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Abstract

We consider the Cauchy problem to the Magneto-Hydrodyanmics Equations

(MHD) in R3, and present specific criteria for which its corresponding energy

equality holds. Specifically, we show that very weak solutions to the MHD equations

(in the distributional sense) satisfy the energy equality, provided they belong to the

space Lr(0, T ;Ls(R3)) with 2
r
+ 2

s
= 1 for s ≥ 4. Further, we also consider

regularity criteria on the gradient of the solution to the MHD Cauchy problem. That

is, we show very weak solutions to the MHD equation satisfy the energy equality if

∇u,∇B ∈ L
8s

9s−12 (0, T ;Ls(R3)), for 12
7
< s ≤ 12

5
.
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Chapter 1

Introduction

Fluid dynamics involves the branch of physics relevant to the motion of fluids,
specifically to the relevant forces, both internal and external, that may act on a
fluid, inducing such a flow. Initially, the forefront of study in this area began in
1757 by the Swiss mathematician Leonhard Euler who derived the so-called in-
compressible Euler equations, a set of mixed type PDE that describe the flow of an
incompressible (density of a fluid particle remains invariant along its flow), inviscid
Newtonian fluid under certain initial data. Such equations were then later gener-
alized by French mechanical engineer Claude-Louis Navier and Irish physicist and
mathematician George Gabriel Stokes from 1822 (Navier) to 1842-1850 (Stokes),
and so named the incompressible Navier-Stokes equations, a set of mixed type PDE
that additionally accounted for internal frictional effects (viscosity) on the fluid. In
practice, such equations are readily applied in real-world applications (mainly nu-
merically) to optimize velocity flow fields along a variety of geometries (streamline
or make more aerodynamic), including car bodies, aircraft hulls, heat exchangers,
etc, to attain a desired performance or output/efficiency in engineering. Other areas
of application include weather forecasting by predicting future flow/wind patterns,
jet/aircraft propulsion applications, as well as fluid flow in pipes for oil transport,
among many others. A further generalization of the Navier-Stokes equations, and
of main interest in the following thesis, includes certain PDEs that model flows of
electrically conducting fluids, or “magneto-fluids”, which react differently while in
the presence of an electromagnetic field. Such an area (Magnetohydrodynamics)
was first developed by Swedish electrical engineer and plasma physicist Hannes
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Olof Gosta Alfven, with the derivation of the Magneto-Hydrodynamics Equations
(MHD). Interestingly, applications of such fluids (for example plasma and liquid
metals), are used in various biomedical areas, including magnetohydrodynamic-
based 1 laser beam scanning, and targeted drug delivery, among others [26].

Beyond the physical applications of such equations, basic questions from a purely
mathematical viewpoint are often considered next, in an attempt to determine the
validity, or well-posedness of such derived PDEs. That is, in particular, it remains fa-
mously unsolved whether the incompressible Navier-Stokes equations admit (given
smooth initial data) a unique globally defined (in R3) and smooth solution, as well
as other similar equations including the MHD PDE. Interestingly, well-posedness
(or global regularity) of solutions to the incompressible Navier-Stokes equations
has been shown in the 2-dimensional case. In this direction, it has been shown that
by imposing additional integrability conditions (regularity or “Prodi-Serrin” type
criteria) on initial data, one can achieve global regularity or well-posedness to the
3D incompressible Navier-Stokes equations. Other pertinent questions regarding
PDEs often include transient or long-term time behavior of solutions, numerical
algorithms/simulations, as well as regularity criteria, or differentiability conditions
of solutions as mentioned above, the latter being considered throughout the remain-
der of this thesis. Finally, solving these questions for fundamental PDEs of this
type is often pertinent, as well as necessary, for understanding properties of more
complicated PDE, and thus is a foundational starting point for theoretical work in
this area.

The remainder of the chapters of this thesis are presented sequentially as follows:
Chapter 2 first presents an overview of the field and review of the literature regard-
ing the Navier-Stokes and MHD equations, as well as underlining the main results
and motivation behind the theorems that will be proven in the subsequent chapters.
Chapter 3 presents the mathematical theory required for the proofs of each theorem
outlined in Chapter 2. Specifically, a more detailed overview of the fluid dynam-
ics equations mentioned above will be presented, outlining required definitions of
specific pertinent function spaces, the motivation behind the weak formulation of
solutions, such as Leray-Hopf weak solutions, as well as a brief derivation of the
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MHD equations. Chapter 4 overviews an essential existence method (Galerkin)
of approximate (or regularized) solutions to the MHD equations, which will be
necessary for the proofs of the results of this thesis. Chapter 5 presents specific
LrLs estimates for the non-stationary Stokes system, another necessity for the proofs
later in this thesis. Finally, Chapter 6 presents the new main results of the thesis,
specifically proving that the energy equality for the MHD equations holds for weak
solutions (in the distributional sense) under a variety of regularity criteria (see the
abstract or Chapter 2 for details of each theorem).

3



Chapter 2

Overview and New Results

As an introduction to our discussion, and segue into more complicated topics pre-
sented later throughout this thesis, a slightly more in-depth analysis of each fluid
equation mentioned in the introduction, as well as historical results will be outlined
below, which will serve as an underlying motivation for the following new results.
In addition, three new theorems (Theorem 1.1-1.3) are listed near the end of this
section, which will serve as the foundational results that the remainder of this thesis
will attempt to prove.

2.1 Fluid Equations

2.1.1 Incompressible Euler Equations

As a natural beginning to our discussion, we present chronologically by year derived,
the order of fluid PDE mentioned in the introduction, starting with the incompress-
ible Euler equations. Specifically, the remainder of this thesis will assume the fluid
in question is Newtonian (viscous stresses on fluid and strain rate are linearly de-
pendent) and incompressible (invariant density along particle flow).

Assuming first an inviscid Newtonian fluid at constant density, the incompressible
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Euler equations in the whole space R3, read{︄
∂tu+ u · ∇u+∇p = 0,

∇ · u = 0,
(t, x) ∈ (0,∞)× R3 (2.1)

with initial data u(x, 0) = u0(x) ∈ R3. Here u denotes the velocity flow field, and
p the pressure field.

One may note that the first equation of (2.1) is equivalent to Newton’s second
law of motion, that is, the pressure acting on a fluid particle is linearly depen-
dent on its acceleration, whereas the second divergence-free equation describes the
incompressibility assumption. The derivation of (2.1) is elementary and uses a gen-
eralization of Leibniz’s rule for integrals (Reynold’s transport theorem), allowing
the interchanging of time derivatives and limits for the material derivative. Since
the derivation is rather lengthy, we omit it in our discussion, however see [25] or
Tao’s blog [47] for a full discussion and proof.

2.1.2 Incompressible Navier-Stokes Equations

A natural generalization of the incompressible Euler equations includes the addition
of a viscosity term to account for internal force effects on the fluid. Specifically, the
flow of a Newtonian, incompressible fluid may be described by the incompressible
Navier-Stokes equations:{︄

∂tu+ u · ∇u+∇p = ν∆u,

∇ · u = 0,
(t, x) ∈ (0,∞)× R3 (2.2)

with initial data u(x, 0) = u0(x) ∈ R3. Here again, u and p denote the velocity
flow and pressure fields respectively, whereas ν denotes the viscosity of the fluid.
Further, throughout the rest of the thesis, for ease of readability, and without loss
of generality, we assume the viscosity ν = 1. The derivation of the incompressible
Navier-Stokes equations is done similarly to the incompressible Euler equations;
however, more computation is required when dealing with the extra viscosity term.
See again Tao’s blog for example [47].
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Of greatest importance remains the question of the existence and uniqueness of
smooth solutions in the whole space, as well as the continuous dependence on
smooth initial data (global well-posedness) to the Navier-Stokes equations. Specif-
ically, such a problem was first shown in the 2-dimensional case by Ladyshenkaya
(see [40] section 5 for a proof), with the 3-dimensional case remaining unsolved.

A priori/Energy Estimates

One attempt at solving the global well-posedness problem in R3 starts with a
suitable weak formulation of a solution to (2.2) (see section 3.3), where certain
“compactness arguments” have been developed that prove the global existence of
such solutions (in the distributional sense) to (2.2). Such a method comprises: (1)
showing the existence of a sequence of approximate weak solutions to a regular-
ized version of the Navier-Stokes equations, (2) showing the solutions don’t blow
up in finite time (finding uniform bounds/energy estimates), and (3) proving the
limit of the subsequence itself is a weak solution. Importantly however, by con-
struction, such weak solutions lack suitable differentiability criteria, and it remains
unknown whether one can construct a smooth weak solution with smooth initial data.

Following step (2) listed above, a priori estimates may be derived which may
hint at possible suitable function spaces where weak solutions may lie. This is
often the starting point for all analysis regarding existence and smoothness theory
for the Navier-Stokes equations, and is the motivation for the construction of the
Leray-Hopf weak solution. ([24] and [31]).

Following the discussion above, let Ω ⊂ R3 be open and bounded. We expect
regular solutions with L2(Ω) initial data of (2.2) to satisfy the equality (2.3) below.∫︂

Ω

|u(x, t)|2 dx+ 2

∫︂ t

0

∫︂
Ω

|∇u(τ, x)|2 dxdτ =

∫︂
Ω

|u0(x)|2 dx, (2.3)

where t ∈ [0, T ], T > 0. We call this the energy equality (or inequality if we have
less than or equal to). Importantly, finding weak solutions that satisfy the energy
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inequality is a key step in showing in-time global regularity of solutions (this will
be rigorously explained in later chapters) We motivate (2.3) below.

Assuming the existence of a solution u to (2.2) of sufficient regularity (differen-
tiable enough so that all operations below are well-defined), dotting the momentum
equation of (2.2) by u and rearranging gives∫︂

Ω

(∂tu · u−∆u · u+ (u · ∇)u · u+∇p · u) dx = 0, (2.4)

Integrating by parts, and using the divergence free condition ∇ · u = 0, one notes
for each term that∫︂

Ω

(u · ∇)u · u dx = 0, and
∫︂
Ω

∇p · u dx = 0, (2.5)

and
−
∫︂
Ω

∆u · u dx =

∫︂
Ω

|∇u|2 dx, (2.6)

whereby combining (2.5) and (2.6) with (2.4) and integrating from 0 to t ∈ (0, T )

with respect to time yields the estimate (2.3). For example, letting n̂ denote the
outward normal unit vector, the second term of (2.5) is estimated via integration by
parts: ∫︂

Ω

∇p · u dx =

∫︂
∂Ω

p · u · n̂ d∂Ω−
∫︂
Ω

p div(u) dx,

Here one often considers solutions u that vanish on the boundary, and thus using
as well the divergence free condition, one immediately gets the result. A similar
computation shows the other two equality’s in (2.5) and (2.6).

Here, one can construct weak solutions with minimal regularity criteria that au-
tomatically satisfy the energy inequality and thus attain global in-time existence,
however given enough differentiability on the solution, equality can be satisfied
instead. This is the main motivation for the following thesis, specifically, what addi-
tional regularity criteria is required for a weak solution to satisfy the energy equality.
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Historical Results (Navier-Stokes)

One of the first results motivated by the above comes from Leray [31] and Hopf
[24] who have shown the existence of global weak solutions to (2.2) for an initial
condition in the L2 sense u0 ∈ L2

σ(R3) := {u ∈ L2(R3) : ∇ · u = 0}. Moreover,
for T > 0, such weak solutions u lie in the Leray-Hopf class (2.7)

u ∈ L2(0, T ;H1(R3)) ∩ L∞(0, T ;L2
σ(R3)) (2.7)

and satisfy the energy inequality (see section (3.3)).

∥u(t)∥2L2 + 2

∫︂ t

0

∥∇u(τ)∥2L2 dτ ≤ ∥u0∥2L2 , (2.8)

Despite satisfying the energy inequality, it is still unknown whether Leray-Hopf
weak solutions satisfy the corresponding energy equality. Also, despite establishing
global in-time existence of Leray-Hopf weak solutions, the question of uniqueness
also remains famously unsolved. In this direction, however, uniqueness results have
been proven for Leray-Hopf weak solutions that are assumed smooth [32]. Attempts
at showing such uniqueness results have proven slow, with only partial progress
being made only recently, see e.g. [30, 39, 45].

In this direction, additionally, global regularity results have been shown when extra
differentiability criteria are imposed on either the solution u or initial data u0. In
this direction, the first major results were shown by Prodi [37] and Serrin [41] who
established global regularity when certain “Prodi-Serrin type criteria” were met.
That is, one attains regularity of a solution u past some T > 0 if

∥u∥pLp(0,T ;Lq(R3)) :=

∫︂ T

0

∥u∥pLq dt <∞, (2.9)

where p, q are well-defined such that 2
p
+ 3

q
< 1 for q > 3

Such results were later made stronger by weakening the differentiability assumption
to include values at 2

p
+ 3

q
≤ 1 with q > 3, see e.g. [21, 43], as well as for q = 3
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when the regularity criterion (2.10) holds [15].

esssup(0,T )∥u∥L3 <∞, (2.10)

Extensions and refinements of such Prodi-Serrin type criteria have been studied
extensively, with a variety of main results listed, see e.g. [2, 3, 4, 6, 7, 8, 9, 10, 11,
12, 17, 23, 27, 34, 36, 38, 44, 48, 49, 50].

In the direction of satisfying the energy equality, the first main regularity result
comes from J.-L. Lions [33], who proved that Leray-Hopf weak solutions that ad-
ditionally belong to the space L4(0, T ;L4(R3)) satisfy the energy equality on [0, T ]

for T > 0. In fact, J.-L. Lions result was later improved by Galdi [19], showing
the Leray-Hopf requirement (2.7) was unnecessary and that the regularity criteria
u ∈ L4(0, T ;L4(R3)) was sufficient.

Extensions to J.-L. Lions result were later introduced by Shinbrot [42] which gener-
alized the regularity of Leray-Hopf solutions u to a broader array of LrLs spaces for
r, s ≥ 1. Specifically, it is proven that if Leray-Hopf weak solutions to (2.2) satisfy

u ∈ Lr(0, T ;Ls(R3)) with
2

r
+

2

s
= 1 for s ≥ 4, (2.11)

then the corresponding energy equality (2.3) holds. Similarly to the result by Galdi,
the Leray-Hopf condition was again shown redundant and dropped by Berselli and
Chiodaroli [5], showing weak solutions to (2.2) satisfy the energy equality if only
(2.11) is satisfied.

2.1.3 Magneto-Hydrodynamics Equations

Following the order listed in the introduction, it is also of great interest to study
the velocity field of a conducting fluid when under the influence of a magnetic
field. Such motion is mathematically described by simultaneously solving both the
Navier-Stokes equations for fluid motion and Maxwell’s Electromagnetic equations,
given certain initial data. (See section 3.2 for a more in-depth discussion of such
equations and a brief derivation).
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Here the following thesis will be considering the three-dimensional Cauchy problem
for the Magneto-Hydrodynamics (MHD) Equations which reads:⎧⎪⎪⎨⎪⎪⎩

∂tu+ (u · ∇)u− ν1∆u+∇P = (B · ∇)B,

∂tB + (u · ∇)B − ν2∆B = (B · ∇)u,

∇ · u = ∇ · B = 0,

(t, x) ∈ [0, T ]× R3 (2.12)

with initial data
u(x, 0) = u0 ∈ R3, B(x, 0) = B0 ∈ R3. (2.13)

for any T > 0, where the total pressure P is given by

P = p+
1

2
|B|2, (2.14)

where u and B are the fluid velocity and magnetic field, respectively, p the pressure
field, and ν1, ν2 the coefficient of viscosity and coefficient of magnetic resistivity,
respectively. Here for simplicity and without loss of generality, we assume again
that ν1 = ν2 = 1.

Specifically, such equations are derived via coupling the Navier-Stokes equations
for fluid flow (2.2), with Maxwell’s electromagnetic equations. (see section 3.2 for
details, or e.g. Duvaut-Lions [14] and [28]).

Following the discussion regarding the incompressible Navier-Stokes equations,
regularity criteria results for weak solutions satisfying the energy equality are listed
below. Specifically, a recent paper by Lai and Yang [29] generalized Galdi’s [19]
result to the 3D MHD Cauchy problem (2.12). Specifically they show that weak so-
lutions (in the distributional sense) to (2.12) that also lie in L4(0, T ;L4(R3)) satisfy
the energy equality for the MHD equations (2.15)

1

2

∫︂
Ω

(∥u(t)∥22+∥B(t)∥22)dx+
∫︂ t

0

∫︂
Ω

(∥∇u(τ)∥22+∥∇B(τ)∥22)dτ =
1

2

∫︂
Ω

(∥u0∥22+∥B0∥22)dx,
(2.15)
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for all 0 ≤ t ≤ T and Ω = R3.

Other relevant results regarding the MHD equations are minimal, however see
e.g. [51].

2.2 List of New Results

In light of the above discussion, we first seek to generalize the result of Lai and
Yang [29] to a format similar to that presented by Berselli and Chiodaroli [5]. That
is, one of the main results of the thesis is stated as follows

Theorem 1.1. Suppose u,B ∈ L2
loc(R3 × (0, T )) are weak solutions to the MHD

Equations (2.12) (in the distributional sense) defined by (3.32), with initial data
u0, B0 ∈ L2

σ(R3). Then if u,B satisfy the condition (2.16) below, they fall in the
Leray-Hopf class (2.7) and satisfy the energy equality (2.15).

u,B ∈ Lr(0, T ;Ls(R3)) with
2

r
+

2

s
= 1 for s ≥ 4, (2.16)

Regularity Criteria on the Gradient of the Solution

Next, mainly as a mathematical curiosity, and natural analogue to Theorem 1 of
Berselli and Chiodaroli [5], it is also of interest to study results when regularity
criteria are imposed on the gradient of the solution. Specifically, Berselli and Chio-
daroli showed that Leray-Hopf weak solutions to the Navier-Stokes Cauchy problem
(2.2) imposed with any of the regularity criteria (B1)-(B3) below, satisfy the energy
equality (2.3).

(B1) ∇u ∈ L
s

2s−3 (0, T ;Ls(Ω)) for 3
2
< s < 9

5
,

(B2) ∇u ∈ L
5s

5s−6 (0, T ;Ls(Ω)) for 9
5
≤ s ≤ 3,

(B3) ∇u ∈ L1+ 2
s (0, T ;Ls(Ω)) for s > 3,
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As of current knowledge, this is one of very few, if any result, that deals with regu-
larity criteria on the gradient of the solution so that the energy equality is satisfied.

In this direction, we prove a similar result for Leray-Hopf weak solutions to the
MHD Cauchy problem (2.12), as stated by Theorem 1.2.

Theorem 1.2. Suppose u,B ∈ L2
loc(R3 × (0, T )) are Leray-Hopf weak solutions to

the MHD Equations (2.12) defined by (3.32), with initial data u0, B0 ∈ L2
σ(R3). If

in addition u,B both satisfy any of the conditions (B1*)-(B3*) above, then the pair
satisfy the energy equality (2.15).

(B1*) ∇u,∇B ∈ L
s

2s−3 (0, T ;Ls(Ω)) for 3
2
< s < 9

5
,

(B2*) ∇u,∇B ∈ L
5s

5s−6 (0, T ;Ls(Ω)) for 9
5
≤ s ≤ 3,

(B3*) ∇u,∇B ∈ L1+ 2
s (0, T ;Ls(Ω)) for s > 3,

Finally, through a similar method to the proof of Theorem 1.1, we attempt to gener-
alize Theorem 1.2 for very weak solutions, dropping the Leray-Hopf condition. That
is, imposing certain regularity criteria on the gradient of the solution, the energy
equality (2.15) will hold, making the Leray-Hopf condition redundant. As such we
have Theorem 1.3.

Theorem 1.3. Suppose u,B ∈ L2
loc(R3 × (0, T )) are weak solutions to the MHD

Equations (2.12) (in the distributional sense) defined by (3.32), with initial data
u0, B0 ∈ L2

σ(R3). Then if ∇u,∇B ∈ L
8s

9s−12 (0, T ;Ls(Ω)), for 12
7
< s ≤ 12

5
, then

u,B satisfy the energy equality (2.15).
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Chapter 3

Preliminary Setup

In the following chapter, we will introduce pertinent definitions and terminology,
as well as useful lemmas that will be crucial later when proving Theorem 1.1-1.3.
Specifically, we begin this section by outlining important function spaces that will
be used when considering weak solutions to the Navier-Stokes and MHD Cauchy
problems. Such function spaces are necessary in our study, which will be deemed
very useful when applying certain results from functional analysis. Succeeding this,
we provide a more in-depth analysis of the MHD Equations with a brief derivation
starting from the incompressible Navier-Stokes and Maxwell’s Electromagnetic
equations, with at the end, a reformulation of the MHD Cauchy problem in a
more condensed form for later ease of use. Nearing the end of this chapter, weak
formulations of solutions as well as pertinentLp estimates are presented (with proof)
which will be needed later in Chapter 6.

3.1 Function Spaces

We start by introducing a few important function spaces that will be used through-
out this thesis, which will be pertinent when discussing Leray-Hopf weak and weak
solutions (in the distributional sense) to (2.12). For a full rigorous discussion, see
Evan’s textbook on PDE’s [16].

Firstly we define an important well known function space that deems useful when
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approximating solutions (density argument) to PDE’s.

Definition 2.1.1. Given an open set Ω, we denote by C∞
c (Ω) the function space of

all compactly supported smooth functions on Ω.

Next when discussing sufficient integrability conditions or regularity criteria on
weak solutions, so called Lp spaces must be considered.

Definition 2.1.2. Let (Ω,Σ, µ) be a measure space. Denote by Lp(Ω), p ≥ 1

the space of all measurable functions f : Ω → R (or C) whose norm defined by
(3.1) or (3.2) is finite.

For p ∈ [1,∞):

∥f∥Lp :=

(︃∫︂
Ω

|f |pdµ
)︃ 1

p

<∞, (3.1)

For p = ∞:
∥f∥∞ := esssup|f | <∞, (3.2)

Since we will be working with solutions defined on Ω × [0, T ) for Ω ⊂ R3 and
T > 0, a natural extension of Definition 2.1.2. is given.

Definition 2.1.3. Let r, s ≥ 1. Denote by Lr(0, T ;Ls(Ω)) the function space
of all measurable functions f : [0, T ]× Ω → R (or C) with finite norm

∥f∥Lr(Ls) :=

(︃∫︂ T

0

∥f∥rLs(Ω)dt

)︃ 1
r

<∞, (3.3)

Next, in order to deal with regularity on solutions to (2.12), we define the so-called
Sobolev function spaces. Theory from functional analysis regarding these spaces
will be of great importance when proving Theorem’s 1.1-1.3 later.

Specifically, the weak formulation of solutions is necessary when studying the
Navier-Stokes or MHD PDE’s, hence we define an important weakening of the stan-
dard derivative in Rn, which will also prove useful when defining Sobolev function
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spaces.

Definition 2.1.4. Let Ω ⊂ Rn be an open set. Further let u, v ∈ L1
loc(Ω) and

α a multi-index. Then v is the αth-weak derivative of u if∫︂
Ω

uDαψ = (−1)|α|
∫︂
Ω

vψ, (3.4)

for all test functions ψ ∈ C∞
c (Ω).

Here the mixed partial derivative of ψ, Dαψ is defined by

Dαψ :=
∂|α|ψ

∂α1
x1 . . . ∂αn

xn

, (3.5)

Definition 2.1.5. Let |α| ≤ k be a multi-index (α ∈ Nn
0 ) of order k ∈ N. We denote

the Sobolev space W k,p(Ω) the space of all measurable functions f on Ω where its
mixed partial derivative exists weakly and lies in Lp(Ω). That is,

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all |α| ≤ k} (3.6)

Lemma 2.1.6. W k,p(Ω) is a Banach space with norm

∥u∥Wk,p(Ω) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑︂
|α|≤k

∥Dαu∥Lp(Ω) p ∈ [1,∞),

∑︂
|α|≤k

∥Dαu∥L∞(Ω) p = ∞,
(3.7)

Specifically, when k = 1 and p = 2, we denote W k,p(Ω) := H1(Ω). Here, as
notation would imply, H1(Ω) is a Hilbert space.

Also required are various function spaces that are constructed by taking the com-
pletions of a restricted class of divergence free functions under a suitable norm. We
list a few below for use later.

Definition 2.1.7. We define the list of spaces below as follows
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C∞
c,σ(Ω) := {φ ∈ C∞

c (Ω) : ∇ · φ = 0}

Lq
σ(Ω) := the completion of C∞

c,σ(Ω) under the Lq norm.

H1
0,σ(Ω) := the completion of C∞

c,σ under the W 1,2norm

DT := {φ ∈ C∞
c (R3 × [0, T )) : ∇ · φ = 0}

3.2 Overview of the MHD Equations

3.2.1 Derivation of the MHD Equations

In this section we give a brief overview of the MHD partial differential equa-
tions, with an additional brief derivation. Specifically, such derivation is achieved
via coupling the Navier-Stokes Equations for incompressible flow, with Maxwell’s
electromagnetic equations, which are again listed below for completeness.

Incompressible Navier-Stokes Equations:{︄
∂tu−∆u+ u · ∇u+∇p = f,

∇ · u = 0,
(t, x) ∈ (0,∞)× R3 (3.8)

with initial data u(x, 0) = u0(x) ∈ R3. Here u denotes the velocity flow field, p the
pressure field, and f a body force.

Next we list Maxwell’s electromagnetic equations, which determine electromag-
netic effects on conducting body or fluid.
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Maxwell’s Electromagnetic Equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tB +∇× E = 0,

− ∂tD +∇×H = J,

∇ ·D = ρe,

∇ · B = 0,

(t, x) ∈ (0,∞)× R3 (3.9)

again with some initial data. Here B,E,D,H, J, ρe denote the magnetic induction,
electric field, electric displacement, magnetic field, electric current density, and
electric charge density respectively.

Derivation of the MHD Equations

Here we provide a brief derivation of the MHD Equations, where a full in-depth
example can be read in for e.g ([14] and [28]). Specifically we follow the derivation
outlined by [28].

It’s well known that one can relate the electric current density J to the magnetic
induction B and electric field E by

J = ρeu+ σ(E + u× B), (3.10)

where σ > 0 is a constant and denotes the electric conductivity. Or under the
assumption of quasi-neutrality ( ρeE

J×B
≪ 1), one finds

J = σ(E + u× B), (3.11)

Here it is understood that u and B are vector valued functions in R3, and as such for
simplicity in notation, symbols indicating this will not be included throughout the
thesis.

Assuming a free space, or non-magnetizable or non-polarizable medium, the mag-
netic induction B and magnetic field H are equal, scaled by a factor. Namely, we
have B = µ0H , for some constant µ0.
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Finally assuming no odd phenomena such as high frequencies in the medium, the
time change in the displacement current ∂tD can be neglected in Eq (3.9) resulting
in

J = ∇×H, (3.12)

Combining the above assumptions (3.12) with B = µ0H into Eq (3.11) and rear-
ranging yields

E =
1

σµ0

∇× B − u× B, (3.13)

whereby substituting (3.13) into (3.9) gives

∂tB +
1

σµ0

∇×∇× B −∇× (u× B) = 0, (3.14)

Directing our attention to the Navier-Stokes Equations (3.8), we separate the body
force f as the sum of the external body force fext and Lorentz’s force fem expressed
as

fem = ρeE + J × B ≈ J × B, (3.15)

where the RHS is approximated due to the quasi-neutrality assumption, where the
term ρeE can be neglected. Substituting (3.15) into (3.8) and assuming a zero
external body force fext = 0, one obtains

∂tu+ u · ∇u−∆u+∇p = 1

µ0

(∇× B)× B, (3.16)

Finally, using the following general formulas from vector calculus listed below

∇×∇× u = ∇(∇ · u)−∆u,

(∇× B)× B = (B · ∇)B −∇|B|2

2
,

∇× (v × B) = v(∇ · B)− B(∇ · v) + (B · ∇)v − (v · ∇)× B,

(3.17)
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with the equations (3.14) and (3.16) and the divergence free conditions ∇ · u =

∇ · B = 0, yield the desired MHD Equations.⎧⎪⎪⎨⎪⎪⎩
∂tu+ (u · ∇)u− ν1∆u+∇P = (B · ∇)B,

∂tB + (u · ∇)B − ν2∆B = (B · ∇)u,

∇ · u = ∇ · B = 0,

(t, x) ∈ [0, T ]× R3 (3.18)

with initial data
u(x, 0) = u0 ∈ R3, B(x, 0) = B0 ∈ R3. (3.19)

3.2.2 Reformulation of the MHD Cauchy Problem

Next, for readability and ease of computation later when proving Theorem’s 1.1-
1.3, we wish to re-express the above MHD equations into a single condensed PDE
that resembles the Navier-Stokes equations. Motivating this, we note that Theorem
1.1 has already been proven by Berselli and Chiodaroli [5] for the Navier-Stokes
Cauchy problem (2.2), hence in an attempt to mimic their proof, we will rewrite
the MHD equations (2.12) in a similar format to (2.2). Looking at each system,
of main difference are the non-linear terms given by u · ∇u for the Navier-Stokes
Cauchy problem, and both B · ∇B and B · ∇u for the MHD Cauchy problem. This
motivates the following definition.

Notation. Moving forward, we denote the brackets (·, ·) by theL2
x(Ω) inner product.

That is, we have the following definition.

Definition 2.2.1. Let f, g be two real functions on a measure space Ω with measure
µ. Then denote by the L2 inner product of f and g by

(f, g)L2 = (f, g) :=

∫︂
Ω

fg dµ, (3.20)

To condense each system (2.2) and (2.12) into an identical form, a bilinear form B
is defined below for each set of equations. As will be shown soon, such a map B
will help combine both equations of the MHD system (2.12) into a singular cou-
pled equation that looks almost identical to (2.2). We first start by rewriting the
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Navier-Stokes PDE (2.2) in a more condensed form by introducing a bilinear form
B through definition 2.2.2. Specifically, such a bilinear form B is used to combine
all non-linear terms of each PDE into a single function.

Definition 2.2.2. Let u ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)). Then de-

fine when working with the Navier-Stokes Equations (2.2) the bilinear operator
Bnav : H

1
0,σ(Ω)×H1

0,σ(Ω) → (H1
0,σ(Ω))

∗ by

Bnav(u, φ) := u · ∇φ, (3.21)

where φ ∈ DT .

Assuming u is a solution (or even weak solution (see section 3.3 for a defini-
tion)) of sufficient regularity to the Navier-Stokes Cauchy problem, multiplying the
Navier-Stokes equations (2.2) by a test function φ ∈ DT , integrating by parts and
using the boundary and divergence free conditions, one easily obtains an equiva-
lent formulation of (2.2). This is done similarly to deriving the energy equality in
Chapter 1 and is thus skipped.{︄
∂t(u, φ)− (u, ∂tφ) + (∇u,∇φ) + ⟨B(u, u), φ⟩ = 0,

∇ · u = 0,
(t, x) ∈ (0,∞)× R3

(3.22)
with initial data u(x, 0) = u0(x) ∈ R3

Here ⟨·, ·⟩ denotes the standard dot product (the sum of the products of two vector
valued functions coordinates).

Similarly for the MHD Cauchy problem (2.12), one can define a different bilin-
ear form BMHD := B through definition 2.2.3, and with the help of the standard
Stokes operator defined in definition 2.2.4, one can condense the MHD equations in
a similar fashion done to (3.22).

Definition 2.2.3. Let Γ ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)) where Γ :=
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(u,B). Then define when working with the MHD Equations (2.12) the bilinear
operator B : H1

0,σ(Ω)×H1
0,σ(Ω) → (H1

0,σ(Ω))
∗ by

B(Γ,Φ) := (u · ∇φ1 − B · ∇φ2, u · ∇φ2 − B · ∇φ1), (3.23)

where Φ := (φ1, φ2) ∈ DT .

Definition 2.2.4. Define by A the standard Stokes operator in Ω by

A := −Pσ∆, (3.24)

where Pσ is the Helmholtz-Leray projection given by (1 < p <∞)

Pσ : Lp(Ω) → Lp
σ(Ω), (Pσu)i = ui + ∂i(−∆)−1∇ · u, (3.25)

Here, by letting Γ := (u,B) be a sufficiently regular solution (or again weak
solution) to the MHD equations (2.12) with Φ := (φ1, φ2) ∈ DT , similarily to
(3.22), an equivalent formulation for the MHD Cauchy problem is{︄
∂t(Γ,Ψ)− (Γ, ∂tΨ) + (∇Γ,∇Ψ) + ⟨B(Γ,Γ),Ψ⟩ = 0,

∇ · Γi = 0,
(t, x) ∈ (0,∞)×R3

(3.26)
with initial data Γ(x, 0) = Γ0(x) := (u0(x), B0(x)) ∈ R3 × R3

If the test functions are time independent with Ψ ∈ C∞
0,σ(R3), the first equation

of (3.26) reduces to

∂t(Γ,Ψ) + (∇Γ,∇Ψ) + ⟨B(Γ,Γ),Ψ⟩ = 0, (3.27)

or equivalently using definition 2.2.3.

∂tΓ + AΓ + B(Γ,Γ) = 0, (3.28)

For details see Lai and Yang [29]

21



3.3 Leray-Hopf Weak and Weak Solutions

In this section we introduce the notion of weak solutions to both the Navier-Stokes
equations (2.2) and MHD equations (2.12), giving a variety of different solution
definitions with different ’strengths’, some more general than others.

We start by defining the weakest (or most general) formulation of solution to the
Navier-Stokes equations, where only satisfaction in the distributional sense is re-
quired. That is, construction of strong solutions with sufficient differentiability (or
regularity) globally in time is unknown, however one can weaken the regularity
requirement and develop theory with a weaker definition of a solution that one nor-
mally cannot with strong solutions. This leads to the following definition:

Definition 2.3.1. u ∈ L2
loc,σ(R3 × (0, T )) is a weak solution (in the distributional

sense) to the Navier-Stokes Cauchy problem (2.2), if∫︂ T

0

∫︂
R3

(u · ∂tφ+ u ·∆φ+ u · ∇φ · u)dxdt = −
∫︂
R3

u0 · φ0dx, (3.29)

∀φ ∈ DT and initial data u0 := u(x, 0) ∈ L2
σ(R3)

Strengthening definition 2.3.1. one may then define the notion of a Leray-Hopf
weak solution, which has the additional requirement of solving the energy inequal-
ity, with other regularity criteria added on top of being a distributional solution.
Specifically:

Definition 2.3.2. u ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)) is a Leray-Hopf

weak solution to the Navier-Stokes Cauchy problem (2.2), if it is a weak solution (in
the distributional sense), as well as solves the energy inequality

∥u(t)∥2L2 + 2

∫︂ t

0

∥∇u(τ)∥2L2 dτ ≤ ∥u0∥2L2 , (3.30)
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and the initial data strongly converges in the L2 sense

∥u(t)− u0∥L2 → 0 as t→ 0+, (3.31)

Next, as a standard analogue to weak solutions to the Navier-Stokes equations, we
give an equivalent formualtion for weak solutions (in the distributional sense) to the
MHD equations. Specifically we have

Definition 2.3.3. The pair (u,B) ∈ L2
loc,σ(R3 × (0, T )) is a weak solution (in

the distributional sense) to the MHD Cauchy problem (2.12), if∫︂ T

0

∫︂
R3

(u · ∂tφ+ u ·∆φ+ u · ∇φ · u− B · ∇φ · B)dxdt = −
∫︂
Ω

u0 · φ0dx,∫︂ T

0

∫︂
R3

(B · ∂tϕ+B ·∆ϕ+ u · ∇ϕ · B − B · ∇ϕ · u)dxdt = −
∫︂
Ω

B0 · ϕ0dx,

(3.32)
∀φ, ϕ ∈ DT and initial data u0 := u(x, 0), B0 := B(x, 0) ∈ L2

σ(R3)

Again strengthening the formulation of a weak solution, a Leray-Hopf weak so-
lution to the MHD equations is defined below.

Deifnition 2.3.4. The pair (u,B) ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)) is

a Leray-Hopf weak solution to the MHD Cauchy problem (2.12), if

(1) (u,B) is a distributional solution to (1.1)∫︂ T

0

∫︂
Ω

(u · ∂tφ+ u · φ− u · ∇u · φ+B · ∇B · φ)dxdt = −
∫︂
Ω

u0 · φ0dx,∫︂ T

0

∫︂
Ω

(B · ∂tϕ−∇B · ∇ϕ− u · ∇B · ϕ+B · ∇u · ϕ)dxdt = −
∫︂
Ω

B0 · ϕ0dx,

(3.33)
∀φ, ϕ ∈ DT and initial data u0 := u(x, 0), B0 := B(x, 0) ∈ L2

σ(R3)
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(2) (u,B) satisfies the energy inequality for the 3D MHD Equations

1

2

∫︂
Ω

(∥u(t)∥22+∥B(t)∥22)dx+
∫︂ t

0

∫︂
Ω

(∥∇u(s)∥22+∥∇B(s)∥22)ds ≤
1

2

∫︂
Ω

(∥u0∥22+∥B0∥22)dx,
(3.34)

(3) the initial data strongly converges in the L2 sense

∥u(t)− u0∥L2 → 0 as t→ 0+,

∥B(t)− B0∥L2 → 0 as t→ 0+,
(3.35)

Here one notes that smooth solutions to either (2.2) or (2.12) are automatically
Leray-Hopf weak solutions, which themselves are weak solutions.

3.4 Lp Estimates

In this section we briefly discuss a few pertinent Lp estimates and interpolation
inequalities that will be useful later in our discussion. All estimates presented in
this subsection have been developed by other authors and are well-known.

Of first interest is the so called “Young’s inequality”, which allows one to esti-
mate a product of non-negative real numbers by their sum, scaled and taken to a
specific power. Importantly, such an inequality is useful when proving pertinent Lp

estimates such as Hölder’s inequality, or estimating the non-linear term in the MHD
Equations (or in other PDE’s).

Theorem 2.4.1. (Young’s Inequality for Products). Let a, b ≥ 0 and p, q > 1

be real numbers, such that 1
p
+ 1

q
= 1. Then one has

ab ≤ ap

p
+
bq

q
, (3.36)

Proof. It’s well known that the exponential function f : R → R≥0, x ↦→ ex is
convex on R. Hence for all x, y ∈ R and t ∈ [0, 1], one has

etx+(1−t)y ≤ tex + (1− t)ey, (3.37)
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Setting x = ln(ap) and y = ln(bq) with t = 1
p

(and thus 1− t = 1
q
), one gets through

simple arithmetic and (3.37)

ab = eln(ab)

= e
1
p
p ln(a)+ 1

q
q ln(b)

= e
1
p
ln(ap)+ 1

q
ln(bq)

≤ 1

p
eln(a

p) +
1

q
eln(b

q)

=
ap

p
+
bq

q
,

(3.38)

Of next importance is a fundamentalLp estimate that generalizes the famous Cauchy
Schwartz inequality for L2 norms. Specifically Hölder’s inequality provides Lp

bounds for the products of two Lp integrable functions by their individual Lp norms.
Such an inequality is integral when studying the convergence of sequences of certain
terms in PDE’s. Below we provide the statement of the theorem with a brief proof.

Theorem 2.4.2. (Hölder’s Inequality) Suppose f, g are measurable functions on
Ω. Further let f ∈ Lp(Ω) and g ∈ Lq(Ω), with p, q, r ∈ [1,∞] and 1

p
+ 1

q
= 1

r
. Then

one has
∥fg∥Lr(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lq(Ω), (3.39)

Further when r = 1 and p = q = 2, Hölder’s inequality reduces down to the well-
known Cauchy Schwarz inequality.

Proof. Assuming the statement of the theorem, we first prove (3.39) when r = 1.
Firstly, we assume p, q < ∞, since the extremum case p = ∞, q = 1 (or vice
versa) is trivial. Next we may also assume ∥f∥Lp(Ω), ∥g∥Lq(Ω) ∈ (0,∞). The
limiting case at ∞ is trivial, whereas if either norm is 0 (without loss of generality
if ∥f∥Lp(Ω) = 0), then f = 0 almost everywhere and hence ∥fg∥L1(Ω) = 0 with
respect to some measure.
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Normalizing f and g, define F := f
∥f∥p and G := g

∥g∥q . Then one has ∥F∥p =

∥G∥q = 1, and thus using Young’s inequality one gets

∥FG∥1 ≤
∥F∥pp
p

+
∥G∥qq
q

=
1

p
+

1

q
= 1, (3.40)

whereby substituting F and G in terms of f and g on the LHS of (3.40) and some
simple arithmetic gives the claim for r = 1.

For r ∈ (1,∞) with 1
r
= 1

p
+ 1

q
(the case r = ∞ is trivial), one simply notes

that if f ∈ Lp(Ω), g ∈ Lq(Ω), then |f |r ∈ L
p
r (Ω) and |g|r ∈ L

q
r (Ω) whereby using

r
p
+ r

q
= 1, one gets through Hölder’s inequality for r = 1, that

∥fg∥r = ∥(fg)r∥
1
r
1 ≤ ∥f r∥

1
r
p
r
∥gr∥

1
r
q
r
= ∥f∥p∥g∥q, (3.41)

Thus proving the claim.

Similarly, one can extend Hölder’s inequality to products of multiple Lp integrable
functions.

Theorem 2.4.3. (Generalized Hölder’s Inequality) Let r, p1, . . . , pm ∈ [1,∞] with∑︁n
i=1

1
pi
= 1

r
. Further take fj ∈ Lpj(Ω) for j = 1, . . . ,m. Then⃦⃦⃦⃦

⃦
m∏︂
i=1

fi

⃦⃦⃦⃦
⃦
Lr(Ω)

≤
m∏︂

i=k=1

∥fi∥Lpk (Ω), (3.42)

Proof. Follows from an induction argument with Hölder’s inequality.

Similar to Hölder’s inequality, it is also of interest to find Lp bounds of a sin-
gle function by a product of Lp norms of itself, with certain weights. That is, an
equivalent formulation of Hölder’s inequality follows

Theorem 2.4.4. (Convex interpolation inequality) Suppose f, g are measurable
functions on Ω. Further let f ∈ Lp(Ω) and g ∈ Lq(Ω), with 0 < p < q < ∞,
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0 < θ < 1 and 1
r
= 1−θ

p
+ θ

q
. Then one has

∥f∥Lr(Ω) ≤ ∥f∥1−θ
Lp(Ω)∥f∥

θ
Lq(Ω), (3.43)

Proof. Suppose the hypothesis above. Then by Hölder’s inequality one gets

∥f∥r = ∥f θ · f 1−θ∥r ≤ ∥f θ∥ q
θ
∥f 1−θ∥ p

1−θ
= ∥f∥θq∥f∥1−θ

p , (3.44)

Finally since regularity criteria on the gradient of the solution to the MHD Equations
will be considered, interpolation estimates that relate the Lp norms of certain weak
derivatives of functions are necessary. Of specific, estimates of the form (3.45) are
of interest for functions u ∈ C∞

c (Rn).

∥u∥Lq(Rn) ≤ C∥Du∥Lp(Rn), (3.45)

where 1 ≤ p < n, 1 ≤ q <∞ and C > 0 is a constant.

It turns out, in fact, q in (3.45) may not be chosen arbitrarily, and instead is re-
lated by the dimension of the space n ∈ N and the value of p chosen. Motivating
this, it should be expected that for arbitrary u ∈ C∞

c (Rn), the re-scaled mapping
uλ(x) := u(λx) (where λ > 0, x ∈ Rn), which also lies in C∞

c (Rn), satisfy (3.45).
That is we expect a sort of scaling invariance to hold, and thus the following:

∥uλ∥Lq(Rn) ≤ C∥Duλ∥Lp(Rn), (3.46)

Through a simple change of variables, one notes that∫︂
Rn

|uλ|q dx =

∫︂
Rn

|u(λx)|q dx = λ−n

∫︂
Rn

|u(τ)|q dτ, (3.47)

∫︂
Rn

|Duλ|p dx = λp
∫︂
Rn

|Du(λx)|p dx = λp−n

∫︂
Rn

|Du(τ)|p dτ, (3.48)
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whereby substituting (3.47) and (3.48) into (3.46) yields

λ−
n
q ∥u∥Lq(Rn) ≤ Cλ1−

n
p ∥Du∥Lp(Rn), (3.49)

or rearranging (3.49) one has

∥u∥Lq(Rn) ≤ Cλ1−
n
p
+n

q ∥Du∥Lp(Rn), (3.50)

From here one can note that if λ → 0 or ∞, the estimate (3.50) breaks down if
1− n

p
+ n

q
̸= 0. Hence we arrive at a desired relation between p, q and n. That is, we

require 1− n
p
+ n

q
= 0, or rearranging, similarily q = np

n−p
for the estimate (3.50) to be

true. We make the above rigorous with a statement of the theorem with a proof below.

Theorem 2.4.5. (Sobolev Embedding) Let 1 ≤ p < n with n ∈ N. Denote
by p∗ the Sobolev conjugate of p by

p∗ :=
np

n− p
, (3.51)

then for all functions u ∈ C1
c (Rn), there exists a constant C > 0 dependent on p

and n such that
∥u∥Lp∗ (Rn) ≤ C∥Du∥Lp(Rn), (3.52)

Proof. We follow the proof given by Evans [16]. Specifically, we show Theorem
2.4.5. for p = 1 first, then generalize to p ∈ [1, n).

Suppose the hypothesis above, with p = 1. Since u ∈ C∞
c (Rn) has compact

support, its components (denote by ui for i = 1, . . . , n) vanish at ±∞. Hence we
have

u(x) =

∫︂ xi

−∞
(x1, . . . , xi−1, yi, xi+1, . . . , xn) dyi, (3.53)

Taking the upper limit of the integral in (3.49) to ∞, one has for each i = 1, . . . n

|u(x)| ≤
∫︂
R
|Du(x1, . . . , yi, . . . , xn)| dyi, (3.54)
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Or taking the product of (3.54) as i = 1, . . . n varies, and raising to the power of
1

n−1
, one gets

|u(x)|
n

n−1 ≤
n∏︂

i=1

(︃∫︂
R
|Du(x1, . . . , yi, . . . , xn)| dyi

)︃ 1
n−1

, (3.55)

Integrating (3.55) with respect to x1, we find using the generalized Hölder’s inequal-
ity (Theorem 2.4.3)

∫︂
R
|u|

n
n−1 dx1 ≤

∫︂
R

n∏︂
i=1

(︃∫︂
R
|Du| dyi

)︃ 1
n−1

dx1

=

(︃∫︂
R
|Du| dy1

)︃ 1
n−1

(︄∫︂
R

n∏︂
i=2

(︃∫︂
R
|Du| dyi

)︃ 1
n−1

dx1

)︄

≤
(︃∫︂

R
|Du| dy1

)︃ 1
n−1

(︄
n∏︂

i=2

∫︂
R

∫︂
R
|Du| dx1dyi

)︄ 1
n−1

,

(3.56)

Similarly, following verbatim steps done above in (3.56), integrating (3.56) with
respect to x2 and applying the generalized Hölder’s inequality again gives

∫︂
R

∫︂
R
|u|

n
n−1 dx1dx2 ≤

n∏︂
i=3

(︃∫︂
R

∫︂
R

∫︂
R
|Du| dx1dx2dyi

)︃ 1
n−1

, (3.57)

Repeating the above steps n times yields the estimate∫︂
Rn

|u|
n

n−1 dx ≤
(︃∫︂

Rn

|Du| dx
)︃ n

n−1

, (3.58)

proving the result for p = 1.

Finally when p ∈ (1, n), define a scaling of u, u by u = |u|α, where α = p(n−1)
n−p

> 1.
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Then one notes by Hölder’s inequality that

(︃∫︂
Rn

|u|
αn
n−1 dx

)︃n−1
n

≤ α

∫︂
Rn

|u|α−1|Du| dx

≤ α

(︃∫︂
Rn

|u|
(α−1)p
p−1 dx

)︃ p−1
p
(︃∫︂

Rn

|Du|p dx
)︃ 1

p

,

(3.59)

Since by the choice of α, one has αn
n−1

= (α−1)p
p−1

= np
n−p

. Hence rearranging (3.59)
yields the claim for general p ∈ (1, n), finishing the proof.

For added interest, with more machinery, one can extend the Sobolev Embed-
ding Theorem, allowing one to estimate Lp norms of higher order mixed derivatives
Dj of Lp integrable functions.

Theorem 2.4.6. (Gagliardo-Nirenberg interpolation inequality) [35] Let 1 ≤ q, r ≤
+∞ and p ≥ 1. Further let j,m ∈ N ∪ {0} such that j < m, with θ ∈ [0, 1]

satisfying
1

p
=
j

n
+ θ

(︃
1

r
− m

n

)︃
+

1− θ

q

j

m
≤ θ ≤ 1, (3.60)

then for some constant C > 0, one has

∥Dju∥Lp(Rn) ≤ C∥Dmu∥θLr(Rn)∥u∥1−θ
Lq(Rn), (3.61)

when u ∈ Lq(Rn).
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Chapter 4

Galerkin Method for Existence of
Solutions

One of the main ingredients for the proofs of Theorem’s 1.1-1.3 is showing the
existence of a solution pair to a so called regularized version of the MHD Cauchy
problem (2.12), or Galerkin Method. One may then prove certain properties of the
regularized solution and show it approximates the original solution to (2.12), for
which both solutions of each system will inherit each others proprieties. As such,
before stating the required theorem, we begin by defining a standard space-time
mollifying technique for the regularization of the variables in (2.12).

Definition 4.1. Let g : R3 × (0, T ) → R3 be locally integrable, and ϵ > 0.
Then we define by g(ϵ) and g(ϵ) the space and space-time mollifiers of g respectively

g(ϵ)(x, ·) =
∫︂
R3

kϵ(x− y)g(y, ·)dy, g(ϵ)(x, t) =

∫︂ T

0

jϵ(t− s)g(ϵ)(x, s)ds,

where

jϵ(τ) := ϵ−1j(τ/ϵ), kϵ(ξ) := ϵ−3k(ξ/ϵ), (τ, ξ) ∈ R× R3,

and
j ∈ C∞

c (−1, 1) and k ∈ C∞
c (R3),
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Following the mollifying techniques presented above, we consider a regularized
version of the 3D Cauchy problem (2.12)⎧⎪⎪⎨⎪⎪⎩
∂tu

ϵ −∆uϵ + (u(ϵ) · ∇)uϵ − (B(ϵ) · ∇)Bϵ +∇pϵ = f1,

∂tB
ϵ + (u(ϵ) · ∇)Bϵ − (B(ϵ) · ∇)uϵ = ∆Bϵ + f2,

∇ · uϵ = ∇ · Bϵ = 0,

(t, x) ∈ (0, T )× R3

(4.1)
with initial conditions

uϵ(·, 0) = u
(ϵ)
0 , Bϵ(·, 0) = B

(ϵ)
0 , on R3, (4.2)

where f1, f2 ∈ C∞
0 ((0, T )× R3) with T > 0.

Recall from section 3.2 equation (3.26), a condensed form of the MHD Cauchy
problem (2.12) is written as{︄
∂t(Γ,Ψ)− (Γ, ∂tΨ) + (∇Γ,∇Ψ) + ⟨B(Γ,Γ),Ψ⟩ = 0,

∇ · Γi = 0,
(t, x) ∈ (0,∞)×R3

with initial data Γ(x, 0) = Γ0(x) := (u0(x), B0(x)) ∈ R3 ×R3, where Γ := (u,B)

and Ψ ∈ DT .

Mimicking this process, a condensed regularized system to (4.1) is{︄
∂tΓ

ϵ + AΓϵ + B(Γ(ϵ),Γ
ϵ) = f,

∇ · Γϵ = 0,
(t, x) ∈ (0, T )× R3 (4.3)

with initial conditions

Γϵ(·, 0) = (uϵ(·, 0), Bϵ(·, 0)) = Γϵ
0, on R3 (4.4)

where Γϵ = (uϵ, Bϵ), Γ(ϵ) = (u(ϵ), B(ϵ)) and f = (f1, f2).
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Theorem 4.2. Existence of Solutions to the Regularized MHD Cauchy Problem.

Let Γϵ
0 := (uϵ0, B

ϵ
0) ∈ L2

σ(R3) be initial data to the system (4.3)-(4.4). Then the
Cauchy problem (4.3)-(4.4) admits a unique solution Γϵ = (uϵ, Bϵ) such that

Γϵ ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;W 1,2(R3)) (is Leray-Hopf) (4.5)

and

max
t∈[0,T ]

(∥uϵ(t)∥22 + ∥Bϵ(t)∥22) +
∫︂ T

0

(∥∇uϵ(t)∥22 + ∥∇Bϵ(t)∥22) dt

≤ ∥uϵ0∥22 + ∥Bϵ
0∥22 + C

∫︂ T

0

(∥f1(t)∥26
5
+ ∥f2(t)∥26

5
) dt,

(4.6)

for some constant C > 0.

Proof. Here we follow the proof given by Lai and Yang [29], omitting the proof
for uniqueness, since it is not necessary for the thesis. Specifically we consider first
the system (4.3)-(4.4) on the restricted domain BR × (0, T ) for T > 0, where BR

denotes the ball centered at the origin with radius R > 0.{︄
∂tΦ + AΦ + B(Θ,Φ) = f,

∇ · Φ = 0,
(t, x) ∈ (0, T )× BR (4.7)

with boundary and initial conditions chosen such that

Φ = 0 on ∂BR × (0, T )

Φ(·, 0) = Φ0R on BR

(4.8)

and
lim
R→∞

∥Φ0 − Φ0R∥2 = 0, (4.9)

Here the existence of such a Φ0R is shown in Appendix A, Theorem A.2.
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4.1 Local in time existence

We first show the existence of local in time solutions to the system (4.7)-(4.9).
Specifically, the idea is to construct a sequence of approximate solutions Φn that
at each time t > 0, lay in a finite-dimensional Hilbert space (Banach space that
admits an inner product). Exploiting the orthogonality of a specific basis, we may
reduce the system (4.7)-(4.9) to a system of ODE’s, allowing the use of standard
ODE theory for existence and uniqueness, simplifying the problem. Thus before
beginning, we provide a well known eigenfunction theorem from PDE theory.

Lemma 4.3. Take Ω ⊂ R3 smooth and bounded. Then there exists functions
N = {ai : i ∈ N} such that

(i) N is an orthogonal basis in L2
σ(Ω)

(ii) Aai = λiai ∀i ∈ N such that 0 < Λn ≤ λn+1 → ∞ ∀n ∈ N

(iii) N is an orthogonal basis in H1
0,σ(Ω)

(4.10)

Definition 4.4. We denote the projection operator Pn : L2 → L2
σ by

PnΦ :=
n∑︂

i=1

⟨Φ, ai⟩ai, (4.11)

where ai ∈ N , and ⟨·, ·⟩ denotes the standard dot/scalar product.

Continuing the proof, we construct approximate solutions Φn that belong to the
space PnL

2
σ ∀t > 0, by considering the Cauchy problem{︄

∂tΦn + AΦn + PnB(Θn,Φn) = Pnf,

∇ · Φn = 0,
(t, x) ∈ (0, T )× BR (4.12)

with initial condition
Φn(0) = PnΦ0R , (4.13)
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where we are searching for functions Φn and Θn of the form

Φn(x, t) =
n∑︂

k=1

cnk(t)ak(x), Θn(x, t) =
n∑︂

k=1

cnk(t)ak(x), (4.14)

To determine the constants cnk(t) and cnk(t), we exploit the orthogonality of the basis
N . Specifically, taking the L2 inner product of (4.12) with ak for k = 1, . . . , n, one
gets

n∑︂
j=1

(︃
d

dt
cnj (t)aj, ak

)︃
+

n∑︂
j=1

(cnj (t)Aaj, ak) +
n∑︂

j=1

⟨B(cni (t)ai, cnj (t)aj), ak⟩ = (f, ak),

(4.15)

where we used the well known fact that (Pnu, ak) = (u, ak) ∀u ∈ L2(R3).

Since by Lemma 4.3 Aai = λiai ∀i ∈ N, and are orthogonal in L2(BR), (3.15)
simplifies to a system of linear ODE’s

d

dt
cnk(t) + λkc

n
k(t) +

n∑︂
i,j=1

Dijkc
n
i (t)c

n
j (t) = fk, k = 1, . . . , n (4.16)

where

Dijk = ⟨B(ai, aj), ak⟩, fk(t) = (f(·, t), ak) and cni (t) = (Θn, ai), (4.17)

where the initial conditions are determined similarly by taking the L2 inner product
of (3.13) with ak, yielding

cnk(0) = ⟨Φ0R , ak⟩, (4.18)

Here we conclude from classical ODE theory, since we have a countable system of
linear ODEs, system (4.16)-(4.18) admits a unique solution tuple (cn1 , . . . , c

n
n) on

the local time interval [0, Tn) with 0 < Tn ≤ T . Hence we have the existence of a
sequence of solutions Φn to the system (4.12)-(4.13) of the form (4.14).
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4.2 Uniform Estimates on Φn

In order to show the existence of a global in-time solution to (4.7)-(4.9), one ap-
proach is to extract a strongly convergent subsequence from {Φn}n∈N through the
well known Aubin-Lions Lemma (see Appendix A Theorem A.1.) (compactness
argument). As such, uniform estimates on Φn and ∂tΦn in L2(0, T ; (H1

0,σ(BR)))

and L2(0, T ; (H1
0,σ(BR)

∗)) respectively, are needed.

We first find uniform bounds on Φn. By the above argument in section 4.1, we
have the existence of a sequence of solutions {Φn}n∈N on [0, Tn) to the system
(4.12)-(4.13). Taking the L2 inner product of Φn(s) with (4.12) yields

(∂sΦn(s),Φn(s)) + (AΦn(s),Φn(s)) + ⟨PnB(Θn(s),Φn(s)),Φn(s)⟩ = (f,Φn(s)),

(4.19)
By the product rule, the first term on the LHS of (4.19) can be rewritten as

(∂sΦn(s),Φn(s)) =
1

2

d

ds
∥Φn(s)∥2L2(BR), (4.20)

whereas the second term can be rewritten as (using the definition of the Stokes
operator and the projection operator)

(AΦn(s),Φn(s)) = (−P∆Φn(s),Φn(s)) = (−∆Φn(s),PΦn(s)) = (−∆Φn(s),Φn(s))

= ∥∇Φn(s)∥2L2(BR),

(4.21)

where in the last step we integrate by parts and use the fact that ∇ ·Θn = 0.

Next, the third nonlinear term on the LHS of (4.19) vanishes, since

⟨PnB(Θn,Φn),Φn⟩ = ⟨B(Θn,Φn), PnΦn⟩ = ⟨B(Θn,Φn),Φn⟩ = 0, (4.22)

Hence for s > 0, combining (4.20)-(4.22) with (4.19), one gets
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1

2

d

ds
∥Φn(s)∥22 + ∥∇Φn(s)∥22 = (f,Φn(s)), (4.23)

Integrating (4.23) from 0 to t for all t ∈ [0, Tn), using (4.9) and applying the Cauchy
Schwartz and Young’s inequalities, one obtains

∥Φn(t)∥2L2(BR)+

∫︂ t

0

∥∇Φn(s)∥2L2(BR) dτ ≤ ∥Φ0∥22+K
∫︂ t

0

∥f(s)∥26
5
dτ ≤ C, (4.24)

where K > 0 is a constant and C > 0 is a constant independent of t and n.

Finally, since the second term on the LHS of (4.24) is non-negative, taking the
time supremum over [0, T ] of (4.24), one obtains the estimate

∫︂ T

0

∥∇Φn(s)∥2L2(BR) dτ ≤ ∥Φ0∥22 +K

∫︂ T

0

∥f(s)∥26
5
dτ, (4.25)

where K > 0 is a constant.

Hence Φn ∈ L∞(0, T ;L2(BR)) ∩ L2(0, T ;H1
0,σ(BR)) and thus one obtains the

uniform bound

∥Φn∥L∞(0,T ;L2(BR))∩L2(0,T ;H1
0,σ(BR)) ≤ C, (4.26)

4.3 Uniform Estimates on ∂tΦn

Next we show uniform estimates on ∂tΦn in L2(0, T ;H1
0,σ(BR)

∗) as mentioned
previously. In a similar fashion for the bound on Φn, taking the L2 inner product of
(4.12) with an arbitary test function φ ∈ H1

0,σ(RR), gives

(∂tΦn, φ) = −(AΦn, φ)− ⟨PnB(Θn,Φn), φ⟩+ (f, φ)

= −(AΦn, φ)− ⟨B(Θn,Φn), Pnφ⟩+ (f, φ)
(4.27)
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Next we estimate each term on the RHS of (4.27). Specifically, the first term on the
RHS of (4.27) estimates as follows

|(AΦn, φ)| = |(−P∆Φn, φ)| = |(−∆Φn +∇φ̃, φ)| = | −∆Φn, φ| (4.28)

whereby integrating by parts and using the divergence free boundary condition, one
arrives at

|(AΦn, φ)| = |(∇Φn,∇φ)| ≤ ∥∇Φn∥L2(BR)∥φ∥H1
0 (BR) (4.29)

Next, for the second term on the RHS of (3.27), using Hölder’s inequality with the
Sobolev embedding theorem, gives for some constant c > 0

|⟨B(Θn,Φn), Pnφ⟩| ≤ ∥Θn∥L3(BR)∥∇Φn∥L2(BR)∥Pnφ∥L6(BR)

≤ c∥∇Φn∥L2(BR)∥Pnφ∥H1
0,σ(BR)

≤ c∥∇Φn∥L2(BR)∥φ∥H1
0,σ(BR)

(4.30)

with the last term of (3.27) dealt with similarly

|(f, φ)| ≤ ∥f∥
L

6
5 (BR)

∥φ∥L6(BR) ≤ c∥f∥
L

6
5 (BR)

∥φ∥H1
0σ(BR) (4.31)

Hence combinging (4.27) with (4.29)-(4.31), one gets

∥∂tΦn∥(H1
0,σ(BR))∗ ≤ c(∥∇Φn∥L2(BR) + ∥f∥

L
6
5 (BR)

) (4.32)

Squaring both sides of (4.32) yields

∥∂tΦn∥2(H1
0,σ(BR))∗ ≤ c(∥∇Φn∥2L2(BR) + 2∥Φn∥L2(BR)∥f∥L 6

5 (BR)
+ ∥f∥2

L
6
5 (BR)

)

≤ c(∥∇Φn∥2L2(BR) + ∥f∥2
L

6
5 (BR)

),

(4.33)
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for which integrating from 0 to T and using (4.24) yields∫︂ T

0

∥∂tΦn∥2(H1
0,σ(BR))∗ ds ≤ c

(︃∫︂ T

0

∥∇Φn(s)∥2L2(BR) ds+

∫︂ T

0

∥f(s)∥2
L

6
5 (BR)

ds

)︃
≤ c

(︃
∥Φ0∥22 +

∫︂ T

0

∥f(s)∥26
5
ds

)︃
,

(4.34)

Hence ∂tΦn ∈ L2(0, T ; (H1
0,σ(BR))

∗) and thus one obtains the uniform bound

∥∂tΦn∥L2(0,T ;(H1
0,σ(BR))∗) ≤ C, (4.35)

4.4 Global in time Existence

Finally we show the global in time existence of a solution pair Γϵ = (uϵ, Bϵ) to the
regularized system (4.1), thus in turn proving Theorem 4.2.

The idea is to extract a convergent subsequence with limit ΦR via the Aubin-Lions
Lemma (Appendix A, Theorem A.1.) and prove it’s a solution to the system (4.7)-
(4.9) for eachR > 0. Next, one can extend such a sequence of solutions {ΦR}R>0 to
the whole domain Ω, defining values of ΦR outside the ball BR to be zero. Applying
a standard diagonalization argument then shows such a sequence {ΦR}R>0 strongly
converges to a unique solution to (4.1), ending the proof. A summary of the above
is outlined below.

Summarizing the above subsections, we have proved the existence of a constant
C > 0 such that

∥Φn∥L∞(0,T ;L2(BR))∩L2(0,T ;H1
0,σ(BR)) ≤ C and ∥∂tΦn∥L2(0,T ;(H1

0,σ(BR))∗) ≤ C,

(4.36)
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Hence by Aubin-Lions Lemma, there exists ∀R > 0 a subsequence (still denote by
Φn) Φn → ΦR such that

Φn → ΦR, strongly in L2(0, T ;L2
σ(BR))

Φn → ΦR, weakly star in L∞(0, T ;L2
σ(BR))

∇Φn → ∇ΦR, weakly in L2(0, T ;L2(BR))

(4.37)

Dotting φ ∈ DT with equation (4.7) and integrating from [0,T) (and integrating by
parts), one gets

−
∫︂ T

0

(Φn, ∂tφ)dt+

∫︂ T

0

(∇Φn,∇φ)dt+
∫︂ T

0

⟨B(Θn,Φn), φ⟩dt = (Φ0R , φ(0))+

∫︂ T

0

(f, ϕ)dt,

(4.38)
Here from (4.37), taking the limit of the first and second term of the LHS of (4.38)
as n→ ∞, one gets ∫︂ T

0

(Φn, ∂tφ) dt→
∫︂ T

0

(ΦR, ∂tφ) dt, (4.39)

and ∫︂ T

0

(∇Φn,∇φ) dt→
∫︂ T

0

(∇ΦR,∇φ) dt, (4.40)

where when taking the limit of the third term of the LHS of (4.38), one notes that

B(Θn,Φn)− B(Θ,ΦR) = B(Θn −Θ,Φn) + B(Θ,Φn − ΦR), (4.41)

thus we see by Hölder’s inequality that⃓⃓⃓⃓∫︂ T

0

⟨B(Θn −Θ,Φn), φ⟩ dt
⃓⃓⃓⃓
≤ C

∫︂ T

0

∥Θn −Θ∥4∥∇Φn∥2∥φ∥4 dt

≤ Cφ

(︃∫︂ T

0

∥Θn −Θ∥24 dt
)︃ 1

2
(︃∫︂ T

0

∥∇Φn∥22 dt
)︃ 1

2

→ 0,

(4.42)
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and using (4.37) again we get∫︂ T

0

⟨B(Θ,Φn − ΦR), φ)⟩ dt→ 0, (4.43)

Hence combining (4.42) and (4.43) with (4.41) we deduce that∫︂ T

0

⟨B(Θn,Φn), φ⟩ dt→
∫︂ T

0

⟨B(Θ,ΦR), φ⟩ dt, (4.44)

Hence combining (4.39), (4.40) and (4.44) with (4.38) after passing to the limit one
gets

−
∫︂ T

0

(ΦR, ∂tφ)dt+

∫︂ T

0

(∇ΦR,∇φ)dt+
∫︂ T

0

⟨B(Θ,ΦR), φ⟩dt = (Φ0R , φ(0))+

∫︂ T

0

(f, φ)dt,

(4.45)
Therefore ΦR is a weak solution to the system (4.7).

Finally, extending each ΦR by 0 outside BR for each R > 0 and denoting these
same extensions by ΦR, we aim to apply the Aubin-Lions Lemma with a standard
diagonal argument to show existence.

Firstly it’s clear by the estimate (4.24) that such extensions ΦR satisfy

1

2
∥ΦR(t)∥22 +

∫︂ t

0

∥∇ΦR∥22 ds ≤ C, (4.46)

for some constant C > 0 invariant of the radius R.

Hence the above implies ΦR → Φ weakly in L2(0, T ;W 1,2(R3)).

In addition, using the estimate (4.34), for R > 1, one also has∫︂ T

0

∥∂tΦR∥2(H1
0,σ(R3))∗ ds ≤ c

(︃
∥Φ0∥22 +

∫︂ T

0

∥f(s)∥26
5
ds

)︃
, (4.47)

where c is another constant invariant of the radius R.
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Taking S ∈ N such that S ≤ R, one notes through inclusions of Lp spaces on
compact sets (and thus Sobolev spaces) that (H1

0,σ)
∗(BR) ⊂ (H1

0,σ)
∗(BS) and thus

combining both (4.46) and (4.47), one sees

∥∂tΦR∥L2(0,T ;(H1
0,σ)

∗(BS)) + ∥ΦR∥L2(0,T ;H1
0 (BS)) ≤ ∥∂tΦR∥L2(0,T ;(H1

0,σ)
∗(BR)) + ∥ΦR∥L2(0,T ;H1

0 (BR))

≤ C,

(4.48)

Applying a diagonalization argument with Aubin-Lions lemma, one can extract a
convergent subsequence from {ΦR}R, (still denote it as {ΦR}R) such that ΦR → Φ

strongly in L2(0, T ;L2(BS)) for all S ∈ N.

Finally, the limit Φ is indeed a solution to the system (4.1)-(4.2). This is due
to the fact that since each ΦR are weak solutions, using the definiton of a weak
solution to (4.1)-(4.2) and taking the limit as R → ∞, one gets the claim, ending
the proof. See Lai and Yang for full details [29].
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Chapter 5

Global in time LrLs estimates for the
non-stationary Stokes system

Before proceeding with the proofs of Theorems 1.1-1.3, we require further machin-
ery on the so called non-stationary stokes system. Specifically, this section outlines
a variety of global in time LrLs estimates for the non-stationary stokes system in
R3 (5.1), which will be useful later in the proof of Theorem 1.1. In this section we
adapt a portion of Berselli’s paper [5] for the MHD Cauchy Problem (2.12).

Theorem 5.1. Solonnikov [46] (see also Giga and Sohr [22]). Let Ω ⊂ R3 be
smooth and bounded and F ∈ Lα(0, T ;Lβ(Ω)), where 1 < α, β < ∞. Then the
initial value non-stationary stokes system{︄

∂tλ−∆λ+∇θ = F ,

∇ · λ = 0,
(t, x) ∈ (0, T )× Ω (5.1)

λ(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω,

λ(0, x) = 0 x ∈ Ω,

admits a unique solution (γ, θ) such that for some constant c > 0 dependent on
α, β, T and Ω,

∥∂tλ∥Lα(Lβ) + ∥Pσ∆λ∥Lα(Lβ) + ∥∇θ∥Lα(Lβ) ≤ c∥F∥Lα(Lβ), (5.2)
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The following is an immediate corollary which will allow us to deal with higher
order systems.

Corollary 5.2. Let Ω ⊂ R3 be smooth and bounded and F : R3 → R6 with
F ∈ Lα(0, T ;Lβ(Ω)), where 1 < α, β < ∞. Further, let λ = (λ1, λ2) where
λi : R3 → R3 and θi : R3 → R. Then the Cauchy problem (5.3)

{︄
∂tλi −∆λi +∇θi = Fi,

∇ · λi = 0,
(t, x) ∈ (0, T )× Ω (5.3)

λ(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω,

λ(0, x) = 0 x ∈ Ω,

admits a unique solution (γ, θ) such that for some constant c > 0 dependent on
α, β, T and Ω,

∥∂tλ∥Lα(Lβ) + ∥Pσ∆λ∥Lα(Lβ) + ∥∇θ∥Lα(Lβ) ≤ c∥F∥Lα(Lβ), (5.4)

Proof. The proof follows by applying Theorem 4.1 to each λi

In an attempt to mimic the coupled system (3.26), we set F = B(γ, λ) where
γ ∈ Lr(0, T ;Ls(Ω)) is a nice enough divergence-free mapping. Here for simplicity,
the remainder of this section will assume γ = (γ1, γ2) and λ = (λ1, λ2) where
γi, λi : R3 → R3 and θi : R3 → R.

Adapting Berselli and Chiodaroli [5], we have

Lemma 5.3. Let Ω ⊂ R3 be smooth and bounded, and γ ∈ Lr(0, T ;Ls(Ω))

with ∇ · γi = 0 in D′
T for a.e. t ∈ [0, T ]. Then the initial value 3D cauchy problem

(5.5) {︄
∂tλi −∆λi +∇θi = Bi(γ, λ),

∇ · λi = 0,
(t, x) ∈ (0, T )× Ω (5.5)
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λ(t, x) = 0 (t, x) ∈ (0, T )× ∂Ω,

λ(0, x) = 0 x ∈ Ω,

admits a unique solution (λ, θ) with λ ∈ L2(0, T ;H1(R3)) ∩ L∞(0, T ;L2
σ(R3)

In addition if ∇λ ∈ Lα(0, TLβ(Ω)) (1 ≤ α, β ≤ ∞), then one also has for
c > 0

∥∂tλ∥
L

rα
r+α (L

sβ
s+β )

+∥Pσ∆λ∥
L

rα
r+α (L

sβ
s+β )

+∥∇θ∥
L

rα
r+α (L

sβ
s+β )

≤ c∥γ∥Lr(Ls)∥∇λ∥Lα(Lβ),

(5.6)
Proof. The existence of a unique solution (γ, θ) in the Leray-Hopf class (2.7) is
shown in Section 4 above by Theorem 4.2 (or Lai and Yang [29]). Next, applying
the triangle inequality with Hölder’s inequality gives

∥B(γ, λ)∥
L

rα
r+α (L

sβ
s+β )

= ∥(γ1 · ∇λ1 − γ2 · ∇λ2, γ1 · ∇λ2 − γ2 · ∇λ1)∥
L

rα
r+α (L

sβ
s+β )

≤
∑︂

(i,j)≤2

∥γi · ∇λj∥
L

rα
r+α (L

sβ
s+β )

≤
∑︂

(i,j)≤2

⃦⃦
∥γi∥Ls∥∇λj∥Lβ

⃦⃦
L

rα
r+α

≤
∑︂

(i,j)≤2

∥γi∥Lr(Ls)∥∇λj∥Lα(Lβ)

≤ c∥γ∥Lr(Ls)∥∇λ∥Lα(Lβ),

(5.7)

in which combining (5.4) with (5.7) gives the result.

Following the idea presented in Berselli and Chiodaroli [5], we will apply Lemma
5.3 a finite number n ∈ N times, using a straightforward induction argument. As
such, an interpolation result given by Amann [1] will be needed.

Lemma 5.4. Take ϕ ∈ W 1,p(0, T ;Lq(Ω)) ∩ Lp(0, T ;W 2,q(Ω) ∩ W 1,q
0 (Ω)) with
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ϕ(0) = 0, (1 < p, q <∞). Then one gets

ϕ ∈ Lp1(0, T ;W 1,q
0 (Ω)) ∀ p1 ≤ p∗ where

1

p∗
=

1

p
− 1

2
, (5.8)

Using the interpolation result above, one can show the following result.

Lemma 5.5. Let γ ∈ Lr(0, T ;Ls(Ω)) be such that 1
r
+ 1

s
= κ ≤ 1

2
. If the

solution (λ, θ) to (5.3) satisfies ∇λ ∈ Lα(0, T ;Lβ(Ω)), then

∇λ ∈ Lα1(0, T ;L
sβ
s+β (Ω)) ∀ α1 ≤

(︃
rα

r + α

)︃
∗
, (5.9)

Proof. Take ϕ = λ as in Lemma 5.4. Assume ∇λ ∈ Lα(0, T ;Lβ(Ω)), then we

have λ ∈ Lα(0, T ;W 1,β
0 ). We want to show that λ ∈ Lα1(0, T ;W

1, sβ
s+β

0 ).

By Lemma 5.3, we have for some constant c > 0

∥Pσ∆λ∥
L

rα
r+α (L

sβ
s+β )

≤ c∥γ∥Lr(Ls)∥∇λ∥Lα(Lβ), (5.10)

Hence λ ∈ W 1,p(0, T ;Lq(Ω)) ∩ Lp(0, T ;W 2,q(Ω) ∩ W 1,q
0 (Ω)). Further letting

p = rα
r+α

and q = sβ
s+β

, applying Lemma 5.4 gives

λ ∈ Lp1(0, T ;W
1, sβ

s+β

0 (Ω)) ∀ p1 ≤ p∗,where
1

p∗
:=

1

p
− 1

2
, (5.11)

We note that
1

α1

≥ 1(︁
rα
r+α

)︁
∗

=
r + α

rα
− 1

2
=

1

p
− 1

2
=

1

p∗
, (5.12)

for which p1 = α1 ≤ p∗ can be chosen, completing the proof.

Next, we aim to apply a bootstrapping argument to Lemma 5.5 by considering
the sequence (αn, βn)n∈N defined recursively as (terminating if αn or βn reach
either 1 or +∞)

αn+1 :=

(︃
rαn

r + αn

)︃
∗

βn+1 =
sβn
s+ βn

n ∈ N, (5.13)
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for which simple computation shows

1

αn+1

+
1

βn+1

= κ− 1

2
+

1

αn

+
1

βn
n ∈ N, (5.14)

From here, by the recurrence definition (5.13), it follows that αn is increasing, while
βn is decreasing. That is, repeated use of Lemma 5.5 results in an increase in
regularity of the solution (λ, θ) in the time variable, at the expensive of regularity
in the space variable.

Lemma 5.6. Let γ ∈ Lr(0, T ;Ls(Ω)) be such that 1
r
+ 1

s
= κ ≤ 1

2
. Further

define the pair (αn, βn) as in Lemma 5.5. Then the solution (λ, θ) to (5.3) satisfies

∇λ ∈ Lα̃n(0, T ;Lβ
n(Ω)) ∀α̃n ≤ αn, (5.15)

with
B(γ, λ) ∈ L

rα̃n
r+α̃n (0, T ;L

sβn
s+βn (Ω)), (5.16)

Proof. (5.15) follows immediately by induction, whereas (5.16) follows similar to
the proof of Lemma 5.3, by Hölder’s inequality.
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Chapter 6

Main Results

6.1 Initial Outline of Proofs

In this section we begin by providing a broad outline for the proof of Theorem
1.1 (with slight modifications and/or additions to this structure for the proofs of
Theorems 1.2 and 1.3). The structure for the proof of Theorem 1.1 can be divided
into three crucial parts, specifically, we need to prove:

Step 1. Show weak solutions to (2.12) which also have an additional restricted
regularity (in this case are in the space L4(0, T ;L4(R3)), the reasoning of which is
made clear later in the proof), fall in the Leray-Hopf class 2.7. (The proof of this
step is taken directly from Lai and Yang [29]).

Step2. Show Leray-Hopf weak solutions to (2.12) which are also inL4(0, T ;L4(R3))

satisfy the corresponding energy equality.

Step 3. Apply a bootstrapping argument to solutions of Step 1, to extend the
allowed regularity of solutions that satisfy the energy equality.

That is, steps 1 and 2 prove Theorem 1.1 for weak solutions inL4(0, T ;L4(R3)), with
step 3 extending the allowed regularity to the space Lr(0, T ;Ls(R3)) for 2

r
+ 2

s
= 1,

with s ≥ 4.
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Here Steps 2 and 3 are motivated by the arguments presented by Berselli [5] for
the incompressible Navier-Stokes eqations. We adapt such arguments for the MHD
equations.

6.2 Proof of Theorem 1.1

6.2.1 Proof of Step 1

Suppose u,B ∈ L2
loc(R3 × (0, T )) are weak solutions to the MHD Equations (2.12)

(in the distributional sense) defined by (3.32), with initial data u0, B0 ∈ L2
σ(R3).

Then if u,B ∈ L4(0, T ;L4(R3)), they fall in the Leray-Hopf class (2.7) and satisfy
the energy equality (2.15).

Proof. Here we follow the arguments presented by Lai and Yang [29]. Let Ω := R3.
Following the mollifying techniques presented in section 4, we consider a regular-
ized version of the 3D Cauchy problem (2.12)⎧⎪⎪⎨⎪⎪⎩

∂tu
ϵ −∆uϵ + (u(ϵ) · ∇)uϵ − B(ϵ) · ∇Bϵ +∇pϵ = f1,

∂tB
ϵ + u(ϵ) · ∇Bϵ − B(ϵ) · ∇uϵ = ∆Bϵ + f2,

∇ · uϵ = ∇ · Bϵ = 0,

(t, x) ∈ (0, T )× R3

(6.1)
with initial conditions

uϵ(·, 0) = u
(ϵ)
0 , Bϵ(·, 0) = B

(ϵ)
0 , on R3, (6.2)

where f1, f2 ∈ C∞
0 ((0, T )× R3) with T > 0.

Or following equation (3.26), consider the equivalent coupled system{︄
∂tΓ

ϵ + AΓϵ + B(Γ(ϵ),Γ
ϵ) = f,

∇ · Γϵ = 0,
(t, x) ∈ (0, T )× R3 (6.3)
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with initial conditions

Γϵ(·, 0) = (uϵ(·, 0), Bϵ(·, 0)) = Γϵ
0, on R3 (6.4)

where Γϵ = (uϵ, Bϵ), Γ(ϵ) = (u(ϵ), B(ϵ)) and f = (f1, f2).

Through a standard Galerkin method presented in section 4, it was shown
that the system (6.3)-(6.4) with initial data Γϵ

0 ∈ L2
σ(R3) admits a unique solu-

tion Γϵ = (uϵ, Bϵ) in the Leray-Hopf class (2.7) and satisfies the energy estimate
(6.5).

max
t∈[0,T ]

(∥uϵ(t))∥22 + ∥Bϵ(t)∥22 +
∫︂ T

0

(∥∇uϵ∥22 + ∥∇Bϵ∥22)dt

≤ ∥uϵ0∥22 + ∥Bϵ
0∥22 + c

∫︂ T

0

(∥f1(t)∥26
5
+ ∥f2(t)∥26

5
)dt,

(6.5)

for some constant c > 0.

Notation. Here as an abuse of notation, we use the same variable Γϵ to denote
the solution of the system (6.1). This will be done a variety of times to avoid using
needlessly many variables.

Here Γϵ is a weak solution to (6.1) and satisfies (following the approach outlined in
section 3.2),

∂t(Γ
ϵ,Ψ) + (∇Γϵ,∇Ψ) + ⟨B(Γϵ,Ψ),Γϵ⟩ = 0, (6.6)

or equivalently for any Ψ = (φ, ϕ) ∈ DT integrating from 0 to T gives∫︂ T

0

(∂t(Γ
ϵ,Ψ) + (∇Γϵ,∇Ψ) + ⟨B(Γϵ,Ψ),Γϵ⟩)dt = (Γ

(ϵ)
0 ,Ψ(0)), (6.7)

Letting Γ be defined by Theorem 1.1, taking the difference of (6.1) with (6.7) and
integrating by parts (as to pass all the regularity on Ψ), gives∫︂ T

0

(Γ−Γϵ, ∂tΨ+∆Ψ+B(Γ(ϵ),Ψ))dt = −
∫︂ T

0

(B(Γ−Γ(ϵ),Ψ),Γ)dt−(Γ0−Γϵ
0,Ψ(0)),

(6.8)
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From here, the rest of the proof will be dedicated to showing∫︂ T

0

(Γ− Γϵ, f)dt→ 0

, for which since f ∈ C∞
0 ((0, T )×R3) is arbitrary,Γ can be identified with limϵ→0 Γ

ϵ,
and hence also Γ is in the Leray-Hopf class (2.7). As such, from the results of step
2, Γ solves the energy equality (2.15) and the proof will be finished.

To work with (6.8), we first wish to condense it by considering the reverse time
system of (2.12). Following the argument presented by Lai and Yang [29], for
f ∈ C∞

0 ((0, T ),×R3), the 3D Cauchy problem{︄
∂tΓϵ + AΓϵ + B(Γ(ϵ),Γϵ) +∇pϵ = f,

∇ · Γϵ = 0,
(t, x) ∈ R3 × (0,∞) (6.9)

Γ
(ϵ)
0 = 0 in R3

where Γ(ϵ)(x, t) := −Γ(ϵ)(x, T − t) and f(x, t) = −f(x, T − t), admits a solution
Γϵ ∈ W 2,1

4
3
,T
∩W 2,1

2,T .

Letting Λϵ(t, x) := Γϵ(T − t, x), with Θϵ(t, x) = pϵ(T − t, x), then Λϵ solves
the system (4.10){︄

∂tΛϵ +∆Λϵ + B(Γ(ϵ),Λϵ)−∇Θϵ = −f,

∇ · Λϵ = 0,
(t, x) ∈ (0, T )× R3 (6.10)

Λϵ(x, T ) = 0 in R3

By using a standard density argument in DT , taking Ψ = Λϵ as our test function in
(6.8), one obtains through (6.10)∫︂ T

0

(Γ−Γϵ, f +∇Θϵ)ds =

∫︂ T

0

(B(Γ−Γ(ϵ),Λϵ),Γ)dt− (Γ0−Γ
(ϵ)
0 ,Λϵ(0)), (6.11)
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Firstly, since ∇· (Γ−Γϵ) = 0 in D′(T ) for almost every t ∈ (0, T ), one gets through
integrating by parts ∫︂ T

0

(Γ− Γϵ,∇Θϵ)dt = 0, (6.12)

Further, by Theorem 4.2, one has for some constant c > 0

∥Λϵ(0)∥2 ≤ c

∫︂ T

0

∥f(t)∥26
5
dt, (6.13)

for which using the Cauchy Schwartz inequality gives

lim
ϵ→0

|Γ0 − Γ
(ϵ)
0 ,Λϵ(0)| ≤ lim

ϵ→0
∥Γ0 − Γ

(ϵ)
0 ∥2∥Λϵ(0)∥2

≤ c lim
ϵ→0

∥Γ0 − Γ
(ϵ)
0 ∥2

∫︂ T

0

∥f(t)∥26
5
dt

→ 0,

(6.14)

Finally we aim to show that the nonlinear term in (6.11) goes to zero. Specifically
we want to show that ∫︂ T

0

(B(Γ− Γ(ϵ),Λϵ),Γ)dt = 0, (6.15)

Indeed, since Γ ∈ L4(0, T ;L4(R3)), the nonlinear term is estimated by∫︂ T

0

(B(Γ− Γ(ϵ),Λϵ),Γ)dt ≤ ∥Γ∥L4(L4)∥B(Γ− Γ(ϵ),Λϵ)∥L 4
3 (L

4
3 )

≤ ∥Γ∥L4(L4)

∑︂
(i,j)≤2

∥Γi − Γi(ϵ)∥L4(L4)∥∇Λj∥L2(L2)

≤ c∥Γ∥L4(L4)∥∇Λϵ∥L2(L2)∥Γ− Γ(ϵ)∥L4(L4),

(6.16)

Here (6.16) goes to 0 as ϵ → 0 since Γ ∈ L4(0, T, L4(R3)) and Λϵ is Leray-
Hopf. The latter is true by Theorem 4.2. for which such solutions lie in ∇Λϵ ∈
L2(0, T ;L2(R3)).
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Combining all (6.12)-(6.16) into (6.11) one obtains∫︂ T

0

(Γ− Γϵ, f)ds→ 0, (6.17)

From here, by Theorem 4.2 (4.6), there exists a convergent subsequence of {Γϵ}ϵ>0.
We will denote such limit as Γreg. Hence one gets using (6.17) that∫︂ T

0

(Γ− Γreg, f) ds→
∫︂ T

0

(Γ− Γϵ, f) ds→ 0, (6.18)

and since f ∈ C∞
0 (R3 × (0, T )) is arbitrary, one can identify Γ with Γreg. Finally

by Theorem 4.2 Γreg is Leray-Hopf, and hence so must Γ be as well, proving Step
1.

6.2.2 Proof of Step 2:

Suppose u,B ∈ L2
loc(R3 × (0, T )) is a Leray-Hopf weak solution to the MHD

Equations (2.12) (in the distributional sense) defined by (3.32), with initial data
u0, B0 ∈ L2

σ(R3). Then if u,B ∈ Lr(0, T ;Ls(R3)) with 2
r
+ 2

s
= 1 for s ≥ 4, they

satisfy the energy equality (2.15).

Proof. The remainder of steps 2 and 3 are modifications of arguments presented by
Berselli and Chiodaroli [5]. Let (u,B) be definied as in the above hypothesis, with
initial data u0, B0 ∈ L2

σ(Ω). Fix T ∈ (0,∞) with t0 ∈ (0, T ]. Then by a standard
density argument, there exists a sequence {(un, Bn)}n∈N ⊂ C∞

0 ([0, T );C∞
0 (Ω))

that converges to (u,B) ∈ L2(0, T ;V ) ∩ Lr(0, T ;W 1,s
0 (Ω)), where V denotes the

space of divergent free mappings on H1
0 (Ω). Letting Ψ := (Ψn)ϵ = ((un)ϵ, (Bn)ϵ)

as our test function, integrating (3.26) from 0 to t0 ∈ (0, T ] with respect to time
gives

(Γ(t0), (Ψn)ϵ(t0)) = (Γ0, (Ψn)ϵ(0))

+

∫︂ t0

0

(︃
(Γ, ∂t(Ψn)ϵ)− (∇Γ,∇(Ψn)ϵ)− ⟨B(Γ,Γ), (Ψn)ϵ⟩

)︃
dt,

(6.19)

53



Mollifying and passing to the limit for each term in (6.19) is outlined in Galdi [20],
where the two following facts are used∫︂ T

0

(∇Γ,∇Γϵ) =

∫︂ T

0

(∇Γ, (∇Γ)ϵ)dt −−−→
ϵ→0+

∫︂ T

0

∥∇Γ∥2dt,

(Γ(t), (Γ)ϵ(t)) =
∥Γ(t)∥2

2
+O(ϵ),

(6.20)

where the first limit requires Γ ∈ L2(0, T ;V ).

Next when passing to the limit, the only difficulty arises in the nonlinear term
of (6.19). Specifically when comparing to the energy equality, we want to show∫︂ t0

0

⟨B(Γ,Γ), (Ψn)ϵ⟩ dt −−−→
ϵ→0+

0, (6.21)

Expanding (6.21) and rearranging into groups of terms we get∫︂ t0

0

⟨B(Γ,Γ), (Ψn)ϵ⟩ dt =
∫︂ t0

0

(u · ∇u, (un)ϵ) dt

−
(︃∫︂ t0

0

(B · ∇u, (Bn)ϵ) dt+

∫︂ t0

0

(B · ∇B, (un)ϵ) dt
)︃

+

∫︂ t0

0

(u · ∇B, (Bn)ϵ) dt

:= L1 + L2 + L3,

(6.22)

where the above is organized such that each line goes to 0 if (Γm)ϵ is replaced by
Γ via integration by parts. We now show indeed (6.22) goes to 0 as ϵ → 0+ and
n→ ∞.

In an attempt to avoid receptiveness, we estimate L1 in (6.22) here, and simi-
larily L2 when looking at the proof of Theorem 1.2. (Both proofs have similar
arguments). Estimates for each Li are accomplished similarily. Specifically, one
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notes

L1 =

∫︂ t0

0

(u · ∇u, (un)ϵ − (u)ϵ) dt+

∫︂ t0

0

(u · ∇u, (u)ϵ − u) dt

+

∫︂ t0

0

(u · ∇u, u) dt

= L1
1 + L2

1 + L3
1,

(6.23)

where each Li
1 denotes each term of L1 on the RHS of (6.23) for i = 1, . . . 3.

Specifically, estimating L1
1, one obtains through Hölder’s inequality and convex

interpolation⃓⃓⃓⃓∫︂ t0

0

(u · ∇u, (un)ϵ − (u)ϵ) dt

⃓⃓⃓⃓
≤
∫︂ t0

0

∥u∥Ls
x
∥∇((un)ϵ − uϵ)∥L2

x
∥u∥Lr

x
dt

≤
∫︂ t0

0

∥u∥Ls
x
∥∇((un)ϵ − uϵ)∥L2

x
∥u∥2−

r
2

L2
x
∥u∥

r
2
−1

Ls
x
dt

≤ ∥u∥
r
2
Lr
TLs

x
∥(un)ϵ − uϵ∥L2

TW 1,2
x
∥u∥2−

r
2

L2
x

≤ ∥Γ∥
r
2
Lr
TLs

x
∥(Γn)ϵ − Γϵ∥L2

TW 1,2
x
∥u∥2−

r
2

L2
x

→ 0,

(6.24)

Similarly for L2
1, again Hölder’s inequality and convex interpolation give⃓⃓⃓⃓∫︂ t0

0

(u · ∇u, (u)ϵ − u) dt

⃓⃓⃓⃓
≤
∫︂ t0

0

∥u∥Ls
x
∥∇u∥L2

x
∥uϵ − u∥Lr

x
dt

≤
∫︂ t0

0

∥u∥Ls
x
∥∇u∥L2

x
∥uϵ − u∥2−

r
2

L2
x
∥uϵ − u∥

r
2
−1

Ls
x
dt

≤ ∥u∥Lr
TLs

x
∥∇u∥L2

TL2
x
∥uϵ − u∥2−

r
2

L∞
T L2

x
∥uϵ − u∥

r
2
−1

Lr
TLs

x

≤ ∥Γ∥Lr
TLs

x
∥∇Γ∥L2

TL2
x
∥Γϵ − Γ∥2−

r
2

L∞
T L2

x
∥Γϵ − Γ∥

r
2
−1

Lr
TLs

x

→ 0,

(6.25)
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Finally, for L3
1, as will be explained similarly later in the proof of Theorem 1.2, one

notes that ∫︂ t0

0

(u · ∇un, un) dt→
∫︂ t0

0

(u · ∇u, u) dt, (6.26)

hence since the LHS of (6.26) equals zero by integration by parts, we have L3
1 → 0

if ⃓⃓⃓⃓∫︂ t0

0

(u · ∇un, un) dt−
∫︂ t0

0

(u · ∇u, u) dt
⃓⃓⃓⃓

≤
⃓⃓⃓⃓∫︂ t0

0

(u · ∇un, un − u) dt

⃓⃓⃓⃓
+

⃓⃓⃓⃓∫︂ t0

0

(u · ∇(un − u), u) dt

⃓⃓⃓⃓
→ 0,

(6.27)

Estimating the first and second terms on the RHS of (6.27) is done similarly to that
shown in (6.24) and (6.25). Hence one gets L3

1 → 0

Combining the above one gets L1 → 0, and following a similar procedure for
L2 and L3, we get ∫︂ t0

0

⟨B(Γ,Γ), (Ψn)ϵ⟩ dt→ 0, (6.28)

Combining (6.28) with (6.19) when passing to the limit (through standard properties
of mollifiers), one obtains the energy equality, finishing the proof.

6.2.3 Proof of Step 3:

Suppose u,B ∈ L2
loc(R3 × (0, T )) are weak solutions (in the distributional sense)

to the MHD Equations (2.12) (in the distributional sense) defined by (3.32), with
initial data u0, B0 ∈ L2

σ(R3). Then if u,B ∈ Lr(0, T ;Ls(R3)) with 2
r
+ 2

s
= 1 for

s ≥ 4, they fall in the Leray-Hopf class (2.7) and satisfy the energy equality (2.15).

Proof. Following a verbatim proof of Step 1 up to Equation (6.15), we con-
tinue the proof differently by changing the bound on (6.16). Specifically since
Γ ∈ Lr(0, T ;Ls(R3)) with 2

r
+ 2

s
= 1 for s ≥ 4, one has Γ − Γ(ϵ) → 0 in

Lr(0, T ;Ls(R3)). Letting Γ−Γϵ = (Γ1,Γ2) and Λϵ = (Λ1,Λ2), following a similar

56



approach, Hölder’s inequality gives∫︂ T

0

(B(Γ− Γ(ϵ),Λϵ),Γ)dt ≤ ∥Γ∥Lr(Ls)∥B(Γ− Γ(ϵ),Λϵ)∥L r
r−1 (L

s
s−1 )

= ∥Γ∥Lr(Ls)∥B(Γ− Γ(ϵ),Λϵ)∥
L

2s
s+2 (L

s
s−1 )

≤ ∥Γ∥Lr(Ls)

∑︂
(i,j)≤2

∥Γi − Γi(ϵ)∥Lr(Ls)∥∇Λj∥L s
2 (L

s
s−2 )

≤ c∥Γ∥Lr(Ls)∥∇Λϵ∥L s
2 (L

s
s−2 )

∥Γ− Γ(ϵ)∥Lr(Ls),

(6.29)

Hence the RHS of (6.29) goes to 0, if either

B(Γ− Γ(ϵ),Λϵ) ∈ L
2s
s+2 (L

s
s−1 (R3)) or ∇Λϵ ∈ L

s
2 (L

s
s−2 (R3)), (6.30)

Here one notes by setting r = s = 2 reduces down to the case proven by Step’s 1
and 2. Now we apply a sort of bootstrapping argument iterating Lemma 5.6, starting
with our base case r = s = 2.

Letting (α1, β1) = (2, 2) with κ = 1
2
, Lemma 4.6 gives for n ∈ N (by letting

(γ, λ, θ) := (Γ(ϵ),Λϵ,Θ
ϵ))

B(Γ(ϵ),Λϵ) ∈ Lαn(0, T ;Lβn(R3)) where βn =
sβn−1

s+ βn−1

and
1

αn

+
1

βn
=

3

2
,

(6.31)
or by induction, this is equivalent to

B(Γ(ϵ),Λϵ) ∈ L
s

s−n (0, T ;L
2s

2n+s ) n ∈ N, (6.32)

where
αn =

s

s− n
βn =

2s

2n+ s
n ∈ N, (6.33)

From here we consider two cases, omitting the case when s = 4, (since we have
already proved it).

Case 1. Suppose s > 4 is even. That is, s = 2k with k > 2, k ∈ N. Then

57



it follows that
αk−1 =

s

s− k + 1
=

2k

k + 1
=

2s

2 + s
,

βk−1 =
2s

2(k − 1) + s
=

2m

2m− 1
=

s

s− 1
,

(6.34)

giving B(Γ(ϵ),Λϵ) ∈ L
2s
2+s (L

s
s−1 ) as desired.

Case 2. Suppose s > 4 is odd. Here our goal is to interpolate around L
s

s−1 (R3)

and L
2s
2+s (R3). For the former, (6.33) implies βn is strictly decreasing and hence we

wish to find N ∈ N such that

1 < βN+1 <
s

s− 1
≤ βN , (6.35)

that is
1 <

2s

2(N + 1) + s
<

s

s− 1
≤ 2s

2N + s
, (6.36)

Solving (6.36) gives
s

2
− 2 ≤ N <

s

2
− 1, (6.37)

Letting k ∈ N denote the integer part of s
2
, such an N ∈ N that satisfies (6.37) is

N = k − 1, (6.38)

Applying Hölder’s inequality, one gets

∥B(Γ− Γ(ϵ),Λϵ)∥
L

2s
s+2 (L

s
s−1 )

≤
⃦⃦⃦
∥B(Γ− Γ(ϵ),Λϵ)∥1−θ1

LβN+1

⃦⃦⃦
L

2s
s+2

⃦⃦
∥B(Γ− Γ(ϵ),Λϵ)∥θ1LβN

⃦⃦
L

2s
s+2

≤
⃦⃦⃦
∥B(Γ− Γ(ϵ),Λϵ)∥1−θ1

LβN+1

⃦⃦⃦1−θ2

LαN+1

⃦⃦⃦
∥B(Γ− Γ(ϵ),Λϵ)∥1−θ1

LβN+1

⃦⃦⃦θ2
LαN

,

(6.39)

where we have

s

s− 1
=

1− θ1
βN+1

+
θ1
βN

and
s+ 2

2s
=

1− θ2
αN+1

+
θ2
αN

, (6.40)
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here, both cases of (6.40) gives

θ1 = θ2 = N − s

2
+ 2, (6.41)

where by using (6.37), one gets θ1, θ2 ∈ [0, 1), allowing the use of Hölder’s in (6.39).
Finally, the RHS of (6.39) is finite by Lemma 5.6 and one gets B(Γ − Γ(ϵ),Λϵ) ∈
L

2s
s+2 (L

s
s−1 (R3)), satisfying the regularity requirement (6.30) and thus finsihing the

proof.

6.3 Proof of Theorem 1.2

We begin this section by proving Theorem 1.2. Specifically we present a modifica-
tion of the argument given by Berselli and Chiodaroli [5] for the MHD equations.
Formally, we show the following.

Theorem 1.2. Suppose u,B ∈ L2
loc(R3 × (0, T )) are Leray-Hopf weak solutions to

the MHD Equations (2.12) defined by (3.32), with initial data u0, B0 ∈ L2
σ(R3). If

in addition u,B both satisfy any of the conditions (B1*)-(B3*) below, then the pair
satisfy the energy equality (2.15).

(B1*) ∇u,∇B ∈ L
s

2s−3 (0, T ;Ls(Ω)) for 3
2
< s < 9

5
,

(B2*) ∇u,∇B ∈ L
5s

5s−6 (0, T ;Ls(Ω)) for 9
5
≤ s ≤ 3,

(B3*) ∇u,∇B ∈ L1+ 2
s (0, T ;Ls(Ω)) for s > 3,

Before proceeding, the credit of the proof is given to the ideas of Shinbrot [42]
and Berselli and Chiodaroli [5], with a few modifications introduced here when
dealing with the non-linear term. The main idea’s are the same, however Theorem
1.2 is necessary for completeness when dealing with Theorem 1.3, which is an
entirely new result.

Proof. We follow a verbtaim approach outlined in step 2 in section 6.2 above.
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That is, let (u,B) be definied as in Theorem 1.2, with initial data u0, B0 ∈ L2
σ(Ω).

Fix T ∈ (0,∞) with t0 ∈ (0, T ]. By standard density arguments, there ex-
ists a sequence {(un, Bn)}n∈N ⊂ C∞

0 ([0, T );C∞
0 (Ω)) that converges to (u,B) ∈

L2(0, T ;V ) ∩ Lr(0, T ;W 1,s
0 (Ω)), where V denotes the space of divergence free

mappings on H1
0 (Ω). Letting Ψ := (Ψn)ϵ = ((un)ϵ, (Bn)ϵ) as our test function,

integrating (3.26) from 0 to t0 ∈ (0, T ] with respect to time gives

(Γ(t0), (Ψn)ϵ(t0)) = (Γ0, (Ψn)ϵ(0))

+

∫︂ t0

0

(︃
(Γ, ∂t(Ψn)ϵ)− (∇Γ,∇(Ψn)ϵ)− ⟨B(Γ,Γ), (Ψn)ϵ⟩

)︃
dt,

(6.42)

Expanding the nonlinear term in (6.42) and rearranging into groups of terms we get∫︂ t0

0

⟨B(Γ,Γ), (Ψn)ϵ⟩ dt =
∫︂ t0

0

(u · ∇u, (un)ϵ) dt

−
(︃∫︂ t0

0

(B · ∇u, (Bn)ϵ) dt+

∫︂ t0

0

(B · ∇B, (un)ϵ) dt
)︃

+

∫︂ t0

0

(u · ∇B, (Bn)ϵ) dt

:= L1 + L2 + L3,

(6.43)

where the above is organized such that each line goes to 0 if (Γn)ϵ is replaced by
Γ via integration by parts. We now show indeed (6.43) goes to 0 as ϵ → 0+ and
n→ ∞. The first line of (6.43) goes to 0 by Berselli and Chiodaroli [5]. Following
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a similar approach to their proof, the second line can be rewitten as

L2 =

∫︂ t0

0

(B · ∇u, (Bn)ϵ − (B)ϵ) dt−
∫︂ t0

0

(B · ∇B, (un)ϵ − (u)ϵ) dt

+

∫︂ t0

0

(B · ∇u, (B)ϵ − B) dt−
∫︂ t0

0

(B · ∇B, (u)ϵ − u) dt

+

∫︂ t0

0

(B · ∇u,B) dt−
∫︂ t0

0

(B · ∇B, u) dt

= L1
2 + L2

2 + L3
2,

(6.44)

where each Li
2 denotes each line of L2 in (6.44) for i = 1, . . . 3.

We now show that for fixed ϵ > 0, L1
2 → 0 as n → ∞, L2

2 → 0 as ϵ → 0+,
and L3

3 = 0 given the assumptions of Theorem 1.2. Here each term in L1
2 and L2

2

can be bounded simlarily. For example the first term in L1
2 is dealt as follows

Let (u,B) ∈ Lr(0, T ;Ls(Ω)) where either of the conditions from Theorem 1.2
are satisfied. Then if 2

s̃
+ 1

s
= 1, 1

s̃
= 1−θ

6
+ θ

s∗
and 1

s∗
= 1

s
− 1

3
, Hölder’s inequality

with Sobolev embedding gives⃓⃓⃓⃓∫︂ t0

0

((B · ∇u, (Bn)ϵ − (B)ϵ)) dt

⃓⃓⃓⃓
≤
∫︂ t0

0

∥B∥Ls̃
x
∥∇u∥Ls

x
∥(Bn)ϵ − (B)ϵ∥Ls̃

x
dt

≤
∫︂ t0

0

∥B∥θLs∗
x
∥B∥1−θ

L6
x
∥∇u∥Ls

x
∥(Bn)ϵ − (B)ϵ∥θLs∗

x
∥(Bn)ϵ − (B)ϵ∥1−θ

L6
x

dt

≤ C

∫︂ t0

0

∥∇B∥θLs
x
∥∇B∥1−θ

L2
x
∥∇u∥Ls

x
∥∇((Bn)ϵ − (B)ϵ)∥θLs

x
∥∇((Bn)ϵ − (B)ϵ)∥1−θ

L2
x

dt

≤ C∥∇B∥θLr
TLs

x
∥∇B∥1−θ

L2
TL2

x
∥∇u∥Lr

TLs
x
∥∇((Bn)ϵ − (B)ϵ)∥1−θ

Lr
TLs

x

· ∥∇((Bn)ϵ − (B)ϵ)∥1−θ
L2

TL2
x
,

(6.45)

where the final step requires 2
η1
+ 2

η2
+ 1

η3
= 1, where η1 = r

θ
, η2 = 2

1−θ
and η3 = r.

Here one can verify that all indicies are well defined if r, s ≥ 1.

It follows from standard properties of mollifiers that

lim
n→∞

∥∇((Bn)ϵ − (B)ϵ)∥Lr
TLs

x
= 0 and lim

n→∞
∥∇((Bn)ϵ − (B)ϵ)∥L2

TL2
x
= 0,

(6.46)
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and hence
lim
n→∞

∫︂ t0

0

(B · ∇u, (Bn)ϵ − (B)ϵ) dt = 0, (6.47)

Applying a similar argument to all the other terms of L1
2 and L2

2, shows L1
2 → 0 and

L2
2 → 0.

Dealing with the third line in (6.44) requires the specific grouping of terms on
the second line in (6.43) for a certain cancellation to occur. We clarify this now
by showing L3

2 = 0. Since {(un, Bn)}n∈N is a smooth sequence converging to
(u,B) ∈ L2(0, T ;V ) ∩ Lr(0, T ;W 1,s

0 (Ω), integration by parts gives∫︂ t0

0

(B · ∇un, Bn) dt+

∫︂ t0

0

(B · ∇Bn, un) dt

= −
∫︂ t0

0

(B · ∇Bn, un) dt+

∫︂ t0

0

(B · ∇Bn, un) dt

→ 0,

(6.48)

where the RHS of (6.48) goes to 0 as n → ∞. To finish the proof for L2, we want
to show∫︂ t0

0

(B·∇un, Bn)dt+

∫︂ t0

0

(B·∇Bn, un)dt→
∫︂ t0

0

(B·∇u,B)dt−
∫︂ t0

0

(B·∇B, u)dt,
(6.49)

in which the proof will be concluded for L2. Taking the absolute value of the
difference of (6.49), applying the Triangle Inequality, we see⃓⃓⃓⃓∫︂ t0

0

(B · ∇un, Bn) dt+

∫︂ t0

0

(B · ∇Bn, un) dt−
∫︂ t0

0

(B · ∇u,B) dt−
∫︂ t0

0

(B · ∇B, u) dt
⃓⃓⃓⃓

≤
⃓⃓⃓⃓∫︂ t0

0

(B · ∇un, Bn − B) dt

⃓⃓⃓⃓
+

⃓⃓⃓⃓∫︂ t0

0

(B · ∇(un − u), B) dt

⃓⃓⃓⃓
+

⃓⃓⃓⃓∫︂ t0

0

(B · ∇Bn, un − u) dt

⃓⃓⃓⃓
+

⃓⃓⃓⃓∫︂ t0

0

(B · ∇(Bn − B), u) dt

⃓⃓⃓⃓
,

(6.50)

Here we show each term of (6.50) goes to 0 by considering each of the 3 cases of
Theorem 1.2. Specifically, we will deal only with the first two terms on the RHS of
(6.50), since the last two terms are dealt with similarly.
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Case 1: Suppose ∇Γi ∈ L
s

2s−3 (0, T ;Ls(Ω)), for 3
2
< s < 9

5
.

The first term on the RHS of (6.50) is shown first. Specifically let 2
s̃
+ 1

s
= 1,

1
s̃
= θ

s∗
+ 1−θ

6
and 1

s∗
= 1

s
− 1

3
. Then for some constant C > 0, Hölder’s inequality

with Sobolev embedding gives⃓⃓⃓⃓∫︂ t0

0

((B · ∇un, Bn −B) dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥Ls̃
x
∥∇(un)∥Ls

x
∥Bn −B∥Ls̃

x
dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥θLs∗
x
∥B∥1−θ

L6
x
∥∇un∥Ls

x
∥Bn −B∥θLs∗

x
∥Bn −B∥1−θ

L6
x

dt

⃓⃓⃓⃓
≤ C

⃓⃓⃓⃓∫︂ t0

0

∥∇B∥θLs∗
x
∥∇B∥1−θ

L2
x
∥∇un∥Ls

x
∥∇(Bn −B)∥θLs∗

x
∥∇(Bn −B)∥1−θ

L2
x

dt

⃓⃓⃓⃓
≤ C∥∇B∥θLr

TLs
x
∥∇B∥1−θ

L2
TL2

x
∥∇un∥Lr

TLs
x
∥∇(Bn −B)∥θLr

TLs
x
∥∇(Bn −B)∥1−θ

L2
TL2

x

≤ C∥∇Γ∥θLr
TLs

x
∥∇Γ∥1−θ

L2
TL2

x
∥∇Γn∥Lr

TLs
x
∥∇(Γn − Γ)∥θLr

TLs
x
∥∇(Γn − Γ)∥1−θ

L2
TL2

x

→ 0,

(6.51)

where the final step requires 2
η1
+ 2

η2
+ 1

η3
= 1, where η1 = r

θ
, η2 = 2

1−θ
and η3 = r.

Here one can verify that all indicies are well defined if 3
2
< s < 9

5
.

Likewise, let 2
s̃
+ 1

s
= 1, 1

s̃
= θ

s∗
+ 1−θ

6
and 1

s∗
= 1

s
− 1

3
. Then for C > 0,

Hölder’s inequality with Sobolev embedding gives⃓⃓⃓⃓∫︂ t0

0

((B · ∇(un − u), B) dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥Ls̃
x
∥∇(un − u)∥Ls

x
∥B∥Ls̃

x
dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥2θLs∗
x
∥B∥2(1−θ)

L6
x

∥∇(un − u)∥Ls
x
dt

⃓⃓⃓⃓
≤ C

⃓⃓⃓⃓∫︂ t0

0

∥∇B∥2θLs
x
∥∇B∥2(1−θ)

L2
x

∥∇(un − u)∥Ls
x
dt

⃓⃓⃓⃓
≤ C∥∇B∥2θLr

TLs
x
∥∇B∥2(1−θ)

L2
TL2

x
∥∇(un − u)∥Lr

TLs
x

≤ C∥∇Γ∥2θLr
TLs

x
∥∇Γ∥2(1−θ)

L2
TL2

x
∥∇(Γn − Γ)∥Lr

TLs
x

→ 0,

(6.52)

where the final step requires 1
η1
+ 1

η2
+ 1

η3
= 1, where η1 = r

2θ
, η2 = 1

1−θ
and η3 = r.
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Here one can verify that all indices are well defined if 3
2
< s < 9

5
.

The third and fourth terms on the RHS of (6.50) can be bounded similarily to
(6.51) and (6.52) respectively.

Case 2.a: Suppose ∇Γi ∈ L
5s

5s−6 (0, T ;Ls(Ω)), for 9
5
≤ s < 12

5
.

We provide estimates for the first term of (6.50), for which the other terms are
bounded similarly. Specifically, let 2

s̃
+ 1

s
= 1, 1

s̃
+ θ

2
+ 1−θ

s∗
and 1

s∗
= 1

s
− 1

3
. Then

Hölder’s inequality with Sobolev embedding gives⃓⃓⃓⃓∫︂ t0

0

((B · ∇un, Bn −B) dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥Ls̃
x
∥∇(un)∥Ls

x
∥Bn −B∥Ls̃

x
dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥θL2
x
∥B∥1−θ

Ls∗
x
∥∇un∥Ls

x
∥Bn −B∥θL2

x
∥Bn −B∥1−θ

Ls∗
x

dt

⃓⃓⃓⃓
≤ C

⃓⃓⃓⃓∫︂ t0

0

∥B∥θL2
x
∥∇B∥1−θ

Ls
x
∥∇un∥Ls

x
∥Bn −B∥θL2

x
∥∇(Bn −B)∥1−θ

Ls
x

dt

⃓⃓⃓⃓
≤ C∥B∥θL∞

T L2
x
∥∇B∥1−θ

Lr
TLs

x
∥∇un∥Lr

TLs
x
∥Bn −B∥θL∞

T L2
x
∥∇(Bn −B)∥1−θ

Lr
TLs

x

≤ C∥Γ∥θL∞
T L2

x
∥∇Γ∥1−θ

Lr
TLs

x
∥∇Γn∥Lr

TLs
x
∥Γn − Γ∥θL∞

T L2
x
∥∇(Γn − Γ)∥1−θ

Lr
TLs

x

→ 0,

(6.53)

where the final step requires 2
η1

+ 1
η2

= 1, where η1 = r
1−θ

and η2 = r.

Case 2.b: Suppose ∇Γi ∈ L
5s

5s−6 (0, T ;Ls(Ω)), for 12
5
≤ s ≤ 3.

Again for the first term of (6.50), let 1
s
+ 1

s̃
= 1

2
, 1
s̃
= θ

2
+ 1−θ

s∗
and 1

s∗
= 1

s
− 1

3
. Then
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Hölder’s inequality with Sobolev embedding gives⃓⃓⃓⃓∫︂ t0

0

((B · ∇un, Bn − B) dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥L2
x
∥∇(un)∥Ls

x
∥Bn − B∥Ls̃

x
dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥L2
x
∥∇un∥Ls

x
∥Bn − B∥θL2

x
∥Bn − B∥1−θ

Ls∗
x
dt

⃓⃓⃓⃓
≤ C

⃓⃓⃓⃓∫︂ t0

0

∥B∥L2
x
∥∇un∥Ls

x
∥Bn − B∥θL2

x
∥∇(Bn − B)∥1−θ

Ls
x
dt

⃓⃓⃓⃓
≤ C∥B∥L∞

T L2
x
∥∇un∥Lr

TLs
x
∥Bn − B∥θL∞

T L2
x
∥∇(Bn − B)∥1−θ

Lr
TLs

x

≤ C∥Γ∥L∞
T L2

x
∥∇Γn∥Lr

TLs
x
∥Γn − Γ∥θL∞

T L2
x
∥∇(Γn − Γ)∥1−θ

Lr
TLs

x

→ 0,

(6.54)

where the final step requires 1
η1

+ 1
η2

= 1, where η1 = r
1−θ

and η2 = r. Again it is
easily checked that all indicies are well defined.

Case 3: Suppose ∇Γi ∈ L1+ 2
s (0, T ;Ls(Ω)), for s > 3.

Again we only provide estimates for the first term of (5.50), since the others are done
similarly. Specifically let 2

s̃
+ 1

s
= 1 and 1

s̃
= θ

2
. Then for some constant C > 0,

Hölder’s inequality with Sobolev embedding gives⃓⃓⃓⃓∫︂ t0

0

((B · ∇un, Bn −B) dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥Ls̃
x
∥∇(un)∥Ls

x
∥Bn −B∥Ls̃

x
dt

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂ t0

0

∥B∥θL2
x
∥B∥1−θ

L∞
x
∥∇un∥Ls

x
∥Bn −B∥θL2

x
∥Bn −B∥1−θ

L∞
x

dt

⃓⃓⃓⃓
≤ C

⃓⃓⃓⃓∫︂ t0

0

∥B∥θL2
x
∥∇B∥1−θ

Ls
x
∥∇un∥Ls

x
∥Bn −B∥θL2

x
∥∇(Bn −B)∥1−θ

Ls
x

dt

⃓⃓⃓⃓
≤ C∥B∥θL∞

T L2
x
∥∇B∥1−θ

Lr
TLs

x
∥∇un∥Lr

TLs
x
∥Bn −B∥θL∞

T L2
x
∥∇(Bn −B)∥1−θ

Lr
TLs

x

≤ C∥Γ∥θL∞
T L2

x
∥∇Γ∥1−θ

Lr
TLs

x
∥∇Γn∥Lr

TLs
x
∥Γn − Γ∥θL∞

T L2
x
∥∇(Γn − Γ)∥1−θ

Lr
TLs

x

→ 0,

(6.55)

where the final step requires 2
η1

+ 1
η2

= 1, where η1 = r
1−θ

and η2 = r. Here one
can verify that all indices are well defined if s > 3.
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Finally, following a verbatim approach outlined above, the last line L3 of (6.43)
can be shown to go to 0, completing the proof of Theorem 1.2.

6.4 Proof of Theorem 1.3

To finish the thesis, we prove a new result for very weak solutions to the MHD
Cauchy problem (2.12), dropping the Leray-Hopf condition. That is, we show

Theorem 1.3. Suppose u,B ∈ L2
loc(R3 × (0, T )) are weak solutions to the MHD

Equations (2.12) (in the distributional sense) defined by (3.32), with initial data
u0, B0 ∈ L2

σ(R3). Then if ∇u,∇B ∈ L
8s

9s−12 (0, T ;Ls(Ω)), for 12
7
< s ≤ 12

5
, then

u,B satisfy the energy equality (2.15).

We follow a similar approach to the proof of Theorem 1.1 for regularity criteria
on Γ instead of ∇Γ. Specifically the goal is to show that assuming the conditions of
Theorem 1.3, then the solution is automatically Leray-Hopf, and thus the problem
reduces down to the simpler case of Theorem 1.2.

Following a verbatim argument to the proof of Theorem 1.1, the proof remains
unchanged, with the exception of bounding the nonlinear term in (6.11).

Proof. By definition, we write B(Γ − Γ(ϵ),Λϵ) in its components where subscripts
(·)i denote mappings from R3 → R3. Letting superscripts (·)ki denote the individual
components from R → R of each (·)i component, rewriting the nonlinear term one
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gets∫︂ T

0

(B(Γ− Γ(ϵ),Λϵ),Γ)dt =

∫︂ T

0

∫︂
Ω

B(Γ− Γ(ϵ),Λϵ) · Γdt

=

∫︂ T

0

∫︂
Ω

2∑︂
i=1

(−1)i+1(Γ− Γ(ϵ))i · ∇Λϵi · Γ1 dxdt

+

∫︂ T

0

∫︂
Ω

∑︂
(i,j)≤2

i ̸=j

(−1)i+1(Γ− Γ(ϵ)i · ∇Λϵj · Γ2 dxdt

:= I1 + I2,

(6.56)

Next, writing I1 and I2 in its components (where summing over indices m,n =

1, . . . , 3 is carried out but not written), and integrating by parts, one gets

I1 =

∫︂ T

0

∫︂
Ω

2∑︂
i=1

(−1)i+1(Γ− Γ(ϵ))
m
i · ∂mΛn

ϵi
· Γn

1 dxdt

=

∫︂ T

0

∫︂
Ω

2∑︂
i=1

(−1)i(Γ− Γ(ϵ))
m
i · Λn

ϵi
· ∂mΓn

1 dxdt

=

∫︂ T

0

∫︂
Ω

2∑︂
i=1

(−1)i(Γ− Γ(ϵ))i · Λϵi · ∇Γ1 dxdt

≤
∫︂ T

0

∫︂
Ω

2∑︂
i=1

⃓⃓
(Γ− Γ(ϵ))i · Λϵi · ∇Γ1

⃓⃓
dxdt,

(6.57)

Likewise, doing the same for I2 and combining everything we get

∫︂ T

0

(B(Γ− Γ(ϵ),Λϵ),Γ)dt ≤
∫︂ T

0

∫︂
Ω

2∑︂
i=1

⃓⃓
(Γ− Γ(ϵ))i · Λϵi · ∇Γ1

⃓⃓
dxdt

+

∫︂ T

0

∫︂
Ω

∑︂
(i,j)≤2

i ̸=j

⃓⃓
(Γ− Γ(ϵ))i · Λϵj · ∇Γ2

⃓⃓
dxdt

:= J1 + J2,

(6.58)
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Next we find suitable LrLs estimates for J1 and J2. Specifically, since Λϵ is
Leray-Hopf, we interpolate between L∞

T L
2
x and L2

TL
6
x, using the fact that ∇Λϵ ∈

L2(0, T ;L2(Ω)).

Indeed, let 1
a
+ 1

q
+ 1

s
= 1, 1

a
= 1

s
− 1

3
and 1 = 1

p
+ 2

r
. Then for some con-

stant C > 0, Hölder’s inequality with Sobolev embedding gives (checking if each
norm is well-defined later)

J1 ≤

⃓⃓⃓⃓
⃓
∫︂ T

0

2∑︂
i=1

∥(Γ− Γ(ϵ))i∥La
x
∥Λϵi∥Lq

x
∥∇Γ1∥Lb

x
dt

⃓⃓⃓⃓
⃓

≤ C

⃓⃓⃓⃓
⃓
∫︂ T

0

2∑︂
i=1

∥∇(Γ− Γ(ϵ))i∥Ls
x
∥Λϵi∥Lq

x
∥∇Γ1∥Ls

x
dt

⃓⃓⃓⃓
⃓

≤ C
2∑︂

i=1

∥∇(Γ− Γ(ϵ))i∥Lr
TLs

x
∥Λϵi∥Lp

TLq
x
∥∇Γ1∥Lr

TLs
x
,

(6.59)

Continuing the estimate for J1 (6.59), for 3
2
= 2

p
+ 3

q
with 2 ≤ q ≤ 6, convex

interpolation with sobolev embedding gives

J1 ≤ C
2∑︂

i=1

∥∇(Γ− Γ(ϵ))i∥Lr
TLs

x
∥∇Γ1∥Lr

TLs
x

⃦⃦⃦⃦
∥Λϵi∥

3
q
− 1

2

L2
x

∥Λϵi∥
3
2
− 3

q

L6
x

⃦⃦⃦⃦
Lp
T

≤ C
2∑︂

i=1

∥∇(Γ− Γ(ϵ))i∥Lr
TLs

x
∥∇Γ1∥Lr

TLs
x
∥Λϵi∥

3
q
− 1

2

L∞
T L2

x
∥∇Λϵi∥

3
2
− 3

q

L2
TL2

x

≤ C∥∇Γ− Γ(ϵ)∥Lr
TLs

x
∥∇Γ∥Lr

TLs
x
∥Λϵ∥

3
q
− 1

2

L∞
T L2

x
∥∇Λϵ∥

3
2
− 3

q

L2
TL2

x
,

→ 0,

(6.60)

where the above norms are well-defined when 12
7
< s ≤ 12

5
.

Hence J1 (and by similar argument J2) go to 0 as ϵ → 0+. Hence by reason-
ing similar to Theorem 1.1, Γ is also Leray-Hopf. Finally, it’s clear that the space
L

8s
9s−12 (0, T ;Ls(Ω)) for 12

7
< s ≤ 12

5
is covered by the cases listed in Theorem 1.2,

since by the chain of inclusions of Lp spaces on compact sets, we note
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1 ≤ s

2s− 3
≤ 8s

9s− 12
≤ ∞ for

12

7
< s ≤ 9

5

=⇒ L
8s

9s−12 (0, T ;Ls(Ω)) ⊂ L
s

2s−3 (0, T ;Ls(Ω)), (6.61)

and
1 ≤ 5s

5s− 6
≤ 8s

9s− 12
≤ ∞ for

9

5
≤ s ≤ 12

5

=⇒ L
8s

9s−12 (0, T ;Ls(Ω)) ⊂ L
5s

5s−6 (0, T ;Ls(Ω)),

(6.62)

where (6.61) and (6.62) reduces down to conditions (B1*) and (B2*) of Theorem
1.2, finishing the proof.

Here one also notes that the same result of Theorem 1.3 holds for the incompressible
Navier-Stokes system (2.2), where the operator B changes to B(u) :=

∫︁
Ω
u · ∇u dx.

We omit the proof since it is almost identical to the above.
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Chapter 7

Conclusion and Future Work

In the preceding thesis, we have shown a variety of regularity results on weak so-
lutions to the incompressible MHD Cauchy problem, generalizing previous results
only known for the incompressible Navier-Stokes equations. Of specific, we first
presented by Theorem 1.1, a natural analogue of Berselli and Chiodaroli’s result for
the Navier-Stokes equations [5] to the MHD equations. That is, it was shown that
weak solutions in the distributional sense to the MHD Cauchy problem (2.12) with
additional regularity in Lr(0, T ;Ls(R3)) with 2

r
+ 2

s
= 1 for s ≥ 4, satisfies the

corresponding energy equality (2.15). This was proven using three crucial steps,
beginning by showing MHD weak solutions in L4(0, T ;L4(R3)) are Leray-Hopf,
then that MHD Leray-Hopf weak solutions in the same space satisfy the energy
equality, and finally by applying a bootstrapping argument on weak solutions to
extend the allowed space of integrability where the equality is satisfied (with other
pertinent lemma’s used including an existence or Galerkin method for solutions).
Of next results presented was Theorem 1.2, which in contrast to Theorem 1.1 where
regularity criteria was imposed on the solution itself, out of sheer curiosity, and an
analogue to Berselli and Chiodaroli’s result for the Navier-Stokes Cauchy problem,
integrability conditions were imposed on the gradient of the solution to the MHD
equations instead. In particular, it was first shown (Theorem 1.2) that Leray-Hopf
weak solutions to the MHD Cauchy problem with additional integrability conditions
imposed on its gradient, satisfy the corresponding energy equality (2.15). With The-
orem 1.1 in mind, we finished the thesis with Theorem 1.3, attempting to drop the
Leray-Hopf condition, such that only sufficient regularity criteria on the gradient of
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a weak solution is sufficient to satisfy the energy equality.

A variety of future work on the above theorem’s can be considered, first and fore-
most with extending the integrability condition of Theorem 1.3 to match that of
Theorem 1.2. Specifically, since Theorem 1.1 generalized Berselli and Chiodaroli’s
result of the Navier-Stokes equations to the MHD equations without weakening
the prescribed regularity condition, it seems expected (however unknown) that the
same should hold true for regularity criteria on the gradient of the solution when
dropping the Leray-Hopf condition. Of additional interest is extending the space
of regularity from Theorem 1.1 of weak solutions (to both the Navier-Stokes and
MHD equations) outside Lr(0, T ;Ls(R3)) with 2

r
+ 2

s
= 1 for s ≥ 4. Specifically,

it was shown by Beirao da Veiga and Yang [13] that Leray-Hopf weak solutions to
the incompressible Navier-Stokes equations that also lie in Lr(0, T ;Ls(R3)) with
1
r
+ 3

s
= 1 for 3 ≤ s ≤ 4, satisfy the energy equality. It is currently unknown if this

is true for both the Navier-Stokes and MHD equations if we drop the Leray-Hopf
condition.

71



Bibliography

[1] Herbert Amann. Linear and quasilinear parabolic problems. vol. i, volume 89
of monographs in mathematics, 1995.

[2] Hugo Beirao da Veiga et al. A new regularity class for the Navier-Stokes
equations in Rn. Chinese Annals of Mathematics Series B, 16:1–6, 1995.

[3] Luigi Berselli and Giovanni Galdi. Regularity criteria involving the pressure
for the weak solutions to the Navier-Stokes equations. Proceedings of the
American Mathematical Society, 130(12):3585–3595, 2002.

[4] Luigi C Berselli. Some criteria concerning the vorticity and the prob-
lem of global regularity for the 3D Navier-Stokes equations. Annali
Dell’Universita’Di Ferrara, 55(2):209–224, 2009.

[5] Luigi C Berselli and Elisabetta Chiodaroli. On the energy equality for the 3D
Navier-Stokes equations. Nonlinear Analysis, 192:111704, 2020.

[6] Clayton Bjorland and Alexis Vasseur. Weak in space, log in time improvement
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Appendix A (Auxiliary Lemmas)

Theorem A.1. (Aubin-Lions Lemma in L2) [39] Let Ω ⊂ R3 be smooth and
bounded and H(Ω) a Hilbert Space. Then for R > 1 such that

∥un∥L2(0,T ;H1
0,σ(BR)) + ∥∂tun∥L2(0,T ;(H1

0,σ(BR))∗) ≤ C for all n ∈ N, (7.1)

There exists u ∈ L2(0, T ;H(Ω)) and a subsequence {uni
}i∈N of un such that

uni
→ u strongly in L2(0, T ;H). (7.2)

Here we prove a necessary approximation result required for the proof of Theorem
4.2. Specifically equation (4.9). The proof is given by Lai and Yang [29] and we
present it here for completeness.

TheoremA.2. LetΦ ∈ H1(R3)∩ L2
σ(R3). Then there exists a sequence {ΦR}R>0 ⊂

H1
0 (BR) ∩ L2

σ(BR) such that

lim
R→∞

∥Φ− ΦR∥H1(R3) = 0, (7.3)

Proof. Let Φ ∈ H1(R3)∩ L2
σ(R3) and ϕ ∈ C1(R) be a cut off function defined such

that

ϕ =

⎧⎨⎩1 if |ϕ(x)| ≤ 1,

0 if |ϕ(x)| ≥ 2,
(7.4)

with ϕR(x) = ϕ( |x|
R
).

Denote by B := {x : R < |x| < 2R} the open annulus bounded radially by R
and 2R.
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We consider the system
∇wR = −v · ∇ψR, (7.5)

By Galdi [18] there exists a unique solution wR ∈ H1
0 (B) with suitable initial data

to (7.5) satisfying the estimate (7.6)

∥∇wR∥L2(B) ≤ c∥v · ∇ψR∥L2(B), (7.6)

for some constant c > 0 independent of the radius R.

Next by Poincare’s inequality and the estimate (7.6), one gets

∥∇wR∥L2(BR,2R) ≤ C1R∥∇wR∥L2(BR,2R) ≤ C2∥v∥L2(BR,2R), (7.7)

where C1, C2 > 0 are constants.

Extending wR to R3 such that wR := 0 in R3\B and defining

v := ψRv + wR, (7.8)

one can show through a standard density argument that v ∈ H1
0,σ(B2R), and thus for

ϵ ≥ 0 arbitrary, there exists a sequence {vϵ}ϵ≥0 ⊂ C∞
0,σ(B2R) such that

∥v − vϵ∥H1
0 (B2R) < ϵ, (7.9)

Choosing vR := vϵ we estimate the following

∥v − vR∥H1(R3) ≤ ∥v − vϵ∥L2(R3) + ∥∇v −∇vϵ∥L2(R3), (7.10)

Evaluating the first term on the RHS of (7.10) one notes by the triangle inequality
and the definition of v that

∥v − vϵ∥L2(R3) ≤ ∥vϵ − v∥L2(R3) + ∥v − v∥L2(R3)

< ϵ+ ∥(1− ψR)v∥L2(R3) + ∥wR∥L2(B),
(7.11)

where by the construction of ψR, taking R → ∞ and ϵ→ 0, one obtains

∥v − vϵ∥L2(R3) → 0, (7.12)
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In a similar fashion, the second term on the RHS of (7.10) is estimated by (using
the product rule when evaluating ∇(ψRv))

∥∇v −∇vϵ∥L2(R3) ≤ ∥∇vϵ −∇v∥L2(R3) + ∥∇v −∇v∥L2(R3)

< ϵ+ ∥(1− ψR)∇v∥L2(R3) + ∥∇ψRv∥L2(R3) + ∥∇wR∥L2(B),

(7.13)

giving similarly as R → ∞ and ϵ→ 0

∥∇v −∇vϵ∥L2(R3) → 0, (7.14)

Hence combining (7.11) and (7.13) with (7.10) one achieves the desired result.
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