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Abstract

Outbreaks of insects are currently one of the main sources of disturbance in North

American pine forests. The huge economic and ecological consequences of these out-

breaks emphasize the need for effective pest management. For example, the mountain

pine beetle (Dendroctonus ponderosae, Hopkins 1902) has killed more than half the

commercial timber in British Columbia. Large-scale model predictions of mountain

pine beetle have highlighted the impact of beetle pressure, weather, and stand charac-

teristics on beetle location. Observational and experimental studies specify how these

factors affect beetle presence during the course of its life-cycle. However, local-scale

predictions could help inform pest management more accurately. Especially, there is a

need to understand how the impacts of ecological and environmental factors on moun-

tain pine beetle population change during the course of an outbreak. Population models

typically incorporate management using 1) functional responses for biological control or

2) removal of a certain number of individuals at certain times for other types of control.

This second method lacks a framework describing how management could be imple-

mented in population models in a rigorous way. In this thesis, I use a combination of

statistics, machine learning methods, simulations, and mathematical models to explore

mountain pine beetle population dynamics and its management in the Cypress Hills
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interprovincial park. Boosted regression trees are able to predict accurately mountain

pine beetle infested trees presence on a local scale using ecological and environmental

variables. Logistic regressions using similar variables further demonstrate which factors

affect beetle presence and how they vary depending on the outbreak phase. Virtual

experiments of mountain pine beetle management show that managers are efficient

in detecting infested trees using previous-year infestation information. Yet, efficiency

could be further improved by the addition of weather, stand characteristics, and topog-

raphy to inform detection. Using a mathematical model along with individual-based

simulations, I demonstrate that we could apply the functional response framework to

human-pest interactions in order to simulate population dynamics as well as compare

management strategies. Simulations of a semi-empirical model describing the interac-

tion between beetle and pine populations show that direct control affect beetle outbreak

duration and pine mortality even at a low level and a moderate control can eradicate

infestations in the long term. However, a significant control level is needed to achieve

a quick suppression. Assessing management and considering ways of improvement are

important as pest damages in North America are predicted to increase as a consequence

of climate change.
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Chapter 1

General introduction

Forest insect outbreaks can have huge environmental and economic consequences. For

instance, the European spruce beetle (Ips typographus) killed thousands of hectares of

mature spruce trees in central Europe between 1992 and 2000 (Wermelinger, 2004).

In North America, insect and pathogen outbreaks are currently one of the main forest

disturbances. They cause, in some places, more damages than fires and intense climatic

events such as storms (Dale et al., 2001). For example, the eastern spruce budworm

(Choristoneura fumiferana) is a defoliator of fir and spruce that has affected millions

of square kilometres of forests (Venier & Holmes, 2010). The southern pine beetle

(Dendroctonus frontalis) impact on commercial pine forests has cost timber producers

more than one billion U.S. dollars in southern U.S. over the course of 28 years (Pye et al.,

2011). Similarly, the mountain pine beetle (MPB; Dendroctonus ponderosae, Hopkins

1902) outbreak occurring in western Canada pine forests since the early 2000s has

killed more than half of the merchantable timber volume (Walton, 2013). Therefore,

forest pest management is crucial and frequently implemented in order to decrease

the repercussions on the environment and human communities (Fettig & Hilszczański,

2015).

Managers employ various control tactics in order to reduce the impact done to the forest

(Fettig & Hilszczański, 2015). To prevent damages and reduce economic losses, man-

agers can harvest stands of commercial trees with a high susceptibility for infestation
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before the pest can reach them. They can also decrease stand susceptibility, for exam-

ple by thinning treatments or prescribed fires (Fettig et al., 2007). On the other hand,

to directly control existing pest, they can survey areas at risk and implement control

methods that will ensure pest mortality such as biological control, felling and treatment

of infested trees, or insecticide application (Fettig & Hilszczański, 2015). For example,

the great spruce beetle (Dendroctonus micans) is managed using the predatory beetle

Rhizophagus grandis in Europe and Asia (Fettig & Hilszczański, 2015) and MPB in-

fested trees are often treated using a fall and burn tactic (Alberta Sustainable Resource

Development, 2007; Saskatchewan Ministry of Environment, 2016). Determining areas

at risk can be done using modelling tools such as statistics, machine learning methods,

population models, or agent-based models.

By definition, an adequate pest management affects considerably pest population dy-

namics by reducing population growth and/or dispersal. Decreases in pest population

size due to direct control is rarely constant over time and rather clustered to some time

periods convenient for managers given the insect life-cycle. Similarly, the disruption of

dispersal events may be limited to specific managed areas. The extent of changes in

growth and dispersal may also differ depending on the details of the management strat-

egy. Therefore, studies investigating pest population dynamics must take the specifics

of management into account in order to have accurate results.

In this thesis, I will explore pest population dynamics and management in the context

of a MPB outbreak using phenomenological and mechanistic models.

1.1 Ecology of the mountain pine beetle

The mountain pine beetle is an eruptive bark beetle infesting a large variety of pine

species in western North America (Negrón & Fettig, 2014). In Canada, its main host

expands from the lodgepole pine (Pinus contorta) in British Columbia to the jack pine

(Pinus banksiana) east of the Rocky mountains (Little, 1971; Cullingham et al., 2011).

MPB is an aggressive species alternating low population size called an endemic phase

and cyclic outbreaks called an epidemic phase (Safranyik, 2004). Endemic populations
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survive by attacking weak and stressed pines with the help of other bark beetle species

and pathogens (Smith et al., 2011). In favourable conditions, such as warm winter

temperatures, MPB populations increase to epidemic levels where they are able to suc-

cessfully mass attack large and vigorous pine trees. At the peak of an outbreak, epidemic

populations have enough individuals to infest large patches of pine forests. Populations

decline because of a lack of susceptible hosts or unfavourable weather conditions such

as cold snaps in the fall and spring leading to high larval mortality.

MPB typically has a one-year life cycle although a two-year life cycle has been reported

in colder regions (Logan & Powell, 2001) and some evidence of bivoltinism, two genera-

tions per year, has been observed in the United States (Mitton & Ferrenberg, 2012; but

see Bentz & Powell, 2014). In the early summer, beetles disperse, and attack susceptible

pine trees. Females lay eggs in galleries under the bark which develop into larvae over

the fall and winter. Beetles overwinter as larvae and resume their development into

pupae and adult in the spring (Safranyik & Carroll, 2006). Fungal and bacterial asso-

ciates facilitate beetle nutrition in the host by providing sustenance and concentrating

host tree nutrients (Safranyik et al., 1975; Bleiker & Six, 2007; Therrien et al., 2015).

Beetle attack and development lead to the host death. Therefore, MPB-infested pines

are recognizable by the red colour of their crown one year after the attack.

Although new MPB infestations often appear in the neighbourhood of previous infes-

tations, beetles have been observed hundreds of kilometres away from the closest pine

forests (Safranyik & Carroll, 2006). Indeed, MPB generally has a short-distance disper-

sal behaviour where individuals actively fly a few meters above ground within a stand

in order to find and colonize new hosts (Carroll & Safranyik, 2004). However, when

climatic conditions are favourable, some beetles can engage in a long-distance dispersal

behaviour. This behaviour happens when ascending air currents bring beetles above

the tree canopy where they get caught in the wind and thus, get transported hundreds

or thousands of kilometres (Chen & Jackson, 2017).

Adult beetles usually have a synchronized 10-days emergence window between mid-July

and mid-August during which females initiate host selection and colonization (Safranyik

3



& Carroll, 2006). The mechanism of MPB host selection is disputed. While some studies

report that pioneer beetles use visual cues in this process, other support random landing

(Billings et al., 1976; Hynum & Berryman, 1980; Safranyik & Carroll, 2006). More

recently, some evidence was found that MPB could use host volatiles to differentiate

between host and non-host species (Gray et al., 2015). After landing, the tree suitability

is assessed using gustatory cues, i.e. cues related to taste, before starting colonization

(Raffa & Berryman, 1982).

During the colonization process, beetles release aggregation pheromones in order to

attract enough conspecifics to produce a mass attack and overwhelm the tree defences

(Safranyik & Carroll, 2006). Indeed, MPB presents a strong Allee effect: a certain

number of beetles is needed to overcome the tree defences, and below it, the attack fails

(Allee, 1931; Goodsman et al., 2016). Therefore, MPB success depends on host mor-

tality, thereby inducing selective pressure for strong host defences (Raffa & Berryman,

1983). These tree defences consist of the exudation of toxic resin containing phyto-

chemicals that prevent MPB from attracting conspecifics and inhibit the formation of

galleries and oviposition (Raffa & Berryman, 1983; Erbilgin et al., 2017a). These de-

fences depend on the tree species and the co-evolution history with MPB (Rosenberger

et al., 2017; Erbilgin, 2019).

1.2 Mountain pine beetle management

The MPB outbreak that started in 1999 in western Canada has been the most destruc-

tive insect outbreak Canada has ever known. An increase in the number of susceptible

hosts in addition to favourable climate, such as warmer temperatures, have permitted

this outbreak to gain such an extent that more than half the commercial timber volume

in British Columbia was killed by MPB (Walton, 2013) and MPB populations were able

to cross the Rocky Mountains (de la Giroday et al., 2012).

MPB, and bark beetles in general, have a complex response to climate change (Bentz

et al., 2010). For example, temperatures control developmental thresholds used to syn-

chronize the emergence of adults at optimal times of the year. Similarly, temperatures
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play a role in the cold hardening process allowing larvae to survive the coldest months

of the year. Therefore, changes in temperatures throughout the year can either disrupt

or favour seasonality as well as larval survival. Overall, modelling results show that

MPB risk will increase over the century although it will stay relatively low in jack pine

forests in Canada (Bentz et al., 2010).

MPB outbreaks can have a long-lasting effect on biodiversity and communities (Chan-

McLeod, 2006; Saab et al., 2014). Outbreaks can kill entire pine stands in one gen-

eration. The eventual defoliation of the tree canopy, loss of tree cover, loss of living

bark, and decrease in cone production following pine mortality negatively impact some

of the invertebrates, mammals, and birds using pine forests as a food source, a foraging

habitat, a resting or nesting habitat, or a shelter from predators. Those changes are

reflected at the landscape level as the loss of trees gives opportunity for understorey

species to develop. Local increases in species preferring open habitats will critically

change communities and potentially lead to eradication of some mature pine forests in

favour of open habitats (Chan-McLeod, 2006). However, dead trees provide fuel for

fires which can help pine recolonization by favouring cone opening and prevent the loss

of forest systems (Lotan et al., 1985).

Rural communities are sensitive to these landscape-level changes. These communities

are mainly affected by MPB through the loss of timber (Dhar et al., 2016). However,

the destruction of pine forests disrupt other provisioning services, such as water supplies

and food, as well as water quality. As a result, forest-dependent communities, relying

on these ecosystem services, might be heavily affected. In addition, potential negative

effects on landscape aesthetics could alter tourism and recreation activities although it

requires further research (Dhar et al., 2016).

Cypress Hills, an interprovincial park located at the limit between the provinces of

Alberta and Saskatchewan, is the most eastern MPB infestation in Canada (Safranyik

& Carroll, 2006). In the park, covering 400 km2, the main pine species is the lodgepole

pine. This pine population is isolated from the main lodgepole and jack pine ranges

(Cullingham et al., 2012). The closest MPB outbreaks are south of the park in the
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United States and west in British Columbia and Alberta. Due to the long-distance

dispersal ability of the MPB and the dominant wind coming from the southwest, Cy-

press Hills could become a stepping stone for MPB infestations further north and east.

Controlling MPB in Cypress Hills is therefore crucial.

The first discovery of MPB in Cypress Hills was in 1979 (Ono, 2004), followed by

the first reported outbreak in the 1980s (Taylor et al., 2006). Between 1983 and 1987,

managers implemented a semiochemical baiting strategy (Cerezke, 1989) involving MPB

pheromones and pine monoterpenes. These baits were found to be a good monitoring

tool. Furthermore, they helped gather beetles in easy-access locations for sanitation

cutting and burns. The extreme winter temperatures in 1984-1985 helped control the

outbreak to lower population levels.

In 2006, a new outbreak started in Cypress Hills. It peaked in 2012-2013 and continues

today in what seems to be the outbreak decline. In this thesis, I study this outbreak

in the Saskatchewan portion of the park. There, and since 2006, the Saskatchewan

Forest Service implemented a “zero-tolerance” policy designed to find and control as

many infested pines as possible (Saskatchewan Ministry of Environment, 2016). This

strategy utilizes aerial and ground surveys to detect currently infested trees. During

aerial surveys of the entire Saskatchewan portion of the park, red-top trees (i.e. pines

killed by MPB the previous year and displaying a red crown) are geolocalized. The

cause of their mortality is later confirmed on the ground and circular surveys with a

radius of 50 meters are implemented around them to search for newly infested pines.

In locations with high densities of red-top trees, the entire area is checked using line

surveys. All the infested trees detected are controlled for MPB, by either peeling the

bark or using a fall and burn tactic. Both methods ensure that any live brood is killed.

Undetected infested trees become red the following year. Therefore the location of all

infested trees can be either detected during surveys or back-estimated from the red-top

trees. This management policy provides an extremely detailed data set in time and

space of a managed outbreak from start to decline.
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1.3 Pest management in population models

Pest management can be divided into preventive measures, such as habitat modification

to prevent growth or spread, and direct control lowering the number or density of pest

individuals (Carroll et al., 2006; Epanchin-Niell & Hastings, 2010). In this thesis, I

focus on the direct control of MPB individuals.

They are not an established frameworks to model direct pest management in population

dynamic models. Pest populations are, by necessity, controlled. Researchers have

focused on questions such as when, where and how much in the context of optimal

control (Epanchin-Niell & Hastings, 2010). However, the question of how to include

pest management in a population model is less studied. A common way of including

control in a model is to remove a certain number of individuals at certain times and

locations (e.g. Liu et al., 2006; He et al., 2012). It can also be incorporated as a

parameter changing the growth or spread of the pest population (Saphores & Shogren,

2005). Moreover, when management is implemented via biological control, the impact

of a predator on a pest can be described by functional responses (e.g. Janssen & Sabelis,

1992; Mills & Getz, 1996; Van Den Berg et al., 1997). As a novel way of incorporating

pest management in population models, I introduce in this thesis the concept of human-

pest functional responses based on the predator-prey functional response framework and

where managers take the role of predators foraging on pest populations.

Functional responses describe the interaction between prey and predators by indicating

how many prey can be consumed by a predator in a certain time given the prey density

in the environment (Holling, 1959a). There are three main types of functional responses:

a linear increase (type I), a curvilinear increase (type II), and a sigmoid curve (type III).

An infinite linear increase of the number of prey consumed by a predator given the prey

density is considered unrealistic. Instead, a type I functional response is interpreted

as follows. As prey density increases, the number of prey consumed linearly increases

until it reaches a sudden and complete saturation at high prey density, preventing the

predator for consuming more prey than is possible in a given time (Jeschke et al., 2004).
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This functional response is characteristic of filter feeders. A type II functional response

characterizes predators whose handling or digesting time progressively prevents them

from getting more prey at high prey density (Jeschke et al., 2002). In a type III

functional response, some mechanisms make it harder for the predator to find prey at

low prey density inducing a sigmoid shape (Hassell, 1978). In the context of resource

management, and although they do not refer to it this way, fisheries models often include

a linear type I functional response to describe the effect of harvest on fish populations

whether it is a constant rate of harvest or depending on the fish density (Sutherland,

2001).

1.4 Modelling tools

Models in ecology are usually divided into phenomenological and mechanistic models.

Phenomenological methods test for relationships between a response variable and pre-

dictors whereas the goal of mechanistic models is to describe the processes behind such

relationships. In my thesis, I use both approaches in order to explore MPB population

dynamics and its management from different perspectives.

Many studies have developed population models describing the mechanisms of MPB

population dynamics. In particular, partial differential equations (e.g. Logan et al.,

1998; Strohm et al., 2016) and integro-difference equations (e.g. Lewis et al., 2010;

Rodrigues et al., 2015; Goodsman et al., 2016) have been used to describe the spatial

and temporal dynamics of MPB populations, continuously and discretely in time re-

spectively. In stage-structured models, each species stage is modelled with a different

equation in order to model, for example, beetle dispersal and attack dynamics in detail

(e.g. Heavilin & Powell, 2008). in contrast, agent-based models are a way to simulate

individual or subgroup behaviour using a set of rules to obtain the overall population

behaviour instead of mathematical equations describing directly the population dy-

namics (e.g. Riel et al., 2004; Nelson et al., 2018). When management is included in

population models, it is typically done as a separate module impacting population sizes

at a specific point during a time step (e.g. Strohm et al., 2016).
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On the other hand, statistics, such as logistic regressions, are typically used to make

spatial predictions of MPB infestations from empirical data (e.g. Aukema et al., 2008;

Preisler et al., 2012; Sambaraju et al., 2012). Lately, machine learning algorithms,

such as classification and regression trees, are more and more used for this purpose

(e.g. Sidder et al., 2016). Spatial predictions are especially useful to inform MPB

management by indicating future areas at high risk of infestation, thereby allowing

improved detection or the implementation of effective preventive measures.

Machine learning methods are particularly useful in ecology. Decision tree ensembles,

for example gradient boosting and random forest, are particularly common. They typ-

ically perform better than generalized linear models (Marmion et al., 2009; Youssef

et al., 2016). Although inference is inherently weakened with machine learning, such

methods are able to produce highly accurate predictions. Indeed, machine learning

methods are not within the framework of hypothesis testing. The hypothesis testing

approach involves carefully writing a statistical model to quantitatively describe a sci-

entific hypothesis and testing this model against a null model or simultaneously against

alternative hypotheses. Instead, machine learning methods flexibly categorizes out-

comes in the parameter space. Therefore, the choice of the type of analysis depends on

the study goal.

1.5 Dissertation outline

In this thesis, I use the modelling tools described above to answer questions related

to MPB population dynamics and its management. In chapter 2, I use a boosted re-

gression tree to make predictions of MPB locations a year ahead using ecological and

environmental variables. Then, I use virtual experiments to assess the detection strat-

egy implemented by the Forest Service in Saskatchewan by comparing it to a random

strategy and a strategy informed by the model predictions of the first part. I also ex-

plore the option of increasing the survey area and study the changes in management

costs associated with it. In chapter 3, I show that pest management activities can be

modelled using the predator-prey framework. In particular, we can draw functional re-
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sponses describing the relationship between number of pests controlled and pest density

and obtain a correspondence with the three types of predator-prey functional responses

described in Holling (1959a). Using an application to MPB and simulations, I show

that this can help assess control efficacy and the feasibility of management goals. In

chapter 4, I use logistic regressions to explore how the environmental and ecological fac-

tors driving MPB infestations differ depending on the outbreak phase. In chapter 5, I

build a semi-empirical model where I include mechanisms of MPB dispersal and growth.

Then, I simulate various control effort to explore the effect of MPB management on

pine mortality and outbreak suppression. Finally, in the general conclusion, I discuss

the lessons learnt for MPB population dynamics and management.
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Chapter 2

Management assessment of mountain

pine beetle infestation in Cypress

Hills, Saskatchewan

2.1 Introduction

The mountain pine beetle (MPB; Dendroctonus ponderosae, Hopkins 1902) epidemic

has caused extensive mortality in North American pine forests, which is in conflict with

human objectives in many places. At a large scale, the epidemic is linked to climate

change as well as population dynamics that shift intermittently between endemic and

epidemic states (Carroll et al., 2004; Shore et al., 2006; Raffa et al., 2008; Preisler

et al., 2012). MPB’s spread is unaffected by most environmental barriers such as low

mountain ranges and fragmented forests due to its ability to disperse long distances

(de la Giroday et al., 2012; Bentz et al., 2016). To better control MPB populations, we

need to determine areas at risk and assess the efficiency of current detection strategies.

The MPB is a bark beetle that infests and kills various species of pines. In western North

America, lodgepole pine (Pinus contorta, Dougl. ex Loud. var. contorta Engelm) is the
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primary MPB host although MPB is a threat to almost all pine species (Safranyik &

Carroll, 2006). During an epidemic, beetles coordinate their attacks, using aggregation

pheromones, to form a “mass attack” and overwhelm the defences of large and healthy

trees (Bordon, 1982). Therefore, an epidemic population of MPB presents a threat to

healthy pine stands.

The MPB is primarly univoltine, meaning that a new generation is produced over a year

(see Mitton & Ferrenberg, 2012; Bentz & Powell, 2014; Mitton & Ferrenberg, 2014).

In summer, the beetles disperse and reproduce, and the females lay eggs in galleries

they excavate under the bark. Beetles usually overwinter as larvae. In spring, they

resume their development and finally emerge as adults later in the summer (Safranyik

& Carroll, 2006). Trees are seriously injured by the gallery excavation process and the

development of MPB larvae and their associated blue stain fungi, and generally die and

turn red by the end of the MPB life-cycle. During the following years, attacked trees

become grey. As a result, red-top trees, infested during the summer of the previous

year are easily spotted during aerial surveys of stands, becoming a good proxy for the

status of the previous year’s MPB infestation levels.

At a landscape level, two types of dispersal strategies have been observed for MPB

(Safranyik & Carroll, 2006; Robertson et al., 2007): long-distance dispersal, passive

downwind flight over the canopy, and short-distance dispersal, active flight a few meters

above ground. Researchers estimate the short-distance dispersal range to be within a

stand (Safranyik & Carroll, 2006) at the order of 20 to 50 meters, although some

beetles can go as far as 100 meters (Robertson et al., 2007). In contrast, long-distance

dispersal range is tens to hundreds of kilometres (Safranyik & Carroll, 2006; Jackson

et al., 2008). While short-distance dispersal is much more common than long-distance

dispersal (Safranyik et al., 1989; Chen & Walton, 2011), the MPB’s epidemic behaviour

associated with outbreaks arising from long-distance dispersal can pose a threat to entire

regions of pine forests.

In Canada, since 2006, a local MPB epidemic has emerged in the Cypress Hills area,

located in the southwest of Saskatchewan and southeast of Alberta. The Cypress Hills
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inter-provincial park comprises the West Block, divided between Alberta (219 km2) and

Saskatchewan (126 km2), and the Center Block, in Saskatchewan (58 km2). For the pur-

pose of this paper, our study focuses on the Saskatchewan portion of the park. Therefore

the use of “the park” and “Cypress Hills” in the text refers to the Saskatchewan portion.

The local MPB population is endemic to the park and probably came from southern

populations in Montana, USA (R. L. McIntosh, pers. comm.). It could have been

partly sustained by beetle flights from the south and west. Indeed, during spring and

summer, during MPB dispersal, the dominant wind comes from the southwest.

Studying and controlling MPB in the Cypress Hills area is essential for two reasons.

First, as an inter-provincial park and national heritage, Cypress Hills has significant

natural, economic, and cultural values. Second, even though this park is somewhat

isolated compared to lodgepole and jack pine ranges (Little, 1971; Cullingham et al.,

2012), the presence of a MPB epidemic, in association with the long-distance dispersal

ability of the insect and the wind direction, makes the Cypress Hills area a possible

stepping-stone facilitating the infestation of the remainder of Saskatchewan and regions

further east. Therefore, there is an urgent need for analysis of management and for

infestation prediction in Cypress Hills.

Aware of the need for management, the Forest Service Branch of the Saskatchewan

Ministry of Environment has implemented a “zero-tolerance” policy designed to catch

and control as many short-distance infestations as possible. This requires intensive

surveillance to implement early detection and rapid aggressive response actions. The

policy operates according to the following procedure. In early fall, after MPB have

colonized new trees, an aerial survey of the park extent is conducted to collect geo-

referenced data on potential red-top trees, which are dead or dying trees infested by

MPB the previous year. These are later ground-truthed for MPB attacks. Then, 50

meter-radius circular survey plots are drawn around each of the red-top trees confirmed

to have been killed by MPB. The survey plots are searched for green attacked trees,

which are trees recently infested by MPB during the summer. These are later controlled

in late fall/winter which usually consists of felling and burning massively infested trees,
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ensuring that beetles are killed. The survey plot can be spatially extended if green in-

festations are spotted close to the plot’s limits (Saskatchewan Ministry of Environment,

2016). In addition to these measures, areas presenting high densities of red-top trees

are entirely surveyed and controlled. No detected infestations are left untreated. Such

intensive control is expensive. Therefore, there is a need to determine how effectively

this strategy is working.

Given this management strategy and the MPB context in Canada, our study aims to

answer the following question: Are there ways to improve detection strategies without

increasing management costs? If managers completely removed infested trees coming

from MPB short-distance dispersal inside the park, the remaining source of infestation

would be due to long-distance dispersal events from outside the park which are often

considered spatially random when observed at a small scale (Long et al., 2012; Powell

et al., 2018). Therefore, we hypothesize that a random search would be as efficient as

a local search around red-top trees. Moreover, we hypothesize that, if factors others

than distance to previous infestations influence the location of new infestations, then

a search based on predictions from such factors would be more efficient than a local

search around red-top trees. However, the management survey might not be big enough

to include all infestations from short-distance dispersal events. Therefore, we make the

third hypothesis that, as the search area increases, the detection efficiency will increase

too.

2.2 Material and methods

2.2.1 MPB predictions

To predict MPB infestation a year ahead in Cypress Hills, we used the generalized

boosted classification model which is a machine learning algorithm. Boosted classifi-

cation trees generate results with an excellent fit for a binary response by successively

fitting a tree to the previous tree’s residuals to reduce the final error variance signifi-

cantly (StatSoft Inc., 2013).
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Data

The covariates and response variable values were distributed discretely in space and

time. We applied a grid of 18 317 cells of size 100m×100m to the Cypress Hills park

extent. For each cell for each year, the observation consisted of a set of environmental

and ecological covariates plus the response variable. The response variable was the

presence/absence of MPB derived from the presence/absence of green attacked trees in

each cell of the grid based on data from the Forest Service ground survey. From the

Forest Service surveys, we got the locations of green infestations controlled by managers

and we deduced which trees had been attacked in the previous year using the red-top

trees.

We used 14 covariates related to topography, weather, vegetation, and beetle pressure

(Table 2.1). The weather variables were: the highest maximum daily temperature over

the year, the overwinter survival probability of the larvae (Régnière & Bentz, 2007), and

the average daily relative humidity in spring. Indeed, MPB dispersal is reduced with

high temperatures (Safranyik & Carroll, 2006). The minimum temperatures in fall and

winter impact MPB survival if the vulnerable stages–developing in the fall and at the

end of the winter–are exposed to extreme temperatures (Cole, 1981; Safranyik & Carroll,

2006; Régnière & Bentz, 2007). Drought in the spring reduces pines’ ability to defend

themselves and increase MPB attacks’ success rate (Safranyik, 1978; Lusebrink et al.,

2016). Additionally, MPB individuals need at least 833 degree-days above 5.5°C over

a year to complete their growth (Safranyik et al., 1975; Carroll et al., 2006; Safranyik

et al., 2010). In the park, over the time period studied, the minimum number of

degree-days above 5.5°C was 923, which is above the threshold and so degree-days was

not included in our model. Furthermore, high numbers of degree-days are not an issue

as MPB rarely present multivoltinism (Bentz & Powell, 2014). We included the MPB

presence at the same location and in the neighbourhood the year before in order to

take into account the spatio-temporal autocorrelation of the data (Fig. 2.1). The beetle

pressure from outside the park was represented by the distance to the park southern

border (illustrated on Fig. 2.2) which was close to external infestations not managed by
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Table 2.1 – Description and range of the covariates used in the generalized boosted classifi-
cation model.

Name Description Range Unit

PineCover

Coverage of Pinus albicaulis (Whitebark
Pine), Pinus banksiana (jack pine) and
Pinus contorta (includes subspecies
lodgepole pine and shore pine)

0 – 76.1 %

TMax
The highest maximum daily temperature
from September of the previous year to
August

27.3 – 36.7 °C

OWS
The overwinter survival probabilities of
larvae (Régnière & Bentz, 2007) using a
5-year lookback

0.23 – 0.50 –

RH Average daily relative humidity in spring 56.9 – 73.8 %

BP0 Presence of previous year mountain pine
beetle infestation in the focus cell

0/1 –

BPn

Previous year mountain pine beetle
pressure in the neighbouring cells: BPn
=
∑

BP0 in adjacent cells of radius 1 +
0.5 ×

∑
BP0 in adjacent cells of radius 2

+ 0.25 ×
∑

BP0 in adjacent cells of
radius 3 (Fig. 2.1)

0 – 9.25 –

DistSouth Distance from the grid cell centroid to
the South infested border of the park

5 – 36660 m

Latitude Latitude of the grid cell centroid 49.55 – 49.61 dec. °

Longitude Longitude of the grid cell centroid -110.01 – -109.43 dec. °

Year Year of the survey 2007 – 2015 –

Elevation Elevation at the grid cell centroid 1055 – 1386 m

Slope Slope at the grid cell centroid 0 – 20.31 °

Northerness Tendency of the slope to face North +1 – -1 –

Easterness Tendency of the slope to face East +1 – -1 –
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the Forest Service and potential sources of MPB. The rest of the variables included in

the model were: pine cover, latitude, longitude, year, elevation, slope, and northerness

and easterness derived from the aspect.

Topography data came from the Canadian Digital Elevation Map downloaded from

the Geogratis website (geogratis.cgdi.gc.ca). We generated weather variables with the

BioSIM software (Régnière et al., 2014) at the location of each grid cell centroid. BioSIM

uses data from surrounding weather stations and interpolates the weather variable val-

ues at each location of interest using a digital elevation map. The vegetation data came

from Beaudoin et al. (2014). The authors computed these data from 2001 MODIS im-

agery, and the vegetation parameters were assumed constant over our time period.

We used data from the years 2007 to 2015. Randomly, we chose 75% of these data,

years combined, i.e. 149 278 observations, to train the model. The remaining 25%,

49 502 observations, were used to validate the model.

Generalized Boosted Model

We trained the generalized boosted classification model using the gbm function of the

R package gbm (Ridgeway, 2015) on the 14 covariates in the training set. The process

analyzed the performance of 50 000 classification trees and performed a 10-fold cross-

validation in order to find the best classifier. The algorithm implemented in the gbm

function consisted of reducing a loss function between the observed and the predicted

response values using Friedman’s Gradient Boosting Machine (Ridgeway, 2015). The

loss function was represented by a Bernoulli error distribution, which is adapted to a

binary response. The gbm function output provides the probability of MPB presence at

each location. We tested the accuracy of the model’s prediction using the area under

the receiver operating characteristic curve (AUC; Metz, 1978; Bradley, 1997), the false

positive and false negative rates, and the misclassification rate which is the percentage

of misclassified instances by the model. A receiver operating characteristic (ROC) curve

(Metz, 1978) depicts, for a range of probability thresholds, the true positive rate (or 1

- false negative rate, also referred to as sensitivity) against the false positive rate (also
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Figure 2.1 – Representation of the adjacent cells taken into account in the covariates (cf.
Table 2.1). Striped blue: focus cell, dark grey: 4 adjacent cells (radius 1), light grey: next 8
adjacent cells (radius 2), medium grey: next 16 adjacent cells (radius 3).

Figure 2.2 – Cypress Hills park boundaries in Saskatchewan (grey). The dotted red line
represents the park border close to outside infestations in the South. The dashed blue line
represents the park border with Alberta.
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referred to as 1 - specificity). We used Youden’s method (Youden, 1950) to determine

the probabilities threshold which selects the farthest point from the diagonal on the

ROC curve. A high AUC (0 ≤ AUC ≤ 1) represents a good performance of a binary

classifier in terms of correspondence between observed and predicted values.

2.2.2 Assessing management

Data

To assess the detection strategies, we needed the exact locations of red-top trees for a

focus year and the following year. In 2011 to 2013, the data from the Forest Service

included an exhaustive survey of red-top trees’ locations and the number of green in-

festations controlled around each red-top tree. The other years included infested areas

in which red-top trees’ locations were not specified. For this reason, we only used data

from 2011 and 2012 for this analysis. Furthermore, the years 2011 and 2012 happened

to have a similar number of red-top trees/survey plots: 292 for 2011 and 284 for 2012,

which made the two years comparable.

For controlled green infestations, we used the location of the circular plot centres (±50

meters compared to the real locations of green infestations). For uncontrolled green

infestations outside of survey plots, we used the location of red-top trees the year after.

The total number of green infestations was 644 for 2011 and 936 for 2012.

Simulated detection strategies

To calculate the efficiency of the detection strategies, we simulated virtual experiments.

For each year, we counted the number of green infestations in increasing virtual survey

areas for three different strategies: 1) local search in circular plots of varying radius

around red-top trees (similar to the current Forest Service strategy), 2) search in circular

plots of varying radius randomly located in space, and 3) search in a varying number

of 100×100m square plots placed at locations predicted by the boosted classification

tree. In the predictions strategy, we used 100×100m square plots and not circular plots

to match as much as possible the predicted locations from the classification tree. For
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the local and random searches, we used circular plots of increasing radius: from 50 to

100 meters by increment of 5, from 110 to 150 meters by increment of 10, 200, and 300

meters.

To be able to compare similar survey areas among detection strategies, we needed to

be able to fix the number of search locations, and therefore the search area, from the

classification tree output. We could simply select a certain number of locations with the

highest probabilities. However, if the number of selected locations is small like is the

case here, some locations with relatively high probabilities might not be chosen whereas

locations with slightly higher probabilities due to random noise will. To bypass this

issue, we introduced some noise by randomly sampling the locations using the model

probabilities to the power of 3 as weight. We investigated the impact of variation in this

exponent value in Appendix A. For the random and prediction strategies, we performed

500 simulations for each year.

Control efficiency

We calculated control efficiency for each year for each survey area with the equation

control efficiency =
# green infestations controlled

total # green infestations in the park
. (2.1)

From the area controlled (i.e. the sum of every survey plot area), we obtained the net

survey area by removing the overlapping areas. For each year,

net survey area =

⎧⎪⎨⎪⎩# plots × πr2 − overlaps for local/random

# square plots × 1002 for predictions
. (2.2)

We then determined the relationship between net survey area and control efficiency.

This was achieved by fitting a non-linear function, using the nls function of the R

package stats, to control efficiency versus net survey area in the two cases: local

search around red-top trees, local control efficiency = flocal(net survey area), and model

predictions strategy, prediction control efficiency = fprediction(net survey area). For the

random search case, we fitted a linear function using the lm function of the R package
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stats: random control efficiency = frandom(net survey area).

Management cost

To determine cost-effective recommendations for managers, we also examined the rela-

tionship between net survey area and management cost. The management cost variable

included the cost of aerial survey, the cost of control, and the cost of surveying all non-

overlapping 50 meter-radius circular plots. It was available for the years 2010 to 2015.

Within each year, the cost per unit (control cost per tree and survey cost per plot) did

not vary depending on the location. However, since the cost per unit varied among

years due to economic fluctuations, we took the median cost per unit over the years

2010 to 2015 and multiplied it for each year by the number of units in each category

(number of controlled trees and circular plots per year). Thus, for each year:

management cost = median aerial survey cost

+ median control cost per tree × # trees controlled

+ median circular plot survey’s cost × # plots. (2.3)

The number of units in each category was available for the years 2006 to 2015. There-

fore, we determined management cost values for 2006 to 2015. As a result, although

total cost did vary year to year, the cost per plot and per tree did not. We fitted a linear

regression line to the relationship between management cost and total area surveyed

with circular plots (management cost = g(total area surveyed with circular plots) where

g(.) is a straight line function) using the lm function of the R package stats. The total

area surveyed with circular plots does not contain overlaps (Saskatchewan Ministry of

Environment, 2016) so this is equal to the net survey area with radius = 50 (Eq. 2.2).

To get to the next step, we assumed that the management cost increases proportion-

ally with the plot area. Thus, the cost of the total area from several survey plots is

equal to the cost of the area of a single much larger survey plot. Hence, management

cost = g(total area surveyed with circular plots) became management cost = g(net

survey area). We then defined the “management cost per controlled tree” which is the
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management cost divided by the control efficiency for one year. Note that this cost

per controlled tree is scaled by the total number of infestations in the park for each

year. We explored the relationship between management cost per controlled tree and

net survey area using the two regression equations: control efficiency = f(net survey

area) and management cost = g(net survey area):

management cost per controlled tree =
management cost
control efficiency

=
g(net survey area)
f(net survey area)

. (2.4)

The net survey area value corresponding to the minimum management cost per con-

trolled tree would be the optimal area to survey.

However, one could also assign a cost θ to a missed green infestation as it would lead

to several green infestations the following year. The cost of a missed green infestation

θ times the number of missed green infestations is the avoided cost as it is the amount

that would be saved in the future if these trees were actually controlled instead of being

missed. In other words, θ is the marginal cost added to the following year cost if one

green infestation is left and produces new infestations. Therefore, the total cost was

defined as

total cost = management cost + avoided cost

= management cost + θ × # missed infestations. (2.5)

Thus, the total cost per controlled tree is the management cost plus the avoided cost

divided by the control efficiency. Again, note that this cost per controlled tree is

scaled by the total number of green infestations for each year. We then compared the

optimal survey area for the management cost and for the total cost depending on the

strategy used. We also investigated the dependence of the optimal survey area on θ in

Appendix B.
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2.3 Results

2.3.1 MPB predictions

The generalized boosted classification model has a good predictive ability (Fig. 2.3):

the AUC value is 0.927. The probability threshold chosen from Youden’s index is

0.003, which means that it is optimal in terms of misclassified instances to consider

any probability value above this threshold as an infestation. Using this threshold, we

calculated the confusion matrix (Table 2.2). The false negative and false positive rates

calculated from it are, respectively, 0.187 and 0.118, which means that 18.7% of the

infested locations are wrongly classified as non-infested and 11.8% of the non-infested

locations are wrongly classified as infested. Additionally, the misclassification rate was

0.119 which means that 11.9% of the model results were misclassified compared to the

observations.

We calculated the variables’ impact on the classification tree output (i.e. relative

importance). The MPB presence in the same location the year before is the most

important variable (relative importance = 0.60), followed by the MPB pressure from

neighbouring cells (0.26), the distance to the southern infested border of the park

(0.10), and the overwinter survival (0.02). The remaining variables have each a relative

importance below 0.01.

2.3.2 Assessing management

When increasing the radius of the circular plots or the number of square plots, and

thus the area surveyed, the control efficiency increases and saturates for the local and

predictions strategies (Fig. 2.4). The control efficiency of the search around random

locations increases linearly with the net survey area. The local and predictions strate-

gies are more efficient than the random search. For example, the local search reaches

between 55.9% and 71.2% control efficiency at a 50-meters radius (current strategy),

the predictions strategy between 54.3% and 63.3%, whereas it reaches only 0.01% con-
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non−infested trees

infested trees

low risk of infestation

high risk of infestation

Figure 2.3 – Observations (top) versus predictions (bottom) of the mountain pine beetle
infestation in Cypress Hills, Saskatchewan, for 2011. On a), a dark red color represents cells
with infested trees whereas a blue color represents cells without infested trees. For b), the risk
of infestation per cell ranges from blue (low risk) to dark red (high risk).

Table 2.2 – Confusion matrix showing the results of the model classification on the validation
data set (n = 49502) using the threshold 0.003 chosen using the Youden’s index.

Observed

absence presence

Predicted
absence 43 059 129

presence 5 752 562
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Figure 2.4 – Management control efficiency (= number of infested trees controlled in the park
divided by the total number of infested trees) in relation to the net survey area (= total area
controlled without overlaps). Solid lines and circles represent the local search around red-top
trees for 2011 and 2012. Dashed lines and crosses represent the search at locations chosen from
predictions for 2011 and 2012. Dotted lines and pluses represent the search around random
locations for 2011 and 2012 combined. Each year, the random and prediction strategies data
are each the mean of 500 random simulations. The lines represent the fitted values for the
local and prediction strategy using a non-linear least square model: control efficiency local =
1−exp(−a∗net survey areab) and control efficiency predictions = 1−exp(−c∗net survey aread),
where a2011 = 0.004, b2011 = 0.358, a2012 = 0.018 and b2012 = 0.287 (P -values < 0.001
for the null hypotheses a = 0 and b = 1, df = 17) for the local search, c2011 = 2.25−6,
d2011 = 0.884, c2012 = 3.65−5 and d2012 = 0.709 (P -values = 0.309 and 0.164 respectively for
the null hypotheses c2011 and c2012 = 0, and P -values < 0.001 for the null hypotheses d2011
and d2012 = 1, df = 17) for the predictions strategies. For the random search, we used a linear
regression: control efficiency random = e ∗ net survey area, if net survey area ≤ park area or
1 if net survey area > park area, where e = 5.31−9 (P -value < 0.001 for the null hypothesis
e = 0, R2 = 0.999, df = 37). The striped bars represent the percentage of park area covered
by the survey.
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trol efficiency for the random search at the same survey area. For survey areas larger

than those in the current strategy (∼ 2 200 000 m2), the predictions control efficiency

is higher than the local control efficiency (Fig. 2.4). For example, for a survey area

corresponding to 70-meters radius for the local search (∼ 3 900 000 m2), the control

efficiency is 60.6% to 73.7% for the local search and 81.9% to 84.4% for the predictions

strategy.

The management cost increases linearly with the net survey area (Fig. 2.5). We numer-

ically obtain the net survey area values corresponding to the minimum management

cost per controlled tree over the extent of net survey area values studied for the local

and predictions strategies for 2011 and 2012: 2 178 332 to 2 225 780 m2 (Fig. 2.6a). We

obtain the matching radius 50 meters using Eq. 2.2 for the local search. However, it is

highly probable that the cost of missing a green infestation θ is non-negligible. As the

management cost increases with the survey area and the avoided cost decreases, the to-

tal cost shows a minimum value larger than zero (Fig. 2.7 for θ = 1000). Therefore, the

minimum total cost per controlled tree with θ = 1000 gives survey area values ranging

from 3 010 378 to 5 062 968 m2 and corresponding to the radius 60 to 65 meters using

Eq. 2.2 for the local search (Fig. 2.6b).
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Figure 2.5 – Cost of aerial survey, control and circular survey plots in relation to the total area
surveyed using circular survey plots from 2006 to 2015. The line represent the fitted values
using a linear regression: management cost = k+ l ∗net survey area, where k = 54 540.00 and
l = 0.057 (P -values < 0.001 for the null hypotheses k = 0 and l = 0, R2 = 0.961, df = 8).
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Figure 2.6 – Management cost per controlled tree (a; Eq. 2.4) and total cost per controlled
tree (b; from Eq. 2.5 using θ = 1000) in relation to the net survey area. Solid lines represent
the local search around red-top trees for each 2011 and 2012. Dashed lines represent the search
at locations chosen from model predictions for each 2011 and 2012. Black circles correspond
to the minimum cost for the local search whereas white circles correspond to the minimum
cost for the model predictions strategy.
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management plus avoided costs (= total cost; solid line) in relation to the net survey area for
the model predictions strategy. The local search values, not presented here, display similar
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2.4 Discussion

MPB infestations can be well predicted in space using a generalized boosted classifica-

tion tree and variables related to the location of previous year infestations. A detailed

analysis of the impact of survey areas on the control efficiency shows that combining an

increase in survey area with a change in detection strategy leads to more cost-effective

control.

2.4.1 MPB predictions

Generally, generalized boosted classification approaches often give better predictive

accuracies than generalized linear approaches (Marmion et al., 2009; Youssef et al.,

2016). Here, the percentage of correctly classified cells, 1− misclassification rate, is

84.9%. In comparison, Aukema et al. (2008) reported a predictive accuracy of 78%

for a one-year ahead forecast using a spatial-temporal autologistic regression model on

similar variables. At large scales (respectively 12x12 km and 1x1 km grid cell size in

Aukema et al., 2008; Preisler et al., 2012), beetle pressure has a great impact on new

infestations so it is not surprising to find indications that this is also the case in our

results at a smaller scale.

While classification tree approaches can be used for prediction, they cannot be used

to determine the actual impact of covariates on the response. Indeed, a classification

approach, such as decision trees or boosted classification trees, often provide a relative

importance index for each covariate, but this relative importance is an index of perfor-

mance that depends highly on tree structures. A classification method does not test

the impact of a covariate on the response like a traditional statistical method would,

but rather attempts to explain the response by a sequence of binary choices among co-

variate values. However, it makes sense that environmental variables have less impact

on the MPB presence than beetle pressure given that a small-size study area is usually

relatively homogeneous.

Machine learning algorithms are widely used to detect/predict species locations (Marmion
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et al., 2009) but few quantitatively compare the result to non-modelling/expert-knowledge

methods like we did in this study (e.g. Boissard et al., 2008).

2.4.2 Assessing management

The management assessment results show that the current detection strategy (searching

in a 50 meter-radius plot around previous infestations) is efficient, but that using a

larger survey area and a different strategy would improve efficiency. Robertson et al.

(2007) found that 20 to 50 meters is the most common dispersal range but that MPB

can go farther. These few individuals that go farther, and therefore are not removed

during control, might be sufficient to sustain the population in the stand. MPB is

subject to a strong Allee effect (Logan et al., 1998; Goodsman et al., 2016): at low

beetle densities, a certain number of individuals is needed for a successful mass attack.

Below this threshold, the attack is unsuccessful and the beetles either do not survive

or fall back into the endemic population phase. The transition between endemic and

epidemic population phases highly depends on both intrinsic and extrinsic factors which

are subjected to a lot of uncertainty, making the transition forecast problematic (Cooke

& Carroll, 2017).

Because of the existence of this threshold, local densities of beetles are important to

infestation success. For that reason, Strohm et al. (2016) found that increasing search

radius is more important than increasing search effectiveness, which is the percentage

of infestations found within a survey area. Indeed, search effectiveness does not need

to be flawless to decrease the beetle number below the Allee threshold. However, if

the search radius is too small, enough beetles can disperse from neighbouring locations

and successfully infest trees. For a search effectiveness of approximatively 80%, Strohm

et al. (2016) show that MPB population size would decrease only if the search radius

increases despite increases in search effectiveness. In Cypress Hills, for 2011 and 2012,

we estimated the search effectiveness at 89%. This supports our recommendation to

increase the survey area. Overall, Strohm et al. (2016) show that the search plot

size of the Alberta management strategy (similar to Saskatchewan’s strategy) was not
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large enough to reach the desired goal of reducing MPB population by 80% (Alberta

Sustainable Resource Development, 2007) and the present study shows results consistent

with this conclusion.

Local search around red-top trees, associated with short-distance dispersal, is a more

efficient method than the random search, associated with random events from long-

distance dispersal. This suggests that, despite intensive management, short-distance

dispersal is still the main MPB dispersal strategy in Cypress Hills. However, a mecha-

nistic model, such as the ones developed in Heavilin & Powell (2008), Rodrigues et al.

(2015) and Goodsman et al. (2016), or the method described in Chen & Walton (2011),

adapted for this area could likely give more insights on the subject by, in particular,

quantifying the importance of both dispersal strategies.

An alternative to the local search around red-top trees is to survey locations with high

probabilities of infestation. For a survey area larger than the one corresponding to the

current strategy, it becomes more efficient to use the predictions strategy rather than

the local strategy. This could be explained by the spatial scale of our model predictions.

One 100×100m grid cell area and one 50 meter-radius circular plot area have the same

order of magnitude. For a similar number of plots, the previous infestation at the

same location decides for half of the model predictions results according to the relative

importance whereas a red-top tree is always at the center of a circular plot. As the

survey area increases, more of the red-top trees are included in the predictions survey in

addition to other susceptible locations whereas the number of red-top trees included in

the local survey does not change. Therefore, while in the local survey fewer and fewer

green infestations are present the further away from the red-top tree, the predictions

survey focuses on additional high risk locations chosen according to other variables,

mainly the distance to the southern infested border, increasing the chance of finding

more green infestations. One could combine both strategies: surveying first around

red-top trees than adding extra survey plots in predicted areas that were not already

surveyed until the alloted budget is reached.

Introducing a management cost allows for more informed decisions upon which to choose
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survey area size and detection strategy. Indeed, there is a minimum cost per controlled

tree that corresponds to an optimal survey area larger than zero. This optimal survey

area varies with the cost of missing a green infestation which can be calculated, for

example, by the cost of a circular survey plot plus the cost of removing a certain

number of new green infestations due to this red-top tree.

2.4.3 Limitations

A potential limitation of this work is the assumption that the cost associated with

several 50 meter-radius plots is equivalent to the cost of one much larger plot of the

same total area, and that this relationship is linear, even for areas as large as 20% of

the park surface. One could also assume that the relationship’s slope would decrease as

survey locations are closer in space and managers spend less money and time travelling

between locations. These savings seem negligible, nonetheless, it would decrease the

slope of the relationship between cost per controlled tree and survey area at larger

survey areas. However, it would probably have little impact on the location of the

minimum cost and thus the optimal survey area size.

Another limitation is that we only undertook the analysis for years with a number of

red-top trees approximately equal to 300 as only data for these years were available.

The survey area values are directly linked to the number of survey plots and, thus, the

number of red-top trees for each year. Therefore, the survey area values are not directly

applicable to years with a different number of red-top trees, although the curve patterns

would be similar. The results also vary with the ratio total number of green infestations

to number of red-top trees. This ratio was larger in 2012 than 2011. However, we scaled

most of the results by the total number of green infestation to allow a fair comparison

of both years.

Furthermore, the selection of only two consecutive years of data makes the analysis

potentially susceptible to bias due, for example, to particular weather conditions or

to the specific details of implementation of management work for these two years. To

minimize the latter, however, a detailed survey protocol is implemented.
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2.4.4 Conclusion

The control efficiency in Cypress Hills could be slightly increased for a smaller cost,

which includes the future savings made by controlling an infested tree now rather than

several ones the following year. This would be done by engaging more management

resources, such as survey plot radius larger than 50 meters, in combination with using

a search strategy that exploits criteria other than the location of red-top trees, such as

weather and stand characteristics.
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Chapter 3

When managers forage for pests:

Implementing the functional response

in pest management

3.1 Introduction

The functional response framework characterizes predator-prey interactions by the rela-

tionship between prey density and the number of prey captured by a predator (Holling,

1959a). In this well-defined framework, time acts as a limitation: authors typically

consider temporal costs, such as handling time, which, when large, decreases the num-

ber of occasions for prey capture. In the functional response literature, researchers

usually study pest management in two ways. First, in the context of biological control,

a predator is a means of management (e.g. Mills & Getz, 1996; Van Den Berg et al.,

1997). Functional responses are then used in the usual way to describe a biological

control response to the pest level. Second, management is added to a predator-prey

system by removing either predator or prey at a given rate. When management is

added to models in this way, the functional response usually does not vary except if

the control method affects predators or prey behaviour or if the ratio between prey and

predator abundance affects the number of prey captured (e.g. Liu et al., 2006; He et al.,
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2012).

An alternate way to model the direct influence of management on pests using functional

responses would be to consider managers physically removing or controlling a pest

as predators. Although they deal with a resource and not a pest, fisheries models,

using harvesting effort or harvest rate, are a first step into describing the effect of

management on a resource using a linear relationship (Sutherland, 2001). However, to

our knowledge, the theory of manager functional responses displaying various shapes

has not been previously proposed or tested. Applying functional response literature

to human-pest systems would be powerful as there is an extensive functional response

theoretical background.

Could human-pest interactions be treated as predator-prey interactions in a functional

response framework? Managers and predators tend to have similar behaviours in this

context: both wish to remove the maximum possible number of prey/pests; both have

limitations, whether temporal or monetary, preventing them from maximizing the num-

ber of prey/pests they capture (Hassell, 1978); both face complex spatial distribution

of prey/pest population; and both may employ a variety of search strategies. In this

study, we will explore the functional response types obtained under the assumption

that managers take the role of predators, pests take the role of prey, and monetary

costs constrain managers in a similar way that temporal costs constrain predators. For

example, the pest handling cost for a manager can be shown to be equivalent to the

prey handling time for a predator in the functional response formulation. Although

time plays a major role in management, we argue that, at the scale of a management

season, monetary costs are the most important limiters of management success; mostly

because the time alloted to management directly depends on budget.

Although functional response theory usually concerns a random search in an homoge-

neous domain, spatial heterogeneity is usually considered as a norm in the environment

(Levin, 1992; Gustafson, 1998) and should be studied for realism. Spatial patterns are

usually classified as regular, random or clustered (Hopkins & Skellam, 1954). A regular
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spatial pattern would look like points on a grid whereas a clustered, or aggregated,

spatial pattern would feature isolated groups of points in space. For example, black

flies (Diptera: Simuliidae) display a clustered, random, or regular spatial distribution

depending on their species (McCreadie & Adler, 2019). In each case, the observed pat-

tern depends on the scale of the study. Indeed, a population could appear randomly

distributed when viewed on a small scale, but clustered on a large scale. Depending

on the spatial distribution of resources the species depends on, observed patterns could

also change from one area to another. Not taking into account realistic pest spatial

distribution in functional response studies may include bias and lead to inaccurate

determination of the functional response shape (Ives et al., 1999; Hochberg & Holt,

1999). In this study, we examine the impact of random, clustered and regular pest

spatial patterns.

The predator/manager searching strategy could also have an impact on the type of

functional response observed. Functional response studies usually assume a random

search but other strategies are possible. The adaptive cluster sampling strategy is an

established alternative to random searching (Thompson, 1990). In this case, after the

random sample of a first set of locations, if the variable of interest in any location is

bigger than zero, additional nearby locations are added to the survey. When the pest

population is clustered, the adaptive cluster sampling will efficiently find most of the

individuals in a given cluster. Maxwell et al. (2012) compared adaptive cluster sampling

to traditional transect designs and found out that the former was more efficient than the

latter when the purpose is to survey as many individuals as possible in well-established

populations away from roads in the shortest amount of time. This was found to be

especially true for clustered populations. The adaptive cluster sampling strategy is

thus an efficient survey strategy that can be easily simulated in our theoretical study.

Therefore, we employed two simple contrasting search strategies: random sampling and

adaptive cluster sampling.

The objectives of this theoretical work are: 1) to create simulation models of pest

management using a spatially-explicit individual-based model and spatially-implicit
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Monte-Carlo simulations, 2) to derive simple functions describing the number of pests

that managers control as a function of pest density and corroborate the simulation

models, 3) to characterize the impact of the different components on the functional

response shape and compare with predator functional response components and shapes,

and 4) to validate this new framework by applying it to data using the example of

mountain pine beetle in Cypress Hills, Saskatchewan. Using monetary cost for the

manager as an equivalent of temporal cost for a predator, we are able to make the

analogy between functional responses in predator-prey interactions and human-pest

management systems. This opens the door to applying functional response to manager-

pest relationships.

3.2 Methods

We simulated management strategies of pest removal using two approaches: a spatially-

explicit individual-based model and spatially-implicit Monte-Carlo simulations, and

confirmed the results in the simplest cases by deriving analytical solutions to mathe-

matical models representing the simulation scenarios. First, we presented the computa-

tional (§3.2.1 and §3.2.2) and mathematical (§3.2.3) models corresponding to the first

two objectives. Second, we explained how the different parameters defined in the mod-

els help in connecting our ideas to the functional response framework (§3.2.4). Finally,

we applied our models to the mountain pine beetle example (§3.2.5).

In this study, we explored various scenarios so as to capture different functional response

behaviours. Each scenario has two elements: 1) a pest spatial pattern in a 2-dimensional

domain, and 2) a management strategy. We divided the domain into cells of varying

size on a 16 × 16 grid. Depending on the scenario, the cell size was 1 × 1, 2 × 2 or

8× 8 distance units. Each cell was characterized by its spatial position in the domain

and by the number of pest items it contained. Fig. 3.1 represents the process for each

simulation run and sections 3.2.1 and 3.2.2 provide details on each component. The

symbols used in this study are described in Table 3.1.
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Figure 3.1 – Conceptual diagram representing the process determining each simulation run.
Start at the top left of the diagram.
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Table 3.1 – Description of the symbols used in the text.

Symbol Description

λ Pest intensity or Average number of individuals in a size-1 grid cell

δ Cost of surveying a size-1 cell

γ Cost of removing a pest individual

A Cell size/area or Number of contiguous size-1 cells

S Nb. of empty cells to survey in a row before stopping the search process

search area Search area refers indistinctively to A or S

M Domain area where management takes place

ϕ Probability of finding at least one individual in a grid cell of area A

D Expected area explored by managers

E Expected number of individuals that are surveyed and controlled

B Management budget

k Amount of clustering in the negative binomial distribution

ψA Probability of finding zero individuals in a cell of area A
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3.2.1 Simulating Pest Distributions

We examined four types of spatial patterns: random, clustered within-cells, clustered

between-cells and regular point patterns.

Random point process

The random point process employed a homogeneous Poisson process using the rpoispp

function of the R package spatstat (Baddeley et al., 2015; R Core Team, 2016). A

grid with rectangular cells of constant area (A) was then superimposed over the whole

spatial domain. Each cell had the same probability of having a pest, thus, they were

independent of each other.

Within-cell cluster point process

The within-cell cluster point process sampled a Negative binomial distribution for the

number of pests in each grid cell using the rnbinom function of the R package stats (R

Core Team, 2016). We used the overdispersion parameter k fixed to 1 to describe the

amount of clustering in the distribution. With this method, clusters happened within a

cell and thus, grid cells were independent of each other. This spatial distribution led to

no spatial correlation in the density of pests between cells but greater variability in the

density of pests from one cell to another than for between-cell clustering. The spatial

resolution of the simulated pest data depended on the size of the square cells in the

grid that we overlaid on top of the spatial domain.

Between-cell cluster point process

The between-cell cluster point process employed a Neyman-Scott process using the

rNeymanScott function of the R package spatstat. This method distributed “parent”

points in the domain according to a Poisson point process. Then, it drew the actual

points from a Gaussian distribution around each parent. The final step consisted of

removing the parents. A grid with rectangular cells of constant area (A) was then

superimposed over the whole spatial domain. Thus, there was a spatial correlation of
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the density of pests between cells.

Regular point process

The regular point process distributed individuals regularly on a square grid of size equal

to the square root of the total number of individuals in the domain rounded down to

the nearest integer. We positioned remaining individuals using the same process. We

added some noise proportional to the distance between individuals so as to reproduce

a more biologically relevant spatial pattern. In order to be distributed uniformly in the

domain, each point depended on the location of its neighbours. Thus, the number of

individuals in each cell was dependent on each other.

Fig. 3.2 shows an example of each spatial distribution of points for an average intensity

of 0.2 individuals per grid cell.

3.2.2 Simulating Manager Search Strategies

We simulated three different management strategies. The first two were both random

searches that differed in the implementation of the search area parameter: a random

search strategy (a) in which management stops after the manager discovers one empty

cell of variable size and a random search strategy (b) in which the manager stops

searching after a specified number of consecutive empty cells of size 1. The third

strategy was the adaptive cluster sampling strategy.

Random Strategy (a): stop after single empty cell of area A

Using a spatially-implicit Monte-Carlo approach, we simulated the random strategy

(a) (stop after single empty cell of area A) for the spatially uncorrelated pest spatial

distribution (Poisson and negative binomial) with intensity λ on a bounded rectangular

spatial domain of area M . This approach could only work with spatially uncorrelated

distribution given the spatially-implicit nature of the process. The management then

proceeded as follows. 1) One cell in the grid was randomly selected. The number of

pest in the cell was drawn from a Poisson or a negative binomial distribution using,
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A. Poisson B. Negative binomial

C. Neyman-Scott D. Regular

Figure 3.2 – Spatial distributions of pests on a 16×16 lattice with an intensity of 0.2 individual
per grid cell: A. Poisson spatial distribution, B. Negative binomial (within-cell cluster) spatial
distribution with an overdispersion parameter k = 1, C. Neyman-Scott (between-cell cluster)
spatial distribution and D. Regular spatial distribution. The black dots represent the actual
point patterns from which the lattice spatial distributions are derived. The shades of grey
represent the number of pests per grid cell: white (zero individuals) to the darkest grey (four
individuals).
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respectively, the R functions rpois and rnbinom. If the initial cell contained no in-

dividuals, the survey stopped. If it contained at least one individual, all individuals

inside it were surveyed/controlled/eradicated and another cell was chosen at random.

2) This same process was repeated for the next cell and the procedure was repeated

until either no individuals were found in a quadrat, all the cells in the management

area were surveyed, or the budget was reached. Note that the random selection of a

new cell was from the cells that had not already been surveyed. Since the survey area

A could be considerably large, when a step would put managers over the budget, only

the fraction of the area allowed by the budget was managed.

Random Strategy (b): stop after S empty cells

For the random search strategy (b), we used a spatially-explicit individual-based model

that we simulated on all four pest spatial distributions. This model was computationally

intensive compared to the Monte-Carlo approach so we did not use it for strategy

(a). The random search strategy (b) consisted of randomly choosing cells without

replacement and removing any pest contained in it. The process stopped when it

reached the budget or the maximum number of empty cells surveyed in a row (S),

whose value depended on the scenario. We depleted the budget in two ways depending

on the scenario: by deducting the cost of surveying a cell (δ) ∗ the number of cells

surveyed at this step, and by deducting the cost of removing a pest item (γ) ∗ the

number of pest items removed at this step. We did not take any action/step that would

put managers over the budget.

Adaptive cluster sampling strategy

In the adaptive cluster sampling strategy, we chose an initial cell to survey. If at least

one pest was present in the cell, we added the 4 adjacent neighbouring cells to the

survey (Von Neumann neighbourhood). We repeated this around the new cells that

contained pests. At each step, we removed pests found in the surveyed cells. If we

found no pest in the initial cell or in all of the neighbouring cell at some step, we chose

a new initial cell randomly and the process resumed. The process stopped when it
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Figure 3.3 – Step by step images of the adaptive cluster sampling strategy inspecting a
clustered (Neyman-Scott process) spatial distributions of pests (in shades of grey: from white,
zero individual, to the darkest grey, four individuals) on a 20×20 lattice with an intensity of
0.2 individual per grid cell. The colors represent the steps taken by the algorithm. The first
step (in red) hit an empty cell so another cell is chosen at random (in yellow). The yellow cell
contains one individual so it is removed and the 4 cells of the Von Neumann neighbourhood
are surveyed. One of them contains individuals (in green). Individuals are removed and
the neighbourhood of the green cell is surveyed. In this neighbourhood, two cells contain
individuals (in turquoise) so they are removed and the Von Neumann neighbourhood of both
cells is surveyed. In this new neighbourhood, three cells contains individuals (in blue). The
process goes on.
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reached the budget or the maximum number of empty cells surveyed in a row (S). See

Fig. 3.3 for an illustration of this process. Again, we depleted the budget allowance by

an amount defined by the cost of surveying a cell (δ) ∗ the number of cells surveyed at

this step, and the cost of removing a pest item (γ) ∗ the number of pest items removed

at this step. Since the added neighbourhood could be of considerable size, when a

step would put managers over the budget, only the fraction of the area allowed by the

budget was managed.

The random strategy (b) (stop after S empty cells) and the adaptive cluster sampling

strategy were deployed on all four pest distributions and the grid applied on the domain

had cells of constant size 1× 1.

For the strategies simulated with a spatially-explicit model (random strategy (b) and

adaptive cluster sampling), we defined, for simplicity, the domain as a torus, which

means that when a manager traversed the border of the domain, the manager reap-

peared on the other side of the domain.

3.2.3 Mathematical Models

We derived mathematical models of the random sampling in which management stops

after the manager discovers one empty cell of area A (random strategy (a) described

in §3.2.2) and the manager random sampling in which the manager stops searching

after S consecutive empty size-1 cells (random strategy (b) described in §3.2.2) for

pest distributions that are spatially uncorrelated from one cell to another (Poisson and

Negative binomial spatial distributions).

Random Strategy (a): stop after single empty cell of area A

The probability of finding at least one individual in a grid cell of area A (A < M) with

a Poisson spatial distribution of individuals is

Pr(X > 0;λ,A) = 1− exp(−λA) = ϕ. (3.1)
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Note that ϕ < 1. We can then write an expression for the expected area explored by

managers (D) using a strategy like the one described in the previous section. We can

call this the ’area of discovery’ to connect it to the functional response ideas.

D(λ,A,M) = A(1 + ϕ+ ϕ2 + ...+ ϕM/A−1), (3.2)

= A

(M/A−1∑
i=0

ϕi

)
,

= A

(
1− ϕM/A

1− ϕ

)
.

Note that in Eq. 3.2 managers are unable to explore more area than there is in the

management area M and so the maximum number of quadrats is M/A. The num-

ber of pests that are eradicated/controlled/surveyed (E) is proportional to the area

explored

E(λ,A,M) = D(λ,A,M)λ, (3.3)

Therefore, the number of pests that are eradicated/controlled/surveyed is

E(λ,A,M) = Aλ

(
1− ϕM/A

1− ϕ

)
. (3.4)

If there is a limited management budget B, each quadrat costs δ, and the cost γ is

associated with eradicating each pest in addition to treating an infested cell, then the

maximum number of quadrats of area A that can be explored is B
A(λγ+δ)

≤ M
A

. We

assume that the budget restricts exploration such that an area less than the full area

of the management zone can be explored. The idea of adding a budget, a cost per

quadrat, and a cost per individual is similar to dividing the total foraging time into

searching time and handling time in the Holling’s disc equation. The number of pests
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that are eradicated/controlled/surveyed becomes

E(λ,A,B, δ, γ) = Aλ

(
1− ϕ

B
A(λγ+δ)

1− ϕ

)
. (3.5)

If instead we assume that individuals are distributed according to the Negative binomial

distribution and that the number of pests in any cell is independent of the number in

any other cell, we write for a cell of area 1

Pr(X > 0;λ, k) = 1−
(
1 +

λ

k

)−k

= ϕ. (3.6)

In Eq. 3.6, k represents the amount of clustering from one cell to another with small k

corresponding a high degree of clustering.

For cells of area A > 1, the Negative binomial distributed pest data would have a

different spatial resolution as we sample on cells of area A. Eq. 3.6 becomes then:

Pr(X > 0;λ,A, k) = 1−
(
1 +

λA

k

)−k

= ϕ. (3.7)

As k → ∞, Eq. 3.7 converges to the Poisson case given by equation (3.1). The deriva-

tions for the numbers of individuals eradicated (Eqs. 3.4–3.5) are still valid for this

case.

Table 3.2 summarizes the equations used for the expected number of pests controlled

depending on the pest spatial distribution for random strategy (a).

Random Strategy (b): stop after S empty cells

In strategy (a), A represents the cell area or the survey of A contiguous size-1 cells and

the process stops after one empty step. In strategy (b), however, the manager surveys

an integer number S of empty cells before stopping. The main difference between

random strategy (a) and random strategy (b) is that the expected number of individuals

removed by exploring A contiguous size-1 cells would, in theory, be affected by the
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Table 3.2 – Expected number of pests controlled (E) for random strategy (a).

Spatial distribution E ϕ

Poisson Eq.(3.5): Aλ
(

1−ϕ
B

A(λγ+δ)

1−ϕ

)
Eq.(3.1): 1− exp(−λA)

Negative binomial Eq.(3.5): Aλ
(

1−ϕ
B

A(λγ+δ)

1−ϕ

)
Eq.(3.7): 1−

(
1 + λA

k

)−k
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spatial distribution of individuals while exploring S randomly picked size-1 cells would

not. Below we compare mathematical models of the management functional response

for random manager searches when pests are distributed according to a Poisson point

process and when pests are distributed according to a negative binomial point process.

Our derivations illustrate that the expected number of individuals removed can depend

on the pest distribution when multiple empty cells are required before the manager

stops looking for additional pests.

In the case of a Poisson distributed resource, from Eq. 3.1, we get the probability that

a cell i of area A has zero individuals:

Pr(Xi = 0;λ,A) = exp(−λA) = ψA. (3.8)

The probability that S different cells of area A have zero individuals in each cell is:

Pr(X1,...,S = 0;λ,A, S) = (ψA)
S

= (exp(−λA))S

= exp(−λAS). (3.9)

A and S being multiplied, the probability that a cell (S = 1) of area A = x has zero

individuals (ψ1
A) is the same as the probability that x different size-1 cells (S = x,

A = 1) have zero individuals in each cell (ψS
1 ). So in this context, ψ1

A = ψS
1 . For

this reason, the mean number of individuals managed obtained from the simulation

process described above should match the analytical solution provided in Eq. 3.5 using

Eq. 3.1.

In the case of a resource distributed with a negative binomial distribution, from Eq. 3.7,

we get the probability that a cell i of area A has zero individuals:

Pr(Xi = 0;λ,A, k) =

(
1 +

λA

k

)−k

= ψA. (3.10)
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The probability that S different cells of area A have zero individuals in each cell is:

Pr(X1,...,S = 0;λ,A, S, k) = (ψA)
S

=

((
1 +

λA

k

)−k)S

=

(
1 +

λA

k

)−kS

. (3.11)

In this case, A and S are not multiplied, so the probability that a cell (S = 1) of area

A = x has zero individuals (ψ1
A) is generally not equal to the probability that x different

size-1 cells (S = x, A = 1) have zero individuals in each cell (ψS
1 ). So in this context,

ψ1
A ̸= ψS

1 . The mean number of individuals managed obtained from the simulation

process described above should generally not match the analytical solution provided in

Eq. 3.5 using Eq. 3.7. In this case, instead of Eq. 3.7, we can use

Pr(XS > 0;λ,A, S, k) = 1−
(
1 +

λA

k

)−kS

= ϕ. (3.12)

Table 3.3 summarizes the equations used for the expected number of pests controlled

using the random strategy (b) depending on the pest spatial distribution.

3.2.4 Correspondence with functional responses types

To compare human-pest management to functional response in predator-prey interac-

tions, we considered that pests to managers were like prey to predators in the functional

response framework. We then assumed that the budget allocated to a manager corre-

sponded to the foraging time for a predator. Keeping the comparison between monetary

and temporal costs in mind and with the assumption that the behaviour “processing

food/pest” is independent from the behaviour “searching for food/pest”, we could make

the correspondence between the time needed to search for a prey and the monetary

cost requested to search for a pest (survey), and between the time needed to consume

a prey and the monetary cost requested to remove a pest.
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Table 3.3 – Expected number of pests controlled (E) for random strategy (b).

Spatial distribution E ϕ

Poisson Eq.(3.5): Aλ
(

1−ϕ
B

A(λγ+δ)

1−ϕ

)
1− Eq.(3.9): 1− exp(−λAS)

Negative binomial Eq.(3.5): Aλ
(

1−ϕ
B

A(λγ+δ)

1−ϕ

)
Eq.(3.12): 1−

(
1 + λA

k

)−kS
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In a Type I functional response scenario, the predator is not affected by its capacity to

consume a prey so the number of prey consumed increases linearly with the intensity

of prey in the domain. Thus, by setting the cost of removing a pest item (γ) to 0, we

expected to obtain a linear relationship (Holling Type I) between the number of pest

removed and the intensity of pests in the domain.

In a Type II functional response scenario, the predator is limited by its capacity to

consume a prey so as the intensity of prey in the domain increases, the predator can-

not consume more than a certain number of prey and the curve saturates. In a pest

management context, satiation is represented by time or monetary limitations. At high

pest density, a manager cannot remove more pests from the environment than allowed

by their budget. Thus, by setting the cost of removing a pest item (γ) to be larger

than 0 while maintaining a large search area (A and S both impact the search area),

we expected to obtain a hyperbolic relationship (Holling Type II) between the number

of pest removed for a fixed cost and the intensity of pests in the domain.

In a Type III functional response scenario, at low intensities of prey, some mechanisms

make it more difficult for the predator to find and consume a prey than at higher

intensities. Some researchers explain this concept using predators’ behaviour (Turchin,

2013). A generalist predator might switch to another prey when the focus prey density is

too low leading to a Type III whereas a specialist would have no choice but to continue

searching for the focus prey leading to a Type II. In a pest management context, a

manager might act like a specialist by wanting to remove all pest or like a generalist by

being satisfied with a low pest number and switching to another management activity.

Thus, by setting the maximum number of empty cells surveyed in a row before stopping

(S) (or its equivalent A: number of contiguous size-1 cells, see previous section) to a

low number and by setting γ > 0, we would expect that Eq. 3.5 takes the sigmoid shape

of a Type III functional response. We thereby simulate a manager estimating that the

probability of encountering a pest is too low to be worth the search effort at a low pest

density.
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3.2.5 Application

We applied our modelling framework to the mountain pine beetle (Dendroctonus pon-

derosae, Hopkins 1902) management in Cypress Hills, Saskatchewan, Canada. The

mountain pine beetle is a bark beetle that infests and kills pine trees in western North-

America. Mountain pine beetles have two main population stages: an endemic stage in

which there are not enough individuals to overcome healthy trees, so populations persist

by attacking stressed trees in association with other bark beetles, and an epidemic stage

in which mountain pine beetles are a threat to vast stands of healthy pines. There are

currently several epidemic populations, including one in the Cypress Hills park. Moun-

tain pine beetle populations exhibit a type of Allee effect (Allee, 1931; Stephens et al.,

1999): below a certain number of individuals, a local epidemic population cannot persist

and will either go extinct or turn to an endemic population stage.

Pest spatial distribution

During an epidemic, the attacked trees are usually spatially aggregated due to beetle

offspring emerging from one previously attacked tree and attacking susceptible trees

within several hundred meters (Safranyik & Carroll, 2006; Robertson et al., 2007).

This pattern resembles the Neyman-Scott process described in section 3.2.1. Therefore,

we fitted a Neyman-Scott process to attacked trees locations in 2011 and 2012 from

several portions of the park with different pest densities using the vargamma.estpcf

function of the R package spatstat. This function uses the pair correlation function to

fit the point process to a point pattern by the method of minimum contrast.

In addition to the parameter values, we modified the Neyman-Scott process in our sim-

ulations to draw points around parents from a fat-tail distribution (here an exponential

distribution) which corresponds better to the mountain pine beetle behaviour than a

Gaussian distribution due to the occurrence of long-distance dispersal events (Safranyik

& Carroll, 2006; Robertson et al., 2007; Goodsman et al., 2016).
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Management strategy

The management strategy implemented in Cypress Hills consists of locating previously

attacked trees (red-top trees easily detectable during aerial surveys) and surveying the

surrounding neighbourhood for new attacks. We simulated this process by adapting

the adaptive cluster sampling strategy. The strategy is deployed at the location of

previously attacked trees instead of random locations. The process continues until all

cells containing previously attacked trees are surveyed. We set the managers ability to

detect newly attacked trees within the survey area to 89% (value obtained for Cypress

Hills from M. Kunegel-Lion, unpublished data).

Simulations

Using the fitted pest spatial distribution and the modified adaptive cluster sampling

strategy, we simulated the management process 10 000 times for each pest density on a

6.5×9.9km rectangular domain with grid cells of size 100×100m. Thus, the grain and

extent of the domain is the same order of magnitude as the grain and extent of the

management area in Cypress Hills. The management costs (δ and γ), and the total

budget (B) values were chosen as proportional to the actual costs and budget in the

park for 2011 and 2012. We then compared the curve obtained to actual numbers of

attacked trees controlled in several areas of the park presenting different densities of

attacked trees during 2011 and 2012.

Management goal feasibility

Knowing about management functional responses shape can help us assess the feasi-

bility of a management goal. We chose two ways of expressing a management goal: 1)

managers would like to remove at least x% of all the pests, and 2) managers would

like to leave no more than x individuals per unit of area. This second management

goal makes sense for populations exhibiting an Allee effect, as the mountain pine beetle

does. Indeed, it is not necessary to put more effort into control when the pest popu-

lation will not persist below a certain number. We simulated the management process

described above 1000 times for increasing budget values and compared the manage-
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ment functional response curves obtained to the two management goals. To place the

functional response curves and the management goals on the same scale, we divided

the number of individuals removed by the domain area, thereby graphing the density of

pest controlled by the total pest density. Note that this only changed the y-axis scale

and therefore the interpretation of the curve did not change.

3.3 Results

For each combination of pest distribution, management strategy, and parameter values,

we compared the means of 2000 simulations to the analytical solutions, when calculated.

The budget value used in the simulations and analytical solutions was 300, limiting the

number of cells managers can explore. The values of δ and γ were either 10 or 0 and

the values of A and S either 64 (one 8×8-cell or 64 1×1-cells), 4 (one 2×2-cell or four

1×1-cells) or 1 (one 1×1-cell) depending on the scenario. We generated all negative

binomial point processes using the parameter k = 1 in both the simulations and the

analytical solution.

3.3.1 Varying the management costs

When the cost of surveying a cell δ increases, the functional response slope decreases

and when the cost of removing a pest item γ increases, the functional response curve

saturates as seen on Fig. 3.4 for the Poisson distribution. This is true for all the

management strategies and their analytical solutions on all pest distributions. Note

that the curve on Fig. 3.4a) continues to increase linearly above 50 individuals removed.

See appendix C, Fig. C.1 for the non-truncated graph.

3.3.2 Varying the management strategy and the pest spatial

distribution

For a Poisson pest spatial distribution, the functional response curves for the simulations

of the random strategies (a) and (b) are the same as predicted by the derivations of
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Figure 3.4 – Functional response curves when varying the management costs (δ the cost of
surveying a cell and γ the cost of removing a pest) for fixed values of A = 64 and S = 1 for
the random strategy (a) and A = 1 and S = 64 for the random strategy (b) and the adaptive
cluster campling strategy, and for a Poisson pest spatial distribution. Circles represent the
means of 2000 simulations of the adaptive cluster sampling strategy, pluses of the random
strategy (a), and crosses of the random strategy (b). Solid lines represent the values for the
analytical solution of random strategy (a) and (b).
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analytical solutions. For a negative binomial pest spatial distribution, the functional

response curves for the simulations of the random strategies (a) and (b) are extremely

similar even though the expected means differ due to a different pest spatial resolution.

This can be seen on Fig. 3.5. Unexpectedly, the pest spatial distribution does little to

change the functional response curves. The adaptive cluster sampling and the random

strategies present the same pattern with little variation from one strategy to another

except for Neyman-Scott and regular pest spatial distribution. Indeed for a Neyman-

Scott distribution, the adaptive cluster sampling strategy does often better than the

random strategy (b) especially for the parameters values δ = 10, γ = 0 (Fig. 3.5).

For a regular distribution, the adaptive cluster sampling strategy results in oscillations

around the random strategy mean especially for the parameters values δ = 10, γ = 0

(Fig. 3.5).

3.3.3 Varying the search area

As expected, decreasing the search area, as represented by A or S (see Methods section),

decreases the number of pests found and controlled at low pest intensity levels for both

random strategies and leads to a curve resembling a Type III when γ = 10 (Fig. 3.6).

In the Negative binomial case, there are differences between random strategies which

might be due to the difference between A and S as shown in Eq. 3.12 or to the difference

in the pest spatial resolution when A = 1 and when A > 1. Those two cases cannot be

distinguished given our parameter values.

3.3.4 Theoretical results summary

Additional simulations (see Appendix D, Fig. D.1 and D.2) show that when A or S are

large, the cost per cell to survey δ > 0 and the cost per pest to remove γ → 0, the

functional response tended to a Type I. When A or S are large, γ > 0 and δ → 0, the

functional response tends to a Type I/II which is linear like a Type I at first with a

progressive saturation like a Type II (Jeschke et al., 2004). When γ and δ > 0, the

functional response tends to a Type II. To summarize, to obtain a Type I, we set δ > 0
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Figure 3.5 – Functional response curves when varying the management strategy and the pest
spatial distribution for fixed values of A = 64 and S = 1 for the random strategy (a) and
A = 1 and S = 64 for the random strategy (b) and the Adaptive Cluster Sampling strategy.
Circles represent the means of 2000 simulations of the Adaptive Cluster Sampling strategy,
pluses of the random strategy (a), and crosses of the random strategy (b). Solid lines represent
the values for the analytical solution of random strategy (a) and (b) in the Poisson case and
for the analytical solution of random strategy (a) in the negative binomial case. Dotted lines
represent the values for the analytical solution of random strategy (b) in the negative binomial
case.
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Figure 3.6 – Functional response analytical solutions when varying the cell area A or the
number of empty steps to survey in a row S for the random strategy (a) and (b). Black lines
represent A = 64, S = 1 or A = 1, S = 64 while grey lines represent A = 4, S = 1 or A = 1,
S = 4. Solid lines represent the values for the analytical solution of random strategy (a) and
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binomial case. Dotted lines represent the values for the analytical solution of random strategy
(b) in the negative binomial case.
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and γ = 0. To obtain a Type I/II, we set δ = 0 and γ > 0. To obtain a Type II, we

set δ > 0 and γ > 0. To obtain a Type III, we set A or S small, δ small and γ > 0

(Fig. 3.6).

In addition, variations in budget did not change the qualitative shapes of functional

responses.

In conclusion, the pest spatial distribution did not have a large impact on the functional

response shape and neither did the search strategy. However, the costs associated

with the management strategy as well as the search area had a great impact on the

functional response type, as expected. The analytical solutions generally corroborated

the simulations although a slight mismatch is apparent, especially for the negative

binomial case: the mean values from the simulations of random strategies (a) and (b)

are below their respective expected means.

3.3.5 Correspondence with predator functional response

Using Holling’s disk equation (Holling, 1959b):

Na =
a′TN

1 + a′ThN
, (3.13)

we can compare the parameters from predator and manager functional responses. Ta-

ble 3.4 summarize the parameter equivalences. As stated before, the cost of pest removal

(γ) is the manager equivalent of the handling time (Th). This is corroborated by the

similar effect of γ and Th on functional responses. Indeed, as seen on Fig 3.4, intro-

ducing this cost causes the apparition of an asymptote in the curve. Likewise, the

survey cost (δ) is the manager equivalent of the searching time. At low densities of

prey/pest, the predator/manager spends more of its time/budget on searching rather

than handling/removing. This is presented in Eq. 3.13 by the encounter rate a′, which

represents the searching efficiency or the number of prey items attacked per unit of time

at low prey densities. The manager equivalent to a′ would then be 1/δ. Additionally,
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Table 3.4 – Correspondence between predator and manager functional response components.

Predator-prey Manager-pest

Nb. of prey items attacked Na Nb. of pest items removed E

Prey density N Pest density λ

Total foraging time T Budget B

Encounter rate a′ Detection rate 1/δ

Handling time Th Cost of pest removal γ

Slope a′T Slope B/δ

Asymptote T/Th Asymptote B/γ
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the total foraging time (T ) in predator functional response would be the manager’s

budget (B). Therefore, the slope of the response, corresponding to a′T , will be B/δ

and the asymptote, corresponding to T/Th, B/γ (Table 3.4). For δ = 10 and B = 300

(Fig. 3.4b) and d)), the slope at low densities is 30 which corresponds to B/δ = 300/10.

For γ = 10 and B = 300 (Fig. 3.4c) and d)), the asymptote is 30 which corresponds

to B/γ = 300/10. These comparisons hold for different values of δ > 0 and γ > 0

(Appendix D, Fig. D.1 and D.2).

These equivalences allow us to use Eq. 3.13 as an approximation for Eq. 3.5 as long as

A is large, δ > 0, the management strategy random, and the pest spatial distribution

Poisson. See Appendix E, Fig. E.1 for the comparison between the results of Eqs. 3.5

and 3.13.

3.3.6 Application

The fitted pest spatial distribution of the mountain pine beetle infested trees has the

mean number of points per cluster 67 ± 55 (standard deviation) and the mean cluster

size 266 ± 131. The management strategy has costs of surveying a cell δ = 231 units

and cost of removing a pest γ = 181 units for a budget set to 144 000 units. All

actual numbers of attacked trees controlled but one are within 95% of the simulations’

distribution as seen on Fig. 3.7. The remaining number is within 99% of the simulations’

distribution. The simulations’ mean shows a Type II functional response.

According to Table 3.4, we expected that an increase in budget would lead to an increase

in slope and asymptote. However, our simulations show that the asymptote increases

with an increasing budget but the slope does not (Fig. 3.8).

Applying the adaptive cluster sampling search to Cypress Hills instead of the search

described in section 3.2.5 shows that it is the type of search strategy and not the

parameter values that is responsible for the constant slope at low pest intensity (see

Appendix F, Fig. F.1). Indeed, the adaptive cluster sampling process searches cells

until the budget is reached whereas the process described in section 3.2.5 only searches

cells around a fixed number of previously infested trees which limits the number of
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Figure 3.7 – Functional response of the mountain pine beetle management in Cypress Hills,
Saskatchewan. The black line represents the mean of 10 000 simulations of the management
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individuals managers could control with a certain budget.

Fig. 3.8 also shows the management goals. If the functional response curve is on or

above the management line, the goal is reached, otherwise not enough individuals are

controlled to meet the management goal. If the desired management efficiency is above

20% removal, the goal is unattainable regardless of the budget (Fig. 3.8). If, however,

the goal is the removal of all individuals above a certain threshold, it is possible to

have an effective management at low pest intensity depending on the budget and the

threshold value.
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3.4 Discussion

Considering that pests to managers were like prey to predators, we were able to draw

an analogy between functional responses in predator-prey interactions and human-pest

management. The searching and handling time were replaced by the surveying and

removal costs. The costs associated with the management strategy as well as the

search area were the main factors influencing the functional response type as expected.

The point process and the search strategy impacted the manager efficacy to a lesser

extent. Our framework was applied to the mountain pine beetle epidemic in Cypress

Hills, Saskatchewan, Canada.

There is a slight mismatch between the analytical solutions of the two random strategies

and their simulations. Indeed, the mean values from the simulations are below their

respective expected means. In the simulations, if a step would put managers over the

budget, only a fraction of the area would be actually surveyed and controlled (random

strategy (a)) or the step would not be taken (random strategy (b)). Therefore, the

whole budget might not be used due to rounding in the calculations and the number of

pest controlled would then be slightly lower than what it could have been without this

process. This could explain the differences between simulation means and analytical

solutions of the random strategies (a) and (b). However, the functional response shape

does not change between the simulations and the analytical solutions. Accordingly,

we can assume that the functional response shapes in the case of the adaptive cluster

sampling and in the case of the Neyman-Scott and regular pest distributions are not

biased by the budget handling process of the simulations although the values might be

slightly underestimated.

The pest spatial resolution was chosen at the scale of an area-A grid cell. This resolu-

tion does not impact the Poisson results when the area changes as the sum of Poisson-

distributed variables is also Poisson-distributed. However, this is not the case for nega-

tive binomially distributed pests. Changing the cell area changes the distribution grain.

Therefore, random strategies (a) and (b) consider a different distribution grain for the
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negative binomial distribution and the results cannot be compared. For management

simulations involving the Neyman-Scott and regular distributions, we only consider

random strategy (b) and the adaptive cluster sampling strategy which have the same

cell size A = 1 and, therefore, can be readily compared.

In the functional response theory, the predator distribution is assumed homogeneous.

The impact of a clumped predator population on the kill rate lead to the establish-

ment of the aggregative response theory (Cosner et al., 1999). However, the functional

response theory originally assumes also a homogeneous distribution of prey in the do-

main. This could weaken the application of this framework to real systems where the

prey distribution is often heterogeneous as well as dynamic in time (Arditi & Ginzburg,

1989; Ives et al., 1999). Several studies mention this issue. Nachman (2006) found

that switching the prey spatial distribution from random to aggregated changed the

functional response type from a Type II to a Type III as predators adopt a non-random

searching behaviour and aggregate in prey clusters. Hossie & Murray (2016) found

that for ratio-dependent functional responses, i.e. functional responses depending on

the density of predators, the pest spatial distribution changed the functional response

shape. Rincon et al. (2017) found that the functional response shape differs with the

difference between the predator and the prey distributions and with the predator forag-

ing strategy. Those studies differ from ours by the fact that several predators interact

and the interaction between predator and prey aggregation patterns lead to a change

in the functional response shape. However, in our case of a single predator/manager,

we highlight the minimal impact of the point process on the functional response shape.

Thus, for prey-dependent functional responses, in opposition to ratio-dependent func-

tional responses, the prey spatial distribution seems to have little significance.

Similarly, our results show the minimal impact of the management strategy on the

functional response shape. This agrees with Berec et al. (2015) who found that survey

spatial arrangements (random or regularly spaced) have little impact on the pest de-

tection probability. This is an important information for pest managers who can then

minimize costs by choosing a cheaper strategy. However, we should keep in mind that
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when the pest is spatially clustered, a method resembling the adaptive cluster sampling

provide slightly better results.

Unlike other studies focused on predator functional responses when the predator uses

a random search strategy (e.g. Avgar et al., 2011), our results show that the mean

number of individuals controlled varies, to some degree, with the spatial distribution

of pests. Avgar et al. (2011) found that when employing a random search strategy,

the expected number of individuals managed should be the same regardless of the

individual spatial distribution because the probability to have at least one individual

in a random cell becomes independent of the adjacent cells. If we take into account

the specifics of our study, we can explain the difference. Considering random search

strategy (a): multiple contiguous size-1 cells are randomly selected so the number of

individuals controlled is spatially correlated for the Neyman-Scott and regular processes.

Therefore, the expected number of individuals managed in those cases will be different

than the expected number of individuals managed from a Poisson process or a negative

binomial distribution. The Poisson and negative binomial cases should have the same

means since the cells are not spatially correlated. Considering random search strategy

(b): with a Neyman-Scott spatial pattern it is more likely to get multiple consecutive

empty cells before stopping than for a Poisson spatial pattern. For a regular pattern,

it is less likely. The expected number of individuals managed for a Neyman-Scott and

regular processes would be different than for a Poisson process or a negative binomial

distribution. Again, the Poisson and negative binomial cases should have the same

means since the cells are not spatially correlated.

We show that non-random search (adaptive cluster sampling) on an aggregated pest

spatial distribution such as the one produced by a Neyman-Scott process leads to higher

numbers of pest controlled than on a random pest distribution. However, this is not

the case on a Negative binomial distribution. This difference is due to the details of

the adaptive cluster sampling process. Indeed, in this strategy, the managers make de-

cisions on which cells to survey. Considering that the Neyman-Scott process produces

aggregation among cells whereas the Negative binomial process produces aggregation
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within cells with the among-cell pattern resembling a random pattern, it makes sense for

the random and adaptive cluster sampling strategies to be similar on a Negative bino-

mial pest spatial distribution but different on a Neyman-Scott distribution. Managers

following a non-random search strategy on a Neyman-Scott pest spatial distribution are

more efficient than managers following a random search since they explore the neigh-

bouring cells when they find pests in a cell. This result agrees with Nachman (2006)

who found in the analysis of their predator-prey model that predators searching non-

randomly on an aggregated prey distribution have higher predation rates than random

search.

Functional response theory is widely used to assess the impact of a predator on a prey

population (e.g. Messier, 1994; Finke & Denno, 2002). This framework provides a well-

studied and reliable method to assess the impact of management on a pest population.

Furthermore, knowing aspects of the functional response can inform pest management

in several different ways. For instance, human management could be efficiently and

quantitatively compared to other control methods such as biological control. This idea

would be extended to give comparisons across different methods and different locations.

For instance, different methods could be compared at the same location or the same

method could be compared at different locations by contrasting functional response

curves obtained analytically or by simulation.

To give further insight, manager functional responses could be included in dynamical

systems to represent human impact on a pest population. For example, in the Cypress

Hills case, future steps could include using this functional response in a population

dynamics model to study the evolution of the beetle population over the years with a

realistic incorporation of the management effect on the population. In the same way

functional response curves inform about stability of predator-prey interactions (Dick

et al., 2013), in our study, they could tell managers whether control would leave a

refuge for the pest or lead to the pest extinction. Indeed, in a Type III functional

response scenario, management is less efficient at low pest densities and, thus, small pest

populations could persist (Murdoch & Oaten, 1975). However in a Type II functional
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response scenario most pests would be eradicated, even if they occur at low density

(Hassell, 1978). With respect to control of mountain pine beetle in Cypress Hills,

the Type II functional response suggests a high efficiency of managers at low pest

densities. This is consistent with the strict management policy in Cypress Hills to try

to control all infested trees. The fact that true values for the number of individuals

controlled lie above those simulated in Fig. 3.7 suggests that managers in Cypress Hills

are likely finding the means to make the process even more efficient than our model

would predict.

From a practical perspective, managers are typically interested in controlling a certain

proportion of pests, given an environmental context and a particular strategy. For

example, in some areas of the province of Alberta, Canada, infested by the mountain

pine beetle, the management goal is to reduce populations by 80% (Alberta Sustainable

Resource Development, 2007) using individual tree removal. Our model results, as

shown in Fig. 3.7 and 3.8, allow for such a calculation to be made. By comparing

this goal to the detection and control rate (= slope of the functional response curve;

equivalent to the attack rate), the management functional response can give direct

insights on the goal feasibility. We illustrated this point using the Cypress Hills case

study. The results showed that an 80% control efficiency, such as the target used

in some areas in Alberta, would not be feasible in Cypress Hills given the current

management strategy and parameters values. If the functional response resembled a

type III instead of a type II, there could be cases where management would be efficient

only at intermediate pest intensity. However, decreasing the pest population below a

certain threshold would be more appropriate than a removal percentage in the Cypress

Hills case. Goodsman & Lewis (2016) found Allee threshold values of 3.789×10−4

and 5.311×10−5 infested stems per m2 for two times series of mountain pine beetle

infestation in central Idaho. Therefore, a management threshold of 0.5 individuals

per 100×100m cell such as the one used in the Cypress Hills example would be below

such an Allee threshold. Moreover, we showed that the pest intensity in Cypress Hills is

always below 0.5 individual per cell which means that managers are probably efficiently

reducing local mountain pine beetle populations below the Allee threshold. However,
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a non-spatial Allee threshold could be an issue as the within-tree productivity of the

beetle varies in time and space (Goodsman & Lewis, 2016). As an alternative, varying

the management strategy, such as adding search locations beyond the neighbourhood

of previously infested trees until the budget is reached, would allow managers to meet

a certain removal percentage depending on the budget amount.

In summary, functional response is a tool to help pest management, for example by

providing a means to assess current strategies, to compare with alternative strategies,

to test various strategies in silico before implementation, to provide a realistic control

component in a population dynamics model, and to assess the feasibility of a manage-

ment goal.

One constraint to the application of this method, as in regular functional response

studies, is the need for several levels of pest density to be able to draw a functional

response curve. In our application to mountain pine beetle, we got around this issue

by dividing the infested area in portions of different pest densities. This might not be

sufficient to draw an entire functional response curve but simple simulations could help

complete the curve in this case.

Researchers often complement the functional response with a numerical response in

predator numbers and sometimes an aggregative response describing the distribution of

predators (Turchin, 2013). We could argue that in a human-pest management scenario,

the numerical and aggregative responses are negligible or even non-existent. Indeed,

the number or aggregation level of managers might not be relevant for two reasons: 1)

managers usually group as a team/unit, in our study, this unit represent “the manager”

and 2) there is no competition between managers or teams, when enough persons are

present to make several teams they often do not survey the same area but rather divide

the entire management domain between themselves in order to be efficient. However,

one could study the social impact of pest management and thus be interested in new

hires in response to an increasing pest abundance. This could be modelled by a growing

manager population and be analogous to predator numerical responses. Finally, the cost

of moving from one location to another was not taken into account in our study for
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simplicity but it could be added easily.
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Chapter 4

Factors governing outbreak dynamics

in a forest managed for mountain pine

beetle

4.1 Introduction

The mountain pine beetle (MPB; Dendroctonus ponderosae, Hopkins 1902) epidemic

behaviour in North American pine forests is causing massive ecological consequences

and losses to the timber industry (Walton, 2013) as well as threatening cultural and

tourism activities (Dhar et al., 2016). Although MPB is native to part of North Amer-

ica, its spread is considered human-induced as it is a function of climate change and fire

suppression (Bentz et al., 2010). Because of the influence of human actions on MPB

spread combined with the ecological and economic impact of MPB epidemics, this

species fits the description of an invasive species (Lockwood et al., 2013). As a con-

sequence, MPB outbreaks are actively monitored and heavily controlled in Canadian

pine forests (Alberta Sustainable Resource Development, 2007; Saskatchewan Ministry

of Environment, 2016). Managers face several challenges related to detection and con-

trol. An efficient control is direct, early, aggressive, and continuous until the outbreak is

suppressed (Carroll et al., 2006). To be able to implement such control, managers need
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to have efficient detection methods. In turn, detection could be improved by including

different ecological and environmental factors depending on the outbreak phase.

From the perspective of the biology of MPB outbreaks, four major phases have been de-

scribed: endemic, incipient-epidemic, epidemic, and post-epidemic (Shore et al., 2004).

Managers, tracking the rise and fall in numbers of infested trees may not easily be able

to identify the endemic or early incipient-epidemic phase. This leads to an alterna-

tive categorization based on infested tree numbers, which we describe here and use in

this paper: onset (increasing number of infested trees; typically late incipient-epidemic

and early epidemic), peak (high and constant number of infested trees; late epidemic)

and collapse (decreasing number of infested trees; post-epidemic). See Fig. 4.1 for a

representation of the two approaches to categorizing MPB outbreaks.

We now briefly review the biology related to the major phases of MPB outbreaks,

starting with the endemic phase. Beetles in the endemic phase attack weak or stressed

pines in the summer, sometimes with the help of other bark and wood boring beetles,

by drilling galleries under the bark and laying their eggs (Safranyik & Carroll, 2006).

Over the fall and early winter, the eggs become larvae then pupae before emerging as

adults in the summer of the following year. Adults do not usually survive the winter.

The pine hosts are typically killed by the MPB development process and their crowns

fade to a red colour within one year after the attack. The range of MPB endemic

populations is widespread in north America, covering north-west United States and

western Canada.

When a MPB population has enough individuals to successfully attack large and healthy

trees on its own, the population transitions from an endemic phase to an outbreak.

Outbreaks include the three phases: incipient-epidemic, epidemic, and post-epidemic.

Beetles in the incipient-epidemic phase reach a number large enough to successfully

attack large trees, although spread is slow and limited. Then, as population size in-

creases, and single-tree infestations become patches containing multiple infested trees,

the MPB population enters the epidemic phase. The post-epidemic phase is character-

ized by population decline in MPB. An epidemic usually lasts several years if sufficient
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host pines are present, with an average of approximately 10 years in British Columbia

(Safranyik, 2004).

Commonly, red-top trees, which are the distinct dead pines infested by MPB individ-

uals from the previous year, are used to estimate the presence of new infestations in

the area (Alberta Sustainable Resource Development, 2007; Saskatchewan Ministry of

Environment, 2016). While single-tree infestations may escape detection, the transi-

tion to infested patches make the infestations more likely to be found. As more single

trees become infested, MPB is detected and enters the outbreak onset. At this point,

managers face three outbreak phases, based on infested tree numbers: onset, peak,

collapse.

During the outbreak, the locations of infested trees can be georeferenced to character-

istic ecological and environmental factors. However, these factors have different roles

on MPB population dynamics at the various stages of an outbreak (Aukema et al.,

2008; Preisler et al., 2012). Understanding these roles provides an opportunity to im-

prove detection methods through a systematic evaluation of cues from ecological and

environmental factors.

We now turn to a review of ecological and environmental factors associated with the

spatial locations of infested trees in different outbreak phases. We characterize this

review according to host tree properties, beetle pressure, and weather factors. Host

tree properties affect susceptibility to infestation. Beetle pressure provides the source of

infestation. Weather factors impact the details of life-history and environmental stress

of both the beetles and the trees. Collectively, these factors determine the outbreak

level and duration.

Host tree abundance, resistance, and size impact MPB infestation differentially, depend-

ing on the phase of an outbreak (Safranyik, 2004). Indeed, an MPB endemic population

first needs sufficient small and weak/stressed trees in order to increase the population

size to outbreak levels and attack larger and healthier trees (Safranyik, 2004; Nelson

et al., 2018). MPB population decline happens in the post-epidemic phase when the
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number of susceptible pines decreases and MPB switches back to weaker and smaller

trees. This decline in the epidemic that is associated with the reduction in the sus-

ceptible population is a common feature characterizing epidemic processes (Kermack

& McKendrick, A. G., 1927).

Beetle pressure is needed for MPB presence at all outbreak phases (Preisler et al.,

2012). It describes the source of a new beetle generation. Outbreak onset relies on

local endemic population increase and/or contributions from outside sources via disper-

sal whereas established outbreaks relies on adjacent sources (Safranyik, 2004; Aukema

et al., 2008; Nelson et al., 2018).

Among weather factors, temperatures have the greatest impact on MPB population

life-history. Warm winter temperatures allow MPB individuals in endemic phase to

survive the cold season in greater proportions, thereby potentially increasing their pop-

ulation size to outbreak levels (Aukema et al., 2008; Preisler et al., 2012; Sambaraju

et al., 2012; Creeden et al., 2014). However, cold snaps in fall or early spring, or gener-

ally lower winter temperatures, can lead to outbreak collapse (Safranyik, 2004; Creeden

et al., 2014). Average temperatures over the year as well as spring and summer tem-

peratures are indicators of beetle development rate and timing. Warmer temperatures

allow individuals to complete their life-cycle (Preisler et al., 2012; Creeden et al., 2014)

and high temperatures during flight periods increase attack success rate by increas-

ing spatial synchrony (Aukema et al., 2008). However, excessively high temperatures

during the summer can decrease emergence rate as well as dispersal success (McCam-

bridge, 1971; Safranyik & Carroll, 2006). In summary, warm temperatures are crucial

to MPB development but this positive effect on MPB infestation can be counteracted

when temperatures become too high for successful emergence and dispersal.

Rainfall is also an essential weather factor governing MPB populations. Water deficit

lowers pine defenses against MPB attacks (Erbilgin et al., 2017b). Therefore, drought

can help MPB endemic populations successfully attack sufficient trees to increase their

population size to outbreak levels (Safranyik, 2004; Aukema et al., 2008). However, it

is also necessary to have abundant vigorous trees for a successful outbreak (Safranyik,
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2004; Nelson et al., 2018) and tree vigour can be reduced by drought (Matthews et al.,

2018). Nonetheless, drought may not be sufficient to decrease vigour levels to the point

of a suppressed outbreak. For example, entire outbreaks in western US were exposed

to drought (Creeden et al., 2014). Therefore, the timing and intensity of drought can

either help or hinder MPB populations.

Much of our understanding of the ecological and environmental factors governing MPB

outbreaks come from the conceptual and observational work synthesized by Safranyik,

Carroll and coworkers (Safranyik, 2004; Safranyik & Carroll, 2006). However, a deeper

quantitative analysis requires detailed connections between models and data via statis-

tical inference. Such analyses exist, but, to date, have employed large spatial scales,

typically with different sub-regions in different outbreak stages (Aukema et al., 2008;

Preisler et al., 2012). To the best of our knowledge, there has been no local-scale

statistical analysis of ecological and environmental factors governing MPB outbreaks,

from onset to collapse, where the outbreak phases are relatively synchronized across

the study site. The recent Cypress Hills MPB outbreak in Saskatchewan provides a

unique opportunity to do this very thing. Located far from the main lodgepole pine

range, the Cypress Hills MPB infestation is isolated from other outbreaks. The Cypress

Hills park spatial scale (184 km2) is such that the outbreak phases have been relatively

synchronized spatially. The data set is very high quality as the region was completely

censused for MPB infection yearly from the onset in 2006 up to the current collapse in

2018. This provides a unique opportunity to follow a single outbreak in a fixed location

at a small spatial scale, and to perform a comprehensive statistical analysis of ecological

and environmental factors influencing each outbreak phase.

Our study aims to 1) determine the local ecological and environmental factors driving

MPB presence for the different phases of an outbreak (onset, peak, and collapse) in a

forest managed for MPB, 2) assess the degree to which the models predict MPB presence

for each outbreak phase, and 3) show how selected factors have differing impacts on

MPB presence depending on the outbreak phase. For each phase, we hypothesized
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that MPB presence depends on a combination of weather, beetle pressure, control, and

host-related variables. We model those relationships using logistic regressions during

the onset, peak, and collapse phases of one MPB outbreak studied in the Cypress Hills

interprovincial park in Saskatchewan, Canada.

4.2 Material and methods

4.2.1 Study area and data

We use data from the Saskatchewan portion of the Cypress Hills interprovincial park,

located at the border between the provinces of Alberta and Saskatchewan, Canada.

This portion of the park covers 184 km2. MPB infestation data and ecological and

environmental covariates from this region provide an opportunity to connect local fac-

tors to outbreak phases. These data were studied in Kunegel-Lion et al. (2019), so our

discussion of the study area follows this reference closely. The Forest Service Branch of

the Saskatchewan Ministry of Environment has implemented a “zero-tolerance” policy

as of 2006, designed to catch and control as many newly infested trees as possible. The

policy operates according to the following procedure. In early fall, after MPB have

colonized new trees, an aerial survey of the park extent is conducted to collect geo-

referenced data on potential red-top trees, which are dead or dying trees infested by

MPB the previous year. These are later ground-truthed for MPB attacks. Then, 50

meter-radius circular survey plots are drawn around each of the red-top trees confirmed

to have been killed by MPB. The survey plots are searched for infested trees, which

are trees recently attacked by MPB during the summer. These are later controlled in

late fall/winter, which usually consists of felling and burning massively infested trees or

peeling the bark of trees presenting lower numbers of MPB larvae, ensuring that beetles

are killed. In addition to these measures, areas presenting high densities of red-top trees

are entirely surveyed and controlled. Although a small number of bait trees were used

during the study period, our understanding is that this process would likely not change

which stands are attacked as the area of effect of the bait is within a stand.
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The ecological and environmental covariates and the infestation response values were

distributed discretely in space and time. We applied a grid of 18 317 cells of size

100×100 meters to the Cypress Hills park extent. This cell size was chosen to match

the size of the management surveys. The fact that a cell’s area (10 000 m2) and a search

plot’s area (7 854 m2) are the same order of magnitude make the analogy between grid

cell and survey plot possible. For each cell for each year, the observation consisted of a

set of ecological and environmental covariates plus the response variable. The response

variable was the presence/absence of MPB derived from the presence/absence of infested

trees in each cell of the grid based on data from the Forest Service ground survey

(Saskatchewan Ministry of Environment, 2016). From these Forest Service surveys, we

obtained the locations of infestations controlled by managers and we deduced which

trees had been infested in the previous year using the red-top trees. Part of the red-

top tree data consists of infested zones and not actual tree locations. Therefore, we

deduced the presence/absence of MPB in each cell from the location of infested trees

or the overlap of an infested zone with the cell.

At the time of this study, the Forest Service had consistently recorded the mountain

pine beetle outbreak from 2006 to 2018. We divided these data into outbreak phases

and trained and validated the models separately for each phase. The phases were

defined as follow: 1) outbreak onset from 2006 to 2011, the number of infested cells

increases; 2) outbreak peak from 2012 to 2013, the number of infested cells is high and

relatively constant; and 3) outbreak collapse from 2014 to 2018, the number of infested

cells decreases (Fig. 4.2).

We chose the ecological and environmental covariates to represent as much as possible

each of the processes described in the introduction. To consider the fact that the

MPB’s emergence and dispersal is reduced with high temperatures and its survival is

compromised if the early stages–developing in fall and winter–are exposed to extreme

temperatures (Cole, 1981; Safranyik & Carroll, 2006; Régnière & Bentz, 2007), we

included the covariates highest maximum daily temperature during July and August

and cold tolerance from Régnière & Bentz (2007). The number of degree-days above
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Figure 4.2 – Number of infested trees over time. The darker grey represents the outbreak
onset. The grey represents the outbreak peak. The white represents the outbreak collapse.
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5.5°C over the year represents MPB development rate and timing. The average daily

wind speed in July and August represents the MPB long-distance dispersal dependence

on wind (Safranyik & Carroll, 2006; Robertson et al., 2007). To consider the fact that

drought–especially in spring–reduces pines’ ability to defend themselves and increase

MPB attacks’ success rate (Safranyik, 1978; Lusebrink et al., 2016), we included the

average daily relative humidity in spring. We also included the covariates pine cover,

pine height, and pine age to consider the impact of host tree abundance and size on

MPB infestation (Safranyik & Carroll, 2006).

The levels of beetle from a given year can be divided into uncontrolled infestation

(Iu) and controlled infestation (Ic). Details of these variables are given in Table 4.1.

The control was undertaken by managers from the Saskatchewan Forest service under a

zero-tolerance policy. However, some infested trees inevitably remained undetected and

these were identified as red-tops in the following year. Beetles from these uncontrolled

infestations can disperse short distances within and between cells, and thus provide

the beetle pressure for new infestations. The MPB presence two years prior to the

observation is not included as MPB is generally univoltine (Bentz & Powell, 2014),

so we assume that an infested tree can only be a source of beetle for the following

year and not the years after that. We also included the distance to the park southern

border, which was close to external infestations not managed by the Forest Service and

potential sources of MPB. Finally, it is possible to calculate the total infestation by

adding the uncontrolled and controlled infestations.

Lastly, we included the northerness and easterness of the slope as it can address bias

in MPB dispersal due to the spatial configuration and wind direction.

We estimated weather variables with the BioSIM software (Régnière et al., 2014) at

the location of each grid cell centroid using topography data from the Canadian Digital

Elevation Map downloaded from the Geogratis website (geogratis.cgdi.gc.ca).

The vegetation data was derived from Beaudoin et al. (2014). The authors computed,

for each cell of a grid, the coverage of various species of pines and the leading species

height and age from 2001 and 2011 MODIS imagery. To calculate the pine height and
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Table 4.1 – Description of the variables used in the models.

Name Description

Tmax Highest maximum daily temperature during July and August

RH Average daily relative humidity in spring

CT Cold tolerance from Régnière & Bentz (2007)

Cover Percentage of pine cover

Height Pine height in meters

Ic

Previous-year controlled MPB infestation level in a 3-cell radius
around each location
Ic = number of infested cells with all trees controlled at the same
location + 0.5 × number of infested cells with all trees controlled in
radius 1 + 0.25 × number of infested cells with all trees controlled
in radius 2 + 0.125 × number of infested cells with all trees
controlled in radius 3 (Fig. 4.3)

Iu

Previous-year uncontrolled MPB infestation level in a 3-cell radius
around each location
Iu = number of infested cells with uncontrolled trees at the same
location + 0.5 × number of infested cells with uncontrolled trees in
radius 1 + 0.25 × number of infested cells with uncontrolled trees in
radius 2 + 0.125 × number of infested cells with uncontrolled trees
in radius 3 (Fig. 4.3)

Dist Distance to the park southern border close to external infestations
(Fig. 4.4)

N Northerness: spatial property of a slope to face North

E Easterness: spatial property of a slope to face East
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Figure 4.3 – Representation of the adjacent cells taken into account in the covariates (cf.
Table 4.1). White: focus cell; dark grey: 4 adjacent cells (radius 1); medium grey: next 8
adjacent cells (radius 2); light grey: next 16 adjacent cells (radius 3). Based on Kunegel-Lion
et al. (2019).

Figure 4.4 – Cypress Hills park boundaries in Saskatchewan (grey). The dashed red line
represents the park border close to outside infestations in the South. Based on Kunegel-Lion
et al. (2019).
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age, we used the leading species values when the pine cover was more than 50%. We

spatially interpolated the vegetation variables values at the location of our grid cell

centroids using bicubic spline interpolation with the interp function of the R package

akima (Akima & Gebhardt, 2016). Since the data were only available for 2001 and

2011, the vegetation variables were linearly interpolated over our study period.

4.2.2 Data analysis

In this study, we 1) test the hypothesis that MPB presence depends on a combination

of weather, vegetation, topography, and beetle and host-related variables, 2) select

relevant variables for each outbreak phase, and 3) show whether the selected variables

have a different impact on MPB presence depending on the outbreak phase.

To test the hypothesis that MPB presence depends on a combination of weather, vege-

tation, topography, and beetle and host-related variables, we used a logistic regression

where the probability of MPB presence π(β) depend on parameters βi and ecological

and environmental covariates Xi, described in the previous section, as defined by

π(β) =
eβ0+

∑
βiXi

1 + eβ0+
∑

βiXi
. (4.1)

We trained the logistic regressions on each phase separately using the train function

of the R package caret (R Core Team, 2018; Kuhn, 2018).

For each outbreak phase, we implemented a multiple working hypothesis approach. We

used the exhaustive enumeration of subsets method (Sokal & Rohlf, 1995). This method

compares all possible combinations of the covariates and selects the best models among

the ones sharing the same number of covariates. We selected the best model overall

and the best model per number of covariates using the Bayesian Information Criterion

(BIC; Schwarz, 1978). With our goal of determining which factors are associated with

MPB infestation at each outbreak phase, we chose the BIC over the Akaike Informa-

tion Criterion (AIC; Akaike, 1974) for model comparison. This is because BIC is better

indicator of the “true” model whereas AIC is more suited to determine which models
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should be used for predictions (Ghosh & Samanta, 2001; Elliott & Brook, 2007; Aho

et al., 2014). Additionally, our number of observations was very large (238 121 obser-

vations) compared to the parameter space (11 parameters) which also favours the BIC

over the AIC. As with the AIC index, a low BIC means a good trade-off between the

goodness of fit of the model and model complexity. Two models with a BIC difference

less or equal to 2 are considered indistinguishable whereas a BIC difference of 8 or more

provides strong evidence for the model with lower BIC (Burnham & Anderson, 2002;

Potapov et al., 2011).

To be able to differentiate the effect of each covariate, we removed highly correlated

covariates (|ρ| > 0.6) from our analysis and we also removed combinations of covariates

with a variance inflation factor (VIF) greater than 10 to handle the potential remaining

multicollinearity (Kutner et al., 2004). Therefore, we did not include the number of

degree-days in the analysis as it was correlated with the maximum temperature (ρ =

0.68) over the entire time period. This can also be justified by the fact that the minimum

number of degree-days above 5.5°C needed for MPB development (833; Safranyik et al.,

1975; Carroll et al., 2006; Safranyik et al., 2010) was always exceeded, with observed

degree-days of 1054 and higher. Furthermore, high numbers of degree-days is not an

issue with respect to inducing multivoltinism as this is rarely present in MPB (Bentz

& Powell, 2014). We also did not include the wind speed, which was highly correlated

with the distance to the park southern border (ρ = −0.73) over the entire time period.

Indeed, both of these covariates can be connected to the impact on the infestation of

the possible sources of MPB outside the park limits, which were not recorded. As might

be expected, pine height and age were also correlated (ρ = 0.95). Therefore, we only

kept pine height in our analyses. Note that the correlation coefficient for the controlled

and uncontrolled infestations is 0.26, therefore the impact of these covariates on the

infestation should be possible to differentiate.

To assess the performance of the selected models, we performed cross-validation with

folds defined by year. For each outbreak phase, we tested the accuracy of the selected

models on the test sets using the area under the receiver operating characteristic curve
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(AUROC; Metz, 1978; Bradley, 1997) and the area under the precision-recall curve

(AUPR; Raghavan et al., 1989; Saito & Rehmsmeier, 2015).

A receiver operating characteristic (ROC) curve (Metz, 1978) depicts, for a range of

probability thresholds, the true positive rate (or 1 - false negative rate, also referred to as

sensitivity or recall) against the false positive rate (also referred to as 1 - specificity). A

precision-recall curve (Raghavan et al., 1989) depicts, for a range of probability thresh-

olds, the proportion of true positives amongst the positive predictions (also referred

to as precision or positive predictive value) against the true positive rate (sensitiv-

ity/recall). For the reader’s convenience, more details on how to calculate these indices

are given in Appendix G.

A high AUROC or AUPR (0 ≤ AUROC/AUPR ≤ 1) represents a good performance

of a binary classifier in terms of correspondence between observed and predicted values.

A null model has an AUROC of 0.5 and a AUPR value equals to the proportion of

positive outcomes in the data. The precision-recall curve is more informative than the

ROC curve for imbalanced data sets (Davis & Goadrich, 2006; Saito & Rehmsmeier,

2015) which is the case here as the rate of 0 to 1 in our three data sets is between 40:1

and 95:1.

To show whether the selected covariates have a different impact depending on the

outbreak phase, we compared the order of importance of the standardized estimates

βi. Within a model, a large negative or positive βi has, respectively, a large negative

or positive impact on MPB presence whereas a small βi has a small impact on MPB

presence.

4.3 Results

For the outbreak onset, the best model used nine covariates: northerness, maximum

temperature in July and August, relative humidity, cold tolerance, distance to the

infested border, pine cover, pine height, and controlled and uncontrolled infestations

(BIC = 8583.6; Table 4.2). However, the model without northerness or pine height gave
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a ∆BIC < 8, casting doubt on the importance of these indices on the MPB presence

for the onset.

For the peak of the outbreak, the best model used 5 covariates: easterness, maximum

temperature in July and August, pine height, and controlled and uncontrolled infesta-

tions (BIC = 5500.9; Table 4.3). However, the model with the covariate cold tolerance

instead of easterness had ∆BIC < 8 which implies that cold tolerance and easterness

could be interchanged.

The best model for the outbreak collapse used 5 covariates: maximum temperature

in July and August, relative humidity in spring, distance to the infested border, and

controlled and uncontrolled infestations (BIC = 7436.9; Table 4.4). However, the model

without the maximum temperature gave a ∆BIC < 8, casting doubt on the importance

of this variable on the MPB presence for the collapse.

For each phase, the selected models have high AUROC indicating a high level of pre-

dictive ability (AUROConset = 0.874, AUROCpeak = 0.913, and AUROCcollapse = 0.936;

Tables 4.2–4.4). Compared to the null models, the AUPR values are consistent with the

higher AUROC values (AUPRonset = 0.174 with AUPRnull = 0.010, AUPRpeak = 0.427

with AUPRnull = 0.024, AUPRcollapse = 0.306 with AUPRnull = 0.011; Tables 4.2 to

4.4). The relatively high AUPR values show that the models predict well MPB pres-

ence without potentially wasting too much management resources on false alerts, which

are incorrectly-predicted MPB presence.

For the outbreak onset, the order of the covariates by importance (absolute standard-

ized estimates) is: maximum temperature in July and August, distance to the infested

border, cold tolerance, uncontrolled infestations, relative humidity in spring, pine cover,

controlled infestations, pine height, northerness (Fig. 4.5). The order and the selected

covariates differ from the peak: uncontrolled infestations, pine height, easterness, max-

imum temperature in July and August, controlled infestations, and the collapse: un-

controlled infestations, controlled infestations, relative humidity in spring, distance to

the infested border, maximum temperature in July and August (Fig. 4.5).
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Table 4.2 – Comparison of the models’ BIC, AUROC, and AUPR for the outbreak onset.
All models are compared to the one with the lowest BIC using ∆BIC. For each number of
variables, we show the best model in black and competing models with a difference of BIC
≤ 8 in grey. The model in bold is the one selected from the ∆BIC ≤ 2. “AUROC” stands for
the area under the ROC curve, “AUPR” stands for the area under the precision-recall curve.

Size Selected variables VIFmax BIC ∆BIC AUROC AUPR
0 null 12705.2 4121.6 0.500 0.010
1 Iu 1.0 10121.8 1538.3 0.650 0.154
2 Iu, Ic 1.0 9400.6 817.1 0.683 0.184
3 Tmax, Iu, Ic 1.1 8929.6 346.0 0.797 0.172
4 Tmax, Dist, Iu, Ic 1.2 8769.1 185.5 0.873 0.183
5 Tmax, CT, Dist, Iu, Ic 1.7 8661.0 77.4 0.867 0.182
6 Tmax, CT, Dist, Cover, Iu, Ic 1.7 8628.7 45.1 0.874 0.181
7 Tmax, RH, CT, Dist, Cover, Iu, Ic 3.0 8592.0 8.4 0.870 0.180
8 N, Tmax, RH, CT, Dist, Cover, Iu, Ic 3.0 8587.5 4.0 0.873 0.176
8 Tmax, RH, CT, Dist, Cover, Height, Iu, Ic 3.0 8589.9 6.3 0.871 0.178
9 N, Tmax, RH, CT, Dist, Cover, Height, Iu, Ic 3.0 8583.6 0.0 0.874 0.174
10 N, E, Tmax, RH, CT, Dist, Cover, Height, Iu, Ic 3.0 8594.8 11.2 0.874 0.173

Table 4.3 – Comparison of the models’ BIC, AUROC, and AUPR for the outbreak peak.
All models are compared to the one with the lowest BIC using ∆BIC. For each number of
variables, we show the best model in black and competing models with a difference of BIC ≤ 8
in grey. The models in bold are the ones selected from the ∆BIC ≤ 2. “AUROC” stands for
the area under the ROC curve, “AUPR” stands for the area under the precision-recall curve.

Size Selected variables VIFmax BIC ∆BIC AUROC AUPR
0 null 8341.5 2842.1 0.500 0.024
1 Iu 1.0 5557.7 58.3 0.879 0.436
2 Height, Iu 1.0 5540.7 41.3 0.902 0.430
3 Height, Iu, Ic 1.4 5520.4 21.0 0.907 0.427
4 E, Height, Iu, Ic 1.4 5507.8 8.4 0.907 0.429
5 E, Tmax, Height, Iu, Ic 1.4 5500.9 1.5 0.913 0.427
5 Tmax, CT, Height, Iu, Ic 3.1 5505.1 5.7 0.904 0.416
6 E, Tmax, CT, Height, Iu, Ic 3.1 5499.4 0.0 0.909 0.421
7 E, Tmax, CT, Cover, Height, Iu, Ic 3.2 5505.9 6.6 0.909 0.419
8 E, Tmax, CT, Dist, Cover, Height, Iu, Ic 3.4 5514.7 15.3 0.908 0.419
9 N, E, Tmax, CT, Dist, Cover, Height, Iu, Ic 3.5 5524.3 24.9 0.906 0.422
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Table 4.4 – Comparison of the models’ BIC, AUROC, and AUPR for the outbreak collapse.
All models are compared to the one with the lowest BIC using ∆BIC. For each number of
variables, we show the best model in black and competing models with a difference of BIC
≤ 8 in grey. The model in bold is the one selected from the ∆BIC ≤ 2. “AUROC” stands for
the area under the ROC curve, “AUPR” stands for the area under the precision-recall curve.

Size Selected variables VIFmax BIC ∆BIC AUROC AUPR
0 null 11071.0 3634.1 0.500 0.011
1 Iu 1.0 8182.2 745.3 0.864 0.264
2 Iu, Ic 1.0 7498.5 61.6 0.929 0.306
3 RH, Iu, Ic 1.0 7465.1 28.2 0.925 0.305
4 RH, Dist, Iu, Ic 1.1 7443.9 6.9 0.932 0.305
5 Tmax, RH, Dist, Iu, Ic 1.1 7436.9 0.0 0.936 0.306
6 Tmax, RH, Dist, Cover, Iu, Ic 1.1 7443.5 6.5 0.936 0.304
7 E, Tmax, RH, Dist, Cover, Iu, Ic 1.1 7453.0 16.1 0.935 0.302
8 N, E, Tmax, RH, Dist, Cover, Iu, Ic 1.1 7463.8 26.9 0.935 0.301
9 N, E, Tmax, RH, Dist, Cover, Height, Iu, Ic 1.2 7474.9 37.9 0.934 0.301
10 N, E, Tmax, RH, CT, Dist, Cover, Height, Iu, Ic 2.0 7486.2 49.2 0.935 0.302
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Some covariates have a negative impact on MPB presence. A larger distance to the

infested border or a higher maximum temperature in summer decreases the probability

of infestation in a cell (Fig. 4.5). Other covariates have a positive impact on MPB

presence. A larger nearby controlled or uncontrolled infestation, higher pine cover,

larger pine height, northerness, or easterness increases the probability of infestation in

a cell (Fig. 4.5). The relative humidity has both a positive impact of MPB presence at

the onset and a negative impact at the collapse. However, this covariate has a relatively

low impact at the onset (Fig. 4.5).

We can visually characterize the spatial patterns of infestations for each outbreak phase.

During the onset, there are few large areas with high infestation risk and they are

directly adjacent to the park infested border (Fig. 4.6). However, other smaller areas

at risk are present in the rest of the park. During the peak, more large areas with high

risk of infestation arise and they are located nearby previous infestations rather than

adjacent to the park infested border (Fig. 4.6). Note that since the first areas with

high infestation risk were close to this border, most areas at risk during the peak are

still located in the same general region. During the collapse, the areas with high risk of

infestation generally decrease in size but locations similar to the ones during the peak

are at risk (Fig. 4.6).
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Figure 4.5 – Standardized estimates (± standard error) for each selected model by outbreak
phases. Variables in white have weak evidence from ∆BIC (see Tables 4.2 to 4.4).
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4.4 Discussion

Our analyses showed how the impact of environmental variables on MPB infestation

change with the outbreak phase in a forest managed for MPB. The selected models

showed high AUROC values and relatively high AUPR values compared to the null

models suggesting, respectively, good predictive abilities overall and good predictions

of MPB presence while avoiding false alerts. Therefore most variables driving MPB

infestations are likely included in the models.

Parameters related to dispersal (distance to external sources, ability to emerge and fly

restrained by high temperatures, source of beetle from the neighbouring uncontrolled

trees) were shown to always have a major impact on MPB infestation, as expected.

This is especially true at the outbreak onset. The source of beetles shifts from the

infested border during the onset to nearby uncontrolled infested trees as beetles establish

themselves in patches at the peak and collapse phases.

Parameters related to the host quality (pine height, pine defense ability restrained

by low relative humidity) have a non-negligible impact on MPB infestation. During

the peak, beetles show a preference for taller trees whereas at the collapse, when the

total MPB population size decreases, beetles show a preference for trees with weaker

defenses.

Parameters related to the habitat quality (direction of the slope, range of winter tem-

peratures allowing beetle survival, host availability, infestation history) also have a

non-negligible impact on MPB infestation. At the onset, beetles favoured areas with

advantageous ranges of winter temperatures. During the peak, beetles were successful

in locations oriented to the East. During the collapse, beetles favoured trees with a

history of MPB infestation in the neighbourhood.

It is generally known that the transition from endemic to epidemic population size is

usually due to 1) the relaxation of biotic and abiotic factors impacting beetle mor-

tality such as weaker trees and warmer winter temperatures and/or 2) beetle flights
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from outside sources (Safranyik, 2004; Carroll et al., 2006; Aukema et al., 2008; Nelson

et al., 2018). In this study, MPB infestation is driven mostly by the beetles’ disper-

sal ability during the onset. Here, the impact of the maximum summer temperature

seems to reflect the negative effect of high temperatures on beetle emergence and flight

(McCambridge, 1971) and not the positive effect of beetle development and spatial syn-

chrony (Aukema et al., 2008). Beetle development rate by itself could not be tested in

this study because of the high correlation between the number of degree-days over the

year and the maximum summer temperature. There is also evidence for higher winter

survival due to cold tolerance but no evidence of weaker trees. So, in Cypress Hills,

during the onset, population increase is mostly due to incoming flights from outside the

park and warmer winter temperatures.

During the outbreak peak, our findings show that the main factors governing MPB

presence are a high level of beetle pressure and history along with low maximum sum-

mer temperatures. The importance of beetle pressure and history has also been widely

found in previous studies (Safranyik, 2004; Aukema et al., 2008; Preisler et al., 2012).

Furthermore, MPB attacks are successful in areas with taller trees. Given the pos-

itive relationship between tree diameter and height, this result agrees with the fact

that sufficient large and vigorous pines are necessary to sustain high epidemic popula-

tion size (Safranyik, 2004). No evidence of low relative humidity in spring–indicating

drought–was found during the peak which agrees with Safranyik (2004) but disagree

with Creeden et al. (2014). This factor shows the importance of drought which, by

impacting trees and their ability to produce toxic resin, facilitate MPB attacks success.

In summary, at the outbreak peak, MPB infestation depends mainly on the availability

of nearby beetle sources and, to a smaller extent, favourable weather conditions and

habitat quality.

At the collapse, MPB infestation is negatively impacted by relative humidity in spring

which could mean that individuals start targeting less vigorous trees. During this

phase, pines encountered lower relative humidity than in the two previous phases with

an overall decrease in pine cover. This loss of large and healthy trees is usually what is
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thought to drive an outbreak collapse back to endemic levels in addition to cold snaps

in fall and early spring (Safranyik, 2004; Creeden et al., 2014; Nelson et al., 2018).

In this study, there is no evidence of cold tolerance impacting MPB presence during

the collapse. Therefore, the MPB outbreak collapse in Cypress Hills is linked to the

decrease in susceptible pines.

As expected, the presence of uncontrolled trees in a neighbourhood has a positive im-

pact on MPB presence by providing a source of beetles for the following year. Perhaps

surprisingly, this positive impact on MPB presence was also seen for entirely controlled

cells, albeit at a lower level. We interpret this as being correlative but not causal, and

arising from the MPB showing a preference for certain environmental conditions. These

conditions persist from year-to-year even after the MPB-infested trees are controlled.

Good management reduces effectively the likeliness of infestation, since controlled in-

festations always have a lower impact than the presence of uncontrolled trees.

A limitation of this work comes from the fact that we are working with presence/absence

in cells and not actual numbers of infested trees or beetles. Carroll et al. (2006) mentions

that the number of infested trees is a good proxy for the beetle population size. Our

use of presence/absence instead of number of infested trees does, however, allow us to

deal with the issue that a small part of the data is expressed as infested zones and not

actual tree locations.

Some ecological factors influencing MPB infestations, such as predators and competi-

tors, were not available and therefore were not included in this analysis. These factors

are not as readily and broadly available as weather variables, and thus are often not

included in analyses. Other factors linked to host and stand characteristics were only

available for a couple of years within our study period. Therefore, they were largely

estimated. However, future work should focus on gathering such data and analyzing the

impact of MPB predators and competitors, along with stand characteristics, on MPB

location (see also Safranyik, 1999; Smith et al., 2011; Krause et al., 2018).

Finally, when determining the outbreak phases, we considered the outbreak status in
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Cypress Hills as a whole instead of differentiating the status of each cell. For example,

some cells could be newly infested during the outbreak peak or collapse. However, since

the study area is small, it makes sense to see the outbreak as a whole as factors usually

have larger yearly variations than within-year variations.

To conclude, the impact of weather, vegetation, and beetle or host-related factors on

MPB infestations were shown to vary in a clear, ecologically interpretable manner

during an outbreak. This gives managers guidance regarding which stands to focus

on for an efficient control. For example, they could use the risk probability maps to

inform survey locations (Kunegel-Lion et al., 2019). These results also point out that

the predictive ability of models using data from an incomplete outbreak to determine

future infestations may be limited. Indeed, with such a change in the factor impacts

from an outbreak phase to another, the predictions for a specific phase should be biased

if model training is done with data from another phase. However, while the size of

impact does change, the direction of impact of any given covariate seldom changes as

a function of the outbreak phase so this may limit prediction error.
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Chapter 5

Mountain pine beetle outbreak

duration and pine mortality depend

on control effort

5.1 Introduction

Bark beetle outbreaks are a major threat for western North American pine forests, im-

pacting tens of thousands of square kilometers (Romme et al., 1986; Fettig & Hilszcza-

ński, 2015). Beetle epidemic populations caused a decline of pine forests and changes

in forest structure and composition, eventually leading to significant economic losses

(Diskin et al., 2011; Walton, 2013). Detection of infested trees is typically via aerial

surveys, ground-based surveys, or a combination of the two (Fettig & Hilszczański,

2015). Managers employ various control tactics to reduce levels of tree mortality and

these can be divided divided into indirect–or preventive–and direct methods. The po-

tential of direct control methods to be effective depends on the ability to detect bark

beetle infestations. In turn, the level of direct control impacts outbreak duration and

the extent of tree mortality. In this paper, we focus on direct control.

Several bark beetle species are capable of causing significant levels of tree mortality.
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Among them are the European spruce beetle, Ips typographus, infesting various species

of spruce in central Europe, the spruce beetle, Dendroctonus rufipennis, affecting forests

of spruce trees in North America, the southern pine beetle, Dendroctonus frontalis, par-

ticularly active in pine forests in Central America and southeastern North America, and

the mountain pine beetle, Dendroctonus ponderosae, which is causing significant losses

in western North America. These species are responsible for extensive ecological and

economic damages triggering intensive control in many geographical locations.

To obtain the necessary information on beetle locations and implement control methods,

managers carry out aerial and ground-based surveys. Aerial surveys often are efficient

for detecting previously or, in rare cases, currently infested trees (Fettig & Hilszcza-

ński, 2015). On the other hand, ground -based surveys are the primary methods used

to identify currently infested trees. Using aerial surveys of previously infested trees to

inform ground-based surveys allows managers to direct detection resources to suscep-

tible locations by using the propensity of beetles to engage in short-distance dispersal

from the previously infested trees to attack new trees (Safranyik & Carroll, 2006).

Once an outbreak is detected, preventive measures can be implemented in high-risk

locations and direct control can be implemented by removing live broods from the

environment. Preventive methods focus on making the environment less susceptible

to bark beetles. For example, thinning reduces the number of susceptible trees but

also induces changes in micro-climate which impact the beetle’s life cycle (Fettig &

Hilszczański, 2015). By way of contrast, direct control aims to actively reduce beetle

population and slow beetle spread, for example, by felling and burning infested trees.

Several studies have compared different direct control methods (e.g. Nelson et al., 2006;

Seidl et al., 2008; Strom & Clarke, 2011). The methods can have different control

efficiency due either to a different detection rate or to a different removal success. With

the assumption that the number of infested trees is a good proxy for beetle population

size (Safranyik, 1988; Carroll et al., 2006), using the number of infested trees removed

from the environment allows for a fair comparison of methods.

In this paper, we focus on mountain pine beetle outbreaks in Cypress Hills, Saskatchewan.
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Mountain pine beetles have a one-year life cycle (Safranyik & Carroll, 2006). During

the summer, adults emerge and attack new pines by drilling galleries under the bark.

There, they mate and females lay eggs. The new generation overwinters as larvae before

resuming their development to adult stage in the summer. Adults usually do not sur-

vive the winter. During outbreaks, mountain pine beetle individuals typically present

a mass attack behaviour where they coordinate their effort using pheromones to attack

large and healthy pines in sufficient number to overwhelm their defences (Safranyik &

Carroll, 2006). The mountain pine beetle’s main host in western North America is the

lodgepole pine (Pinus contorta) although it is a threat for almost every pine species

(Safranyik & Carroll, 2006).

The efficacy of direct control of mountain pine beetle outbreaks is disputed: while some

studies report significant reduction in the levels of tree mortality due to direct control,

others notice little to no effect compared to uncontrolled areas (Six et al., 2014). For

example, Wulder et al. (2009) reported that control activities slowed the rate of increase

of infested trees compared to no control. However, Trzcinski & Reid (2008) reported

that beetle populations continued to increase at the same rate in treated and untreated

areas and that between 45% and 79% of infested trees were left undetected in the

treated area. It is generally accepted that extremely high detection and control rates

are required to eradicate mountain pine beetle outbreaks (Six et al., 2014).

In order to obtain quantitative information on the shape of the relationship between

control rates and mountain pine beetle outbreaks, Carroll et al. (2006) built a simple

and aspatial theoretical framework describing the proportion of infested trees that must

be treated to maintain a constant beetle population size P as a function of the yearly

rate of increase of infested trees R:

P = 1− 1/R. (5.1)

Combined with the following geometric growth population model of beetle population

N at time t

Nt = N0

(
R(1− Pa)

)t (5.2)
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where Pa is the actual proportion of infested trees treated, they were able to show,

theoretically, how many years of sustained control effort is necessary to achieve out-

break suppression depending on the rate of increase and the control effort. Indeed,

when the actual proportion of infested trees treated Pa reaches the proportion of in-

fested trees that must be treated P , Eq. 5.2 becomes Nt = N0. While this gives useful

insights, it does not fully account for spatial and temporal heterogeneities found in

natural environments. In turn, these translate into heterogeneities for infestations. For

example, variations in temperatures, host densities, or host vigour impact beetle life

cycles (Safranyik & Carroll, 2006) and thus, the rate of increase of infested trees. In

addition, natural outbreaks are typically not isolated in space, making them susceptible

to rebound even under control. Thus, there is the need for evaluation of control in spa-

tially and temporally variable environments by coupling theoretical models to detailed

data regarding environmental conditions and infestation levels.

In this study, we analyze quantitatively the impact of control effort on bark beetle and

pine populations under the influence of a spatially and temporally changing environment

with beetle intake from outside sources. The objectives are: 1) to build a semi-empirical

model of infestation, 2) to simulate outbreaks under different control rates, and 3) to

explore the impact of control effort on beetle and pine population sizes. To do so, we

use exhaustive mountain pine beetle infestation data from the Cypress Hills area and

simulate outbreaks using observed environmental variable values.

5.2 Material and methods

5.2.1 Study organism, area, and data

The data used to calculate the pine population growth rate, parametrize the predic-

tive model, and initiate the simulation model comes from the mountain pine beetle

infestation in the Saskatchewan portion of Cypress Hills interprovincial park. This

park is located at the border between the provinces of Saskatchewan and Alberta. The

Saskatchewan portion of the park is divided in two sections that are 20-km apart. Their
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combined extent covers 184 km2.

The Saskatchewan Forest Service is responsible for managing mountain pine beetles in

the Saskatchewan portion of the park. To do so, they survey the park every year to

locate infested trees and control them (Saskatchewan Ministry of Environment, 2016).

First, a complete aerial survey of the park extent is performed in order to detect red-top

trees. Red-top trees are the dying trees infested by mountain pine beetle in the previous

year and they typically do not carry live broods anymore. Second, circular surveys with

a radius of 50 meters are conducted around each red-top tree to find trees currently

infested by live brood. Finally, the infested trees that are detected are then controlled,

principally using a fall and burn tactic to ensure that beetles are killed. However, in

some areas, red-top trees are clustered together. To thoroughly survey these areas,

polygons are delineated around each red-top trees cluster. The extent of each polygon

is then entirely checked for infested trees using line surveys. All detected infested trees

are controlled. Polygon locations and shapes typically change from one year to the

other. However, they are consistently located in the same highly infested and therefore

highly surveyed areas. The Forest Service has been following this procedure since the

mountain pine beetle infestation was detected in 2006 up to the current collapse in

2018. In summary, we obtained the following data for each year: locations of red-top

trees, locations and shapes of polygons, number of infested trees for each circular survey,

locations of infested trees within the polygons.

To get an estimate of all of the infested trees location for every year, we used the

following method. For the controlled infested trees found in circular survey plot (called

type C1), we used the location of the plot’s centroid. For the controlled infested trees

found in line surveys (i.e. within polygons, called type C2), we used the exact location

of the infested trees. For the uncontrolled infested trees that were missed at year t,

became red-top trees at year t+1 and were not part of a polygon at year t+1 (called type

U1), we used the exact location of the red-top trees at year t+ 1. For the uncontrolled

infested trees that were missed at year t, became red-top trees at year t + 1 and were

part of a polygon at year t + 1 (called type U2), we first assumed that the proportion
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of uncontrolled infested trees within these highly surveyed areas is 0.11 (Kunegel-Lion

et al., 2019). Therefore, the proportion of controlled infested trees is 1 − 0.11 = 0.89.

Using these proportions, the number of controlled trees is equal to 0.89 × the number

of infested trees. So, the number of infested trees is the number of controlled trees

/ 0.89. Therefore, the number of uncontrolled infested trees is

# uncontrolled infested trees = 0.11× # infested trees

= 0.11× # controlled infested trees
0.89

(5.3)

Second, using Eq. 5.3, we modelled, for each t+1 polygon, the number of infested trees

that would have been missed and fell within the polygon areas at year t+1 as a Poisson

random variable with mean equal to the number of uncontrolled infested trees at t that

fall into a t+ 1 polygon. Third, we randomly distribute in space the U2 infested trees

in each polygon area. In total, we had 2672 trees of type C1, 740 trees of type C2,

1819 trees of type U1, and 93 trees of type U2 (Fig. 5.1). We were able to estimate

the location of all infested trees every year with a precision of a few meters for 48% of

the infested trees (types C2 and U1), 50 meters for 50% of the infested trees (type C1),

and several hundred meters depending on the polygons size for the remaining 2% (type

U2).

The ecological and environmental covariates and the infestation response value were

discretely distributed in space and time. We superimposed a grid of 722 cells of size

500×500 meters over the park extent, counted how many infested trees fell in each cell,

and obtained ecological and environmental variable values for each cell over the study

period from 2005 to 2018. To reflect the impact of high temperatures on mountain pine

beetle emergence and dispersal (Safranyik & Carroll, 2006), we included the maximum

temperature over the spring and summer. Because mountain pine beetle larvae are very

sensitive to sudden changes in minimum temperatures in the fall, winter, and spring

(Safranyik, 2004), we included the cold tolerance metric from Régnière & Bentz (2007).

A small fraction of mountain pine beetles engage in long-distance dispersal events and
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Figure 5.1 – Number of infested trees per type over the years in Cypress Hills, SK. Type C1
represents the controlled infested trees found in circular surveys whereas type C2 represents
the controlled infested trees found in line surveys. Types U1 and U2 represent the uncontrolled
infested trees at year t that become red-top trees, respectively, outside or inside of a year-t+1
polygon. For the year 2018, the numbers of U1 and U2 infested trees are unknown at the time
of the study as they can only be estimated with 2019 data.
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disperse further than a few hundred meters by getting caught in the wind (Safranyik

& Carroll, 2006). Therefore, we included the wind speed during spring and summer

which corresponds to the dispersal season. Water stress reduces the pines’ ability to

resist mountain pine beetle attacks (Safranyik, 1978; Creeden et al., 2014). Therefore,

we included the relative humidity during the spring. Weather variables were estimated

for each grid cell and each year using the BioSIM software (Régnière et al., 2014). In

addition to weather variables, we included elevation, slope, northerness and easterness

to address bias in mountain pine beetle dispersal due to spatial configuration and wind

direction. Topography variables were calculated from the Canadian Digital Elevation

Map downloaded from the Geogratis website (geogratis.cgdi.gc.ca). We also included

in our list of covariates pine height and number of pines per cell. From Beaudoin et al.

(2014), we estimated, for each cell in 2001 and 2011, the leading species height, the pine

cover and the tree volume. Then, we obtained pine height by using the leading species

height when the pine cover is greater than 50%. We spatially interpolated the pine

height values at the location of each cell using bicubic spline interpolation provided by

the function interp of the R package akima (Akima & Gebhardt, 2016). We obtained

the pine volume by multiplying the pine cover by the tree volume. To obtain vegetation

variable values for every year, we linearly interpolated the values over the time period

for each cell. We estimated the number of pine trees in each cell from the pine volume

using the process and equation described in Goodsman et al. (2016). The expected

number of pines greater than 10 cm at breast height E(S) depends on the pine volume

per hectare V following the equation

E(S) = AV exp(−δV ), (5.4)

where A and δ are free parameters. Pines with a diameter at breast height smaller

than 10 cm are seldom the target of mountain pine beetle attacks and therefore were

not included in the pine count (Safranyik & Carroll, 2006). Based on Monserud et al.

(2006), Cypress Hills has a site index of 15 to 18 meters at 50 year breast height age

for lodgepole pine which corresponds to a medium to good site in Alberta Sustainable
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Resource Development (1985). Therefore, we fit A and δ to data from the yield tables

for medium and good sites provided in Alberta Sustainable Resource Development

(1985) using a nonlinear regression and obtained the values A = 18.18 (± 0.23 SE) and

δ = 5.4× 10−3 (± 0.4× 10−3 SE).

5.2.2 Model

The simulation model used a baseline pine population growth rate γ and predictions of

the number of infested trees I t+1
x depending on ecological and environmental variables

X t
x and number of pines H t

x at year t for the same location. The model symbols are

defined in Table 5.1.

Pine population growth rate

The pine population growth rate in the absence of mountain pine beetles provides a

baseline to which we can compare the observed pine mortality. Using the number of

pines H t
x in 2001 and in 2011 only for cells where no beetles were present between 2001

and 2011, we calculated the pine yearly growth rate using the equation:

γ =

(∑
x

H2011
x∑

x

H2001
x

)1/(2011−2001)

(5.5)

In addition, we estimated variability in the pine population growth rate by calculating

the standard deviation of the yearly pine population growth rate per cell.

Predicting the number of infested pines

In this section, we describe our a semi-empirical infestation model used to predict the

number of infested trees from ecological and environmental variables.

An infested tree at year t produces new infested trees at year t + 1 according to

Poisson
(
Rt

x

)
where Rt

x is the geometric rate of increase of infested trees at year t and

location x. We assume that the rate of increase of infested trees in a cell depends on the

number of pines available H t
x as well as other ecological and environmental variables
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Table 5.1 – Description of the symbols used in the model.

Symbol Description

Rt
x Geometric rate of increase of infested trees from year t to t+ 1

Xt
x Vector of environmental variable measurements at year t

Ht
x Number of pine trees in a cell x at year t

β Vector of parameters associated with variables Xt
x and Ht

x

M t
x Number of uncontrolled infested trees at year t and location x

N(x) Von Neumann neighbourhood of location x

w Weight associated with the number of uncontrolled infested trees
in each cell of the neighbourhood N(x)

r0 Number of infested trees from other sources

It+1
x Number of infested trees at year t+ 1 and location x

Bt
x

Number of uncontrolled infested trees added to M t
x to describe

boundary conditions at year t and location x
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X t
x described in the previous section. We express the rate of increase of infested trees

Rt
x as

Rt
x = e

β0 + β1Ht
x +

∑
i≥2

βiX
t
x,i

(5.6)

At a location x, the sources of new infestations at t+ 1 are:
1. M t

x: number of uncontrolled infested trees at t in the same location x,

2.
∑

ξ∈N(x)

M t
ξ : number of uncontrolled infested trees at t in the Von Neumann neigh-

bourhood of x,

3. Bt
x: number of uncontrolled infested trees at t in the cells outside the park limits

and adjacent to x, this variable allows us to include boundary conditions in the

model,

4. r0: number of infested trees arising from other sources, such as long-distance dis-

persal events originating from inside or outside the park limits and transitions

from endemic to epidemic population level, and representing a background infes-

tation level.

The number of infested trees I t+1
x at year t + 1 and location x is a sum of Rt

x for each

source of infestation, and thus, a Poisson-distributed random variable itself. Therefore,

we can write

I t+1
x ∼ Poisson

( (
M t

x + w
(
Bt

x +
∑

ξ∈N(x)M
t
ξ

)
1 + 4w

+ r0

)
Rt

x

)
(5.7)

where w is the weight associated with each location adjacent to x. The term 1 + 4w

arises due to the weight of 1 attributed to the number of uncontrolled infested trees at

the same location and the weight of w attributed to the number of uncontrolled infested

trees in each of the 4 cells of the Von Neumann neighbourhood.

Eq. 5.7 can be rewritten as

I t+1
x ∼ Poisson

( (
M t

x + w
(
Bt

x +
∑

ξ∈N(x)

M t
ξ

)
+ r̃0

)
R̃t

x

)
. (5.8)

where

r̃0 = r0(1 + 4w) (5.9)
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and

R̃t
x =

Rt
x

1 + 4w
. (5.10)

Therefore, the expected value of I t+1
x is

E
(
I t+1
x

)
=
(
M t

x + w
(
Bt

x +
∑

ξ∈N(x)

M t
ξ

)
+ r̃0

)
R̃t

x

= e
ln
(
Mt

x+w
(
Bt

x+
∑

ξ∈N(x)

Mt
ξ

)
+r̃0

)
e

β′
0+β1Ht

x+
∑
i≥2

βiX
t
x,i

= e
ln
(
Mt

x+w
(
Bt

x+
∑

ξ∈N(x)

Mt
ξ

)
+r̃0

)
+ β′

0 + β1Ht
x +

∑
i≥2

βiX
t
x,i

, (5.11)

where β′
0 = β0 − ln(1 + 4w).

The boundary conditions were such that cells outside the park limits have a number of

infested trees equal to 0 except for cells just outside the park southern border which

has a number of infested trees greater or equal to 0. This allowed us to take into

account the fact that there were no mountain pine beetle flights from outside the park

limits except outside the park southern border (Rory McIntosh, pers. comm.). We

made the reasonable assumption that the infestation outside the park limits lasted

from 2006 to 2014 (estimated from Brian Poniatowski, pers. comm.). We optimized

the boundary conditions outside the infested border using the function optim of the R

package stats. For each cell x adjacent to the infested border, we added to
∑

ξ∈N(x)

M t
ξ

a value btx estimated with the optimization algorithm. Thus,

Bt
x =

⎧⎪⎨⎪⎩b
t
x if x is adjacent to the infested border,

0 otherwise.
(5.12)

The optimization algorithm used the Nelder-Mead method with initial parameter values

b2005 to 2010
x = {0, 0, ..., 0}. The function maximized the coefficient of determination r2

between the observed and predicted number of infested trees once Eq. 5.11 was fitted

to data.

To fit Eq. 5.11 to data, we divided the data set in folds by holding out a different year
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for each fold. We only kept the folds where the year holdout was between 2009 and

2018 as the years 2006 to 2008 had a very small number of cells with I tx > 0. Therefore,

we had 10 folds. With the function gnm of the R package gnm, we fit, on the training

set of each fold, a Poisson nonlinear model using Eq. 5.11. We evaluated each of the 10

fits on the test set of the corresponding fold using the coefficient of determination r2

between observed and predicted number of infestation. Then, we fit the model on the

entire data set and referred to it as the final model.

Simulations

We simulated, between 2006 and 2018, outbreaks subject to various control rates. We

used a time unit of 1 year and a spatial unit of a 500×500 meters cell. Table 5.2 shows

the state variables used in the simulations. At each time step and for each location,

the number of infested trees is the sum of the number of controlled and uncontrolled

trees:

I tx =M t
x + Ct

x. (5.13)

For each control effort e, we ran 1000 simulations. The initial values corresponded

to the park observations in 2006. The total number of infested trees in 2006 was∑
x

I2006x = 3. Starting with t = 2006, we repeated the following process over the years

for each location:

1. We drew a baseline pine population growth rate gtx in a normal distribution with

mean γ and the standard deviation calculated in the previous section.

2. We calculated the number of pines susceptible to beetle attacks using

St+1
x = gtxH

t
x.

3. We predicted the number of infested trees I t+1
x using the model described in

Eq. 5.11 and parameters fitted in the previous section.

4. We drew the number of controlled infested trees Ct+1
x in Binomial(e, I t+1

x ).

5. We calculated the number of uncontrolled infested trees using

M t+1
x = I t+1

x − Ct+1
x .

6. We calculated the number of pines surviving the year using
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Table 5.2 – State variables used in the simulation model.

Variable Description

St
x

Number of pines susceptible to beetle attacks at year t
and location x

H t
x

Number of pines surviving after beetle attacks at year t
and location x

I tx Number of infested pines at year t and location x

M t
x

Number of uncontrolled infested pines at year t and
location x

Ct
x

Number of controlled infested pines at year t and
location x
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St+1
x = H t+1

x − I t+1
x .

To compare the simulations to the observations in Cypress Hills, we performed the

simulations with the observed control effort etobs each year. The observed control effort

etobs was calculated using the observed values of Ct
x and I tx following the equation:

etobs =

∑
x

Ct
x∑

x

I tx
. (5.14)

5.3 Results

5.3.1 Pine population growth rate

In the absence of mountain pine beetle, the pine geometric growth rate estimated using

Eq. 5.5 was 0.95, indicating a diminishing population. The standard deviation of the

pine population growth rate per cell was 0.17.

5.3.2 Predicting the number of infested trees

To estimate the values of btx, we used the optimization algorithm described in the

previous section. We obtained the maximum coefficient of determination r2 = 0.72 for

the values described in Table 5.3.

To evaluate the predictive model of the number of infested trees, we compared the

observed and predicted values on the 10 folds of the data set using the coefficient of

determination r2. The average r2 was 0.63 with a minimum of 0.21 and a maximum of

0.86. Visually, the predicted infested areas correspond to the observations (see Fig. 5.2

for a typical example). We obtained the parameter values r̃0 = 0.045 (± 0.002 SE) and

w = 0.089 (±0.004 SE). Therefore, using, Eq. 5.9, r0 is equal to 0.033. Using Eq. 5.10,

we obtain the values of Rt
x from R̃t

x. Forested areas have a mean Rt
x equal to 2.1 (see

Fig. 5.3 for a typical example). The areas with no pine cover as estimated from aerial

imagery indicate Rt
x values greater than 0 to be able to handle the possibility of isolated
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Table 5.3 – Parameter values estimated for btx.

Year
Cell

1 2 3 4 5 6 7 8 9 10

2006 1 4 2 0 0 0 0 2 8 0

2007 3 0 25 37 41 14 0 0 0 0

2008 45 10 128 65 63 167 72 18 0 11

2009 67 13 80 78 72 135 95 19 7 0

2010 22 26 37 59 80 84 37 0 0 34

2011 11 0 108 34 525 261 128 1 58 0

2012 53 0 88 42 202 191 2 16 0 3

2013 0 0 58 30 164 210 107 11 0 0

2014 32 7 0 0 123 105 25 0 0 0

 0

 2

 10+

Figure 5.2 – Predicted (top) vs observed (bottom) number of infested trees I2013x per 500×500-
meters cell in 2013 on a log scale.
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Figure 5.3 – Yearly rate of increase R2012
x per 500×500-meters cell on a log scale estimated

using a non-linear regression to obtain the number of infested trees I2013x for the year 2013.
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pines in the simulation model. The sum of the predicted infested trees over the domain

each year matches the sum of the observed infested trees (Fig. 5.4).

5.3.3 Simulations

Using Eq. 5.14, we calculated the observed control effort in Cypress Hills and obtained a

median of 62% of controlled infested trees over the years (Fig. 5.5). Using these control

proportions each year in our simulations, we obtained the total number of infested

trees, the number of uncontrolled infested trees and the number of pines that match

the observed or estimated values in the park (Fig. 5.6). The model described with

good precision the outbreak dynamics although the simulated number of infested trees

is lower at the peak than the observations.

As control effort decreases, outbreaks were less likely to be eradicated and the number

of infested trees increased exponentially over time (Fig. 5.7). Even a small control

effort allowed a substantial decrease in the number of infested trees compared to no

control. For example, implementing 40% control reduces the number of infested trees

after 10 years under 5% of the number of infested trees under a 1% control (Fig. 5.7

and Table 5.4). Likewise, respectively 50% and 65% control are necessary to reduce the

number of infested trees after 10 years to 1% and 0.1%. Control effort above 55-60%

actively reduced the total beetle population over time. When under 99% control, the

tree population decreased by 46% over 13 years whereas it decreased by 61% when

under 1% control (Fig. 5.8). Outbreak suppression refers to the act of driving epidemic

populations below the eruptive threshold. Therefore, when one or less mass-attacked

tree remains, managers achieve outbreak suppression although a small number of beetles

might persist in the domain. The number of years of sustained control effort necessary

to achieve suppression of half of the outbreak simulations went from over 13 years for a

proportion of controlled infested trees up to 80% to 12 years at 81% control and 9 years

as managers approach complete control of the infestations (99%) (Fig. 5.9). Achieving

suppression of mountain pine beetle in 95% of the outbreak simulations in less than 13

years required a proportion of controlled infested trees to be at least 89%.
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Figure 5.4 – Predicted (white) vs observed (black) number of infested trees per year in the
entire domain
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Figure 5.5 – Observed control efficiency in Cypress Hills, Saskatchewan, Canada.
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Figure 5.6 – Simulated number of pine trees
∑
x
Ht

x (top), number of uncontrolled infested

trees,
∑
x
M t

x (middle), and number of infested trees
∑
x
Itx (bottom) over the years for a control

effort matching the observed control. The black and grey lines are, respectively, the median
and 95% confidence interval over 1000 simulations. The points represent the observations.
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Table 5.4 – Sustained control effort necessary to obtain close to 10, 5, 1, or 0.1% of infested
trees after 10 years compared to 1% control.

Control Number of Percentage of
effort infested trees infested trees

1% 184 492 100.00%
30% 18 521 10.04%
40% 6 482 3.51%
50% 1 959 1.06%
65% 245 0.13%
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Figure 5.7 – Total number of infested trees in the domain
∑
x
Itx for control rates between 0.01

and 0.99 on a log scale. Each line represents the average over 1000 simulations for a control
rate.
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Figure 5.8 – Total number of pine trees in the domain
∑
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x for control rates between 0.01

and 0.99. Each line represents the average over 1000 simulations for a control rate.
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Figure 5.9 – Number of years of sustained control effort until outbreak suppression depending
on the control rate. The solid line represent the number of years necessary to achieve outbreak
suppression in half of the 1000 simulations and the dashed line in 95% of the simulations.
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5.4 Discussion

In this study, we showed that using even a little control on mountain pine beetle infested

trees decreased significantly the beetle population compared to a no control scenario

after controlling for environmental factors. Indeed, maintaining 40% control over 10

years reduces the beetle population to under 5% of what it would be for 1% control.

However, moderate control (55-60%) is required to reduce the beetle population over

time despite the outbreak being initially supported by outside flights. In addition, high

control (above 89%) can lead to true outbreak suppression under 13 years.

The observed control efficiency in Cypress Hills was relatively constant over time and

centred at about 62% of controlled infested trees with the exception of the year 2007.

This result agrees with the previous assessment of Cypress Hills control efficiency where

the proportion of controlled trees were calculated to be 56% and 71%, respectively in

2011 and 2012 (Kunegel-Lion et al., 2019). Note that, in 2007, control efficiency was

surprisingly low. This efficiency could be explained by a surge of beetle flights from the

infestations outside the park limits happening that year. Indeed, the current control

strategy is not able to detect long-distance dispersal events efficiently since it focuses

on the close neighbourhood of previous-year infested trees.

The predictive model accuracy when comparing number of infested trees per cell is av-

erage. However, when taking into account the overall spatial distribution of the number

of infested trees in the domain, the predictions of the highly or little infested areas cor-

respond to the observations to a large extent. This correspondence between observed

and predicted infested areas is reflected by the fact that the sum of the predicted num-

ber of infested trees in the domain over the years overlap well with the observed number

of infested trees.

Using a semi-empirical predictive model is useful to get estimates of relevant parameters.

For example, using our predictive model parameters, we could back-calculate the yearly

rate of increase in Cypress Hills and found that it has an average of 2.1 in forested areas.

Likewise, we found that the background infestation level is 0.03. This means that for
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each 500×500-meters cell, containing hundreds to thousands of pines in average, we

expect an average of 0.03 pine to get infested from long-distance dispersal events or

transitions from endemic to epidemic population. These parameters are not observed

easily on the field.

In Cypress Hills over the study period, the average rate of increase of infested trees

was 2.1 with three trees initially infested. This means that one infested tree produces

2.1 infested trees the following year in average. With these values, an outbreak is

eradicated in average before 13 years for a control rate of at least 81%. This result is of

the same order of magnitude as the results of Carroll et al. (2006) although their initial

values are 10 000 infested trees. Using the model described by Carroll et al. (2006) and

parametrized for a study area at the border of the provinces of British Columbia and

Alberta, Canada, Coggins et al. (2011) estimated that 11 years of continuous control

effort was necessary to achieve outbreak suppression with a control rate of 70%.

When an infested area is not controlled, outbreak duration can be very short (Fettig

et al., 2014). However, we do not observe this behaviour in our study. Our time period–

13 years–is rather short. For a longer period of time under a small control rate, the

number of pines available for beetle attacks might become limiting and thus, lead to

outbreak collapse due to a lack of hosts (Safranyik, 2004).

Infested areas are typically not isolated in space. For example, intensive control or

no control of I. typographus leads to similar tree mortality, mostly because of beetle

flights from outside the intensively managed area (Grodzki et al., 2006). We included

this connectivity in our model by considering the beetle pressure from outside the park

southern border and a background infestation level. Because of it, under any control

effort, the outbreak first peaked and only started to decline once the infestations just

outside the park limits had died out.

One limitation of this study is that we were constrained to the time period and location

of the current Cypress Hills outbreak in order to use ecological and environmental

factors as input for our model. Because of that, we were not able to have a precise
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estimate of the number of years of sustained control effort required to achieve outbreak

suppression for control rate lower than 81%. However, we were able to determine that

control levels above 55-60% are effectively decreasing beetle population sizes over time

and so should eventually lead to suppression.

In conclusion, this study allowed to bridge the gap between theory and field obser-

vations. Direct control impact beetle outbreak duration and pine mortality even at

a low level. Moderate control can eradicate mountain pine beetle infestations in the

long term. However, a significant control rate is needed to achieve a quick suppression.

Future work could examine the spatial patterns of infested and non-infested trees for

outbreaks under different control effort in order to get further insights.
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Chapter 6

General conclusion

Forest insect outbreaks are currently one of the main sources of disturbance in North

American forests (Dale et al., 2001). For example, mountain pine beetle outbreaks are

affecting extremely large areas of pine forests in Canada since the 1900s (Taylor et al.,

2006; Walton, 2013). To avoid damages on biodiversity and loss of ecosystem services,

pest management is necessary (Dale et al., 2001; Chan-McLeod, 2006). In this thesis,

I assessed the current MPB management strategy in Cypress Hills, Saskatchewan, and

considered ways of improvement while gathering insights on pest control and population

dynamics.

6.1 Mountain pine beetle control

The main conclusion arising from this thesis is that MPB control in Cypress Hills is

efficient although it could be improved. In chapter 2, I show that managers in Cypress

Hills are able to obtain a good control efficiency compared to a random strategy by

detecting and controlling 62% of the infested trees in the park. In chapter 5, however,

I show that this level of control is just enough to decrease the MPB population in the

long term. Finding ways to increase further the efficiency would allow a more certain

outcome. However, it is not necessary to reach 100% control in order to achieve sup-

pression. Indeed, in populations presenting an Allee effect such as the MPB, reducing
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population size under their Allee threshold should suffice to eliminate them (Liebhold

& Bascompte, 2003).

Control efficiency could be improved in three different ways. First, I show in chap-

ter 2 that using survey radius larger than 50 meters would help increase detection–and

thus control efficiency–in a cost-effective manner. Indeed, if more beetles are detected

and controlled a given year, the future cost of controlling their offspring is avoided.

Therefore, it is more cost-efficient to invest now rather than in the future.

Second, in the application section of chapter 3, I show that increasing the budget would

help increase detection and control given a management strategy searching around red-

top trees and the MPB spatial distribution, although this effect is less important at

low density of infested trees. Therefore, some management goals are more feasible than

others. According to the simulations, controlling more than 20% of the infested trees

is an unattainable goal. However, removing all individuals above 0.5 infested trees

per hectare is achievable. One possible explanation is the Allee effect: there might

not be sufficient remaining beetles to produce offspring. Therefore, managers need to

define carefully their objectives within the realm of possibilities. Studies like the one

in chapter 3 can help define what are the management possibilities.

Finally, the main detection strategy used for MPB involves looking in the vicinity of

previously infested trees. In chapter 2, I show that including environmental factors

such as weather and stand characteristics into a predictive model in addition to beetle

pressure and history gives good predictions of infested locations one year ahead. It is

known that weather and stand characteristics affect MPB development and dispersal

(Safranyik, 1978; Shore & Safranyik, 1992). These factors help calculate the suscepti-

bility of a stand to be attacked by MPB. In addition, MPB typically disperse within a

stand and thus, red-top trees are a good proxy for the detection of new attacks. Gath-

ering both types of information into one model helps define areas at risk. It has been

studied at large scales (Aukema et al., 2008; Preisler et al., 2012). However, maps of

small-scale predictions, such as the ones presented in this thesis, provide a direct tool

that managers can use to inform their surveys.
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6.2 Mountain pine beetle population dynamics

As mentioned previously, weather, topography, vegetation, and beetle pressure and

history influence the location of MPB-infested trees. In chapter 4, I show that their

impact depend on the outbreak phase. The initiation of an outbreak requires an increase

in MPB population size coming from either external sources or endemic populations.

In 2006, Cypress Hills most likely received incoming flights from southern populations

in the United States. Therefore, the most important factor was the distance to the

park southern border. During the peak, beetles choose locations with large trees close

to their emergence site. The outbreak collapse is driven by a decrease in susceptible

and vigorous hosts. This information can be used to determine how areas at risk would

vary in time. However, MPB are very sensitive to changes in microclimate and the

presence of competing/facilitating species during specific population phases. Such data

were not available over the study area extent and collecting them would help further

distinct the outbreak phases.

In chapter 5, I simulate what would happen to the pine and beetle populations without

management. I show that, although MPB outbreaks negatively affect pine populations,

it would still be declining in the absence of MPB in Cypress Hills. This result shows

that Cypress Hills is experiencing a change in the forest community that might not just

be due to MPB outbreaks although MPB accelerate this change.

In chapter 3, I show that the interaction between human and mountain pine beetle

populations can be modelled using functional responses. This is a novel way to look at

pest management in the context of population dynamics. For instance, MPB control

follows a type II functional response in Cypress Hills. Adding such component to a

population model would allow precise projections of MPB populations given that MPB

outbreaks are now mostly actively controlled. To complete the model even further

regarding the link with humans communities, one could add a component describing

the economic costs of MPB depending on the population density (Yokomizo et al.,

2009).
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6.3 Limitations and applicability

Cypress Hills is a small isolated study area. Although, it may limit the scope of the

research, it also gives some advantages. For example, the total cost of surveying the

entire park extent is relatively low and thus feasible. Therefore, researchers can have

access to extensive and extremely detailed surveys to parametrize their models. Fur-

thermore, the park isolation combined with the fact that long-distance events are rare

in MPB allows to study an outbreak with relatively low interference from other popu-

lations. Note that incoming flights still occur but in such low frequency and magnitude

that their effect is minor. Finally, the outbreak studied is still in progress. Therefore,

some important information regarding the outbreak collapse could be missing from the

data set. Still, the number of MPB-infested trees in Cypress Hills is currently low

and has been consistently decreasing for the past five years. In addition, information

about potential competing and facilitating species was only partially available in the

study area. Focusing on these aspects would greatly increase our understanding of the

system. Future work could use such highly-detailed data set to corroborate and fur-

ther simulation and empirical studies (e.g. Logan et al., 1998; Aukema et al., 2006) by

including information about inter-species interactions and through the use of spatial

analyzes.

The MPB genetic structure in Cypress Hills is close to the ones in southeastern British

Columbia populations and most different from the ones in northern British Columbia

populations (Samarasekera et al., 2012). In the study of a MPB fungal symbiont, gene

flow occurs between populations in Montana, southern British Columbia and Cypress

Hills (Tsui et al., 2012). Therefore, it is reasonable to assume that MPB in Cypress Hills

have similar characteristics with southern British Columbia and Montana populations,

and the results presented in this thesis would be similar from the ones obtained at these

locations and in an environment similar to Cypress Hills.

In chapter 3, I present the application of the functional response framework to human-

pest systems. This framework is transferable to human-resources systems with little
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modifications. Indeed, the components are survey area, survey and control costs, bud-

get, pest intensity, number of pest controlled. Respectively, they could be transformed

into foraging area, search and handling costs, budget, resource intensity, number of

resource items harvested. Using such functional response in a population model of

the resource would help get precise projections of future stocks. This is already par-

tially implemented in fisheries models which a function similar to a type I functional

response.

6.4 Model implications for pest management

Statistical models such as regressions are particularly useful to determine which envi-

ronmental and ecological factors are explaining pest locations in different contexts (e.g.

Gumpertz et al., 2000; Aukema et al., 2008). We often know from experimental and ob-

servational studies how these factors, such as weather and stand characteristics, affect

the insect life-cycle. However, combining pest pressure information with ecological and

environmental factors to obtain predictions of risk and associated uncertainty requires

modelling tools (Koch et al., 2009).

Local-scale risk maps created with such an approach can inform pest management.

Using models to evaluate the risk associated with specific stands have the following

advantages. First, the accuracy of the model can be evaluated quantitatively using a

validation method such as cross-validation. Second, the model can produce a quanti-

tative map of the infestation risk. Such maps allow managers to plan efficiently their

future actions. Short-, medium-, and long-term risk predictions can be developed. How-

ever, uncertainty and variability increase for long-term estimations (Boyce et al., 2006;

Doak et al., 2008).

Mechanistic models and simulations are valuable tools to use in the context of pest

management. For example, with such tools, the efficiency of management strategies

can be assessed and compared to one another extensively (e.g. Strohm et al., 2016;

Nelson et al., 2018). Indeed, using simulations instead of real-life experiments allows
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to implement management scenarios that would be otherwise either too expensive to

carry out, too hazardous in terms of ecological and environmental consequences, too

extended in time or space to be feasible, or too caught up in interferences to separate

the effects of specific factors. However, a simulated environment might lack realism

in terms of mechanisms, parameter values, time and spatial scales, etc. (e.g. Keane

et al., 2002). Therefore, simulations on their own would not be useful. They need to

be informed in details by experiments and observations.

Furthermore, mechanistic models can describe the population dynamics of a controlled

pest more accurately if they include a realistic management component. Such compo-

nent can have different forms, each of them affecting population growth and dispersal in

different ways. For example, simply reducing the growth parameter would imply that

pest density does not affect the efficiency of the management strategy which seems un-

realistic. Therefore, using a well-defined framework such as the functional responses can

help consider the implications of different management forms on population dynamics.

In conclusion, models are used more and more frequently in the context of pest man-

agement to assess detection and control strategies, and consider ways of improvement.

Mountain pine beetle detection is improved by including, in addition to beetle pressure

and history, weather, stand characteristics, and outbreak phase information. Its current

control level leads to a decline in population but only an extremely high control effort

can lead to a quick suppression of the beetle population. Reducing beetle populations

to low densities help suppress outbreaks. These results are important for researchers

and managers to consider as pest damages in North American forests are predicted to

increase as a consequence of climate change (Bentz et al., 2010).
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Appendices

Appendix A: Varying the probability exponent

To vary the amount of noise that we introduced in the random sampling of locations

from the model probabilities, we raised the model probabilities to an exponent ranging

from 0 to 5. We then sampled the locations without replacement using the new proba-

bilities as weight. The exponent 0 gives the same weight to all locations and, therefore,

would give results equivalent to the random strategy. In opposition, a high exponent

value increases the differences between low and high probabilities and eventually leads

to a deterministic situation where the same locations with the highest probabilities are

always chosen.

When we fixed the net survey area and varied the exponent, the predictions control

efficiency varies from values similar to the random search at exponent 0 to values

similar to the local search at high exponent (Fig. A.1). When the fixed survey area is

equivalent to the one used in the current strategy (2 200 000 m2), we can see that the

local control efficiency is always higher than the predictions control efficiency no matter

the exponent value. However, for a net survey area of 5 000 000 m2, the prediction

control efficiency is larger than the local control efficiency for an exponent value from

about 1-1.5 to 5.
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Figure A.1 – Control efficiency in relation to the classification tree probabilities ex-
ponent. Increasing the classification tree probabilities exponent gives more weight to
locations with high predicted risks of infestation. Solid lines represent the local search
around red-top trees for 2011. Dashed lines represent the search at locations chosen
from model predictions for 2011. Dotted lines represent the search around random lo-
cations for 2011. Thin lines correspond to a survey area equivalent to the current Forest
Service strategy (50 meter-radius circular plot; 2 200 000 m2). Thick lines correspond
to a survey area of 6 000 000 m2 which correspond to the circular plot radius 90 m for
the local search. The data for 2012, not presented here, display similar patterns.
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Appendix B: Varying the cost of a missed green infes-

tation

We varied the cost of a missed green infestation θ from 0 to 2000 and investigated its

impact on the optimal survey area and the minimum cost per controlled tree depending

on the detection strategy.

The optimal net survey area increases with θ for both the local and predictions strate-

gies, although the optimal area is consistently larger using the predictions strategy

(Fig. B.1a). However, the minimum total cost per controlled tree associated with the

optimal survey area is lower for the predictions strategy than the local strategy for

θ ⩾ 500 (Fig. B.1b).

This means that the more expensive a green infestation, i.e. the more new infesta-

tions produced by one infested tree, the better in term of costs it is to increase the

management effort now rather than controlling the additional new infestations in the

future.
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Figure B.1 – Optimal net survey area (a) and minimum total cost per controlled tree (b)
in relation to the cost of missing a green infestation θ. Solid lines represent the values
for the local search whereas dashed lines represent the values for the model predictions
strategy for each 2011 and 2012.
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Appendix C: Functional response curves for δ = 0, γ =

0, A = 64 and S = 1
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Figure C.1 – Functional response curves for fixed values of δ = 0, γ = 0, A = 64
and S = 1 for the random strategy (a) and A = 1 and S = 64 for the random
strategy (b) and the Adaptive Cluster Sampling strategy, and for a Poisson pest spatial
distribution. Circles represent the means of 2000 simulations of the Adaptive Cluster
Sampling strategy, pluses of the random strategy (a), and crosses of the random strategy
(b). Solid lines represent the values for the analytical solution of random strategy (a)
and (b).
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Appendix D: Impact of parameters δ, γ, and A
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Figure D.1 – Functional response curves showing the impact of one of the cost param-
eters (the survey cost δ or the removal cost γ) when the other is fixed for the random
strategies (a) and (b) on a Poisson pest spatial distribution. The shades of grey repre-
sent the values for the varying cost parameter from black (cost = 0) to light grey (cost
= 10). The search area is set to 64 and the budget to 300.
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Figure D.2 – Functional response curves for fixed values of survey cost δ = 10, removal
cost γ = 10 and for the random strategies (a) and (b) on a Poisson pest spatial distri-
bution. The shades of grey represent the values of the search area A: light grey A = 1
to black A = 64.
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Appendix E: Comparison with Holling’s disk equation
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Figure E.1 – Functional response curves for fixed values of survey cost δ = 10, removal
cost γ = 10 and for a random strategy on a Poisson pest spatial distribution. The
search area is set to 64 and the budget to 300. The black solid line represents the result
of Eq. 3.5 and the grey dotted line represents the result of Eq. 3.13.
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Appendix F: Functional response of the mountain pine

beetle management in Cypress Hills, Saskatchewan

0.0 0.5 1.0 1.5

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Pest intensity λ

N
u
m

b
er

 o
f 

in
d
iv

id
u
al

s 
re

m
o
v
ed

 p
er

 c
el

l

B = 1x10
5

B = 3x10
5

B = 5x10
5

B = 7x10
5

0
.8

 λ

0.2 λ

λ
−

 0
.5

Figure F.1 – Functional response of the mountain pine beetle management in Cypress
Hills, Saskatchewan using the adaptive cluster sampling process. Solid lines represent
the mean of 1000 simulations of the management process for different budget values:
1×105, 3×105, 5×105, and 7×105. Dotted lines represent the management goal 1): re-
moving 80% and 20% of all the individuals. The dashed line represent the management
goal 2): removing all individuals above the threshold 0.5 individual per cell
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Appendix G: True and false, positive and negative rates

A true positive (TP) is an observed presence that is also a predicted presence whereas

a false negative (FN) is an observed presence that is also a predicted absence. A true

negative (TN) is an observed absence that is also a predicted absence whereas a false

positive (FP) is an observed absence that is also a predicted presence (Table G.1).

A classifier gives as results the probability of having a presence for each observation;

therefore, we determine the number of predicted presence or absence using a probability

threshold. For example, setting the threshold to 0.5 would mean that if the probability

of having MPB presence is higher than 0.5, we would consider it as a predicted presence

and if it were below 0.5, we would consider it an absence. A different probability thresh-

old would then give different number of true positives, false positives, true negatives

and false negatives.

A receiver operating characteristic (ROC) curve (Metz, 1978) depicts, for a range of

probability thresholds, the true positive rate (or 1 - false negative rate, also referred to

as sensitivity or recall) against the false positive rate (also referred to as 1 - specificity).

The true positive rate (TPR) is calculated following the equation: TPR = TP
TP+FN . The

false positive rate (FPR) is calculated following the equation: FPR = FP
FP+TN .

A precision-recall curve (Raghavan et al., 1989) depicts, for a range of probability

thresholds, the proportion of true positives among the positive predictions (also re-

ferred to as precision or positive predictive value) against the true positive rate (sensitiv-

ity/recall). The precision is calculated following the equation: precision = TP
TP+FP .

Table G.1 – Confusion matrix displaying the number of observations by observed and
predicted outcome.

Observed
Absence Presence

Predicted Absence TN FN
Presence FP TP
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