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Abstract

Boreal forests are changing in response to climate change and shifts in disturbance

regimes. Statistical models that link distribution, abundance, and community struc-

ture to select environmental variables have been used to understand how birds respond

to these changes. However, model performance is influenced by the choice of spatial

covariates. Remote sensing, like Light Detection and Ranging (LiDAR), and satellite

photogrammetry, can improve bird-habitat models by introducing novel biologically

relevant spatial covariates at fine resolutions. This thesis presents methods to use and

evaluate modern remote sensing tools to refine our understanding of species-habitat

relationships. It also explores how bird communities respond to forest harvesting in the

boreal. First, LiDAR can improve bird-habitat models by providing novel vegetation

structure covariates. However, temporal misalignment between LiDAR acquisitions

and point count surveys may influence the predictive power of models that use LiDAR

predictor variables. As vegetation undergoes successional changes, LiDAR data that

is temporally restricted may cease to reflect habitat conditions, thus compromising

the usefulness of LiDAR predictor variables. To evaluate this, I examined how the

time-lag between LiDAR acquisitions and bird surveys influenced model robustness

for early-successional, mature-forest, and forest generalist birds. The results indicated

that for species occupying older, more stable forests, a time difference of up to 15

years has a negligible impact on the predictive power of LiDAR based bird-habitat

models. For early-successional birds, the findings suggest that a time difference of
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5-13 years between LIDAR and bird data may decrease model performance. Next,

I compared the suitability of covariates from LiDAR, a Landsat time series, and

forest resource inventories for predicting bird response to forest harvesting in Alberta.

These covariates were used to predict the abundance of twenty species associated with

different foraging and nesting strata, within harvest areas across a chronosequence of

recovery. The results suggest that integrating LiDAR and Landsat spectral change

covariates improves model performance over models built using forest resource inven-

tory data alone. Additionally, spectral estimates of harvest intensity and time since

disturbance explained most of the variation in species abundance models. Finally, I

used a spectral change detection algorithm, point count data, acoustic monitoring tools,

and mixed-effects regression models to evaluate the impact of the interaction between

forest harvest intensity and recovery time on the taxonomic and functional diversity of

birds. The findings suggest that harvest residuals can mitigate the short-term effects

of forest harvesting on bird communities. Furthermore, I demonstrate that metrics

derived from a time-series of Normalized Burn Ratio (NBR) are a promising alternative

to conventional categorical harvest intensity metrics included in many classified land

cover maps. Collectively, this work shows that supplementing classified land cover data

with LiDAR and Landsat time-series data can improve the performance of bird-habitat

models while avoiding the costs of ground-based habitat surveys.
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This thesis is an original work by Brendan Casey. No part of this thesis has been
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1
Introduction

1.1 Disturbances in the boreal

Canada’s boreal landscape is a dynamic successional mosaic driven by fire, insect

disturbances, disease outbreaks, forestry, and oil and gas development (Brandt et al.,

2013). Disturbance driven changes to the structural and functional elements of forests

can affect the distribution and composition of bird populations (Leston et al., 2023;

Norton & Hannon, 1997; Schmiegelow et al., 1997; Venier et al., 2014).

Birds play an important role in the functioning of boreal forest ecosystems (Niemi

et al., 1998). In Canada’s boreal forests, birds account for approximately 70% to 80%

of terrestrial vertebrates, encompassing nearly 400 species (Blancher & Wells, 2005;

Niemi et al., 1998). Predation by birds drive small-mammal population dynamics

(Hanski et al., 2001), dampen spruce budworm (Choristoneura fumiferana) outbreaks

(Crawford & Jennings, 1989; Venier et al., 2009), and may increase forest productivity

by reducing the abundance of defoliating insects (Marquis & Whelan, 1994). Birds

also play an important role in seed dispersal and nutrient cycling (Arnberg et al., 2023;
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1. Introduction

Lanner, 1996; Niemi et al., 1998). Given the strong links between birds and forest

conditions, birds are often used as indicator species in sustainable forest management

(Furness & Greenwood, 2013; Venier & Pearce, 2007)

Forestry practices change bird habitat by altering the structure, composition, spa-

tial pattern, and age distribution of forests (Hobson & Schieck, 1999; Kuuluvainen &

Gauthier, 2018; Schieck & Song, 2006; Venier et al., 2014). These changes directly

affect the availability of food, shelter, and nesting resources for birds. Given species-

specific habitat preferences, changes to habitat structure caused by natural and anthro-

pogenic disturbances can alter the composition of bird communities. Understanding

species-habitat relationships is critical for predicting how communities will respond

to these changes and for effective conservation efforts (Lindermayer & Franklin, 2002;

Niemi et al., 1998; Paillet et al., 2009).

1.2 Bird-habitat models

Ecologists use statistical models to estimate species abundance and distribution and

to quantify community responses to environmental change (Fox et al., 2015). Many

link wildlife observations (e.g. detections from point counts or bioacoustic monitoring)

to environmental predictor variables (Carrillo-Rubio et al., 2014; Engler et al., 2017;

Guisan & Zimmermann, 2000; He et al., 2015). Referred to as species distribution

models (SDMs), this family of statistical methods combines wildlife and habitat data

to infer species-habitat relationships and predict species’ distributions along environ-

mental gradients (Engler et al., 2017; Guisan & Thuiller, 2005). With advancements

in modelling methods, computational power, and environmental monitoring, SDMs

continue to be an important tool in ecology, conservation biology, and wildlife man-

agement (Elith & Leathwick, 2009). See reviews by Engler et al. (2017), Elith et al.
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1. Introduction

(2009), Araújo et al. (2019), and Guisan and Thuiller (2005).

SDMs are used for both explanatory and predictive modelling (Ferrier et al., 2017).

Explanatory models test casual relationships between response variables (e.g. occu-

pancy or abundance) and biologically relevant explanatory variables (Shmueli, 2010).

In contrast, predictive models assume established relationships between variables and

generate response values for unobserved locations, allowing for the prediction of species

distributions and the creation of habitat suitability maps (Franklin, 2010b; Guisan &

Thuiller, 2005). Both types of models are useful for addressing a range of ecological

questions, exploring the patterns and processes that drive spatial distributions, and can

inform conservation management planning. Applications include dispersal, abundance,

and disturbance modelling, biodiversity assessment, global change modelling, invasive

species management, identifying critical habitat, and environmental impact assessment

(Araújo et al., 2019; Carrillo-Rubio et al., 2014; Franklin, 2010a; Guisan et al., 2013;

Guisan & Thuiller, 2005; Randin et al., 2020).

SDMs encompass a variety of statistical approaches, including generalized linear

models (Ferrier et al., 2002), resource selection functions (Boyce et al., 2002), general-

ized additive models (GAMs) (Brodie et al., 2020), and Bayesian models (Golding &

Purse, 2016). With the increasing emphasis on predictive modelling, machine learning

techniques have been applied to SDMs, such as boosted regression trees (Elith et

al., 2008) and maximum entropy (Maxent) algorithms (Elith & Leathwick, 2009; Li

& Wang, 2013; Phillips & Dudík, 2008). These models often use species detection

data from traditional human point counts or autonomous bioacoustic monitoring as

response variables (Campos-Cerqueira & Aide, 2016; Dorazio, 2014; Guisan & Thuiller,

2005), and predictors from remote sensing, classified land cover maps, or field data.

The modelled relationships can be used to map predicted species distributions and
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1. Introduction

forecast distributions under different ecological scenarios (Araújo et al., 2019).

1.2.1 Predictor variables

To function, SDMs require biologically meaningful spatial covariates, often over large

spatial extents, that match the scales at which ecological processes influence species

(Cumming et al., 2010b; Guisan & Thuiller, 2005; Manly et al., 2002; Tattoni et al.,

2012). The choice and scale of predictors play a crucial role in model performance

(Fourcade et al., 2018; Franklin, 1995; Regos et al., 2019; Syphard & Franklin, 2009;

Vaughn & Ormerod, 2003).

Predictor variables used in avian SDMs can exert direct or indirect effects on

species and can be classified into six primary categories (Austin, 2007; Franklin,

2010a; Mackey & Lindenmayer, 2001): (1) climate variables, such as temperature,

precipitation, and soil moisture (Ralston & Kirchman, 2013; Stralberg et al., 2015;

Virkkala & Lehikoinen, 2014); (2) topographic variables, including elevation, slope,

and topographic position (Bale et al., 2020; Franklin, 2010a; Skidmore, 1990); (3)

land cover variables showing habitat type and dominant vegetation species (Büttner,

2014; Seoane et al., 2004); (4) disturbance variables indicating the type, extent, and

timing of both natural and anthropogenic disturbance (Meurant, 2012); (5) vegetation

structure, including vertical heterogeneity, height, cover, and density (Davies & Asner,

2014; MacArthur & MacArthur, 1961); and (6) the spatial arrangement of landscape

attributes represented by proximity, complexity, and geometry metrics (Kosicki, 2018;

Pearson, 1993; Vernier et al., 2002).

Many predictor variables are included in classified land cover maps, digital forest

resource inventories (FRIs), digital elevation models, and interpolated climate sur-

faces, or gathered via direct field measurements done during wildlife surveys (Alberta
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1. Introduction

Biodiversity Monitoring Institute and Alberta Human Footprint Monitoring Program,

2019; Cosco, 2011; MacArthur & MacArthur, 1961). However, each data source has

inherent limitations. For example, classified land cover maps and forest resource

inventories can be temporally limited and require specialized to skills to produce.

And while field measurements provide valuable data, the data is usually spatially

limited and can be costly and time-consuming to collect. Some of these limitations

can affect the performance of SDMs, like when predictors have coarse or limited

spatiotemporal resolutions, reducing the transferability of models in space and time

(Connor et al., 2018; Randin et al., 2020). Lack of transferability is often the result

of misalignment between the resolution and extent of predictor and response variables

(Guisan & Thuiller, 2005).

1.3 Remote sensing

Data availability can limit the choice of predictor variables in models, and the variables

that are used may not capture the full range of habitat conditions that influence

avian species. Avian SDMs often rely on coarse environmental covariates derived from

digital maps–e.g. land cover maps and digital forest resource inventories (FRIs). These

products may contain detailed information on plant species composition, disturbance

history, and canopy height; and the models that use these data can make accurate

broad, landscape scale predictions (Cumming et al., 2010a). However, birds respond

to structural complexity and successional change, measures of which are often missing

from these datasets. The inclusion of habitat structure and successional metrics,

alongside habitat attributes that align with the spatiotemporal resolutions of response

variables, should improve model performance (Bayne et al., 2010; Tattoni et al., 2012).

Using predictors sourced directly from remote sensing, particularly light detection
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1. Introduction

and ranging (LiDAR) and satellite imagery, can improve the capabilities of SDMs and

the scale at which they operate (Elith & Leathwick, 2009). Geographic Information

Systems (GIS), open-source data processing tools, and multi-petabyte geospatial cat-

alogs have provided access to alternative sources of spatial data and new methods of

analysis (Gorelick et al., 2017; Hijmans, 2021; Pebesma, 2020; Shirley et al., 2013).

LiDAR can characterize three-dimensional vegetation structure (Bae et al., 2018;

Davies & Asner, 2014; Kortmann et al., 2018; Lefsky et al., 2002; Renner et al., 2018),

ground topography (Fritz et al., 2018; Schaffer-Smith et al., 2018), and terrain wetness

(White et al., 2012). Spectral indices derived from satellite and aerial imagery can map

land cover change and measure rates of post-disturbance habitat recovery (Northrup

et al., 2019; Rittenhouse et al., 2010). As model covariates, such metrics can improve

the capabilities of avian SDMs and overcome limitations associated with classified land

cover products (Davies & Asner, 2014; Lefsky et al., 2002; Zellweger et al., 2014).

Unfortunately, few have compared the value of different remote sensing predictor

variables in SDMs, or assessed their differential predictive power across species.

1.3.1 LiDAR

Traditionally, vegetation structural metrics are obtained through ground-based field

measurements (MacArthur & MacArthur, 1961). Field measurements are typically

limited to discrete sampling regimes over relatively narrow spatial extents (Bergen et

al., 2009). While valuable for explaining variation in sampled areas, such an approach

has limited value in predicting where birds will or will not be in unsampled areas.

Methods that directly measure the three-dimensional distribution of canopy and sub-

canopy structures at varying scales can dramatically increase the predictive accuracy

of avian SDMs (Zellweger et al., 2014) and address limitations inherent in SDMs that

only use horizontal land cover variables (Davies & Asner, 2014; Lefsky et al., 2002).
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1. Introduction

Airborne LiDAR gathers structural information by measuring the elevation of sur-

face topography and vegetation. A sensor attached to a plane or UAV repeatedly fires

laser pulses towards the Earth’s surface recording the echoes reflected from branches,

dead woody debris, and foliage (for overviews of the LiDAR techniques used for

collecting habitat structural data, see Van Leeuwen & Nieuwenhuis (2010) and Vierling

et al. (2008)). The height and frequency of returned echoes can generate metrics

associated with avian habitat, including those related to plant species composition

(Ackers et al., 2015; Zielewska-Buettner et al., 2018), ground topography (Fritz et al.,

2018; Schaffer-Smith et al., 2018), terrain wetness (White et al., 2012), and vegetation

structure (Bae et al., 2018; Kortmann et al., 2018; Renner et al., 2018). Many of these

variables relate to habitat structural properties selected by birds.

LiDAR is increasingly being used to characterize three-dimensional forest struc-

tures in wildlife habitat studies (Davies & Asner, 2014; Lim et al., 2003). Used as

predictor variables, LiDAR metrics can improve the performance of avian SDMs (Bae

et al., 2014; Clawges et al., 2008; Farrell et al., 2013; Ficetola et al., 2014). LiDAR has

been used to model single species (Barnes et al., 2016; Goetz et al., 2010; Holbrook

et al., 2015; Vogeler et al., 2013), guilds (Vogeler et al., 2014; Weisberg et al., 2014),

and communities (Clawges et al., 2008; Lesak et al., 2011; Sheeren et al., 2014) across

a range of forested habitats including boreal (Lindberg et al., 2015), montane (Müller

et al., 2009), and temperate (Martinuzzi et al., 2009) forests. Though a full suite of

LiDAR-derived metrics is available (Hall et al. (2005) used 39 metrics) most studies use

a subset. Commonly used metrics correspond to the following categories: vegetation

height, cover, structural complexity, and density of forest strata (Bae et al., 2018;

Davies & Asner, 2014; Kortmann et al., 2018; Lefsky et al., 2002; Renner et al., 2018).

Canopy height is a strong univariate predictor of species richness (Culbert et al., 2013;
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1. Introduction

Goetz et al., 2007), abundance (Müller et al., 2009), chick mass (Bradbury et al.,

2005) and habitat selection (Seavy et al., 2009). Canopy cover can alter conditions of

lower forest strata, influencing occupancy and nest selection (García-Feced et al., 2011;

Swatantran et al., 2012; Vogeler et al., 2013). The relationship between structural

diversity and bird communities is long established (MacArthur & MacArthur, 1961),

and LiDAR measures of structural heterogeneity have been used to predict avian

diversity in localized areas (Clawges et al., 2008; Goetz et al., 2007).

Despite the strong performance of LIDAR-based SDMs, LiDAR has not been fully

adopted in avian ecology. Most studies continue to rely on conventional land cover

products, and those that use LiDAR tend to be spatially and temporally limited.

Few studies have used LiDAR to examine the effects of anthropogenic disturbances

on birds. Given the cost associated with LiDAR data acquisition, it is important to

know when to choose LiDAR over cheaper, more accessible products, and how much

temporal misalignment between LiDAR acquisitions and bird surveys is acceptable

(Wulder et al., 2012).

1.3.2 Spectral indices

Predictors from classified land cover maps can be supplemented with spectral re-

flectance data from space-based optical remote sensors to improve model performance

(He et al., 2015). Satellites such as Landsat and Sentinel offer imagery that can

be used to calculate both novel habitat metrics and ones similar to those found in

classified land cover maps, but with greater temporal and spatial resolutions. For

example, the normalized difference vegetation index (NDVI), a spectral measure of

vegetation productivity, can indicate food availability, habitat variability, and changes

in vegetation phenology (Kerr & Ostrovsky, 2003; Pettorelli et al., 2011). Studies have

used NDVI to predict bird species richness, abundance, and migration timing (Bailey
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1. Introduction

et al., 2004; Evans et al., 2006, 2008; McKinnon et al., 2015; Nieto et al., 2015).

Also, time series of the normalized burn ratio (NBR) have been used to measure the

magnitude of spectral change between pre- and post-disturbance forest stands and

estimate rates of successional recovery(Hislop et al., 2018). NBR spectral change

metrics have been used to examine the relationship between fire severity and avian

occupancy patterns (Rose et al., 2016). NBR spectral change metrics are a promising

alternative to conventional categorical disturbance intensity metrics found in forest

resource inventories and have the potential to uncover more nuanced relationships

between forestry practices and bird communities.

1.4 Thesis objectives

For this thesis, I used remote sensing, point count databases, and bioacoustic tools

to examine the response of bird communities to human-driven environmental changes

in boreal forests. The research described had two overarching objectives: (1) Use,

evaluate and compare the suitability of LiDAR, Landsat, and classified habitat data

from forest resource inventories (FRIs) and land cover maps for modelling species-

habitat relationships in boreal forests. (2) Evaluate the impacts of different retention

regimes on boreal bird communities over a successional gradient. Over three chapters,

this thesis presents various methods to use and evaluate modern remote sensing tools

to refine our understanding of species-habitat relationships, and explores how bird

communities respond to forestry in the boreal.

In Chapter 2, I evaluated the influence of temporal misalignment between LiDAR

acquisitions and bird surveys on model robustness for early-successional, mature-forest,

and forest generalist birds across a gradient of 0 to 15 years misalignment. I also

assessed how differences in resultant predictive distribution maps correlate with forest
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1. Introduction

age. The primary aim of Chapter 3 was to identify variables that best predicted

the post-harvest abundance of twenty bird species associated with different foraging

and nesting strata. Towards this, I compared the predictive power of three sources

of variables characterizing harvested forest areas: classified land cover data from

forest resource inventories, airborne LiDAR, and a time series of optical satellite

data. In Chapter 4, I investigated the long-term effects of retention forestry on

bird communities. An annual time series of NBR was used to assess the intensity

and recovery of forest harvests. NBR change metrics were then used to predict the

taxonomic and functional diversity of birds within harvested areas. Finally, Chapter

5 serves as a synthesis of the findings from the preceding chapters. It explores the

implications of these findings for bird research and wildlife management practices,

discusses the potential of remote sensing in species habitat modelling, and outlines

avenues for future research.
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2
The influence of time-lag between LiDAR

and wildlife survey data on species
distribution models

2.1 Introduction

The composition and structure of forests are changing in response to climate change,

shifts to natural disturbance regimes, and increasing industrial development (Brandt

et al., 2013). Predictive models linking field observations to environmental variables

can reveal how birds respond to these changes (Carrillo-Rubio et al., 2014; Engler

et al., 2017; Guisan & Zimmermann, 2000; He et al., 2015). Broadly known as

species distribution models (SDMs), this family of statistical methods predict bird

distributions by comparing habitat where individuals were observed against habitat

where they were absent (Guisan & Thuiller, 2005). SDMs and resulting predictive

distribution maps are used to understand bird habitat preferences and the drivers

of broad scale population declines and have applications in conservation management

planning and environmental impact assessments (Engler et al., 2017; Franklin, 2010a).
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2. The influence of LiDAR time-lag on SDMs

Many factors influence the predictive capacity of SDMs, but the inclusion of

ecologically relevant spatial covariates are key drivers of model accuracy (Fourcade

et al., 2018; Franklin, 1995; Vaughn & Ormerod, 2003). Bird SDMs often rely on

categorical predictors derived from digital maps delineating land cover, vegetation

composition, and human footprint. While useful, they often miss key forest features

affecting habitat selection, namely those related to vegetation structure.

Vegetation structure influences the abundance, distribution, and behavior of birds

(Davies & Asner, 2014; MacArthur & MacArthur, 1961). The height and density of

vegetation influence where birds perch, feed, and reproduce (Bradbury et al., 2005)

by mediating microclimates, providing shelter from weather (Carrascal & Diaz, 2006),

concealment from predators (Gotmark et al., 1995), and creating habitat for insect

prey (Halaj et al., 2000). Light Detection and Ranging (LiDAR) can characterize

these three-dimensional forest structures (Lim et al., 2003). Common LiDAR derived

metrics correspond with vegetation height, cover, structural complexity, and density

of forest strata (Bae et al., 2018; Davies & Asner, 2014; Kortmann et al., 2018; Lefsky

et al., 2002; Renner et al., 2018). Used as predictor variables, LiDAR metrics can

improve the predictive power of bird SDMs (Bae et al., 2014; Clawges et al., 2008;

Farrell et al., 2013; Ficetola et al., 2014).

Publicly funded regional LIDAR data and space-based sensors like NASA’s Ice,

Cloud and Land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics

Investigation (GEDI), have made large amounts of wall-to-wall structural data avail-

able to researchers (Abdalati et al., 2010; Coops et al., 2016; Dubayah et al., 2020).

However, LiDAR continues to be under-used in bird ecology. The limited temporal

resolution of most LiDAR products may be a factor. LiDAR is often limited to a single

season, with long multiyear gaps between repeat surveys. Temporal misalignment
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2. The influence of LiDAR time-lag on SDMs

between wildlife surveys and LiDAR is common (Babcock et al., 2016).

Temporal misalignment occurs when wildlife surveys and LiDAR acquisitions are

done at different times (Babcock et al., 2016; Vierling et al., 2014). It is unclear

how much temporal misalignment influences the performance of LiDAR based SDMs.

Disturbance-succession cycles drive changes in vegetation structure, and eventually,

LiDAR gathered in one year will no longer reflect ground conditions in another year.

Temporal misalignment can occur when the surveyed forest transitions between stages

of stand development (e.g. from stand initiation to stem exclusion) (Babcock et al.,

2016; Brassard & Chen, 2010). Thus, temporal misalignment can impact the power

of bird SDMs as successional changes in forest structure influence habitat selection

by birds (Sitters et al., 2014).

Consider Alberta’s boreal forests. It is a dynamic successional mosaic driven by

forestry, fire, and energy exploration (Brandt et al., 2013; Gauthier et al., 2015). The

landscape is a patchwork of early to late-successional stands with distinct structural

characteristics (Bergeron & Fenton, 2012; Brassard & Chen, 2010) and bird commu-

nities (Schieck & Song, 2006). In early-successional forests, bird communities are

dominated by species that nest and forage in open vegetation, wetlands, and shrubs,

along with some habitat generalists. As trees regenerate and the stand’s structural

properties change, open habitat avian species give way to species associated with

closed canopy forests that vary in underlying vertical structure over time (Leston et

al., 2018; Schieck & Song, 2006).

Thus, succession occurring between LiDAR and wildlife surveys may influence

SDM performance. Consequently, LiDAR’s usefulness as a source of explanatory

variables can degrade as temporal misalignment increases. For researchers pairing

LiDAR covariates with long-term wildlife survey data, this can lead to a trade-off:
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2. The influence of LiDAR time-lag on SDMs

(1) minimize temporal misalignment by reducing the sample size to survey data

gathered near the time of the LiDAR acquisition, or (2) maximize sample size and

risk sacrificing model accuracy.

To inform this trade-off, we addressed the question of how much temporal mis-

alignment is acceptable in LiDAR based SDMs. Our objectives were to (1) evaluate

how temporal misalignment between LiDAR acquisitions and bird surveys influence

the performance of SDMs across a gradient of 0 to 15 years, (2) compare the influence

of temporal misalignment on models for early-successional, mid-successional, mature-

forest, and forest generalist birds, and (3) assess how differences in resultant predictive

distribution maps correlate with forest age.

The effects of temporal misalignment on SDMs will likely vary by habitat type

(e.g. forest age, disturbance history, and dominant vegetation) and the life history

characteristics of the study species. We predicted that the performance of SDMs will

decrease with increased temporal misalignment and that the magnitude of change will

vary according to the habitat associations of the focal species. We predicted that (1)

SDMs for early-successional associates, Mourning Warbler (Geothlypis philadelphia)

and White-throated Sparrow (Zonotrichia albicollis), would be most affected by tem-

poral misalignment because of faster vertical growth rates of establishment trees and

loss of dense shrub layers (Falls & Kopachena, 2020; McCarthy, 2001; Pitocchelli, 2020).

(2) SDMs for mid-seral species like American Redstart (Setophaga ruticilla) that are

associated with dense midstory vegetation, would see moderate declines in performance

as temporal misalignment increases due to self-thinning during the stem exclusion stage

of succession (Brassard & Chen, 2010; Sherry et al., 2020). And (3) mature forest

associates, Black-throated Green Warbler (Setophaga virens), will be least effected

by temporal misalignment as the processes effecting mature forest canopy structure
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2. The influence of LiDAR time-lag on SDMs

(insect defoliation and windthrow) happen at too small a scale to effect overall model

performance (Morse & Poole, 2020; Vierling et al., 2014). For all species, we predicted

that differences in distribution maps will be negatively correlated with forest age.

2.2 Methods

Our methodological workflow is illustrated in Figure 2.1. Analyses were done using R

statistical software (R Core Team, 2020). We built SDMs using bird data from the

Calling Lake Fragmentation project (Schmiegelow et al., 1997).

Species distribution modelsGather Bird Data

Time lag between LiDAR acquisition and point counts

0 · 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 1 0 · 1 1 · 1 2 · 1 3 · 1 4 · 1 5

Habitat preference

Mid-seral

Mature forest

Early successional

Characterize forests
Habitat covariates

Vegetation composition
Disturbance history

Government of Alberta

BAMCAS·FRI

LiDAR
Height
Vegetation density
Cover

Boreal Avian 
Modelling Project

Species

American Redstart 
(Setophaga ruticilla)

Black-throated Green 
Warbler (Setophaga virens)

Mourning Warbler
(Geothlypis philadelphia)

Generate QPAD offsets

Mixed effects logistic regression

AIC model selection 

No time lag

Apply top model

Validate

Predictive distribution map

For each time lag

Compare AUCs

Compare maps

Correlation with forest age

Compare time lag models

Data sourceProduct

Figure 2.1: Conceptual diagram of our methodology. SDM methods were repeated at

every time lag for each species. SDMs were compared using AUC and correlation between

predictive maps.
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2. The influence of LiDAR time-lag on SDMs

2.2.1 Study area

We used bird survey data from the Calling Lake Fragmentation Experiment (Schmiegelow

et al., 1997). Surveys were conducted across ≈ 14,000 ha of boreal mixedwood forests

near Calling Lake, in northern Alberta, Canada (55◦14′51′′N 113◦28′59′′W) (Figure

2.2). The experiment was designed to study the long-term impacts of forest harvesting

on birds (Hannon & Schmiegelow, 2002; Leston et al., 2018; Schmiegelow et al., 1997).

The study’s experimental harvest treatments have led to a landscape patchwork of

early- to mid- successional stands surrounded by tracts of unharvested mature forests.

When the experiment began in 1994, the landscape was dominated by older mixedwood

forests composed of trembling aspen (Populus tremuloides), balsam poplar (Populus

balsamifera), and white spruce (Picea glauca), and treed bogs containing black spruce

(Picea mariana) and larch (Larix laricina). Understory vegetation in the mixedwood

forests was composed mostly of alder (Alnus spp.) and willow species (Salix spp.).

2.2.2 Bird data

The Calling Lake Fragmentation Experiment included long term bird monitoring via

annual repeated point counts. Point counts used in this study came from 20 consecu-

tive breeding seasons (from 1995-2015). As the experiment’s study area overlapped spa-

tially with government wall-to-wall LiDAR coverage, there was an opportunity to study

the impacts of temporal misalignment between point counts and LiDAR on bird SDMs.

We used detection data from 187 stations where consecutive annual point counts

were conducted within sixteen years of the LiDAR acquisition date. Stations were

spaced ≈ 200 m apart. At each station, three to five morning point count surveys

were conducted over each breeding season (May 16 to July 7) between sunrise and

10:00 h. Observers recorded the species detected during each five minute point count
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2. The influence of LiDAR time-lag on SDMs

Figure 2.2: Locations of point count survey sites from the Calling Lake Fragmentation

Study near Calling Lake, Alberta (Schmiegelow et al., 1997). Repeat point counts were

conducted during the breeding seasons from 1993 and 2015.

interval within sampling radii of 50 and 100 m. See Schmiegelow et al. (1997) for

further information on the Calling Lake Fragmentation Experiment’s study design and

point count protocols. To minimize the influence of forest edges on model predictions,

we limited point count stations to those conducted within a single forest stand age

(SD <5 yrs within a 100 m buffer of the station). We accessed point count data

using the Boreal Avian Modelling Project’s avian database; available on request from

www.wildtrax.ca (Boreal Avian Modelling Project, 2018).
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2. The influence of LiDAR time-lag on SDMs

We tested the effects of LiDAR temporal misalignment on six bird species common

to the study area (detected in ≥ 10% of all point count events) that were associated

with different forest age classes: American Redstart, Black-throated Green Warbler,

Mourning Warbler, Swainson’s Thrush (Catharus ustulatus), White-throated Sparrow,

and Winter Wren (Troglodytes hiemalis). The focal species showed low variability in

the total number of detections each year across the 16 years modelled (CV < 0.5 ).

2.2.3 Predictor variables

Habitat covariates included LiDAR vegetation metrics provided by the Provincial

Government of Alberta (GOA), forest stand attributes from the Common Attribute

Schema for Forest Resource Inventories (CAS-FRI) (Cosco, 2011), and mean summer

NDVI calculated from a time series of Landsat images (Survey, 2018) (Table 2.1).

Airborne LiDAR was gathered between 2008-2009 by Alberta Agriculture and

Forestry, Government of Alberta. The data was part of a larger provincial broad scale

LiDAR mapping effort. For an overview of the LiDAR specifications and collection

protocols see Alberta Environment and Sustainable Resource Development (2013).

The Government of Alberta provided us with 30m LiDAR raster layers representing

vegetation height, cover, and density metrics. The rasters were calculated from point

cloud data using FUSION software (McGaughey, 2018). For each raster, we calculated

the mean pixel value within a 100 m radius of point count stations using the raster

package in R (Hijmans, 2020).

Forest stand attributes were extracted from the Common Attribute Schema for

Forest Resource Inventories (CAS-FRI). CAS-FRI is a standardized collection of 2

ha forest inventory geospatial data (Cosco, 2011). CAS-FRI stand attributes were

interpreted using 1:10,000 to 1:40,000 aerial photography flown between 1987 and
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2. The influence of LiDAR time-lag on SDMs

Table 2.1: Spatial covariates included in the analysis.

Metric Source Description

elev_mean LiDAR Mean height

elev_maximum LiDAR Maximum height

elev_cv LiDAR Height coefficient of variation

canopy_relief_ratio LiDAR Canopy relief ratio (mean - min)/(max-min)

elev_p50 LiDAR 50th percentile of canopy height

elev_kurtosis LiDAR Height kurtosis

elev_p99 LiDAR 99th percentile of canopy height

elev_stddev LiDAR Height standard deviation

percentage_first_returns_above_2pnt00 LiDAR Percentage of first returns above 2 m

percentage_first_returns_above_mean LiDAR Percentage of first returns above the mean return height

total_all_returns LiDAR Total all returns

elev_p95 LiDAR 95th percentile of canopy height

strata_0pnt15_to_2pnt00 LiDAR Proportion of points between 0.15 and 2 m

strata_2pnt00_to_4pnt00 LiDAR Proportion of points between 2 and 4 m

strata_4pnt00_to_6pnt00 LiDAR Proportion of points between 4 and 6 m

strata_6pnt00_to_8pnt00 LiDAR Proportion of points between 6 and 8 m

strata_8pnt00_to_10pnt00 LiDAR Proportion of points between 8 and 10 m

strata_10pnt00_to_15pnt00 LiDAR Proportion of points between 10 and 15 m

strata_15pnt00_to_20pnt00 LiDAR Proportion of points between 15 and 20 m

strata_20pnt00_to_25pnt00 LiDAR Proportion of points between 20 and 25 m

strata_25pnt00_to_30pnt00 LiDAR Proportion of points between 25 and 30 m

strata_30pnt00_to_50pnt00 LiDAR Proportion of points between 30 and 50 m

forest_age CAS-FRI Mean age of the forest stand

NDVI Landsat 5, 7, and 8 Mean NDVI
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2. The influence of LiDAR time-lag on SDMs

2010. For each point-count station location we determined the disturbance history and

mean forest age. As there was not much variation in the dominant vegetation species

at survey locations, we excluded vegetation composition as a covariate in our models.

We used the Normalized Difference Vegetation Index (NDVI) as an indicator of

vegetation cover (Pettorelli et al., 2011). We generated 30 m composite NDVI rasters

from 1995 to 2015 using surface reflectance imagery from the Landsat 5 Thematic

Mapper (bands 3 and 4), the Landsat 7 Enhanced Thematic Mapper (bands 3 and 4),

and the Landsat 8 Operational Land Imager (bands 4 and 5) (Survey, 2018). Satellite

images were accessed and processed using the Google Earth Engine (GEE) Code Editor

(Gorelick et al., 2017). As all of the point counts occurred during summer breeding

season, we limited Landsat images to those taken between June and September. Im-

ages were masked to exclude snow, cloud, and cloud shadow pixels using the CFMask

algorithm (Foga et al., 2017). We generated annual median composites of masked

Landsat images and calculated NDVI rasters from the composites (NDV I = NIR−R
NIR+R)

(USGS, 2020). For each survey year we calculated the mean values of NDVI pixels

within a 100 m buffer of point count locations.

2.2.4 Analyses

We evaluated the effects of LiDAR temporal misalignment on model performance by

comparing mixed effects logistic regression models. We built models using the glmer

function in the R package lme4 (Bates et al., 2015).

To accommodate the influence of survey methods and nuisance parameters on

detection probabilities, we included statistical offsets in the models generated using

QPAD (Sólymos et al., 2013). The QPAD method integrates removal and distance

models to generate detectability offsets for individual point count events. In the
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QPAD framework, distance models account for the effects of environmental conditions

on the decreasing probability of observing a bird the further it is from the observer

(Buckland et al., 2001). Removal models estimate the probability that an available

bird will be observed vocalizing within a given point count duration (Alldredge et

al., 2007). Distance and removal models were combined to get point count specific

detectability offsets that were used in GLMMs. We modelled bird abundance using

Poisson GLMMs with log-link functions.

We used the following multi-step process for each focal species. In Step 1, we

grouped point count data according to the amount of temporal misalignment with

LiDAR. There were 16 groups, one group for each year of time-lag between LiDAR

and point count surveys (zero through fifteen years).

In Step 2, we built and evaluated models for the zero time-lag group of point

counts. We first computed a global model with all candidate predictor variables as fixed

effects and station location as a random effect. We checked for nonlinear relationships

between response and predictors by separately evaluating, linear, quadratic, and cubic

functions of each variable. To avoid multicollinearity between predictors, we used

Pearson correlation coefficients and VIF scores to iteratively remove highly correlated

predictors from the global model. We kept metrics with low correlation (r < 0.5 and

VIF < 3) that were associated with different vegetation structure categories: height,

cover, and complexity (Valbuena et al., 2020). For correlated metrics associated with

the same category, we selected the variable with the lowest P value. We evaluated

models consisting of the remaining predictors using the dredge function in the R

package MuMIn (Barto, 2020). We defined the top model as that with the lowest

Akaike’s Information Criterion (AIC)(Burnham & Anderson, 2002). We calculated

pseudo-R2 as a measure of explanatory power (Nakagawa & Schielzeth, 2013). For

21



2. The influence of LiDAR time-lag on SDMs

models with similar AIC values (a difference less than two) we selected the model

with the largest pseudo-R2.

In Step 3, we applied the Step 2 model to the remaining groups of time-lag point

counts. For each group, we used the fitted model and a raster stack of covariates

to map species occurrence probability using the predict function in the R package

raster (Hijmans, 2021).

In Step 4, we compared the performance of different time-lag models. We compared

their predictive accuracy using the area under the receiver operating curve (ROC)

(AUC) calculated using the auc function in the pROC package in R (Robin et al., 2011).

Models with an AUC >0.7 were considered moderately predictive of species occurrence

(Vanagas, 2004) We tracked the amount of LiDAR time-lag necessary for models to

have an AUC <0.7. The contribution of individual fixed effects were estimated by

calculating semi-partial R2 values using the r2beta function from the r2glmm package

using standardized general variances (Jaeger, 2017). We compared the predictive maps

for different time-lag groups by calculating the per pixel differences between them (i.e.,

we subtracted the zero time lag map from the map of each subsequent time lag group,

resulting in 15 “difference” rasters). We used Pearson’s correlations to examine the

relationship between differences in species occurrence probability and forest age.

2.3 Results

The LiDAR variables used in top performing models varied by species (Table 2.2).

The most common predictor variables across species were maximum vegetation height

(used in all top models), and mean summer NDVI (used in top models for five out

of six species). The rates and magnitude by which AUC was effected by LiDAR-bird

survey temporal misalignment varied by species (Figure 2.3).
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Table 2.2: The fixed effects and summary statistics for top models for each species.

Marginal R2 (R2m) is a measure of the variance explained by the fixed effects. Conditional

R2 (R2c) is a measure of variance explained by the full model, both fixed and random effects

(Nakagawa & Schielzeth, 2013) .

Species Fixed effects R2m R2c AUC

American Redstart

(Setophaga ruticilla)

ndvi + elev_2pnt00_to_4pnt00_return_proportion +
elev_cv+ elev_maximum + elev_p50

0.46 0.62 0.78

Black-throated Green Warbler

(Setophaga virens)

elev_p50 + elev_maximum + total_all_returns 0.48 0.63 0.80

Mourning Warbler

(Geothlypis philadelphia)

ndvi2 + elev_0pnt15_to_2pnt00_return_proportion+
elev_2pnt00_to_4pnt00_return_proportion +
elev_maximum *elev_stddev+
percentage_first_returns_above

0.49 0.50 0.78

Swainson’s Thrush

(Catharus ustulatus)

ndvi2 + elev_maximum + elev_p50 0.13 0.16 0.67

White-throated Sparrow

(Zonotrichia albicollis)

ndvi + elev_cv + elev_maximum +
percentage_first_returns_above_2pnt00

0.20 0.33 0.70

Winter Wren

(Troglodytes hiemalis)

ndvi + canopy_relief_ratio+
elev_4pnt00_to_6pnt00_return_proportion+
elev_maximum + percentage_first_returns_above

0.42 0.45 0.70

2.3.1 American Redstart

Occupancy probability for American Redstart increased with NDVI, the coefficient of

variation of vegetation height, and the 50th percentile vegetation height, and decreased

with maximum vegetation height, and the proportion of LiDAR returns 2-4 m high.

The model built using temporally aligned covariates explained 46% of the variance in

American Redstart occupancy and had an AUC of 0.784. The coefficient of variation

of vegetation height contributed most to predicting occupancy (b = 3.149, SE = 0.691,

p < 0.001, semi-partial R2 = 0.065), followed by NDVI (b = 0.92, SE = 0.267, p <
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Figure 2.3: Plot showing the relationship between model AUC and LiDAR temporal

misalignment with bird surveys for each species.

0.001, semi-partial R2 = 0.051), and maximum elevation (b = -3.633, SE = 0.861, p

< 0.001, semi-partial R2 = 0.046) (Table 2.3). The percentage of explained variance

did not decline with temporally misaligned LiDAR. For American Redstart, temporal

misalignment did not lead to a decrease in model performance as measured by AUC.

2.3.2 Black-Throated Green Warbler

Occupancy probability for Black-Throated Green Warbler increased with maximum

vegetation height and decreased with the 50th percentile of canopy height and the

total of all LiDAR height returns. The model built using temporally aligned covariates

explained 48% of the variance in Black-Throated Green Warbler occupancy and had an

AUC of 0.799. Maximum vegetation height contributed the most to model performance
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Table 2.3: Predictor variables ranked according to their semi-partial R2. AMRE = Amer-

ican Redstart (Setophaga ruticilla); BTNW = Black-throated Green Warbler (Setophaga

virens); MOWA = Mourning Warbler (Geothlypis philadelphia); SWTH = Swainson’s Thrush

(Catharus ustulatus); WIWR = Winter Wren (Troglodytes hiemalis); WTSP = White-

throated Sparrow (Zonotrichia albicollis).

Predictor AMRE BTNW MOWA SWTH WIWR WTSP

strata_2pnt00_to_4pnt00 4 3

elev_cv 1 4

elev_maximum 3 1 8 1 1 1

elev_p50 4 2 2

ndvi_lag_0 2 5 2

total_all_returns 3

strata_0pnt15_to_2pnt00 2

elev_maximum:elev_stddev 5

elev_stddev 6

percentage_first_returns_above_mean 4 4

poly(ndvi_lag_0, 2)1 1 3

poly(ndvi_lag_0, 2)2 7 4

canopy_relief_ratio 2

strata_4pnt00_to_6pnt00 3

percentage_first_returns_above_2pnt00 3
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(b = 2.743, SE = 0.559, p < 0.001, semi-partial R2 = 0.138) followed by the 50th

percentile of canopy height (b = -1.439, SE = 0.351, p < 0.001, semi-partial R2 =

0.035). There was no discernible trend in the explained variance with increasing

LiDAR temporal misalignment. However, we observed a significant decrease in model

performance (R2=0.28, p<0.05). The AUC statistic for the zero-time lag model was

< 0.7 with 14 years of LiDAR-bird survey time lag.

2.3.3 Mourning Warbler

Mourning Warbler occupancy responded positively to the percentage of first returns

above the mean vegetation height, NDVI, the density of vegetation <2 m, and max-

imum vegetation height at low standard deviation of vegetation height. Mourning

Warbler occupancy decreased with increased vegetation density between two and four

meters. The model built using temporally aligned covariates explained 49% of the

variance in Mourning Warbler occupancy and had an AUC of 0.782. NDVI contributed

the most to model predictions (b = 25.81, SE = 0.354, p < 0.001, semi-partial R2 =

0.074) followed by the proportion of vegetation returns below two meters (b = 0.797,

SE = 0.215, p < 0.001, semi-partial R2 = 0.028). For Mourning Warbler, we found that

increased LiDAR-point count temporal misalignment led to reductions in the amount

of explained variance (r2=0.29, p<0.05) and model performance (r2=0.29, p<0.05).

AUC statistics were <0.7 with >13 years of LiDAR temporal misalignment.

2.3.4 Swainson’s Thrush

Swainson’s Thrush occupancy probability responded non-linearly to NDVI (the prob-

ability of occupancy increased with increasing low NDVI values and decreased with

higher values). Occupancy probability responded negatively to the 50th percentile

of vegetation returns and positively to the maximum vegetation height. The model
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built using temporally aligned covariates explained 13% of the variance in Swainson’s

Thrush occupancy and had an AUC of 0.668. The maximum vegetation height

contributed the most to model performance (b = 0.955, SE = 0.163, p < 0.001,

semi-partial R2 = 0.067) followed by the 50th percentile of vegetation height (b

= -0.944, SE = 0.166, p < 0.001, semi-partial R2 = 0.063). The percentage of

explained variance did not decline with temporally misaligned LIDAR, nor was there

a decrease in model performance as measured by AUC. AUC values were < 0.70

for all Swainson’s Thrush models.

2.3.5 Winter Wren

Winter Wren occupancy was positively influenced by NDVI, the maximum vegetation

height, and the percentage of first vegetation returns above the mean vegetation height.

Winter Wren occupancy responded negatively to the canopy relief ratio and the density

of vegetation returns between four and six meters in height. The model built using

temporally aligned covariates explained 42% of the variance in Winter Wren occupancy

and had an AUC of 0.696. Maximum vegetation height contributed the most to model

performance (b = 1.024, SE = 0.27, p < 0.001, semi-partial R2 = 0.047) followed by the

canopy relief ratio (b = -1.666, SE = 0.518, p < 0.01, semi-partial R2 = 0.024). The

percentage of explained variance did not decline with temporally misaligned LIDAR,

nor was there a significant decrease in model performance as measured by AUC.

2.3.6 White-Throated Sparrow

The top White-Throated Sparrow model predicted that occupancy probability re-

sponds positively to NDVI, the coefficient of variation of vegetation height, and the

maximum vegetation height, and negatively to the percentage of LiDAR vegetation

returns above two meters. The model built using temporally aligned covariates ex-
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plained 20% of the variance in White-Throated Sparrow occupancy, and had an AUC

of 0.705. Maximum vegetation height contributed the most to model performance (b

= 0.813, SE = 0.155, p < 0.001, semi-partial R2 = 0.064) followed by NDVI (b =

0.477, SE = 0.151, p < 0.01, semi-partial R2 = 0.022). There was no discernible trend

in the explained variance with increasing LiDAR temporal misalignment. However,

we observed a significant decrease in model performance (R2=0.28, p < 0.05). AUC

statistics were < 0.7 with over five years of temporal misalignment.

2.3.7 Forest age

For American Redstart and Black-throated Green Warbler, we found a significant rela-

tionship between forest age and the pixel-wise differences between predictive maps (p

< 0.001). Comparing the zero and fifteen year time lag models, we found that models

using 15-year-old LiDAR data overestimated the occupancy probability of American

Redstart in stands <25 years old. The 15-year-old LiDAR data overestimated the

probability of Black-throated Green Warbler occupancy in forests of all ages (Figure

2.4). Forest age explained 23% and 30% of the variance between predictive maps for

American Redstart and Black-throated Green Warbler, respectively.

For Mourning Warbler, Swainson’s Thrush, Winter Wren, and White-Throated

Sparrow, we found significant but weak relationships between forest age and the

differences between predictive maps built with increasing amounts of LiDAR-point

count temporal misalignment (p<001). For these species, forest age explained < 5%

of the variance between predictive maps.
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Figure 2.4: Scatter plots of per-pixel occupancy probability for predictive distribution

maps representing zero and 15 years of time-lag between LIDAR and bird data. Scatter

plots are coloured according to the forest age of each mapped pixel.

2.4 Discussion

2.4.1 Model performance

We found LiDAR based models were moderately predictive of occupancy probability

(0.7<AUC<0.9) for four of the six focal species: American Redstart, Black-Throated
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Green Warbler, Mourning Warbler, and White-throated Sparrow. The influence of

LiDAR time-lag with bird observations on SDM performance varied.

As predicted, SDMs for Mourning Warbler, an early-successional associate, saw

significant declines in model performance with increased LiDAR temporal misalign-

ment. Mourning Warbler nest and feed near the ground in dense shrub vegetation

and colonize clearings opened by forestry and oil and gas exploration (Atwell et al.,

2008; Pitocchelli, 2020). As forests regenerate, and canopy closing trees replace early-

successional vegetation, Mourning Warbler abundance declines (as early as 10 years

post-disturbance) (Brawn et al., 2001). The proportion of LiDAR vegetation returns

< 2 m, an indicator of dense shrub understory vegetation, was the LiDAR variable

that contributed the most to the explained variation in Mourning Warbler occupancy.

This may help explain the declines in model performance with increased LiDAR tem-

poral misalignment. As shrub density decreases through succession, LiDAR metrics

indicating shrub becomes less useful. For Mourning Warbler, we found models became

less predictive (AUC < 0.70) with 13 years between LIDAR and bird surveys.

Temporal misalignment also strongly influenced the performance of SDMs for the

White-throated Sparrow. The White-throated Sparrow is one of the most abundant

species in Alberta’s boreal mixed-wood forests (Schmiegelow et al., 1997). They occur

along forested edges, in early-successional stands or mature forest canopy gaps (Falls

& Kopachena, 2020). White-throated Sparrows nest and feed near the ground with

low dense vegetation cover (Falls & Kopachena, 2020). Similar to Mourning Warbler,

it’s feeding and nesting preferences likely impact the amount of acceptable time lag

between LiDAR and bird survey data in predictive models because of changes in

shrub layer vegetation occurring between the LiDAR acquisition and point-counts.

The White-throated sparrow SDMs became less predictive (AUC < 0.70) after five
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years of time lag between LiDAR and point-count data.

We predicted that increasing the temporal lag between LiDAR and point-count

data would lead to moderate declines in the performance of American Redstart SDMs.

Our findings did not bear this out. Temporal misalignment had no discernible impact

on model performance. American Redstart SDMs remained moderately predictive of

occupancy with 15 years temporal misalignment between LIDAR and bird detections.

American Redstart occurs in a range of successional stands and mixed-age plots

(Sherry et al., 2020). In Alberta, they are associated with structurally complex

deciduous forests (Leston et al., 2018; Mahon et al., 2016). Our results support this.

LiDAR measures of structural complexity were more predictive of American Redstart

occupancy than other LiDAR variables. Two things may account for the American

Restart models’ resilience to LIDAR temporal misalignment. (1) The structurally

complex, uneven-aged forests that American Redstart are associated with change over

decades (Brassard & Chen, 2010). The rate of change may not be captured with

15 years of time lag between LiDAR and point-counts. (2) Near Calling Lake, AB.,

the American Redstart decreased in abundance after harvesting (Norton & Hannon,

1997). Given that we controlled for natural and human disturbances occurring between

LiDAR acquisition and bird surveys, American Redstart declines caused by harvesting

were not captured by our models.

Contrary to our predictions, we observed a significant negative influence of LiDAR

temporal misalignment on the performance of Black-throated Green Warbler SDMs.

However, the SDMs were still moderately predictive of occupancy with fifteen years of

time-lag between LIDAR and bird surveys. Canopy height was the biggest predictor

of Black-throated Green Warbler occupancy. Black-throated Green Warbler is a forest

interior species associated with older deciduous and mixed-wood forests (Mahon et al.,
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2016; Morse & Poole, 2020; Schieck & Song, 2006). Declines in SDM performance

were likely the result of changes in canopy height caused by natural gap opening

events like individual tree fall or insect defoliation (Brassard & Chen, 2010). However,

canopy changes that occurred during our 15 year study period were not large enough

to reduce AUC to <0.70.

2.4.2 Recommendations

We identified two studies examining the influence of temporal misalignment between

LiDAR and wildlife data on the performance of species-habitat models. Vierling et

al. (2014) studied the effect of six years of LiDAR time-lag with wildlife surveys

on Brown Creeper (Certhia americana) SDMs. They found that the six-year time-

lag had a small influence on model performance (a 5% decrease in mapped occupancy

probability). Similarly, Hill and Hinsley (2015) examined how LiDAR data with a time-

lag of up to 11 years with field data influenced breeding habitat models for the Great

Tit (Parus major). When comparing time-lags of one, four, and 11 years, they found

only a small impact (< 1%) on model predictions. Both studies cautiously suggested

that for mature and stable forests, temporal misalignment did not play a major role in

the performance of predictive bird models. Brown Creeper occupies late-successional

mature forests (Poulin et al., 2020) and the Great Tit is a habitat generalist (Van Balen,

1973). We found similar results for Black-throated Green Warbler and American

Redstart. However, our results for early-successional species suggest that, for birds

strongly associated with dense shrubs and open canopies, over five years of time-lag

between LiDAR and wildlife surveys may erode model performance.

With its ability to capture vegetation structural attributes often missing from

classified land-cover data, LiDAR is increasingly being used in bird studies (Davies

& Asner, 2014; Lefsky et al., 2002). Despite the increasing availability of LiDAR,
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multitemporal LiDAR data remains limited (Lesak et al., 2011). Consequently, most

studies modelling bird-habitat relationships include some temporal misalignment be-

tween LiDAR and bird data (Moudrý et al., 2021): e.g., 3 years (Hinsley et al., 2006),

4 years (Goetz et al., 2010; Vogeler et al., 2014), 5 years (Weisberg et al., 2014), and 10

years (Huber et al., 2016). Our results suggest researchers should consider temporal

misalignment when applying LiDAR to bird-habitat models. For species associated

primarily with mid- to late-successional boreal forests, coincident bird and LiDAR

data may not be necessary. But caution should be taken with early-successional

species occupying burned and harvested areas, and those that nest and feed near

the ground with dense shrub vegetation. For these, we recommend limiting temporal

misalignment to <5 years. If multi-temporal LiDAR is unavailable, other remote

sensing may be better for characterizing post-disturbance vegetation, like time-series

of spectral indices from optical satellites (Kennedy et al., 2018). Spectral change

detection can be used to identify disturbance events and can play a crucial role in

determining the suitability of LiDAR data. For instance, in areas of significant spectral

change, extra care should be taken to minimize temporal misalignment between LiDAR

acquisitions and point counts.

2.5 Conclusion

We evaluated how time lag between LiDAR acquisitions and bird surveys influenced

model robustness for early-successional, mature forest, and forest generalist birds. We

found that LIDAR-based SDMs are moderately predictive of occupancy for American

Redstart, Black-throated Green Warbler, Mourning Warbler, and White-throated

Sparrow. The influence of temporal misalignment on SDMs varied across species with

the greatest impact on models for early-successional associates. For species occupying
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older, more stable forests, temporal misalignment between LiDAR and bird surveys

had only a small impact on the predictive power of SDMs. For early-successional

birds, our findings suggest that a time difference of 5-13 years between LIDAR and

bird data may reduce model performance.
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3
Predicting the effects of forestry on birds
using forest resource inventories, LiDAR,

and Landsat

3.1 Introduction

Canada’s boreal forests span 270 million ha and provide breeding habitat for close

to 400 bird species (Blancher & Wells, 2005; Natural Resources Canada, 2017). The

composition and structure of boreal forests are changing in response to climate change,

shifts to natural disturbance regimes, and industrial development (Brandt et al., 2013).

In recent decades, timber production and energy exploration have altered the succes-

sional mosaic of the boreal landscape (Brandt et al., 2013), impacting bird communities

(Norton & Hannon, 1997; Schmiegelow et al., 1997; Venier et al., 2014). Recently, for-

est management has shifted away from single-use timber production towards strategies

that balance economic and environmental objectives, and reduce the impact of timber

production on biodiversity (Fedrowitz et al., 2014; Galetto et al., 2019). Variable

retention forestry–focused on preserving some vegetation structure within harvest
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blocks–is a prevailing approach (Galetto et al., 2019).

Retention has well-established benefits–see reviews by Fedrowitz et al. (2014), and

Mori and Kitagawa (2014). However, most studies on the impacts of retention only

compare the effects of different amounts of harvest residuals (e.g., 50% retention vs

clearcut), and ignore variability in their arrangement, structural composition, and

regeneration rates. Also, few have examined the long-term effects of retention on

bird communities (>15 years).

Predictive models linking distribution, abundance, and community structure to

environmental variables are often used to understand how birds respond to forestry

(Carrillo-Rubio et al., 2014; Engler et al., 2017). Many factors influence their predictive

power, but ecologically relevant covariates are important drivers of model accuracy

(Fourcade et al., 2018; Franklin, 1995; Vaughn & Ormerod, 2003). With an emphasis

on volume over quality of residuals, studies modelling bird response to forestry often

rely on classified habitat data from land cover maps and digital forest inventories.

These products often include useful harvest related disturbance metrics for most forest

tenures across Canada. However, they are slow to update and poorly describe harvest

residuals. Instead, they provide rough estimates of the percent of the harvest area

disturbed. The reliance on these categorical variables to characterize harvests may

limit the predictive power of models describing bird response to retention forestry.

It is unclear how well such estimates predict birds compared to other measures of

post-harvest structure and regeneration.

Expanding covariates beyond discrete harvest intensity classifications to those

derived directly from modern remote sensors may reveal relationships between the

structure of within-block post-harvest residuals and bird communities. Satellite image

times series’ and Light Detection and Ranging (LiDAR) have the potential to improve
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model predictions by providing high resolution structural and spectral change metrics

rarely included in forest inventories and classified maps, and over larger areas than can

be obtained from ground-based field surveys (He et al., 2015; Turner et al., 2003). For

example, LiDAR can directly measure the three-dimensional distribution of vegetation

structure and is increasingly used to explore bird-habitat relationships (Davies &

Asner, 2014; Lefsky et al., 2002) in a range of forested habitats, including boreal

(Lindberg et al., 2015), montane (Müller et al., 2009), and temperate (Martinuzzi et

al., 2009) forests. While useful, LiDAR is often limited to a single acquisition year

and thus unsuited to characterize stand conditions over long periods. Alternatively,

time series of optical satellite data can be used to both estimate harvest intensity and

track post-disturbance forest recovery (Frolking et al., 2009).

The availability of country-wide bird monitoring and remote sensing data provide

opportunities to improve on existing research by (a) enabling the study of large

numbers of harvest blocks over wide spatial extents; (b) providing novel covariates

related to the vertical structure of harvests; and (c) allowing monitoring of post-

disturbance forest regeneration. But the expansion of potential model covariates comes

with uncertainty. Which covariates best predict bird response to harvesting? Here, we

used point count data and modern remote sensors to predict the within-block effects

of harvesting on birds. We simultaneously compared the predictive power of three

sources of variables characterizing harvests: traditional forest resource inventory data,

airborne LiDAR, and a time series of Landsat normalized burn ratio (NBR).

3.2 Methods

See Figure 3.1 for an illustration of our methodological workflow. Analyses were

done using R statistical software (R Core Team, 2020) and Google Earth Engine
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(Gorelick et al., 2017).
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Figure 3.1: Conceptual diagram of our methodological workflow. We identified harvests

using the Common Attribute Schema for Forest Resource Inventories (CAS-FRI), a stan-

dardized compilation of forest resource inventory data.

3.2.1 Study Area

We studied forestry harvest blocks distributed across 50,190 km2 of the Boreal Central

Mixedwood Natural Subregion of Northern Alberta, Canada (Figure 3.2). The avail-

ability of LiDAR data and locations of corresponding bird surveys from point count

databases informed the spatial extent of the study area. Alberta’s Central Mixedwood

Natural Subregion is composed of a mosaic of aspen (Populus tremuloides) and white

spruce (Picea glauca) mixed wood forests, white spruce and jack pine (Pinus banksiana)

upland stands, aspen dominated deciduous forests, and shrubby black spruce (Picea

mariana) fens (Natural Regions Committee, 2006). Aspen and conifer harvesting and
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energy exploration occur across the study area.

Figure 3.2: Locations of point counts in the Boreal Central Mixedwood Natural Subregion

of Northern Alberta.

3.2.2 Site selection

We selected harvest blocks using the forest inventory and GIS data from CAS-FRI

(Cosco, 2011). CAS-FRI spatial data included harvest polygons from across Canada

and their associated attributes. Selected harvests represented a range harvest of

intensities (100-95, 95-75, 75-50, 50-25, and 25-1% disturbed) and were surveyed for
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birds across a chronosequence of recovery from 5 to 25 years post-harvest. The mean

area of a harvest block was 105 ha. To control for the effect of subsequent harvests

and wildfires on birds, we selected harvest blocks that had no recorded overlapping

secondary disturbances.

3.2.3 Bird data

We gathered bird detection data from avian point count databases managed by the

Boreal Avian Modelling Project (BAM) (Boreal Avian Modelling Project, 2018) and

the University of Alberta’s Bioacoustic Unit (http://bioacoustic.abmi.ca/). Data

used in our analysis came from 2198 point counts performed across 243 locations

between 2002 and 2016. Point counts were conducted by both human observers

(graduate students and trained field technicians) and autonomous recording units.

Surveys lasted between three and ten minutes at sampling radii ranging from 50 to

150 m. We limited point counts to those conducted over the course of a breeding

season (May-July). At each location, point counts were repeated between three and

eight times in a season. We only included data from point counts done in harvest

blocks < 5 years of the corresponding LiDAR acquisition date. More than five years

of temporal misalignment between LIDAR acquisitions and point counts can reduce

the accuracy of predictive models for early-successional birds associated with dense

shrub vegetation (Casey & Bayne, 2022c).

For each site, we calculated bird species richness (the sum of species detected

over multiple visits in a season) and Shannon’s diversity. While species diversity has

long been used in forestry research, functional diversity (i.e. the value and range of

species traits present in a community) are better linked with the underlying processes

driving communities (Petchey & Gaston, 2006). Towards this, we calculated multidi-

mensional functional diversity indices based on the diet, foraging, and nesting traits
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Table 3.1: Descriptions of the functional diversity indices included in the analysis.

Functional diversity index Description

Functional divergence (FDiv) The extent to which the distribution of individual species
abundances maximizes differences between functional traits found in
a community (Mason et al., 2005)

Functional evenness (FEve) The regularity of the distribution of abundance along the minimum
spanning tree which links all species in a functional trait space
(Villeger et al., 2008)

Functional richness (FRic) The minimum convex hull volume that includes all species in a
functional trait space (Villeger et al., 2008)

of detected species using the FD package in R (Laliberté et al., 2014). Traits of

detected species, such as foraging strata, diet, and body size, were extracted using the

traitdata package in R (RS-eco, 2021; Wilman et al., 2014). Indices represented three

components of functional diversity: functional richness (FRic), functional evenness

(FEve), and functional divergence (FDiv) (Laliberté & Legendre, 2010; Mason et

al., 2005; Villeger et al., 2008). See Table 3.1 for definitions of included functional

diversity indices. For all bird diversity indices, we limited species to those with known

breeding ranges in the Boreal Central Mixedwood Natural Subregion of Northern

Alberta, Canada that were detected at a minimum of three survey locations. Besides

community metrics, we modeled the abundance of twenty species associated with

different foraging and nesting strata (Wilman et al., 2014): Alder Flycatcher (Em-

pidonax alnorum), American Redstart (Setophaga ruticilla), Black-throated Green

Warbler (Setophaga virens), Chipping Sparrow (Spizella passerina), Common Yel-

lowthroat (Geothlypis trichas), Hermit Thrush (Catharus guttatus), Least Flycatcher

(Empidonax minimus), LeConte’s Sparrow (Ammospiza leconteii), Lincoln’s Sparrow

(Melospiza lincolnii), Mourning Warbler (Geothlypis philadelphia), Ovenbird (Seiurus

aurocapilla), Philadelphia Vireo (Vireo philadelphicus), Red-eyed Vireo (Vireo goli-
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vaceus), Ruby-crowned Kinglet (Corthylio calendula), Swainson’s Thrush (Catharus

ustulatus), Warbling Vireo (Vireo gilvus), White-throated Sparrow (Zonotrichia al-

bicollis), Winter Wren (Troglodytes hiemalis), Yellow Warbler (Setophaga petechia),

and Yellow-rumped Warbler (Setophaga coronata).

3.2.4 Spatial variables

We characterized harvest blocks using LiDAR, Landsat time series, and CAS-FRI. See

Table 3.2 for a detailed list of metrics and definitions.

Table 3.2: Spatial covariates included in the analysis.

Metric Source Description

elev_mean LiDAR Mean height

elev_cv LiDAR Coefficient of variation of LiDAR return heights

canopy_relief_ratio LiDAR Canopy relief ratio (mean - min)/(max-min)

elev_p50 LiDAR 50th percentile of canopy height

elev_p95 LiDAR 95th percentile height of canopy height

strata_0pnt15_to_2pnt00 LiDAR Proportion of points between 0.15 and 2 m

strata_2pnt00_to_4pnt00 LiDAR Proportion of points between 2 and 4 m

strata_4pnt00_to_6pnt00 LiDAR Proportion of points between 4 and 6 m

strata_6pnt00_to_8pnt00 LiDAR Proportion of points between 6 and 8 m

strata_8pnt00_to_10pnt00 LiDAR Proportion of points between 8 and 10 m

strata_10pnt00_to_15pnt00 LiDAR Proportion of points between 10 and 15 m

strata_15pnt00_to_20pnt00 LiDAR Proportion of points between 15 and 20 m

strata_20pnt00_to_25pnt00 LiDAR Proportion of points between 20 and 25 m

strata_25pnt00_to_30pnt00 LiDAR Proportion of points between 25 and 30 m

strata_30pnt00_to_50pnt00 LiDAR Proportion of points between 30 and 50 m

crown_closure_upper CAS-FRI Upper bound of crown closure
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Table 3.2: (continued)

Metric Source Description

height_upper CAS-FRI Upper bound of height class

disturbance_extent_upper CAS-FRI Upper estimate for the proportion of the polygon
affected by the disturbance

PercentConif CAS-FRI Percent of forest comprised of conifer species

forsest_type CAS-FRI Deciduous, conifer, or mixed forest

pa_ratio CAS-FRI Ratio of the perimeter to the area of the harvest polygon

distance_edge CAS-FRI Distance of bird survey to polygon edge

polygon_area CAS-FRI Area of the polygon (m)

ss_dst_timelag CAS-FRI Number of years between harvest year and bird survey
year

∆NBRdisturbance Landsat NBR Difference between pre-disturbance NBR and the NBR
at the start of regeneration

∆NBRrecovery Landsat NBR Percent of ∆NBRdisturbance values regained at the year
of the bird survey

NBRsurvey Landsat NBR NBR values at the time of the survey

CAS-FRI

CAS-FRI is a standardized compilation of forest resource inventory data from

across Canada. The included 2 ha resolution forest stand maps were interpreted

from 1:10,000 to 1:40,000 scale aerial photography taken between 1987 and 2010

(Cosco, 2011; Cumming et al., 2010b). CAS-FRI contains common vegetation and

disturbance attributes used in bird habitat models, including forest composition and

disturbance history (Cosco, 2011). We used the following CAS-FRI attributes as model

covariates in our analysis: post-harvest forest type (coniferous, deciduous, or mixed-

wood stand), vegetation composition, and harvest intensity. We calculated geometry

metrics from CAS-FRI harvest polygons using the sf package in R (Pebesma, 2020)
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including harvest area, the perimeter-area (PA) ratio of harvest polygons as a measure

of shape complexity and relative edge amounts, and the Euclidian distance between

point count locations and the nearest edge of the original harvest polygon.

LiDAR

Between 2003 and 2014, the Government of Alberta, Canada acquired airborne

LiDAR covering 33 million ha of forested land using multiple contractors. Over 70%

of the LiDAR was gathered between 2006 and 2008. Pulse density ranged between 1

and 4 returns per m2 (Alberta Environment and Sustainable Resource Development,

2013). The Government of Alberta provided 34 LiDAR vegetation metric raster layers

produced at a 30 m resolution using FUSION software (McGaughey, 2018).

For each LiDAR vegetation metric, we summarized the mean value of pixels within

each CAS-FRI harvest polygon using the raster package in R (Hijmans, 2020). Many of

the metrics were highly correlated and associated with similar structural categories. To

minimize multicollinearity in models, we calculated Pearson’s correlation coefficients

(r) between LiDAR metrics. We retained metrics with low correlation (r < 0.5),

and that corresponded to different vegetation structure categories: height, cover, and

structural complexity (variability in the arrangement of vegetation) (Valbuena et al.,

2020). For highly correlated metrics belonging to the same structural category, we

selected the metric most predictive of species richness in univariate linear models.

After removing highly correlated metrics, 15 LiDAR metrics remained for candidate

bird habitat models.

Landsat time series

Leveraging recent advances in cloud computing, spectral change detection algo-

rithms, and the free public availability of the Landsat archive, we calculated recovery
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metrics for all sampled harvest polygons using an annual time series of NBR. We

followed the workflow developed by Hird et al. (2021) to calculate spectral change

metrics using the LandTrendr (Landsat-based Detection of Trends in Disturbance and

Recovery) algorithm via Google Earth Engine (Gorelick et al., 2017; Kennedy et al.,

2018). The workflow details methods for atmospheric corrections, cloud, shadow, and

water detection and masking, the generation of annual NBR image composites, and

the extraction of NBR change metrics.

NBR is calculated using the near-infrared (NIR) and shortwave-infrared (SWIR)

reflectance bandwidths (Key & Benson, 2006b):

NBR = NIR − SWIR

NIR + SWIR

NBR change metrics were first used to map burn severity (Key & Benson, 2006a).

NBR leverages the difference in spectral reflectance of NIR and SWIR to differentiate

between healthy green vegetation and bare soil. Following a disturbance, NBR de-

creases with the loss of green vegetation and moisture content. As forests regenerate,

NBR rebounds with increasing forest structure and vegetation water content (Hislop

et al., 2018; Veraverbeke et al., 2011; White et al., 2018). We generated annual NBR

rasters from 1984 to 2016 using Bands 4 and 7 of the Landsat 5 Thematic Mapper and

the Landsat 7 Enhanced Thematic Mapper and bands 5 and 7 of and the Landsat 8

Operational Land Imager (Survey, 2018). Raster resolution was 30 m.

We calculated the following metrics using LandTrendr via the Google Earth Engine

JavaScript API: mean NBR values prior to disturbance (NBRpre-disturbance), the mean

NBR values at the time of the bird point count (NBRsurvey), the mean NBR values in

the year post-harvest (NBRdisturbance), the change in NBR values between pre-harvest

and harvest (∆NBRdisturbance), and the amount of spectral recovery

(∆NBRrecovery=NBRsurvey-NBRharvest).
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3.2.5 Analysis

We used linear and generalized linear mixed models to evaluate the predictive power

of CAS-FRI, NBR time series, and LiDAR covariates on abundance and diversity

metrics in harvest blocks. We built the mixed models using the lme4 package in

R (Bates et al., 2015).

In single species models, we used the QPAD method developed by Sólymos et

al. (2013) to accommodate the influence of differential detection error in sampling

methods on detection probabilities. See Section 2.3.4 for details on QPAD. We ap-

proached the community models differently. Because community metrics were based

on cumulative detections across repeated point counts in a season, QPAD (which

calculates offsets for individual point count events) was inappropriate. Instead, we used

the log10 of survey days as an offset term to reduce the influence of different sampling

efforts on bird detections. We modelled community metrics using linear mixed models.

For each response variable, we built four groups of models corresponding to the

source of covariates: (1) CAS-FRI, (2) LiDAR, (3) Landsat NBR, and (4) multiple

sources. Harvest ID and survey year were included as nested random effects in all

models. Top models within and among covariate groups were ranked using Akaike’s

Information Criterion (AIC) and the explained variance (R2
GLMM) (Burnham & Ander-

son, 2002; Nakagawa & Schielzeth, 2013). We tracked the frequency of use of individual

model covariates across all top models, and evaluated their relative contribution within

top models by calculating the semi-partial R2 for all fixed effects using the r2glmm

package (Jaeger, 2017). We compared the semi-partial R2 of fixed effects across top

models using a one-way analysis of variance (ANOVA). Finally, we compared the

relative performance of models grouped by covariate source using an ANOVA of rank

transformed AIC scores as the response variable.
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3.3 Results

3.3.1 Source of covariates in top models

Most of the highest AIC ranked models used metrics from multiple sources (48%) while

24% used only Landsat NBR, 12% were LiDAR-based, and 16% used CAS-FRI. Of

models that used multiple sources of metrics, 50% used both CAS-FRI and Landsat

NBR, 17% used CAS-FRI and LiDAR, and 33% used metrics from all sources. Among

top single species and community models (Table 3.3), an ANOVA showed significant

variation in AIC model fit between those built using CAS-FRI, LiDAR, Landsat NBR,

and multiple sources of metrics (F=14.47(3,96), p < 0.001). Tukey’s HSD Test for

multiple comparisons found integrating metrics from a variety of sources improved

model performance. Models that supplemented CAS-FRI metrics with LIDAR or

Landsat NBR predictors had lower AIC scores than those built with only CAS-FRI

(p = 0.04) or LiDAR (p < .001). For models using predictors from a single source:

Landsat NBR-based models ranked higher than LiDAR-based ones (p < .001); and

CAS-FRI models tended to perform better than LiDAR models (p = 0.002). We found

no significant difference in the mean explained variance (R2
GLMM) of models built using

CAS-FRI, LiDAR, Landsat NBR, or multiple sources (F=0.33(3,96), p = 0.8).

Table 3.3: Top models for each response variable and corresponding R2
GLMM (marginal R2

(R2m) and conditional R2 (R2c). R2m is a measure of the variance explained by the fixed

effects. R2c is a measure of variance explained by the full model, including random effects

(Nakagawa & Schielzeth, 2013) .

Response Fixed effects df R2m R2c Source

functional divergence ss_dst_timelag2 *
∆NBRdisturbance

2
12 0.224 0.423 multiple
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Table 3.3: (continued)

Response Fixed effects df R2m R2c Source

functional evenness ss_dst_timelag2 6 0.03 0.449 cas-fri

functional richness ∆NBRdisturbance
2:ss_dst_timelag2 8 0.016 0.357 multiple

richness ∆NBRdisturbance
2 +

ss_dst_timelag2 + elev_p50 +
elev_cv

9 0.304 0.587 multiple

shannon diversity ss_dst_timelag2 *
∆NBRdisturbance

2 + ∆NBRrecovery
2

14 0.219 0.706 multiple

Empidonax alnorum elev_cv + elev_p50 +
strata_0pnt15_to_2pnt00 +
strata_10pnt00_to_15pnt00 +
strata_15pnt00_to_20pnt00 +
elev_mean

9 0.522 0.606 lidar

Setophaga ruticilla ∆NBRdisturbance + NBRsurvey 5 0.034 0.331 nbr

Setophaga virens elev_p50 + elev_cv + ss_dst_time 6 0.015 0.996 multiple

Spizella passerina PercentConif + Shape_Area +
ss_dst_timelag3 + dist_to_edge

9 0.129 0.207 cas-fri

Geothlypis trichas ss_dst_timelag * ∆NBRdisturbance

+ NBRsurvey
2

8 0.39 0.54 multiple

Catharus guttatus ∆NBRdisturbance 4 0 0.094 nbr

Ammospiza leconteii elev_p50 + ss_dst_timelag +
∆NBRdisturbance

6 0.009 1 multiple

Empidonax minimus ss_dst_timelag * ∆NBRdisturbance

+ ∆NBRrecovery

7 0.028 0.477 multiple

Melospiza lincolnii elev_p50 + elev_cv + ss_dst_time 6 0.138 0.226 multiple

Geothlypis philadelphia ∆NBRrecovery 4 0.006 0.13 nbr

Seiurus aurocapilla PercentConif + Shape_Area +
ss_dst_timelag2 + dist_to_edge

8 0.214 0.275 cas-fri

Vireo philadelphicus strata_0pnt15_to_2pnt00 +
strata_10pnt00_to_15pnt00 +
strata_15pnt00_to_2

5 0.008 0.108 lidar

Corthylio calendula ∆NBRdisturbance
2 + ∆NBRrecovery

+ NBRsurvey

7 0.137 0.27 nbr
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Table 3.3: (continued)

Response Fixed effects df R2m R2c Source

Vireo olivaceus PercentConif + Shape_Area +
ss_dst_timelag2 + dist_to_edge

8 0.059 0.123 cas-fri

Catharus ustulatus elev_p50 + ss_dst_timelag2 +
∆NBRdisturbance

7 0.004 0.049 multiple

Vireo gilvus ∆NBRdisturbance * ss_dst_timelag
+ elev_p50 * elev_cv

9 0.074 0.167 multiple

Troglodytes hiemalis elev_cv + elev_p50 +
strata_0pnt15_to_2pnt00 +
strata_2pnt00_to_4pnt00 +
strata_15pnt00_to_20pnt00 +
dist_to_edge

9 0.025 0.057 lidar

Zonotrichia albicollis ∆NBRdisturbance
2 + ∆NBRrecovery

2

+ NBRsurvey

8 0.072 0.119 nbr

Setophaga petechia ss_dst_timelag * ∆NBRdisturbance

+ ∆NBRrecovery
2

8 0.187 0.775 multiple

Setophaga coronata ∆NBRdisturbance * ∆NBRrecovery 6 0.06 0.24 nbr

3.3.2 Frequency of covariate use

Covariate use varied in top models (Figure 3.3). The most frequently used metrics

were the time since disturbance (64%), ∆NBRdisturbance (60%), ∆NBRrecovery (28%),

the 50th percentile of canopy height (elev_p50) (32%), and the coefficient of variation

of LiDAR return heights (elev_cv) (24%). Time since disturbance and ∆NBRdisturbance

were paired together in 46% of top models. We performed Fisher exact tests to compare

metric use across top models. We found no difference between the metrics used in single

species and community models (p = 0.94), and none between those used to predict

ground, understory, mid-canopy, and upper-canopy associated birds (p = 0.99).

Of the 27 candidate variables used in model selection, 13 were absent from top

models. Missing were CAS-FRI-based estimates of crown closure, upper canopy height,

49



3. Comparing LiDAR, FRI and Landsat covariates

Figure 3.3: The frequency of metrics used in top models.

disturbance severity, and the perimeter area ratio of harvest polygons.

3.3.3 Contribution of covariates

While the partial effect size of individual metrics varied across top models (Figure 3.4),

we found differences in their relative contribution to explained variance (F=4.311 (3,115),

p = 0.002). Tukey’s HSD Test found that ∆NBRdisturbance explained more variance

than the two top LiDAR metrics; 19% ± 9% more than elev_cv (p < 0.001), and

22% ± 9% more than elev_p50 (p < 0.001). Time since harvest also explained more

variance than LiDAR metrics; 14% ± 9% more than elev_cv (p = 0.001), and 17% ±

9% more than elev_p50 (p < 0.001). We found no significant difference between the

contribution of ∆NBRdisturbance, ∆NBRrecovery, and time since harvest. There was no

evidence that the contribution of individual metrics varied between community and
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Figure 3.4: The contribution of fixed effects in top models defined by their partial effect

size (R2).
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species models, or between species grouped by their associated nesting strata. Grouped

by source, there were differences in the total contribution of CAS-FRI, LiDAR, Landsat

NBR metrics (F=3.41 (2,69), p = 0.03). Specifically, NBR metrics contributed more

to model performance than LiDAR metrics (p = 0.03).

3.4 Discussion

We assessed the usefulness of three sources of model covariates (CAS-FRI, LiDAR,

and Landsat NBR) for predicting the within block response of birds to harvesting.

We found that (1) model performance improves with integrating LiDAR and ∆NBR

metrics over models built using forest inventory data alone. (2) Of the initial set

of thirty candidate variables, ∆NBRdisturbance, time since disturbance, elev_p50, and

elev_cv contributed the most to community and species abundance models. While

LiDAR metrics improved some predictions, they contributed less overall to model

performance than ∆NBRdisturbance and time since harvest. (3) Metrics related to

harvest intensity, regeneration, and structure contribute more to model performance

than the specific tree species present. And (4) contrary to our expectations, metric

use did not vary between species belonging to different nesting guilds. The differential

predictive power of metrics may result from different habitat requirements of the birds

studied. Our results correspond with a growing body of literature showing the value of

unclassified remote sensing predictors in species distribution models (Davies & Asner,

2014; Gottschalk et al., 2005; Swatantran et al., 2012).

3.4.1 CAS-FRI

Benefits of using forest inventory data in bird distribution models include their ecolog-

ical interpretability and inclusion of conventional forestry terms. However, our results
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show these benefits may come at the cost of reduced model performance. Overall,

models only using CAS-FRI data were less predictive than those that used unclassified

remote sensing data. Of the nine candidate CAS-FRI predictors included in our

analyses, only four appeared in the top models: time since disturbance, harvest area,

forest composition, and the distance between the point count location and the nearest

harvest polygon edge. Except for time since disturbance, these variables contributed

less to the predictive power of top models than ∆NBR and LiDAR metrics. Expectedly,

the time elapsed between harvest and bird survey was the most useful and common

metric for predicting bird and community response to harvesting. Notably, top models

did not use CAS-FRI harvest intensity categories. Instead, ∆NBRdisturbance was more

predictive in all instances. CAS-FRI’s overly broad harvest intensity categories likely

explain its reduced performance against ∆NBR metrics. CAS-FRI defines five cate-

gories of harvest intensity: 1-25%, 26-50%. 51-75%, 76-95%, and 96-100% disturbed.

While similar disturbance categories have been useful for examining the impacts of

forestry on birds (Craig & Macdonald, 2009; Odsen et al., 2018), it excludes a lot

of variation between harvests.

These results correspond with other comparisons of classified and continuous re-

mote sensing predictors (Koma et al., 2022; Sheeren et al., 2014). For example, Thuiller

et al. (2004) found that while classified land cover data adds thematic detail and

interpretability to species distribution models, they did not improve models’ predictive

power. The reduced predictive power of CAS-FRI metrics may be inherent to classified

data. Reducing continuous remote sensing metrics into discrete land cover categories

can remove important information on the structures and processes influencing birds

(Bradley & Fleishman, 2008)
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3.4.2 ∆NBR

We found that ∆NBR derived from a Landsat time series was more useful for predicting

how birds respond to harvesting than the disturbance severity categories in forest

resource inventories. ∆NBRdisturbance and ∆NBRrecovery were used in 60% and 28% of

top models and contributed more to model performance than LiDAR metrics. While

∆NBRrecovery performed well compared to predictors from forest resource inventories,

it performed less well then ∆NBR. This is likely due to saturation of the spectral

signal over time (Pickell et al., 2016).

While the efficacy of ∆NBR to characterize harvests and burns is well documented

(Hislop et al., 2018; Kennedy et al., 2010; Miller & Thode, 2007), few have integrated

∆NBR into bird species distribution models. Examples include Rose et al. (2016),

who used ∆NBR to model how passerines respond to fire severity; and Russel et

al. (2007), who supplemented field collected vegetation data with ∆NBR to model

suitable habitat for cavity-nesting birds. However, similar spectral indices, particularly

the normalized difference vegetation index (NDVI), are used widely (Gottschalk et al.,

2005). Comparisons have shown NDVI-based bird models to perform as well or better

than those using classified land cover maps (Hopkins et al., n.d.; Sheeren et al., 2014).

We determined that ∆NBR is a viable alternative to forest inventory disturbance

classifications for modelling how birds respond to harvests. Landsat change detection

can obtain continuous measures of forest change over time, in contrast to the limited

temporal and spatial availability of classified land cover products (Bartels et al., 2016).

3.4.3 LiDAR

LiDAR metrics were used in 36% of top models, often in conjunction with ∆NBR or

CAS-FRI covariates. While LiDAR metrics contributed to some bird models (Alder
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Flycatcher, Black-throated Green Warbler, LeConte’s Sparrow, Lincoln’s Sparrow,

Philadelphia Vireo, Swainson’s Thrush, Warbling Vireo, Winter Wren), the magnitude

of those contributions were not generalizable across species and community response

variables. Similarly, Tattoni et al. (2012) and Koma et al. (2022) found that

the model improvements gained from LiDAR covariates varied by species. Different

structural requirements of species may explain the lack of generalization (MacArthur

& MacArthur, 1961). While we did not detect any differences in the response to

LiDAR predictors between birds associated with different forest strata, others have

suggested that the utility of LiDAR metrics varies by functional guild (Davies &

Asner, 2014; Lesak et al., 2011).

Within block measures of vegetation structure and height were less predictive of

bird abundance and diversity than the successional stage of the recovering harvest

block (indicated by time since harvest and ∆NBR metrics). This lends support to the

many studies that rely solely on percent disturbed and time since harvest categories

to study the impacts of different harvest regimes. LiDAR performed well against

other CAS-FRI predictors. The 50th percentile of canopy height and the coefficient

of variation of LiDAR return heights explained more model variance than all other

CAS-FRI candidate variables, including vegetation composition and the shape and

area of harvest polygons. This aligns with a growing body of research that suggests

LiDAR height and complexity metrics perform better than classified land cover data

in bird models (Farrell et al., 2013; Ficetola et al., 2014). For example, Müller et al.

(2010) found that LiDAR structure metrics are more predictive of bird distributions

than plant species composition.
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3.4.4 Multiple sources

While the performance of CAS-FRI, LiDAR, and ∆NBR metrics varied, we found that

most top models used metrics from multiple sources. CAS-FRI, LiDAR, and ∆NBR

complement each other by capturing different habitat characteristics influencing birds

(i.e. successional stage, vertical structure, and vegetation resources). Others have

highlighted the usefulness of integrating different sources of remote sensing data in

bird models. Bae et al. (2014) built Hazel Grouse (Tetrastes bonasia) models using

a variety of covariates from LiDAR, aerial photography, and ground-based vegetation

surveys. Swatantran et al. (2012) found that bird models incorporating LiDAR,

Synthetic Aperture Radar, and multispectral data were more predictive than those

using any one sensor alone. Similarly, Koma et al. (2022) determined that species

distribution models using LiDAR, NDVI, and Synthetic Aperture Radar explained

the habitat preferences of wetland birds better than those made using detailed land

cover maps. Furthermore, in bird SDMs, vegetation structure covariates from remote

sensing are viable alternatives to similar ones from ground-based field surveys (Bae et

al., 2014; Chaparro et al., 2022; Clawges et al., 2008). However, when LiDAR is not

available, integrating satellite imagery or classified land cover data with habitat struc-

ture variables gathered from field surveys can improve model performance compared

to using either alone (Bayne et al., 2010; Gottschalk et al., 2007).

3.4.5 Limitations

Limitations inherent to CAS-FRI and LIDAR may have influenced the predictive

power of their corresponding metrics. The time lag between forest inventory acquisi-

tions and bird surveys may have reduced the performance of vegetation composition

metrics because of floristic changes driven by succession. As many studies rely on
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irregularly updated land cover maps, future research should explore the influence of

time lag between classified vegetation predictors on bird models. There were also large

time lags between harvest and LiDAR acquisition dates. The temporal resolution of

the LiDAR was far more limited than that of Landsat. Most of the LiDAR data

was acquired between 2006 and 2008, often years after harvest. This temporal lag

presented a challenge, as the efficacy of LiDAR predictor variables can diminish

with increasing temporal misalignment (Vierling et al., 2014). While the influence

of LiDAR temporal misalignment on mature-forest bird-habitat models is limited, it

can lead to significant reductions in the predictiveness of LiDAR variables used in early-

successional bird-habitat models (Casey & Bayne, 2022c). To minimize these effects,

LiDAR was used to characterize conditions near the time of the bird survey, not the

conditions immediately post-harvest. Conversely, with its large temporal resolution,

we used Landsat to characterize harvests at both the time of harvest and the time of

the bird survey. The temporal resolution of the LiDAR also reduced the amount of

bird data we could use in our analyses. As we only included point counts completed

within five years of LiDAR acquisition dates, our final data set was too small to split

into training and evaluation data sets. As LiDAR becomes more widely available and

less of a constraint on existing bird data, future studies can take advantage of more

robust model fitting techniques (Guisan & Zimmermann, 2000).

Unclassified LiDAR and Landsat can be used in place of classified habitat data

and ground-based measurements, but their improved predictions can come at the

cost of interpretability (Li & Wu, 2004). While this work focused on the relative

predictive power of ∆NBR, LiDAR, future work should aim to increase their ecological

interpretability. LiDAR and ∆NBR metrics should be linked back to specific harvest

residuals and understandable forestry terms to better inform adaptive management
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and implementation monitoring.

3.4.6 Moving Forward

A challenge to the improvement of bird distribution models is the lack of compre-

hensive time series of bird observation data that can be paired in space and time

with corresponding land cover variables (Rose et al., 2015). However, large-scale

long-term bird monitoring data are increasingly available and can be combined with

publicly accessible remote sensing data to monitor how birds respond to anthropogenic

disturbances. But while unclassified remote sensing data can improve model perfor-

mance, cost, availability, and training in their use and interpretation have limited

their adoption in ecological research (Neumann et al., 2015). Now, provincial and

continental scale remote sensing products and cloud-based computing platforms pro-

vide opportunities to model species-habitat relationships using novel remote sensing

metrics over large spatial extents. Through cloud computing platforms like Google

Earth Engine, Microsoft Azure, and Amazon Web Services (AWS), users can remotely

access and process multi-petabyte catalogs of Earth observation data (Gomes et al.,

2020), and include computationally demanding geospatial tasks in their modelling

workflow. As we showed, researchers can produce usable forest change metrics using

products like Landsat. This is especially useful when available classified data is limited

or when studying birds in a successional mosaic.

Currently, most bird-habitat studies that use LiDAR are spatially constrained by

the costs of acquiring LiDAR. But inexpensive wider coverage products are increasingly

available. Government funded LiDAR acquisitions and the deployment of space-based

sensors and can broaden the scale of LiDAR-based species distribution models moving

forward while avoiding the costs of acquiring LiDAR internally (Burns et al., 2020;

Coops et al., 2016). The increased availability of quality broad-scale remote sensing
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data can help us better understand how birds respond to changing forests globally

and aid in real-time monitoring efforts (Casey & Bayne, 2022a; Marvin et al., 2016;

Roy et al., 2019).

3.5 Conclusion

To accurately predict how birds respond to forestry, we need covariates that fully

describe post-harvest conditions. While useful, classified predictors like those in forest

inventories can be temporally limited, require specialized technical training to produce,

and often lack important components of bird habitat (Foody, 2002). Here we show an

alternative. Unclassified metrics from optical remote sensing and LiDAR can be useful

alternatives to those in traditional forest inventories. We found that, in addition to

time since harvest, LiDAR height and complexity metrics and spectral measures of

harvest intensity are more predictive of birds than the discrete harvest intensity and

habitat classes often used in predictive models. We recommend supplementing forest

resource inventory data with LiDAR and Landsat time-series to improve the accuracy

of bird models while avoiding the costs of ground-based vegetation surveys.
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4
Predicting avian response to forest

harvesting using the Normalized Burn
Ratio

4.1 Introduction

Forestry companies are increasingly adopting sustainable practices, such as retention

harvesting, to reduce the effects of forestry on biodiversity and emulate natural distur-

bance regimes (Fedrowitz et al., 2014; Galetto et al., 2019). Variable retention forestry

is used to promote multifunctional landscapes by maintaining pre-harvest legacy struc-

tures, such as patches of live standing trees, dead woody debris, and understory

vegetation, throughout the harvest cycle (Franklin et al., 2000; Lindenmayer et al.,

2012). Retention accelerates the recovery of harvest blocks by increasing structural

complexity relative to clear cuts, emulates natural disturbances like fire and insect

outbreaks, and optimizes habitat for “keystone” or protected species (Galetto et al.,

2019; Lindermayer & Franklin, 2002; Serrouya & D’Eon, 2004). By maintaining legacy

structures, retention can improve the continuity of ecological processes and organisms
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across forest generations by maintaining habitat for species with low dispersal and/or

small home ranges, enhancing ecological connectivity via residual stepping stones,

accelerating stand recolonization by late successional species, moderating changes to

microclimate, and maximizing niche availability through the maintenance of structural

complexity (Baker & Read, 2011; Baker et al., 2014, 2016; Chan-Mcleod & Moy,

2007; Fedrowitz et al., 2014; Franklin et al., 2000; Heithecker & Halpern, 2007;

Tews et al., 2004).

Researchers have found that retention forestry can accelerate post-harvest ecologi-

cal recovery (Fedrowitz et al., 2014; Mori & Kitagawa, 2014). However, the nonlinear

effects of the interaction between forest harvest intensity and recovery time on the

functional attributes of bird communities remain unclear. Furthermore, it is uncertain

the duration needed for post-harvest bird communities in different retention treatments

to reach parity with those of undisturbed, mature forests.

Studies assessing the impacts of retention on bird communities often use ANOVA-

style study designs and broad categorical harvest intensity metrics based on basal

area or percent canopy coverage (e.g., 1-25%, 26-50%, 51-75%, 75-95%, 96-100%

disturbance) to compare the short-term (<15 years) effects of harvesting on taxo-

nomic diversity or the abundance of specific indicator species (Gustafsson et al., 2010;

Rosenvald & Lohmus, 2008). While categorical harvest intensity metrics can predict

post-harvest bird communities (Odsen et al., 2018; Price et al., 2020), they bring

limitations. They are often obtained from intensive fieldwork or from digital land

cover maps that can be slow to update, require specialized knowledge to produce,

and may not capture the full range of harvest intensities present in the landscape.

Furthermore, common harvest intensity variables do not differentiate between possible

retention treatments, including understory protection, structural retention, dispersed
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single-tree retention, and aggregated retention.

Remote sensing can provide detailed, up-to-date information on the magnitude

and recovery of harvests, offering a promising alternative to categorical harvest inten-

sity metrics, without intensive field-based vegetation surveys. Continuous measures

of disturbance magnitude from remote sensing may reveal subtler relationships be-

tween forestry practices and bird communities. The Landsat program has collected

a continuous 50-year archive of global land surface imagery, making it well-suited

for monitoring long-term vegetation change (Cohen & Goward, 2004; Wulder et al.,

2008). A growing body of image processing and change detection methods, along with

the public availability of the full Landsat archive, are providing new ways to analyze

optical time series data (Gomez et al., 2016; Tewkesbury et al., 2015; Zhu, 2017).

For example, algorithms such as Landsat-based detection of Trends in Disturbance

and Recovery (LandTrendr) (Kennedy et al., 2018), Breaks For Additive Seasonal and

Trend (BFAST) (Verbesselt et al., 2010), and the Continuous Change Detection and

Classification (CCDC) (Zhu & Woodcock, 2014) can produce spectral recovery and

disturbance metrics using Google Earth Engine.

A time series of normalized burn ratio (NBR) can be used to assess changes in

forest structure and vegetation following disturbances. NBR is a spectral index that

is calculated using near-infrared (NIR) and shortwave-infrared (SWIR) reflectance

bandwidths (Key & Benson, 2006b). The index can be used to differentiate between

undisturbed forests and harvested or burned stands by leveraging differences in the way

healthy green vegetation and bare soil reflect light. NBR is calculated by subtracting

SWIR from NIR and then dividing the result by the sum of SWIR and NIR:

NBR = NIR − SWIR

NIR + SWIR

A decrease in NBR indicates a loss of green vegetation structure and moisture
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content. When harvest areas regenerate, NBR increases with the return of green

vegetation and forest structure (Hislop et al., 2018; Veraverbeke et al., 2011; White

et al., 2018). For measuring harvest intensity, NBR offers several advantages over

other indices calculated from Landsat imagery such as the Normalized Difference

Vegetation Index (NDVI), Tasseled Cap Greenness (TCG), and the Normalized Differ-

ence Moisture Index (NDMI) (Schultz et al., 2016)). First, the Short-Wave Infrared

(SWIR) reflectance band used in NBR is sensitive to forest structure and vegetation

moisture, making it well-suited for assessing the characteristics of regenerating stands

(Hislop et al., 2018). Second, NBR has a slower saturation rate than other indices,

allowing for more accurate measurement of long-term forest changes, and may allow

researchers to study forestry impacts at later stages of succession (Pickell et al., 2016).

And third, NBR can outperform other SWIR-based indices for forest disturbance

monitoring (Cohen et al., 2018; Veraverbeke et al., 2012). The spatial and temporal

resolution of the Landsat archive makes it well suited for measuring long-term changes

in vegetation cover from forestry over broad extents (Bost et al., 2019; Kennedy et

al., 2009). This is an advantage over classified habitat maps that are more temporally

limited. In addition, NBR measures of harvest intensity tend to be more predictive of

post-harvest species abundance than LiDAR-derived vegetation height and structure

metrics (Casey & Bayne, 2022b).

Here, we used continuous NBR measures of harvest intensity to explore the impacts

of retention forestry on bird communities and estimate the time for communities to

reach parity with mature forest reference areas. However, choice of community re-

sponse variables can influence whether a harvest is considered “recovered”. Taxonomic

diversity metrics (e.g. richness and the Shannon diversity index) are common response

variables in forestry. Alternatively, functional diversity (i.e. the diversity of species
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niches), quantifies the distribution of traits within a community and is more directly

connected with underlying ecological phenomenon (Cadotte et al., 2011; Gagic et al.,

2015; Petchey & Gaston, 2006). By prioritizing the “types” of species over species

richness and abundance, trait-based measures of diversity can offer a more generaliz-

able understanding of the mechanisms shaping post-harvest communities (Lelli et al.,

2018) and enable researchers to compare forestry treatments across broader spatial

scales (Aubin et al., 2013).

Given these advantages, functional diversity response variables have been used to

study forest structure and productivity (Bae et al., 2018), ecosystem processes (Gagic

et al., 2015; Lavorel et al., 2013), land cover change (Becik et al., 2020; Bregman et

al., 2016; Mouillot et al., 2013a), and forest management (Aubin et al., 2013; Curzon

et al., 2020; Leaver et al., 2019).

In this study, we used bird point count data, acoustic monitoring tools, and a 25

year time series of Landsat NBR to examine effects of the interaction between forest

harvest intensity and successional age on bird communities compared against mature

forest reference areas. Our objectives were to (1) quantify the influence of variable

retention on the functional and taxonomic diversity of birds along a successional

gradient of 0-25 years, (2) evaluate the time required for bird communities to recover

to mature forest reference conditions following different harvest treatments, and (3)

assess the efficacy of NBR as a measure of harvest intensity in predictive bird models.

4.2 Methods

4.2.1 Study area

Human and acoustic point counts were conducted within harvested forest areas across

413,161 km2 of the Foothills and Boreal Forest Natural Regions of Alberta, Canada
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(Natural Regions Committee, 2006) (Figure 4.1). The Foothills Natural Region is

situated at the eastern edge of the Rocky Mountains and is dominated by mixedwood

forests comprising lodgepole pine (Pinus contorta), white spruce (Picea glauca), trem-

bling aspen (Populus tremuloides), and balsam poplar (Populus balsamifera) at lower

elevations. Lodgepole pine forests are typical of higher elevations (Natural Regions

Committee, 2006). The Boreal Forest Natural Region, which spans across most

of northern Alberta, comprises coniferous forests dominated by black spruce (Picea

mariana), white spruce, and jack pine (Pinus banksiana), mixedwood forests with

trembling aspen and balsam poplar, and shrubby black spruce fens (Natural Regions

Committee, 2006). Despite the differences in vegetation and topography, there is a

significant overlap of bird species between the foothills and boreal. In both regions,

energy production and the harvesting of aspen and conifer are common.

4.2.2 Forest harvest data

We used two sources of data to identify forest harvest areas: the Common Attribute

Schema for Forest Resource Inventories (CAS-FRI) (Cosco, 2011) and the Wall-to-Wall

Human Footprint Inventory (HFI) (Alberta Biodiversity Monitoring Institute and Al-

berta Human Footprint Monitoring Program, 2019). CAS-FRI provides standardized 2

ha forest attributes derived from 1:10,000 to 1:40,000 aerial photography flown between

1987 and 2010 (Cosco, 2011). HFI contains human footprint attributes interpreted

from aerial and SPOT satellite imagery acquired between 1950 and 2019 (Alberta

Biodiversity Monitoring Institute and Alberta Human Footprint Monitoring Program,

2019). We selected harvests with a range of CAS-FRI defined categorical harvest

intensities (100-95, 95-75, 75-50, 50-25, and 25-1%). The mean area of individual

harvests was 115.4 ha (SD=110.2). Unharvested mature forest reference areas (stand

age >60 years) were identified using CAS-FRI, HFI, and historical wildfire data
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Figure 4.1: Locations of point counts in the Boreal Central Mixedwood Natural Subregion

of Northern Alberta. The right-hand column shows examples of point count locations (black

x) in forest harvest areas (red polygons). Boxes A to D show close up images of surveyed

harvest blocks.
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(Alberta Biodiversity Monitoring Institute and Alberta Human Footprint Monitoring

Program, 2019; Alberta, 2022; Cosco, 2011). Reference areas were within 500 to

1000 m of sampled harvest areas.

4.2.3 Bird data

Avian point counts were conducted in harvested areas ranging from 5 to 25 years post-

harvest. We used bird detection data from databases managed by the Boreal Avian

Modelling Project (BAM) (Boreal Avian Modelling Project, 2018) and the University

of Alberta’s Bioacoustic Unit (http://bioacoustic.abmi.ca/). Our study included

data from 9700 individual point counts conducted in or within 1000 meters of 1181

harvest blocks between 1995 and 2021. These point counts were conducted by human

observers and autonomous recording units. Surveys were conducted within sampling

radii ranging from 50-150 m and lasted 1-10 minutes. We included point counts

conducted during the breeding season (May 16 to July 7) between sunrise and 10:00

h. Each location was surveyed 3-10 times approximately three days apart. To account

for differences in bird detections resulting from varying sampling effort, we used the

log10 of sampling effort (i.e., the number of survey days multiplied by point count

durations) as an offset term in bird-habitat models.

For each point count location, we computed site-level bird species richness, Shan-

non diversity, and functional diversity indices based on the diet, foraging, and nesting

traits of species (Wilman et al., 2014) (Table 4.1). We calculated functional diver-

gence (FDiv), functional evenness (FEve), functional richness (FRic), and functional

dispersion (FDis) using the dbFD function in the FD package in R (Laliberté et

al., 2014; Laliberté & Legendre, 2010; Mason et al., 2005; Villeger et al., 2008).

Shannon diversity was calculated using the diversity function in the vegan package in R

(Oksanen et al., 2020). Our analysis was limited to bird species with known breeding
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ranges in the Foothills and Boreal Forest Natural Regions of Alberta, Canada and

that were observed at > 3 point count locations.

Table 4.1: Response variables included in the analysis.

Response variable Description

Functional dispersion (FDis) The mean distance in a functional trait space between individual
species and the centroid of all species present in a community
weighted according relative species abundance (Laliberté &
Legendre, 2010)

Functional divergence (FDiv) The extent to which the distribution of individual species
abundances maximizes differences between functional traits found in
a community (Mason et al., 2005)

Functional evenness (FEve) The regularity of the distribution of abundance along the minimum
spanning tree which links all species in a functional trait space
(Villeger et al., 2008)

Functional richness (FRic) The minimum convex hull volume that includes all species in a
functional trait space (Villeger et al., 2008)

Richness The sum of species detected over multiple visits in a season

Shannon diversity index (shan) H ′ = −
∑

i pi ln pi, where pi is the proportion of a community
comprised of species i (Oksanen et al., 2020)

4.2.4 Model covariates

To calculate harvest intensity metrics using NBR, we used methods developed by Hird

et al. (2021) (Figure 4.2). First, we pre-processed harvest polygons using the sf

package in R (Pebesma, 2020). We repaired errors in polygon geometries, dissolved

“doughnut shaped” polygons, buffered polygons by -30 m to minimize the influence

of harvest edges on NBR estimates, and simplified polygons using a tolerance of 5

m. Once processed, we uploaded the harvest polygons as a shapefile to Google Earth

Engine (Gorelick et al., 2017). Next, we generated 30 m summer (June-September)

composite NBR rasters from 1984 to 2021 using images from the Landsat 5 Thematic

68



4. Bird response to NBR harvest intensity

Mapper (bands 4 and 7), Landsat 7 Enhanced Thematic Mapper (bands 4 and 7),

and Landsat 8 Operational Land Imager (bands 5 and 7) via Google Earth Engine’s

JavaScript API (Survey, 2018). Snow, cloud, and cloud shadow pixels were masked

and removed using the CFMask algorithm (Foga et al., 2017). Finally, we applied the

LandTrendr algorithm to NBR composites to generate the following spectral change

metrics for each forest harvest area: the mean NBR value for the five years pre-harvest

(NBRpre-disturbance), the lowest NBR post-harvest value (NBRpost-disturbance), NBR spec-

tral change (∆NBR=NBRpre-disturbance-NBRpost-disturbance), and relative spectral change

(Miller & Thode, 2007):

R∆NBR = NBRpre−disturbance − NBRpost−disturbance√
|NBRpre−disturbance/1000|

In addition to spectral change metrics, we calculated the Euclidean distance be-

tween point count locations and the nearest harvest edge using the sf package in R

(Pebesma, 2020). We also calculated fractional land cover (% cover of habitat types)

for the year of the point count, mean canopy height, and the standard deviation of

canopy height within a 300 m circular buffer of point count locations using Google

Earth Engine (Hermosilla et al., 2022; Lang et al., 2022). Model covariates and their

definitions can be found in Table 4.2.

Table 4.2: Spatial covariates included in the analysis.

Predictor Description

canopy_height Mean canopy height (Lang et al., 2022)

canopy_standard_deviation Standard deviation of canopy height (Lang et al., 2022)

Coniferous Percent of coniferous species (Hermosilla et al., 2022)

dist_to_edge Distance of bird survey to nearest harvest edge
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Table 4.2: (continued)

Predictor Description

Exposed_Barren_land Percent exposed barren land (Hermosilla et al., 2022)

Herbs Percent herbs (Hermosilla et al., 2022)

lat Latitude of point count location

Mixedwood Percent mixedwood (Hermosilla et al., 2022)

RdNBR Relative dNBR (Miller & Thode, 2007)

Shrubs Percent shrubs (Hermosilla et al., 2022)

ss_dst_timelag_nbr The time between the harvest event and point count survey (yr)

Water Percent water (Hermosilla et al., 2022)

4.2.5 Analyses

We employed mixed-effects regression models to investigate the impact of NBR harvest

intensity indices on bird community metrics over time using the glmer package in

R lme4 (Bates et al., 2015). We used a Poisson generalized linear mixed model

with a log link to predict species richness. To predict Shannon diversity, functional

divergence, functional evenness, functional richness, and functional dispersion, we

employed Gamma generalized linear mixed models with a log link. As mentioned,

log(survey days * point count durations) was used as an offset to correct for dif-

ferential sampling effort.

We followed the same modelling process for each response variable. First, we fit a

global model that included all potential predictor variables as fixed effects, and nested

random effects for harvest ID and survey year. Second, we assessed the linearity of

predictor-response relationships by fitting separate models using linear, quadratic, and
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A

Pre-disturbance NBR disturbance year NBR disturbance 

691.77 1996 189.31

692.56 1994 295.46

712.61 2000 269.72

688.66 1994 304.37

B

C

D

R

Harvest data Pre-process harvest polygons 

CAS-FRI

ABMI HFI

• Repair irregular polygons

• Dissolve polygons with holes

• Buffer polygons (-30 m)

• Simplify polygons (5 m)

Google Earth Engine (A)

Analyze spectral trends (C)

• LandTrendr algorithm

• Calculate spectral change metrics

• Generate summary tables (D)

Landsat 5 Landsat 7 Landsat 8

Landsat imagery

Generate time series of NBR rasters (B)

• Harmonize Landsat

• Cloud and snow masking

• Annual summer composites

Figure 4.2: The workflow we used to calculate NBR spectral change metrics. We identified

harvests using the Common Attribute Schema for Forest Resource Inventories (CAS-FRI)

(Cosco, 2011) and the Wall-to-Wall Human Footprint Inventory (HFI) (Alberta Biodiversity

Monitoring Institute and Alberta Human Footprint Monitoring Program, 2019). Harvest

polygons were preprocessed using R statistical software (R Core Team, 2020) and NBR

spectral change metrics were calculated using Google Earth Engine (Gorelick et al., 2017)
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cubic terms. Third, we addressed multicollinearity by calculating pairwise Pearson

correlation coefficients and VIF scores for all predictors, and iteratively removed

highly correlated predictors from the global model. We kept only predictors with

low correlation (r < 0.5 and VIF < 3). Fourth, we used the dredge function from

the R package MuMIn to assess the performance of models containing combinations

of the remaining predictors (Barto, 2020). For each model we calculated pseudo-R2

as an indicator of model fit (Nakagawa & Schielzeth, 2013). The model with the

lowest Akaike’s Information Criterion (AIC) was selected as the top model (Burnham

& Anderson, 2002). Where models had similar AIC values (differing by less than two)

we chose the one with the highest pseudo-R2. Finally, we calculated semi-partial R2

values for predictor variables using the r2beta function from the r2glmm R package

with standardized general variances.

4.3 Results

Several fixed effects were common across the top models (Table 4.3). Time since

harvest and R∆NBR were applied to all the top models, and the interaction between

these two variables were included in the top models for richness, functional richness,

functional divergence, functional dispersion, and functional evenness. Standard de-

viation of canopy height and fractional water and shrub cover were common fixed

effects that were top contributors to model performance across response variables. In

contrast, tree species composition was not predictive of bird communities.

4.3.1 Species diversity

Results show that species richness was negatively associated with the percentage of

shrub cover, and positively associated with fractional water and herb cover, and the
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Table 4.3: The fixed effects and R2
GLMM (marginal R2 (R2m) and conditional R2 (R2c)

for the top model of each response variable. R2m is a measure of the variance explained by

the fixed effects. R2c is a measure of variance explained by the full model, both fixed and

random effects (Nakagawa & Schielzeth, 2013) .

Response variable Fixed effects R2c R2m

Functional dispersion (FDis) ss_dst_timelag_nbr2 * RdNBR + dist_to_edge +
Exposed_Barren_land

0.55 0.09

Functional divergence (FDiv) ss_dst_timelag_nbr * RdNBR + dist_to_edge + Shrubs +
canopy_standard_deviation

0.44 0.08

Functional evenness (FEve) ss_dst_timelag_nbr2:RdNBR + Shrubs + Water +
canopy_standard_deviation + lat

0.56 0.05

Functional richness (FRic) ss_dst_timelag_nbr2 * RdNBR + Herbs + Water + Shrubs 0.59 0.15

Richness ss_dst_timelag_nbr2 * RdNBR + Exposed_Barren_land + Herbs
+ Shrubs + Water + canopy_standard_deviation

0.40 0.24

Shannon diversity index (shan) ss_dst_timelag_nbr2 + RdNBR2 + Shrubs
+Exposed_Barren_land + Water + canopy_standard_deviation

0.71 0.22

standard deviation of canopy height. The top model for species richness included

the interaction between R∆NBR and time since harvest as a fixed effect (Figure 4.3).

The interaction led to an inverted U-shaped effect curve at levels of R∆NBR <85%

with maximum species richness occurring 15 to 20 years post-harvest. At high levels

of harvest intensity (>85%) maximum species richness occurred 20 to 25 years post-

harvest. After 20 years post-harvest, the top model predicted that species richness in

all harvest intensities would converge with the mean species richness of unharvested

stands. The linear term for time since harvest was the strongest predictor of species

richness (b = 0.197, SE = 0.023, p < 0.001, semi-partial R2 = 0.037), followed by

fractional cover of water (b = 0.093, SE = 0.008, p < 0.001, semi-partial R2 = 0.034),

and the quadratic term for time since harvest (b = -0.083, SE = 0.016, p < 0.001,

semi-partial R2 = 0.014).
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Shannon diversity index decreased with the percentage of exposed barren land and

shrubs, and increased with the standard deviation of canopy height and the fractional

cover of water. The response of Shannon diversity to time since harvest was nonlinear

and followed an inverted U-shaped effect curve, with maximum Shannon diversity

occurring after ≈ 20 years post-harvest for all harvest intensities. The top model for

Shannon diversity included a quadratic term for R∆NBR, resulting in a shallow U-

shaped effect curve with a minimum harvest intensity of ≈ 45%. However, we found

no significant interaction between time since harvest and R∆NBR. After 20 years post-

harvest, Shannon diversity in areas with harvest intensities below 75% was predicted to

converge with the mean Shannon diversity of unharvested forests. The quadratic term

for time since harvest was the strongest predictor of Shannon diversity (b = -0.046, SE

= 0.015, p < 0.01, semi-partial R2 = 0.099), followed by the proportion of water(b =

0.038, SE = 0.004, p < 0.001, semi-partial R2 = 0.016), the linear term for time since

harvest (b = 0.118, SE = 0.026, p < 0.001, semi-partial R2 = 0.013), and the proportion

of exposed barren land(b = -0.040, SE = 0.008 , p < 0.001, semi-partial R2 = 0.002).

Figure 4.3: Richness and Shannon diversity estimates for all time periods and NBR derived

harvest intensities with 95% confidence intervals.
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4.3.2 Functional diversity

Functional richness had a negative response to shrub cover and a positive response to

fractional cover of water and herbs. Our findings revealed a mild interaction between

time since harvest and R∆NBR, leading to an inverted U-shaped curve at harvest

intensities > 60%. Peak functional richness was observed 15 to 20 years post-harvest

(Figure 4.4. Functional richness approached the mean pre-harvest functional richness

level 15 to 20 years post-harvest across all harvest intensities. Among the predictors,

fractional cover of water was the strongest predictor of functional richness (b = 0.123,

SE = 0.016, p < 0.001, semi-partial R2 = 0.024), followed by the linear term of

time since harvest (b = 0.295, SE = 0.065, p < 0.001, semi-partial R2 = 0.020), and

fractional shrub cover (b = -0.125, SE = 0.028, p < 0.001, semi-partial R2 = 0.014).

Functional divergence decreased with time since harvest, shrub cover, and the

distance to the nearest forested edge, and increased with R∆NBR. The top model

for functional divergence included the interaction between time since harvest and

R∆NBR. For harvest intensities < 50%, functional divergence converged with the

mean functional divergence of unharvested stands after 20 years. Time since harvest

was the strongest predictor of functional divergence (b = -0.021, SE = 0.007, p <

0.001, semi-partial R2 = 0.038), followed by R∆NBR (b = 0.028, SE = 0.006, p <

0.001, semi-partial R2 = 0.038), and the distance to the nearest forested edge (b =

-0.022, SE = 0.002, p < 0.001, semi-partial R2 = 0.028).

Functional dispersion was negatively associated with the percentage of exposed

barren land and the distance to the nearest forested edge, and positively associated

with R∆NBR. The top model for functional dispersion included a quadratic term for

time since harvest, revealing a U-shaped response curve with the highest functional

dispersion occurring 10 to 15 years post-harvest. Functional dispersion approached
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the levels observed in unharvested stands 20 to 25 years post-harvest. We found no

significant interaction effect between time since harvest and R∆NBR on functional

dispersion. The linear term of time since harvest was the strongest predictor of

functional dispersion (b = 0.070, SE = 0.017, p < 0.001, semi-partial R2 = 0.017),

followed by the quadratic term of time since harvest (b = -0.039, SE = -.010, p <

0.001, semi-partial R2 = 0.017), and the distance to the nearest forested edge (b =

-0.021, SE = 0.003, p < 0.001, semi-partial R2 = 0.008)

Functional evenness responded negatively to water, shrubs, and the standard devi-

ation of canopy height. The top model for functional evenness included an interaction

between time since harvest and R∆NBR which led to an inverted U-shaped curve

for harvest intensities > 50%, with maximum functional evenness observed 15 to 20

years post-harvest. Functional evenness at all harvest intensities approached mean pre-

harvest functional evenness 20 to 25 years post-harvest. The interaction between the

linear term of time since harvest and R∆NBR was the strongest predictor of functional

evenness (b = 0.017, SE = 0.007, p < 0.01, semi-partial R2 = 0.010), followed by the

interaction between the quadratic term of time since harvest and R∆NBR (b = -0.008,

SE = 0.003, p < 0.05, semi-partial R2 = 0.005), and the standard deviation of canopy

height (b = -0.007, SE = 0.004, p < 0.075, semi-partial R2 = 0.001).

4.4 Discussion

Our results suggest that spectral measures of harvest intensity, post-harvest recovery

time, and fractional land cover variables associated with low-lying vegetation and

water are important drivers of variation in post-harvest bird communities. Our study

suggests that harvest residuals can mitigate the impacts of forest harvesting on birds

over time. In the short term, i.e., < five years after harvesting, we observed significant
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Figure 4.4: Functional diversity estimates for all time periods and NBR derived harvest

intensities with 95% confidence intervals.

changes in bird community metrics for harvest intensities ranging from 35% to 100%.

However, the rates of community recovery varied depending on the intensity and extent

of harvesting. Our analysis revealed strong evidence that harvest residuals accelerated

the recovery of bird species richness, functional evenness, and functional divergence.

Additionally, across all harvest intensities, taxonomic richness, functional richness,

functional dispersion, and functional evenness converged with levels of unharvested

reference areas in less than 25 years.
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4.4.1 The influence of harvest intensity on diversity

Our study provides evidence that reducing harvest intensity (i.e., spectral change)

can hasten the recovery of species diversity in post-harvest stands. We found that

the response curves for both richness and Shannon diversity followed an inverted

U-shape in relation to time since harvest, with immediate declines observed across

all harvest intensities. However, we noted opposing trends between richness and

Shannon diversity in response to harvest intensity. Specifically, 1 to 20 years post-

harvest, increasing harvest intensity negatively impacted richness, but resulted in

higher Shannon diversity. The opposing trends between richness and Shannon diversity

we observed may indicate increased evenness in the distribution of species abundances

post-harvest (Hill, 1973).

Retention promoted the recovery of species richness. Harvest intensities of less than

60% led to convergence of mean richness with un-harvested mature forest reference

areas within 10 years. Shannon diversity at all harvest intensities converged with non-

harvested areas within 10 years. However, between 10 and 20 years post-harvest, areas

with harvest intensities >75% showed increased Shannon diversity beyond the mean

Shannon diversity in un-harvested areas before eventually converging with unharvested

areas 25 years post-harvest.

Our findings are consistent with studies that have reported a decrease in species

richness following harvests and higher levels of richness in areas with high retention

compared to clear-cuts (Fedrowitz et al., 2014; Odsen et al., 2018; Price et al., 2020;

Twedt, 2020). This is likely due to harvest residuals increasing the horizontal and

vertical vegetation heterogeneity of regenerating stands. Increases in vegetation het-

erogeneity can expand the niche space, leading to higher bird species richness (Culbert

et al., 2013; Tews et al., 2004).
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Our study revealed complex and contrasting trends between functional diversity

indices and harvest intensity over time. Specifically, we found that functional richness

exhibited a similar response to that of species richness, with an immediate decline

in the size of the communities’ functional trait space after harvest, followed by a

rapid recovery and convergence with the mean functional richness of unharvested

areas after approximately 20 years. However, although our models suggested a mild

negative effect of harvest intensity on functional richness, this effect was negligible

and did not significantly contribute to the overall model performance. Therefore,

our findings suggest that the size of the post-harvest functional trait space is similar

across different harvest intensities.

Similar to the results of Leaver et al. (2019) and Edwards et al. (2013), we

observed short-term declines in functional evenness (the regularity of the abundance

distribution of species with different traits (Villeger et al., 2008)) in areas with harvest

intensities > 50%. This could be due to short-term increases in species dominance of

cavity-nesting birds and birds that nest and forage in shrubs, as new recruits out-

compete other species (Schieck & Song, 2006). In areas with < 50% harvest intensity,

functional evenness did not deviate from the mean functional evenness of unharvested

areas across all stages of recovery. This suggests that high amounts of harvest residuals

can maintain the relative abundance of functional traits that would otherwise decline

with greater harvest intensities.

Conversely, our models showed an increase in functional divergence post-harvest.

Functional divergence refers to the extent to which the distribution of individual

species abundances maximizes differences between functional traits (Mason et al.,

2005). We found that harvest intensity had a positive linear relationship with func-

tional divergence, providing further evidence of the increased dominance of a few
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functionally distinct species at higher harvest intensities. While functional divergence

decreased across all harvest intensities with time, it did not fully converge with the

mean functional divergence of unharvested areas within 25 years post-harvest.

Functional dispersion, a measure of community heterogeneity that estimates the

mean distance of species to the centroid of all species in the functional trait space

(Laliberté & Legendre, 2010), declined immediately post-harvest, followed by an in-

verted U-shaped response curve that peaked after 10-15 years and converged with

the functional dispersion of unharvested areas after 20 years. Our models suggest

that, following an initial decline, functional heterogeneity of communities increases

relative to that of unharvested areas before converging after 20 years post-harvest.

The increase in functional dispersion we found between 5 and 15 years post-harvest

could be associated with the establishment of early-seral specialists as also noted

by Swanson et al.(2011).

4.4.2 Convergence with reference areas

The differential response of community metrics to harvest intensity suggests that

minimum retention recommendations may depend on the community indices used

and the optimal timeline for recovery. Our study found that in the first 10 years after

harvesting, harvest intensities of < 50% reduced changes to species richness, functional

richness, functional evenness, and functional dispersion. However, differences between

harvest treatments shrank over time and for all harvest intensities, these metrics

recovered to non-harvest levels within 25 years. With functional divergence and

Shannon diversity, recovery took longer to reach baseline levels. For Shannon diversity,

harvest intensities > 75% did not reach unharvested levels within 25 years. Among

the metrics assessed, functional divergence was the slowest to recover, and harvest

intensities > 50% were not predicted to reach baseline levels within 25 years post-
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harvest. Our findings align with a growing body of forestry research that shows

that even small amounts of retention can reduce community change and accelerate

post-harvest recovery (Craig & Macdonald, 2009; Gustafsson et al., 2010; Halpern

et al., 2012; Odsen et al., 2018).

4.4.3 Moving forward

Our research shows that spectral measures of disturbance derived from Landsat Time

Series (LTS) data, particularly the differences in NBR between pre- and post-disturbance

forests, can serve as a useful substitute for common harvest intensity metrics from

ground-based stem volume and canopy cover measurements or photo-interpretation

of canopy cover; metrics that are often temporally and spatially limited (Bartels et

al., 2016; White et al., 2018).

However, while ∆NBR is a useful measure of harvest intensity, it does not distin-

guish between the various silvicultural treatments present in the landscape. Further-

more, spectral saturation may limit the ability of ∆NBR to detect subtle differences be-

tween high-intensity disturbances (Allen & Sorbel, 2008; Delcourt et al., 2021; French

et al., 2008). Our study included a variety of treatments, such as understory protection,

structural retention, dispersed single-tree retention, and aggregated retention, but we

could not differentiate between these treatments when estimating harvest intensity.

This is a common limitation in retention studies (Gustafsson et al., 2010; Rosenvald

& Lohmus, 2008). Because of its 30m resolution, Landsat alone is insufficient to

overcome this challenge. At this resolution, it is hard to identify dispersed residual

trees and make precise measurements related to the shape and spatial arrangement

of residual patches. However, canopy closure and the availability of large trees are

closely linked to percent retention and may compensate for the lack of differentiation

between treatments (Vanderwell et al., 2007).
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Nevertheless, distinguishing between treatments in future research could inform

managers about the optimum density and spatial configuration of retained vegeta-

tion. For example, aggregated retention may create different habitat conditions than

dispersed single tree retention, influencing tree mortality, edge habitat, vegetation

heterogeneity, microclimate, and the persistence of mature forest and early successional

bird species (Curzon et al., 2020; Fedrowitz et al., 2014; Price et al., 2020; Vanderwell

et al., 2007; Venier et al., 2015).

Retention forestry should aim to provide suitable conditions for a range of species

representing different functional guilds (Gustafsson et al., 2012). Taxonomic and

functional diversity models can be useful for detecting broad patterns and informing

forestry management strategies that benefit multiple species simultaneously (Linden-

mayer et al., 2007). However, for managing specific taxa, single-species models are

often needed to understand the mechanisms driving changes in abundance. Even

species with similar functional traits may have unique response patterns to stand age

and harvest intensity (Akresh et al., 2021). To gain a more comprehensive understand-

ing of the impact of forestry on birds, future research could take a combined approach

that incorporates both single-species and functional diversity response variables.

To better address the needs of forestry managers, future research should also

target specific federally listed species at risk or those representative of important

functional guilds. Furthermore, comparing natural disturbance regimes like fire with

retention forestry is crucial to understanding whether the variability of post-harvest

bird communities falls within natural bounds.
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4.5 Conclusion

To effectively conserve boreal birds and their habitats, it is crucial to understand the

impact of forestry activities on bird populations. Our study used an annual time

series of Landsat normalized burn ratio to measure the intensity of forest harvesting

and assess its impact on bird functional and taxonomic diversity within recovering har-

vested areas. While previous studies have used categorical harvest intensity metrics to

assess the impacts of retention on bird communities, ours is the first to use continuous

spectral measures of harvest intensity. Our findings indicate that retention forestry

can mitigate the impacts of forest harvesting on bird communities. Also, including

functional indices as response variables provides a more comprehensive understanding

of community response compared to relying on taxonomic diversity alone (Mouillot et

al., 2013b). Furthermore, we demonstrated the value of LandTrendr, a cloud-based

change detection algorithm, as a tool for assessing harvest intensity and recovery in bo-

real forests. Landsat change metrics derived using LandTrendr are useful alternatives

to those from traditional classified land cover maps. The findings show that methods

incorporating novel remote sensing algorithms and community functional indices can

reveal subtle relationships between forestry practices and bird communities over time.
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5
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In this thesis, I evaluated and compared different sources of predictor variables for

SDMs. Additionally, I investigated the response of bird communities to forestry across

a range of harvest intensities and successional ages in the boreal region. In Chapter

2, I examined the influence of temporal misalignment between LiDAR acquisitions

and bird surveys on the performance of SDMs for early-successional, mature forest,

and forest generalist birds. The influence of temporal misalignment on SDMs varied

across species, with early-successional associates being the most affected. In Chapter

3, I evaluated the effectiveness of CAS-FRI, LiDAR, and Landsat NBR data for

predicting the response of birds in regenerating forest harvest areas. I found that

spectral measures of harvest intensity and structural metrics from LiDAR were better

predictors of species abundance and diversity compared to commonly used vegetation

and disturbance classifications. In Chapter 4, I evaluated the impact of the interaction

between forest harvest intensity and recovery time on the taxonomic and functional

diversity of birds. I found that harvest residuals can mitigate the impacts of forest

harvesting on birds and accelerate the recovery of bird species richness, functional
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evenness, and functional divergence within harvest areas. Together, this work shows

that bird-habitat models can be improved by including LiDAR and Landsat time-

series predictor variables. The findings align with the growing body of literature that

applies remote sensing to investigate the abundance and distribution of wildlife (Davies

& Asner, 2014; Goetz et al., 2010; He et al., 2015; Sheeren et al., 2014; Simonson et

al., 2014; Swatantran et al., 2012; Tattoni et al., 2012; Turner et al., 2003).

In Chapters 2 and 3, I showed the value and limitations of LiDAR predictor vari-

ables in bird-habitat models. In Chapter 2, I found that LIDAR-based SDMs are mod-

erately predictive of occupancy for American Redstart (Setophaga ruticilla), Black-

throated Green Warbler (Setophaga virens), Mourning Warbler (Geothlypis philadel-

phia), and White-throated Sparrow (Zonotrichia albicollis). Chapter 3 used LIDAR to

characterize conditions within harvest blocks, leading to improved model performance

for eight of the twenty focal species including Alder Flycatcher (Empidonax alnorum),

Black-throated Green Warbler (Setophaga virens), LeConte’s Sparrow (Ammospiza

leconteii), Lincoln’s Sparrow (Melospiza lincolnii), Philadelphia Vireo (Vireo philadel-

phicus), Swainson’s Thrush (Catharus ustulatus), Warbling Vireo (Vireo gilvus), Win-

ter Wren (Troglodytes hiemalis).

The top-performing LiDAR predictors varied among species, but frequently in-

cluded maximum vegetation height, the 50th percentile of canopy height, and the

coefficient of variation of LiDAR return heights. These variables explained more

model variance compared to variables derived from land cover maps, such as vegetation

composition and the shape, area, and perimeter-area ratio of harvest polygons. Similar

findings by Farrell et al. (2013), Ficetola et al. (2014), and Muller et al. (2010) have

shown that LiDAR metrics outperform plant species composition and other classified

land cover metrics for predicting bird response.
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LiDAR metrics corresponding to vegetation density, such as the proportion of

LiDAR vegetation returns below two meters, were highly variable in their contribution

to model performance. These variables were most valuable in modeling the response

of bird species closely associated with dense shrub vegetation, including the Mourning

Warbler, Alder Flycatcher, and Winter Wren. Also, the effectiveness of specific

predictor variables was not generalizable across species, consistent with the findings

of Koma et al. (2022) and Tattoni et al. (2012).

Chapter 2 showed that the influence of LiDAR-point count temporal misalignment

on the performance of SDMs varied across species. For early-successional birds, tem-

poral misalignment had a strong negative influence on model performance, indicating

that LiDAR-point count time lag should be limited to less than five years. Conversely,

temporal misalignment had little impact on SDMs for forest generalists. Regarding

mature forests birds, although LiDAR temporal misalignment had a significant impact

on models for Black-throated Green Warbler, they remained moderately predictive,

even with fifteen years between LiDAR and bird surveys. These findings are consistent

with previous studies conducted by Hill and Hinsley (2015) and Vierling et al. (2014).

While the findings indicated that the impact of LiDAR temporal misalignment

varies depending on the nesting and feeding characteristics of the focal species, Chapter

3 of this thesis revealed no consistent pattern in the performance of LiDAR predictor

variables across different feeding and nesting guilds. This was unexpected and con-

trasts with studies suggesting that the applicability of LiDAR metrics is generalizable

to the habitat guild of the study species (Davies & Asner, 2014; Lesak et al., 2011).

Chapters 3 and 4 provided evidence that spectral change metrics from NBR can

serve as a proxy for the disturbance intensity categories found in forest resource

inventories. In Chapter 3, I found that for most response variables, LiDAR vege-
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tation metrics were less predictive of bird abundance and diversity than successional

indicators like time since harvest and ∆NBR. This suggests that studies relying solely

on percent disturbed and time since harvest categories to assess the impacts of different

harvest regimes would not significantly benefit from incorporating LiDAR predictors.

Alternatively, studies would benefit from replacing harvest categories with measures of

disturbance derived from Landsat Time Series (LTS) data, particularly the NBR differ-

ences between pre- and post-disturbance forest (Bartels et al., 2016; White et al., 2018).

In Chapter 4, when NBR was used to explore the impacts of retention forestry,

I found complex and contrasting trends between functional diversity indices and the

interaction between harvest intensity and time since harvest. Here I found evidence

that harvest residuals can mitigate the impacts of forest harvesting on birds. Within

the initial five years following harvesting, the presence of residuals reduced changes in

taxonomic richness, functional richness, functional evenness, and functional dispersion.

Moreover, the rates of recovery for these metrics were positively associated with

higher amounts of harvest residuals. Across all harvest intensities, taxonomic richness,

functional richness, functional dispersion, and functional evenness converged with the

levels observed in unharvested reference areas in a timeframe of less than 25 years.

These findings are consistent with a growing body of research highlighting the

positive contribution of retention forestry to the recovery of bird communities following

harvests (Craig & Macdonald, 2009; Gustafsson et al., 2010; Halpern et al., 2012).

For example, studies have reported that retention harvesting promotes greater species

richness in post-harvest communities compared to clear-cut areas (Fedrowitz et al.,

2014; Odsen et al., 2018; Price et al., 2020; Twedt, 2020). However, the application

of functional diversity response variables in studying the effects of forestry in the

boreal region remains limited, with most studies focusing on taxonomic richness or
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the abundance of specific focal species. Given the findings from Chapter 4, functional

diversity indices have the potential to provide a more nuanced understanding of post-

harvest bird communities compared to the commonly used taxonomic diversity indices.

How one measures a community matters (Becik et al., 2020; Meynard et al., 2011),

and I observed that different aspects of the post-harvest community, as indicated by

the seven taxonomic and functional diversity response variables included in the study,

exhibited varying recovery rates and response curves. For example, while species

richness recovered within 25 years after harvesting, functional divergence remained

higher than baseline levels during the same period.

While we found NBR change metrics useful for evaluating the stand level impacts

of forestry on birds, the improved predictions of unclassified NBR metrics come at the

cost of ecological interpretability (Li & Wu, 2004). While ∆NBR is a useful measure

of harvest intensity, it does not distinguish between specific silvicultural treatments,

like dispersed single-tree retention, aggregated retention, structural retention, and

understory protection (Groot et al., 2005). This issue is not unique to the use of ∆NBR.

Retention studies that use classified disturbance metrics rarely distinguish between

specific forestry practices (Gustafsson et al., 2010; Rosenvald & Lohmus, 2008).

Unfortunately, failing to account for treatment types makes it harder to produce

actionable recommendations on the optimum density and spatial configuration of

retained vegetation. Future work should reference specific treatment types to better

inform sustainable forest management practice.

Regarding LiDAR, future research should assess the differential strength of LiDAR

predictor variables across avian feeding and nesting guilds. While LiDAR is increas-

ingly being used in avian SDMs (Davies & Asner, 2014), the generality of LiDAR

for modelling birds is unclear. The type and number of LiDAR metrics included in
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avian models varies between studies. Many use LiDAR to more precisely measure

variables already available from other sources (i.e. tree height), while others use novel

metrics to describe structural elements not available from traditional photogrammetry

(i.e. strata density). The importance of including novel versus more precise measures

of structural variables likely depends on a species niche and life history. For example,

Vogeler et al. (2014) examined the relationships between richness of nesting guilds

and a suite of height and density metrics and found understory vegetation density was

far more important for understanding ground nesters than tree height, and Weisberg

et al. (2014) found that measures of habitat heterogeneity are stronger predictors of

richness of foliage foragers than ground foragers. This contrasts with my findings from

Chapter 3, where I did not observe any generalizable trends in metric use by guild.

More research is needed and would help inform variable selection in future studies.

In Chapter 3, the inclusion of remote sensing predictor variables from various

sources improved the predictive models for eight out of the twenty focal species. This

makes sense as each source (CAS-FRI, LiDAR, and a time-series of Landsat NBR)

captures different habitat characteristics that influence birds, such as successional

stage, vertical structure, and vegetation resources. Previous studies, as discussed in

Chapter 3, have also emphasized the benefits of integrating a variety of remote sensing

data in species ecology (Hill & Thomson, 2005; Koma et al., 2022; Swatantran et al.,

2012). By incorporating multiple technologies, researchers can expand the spatial

and temporal scales at which they study ecological patterns and processes (Marvin

et al., 2016). For future studies, I recommend supplementing classified land cover

data with unclassified remote sensing data that matches the spatiotemporal resolution

of the response variable and captures essential habitat features often overlooked by

traditional sources. This can enhance the predictive capabilities of models while also
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reducing the per-area costs of analyses (Asner et al., 2014; Marvin et al., 2016).

In recent years, wildlife biologists have advanced bird habitat models by reducing

errors in response variables. Wildlife biologists have improved automated species recog-

nition (Knight et al., 2020), developed methods for addressing imperfect detections

(Sólymos et al., 2013; Yip et al., 2019), and improved acoustic localization (Wilson &

Bayne, 2018). However, my work shows that greater attention is needed to enhance

habitat covariates, including their accuracy, spatiotemporal resolution, and ecological

relevance. The reliance on classified land cover maps is outdated, and biologists

should use modern resources like cloud computing and multi-source multi-temporal

remote sensing data.

Fine scale data at continental extents are often necessary to fully understand the

mechanisms driving bird distributions. (Rose et al., 2015). With the availability of

broad scale wall-to-wall remote sensing products and advances in cloud-based comput-

ing, SDMs can now be built using multi-source spatial data over large spatial extents.

Publicly funded data like Landsat, Sentinel, and, increasingly, wall-to-wall LiDAR,

have removed some of the spatial and cost constraints that once limited the use of

remote sensing in SDMs (Burns et al., 2020; Coops et al., 2016).

Advancements in GIS and cloud computing have improved the analytical capabil-

ities of researchers (Randin et al., 2020). For example, cloud computing platforms

like Google Earth Engine, have given users cost-efficient ways to access and process

high resolution remote sensing data over large areas and time-frames (Gomes et

al., 2020; Randin et al., 2020). These platforms enable researchers to perform the

computationally intensive tasks necessary for extracting important predictors related

to climate, topography, land cover, disturbance history, and vegetation structure (He

et al., 2015; Roy et al., 2019). By combining these predictors with large-scale, long-

90



5. Discussion

term bird monitoring data, researchers can develop models that better describe how

birds respond to habitat change.
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