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ABSTRACT

The sensory dynamics of muscle spindles in the toad Xenopus
laevis have been studied using methods of consistent spectral estimation.
The receptor discharges at both a constant muscle length, and with small
random variations superimposed on the steady length, were recorded and
analysed. Spectral estimates involving the discrete discharges were
obtained by low-pass filtering the process and applying the Fast Fourier
Transform to the resulting waveform. Estimates of the power spectrum of
the receptor discharges at a steady length were used to show that the
discharges could be adequately described as a remewsl process. In additiom,
evidence was obtained which suggests that the power spectrum of the
receptor discharges at a constant muscle length was acting as the carrier
for the information related to the superimposed length variations.
Estimates of the cross spectrum between the applied length variations
and the spindle discharges were used to obtain estimates of the 'best'
linear transfer function for the dynamic behavior of the receptor. The
technique used is extremely well suited to the transfer function analysis
of simultaneous neuronal spike trainms.

The results show that the variability in the intervals between
the receptor discharges was such that low-noise recovery of low frequency
dynamic information was possible by low-pass filtering. Also, the receptor
was shown to be only slightly sensitive to different levels of static
stretch. However, in the band of frequencies studied, the sensitivity

of the spindle to sﬁperimposed length variations was strongly dependent

upon the steady length.
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CHAPTER 1

INTRODUCTION

‘ In biolog§, the quantitative analysis of sensory sytems
usually involves the in;erpretation of neuronal spike activity resulting
from the controlled application of an effective physical stimulus.

This procedure resembles the so-called 'black box' problem of electrical
enginéering.' Here, the investigator tries, while impressing a known
voltage or current upon an undescribed system, to relate these, through
a set of parameters, to the observed fluctuations of these variables at
a set of responding terminals. The parameters may be nonlinear, as for
example the dynamic resistance of a junction diode, or frequency dependent,
as is the transconductance of a triode vacuum tube. The biologist may
also attempt to describe his systems with a set of parameters.

Usually though, he must first deal with a number of additional problenms.
In the case of sensory systems he must decide not only what constitutes
an effective and appropriate input, but also, how to characterize and

- control it. He must algo decide how the activity in the sensory nerves
is related if at all to the applied stimulus. The problem of sensory
coding has in general not been solved and its interpretation, therefore,
must be clearly defined in any model which is developed to characterize
the system.

Sensory systems usually respond to adequate physical stimuli

with long trains of nerve impulses or action potentials. Each iﬁpulse
is distinguishable from its neighbors only by its location in time.
The time course of each is usually short when compared to the interpulse
interval and each has a characteristic ‘'all-or-none' nature. The
intervals between impulses usually exhibit the properties of random
variables and as a reéult, many ideas originating from the theory of
stochastic point processes have become associated with the analysis of
neuronal impulse activity (1-3).

Although some of the methods reviewed in (1-3) are extremely

powerful techniques for characterizing either single or simultaneous




spike trains, they can become inadequate when either or both of the
processes are not stationary in time. In many sensory systems the
result of the application of a stimulus is to introduce nonstationarities
or trends into a previously staﬁionary process. In such cases a
representation of the nonstationarity in the frequency domain becomes

one of the few practical means of characterization. Normalized with
respect to input these frequency domain representations or transfer
functions are now common in the biological literature (4-~9).

Procedures that establish the existence or nonexistence of
correlation between pairs of simultaneous point processes are clearly
defined (3). However, the investigator of sensory dynamics 1s usually
confronted with the situation where one of the two processes is
continuous. Here, correlation techniques are not as clearly defined.

As a result, a number of nonequivalent representations of neuronal
activity have been used (7, 10-12). Of these, the two most often
considered are those related to impulse frequency: the number of

spikes in a unit of time; and those related to interval: the time elapsed
between a pair of adjacent spikes. Recently McKean et al. (13) have
obtained evidence indicating that impulse frequency is probably bio-
logically more relevent. They have also shown that both measurements
are equivalent at very low frequencies with the interval method intro-
ducing spurious gain and phase fluctuations into the transfer relation
as the stimulus frequency approaches and passes the mean discharge
frequency. A smoothed version of either of these measurements can be
obtained by applying the stimulus repetitively and averaging the results
from each application (8-9). Smoothing the impulse frequency measure;
ment this way results in the production of a function that is propor-
tional to the probability density of a nerve spike occurring at a
specific time after the omsat of the stimulus. Smoothing the intervals
results in an estimate for the average interval, or equivalently, the
average frequency of spike activity following the stimulus onset.
Matthews and Stein (8) use both of these methods to obtain their transfer
function. The average frequency, because of its lower variability,

was used at low frequencies while the probability density method was

used at higher frequencies. Groen et al. (14) have also used both



methods in their analysis, however at opposite ends of the frequency
spectrum fo that of Matthews and Stein.

This thesis is a quantitative study of the dynamics of a
sensory receptor, specifically, the amphibian muscle spindle. The
dynamics of a single spindle, isolated with only its sensory nerve
intact, are described, using broad-bandwidth stimuli, in terms of the
power spectrum of the point sensory discharge. The results show
directly what information can be recovered from the receptor output by
various filtering operations. The potential usefulness of this kind of
analysis has been discussed by Bayly (15) with reference to the usually
low pass filter characteristic shown by the synaptic response to a
nerve impulse. ‘That demodulation of neuronal output resembles a low
pass filter has been demonstrated in the transfer properties of both
nerve-muscle preparations (13,16), and nerve-nerve preparations (17).
The recordings of Fatt and Katz (18), obtained near the end plate region
of a muscle cell responding to single spikes in the motor nerve, show
a strong resemblance to the impulse response of a low pass filter.
Indeed, Stevens (19), in his model-oriented review of synaptic physiology
has approximated the postynaptic potential as a single exponential. .A
description of neuronal 'integration' in the central nervous system has
been given by Katz (20), chapter 10.

The power spectrum of a point process contains information
related to both the serial dependence between, and the distribution
of, interspike intervals and is applicable over all frequencies. These
properties are not shared by any of the measurements discussed in the
preceding paragraphs. In addition to the power spectrum, estimates of
various related spectra, such as the coherency function, have shown
approximately how 'noisy' stimulus recovery would be from this
particular sensory receptor under linear filter demodulation. Gain and
phase function estimates have uncovered the best linear model, in a
least squares sense, for the spindle dynamics.

In 1931 Matthews (21) showed that in the frog, stretch applied
to a muscle, constitutes an effective stimulus to the spindle receptors.
It was also noted that these organs were not only sensitive to changes

in length but also to the rate of change of length. As a matter of
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speculation, Matthews suggested that perhaps structures with
viscous properties underlying the sensory nerve endings could be
responsible for this rate semsitivity. Some evidence does exist
that supports this speculation in the mammalian muscle spindle
(24) but recent observations, relating to the amphibian spindle,
are completely contradictory to the idea (22-23).

Although it was originally intended that a study of the
role of muscle fiber mechanics in the overall spindle response would
be included in this thesis, the results of Ottoson and Shepherd
(22-23) have made this unnecessary. There is agreement that the
gross mechanical properties of the muscle fibers innervated by the
sensory nerves do not contribute to the dynamic behavior of the
receptor. There are however purely elastic differences along the
fiber which are involved in spindle sensitivity. These observations
are somewhat contrary to those of Ottoson and Shepherd and will be
published under a separate cover (25).

The following two chapters are reviews. Chapter 2 is a
brief account of amphibian muscle spindle physiology along with a
description of some of the models proposed for its behavior. Chapter
3 is a review of power spectrum estimation and describes the impact
of the Fast Fourier Transform (26) on spectral estimation. Chapter
3 also consolidates some of the more recent ideas concerning spectral

estimation that are relevant to the metheds of this work.



CHAPTER 2

AMPHIBIAN MUSCLE SPINDLE PHYSIQLOGY

2.1 Moxphology

Muscle, like all living tissue, consists of the orderly
arrangement of a large number of individﬁal cells. The structure of
each of the cells and the way they are coilectively organized is
speciaiized to perform a specific function. Skeletal muscle cells are
elongated forms which usually extend from tendon to tendon in the
muscle. When excited by activity in their motor nerves, they develope
tension between the tendons which may result, depending on the load,
in an overall shortening of the cell. Skeletal muscle cells are organized
into motor units; a motor unit is a group of musclg cells that receive
their excitation along branches of the same nerve axon. Motor units
are also specialized in their function: some are suited for slow
precise movements, others are better suited for quick-withdrawal or
réflex—type activity.

The specialized nature of motor units implies that not all
muscle cells are identical. Studies on single muscle cells have
revealed that some cells, when stimulated by activity in their motor
nerves, contract very quickly but are able to maintain tension for
only short periods. Other cells contract much more slowly but are
able to maintain this state over much longer periods.

Amphibian skeletal muscle has been broadly classified into
two groups, 'fast' and 'slow'. The division has been shown both
functionally, by motor units (27-28), and structurally (29-30). Recent
investigations have shown that functional and structural subgroups are
present in each of the two major groups_(3i—32). However, the essential
distinction between 'fast' and 'slow' cells remains. The membrane of
the "'fast' muscle cells is capable of actively sprea&ing contractile
activity along its entire length via an 'all-or-none' action potential.
This action potential is initiated in the region of contact between the
motor nerve and the muscle cell by a neuromuscular transmitter (33). By

contrast, 'slow' muscle cells are unable to produce action potentials

e



and contraction occurs only in regions of local depolarization around
motor nerve end plates (34). The larger motor nerves innervate the
'fast! motor units and form well-localized contacts on the muscle cells;
the smaller motor nerves end in more diffuse end plates on the slightly
smaller 'slow' muscle cells (35-36). There is evidence that only one
region of contact exists between a 'fast! muscle cell and an innervating
motor nerve, while the 'slow' cell may receive end plates from one or
several motor nerves along its entire length (35). The 'fast' motor
units respond to a single impulse in their motor nerve with a charac-
teristic tension twitch. Repetitive stimulation results in the fusion
of the twitches into a smooth contraction in which the tension

generated can be graded by the frequency of the stimulation (cf 32).

On the other hand the 'slow' motor units develop appreciable temsion only
when stimulated repetitively (37). This tension develops relatively
slowly and can also be graded by altering the stimulus frequency. All
mammalian skeletal muscle cells appear to be of the 'fast' type in as
much as all are capable of producing action potentials (24,38-39).

In addition to motor nerves, skeletal muscle is also innef—
vated by seasory nerves. In the frog these axons have terminations
inside spindle-shaped capsules which, over lengths of about 1 mm,
enclose a number of small muscle cells in a fluid-filled compartment.

In the extracapsular regions these so-called intrafusal muscle fibers

also receive terminations from motor nerves. That the axons innervating.
the capsular regions are sensory has been verified both by histological
examination (40) and by electrophysiological experiment (41). Contractions
of the intrafusal fibers have been observed, by light microscopy, to occur
on stimulation of motor nerves (42). The existence of sensory endings

on extrafusal muscle cells have been reported in some amphibian muscles
(42), although these are apparently rare. In the mammal, in addition to
spindles, the existence of sensbry receptors in the tendon region of

most muscles is well established (43).

According to Gray (35), in the frog toe muscle extensor
digitorum longus IV, there are two or three spindle systems. Each

consists of a bundle of intrafusal muscle fibers with two, three or

—6-



four discrete encapsulafed sensory regions. Only one sensory axon
enters each capsule; after entering the capsule it divides into a

number of unmyelinated varicose threads which lie along the intrafusal
fibers over most of the intracapsular region. A parent axon may
innervate more than one sensory region. In his more detailed study of
this region Katz(45) describes a series of nerve bulbs of up to 2-3 im
in diameter connected by cylindrical tubes about .15m thick. The
muscle fiber contains numerous sockets in which these bulbs.are seated
in close-fitting contact. The gap between the respective membranes is
much narrower than that found at the motor end plates. Katz also describes
the presence of fine filaments bridging the gap between the membranes.
In a few cases the bulbs were seen not to be in contact with the muscle
membrane at all, but floating freely in the intracapsular fluid. In
the center of the sensory region most of the intrafusal fibers seemed to
lose their characteristic striated structure and instead appeared
reticulate. These ‘'reticular zones' were approximately 50-100um long
and devoid of some 85% of the contractile material present in adjacent
regions. A few of the smaller intrafusal fibers showed little
differentiation in the 'reticular zone' losing less than 30% of the
contractile materials. Katz called the regionms immediately adjacent to
the 'reticular zone' the ‘compact zones'. These areas, each about 250um
long, were the site of the majority of nerve bulbs, although significant
numbers were also present on the 'reticﬁlar zone'.

Gray's observations (35) provided histological evidence that
the motor terminations on the extracapsular region of the intrafusal
fibers were characteristic of motor end plates on the extrafusal fibers.
He showed that the motor innervation of intrafusal fibers was in fact
branches of the same nerve axon that innervated the extrafusal fibers.
Branches of motor nerves that innervated _intrafusal fibers formed
the same type of end plate on the intrafusal fibers that they did
on the extrafusals. Earler, Katz (46) had also obtained evidence that
intrafusal and éxtrafusal fibers were co-innervated. He found that,
under isometric conditions, stimulation of a single, either 'large' or
'small', motor nerve, increased the afferent discharge from a single

spindle while at the same time causing a contraction in the muscle.
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Sometime later, Eyzaguirre (42,47) demonstrated the difference in the
time course of the afferent discharge resulting from stimulation of the
individual motor nerves. On beginning repetitive stimulation of the
larger fibers there was an immediate acceleration of the discharge of
the sensory ending. Repetitive stimulation of the 'small' motor fiber
resulted in the frequency of afferent discharges rising very slowly.
These observations led him to conclude that intrafusal fibers were also
of the 'fast' and the 'slow' variety. He was however, able to directly
detect the presence of action potentials in only the intrafusal fibers
innervated by the 'large' motor nerves. More recently Smith (48-49)
has shown that both intrafusal muscle fibers are able to produce and
propagate action potentials. The fibers supplied by small diameter
motor nerves however, respond to single stimuli with much slower and
longer lasting contractions. There is evidence indicating that the non-
reticulating fibers observed by Katz (45) are members of this group of
slowly contracting fibers.

The motor innervation of mammalian muscle spindles appears to
be separate from extrafusal fibers (50). Sensory innervation is more

complex in that two sensory nerves originate from the capsule of the

mammalian spindle (51).

2.2 Physiological Behavior
The behavior of single amphibian muscle spindles in response

to stretching the muscle was first studied in detail by B.H.C. Matthews
(21). In these experiments the muscle was stretched by loading it with
weights. During application of the load the frequency of sensory
discharges increased dramatically after which, under maintained load, it
gradually declined toward a steady level. When small loads were applied
rapidly, the frequency of discharge adapted much more quickly than when
the loads were large. This led Matthews to speculate that perhaps the
rapid adaptation might be due to differences in viscosity between the
center and the poles of the intrafusal fiber. On the other hand, he
speculated, the much slower adaptation to larger loads may be dependent

on the depletion of some substance from the sensory ending. The peak
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frequency reached during application of the load was proportional to the
rate at which it was applied. The adapted discharge rate was approximately
proportional to the logarithm df the maintained load. Matthews later
showed (52) that the afferent discharge ceased when the whole muscle
contracted, suggesting that the sensory ending was in parallel with the
fibers that produce the bulk of the tension. Sometime later, Katz (41),
using controlled stretches of constant velocity, showed that the reséonse
of theAspindle to applied stretch depends on two main factors: the
velocity and the amplitude of the imposed increase in muscle length.

He divided the response to these variables into a 'dynamic' and 'static'
component respectively. Recently, Shepherd and Ottoson (53) have more
quantitatively related the response pattern to the parameters of the

ramp stretches.

The variability of amphibian muscle spindle discharges has
been examined by Buller et al. (54). Their results indicate that at
very low discharge frequencies the standard deviation in the frequency
approaches the mean. Hence, in the statistical sense, the discharges
of the spindle at very short lengths resemble a completely random
process. As the mean frequency is increased, by stretching the muscle,
the standard deviation increases to about 3.5 impulses per second atia mean
rate of 8 impulses per second. Further increases in mean.discharge
rate do not result in significant changes in the standard deviation.

The speculation is that this behavior may be due to a constant noise
voltage due to thermal agitations in the fine sensory terminals.

Stimulation of the motor nerves which innervate a spindle can
result, as has already been pointed out, in the acceleration of the
senéory discharge (42,46,47). Matthews and Westbury (55) have shown that
repetitive stimulation of 'fast' motor fibers markedly excited the
spindle when the muscle was at a constant length. The dynamic response
to stretching however, was left almost unaffected. On fhe other hand,
repetitive stimulation of the 'slow' motor fibers only weakly excited
the sensory ending when the muscle was at a constant length, while
stretching the muscle resulted in an augmented dynamic response. As

Matthews and Westbury point out, this is in direct contrast to the effect

-0~



of the large and small fusimotor fibers on the mammalian spindle.

2.3 Mechanisms Underlying Receptor Behavior
In 1950, Katz (41) showed that when the recording electrodes

were placed very close to the spindle capsule, the afferent discharges
were superimposed upon a local potential which re-developed after each
discharge. By applying a local anesthetic to the preparation he was
able to abolish the spike activity and record undistorted the potential
charges near the sensory ending. The frog spindle thus became the first
mechanoreceptor from which a receptor potential was recorded. Katz
observed that the size of the receptor potential varied continuously
with the amplitude and the rate of stretching. He therefore considered
the receptor ?otential to be the immediate cause of the semsory spikes
present in the unanesthetized condition. He also sﬁggested thét the
conversion from the mechanical stimulus to electrical energy in this
receptor does not involve an 'active response' of the nerve endings, at
" least not the kind that is associated with the action potential,
Sometime later Edwards (56) -showed that the potential change produced by
an external current applied to the sensory axon near the capsule would
sum with the receptor potential. He was able to show that the discharge -
frequency resulting from stretching the spindle could either be raised
or lowered depending on the direction of the applied current. This

was direct evidence supporting the view that the generator ﬁotential
was the underlying cause of the sensory spikes.

Katz (41) was also able to make measurements relating the
magnitude of the receptor potential to the frequency of afferent spikes.
His data showed a linear correlation coefficient of .97 and was thus
significant evidence that the two were linearly related. Edwards (56)
using external currents also obtained a linear relationship between the
applied current and the frequency of discharges. He also noted that the
spike producing mechanism showed no adaption to step applications of
current. When the direction of the applied current was reversed, the
relationship between the current and the discharges showed a markedly

different slope. This was attributed to the rectification properties
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of the nerve membrane. Ottoson and Shepherd (57) have shown an
approximately linear relationship between the following: rate of stretch
and rate of rise of the receptor potential, rate of stretch and the
dynamic peak attained by the receptor potential, the amplitude of the
stretch and the magnitude of the partially adapted receptor potential.
These results were obtained by applying ramp stretches directly to the
encapsulated region of the spindle. A linear and instantaneous relation
betweén applied current and discharge frequency has also been shown in
the mammalian muscle spindle (58), although adaptation to comnstant
currents seems to be present in some crustacean stretch receptors (6).
In a paper which preceded his study of the receptor potential,
Katz (59) described the presence of small 'all-or-nothing' spikes which
were quite distinct from both the receptor potential and the full sized
action potentials. These were present in greatest ﬁumbers when the
muscle was under low tension and tended to disappear as the muscle was
stretched. They were observed to occur in a number of different sizes
and also formed the prepotentials on the main spikes. Katz suggested
that these small spikes were formed in the terminal branches of the
sensory axon and sometimes failed to initiate active propagation past
the branch points. Those that failed to initiate propagation were
observed as abortive spikes. The maintained receptor potential at
greater muscle tensions probably facilitated the passage of the active
potentials through the branch points. Recently Ito (60) has produced
a quantitative report which describes the effect of muscle length upon
the pattern and frequency of the abortive spikes. The ideas here generally

support the speculations of Katz(59).

2.4 Models
Until recently, most evidence related to the mechanisms of

muscle spindle dynamics, both in the amphibian and the mammal, pointed
to muscle fiber mechanics as the main underlying factor. Matthews' (21)
original suggestion that the form of the afferent discharge in respouse
to stretch is a reflection of the differences in viscosity between the

center and the poles of the intrafusal fiber, has received much
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speculative attention. In a theoretical treatment Katz (41) related

the possibility that changes of electrical capacity in the terminal
nerve membrane, as a result of stretch, could contribute to the phasic
response of the spindle. He showed however, that this mechanism could
not provide a phasic receptor potential of the observed magnitude unless
there was a substantial mechanical amplification of the stretch. In
introducing his later histological work (45) he said "it is natural

to suppose that a mechano-receptor such as the spindle owes its high aad
specific sensitivity, at least in part, to the way in which the mechanical
stimulus is bought to bear on the membrane of the sensory nerve terminal."
The results of this work showed that most intrafusal fibers showed a
‘reticular zone' in which there were few contractile filaments.
Excitation of the motor nerves would therefore stretch this zone and thus
explain the observed increase in afferent discharge (42,46,47). Also,
the polar region, with its.mass of interdigitating contractile filaments,
will probably be much more viscous than the 'reticular zone' where these
filaments are largely absent. Therefore, it might be expected that
changes in muscle length would first appear across the 'reticular zones',
followed by a gradual and partial shift to the polar regions after the
muscle length is fixed. In addition, the works of E&wards (56) and
Lippold et al, (58) suggest, becéuse of the failure of the encoding
mechanism to adapt to constant currents, that mechanical factors are
very prominent in overall spindle dynamics. Indeed, there is direct
evidence that mechanical factors are involved in the adaptation of
mammalian muscle spindles (24), in the mammalian Pacinian corpuscle (61),
and receptors in the skin of the frog (62).

In light of the evidence, a number of models have been developed
for both the amphibian (63-66) and the mammalian (66-69) muscle spindle.
Of these, the model by Houk et al. (65) seems most typical and will be
briefly described. This model assumes that the 'reticular zone' of
the intrafusal muscle fiber is less viscous but stiffer than the
adjacent polar regions. Also, the viscosity of the ‘'reticular zone' and
the stiffness of the polar regions are assumed negligible. The intra-
fusal muscle fibers are therefore represented as a spring in series with

the parallel combination of a force generator and viscous dash pot.
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The spring represents the lumped stiffness of the 'reticular zone' while
the dash pot and force generator depict the lumped viscous and contractile
properties of both polar regions. The effect of stretching the model

is to produce strain in the elements representing each of the regionms.

The resulting generator potential is considered proportional to the

strain in each of the passive elements weighted by the number of nerve

terminations present on each of the regions in the actual muscle. KXatz

- (45) reportéd that on average, 3.5 times as many nerve bulbs were located

on the 'compact zones' than there were on the 'reticular zone'. Strain
of the polar regions will therefore be more prominent in the generator
potential when the model is passively stretched; while strain of the
'reticular zone' will be the sole contributor to the generator potential
during motor nerve input under isometric conditions. The encoder in

the model produces a train of impulses whose frequency is directly
proportional to the instantaneous magnitude of the generator potential.
The parameters of this model have been adjusted so that the theoretical
responses resemble those of the am@hibian spindle (66).

In 1965 Buller (70) published a model designed to test the
suppositions of the earlier work of Buller et al. (54) concerning the
events occurring at the sensory nerve terminals of the frog muscle
spindle. These experiments had shown that, above a certain minimum
mean frequency, the standard deviation in the frequency about the mean
was approximately 3.5 impulses per second. Below this critical
frequency, the standard deviation tended toward the mean as the mean
decreased.It was suggested that the critical frequency corresponds to
threshold depolarization of the nerve terminals with further depolariz-
ation resulting in directly proportional increases in the discharge
frequency. Variations in the frequency are introduced by a source of
random potential variations due possibly to molecular agitation in the
mechanical receptor substance or to ionic noise in the terminal nerve
membrane. Discharge below the critical frequency would therefore be
the result of noise transients on the subthreshold depolarization.
Buller's model was based on these assumptions and its responses show a

remarkable similarity to the results obtained earlier from the actual
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spindle. In addition, the results show that the variability which exists
in the discharges of the model above the critical frequency are not
particularily sensitive to changes in the rms value of the disturbing
noise used to represent the nerve terminal fluctuations. Changes in the
shape and the bandwidth of the noise spectrum have even less effect upon
the variability. It was therefore concluded, that, in spite of the
probable changes in the terminal membrane electrical time constant brought
on by the different levels of depolarization, the disturbing noise may
be considered as remaining constant over the physiological operating range
of the receptor.

More recently, Stein (71) has pointed out that the distribution
of intervals collected by Buller et al. (54) from the single frog
' spindle is extremely well described by the well known Gamma density
function. Hagiwara (72) has shown that adjacent intervals from muscle
spindles in the sartorius muscle of the tcad are statistically independent.
Apparently then, the discharges from the amphibian muscle spindle can
be considered as realizations of a renewal process and therefore, under
steady state conditions the Gamma density would be a complete description
of the process. The Gamma density has also been used to describe
empirically the maintained discharge originating from the retina of the
cat (73) and the responses of primary auditory neurons to acoustic

stimuli (74).
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CHAPTER 3

SPECTRAL ESTIMATION

3.1 Introductioﬁ

The power spectrum Sxx(t,f) of a random process as a function

of time t and frequency f is defined by

© -j2nft .
S (E:F) = [, R (ts7) @ dt (3.1)

where ka(t’T) is the autocovariance function of the process. The
autocovariance function is the mathematical expectation of the product
of two values which the random process x(t) assumes for two instants of

time. That is,
R_ (t,7) = E {x(t)x(t+0)} ' (3.2)

defines the autocovariance between the value of the process at time t
and its value at another time t+1. For a stationary random process
Rxx(t,T) can be shown to be (75)
- _ lim _1 (T
ka(t’T) = Rxx(f) = e 2T 4T x(t)x(t+t) dt (3.3)

The cross spectrum between two processes x(t) and y(t) is defined

as
S_(t,6) = [T R (t,1)e 32T 4q (3.4)
xy =Xy

For a stationary random process ny(t,r) is given by
R (6,1) = izxy(r) = i 2 [T =Dy (e at B.5)

Sxx(t,f) and Sxy(t,f), for a stztionary random process, become simply

Sxx(f) and Sxy(f) respectively. By manipulation of the expressions

wvhich define these spectra it is possible to show that, among other
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things, Sxx(f) is a real function of frequency while Sxy(f) is usually

" a complex function of frequency (75-76).
If the process y(t) is derived from x(t) by passing x(t)

through a linear system, it can be shown that

Sxy(f) = H(f) Sxx(f) : ' (3.6)
and

Syy(f) = |H(£)|? sxx(f) (3.7)
where

H(E) = [7 b(e) e I2mEt g (3.8)

h(t) being the responselof the system to a unit impulse. H(f) is the

frequency response of the system.,
The squared coherency spectrum between two stationary processes

x(t) and y(t) is defined as’

2 (£) 15y 17 (3.9)
Y = ‘
Xy Sxx(f) Syy(f)
It can be shown that
0z yZ (£) <1 | (3.10)

The coherency spectrum is a measure of the linear correlation
between the processes x(t) and y(t) as a function of frequency. For
the linear system described by equations 3.6 - 3.8 Yiy(f) = 1 for all £.
Bendat and Piersol (76) describe the situation of a squared coherency
greater than zero but less than one as indicating one or more of three
possibilities:

| a) extraneous noise is present in the measurements;

b) the system relating x(t) and y(t) is not linear;
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c) y(t) is an output due to an input x(t) as well as to other
inputs.” A coherency of zero at all frequencies implies that the
processes x(t) and y(t) are completely uncorrelated. Goodman (77)
describes the squared coherency spectrum for a nonlinear system as a
measure of the degree to which the output y(t) at a particular frequency
is related by a linear time invariant operator to the input x(t). The
quantity Sxy(f)/Sxx(f) is the linear operator that best approximates
y(t), in a least squares sense, by acting on x(t).

The squared coherency spectrum has the interesting property
that makes it invariant under linear filtering operations. For example,
if y2 (f) is the squared coherency'spectrum between the processes x(t)
and y(t) and Yiv(f) is the same function between u(t) and v(t) then
Yiy(f) = Yﬁv(f) if u(t) is derived from x(t) by passing x(t) through
some linear filter and v(t) from y(t) by passing y(t) through some other
linear filter. ’ A

The most serious problems associated with obtaining reliable
spectral estimates are those which result from the application of the
previous formulas to finite pieces of data. Today, two practical
approaches, each with distinct advantages, are available and can result
in good estimates of the various spectra f;om finite lengths of data.
Neither of the methods, however, is entifely clear cut and usually must
be applied several times with systematic modifications to produce the
final estimate. A rough idea of the shape of the spectrum before
estimation is extremely helpful in reducing the labor involved.

. The.oldest of the two approaches to power spectrum estimation
is that formalized by Blackman and Tukey (78). Until 1965 this approach
was used almost exclusively and offered the additional advantage that
an estimate of the covariance function was a byproduct of the operation.
In 1968 Jenkins and Watts (79) extended these ideas to the estimatiom ..
of the cross spectrum between several processes. The subsequent role
of the cross spectrum in the estimation of the squared coherency spectrum
and the gain and the phase functions ﬁaé also developed.

In 1965 a highly efficient algorithm for the digital evaluation

of complex Fourier coefficients was discovered by Cooley and Tukey (26).
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The Fast Fourier Transform has, -in the mindsAof some (80), revolutionized
the processes of spectral estimation. The so-called direct route to
spectral estimates is computationally several orders of magnitude faster
than the older Blackman—-Tukey approach. On the other hand, the direct
method suffers from the disadvantage that the covariance function is

not a byproduct of the operation. The role of the Fast Fourier Transform
will bé discussed further ip the last section of this chapter after the
ideas underlying each of the approaches to spectral estimation have been

described and compared.

3.2 The Sample Spectrum

Estimates of the power spectrum of a stochastic process are

derived from the so-called sample spectrum defined as

o _ (T 3 -j2uft

S (8 = [, Re(® & dt (3.11)
where Rxx(r) is the estimator for the autocovariance function Rxx(r).
Two widely used estimators for the autocovariance function are

(

- : -1 i :
(ka]fT) = < %-fg T xT(t)xT(t+ltl) dt o<|t|<T
. 0 lrl>T
R (1) =¢ { (3.12)
" ( 1 T—lT'
kaZ(T) = E:T?T IO xT(t)xT(t+]Tl) dt OflrlfT
\
0 lT|>T
\
where
x(t) O<t<T
x () = (3.13)
0 T<0, t>T

The va(r) given above are each functions of the random variable
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xT(t) Therefore Rxx(t) is also a random variable. This means that
R (1) at all T will be subject to some probability density function.
Thls den51ty function is called the sampling distribution of the random
variable R (7).

It is useful to compare the estimators R (T) and Rxxz(r)
by calculating what are usually called the sampllng moments of their
respective distributions. It has been shown (79) that the expected

values (means) for the estimators are given by

Rxx(T) l—l%L |TI§T

E-[Rxxl(T) } = (3.14)
0 lTl>T
and
Ry elst
{Rxxz(f) } = (3.15)
0o |t]>T

Thus R 2(1) is what is called an unbiased estimator of R (t) whereas
(1) is only asymptotically unbiased as the record length T tends to

xxl
infinity. The variances of each of the estimators are

Var-[R. (1)}= ft oy (-7 |2 DR2, @R (HOOR (=D)] 4

|t|<T (3.16)

(T-t-[r DIRZ (2)4R, (+DIR  (z-T)] dr

Var'{Rxxz(T)} (-—r;ryz (T )

|z]<T (3.17)

Tt is seen that these expressions are identical with the exception of
the multiplying factors preceding the integrals. The variance of
xxz(r) grows without bound as |T1+T. The mean square errors im each of
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the estimators are

~ Lo . 2
g {[R_, ()R (x)12}= Var {R_, (:I W [ R (0] (3.18)
E{IR_, (0)-R_ ()12} Var {R_, (1)} (3.19)

It is usually true that the mean square error in Rxxl(T) is less than
that in RXXZ(T)' Therefore, RXXl(T) is preferred to RXXZST) fo? afto—
covariance estimates. In the remainder of this chapter Rxx(t) = RXXl(T)
is assumed. '

By using the definition of the sample spectrum given by

equation 3.11 it is possible to show that

- _ 1T  _jomfe T j2nfty
Sxx(f) =T o xT(t) e dt 8 XT(tl) e dt;
1 *
=7 XT(f)XT (£)
1 ' ‘
=z IXT(f)IZ , (3.20)

where XT(f) is the Fourier transform of xT(t) and XT*(f) is its complex

conjugate. XT(f) can be expressed as the sum of real and imaginary

components
X,(€) = AL(E) + 3BL(E) | (3.21)

where j=/-1. It can be shown that

fg xT(t) cos 2xft dt . (3.22)

AL(E)

and

- (L .
BT(f) = Jg xT(t) sin 2wft dt (3.23)
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Therefore
5, (6) = T [A2(£) + B 2(£)] ' (3.24)

It has been shown (79) that if~xT(t) is a sample from a Normal
process then, since the Fourier transform is a lineaf operation, AT(f)
and BT(f) are also Normally distributed. Therefore Sxx(f) is distributed
as a chi-squared random variable with two degrees of freedom since it is
the sum of the squares of two Normal random variables. If the sample
xT(t) is not Normal, AT(f) and BT(f) tend to Normality as T becomes
large as a consequence of the Central Limit Theorem. Hence the
distribution of éxx(f) will be very nearly as chi-squared with two degrees
of freedom irrespective of the distribution of x(t).

The expected value of the sample spectrum estimator is

a T - -j2nft

E {Sxx(f)} =E {I—T Rxx(r) e dt}
_ (T ITI -j2wfT
= I-T R (1) 1—7e dt (3.25)

Hence, using the convolution theorem

: = [ sinmTg -

E{s_ (£} /.. T [ T J S, (f-8) dg
= [Z, W) s, (£-8) dg (3.26)

The function W(f) is a slit whose width is of the order of 1/T so that
for large T it is reasonable to assume that Sxx(f) is approximately
constant over the slit. Hence

2

~ - L sinnTg .
E{s (8} =58 o, T [ wTg ] dg
=8 _(f) 3.27)

XX

The bias in Sxx(f) can always be made arbitrarily small by choosing T
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sufficiently large.
As the length of the available record becomes large, it can

be shown (79) that the variance of the spectral estimator tends to
. »~ - 2
Var {Sxx(f)} Sxx(f) (3.28)

For a white Normal process this result is exact. Thus the variance of

Sxx(f) is dominated by a term which remains finfte as the length of the
record tends to infinity. This indicates that Sxx(f) is not a consistent
estimator of Sxx(f) in the sense that its distribution does not tend to
cluster more closely about the true spectrum as the sample size increases.
It is almost eqqally probable for éxx<f) to li? anywhere from O to
ZSxx(f). The reason for the inconsistency of Sxx(f) can be described
simply as follows. The estimate of the spectrum at frequency f is
actually drawn from a band of frequencies W(f) whose width is about

1/T. As T is increased the power at f is estimated over narrower and

narrower frequency bands. However, the efficiency of the estimate of

the power in the narrowing band does not improve.

3.3 Consistent Power Spectrum Estimation

The inconsistency of the sample spectrum has forced investi-
gators to seek other means of estiﬁating power spectra. The technique
universally adopted is to trade the 1/T resolution afforded by gxx(f)
for the lower variances provided by an estimator with a coarser
resolution. However, not all techniques that result in a loss of the 1/T
resolution produce a corresponding decrease in variance (81). '

The Blackman-Tukey or indirect approach to obtaining comsistent
power spectrum estimates is to consider only that part of the auto-
covariance function to lag t=M where M<<T. This procedure can be thought
of as looking at the estimator of the autocovariance §XX(T) through a
rectangular window of width 2M, or more simply, as a multiplication of

the autocovariance estimator by a function WR(T) where
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1 |t <M<<T
wR(_'r) = (3.29)

0 |T|>M

Blackman and Tukey (78) refer to WR(T) as a rectangular lag window.

The smoothed power spectrum estimator is defimed, using the

convolution theorem, to be
S, (8) = [_, W (8)s (F-g) dg (3.30)

Wk(f) is the Fourier transform of WR(T) and

- sin2mfM | _ _rce
WR(f) =M {_—anM ] <f< ' (3.31)

and is referred to as a spectral window. The expected value of the

smoothed estimator is (79)

~

E(S (£ = J W (e)S, (F-e) d (3.32)

This expression is very similar to that derived for the expected value
of the sample spectrum with the important difference that WR(f) now has
a major base width of 1/M. This means that estimates at a particular
frequency will be influenced by power at least 1/24 away. On the other
hand, if S__(f) is slowly varying in W,(f), S_ (f) tends to be an

XX R p.o.9 Iy
unbiased estimator of the true spectrum. The variance of Sxx(f) can

be shown to be (79)

Var {Sxx(f) }

R

Six(f) ffw wR(r) dt

2—‘,; s2_(£) (3.33)

The variance of the smoothed estimator is reduced by a factor 2M/T
from that of the sample spectrum. Also, the variance tends to zero as

T becomes large. -Sxx(f) is therefore a consistent estimator of Sxx(f).
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The direct approach to consistent power spectrum estimation
is to break up the data record of length T into subrecords of length

L with L<<T. The sample spectrum is computed for each segment via the

relation
1 2 .
5., O =zlx @] 3.34)
=y k
where k refers to the kth segment. The smoothed power spectrum
estimator becomes
T
2 k;E .
s (£) =% .5 S_ () (3.33)
XX T k=1 xxk
It can be shown (82) that the expected value of this estimator is
E {8, (0} = [ Wy(e)s _(f-g) dg (3.36)
with
' inTLf 2
_ sinm :
WB(f) =1 {_wa ] (3.37)

E

WB(f) is known as the Bartlett spectral window. The variance of Sxx(f)
can be derived heuristically. From the previous discussions, it is
known that the variance of each of the g (f) is approximately equal
to 82 (f) regardless of the length of the subrecord. Since the Sxxk(f)
are T/L indzpendent estimates of Sx.(f) it follows that the variance of.

S (f) is reduced to L/T that of S (f). That is
var (5 (6. =Ls2 (5 (3.38)
XX ) T xx . .

It is seen that if L=2M the direct and the indirect approaches both

result in smoothed consistent estimates with approximately the same

variance.
The bias in the smoothed estimates can be compared by looking
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at Wk(f), the spectral window corresponding to the rectangular lag
window, and Wﬁ(f), the Bartlett spectral window. To make the comparison,
the variances of the two smoothed estimators were set equal, that is
with L=2M. VWhen using the Blackman-Tukey approach, any bias in gxx(f)
is due to leakage from neighboring frequencies through Wk(f); while with
the directly approach, leakage is through WB(f). Half of each of these
windows, centered at zero frequency, is shown in figure 3.1. Both
estimators then, result in good estimates of the power in the band

about some frequency f. Both approaches allow, by a simple choice of

L or M, the possibility of exchanging spectral resolution for a
corresponding decrease in variance. As far as bias considerations are
concerned, if the true spectrum is reasonably smooth there is little

to choose between the two approaches. If however, Sxx(f) contains

large fluctuations, the large and slowly declining side lobes of Wk(f)
can result in widespread leakage between regions of different power
concentration. Large bias in spectral estimates is often not acceptable
and a process called quadratic modification is used to reduce its
effects. '

Quadratic modification is the process of viewing the auto-
covariance function through lag windows other than the rectangular
window. The windows are chosen such that their spectral equivalents
have lower side lobes and die away faster than those of the rectangular
lag window. There are many lag windows that have these properties
(78,79). One of the most popular means of reducing side lobe leakage

is via the Hanning lag window

1/2(L + cos 39 | <] <M
WH(T) = : (3.39)
0 |z]>u

The Hanning spectral window is shown compared to the spectral equivalent
of the rectangular lag window in figure 3.2. In addition to increasing

the rate of side lobe decay, the Hanning window has a considerably wider
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FREQUENCY

Figure 3.1

SPECTRAL EQUIVALENT OF THE RECTANGULAR LAG WINDOW, WR(f),
AND THE BARTLETT SPECTRAL WINDOW, WB(f).
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FREQUENCY

Figure 3.2

SPECTRAL EQUIVALENT OF THE RECTANGULAR LAG WINDOW, WR(f),
AND THE HANNING SPECTRAL WINDOW, WH(f).

~27-




major lobe width. This increased loss in spectral resolution is of

course accompanied by a decrease in the variance of the estimator. It

can be shown that (79}

3 &
Var {Sxx(f)} = __x?rc_ f_wwH('r) dt
(3.40)
. 75M

— Six(f)

as opposed to a multiplying factor of 2M/T with the rectangular lag
window. Reductions in variance from L/T Six(f) can also be obtained for
a fixed L and T with the direct approach. This is achieved by averaging
in the frequency domain (84) or by overlapping the subrecords (83).
The process of linear modification which has arisen with the
ingreasing popularity of the direct approach has been shown to result in
a loss of spectral resolution without a compensating decrease in variance
(81). Linear modification is the process of looking at the raw data
through windows other than the rectangular data window. All lag
windows can, with minor modifications, be used as data windows. Some
authors (80,85) feel that some minor linear modification is desirable as
this process is extremely effective in reducing the leakage of power
between adjacent frequency bands.
The distribution of éxx(f) was described earlier as being
approximately that of chi-squared with two degrees of freedom. The
two degreecs of freedom arise from the condition that §Xx(f) is the sum
~of the squares of two Normally distributed random variables. Strictly
speaking, chi-squared with k degrees of freedom is the sum of k Normally
distributed random variables each with zero means and variances of one.
Therefore, some normalization of gxx(f) is required since the random
variables AT(f) and BT(f) do not necessarily satisfy these requirements.
It can be shown (79) that if the mfap of xT(t) is removed and if f is
somewhat removed from zero then, ZSxx(f)/Sxx(f) is approximately
distributed as_chi~squared with two degrees of freedom. It can also

be shown that éxx(f) is also a chi-squared random variable but with

greater than two degrees of freedom. A chi-squared random variable
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becomes relatively less variable as its degrees of freedom increase.
As before, because of the required normalizations, it can be shown
that kgxx(f)/sxx(f) is distributed as chi-squared with k degrees of

freedom. k is calculated (78) from
2[E {5, (£)} 12
Var {S,,(£)} | - (3.41)

k =

a

It is worth noting that 1f S (f) is substltuted for S (f) in equation -
3.41 then k=2 since [E {S (f)} 12 = Var {S (£)}= Six(f) This is
consistent with the previous discussion. R
Knowledge of the approximate sampling distribution fér gxx(f)
is invaluable in that it enables one to make probabilistic statements
concerning the accuracy of the estimates. That is, it is possible to
construct intervals of confidence around the estimate gxx(f) which will
enclose the true value S () on 100(1-a)% of occasions on average. As-
a consequence of the chl—squared distribution of kS (f)/S (f) it can be

shown (79) that the 100(1-a)% confidence interval for Sxx(f) is given by

kS_(£) kS, (£) |
—XE <5 (£) < = — (3.42)
2, {15} x=x z, {5}

where zy {%} and z, {l—-%} are the a/2 and 1-0/2 points on the cumula-

tive chi-squared distribution with k degrees of freedom.

3.4 Consistent Cross Spectrum Estimation

The sample cross spectrum is given by

~j2wfT

-
Sy (E) Ior R () e dt

1 X *(E) Y (6) : R

]

ny(r) is the sample cross covariance function and XT(f) and YT(f) are
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the Fourier transformshof xT(t) and yTCt) respectively. Unlike ggx(f),
vhich is always real, Sxy(f) is usually.a complex function of frequency.

The sample cross spectrum is statistically similar to the
sample power spectrum. The values of g#y(f) do not tend to a limiting
value 1n any statlstlcal sense as the record length T tends to infinity.
Hence, Sxy(f) like S (f), is an inconsistent estimator. Smoothing
techniques are therefore again required.

The indirect approach ﬁo consistent cross spectral estimation
involves calculating the cross covariance function between the processes
out to lag M, where M<<T. The result is quadratically modified and
Fourier transformed. The direct approach requires that the data records
be segmented into subrecords of length L, with L<<T. Each subrecord is
" Fourier transformed and the products XL*(f)Y (f) formed. §xy(f) is
then obtained by averaging the contrlbutlon of XIxYL (£)/1L from all of
the subrecords. The Sxy(f) obtained by either of these routes are
consistent estimates of Sxy(f).

The expected value of the smoothed spectral estimator can be

shown to be (79)
E{S_ ()} = [~ W(e)S. (f-g) d . 3.44
oy O = [, WS, (f-g) dg (3.44)
The bias in §xy(f) will be small if Sxy(f) is slowly varying over the

spectral window W(f).
In complex notation §xy(f) can be written as

8, = f_© o3Py () | | (453
where
faxy(f) - léxy(f)l (3.46)
and
By® = tan Ty D) Sy ) (3.47)
RE Sxycf) :
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with M and RE representing the imaginary and real parts of their
arguments respectively. If L=2M and there is no linear or quadratic

modification then it can be shown (82) that

Var { M, (£)} = = xxcf)s (£) [1+72 ca)] (3.48)
and
var{P_ ()} =L |__1 -1 (3.49)
4 2T | Y7 @)

These variances can of course be reduced by, for example, using the
Hanning lag window or overlapping the subrecords .depending on which
approach is used. It is worth while noting that the variability of
Mxy(f) and ny(f) is a function of the true squared coherency between
the two processes. Therefore, although the variances can be controlled
to some extent by smoothing they may be dominated by the uncontrollable
influence of the coherency spectrum.’ '

A more useful function than the magnitude.of the cross spectrum
M (f) is the gain function ny(f) A consistent estimator for this

functlon can be obtalned from

. R__(£) .
(£) = .§35L(f—) | (3.50)
XX

It can be shown (79) that approximate confidence intervals for

G _(f) and P__ (f) are given b
xy() xy() y

:2 1/2
n + /2 1-y<_ (£)
¥,y ) | (3.51)
. and
+ . -1 [ 2 . 1“;23X 12
ny(f) - Sin — £y g 11702 %, (3.52)
k-2 Y Xy

-31~



f2 k=2 {1-a} is the 1l-o point on the cumulative Fisher's F distribution
with 2 and k-2 degrees of freedom. ¢gxy is the smoothed coherency

spectrum estimator.

3.5 Consistent Coherency Spectrum Estimation

The sample squared cohérency spectrum is defined as

o 2
ley<f)l

1]

>2
Yy (B = .
S (S0 (£)
1xp*(6) ¥ (0|2
T
2012 |1 (0)]2
T T

1]

=1 ' : (3.53)

regardless of the relationship between the underlying processes. The
sample coherency spectrum is therefore useless as an estimator of the
true coherency between two processes. The smoothed squared coherency
estimator | ‘
%2 ey - ISxy(f)lz :
Xy = Py (3.54)
S () Sy ()

is a considerably better estimator of Yiy(f)’ the true squared coherency,
and is the estimator most commqnly used for this purpose.

Using Monte Carlo methods, Foster and Guinzy (86) and later
Benignus (87-~88) have shown that $§y is actually a biased estimator of
Yiy' This bias increases as the true coherency tends toward zero and
can be considerable if the number of degrees of freedom associated with
the estimates Sxy(r), S (f) and 3 (f) are low. Using the distribution

function developed by Goodman (89) for Yiy(f) between two Gaussian
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processes, Foster and Guinzy have shown that their maximum likelihood
f;timator for yiy(f) produces consistently lower estimates of.xiy than
v2 . This is especially true at low Yiy when the number of degrees of
. freedom associated with the estimates is less than 50. Benignus (87-88),
on the other hand, has published a set of curves which describe the bias
in $§y(f) as a function of yiy(f) and k, the number of degrees of |
freedoﬁ. These curves show that as Yiy(f) approaches zero the bias in
Y2 (£) increases monotonically. For k=4,8,16,32 and 64 the bias in
$§y(f) approaches .25, .11, .05, .025 and .01 respectively. It is also
"shown that these curves are not sensitive to the amplitude distributions
of the underlying processes. Jenkins and Watts (79) have shown that
the bias in $§y(f) depends largely on the sum of two terms. The first
of these becomes small as the number of degrees of freedom associated
withthe estimates increases. The second term contains the true phase
function between the processes; If there is a considerable delay or
phase lag between the two processes this second term can contribute
significant bias to §§y(f)'
The variance of the smoothed squared coherency estimator can

be shown to be (79)

~ . _I_,_ _
Var {YZ ()} = 55 42 () [1-v2 (D)]? (3.55)
and (82)
Var {¥, (D)} = 3p [1M2 (D)2 (3.56)

An approximate confidence interval for yiy(f) can be constructed

by assuming that (76,79)

A -1 X .

U f) = tanh £ 3.57
(f) = tan ny( ) _ (3.57)

is Normally distributed. Hence, confidence intervals for ny(f) are

given by
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Uy ) 2 m {1—%} | (3.58)

Yk

~where m {1- %} is the 1- E-point on the cumulative unit normal distribution.

In section 3.l,2the invariance property of Yiy(f) under linear
filtering operations was discussed. Foster and Guinzy (86) have shown that
$§Y(f) does not necessarily share this property. If u(t) and v(t)
are derived from x(t) and y(t) by passing the latter processes through
the same linear filter then the invariance property extends to the
smoothed estimators. If they are not passed through the same filter
the invariance property only holds if the characteristics of the
respective filters are slowly varying over the equivalent spectral

window. If this is not the case, ?iy(f) will tend to be on the low side

of v2 (£).
ny()

3.6 The Fast Fourier Transform

Today, the most practicél route by far to spectral estimztion
is with a digital computer. Continuous data is therefore replaced by
discrete or sampléd data and the continuous Fourier transform gives way
to the discrete Fourier transform. The discrete Fourier transform can

be written as

x(1) = & 223 x(q) e JZmia/N (3.59)
where x(q) is the discrete time series and X(i) is the discrete frequency
series. N is the number of data points, j=VL1, i=0,1,...n~1. 1In general
both x(q) and X(i) are complex series. To calculate all N Fourier '
coefficients the obvious way, approximately N2 arithmetic operations

are required. In 1965 Cooley and Tukey (26) showed that if equation

3.59 was judiciously factored, the number of operations could be reduced
to 2Nlog,N. However, N must be chosen to be an integral power of 2. For

N=1024 this represents a computational reduction of more than 200 to 1.
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A more striking example is given by Cochran et al. (90) who report that
when conventional procedures are used with N=8192, the computations on an
- IBM 7094 computer require about half-an-hour. With the Fast Fourier
Transform about five seconds are required. On the IBM 360/67 used for the
computations in this thesis, the calculation of all 8192 Fourier
coefficients is reported to require about 2.9 seconds (91). Many
descriptions of the Cooley-Tukey algorithm are now in the literature
(85,90).

When the Fast Fourier Transform is applied directly to obtain
estimates of the power spectrum of a process, the autocovariance function
is not a byproduct of the operation as it is with the Blackman-Tukey
method. Jenkins and Watts(79) have pointed out that the covariance
function can sometimes be used to advantage in reducing the bias
especially in cross spectral estimates. Bingham et al. (80) have shown
that to obtain the first 500 terms of the discrete covariance function
based on 4096-500 data points, it is computationally 12 times faster to
first go the direct route to the power spectrum with the Fast Fourier
Transform. This frequency series is then Fast Fourier re~Transformed
to arrive at the covariance. The 3596 original data points are padded
with 500 zeros to avoid circular convolutioné. Before the Fast Fourier
Transform, the most efficient route to the power spectrum was via the
covariance function; since the Fast Fourier Transform, the most efficient

route to the covariance function is via the power spectrum.
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CHAPTER 4
PROCEDURE

4.1 The Preparation

In all experiments, muscle spindles from the extensor digitorum

longus IV muscle of the male toad Xenopus laevis were used. Often nore
simply referred to as the long toe extensor, this muscle is located in
the hind limbs of the animal and is supplied by branches of nervus
peronus lateralis. In the adult, the relaxed in situ length of the muscle
(Lo) is between 19 and 25 mm. The muscle contains about 50 muscle fibers
with diameters varying from S‘to 100u. The muscle was removed‘from the
limb with about 1 1/2 inches of the innervating merve intact and placed
in a bath containing Ringer's solution. The composition of the Ringer
has been given elsewhere (48). The capsular portiorn of a muscle spindle
was lccated with a microscope by shining a light through the isolated
muscle. This region was then denuded by cutting and removing all other
fibers from the area. All nerve fibers, except the single afferent axon
which innervated the denuded capsule, were cut. The isolated preparation
is illustrated diagrammatically near the top of figure 4.1. 1In the bath,
the muscle was held taut by two wires each hooked into one of its tendons.
Sensory discharges were obtained by measuring the potential changes
produced by longitudinal action currents across a petroleum jelly seal
placed around the nerve trunk. The time course of the action current is
approximately proportional to the rate of change of the nerve action
potential. Racordings were obtained from a total of 17 apparently
normally functioning receptors. The temperatuie of the bathing Ringer's
solution was maintained at 20°C % .5°C tﬁroughout by continuous perfusion

from a temperature controlled reservoir.

4.2 Data Collection

The afferent discharges of the spindle were recorded in response
to two classes of stimuli. The first of these could be called static

stimuli and consisted of maintaining the muscle at various constant
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lengths ranging from well below Lo up to the point of fracture. The

other class of stimuli was of the dynamic type; upon each static stimulus
was superimposed a small and usually random perturﬁation the course of
which was recorded simultaneously with the sensory discharges.

The wire rods hdoked to each muscle tendon were securely
fastened to the shafts of a ﬁifferential puller. The puller was
.designed so that the displacements of each of the shafts accurately
followed the voltage level at the input of the control unit. The control
unit contained a continuously-variable signal;splitting circuit. This
allowed adjustment of the magnitude of the displacement at each of the -
puller shafts while keeping the overall magnitude of the displacement
" between the shafts constant. It was therefore possible to keeﬁ any point
along the length of the muscle stationary while the overall length was
changed. The splitter control was always adjusted so that the spindle
capsule remained stationary during the application of a stimulus. The
length changes of the reticular zone could therefore be observed with
a microscope while applying controlled length changes to the ends of the
muscle. Stationarity of the capsular region also ensured that no strain
would be placed on the nerve-capsule junction during stiﬁulation. The
component and circuit diagram of the differential puller along with some
performance curves are given in appendix 1.

During all phases of the experiments, the receptor discharges
were continuously monitored using both visual and auditory means. As
a consequence, and through experience, a normal preparation could be
immediately recognized. During an experiment, the audio system seemed
to provide the first noticable sign of forthcoming abnormalities. This
occurred as either a change in the tone of the individual discharges ox
as a general change in the pattern in which they occurred. The output
of the preamplifier was also fed into a pulse-height discriminator-
instantaneous frequency meter combination. The pulse-height discriminator
is a device that is electronically capable of selecting both the lowest
and the highest amplitude spike at its input that will be processed. It
responds to a spike of the selected amplitude by outpﬁtting a pulse

200 psec long and 10 volts high coincident with the fall of the input
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spike. Responses of the spindle were recorded by first passing the
preamplified signals through the pulse-height discriminator. This
procedure removed the base~line noise present on the raw signal and
resulted in clean homogeneous recordings from all experiments. The
circuit diagram of the pulse-height discriminator is shown in appendix
2. The instantaneous frequency meter is an analog device which computes
the reciprocal of the time that has elapsed between successive pulses

at the output of the pulse-height discriminator. During the interval
between pulses, the output of the instantaneous frequency meter is
constant and directly proportional to the reciprocal of the time interval
between the last two pulses. The output of this device, displayed on a
strip—-chart recorder, was invaluable in, for example, determining when
the spindle response to a change in static stimulus had reached a steady
state. A description of the instantaneous frequency meter has been
published elsewhere (92).

The dynamic input—output properties of the muscle spindle
were examined by applying random changes in length to the isolated
muscle. The signals used as input to the control unit were obtained from
a General Radio Company type 1390-B random noise generator. The output
of this unit was passed through a Krohn-Hite Model 330M band-pass filter
and recorded on an fm channel of a Precision Instrument PI-6200 tape
recorder at 37.5 inches per second. The lower cut—off frequency of the
band-pass filter was set at the .2 cps minimum while the upper cut off was
set at either 200, 800 or 1500 cps. The signals recorded on the tape
were played back at .375 inches per second resulting in random signals
with approximately 2, 8 and 15 cps upper_frequency limits. The power
spectrum of each of the signals was estimated using the methods in
Chapter 5. Using these results, filters were constructed to produce
from these signals another set of signals with approximately flat power
spectra in the range from .04 cps to the upper cutoff frequency.

There were primarily two reasons for the choice of a random
dynamic stimulus. The first was that the techniques of spectral
analysis, especially cross spectruw analysis, are most reliable if the

processes involved have relatively flat spectra. The shape of the power
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spectrum of the sensory point discharges will be considered in Chapter 5.
Second, a random stimulus is probably physiologically more real than
other commonly used stimuli., However, since high frequency stimuli can
also be unphysiological, the effect of changing the upper frequency limit
of the stimulus had to be investigated. Problems which resemble the
phase-locking phenomenon sometimes present with sinusoidal stimuli, were
not encountered in any of the experiments. The time course of the length
changes applied to the muscle were recorded by a2 Precision Instrument
PI-6200 simultaneously with the muscle spindle discharges. The stimulus

was recorded on an fm channel while the discharges were recorded on a

direct channel.

4.3 Data Manipulation

The data on the analog tape was analyzed as illustrated in
figure 4.2. The role of the Hewlett Packard 2116B computer was to
digitize the analog data and convert the resulting binary records into
a format that could be easily and quickly read into the memory of the
IBM 360/67 computer. The '360 was in turn programmed to perform the
required computations and to produce the instructions for the Calcomp
plotter unit.

The spindle discharges recorded on the direct channel of the
analog tape recorder were preprocessed in one of two ways prior to
analog-to-digital conversion. This, in both cases, consisted of
reshaping the spikes into narrow square pulses of about 200 usec in
duration and 10 volts in amplitude. These in turn were either used to
trigger a bistable multivibrator (flip-flop) or passed through a low-
pass electrical filter. The waveform presented to the analog to
digital converter was then either a square wave whose state changed with
the occurrence of each action potential or a waveform resembling electronic
shot noise (93). Preprocessing of the signal representing the changes
in the muscle length was confined tc 2 gain adjustment of the waveform
so that maximum resolution over the *1 volt range of the analog to

digital converter could be obtained.
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Each analog to digital conversion resulted in the production
of a 10 bit binary number. The +1 volt input range of the converter is
therefore quantized into 1024 equal increments. According to Bendat and
Piersol (76) the effect of quantization upon the continuous waveform can
be considered as an additive rms noise on the original waveform. The
results of these authors can be used to show that the additive rms
noise due to the 10 bit quantization of the #1 volt range of the converter
amounté to about .3 millivolts rms.

The 2116B computer was prbgrammed to accept binary numbers
from the converter at regular intervals until a total of 8192 numbers
had been collected. Each number was then converted into 6-level binary
coded decimal (BCD) characters and written on a 7-track digitai tape.

All translations from BCD to the internal code of the '360 were performed

by the '360 during the execution of the 'READ" command in the Fortran

IV source language.
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CHAPTER 5
ANALYTICAL METHODS

5.1 Statistical Techniques

If the flip-flop output of the pulse shaper is sampled
regularly, the occurrence of an action potential can be detected by ‘
testing for the condition where two consecutive samples are not equal.
This procedure was used to obtain the information needed to construct
pulse-interval histograms of the spindle responses to static stimulation.
The instantaneous frequency meter indicated that under all conditions of
static stimulation, the discharge rate of a normal preparation seldom
'if ever exceeded 50 pulses per second (pps) and always averaged less
than 20 pps. The sampling rate for the analysis of interval statistics
was chosen to be 200 samples per second. The resultant bin width for
the interval histograms was therefore 5 msec which divided the average
interpulse interval into at least 10 units and resulted in histograms
of useful stability.

The histogram of intervals between successive events (histogram
of first-order intervals) was used to estimate the two parameters of the
Gamma density

g.8g-1 _
p(r) = BB 7Bt (5.1)

where g and 8 are the required parameters. T (g) is the gamma function
of g. g is often called the order of the Gamma density. p(t) is the

probability density of an interval t. The mean and variance of this

density are
E {t} =E=§ (5.2)
and

E{(t-t)2} = Var{t} = 0 % = %z - (5.3)
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respectively.
Estimates of B and g can therefore be obtained by using the

mean and variance of the intervals. However, Cox and Lewis (94) have
shown that only poor estimates of these parameters are obtainable by
using the sample mean and variance. This is especially true for low
values of g (g<10). Estimates of B and g using the sample mean and
variance are called inefficient estimates. Bendat and Piersol (76)
define an efficient estimator as that which produces the least mean
square error between the parameter itself and its estimator.

The class of maximum likelihood estimates is known to exhibit
the minimum variance that can be achieved by any unbiased estimator (79).
For large data samples this estimator is approximately unbiased and
Normally distributed. The maximum likelihood estimates for B and g
are obtained by maximizing the likelihood function for the N observed
times between the events with respect to these parameters. The likelihood
function is

N

Ng (¥, &1 Bl t

g
Let,g,8) = & - GIp & i=1

(5.4)
[r(g)1"

where ts refers to the ith interval. The results of such an analysis

(94) indicate that the maximum likelihood estimator for g is the solution

of

log, (g) - ¥(g) = log,t - [-log,t; (5.5)
i=1
N
where t is the sample mean given by
2 N
ERA | (5.6)
N
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¥(g) is the so-called digamma function and is defined as

oGy = & log T @)

- G.7)
dg
A N
The quantities t and z logeti are therefore sufficient statistics for
i=1

maximum likelihood estimates of B and g. Using these, equation 5.5

was solved iteratively. The initial estimate for é was obtained from
the sample mean and variance. To evaluate equation 5.7 subroutine
DLGAM which calculates 1oger(é) to 16 significant figures was used. The
digamma function was obtained by replacing the differential operator

d/dé in equation 5.7 by the finite difference operator § where
S = los I 408y _ - _Ag
Gloger(g) looer(g + 2) loger(g 2) (5.8)

It can be shown (95) that the relationship between the differential

operator and the finite difference operator is given by
sinh ' £ (5.9

where Ag is an increment in é. The first few terms of a Taylor's series
expansion of the right hand side of equation 5.9 were used for equation

5.7. The maximum likelihood estimate for B was then obtained from
p=% | (5.10)
t

The Gamma density with the maximum likelihood parameters was scaled to
the same area as the first-order interval histogram from which it was

estimated and dravn on the same axis.

The characteristic function of a random variable t is defined

as
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ej21rft

8 (£) = E { }

= 7 IPEE beey ae (5.11)
If tl and t2 are two independent random variables with a common

distribution function then the characteristic function of their sum is by

definition (94)

<I>t1+t2(f) = @% (£) (5.12)

The characteristic function of the sum of three or more independent
random varizbles with common distributions follows from equation 5.12.

The characteristic function of a Gamma density can be shown to be (94)

M v ' (5.13)

The sum of two independent random variables each distributed with
identical Gamma densities is therefore also distributed with a Gamma
density. It follows from equation 5.12 that the parameters of the sum
distribution are B and 2g. Parameters of the sum of three random
variables would be B and 3g and so on.

As a test for the independence of successive interpulsé inter-
vals, the parameters of the maximum likelihood Gamma function of the first-
order spike intervals were modified as required to obtain the density '
functions which describe the sum of two and three successive intervals
(second and third-order intervals) assuming all intervals are independent.
These curves, properl& scaled as to aréa, were drawn on the same axis
as the second and third-order interval histograms obtained from the

data.
It can be shown (96), that the power spectrum of a point

process whose intervals exhibit the properties of a random variable, is
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given by -

t

Spplfl = &2 {1+2Re_ Lfl %tca) ] | (5.14)
=1 “%4

where QZLCf)' is the characteristic function of the ith order interval.

A is the area or strength of the points in the process, If successive

intervals are independent then as a consequence of equation 5.12 (see

(96))

9, (£)
] (5.15)

A2
S (f) == 1+2Re | ==
[ l-Qt(f)

Re represents the real part of the complex quantity in the brackets

which follow it. The power spectrum of an independent Gamma process is
then

A2g

S,p(E) = & [1+2Re 1 ” | (5.16)

=

PP

This equation was programmed on the computer and values of SPP(f) were
calculated at various frequencies for a number of different g. To test
the sensitivity of Sp (f) to small changes in the shape and the form

of the underlying density function, the power spectrum of a high order
Gamma density was compared to that of a Gaussian density both with the

same peak and variance. The characteristic function of a Gaussian

density is

8, (£) = e o, (21£)? + jE2nf (5.17)

where t and c% are the mean and variance of the intervals respectiyvely.
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The power spectrum of the independent point process with this distribution

of intervals is

- d .
2 7 b . b
s () =&|1pe| & Goszytising (5.18)
PP t
i h.g- -E-+ cosh -cl-sin-~h
sinh 7 cos 3 J cos > 2
where d = - %‘G%(Zﬂf)z and b = t2wf.

The serial correlation coefficient between successive intervals
is defined as
) E {(t,-t) (ti+h-t)}

Ph . o2 (5.19)

where Ph? h=0,1,2;... is the serial correlation between intervals
separated by h events. If the intervals are drawn independently from a
common distribution then the expected value of all the coefficients is
zero. Since serial correlation coefficients are one of the most powerful
tests for the serial independence of intervals and also one of the easiest
to implement, the results of such an analysis on the spindle discharges
have been included. Estimation of Py requires that t and 0% be estimated
from the sample data. To avoid the bias introduced by the use of the
sample mean and variance, the formulas suggested by Cox and Lewis (94)

were used. These formulas are repeated here. The estimator of °hH is

given by
.G -
CTarosrouy SR (3.20)
(c”.C ‘
k™ h
where
- 1 wh n A
- = - - ~o
®h= ¥n '.zl tifiem Twa - G2
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where

) ; MR ) ; ¥h
= . L = =
vl Tiesml tim (5.22)
i=1 i=1
and
A N-h , . ; Nh .
- - C"" = —— i d
Cy = N_h Z (t; T* 9] Cy =5 i§1 I -T o (5.23)

For N large and ph s ph/(N—l)% has an approximately unit Normal
distribution. Therefore, the hypothesis of independence can be rejected

at the a level if

. m{1-5}

Iphl > m ' . (5.24)

where m{1- %} is the 1-0/2 point on the cumulative normal distribution.
To reduce the possibilities of obtaining false positive serial correla-
tions that result from long-term trends. or nonstationarities in the
process (2), the data was always divided into a number of segments. The
first twenty serial correlation coefficients were calculated using
equations 5.20 to 5.23 for each segment. The final estimate for the
twenty coefficients was obtained by averaging the contributions from

each segment.

5.2 Sampling the Point Process

If the spindie discharges are treated as a series of point
events (Dirac delta functions) the sample Fourier transform of the data

is given by
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%, (£)

N
T - ~j2nft
i oiglcs(t t;) e dt

N
T (cos 2nft, - j sin anti; (5.25)
i=1 -

1]

where 6(t—ti) is a Dirac delta function at t=ti' When treated this way
the estimation of the power spectrum of nerve spikes is extremely well
suited to digital computer evaluation since only the summation of cosine
and sine terms at the instants ia time at which the spikes occur is
required. Knox (97) has used this method to obtain estimates of the
power spectrum of the discharges from receptors in the statocyst organ of
the lobster. A serious shortcoming of this method is apparent from the
behavior of XT(f) at £=0. XT(f) at this point is a spike of amplitude

N, the number of action potentials in the sample data. Since XT(O)
stands far above XT(f) for £f#0, leakage through the spectral window will
introduce considerable bias into the estimates of the power spectrum near
zero frequency.

If the method used to detect the occurrence of events is by
regularly sampling the flip-flop output of the pulse shaper in figure
4.2, it is necessary that the sampling rate be much higher than the maxi-
mum frequency component of interest. The errors resulting in a sampling
rate that is too low would probably be somewhat similar to the quanti-
zation error which results when a continuous waveform is sampled with too
few bits available for the conversion. 4

It is a well known result, that if a continuocus waveform is
sampled regularily at a rate which is at least twice as fast as the
highest frequency component in that waveform, then the sampled version of
the continuous waveform contains an undistorted copy of the power spectrum
of the original waveform (75,98). If the signal contains components
higher than half the sampling frequency a so-called aliasing of frequencies
occurs. In this case, the signal must be sampled at a higher rate or,
the undesirable components removed before sampling by filtering. Half
the sampling frequency is called the Nyquist or folding frequency.

Aliasing of frequencies refers to the phenomenon whereby power in a
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‘waveform above the folding frequency masquerades as power at frequencies
below the folding frequency. The general rule for the aliasing of
frequencies has been given by Bendat and Piersol (76). TFor any frequency
f in the range Offffc, vhere f_ is the Nyquist frequency, the higher

frequencies which are aliased with £ are defined by the infinite series
(2fcif), (Afcif), (6fcif), .o (5.26)

Once a signal i, sampled, nothing short of resampling after either
filtering the signal or increasing the sampling rate can possibly remove
any aliasing which may have occurred.

The estimates of the various spectra which involved the point
discharges of the spindle were obtained, with one exception, by filtering
the shaped discharges. Equation 5.25 was applied in one instance by
sampling the flip-flop output of the pulse shaper at a rate much higher
than the highest frequency of interast. In all other cases, the shaped
pulses were passed through a low-pass filter. The filter was designed
so that after estimating the spectrum of the filtered pulses, 'the effect
of the filter could be removed from the estimates up to 80% of the folding
frequency with negligible error due to aliasing. Filtering the pulses
has the effect of converting the point process into a continuous waveform
so that all the ideas of chapter 3 are direétly applicable. Nelsen (96)
has shown that if the interevent intervals of a point process are drawn
independently from a common density function, then, if this density function
is bounded, the power spectrum of the process tends to a constant value
with increasing frequency. There is evidence that interspike intervals
from amphibian muscle spindles are independent (54,72) and that the
underlying density function is bounded (54,71). Work with equations
5.16 and 5.18 (see chapter 5) which are based on these assumptionms, has
shown that the power spectrum of a point process with about as much
variability as the discharges from an amphibian muscle spindle is flat in
the region of the spectrum alove the mean discharge frequercy. The sampling
rate for spectral estimates was chosen at 100 samples per second, The

power spectrum of the sensory discharges was assumed to be flat in the
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region above the folding frequency of 50 cps since the average discharge
rate was always well below this. Also, no stimulus was applied to the
spindle which contained any significant power above 30 cps. Therefore,
because of the filter, reliable estimates of the various spectra could
be obtained to about 40 cps. The band of frequencies topped by 40 cps
seemed a physiologically relevant choice.

Consideration of the bias in the estimates of the various
spectra seemed to indicate that the filter characteristic in the passband
should be reasonably flat aﬁd should not introduce excessive phase lags
between the input to, and the measured output from, the spindle. The

filter used had the following magnitude and phase characteristics

respectively.

H(E) = —— (5.27)

1+!—)
{121
and
2f
P(f) = -tan =1| 21 (5.28)
(21)

The circuit diagram of this filter is given in appendix 3. If the power
spectrum of the unfiltered spikes is Spp(f) then the power present in

the signal after filtering will be given by

1 2 ‘
(£) =|——— 5 () (5.29)

Hg)

using equation 3.7. If the power in S (f) at 40 and 60 cps was approxi-
mately the same, then the power in S (f) at 60 cps would be down to

less than 2.5% of that at 40 cps. At 70 cps it would be down to less
than .2% of that at 30 cps. Since 50 cps is the folding frequency, the

aliased power in Sxx(f) at 40 cps from 60 cps and higher frequencies
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would be about 2.5%. At 30 cps aliased power would be less than .27%.
Therefore, assuming that Spp(f) is reasonably constant above 50 cps,

and this can be established by plotting Sxx(f), estimates of Spp(f)

can be obtained up to at least 40 cps with little error due to aliasing.

Estimates of Spp(f) from gxx(f) are obtained using equation 5.29.

5.3 Methods of Spectral Estimation

Spectral estimates were obtained using the direct approach and
the Fast Fourier Transform subroutine PS301A (91). The method was that
suggested by Welch (83), slightly modified. The data, both single and ‘
double channel (spindle under static and dynamic stimulus respectively),
was sampled 100 times per second. Exactly 163.84 seconds of data were
used for each analysis. Since the HP2116B, as programmed, had capacity
for 8192 data points, power spectrum data was stored on the digital
tape in two blocks of 81.92 seconds each. Data for cross-spectral
estimates was stored in four blocks of 40.96 seconds each. Welch (83)
suggests that in order to obtain a near maximum reduction in the variance
of spectral estimates from a fixed amount of data, the data segments from
which the sample spectra are obtained should be overlapped to about one-
half their length. This suggestion was followed. The data was divided
into segments of 1024 data points. Sample spectra were obtained from
points 1 to 1024, points 512 to 1536, 1024 to 2048 and so on until all
points in the data block were exhausted. The proéedure was repeated for
all blocks and the spectral estimator obtained by averaging the contri-
butions from all the sample spectra (See equations 3.34, 3.35 and 3.43).
The power-spectrum estimator was therefore the result of averaging 30
sample power spectra while thé cross—spectrum estimator was the result of
averaging 28 sample cross-spectra.

Welch (83) has shown that the variance of the power-spectrum

estimator described in the preceding paragraph is

82 (£) 1

~ K"‘
Vaf{ém(f)} = x;é [ 1+zi§

K~i .
. =< E(:L)J (5.30)
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where

L .12
[» Z w(h) W(h*iD)]

[ o]

K is the number of data segments in the estimate, L is the number of

(5.31)

gl =

points in each segment and D is the number of points between the starting
points of the segments. For the power spectrum estimator used in this
thesis X=30, L=1024 and D=512. w(h) is the data window. It is of interest
to note that if D2L, & (i)=0 for all i and hence Vaf{gxx(f)} does not
depend upon the shape of the data window. Sloane (81) has shown however,
that windowing the data does result in a loss of spectral resolutiom.

If the data segments are overlapped, the shape of the data
wiﬁdow does effect the variance of the estimator. It can be shown,
using equations 5.30 and 5.31, that overlapping the data segments by
half their length with a rectangular data window results in a variance
reduction to 75% of that if the segments are not overlapped. If the
Hanning data window is used then 507 overlap of the data segments results
in a reduction in variance to about 55% of that when the segments are
not overlapped and the rectangular data window is used. All spectral
estimates in this work were obtained using the Hanning data window. There-~
fore, using equations 3.41, 5.30 and 5.31 it can be shown that the power--
spectrum estimator had 56 degrees of freedom while the cross—spectrum
estimator had 52 degrees of freedom. Confidence bands for estimates of
the power spectrum, gain and phase functions and the squared coherency
spectrum were thus obtained using equations 3.42, 3.51, 3.52 and 3.58
respectively. The statistical tables given by Bendat and Piersol (76)
were used. Gain and phase estimators were corrected for the presence of
the spike filter by using equation 3.6.

It can be shown (81) that the spectral window resulting from

the Hanning data window is given by
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This equation is shown plotted in figure 5.1 with a normalized amplitude

of one. Leakage problems were all but eliminated from the estimates by

this spectral window.

5.4 Plotting the Results

The Fast Fourier Transform of 1024 data points results in

1024 Fourier coefficients. These coefficients sample the frequency
space from zero frequency up to the sampling frequency in steps of
1/10.24 cps. All estimators were plotted on a logarithmic frequency
scale. This transformation of the frequency’scaie resulted in points that
were widely separated at the low frequency end and highly clustered
toward the high frequency end. To improve the low frequency resolution
all plots shown in the results were obtained by padding the data segments
out to 2048 points with 1024 zeroé before Fourier transformation. This
procedure, suggested by Bergland (85), increased spectral resolution to
1/20.48 cps or to about .05 cps and improved considerably the appearance
of the estimators at low frequencies. Power spectrum and gain function
estimates were plotted in decibels (db) while phase function estimates
were plotted in degrees.

| 0f the 2048 points which resulted from each analysis for each
estimator, only the first 800 were required to span the region of interest
from .05 to 40 cps. The plotting function as written required three
arguments: the abscissa dimension, the ordinate dimension and the
minimum distance between the plotted points. A fourth argument required
for cross-spectrum analysis was the maximum frequency of interest. This
was necessary since, for example, coherency studies are meaningless at
frequencies outside the bandwidth of the applied input. Before plotting
points, all data was scaled to the abscissa and oxdinate dimensions
supplied. Points were plotted starting from the low frequency end.

No point was plotted which fell closer to the previously plotted point
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Figure 5.1

SPECTRAL EQUIVALENT OF THE HANNING DATA WINDOW.
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than the minimum distance parameter. This point was instead averaged
with succeeding points until the logaritimic mean of the abscissae of
the first and last point averaged exceeded the minimum distance para-
meter. All 800 points were used in this way. Because of the logarithmic
frequency scale, averaging became more and more prevalent as the plotting
progressed. The result of this was that the statistical confidence in
the plotted points was increased as more and more averaging was required.
Tke width of the spectral window shown in figure 5.1 is not
changed by padding the data segments with zeros (85). Therefore averaging
two adjacent points does not halve the variance of the new estimator
since the average was formed using nonindependent constituents. It is
not until 5 adjacent points are averaged that two independent points are
combined. Therefore, when plotting confidence bands around the various
estimators, the number of degrees of freedom associated with a particular
plotted point was increased by the base value (56 for power spectra,
52 for cross spectra) each time the number of averaged points reached
a multiple of 5.
Appendix 4 contains a copy of the Fortran IV source program
used to perform the cross-spectral analysis. The program instructed
the computer to read two channel data frdm the 7 track tape, to calculate
estimates of the squared coherency spectrum and the gain and phase

functions together with their respective confidence bands, and to plot the

results.
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"CHAPTER 6
RESULTS

6.1 Static Behavior

The results reported in this chapter were obtained from three
separate muscle spindles. The responses of these however, were represent-
ative of all the normally functioning preparations examined. The instan-
taneous frequency of the discharges from a single muscle spindle under
conditions of static stimulus is shown in figure 6.1A. Recordings of
the discharges from this particular spindle were obtained at various
steady lengths which ranged from about 1.5 mm less than the resting length
of the muscle in vivo (L°) to the point of fracture about 1.3 mm greater
than Lo. LO for this muscle was 23 mm. After changing the static
stimulus, data was recorded only when the instantaneous frequency of the
discharges had apparently reached a steady state. The occurrence of
an action potential was detected by sampling the flip-flop output of the
pulse shaper 200 times per second. Some results from the subsequent
analysis are shown in table 6.1. The sample means calculated in table
6.1 were not biased by the spike detection technique. On the other hand,
the sample variances were biased positively by about 8 msec?. This
bias has been removed from the sample standard deviations and the sample

coefficients of variation given in table 6.1.

Muscle No. of Mean Interval Stan&ard Coef. of
Length Tntervals Interval Variance Deviation Variation
Lo-l.Smm 2473 66 msec 420 msec? 20.3 msec .31

Lo 2529 65 357 18.7 .29
Lo+0.2mm 2326 70 538 23.0 .33
Lo+0.4mm 2370 69 443 20.8 .30
Lo+0.6mm 2376 69 464 21.3 .31
L°+1.0mm 2686 60 313 17.5 .29
Lo+l.1mm 2796 58 285 16.6 .29

Table 6.1. Some Statistics of the Static Response
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Table 6.1 shows that the spindle responded to a static stimulus only
slightly. It is not until.the muscle was stretched to near the point of
fracture that any significant changes are noticable in the response. The
variability in the intervals, defined as the ratio of the standard
deviation to the mean (coefficient of variation),was largely indifferent
to the static stimulus. These results are in agreement with those of -
Buller et al. (54) in aS'much.as'for a 70 msec mean interval from the
frog muscle spindle they obtained a standard deviation of 19 msec.

_ First, second, and third order spike interval histograms at a
muscle length of L°+0.2mm (table 6.1) are shown in figure 6.2. The first
order interval histogram was fitted with the maximum likelihood Gamma
density curve estimated from the data. The second and third order
histograms Wefe fitted with Gamma density curves whose parameters were
obtained from the first order curve by assuming that all intervals were
statistically independent. The data was fitted extremely well by the
Camma curves and therefore supports earlier findings related to both the
distribution of, énd,the dependence between, spindle interspike intervals
(54,71,72).
aumber of Gamma densities obtained from the spindle intervals under

The maximum likelihood estimates for the parameters of a

different static stimuli are compared in table 6.2 with the estimates

of these parameters obtained from the sample mean and variance. The

bias was removed from the sample variance before calculating the

parameters.
No. of Maximum Likelihood  Sample t and 0,2
" 7~ A ~ t
Intervals g 8 g g
733 3.2 . 014 2.5 011
2472 10.4 .16 0.6 .16
2326 9.5 Jd4 9.2 .13
2787 12.5 .22 2.2 21
Table 6.2. Estimates of g and B.

If the premise that interspike intervals were independent
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and distributed with a Gamma density is accepted, then the power spectrum
of the point sensory process can be calculated by using equation 5.16,

The results of such a calculation are shown in figure 6.3 for Gamma
densities of various orders.. In this figure w = 2mf. All of the curves -
are normalized to the same high frequency value to enable comparison. The
Poisson process, with its e%ponential distribution of intervals,
corresponds to a Gamma density of order 1 and has a flat power spectrﬁm
at all frequencies. As the order of the Gamma density is increased

from 1, the spectrum contains less and less power at low frequencies.

The transition between the very low frequency power and the high frequency
power is much more abrupt and ten&s to occur at lower frequencies as

the order of the demsity is increased.

Estimates of the power spectrum of the spin&le discharges were
obtained initially in two ways. The first was as described in section
5.3, that is by filtering the shaped pulses, applying a Hanning data
window to the data segments from which the mean had been removed, and
finally, averaging the sample spectra obtained from the modified
segments. The results of such an analysis on a statically-stimulated
spindle are shown in figure 6.4A. The 95% confidence band for the
estimate is also shown. Figure 6.4B shows an estimate of the power
spectrum of the same data obtained by sampling the flip-flop output of
the pulse shaper 200 times per second. The continuous Fourier transform
of each data segment was obtained using equation 5.25. Figure 6.4B is
an excellent demonstration of distortion at the low frequency end of the
spectrum due to leakage from the spike in the spectrum at zero frequency.
If the distortion due to leakage is temporarily ignored, both figures 6.4A
and 6.4B indicate a relatively flat low frequency spectrum with an
increase of about 5db occurring in the power between 1 and 10 cps. This
similarity is considered token proof of the validity of the impulse
filtering method of spectral estimation outlined in section 5.2.

Figure 6.5 shows the estimate of the power spectrum of the data
used in figure 6.2. The estimated spectrum is fairly flat in the
region less than about 2 cps but increases by between 10 and 15 db from

there to 10 cps. The maximum likelihood Gamma parameters for the first
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order intervals in figure 6.2 are g = 9.5 and é = .14 (msec)-l. Figure
6.3 indicates that the power spectrum of a Gamma density of order 9
undergoes a change of slightly less than 10 db. .In this respect, the
theoretical and ekperimental results agree. Also, figure 6.3 shows that

“the transition from low-frequency power to high-frequency power for

g = 9 is all but complete at w = B. This means that the experimental
spectrum should have reached its high frequency value by about 22 cps.
This is in agreement with figure 6.5

Equation 5.15 shows that the power spectrum of an independeﬁt
point process is related only to the distribution function which describes
the first-order intervals. To test the sensitivity of the power spectrum
of an independent point process to slight.changes in the form of the
underlying density function, the theoretical spectrum of a point process
whose intervals are distributed as a Gaussian random variable was compared
with the spectrum of the Gamma density of figure 6.2 The Gaussian
| density function was chosen to have the same peak and variance as the
Gamma density. The two density functions are shown in figure 6.6. Figure
6.7 shows the respective spectra each normalized to the same high frequency
value. This figure shows that the power spectrum of an independent
point process is not particularly sensitive to slight variations in the
shape and the form of the underlying density function. Therefore, the
agreement between the theoretical and the estimated spectra is apparently
not heavily dependent upon the choice of density function.

Figure 6.8 shows the first nine serial correlation coefficients
between interspike intervals from the spindle in table 6.1. The left
side of figure 6.8 was obtained from the intervals in figure 6.2 (L°+O.2mm)
while the right side was obtained at a longer muscle length (Lo+l.lmm).
Formulas 5.20 to 5.23 were used with segmented Jata to obtain the results
in figure 6.8. It can be shown that the sﬁike detection technique will
result in a slight negative serial correlation between adjacent intervals
even if the interspike intervals are statistically independent. This
bias in the first serial correlation coefficient amounts to about .004
in the left side of figure 6.8 and about .007 in the right side. To

test the independence hypothesis, 75, 95, and 99% confidence bands for
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independent intervals were calculated from equation 5.24. 1In spite of
the bias introduced by the detection technique, it is statistically 997%
certain that adjacent intervals were negatively correlated. That is, an
interval of less than the mean length tended to be followed by one that
was greater than the mean and vice versa. This tendency to oscillate
about the mean is apparently not of sufficient strength to result in
significant contributions to the estimated power spectrum of the process.
The large posifiye value of the fourth coefficient in the right side of
figure 6.8 is likely due to statistical fluctuations in the estimator
since it is not present in the left side of the figure. It is to be
expected that for purely statistical reasons, about one in a hundred of
the coefficients will be outside the 997 confidence region. The obvious
weakness of the serial dependence between adjacent intervals coupled with
much shorter data samples probably accounts for the earlier results
concerning the independence of spindle interspike intervals (54,72).

That neighbouring intervals are correlated might be expected from what
is known about the initiation and conduction of action potentials in
nerve fibers.

The power spectrum of a point process is apparently not exception-
ally sensitive to serial correlation between the intervals. In a sense,
use of the power spectrum to test for serial correlation between intervals
is much like the test applied in figure 6.2. That is, both tests are
rather qualitative in that any serial dependencies would probably
become obvious only when a strong correlation exists. 1In additionm,
neither test would provide any information concerning the nature of any
obvious correlation. But unlike the serial correlation coefficient, the
power spectrum would probably maintain its sensitivity to serial dependence
in the presence of trends that are long compared to the mean interval.
These trends or nonstationarities appear as very low frequency components
in the power spectrum. Since leakage between frequency bands during power
spectrum estimation can be effectively controlled (see figure 5.2), the
effects of the nonstationarities can be easily confined to the appropriate

portions of the spectrum.
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6.2 Dynamic Behavior

The effect upon the instantaneous frequency 6f spindle
discharges of three different dynamic stimuli is shown in figures 6.1B,
C,D. Each of the stimuli is a random signal and each has a different
upper cutoff frequency. Estimates of the power spectrum of each of the
signals, enclosed in 95% confidence intervals, are shown in figure 6.9.
The signal described by figure 6.9A which shows a relatively flat
spectrum up to about 2cps will be referred to as input A; the signal in
figure 6.9B with a relatively flat spectrum to about 8 cps as input B
and figure 6.9C with a flat spectrum to about 15 cps as input C. Figures
6.1, B,C,D which show the spindle responses to inputs A,B and C respec-—
tively, indicéte that increasing the upper cutoff frequency of the
dynamic stimulus resulted in discharges of higher instantaneous frequency.

Figure 6.10 shows estimates of the power spectrum of the
spindle response to the three inputs at three different lengths. The
steady state spectral estimates are included for comparison. All
confidence intervals for this and succeeding figures are shown at the
95% level. The preparation in figure 6.10 is that described during static
stimulation by table 6.1. The top row in figure 6.10 was obtained from
the spindle at a static stimulus of Lo—l.Smm, the second row at Lo+0.4mm
and the third row at Lo+l.0mm where Lo was about 23mm. The amplitude of
all the inputs was about 45um rms throughout. Columns 2,3 and 4 correspond
to inputs A,B and C respectively.

Figure 6.10 indicates that the response of the receptor to
the various inputs was largely an addition to the spectrum that
existed before the dynamic stimulus was applied. This implies that the
steady state spectrum was acting as the carrier for in%ormation concerning
the dynamic state of the muscle length. In the band of frequencies
studied, application of input power resulted in the addition to the
outpu. power of the receptor, power at only those frequencies at which
an appreciable input existed. Interaction between the carrier spectrum
and the input spectrum, apparently did not result in any sideband copies

of the input. By comparing the responses of the spindle to the same
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dynamic stimulus at different steadyQState lengths, it is clear that the
dynamic gain of the receptor depended strongly upon the length of the
muscle. This is best demonstrated by input A. Here, the shape of the
spindle response is almost identical at all three lengths with the
exception that at the longest length the response was about 5 times
greater (7db) than at the shortest length, The responses to inputs B
and C are complicated by the fact that their spectra eﬁtended into the
transition region of the carrier spectrum. Also, because their broader
bandwidths resulted in relatively lower power densities, the pocwer
spectrum of the spindle response to inputs B and C was not as definitive
as it was to input A, especially at the shorter muscle lengths. However,
another feature of the spindle response is apparent from inputs B and

c. These inputs have approximately equal power densities in the region
below 7 cps. The flat portion of input C extends to somewhat higher
frequencies. In the regions of the spectrum where inputs B and C have
nearly equal power. densities, it might be expected that the power density
of the receptor response to these inputs would also be roughly the same.
This was definitely not the case (cf figure 6.10 row 3 columns 3 and 4)
and significantly less power existed in the response to input C
especially in the region 1 to 7 cps. This then is an indication that
the spindle gain was also dependent upon the bandwidth of the length
variations applied to the muscle.

Estimates of the squared coherency spectrum between the spindle -
response and the impressed input are shown for the various cases of
figure 6.10 in figure 6.11. Coherency between input and output was
always greater with input A at all muscle lengths than with either
input B or C. This might be expected since the power density of input
A was so much greater in the region less than 2 cps than that of inputs
B and C. However, inputs B 2nd C had equal power densities to about 7
cps and yet the spindle response tended to be more coherent in that
region with input B. All squared coherency curves attained a peak near

the top end of the input spectrum. Input C consistently producéd a

smaller peak than input B.
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"Frequency——CPS
Power Density of .07 U i2 12 7
1 TImput A 46dh 47dk 49dB 29db  8db
2 Imput B 36 37 40 40 38
3 TImput C ' 36 38 .38 38 38
4 Steady-State Response 4 5 6 5 9
5 Response to Imput A 13 16 17
6 Response to Input B 6 7 9 10 15
7 Response to Input C 4 7 8 10 12
8 Residue - Input A 9 11 10
9 Residue - Input B 6 7 8 6 10
10 Residue - Input C 4 7 8 8 9

Table 6.3. Details of the Dynamic Response

Table 6.3, rows 8,9 and 10, contains estimates of the so-called noise
residue of the spindle response to the three inputs. These numbers were
calculated from the respective columns in rows 5,6 and 7 by substracting
from these the quantities l-yiy(f) obtained from figure 6.11 converted
to decibels. The numbers in rows 8,9 and 10 are always greater than, or
equal to, the numbers in the respecfive columns of row 4. This indicates
that the portion of the spiﬁdle output that was totally incoherent with
the input was always greater than, or equal to, the steady-state output.
This is consistent with the earlier idea that the steady state spectrum
was involved in the transmission of information concerning the dynamic
activity of the muscle only to the extent that it acted as a carrier.
Figures 6.12 and 6.13 show estimates of the gain and phase functiohs
corresponding to the squared coherency estimates of figure 6.11. In
light of the inverse relationship between the width of the confidence
interval for both.gaiﬁ and phase estimates and the squared coherency
spectrum (see equations 3.51 and 3.52) the results of figure 6.11 predict
that the most stable estimates for gain and phase would be obtained near
the cut off frequency of each of the inputs. Examination of figure 6.12
reveals that increasing the muscle length resulted in an increase in the

coherent gain of the system. Also, coherent gain in the region above

-76-



o€

‘HOLTYLS JILVIS J0 wAm>MA INTIIILTA LV

ESNOJSTY HTIANIJS HHI ANV ITOWILS OIWVNAQ SAOIVVA HHI NIIMIHE NOTLONNL NIVO HHI 40 STIVWILSH

mirrrrTy

LULLEL L |

LLRLLIL

WirrTTIT

T

~

>

LLAS A

oy

4%

0

21°'9 92an31g
Sdd - ADNINDOIY4

HITTTT T 1 L) L LI L |

LU} T T I

Wwol+%7:7 |

0 J

Wwg| -0 -

v

6y

0s

4d - JANLINOVW

-77-



ASNO4STY A'TANIJS FHI ANV IT

0¢€

80

" "HOLHYUIS JOILVIS J0 STAAHUT INTYAIITA LV
NRILS DIWVNAQ SNOTIYVA HHI NITIMIEE NOIIONNI ASVHd ¥HIL J0 STLVWILSH

¥00

mrrrr

n

LA DU

LRI I

T

LI} mrrrrT

ﬁ

LR 1L LN LI

LA MLI

0¢

€1°9 2an8Tg
SdD - ADNINDIYS

l

v00

120 1  B  t m MATTT§ T T f@:_q

HITT

Ty

14Y)

VITTTT

Ww 0 +°7=1 -
I

1 mrrTrT

oLt
0¢Z-

otl
0¢-

Sy

ot

$334930 - ISVHJ

~78-



about 1 cps increased at the rate of about 20db per decade increase in
frequency. Figure 6.13 indicates that increasing the muscle length
produced a decrease in the relative phase lead of the receptor output over
its input. At frequencies higher than about 10 cps the estimates of
the phase function tended to return toward zero, predicting perhaps, that
the gain function did not continue its upward trend indefinitely.

At each of the three lengths illustrated by figures 6.12 and
6.13, a transfer function was fitted by eye to the composite picture
consisting of the three gain function estimates and the three phase
function estimates corresponding to the three inputs. The transfer
function was of the form

S S
BA + ) U+ 5

(6.1)

S S
A +75) @+ og)

f3 was required to account for the +20db per decade slope of the
magnitude characteristic in the region above 1 cps and fy was required
so that the phase function would return to zero at high frequencies.

f, amd f, produce the non-zero phase lead present in the system at the
lowest frequencies. The dotted lines in figures 6.12 and 6.13 are the
fitted functions. The four break frequencies are sufficient to account
for the main features of all the estimates. By systematically changing
f1, f2, £3 and f,, the required reduction in the phase advance produced
by the spindle'with increasing muscle length could be achieved. No
difficuléies were encountered in fitting the same four break frequencies
to the estimates of gain and phase at a pérticular length with any of
the three inputs. It was, however, impossible to maintain the same gain
(H) and still obtain a satisfactory fit. The break frequencies and the .
gain at .35 cps for the dotted curves in figures'6.12-and 6.13 are

shown in table 6.4.
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Gain at .35 cps
fEreak.Frequencyf—C?S;‘ ' "Input”
Length £; .fp_ - f3 . Ey A .B ..C.
Lo—l.Smm <.004 3 4 80 22db 18db 17db
Lo+0.4mm <.0046 .067 .8 100 35 29 28
L°+l.0mm .01 .05% 1.3 70 39 36 35

Table 6.4. Parameters of the Linear Model.

The coherent gain of the muscle spindle was about 8 times greater (17—
18db) at the longest length than it was at the shortest length. To
enable comparison, the curves fitted to the estimates of gain and phase in
figures 6.12 and 6.13 input C, are consolidated in figure 6.14.

Figure 6.15 shows estimates of the squared coherency spectrum
and the gain and phase functions of a muscle spindle (L°=22mm) under
two amplitudes of dynamic stimulus. ZEstimates in the left~hand column
were obtained using input C at about 45um rms, while those in the right-
hand column were obtained using input C at 150 ym rms. Equation 6.1
was fitted by eye to the left-hand column and the same curve was drawn
in the right~hand column for comparison with the estimates. Minor
changes do occur in all three types of estimates. Both the coherency
and the gain function are shifted upwards slightly by the increase in
stimulus amplitude. The tendancy of the phase function to return toward
zero at high frequencies and low stimulus amplitudes is no longer present
under the increased input.

Figure 6.16 shows the response of the spindle described in
table 6.4 at L°+1.0mm to a ramp increase in length, Using the para-
meters from table 6.4, the response to the ramp predicted by equation

6.1 can be shown to be proportional to

ét/3 e"t/. 002 t:

1 +37.7[ef173 - 1 + .0013 [ e"1/-002 _ 3 ty
t3 t
(6.3)
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LINEAR MODELS DESCRIBING MUSCLE SPINDLE DYNAMICS.
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INSTANTANEOUS FREQUENCY OF THE SPINDLE RESPONSES TO A RAMP INCREASE IN

MUSCLE LENGTH.
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where t; is the time during which the ramp is appiied. If as in figure

6.16, t3=3 seconds then equation 6.3 becomes approximately

1+ 21.407t/3 (6.4)

for all t slightly greater than t;. Figure 6.16 definitely confirms the
presence of a process with a time constant of about 3 seconds. However,
another process with a much longer time constant is also indicated.

Data segments for the spectral analysis were apparently too short to
allow detection of this process. Equation 6.1 can be easily modified

so that the additional feature of the ramp response made apparent by
figure 6.16 is taken in account. Assuming that the additional time

constant is about 50 seconds, the ramp response predicted by

H(1+52s) (1+16s) (1+.12s) (6.5)
(1+50s) (1+3s) (1+.002s) '

will closely follow that in figure 6.16. The ramp response predicted

by equation 6.5 with t;=3 seconds is approximately
H(L + 1.6e /30 4 23e7%/3) (6.6)

for all t slightly greater than tj. At t=t; equation 6.6 shows that
the amplitude of the 3 second time constant process is about 5.7 times
grea;ér'than that of the 50 second process consistent with figure 6.16.
Equations 6.5 and 6.6 predict that the spindle will have a small static
response at the muscle length at which they apply. This is consistent
with table 6.1.

The power spectrum of a point process with nonindependent
intervals can be calculated from equation 5.14 if the characteristic
functions of all order intervals are known. If the density functioms of
all order intervals are bounded, then all of the characteristic functions
will tend to zero as the frequency becomes large (96). Therefore, if

the probability demsity functions of all order intervals are bounded
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and the infinite summation in equation 5.14 is finite for some frequency

fo’ then for f>fo equation 5.14 will tend to

6.7)

"WE;

SPP (f) =
Figure 6.2 implies that the density functions of all order intervals
between muscle spindle discharges were bounded. Indications from
figure 6.10 and from all muscle spindles eiamined under static stimu-—
lation were that the power spectrum of the sensory discharges was near
its asymptotic value in the region above about 10 cps. If it is
assumed that the convergence was to that predicted by equation 6.7, the
absolute gain of the spindle receptor can be calculated.

According to equation 6.7 the power spectrum of the sensory
discharges approaches a quantity which involves'the area of a single nerve
action potential. The shape of the action potential was calculated
previously (99), and the results of this work were used to calculate A.

For a 15 pm nerve in Xenopus laevis the area of a single action potential
5

at 20°C is about 7x10 ~ volt-seconds. In figure 6.10 row 3 column 1

(r3,cl), =60 msec. Therefore, the power density of the spike train
8

should approach about 8x10 - volt2-seconds. This is assumed to correspond
to about 16db in figure 6.10. Hence, at 1 cps in figure 6.10 (r3,cl),
the power density drops to about .6}(10"8 volts2-seconds. With the
application of input A in figure 6.10 (r3,c2) the power density at 1 cps
increases to about 9.51&:10_8 volt2-seconds. Therefore, input A at a
muscle length of L°+1.0mm ingreased the power density in the spindle
response at 1 cps by 8.9x10 - volt2-seconds. Input A was measured at
about 45um rms distributed as shown in figure 6.9A. Therefore, the

power density of input A ét 1 cps was about 1x10—3m2—seconds. Thus, the
overall power gain of the receptor at 1 cps with input A was about

90 volts?/m?. Using figure 6.11 (x3,cl), the coherent gain of the
spindle at the same frequency and with the same input was about 9 volts/m.
This value was reduced somewhat for inputs B and C as indicated in table

6.4. TFinally, using equation 6.5 and assuming input A, H was calculated

to be about 1.3 volts/m.
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CHAPTER 7

"~ 'DISCUSSION

The results of the previous chapter indicate that methods of
spectral estimation can be meaningfully applied to the analysis of a
sensory receptor. By filtering, most problems associated with the
detection of the point sensory discharges by continuous analog to digital
conversion were eliminated. The transformation of the discrete sensory
events into a continuous waveform enabled the analysis of both the stimulus
and the receptor response with equal facility. Equi-spaced samples were
obtained from both the stimulus and the response and spectral estimates
were calculated using modern techniques (80). |

Watanabe (100) has used techniques of spectral estimation to
obtain estimates of transfer functions between simultaneous nerve impulse .
trains in the crayfish brain. Although it was claimed that the treat-
ment of nerve discharges was analogous to the treatment of point processes
by Bartlett (10l1), this was not the case. Watanabe sampled the spike
trains by counting the number of discharges in the sampling interval.
This procedure is equivalent to applying a digital difference filtér to
N(t) the cumulative number of impulses up to time t. Mathematically,
N(t) is related to the point sensory process by integration. It can be
shown that the gain and phase functions introduced by the integrate and

difference operations are respectively

_ sin 7fA 1
G(E) = —F féza | (7.1)
and
P(£) = -nfA forx (7.2)
2K *

where A is the sampling interval. Therefore, the power spectrum of a

point process is apparently linearly related to the power spectrum of its
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average frequency and exactly equivalent at f=0. All of Watanabe's
spectral estimates were weighted by equations 7.1 and 7.2, In addition,
since all the spectra were weighted by the same function, its effects
would have cancelled in estimates of coherency, gain and phase, Therefore,
it might seem that Watanabe's transfer functions did actually relate the
power spectra of the point processes. However, consideration of the
aliasing properties of N(t) indicates that this is not always so.

Supposé, as evidenced by discharges from the amphibian muscle spindle,
that the point process from which N(t) was derived had a flat power
spectrum in the region around the folding frequency of 50 cps. Then,
using arguments similar to those in chapter 5, the aliased power in the
sampled version of N(t) at 40 cps will be about 40%, at 25 cps about 15%
and at 10 cps about 2%. In géneral, as stated in chapter 5, it is not
possible to remove from a sampled signal that portion of the power

which is aliased from higher frequencies. Therefore, it is impossible to
relate Watanabe's transfer functions to those which relate the power
spectra of the point processes except poésibly at frequencies low compared
to the folding frequency. At frequencies where aliasing is negligible

the two transfer functions are identical.

If, as in this thesis, the point process is suitably low—-pass
filtered to control aliasing, then the methods of cross-spectral analysis
described are extremely well suited for obtaining estimates of the
transfer functions and the squared coherencies between two or more
simultaneous nerve impulse trains. If all the spike processes involved
are modified using filters with identical low-pass characteristics, then,
as pointed out in the previous paragraph and by others (86), the effects
of the filters cancel from estimates of the transfer functions and
coherencies.

Sampling the average frequency of a spike train results in a
loss of the fine details in the impulse pattern. That is, any information .
that is encoded in the impulse interval or in the relationship Betwggn
adjacent or near adjacent intervals is lost. Also, relating the average
frequency of the sensory spike train to the stimulus implies that the

decoding mechanism responsible for the recovery of information from the
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receptor is concerned with just the average frequency of the spike train.
Evidence exists which indicates that sensory decoding more closely
resembles low-pass filtering (13,16-20), a process which is strictly

not equivalent to averaging. The results of this thesis show directly
what information can be recoyered from the receptor response by various

filtering operations.

Comparison of the power spectra of the sensory discharges before
and after the application of a dynamic stimulus has shown that although
its spectral -distribution was altered, the stimulus was present in the
discrete discharges of the receptor output at the appropriate frequencies.
The response to the dynamic stimulus was apparently an addition to the '
response to the static stimulus upon which the dynamic stimulus was
superimposed. The power added to the receptor response by the dynamic
stimulus was not entirely coherent with the input (see table 6.3).
Transmission of dynamic information by the spindle was therefore a
'noisy' process. In the band of frequencies studied, the portion of the
‘dynamic response that was linearly correlated with the dynamic input was
related to both the amplitude and the velocity of the input. At short
muscle lengths, the response was almost entirely proportional to the
velocity of the stimulus. At longer lengths, the spindle became sensitive
to the amplitude of the stimulus as well. The coherent dynamic
characteristics of the receptor were only slightly altered by a three-
fold increase in the strength of the stimulus. Therefore, in that semse,
the receptor was studied in a linear range of its operatiom.

The response of the amphibian spindle to a ramp increase in
length closely resembled that obtained by Poppele and Bowman (9) from
the primary ending of the mammalian muscle spindle. In the de-efferented
state,neither spindle showed much sensitivity to a static stretch and
both showed a two-time constant decay from a ramp stimulus. The first of
these was of the order of a few seconds, while the second was considerably
longer. However, in the mammalian primary ending these time constants
were not changed by different levels of static length stimulation.
Changing the muscle length resulted only in gain changes in the mammalian

spindle with no changes in the relative phase function between input
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and output. These differences between the amphibian muscle spindle and
the mammalian muscle spindle primary ending are apparently not the result
of different analysis techniques. Although the mammalian spindle was
examined by sampling the average frequency of the sensory discharges,

the sampling rate was always adjusted to be much greater than the stimulus
frequency (9). Changes in the time constant of the generator potential
in the frog spindle from a ramp stimulus has also been reported by
Ottoson et al,(102). Poppele and Bowman (9) report that the pfimary
ending of the mammalian spindle tended to phase lock to sinusoidal stimuli.
No related phenomenum was observed in the amphibian spindle response to
random stimulation. The tendency of a neuron to phase lock to a sinu-
soidal stimulus is apparently related to the variability in the discharge
before stimulation (103). The more variable the discharge the less the
tendancy to phase lock. Stein and Matthews (104) report a coefficient of
variation of about .05 from primary muscle spindle endings in the cat.
This is almost 10 times less than the variability obtained for the frog
spindle discharges. Therefore, altﬁough the use of a random stimulus
probably reduced the tendency of the amphibian spindle to exhibit phase-
locking properties, it cannot be considered the sole cause.

It is now evident that the estimates of the gain and phase
functions of the amphibian muscle spindle could have been improved by.
shaping the input spectrum. In light of the form of the estimated gain
function, application of a flat-spectrum stimulus resulted in the highest
frequency components of the stimulus being the strongest in the
receptor response. As a result, the coherency between the stimulus and
response was greatest in that region of the spectrum. Therefore, estimates
of gain and phase were most stable near the high frequency end of the
stimulus. If on the other hand, the inputs were shaped to compliment
the characteristics of the spindle, uniform stability of the gain and
phase estimates could have been achieved. In this sense, a better
stimulus would have been one which decreased at the rate of 20db per
decade increase in frequency. Using the shaped input, an estimate of the
best transfer function of the receptor could proﬁably have been

obtained from.the single application of a single input. Also, shaping
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the stimulus may eliminate or at least reduce the frequency dependent
nonlinearity present in the receptor.

Stein and French (103) have shown that the effect of variability
in their neural analog is to prevent noise-free recovery of encoded
dynamic information by low-pass filtering no matter how widely the
dynamic stimulus is separated from the mean discharge rate. This is
because a random discharge contains power at all frequencies. If this
random discharge is acting as a carrier of dynamic information, then the
recovery of that information by low-pass filtering will at all frequencies
be céntaminated by the incoherent carrier. As the variability in the
discharges of the neural analog was reduced it was shown that the power
spectrum of the discharges contained less power at low frequencies
permitting a more uncontaminated recovery of the information at those )
frequencies. Ultimately, for a completely regular carrier, Bayly (15)
has shown that distortion~free recovery of the signal is theoretically
possible by-low-pass filtering if both the stimulus frequency to carrier
frequency ratio and the depth of modulation produced by the stimulus
are sufficiently restricted.

The low-noise recovery of the dynamic stimulus from the amphibian
muscle spindle is facilitated by the fact that the power spectrum of the
discharges is low at low frequencies. Therefore, information concerning
the dynamic state of the muscle which exists at these low frequencies
can be recovered with less contaminative noise than information of the
same magnitude at higher frequencies. The reduction in low~-frequency
powver can be predicted from the distribution of the interspike intervals
and is not altered significantly by a weak serial correlation between
adjacent intervals. Coherent information is recoverable from the spindle
by low-pass filtering at frequencies well past the mean discharge rate
of the carrier. However a larger percentage of the total signal recovered
will be incoherent with the input as the frequency is increased. Bayly
.(15) suggests that parallel channels each with random carriers could
result in an overall reduction of the noise distortion since the carriers
will likely be mutually incoherent.

Estimates of the power spectrum suggest that the steady~state
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discharges from the amphibian muscle spindle can be adequately described
as a renewal process. That is, in the steady-state, the distribution

of the first-order intervals constitutes a complete description of the
point sensory process. Theoretical considerations of the power spectra
of independent point processes have also shown that the exact form of
the distribution chosen to describe the renewal process is not critical.
However, the Gamma density must be preferred over the Gaussian density
for the amphibian spindle. As shown by Buller et al. (54), extensive
changes do occur in the distribution of the interspike intervals from the
frog spindle at very low muscle lengths. At lengths which result in
greater than 'critical depolarization' the distribution of intervals is
nearly symmetrical. At lengths which result in less than 'critical
depolarization' the distribution tends to be exponential. The Gamma
density can be both exponential and highly symmetrical in form.

The overall dynamic characteristics of the amphibian muscle
spindle are usually considered to be the result of the contributions
from three functional subsystems. The first of these is referred to as
the mechanical process. Any modification of the stimulus by this sub-
system is due to the visco-elastic properties of the intrafusal muscle
fibers upon which the sensory endings reside. The second is the trans-
duction process. Here, the output of the mechanical process is converted
to electrical emergy as a gemerator current. Finally there is the
encoding mechanism.  Here, the resulting generator potential at the site
of impulse initiation is encoded as a series of 'all-or-none' action
potentials. %allbo (105) has obtained evidence that in the frog, the
region of the sensory axon in which the encoding mechanism resides has
different properties from other portions of the axon. He noted that the
frequency of discharge elicited by mechanical stimulation of muséle
spindles was of longer duration and of a wider frequency range than the
repetitive firing due to electrical stimulation of the sensory axon.

The evidence suggests that the gross mechanical properties of the intra-
fusal fibers in the frog spindles do not contribute to the dynamic
characteristics of the receptor except possibly to attenuate the stimulus
(22,23,25). Also, the frequency of the ‘action potentials produced by

the encoding mechanism is apparently linearly and instantaneously related
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to the magnitude of the generator potential (41,56). .Therefore, it would
seem that the most likely origin for the dynamic characteristics of the
spindle must be in the transduction process, On the other hand, the
mechanical process could be involved if the dynamic response originates
in the microscopic connections between the muscle fiber and the nerve
terminals or in the mechanical properties of the nerve terminal membrane
or even in the collective mechanical properties of the terminal nervé
bulbs and interconmnecting cylinders. Certainly, if the dynamic behavior
is mechanical in origin then, for eiample, a nonlinear stress-strain
relationship could account for the reduction in the relative phase
advance produced by the receptor with increasing levels of static stretch.

The observation that the gross mechanical properties of the
amphibian intrafusal muscle fibers do not contribute to the overall
dynamic response of the spindle does not necessarily imply a similar
behavior of the mammalian spindle. Indeed, there is some evidence that
gross mechanical factors are involved in the mammalian spindle (24).
Also, the finding that different levels of static stretch do not change
the relative phase advance in the response of the de-efferented mammalian
primary ending to dynamic stimulation (9) while increased static stretch
does reduce phase advance in a similar frog preparation, suggests that
the two receptors function by somewhat different mechanisms. Although
the secondary ending of the mammalian spindles does show a changing phase
advance with stretch, this ending is also sensitive to different levels
of static stretch (9). When the changing time constants are scaled with
respect to the mean discharge rate, they once again become invariant. A
similar scaling is not possible with the amphibian spindle since there is
very little change in the discharge rate with increasing static stretch.
Invariance of the time constants would not be achieved by scaling with
respect to muscle leﬁéth since the time constants do not all change in the
same direction (see table 6.4). Therefore, the mechanisms underlying
amphibian spindle behavior must also be considered as being somehwat
different from the mammalian secondary eﬁding.

While stretching a de-efferented muscle it was observed (25)

that the length of the reticular region of an intrafusal fiber increased
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nonlinearly. At short oyerall muscle lengths, the strain in the 'reticular
zone' was a very small percentage of the strain in the overall muscle.
When thé:muscle was stretched past Lo’ the length of the ‘reticular
zone' increased dramatically and then saturated. Further increase in
muscle length produced no further strain in the ‘reticular zome'. At
lengths greater than L° the overall sensitivity of the spindle to dynamic
stimulation also increased suddenly. It was also noted (25), that when
the intrafusal fiber was made to twitch under isometric conditions by
electrical stimulation of the polar regions, the length of the ‘reticular
zone' increased during the twitch to its saturation length. Presumably,
continuous fusimotor activity would therefore maintain the 'reticular
zone'-at the saturated length. This implies that by stretching the muscle
well past Lo, the effect of motor nerve activity on the sensory ending.
was at least partially simulated. The adequancy of the simulation depends
on whether the numerous nerve contacts on the 'compact zones' adjccent
to the ‘reticular zone' (45) serve simply to anchor the ending so that
the length of the reticular region can be sensed. 1In this case, a good
simulation of intact fusimotor activity would have been obtained.
However, if the contacts on the 'compact zones' are sensitive to strain
in that region, the simulation would have been only partially successful.
Verveen and Derksen (106) have been able to measure the noise
fluctuations in the membrane potential of a frog nerve. For a 4um nerve,
the wide-band rms intensity of the noise was found to be about 200nV.
This is almost an order of magnitude greater than that expected from
theoretical considerations concerning thermal noise in the membrane. If.
the wide-band rms intensity maintains this relationship to the expected
thermal noise then, in the fine .lpm nerve terminals of the frog muscle
spindle, the noise intensity would be about 3m¥ (the figure for expected
thermal noise obtained from (54)). This is a significant fraction of the
15-20mV required for threshold depolarization and could thus account for
the variability seen in the discharges from the amphibian muscle spindle.
Presumably, muscle spindles are involved in an animal'’s ability
to control and mairntain its posture and in its ability to execut2 precise

prédetermined movements. Certainly, control of posture and movement by
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simple activation of the motor nerves with no semsory feedback of the effects
would be grossly inadequate. Such an "open loop' system would not permit
any compensation in effort for say muscle fatigue or for misjudgement of the
magnitude of the load. In mammals, it is kaown that stretching a fully
innervated muscle usually results in a reflex contraction which tends to
resist the extension. In Bumans, this 'stretch-reflex® is easily demon-
strated as the tendon jerk. The refle% is medfated by a sensory volley,
initiated by the stretch, from the muscle spindles. The 'stretch-reflex"
therefore has the properties of a length servomechanism, that is, of a
closed-loop system in which negative feedback is used to maintain a constant
length in the midst of external disturbances. Tt has been suggested (107)
that in the mammal, precise movements are initiated by central activation of
the small motor nerves which innervate the intrafusal muscle fibers (¥
motoneurons). Activity of the y motoneurons excites the sensory endings of
the muscle spindles which in turn monosynaptically excite the large motor
nerves which innexvate -the extrafusal fibers (¢ motoneurons). This scheme. of
control is known as the 'follow-up servo' hypothesis (107). The control
inputs to the system are the y motoneurons. Error between the desired

and actual limb position for example, is measured by the muscle spindles

and the error signal is fed to the central nervous system along the

sensory nerves. The errors are continuously processed by the central
nervous system and corrective signals are sent peripherally along the o
motoneurons. The extrafusal muscle fibers act as the actuators which
correct the error. The ‘follow-up servo® hypothesis is a very attractive
idea since any conflict between the voluntary systems and the postural or
reflex systems which resist the change is simply and elegantly resolved.
However as has been pointed out (8) there are difficulties with this idea.
First of all, large modulations in the discharge frequency of the y motox
nerve produce relatiyely modest changes in the sensory discharge from'tﬁe
spindle, Second, it is not always true that the actiyity in the y fibers
leads the activity in the & motor fibers. In fact, rapid movements are
sometimes implemented exclusively by a motoneurons. In light of these
difficulties, the current idea is that both.& and y motoneurons are

intimately involved in the control of movement. It is postulated that
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three distinct controlling signals from higher centers are inyolved in
voluntary control (108). The centers separately control the o moto-
neurons and the y motoneurons. A third signal controls the sensitivity
of the monosynaptic reflex within the spinal cord. The sensitivity of
the agonistic muscle system is turned on during voluntary movement
while the antagonistic system is desensitized. Deliberate movements are
controlled by parallel y and & activation and a sensitized reflex loop.
Activation of the y nerves constitutes a control input and is available
if compensation against une#pected loading conditions is required. This
scheme is considered a 'servo-assisted! method of producing movement (8).
The 'stretch-reflex' which is apparently of prime importance in
mammals can only be weakly elicited in amphibia (109). The postural
activity in the frog appears to depend much more on afferent impulses of
cutaneous origin. However, a weak stretch reflex does not necassarily
imply that muscle spindles in the frog do not play a part in the precise
control of movement. Assuming that the current thinking on the control
of movement in mammals is correct, then it is not unreasonable to assume
that the control of movement in amphibia is a simplified version of the
same thing. Intrafusal muscle fibers in the frog are co-innervated with
extrafusal fibers. Separate control of the sensitivity of the frog
muscle spindle is therefore not possible. However, as mentioned earlier,
it was observed (25) that any fusimotor activity seems to stretch the
'reticular zone' of the spindle into saturation., Hence, it may be that
the amphibian muscle spindle oﬁerates as a two-state device. If this
were so, then sensitivity of the sensory ending would not depend on
the magnitude of the activity iu the motor nerves but only on whether or
not there was any activity at all. Instead of three central controlling
pathways as in the mammal, it seems that the frog would require only one.
"Activation of the agonistic motor system would fully sensitize the tservo-
assist! loop as well as initiating the movement. Inhibition of the
antagonistic motor system would densensitize any reflex loop which might

resist stretch in the antagonistic muscles.
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APPENDIX 1

THE DIFFERENTIAL PULLER

mMQ
AAAA LTV LING ALTEC LTD
150K 330K f 38 VIBRATOR
I.oospf ) HP
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]
"'ask

Figure Al.1

CIRCUIT DIAGRAM OF ONE SIDE OF THE DIFFERENTIAL PULLER

Component List—-Figure Al.l

Al 50 watt Operational Amplifier’
A2 Motorola MC1439G Operational Amplifier

HP24DCDT-050 Hewlett-Packard Length Transducer.

Maximum Displacement *.1 inch
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1K§<

an
Figure Al.2
CIRCUIT DIAGRAM OF THE SIGNAL SPLITTER.
Component List--Figure Al.2
A3

‘;- Motorola MC1439G Operational Amplifiers.
A4? '
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Figure Al.3 shows the gain and phase performance of the
differential puller. The gein and phase relations are shown between the
control input and the output of the HP24DCDT-050. The dotted curves show
the predicted relations between the .control input and the actual dis-
placement produced by the puller. These curves were obtained from the
solid curves by applying the correction formulas for the HP24DCDT-050

supplied by Hewlett-Parkard.
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Figure Al.3

FREQUENCY RESPONSE OF THE DIFFERENTIAL PULLER.
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APPENDIX 2 .

THE PULSE-HEIGHT DISCRIMINATOR

Component List--Figure A2.1

A5 Motorola MC1439G Operational Amplifier
A6 Minimum pulse amplitude )

A7 Maximm pulse amplitudeJ— Fairchild pA710C Comparators
G1-G10 Motorola MC724P. Nor Gates

FF1-FF2 Motorola MC790P j-k Flip-Flops

Bl Motorola MC799P Buffer

The output of Bl falls from the 1 state to the 0 state
coincident with the fall of the input pulse if and only if comparator A6
was set by the rising phase of the input pulse and A7 was not.
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Figure A2.1

CIRCUIT DIAGRAM OF THE PULSE~HEIGHT DISCRIMINATOR.
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APPENDIX 3

THE SPIKE FILTER

©
Figure A3.1
CIRCUIT DIAGRAM OF ONE SECTION OF THE SPIKE FILTER.

The transfer function of the circuit in figure A3.1 is

_R -

- ' L (A3.1)
n 1 1. 1 2
i+ -[C1R2R3 (’1{1- + R_Z- E)]S+R2R3C1CZS

If the components are chosen as shown in figure A3.1 equation A3.1 becomes

_5 .
v2s | s% (A4.1)
L+97 *%3

The characteristics given by equations 5.27 and 5.28 were obtained
by cascading two stages of the circuit shown in figure A3.1.
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APPENDIX 4

THE CROSS-SPECTRAL ANALYSIS--FORTRAN IV SOURCE PROGRAM

PTHENATON
JLABTL(32), AC

X{2048),Y[2048),2¢

822),8( 822),J4S{1324,2),AVG

LJT{512,2),VYAP(2),D=0(265)

BC2s%),5( 802)1,FAX(28),347A{2043),
{2), TITLFQ(,,,.,17(3):

TATA XDTH,YDIH
DATA
S A

CPTS,FPERNM/B6.0,54.040.07,23
TI’LES/'C?#ERFNCE ‘ se

|\1T/° 1:1 ll'l'/

CALL P{qis(CAT&(l)yWIQ?)

MEECC=4

SAGNITUNE

D)

PT1=6,2821353207
Mo 25 I=1,9202

25 COMTINUE -
N0 20 T=1,4
nn 21 g=1,202

CLI)=FLOAT 1210 %100. /2043,

AR CONTINUE.

Z{J,T)=0.
21 COMTIMUF

CALL PTAPF(O)

DO £00 1L=1,MREC

e D

CEADP{YI 200 (LA3F (1) ,T=1,22)

WETTO {6,257 (LABFL{I),I=1,32)

READ(1,1703(4S{T,1),JS(1,2),1I=
2. 1) 3 JS{Ts2) 1

CWEITE(6,1351)0JS(T
no 11 J=1,2
NN 12 1=1,%12

TI1.J)=FILOAT(ISIT,JY)/512,

13 CONTIRUE
11 CONTINUE
DNe el V=1,7

P"'“(l,L”O)(J {1,1),J8(71, 2),1= 1,

NN 550 J=1,2
AVG L JY=0.

512)

VAR(J)=0.
ne 12 1=1,512

WAL =TT,

X{I+512)="T(1,J)
12 CONTIMUS

T, JY=FLOATIIC (T,4) /512,

oo 10 I=1,1024

TRF(JEQ ) X(T)==-X(T)

e AV G L)

A QURE 2.4 W B

Y(!)-_-"'
10 CORTIMUF
no 20 1=1102%5,2049
X{1)=0,
Y{T})=C.

20 CONT THUE
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AYC LY =AVGIJY/1024.
N 40 I=1,1026
YLT)=X{T)=AVG(])

VAR () =VAR{JY+X ( T) %D
NA=C . S%[ 1. —COS{PTXFLOLT([-1)/1023.))
X(I)=Y(1)%DA

COnRTIMIE

VAR[J)=VAR( /1023,
CALL PS3D1A(11,X,Y,1)
IF(J.FN.2¥Y00 72 E8Q

DNAN T=1,202
AlT)=X(T)

CONTINUE
CONT INUF
VETTE(£,20) (AVELT) ,1=1,2)

B 0 0 O I U,

HRITE{6,F1)(VEI{])y1I=1,2)
NO 63 T=1,8202

SRARENPETARERD RSN RN Rkl a k0 U,
Z01,2)=7 01,2V #A (1)KL #R T =Y (1)

Z0T32)=2(T,2)+AL D)=V (D) -3{I)=X(])
ZET,4)=7 (146 )+ X{T) 22+ (1) %52

63
501

5H00.C

CONTINUC
CONTINUOE
TIiMUE

PO 2 T=1,4
oG 2 Jg=1,9
FAVLOX(T=1)+JJY =FLOAT(JJ)I =10, 5% ([=2)

R LOMTINUF

2 CoMTIMyE
k=4

5 KK=XK+]

IF(FAX{KK).LE.F?EQM)GO ™ 5
=CAY (V)

r<1 ALOGIGIR.CG)
’<7‘(LLPF1“(F“}-r§l)/(”TW
I=2

32

IT=0
J=T+1
FST={ALNGIO{F(T))}-FS1)/FS2

24

FaT=rSI
FSF=(21nG810{r{J1))-FS1)1/%52

JIEAESEZESTLGTLIPTS)6D T2 33

=ST=FSE

J=J+1
[F{F(J) 5T FRFOH)ISN TN 35

33

CIELTTGGT 265350 T2 38

ToER I ==Y 7441

GO TN 34
I1=17+1

FIIT)={r5T+FSIY) /2.
J=J-1
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71=0. ,
Lhn 27 =1, e

21=71+7(1L,M)
27 CONTIRUFR
Z(11,M)=71/F1.0AY(J+1-T)

26 CANTIMUE

Z(II+2,1)=1./YD 1M

ZETT+268,1)=0C,
Z(II+26Qy1)?Z(II+2y1)
Z{YI+535,1)=0,

T=J+1
o GO TC 32
35 00 65 I=1,T1T1 o

FST=10.%%(F(1)*FS2+FS1)
CR=1,-{ FST/21,)%#2
fl= EST#SAPT(2,1/21,
SY¥X=7({T,1)
SAY=5 "9*17(f,71~°?+7(1,3)*:7)
T Tel1)= E2LLSXN=T (L0400 e
7U1,2)= ﬁ"””(Z(I 3),7(0,2) )47, 2ATAN2 (CT,CR)
IS{7(1,2).0T.8.)2(1,2)=2(1,2)=-PI
701s2) 27 (1en %260, /0T
Z(T,B)=SXY/SXX*(CR**2+CI**2)

65 CONTIMUE

L CALL PINT(L.0y-460.0,23) o . .
CALL PLOTI(N.0,2.0,-3)
YL=2.0
C{1I+1)=0,
c{11+2)=1.
I=KK-4
KA=R

4T KA=KA+1
IF(TNFLT/KARKAIGD TO 47
K2=WA-4
SNF=14.%8PFCS*15./10,
Z(II+1,1)=0.

Z{TIe53¢6,1)=2(11+2,1)
Z{IT+1,2)=-20
Z(I1+242)=130,/YDIH

FelI Z(l,3)
FSF=FSI
ne 14 t=1,11

FST=ANTHI(FEST,7{L,3))
FCF—’ AVI(FQV,Zf!,B))

14 CONTIMUE. .
FSI=0.5%7ST
FSF=1,5%FSF
7(17+1,2)=0,

TUTT+2,7)=20,C5ALDGLOLFSF/FST)/VDNIH
RO 42 MN=1,12

NT{M) 9 (DIMy 0.0, 2011 1, .

VACALL AXISI20820 e 00 TITLES I L 08 )l BTN

LIZUITH+2, M),20.0)
CALL PI.OT(nony7o073)
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k:?
PN 4 I=4,KK
FS={ALNGINIFAN{T))=-FS1)/rS2
o BN Nk B 6T PR
[F{KA S0 KX =4 AND, 1. EN, (4+KK)/ 2+1) GO Tn 53
IF{I+KR. S { T+KR)/KAXKAYSD TO 53
CALL SYM2ROIIFS, 0.,0,0.1,12,0.,0,=1)
GO TN 43
S2 CALL SYMPOLIFS, 2.1,0.2,12,0.0,-1)
LELL&G*.Q)K !
CALL NUMBTRIFS-0.10,-.25,0.10,FAY(I},0.0,K)

43 CALL 9LUT(¢S,°.C,3)

4 CONTINUFE
IF(¥-2144,45,45

44 DO 7L I=1,17
FST=ERFx=3r0{1T1)

.,MPGiSCSI(Z(IyLLLUWMLWM“WM
TTIDALGF.1.INA=0,2923Q9
DA=N.SXALNCI(L. +PA)/(1. an))
Z{I+267,1)=TANA{NA-1,565/SSRT(FST))
TF({Z2(1+2A7,1).LT.2.)2{1+267,1)=0,
Z(T+267,1)=2(T+26741)3%2
ZLIHS34, 1) =T AN (DA+] 65/ SR T E ST ) e
IF(Z(1+534,1).37. 1.)7(1+524,1)=1.

~

Z{T+534,1)=2(1+524,1)%%2

71 CCHNTINUE
CALL LTIME(F,72(1,1),1I1,1,-1,132)
CALL LINT{S,Z20{268,1),11,1,0,0)

O CALL LTME(F,710525,1),11,1,0,0) .
GD TG S6

435 NN 72 I=1,11
FST=ENTr#NEN(T)
TA(711,1Y.LF.0.)2{1,1)=C.000001
YUI)=SORTI2 /{FST=2.)%3,15%{1.=-Z{T,1))/72(1,1))

LYLny=x(1) ' e e

IF{¥{11.0F.1.)%(1)=0.93799
DA =ARSTN(Y{I))*265./P1
7I1+267,2)=711,2)- DA
Z{T+5234,2)=7(1,2)+ DA
TE{Z(142)elF =20,.0R,72{1,2).65,11C.)GN TQ 72
CALL SYMBOLIF(I),LZ(1, ?)-Z(II+1,3))/ZIII+’ 2)30e052420.0,-1)

72 CONTINUE
K=3
N 72 I=1,17
TE{Z{T14267,2) LF.=20..28.2(14267,2).GE.110.)50 T0 74
CALL PLOTIF(I) 3 (Z0T4+267,2)=7(11+142))/7(11+2,2),K)

K=2. e S S e e e e
6o TR 72

74 K=3

72 _CONTINYE —
K=3

No 76 I=1,11
IF(7(]+45234,2) L Fe-20..02.72(1+534,2).0F.110.1G0 70O 75
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CALL PLOT(FUTY, (214534, 21=Z(T1+1,21)77(T1+2,2),K)
=2
GO TN 75
75 K=3
76 CONTINUF
____£n Tr 56
46 DO 37 L=1,1T7
7L+267,3)=2{L 2 3L L=X(1L))
Z{1L+534,2)=7(L 2 33 { 1. +Y(L))
27 CONTINUE
Do 32 L=1,17
L ZILa2)=20.0%ALIS10(7 (1, 3)/FST) e .
Z(Lf267y3)=?O.D*ALﬂGLO(Z(L+267,3)/FSI)

7{L+524,3)=20.0%ALCGIC{Z(L+5234,3)/FSI)
23 CONTINUE

r:\Ll L,'“":(F'Z(]93)91TJJ!L‘!12?’

K=3

22 I=t,17)

e SELZATA2DT 3 2) L B0 e o M7 NIH267,2) 0 OF W Z(11+2,3)%YDIN)IGR.TI 33
CALL PLOTUFII), (ZUT+267,2)=7(17+1,2))/Z{11+2,3),K)
K=2

GQ 70 R2
3 X=3
2 CONTIMUE
e K=3 N e
DO 85 I=1,17
IF{ZII+534,3) ., F 0. 0R.2(1+534,3).6F Z{11+2,2)1YRI4)GE TG 24
CALL DILOT(E(1),(7{1+524,3) =2 (1 1+1,2))/72{11+2,3),%)
¥=2
G T 35
R4 K=3 S e
25 CONTINUF
55 IF(M.TR.3)60 T 42
Yi=YlevRTMeD,
IF{VL+YNIM,GT,20,)60 TO 55
CALL PLOT(0.0,YDIM+2.,-3)
e BOT0 42 _ e
85 YL=VYL-VNI¥-D, '
CALL PLOT(/NIM¥G ., (=YL)+2,,-3).
42 CONTIMUF
CALL PLETI(P.0,0.0,999)
300 FrPMAT(1A{244A2))
DE0_FCRMATIIHL /76X, 16{A43A2))
100 FREMAT(1614)
351 FORRAT{//7/7772216)
70 ECRNATUS/ /SIS, EIN, 4,2F20, 7))
Q0 FORMATU/////75Y, VAVERAGS [NOUT LEVEL',E20.3,5%, 'AVEDAGE 3UTPYT LEVE
L,F20,.3) ' )
VAL ECRIAT (/SN IN2 0T YARPTAIICE Y ) F20.2,5¢, "QUTPUT VAP TANGCFY,E20.3) -
<Trp _
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