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Abstract—This work presents a methodology for the visual de-
tection and robotic tracking of an uncooperative target. This arti-
cle presents a closed-loop visual feedback-based control strategy
combined with the Kalman filtering technique for autonomous
tracking of the target object. The framework is based on the
independent implementation of visual detection and tracking
control loop to enhance the detection and tracking precision of
the object. The overall hardware setup consists of low-cost off-
the-shelf hardware for marker-based visual detection. Through
the adopted approach, the performance of the developed tracker
and control is evaluated.

I. INTRODUCTION

Robotic manipulators are great for industrial and specialized
applications that are humanely complex or sometimes even
dangerous to perform. An example of this is the surgical robot
PUMA [1] which was introduced in the 1980s. Robot-assisted
surgery has since evolved substantially and the FDA-approved
da Vinci surgical robot was introduced in the 2000s. Many
modern surgical robots are developed around this system[2].
Today there are numerous competitive systems commercially
being developed and used[3][4][5][6][7]. Robotics has proved
extremely reliable in assisting and performing complex surgi-
cal operations. With the development of techniques in com-
puter vision, it is now possible to integrate precise look
and move type of visual servo architecture for complex
applications like robotic surgery and in-situ fabrication. The
visual sensors serve as the eyes for the robot controller that
updates the status of the target, region of the target, and self-
localization. Robotic tasks of interest consist of tracking an
uncooperative object and then traversing that object to perform
some operations, given that the geometry of the target is known
in advance.

This work aims to develop a vision-based tracking and
control scheme for a robotic manipulator to perform a track
and traverse operation. The objective of the 6 dof robotic
manipulator is to perform a target following an operation on
an uncooperative platform with a high degree of accuracy (0.5
mm). The particular challenge of this study is to embed the
two motions (track and traverse) into one motion command
constantly sent out in the form of GCODE. The system is

designed and built using low cost, off the shelf, ready to use
hardware. The demonstration of the proposed methodology
in this work is limited to 2 dof motion in the platform.
Meaning the target is free to move in 2 dof, while the robotic
arm performs two operations in parallel, tracks, and traverses
through the platform. The experimental results show the ef-
fectiveness and robustness of the presented methodology by
successfully performing these two operations simultaneously.
The proposed approach presented for tracking and traverse
control on uncooperative mobile platform is intended for new
and novel applications like in-situ 3D printing, and robotic
surgery.

II. LITERATURE REVIEW

In complex robotic applications like surgical operations,
vision system is used mainly for tool detection [8] localization
[6][9] pose estimation [10][11] and tracking [12][13]. Various
techniques that can be found in literature attributed to such
problems ranging from machine learning to stereo imaging.
We have mentioned a few recent examples for reference.
In machine learning, convolution neural networks can be
employed for the segmentation of surgical instrumentation, lo-
calization and prediction of the kinematic pose [14][8][15][7].
For example, in [6], 3d localization was performed by combing
image information, deep learning, and bone-tracking data to
estimate the camera pose relative to the bone markers. More-
over, deep learning can also be applied for efficient tracking
of surgical instrumentation by detection in minimally invasive
surgery [13]. Kalman filter is one of the most widely used
tracking filters and its application in robotics is intended for
object tracking and sensory data fusion [16][17][18]. Kalman
filter is an optimal estimation algorithm that produces state
estimates in the presence of noisy measurement. Another
example of an optimal state estimation filter used for tracking
is the particle filter[9][19]. Simultaneous localization and
mapping (SLAM) approaches have also been proposed for the
estimation of camera motion from a sequence of images[20].
Other techniques used for visual tracking and detection in
robotics applications include the use of stereo imaging[21],



template-based matching [22][23], optical flow [24][25]and
mean-shift algorithm [26]. To efficiently track an uncooper-
ative object for this study Kalman filter for state estimation
and tracking is applied. An advantage of employing Kalman
filter is the separate measurement update and estimation step.
This enables the fusion of multiple sensory data and optimal
estimation in the presence of process noise. As discussed
later in this study the visual detection loop is independent of
the tracking and control loop. This allows the application of
computationally heavy and precise image detection schemes.
The methodology for this is explained in the next sections.

III. METHODOLOGY

A. Visual Servoing Control

Visual Servoing system can typically be classified by cam-
era configuration, either the camera is mounted on the robotic
manipulator called the eye-in-hand configuration or the camera
is fixed in the work-space, called the eye-to-hand configu-
ration. In this case, the image coordinates of the target are
independent of the robotic motion. Visual Servoing systems
can also typically be classified by control type. Pose− based
visual servoing(PBVS) involves estimation of the target’s pose,
which is extracted from the image features in conjunction with
its geometric model[27].

The basic component of visual servoing based control
scheme is to minimize an error function e(t). Let us define the
kinematic error function as the relative difference between the
pose vector of the printing nozzle PN and a stationing point
SP on the deposition platform, both expressed in world frame
FC as;

e(t) = PN − SP (1)

Note that ŜP is an estimate of the current position of the
stationing point observed in the image frame. Here, ŜP =
WxC .

CxI .
ISP . Moreover, PN can be integrated into two

ways, either through the Jacobian matrix transformation that
relates the indicated values in joint space of the robot to
Cartesian coordinates of the end effector. In this case, the
system is observing only the target and can be referred to as
endpoint open-loop (EOL) systems. Equation (1) in the case
of endpoint closed-loop ECL takes the following form:

e(t) = WxE
EPN − WxC .

CxI .
ISP (2)

Let us consider that the robot task space restricted to R3

as a rigid link that constraints the pose of the printing nozzle
relative to the platform. In this case, the control input the
robotic manipulator is desired transitional velocity. To drive
the system to an equilibrium state of zero kinematic error, a
proportional regulator control is applied:

u = −k(x̂E
EPN − x̂C

CSP ) (3)

Here ‘k’ is the proportional feedback constant and is greater
than zero. Also, note that Equation (3) is based on EOL system
configuration. This can be converted into ECL system by,

the visual system observing both the printing nozzle and the
platform. In this case Equation (3) becomes:

u = −k (x̂C
CPN−x̂C

CSP ) = −k x̂C (CPN−CSP ) (4)

B. Kalman Filter for Tracking

Kalman filter is an optimal algorithm for estimating target
velocity and acceleration at each frame based on the process
model describing the motion of the target and camera measure-
ments under noisy conditions. The process model is based on
Newton’s Equation of motion that can be easily used to predict
the future position of the object. In between the measurement,
the robotic arm is tracking the position of the target based
on the estimated acceleration and velocity. Upon receiving the
new observation, the model is updated by taking into account
the uncertainty in the measuring and estimation process.

In three dimensions the Newton’s Equation of motions can
be expressed as a system of equation. x = x0 + vx0∆t+ 1

2ax∆t2

y = y0 + vy0∆t+ 1
2ay∆t2

z = z0 + vz0∆t+ 1
2az∆t2

(5)

here, the state of the system are the target parameters
[x, y, z, vx, vy, vz, ax, ay, az]. The state variables are inputted
into the prediction algorithm. Above set of equations de-
scribing the relationship between input and output can be
referred to as the dynamic or state-space models. Assuming
a small time increment and constant acceleration in between,
the extrapolated state at time n is described by the following
equations of the states.

x̂n+1,n = x̂n,n + ˆ̇xn,n∆t+ 1
2
ˆ̈xn,n∆t2

ŷn+1,n = ŷn,n + ˆ̇yn,n∆t+ 1
2
ˆ̈yn,n∆t2

ẑn+1,n = ẑn,n + ˆ̇zn,n∆t+ 1
2
ˆ̈zn,n∆t2

ˆ̇xn+1,n = ˆ̇xn,n + ˆ̈xn,n∆t
ˆ̇yn+1,n = ˆ̇yn,n + ˆ̈yn,n∆t
ˆ̇zn+1,n = ˆ̇zn,n + ˆ̈zn,n∆t
ˆ̈xn+1,n = ˆ̈xn,n

ˆ̈yn+1,n = ˆ̈yn,n
ˆ̈zn+1,n = ˆ̈zn,n

(6)

The general form of the state extrapolation equation in matrix
form is [18]

x̂n+1,n = F x̂n,n +Gun +wn (7)

here, x̂n+1,n is the predicted state of the platform or the
tracking object, x̂n,n is the estimated state at time step n,un

is the control or input variable which is an input to the system
that is measurable, wn is the process related noise that not
measurable, F is the state transition matrix and G is the control
matrix that maps the control to the state variables. To develop
an extended Kalman filter for the case of a robotic printer,
we consider the control input to be the acceleration vector
measured directly from the printing platform. In this case, we
have additional information based on the actual movement of



the platform. Next, the generalized observation model in the
matrix form is given by:

zn = Hxn + vn (8)

here, zn is the observation vector, H is the observation
matrix, xn is the system state matrix and vn is the noise
vector related to measurement. Process-related noise matrix Q
is evaluated by projecting the variance in acceleration σ2 onto
the state transition matrix from the dynamic model.

Q = Gσ2
aG

T (9)

the measurement noise is assumed to be described by a
zero-mean Gaussian distribution with covariance matrix R. It
is also assumed that the x, y, z values are uncorrelated.

Rn =

 σ2
xm

0 0
0 σ2

ym
0

0 0 σ2
zm

 (10)

here σ2
xm

refers to the measurement uncertainty in the x
coordinate measurement.

The Kalman filtering process starts with an initial state
and covariance matrix F estimate. A predicted state and
uncertainty are computed at each time step through the extrap-
olation model based on the Equation. (7). Next, the predicted
states and uncertainty are corrected based on the received
measurements and the associated covariances of the measuring
devices. The equations associated with both the steps are
summarized below.

Prediction Step
x̂+1,n = F x̂n,n +Gun

Pn+1,n = FPn,nF
T +Q

(11)

Correction Step

Kn = Pn,n−1H
T
(
HPn,n−1H

T +Rn

)−1

x̂n,n = x̂n,n−1 +Kn (zn −Hx̂n,n−1)

P n,n = (I −KnH)P n,n−1 (I −KnH)
T
+KnRnK

T
n

(12)
here Kn is the Kalman gain at a given time step. Since the
initial pose of the target is unknown, an inappropriate estimate
can lead to poor convergence of the Kalman filter. To improve
the performance, the detected position of the target as retrieved
from the camera is used as the initial estimate.

IV. RESULTS AND CONCLUSION

A. Experimental Setup

The current experimental testing scenario is as follows;
When the platform is stationary, the robotic printer is able
to fabricate structures like any other 3D printer. During the
printing process, the platform produces uncooperative motion
at a uniform velocity. At this time the visual sensor tracks
the motions and compensates for this motion in parallel to the
printing process. This section presents a detailed description
of the experimental setup.

Positioning System: The experimental demonstration was
carried out using a low-cost, off-the-shelf 6 axis robotic

Fig. 1: Step Response of Kalman filter with amplitude 350
mm and time in (ms)

manipulator (Figure (2e)). This product is marketed with a
repeat position accuracy of 0.05 mm, rated payload 2 kg, arm
length of 650 mm, and a maximum speed when moving in a
straight line of 600 mm/s. This arm has an integrated motor
controller that can realize numerous motion functions such as
linear interpolation and arc interpolation. The motion of the
manipulator is controlled by GCODE programming sent from
the computer via the serial interface.

Visual Tracking: The visual system comprises a USB cam-
era (Microsoft LifeCam Studio), streaming at 30 fps at a
pixel resolution of 1920 x 1080. The camera is calibrated in 2
dimensions to a flat surface which is also the printing surface.
Additional inertial measurement (IMU) sensor is attached to
the platform and augmented with the Kalman filter in the
visual tracker. This IMU sensor provide Cartesian components
of acceleration in the platform as the measurable control input
variable un as described in section. (III-B). This enables the
robust performance of the tracking filter in case of highly
uncertain and missing measurements. The output from the
Kalman filter and the visual sensor input are illustrated in
Figure (2a). It is evident that the implemented tracking filter
is reliable for smooth trajectory generation of the target from
noisy camera inputs.

Software Platform: The high-level visual servo controller
is deployed as two separate loops running at different step
times and sharing information with each other. The inner loop
controls the robotic manipulator through GCODE and runs two
times faster than the visual loop. The visual loop is restricted
with respect to the camera capture rate of 30 fps. Using this
approach, the control loop runs independently of the visual
loop. This results in two scenarios for the control loop, at
each iteration, two of the following scenarios happen, (i) either
it is input with new information about the target from the
visual cameras, in this case, it updates the current belief of
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Fig. 2: (a) Visualisation of the state estimation and tracking
of a target through Kalman filter from noisy sensor measure-
ments. (b) Step response output with amplitude of 350 mm
with Tcl ≤ 2(Tvl),(c) Step response output with amplitude
of 350 mm with Tcl ≤ Tvl, (d) Kalman filter estimated,
measurement observed and robotic state output for a stationary
target. Note that the legend is common to all three targets, (e)
Overall experimental setup

the target location, (ii) in case no new visual information is
available from cameras, the control loop predicts the target
location given apriori and system model through the process of
Kalman filtering. This can be visualized in Figure (2b and c),
which illustrates the step response of 350 mm in two scenarios.
In Figure (2b) the control loop is running at least twice as fast
as compared to the visual detection loop ( Tcl ≤ 2(Tvl)). In
the case of Figure (2c), the control loop time Tcl is equals
to the visual detection loop time, Tvl. It was observed that
even when the control loop and visual detection loop run with
the time step, the visual detection loop is not able to keep
up with the timing as it is waiting on the camera to update
the following image. This results in variable loop timing in
the visual detection loop. If the visual detection and control
loop are not separate, then high-speed control of the robotic
manipulator cannot be implemented. Having two parallel loops
running and sharing information in real-time can improve the
performance of robotic tracking and traversing. The control
loop can predict the target’s motion.

Testing Platform: The platform consists of a flat surface
mounted on a servo-controlled linear stage. This platform
consists of high accuracy encoders and its positional data
can be extracted. This controlled motion is used to validate
the calibration of the visual sensors and asses the tracking
performance. The platform runs independent of the robotic
printing setup and produces motion to simulate an uncooper-
ative platform having 2 degrees of freedom(depending on the
pose of the platform relative to the robotic arm). It can generate
pulse response and periodic motion. At all times, the camera
is tracking a marker located on the printing platform, and this
serves as the origin of the platform coordinate frame. When
the platform is in motion, the updated printing coordinates
are obtained through the beforehand knowledge of platform
geometry and the tracked motion.

B. Conclusion

In this work, a framework for visual detection and con-
trol for six dof robotic manipulator is presented. The visual
detection and control strategy consists of an inner loop that
controls the state of the robot and an outer loop that serves
as the visual detection loop. This arrangement enhances the
tracking performance as the failure for timely updates from
the outer loop is independent of the inner control loop. The
overall system is comprised of low-cost, off-shelf ready use
components. The Kalman filter enables reliable target state
estimation in case of measurement failure and fusion of
sensory data. The current performance of this system can be
further enhanced by improving the robotic state indications.
The system is observed to be lagged by not having timely
updates to the robot state due to the manufacturer’s controller
configuration. In future works, a similar visual detection and
tracking of the robotic state itself will be implemented to form
the robot’s full visual control loop.
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