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Abstract

Time consuming offline laboratory analysis and high cost hardware mea-

surement techniques render difficulties in obtaining the important quality

variables in real time application. Near-infrared (NIR) spectroscopy is wide-

ly used as a process analytical tool (PAT) in chemical processes, providing

online estimation of the target properties which are often obtained by lab

analysis. This thesis focuses on the model building, model structure (wave-

length) selection and online model update for NIR applications.

Time varying issue is solved by applying recursive adaptation methods

and a novel recursive wavelength selection algorithm is proposed to adapt

the model structure during online phase. The Just-in-time (JIT) modeling

approach is adopted to model the nonlinear relationships between spectra

and properties. A similarity criterion that utilizes input-output information

is developed to search for most relevant samples from the database. Finally,

the recursive algorithm and locally weighted algorithm are synthesized into

the JIT framework in order to deal with both time varying and non-linearity

issues of the process.
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Chapter 1

Introduction

1.1 Motivation

Estimation of real-time values of critical process variables is of great impor-

tance from the perspectives of both process monitoring and process control.

Due to the limitations of measurement techniques, the high installation cost

and the time consuming procedures that exist in the traditional offline lab-

oratory analysis, it is desired to develop a measurement mechanism which

can provide online fast rate predictions for the important quality variables

of the process.

Near-infrared (NIR) spectroscopy has been widely adopted as a process

analytical tool (PAT) in various fields; the most important reason is its a-

bility to record spectra in real time to capture process properties [4, 5, 6].

Compared with traditional laboratory analysis, NIR analysis can provide

estimation results significantly faster, which results in improved monitoring

and control of product quality among petroleum, petrochemical, pharma-

ceutical, environmental and many other industry sectors [4, 5, 6, 7]. The

principle of NIR instrument is shown in Figure 1.1 [1]. The instrument gen-

erates light beam and sends it through the optical fiber, at the end of which

the probe is immersed into the sample. Part of the light will be absorbed
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by the chemical components in the sample. By detecting and calculating

the energy loss of the light beam, a spectrum can be generated as shown in

Figure 1.2, where the absorbence is calculated by Equation 1.1:

a = log(
I0
I
) (1.1)

where I is the light intensity after absorption and I0 is the intensity of the

incident light.

Probe 

(Sensor) 

Figure 1.1: NIR instrument and probe [1]
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Figure 1.2: A typical NIR Spectrum

In NIR spectroscopy analysis, the main problem of interest is to build

a model which relates the spectrum (x) and the target property (y). The
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spectrum is usually obtained online and the target property is often ob-

tained by offline lab analysis. So combining these two techniques is of great

importance in order to get the fast rate predictions of the quality vari-

ables. Traditional data-driven methods such as partial least squares (PLS)

regression and principal component regression (PCR) are widely used in

NIR modeling; however, when encountered with time varying and/or non-

linearity issues, a invariant PLS model is not appropriate in terms of obtain-

ing satisfactory prediction performance. This thesis deals with time varying

and non-linearity issues in NIR modeling and three different approaches are

proposed and evaluated.

1.2 Contributions

The main contributions of this thesis are the development of data-driven

modeling methods to solve the time varying and non-linearity problems

in Near-infrared spectroscopy modeling. The proposed methods result in

improved model prediction performance. The specific contributions of this

thesis can be summarized as follows:

1. Developed a recursive wavelength selection method to update both

model structure and model coefficients in each update iteration.

2. Formulated the NIR modeling problem in a Just-in-time framework.

3. Proposed a similarity measurement using orthogonal signal correc-

tion (OSC), where both input and output information are utilized to

calculate distance.

4. Formulated the recursive adaptation algorithm under the JIT frame-

work and illustrated the relevance measurement from the perspective

of both distance and time.
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5. Proposed a new weighting scheme for JIT approach, where both non-

linearity and time varying issues can be solved.

6. Evaluated the proposed algorithms using NIR data sets obtained from

agriculture, petrochemical and pharmaceutical industry.

1.3 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 deals with time

varying issues in NIR modeling using a recursive wavelength selection algo-

rithm. The proposed algorithm can adapt both the model structure (wave-

lengths in NIR modeling) and the model coefficients by learning from the

latest samples. The method is evaluated by case studies for diesel property

estimation and wheat kernel protein content estimation. Chapter 3 formu-

lates the NIR modeling problem in a Just-in-time (JIT) framework in order

to solve the non-linearity problem that exists in the data. The historical

information and the current process input are synthesized in order to search

for samples that are similar to the current query sample. By prioritizing

and assigning higher weights to samples that are more similar to the query

sample, a local model is built by weighted regression. The proposed method

utilizes both input and output information to calculate the similarity, and

the usefulness of this method is illustrated by a benchmark NIR data set

obtained from pharmaceutical industry. Chapter 4 solves both time vary-

ing and non-linearity issues in the same time under the JIT framework,

where the locally weighted algorithm and recursive algorithm are combined

to select important samples. The thesis is concluded in Chapter 5 which

summarizes the work that has been done.

The literature review is distributed in each chapter. This thesis is orga-

nized in paper format so that there may be some overlap between the chapters

for sake of completeness of each chapter.
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Chapter 2

Recursive wavelength selection

strategy for near infrared

spectroscopy model updating

In this chapter, a new model updating approach is proposed which can

adjust to process changes by recursively selecting the NIR model struc-

ture in terms of wavelength. Wavelength selection is widely accepted as

an important step in near-infrared (NIR) spectroscopic model developmen-

t. In quantitative on-line applications, the robustness of the established

NIR model is often jeopardized by instrument response changes, process

condition variations or new sources of chemical variation. However, to the

best of the authors’ knowledge, on-line updating of wavelength selection has

not been considered in NIR modeling and property prediction. The advan-

tage of the presented approach is that it can recursively adjust both wave-

length selection and model coefficients according to real process variations.

The performance of the method has been tested on a spectroscopic dataset

The content of this chapter has been published in M. Chen, S. Khare, B. Huang,
H. Zhang, E. Lau, E. Feng, Recursive Wavelength-Selection Strategy to Update Near-
Infrared Spectroscopy Model with an Industrial Application, Industrial & Engineering
Chemistry Research, accepted May 2013.
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from a refinery process. Compared with traditional PLS, locally weighted

PLS and several updating strategies, it is shown that the proposed method

achieves good accuracy in prediction of diesel properties.

2.1 Introduction

During recent years, near-infrared (NIR) spectroscopy has been widely

adopted as a process analytical tool (PAT) in various fields; the most im-

portant reason is its ability to record spectra in real time to capture process

properties [4, 5, 6]. Compared with traditional laboratory analysis, NIR

analysis can provide estimation results significantly faster, which results

in improved control and product quality among petroleum, petrochemical,

pharmaceutical, environmental and many other sectors [4, 5, 6, 7]. In this

paper, we estimate the diesel properties (cloud point and flash point) by

NIR models, which are important indices for control purpose in a refinery

process.

Spectrum measured on modern NIR scanning instruments has hundreds

of wavelengths (usually 780-2500nm), which correspond to hundreds of spec-

tral points often termed as variables in system identification literature. To

deal with such information-rich data, considerable efforts have been directed

towards the following problems: i) preprocessing; ii) wavelength selection;

iii) regression analysis; iv) model updating. Spectra preprocessing has be-

come an integral part of NIR modeling [8]. The objective of preprocessing is

to remove light scattering phenomena in the spectra in order to improve the

performance of the subsequent predictive model building. Due to light path

length change, many methods have been proposed to correct for the base-

line trend and curvilinearity [9], such as multiplicative scatter correction

(MSC), extended multiplicative scatter correction (EMSC) [10], Savitzky-

Golay derivative [11], standard normal variate (SNV) [12] and multivariate
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method like orthogonal signal correction (OSC) [13].

Wavelength selection in NIR modeling is an important step as the re-

moval of non-informative wavelengths will result in better prediction per-

formances and reduce the model complexity [4, 7]. Other than selecting

wavelengths manually based on chemical knowledge, a large amount of ef-

forts have been devoted to the area of statistical methods such as successive

projections algorithm (SPA) [14], uninformative variable elimination (UVE)

[15], variable importance in the projection (VIP) [16], simulated anneal-

ing (SA) [17], Elastic Net Grouping [18], competitive adaptive reweight-

ed sampling (CARS) [19], genetic algorithms (GAs) [20], interval partial

least squares (iPLS) [21] and moving windows PLS [22]. Traditionally, the

wavelength selection algorithm is performed in the NIR training data set,

and then the selected wavelengths are used for modeling and prediction.

However, those wavelengths selected from the training data set may not

be representative of the future process condition due to process changes,

resulting in the deterioration of the prediction performance. Model param-

eter updating may not be sufficient to capture the change and update of

the model structure (i.e., the relevant wavelength in NIR modeling) need-

s to be considered. This motivates us to explore a wavelength updating

method in which wavelengths are reselected according to the latest process

information.

Based on Beer’s law, most of the past research has used linear regres-

sion methods such as partial least squares (PLS) and principal component

regression (PCR) to build NIR models [6, 23]. Some properties may have

non-linear relationship with NIR absorbance, which results in the use of

non-linear regression methods like artificial neural network (ANN) [24], least

squares support vector machines (LS-SVM) [25], Gaussian process regres-

sion (GPR) [26] and locally weighted regression (LWR) [27].

Besides non-linearity, NIR models also suffer from time-varying issues,
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especially when used for on-line prediction. In many process applications,

changes in the instrument properties (e.g. spectrometer aging), variations

in the measurement conditions (e.g. temperature) and new source of chem-

ical variation may cause the existing models to become invalid [5]. Thus

maintaining the model robustness over time is an important task in real

time application. The NIR model updating methods can roughly be classi-

fied into the following categories: i) predicted value correction; ii) spectral

response standardization; iii) recalculation of model coefficients.

One of the most widely used methods in predicted value correction is

the slope/bias correction (SBC) [28]. However, since SBC is a univariate

approach, it cannot handle complex interactions between wavelength shifts

and intensity changes of the instrument (e.g. peak broadening)[29]. Only

linear intensity changes can be corrected for by this method. Further, pre-

dicted value correction methods may be questionable when the process or

measurement conditions undergo some complex changes [30].

The spectral response standardization, also known as calibration trans-

fer, is a popular method in NIR field. In this approach, a transformation

matrix is calculated to transform the spectra data obtained from the cur-

rent condition/instrument into the original one. As a result, the original

model can still be used for prediction without the need of updating model

coefficients [30, 28]. The transformation matrix is found through some mul-

tivariate statistical methods, among which piecewise direct standardization

(PDS) [28], spectral space transformation (SST) [31], dynamic orthogonal

projection (DOP) [32] and systematic prediction error correction (SPEC)

[33] are most widely used. However, most standardization methods require

the spectra of a few samples to be measured under both calibration and test

condition, which is often not available for on-line applications. Moreover, in

the SPEC method, the number of chemical variation sources in the spectra

needs to be identified prior to the application, which is a challenging task
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for systems that cannot be characterized well (e.g. fuels, minerals).

A more straightforward way for model updating is the model coefficients

recalculation. A simple way to do this is to add a few new samples into the

original calibration set and identify the model coefficients again, so that the

model is extended and adjusted to capture the new variations in the process

[34, 35]. When facing a large number of new samples, weights should be

assigned to the representative samples [36, 37]. Recently, some advanced

methods have been used to accomplish the selection and weighting, such as

Tikhonov regularization (TR) [38] and simple interval calculation (SIC) [39].

Another way to update NIR model coefficients is the recursive partial least

square (RPLS) [40, 41, 42]. Other than accumulating a certain number of

new samples, RPLS expands the database by adding every sample available

and continuously recalculates the model coefficients. Since RPLS updates

the NIR model frequently (every sample interval), it can capture the new

variation without delay, which is preferred for rapidly changing processes

(e.g. mining, refining). A successful implementation of RPLS algorithm in

mining process has been reported [43, 44, 45].

Among all the model updating methods listed above, on-line wavelength

selection has not been considered in the model update. The model structure

(wavelength) used in the NIR model is typically selected from the initial cal-

ibration data set and remains unchanged in further prediction. However,

it is questionable whether the new sources of variation can be captured by

these pre-selected wavelengths. As far as author’s knowledge, this is the first

attempt which integrates the real-time wavelength selection with model up-

date in the NIR applications. In this chapter, a novel algorithm is proposed

in which the wavelengths are selected recursively and the model is updated.

The proposed algorithm utilizes both the recursive exponentially weighted

PLS and the method of variable importance in the projection (VIP). The

performance of the proposed algorithm is demonstrated on an NIR data set
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from a refinery production line. The prediction results are compared with

other modeling techniques such as PLS, locally weighted PLS and recursive

PLS. It is shown that the informative wavelengths are updated according-

ly through the real-time wavelength selection. The prediction performance

is improved by the proposed algorithm compared to predictions without

real-time wavelength update.

2.2 Necessity of wavelength updating

In this section, the necessity of wavelength updating is investigated from

various aspects.

According to Beer’s law, the relationship between output y (property)

and input xi (absorption) can be expressed in a linear form as shown in

Equation 2.1.

y = b0 + b1x1 + b2x2 + · · ·+ bmxm (2.1)

where y denotes a property related to concentration (e.g. density, viscosity).

Usually, only part of the wavelengths are retained for model training in

order to remove the noise from the spectra. However, if there are new

chemical resources emerging in the process, the wavelengths have to be

updated. This is due to the large number of vibration modes and electronic

transitions associated with NIR spectra region. Moreover, neighbor group

effects, hydrogen bonding, phase separation etc. can also affect the results

of wavelength selection [4, 6]. It is even possible that two samples with

very similar element compositions have different spectra [43]. On the other

hand, if there is any chemical component disappearing from the process,

the informative wavelengths will also change. Thus, a model with flexibility

of structure update will be able to capture the real-time variability.

The on-line spectroscopic measurements are almost inevitably subject

to fluctuations and variations of physical condition, e.g. temperature, pres-

10



sure, flow turbulence, sample compactness, particle size and surface topol-

ogy, which can influence spectra in a non-linear manner and hence lead to

a poor predictive performance of linear models [4, 30]. The fluctuations in

temperature cause non-linear spectra shift and broaden the spectral bands

of chemical constituents [30]. Physical variations such as particle size, sam-

ple packing and surface effects change the optical path length and mask the

spectral variations related to chemical constituents differences [30], which

are commonly observed in heterogeneous mixtures [46, 47]. Air bubbles,

flow rate and solid impurities in the process flow also have significant in-

fluences on the spectral absorption and baseline [34]. All these factors

listed above may vary and cannot be foreseen. This motivates the attempt

of adaptively choosing the informative wavelengths according to the latest

process and environmental conditions.

Instrument aging or repairing also affects the spectrometer response; for

instance, a lamp or probe replacement can usually change the spectra in

some unknown manner. The wavelength axis shift, spectral shrink/stretch

and non-linear baseline shift are commonly seen among NIR instrument

over time [48]. It is then recommended to adjust the wavelengths that are

initially chosen from training data set accordingly.

2.3 Theory and algorithm

In this section, the recursive PLS and variance importance in the projec-

tion (VIP) selection method are combined to update the model structure

(wavelength) and model coefficients recursively. It should be noted that, in

NIR modeling, the data need not to be scaled as all the input variables are

in the same scale of magnitude. The following section illustrates the details

of the algorithm.
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2.3.1 Recursive exponentially weighted PLS (rPLS)

The fast recursive exponentially weighted PLS algorithm proposed by Dayal

and MacGregor [41] is adopted here for model coefficient update. In this

approach, based on the improved PLS kernel algorithm [49], a forgetting

factor is introduced to exponentially discount the past data. The updating

of covariance matrices is performed through Equation 2.2-2.3.

Rxx(t) = λRxx(t− 1) + x̃T(t)x̃(t) (2.2)

Rxy(t) = λRxy(t− 1) + x̃T(t)ỹ(t) (2.3)

where the forgetting factor λ, 0 < λ ≤ 1, determines how quickly the old

data are discounted. Once the covariance matrices are updated, a fast kernel

PLS calculation is followed as briefly explained below:

1. Compute the covariance matrices Rxx and Rxy.

2. Set k = 1 and determine the number of latent variables as A.

3. Compute the weight vector wk

wk = Rxy (2.4)

wk =
wk

∥wk∥
(2.5)

4. Compute rk using the following formula:

rk =

 wk if k = 1

rk = wk − pT
1wkr1 − pT

2wkr2 . . .p
T
k−1wkrk−1 if k > 1

(2.6)

5. The kth score vector and loading vector are obtained as in Equation

2.7-2.9.

tTk tk = rTkRxxrk (2.7)
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pT
k =

rTkRxx

tTk tk
(2.8)

qT
k =

rTkRxy

tTk tk
(2.9)

6. Deflate the covariance matrix Rxy as in Equation 2.10.

Rxy = Rxy − pkq
T
k (t

T
k tk) (2.10)

7. If k = A, go to the next step. Otherwise, set k = k + 1 and return to

step 3.

8. Compute the regression coefficient by

b = [r1 r2 . . . rA][q1 q2 . . .qA]
T (2.11)

The regression coefficients b can be used for future prediction. On the

other hand, the score vector tk, loading vector qk and weight vector wk are

stored and used for VIP wavelength selection as discussed below.

2.3.2 Variable Importance in the Projection (VIP)

There are numerous wavelength selection methods in the literature. Perhaps

the simplest method to update wavelength is to retry the corresponding

wavelength selection method and reconstruct the PLS in each updating

iteration. However, most wavelength selection methods are based on cross

validation, where the wavelength updating will not be effective because

several new samples are not be able to change the cross validation results

too much.

In this study, the variable importance in the projection (VIP) is adopted

for its great compatibility with recursive PLS. Recursive PLS can take full

advantage of the latest samples by setting a smaller forgetting factor (if the
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process is relatively stable, a greater value can be set). In this case, a full

spectrum PLS model is retained in memory and updated whenever a new

sample is added into the database. Using the score vectors, y-loadings and

weight vectors from the updated full spectrum PLS model, the VIP index

for each wavelength is recalculated according to Equation 2.12.

V IPj =

√√√√M
∑A

k=1 q
2
kt

T
k tk

wjk

∥wk∥∑A
k=1 q

2
kt

T
k tk

(2.12)

where j represents the jth wavelength, 1 ≤ j ≤ M and qk is 1 × 1 di-

mensional. A user defined threshold, α, is set to filter out unimportant

wavelengths. As shown in Equation 2.13, wavelengths with a value larger

than α will be regarded as informative wavelengths.

V IPj > α (2.13)

Since the score vector, loading vector and weight vector are all updated

recursively, the wavelengths selection will be adjusted accordingly in every

recursion step.

2.3.3 Proposed updating scheme

In this algorithm, a full spectrum PLS model is retained in memory for

calculating the VIP indices. However, rather than using the full spectrum

model for prediction, another PLS model is built with the wavelengths

selected by VIP method. Each time when a new sample is available, the

full spectrum model is updated so that the VIP indices can be recalculated.

The whole updating scheme is pictorially summarized as in Figure 2.1.

Before updating, an initial model is obtained from the database. The

initial covariance matrices are calculated from the mean centred data (X,y)
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using Equation 2.14-2.15.

Rxx(0) = XTX (2.14)

Rxy(0) = XTy (2.15)

Based on the initial covariance matrices, a full spectrum PLS model is

built and the VIP wavelength selection is performed. Then the important

variables (wavelengths) are selected to construct the reduced-dimensional

covariance matrices rxx(0) and rxy(0). Finally, the initial model coefficients

b0 is generated by the fast kernel PLS algorithm mentioned above.

Figure 2.1: Model structure and coefficients update scheme

When the new spectrum x(t) and reference data y(t) are available at

time t, the mean vectors are updated according to the method proposed by
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Su and Zeng [50], as shown in Equation 2.16-2.17.

x(t) =
N − 1

N
x(t− 1) +

1

N
x(t) (2.16)

y(t) =
N − 1

N
y(t− 1) +

1

N
y(t) (2.17)

Then the mean-centred new data are obtained as

x̃(t) = x(t)− x(t) (2.18)

ỹ(t) = y(t)− y(t) (2.19)

which can be used in Equation 2.2-2.3 to update the covariance matrices.

As a result, a full spectrum PLS model is calculated with the updated

covariance matrices so that the VIP indices can be recalculated using E-

quation 2.12. The important wavelengths at time t are selected according

to Equation 2.13. At this iteration, let L out of M wavelengths be selected

from the full spectrum. The selected wavelengths are stored in a vector

denoted by Equation 2.20.

v = [v1 v2 · · · vL] (2.20)

It should be noted that L may differ with each iteration. In order to get the

relevant model for prediction purpose, the reduced-dimensional covariance

matrices rxx(t) and rxy(t) are computed using v. However, they cannot be

updated in the same way as Rxx(t) or Rxy(t) since rxx(t− 1) and rxy(t− 1)

may be constructed with variables different from v.

The following discussion illustrates a way to extract rxx(t) directly from

the full-dimensional covariance matrice Rxx(t). From Equation 2.2 and
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(2.14, we can derive:

Rxx(t) = λtXTX+ λt−1x̃T(1)x̃(1) + λt−2x̃T(2)x̃(2) · · ·

+ λx̃T(t− 1)x̃(t− 1) + x̃T(t)x̃(t)
(2.21)

In the meantime, the reduced-dimensional covariance matrix constructed

from chosen wavelengths can be expressed as Equation 2.22:

rxx(t) = λtΦTΦ + λt−1ϕT(1)ϕ(1) + λt−2ϕT(2)ϕ(2) · · ·

+ λϕT(t− 1)ϕ(t− 1) + ϕT(t)ϕ(t)
(2.22)

where Φ and ϕ(t) are subsets of X and x̃(t), respectively, as shown in

Equation 2.23.

Φ = [xv1 xv2 · · ·xvL ], ϕ(t) = [x̃v1(t) x̃v2(t) · · · x̃vL(t)] (2.23)

where xi and x̃i(t) denote the ith column of X and x̃(t), respectively. To

find the relationship of Rxx(t) and rxx(t), we compare the (i, j)th entry

(i, j = 1 . . .M) of Rxx(t) with the (vp, vq)th entry (p, q = 1 . . . L) of rxx(t)

as following:

Ri,j = λtxT
i xj + λt−1xT

i (1)xj(1) + λt−2xT
i (2)xj(2) · · ·

+ λxT
i (t− 1)xj(t− 1) + xT

i (t)xj(t)
(2.24)

rvp,vq = λtxT
vpxvq + λt−1xT

vp(1)xvq(1) + λt−2xT
vp(2)xvq(2) · · ·

+ λxT
vp(t− 1)xvq(t− 1) + xT

vp(t)xvq(t)
(2.25)

From Equation 2.24-2.25, it is easy to get Equation 2.26.

rvp,vq = Rvp,vq (2.26)
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Thus rxx(t) is nothing but a submatrix of Rxx(t) as shown in Equation 2.27.

rxx(t) =


Rv1,v1 Rv1,v2 · · · Rv1,vL

Rv2,v1 Rv2,v2 · · · Rv2,vL

...
...

. . .
...

RvL,v1 RvL,v2 · · · RvL,vL

 (2.27)

In the same way, one can show that rxy(t) can be easily extracted from

Rxy(t) as well. Once the updated covariance matrices rxx(t) and rxy(t) are

obtained, the fast kernel algorithm is applied and the regression coefficients

are generated. This PLS model is used for future prediction until next

updating instance.

2.4 Results and discussion

2.4.1 Diesel data and benchmark wheat kernels data

The NIR data used here were obtained from a refinery plant, located in

Edmonton, Canada. A total of 577 diesel samples are collected from on-line

operation between January 2010 and April 2012, the sampling rate of which

is one day per sample. The spectra of diesel samples were measured using

an NIR spectrometer (Guidewave) having the wavelength range of 800-1700

nm and nominal spectral resolution of 1 nm. Reference diesel properties

(flash point and cloud point) were measured using standard ASTM testing

methodologies.

There were 11 samples identified as outliers and thus removed from the

database. The standard 3-sigma analysis was used to identify the samples

with extreme y-values. The samples within the range specified by Equation
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2.28 were kept for investigation.

y − 3σ ≤ yi ≤ y + 3σ (2.28)

where y is the mean value and σ is the standard deviation of outputs. Then,

the first 250 samples were used to train the initial model, and the remaining

320 samples were used for testing. The original spectra of diesel samples

are shown in Figure 2.2. In order to eliminate the baseline effect, all the

spectra were subject to first order derivative preprocessing according to the

Savitzky-Golay method. The spectra after preprocessing can be seen in

Figure 2.2.
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Figure 2.2: Original and first derivative spectra of diesel samples
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Figure 2.3: Wheat kernels spectra

Wheat kernels data set was downloaded from (http://www.models.kvl.dk/datasets).

The calibration set was made up of 415 samples representing 43 different

varieties from two different locations. The testing set was made of 108 sam-

ples representing 11 different varieties from one location. All kernels were

randomly chosen from bulk samples. The test samples were acquired with

the calibration samples, but stored for about two additional months before

measurement in order to provide a check for temporal drift in the samples

and instrumentation. The target property is the protein content (%) in the

kernels. The wheat kernels spectra can be seen in Figure 2.3. The spectra

have been preprocessed by MSC method before modeling.

2.4.2 Results for diesel data

In this study, two important properties, flash point and cloud point of the

diesel from the production line of the refinery plant are to be estimated.

Traditionally, the property measurements are obtained from off-line labora-

tory analysis, which takes one day to have one sample measured. However,

no measurements are available for the intermediate points during the sam-

ple interval. Thus the estimation of the real time properties is desired. An

accurate real-time estimation will help to operate and control the process ef-
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ficiently. The NIR analyzer is able to scan one sample in just a few seconds.

Once combined with prediction models, it can offer fast on-line estimation

of the diesel properties.

Several modeling approaches are attempted and the model performance

is evaluated by Root Mean Square Error of Prediction (RMSEP) and the

correlation coefficient R. The effects of wavelength updating are also dis-

cussed. For proprietary reasons, the property values are normalized between

-1 and 1.

The real benefit of recursive wavelength updating scheme (denoted as r-

wPLS) is that it can adapt both model structure and coefficients according

to the latest reference data. To show the advantage of real-time updat-

ing wavelength, another five modeling approaches were investigated and

compared with the proposed one. It should be noted that, in the initial

modeling stage, the same wavelength selection (VIP) was applied to all the

six approaches. Only in rwPLS, the VIP calculation was repeated every

time when the reference data was available. The threshold α was set as 0.8

for Flash point and 0.7 for Cloud point. A procedure to set optimal value

of α has been reported [16]. For the other five approaches, the model struc-

ture (wavelength) is fixed all the time. The five approaches are summarized

below:

1. PLS: a PLS model with fixed model structure and coefficients was

trained by the calibration data set (the first 250 samples). Since the

fixed model did not adapt to the process variations, it was expected

that its performance would deteriorate quickly.

2. LW-PLS: the locally weighted PLS (LW-PLS) model was investigated

since it can deal with changes in process characteristics as well as non-

linearity [51]. In this approach, every query sample had a local model

to predict the output, i.e. the local model was only trained after the

21



query sample was available. Different weights were assigned to the

calibration samples based on the distance between the query sample

and calibration samples.

3. LW-PLS2: the locally weighted PLS with extended database (LW-

PLS2) was attempted to improve the performance of LW-PLS. The

most recent samples were added into the calibration data set in order

to provide the latest process information. However, in order to avoid

the computational load, we kept the number of calibration samples

constant by removing the equal number of samples from the distant

past.

4. PLS+bias: as illustrated in Equation 2.29, a bias updating mechanism

was integrated with the fixed PLS model in order to detect the bias in

the predictions. However, the model coefficients remained unchanged.

ŷt = ŷPLS
t + (yLabt−1 − ŷPLS

t−1 ) (2.29)

5. rPLS: recursive exponentially weighted PLS (rPLS) was investigated

where the model coefficients were updated in every iteration but the

model structure was still fixed. In this study, the forgetting factor λ

is set as 0.9 by cross validation.

The model performances of fixed PLS and LW-PLS can be easily e-

valuated by cross-validation. However, because of the adaptive nature of

the remaining four approaches, the new responses are predicted with the

existing model before using the new sample for updating, and then the pre-

dicted responses are compared with the reference value. The RMSEP and

correlation coefficient R for each model are shown in Table 2.1.
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Table 2.1: Comparison between rwPLS and other updating methods with
fixed model structure

Flash point Cloud point

Model RMSEP R RMSEP R

PLS 0.2998 0.5758 0.3197 0.5854

LW-PLS 0.2511 0.6725 0.2587 0.6081

LW-PLS2 0.2473 0.7448 0.2026 0.6362

PLS+bias 0.1773 0.8238 0.1914 0.7281

rPLS 0.1530 0.8814 0.1488 0.7815

rwPLS 0.1287 0.9009 0.1504 0.8067

The model which gives the lowest RMSEP and the highest R is consid-

ered as the best one. For both properties, the two static approaches, fixed

PLS and LW-PLS are not able to estimate the validation data effectively

and give considerably higher error values than the other four approaches

as expected. This clearly shows the advantage of model updating. The

LW-PLS approach, which can account for non-linearity, gives a better per-

formance than fixed PLS but is still worse than the models with updating

strategies. This indicates that the time-varying issue is more important and

more severe than the linearity in the considered process data. LW-PLS2

gives better results than LW-PLS because the new samples are added into

the database to account for process variations. However LW-PLS2 cannot

reach the performance of simple bias correction. This is because the most

recent added samples were not used in every iteration. If the distances

between query sample and the recent samples were too large, the recent

samples would have been assigned small weights; thus the latest process

information was not learned sufficiently. The bias correction seems to be

very effective among the first four approaches. But it is still worse than the

last two recursive-based methods. Actually, rPLS and rwPLS can detect
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the bias term by the mean vector updating in Equation 2.16-2.17, but bias

correction cannot cover the model coefficients updating or model structure

updating. This is why rPLS and rwPLS outperform the bias correction

method. Among all the approaches with fixed model structure, rPLS gives

the lowest RMSEP and highest R because it uses the new samples to adapt

the model coefficients recursively. Bias updated PLS only adapts the bias

term and keeps the model coefficients constant. On the other hand, since

rwPLS adapts both the model structure and coefficients recursively, and

the process variations are learned by the new model in real time, the lowest

prediction error is obtained.
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Figure 2.4: Model performance for flash point estimation: a) PLS; b) LW-
PLS2; c) rwPLS

The prediction results of flash point are shown in Figure 2.4, and it

is clear that the fixed PLS model deteriorates after a first few sampling

instances. The higher RMSEP values presented in Table 2.1 confirm this

result. LW-PLS2 achieves a better performance since it includes the most
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recent data and develops model at every point. However, as seen in Table

2.1, LW-PLS without updated database gets a poorer result than LW-PLS2.

From Figure 2.4, it can be seen that the proposed algorithm (rwPLS) pro-

vides the best way to prevent the model from gradually losing accuracy.

From Figure 2.5, the same conclusion can be drawn for the other property,

namely, cloud point.

The comparison in prediction performance is also made by scatter plots

as can be seen from Figure 2.6. In summary, the model structure and coef-

ficients updating yields significant improvement in prediction performance.
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Figure 2.5: Model performance for cloud point estimation: a) PLS; b) LW-
PLS2; c) rwPLS

In order to investigate the effects of wavelength updating, the number of

the selected wavelengths in each updating iteration was recorded and shown

in Figure 2.7 and 2.8. As expected, the number of selected wavelengths

indeed changed with time, indicating that the model structure was adapted

in every updating interval. It is interesting to see that there exist some
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instances where the wavelength number changed suddenly. For example,

the shaded region A and D experienced the sharp increase in wavelength

numbers. This is probably due to process condition changes reflected in the

data. Gradual changes of wavelength number were also seen in the shaded

region B and E. In the meantime, the bias terms to correct the fixed PLS

models were plotted in Figure 2.7 and 2.8.
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Figure 2.6: Scatter plots of model predictions: Flash point (a,b,c) and
Clound point (d,e,f)

The large bias terms indicate that a fixed PLS model is not adequate to

explain the data. Moreover, the behavior of bias term indicates that some

structures have not been captured by the bias updating. Especially some

peaks are seen from the bias updating trajectory. Therefore the simple

bias correction is not enough to compensate the changes in the process

properties, which confirms the results presented in Table 2.1. The peaks of

the bias update located in the shaded region A and D explain the sudden

wavelength changes in the corresponding periods. In fact, the relationship
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between the bias term and wavelength updating can also be seen from other

shaded areas. The results show that the model accuracy is not only affected

by the correctable bias error (which may be due to some systematic errors)

but also by certain structural variations in the process. The latter should be

compensated by updating both the model structure (wavelength selected)

and the model coefficients.
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Figure 2.7: Wavelengths updating for flash point estimation
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Figure 2.8: Wavelengths updating for cloud point estimation
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Figure 2.9: Wavelength selection from 60th to 61th sample (flash point)
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Figure 2.10: Wavelength selection from 165th to 166th sample (cloud point)

Figure 2.9 contains the details of wavelength selection for region A in

Figure 2.7. The shaded wavelength intervals (around 1150nm, 1250nm 1350-

1430nm and 1620nm) in Figure 2.9 were not selected at the 60th sample

but later included into the model by the 61st sample. These new wave-

lengths can be approximately attributed to first overtone, second overtone

and combination bands of C-H groups [52]. This indicates that new chem-
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ical components were emerging in that period. Since new chemicals had

contribution to the Flash point, the correlation among wavelengths were af-

fected and an updated model structure was needed. Similarly, Figure 2.10

shows the additionally selected wavelengths (920nm, 1150nm and 1400nm)

in region D of Figure 2.8. The 920nm interval can be attributed to the

third overtone of methylene. Since the new emerged chemical groups had

influence on the Cloud point, the corresponding model structure should be

updated by rwPLS.

To further justify the usefulness of rwPLS, three other wavelength up-

dating strategies were compared with rPLS and rwPLS. In these three s-

trategies, whenever a new sample was available, the database was updated

by a moving-window approach (delete the oldest samples from the database

and add the latest sample). Then a new model was constructed using cor-

responding wavelength selection method followed by PLS regression. It is

evident that both model structure and model coefficients are updated in

each iteration. The details are as below:

1. VIP-PLS: update wavelength by VIP, then reconstruct the PLS model

and the threshold α was set the same as in rwPLS.

2. UVE-PLS: update wavelength by UVE [15] and then reconstruct the

PLS model.

3. iPLS-PLS: update wavelength by iPLS and then reconstruct the PLS

model. The iToolbox for MATLAB contributed by L. Norgaard [21]

was used.

The results are shown in Table 2.2
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Table 2.2: Comparison of different wavelength updating strategies

Flash point Cloud point

Model RMSEP R RMSEP R

VIP-PLS 0.1631 0.8548 0.1584 0.7685

UVE-PLS 0.1542 0.8722 0.1712 0.7266

iPLS-PLS 0.1472 0.8893 0.1607 0.7631

rPLS 0.1530 0.8814 0.1488 0.7815

rwPLS 0.1287 0.9009 0.1504 0.8067

Compared with Table 2.1, these three wavelength updating strategies

achieve much better results than PLS, LW-PLS and LW-PLS2, which con-

firms that the process was changing frequently, and the latest sample should

be learned in time. Also, since the model coefficients are updated in these

three strategies, they outperform the PLS+bias approach.

For Flash point, the iPLS-PLS approach is better than rPLS, while

UVE-PLS has comparable results with rPLS. For Cloud point, both VIP-

PLS and iPLS-PLS have similar results with rPLS. Although rPLS approach

do not update the wavelength, it has two advantages: 1) the bias change

can be corrected by the mean vector updating shown in Equation 2.16-

2.17; 2) more weight can be assigned to the latest samples by adjusting the

forgetting factor λ. On the other hand, the information of the latest sample

may be diluted by the large number of samples in the database if we simply

add samples into the database and delete corresponding number of oldest

samples, just as VIP-PLS, UVE-PLS and iPLS-PLS do.

Overall, rwPLS has advantages from both rPLS and wavelength selec-

tion. By wavelength updating, rwPLS can detect changes in correlation

among wavelengths, which rPLS cannot achieve. So the lowest RMSEP

and largest R can be seen in Table 2.2.
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2.4.3 Results for wheat kernels data

In the benchmark wheat kernels dataset, the test samples were stored for

additional two months so that the prediction results will be influenced by

the drift in both samples and instrumentation. To check how wavelength

selection and recursive algorithm enhance the model performance, the fol-

lowing methods are tried:

1. PLS: a constant PLS model without wavelength selection or any up-

dating.

2. UVE: a constant PLS model using variables selected by UVE.

3. iPLS: a constant PLS model using variables selected by iPLS.

4. rPLS and rwPLS: as described before, the forgetting factor λ is set as

0.97 selected according to cross validation and the VIP threshold α is

set as 0.75.

The scatter plot of 3 models can be found in Figure 2.11. In the range

of 7%-11% (Measured protein content), there is obvious drift which cannot

be removed by PLS.

6 8 10 12 14 16
6
8

10
12
14
16

Measured

E
st

im
at

ed

PLS

6 8 10 12 14 16
6
8

10
12
14
16

Measured

UVE

6 8 10 12 14 16
6
8

10
12
14
16

Measured

rwPLS

Figure 2.11: Scatter plots of protein content (%) predictions

From Table 2.3, it can be concluded that both wavelength selection and

recursive PLS can improve the model accuracy. rPLS is even better than
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wavelength selection because the drift caused by the two months’ storage

can be corrected by learning from the samples in the test dataset. The

rwPLS algorithm has the best performance for the reason that it take ad-

vantages of both rPLS and wavelength selection.

Table 2.3: Comparison for protein content (%) predictions

Model RMSEP R

PLS 0.7807 0.9472

UVE 0.6544 0.9409

iPLS 0.6566 0.9343

rPLS 0.5459 0.9540

rwPLS 0.4583 0.9706

2.5 Conclusions

This study presents a recursive wavelength selection method for updat-

ing the model structure (wavelength) as well as model coefficients in NIR

application. Based on the exponentially weighted recursive PLS and vari-

ance importance in the projection (VIP) wavelength selection, the proposed

method is shown to be able to select the model structure in real time ac-

cording to the process variations. In each updating iteration, the original

database is gradually discounted enabling the wavelength selection in ac-

cordance with the latest process information. With applications to a real

refinery dataset and a benchmark wheat dataset, it is demonstrated that

the proposed method gives an improved predictive performance over tra-

ditional PLS, locally weighted PLS, bias updated PLS and recursive PLS.

Our results also indicate that wavelength updating is necessary for real-time

NIR applications.

32



Chapter 3

Just-in-time modeling using

input-output similarity

measurement

3.1 Introduction

Soft sensors are widely used in refinery, pharmaceutical, steel and many

other processes. Recently, soft sensors have become increasingly popular a-

mong process modeling, control and fault detection applications. Hardware

analyzers are commonly used in industry but they are usually expensive

and difficult to maintain. In the meantime, traditional lab measurements

have time delay issues which prevent them from being used in real time

control. On the other hand, soft sensors based on mathematical modeling

can provide fast rate prediction and require no additional capital cost. So

whenever possible, these advantages promote the use of soft sensors for es-

timating product quality in real time along with hardware analyzers and

lab analysis.

Based on the extent of first-principle information that is involved in the

modeling, the modeling techniques are divided into three categories: white-
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box, black-box and grey-box modeling. White-box models are also called

knowledge-driven models since they make full use of the process knowledge.

On the other hand, black-box models are also referred to as data-driven

models which are developed when the process knowledge is not available or

it is too difficult to develop a white-box model. An alternative approach

is the grey-box modeling which combines the above two approaches [53].

Compared to white-box models, one of the main advantages of data-driven

models is that they can generally be developed quickly without requiring

substantial understanding of the phenomenology involved [54]. Moreover,

process historical data have become widely available with digital instrumen-

tation in most plants nowadays, which provides a great incentive to use the

data-driven methods.

In most of the empirical data-driven modeling approaches, researchers

usually utilize the global modeling method, where only one model is built

from the historical data and applied to all the future inputs. However, if the

process operates in various operating modes, the global modeling approach

is not suitable. This problem becomes prominent when the historical data

cannot cover the whole process variation ranges or operation patterns. One

of the solutions that is widely adopted to solve this problem is the multi-

model approach, where several sub models are built beforehand according

to different operating regions or data patterns. Once the new query data is

available, it can be associated with one of the sub models to generate the es-

timation. The switching between the sub models is governed by predefined

criterion based on the operation modes of scheduling variables. Howev-

er, the multi-model approach suffers from the drawback of requiring prior

knowledge to determine the partition of the operating space [55]. When this

information is unavailable, a complex training strategy needs to be resorted

in order to determine both optimal model partition and parameters for each

local model.
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In the case of lacking process or expert knowledge, the Just-in-time (JIT)

learning method [2, 56, 54], which is also called ‘lazy learning’ or ‘locally

weighted modeling’ method, has been proposed in the machine learning

literature. It has been considered as an attractive alternative for chemi-

cal process modeling, monitoring and soft sensor development. Under the

JIT modeling architecture, a local model is built after the query sample is

available, using the most relevant historical samples to the query sample.

The local model is used to estimate the output value; after which the local

model is discarded. Since JIT approach ‘creates’ a unique model for ev-

ery query sample, it is different from traditional offline global modeling or

multi-model approach. Generally, the JIT method exhibits a local model

structure and it is built online using the most relevant data. Thus it is

believed that JIT can be used to cope with the process non-linearity and

track the abrupt changes of a process [57].

As can be seen in Figure 3.1, JIT approach is more applicable when

the process operation modes overlap with each other. Without process

knowledge, it is often difficult to identify the range of each pattern, which

is a major problem in multi-model approach. However, JIT does not need

the prior knowledge, and it simply searches for the relevant ‘process mode’

based on data-driven methods. This could be an advantage of JIT over

regular multi-model approach.

It should be noted that JIT itself is not a regression technique, but it can

be considered as a framework under which data-driven modeling techniques

can be applied in a more efficient way. For example, partial least squares

(PLS) regression can be applied within JIT framework, which results in the

well-known method called locally weighted PLS. Also, nonlinear regression

methods like artificial neural network (ANN) [24], least square support vec-

tor machines (LS-SVM) [25] and other kernel learning methods have also

been used within the JIT framework [54].
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Figure 3.1: Situations for applying multi-model and JIT approach

3.2 Framework of Just-in-time modeling

There are four key components in Just-in-time approach, namely, historical

database, similarity measurement, weight function and modeling technique,

which are illustrated in Figure 3.2.

Figure 3.2: The four key componets in JIT modeling
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The database consists of the data samples which are used as training

data to build local models for the future query samples. The similarity

measurement calculates the distances between query sample and the histor-

ical data. The similarity quantifies the relevance of the historical data with

the current query sample. Thus similarity measurement is important to

the success of JIT modeling since it tells which data points should be given

priority to build a local model for the current query sample. The weight

function is a formula which calculates the weights for each historical data

based on their similarity values. A data point in the database which ex-

hibits a high degree of similarity with the query sample is assigned a higher

weight. The weight function is a bridge between similarity and modeling

technique. After assigning weights to the historical data points, a modeling

technique (either linear or nonlinear) is used to generate a local model.

In summary, for a query sample xq there are four main steps involved

in a JIT model for online prediction:

1. Search for samples relevant to xq from the historical database based

on the similarity measurement.

2. Calculate the weight for each sample using the weight function.

3. Build a local JIT model f(xq) using weights and regression method.

4. Estimate the output yq online for the current input xq and then discard

the local model f(xq).

The difference between global modeling and JIT modeling can be seen

from Figure 3.3 [2].

It is clear that, in JIT approach, the current input (query sample) is

involved in the modeling steps, which means that the local model utilizes

the information from the query sample. It is quite different from the existing

global model approach where the query sample does not affect the model

at all.
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Figure 3.3: A comparison between global and JIT modeling [2]

3.2.1 Database construction

A reliable historical database is not only important in JIT approach, but

also important in any other data-driven modeling approaches. Without a

good database, it is not possible to build a good JIT model. A thumb of rule

in database construction is that the database should cover as wide range

of process variations as possible; otherwise extrapolation is needed for the

query samples that are located out of the known operation range, which

will deteriorate the model performance.

Even if there is a representative database, it would be still questionable

when process varies. The following methods describe how the database can

be updated so that the new process variations can be learned.

1. Continuous addition of most recent samples: In this method, oth-

er than the originally built database, the recently obtained samples

which contain the latest information of the process are added into the

database continuously. Though it is safe to say that no information is
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lost, it requires large memory to store a large amount of data. Also,

as the number of data points increases, the computation load becomes

heavier and it becomes more difficult to search for the most relevant

data.

2. Moving window update of database: In order to avoid heavy computa-

tional load, it is desired to keep the database size constant. In moving

window approach, the oldest sample is removed from while the most

recent sample is added into the database. However, this method is

still risky because it may result in losing informative data and adding

less informative data. For example, if the process undergoes an ab-

normal operation for a certain period, the new window would replace

the good data with abnormal data, which is detrimental to modeling.

3. Core database approach: This method addresses the shortcomings

mentioned in the previous methods. In core database approach, the

database consists of two parts: the ‘core’ part which consists of the

most reliable points (typically reflecting time-invariant part of the

process) selected from historical database; and the ‘updating’ part

which is updated using the moving window approach. The samples

that belong to ‘core’ part are fixed and always used for modeling. The

‘updating’ part learns the new process information by moving window

approach. It is evident that this approach can effectively update the

database while keeping the ‘golden’ data and database size constant.

3.2.2 Similarity measurements

Similarity measurement plays a key role in JIT modeling. There are many

different approaches to define the distance between two samples. In this

section, the similarity measurements proposed so far are summarized below

and the future directions are discussed.
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The most frequently used similarity measurement is the Euclidean dis-

tance [58, 59]. The distance between query sample xq and the i-th sample

xi in the database can be calculated according to Equation 3.1:

di,Eu =
√

(xi − xq)(xi − xq)T (3.1)

where i = 1, 2...N represents the index of sample in the database. Usually,

a larger distance indicates a less relevance of the data point.

One drawback of Euclidean distance is that it may not assign appro-

priate weights on the input variables. If the input variables have different

units or magnitudes, the distance calculation will be misleading because

the variables with larger magnitude may appear to have more contributions

to di,Eu. One solution to this problem is to normalize the data before dis-

tance calculation, which is also known as the Mahalanobis distance method

[53, 60]. The definition of Mahalanobis distance can be found in Equations

3.2 and 3.3.

di,Ma =
√
(xi − xq)D(xi − xq)T (3.2)

D = h ·


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
M



−1

(3.3)

where σ2
j (j = 1, 2...M) is the variance of each input variable and h is a

scaling parameter.

Furthermore, other than using the variance as weight, the similarity

based on the weighted Euclidean distance (WED) has been proposed to

improve the performance of JIT models [56, 57]. As shown in Equations 3.4

and 3.5, a diagonal matrix Θ is used to assign weights for each variable.

di,WED =
√

(xi − xq)Θ(xi − xq)T (3.4)
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Θ = diag(θ1, θ2, θ3...θM) (3.5)

where θj (j = 1, 2...M) is the weight for the j-th variable. Shigemori et

al. [61] proposed to use the absolute values of regression coefficients as the

weight θj. The regression coefficients can be obtained from a global model

that is built offline. Then the JIT models can be constructed by using the

proposed similarity shown in Equations 3.4 and 3.5. The developed method

was successfully applied to estimate the product quality of a real steel manu-

facturing process. Other than using the global model coefficients as weights

for each variable, Kim et al. [56] defined θj as the absolute value of the

j-th input variable’s regression coefficient of a locally weighted PLS model

for the query input, which was built without weights, i.e. the traditional

Euclidean distance was used to generate the regression coefficients. The fi-

nal JIT models were built using the defined Θ. Compared with Shigemori’s

method, this approach is more complicated since it requires the construc-

tion of two JIT models in one prediction iteration (one for determining the

Θ and the other for estimation). Both of these two approaches have been

used to improve the performance of near infrared spectra (NIR) model for

estimating active pharmaceutical ingredient (API) content in tablets.

In addition to distance calculation, the angular relationship between

samples was also considered as an important factor to determine similarity

[3]. The details can be found in Equation 3.6 to 3.9.

di = ∥xi − xq∥2 (3.6)

∆xq = xq − xq−1, ∆xi = xi − xi−1 (3.7)

cosφi =
∆xq∆xT

i

∥∆xq∥2 · ∥∆xi∥2
(3.8)

si =

 λ
√
e−d2i + (1− λ) cosφi if cosφi ≥ 0

0 if cosφi < 0
(3.9)
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where λ ∈ [0, 1] is a balance parameter between distance and angle. The

cosine function is used to discriminate the directionality between ∆xq and

∆xi. When cosφi < 0, the corresponding data point xi in the database will

not be involved in the subsequent JIT modeling procedure. For example, in

the three-dimensional space shown in Figure 3.4 [3], although the distances

of xi and xj from xq might be the same, xi is still more similar to xq because

they are in a similar direction. Consequently, the corresponding sample pair

(xj, yj) in the database will not be involved in the subsequent JIT modeling

procedure.

Figure 3.4: Similarity considering both distance and angle in a 3-
dimensional space [3]

Fujiwara et al. [62, 63] recently proposed another correlation-based sim-

ilarity criteria (CoJIT). Several sub data sets were partitioned from the

original database beforehand, and the similarity index J for each sub data

set was calculated using Hotelling’s T 2 and Q statistics as in Equation 3.10.

J = λT 2 + (1− λ)Q (3.10)

Then a local model was built using the sub data set whose J is the min-

imum. The CoJIT method was applied to a cracked gasoline fractionator

and had better performance than recursive PLS. However, this approach
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requires prior process knowledge to divide the database into several parti-

tions. Based on the methods discussed above, there are also many modified

versions of similarity measurements. For example, the principle componen-

t in PCA analysis was proposed to calculate the similarity instead of the

original variables [64, 65, 66]. Kim et al. [67] modified the weighted Eu-

clidean distance [56] by adaptively determining the similarity according to

the strength of the non-linearity between each input variable and the output

variable around a query sample.

All the above-mentioned methods only employ the input information to

perform similarity calculation. However, the accuracy of JIT models might

be enhanced by incorporating the information from output space. Wang

et al. [55] proposed a similarity measurement which is based not only on

the distance di,x in the input space but also the distance di,y in the output

space, which can be seen in Equation 3.11 to 3.12:

si = λdi,x + (1− λ)di,y (3.11)

di,y =
|yi − ŷq|∑N
i=1 |yi − ŷq|

(3.12)

where di,x is the Mahalanobis distance in the input space and yi is the

output of i-th sample in the database. ŷq is the estimated output of the

query sample obtained by an initial global model. λ is a tuning parameter

for balancing purpose. It was shown in [55] that this method achieved

better performance with fewer latent variables and was less sensitive to

noise. Chang et al. [65] also proposed a different method to calculate di,y,

which can be seen in Equation 3.13.

di,y =
|yi − ŷq|

max(|yi − ŷq|)
(3.13)

Note that, for all the methods discussed above to determine similarity
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of query sample with the database samples, one cannot single out the ‘best’

method. The choice of one of these methods is based on the application.

3.2.3 Weight functions

In order to assign priority to the most relevant samples in the database, the

weight of each sample is calculated from its similarity measurement. The

weight wi is a function of similarity si with the general rule that higher

weight is assigned to more similar sample. The maximum value of the

weight should be given to the data point with zero distance. Another desired

property of the weight function is the smoothness; which means that the

weight function should decay smoothly as the the similarity decreases. A

smooth weight function would give a smooth estimation result. Depending

on how quickly the weight drops with the increase of distance, there are

several types of weight functions, which will be reviewed in the following

section according to [58].

The simplest way to assign weights is to ignore some parts of the data,

namely, the least relevant data, while the remaining parts of data are treated

equally in the modeling step. Usually, in other weight assigning methods the

weight becomes zero as the distance goes infinity. However, in this method,

the weight can reach zero at a finite distance. One special question here is

that how many data points or how much percentage of the data should be

discarded. It may be determined through cross validation methods, where

different numbers of samples are used and the one which gives the lowest

prediction error is chosen as the optimum number. This type of weight

function allows faster implementations or calculations, since data points

that are too far away from the query can be ignored.

Another weight function can be defined as the negative power of the

distance (Shepard 1968), where the power magnitude p determines drop-off
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rate of the weight with distance, as can be seen in Equation 3.14.

wi =
1

dpi
(3.14)

where p is a positive integer and di is the distance between query sample

and the i-th sample in the database. As the query point approaches a stored

data point, the weight goes infinity.

Also, the inverse distance (Wolberg 1990) with limited magnitude was

proposed to avoid over-interpolation due to data noise. The function is

shown in Equation 3.15.

wi =
1

1 + dpi
(3.15)

Another smoothing weight function is Gaussian kernel (Deheuvels 1977)

as shown in Equation 3.16, which is widely used in soft sensor applications.

wi = e−d2i (3.16)

A related weight function is the exponential kernel, which has been used

in psychological models (Aha and Goldstone 1992), which can be seen in

Equation 3.17.

wi = e−|di| (3.17)

The quadratic function (Epanechnikov 1969) was also proposed in the

literature. Unlike Gaussian kernel and exponential kernel which has infinite

extent, this type of weight function has finite extent and ignores the data

points with distance larger than the radius of 1. However, due to the dis-

continuity in the derivative at d = 1, the function has been less frequently

used in applications that need analytical treatments. The function can be
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written in Equation 3.18.

wi =

 1− d2i if | di |< 1

0 otherwise
(3.18)

When using this type of function, the distance di should be normalized first.

A good way of normalization is as following:

di,Nor =
di − dmin

dmax − dthreshold
(3.19)

where dmin and dmax are the minimal and maximal distance of the stored

data points from query sample, respectively, and dthreshold is a truncation

value to ignore data points that are further from a particular threshold

distance. If dthreshold = dmin, all the distances in Equation 3.18 will be

smaller than 1; thus all the points will be used in modeling. However, if it

is set as a value between dmin and dmax, part of the data points that have

large distances will be truncated and ignored.

The tricube function was used by Cleveland (1979), and later widely

applied to locally weighted regression for near infrared spectroscopy. Sim-

ilar to quadratic function, it has finite extent and the distance has to be

normalized . The function is written as below:

wi =

 (1− | di |3)3 if | di |< 1

0 otherwise
(3.20)

The triangular function (Stone 1977) and its variant (Franke and Nielson

1980) were also proposed due to simplicity, which are shown in Equations

3.21 and 3.22.

wi =

 1− | di | if | di |< 1

0 otherwise
(3.21)
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wi =


1−|di|
|di| if | di |< 1

0 otherwise
(3.22)

The trends of these weight functions with the increase of distance are

plotted in Figure 3.5. It is clear that some weight functions such as trunca-

tion and negative power functions have large drop-off as distance increases

. Some have finite extent (e.g., tricube function) while others have infinite

extent (e.g., negative power function). Some functions put zero weights to

the far away data points, which implies that these data do not participate

in the modeling. Different functions may be appropriate to different data

sets.

One could create new weight functions by simply changing the power of

the functions. The power can be either integral or non-integral. However,

as pointed out by [58, 59], there is no clear evidence that the selection of

weight function plays an important role in the performance of JIT models.

Instead, it seems that it is the similarity rather than weight function that is

crucial to the success of JIT modeling. So in the following case study, dif-

ferent similarity measurements are compared and the same weight function

is adopted.

3.2.4 Modeling techniques

As discussed in the previous section, JIT approach is not a regression tech-

nique but a framework to improve the regular regression performance. In

this subsection, we discuss various ways of combining the weights and re-

gression techniques in order to achieve better prediction performance.

The Comparison Analysis Using Restructured Near Infrared and Con-

stituent Data (CARNAC) method proposed by Davies et al. [68] is a rapid

and simple approximation of local regression. The method predicts sam-

ple properties (outputs) directly through the reference data stored in the
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Figure 3.5: A comparison of different weight functions

database, rather than through regression model derived from historical da-

ta. The predicted value for the unknown sample is obtained by weighted

average of the reference values of similar subset, as shown in Equation 3.23.

ŷq =

∑N
i=1 siyi∑N
i=1 si

(3.23)

Similar samples are selected through similarity calculations as shown in
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Equation 3.24.

si =
1

1− r2i
(3.24)

where ri is the correlation coefficient between the query sample and a mem-

ber in the database. Another rapid local regression algorithm is the Locally-

Biased Regression (LBR) [69]. For each query sample, the preliminary out-

put is generated from a global model, then the bias and skew terms are

calculated from neighboring samples in order to correct the global model.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5
x 10

6

x

y

 

 

Calibration samples
Query samples

Local linear
model f2(x)

Local linear
model f3(x)

Local linear
model f1(x)

Figure 3.6: Piecewise linear approximation of a nonlinear function

There are no restrictions on what kind of model structure should be used

when building local models. However, models that are linear in the unknown

parameters, such as local polynomials, can be trained faster than more gen-

eral models. Nonlinear modeling techniques such as Least Squares Support

Vector Regression (LSSVR) [25] and Support Vector Regression (SVR) [70]
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can also be fused into JIT framework. However, nonlinear methods often

have much more computational load, which is especially not suitable for

online model training. For linear models, the major component of training

cost is the lookup procedure. In the meantime, the past research indicates

that most regression surfaces can be fitted locally using linear models [64],

which makes more sense to the popularity and practical applicability of

linear model structure.

The most straightforward linear local algorithm is Locally Weighted

Regression (LWR) [71]. The key concept of this method is to approximate

nonlinear functions by piecewise linear models, which can be seen from

Figure 3.6. The following weighted regression analysis is performed for

every query sample:

W =


w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wN

 (3.25)

βLWR = (XWXT )−1XWy (3.26)

Another widely used JIT algorithm is the Locally Weighted Partial Least

Squares (LW-PLS) [71]. There are two reasons for switching to LW-PLS

from LWR: 1) the input dimension is too large; 2) the input variables are

correlated. Under both situations, the matrix inversion in Equation 3.26

will become numerically unstable. So the PLS algorithm is synthesized

with Just-in-time framework in order to compress the input variables into a

projection space with much lower dimension. The following steps describe

the details of LW-PLS.

1. When query sample arrives, calculate wi and weight matrix W.

2. Set k = 1 and determine the number of latent variables as A.
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3. Mean center the data such that

x =

∑N
i=1wixi∑N
i=1wi

(3.27)

y =

∑N
i=1wiyi∑N
i=1wi

(3.28)

X̃ = X− 1Nx (3.29)

ỹ = y − 1Ny (3.30)

x̃q = xq − x (3.31)

where 1N is a vector of ones.

4. Initialize the prediction ŷq = y.

5. Calculate the weight vector, loading vector and score vector as

uk = X̃TWỹ (3.32)

tk = X̃uk (3.33)

pk =
tTkWX̃

tTkWtk
(3.34)

qk =
tTkWỹ

tTkWtk
(3.35)

tk = x̃quk (3.36)

6. Deflate the matrix as

X̃ = X̃− tkpk (3.37)

ỹ = ỹ − tkqk (3.38)

x̃q = x̃q − tkpk (3.39)
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7. Make the prediction: ŷq = ŷq + tkqk.

8. If k = A, terminate the algorithm. Otherwise, set k = k + 1 and

return to Step 5.

Once the weights are calculated, the only tuning parameter in LW-PLS

is the number of latent variables, which can be optimized by offline cross

validation. Actually, the most important factor in LW-PLS is how to define

the similarity, which distinguishes the modeling performance of LW-PLS

from regular PLS. One advantage of LW-PLS and LWR is that the weights

can be integrated into the regression steps; however, for nonlinear methods

such as support vector machine (SVM) and least square support vector

machine (LSSVM), JIT approach only provides a way to select the most

relevant subset, and the regression step itself is not changed by nature [2].

Therefore, the details of nonlinear regression based JIT modeling are not

discussed here.

3.3 Similarity calculation using both input

and output information

Most of the existing similarity measurements only rely on input information.

In these methods, although the selected relevant samples are close to the

query sample in the input space, they may not necessarily be close in the

space of the dependent variable (output y) [55]. Under this circumstance, E-

quation 3.11-3.13 have shown one of the possible solutions to involve output

space information when calculating similarity. The similarity is calculated

as a weighted average of the distances in both input and output spaces.

However, this approach highly depends on the accuracy of the initial global

model. In this section, two alternative approaches are attempted for the

use of the output information when calculating the distance.
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The previous research [64, 65, 66] utilized the first few principle compo-

nents (PCs) of Principal Component Analysis (PCA) to calculate distance

since it is less sensitive to noise. Based on this idea, we can extend the

information contained in PCs by applying partial least squares (PLS). An

alternative term for PLS is Projection to Latent Structures. PLS finds a

linear regression model by projecting the input and output variables into

a new space. The projections are chosen according to the correlation of

input and output data. A PLS model tries to find the multi-dimensional

direction in the input space that explains the maximum multi-dimensional

variation direction in the output space. In the projection space, the original

input variables can be represented by a few latent variables (LVs). Instead

of original variables, the first few LVs can be used for calculating distance.

The distance calculation is shown as in Equation 3.40.

di =
A∑

k=1

(tk,i − tk,q)
2 (3.40)

where tk,i is one entry of tk which represents the k-th score value of the

i-th sample. The corresponding score values of the query sample can be

calculated from Equation 3.41.

tk,q = xquk (3.41)

The latent variable tk and weight vector uk in the k-th projection loop can

be obtained through the standard PLS algorithm. There are two advantages

of this distance calculation: 1) it reduces noise effect through data compres-

sion; 2) the output information is integrated into the latent variables. Since

the latent variables preserve the direction information of the output, the

proposed distance measurement would make more sense in terms of search-

ing for data points that are close to xq in the y-space.
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The second method which involves y-space information for similarity

measurement is based on Orthogonal Signal Correction (OSC). The OSC

algorithm is a filter that is used to remove the variations in X-space which

are linearly unrelated with the target variable y [72]. By subtracting the

variations that are orthogonal to y, the nuisance information in X is elim-

inated. Usually, a typical OSC filter consists of three parts: weight, score

and loading vectors (uk, tk, pk, k = 1...A) which are selected based on the

following optimization problems [72].

uk = argmax
∥u∥=1

(Xku)
Ty=0

uTXT
kXku (3.42)

tk = argmin
t

∥Xk − tuT
k ∥2 = Xkuk/(u

T
kuk) (3.43)

pk = argmin
p

∥Xk − tkp
T∥2 = Xktk/(t

T
k tk) (3.44)

where Xk is the input matrix after k-th deflation.

Originally, OSC filter was considered as a preprocessing method to re-

move the systematic orthogonal variation by simply subtracting the first one

or two OSC components (score vectors) from the raw data set. However,

the OSC provides a useful way to summarize the output space informa-

tion that cannot be captured by the traditional similarity measurement. It

would be beneficial to filter the data before calculating the distance so that

the similarity measurement is forced to be conducted in a space which has

the maximum relation to the target variable y. The general idea is shown

in Figure 3.7.

Wold et al. [73] used nonlinear iterative partial least squares NIPALS

methodology to compute the score vectors and loading vectors listed above.

Fearn [74] proposed a modified OSC algorithm that removed the unrelated

information based on PCA. In the presented study, the method of the or-

thogonal projections to latent structures (O-PLS) proposed by Trygg and
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Figure 3.7: Utilizing y-space infromation for similarity measurement

Wold [75] is adopted for similarity calculation. The O-PLS is the latest algo-

rithm which belongs to the OSC filter group and it has several advantages:

1) it can analyze the disturbing variation in each regular PLS component;

2) the orthogonal factors can be analyzed separately; 3) time-consuming in-

ternal iteration is avoided. The following steps explain the details of O-PLS

algorithm. For simplicity, the data set is assumed to be centered and scaled

beforehand, and there is only one variable in y.

1. Perform NIPALS PLS calculation to obtain weight vector u

u = XTy/(yTy) (3.45)

u = u/∥u∥ (3.46)

2. Obtain the loading vector p

t = Xu/(uTu) (3.47)

p = XT t/(tT t) (3.48)
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3. Calculate the orthogonal factors u⊥, t⊥ and p⊥

u⊥ = p− [uTp/(uTu)]u (3.49)

u⊥ = u⊥/∥u⊥∥ (3.50)

t⊥ = Xu⊥/(u
T
⊥u⊥) (3.51)

p⊥ = XT t⊥/(t
T
⊥t⊥) (3.52)

4. Remove the orthogonal information from the training set X

Xo = X− t⊥p
T
⊥ (3.53)

5. Remove the orthogonal information from the query sample xq

tq,⊥ = xqu⊥/(u
T
⊥u⊥) (3.54)

xq,o = xq − tq,⊥p
T
⊥ (3.55)

6. Save the orthogonal factors as U⊥ = [U⊥ u⊥], P⊥ = [P⊥ p⊥],

T⊥ = [T⊥ t⊥] and tq,⊥ = [tq,⊥ tq,⊥]

7. To remove additional orthogonal factors, set xq = xq,o and X = Xo,

then repeat Step 2-6

8. The orthogonal information can be summarized as follows

X⊥ = T⊥P
T
⊥ (3.56)

xq,⊥ = tq,⊥P
T
⊥ (3.57)

In this study, we propose to calculate the distance using the data filtered

by OSC algorithm. So Xo and xq,o are used to calculate the distance. Since
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the output space information is integrated in Equation 3.45, the output

will certainly affect the distance calculation. The orthogonal variations

in the training data set can be removed offline, which reduces the online

computation burden. Thus, the calculation in Equations 3.54 and 3.55 is

performed online for the new query in every prediction instance. In order

to analyze the orthogonal information extracted from the raw data set, one

can perform PCA on X⊥ in Equation 3.56. In locally biased regression,

Fearn [69] proposed to use the extracted orthogonal vectors to search for

the similar data points. This idea is appropriate in terms of identifying the

samples that have similar bias term; however, it may not be useful if one

wants to identify the nearby samples in the output space as proposed in

this thesis.

3.4 Application results

In order to evaluate the algorithms proposed above, an industrial near-

infrared spectroscopy data set is used in this section. Several different sim-

ilarity measurements are compared under the same JIT framework, which

gives an insight into the advantage of utilizing output information for sim-

ilarity measurement.

3.4.1 Benchmark NIR data for pharmacy tablets

The spectra data of Escitalopram tablets are measured by the pharmaceu-

tical industry, which is a benchmark public data set for multivariate data

analysis. The spectra as well as the reference values can be downloaded

from Department of Food Science, University of Copenhagen. There are in

total 310 tablet samples distinguished by four different dosage types. Each

type contains tablet samples from 3 different scales of batch processes (full

scale, pilot scale and laboratory scale). All raw materials were prepared into
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pure powder form for spectral analysis. Since the samples come from dif-

ferent batch processes and the concentration of active substance has a wide

range, the spectral data can be clustered into various regions in both input

and output spaces. These factors imply that Just-in-time is an appropriate

method for this set of data. The near-infrared transmittance spectra were

measured using ABB Bomem FT-NIR model MB-160 with a spectral range

of 4000-14000cm−1. Each spectrum was the average of 128 scans in order to

provide sufficient stability and reproducibility. There are 404 wavelengths

in each spectrum with a resolution of 16cm−1. The target variable (the

content of active substance in each tablet % w/w) was measured by high

performance liquid chromatography (HPLC). For details of the experiments

and reference method, one can refer to [76].

The raw spectra of 310 samples are displayed in Figure 3.8. The training

data set consists of 124 tablets with reference value ranges from 4.84% to

9.79%, while the validation set consists of 186 tablets with reference value

ranges from 4.61% to 9.38%. The PCA score plot for all the 310 samples is
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Figure 3.8: Raw spectra of pharmacy tablets

shown in Figure 3.9. Type A, B, C and D represent different concentration

levels, i.e. different ranges in the output space. In the 2-dimensional pro-
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jection space, the samples that belong to different types have been marked

by different colors. Although Type A, C and D should have been separated

into different clusters due to their different concentration levels (y informa-

tion), it is observed that the samples from these three types are overlapping

with each other in the principle component space (i.e. a subspace of X-

space). This is because PCA only utilizes the input information for data

compression. So similarity calculated from only input information would

probably treat a sample close in the X-space but far away in the y-space as

relevant data, which can have negative effect on the model accuracy.
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Figure 3.9: PCA score plot for tablet samples

3.4.2 Results and discussion

In order to make fair comparison between different similarity measurements,

all the following methods except for regular PLS are put under the same
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JIT framework, using the same weight function as shown in Equation 3.58.

wi = exp(−diϕ

σdi

) (3.58)

where ϕ is a tuning parameter for optimization and σdi is the standard

deviation of di(i = 1, 2...N). So the only difference between the following

JIT methods is the definition of similarity. Five methods are summarized

as follows:

1. PLS: Global PLS approach.

2. JIT: JIT approach using Euclidean distance (Equation 3.1).

3. JIT-Y1: JIT approach using estimated y-value to calculate distance

(Equations 3.11 and 3.12).

4. JIT-Y2: JIT approach using PLS latent variables to calculate distance

(Equations 3.40 and 3.41). The number of latent variables (LVs) for

distance calculation is set the same as that used for local modeling.

5. JIT-Y3: JIT approach using OSC filtered data to calculate distance.

JIT-Y2 and JIT-Y3 are the methods proposed in Section 3.3. Other

than the tuning parameter ϕ in weight function and the number of LVs for

local models, some methods may have additional tuning parameters. Such

as the balancing parameter in Equation 3.11 and the number of OSC factors

in JIT-Y3. All the optimal values for these parameters are determined by

offline cross validation. In this study, the optimal tuning parameters for

these five methods are listed in Table 3.1. In the meantime, the Root Mean

Square Errors of Prediction (RMSEP ) and correlation coefficient R for

each method are shown in Table 3.1.
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Table 3.1: Tuning parameters and prediction results

Methods LVs ϕ λ OSC factors RMSEP R

PLS 7 - - - 0.5188 0.9334

JIT 5 0.85 - - 0.4452 0.9464

JIT-Y1 4 0.51 0.6 - 0.4106 0.9495

JIT-Y2 4 0.4 - - 0.4076 0.9503

JIT-Y3 4 1.1 - 3 0.3499 0.9635

From Table 3.1, it is interesting to see that all the JIT methods have

used fewer LVs because of their local modeling strategy. The additional

LVs used in global PLS may be helpful to account for the non-linearity in

the data. Also, all the JIT methods achieved lower RMSEP and higher R

than global PLS, which shows the advantage of locally weighted PLS. The

JIT methods which utilize both input and output information for similari-

ty calculation have better performances than traditional JIT; among which

JIT-Y3 has the best predictive ability while JIT-Y2 is just comparable with

JIT-Y1. To visualize the results, a comparison between PLS, JIT and JIT-

Y3 is plotted in Figure 3.10. From the scatter plots, one can easily see

that the reference value (y-value) can be classified into several groups, and

each group has its certain range in the y-space. This is the reason why the

output space information is important in similarity measurement for this

set of data. By integrating both the input and output information, more

weights can be assigned to the data points that belong to the same group

in the y-space without losing the important input information. Comparing

the performance of PLS and JIT approach, it can be seen that some esti-

mated points that are far from the reference values can be corrected by JIT

method. Moreover, JIT-Y3 has shown even better results in terms of cor-

recting those ‘bad’ points, especially the ones marked by the green circles

in Figure 3.10. This evidence clearly shows the advantage of JIT-Y3 over
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regular JIT method.
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Figure 3.10: Scatter plot of JIT modeling results

Table 3.2: Tuning parameters and prediction results (Extrapolation case)

Methods LVs ϕ λ OSC factors RMSEP R

PLS 8 - - - 0.8267 0.7568

JIT 7 0.4 - - 0.5444 0.7514

JIT-Y1 5 0.95 0.9 - 0.4804 0.8642

JIT-Y2 5 0.67 - - 0.4978 0.8004

JIT-Y3 4 0.15 - 3 0.4590 0.8422

To further evaluate the usefulness of JIT approach as well as the modified

JIT approaches, another simulation study has been conducted on the same

NIR data set. In order to evaluate the algorithm under the extrapolation

case, the training data set is chosen such that their output values are limited

in the range of 4.61% to 8.71%, while the output values of the validation data

set are chosen to be within the range of 6.62% to 9.79%. The division of data

set clearly shows that, the training set is unable to cover the whole variation

range of the validation set, which means that part of the estimation results

can only be made by extrapolation. It is valuable to do so since the situation

is commonly seen in real applications. Again, all the tuning parameters
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have been determined by offline cross validation and the prediction results

are listed in Table 3.2. From Table 3.2, it is clear that the global PLS
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Figure 3.11: Scatter plot of JIT modeling results (Extrapolation case)

model has much poorer performance under the extrapolation case even by

adding additional LVs. However, the prediction results of four JIT methods

are still acceptable, which again proves the advantage of JIT approach,

especially under extrapolation case. Even though the training data set

cannot represent all the variation ranges of the validation data set, the

JIT approach can still find the most relevant data points for modeling.

Among all the JIT methods, JIT-Y3 again has the lowest RMSEP . JIT-

Y1 obtains the highest R and has better performance than JIT-Y2. JIT has

better performance than global PLS but is still worse than the methods that

use the output space information to calculate similarity as proposed in this

thesis. Both simulation studies show that involving y-space information for

similarity calculation can improve the model performance.

The scatter plots for PLS, JIT and JIT-Y3 are plotted in Figure 3.11.

For the global PLS approach, it can be seen that for most of the data points

whose reference values are higher than 8.71% (the maximum of training

set), their estimation results obviously deviate from the reference values (as

marked by the green circles). Therefore the global PLS model cannot be
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used effectively for extrapolation. However, JIT and JIT-Y3 can obtain

good estimation results for these ‘bad’ points that need extrapolation. The

lowest prediction error is achieved by JIT-Y3.

In order to check the performance of OSC algorithm and the degree of

the nuisance information removed from the raw data, the following statistics

are calculated. First, the angle θ between the orthogonal factor t⊥ and y is

calculated as in Equation 3.59:

cos(θ) =
tT⊥y

∥t⊥∥∥y∥
180

π
(3.59)

Second, the fraction of variations that remains in X after OSC filtering (φ)

is calculated according to Equation 3.60:

φ =
(
∑N

i=1

∑M
j=1 x

2
i,j)OSC

(
∑N

i=1

∑M
j=1 x

2
i,j)Raw

(3.60)

where xi,j is the element of matrix X at row i and column j. In Table 3.3,

the angle and remaining variations are shown for both training data set

and testing data set. From the table it can be observed that as the number

of OSC factors increases, more variations will be removed from the raw

data. It can also be noted that, after the removal of first OSC factor, about

80% of variation information was removed. For the next OSC factors, the

algorithm slowly removed minor potions of the remaining variations. This

actually indicates that most of the variations in X are uncorrelated with

y. So when two data points are close to each other in the original input

space, they may not be close to each other in the y-space. Even worse, it

may happen that two data points are close to each other in X-space just

because they are corrupted by noise, and renders them meaningless to be

used as relevant samples in model building stage. Further, note that the

removed orthogonal vector t⊥ is almost perpendicular to the y vector, which
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confirms that only the information orthogonal to output has been removed.

Table 3.3: Angle and RemainX statistics for the OSC method

training set Testing set

NO. of OSC factors Angle RemainX Angle RemainX

1 90.00◦ 22.9% 89.99◦ 19.1%

2 90.00◦ 19.6% 90.02◦ 15.6%

3 90.00◦ 17.2% 89.98◦ 17.4%

4 90.00◦ 16.9% 90.13◦ 15.9%

5 90.00◦ 16.9% 90.41◦ 15.6%

6 90.00◦ 16.6% 90.65◦ 15.1%

To understand why the proposed method achieves better performance

in selecting similar data points, a special sample, the 145-th query sample

is selected for investigation. As can be seen in Table 3.4, both the PLS and

regular JIT methods yield a large prediction error for this sample, while JIT-

Y3 gives a much smaller prediction error. For the 145-th query sample, the

weight of each training sample assigned by both JIT and JIT-Y3 methods

is plotted in Figure 3.12, where the x-axis represents the reference y-value

of corresponding training samples. Because the 145-th query sample has a

y-value of yq = 8.2329, both JIT and JIT-Y3 have assigned large weights to

the samples with y-value around 8.2329. However, the difference is how JIT

and JIT-Y3 treat the remaining samples that are obviously far away from

8.2329. For JIT method (only input space information is used to calculate

similarity), it is clear that a branch of data points with y-values around

5 have been given weights as large as the ones around 8.2329. But for

JIT-Y3, this branch of data points almost have zero weights. This is an

evidence that JIT-Y3 method has considered not only the input space but

also the output space information when calculating similarity. By assigning
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less weights to the samples that are too far away in the output space, the

algorithm avoids using wrong information for model construction.

Table 3.4: Prediction error for the 145-th query sample

Reference value Error by PLS Error by JIT Error by JIT-Y3

8.2329 1.1508 0.9380 0.4453
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Figure 3.12: Weights of traning data at the 145-th query sample

For the extrapolation case study, the 85-th query sample is selected for

investigation. Table 3.5 shows the prediction error and reference value for

this point. From Figure 3.13, one can see that the regular JIT method

assigned higher weights to the data points that are far away from the query

sample in the output space, which is misleading in terms of finding similar

data. On the other hand, JIT-Y3 avoids this problem by assigning almost

zero weights to these data points and higher weights to the ones around

yq = 9.1619. Therefore, a lower prediction error is acheved by JIT-Y3.

Table 3.5: Prediction error for the 85-th query sample (Extrapolation case)

Reference value Error by PLS Error by JIT Error by JIT-Y3

9.1619 0.3162 0.1634 0.1195
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Figure 3.13: Weights of traning data at the 85-th query sample (Extrapo-
lation case)

3.5 Conclusions

In this chapter, the framework of Just-in-time (JIT) approach was summa-

rized into four components and the detailed description for each component

has been provided. To enhance the model performance, two novel approach-

es for similarity measurement were proposed by incorporating both input

and output information. The first approach simply utilizes the PLS laten-

t variables for Euclidean distance calculation instead of using the original

variables. The second approach applies orthogonal signal correction (OSC)

algorithm to filter the raw data in order to remove the information uncor-

related with output. Then the distance can be calculated using the filtered

data. The proposed methods have been applied on an NIR data set from

pharmaceutical industry. Compared with traditional PLS and regular JIT

methods, the model performance is improved by assigning more weights to

the samples that are close to the query sample in both the input and output

space. It is also found that, the proposed method could also be effective un-

der the extrapolation situation, where the output range of training samples

are not able to cover the whole range of process variation.
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Chapter 4

Time varying issues in

Just-in-time modeling

4.1 Introduction

Soft sensors are often built in order to monitor the hard-to-measure target

variables in process industry. An important step for building a successful

soft sensor is the offline model identification using the recorded historical

data. However, it is observed that the prediction performance of the offline

model deteriorates with respect to time. To ensure the acceptable perfor-

mance of the offline model for a longer time, the historical data should con-

tain all possible future states and conditions of the process, which includes

not only the process operational conditions but also the external factors such

as environmental changes and changes of the material quality. Practically,

there are always numerous factors that cannot be foreseen during the offline

model design phase. For example, process raw materials changes, catalyst

activity changes, instrument drift and external environmental changes (e.g.

weather, temperature, season). Even if all these factors can be estimated

and collected from the historical database, covering the whole process vari-

ation would require a high model complexity and huge amount of process
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data, which increases the burden of model development [77]. As a result

of these facts, it is commonly admitted that the performance of invariant

models will deteriorate gradually once they are put for online operation [78].

Due to the time-varying behavior of the process, it often requires to adapt

the offline soft sensor to the varying operation conditions during the online

operation phase.
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Lab-measured 

Output Data (y) 

On-line Input 

Data (x) 

Modeling 

technique 

Updating 

strategy 

Soft 

sensor 
Prediction 

Preprocessing Expert knowledge 

Figure 4.1: Online adaptation of soft sensors

The procedure for the adaptation of soft sensors is summarized in Figure

4.1. Initially, offline models are built using the historical input data X and

lab reference data y. Usually, data preprocessing is applied before mod-

eling in order to deal with issues like outliers, missing values, noise, etc.,

and expert knowledge about the process is often introduced to identify the

important variables and time delays. During online operation, the fast-rate

input data (usually based on hardware sensors or instruments) is associ-

ated with the soft sensor to generate the prediction or estimation results

for the hard-to-measure variable. As time goes by, the online input data x

and corresponding lab reference data are accumulated and stored in histor-

ical database, which provides the source for model updating. In the online

updating phase, two things need to be considered carefully, e.g. data prepro-

cessing and performance feedback. The preprocessing step is also included
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in the model updating phase in order to ensure that the model is adapted to

the useful data preventing the model from absorbing disturbances or nois-

es, especially when the hardware sensors deliver faulty measurements [79].

Furthermore, by monitoring the performance of soft sensors, a criterion is

set to determine when to apply adaptation on the soft sensor, which can

be achieved by comparing the model prediction results and the lab refer-

ence values. However, in practical scenarios, this step is often replaced by

adapting the soft sensor at a certain frequency. Another point that should

be mentioned in online adaptation is the involvement of expert knowledge.

Usually, available knowledge of process dynamics should be applied when

choosing the window size or forgetting factor for adaptation [77].

Tsymbal & Alexey [80] have categorized the existing adaptation methods

into three approaches:

• Instance selection [81]

• Instance weighting [82]

• Ensemble methods [83]

The first two approaches have been named as Moving Window technique

and Recursive Adaptation technique in [77], respectively. Both linear and

non-linear models can be updated using the above mentioned three adap-

tation approaches. Least Squares (LS), Principal Component Regression

(PCR) and Partial Least Squares (PLS) methods are often associated with

moving window approach and recursive approach to adapt the models to

process changes. The adaptive versions of non-linear modeling techniques

such as Support Vector Machine (SVM), Least Square Support Vector Ma-

chine (LSSVM) and Adaptive Kernel Learning (AKL) have also been re-

ported. However, to the best of the author’s knowledge, the time varying

problems in Just-in-time (JIT) framework are rarely discussed and the adap-

tation strategy for the local models in JIT approach remains an open issue.
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Since JIT approach itself is able to handle non-linearity in the process, it

would be beneficial if it can cope with time varying issue in the same time.

Based on this motivation, an adaptive algorithm is proposed under the JIT

framework with its usefulness demonstrated by industrial case studies.

4.2 Data-driven soft sensors using adaptive

methods

In this section, a review of the existing adaptive soft sensing techniques is

provided. Usually, two frameworks are widely used for prioritizing the most

recent samples, the first one of which is the moving window approach, as

shown in Figure 4.2. As new samples accumulate in the database, the win-

dow slides along the time axis enabling the involvement of the latest data.

In the meantime, instead of storing all the available data, the same amount

of the oldest samples are removed from the window due to the allowable

data library constraint. Depending on the updating frequency, the model

can be recalculated on a sample-wise (the most frequent case) or block-wise

(less frequent case) basis [84]. The number of samples used in each calcu-

lation is called the ‘Window size’. Usually the modeling techniques (SVM,

PCR) are performed in each window when update is needed. The number

of samples used to update the window is called ‘Step size’. Both window

size and step size are crucial to the performance of adaptive soft sensors.

An inappropriate setting of these two parameters may result in the dete-

rioration of model performance (in some cases even worse than a constant

model). The second framework for adaptive soft sensing is the recursive

approach, in which the past data are discounted gradually by a forgetting

factor λ. In this way, the most recent samples are assigned higher weights

than the distant past samples. The role of forgetting factor is similar to the

window size as mentioned in the moving window approach, which quantifies
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Figure 4.2: An illustration of Moving Window adaptation approach

the importance of the recent samples over the distant past samples. Bench-

mark algorithms such as recursive least square and recursive partial least

square will be discussed later in this section.

4.2.1 Adaptation of linear models

Two of the most representative adaptive linear modeling methods are intro-

duced here, i.e. moving window PCR and recursive least square, which are

based on moving window technique and recursive technique, respectively.

Typically, moving window PCR is performed by retraining the PCR

model periodically after accumulating a certain number of new samples.

The latest N data points are used to retrain the model, where N is the

window size. Usually the modeling technique (PCR) is combined with a

parameter optimization method (such as cross validation) in order to esti-

mate the optimal parameters (number of principle components). It should

be noted that the parameter in an updating iteration may be different from

the previous iterations.
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Wang et al. have proposed an optimized version of the moving window

PCR called Fast Moving Window Principal Component Analysis (FMWP-

CA) [85]. The algorithm incorporates the moving window technique with

the recursive adaptation of the PCA model. It was shown that the new

algorithm is computationally more efficient than conventional block-wise

moving window techniques, under the assumption that the window size is

at last 3 times the number of variables. The principle behind this algorith-

m is to update the latest correlation matrix from the previous one, which

avoids the direct calculation using the process data. Kadlec et al. [77]

have summarized the FMWPCA into a two-step algorithm, the first step of

which is the downdating phase where the oldest sample xt−N in the window

is discarded as shown in Equation 4.1-4.2.

b∗ =
N

N − 1
bt−1 −

1

N − 1
xt−N (4.1)

R∗ = Rt−1 − Σ−1
t−1(bt−1 − bt)(bt−1 − bt)

TΣ−1
t−1 −

1

N − 1
x̃t−N x̃

T
t−N (4.2)

where b∗ is the mean vector after removing the oldest data point, N is

the window size, Σ is the standard deviation matrix for scaling purpose,

x̃t−N is the oldest data after mean subtraction and R∗ is the intermediate

correlation matrix. Then the second step (updating phase) incorporates the

latest sample xt by performing Equation 4.3-4.4.

bt =
N − 1

N
b∗ +

1

N
xt (4.3)

Rt = Σ−1
t Σt−1R

∗Σt−1Σ
−1
t +Σ−1

t (bt−b∗)(bt−b∗)TΣ−1
t +

1

N − 1
x̃tx̃

T
t (4.4)

where bt is the updated mean vector, x̃t is the newest data after mean

subtraction and Rt is the updated correlation matrix. It can be seen from

the above equations that FMWPCA algorithm obtains the computational
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efficiency by updating the correlation matrix using procedures derived from

recursive PCA algorithm.

Recursive adaptation technique is an example of instance weighting

method; the dominating algorithms belonging to this class are recursive ver-

sions of least squares regression, principle component regression and partial

least squares regression. The goal of recursive least squares (RLS) is to

accommodate the latest data point (xt, yt) into the model coefficients βt.

The details are summarized in Equation 4.5-4.7.

βt =


Xt−1

xt

T Xt−1

xt




−1
Xt−1

xt

T yt−1

yt


 (4.5)

Pt = (XT
t Xt)

−1 = Pt−1 −
Pt−1xtx

T
t Pt−1

1 + xT
t Pt−1xT

t

(4.6)

βt = βt−1 + Ptxt(yt − xT
t βt−1) (4.7)

where Pt is the current covariance matrix. The above equations show that all

the samples (instances) are treated equally; however, in real applications the

more recent samples should be given higher weights. This can be achieved

by introducing a weighting scheme using a forgetting factor which gradually

discounts the old data. Equation 4.5 then becomes:

βt = (XT
t WXt)

−1(XT
t Wyt), with W = diag(λt−1, . . . ,λ,1) (4.8)

where 0 < λ < 1 and W is a diagonal matrix. It should be noted that

the past data is gradually discounted by λ in each iteration. Thus the RLS

regression becomes a weighted least square regression with less weights on

the past data. The weight for the most recent data point is always 1.
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Consequently, the solution to Equation 4.8 is:

Pt =
1

λ

(
Pt−1 −

Pt−1xtx
T
t Pt−1

λ+ xT
t Pt−1xT

t

)
(4.9)

From Equations 4.7 and 4.9, it is not difficult to find that there is no need to

store all the data in memory for RLS algorithm. Instead, only the covariance

matrix Pt needs to be stored. The forgetting factor plays a key role in RLS

algorithm.

The instance weighting adaptation technique is also useful in PLS algo-

rithm. Qin (1998) [42] used the following equation for sample-wise adapta-

tion:

Xt =

 λP T
t−1

xt

 yt =

 λβt−1Q
T
t−1

yt

 (4.10)

where Pt−1 and Qt−1 are loading matrix obtained in the last updating itera-

tion, and βt−1 is the model coefficients. The algorithm reconstructs the data

matrix by merging the old model and new sample (xt, yt). The forgetting

factor λ determines the strength of the adaptation. A lower value of this

factor results in a faster adaptation to the current process condition. The

reconstructed data matrix will be used to recalculate the model coefficients

βt.

Dayal and MacGregor [41] proposed a computationally efficient recursive

PLS based on kernel version PLS algorithm. The key point in this recursive

PLS is the update of covariance matrix:

Rxx
t = λRxx

t−1 + xT
t xt

Rxy
t = λRxy

t−1 + xT
t yt

(4.11)

Then the updated covariance matrix can be used in the improved PLS kernel

algorithm [49]. Since the improved kernel PLS is many times faster than

regular PLS, it speeds up the computation during the adaptation procedure.
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Both of the above two recursive PLS algorithms do not need to store all the

data in memory. The first version only needs Pt−1, Qt−1 and Bt−1, while

the second version only needs Rxx
t−1 and Rxy

t−1.

4.2.2 Adaptation of non-linear models

Non-linear modeling methods have gained increasing popularity in building

data-driven soft sensors since they can interpret the complex relationship

between inputs and outputs. However, as time-varying issue always exists

in processes, the success of these non-linear methods highly depends on how

much variation information the historical data can cover. In other words,

the appropriate adaptation on non-linear models is not only helpful but

also necessary. So periodical updating is often performed on non-linear soft

sensors in order to keep desired accuracy.

One of the most straightforward ways to model non-linearity in data

is to modify the existing linear regression methods, e.g. PCR and PLS.

The basic idea is to map the input space into a feature space through some

non-linear mappings (also called kernel functions), and then the linear re-

gression between the feature space and output space is performed [86]. It

should be noted that the non-linear mapping can be applied on either the

original input variables or the score vectors, as shown in Figure 4.3. Since

this type of non-linear modeling does not involve any non-linear optimiza-

tion procedures during the regression, it is quite easy to apply adaptation

techniques to these methods. Therefore, the contents introduced in Section

4.2.1 are also applicable to this kind of non-linear modeling. Here a moving

window kernel PCA algorithm and a recursive non-linear PLS algorithm

are discussed as below.

Liu et al. have proposed a Moving Window Kernel PCA (MWKPCA)

[87], which is similar to the FMWPCA discussed in Section 4.2.1. First,

the non-linear mapping is performed on the input variables to formalize the
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Figure 4.3: Two non-linear mapping approaches

covariance matrix as shown in Equations 4.12 and 4.13.

bΦ =
1

n
Φ(X)1n (4.12)

CΦ =
1

n− 1

i=1∑
n

(Φ(xi)− bΦ)(Φ(xi)− bΦ)
T (4.13)

where bΦ is the sample mean in the feature space, n is the number of

samples, CΦ is the sample covariance matrix in the feature space and Φ

is the kernel function (non-linear mapping such as logarithm, polynomial

etc.). After the construction of non-linear mapping, a two step adaptation

scheme to remove the oldest sample and add the newest sample is performed

using the moving window approach. The details can be found in [87].

Li & Ye have proposed a recursive non-linear PLS algorithm to solve

both non-linearity and time varying issues encountered in process modeling

[88]. The work is based on the recursive PLS algorithm proposed by Qin

[42]. In order to handle the non-linearity issue, the Radial Basis Function

(RBF) network is integrated with PLS regression, where the regression is

performed between the output space and the extended input space. The
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extended input is constructed by the original input variables, the hidden

nodes outputs of the RBF network and a constant column with all elements

being 1, as shown in Equation 4.14.

Y = [1 X G]


bT

A

H

 = [1 X G]βPLS (4.14)

whereG is the outputs of hidden nodes from the RBF network. Apparently,

the matrix G is used to deal with non-linearity of the process and the

column 1 is used for adapting the variations in process variable means. The

outputs of the RBF network are linear combinations of the hidden nodes and

a basis function has to be chosen for calculating the hidden layer. Usually

the Gaussian kernel is chosen as the basis function, e.g. the l-th hidden

node is calculated as in Equation 4.15:

Gl(x) = exp(−∥x− cl∥2/σ2
l ) (4.15)

where cl is the centre of l-th node and σl is the corresponding width. In

general, the RBF structure is illustrated in Figure 4.4.

In the recursive updating step, the latest sample xt is also augmented

into [1 xt gt], and then a new PLS model is calculated the same way

as shown in Equation 4.10. However, if xt is too far away from the ex-

isting RBF nodes, a new hidden node will be added into the structure for

adaptation purpose.

The above mentioned non-linear modeling techniques are modifications

of linear regression techniques in the sense that they do not involve any

non-linear optimization problem in the regression procedure. However,

benchmark regression technique such as support vector machine (SVM)

is a true non-linear modeling technique, where the quadratic programming
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techniques are applied to solve the following optimization problem [89]:

f(x) =
∑
i

(αi − α∗
i )k(xi,x) + b (4.16)

|y − f(x)| < ϵ (4.17)

where k(xi,xj) = φ(xi)
Tφ(xj), φ is the kernel function mapping the the

original data into a high-dimensional space and b is a constant that can be

calculated by applying the KarushKuhn-Tucker conditions [89]. Recently,

Liu et al. [90] have proposed the adaptive version of SVM named online

kernel learning algorithm (OKL), which is based on the Adaptive Kernel

Learning framework proposed by Wang et al. [91]. The proposed OKL

algorithm can adaptively learn the process dynamics using relatively small

samples. The first step in OKL is referred to as Growing (Forward Recursive

Learning), in which the number of nodes is increased with new incoming

process information. The second step is referred to as Pruning (Backward

Recursive Learning), in which the old information is removed recursively.
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4.2.3 Adaptive algorithms in Just-in-time framework

Although Just-in-time approach is a local learning method, the prediction

performance of the model deteriorates under certain circumstances, e.g., the

change of the process characteristics [92]. Chen et al. proposed a new local

modeling algorithm, adaptive local kernel-based learning scheme (ALKL),

where an adaptive weighted least squares support vector regression (AW-

LSSVR) was employed to establish the local model [92]. In ALKL, for

each query data, the trade-off parameters of LSSVR are adjusted iterative-

ly along the gradient descend direction so that the local model is updated

recursively. The self-tuning of trade-off parameters is achieved by perform-

ing the fast leave-one-out cross-validation (FLOO-CV) criterion [93] on the

most relevant l samples in the database. Similarly, the FLOO-CV strate-

gy has been adopted by Liu et al. in [54] for adaptive selection of kernel

parameters in a JIT-RLSSVR modeling framework. Since the kernel pa-

rameters in SVM algorithm are crucial to the success of a predictive model,

the adaptive selection of parameters is beneficial in building local models.

The implementation of FLOO-CV reduces the computational load during

online phase. In the above two adaptive JIT algorithms, only the local k-

ernel parameters are updated recursively and the database is always fixed.

In this regard, these two methods are quite different from traditional recur-

sive methods where the most recent sample pair (xt, yt) is merged into the

database for model update. Under this circumstance, our motivation is to

update the JIT models by adopting and weighting recent samples instead of

refreshing the local tuning parameters. In the previous research, although

JIT method builds a new model for each query data (which can be seen as

a unique local model), the database is never changed. Actually, unless the

original database contains sufficient information about the future process

conditions, the models will become invalid after a certain period of time

(even though they are local models). In this section, an algorithm which
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prioritizes the most recent samples as well as nearby samples is proposed

to solve both time varying and non-linearity problems.

4.3 Proposed algorithm: prioritize recent sam-

ples in JIT

4.3.1 Space weight and Time weight

Just-in-time approach can also be referred to as Relevance-in-space ap-

proach while the recursive algorithm can also be referred to as Relevance-

in-time approach. It is not difficult to understand that JIT and recursive

algorithm outperform traditional modeling methods by prioritizing samples

that are relevant in terms of both distance and time. The nature of recursive

adaptation algorithm is to assign higher weights on more recent samples and

gradually forget the old data. In this case, the forgetting factor λ can be

considered as the weight w as mentioned in Just-in-time framework. Then,

as opposed to weight being determined by space relevance in JIT approach,

the weight in this case is determined by time relevance. Thus it is possi-

ble to merge the recursive algorithm into the JIT framework so that both

non-linearity and time varying issues can be solved in the same time. In

the following discussion, we propose a formulation wherein the forgetting

factor is transferred into the weight which can be used in locally weighted

PLS.

The success of traditional locally weighted PLS depends on two main

loading vectors as shown in Equations 4.18 and 4.19, where the loading

vectors are derived using the diagonal weight matrix W.

pk =
(XTWy)T (XTWX)

(XTWy)T (XTWX)(XTWy)
(4.18)
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qk =
(XTWy)T (XTWy)

(XTWy)T (XTWX)(XTWy)
(4.19)

It is clear that both pk and qk are derived from two weighted covariance

matrix, as shown in Equations 4.20 and 4.21.

Rx = XTWX (4.20)

Ry = XTWy (4.21)

To investigate the influence of weights on the covariance matrix, let:

X =


x1

x2

...

xN

 y =


y1

y2
...

yN

 W =


w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wN

 (4.22)

Then the weighted covariance matrix in Equations 4.20 and 4.21 can be

written as

Rx = w1x
T
1 x1 + w2x

T
2 x2 + · · ·wNx

T
NxN

Ry = w1x
T
1 y1 + w2x

T
2 y2 + · · ·wNx

T
NyN

(4.23)

It is clear that for the i-th (i = 1, 2...N) sample pair (xi, yi) the weight can

be expressed as:

W (xi) = wi = f(di) (4.24)

where f(di) is a function of the distance di between xi and xq.

Similarly for recursive PLS, the most important step is to discount the

covariance matrix by putting a forgetting factor λ on the past data, as

shown in the following equations:

Rx
t = λRx

t−1 + xT
t xt

Ry
t = λRy

t−1 + xT
t yt

(4.25)
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where X0 is the initial data matrix containing a certain number of training

samples (used for initial model building) and t represents the current time.

The current covariance matrix can be further written into:

Rx
t = λtXT

0X0 + λt−1xT
1 x1 + λt−2xT

2 x2 + · · ·λxT
t−1xt−1 + xT

t xt

Ry
t = λtXT

0 y0 + λt−1xT
1 y1 + λt−2xT

2 y2 + · · ·λxT
t−1yt−1 + xT

t yt

(4.26)

Comparing Equation 4.23 and Equation 4.26, it is not difficult to find that

both locally weighted algorithm and recursive algorithm belong to the in-

stance weighting technique; thus recursive algorithm can also be expressed

as a weighting algorithm as shown in Equations 4.27 and 4.28.

Rx
t = XtWtXt

Ry
t = XtWtyt

(4.27)

Xt =


X0

x1

...

xt

 yt =


y0

y1
...

yt

 Wt =


λt 0 · · · 0

0 λt−1 · · · 0
...

...
. . .

...

0 0 · · · λ0

 (4.28)

Then the ‘Time’ weight for the sample at time τ can be expressed as in

Equation 4.29. The weight for the current sample (τ = t) is 1.

W (xτ ) = λt−τ = f(t) (4.29)

From Equations 4.24 and 4.29, one can find that both space weight and time

weight for the historical samples can be merged into the JIT framework. A

novel JIT algorithm which can handle both time varying and non-linearity

issues is thus proposed and the detailed description is given in the following

part.
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4.3.2 Recursive locally weighted PLS

Based on the above discussions, the motivation of the proposed algorithm

is to prioritize both the recent samples (time relevance) and the nearby

samples (space relevance) in the JIT framework when building a local PLS

model. In the proposed algorithm, a moving window approach is adopted

to update the database. Then two weighting matrix W1 and W2 are for-

mulated to account for time varying and non-linearity issues, respectively.

A balancing parameter ρ is introduced in order to make a balance between

W1 and W2. The details are described as below.

Step 1. Update the database using moving window approach. The most recent

sample is added into the database while the oldest one is removed.

Step 2. Mean center the database and query sample using Equation 4.30-4.34:

x =

∑N
i=1 xi

N
(4.30)

y =

∑N
i=1 yi
N

(4.31)

X̃ = X− 1Nx =


x̃1

x̃2

...

x̃N

 (4.32)

ỹ = y − 1Ny (4.33)

x̃q = xq − x (4.34)

Step 3. Set up the Time Weight Window size K as the number of most recent

samples to be prioritized.

Step 4. Assign weights to the most recent K samples using the forgetting
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factor λ so that the weighting matrix W1 is obtained.

W1 =


λK−1 0 · · · 0

0 λK−2 · · · 0
...

...
. . .

...

0 0 · · · 1

 (4.35)

Step 5. Assign weights to the remaining N −K samples using Euclidean dis-

tance.

di = ∥x̃i − x̃q∥2, i = 1, 2...N −K (4.36)

wi =
di − dmin

dmax − dmin

(4.37)

where dmin is the minimum distance from query sample and dmax is

the maximum distance.

W2 =


w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wN−K

 (4.38)

Step 6. Combining W1 and W2 using the balancing parameter ρ.

W =

W2 0

0 ρW1

 =



w1

. . . 0
wN−K

ρλK−1

0 . . .

ρ


(4.39)

Step 7. Perform locally weighted PLS algorithm using W (follow the same

procedure as shown in Section 3.2.4 of Chapter 3).

85



The first step adopts moving window approach in order to keep the num-

ber of historical samples constant; otherwise the time required to perform

search for the relevant samples will increase as database keeps growing.

Step 2 is used for detecting the bias change, which is a commonly observed

phenomenon during online phase. Step 3 and 4 construct weighting matrix

for the Time Weight Window by putting forgetting factor λ on the most

recent K samples (0 < λ < 1). The number K is the size of this window

which can be determined according to both prior knowledge and offline val-

idation results. Step 5 assigns space weights to the remaining samples in

the database using Euclidean distance calculation. The space weights are

normalized between 0 and 1 by Equation 4.37 so that their values are com-

parable with the time weights calculated in Equation 4.35. In Step 6, a

balancing parameter ρ (0 < ρ ≤ 1) is put on W1 in order to determine the

strength of adaptation to the most recent samples.

To make a better interpretation of the algorithm, the weight for each

data point is divided into two parts, i.e. the space weight and time weight,

as descried in the following equation:

w = wS · wT (4.40)

As a result, the final weighting matrix can be explained in the following

form:

W = WS ·WT =



f(d1)

. . . 0
ρ

0 . . .

ρ


·



1

. . . 0
λK−1

0 . . .

1


(4.41)
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For samples in the time weight window, the space weight are all forced to

be the balancing factor wS = ρ while the time weight is a function of time

wT = λt−τ . On the other hand, for the remaining samples, the space weight

is a function of distance wS = f(di) while the time weight is forced to be

wT = 1.

4.4 Application results

4.4.1 NIR spectra from refinery

The NIR data used for case study were obtained from a refinery plant,

located in Edmonton, Canada. A total of 565 diesel samples are collected

from online operation between January 2010 and April 2012, the sampling

rate of which is one sample per day. The spectra of diesel samples were

measured using an NIR spectrometer having the wavelength range of 800-

1700 nm and nominal spectral resolution of 1 nm. The target property

to be estimated is the Final Boiling Point (FBP), which is measured in

lab using standard ASTM testing methodologies. For proprietary reasons,

the property values are normalized between -1 and 1. The earliest 300

samples were used to form the initial database, and the remaining 265

samples were used for testing the algorithm. All the spectra were subject to

first order derivative preprocessing according to the Savitzky-Golay method.

The original spectra and the preprocessed spectra can be seen in Figure 2.2

4.4.2 Results and discussion

The proposed recursive locally weighted PLS (RLWPLS) in Section 4.3.2

is applied to the NIR data mentioned above. In this study (NIR modeling

for the refinery product), the number of samples in the database, which is

also the moving window size, is N = 300. The forgetting factor in Equation
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4.35 is set as 0.95 in order to keep a certain number of samples to be

effective. For example, the value of the 40-th latest sample will become

0.13 time that of the actual value (0.9540 ≈ 0.13). The effects of the other

two parameters, i.e. the Time Weight Window size K and the balancing

parameter ρ are investigated. For each pair of the two parameters, the

corresponding prediction performance is demonstrated by RMSEP and

correlation coefficient R, which are shown in Figure 4.5 and 4.6.
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Figure 4.5: Prediction error under different tuning parameters

From Figure 4.5, it is clear that the balancing parameter plays an im-

portant role in the model performance. When ρ = 1, the model gets lowest

RMSEP , which means that large time weights should be put onto the lat-

est samples. However, the Time Weight Window size (K) does not have

too much influence on the model performance. As long as the balancing

parameter ρ is fixed, the RMSEP does not change much with K. Simi-

larly in Figure 4.6, it is the balancing parameter that plays a crucial role

in the prediction results. The highest correlation coefficient (above 0.85)

is obtained when ρ = 1 and the correlation coefficient does not change too

much with K. Thus, the inference drawn from Figure 4.6 matches with that

from Figure 4.5. In conclusion, the optimal values for these two parameters
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are Kopt = 5 and ρopt = 1. It should be noted that the optimal parameters

depend on the data set. For processes with more non-linearity and less time

varying issues, a larger K and a smaller ρ might be more helpful. In Figure
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Figure 4.6: Correlation coefficient under different tuning parameters

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

Sample index

W
ei

gh
ts

 

 

The 1st sample

The 150th sample

The 256th sample

Figure 4.7: Training data weights at 3 different query samples

4.7, the weights of training samples assigned by RLWPLS are plotted. The
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window size is N = 300, and the most recent 5 samples (296th − 300th) are

assigned relatively higher weights (0.954, 0.953, 0.952, 0.95, 1). It should be

noted that samples that have large space weights are not necessarily the

most recent ones, which means that they have lower time weights. On the

other hand, some of the recent samples are assigned with low space weights.

In real applications, both non-linearity and time varying issues exist in the

same time. The two problems cannot be solved by applying a simple locally

weighted algorithm or simple adaptive algorithm separately. The proposed

algorithm solves both problems by forcing a few most recent samples to have

large time weights while assigning space weights to the remaining samples.

The prediction results of the proposed algorithm are compared with

another four methods listed below.

1. PLS: A fixed PLS model.

2. LWPLS: Locally weighted PLS with a fixed database, using the simi-

larity measurement from Equation 4.36 and 4.37.

3. MWPLS: Moving window PLS with window size=300 and step size=1.

4. MW-LWPLS: Locally weighted PLS with a moving window database.

The similarity measurement is the same as LWPLS method and win-

dow update is the same as MWPLS method.

5. RLWPLS: The proposed algorithm with forgetting factor λ = 0.95,

balancing parameter ρ = 1 and K = 5.

The RMSEP and R for the above mentioned methods are summarized

in Table 4.1. It is clear that the proposed RLWPLS can significantly re-

duce the RMSEP by 45.26% compared with PLS method. The R can be

improved by 69.27% using RLWPLS.
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Table 4.1: Estimation results for JIT and adaptive methods

Methods RMSEP Reduced by% R Increased by%

PLS 0.1453 0% 0.5030 0%

LWPLS 0.1299 10.59% 0.6399 27.23%

MWPLS 0.1082 25.51% 0.7157 42.30%

MW-LWPLS 0.0887 38.93% 0.8131 61.67%

RLWPLS 0.0795 45.26% 0.8514 69.27%

Traditional methods such as LWPLS and MWPLS are also able to im-

prove the model performance, but not as much as the proposed RLWPLS.

Specially, MWPLS achieves more improvements than LWPLS, which indi-

cates that the time varying issue is more evident than non-linearity issue

in this data set. The MW-LWPLS gets comparable results as RLWPLS,

which indicates that the non-linearity and time varying issues both exist in

the same time.

The detailed estimation results are shown in Figure 4.8 and 4.9. From

Figure 4.8, it is clear that LWPLS is not able to track the process dynamics

during certain periods, which is due to the limited process information con-

tained in the database. This is an evidence that if the JIT approach adopts

a fixed database, the future process information will be missed and thus

the model performance will deteriorate in real applications as time goes by.

From Figure 4.9, one can notice that MWPLS achieves better performance

than LWPLS in terms of tracking the process dynamics, but there are still

some instances where the model performance is not satisfactory. This may

be due to the remaining non-linearity issues which cannot be removed by

an adaptive algorithm. In both Figure 4.8 and 4.9, RLWPLS gets a better

prediction performance since RLWPLS takes advantage of both adaptive

and locally weighted algorithms. Furthermore, the scatter plots for the

four modeling methods (PLS, LWPLS, MWPLS, RLWPLS) are shown in
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Figure 4.8: Prediction results for LWPLS and RLWPLS
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Figure 4.9: Prediction results for MWPLS and RLWPLS
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Figure 4.10.
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Figure 4.10: Scatter plots for RVP predictions

4.5 Conclusions

In this chapter, the traditional methods for adaptation of soft sensors have

been reviewed. Both linear regression techniques and non-linear regression

techniques can be updated using corresponding adaptive methods. Tradi-

tionally, recursive algorithm and locally weighted algorithm prioritize cer-

tain samples by assigning higher weights to more relevant samples in terms

of time and distance, respectively. In order to deal with both time varying

and non-linearity issues in the same time, the Recursive Locally Weighted

93



Partial Least Square (RLWPLS) algorithm is proposed. RLWPLS is formu-

lated by merging recursive and locally weighted algorithms into the same

Just-in-time framework. The moving window database update is adopted

to renew the information stored in the database. Then both recent samples

and nearby samples are given higher weights to form the weighting matrix.

Finally the regression is conducted using locally weighted PLS algorithm

and the weighting matrix. The usefulness of this algorithm is illustrated by

an industrial NIR case study. Compared with traditional PLS, regular JIT

methods, and moving window algorithms, the proposed method is shown

to significantly enhance the prediction performance. Furthermore, a bal-

ancing parameter is proposed to adjust the weights assigned on the most

recent samples.
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Chapter 5

Conclusions and

Recommendations

5.1 Summary of this thesis

This thesis is concerned with the model development and model update

problems for near infrared (NIR) spectroscopy applications. Traditional

invariant models have shown limitations when there are non-linearity and/or

time varying issues in the process. The limitation of conventional hardware

sensors and the necessity of building robust soft sensors motivate us to

explore the model development for NIR applications.

The background material about near infrared spectroscopy was present-

ed in Chapter 1. Chapter 2 dealt with the online model update problem

for NIR applications. By incorporating the wavelength selection method

with recursive partial least squares regression, an update strategy which

can adjust both model structure and model coefficients was proposed. The

variable importance in the projection (VIP) method was adopted to perform

wavelength selection in each update iteration. The recursive exponentially

weighted PLS (rPLS) was adopted to calculate the score vectors, loading

vectors and model coefficients. Industrial case studies were used to evaluate
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the performance of proposed algorithm.

In practice, nonlinear relationship between spectra (input) and quality

variable (output) always exists, especially for industrial processes with vari-

ous operation ranges. The objective of Chapter 3 is to develop local models

under the framework of Just-in-time learning in order to solve the non-

linearity problem in model development. The orthogonal signal correction

(OSC) algorithm was used to combine both input and output information

for similarity calculation. To illustrate the proposed model construction

scheme, an NIR data set from pharmaceutical industry was used. The com-

parison results with other traditional JIT methods proved the superiority

of this proposed method.

Although non-linearity issue can be handled using JIT modeling, time

varying issue is still a problem if the process condition changes over time.

Chapter 4 solved both non-linearity and time varying issues under the JIT

framework. The recursive algorithm was formulated under the JIT frame-

work and a novel method was proposed to combine recursive algorithm with

locally weighted algorithm. An industrial case study was used to prove the

usefulness of the proposed method.

5.2 Recommendations for future work

Throughout the whole thesis, we have worked on the modeling and model

update issues that are associated with near infrared spectroscopy. Several

techniques have been adopted such as recursive algorithm, moving window

approach, Just-in-time approach and orthogonal signal correction. With

the effectiveness of these methods being demonstrated in this thesis, there

are several open issues and directions which can further enhance the per-

formance of these techniques. Firstly, the recursive wavelength selection

adopts a fixed number of latent variables and a constant threshold for VIP
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wavelength selection which obtained by offline cross validation. It would be

more beneficial to check if the optimal setting of these parameters changes

with time and then formulate a framework to adjust the optimal values of

these parameters. Secondly, numerous wavelength selection methods are

available in the literature so that they could also be incorporated with the

recursive algorithm. Thirdly, the similarity criterion using input-output in-

formation is only evaluated using NIR data sets, and the efficiency of this

method can be expanded into other processes where multi-variate model-

ing is needed. Finally, how to define and quantify the time varying and

non-linearity issues in the data sets remains to be an open question.
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