’_--

= ( TE&).( _T—in) (4.1.4)

For convenience the transformed data m3trices for cliss 1 and
e

2 data are denoted by F(1) or E(z), where F is given by

for i=1,2.

v

p'(mi) )

= [~ BX oy LS

A propertyvof‘ this transformation shown by Fukunaga and ‘
Koontz is thar -he basis functions,, of E(D and E(2) are equivalent. In
order to demonstrate this first note that from Equation 4.1.2 |
o, S, +8,=1 | o O (4.1.6)

If the origidal pattern vectors are n-dimensional each of the n
eigenvalues (A) and vectors (¢) for both pattern classes is given by

S, ¢(1) k“) ¢(” : ' (4.1.72)

S, 07 = a2 ¢ ' (4.1.7b)
fOI'_] 1,2, .
Assume that the eigenvalues -and corresponding eigenvalues

for class 1 data~are ordered in an descending fashxon, as per. Equation

2.3.3.24.

Using Equation 4.1.6 the eigenvalues and vectors for class 2

data can alsﬁé\?xpressc as . s ]

o | S.Zfb(z) (I : J2—1(2)¢(2) | . (4.1.8)

J

which can be written aiter multlpllcatlon and regroupmg ds_

& ¢(2)—(1- (2)) ¢(2) s (4.1.9)

: Comparmg thls FE?'sult w1th Equation 4.1.7a the followmg two
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importarft relationships emerge~

(1) (2)
0. =0

J J

}Ltl):l_th)L ‘ : S - (4.1.10b)

(4.1.IQa)

The first result demonstrates that the elgenvectors from both
pattern classes are equivalent, the second that the ergenvalues for
each pattern class\are reversely ordered and lie between O and 1.

It can easrly be shown that A;(1) and ;\(2) are both léss than or -
equal to umty and are reversely ordered. First note that the A;()'s are
the eigenvalues of §;, and therefore represent tt:e power in the rows
of F(. Since the F()'s are real the eigenvalues will .be real and posi-
tive. Note also that Equation 4.1.6 stipulatesthat the sum of the. jth
diagonal elements from §; and Sy is equal'to 1. In order to satisfy
the fact that the eigenvalues are positive anfi snr‘n-.together to 1, the
A; (s must be less than or equal to 1. Combining this result with the
descendrng\order imposed on the the elgenvalues for class 1 it-is
edsy to see that the eigenvectors which account for the largest vari-
ance in elass 1 account for the :mallest in class 2, and visa versa.

This last point is useful for classification. For-example, if a
transformation. matrix was created from a training data set, the first
step to classify new data would be to use Equation 4.1.5 and project
the result, i.e. E®, von to the space defined by the training set .basis
vectors. By noting which basis functions- accounted for the largestl
'varia;lce a decision could be made as to which category the unknown
data belonged. Ideally, the training ‘set would have as much variance
ofithe data compressed into “as few basis functions as possible, and a
thus only the highest. aand lowest would be requrred for classrfrcatron.
Otherwise, all basis functions would be requrred and some form of

~
distance metric needed to measure the similarity of power distribu-

Al

. e )
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tion in. the training set data to the unknown samplcs

In this thesis all ba51s functions were used in LOHJUR(.II()H with

- 'the .mrmmum distance cldssifier (Gevins 1987), based on Euchdean

 distances. After the FKT was apphed to a tramln&, set consisting of

data from both: classes (10 create __0), two - vectors containing the 31
eigenvalues for each pattern class was created. -Since it was known

the corresponding eigenvectors were orthogonal, each vector there-

. fore defined a point in 31 dimensional space. The clz‘tissification pro-“‘

.‘ceeded' by transforming the "unknown" data using. quuation 4.1.5, °

and then pI‘OJCCtlﬂg the result on to the training set eigenvectors

"(ba51s functions) creatmg a 31 dtmensmnal vector;. another point in

 the measurement space The Euclldean drstance betwu,n this pomt

and the two trammg set vectors (pomts) was then computcd I‘he
%

-class of the unknown sample was assrgned to same category as the .

tralmng set vector yielding the smallest dxstance ‘
An interesting property arcuse from using all of the basis vee-
tors from the transformed space Smce the Euclidean dlstance bc-

tween two points was _constant, regardless of the set of basis func-

- tions used, the minimum distance~classifier described above gave the

same\results for any set.of basis functions defining a 31 dimensional

space. Viewed another way: the basis functions defined by the FKT

- were the set accountmg for the largest amount of power, for both

classes, in the transformed space. Slnce the minimum distance -ap-

proach did not utilize this information the exact basis set was unim-

'portant What was effectively measured using all of the basxs func-

tions, therefore was how well -class data was separated in the
measurement space by the transformation matrix.

N To verify that the transformation matrix adequately separated
. <*

»
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class data three routes of investigatiort“ were taken. ’l:'"‘h‘eE first, arxd

simples:j described in Section 4.2, used.a sample of data from each

class from an individual to create a transforrrration matrix. This ma-

trix was then applied, to “unknown" ‘ata from that su‘bje.ct‘to deter—

mml how well these new. vectors clustered around the training vec-

tors u_sed in creatmg'the tra_nsformatrort ‘matrix. The vr{e'xt_-test, de- -
‘ sc'ribed"fn Section 4.4, used a transformation matrix from one 'subj‘ect

to determihe class -separation and the classification rate, of data from
other sub_]ects The final test pelsformed descrlbed in Qectlon 4.6, -~

used data from several SUb_]CCtS to create ‘the tra.1sformaion matrix,

with class_separation and cla551f1c:at10n rate measured on data from v.
those as well as ¢ er subjects In all of these tests the programs _

used‘ to compute the transformatlon matrix, . and perform classifica- |
tienf:assumed that the a‘ priori ‘pruoba.bilities\ for each class were 0.5. )

The transformation matrix P was solved ‘using the following

B«:\/I_jf o E - @

where U is the eigenvector matrix of Ry, (the class combined autocor-

relation matrix defined in Equation 4.1.1), and \1/A is a di’agonall

relation

matrix containing the reciprocals of the square roots of the eigen-
values of Ry. ' _ - ) L

4.2 Classificatien lon Individual Data - Methods .and Results”
In this section the- results of classification are presented for in-

dividual data. For each of the subjects used in Chapter 4 trammg set

data was taken from the first 10 seconds of the subjects EC and EP

-

records. To avord effects of d.c. ampllfler bias and problems associ-
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ated with .signal power between states, each electrode sequence was
_madye zero mean, and each .image‘ normalized to unit power before
FKT analysis. The transformation matrix, P, -‘t‘_rairring set basis func-
tions (eigenvectors) and train/ivng vectors (eigenvalues) were therr k
computed and stored.

. To test th/e classification ability five 10 second segments of data
\lom each pattern elass record were used, with each segment'first
pre-processed as above. The transform matrix was then applied via =
'Equ'ation, 4.1.5 to create a set of transformed data matrices. Each data
matrix was projected on to the training set basis functions (using
Equation 3.4.5) which generated a set.of coefficients for each’ basis
function. Next, 'tlre'. normalized power represented by each training
- set "basis function was measured (using Equatron 34.1), with all 31
such values taken together to form a pattern vector, that is, a pomt
in 31 space.; The set: of patfern vectors corresponding to the trans-
formed data matrices were then each classified usmg the mxnrmum
distance classrfrer as described above.

Figure 421 drsplays the results for Subject 1. Graph (a) shows
the tralmng set pattern vectors, while graphs (b) and (c) thlblt the
 feature vectors when transformed EC and EP .data are projected on to
j the' training set basis func{ions Again normalized power values are
f used to measuk the results of these prOJectrons Table 4.2.1 shows
" the Euclidean dlstance between the feature vector and training set

vectors, the classrfrerS'outpu_t, and true class of data.
Fereach of the ’oth“'er four subjects used in Chapter 3 the same
classrflcatron procedure as above was performed with the results

summanzed in Table 422 ’
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10-20s EC
20-30s EC
30-40s EC
40-50s EC
50-60s EC

10-20s EP
20-30s EP
30-40s EP
40-50s EP

50-60s EP

Pattern Classification for Subject 1 Using Trammg Data

- from Subject 1:

(a) Training Set" Feature Vectors (b) Feature
Vectors‘ from Five 10 Second Segments of EC Data (c) Fea-

ture Vectors from Five 10 Second Segments of EP Data
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Distance to | Distance ~ '
Data [EC Training | EP Trajnin, ; Class | Classifier
Section Vector Vector of Data Output
10-20s 3.19- 17.40 | EC EC
20-30s 4.9 1779 | EC EC
A 30-40s 5.16 17.30 EC EC
40-50s 5.26 15.55 EC .EC
50-60s | "6.17 17.18 EC EC
L Mean =5.0 | Mean=17.0/| Classification Rate =
Std. = _Std. =09 5/5 = 100%
10-20s S17.1 | 623 | EP EP
20-30s © 16.58 7.024| EP EP
30-405 16.29 7.28 | EP EP
40-50s 16.71 7.15 | EP EP
50-60s 15.53 7.10 EP , EP
Mean =164 |, Mean=7.0 Classification Rate =
Sid. = 0% ; Std. = 024 5/5 = 100%
: Table 4.2.1
Classification Results For Subject 1
5 . .
—
, Ay Mean Dlstance, .| Mean Distance, -
: . coe o ‘Standard Dev. Standard Dev. -
Subject |. (?lzt:s Classl;gltceatlon to EC Tralmng to EP Training
c L Vector Vector
2 | EC 80 % 72, 12° 9.6, 1.1
' EP 100 % 104, 0.5 5.0, 04
3 | EC | 100% 43,06 104, 07
'EP . 100 % -89, 0.9 T 59, 1.1
4 EC' 100 % 58, 0.8 7138, 0.9
EP. 100 % 169, 1.0 4.1, 0.8
5 EC 100% 43, 02 130, 0.5
"EP 100 % 10.4; 0.3 7.7, 0.1
Tablc 422

' Classxf:éatlon Results For Subjects 2 -5
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4.3 Classification on Individual Data - Discussion

The resuits in Section 4.2 demonstrate that for two class data
from an individual recorded during the same session, accurate su-
perv1sed classification between cognitive states can be performed
,'T‘usmg the Fnkunaga Koontz transformatlon Moreover, this accuracy
is obtamed with a srmple classifier, using only single training sam-
ples of data from each class.

The training vectors (amount'of power represented by each ba-
sis function after FKT normalization ,of the training ‘data) are shown
in Figure 4.2.1a. The main point to note is that for both classes the
power representedy in the_basis space is not concentratedi;n a few ba-
‘sis functions, as was the case for non-normalized data.. The shape of
the graphs (location 1n 31 space), although different, resemble each
" other enough to indicate' that they both are located in similar sub-
spaces of the measurement space. In other words, the FKT is not sep-
_arating - the two classes into two distinct regions of 31 space in the
‘ideal case the first and ‘last basis functions would account S)r all of
the power in the. first and second data classes, tespectively. The non-
"ideal separation of the two ?trarmng vectors is further evidence that
large éimilarities exist between the data.classes, a result consistent

with the findings from Sectipns 3.4.1 and 3.5.1.

The pro;ections of normalized data on the basis training space,

e
Y

shown for ‘EC and EP data in Figures 4.2, 1(b) and (c) respectively,
demonstrate that the feature,veetors are located close to the traiming

set vectors,. with. the EP data exhibiting more fluctuation ‘than the EC

data. This may indicate more soatial variation of the EEG exists . N
within the EP state than the EC state,” or that artifacts, more common -
. in EP data, are present. While vanatlon does exist in both classes, the ‘

genéfal trend is that the: transformation matrix separates pattern
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class data frorn other ’po-r‘tibg.\sf of the record, as far as one minute af-
ter the training vector data. This is consistent with the results in
Chaptel‘ 3, where little variation in the fundamental spatial patterns
of the EEG was found over lé)ng periods.

‘ The classificatio’n“ results for Subject '1,’ shown in Table 4.2.1,
demonstrate correct classification of the unknown data for all cases
tested. This again indicates that the basic spatial patterns within a
cognitive state are maintained for periods of at least one minute, and
that the normallzatlon matrix separates the data class's feature vec-
tors far enough apart for adequate discrimination. Although not "
shown in the table, the inter-class distance between the training
vectors is 19.4. This value combined with the average distance mea-
sure between the feature and training veetors, and the standard de-
viations, show that the classes are adequately separated, and form
compact "clusters” in 31 space.

The latter point is important, indica,ting. that ‘more sophisticated
classifiers based on cluster analysis techniques can be used. For ex-
ample, rather than having‘onl a single training vector, all previous
correctly clessified feature ctors can used, witn distance. to' the ei-
ther the nearest neigh.bour. of each -cluster, or mean vector from each
cluster, the basis for classification. Needless to say, these methods are.
more computationally sophisticated, But also provide better perfdr-
mance. | v | _ |

For the other SUb_]CC(S cla551f1cauon accuracy is also excellent
100% for all but one subject The ratio of inter to intra-class distance
for most subjects is agdin high, indicating good class separation. Th_e ~

inter-class distance of. Subject 2, for whom misclassification occurred,”

is smaller than that of the other subjects, ‘indicating that both pattern
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classes in this subject are very similar.. The strip-ché\rt recordings
from Subject 2 confirm that l@ttle difference between the eyes closed
and open recording's exist. o ;
Several ,important re;ults are shown in this section.~The first is
that for intra subject data representing the EC and EP cognitive states
the FKT is useful fn transforming the measuremert sracé so that the
resulting feature vectors?can Qe used for classification. These vectors ~
cluster in the transformed spaceusuch that the inter-class distance is
larger than the intra-class distance; a useful i)roperty for using more
sophisticatedh classifiers. Finally,’when class differences are small, as
‘determined by visual inspection of the strip chart recordings, the
inter-class distances decrease resulting in a lower classification rate.
4.4 CEssification Across Individuals - Methods andv Results
The last section .demonstrated that classification betweeuv cog-
nitive states can be performed on intra subject data: the next ques-
tion asks if classification can be performed on inter subject data. That.
\can the transformu:ii(')n matrix from one individual be used to clas-
sify data from another subject? ‘
| In -asking this two approaches are possible.ﬂ In the first method :
training vectors are - taken from the subject whose transformation
“matrix is used, \A;hile in the second, training samp.les('from the subject
whose data is to be classified are used. If good classificzgtion occurs
using the former approach then the pattern 'vectq'ors from ﬁe new
data have aligned themselves with those of the first subject. This in- -
dicates that not only are ihe features extracted by the FKT to classif?*‘
bet,ween states for the two suBgects similar, but also that the vectors

R, cluster in the same locations whﬁn—fhe measurement space If thlS 1s
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' the caM several subjects then the FKT measurement spdce and
transformation matrix may provide a universal method of classifica-
tion, otherwise individual differences will have to taken into account,

via the latter approach.

»

Table 4.4.la showé the resulLs\ of classification when the trans-
formatlom)matrlx and training vectors from SUb_]CC[ 1 were used to
cla551fy 5 ten second segmems of data, startmg from 10 seconds into ¢
the record, from each of the other 4 subjects> Tdble 4.4.1b shows,
similar results, except that training vectors taken from the first ten
second segment of the EC and EP records from the subject to be clas-
sified were used Included in the tables is the average distance to
~each trammg vector and the standard deviation of those dlsmnccs,

over the 5 classification attempts.



- .Meah Distance, | Mean Distance,

. cor .. ‘Standard Dev. Standard Dev.

Subject ([:)li;tasv Classllzt;tc:tlon to EC Training to EP Training
- S < Vector - Vector
2 EC 0% 14.1, 1.1 11.8, 0.8
EP 100 % 16.5, 1.6 9.8, 0.6
3 EC 0% 205, 05 9.3, 0.6
EP 100 % +17.2, 0.6 8.5, 0.9
4 EC 0% 147, 03 12.5, 0.3
EP, 100 % 17.2, 0.6 8.5, 0.9
5 EC 0% 13.1, 0.7 12.5, 0.8
"EP 100 % 169, 0.8 94, 0.6

(a)

Mean Distance, | Mean Distance,

. , cer et Standard Dev. | Standard Dev.

Subject (I:)lit:s Classllzgtc:tlon to EC Training to EP Training

' . ‘ Vector - Vector '

2 EC 80% 49, 1.1 57, 1.0

EP 100 % 6.9, 14 37, 1.1

3 EC 100 % 2.9, 0.6 6.1, 05
EP 100 % 53, 12 38, 1.0

4 EC . 100 % 34, 03 87, 04
E 100 % 11.0, 1.0 3.8, 1.0
5 EC 100% 3.8, 09 8.7, 0.6
- EP 100% 5.6, 05 - 42, 05

O |
Table 4.4.1

Classification Results Using Measurement Spa’cg and Trans-
formation Matrix of “Subject 1: (a) Training Vectors From
.Subject 1 (b) Training Vectors From Subject Being Classified

. e
‘4.5 Classification. ‘Across Individuals - Discussion
The small standard deviation values compared with the large

mean distance values shown. in Table 4.4.1a indicate that, as before,

-
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each subject's transformed data is clustering. The 'large mean  values,

compared with those computed in Section 4.2 2, listed in Table 4 2.2,
show that the clusters are distributed further away from the training
vectors from Subject 1, than from thetr own trammg vectors. Fur- -
thermore, the mean values show that "the clusters are all located

closer to SubJect I's EP tra1n1ng vector than to the EC trummg vector,
_'resultmg in the 100% misclassification rate for the EC data.

On the other hand, when trammg vectors from the subject. be-

ing studled are used as shown in Table 4.4.1b, the classxftcatton rate

1s high and exactly m.atches; that from Section 4.2, where the subject’s
own transformation matrix lwas used. Although this is the case, bet-
ter class separation occurs in the latter as shown by companng the
mean dlstances to the tralmng vectors llsted in Table 4.4.1b and Ta-
‘bles 421 and 4.22. In other words, the dtf_lerences between each
‘ class vary on a per subject basis, a finding consistent with the results_ .
of Chapter 3. ' L b v .
It is possible that a source for the low classification rates found =
in Table 4.4.1a is the cho1ce of the training vectors. (1e. alwaysta-king
the first lO second segment of Subject 1's data), and all that is re-
.qu1red to raise the cla351f1cat1on rate is the use of other segments of -
the data. While thts has not been attemptt ¢ thé compactness. of - the
clusters from each state indicate that whtle the precise position of
‘the training vector, may" ch'an'ge in using other data segments the |
shift would not be great enough to alter the classification rate. It is ~,
:therefore for convenience that the first ten second segment of each' |
subjects data record is used to compute ‘the trammg vector through-
out this Chapter.

A

To sumr_narige then, these results demonstrate. that individual
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differences are important in classification between cognitive states.
This manifests itself in the- fact that, when v- 1g another subject's
transformation ‘'matrix, examples of class da: :rom the individual-
being studied are required to cla‘ssify other data from that su"bject.
With such training samples the classification rate matthes that when
ih’é transfekrmation matrix computed from.” each subject. is used, al-
‘though class separation is not .s high as in the latter case. In both
cases, the transformed data forms clusters in the measurement

space.

4.6 Classification Using Collective Data .- Methods and
Results '

The final route of investigation focuses on using the data from
~several subjects to create the transformation matrix. The goal in such
an operation is to smooth out individual differences and create a ma-
- trix to séparate EC/EP class data for rh_ost individuals, without g”née‘d
for training vectors from each subject to be classified. , " :,.,#‘»

The first 10 second segment of data from each of the five sub-
ject's EC/gmd EP record was used Ko Create the collecnve data set. As
in Sectlon 3 5, each sut .ection of data was made zero mean tem-
porally, and then each image made unit power, in order to avoid the
effects of individual differences in EEG power. After. computation of
the tfans‘formation matrix five 10 second segments of data from each
subject for each class were classified. A set of ten training vectors
were used for classmcatlon each corresponding to a data subsection
from the collective data set.

With more than two traininkg vectors seVérél methods based on
the minimum dlstance classifier are possible. The first computes the

dnstance to all of the 10 trammg vectors, with the cla551f1er output -

7

"
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being the class of .training vectol with the smallest distance. The sec-
ond épproach reduces the number of training vectors from 10 to 2,
by averaging the vectors from each class, and then applies the mini-
mum distance classifier to the twg training vectors. ‘

~ The resulfs/ obtained using both of the above classification

methods are listed in Table 4.6.1. - \

\



. Mean Distance, Mean' Distance, '
e s Std. to ‘Min. Std.to Min.
Subject é)lz;t:S Classllzt;:tceatlon ~ - Distance EC Dlstance EP ¢
.| Training Vector | Training Vector
1 EC 100% 47, 0.8 12.2, 1.0
' EP 100% 10.4, 0.5 6.3, 0.6
2 EC 80 % 46, 1.6 7.6, 2.0
N EP - 100 % 7.6, 1.0 29, 09
'y EC 100 % 3.5, 0.8 52, 0.6
EP 100 % 6.5, 1.0 3.6, 1.2
4 EC 100 % 47, 09 79, 0.6
EP 100 % 117, 08 29, 0.6
5 EC 100 % 35, 1.0 9.3, 0.6,
EF 100 % 7.8, 0.3 4.4, 0.5
(a) o _‘
L
Mean Distance, Mean Distance,
- cpe Standard Dev. Standard Dev.’
Subject (l;)&tsas CLass;zgltceatlon to Mean EC to Mean EP
Training Vector | Training Vector
1 EC 100% 6.5, 09 153 1.0
EP 100% 11.3, 09 5.3, 0.6
2 EC 100 % 62, 02 109, 2.1
EP 60 % 7.4, 0.8 6.4, 09
3. EC 0% 10.5, 04 7.8, 09
 EP 100 % . 9.6, 0.7 54, 05
4 EC 100 % 6.4, 1.0 102, 0.5
EP 100 % 13.6, 0.7 52, 09
5 EC 100 % 4.7, 0.8 12.0, 0.6
EP 100 % 92, 04 47, 04
(b)
. Table 4.6.1

Classification Results Using Transform Matrix Based On

Collective Data Set

(a) ‘Minimum Distance Classjifier Using

10 Training Vectors (b) Minimum Disiance Usmg Mean
Training Vectors



A problem when working with many variables is that it is of- °
tenAdifficult to picture the position and sﬁape of the pattern vectors
in the measurement space. A common technique is to project the
daté on to a two dimensional space (plané), where as much informa-
tior. as possible about the orientation of the vectors is maintained.
Many metrods have been prc;posed for such purposes (Biswas et al.,
1981), some transformations being linedr, others non-linear. In order
tb provide further insight into the refsons for both clas<ification and’
misclassification of the EEG pattern - vectors, a projecticn algorithm
was used here.

In the keeping with the spirit of this thesis, the Karhunen-
bLoeve transform was chosen. First, the entire set of pattern vectors
(both training and feature vectors) were taken together to form a
data matrix, and the KLT app_lied. The normalized dot product
| (projection) of each pattérn vector on to the first and second basis
functions (eigenvectors) was then computed. A scatter plot was fi-\
nally created for all pattern vectors, with the abscissa the projection
on basis function 1, and the ordinate the projection on basis function
2. '

This method was applied to the set of 60 pattern vectors (6 per
subject, per state) generated above. The first and second principal
components accounted for 85.9%, and 7.7% of the power in the origi-
nal data, respectively. Figure 4.6.1 presents five scatter plots, one for
each subject, showing the clustering effects of each subject's EC and
EP data. Note that all of these plots are at the same scale.

In order to more clearly demonstrate clustering for all five

subjects Figure 4.6.2 shows a composite of the above plots.

TS
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EC and EP Pattern Vectors on to
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Figure 4.6.2
Composite Projection of EC and EP Pattern Vectors on to the.
'First Two Principal Component Axes of the Feature Vector
’ Set

3

The purpose of usmg a transformation matrix based on collec-
tive data is to see if other individuals data can be classified using the
tralmng vectors from the subjects in the collective data set. In other
words do the pattern vectors from other subjects cluster in simitar
locations as those of the subjects from the collective set? An easy
way to view such datd 1s wrthl}he two dimensional prolectlon method
described above: .

Figure 4.6.3 shows the results when data from an additional 5
subjeéts, denoted ‘Subject 6) through Subject 10, was transformed by |
the collective transformation matrix, and then projected on to the
two principal component axes used in Fi?;ures 4.6.1 an 4.6.2. Table
4.6;2 gives the classification rate for each of these subjects using the
first ten seconds of their EC and EP record for the training vector .

data.
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i Data | Classification
SUbJeCt, ‘Class Rate-
6 EC 100%
, EP 80%
7 EC 0% | =
EP 100 %
8 EC 100 %
EP 100 %
L
9 | EC 100% |-
: EP 100% ¢
: 10 | EC 100 % L.
) o EP 100% . .

. . Table 4.6.2 ,
Classification Results Using -Subjects Own Training Vectors
and Collective Transformation Matrix - Subjects 6-10

- <
4.7 Classification Using Collective ‘Data - Discussion

_As indicated by the results from Section 4.4, classification be-
tween states' using the FKT and a minimum distance classifier re-
quires tra'ining data from each subject to be classified. In other
words, the methods used here do not find a universal transformation
matrix and set of training vectors to differentiate between the EC. and
EP 'states, but rather ones which are useful only for the subjects
whose data was used to create the training data.

The collective transformation matrix clusters each subjects’
data, as shown in Figures 4.6.1 and 4.6.2. For some subjects the inter
to intra-class distance ratio is- higher than for others, indicating again

)

that some svubjects exhibit sighificant. similarity in their EC and EP
data, while others do not. For example, Subjects, I, 4 and 5 demon- .
strate large inter-compared to intra-class distance, while for Subjects

2 and 3 the EC and EP clusters are much closer together. .
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This variation amongst the‘ individuals leads to the problem.of
selecting the training vectors. Selecting only one example frorr'lv each
. class mighf easily result in misclassification, particularly since there
i‘s a region where both EC and EP vectors are close together. Selecting
thé data used in creating the transformation matrix, as was done in
Table 4.6.1a, is a good, approach, but in this case requires that 10
distance computafions be performed. Furthermore, the minimum
disténce'traini"ng‘vector invariably turns out to be from the same
subject; thisr is reflected by the fact that the same classification accu-
rac:y obtained was exactly that usihg individual data (Section 4.2).

Using averaged training vectors simplifies the c'omputa‘tibnal
load on the classifier, but results in reduced accuracy for subjects
whose data is close to the halfway point of the mean vectors, as
shown in Table 4.6.1b. For Subject 3, who,swe classification rate was
high using all 10 training vectofs, the accuracy fell t@ 0% for the EC
data, as each of) the EC vectors was closer to the EP fpean vector.
Subject 2's EC data was classified at 100%, whereas the EP rate fell to
60%, demonstrating that Subject 2's EC and EP data resembled the
typlcal EC data from the entlre subject group. Both of these results
'agam indicate that trammg vectors from the subJect belng&{assmpd
provide the highest classification accuracy.

Although not perfect, the collective transformation matrix, P,
adequately separates the EC and EP data and results in good classi-
fication accuracy from the indiyviduals whose data was used in cre-
ating P. The main question posed in‘this section, though, is how well-
. does P. separate data from ~‘other individuals. The two dimensional
projections of five other subjects’ data, vshown in Figure 4.6.3, demon-

<~

strate that while the transform matrix may, in some cases, separate
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the classes, the locatiog, of the clUsters i1s not similar to the opiginal
group of subjects. This again confirms that differences between the
EC and EP states are dependent upon the individual,

For example, the feature vectors from Subject 6 all cluster
closely together, and in positions where none of the vectors from ‘
Subjects 1-5 are located. The data from Subjects 7-10, while cluster-
ing by cognitive state, show noftrend in the location of the clusters,
and again are not aligned with those from Subjects 1-5. It is obvious |
therefore, that to provide any sort of classification whatsocvcr,
training vectors from the subjegt to be classified afe req‘uired. Fur-
‘thermore, Figure 4.6.3 demonst\%ltes that, if classification were based
only on the two axes shown, a judicious choice of training vectors
would be required for each subject as the vintrz;n-cllassv distances for
each state are comparable to the inter-class distances.

A point worth noting is that the axes that Subjects 6-10 feature
vectors have been projected on to is optimal only for the training
vectors from: Subjects 1-5. Thus, ‘the scatter plots may not fully rep-
resent the inter and intra-class .distances of the feature vectors. The
purpose of the figure is to show if the new pattern vectors cluster in-
the 1same locations as those from Subjects 1;5, which they obvi'ously»
do not. Classification though, is based on using the entire 31 dimen-
sions and is thus not prone to the above distortion.

Table 4v.6.2 shows the classification results when, ds before,
-the feature vectors from the first 10 second segment of the EC and EP
records are used as training vectors. Although not peffect, the results
do show these vectors provide reasonable classification accuracy us

ing the collective transformation matrix. This also implies that the

s¢atter plots in Figure 4.6.3 do not adequately capture the location of
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Subject’'s 6-10 pattern vectors.

'The results from this section confirm those from Section 4.4,
which state that classification using the FKT requires training sam-
ples from . the subject being classified, regardless of the transforma-
tion matrix used. MoreOvér, the results are in agreement with those
from Chapter 3, where differences between states were detectable -
‘tfsing the KLT coefficients, but where no general trends were found
amongst the individuals studied. As in Chzipter 3, finer division of the
subject groups may help to illuminate any such trends. That‘ 1s, do
the feature vectors from subjects of the same sex, age, etc., cluster at

similar locations in the transformed measurement space?

4.8 - Discussion and C}'clusions
The main result from this chapter is that classification between

cognitive states within ‘an individual can be perfoArmed with the
Fukunaga-Koontz transformation and a simple minimum distance
classifier. The need for further invcstiéation is clearly pointed out by
"the lack of ac'c':uracy. when applying the classification parameters
from one subject (or even a group of subjects) to those of others.

~The results from Chapter '3 demonstrated that differences ex-
isted in the proﬁortion of basis functions present in the EC and EP .
states within a subject. The FKT provides a meihod to quantify these
differences in the form of feature vectlorsv,‘which may be input to a
simple classifier. Chapter 3 also indicated that while differences be-
tween sta‘te‘s'existed, no general trend was found in the subjects
stpdi‘ed. This fact is reflected in the poor classification accﬁ‘racy when

the classification parameters. from one subject are applied to other

subjects. It is difficult therefore, to ascertain whether the transfor-
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mation matrix is quantifying physiologically Telited differences, or

-

.differ/ggs related to the recording session or other such fuctors.
. _

IS

BN

[ Due:,to this latter point it is difficult to\speculate if ihe FKT
wole be useful for detection ‘of brain dysfunctions which m.mit"cst
themselves in the EEG For example, for a patlent with a tumour it
@uld be dlfff'éult to detect the abnormality with the FKT unless a

"non-tumour” example of that patient's EEG were available. For

;
e

: epileptics, on the other hand, non-epileptic EEG is available and

therefore detection. and possibly warning would be possible. Because

b . .
_the classification performed here is only on two states, EC and' EP,

'search i1s required to determine the appllcablllty of the FKT to other

classes of the EEG ddta
Further investigation is also required to determine if the fea-
ture vectors have any physiological basis, or if they are just conve-

nient mathematical entities lacking any intuitive appeal. Using um;

_ulated data, or c_i_ata‘collecte.d from well defined subject groups, and

noting where the transformation matrix clusters the classes would be
seful for understanding the transformed measurement space. For
example, data generated from a front/back dipole may éluster in a
different locatfon than that of data.from z side/side dipole.

In genzral then, the results from this chapter point in one of \
two - directions. The first, is that while differences between cognmve'
states are detectable. within an indi_vidual, no general trend exists
amongst the population. The second, is that tigh‘tcrfcxperimént'ul
controls ére required to determine if any trends can be found using

the FKT. .



Chapter 5

Conclusions

Indthis thesis the Karhunen-Loeve transform was used as a pat-
tern representation and c]ﬂ’és‘sifvication technique on the spatio-tempo-
ral EEG. The study used background EEG data and concentrated on
showing that the results obtained were u\niversal In nature, in so (far
.db the methods ylelded similar findings on every subject studied. Thé
parameters themselves, though were unique to every individual.

When applied to a set of \data the KLT y1elds a set of basis
functions and coefficients. These entities have two desirable prop-
erties. First, maximum information is compressed into the‘wfewest
number of basis functions and coefficients 'possibﬂle, in a least squares
sense. Second, the set of basis functions and coefficients both ‘form. an

%rthogonal set. When applied to the spatial EEG. the basis functions -
represent the spatial p'att‘erns-aunderl'ying the original input data, and
can thus be considered basis images. In such a case the coefficients
represent the amount of eacn basis image present in the original data
at various points in time. | & »

A key result when the KLT was applred to temporal 1mage se-
quences of EC and EP data was that the original data could be recon-
'struct_e"d typically using 5 basis images. Moreover, the basis images
computed from one section of data adequately represented other

segments of data separated by as bmuch.as 90 seconds. The | <

representation was accurate both in terms of power and shape. These

results indicate that srgnrfrcant compression of EEG data with little

loss of signal power and shape is possible using the KLT This is con—

124 .
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sistent with the results from other studies (Nunez, 1981; Skrandices:

and Lehmann, 1982), where physiological relevance ' of the basis im-
~ages was also postulated | ‘ o ‘

“The amouig of spatlal variation, reflected in the quantity ot
each basis" 1magez_prg,sent;~ varied with the length of data analyzed.
Short data segments (.less' than 1/2 second) exhibited less 'Sptrtiul
variation than fon_ger segments. The maximum amount of variation
occurred at data lengths of approxi‘mately—8 seconds, after which lit-
tle increase occurred. | e

The basis images and the amount of poywer représented by
. each 1mage varled between individuals - ano cognmve states. For the
states studied, front back activity was usually found in the first two
basis images, with the third typically containing side to@de activity.
The* ratio of power represented by each basis image varied through
“each “suvbject's. data record, and was very different among the sub-
jects themselves. There was more commonalrty, though in the basis
images of subjects within the same cognitive state, than fOr basis 1m-
ages from two different states of the same SUbJCC[ ‘ ,

‘In order. to quantify the drfferences between EC dnd EP ddld
the Fukunaga and Koontz transformation and a minimum distance
classifier was used. The FKT requrres as 1nput two. training samples
of data, one from each’ class. The output consists of .a tmnsfon}natron
matrix, which when applled to unknown data ylelds feature vectors,
and when applled to the training . data yrelds two rrunmg vectors.
The classifier assigns unknown feature vectors to the same class as |
the training vector to which it is closest (using a Eu‘cvlidean distance).

The . FKT accurately classified unknown data wt;en training

vectors -from the subject to be classi’fjed were available, regardless of

to
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the subject whose data was used in computing the transformation
/

matrix. Better class separation, though, occurred wlﬁ‘lhe trartsfor-‘
"' mation matrix and ‘traini.ng vectors were from the same subject. Dif-
~ ferences between cognitive state were therefore dependent upon the
individual, and were not common amongst the subjects studied. Us-
ing collective data to ‘generate the transformation matrix did not im'-.
prove the classifi_cation accurécy for other suhjects (1.e. those whose
data Was- not used' in computing the métrix)v unless training VECLOrTS
from those other subjects were avallable These results are consistent

with the fact that the amount of each basis image present in the EEG

varied considerably for subjects in the same state.x

" The - lack of -any uniform trend in the pattern represéntation or -

c‘l’assifiuczttion results may be indicative of several factors. First, many
more .subjects, were_required in order to smooth out statrstrcal '
_fluctqatrons to detect any srgmfrcant trends, or that frner division
ftlpng subjects groups was required, or both.

’ Secohd, while the cortical processes generating the EEG are .
similar for subjects in the same state, other factors such as scalp con-
ductivity and skull thickness were-drstorting the signals so that they
appeared very different on the scalp Modellmg such drstortron -may
uncover ghe 'true" signals, which then may be input to KLT wrth
MOre Success. .

Finally, individual variations in the processes ge'neratimg the -

EEG were sufficiently different so that no common framework exists.

>¢l'hls is the view that Gevins (1984) supports when he statesg}, . wide

variations in fundamental characterrstrcs of , the t1me se‘nes (fre—‘
quency, amphtude morphology, spatral distribution, etc) due to

' norma\l anatomlcal and biophysical d1fferemces ha,ve prevented the

—\,.
m,

'im



development of precise quantification of mnast wave properties” (p.
834). If this is the case, then untilytruly normative values L‘an be ob- -
tained from the EEG, techniques such.as the KLT will have to be ap-
plied only to intra- subject data.

Generally, the results from this thesis provxde a basis tor. fur-
ther investigation into the EEG using the Karhunen- Loeve transform;
While the KLT will by no means explam all remaining quesuon\ re-
garding the 'EEG, }t:IS hoped that the methods developed here are
used to further work in the field By providipg an additional analyiic

tool.

i
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